

CYBERSECURITY FOR SMALL
NETWORKS

CYBERSECURITY FOR SMALL
NETWORKS

A No-Nonsense Guide for the Reasonably
Paranoid

by Seth Enoka

San Francisco

CYBERSECURITY FOR SMALL NETWORKS. Copyright © 2023 by Seth
Enoka.

All rights reserved. No part of this work may be reproduced or transmitted in any
form or by any means, electronic or mechanical, including photocopying,
recording, or by any information storage or retrieval system, without the prior
written permission of the copyright owner and the publisher.

First printing

26 25 24 23 22 1 2 3 4 5

ISBN-13: 978-1-7185-0148-5 (print)
ISBN-13: 978-1-7185-0149-2 (ebook)

Publisher: William Pollock
Managing Editor: Jill Franklin
Production Editors: Paula Williamson and Katrina Horlbeck Olsen
Developmental Editors: Jill Franklin and Eva Morrow
Cover Illustrator: Gina Redman
Interior Design: Octopod Studios
Technical Reviewer: Kyle Rankin
Copyeditor: Kim Wimpsett
Compositor: Scribe Inc.
Proofreader: Scribe Inc.
Indexer: BIM Creatives, LLC

For information on distribution, bulk sales, corporate sales, or translations,
please contact No Starch Press, Inc. directly at info@nostarch.com or:

No Starch Press, Inc.
245 8th Street, San Francisco, CA 94103
phone: 1.415.863.9900
www.nostarch.com

Library of Congress Cataloging-in-Publication Data
Names: Enoka, Seth, author.
Title: Cybersecurity for small networks / by Seth Enoka.
Description: San Francisco, CA : No Starch Press, Inc., [2022] | Includes index.
Identifiers: LCCN 2022021005 (print) | LCCN 2022021006 (ebook) | ISBN

9781718501485 (print) | ISBN 9781718501492 (ebook)

mailto:info@nostarch.com
http://www.nostarch.com/

Subjects: LCSH: Local area networks (Computer networks)—Security
measures.

Classification: LCC TK5105.7 .E56 2022 (print) | LCC TK5105.7 (ebook) | DDC
004.6/8—dc23/eng/20220707

LC record available at https://lccn.loc.gov/2022021005
LC ebook record available at https://lccn.loc.gov/2022021006

No Starch Press and the No Starch Press logo are registered trademarks of No
Starch Press, Inc. Other product and company names mentioned herein may be
the trademarks of their respective owners. Rather than use a trademark symbol
with every occurrence of a trademarked name, we are using the names only in
an editorial fashion and to the benefit of the trademark owner, with no intention
of infringement of the trademark.

The information in this book is distributed on an “As Is” basis, without warranty.
While every precaution has been taken in the preparation of this work, neither
the author nor No Starch Press, Inc. shall have any liability to any person or
entity with respect to any loss or damage caused or alleged to be caused
directly or indirectly by the information contained in it.

https://lccn.loc.gov/2022021005
https://lccn.loc.gov/2022021006

To my darling wife, without whom I would surely be unable to do all
the things

About the Author
Seth Enoka is an IT and cybersecurity veteran, having worked on
large and complex cybersecurity incidents and investigations all over
the world. When he’s not helping organizations kick and keep
adversaries out of their networks, you can find him teaching digital
forensics and incident response, mentoring and being mentored by
others in the security community, working through some degree or
certification, or preparing for his next powerlifting competition
(whenever that might be . . .).

About the Technical Reviewer
Kyle Rankin is the chief security officer at Purism and the author of
Linux Hardening in Hostile Networks and DevOps Troubleshooting,
among other books. Rankin was an award-winning columnist for
Linux Journal. He speaks frequently on open source software and
has given keynotes at SCALE and FOSDEM.

BRIEF CONTENTS

Acknowledgments
Introduction

Chapter 1: Getting Started with a Base Linux System and Network
Map

Chapter 2: Architecting and Segmenting Your Network

Chapter 3: Filtering Network Traffic with Firewalls

Chapter 4: Securing Wireless Networks

Chapter 5: Creating a Virtual Private Network

Chapter 6: Improving Browsing and Privacy with the Squid Proxy

Chapter 7: Blocking Internet Advertisements

Chapter 8: Detecting, Removing, and Preventing Malware

Chapter 9: Backing Up Your Data

Chapter 10: Monitoring Your Network with Detection and Alerting

Chapter 11: Tips for Managing User Security on Your Network

Index

CONTENTS IN DETAIL

Acknowledgments
Introduction

How to Use This Book: What to Expect
Recommended (But Not Required) Knowledge
Recommended Hardware
Summary

1: Getting Started with a Base Linux System and Network Map
Linux Operating Systems

#1: Creating an Ubuntu Virtual Machine
Hypervisor Options
VMware Workstation and VMware Player for Windows
VMware Fusion and VMware Fusion Player for macOS
VirtualBox

#2: Creating a Physical Linux System
Bootable USB on Windows
Bootable USB on macOS
Using the Bootable USB

#3: Creating a Cloud-Based Linux System
Finalizing the Linux Installation
Hardening Your Ubuntu System

#4: Installing System Packages
#5: Managing Linux Users
#6: Securing Remote Access

Generating SSH Keys
Remote Login with SSH

#7: Capturing VM Configurations
Taking Snapshots in VMware

Taking Snapshots in VirtualBox
Network Topology

#8: Checking Your IP Address
On Windows
On a Mac
On Linux

#9: Creating a Network Map
#10: Transferring Files

Summary

2: Architecting and Segmenting Your Network
Network Devices

Hubs
Switches
Routers

Creating Trust Zones
Physical Segmentation
Logical Segmentation

#11: Segmenting Your Network
Ethernet Segmentation

Summary

3: Filtering Network Traffic with Firewalls
Types of Firewalls
iptables

#12: Installing iptables
iptables Firewall Rules
Configuring iptables
Logging iptables Behavior

pfSense
#13: Installing the pfSense Firewall

Hardening pfSense
pfSense Firewall Rules

#14: Testing Your Firewall

Summary

4: Securing Wireless Networks
#15: Disabling IPv6
#16: Limiting Network Devices

Creating an Asset List
Static IP Addressing
MAC Address Filtering

#17: Segmenting Your Network
#18: Configuring Wireless Authentication

WEP
WPA/WPA2
WPA3

Summary

5: Creating a Virtual Private Network
Drawbacks of Third-Party VPNs and Remote Access Services
OpenVPN
EasyRSA
Wireguard

#19: Creating a VPN with OpenVPN
Set Up the Certificate Authority
Create the OpenVPN Server Certificate and Key
Configure OpenVPN

#20: Creating a VPN with Wireguard
Installing Wireguard
Set Up the Key Pairs
Configure Wireguard

Test Your VPN
Summary

6: Improving Browsing and Privacy with the Squid Proxy
Why Use a Proxy?

#21: Setting Up Squid

Configuring Squid
Configuring Devices to Use Squid
Testing Squid
Blocking and Allowing Domains
Protecting Personal Information with Squid
Disabling Caching for Specific Sites

Squid Proxy Reports
Summary

7: Blocking Internet Advertisements
Browser-Level Ad Blocking

#22: Blocking Ads in Google Chrome
#23: Blocking Ads in Mozilla Firefox
#24: Controlling Brave’s Privacy Settings
#25: Blocking Ads with Pi-Hole

Configure Pi-Hole
Using Pi-Hole
Configure DNS on Your Endpoints

Summary

8: Detecting, Removing, and Preventing Malware
Microsoft Defender for Windows
Choosing Malware Detection and Antivirus Tools

Antivirus Farm
Signatures and Heuristics

#26: Installing Avast on macOS
#27: Installing ClamAV on Linux
#28: Using VirusTotal
#29: Managing Patches and Updates

Windows Update
macOS Software Update
Linux Updates with apt

#30: Installing Automox
Installing Automox
Using Automox

Summary

9: Backing Up Your Data
Backup Types
Devising a Backup Schedule
Onsite and Offsite Backups
What to Back Up and What Storage to Use

#31: Using Windows Backup
#32: Using Windows Backup and Restore
#33: Using macOS Time Machine
#34: Using Linux duplicity

Creating Local Backups with duplicity
Creating Network Backups with duplicity
Restoring duplicity Backups
Additional duplicity Considerations

Cloud Backup Solutions
Backblaze
Carbonite

Virtual Machine Snapshots
Testing and Restoring Backups
Summary

10: Monitoring Your Network with Detection and Alerting
Network Monitoring Methods

Network Traffic Access Points
Switch Port Analyzers

#35: Configuring a SPAN Port
Security Onion

#36: Building a Security Onion System
Installing Security Onion

#37: Installing Wazuh
Installing Wazuh on Windows
Installing Wazuh on macOS
Installing Wazuh on Linux

#38: Installing osquery
Installing osquery on Windows
Installing osquery on macOS
Installing osquery on Linux

A Network Security Monitoring Crash Course
Using osquery
Using Wazuh
Using Security Onion as a SIEM Tool

Summary

11: Tips for Managing User Security on Your Network
Passwords

Password Managers
Password Breach Detection

Multifactor Authentication
Browser Plug-ins

Adblock Plus
Ghostery
HTTPS Everywhere

Internet of Things Considerations
Additional Resources
Summary

Index

ACKNOWLEDGMENTS

There are altogether too many individuals I should thank, and I’m all
too likely to leave out an important name or two, so I’d like to
acknowledge the cybersecurity community as a whole. Thank you for
being as open and generous with your time and expertise as I aspire
to be.

INTRODUCTION

This book is an introduction to cybersecurity, written to help system
and network administrators and owners understand the
fundamentals of securing a network. Your personal cybersecurity is
critical in protecting yourself from fraud and other harmful events
attempted by adversaries. It’s easy to tell yourself that you can’t be a
target, that you have nothing an adversary would want to use or
exploit. However, your personal identifiable information (PII),
protected health information (PHI), intellectual property, and
government information and identification all have value. Failing to
protect those things can lead to consequences such as identify theft,
which can have a serious impact on your life.

For our purposes, a small network consists of 100 or fewer
endpoints. An endpoint, or host, is any system or device that
connects to or is part of a network, such as a desktop or laptop
computer or a mobile device like a phone or tablet. Larger networks,
approaching the size of an enterprise network, use similar tools and
techniques that are covered in this book to provide security to their
users and systems, just on a much larger scale and often at a much
higher cost.

The drawback to securing small networks is that you have to
maintain and administer everything yourself, with limited support and
likely a limited budget. Securing your network will require constant
care, and we’ll cover some ways that you can do this cheaply when
the need arises. Ultimately, the goal of this book is to arm you with

the tools and knowledge to secure your network with whatever
resources you have available, in terms of both time and money.

How to Use This Book: What to Expect
This book is written so that if you follow it logically from chapter to
chapter, you’ll progress through several levels of security maturity,
ending with a network that has a defense-in-depth architecture.
Defense-in-depth is an approach to cybersecurity where several
defensive solutions are layered to protect valuable data and
information. Chapters 1 to 4 cover how to design and architect your
network to better enable your defenses and network monitoring
capabilities. Then, Chapters 5 to 8 discuss low-cost, high-impact
passive defense strategies to prevent adversaries from gaining
access to your network or endpoints. Finally, Chapters 9 to 11 focus
on the value of regular backups and active defenses, whereby you
receive and respond to alerts to suspicious or malicious activity in
your network, enabling cyber incident response.

Most chapters contain stand-alone projects. You can choose to
complete each project in order, or you can pick and choose which
projects you want to complete. However, the concepts covered in
earlier chapters on network architecture provide the best return on
investment, in terms of both time and money, and require less
ongoing support and maintenance. The later chapters that cover
active defenses require constant monitoring and are made more
efficient with the completion of earlier projects. In some cases,
working through the projects in earlier chapters also provides
baseline knowledge that may be useful in later projects, such as
familiarity with the command line. Essentially, you should complete
each chapter in whichever order makes the most sense for you and
your environment; for example, if you already have host and network
firewalls in place, you can probably skip Chapter 3.

I recommend starting with Chapter 1 before setting off on your
own adventure. It covers two fundamental topics: setting up the
servers you’ll use throughout the book and creating a network map
and asset list. Before you can secure your network, you need to

understand its topology: which hosts are connected to it and how
they connect to each other. Mapping the topology will help you keep
track of your devices and recognize unusual activity on the network.
It’s expected that the vast majority of readers will implement the
projects contained in this book as virtual machines (VMs). Virtual
machines (which are also endpoints!) let you run multiple computers
using one physical computer. Using VMs is a cheaper and easier
way to achieve the same results with fewer hardware requirements.
(I’ll describe the remaining hardware recommendations in the section
“Recommended Hardware.”)

Recommended (But Not Required) Knowledge
In this book, you’ll learn the fundamentals of cybersecurity as it
relates to securing small networks. The book will guide you through
all of the necessary steps to complete each chapter and project at a
very low level. Having previous experience working with virtual
machines, using the command line, and generally managing or
administering a network of any size will prove beneficial. Having said
that, you should be able to follow along regardless of experience, as
you’ll learn the necessary skills as you progress.

Recommended Hardware
Some of the projects in this book may require hardware or a device
or system that you may not currently have on hand. Wherever
possible, alternatives will be provided to purchasing new hardware,
but in some cases, you might find the best or only way forward is to
buy something new. What follows is a list of the hardware used in
each chapter.

Virtual Machine Host System

You can use a computer you already have to run your
virtual machines, so long as that physical computer has

enough memory (RAM) and processor (CPU) resources.
As a general rule, you’ll need 2GB of memory and one
CPU core for each VM you plan to run, plus at least 4GB
of memory and one CPU core for the host operating
system. Therefore, to complete every chapter of this
book, you should plan to use a physical system with at
least 16GB of RAM and eight CPU cores.

Most modern systems come with specifications of this
level, and you can also use network attached storage
(NAS) or another system capable of running virtual
machines, or a small computing unit such as an Intel
NUC, in the same way. A NAS is a device connected to
your network that allows storage and retrieval of data
from a central location and in most cases will offer
additional network services and capabilities, like the
ability to host virtual machines. If you have spare
resources on your computer, start there. You can always
move your virtual machines to a new system if they
outgrow their original host and its hardware.

Firewall

In Chapter 3, you’ll be led through the installation and
configuration of a pfSense firewall. This firewall can be
purchased cheaply, and it will go a long way in increasing
the security of any network very quickly and with minimal
effort. The recommended device is the Netgate SG-3100
as it’s cost-effective and easy to set up and maintain. It is
possible to build your own, but the Netgate will likely be
more secure and have a better cost.

Wireless Router

If you plan to use wireless in your small network (it’s
expected that the majority of your devices will be
wirelessly connected), you’ll need a wireless router or
access point. We’ll use the ASUS RT-AC5300 for most of

the relevant examples in this book. This router is a mid-
range device in terms of price and features. It provides
enterprise-grade functionality without the premium price
tag.

Managed Switch

A managed switch is a device that can be configured to
monitor and control network traffic. This is another
relatively low-cost device that will provide you with very
useful capabilities, like the ability to keep vulnerable and
valuable devices separate. We’ll mostly be discussing
and using the Netgear GS308E.

Network TAP

A network tap is a monitoring device that mirrors traffic
passing between two points on a network, allowing you to
collect network traffic as it travels between devices as
well as networks. You can analyze captured traffic to
identify suspicious or malicious behavior and then tailor
your defenses to prevent or alert on that activity,
providing the best chance to prevent cybersecurity
incidents. Dualcomm offers several TAPs with varying
capabilities, capacities, and price points. For most small
networks, the ETAP-2003 will be sufficient; this is the
device we’ll focus on.

Alternatives

While the step-by-step instructions will be tailored to
these recommended devices, the processes are
generalized enough that you should be able to follow
them with any other similar devices. Alternatives to all the
devices recommended in this introduction are devices
available from Ubiquiti. While Ubiquiti devices will be
more expensive, they provide greater functionality and

ease of administration, and they offer commercial
support.

Summary
If you want to begin your security journey in the most cost-effective
way possible, complete Chapters 1 to 4 on creating a defensible
network architecture. If your interests lie more in the network
monitoring, detection, and incident prevention domains, dive into
Chapters 5 to 8 to learn high-impact defense strategies for mitigating
cyber vulnerabilities and preventing adversary access to your
endpoints. If your network and defense capabilities are somewhat
mature already, investigate Chapters 9 to 11 for more active
strategies to protect your network, endpoints, and users from
adversaries that might be targeting your personal information or
business data.

1
GETTING STARTED WITH A BASE

LINUX SYSTEM AND NETWORK MAP

This chapter presents two fundamental projects: setting up a basic
Ubuntu system that you’ll use throughout the book and creating a
network map. You’ll use this system as a base on top of which you
will install and run various security tools, and the network map will
provide a visual overview of all the devices in your network and how
they interrelate and communicate.

We’ll start with a definition and overview of common Linux
operating systems and then go through the steps to install a version
of Linux (specifically, Ubuntu) in a virtual machine (VM), on a
physical computer, and in the cloud. Regardless of where it’s
installed, I’ll show you how to make Ubuntu more secure and then
add it to your network map. Every time a new endpoint is added to
your network, you must update your network map to ensure it’s
always up-to-date. An out-of-date network map is no use to anyone.

Linux Operating Systems
Linux is the operating system of choice, as Linux systems are open
source and therefore very extensible, especially when compared to
Windows or macOS. The level of control you have over the operating
system and the applications that run on top of it is very granular,

enabling you to have far better control over the security of your
endpoints and your network.

Several Linux operating systems (or distributions) are available.
Each distribution uses a different set of basic utilities and graphical
user interfaces (GUIs), and each one looks and functions in a slightly
different way. For example, Kali Linux is a distribution geared toward
offensive operations and is commonly used by penetration testers to
perform network assessments. Red Hat Linux is probably the most
used enterprise distribution, and several other distributions are
based on Red Hat, such as Fedora and CentOS. If you’re interested
in Linux, try various distributions to find the one you like the most.

In this book, we’ll primarily use Ubuntu, which is one of the most
user-friendly and among the easiest to use for beginners or those
new to Linux in general. Ubuntu is available in three editions:
Desktop, Server, and Core. For our purposes, the Desktop edition is
sufficient. If you plan to use your Ubuntu servers for additional
network services, such as a file or Dynamic Host Control Protocol
(DHCP) server, the Server edition would be appropriate. Ubuntu
Core is specifically for resource-limited applications, like internet of
things (IoT) implementations.

The most recent versions of the Ubuntu operating system are
available from https://ubuntu.com/download/. These downloads will
be in ISO file format, meaning the file extension will be .iso. ISO files
are logical images or containers that can be used to emulate
physical media such as CDs or DVDs.

The following sections walk through installing Ubuntu, either as a
physical device or as a virtual machine on either macOS or
Windows, as well as in the cloud. Using a physical device allows you
to take advantage of all of a system’s resources, such as CPU and
RAM, but it requires that you have a physical system available onto
which you can install Ubuntu. Using virtual machines provides
several useful features, like the ability to take snapshots (this will be
discussed later in this chapter). Creating a virtual machine in the
cloud provides additional capabilities, like easy access to your
system from any location, but often comes with additional security
considerations. Once you’re finished with the platform-specific

https://ubuntu.com/download/

instructions for your setup, jump to “Finalizing the Linux Installation”
on page 8.

#1: Creating an Ubuntu Virtual Machine
Throughout this book, you’ll create Ubuntu systems for various
purposes. Each of them will be based on the system we’ll create
now, which will act as a standard base operating system, on top of
which you can add tools and applications necessary for securing
your network.

Hypervisor Options
A hypervisor is software that allows you to create and run virtual
machines using a guest operating system. For this initial project, you
can create an Ubuntu VM using an inexpensive commercial
hypervisor from VMware. Multiple editions of VMware Workstation
are available from https://www.vmware.com/. VMware Player (for
Windows) and VMware Fusion Player (for Mac) are free for personal
use, but they don’t have some of the more advanced features we’ll
want to take advantage of in later chapters. I recommend using
VMware Workstation Pro and VMware Fusion Pro. The commercial
license for either of these is relatively inexpensive. An alternative
solution is to use the free Workstation Player to begin with and then
upgrade to the commercial license if you need to. The step-by-step
instructions for Workstation and Player editions are mostly the same,
with some slight differences between Workstation and Fusion.

Another option is to use VirtualBox, a free solution for creating and
managing VMs maintained by Oracle. VirtualBox is available for all
major operating systems, and you can download it from
https://www.virtualbox.org/wiki/Downloads/.

VMware Workstation and VMware Player for
Windows

https://www.vmware.com/
https://www.virtualbox.org/wiki/Downloads/

To create your VM in VMware Workstation or VMware Player, follow
these steps:

1. Click File▸New Virtual Machine in VMware.
2. On the New Virtual Machine screen that opens, choose

Typical (recommended) and click Next.
3. Select Installer Disc Image File (iso).
4. Using the Browse button, navigate to and select the

Ubuntu ISO you downloaded earlier; then click Next.
5. The Easy Install wizard will ask for the user details for your

VM; fill out the Full Name, User Name, and Password
fields, and click Next.

6. Give your VM a meaningful name indicating its role on your
network when asked.

7. Save the VM to the default location (or anywhere you
desire) and click Next.

8. Set the virtual disk size to 40GB if your host machine has
enough disk space; otherwise, accept the default 20GB.

9. Store the virtual disk as a single file, rather than split into
multiple files and click Next.

10. Click Customize Hardware.
11. If your host has enough RAM, increase the RAM of the

VM from 2GB to 4GB.
12. Set Processors to 1.
13. Under Network Adapter, select Bridged mode to give your

VM its own independent IP address and network
connection.

14. Click Sound Card▸Remove.
15. Click Printer▸Remove.
16. Click Finish.

Your virtual machine will be created, and the operating system will
begin installing.

VMware Fusion and VMware Fusion Player for
macOS
Once you’ve installed VMware Fusion or VMware Fusion Player,
follow these steps to create your first VM:

1. Click File▸New▸Continue in VMware.
2. Drag and drop your ISO file onto the VMware Fusion

window, or click the Use Another Disc or Disc Image
button to locate the file in your filesystem; then click
Continue.

3. The Easy Install wizard will ask you for the user details for
your VM; fill out the Display Name, Account Name, and
Password fields.

4. Ensure the Make your home folder accessible to the virtual
machine checkbox is not ticked and click Continue.

5. Click Customize Settings.
6. Save the VM to the default location (or anywhere you

desire).
7. Set the virtual disk size to 40GB if your host machine has

enough disk space; otherwise, accept the default 20GB.
8. In the Processors and Memory menu, if your host has

enough RAM, increase the RAM of the VM from 2GB to
4GB, and set Processors to 1.

9. Untick the Connect checkbox to either add or disconnect
the following peripherals within their context menus: sound
card, floppy, printer, and camera. (Disconnecting unused or
superfluous peripherals from your virtual machines removes
potential attack vectors.)

Click the Play button to start your VM, and the operating system
installation will begin.

VirtualBox
The steps for creating a VM in VirtualBox are the same whether
you’re using a Windows PC or Mac as the host system. Once you’ve
downloaded and installed VirtualBox, follow these steps to create a
VM:

1. Click the New button at the top of the VirtualBox window.
2. Provide a relevant name for your VM, specify the location

to save the files (the default folder is usually fine), and
select the correct operating system from the drop-down
menus: Linux▸Ubuntu (64-bit); then click Continue.

3. If your host has enough RAM, increase the RAM of the VM
from 2GB to 4GB, and click Continue.

4. Select Create a New Virtual Hard Disk Now and then
click Create.

5. Select VMDK as the hard disk format and click Continue.
6. Select Dynamically Allocated and click Continue or Next

(depending on your OS).
7. Set the virtual disk size to 40GB if your host machine has

enough disk space; otherwise, accept the default 32GB and
click Create.

8. Select the VM in VirtualBox and click Settings.
9. Go to Settings▸System▸Motherboard.
10. Under Boot Order, untick the Floppy checkbox.
11. Go to Settings▸System▸Storage.
12. Select the CD drive (it’ll be listed as Controller: IDE and

have a CD icon next to it).
13. In the attributes pane, click the CD icon to choose a disk

file, and point it at your Ubuntu ISO file.
14. Under Settings▸Audio, untick the Enable Audio

checkbox.
15. Under Settings▸Network▸Adapter 1, switch the

Attached to drop-down to Bridged Adapter so your VM

will be assigned its own IP address and be logically
separate from the host system’s network settings.

16. Click OK.

NOTE The options for hard disk format are VDI, VHD, or VMDK.
VDI is VirtualBox’s proprietary format. VHD was developed by
Microsoft, is compatible with Windows, and can be easily mounted
under the Windows operating system as a virtual disk. VMware
originally developed VMDK, but it’s now an open file format.
VMDK is compatible with both VirtualBox and VMware, so if you
choose to switch from one to the other, your virtual hard disks
shouldn’t cause any challenges.

#2: Creating a Physical Linux System
Instead of creating a virtual machine, you might want to use a
physical computer and install Ubuntu the same way you’d install
Windows or macOS directly onto the hardware. Using a physical
system has benefits like increased performance or reduced resource
requirements in terms of memory and processing power. The main
drawback is that physical systems usually aren’t as flexible as virtual
machines. As you progress through this book, you’ll be asked to
create multiple Linux systems, so we’ll assume that you’ll use mostly
virtual machines. However, should you choose to use physical
systems for each of these projects, you should still be able to follow
along.

To create a physical Ubuntu system, you need a bootable USB
drive, which means you’ll install Ubuntu on a USB that you can plug
into any computer and install it from there.

Bootable USB on Windows
On a Windows computer, the simplest way to create a bootable
Ubuntu USB is with Rufus, a small utility specifically for creating
bootable media. Download the latest version from https://rufus.ie/.
Rufus is a portable executable, which means you don’t need to

https://rufus.ie/

install it; just download and run it. Once downloaded, follow these
steps:

1. Plug in a USB thumb drive at least 16GB in size. Rufus will
format this USB drive, so make sure it doesn’t contain
anything you want to keep.

2. Run the Rufus executable.
3. Once Rufus is open, ensure the Device drop-down menu

indicates that the correct USB drive is selected. It’s often
easiest to plug in only your target USB device and unplug
any others.

4. Under Boot Selection, choose Disk or ISO Image.
5. Click Select.
6. Navigate to your Ubuntu ISO file and select it.
7. Once selected, Rufus will load a set of default settings for

the bootable USB; accept them and click Start.
8. Rufus might display a pop-up asking whether you want to

write the media in ISO or DD image mode; choose ISO
Mode and click OK. When installing Ubuntu later, if you
aren’t able to proceed with the installation or it seems to
hang, repeat this process and select DD Mode instead.

9. Rufus will display a pop-up to inform you that it will format
the USB drive; click OK to proceed.

Bootable USB on macOS
Etcher is an open source utility for macOS used for writing operating
system images to removable media such as USB drives and SD
cards. Download the latest version from
https://www.balena.io/etcher/. Once it’s downloaded and installed,
follow these steps:

1. Plug in a USB thumb drive at least 16GB in size. Etcher will
format your USB drive, so make sure it doesn’t contain

https://www.balena.io/etcher/

anything you want to keep.
2. Run Etcher.
3. Once Etcher is open, click Flash from File, and select your

Ubuntu ISO file.
4. Click Select Target and select your USB drive.
5. Click Flash to create your bootable Ubuntu USB (you might

be asked to enter your computer password to allow Etcher
to make changes to the USB).

6. The flashing process will begin, and a progress bar will
appear. Once the process completes, you may be informed
that “The disk you inserted was not readable by this
computer.” If so, just eject the USB; don’t choose Initialize.

Using the Bootable USB
When the process completes, you’ll have a bootable Ubuntu Linux
USB drive. Plug it into the computer on which you want to install
Ubuntu and boot or reboot it. You might have to change the system’s
boot order so it boots from the USB instead of the internal hard drive.
To do that, you need to interrupt the boot sequence, which is
typically done by pressing ESC, F8, F10, or F12. Do an internet
search to find the correct interrupt key for your computer, or reboot
the system and press each of those keys until you successfully enter
the computer’s basic input/output system (BIOS).

NOTE Technically, most modern computers use the Unified
Extensible Firmware Interface (UEFI), which has improved
features over the outdated BIOS. We’ll use the terms BIOS and
UEFI interchangeably.

From the BIOS, which is responsible for hardware management
outside your operating system, change the boot order so that the
computer boots from the USB first. Then restart the computer, and it
will boot into the Ubuntu installation environment. On a Mac, just

hold the OPTION key while the system boots and then choose to
boot from USB.

#3: Creating a Cloud-Based Linux System
It’s common to move network infrastructure to the cloud, which just
means running our services on someone else’s computer(s).
Websites and the web servers that run them are often easier to
access (from anywhere in the world) and manage in the cloud than
they would be on our private networks and VPN servers. (We’ll cover
VPNs in greater detail in Chapter 5.) In this section, we’ll explain how
to create your Linux computer using a cloud service provider. We’ll
use Vultr for this project as it’s relatively inexpensive, it’s reliable,
and it presents an easy learning curve if you haven’t used a cloud
provider before. The steps should be similar regardless of provider,
whether you’re using Amazon Web Services, Microsoft Azure, or
something else.

1. Create an account at https://www.vultr.com/.
2. On the account dashboard, click +▸Deploy New Server.
3. Choose Cloud Compute. The other options (High

Frequency, Bare Metal, and so on) are for specialist
applications, not suitable for our purposes.

4. Choose a location for your server. Choosing a location
geographically close to you can improve access speeds to
your VM; however, if you want to obfuscate your location,
choose a location in a different country.

5. For Server Type, choose the latest available version of
Ubuntu.

6. Choose a server size. The cheapest option is a good place
to start; you can always upgrade your VM later if necessary.

7. Supply a hostname for your server.
8. Click Deploy.

https://www.vultr.com/

The service provider will now instantiate your Ubuntu VM, which is
the same as creating a VM in VMware or VirtualBox. This process
can take some time. Once your VM is confirmed to be up and
running, your service provider will supply the IP address, username,
and password to access your VM. You’ll then be able to complete
the steps in the following sections to set up and secure your VM.

Finalizing the Linux Installation
If you created your Linux system in the cloud or using VMware and
Easy Install, booting the VM will automatically install Ubuntu, create
your user account, and present you with the Ubuntu desktop
environment, which will be similar to a Windows or Mac desktop. If
you used VirtualBox or are creating a physical Linux system, you’ll
need to complete some additional steps to get to that stage.

In VirtualBox, follow these steps:

1. Click the Start button to boot the VM.
2. Using the Ubuntu installation wizard, select your desired

language and click Install Ubuntu.
3. Select your keyboard layout and click Continue.
4. On the Updates and Software screen, select Minimal

Installation as you won’t need a lot of the additional
software that would otherwise be installed with the
operating system.

5. Tick both checkboxes to allow software updates to be
installed from various sources.

6. Click Continue.
7. On the next screen, the wizard will ask if you want to erase

the disk and install Ubuntu, with a warning, as shown in
Figure 1-1. Click the Advanced Features button and select
Use LVM with the New Ubuntu Installation. Using LVM
provides greater flexibility and control over your disks and
their partitioning. LVM allows for advanced features such as

naming logical volumes and dynamically resizing partitions
and virtual hard disks when required.

Figure 1-1: Ubuntu installation type prompt

Keep in mind that this installation wizard is referring only to the
virtual machine and the virtual hard disk that is attached to it (which
we created earlier). It does not affect the physical hard drive of your
host system. There is no risk of losing your files or data by
proceeding with the installation inside the VM.

8. Click OK▸Install Now.
9. You’ll be asked to write the changes to disk (meaning the

virtual hard disk of the VM). Click Continue to accept the
configuration you just set for this VM.

As Ubuntu installs, you’ll be asked for certain settings for the
operating system, such as your location (for time zone settings), your
name, your computer or hostname, and your user details such as
username and password. Set those as appropriate and continue the
installation. Eventually, the operating system installation will
complete, and you’ll be presented with the Ubuntu desktop
environment.

WARNING Do not set or allow the user to log in automatically, as
that configuration isn’t secure for any computer. Always use the
Require my Password to Log in setting.

The first time you log in, Ubuntu will ask you to configure online
accounts and whether you want to share anonymous statistics
with the developer. This system needs to be a secure system and
therefore shouldn’t be connected to services such as Google or

Microsoft cloud services. Skip all of those configuration options and
disallow sharing of data wherever possible. This advice is good for
life (if you’re concerned about privacy), not just the configuration of
Ubuntu virtual machines.

You’ll follow the same steps to complete Ubuntu installation on a
physical system, the only difference being the disk partitioning will
affect the physical hard drive within the computer, and not a virtual
hard drive. Once you’ve installed Ubuntu, reset the boot order in the
BIOS as you did before so the computer boots from the internal hard
drive instead of USB, and also remove the bootable USB from the
computer.

Hardening Your Ubuntu System
Now that you’ve created a base virtual or physical machine, you’ll
make some initial configuration changes to ensure your system is
secure. This process is called hardening, which broadly means
keeping the system up-to-date with the latest operating system and
software patches, installing some additional management software,
and altering configuration files to make the system more secure.

#4: Installing System Packages
In Ubuntu, you’ll use the Advanced Package Tool (APT) to ensure
the system is up-to-date with all of the latest patches. In Linux,
people use the term packages to refer to software, and APT is a
package management utility used to install, uninstall, update, or
otherwise manage the tools and software on your system.

APT is a command line interface (CLI) utility, which means you’ll
use the Linux Terminal to interact with it, rather than a GUI tool like
Windows Update.

NOTE Most operating systems have a CLI; Windows has Command
Prompt and PowerShell, and macOS has its own Terminal.
Essentially, a CLI is a more direct way to interact with the
operating system using text commands. A CLI will look like a

simple text editor with a prompt for your input. Command Prompt,
Linux Terminal, and macOS Terminal are all black with white text
by default. PowerShell is blue.

In a cloud deployment, you might have access only to the Linux
Terminal by default, with no access to a GUI. If that’s the case, you’ll
be presented with a terminal window immediately upon logging in.
Otherwise, to access the terminal in Ubuntu, click the Activities
menu at the top-left side of the screen in Ubuntu, type Terminal, and
click it when it appears, the same way you’d search for and open an
application in the Windows Start menu.

By default, even as an administrator, you can’t run certain
commands or perform some actions on a Linux system because you
don’t have the necessary permissions (called privileges in Linux). A
lot of commands and actions are reserved for superusers, or the root
user account in Linux. As a non-root (that is, a nonsuperuser) user in
Linux, you need the sudo command, which stands for superuser do.
For example, to use APT to update all the installed packages in your
Ubuntu system, use the following commands, pressing ENTER after
each command to execute them:

$ sudo apt update
$ sudo apt upgrade

The first command, sudo apt update, retrieves the list of available
updates for each application currently installed. The second
command, sudo apt upgrade, downloads and installs those updates.
When prompted, enter your password; making you authenticate to
run privileged commands is a sudo security feature. Every time you
run a command with sudo, the action is logged in the /var/log/auth.log
file, so all administrative actions can be audited after the fact. When
asked to continue installing packages, enter Y (for yes) and press
ENTER.

WARNING On the command line in Linux and macOS, when your
prompt displays a dollar sign ($), this means you’re currently in the
context of (that is, operating as) a normal, non-administrative user.

If your prompt displays a hash mark (#), you’re in the context of
the root user and have full system access to make changes, move
files, and delete files. Be careful if you’re operating in the context
of root, as it’s easy to make mistakes and cause problems with
your operating system. It’s always best to work primarily in the
context of a normal user and use sudo when using the command
line.

When you install new packages, APT often also installs any
dependencies required for those packages (otherwise, your software
would look for things it depends on, not find them, and fail to run
successfully). However, when you remove or uninstall software,
those dependencies might be left behind. Having unnecessary
applications on your systems is insecure, as an attacker might
exploit a vulnerability in those leftover packages to gain access to
your network or use them to perform other nefarious activities. Run
sudo apt autoremove and sudo apt clean as shown here to remove
any no longer needed dependencies and delete previously
downloaded packages, respectively:

$ sudo apt autoremove
$ sudo apt clean

To install new packages, use sudo apt install. A useful package
that allows you to access and administer your system remotely via
the command line is SSH (for secure shell). Run sudo apt install
openssh-server to install SSH (to install a different package, you
would substitute openssh-server for the package name).

You can install multiple packages with apt at the same time like
this:

$ sudo apt install openssh-server package_name1 package_name2

Again, type your password and enter Y if prompted. With SSH
installed, you’ll be able to configure remote access to your system.

#5: Managing Linux Users
Part of managing your network security is managing the user
accounts and hosts within your network. You may need to add new
users to your Ubuntu machines, such as a new user account for a
new service or application, or to allow others to administer your
systems. Adding new users is an administrative function and
requires the sudo command. Use the adduser command to add new
users:

$ sudo adduser username

You’ll be asked to specify a password for the user, but using
passphrases is better, because they’re easier to remember, tend to
be longer, and are harder to crack. (We’ll discuss passphrases and
creating strong passwords in more detail in Chapter 11.)

You also can set names, phone numbers, and other information
for your users if you want; otherwise, press ENTER to leave these
fields blank.

Deleting a user is just as easy:

$ sudo deluser username

In addition, you may want to give your new user sudo privileges to
allow them to administer your system, which you can do with the
usermod command:

$ sudo usermod -aG sudo username

The -aG (add group) parameter will add the user to the sudo
group. User groups in Linux are a collection of user accounts, and
they’re used to assign privileges and permissions to specific user
accounts, such as the ability to read and write certain files. Keep in
mind, however, that the fewer users with sudo privileges the better.
Always practice the principle of least privilege and allow users only
as much control as they require on a day-to-day basis. Providing

administrator credentials and privileges to more people than
necessary will lead to a far less secure network configuration.

Finally, you can reset the password for a given user with the
passwd command:

$ sudo passwd username

Managing the users in your network is an important part of
keeping your network secure. Having superfluous user accounts,
especially if they have more privileges than they require, provides an
easy way for adversaries to compromise and gain a foothold inside
your network. This is easily preventable, so always be aware of the
risks of additional or unnecessary user accounts.

Besides managing the users in your environment, each of your
endpoints has a hostname, which is a friendly name or human-
readable name used to identify the host. Often, these are configured
as some default value by the operating system when it’s installed
(like ubuntu for Ubuntu systems). It can be beneficial to choose a
naming scheme for your hosts and to ensure each host has a
different name. In Windows networks, for example, multiple hosts
cannot have the same hostname, because this results in conflicts
that create administrative problems within the network.

You can check the hostname of your Linux system with the
hostname command:

$ hostname
ubuntu

To change the hostname, use the hostname command again, but
this time use sudo and specify the desired hostname:

$ sudo hostname your_hostname

Run the hostname command again to confirm the change has
occurred. Reboot your server to make the change permanent.

#6: Securing Remote Access
Now that you’ve made it possible to access the system remotely with
SSH, you need to lock down that capability so only authorized users
can log in to this host. Several settings are involved in this process.
You’ll disable password login in favor of SSH keys, as well as
disallow the root account from logging in directly via SSH. Allowing
superusers such as root to log in interactively using utilities like SSH
is bad practice because it allows attackers to perform attacks such
as brute-forcing (continually guessing potential passwords until they
find the one that works) and then be able to log in with complete
access to your system. Likewise, with your other user accounts,
using SSH keys to log in instead of passwords eliminates an entire
class of potential attacks (username and password guessing)
against your systems.

Generating SSH Keys
SSH key pairs are generally accepted to be more secure than
passwords or passphrases. SSH keys are cryptographically secure
keys that can be used to authenticate a client computer (your local
host) to an SSH server (your Ubuntu system). The first part of a key
pair is your private key, which is held by and identifies your client,
and must remain absolutely secret, just like a password. The other
half is the public key, which can be freely shared. The public key is
provided to your SSH server and is capable of decrypting
your private key, thereby allowing authentication between the two
endpoints. Each local user account that you want to use to log in to
your Ubuntu system will need its own set of public and private keys.

To create an SSH key pair, open a terminal window on the
computer you plan to use as your SSH client (the computer that will
connect to your Ubuntu system via SSH). Enter ssh-keygen and
press ENTER. Press ENTER again to accept the default file in which
to save the keys. The default location of this file will be:

• Windows: C:\Users\<user>\.ssh\id_rsa

• macOS: /Users/<user>/.ssh/id_rsa
• Linux: /home/<user>/.ssh/id_rsa

Next, you’ll be asked for a passphrase for your private key, which
is optional but recommended. By using a passphrase in addition to
your SSH keys, your private key is never exposed on the network,
meaning that to get access to your private key, attackers need
access to your computer (if they have that, it’s probably already
game over). Once you’ve entered your passphrase (or not), press
ENTER, and your key pair will be created.

To provide the public key file to your Ubuntu system (or any other
server you want to use your key pair to connect with), enter the
following command:

$ ssh-copy-id user@your_ubuntu_ip
The authenticity of host '192.168.1.10' can't be established.
ECDSA key fingerprint is
aa:aa:aa:aa:aa:aa:aa:aa:aa:aa:aa:aa:aa:aa:aa:aa.
Are you sure you want to continue connecting (yes/no)? yes

The prompt about an ECDSA key fingerprint might be shown,
which just means that the remote computer wasn’t able to identify
your local computer (because it hasn’t connected to it in this way
before). If you receive this prompt, type yes and press ENTER. Your
Ubuntu system will ask you for the password of the user account
you’re trying to use to connect (that is, the password for the remote
user account). Enter the password, and the process is complete. At
this point, you can use ssh user@your_ubuntu_ip to log in to your
Ubuntu system, and you’ll be prompted for the SSH key passphrase
(not the passphrase for the user on the Ubuntu system) if you
set one.

Disallowing Password Authentication
Next, change the SSH configuration on your Ubuntu system to
disallow password authentication, forcing the use of your SSH keys

to log in. Log in to your Ubuntu system as a standard, non-root user,
and open the SSH configuration file in the terminal using Nano, the
text editor installed by default on many Linux distributions, with the
following command:

$ sudo nano /etc/ssh/sshd_config

Find the line with the setting: # PasswordAuthentication yes. To
search for text in Nano, press CTRL-W and then type your search
term and press ENTER. The setting is currently commented out (the
at the start of the line tells SSH to ignore that line) because yes is
the default configuration and doesn’t need to be set explicitly.
Remove the # from the beginning of the line, and change yes to no.
For every system you create (and on which you enable SSH), you
must change this setting.

Disabling Root Login
It’s also prudent to disable the ability for the root user to log in
remotely. As mentioned earlier, on Linux, the root user has the
highest level of permissions or privileges on the system. By disabling
its ability to log in, you remove the capability of any would-be
attackers to gain privileged access to the system. Technically, the
root account on the most recent versions of Ubuntu can’t log in
because it’s locked by default, but it’s always good to ensure it’s
unable to log in anyway. Find the line:

PermitRootLogin prohibit-password

and change prohibit-password to no. With that done, save the
changes you’ve made to the file. Press CTRL-O and then press
ENTER to overwrite the file you’re editing. Press CTRL-X to exit the
file and return to the terminal.

Restart the SSH service so that it’s reloaded with the new
configuration, using the following command:

$ sudo systemctl restart ssh

There’s one more thing left to test. Earlier, you disabled the ability
to log in via SSH using password authentication by modifying the
configuration file in /etc/ssh/sshd_config. From any computer in your
network, try to SSH into your Ubuntu system using an account on
that computer, with the password you configured (not the user
account you provided with your SSH key):

$ ssh user@your_ubuntu_ip
user@your_ubuntu_ip: Permission denied (publickey).

Here, user is the username you use to log in to the system, and
your_ubuntu_ip is the IP address of your Linux system. If you’re able
to log in successfully, go back to the “Disallowing Password
Authentication” section and make sure your configuration is correct,
or reboot Ubuntu. Leaving access open would create a vulnerability
in your network, which is easy to fix but potentially a big problem if
left unchecked.

Remote Login with SSH
Both macOS and Windows have SSH built in. Using the computer
for which you generated an SSH key and copied to your Ubuntu
system, connect to your new Linux system by entering the following
command:

$ ssh user@your_ubuntu_ip
Enter passphrase for key '/Users/user/.ssh/id_rsa':

Welcome to Ubuntu (GNU/Linux 5.8.0-44-generic x86_6)

* Documentation: https://help.ubuntu.com
* Management: https://landscape.canonical.com
* Support: https://ubuntu.com/advantage

6 updates can be installed immediately.

5 of these updates are security updates.
To see these additional updates run: apt list --upgradable

Your Hardware Enablement Stack (HWE) is supported until ❹ April
2025.

Last login: Mon Mar 8 17:02:46 from 192.168.1.12

When you log in via SSH to Ubuntu, the operating system outputs
a lot of useful information. The first line indicates which version of the
operating system is currently installed ❶ . There are links to
documentation and how to get help ❷ , followed by a list of any
available updates for the system or installed packages ❸. This useful
list indicates when you need to run the update commands described
earlier in “Installing System Packages.” Next, Ubuntu shows when
support for your operating system expires ❹ , at which point you’ll
need to upgrade your distribution with the sudo apt dist-upgrade
command or build a new system with the latest operating system.
Finally, the last successful login to the system is shown ❺, which can
be useful for identifying suspicious activity. If the last login was at 3
AM or from an unfamiliar IP address, you might want to investigate
that activity (unless you’re in the habit of administering your network
and systems in the early hours).

#7: Capturing VM Configurations
At this point, if you’re using a VM, your virtual machine is at a known-
good state; you’ve finished configuring and hardening it, and it’s
ready to be used in your network. It’s a good idea to save this state
so that if something goes wrong, you can return to it without
completely rebuilding the system. One of the benefits of using virtual
machines is the ability to take snapshots. Snapshots save the
current state of a virtual machine, including its power state (on, off,
suspended, and so on), so that you can quickly return to a saved
state if necessary. You can’t do that with a traditional, physical
system, although we’ve all been in situations where we wish we
could. You might choose to take a snapshot before installing a new

program, for example, or before changing a VM’s network settings or
before adding or deleting a new user.

Taking Snapshots in VMware
Regardless of the version of VMware you’re using, simply right-click
the virtual machine for which you want to create a snapshot, click
Snapshots▸Snapshot, name your snapshot, and wait for the
process to complete. That’s it. Now, if something happens to your
VM, right-click the VM and then click Snapshots▸Restore
Snapshot to revert to this known-good state. It’s that simple.

Taking Snapshots in VirtualBox
In VirtualBox, click the menu button (three bullets and three lines) on
the VM in the virtual machine panel on the left of the VirtualBox
window and then click Snapshots. To create a snapshot, click Take.
Name your snapshot, click OK, and wait for the process to complete.
To revert to a snapshot, click the snapshot and then click Restore.

NOTE Every snapshot you create will effectively make a duplicate
of your virtual machine. Multiple snapshots can take up a large
amount of space on your host computer. Keep this in mind when
creating snapshots, and remove old snapshots when they’re no
longer needed. Some cloud providers charge for snapshot storage
as well, so keep that in mind when creating snapshots in your
cloud dashboard. Snapshots are also not a good long-term backup
method. (We’ll discuss backups at length in Chapter 9.)

Network Topology
Understanding how your systems and devices connect to and
communicate with each other is critical when it comes to
cybersecurity. With that in mind, let’s take a crash course on the

Internet Protocol (IP) and IP addressing. IP is a standard protocol
that defines the format of data sent over a network allowing
computers and other network-connected devices to communicate
with each other.

Each of your computers and other network-connected devices
requires an IP address. An IP address is comparable to a street
address or a post office box; computer A sends network traffic to
computer B by embedding computer B’s IP address in the data it
sends. It’s the same as writing an address on an envelope. Any
intermediate devices between the two computers can interpret this
address from the data and pass it along until it reaches its
destination, just like the postal service.

Two commonly used versions of the internet protocol currently
exist, version 4 and version 6, which means we have two types of IP
addresses, IPv4 and IPv6. While IPv6 has been around since the
1990s, it still isn’t used often today. We won’t cover it in detail in later
chapters as it’s largely outside the scope of this book, but it’s
important to be aware of what it is and why it exists. IPv4 addresses
are written in what is known as dotted quad notation, which is a
fancy way of saying they’re composed of four numbers separated by
periods, such as 192.168.1.1. Each of the four numbers can range
from 0 to 255, meaning that IPv4 addresses range from 0.0.0.0 to
255.255.255.255, or a total of 4,294,967,296 possible addresses.

So many network-connected devices now exist in the world that
there aren’t enough IPv4 addresses to go around, which is one of
the reasons IPv6 was created. IPv6 has a larger address space, with
a total of more than 340 trillion, trillion, trillion addresses. To put that
in perspective, that’s 100 times more addresses than there are
atoms on the surface of Earth, which is convenient as more and
more internet-connected devices come online. Eventually, IPv6 will
be in common use, and every device will be able to have its own
public IPv6 address, until we run out of those (probably not in my
lifetime).

As there aren’t enough IPv4 addresses for everyone, we’ve had to
come up with clever workarounds to connect all of our devices to the

internet. One of those solutions is network address translation (NAT).
Using NAT, several devices can be contacted via one IP address.

When you connect your home or office to the internet through your
router, your internet service provider assigns you (and your network)
a public IP address. You can find your IP address using services like
https://www.whatismyip.com/. IP addresses are usually dynamic,
meaning that when you disconnect from and reconnect to the
internet, you will often receive a different IP address.

Your internet router is responsible for routing traffic from your
private, internal network, to the public internet, and vice versa, which
is how you’re able to access services and browse the internet
generally. At a high level, NAT takes the public IP address assigned
to your router and translates the traffic it receives so that traffic
bound from the internet to one of your internal computers or devices
receives the traffic destined for that specific device. It’s similar to the
way letters and packages are delivered to office buildings at their
street address, and then a clerk or mail department determines
where that package needs to go internally, forwarding it to the right
recipient. It also works in the reverse; traffic outbound from your
computer to the internet must be translated from the internal IP
address of your computer to the public IP address of your router
before being forwarded on to reach its intended destination and
return a service, like a web page.

Different IP addresses are reserved and available for use on the
public internet and your private network. The private address ranges
that can be used for private networks are:

10.0.0.0 to 10.255.255.255
172.16.0.0 to 172.31.255.255
192.168.0.0 to 192.168.255.255

All other IP addresses form part of the publicly available IP ranges
or are as yet unassigned.

#8: Checking Your IP Address

https://www.whatismyip.com/

Addressing is usually handled by a router or server. If you have a
wireless router, you can log in to that device, take a look at the client
list or DHCP settings, and find out which address range is being
used. Alternatively, you can just check the address of your
computer(s). Understanding the addressing in your network, in
addition to maintaining an asset inventory and network map, also
means you can keep account of the addresses assigned to specific
devices, the users who are responsible for or assigned to a specific
piece of hardware, and where a particular device is physically
located, among other metadata. (We discuss asset management
further in Chapter 8.)

On Windows
On Windows, click the Start menu, enter cmd, and press ENTER to
open the command prompt. Next, enter ipconfig and press ENTER:

C:\Users\user>ipconfig

Windows IP Configuration
Ethernet adapter Ethernet:
 IPv4 Address. : 192.168.1.126
 Subnet Mask. : 255.255.255.0
 Default Gateway. : 192.168.1.1
C:\Users\user>

The output will show your current IP address, the relevant subnet
mask, and the default gateway your computer is using. The subnet
mask indicates to which segment of a network your computer
belongs, and the default gateway is the address of the device your
computer uses to access other networks, such as the internet. The
gateway is probably your router.

On a Mac

Finding the IP address of a Mac is similar. Open a terminal window,
type ifconfig, and press ENTER:

$ ifconfig
--snip--
en0: flags=8863<UP,BROADCAST,SMART,RUNNING,SIMPLEX,MULTICAST>
mtu 1500
 options=400<CHANNEL_IO>
 ether 78:8d:43:a4:ce:29
 inet 192.168.1.120 netmask 0xffffff00 broadcast
192.168.1.255
 media: autoselect
 status: active

On macOS, the ifconfig output is a bit different: inet is the
internet or IP address, netmask is the subnet mask, and broadcast is
the broadcast address of the network. The subnet mask here is
displayed in hexadecimal (hex) instead of decimal. Hex is another
notation used by computers, different from the dotted quad notation.
A broadcast address is a reserved address in a network used for
sending traffic to all devices in that network segment (we’ll cover this
more in Chapter 10, which discusses network security monitoring).

On Linux
On a Linux system, open a terminal window, and enter the following:

$ ip addr
--snip--
2: ens32: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc

fq_codel state UP group default qlen 1000
 link/ether 00:0c:29:db:ee:7c brd ff:ff:ff:ff:ff:ff
 altname enp2s0
 inet 192.168.1.30/24 brd 192.168.1.255 scope global

dynamic noprefixroute ens32
 valid_lft 4106sec preferred_lft 4106sec

 inet6 fe80::66e:1ae7:861f:9224/64 scope link
noprefixroute

 valid_lft forever preferred_lft forever

The IP address is listed under inet again; the broadcast address
is brd, and the subnet mask is shown as /24, in CIDR notation. CIDR
is another way of representing the same subnet mask information in
a shorter format.

#9: Creating a Network Map
To get a better understanding of your network and see more granular
details, like ingress and egress points (that is, the places where
traffic enters and leaves your network), creating a network map or
network diagram is beneficial. A network diagram is a graphical
representation of your network that allows you to see the overall
architecture at a glance and makes it easier to identify potential
issues when it comes to securing your network.

draw.io (https://www.draw.io/) is a free and easy-to-use cloud
editor that allows users to create various types of diagrams, one
being the network diagram. Alternatively, Microsoft Visio is a
commercial solution that achieves the same objective. If you choose
to use draw.io, load the site and open the Citrix drop-down from the
menu on the left. You can then drag and drop the relevant
representations, as shown in Figure 1-2, from the menu on the left to
the canvas on the right.

https://www.draw.io/

Figure 1-2: draw.io diagramming tool

At its most basic, a small network typically comprises a
modem/router, usually provided by your internet service provider,
which connects your network and all your devices to the internet, as
well as a few devices: computers, laptops, mobile devices,
peripherals such as printers, and so on. Keeping track of all the
devices on your network better enables you to secure your network,
because you know what should be connected and allowed to
communicate, both within the network and between your network
and the internet.

Always keep your network diagram up-to-date. Whenever you add
a new computer, laptop, mobile device, switch, virtual machine, or
other system or device to your network (and remove them as well),
you should update your network diagram. When it comes to a
transient device whose IP addresses aren’t static, it might be worth
assigning the device a static IP address in your router (see Chapter
4). Otherwise, you can track the IP range that might be assigned to
those devices. Even if a device isn’t always connected to your
network, maintain a record of devices that will be consistently
expected to connect (Chapter 4 discusses this in greater detail), and
note those IP addresses in your network diagram.

A network diagram also allows you to see where you can
implement additional security controls to improve your security
posture. For example, Figure 1-3 shows a small, basic network.

Figure 1-3: A small network

This network layout is typical of most home networks, where a
modem/router connects the network to the internet, and all the
endpoints use that device as a gateway to the public network. The
problem with this network architecture is that it also allows
adversaries to use the same network infrastructure to access the
private network, without many obstacles in their path. Later in this
book, you’ll learn how to improve this network’s security by adding a
firewall between the wireless router and the internet to better
manage the ingress and egress traffic and block suspicious traffic
entering or leaving the network (see Chapter 3 for more details on
firewalls).

When mapping your network, collect as much information as
possible about all the devices it includes, such as their IP addresses,
MAC addresses, hostnames, purpose, primary user or owner,
location, serial numbers, and so on. Start with your computers and
move on to mobile devices, such as phones and tablets, and then
any IoT devices you might have—if your TV or refrigerator connects
to the internet, be sure to capture those as well.

#10: Transferring Files
You may want to transfer files to your Linux machine from another
system or from your Linux machine to your local computer. The
intuitive rsync tool can synchronize files and folders, either between
two locations on one system or between two systems across a
network. To transfer specific files from one computer to another, use
the following:

$ rsync -ruhP --remove-source-files --protect-args
"/path/to/source/" \
 "user@computer_ip:/path/to/destination/"

Immediately following the rsync command are four flags. The r
flag stands for recursive, meaning that everything inside the source
folder will be copied to the destination. The u flag stands for update,
which indicates to rsync that if it finds a copy of a file in the
destination location that is newer than the copy in the source

directory, skip it. Next, h is the typical flag used for human-readable
output: any numbers (dates, file sizes, and so on) will be shown in an
easier-to-read format. The P flag is for progress, which tells rsync to
output the progress of the copy to the screen so you can see how
much data has been transferred, how much remains, and how long
until the process is expected to complete.

Following this first set of flags, the --remove-source-files

argument tells rsync to delete the source files once they’ve been
successfully copied, and --protect-args tells rsync to interpret the
following arguments (the source and destination directories) as one
continuous string each, even if they’re separated by a space
character, which would normally indicate to the terminal that the
directories were separate and independent. Without this argument, if
your source path has a space in it, the command will interpret each
section of the path on either side of the space character as a
separate path. The same is true of the destination path. You can
exclude one or both of those arguments if you don’t want to delete
the source files after copying them or if your source and/or
destination directories have no space characters in them.

In practice, the following shows how the command might look
between two Linux servers (which we’ll cover in greater detail in
Chapter 5):

$ rsync -ruhP --remove-source-files --protect-args test.txt \
user@192.168.1.30:/tmp
Enter passphrase for key '/Users/user/.ssh/id_rsa':
sending incremental file list
test.txt
 0 100% 0.00kB/s 0:00:00 (xfr#1, to-chk=0/1)

As we mentioned in the “Securing Remote Access” section,
remember to enter the passphrase for the SSH key pair you created
earlier, not the passphrase for the user account you’re using for the
file transfer. The bottom of this listing contains the progress
percentage, the current transfer speed, expected time remaining,
and the number of files remaining in the transfer.

NOTE The best feature of rsync is its ability to resume transfers if
they get interrupted. The Secure File Transfer Protocol (SFTP)
and Secure Copy Protocol (SCP) are alternatives you could use to
transfer files between systems, but neither can stop a transfer and
pick it up at the same point so that you don’t lose your transfer
progress while transferring potentially large files or directories. For
these reasons, rsync is superior to SFTP and SCP, so we’ll
primarily use rsync throughout the remainder of this book.

Summary
In this chapter, you built and secured your first Linux machine, which
you’ll need to follow the examples in several chapters of this book.
You also learned how to harden your Linux system to increase its
security and your overall security posture, including creating a
secure SSH configuration by utilizing SSH key pairs, and the
fundamentals of how to manage users in your network. You learned
about mapping your network topology, how computers and other
devices are interrelated, and how they communicate with each other.
In Chapter 2, you’ll learn how to layout your network to passively
increase your overall security.

2
ARCHITECTING AND SEGMENTING

YOUR NETWORK

The way you architect and segment your network can provide the
most significant security improvement for the least amount of time,
effort, and money. A good network segmentation plan allows you to
separate high- and low-risk devices and user types, which informs
where you implement other security controls in your environment.

For example, your internet of things (IoT) devices are, in all
likelihood, less tested, updated, and maintained than your Windows
operating system, simply because the technology is newer and less
widely adopted. This fact makes them inherently more vulnerable
and less secure than other, more widely used technologies. By
putting these vulnerable endpoints onto a logically or physically
separate network, you lower the risk of an adversary exploiting them
and moving laterally across your network to your computer. Once
you’ve separated your devices, you can consider additional controls
—such as an intrusion detection or prevention system—or other
network security monitoring and alerting solutions, which we’ll cover
in Chapter 10.

In this chapter, we’ll discuss types of network hardware used to
segment networks, their strengths and weaknesses, and some
recommended solutions and configurations for physically or logically
segmenting your network and separating devices utilizing both
Ethernet and wireless network devices and settings.

Network Devices
Hubs, switches, and routers can be used to segment a network.
Some of these provide more features or are inherently more capable
and secure by design. Depending on your needs, you might choose
to use one, some, or all of these devices.

Hubs
A network hub is the most basic type of device that enables multiple
computers to communicate with each another. A hub can be used in
small networks relatively safely, whereas in larger networks they
would likely cause significant issues. When host A, connected to a
hub, communicates with host B, connected to the same hub, the
data (packets represented as Ethernet frames) travel from host A to
a port on the hub, and the hub then broadcasts that data out through
all of its other ports. This means every other endpoint on the network
receives the data destined for host B, which isn’t very secure.
Additionally, because hubs aren’t intelligent, all ports are part of the
same collision domain. This means that if two or more devices
attempt to communicate at the same time, the traffic collides,
causing network performance problems. When a collision occurs, the
sending devices have to stop communicating and wait a randomized
amount of time before attempting to communicate again, ideally
without causing a second collision, resulting in a further delay.

Because of their limited functionality, hubs are typically cheap to
buy and deploy, but they aren’t scalable. If you have more than a
handful of devices needing to communicate, you’re better off getting
a switch.

Switches
In contrast to hubs, switches forward traffic through a network using
the physical hardware (MAC) addresses of the endpoints connected
to them. When a host connected to a switch communicates with

another host in the network, the data travels from the sender to a
port on the switch, and the switch then uses the MAC address for
which the data is destined to determine to which port it should
forward that data. Switches keep a MAC address table in memory,
so they know where each endpoint is located on the network. Each
port on a switch has its own distinct collision domain, meaning that if
two hosts communicate simultaneously, there won’t be a collision—
the packets won’t meet each other during transmission. This also
means that data isn’t broadcast to every device on a network, which
makes a switch inherently more secure than a hub.

Switches can be used in networks of any size. Small networks
rarely need more than a single switch, depending on the number of
endpoints.

Routers
A router is primarily used for transmitting data between networks or
network segments. For example, your local intranet, where all of
your endpoints are connected, is a private network. The internet, a
very large, publicly accessible computer network, is separate from
your private network. A router is the conduit between these two
networks, enabling you to access one from the other and browse the
internet. Where a switch uses MAC addresses, a router is primarily
concerned with IP addresses. All internet-connected networks use a
router of some type. In a small network, the border router that
connects your network to your internet service provider is likely the
only router you’ll need.

Creating Trust Zones
Network segmentation is the practice of dividing a network into
smaller parts, known as subnets, to increase the overall performance
and security of that network. You can segment your network by
separating devices either physically or logically.

Physical Segmentation
Arguably the simplest way to segment your network is to separate
devices using physically discrete hardware (physical segmentation).
For example, you can use one wireless router for your computers
and another for your mobile devices. Or you might use the first router
for all your personal devices and the second for all your IoT devices.

Separating your devices and users into classes or categories puts
them into trust zones, which keep your most critical data and assets
separate from more vulnerable devices. Separating devices that
require more security and monitoring from those that require less
security, and therefore less overhead to maintain, allows you to
spend more time focusing on the assets that matter and less time
managing those that don’t.

By keeping devices of different types separate, your network’s
security increases, as an attack focusing on one type’s vulnerability
doesn’t allow the attacker to move to other segments of your
network. This is becoming more important as household appliances
are gradually turning into smart devices.

Physical network segmentation is harder for an attacker to
overcome than logical segmentation. The drawbacks associated with
physical segmentation are increased administrative overhead,
hardware cost, and other infrastructure costs, as you might need a
separate internet connection for each physical network.

Logical Segmentation
Logical segmentation is more common than physical segmentation
and often less expensive to implement because it doesn’t require
separate pieces of physical hardware for each network segment.
Logical segmentation is usually achieved using virtual local area
networks (VLANs): groups of systems that appear to be on the same
local area network but are logically separated from systems on other
VLANs. Switches capable of creating and managing VLANs are
called managed switches. Each VLAN acts like a virtual switch that

exists within your physical switch. Assigning a physical port on your
switch to a particular VLAN is equivalent to plugging a cable into a
specific switch.

For example, you can place a switch, like an eight-port Netgear
GS308E (or similar), behind your broadband router, allowing the
endpoints connected to the switch access to the internet. Then, on
the switch itself, you can create VLANs with different purposes, such
as a management or administration VLAN, a business or personal
VLAN for your primary endpoints, and a guest VLAN for less-secure
device types such as mobile and IoT devices.

With the VLANs created, you can specify which of the eight ports
on the switch are capable of communicating on each of these
VLANs, keeping each of the VLANs and their respective devices
logically separated with just one physical device. Of course, this
approach works best for networks with more Ethernet or hardwired
devices than wireless devices, unless you plan to use multiple
wireless access points.

#11: Segmenting Your Network
The recommended approach for network segmentation in small
networks is to categorize your endpoints into trust zones based on
the type of access and level of security and monitoring they require.

For example, your primary network segment should include your
primary devices, which contain or have access to your private data
such as your email, contacts, messages, and data stored in cloud
services like Google Drive or Dropbox. This network segment is
designed to be the most secure, with the strictest security
requirements and the most monitoring and detection in place.

Your secondary network segment is for those endpoints that don’t
need to talk to your primary devices or access the same data, such
as your IoT and other connected devices—smart lights, printers,
casting devices such as Google Chromecast, and so on. All of those
devices should be separated in their own segments because they’re
inherently less secure than your primary devices; this mitigates the
risk of an adversary using them as a stepping-stone into your

network. This network segment can afford to have less strict security
controls, because it doesn’t contain any critical data or information.

Next, you might have one or more tertiary network segments
where all other endpoints live, such as your guest network. Again,
this segment can have less strict security controls and less
monitoring than your primary network segment.

Finally, depending on the types of devices you have in your
network (or plan to have), you might want a network segment that
has very strict access rules. This network could be for devices that
you do not want to connect to the internet under any circumstances,
including CCTV or security cameras. With tight network
segmentation like this, other considerations need to be made, such
as how devices within this network segment will receive updates.

There are various ways to segment your network. Let’s go into
more detail about how to achieve effective network segmentation,
first by using separate wireless networks and then by using Ethernet
segmentation with VLANs. It’s possible to combine these
approaches if your network calls for it.

Ethernet Segmentation
You can use an Ethernet switch capable of assigning specific
Ethernet ports to VLANs to logically segment your network and its
devices. An inexpensive managed switch such as the Netgear
GS308E provides this functionality, and installing it in your small
network is quick and easy. This is the device we’ll use for the
following example network configuration. You can purchase the
GS308E directly from Netgear or other online retailers, or second-
hand from marketplaces like eBay. Alternatively, I recommend
researching the Ubiquiti range of networking equipment, which, while
more expensive, is user friendly and highly capable.

VLANs are used for separating trust zones. Ideally, this is done in
larger networks by using two different physical switches. If your
switch is misconfigured, the higher and lower security networks and
devices might be able to communicate, but if two switches are

physically separate, this is less likely. However, in small networks,
we usually don’t have the luxury of buying multiple devices; it’s cost
prohibitive. So, we do the next best thing and use VLANs to keep our
networks virtually separate.

NOTE Purchasing two unmanaged switches without advanced
functionality like VLANs could be cheaper than a single managed
switch with VLAN capability. Taking this route will result in two or
more physically separate networks, each with one switch. If both
networks require internet access, you’ll need separate internet
connections for each network, or a gateway device capable of
keeping the switched networks logically separate. In this case,
you’d be better off investing in the slightly more expensive
managed switch in the first place. The use of unmanaged switches
is not covered in this book because they are plug-and-play with
little additional setup required and will result in a less secure
architecture than a managed switch.

Once you have your switch, initial configuration is usually
straightforward:

1. Unbox and plug the switch into power.
2. Connect an Ethernet cable from your modem/router (or

whichever device provides your internet connection, like the
pfSense device we’ll cover in Chapter 3).

3. You can find the IP address of the switch in three ways:
a. The switch will accept an IP address from whichever

device in your network provides DHCP. You can find
its IP address in your router or other DHCP provider
by following the steps in Chapter 1.

b. Netgear (and most network equipment
manufacturers) provides an application to discover
its switches on your network. You can download the
Netgear Switch Discovery Tool (NSDT) from
https://www.netgear.com/support/product/netgear-

https://www.netgear.com/support/product/netgear-switch-discovery-tool.aspx

switch-discovery-tool.aspx. Download, install, and
run the tool to identify the switch in your network.

c. The switch is configured with the IP address
192.168.0.239 by default. If either previous method
doesn’t work, you can use this default IP address to
connect to your switch’s web interface for
configuration.

4. Once you’ve discovered or configured the IP address for
your switch, browse to that IP address in a web browser
and log in using the default password (supplied in the
switch manual).

5. You’ll be prompted to change the admin password. I
recommend you do, as default passwords are insecure.

At this point you’ll be presented with a summary page that
provides the switch information, such as the name, serial number,
MAC address, and so on. Add this information to your asset list and
network map.

With that done, you’re ready to configure the VLANs. The switch
will accept and pass through the internet connection to the devices
you connect to the switch. Configuring and utilizing VLANs on a
Netgear switch is a simple operation, and the method should be
similar on any other managed switch:

6. Log in to the switch as an administrator.
7. Along the top of the web interface, locate the VLAN tab, as

shown in Figure 2-1.
8. In the menu on the left, click Advanced to view the

Advanced VLAN options.
9. Toggle Advanced Port-Based VLAN Status from Disable to

Enable, as shown in Figure 2-1.

https://www.netgear.com/support/product/netgear-switch-discovery-tool.aspx

Figure 2-1: VLAN configuration

Next, you need to assign the physical Ethernet ports on the switch
to specific VLANs. Configure one VLAN for each trust zone you want
in your network. If you want a primary network for your most secure
devices, a secondary network for your guest devices, and a tertiary
network for your IoT devices, you should configure three separate
VLANs. If configuring a new VLAN is equivalent to creating a new
physical local network, with a new switch or router, assigning a port
to a VLAN is the same as plugging a device into that physical switch.
If you think about VLANs as separate networks, assigning each port
to a VLAN tells the switch to which logical network that port belongs,
and only the ports and endpoints within the same VLAN will be able
to communicate.

10. In the VLAN Identifier drop-down menu, select the ID of
the VLAN you want to configure.

11. For each physical port you want to add to this VLAN,
ensure the port is ticked. Untick the ports that will not be
allowed to communicate on this VLAN. Click Apply.

When you plug devices into these ports, which now have
a VLAN assignment, those devices will communicate only
within that VLAN.

12. To remove those same ports from VLAN 1 (the default
VLAN), select VLAN 1 from the drop-down menu. Click the

relevant ports until their displays are blank. Click Apply.

To test your VLAN configuration, connect an endpoint to one of the
assigned ports on the switch, and connect another endpoint to any
port that still has the default configuration or another VLAN
configured. If you’re unable to ping between these devices, your
VLANs have been correctly configured.

Summary
In this chapter, you’ve identified and created trust zones for your
devices. By doing so, you’ve been able to segment your network to
keep devices of high trust and security separate from those with
lower trust. You can create as many or as few network segments as
you like by using a switch in this way, helping to keep your network
and your users more secure.

3
FILTERING NETWORK TRAFFIC WITH

FIREWALLS

A firewall monitors and filters incoming and outgoing network traffic.
There’s a general misconception that the firewall is always the last
line of defense; in reality, a perimeter firewall should be the first
obstacle adversaries encounter when they try to penetrate any
network, large or small. Every time a web browser accesses a
website, a messaging program sends a message, or your email
client sends and receives email, the traffic generated should pass
through at least one firewall along its journey.

In this chapter, you’ll explore two firewall solutions: iptables and
pfSense. In Linux, iptables is a common firewall often used as a host
firewall (that is, a firewall that allows or denies traffic on a specific
endpoint). pfSense, which can be implemented either as an open
source software firewall or as a hardware firewall using the
appliances sold by Netgate, is used as a perimeter or boundary
firewall responsible for filtering traffic for entire networks or network
segments.

Types of Firewalls
A hardware firewall can be physically and logically placed in a
network. A software firewall, installed as an application on an

endpoint, requires more configuration of both the firewall and its
connected devices to filter traffic effectively. By using one or both of
these, you’re able to effectively reduce your attack surface, which
comprises the points where an adversary can try to infiltrate,
compromise, or exploit your network. Ideally, attack surfaces should
be as small as possible.

A perimeter firewall, installed between your private network and
other networks like the internet, can be either software- or hardware-
based. Perimeter firewalls are placed at the physical and logical
border of the network, making it the first thing with which traffic
bound for your internal network from the public internet
communicates, as well as the last thing in your network that traffic
bound for the internet passes through, as shown in Figure 3-1.

Figure 3-1: A perimeter firewall

Firewalls allow or deny (block) traffic based on a ruleset containing
a configured list of rules. The way those rules are applied to traffic
depends on the type of firewall you’re using. The most common type,
a packet-filtering firewall, inspects each packet of data attempting to
make it into (or out of) your internal network and then checks that
packet against its ruleset. If the packet contents match a rule in the
firewall ruleset, the firewall will either allow or deny that traffic,
depending on what that rule indicates it should do.

There are also stateful and stateless firewalls. A stateful firewall
tracks all inbound and outbound connections and monitors each
connection as a unique conversation between two endpoints. This
method provides the firewall with context about any given connection
and allows more granular control of traffic. By contrast, a stateless

firewall doesn’t record information about each connection. Both
iptables and pfSense are stateful firewalls.

Almost all operating systems come with a built-in software firewall,
known as a host-based firewall, that filters traffic specific to that host.
Most Windows and Mac devices ship with an out-of-the-box host-
based firewall whose basic ruleset is functional, if not exhaustive. By
design, this firewall works as is for ordinary purposes; users don’t
need to configure their own firewall, lessening confusion as well as
the need for technical support from computer manufacturers. On
Linux devices, you’ll have to configure a firewall—you’ll see how to
do this in the next section.

It’s best to use both a host firewall and a perimeter firewall and to
configure them correctly for your network to add multiple layers of
defense.

iptables
Linux’s iptables utility offers incredible flexibility in filtering traffic
entering, traversing, or leaving a network. The firewall organizes its
rules in policy chains, lists of rules that analyze and match packets
based on their contents. Each rule determines what the firewall will
do with a packet that matches its definition—it might allow, reject, or
drop the packet. When a packet is allowed, it passes through the
firewall unhindered. When dropped, the firewall discards the packet
and sends no response back to the sender. If a packet is rejected,
the firewall discards the packet and sends a rejection message back
to the sender, providing context about your network and the firewall
you’re using.

There are three main types of policy chain: input chains, output
chains, and forward chains. Input chains determine whether to allow
certain traffic into the network from an external source, such as a
virtual private network (VPN) connection from a remote location. A
VPN is a method for logically—rather than physically—connecting to
disparate networks, usually for remote access from one network to
the other. VPNs are covered in greater detail in Chapter 5.

Output chains indicate whether the firewall should allow certain
outbound traffic to an external network. For example, Internet
Control Message Protocol (ICMP) is primarily used to diagnose
network communication issues. ICMP ping packets are outbound
traffic that pass through the output chain. A ping is a query from one
device to another, usually to determine whether a connection can be
made between the two. You’d need to allow the ping packets to
travel from your device, through your firewall, and across several
other devices on the public internet, to finally reach their destination.
If your output chain blocks ICMP traffic, your device would be unable
to ping anything, as the firewall would block or drop those packets.

In most cases, your stateful firewall rules should allow both new
and established connections. For example, if you create an output
chain to allow your device to ping Google, you need to tell the
firewall to allow inbound traffic related to established connections.
Otherwise, your device will send a ping out to Google that passes
through your firewall, but the response from Google would get
blocked by your firewall.

Forward chains forward the traffic your firewall receives to another
network. In a small office or home network, host-based firewalls
rarely use forward chains, unless the firewall is configured to serve
as a router. A perimeter firewall would use the forward chain to route
traffic from your internal network to the external network, or from one
network segment to another, likely using network address translation
(NAT), as discussed in Chapter 1. However, a configuration of this
type is more complicated than necessary for small networks and
would better fit an enterprise network.

By using these policy chains, you’ll be able to control the traffic
traversing your network at a very granular level. In the following
chapters, you’ll create several Linux servers, each of which would
benefit from its own host-based firewall. I recommend configuring
iptables on each of these servers using the following instructions.

NOTE iptables isn’t capable of securing IPv6 networks and traffic. If
you plan to use IPv6 in your network, you’ll need to use ip6tables
in addition to iptables. Unless you have a strong use case for IPv6

in your network, I recommend disabling IPv6 completely. Disabling
IPv6 is covered in Chapter 4.

#12: Installing iptables
If you’ve already built a standard Ubuntu server following the steps
from Chapter 1, you can start configuring its iptables firewall. Once
you’ve mastered the basics, use that knowledge to configure iptables
on all your Linux endpoints. Otherwise, go back and create your
Ubuntu system now.

Recent versions of Ubuntu have iptables installed by default, so
log in via SSH as a standard, non-root user, and check for iptables
by running a version check:

$ sudo iptables -V
[sudo] password for user:
iptables v1.8.7 (nf_tables)

If iptables is installed, the server should return version information,
as shown here. Your version may be different.

If iptables isn’t installed, you’ll receive an error, in which case,
install iptables:

$ sudo apt install iptables

Once it’s installed, run the same version check to confirm that the
installation succeeded.

Next, install iptables-persistent, a tool that allows you to save
your firewall configurations and automatically reload them after a
reboot of the server:

$ sudo apt install iptables-persistent

An installation wizard should take over your terminal window. You’ll
be shown the file in which your server will save the firewall rules (the

default file is /etc/iptables/rules.v4) and told that rules from this file
will load at system startup. Also, you’ll need to save any changes to
firewall rules manually beyond this installation process. Select Yes to
save any current firewall rules. If you don’t install this component,
you’ll have to reconfigure your firewall every time you restart the
server.

You can now check the current policy chains like so:

$ sudo iptables -L
[sudo] password for user:
Chain INPUT (policy ACCEPT)
target prot opt source destination
Chain FORWARD (policy ACCEPT)
target prot opt source destination
Chain OUTPUT (policy ACCEPT)
target prot opt source destination

In the output, policy ACCEPT indicates that, by default, iptables
accepts all traffic for input, output, and forwarding. This default
behavior is desirable because it’ll work without any user
configuration. However, it’s an insecure solution, so let’s modify it.

iptables Firewall Rules
When creating iptables rules, keep in mind that order matters. As
traffic reaches your firewall, iptables checks its rules one after the
other in the order they appear. If the traffic matches a rule, iptables
won’t check any further rules—if the first rule in your list of 50 denies
all traffic, the firewall will interpret this rule, reject the traffic, and stop
processing, which effectively isolates your device entirely.
Alternatively, if you have the same 50 rules but the first rule allows all
traffic, all traffic will be allowed to pass through the firewall. You
should avoid both of those situations.

To understand how to construct an iptables firewall rule, take a
look at this example:

$ sudo iptables -A INPUT -p tcp --dport 22 -m conntrack \
 --ctstate NEW,ESTABLISHED -j ACCEPT

Immediately after sudo, iptables is invoked to begin the rule
definition. The next argument determines whether the rule will be
appended to (-A), deleted from (-D), or inserted into (-I) the specified
policy chain. You can also specify -R in this position when replacing
or updating an existing rule. The INPUT indicates that a rule in the
input chain is being modified. You also can specify OUTPUT, FORWARD,
or other policy chains.

In most cases, iptables needs to know the protocol and port to
which the rules relate. In this example, -p tcp indicates the rule will
apply only to TCP traffic, and --dport 22 tells iptables that the rule
applies to packets with a destination port of 22. Both of those
settings are optional. You can specify multiple ports with this syntax:
--match multiport --dports port1,port2,port3.

NOTE Transmission Control Protocol (TCP) is a reliable
transmission protocol, designed to ensure successful delivery of
packets over a network. If a computer experiences packet loss
during communication that’s using TCP, those lost packets will be
retransmitted, ensuring all of the data sent is eventually received
by the destination host. User Datagram Protocol (UDP) is an
unreliable protocol and does not ensure successful transmission of
data or retransmit lost packets. UDP is used when some packet
loss is acceptable and usually results in a faster connection. TCP
is used when reliability matters, and every packet must be
transmitted successfully.

The iptables firewall offers multiple matching modules, and you
can specify the module to use with the -m argument. In this example,
conntrack, a tool that allows stateful packet inspection, is used (also
optional). Some other tools include connbytes, which creates rules
based on the amount of traffic transferred, and connrate, which
matches on the transfer rate of the traffic. See the iptables man page
for more details: https://linux.die.net/man/8/iptables/.

https://linux.die.net/man/8/iptables/

Next, --ctstate tells iptables to allow and track traffic for the types
of connections that follow—in this case, NEW and ESTABLISHED. Many
values are available for connection state, but the most frequently
used are NEW, ESTABLISHED, RELATED, and INVALID. New and
established states are self-explanatory; the packets are part of new
or established traffic flows. Related packets don’t necessarily match
an established connection, but they are expected by the firewall
because an existing connection necessitates it (that is, it’s expected
based on the firewall’s existing context). Invalid packets are any
packets that don’t match the criteria for any other states.

Finally, iptables will interpret -j and whatever follows it as the
action to jump to (perform) when this rule is matched. Most
commonly, it will be either ACCEPT to allow traffic matching this rule;
DROP, or REJECT, to deny or block the traffic; or LOG to log the traffic to
a logfile (more details on that later).

Now that you understand the fundamentals of iptables rules, you’ll
configure your firewall to allow and deny traffic.

Configuring iptables
When configuring iptables, first add rules to drop invalid traffic:

$ sudo iptables -A OUTPUT -m state --state INVALID -j DROP
$ sudo iptables -A INPUT -m state --state INVALID -j DROP

Then, add rules to accept traffic related to existing connections, as
well as established connections and the loopback address to avoid
any issues later (a loopback address is an internal address that
computers use for testing and diagnosing network issues):

$ sudo iptables -A INPUT -m state --state RELATED,ESTABLISHED -
j ACCEPT
$ sudo iptables -A OUTPUT -m state --state RELATED,ESTABLISHED
-j ACCEPT
$ sudo iptables -A INPUT -i lo -j ACCEPT

This allows the firewall to accept traffic matching a known
connection or related to a connection in progress and discard any
unexpected packets (which can protect your network from
unsolicited or malicious network scanning activity).

Once you’ve run these commands to enter the rules into the policy
chains, rerun the list command to ensure they’ve been accepted:

$ sudo iptables -L
Chain INPUT (policy ACCEPT)
target prot opt source destination
DROP all -- anywhere anywhere state
INVALID
ACCEPT all -- anywhere anywhere state
RELATED,ESTABLISHED
ACCEPT all -- anywhere anywhere
Chain FORWARD (policy ACCEPT)
target prot opt source destination
Chain OUTPUT (policy ACCEPT)
target prot opt source destination
DROP all -- anywhere anywhere state
INVALID
ACCEPT all -- anywhere anywhere state
RELATED,ESTABLISHED

Notice the rules have been added under the INPUT and OUTPUT
chains. The FORWARD chain remains empty.

Next, ensure that your firewall allows SSH traffic. You can do this
in two ways: by broadly allowing SSH or by allowing SSH only from a
subset of devices in your network. To allow SSH traffic originating
from all devices in your network, use the following command:

$ sudo iptables -A INPUT -p tcp --dport 22 -m conntrack --
ctstate NEW -j \ ACCEPT

Creating broad rules can be helpful when connecting to or from
multiple devices using SSH within your network. However, allowing
the uninhibited use of programs and leaving protocols completely
open is not the most secure solution. You should allow services like

SSH only to and from specific IP addresses or ranges, as allowing
remote access or file transfer between your endpoints and any other
device is risky.

You can reduce your attack surface by specifying a source IP
address or range (for example, 192.168.1.25) in your input chain
with the -s source option, so if you’re configuring iptables on a virtual
machine, you might choose to allow connections from a single host
for management purposes and deny access to all other endpoints in
your network:

$ sudo iptables -A INPUT -p tcp -s 192.168.1.25 --dport 22 -m \
 conntrack --ctstate NEW -j ACCEPT

We append this rule to the INPUT policy chain using -A, destination
port 22, and protocol TCP. For NEW connections, iptables will ACCEPT
traffic matching this rule. The port can be one of your choosing; just
be sure that your SSH configuration matches your firewall rule. If the
rule allows SSH on port 22 but your SSH configuration allows
connections on port 2222, the firewall will block your SSH
connections.

If you make a mistake, delete the rule by running the same
command, substituting the -D option in place of -A:

$ sudo iptables -D INPUT -p tcp -s 192.168.1.25 --dport 22 -m
conntrack \ --ctstate NEW,ESTABLISHED -j ACCEPT

Alternatively, you can delete all the rules you’ve specified for any
of your policy chains by using the -F chain, or --flush chain,
parameter:

$ sudo iptables -F INPUT

With this basic set of rules, now you can tell iptables what to do
with all other traffic (that you don’t want entering or leaving your
server or network). Once you’ve created rules to allow the specific
traffic you want or need the firewall to allow, you can most likely

block, deny, or drop everything else. You should do this after you’ve
configured your firewall rules; otherwise, you might interrupt your
connection and be unable to reconnect via SSH. Using the -P
argument sets the default behavior of your policy chains and lets
iptables know what to do with traffic that doesn’t match your rules. To
achieve this, set the policy chains’ default behaviors to DROP this
traffic:

$ sudo iptables -P INPUT DROP
$ sudo iptables -P FORWARD DROP
$ sudo iptables -P OUTPUT DROP

Using -P in this way is different from -A and -I used previously,
because it doesn’t affect the firewall rules themselves; instead, it
deals with the overarching policies that govern traffic in your
network. Where -A and -I append or insert rules for your firewall,
respectively, -P configures the firewall behavior one level higher.

At this point, checking your iptables chains should return:

Chain INPUT (policy DROP)
target prot opt source destination
DROP all -

- anywhere anywhere state
INVALID

ACCEPT all -
- anywhere anywhere state
RELATED,ESTABLISHED

ACCEPT all -- anywhere anywhere
ACCEPT tcp --

192.168.1.25 anywhere tcp dpt:22
ctstate NEW

Chain FORWARD (policy DROP)
target prot opt source destination
Chain OUTPUT (policy DROP)
target prot opt source destination
DROP all -

- anywhere anywhere state
INVALID

ACCEPT all -
- anywhere anywhere state
RELATED,ESTABLISHED

Notice that the policy for all three chains has changed from ACCEPT
to DROP, indicating the default behavior for each chain is to drop traffic
that doesn’t match any of the rules you’ve created. You should also
be able to identify the rules you’ve added to the chains by comparing
this output to the previous output listing the iptables rules. You may
receive an error that DNS is failing, because the firewall is now
blocking everything not explicitly allowed, including DNS (which runs
on port 53). Resolve this issue by adding the following new rules:

$ sudo iptables -A OUTPUT -p udp --dport 53 -m conntrack --
ctstate NEW -j ACCEPT

$ sudo iptables -A OUTPUT -p tcp --dport 53 -m conntrack --
ctstate NEW -j ACCEPT

These commands append rules to the output chain, allowing this
server to make outbound requests for domain name resolution on
UDP and TCP port 53. With the addition of these rules, the server
can resolve domain names.

Test your firewall by trying to ping the server from another device
in your network; you should receive an error, as ICMP isn’t allowed
through the firewall. Likewise, if you try to ping anything from the
server itself, you should receive a similar error:

$ ping google.com -c 5
PING google.com (<ip_address>): 56(84) bytes of data.
ping: sendmsg: Operation not permitted
ping: sendmsg: Operation not permitted
ping: sendmsg: Operation not permitted
ping: sendmsg: Operation not permitted
ping: sendmsg: Operation not permitted
--- google.com ping statistics ---
5 packets transmitted, 0 received, 100% packet loss, time
4000ms

ICMP can be such a useful troubleshooting tool that you might
decide to allow ping through your iptables firewall. To do so, add the
following rules:

$ sudo iptables -A INPUT -p icmp -j ACCEPT
$ sudo iptables -A OUTPUT -p icmp -j ACCEPT

You may discover that you need to open additional ports in the
firewall. For example, if you have a proxy installed or if you build one
after reading Chapter 6, you’ll need to open the proxy port (3128) in
your firewall:

$ sudo iptables -A OUTPUT -p tcp --dport 3128 -m conntrack
--ctstate NEW -j ACCEPT

In most cases, you should block web browsing in general from
servers—there are few, if any, legitimate reasons to use servers for
this type of activity. Ideally, from both an administrative and a
security standpoint, servers should be single-purpose. Allowing any
additional service—especially browsing the internet—on a server
results in a larger attack surface and creates potential vulnerabilities
in your network.

If you decide to allow this traffic from your server(s) so the server
can retrieve software updates, create output rules for ports 80 and
443, the default ports for HTTP and HTTPS traffic, respectively:

$ sudo iptables -A OUTPUT -p tcp --dport 80 -m conntrack --
ctstate NEW,ESTABLISHED -j ACCEPT

$ sudo iptables -A OUTPUT -p tcp --dport 443 -m conntrack -
-ctstate NEW,ESTABLISHED -j ACCEPT

The only difference between the HTTP and HTTPS rules is the
port number.

Every time you add a rule, you should test it. The easiest way to
do so, in this case, will be to first test your ability to browse the
internet by using a web browser on the server (if you have the GUI

installed) or by using curl in the bash terminal. Start by installing
curl:

$ sudo apt install curl

If you don’t have rules allowing HTTP and HTTPS, the install
command will fail, as updates are typically done over HTTP.
However, if you do have those rules in place, curl should have
installed successfully, so you can now ensure ports 80 and 443 are
open:

$ curl http://icanhazip.com
ipaddress

The address http://icanhazip.com/ is a public service provider that
will return your current public IP address when queried with curl. If
you’re shown your current public IP address, your firewall is
configured correctly.

If you receive an error, one of your rules may have a problem.
Check for typos, and if all else fails, delete your rules and start again
using the -D or -F parameters discussed earlier. Once the firewall is
correctly configured, feel free to add further rules as you deem
necessary.

One particular set of rules to add are those that block traffic to
specific IP addresses. Since most public websites can have multiple
IP addresses, however, blocking a site using iptables isn’t the best
option, as you’d have to create rules for each unique IP address. In
most cases, you’d be better off using a proxy, which we’ll cover in
Chapter 6.

If you want to use iptables to block sites—say, for example, to
block all traffic to and from https://www.squirreldirectory.com/, which
currently resides at IP address 206.189.69.35—you would add the
following rules to your INPUT and OUTPUT chains:

$ sudo iptables -A INPUT -s 206.189.69.35 -j DROP

http://icanhazip.com/
https://www.squirreldirectory.com/

$ sudo iptables -A OUTPUT -s 206.189.69.35 -j DROP

Typically, you’d add this type of rule to allow or deny traffic from a
static, private IP address that isn’t expected to change, and use a
proxy for public IP addresses or URLs.

Logging iptables Behavior
You’ve now installed and configured the iptables firewall, but you
haven’t told it to log anything, so it produces no records of its
behavior, which can make it difficult to troubleshoot issues or
determine whether blocked traffic should have been blocked.

First, create a new, custom policy chain. Note that this
configuration is an example of where rule order is critical. You can
name the chain whatever you like, but here, we’ll call it LOGGING:

$ sudo iptables -N LOGGING

The -N parameter is used to create new chains.
Next, add a rule at the end of each of the INPUT and OUTPUT chains

that tells iptables to send any traffic that hasn’t yet matched a rule to
the new LOGGING chain:

$ sudo iptables -A INPUT -j LOGGING
$ sudo iptables -A OUTPUT -j LOGGING

Then, tell iptables to log only once per minute for each type of
dropped packet:

$ sudo iptables -A LOGGING -m limit --limit 1/minute -j LOG \
 --log-prefix "FW-Dropped: " --log-level 4

This limit is optional, and you can set it to any period, such as
1/second, 1/minute, 1/hour, or 1/day. Limiting the number of log

entries reduces both the noise within and the size of the logfiles. Add
a prefix ("FW-Dropped: ") to the log information so the firewall log
entries are easy to identify. Setting the logging level to 4 will log up to
warning-level events, indicating an event that has a material effect
on the server or the firewall. Increasing the number results in more
events with lower severity being logged, which is useful when
troubleshooting. Log levels 1 to 3 will log only events or errors with
higher than warning-level severity.

Finally, the following command indicates to the firewall that, once
logged, the packets should be dropped:

$ sudo iptables -A LOGGING -j DROP

Your firewall will now log all the dropped packets both inbound to
and outbound from the server. By default, those logs will be kept in
/var/log/messages.

The last step is to save your firewall configuration. Remember that
iptables configurations are temporary by default and won’t survive a
reboot, which is why we installed iptables-persistent in Project 12.
To save your configuration, run the following command (netfilter is
the command used by iptables-persistent for this purpose):

$ sudo netfilter-persistent save
run-parts: executing /usr/share/netfilter-

persistent/plugins.d/15-ip4tables save
run-parts: executing /usr/share/netfilter-

persistent/plugins.d/25-ip6tables save

With that, the firewall is ready to go.
You may consider adding temporary rules to your firewall, but

remember the adage that “nothing is more permanent than a
temporary firewall rule” (Austin Scott). In the case of adding a
temporary rule to allow a user to download a file from the internet, for
example, it would be better to find a different workaround, like using
another host. If a rule like this is created and left in the firewall

configuration, it creates a vulnerability and reduces the security
offered by the firewall. Avoid temporary rules whenever possible.

pfSense
In addition to a firewall securing each endpoint in your network with
iptables, you should implement a firewall like pfSense to secure your
entire network at its border. Together, these firewalls add layers to
your defense-in-depth strategy, making the job of any adversary
more difficult with each level of complexity. You should place a
perimeter firewall at the physical edge of your network—that is, as
close to the internet as possible relative to the other endpoints in
your network. For most, that position will be directly behind the
modem/router or network boundary point that connects your network
to your internet service provider. It is possible to achieve this
logically, using virtual machines and the correct routing configuration.
However, the best and most secure way to set up a perimeter
firewall is to use a physical device.

Like iptables, the pfSense firewall is stateful. However, where
iptables works as a feature installed on top of a base operating
system like Ubuntu, pfSense is a fully fledged operating system. It’s
based on FreeBSD, an open source version of Unix (an operating
system similar to Linux that uses its own kernel) that has user-
friendly features like a web management interface and can be
deployed as either a virtual machine or a physical appliance.

You have a few options when it comes to creating a physical
firewall. The first is to build a device that suits this purpose from a
computer with a small footprint, like the Intel Next Unit of Computing
(NUC). However, for the same cost or far less, Netgate sells pfSense
appliances that are easy to configure and basically ready to go out of
the box.

For the sake of simplicity (and security), we’ll discuss using a
prebuilt device. This book will not cover building a device from
scratch because the risk of misconfiguration is too high, especially
when an inexpensive, secure solution is readily available. The

Netgate 2100 Base pfSense+ costs around $400 at the time of
writing. It’s powerful enough to be capable of most anything you can
throw at it, short of a full-blown enterprise network. The SG-3100 is a
step up from the entry-level 1100 pfSense+ and is more fully
featured. It also has higher bandwidth and is capable of greater
throughput, so it’s the ideal choice for smaller networks.

#13: Installing the pfSense Firewall
Upon receiving your pfSense device, remove it from the box and
plug it into power. Connect an Ethernet cable from the WAN port on
the device to any port on your cable, DSL modem, or network
boundary point device. Connect another Ethernet cable from the
LAN1 port to the Ethernet port on your computer.

To access the pfSense configuration page from your computer,
browse to 192.168.1.1, the default IP address of the SG-3100. If that
doesn’t work, you may need to disconnect your computer from your
regular network and manually set its IP address to 192.168.1.2 (or
any other address in the 192.168.1.x range, except the pfSense IP of
192.168.1.1) using the following instructions. This is necessary only
for the initial configuration of the device and should need to be done
only once on the computer you use to set up the pfSense appliance.

macOS

1. Open System Preferences.
2. Click Network.
3. Select the Ethernet connection between your pfSense

device and your computer, and then set the Configure IPv4
drop-down box to Manually.

4. Enter 192.168.1.2 into the IP Address field, set Subnet
Mask to 255.255.255.0, and enter 192.168.1.1 into the
Router field.

5. Click Apply.
6. Open your web browser and browse to 192.168.1.1. You

should be presented with the pfSense login page.

Windows

1. Open Network and Internet Settings.
2. Click Change Adapter Options.
3. Open the Ethernet connection between your pfSense

device and your computer, and then click
Properties▸Internet Protocol Version ▸

(TCP/IP)▸Properties.
4. Select the Use the following IP address radio button.
5. Enter 192.168.1.2 into the IP Address field, set Subnet

Mask to 255.255.255.0, and enter 192.168.1.1 into the
Default Gateway field.

6. Click OK and close the remaining windows.
7. Open your web browser and browse to 192.168.1.1. You

should be presented with the pfSense login page.

Linux

1. Open Settings.
2. Click Network.
3. On the Ethernet connection between your pfSense device

and your computer, click the configure Cog.
4. Select the IPv4 tab.
5. Select the Manual radio button.
6. Enter 192.168.1.2 into the IP Address field, set Netmask to

255.255.255.0, and enter 192.168.1.1 into the Gateway
field.

7. Click Apply and close the Settings windows.
8. Open your web browser and browse to 192.168.1.1. You

should be presented with the pfSense login page.

NOTE If you receive a warning message indicating the site is not
private or is unsafe, click through to the login page. This warning
appears because there’s no SSL certificate configured, and you

can ignore it for now. However, be wary of errors like this
elsewhere; generally, an SSL certificate error (especially on the
internet) is a serious warning that the page you’re trying to access
is insecure.

On the pfSense login page, log in with the credentials provided
when you received your device. Once you’re logged in, accept the
end-user license agreement (EULA) if one is presented. Take a
moment to review the system information, and then click the System
menu at the top of the page and start the Setup Wizard. Use the
following steps to finish setting up pfSense:

1. At the welcome screen, click Next.
2. If the Support screen is displayed, click Next.
3. On the General Information screen, choose a hostname for

the device, or leave it as the default, pfSense.
4. If you have a domain configured in your environment, enter

it in the Domain field.
5. Ignore the DNS settings for now and click Next.
6. On the Time Server Information screen, accept the default

Time server hostname, unless you have a time server in
your environment, in which case enter its details here.

7. Be sure to select the correct time zone, and then click
Next.

You should now see the Configure WAN Interface page. You can
use this page to configure your pfSense appliance to connect to your
internet service provider. We’ll cover the most common configuration
here, called PPPoE, that will most likely match the settings in your
current modem/router. If not, contact your internet service provider
for the correct configuration details for your connection.

8. In the SelectedType box, select PPPoE.
9. Skip the General configuration options to accept the default

settings.

10. Static IP Configuration and DHCP client configuration
should be grayed out, so move on to PPPoE configuration.

11. Enter the username and password provided to you by
your internet service provider.

12. Accept all other settings as default and click Next.
13. Set the LAN IP address of the pfSense appliance. You

can choose to keep the IP addressing scheme you
identified in Chapter 1 by giving this device the first IP in the
address range (192.168.1.1 in the case of an address
scheme of 192.168.0.0/16), or you can change it by
specifying a different LAN IP address on this page. If you’d
like addresses in the 10.0.0.0/8 range, specify 10.0.0.1, and
so on. Then click Next.

14. Change the administrator password. Be sure to select a
strong passphrase at least 12 characters in length or
longer, and save it in a password safe (we’ll discuss this
further in Chapter 11). Once done, click
Next▸Reload▸Finish.

Your initial configuration is now complete. Assuming the device
has been able to connect to your internet service provider with your
credentials, you should be able to browse the internet. If not, you
may have to do some troubleshooting. The best place for
troubleshooting any issues is in the System Logs page within the
Status menu at the top of the web interface. With any luck, any
issues will become evident once you’ve looked over the logs. If
you’re sure you entered all of the configuration details correctly,
reach out to your internet service provider to ensure your settings
are correct.

Hardening pfSense
Your firewall is now configured and running, and it should already do
a brilliant job of rejecting unsolicited traffic attempting to enter your

network. However, you can take additional steps to ensure your
device and network are even more secure.

While logged in to your pfSense device, click
System▸Advanced.

Figure 3-2: Advanced pfSense menu

In the Advanced menu tabs, you can change the protocols, ports,
and proxy settings that pfSense uses, among other things. Click
Save before leaving a tab if you change any settings.

In the Admin Access tab shown in Figure 3-2, set webConfigurator
Protocol to HTTPS to ensure a secure, encrypted connection to the
device. It’s always preferable to use HTTPS instead of the
unencrypted HTTP protocol because the added encryption ensures
that, even if the network traffic is intercepted by an adversary, the
adversary can’t decrypt it.

In the next section of the Admin Access page (not shown in Figure
3-2), you can change the SSH options. I recommend not allowing
SSH access to the device all the time—that would be similar to
leaving your front door unlocked at night. If you allow SSH access
only while you’re actively using it, adversaries are able to attempt to
access your network this way only while the service is available.
Having the service turned off 99 percent of the time means attackers
have only 1 percent of the time to attempt to breach the network.
Disable this option unless you’re actively connecting to the device
via SSH. Once these settings have been updated, click Save.

On the Networking tab, you can enable or disable IPv6 traffic. If
you’re not actively using IPv6, disable it here to reduce your attack
surface. Doing so should make the remaining settings on this page
moot.

If you’re using a proxy for your web traffic, enter your proxy details
in the Miscellaneous tab. If you’re planning to build your own proxy
server using the steps detailed in Chapter 6, revisit this chapter and
enter the proxy details at that stage.

pfSense Firewall Rules
The default pfSense firewall rules will block traffic from both
RFC1918 private network connections and bogon networks from
entering your network from the internet. RFC1918 addresses,
discussed in Chapter 1, are IP address ranges reserved for private,
internal network use only, meaning addresses in these ranges
should not appear on the public internet. They include the following
ranges: 192.168.0.0/16, 10.0.0.0/8, and 172.16.0.0/12. If any of
these happen to appear on the internet, your firewall should find this
suspicious and discard that traffic. Similarly, bogon networks or
bogon addresses are those that are public but haven’t been
assigned to anyone by IANA. If an as-yet-unassigned address or
address range is sending your network traffic, this is also suspicious,
and the firewall should discard it.

While the default firewall rules are a good start, you should add
a few rules manually to provide a higher level of security. For
example, you shouldn’t allow services such as Server Message
Block (SMB), the service that allows Windows computers to share
files across a network, to send or receive outbound or inbound traffic
from your network to the internet or receive inbound traffic from the
internet.

NOTE The WannaCry ransomware of May 2017 spread using an
SMB vulnerability known as EternalBlue; blocking SMB at your
perimeter firewall significantly reduces your risk of exposure to this

vulnerability and the risk of other vulnerabilities like it being used
to compromise your network.

To add a rule that blocks SMB traffic, follow these steps:

1. In pfSense, at the top of the page, click Firewall▸Rules.
2. Click LAN▸Add to begin adding a rule.
3. Set the action to either block (drop the packets) or reject

(drop the packets and notify the sender).
4. Set Address Family to IPv4 and Protocol to TCP.
5. Set Source to Any, Destination to Any, and Destination

Port Range (to and from) to (other) 445.
6. Ensure the Log box is ticked to log any dropped packets,

and then click Save.

Once you’re done, your firewall should no longer allow SMB traffic
to pass your network boundary. Follow this same process for ports
137, 138, and 139, as these services (NetBIOS Name Resolution,
NetBIOS Datagram Service, and NetBIOS Session Service) should
never be allowed to cross the network boundary either, as all of
these protocols are used for processes internal to a local network.

COMMON PROTOCOLS TO BLOCK
Several network protocols should never cross the network
boundary or perimeter, for example:

• NetBIOS Name Resolution, TCP and UDP port 137:
Precursor to DNS, resolves hostnames to IP addresses

• NetBIOS Datagram Service, UDP port 138: Enables
unicast, multicast, and broadcast messages within a
network

• NetBIOS Session Service, TCP port 139: Facilitates
communication between two computers on a network

• MS RPC, TCP and UDP port 135: Facilitates
communication between client/server applications

• Telnet, TCP port 23: An insecure plaintext protocol used
for remote access and maintenance of systems

• SMB, TCP port 445: Allows Windows computers to share
files across a network

• SNMP, UDP ports 161 and 162: Used for remote system
management and monitoring

• TFTP, TCP and UDP port 69: Enables file transfer
between computers on a network

#14: Testing Your Firewall
With one or more of these rules in place, test the firewall to ensure
the blocked traffic is actually being blocked. The best tool for this
purpose is Nmap, which is used for network scanning or network
mapping. It’s available in GUI form on Windows, Linux, and Mac
(called Zenmap) and also as a command line tool. Installing the GUI
version will make it available on the command line, so download and
install the latest version from https://www.nmap.org/.

Otherwise, you can install it using the command line on Ubuntu:

$ sudo apt install nmap

Once you’ve installed Nmap, use the following command to scan
port 445 from the command line, which we’ve told the firewall to
block:

$ sudo nmap -p 445 -A scanme.nmap.org
--snip--
Nmap scan report for scanme.nmap.org (45.33.32.156)
Host is up (0.20s latency).
Other addresses for scanme.nmap.org (not scanned):
2600:3c01::f03c:91ff:fe18:bb2f
PORT STATE SERVICE VERSION

https://www.nmap.org/

445/tcp filtered microsoft-ds
Service detection performed. Please report any incorrect
results at https://nmap.org/submit/.
Nmap done: 1 IP address (1 host up) scanned in 2.54 seconds

You can use the same command in the Zenmap GUI—just exclude
sudo. This command will perform a port scan from your device, which
is behind your firewall, on the http://scanme.nmap.org/ website, a
public web page available for testing purposes from the creators of
Nmap.

The command breaks down like this: nmap is the name of the
program. The -p 445 argument specifies the port or ports to be
scanned, which can be either a comma-separated list (such as -p
445,137,138,22), a specific port as shown, or a port range like -p1-
1024. The -A argument tells Nmap to try to identify the service and
operating system on each scanned port, and scanme.nmap.org is the
website or system to scan. If the results come back and the STATE
shown for the port is filtered, the firewall has blocked the traffic,
and the firewall rules are working. If the STATE shows closed, the
firewall is allowing the traffic through, and the website itself, rather
than the firewall, was returning a response saying the port is closed.
If you receive this result, your firewall rule either isn’t configured or
isn’t working.

Once your rules are working, go to the firewall logs to see the
blocked packets. In pfSense, at the top of the page, click
Status▸System Logs▸Firewall to see the last 500 entries in the
firewall log, as shown in Figure 3-3.

Figure 3-3: pfSense firewall log

http://scanme.nmap.org/

In all likelihood, you’ll see a lot of blocked traffic. At this stage, it’s
difficult to know what this blocked traffic could be. As an example,
one of the entries at the top of my log shows a blocked connection
from the IP address 80.82.77.245 on port 46732.

Upon further investigation, it appears as though this is a service
that performs regular network scans of public IP addresses for
“research purposes.” That said, it could be anything; how do I know
whether this “research” is legitimate or an adversary attempting to
find holes in my firewall to penetrate my network? In most cases, it’s
impossible to know, but at least my firewall is actively blocking this
activity, and I can find it in the firewall logs if I need to review it and
act on it. We’ll discuss what you can do with this information in
greater detail in Chapter 10, which covers network security
monitoring.

Summary
Your network and hosts are demonstrably more secure for having
host- and network-based firewalls in place. In the projects for this
chapter, you’ve created rules and rulesets to make it significantly
more difficult for an adversary trying to infiltrate your network, and
even more challenging to do so undetected.

While this chapter has armed you with the fundamentals and a
greater understanding of firewalls, it’s in your best interest to further
research the ports and protocols you’d like to allow or deny within, as
well as into and out of, your network. Every network will be different
and have different requirements.

4
SECURING WIRELESS NETWORKS

Wireless networking has become ubiquitous and is synonymous with
being online. Most places with an internet connection have a
wireless modem or router serving a multitude of devices, from
desktops to phones and internet of things (IoT) devices such as TVs,
light bulbs, and refrigerators. Without wireless technology, modern
life would be much less convenient, but convenience often forces us
to give up some of our online security.

Wireless networking has caused our networks to extend beyond
the cables that originally served as physical boundaries. They even
bypass other physical barriers we take for granted: walls. As wireless
technologies evolve, the effective distance of our wireless networks
improves, so much so that we’re now seeing larger networks that
overflow from what used to be local area networks (LANs) inside our
premises, all the way out to our neighbors. This is fantastic in terms
of connectivity, but potentially disastrous regarding security.

This chapter will address some of the pitfalls associated with wider
wireless networks. You’ll learn about reducing your attack surface by
disabling IPv6 and limiting the number of devices allowed on a
wireless network. The chapter will also delve into MAC address
filtering, which allows only known devices onto the internal network;
disabling features when they’re not in use; using secure
authentication methods; and grouping devices or users based on
their necessary privilege level within the network.

UPGRADING YOUR HARDWARE
If you received wireless networking equipment from your internet
service provider, it’s likely an entry-level device. Usually, this
means it has fewer features or is less configurable than a higher-
end product. If, while making your way through this chapter, you
find that your device doesn’t allow the level of management
required, consider purchasing a model with higher specifications.
Netgear’s Nighthawk series routers, for example, are reasonably
priced and fully featured, even at the mid-range.

#15: Disabling IPv6
IPv6, the newer version of the Internet Protocol, was designed to
combat the fact that we’ll eventually run out of publicly addressable
IPv4 space. IPv6 expands the available address space by many
orders of magnitude, but it’s not as common as another mitigation:
network address translation (NAT), which we described in Chapter 1.
If you don’t use IPv6 in your network but leave it enabled, you’re
providing adversaries one more potential intrusion vector (that is,
another way to enter or otherwise compromise your network). As a
general rule, you should disable or uninstall all protocols and
applications that are not in active use to prevent attackers from using
those tools (or the tools’ vulnerabilities) against you. Disabling
unused protocols reduces the attack surface of your environment,
which should be as small as possible.

If you aren’t actively using IPv6 in your network, disable it
wherever you can, including in your Wi-Fi configuration. To disable
IPv6, follow these steps:

Windows

1. Open Network and Internet Settings.
2. Click Change adapter options.

3. For each adapter in the resulting window, double-click the
adapter and then click Properties.

a. Find the Internet Protocol Version 6 (TCP/IPv6)
checkbox and uncheck it.

b. Click OK and close the remaining windows.

macOS

1. Open System Preferences.
2. Click Network.
3. For each adapter in the list, click Advanced.

a. Open the TCP/IP tab.
b. Ensure Configure IPv6 is set to Off.

Linux

1. Open Settings.
2. Select Network from the list on the left.
3. For each adapter, click the configuration Cog.

a. In the IPv6 tab, click the Disable radio button and
then click Apply.

Your Modem or Router

Configuring your modem or router may be trickier, since every device
has its own configuration menus and options. Some devices will
have an IPv6 section; if this is the case, access that menu and
disable IPv6 entirely. Or, you might find the IPv6 option in the DHCP
settings. Others may be hidden within the Wireless or LAN options.
In the pfSense device discussed in Chapter 3, the IPv6 settings are
found under Services▸DHCPv6 Server & RA. Unless you
configured a network interface in pfSense with a static IPv6 address,
this will be disabled by default.

If you’re unable to find the setting for IPv6 in your device, search
the make and model on the internet. Once you’ve disabled IPv6,
you’re one step closer to being more secure.

#16: Limiting Network Devices
Most small, nonenterprise networks rarely specify or otherwise limit
the devices present in their networks and suffer from being too open,
allowing all devices to connect. While this setup provides
convenience, particularly when you buy a new device or friends
come over, it’s an insecure practice that leaves a wide hole for
potential adversaries, whether targeted or opportunistic.

You can avoid this security risk by identifying all the devices
allowed to connect to the network and restricting access to just those
devices. Creating an asset list—a table containing data about each
device, such as its type (PC, laptop, mobile phone, and so on),
location, hostname, MAC address (its hardware address), and IP
address—will complement your network map and vice versa, helping
you keep track of the various devices on your network.

Once you’ve collected this information for all the endpoints in your
network, you can assign static IP addresses to known devices and
reduce the assignable IP address range in your DHCP server. Make
the range small enough to include enough addresses for the devices
in your asset list and on your network map. By reducing the number
of available addresses, you lower the risk of an adversary adding
new devices to your network without detection. Even having taken
this security measure, an adversary may be able to force one of your
devices to disconnect and connect their own in its place. This is
where MAC address filtering comes in.

MAC address filtering lets you allow or deny access to your
network based on a device’s MAC address. If you know the MAC
addresses of all allowed devices, you can make unauthorized
devices harder to add to the network and easier to detect.

Creating an Asset List

Unlike in large enterprises, making an asset list in smaller networks
is fairly straightforward. First, create a chart like the one in Table 4-1
using pen and paper, Excel, or some other tool.

Table 4-1: An Asset List Template

Device
IP

address
MAC

address
Hostname
(optional)

Location
(optional)

My
laptop

Their
laptop

My
phone

Their
phone

TV

Tablet

Xbox

You can choose to omit the hostnames and locations, but be sure
to include the IP and MAC addresses of each device. If the devices
are already connected to your network, you can retrieve this
information from your router’s DHCP section or your DHCP server if
you have one. For devices without user interfaces, such as Wi-Fi-

connected lights, this may be your best or only option. Alternatively,
you can gather the details from each host.

Windows

1. Open Network and Internet Settings.
2. Click Change adapter options.
3. Identify the adapter that connects the device to your

network. If connected to Wi-Fi, it will be the Wi-Fi adapter;
otherwise, it’s the Ethernet adapter. Double-click the
adapter and then click Details.

4. Find the physical address and record this as the computer’s
MAC address in your asset list.

5. Locate the IP address and record this as well.
6. Click Close and close the remaining windows.

macOS

1. Open System Preferences and click Network.
2. Identify the adapter that connects the device to your

network. If connected to Wi-Fi, it will be the Wi-Fi adapter;
otherwise, it’s the Ethernet adapter.

3. Click Advanced and then click the TCP/IP tab.
4. Record the IPv4 address.
5. Go to the Hardware tab and record the MAC address.
6. Click OK and close the Network window.

Linux

1. Open Settings.
2. Select Network from the list on the left.
3. Identify the adapter that connects the device to your

network. If connected to Wi-Fi, it will be the Wi-Fi adapter;
otherwise, it’s the Ethernet adapter.

4. Click the configuration Cog.
5. In the Details tab, record the IP address and the hardware

address (the MAC address).
6. Close the windows.

You should have successfully identified all known devices in the
network. If any unknown devices are connected, you’ll block them
using the steps in the upcoming “MAC Address Filtering” section.
Next, you’ll assign each device a static IP address.

Static IP Addressing
IP addresses can be static or dynamic. By default, most routers use
a Dynamic Host Configuration Protocol (DHCP) server to assign IP
addresses to endpoints when they connect to the network. These
assignments are called DHCP leases and are time-bound; a lease
typically expires after 24 hours. Dynamic IP addresses may change
each time the endpoint connects or the lease expires. However, you
can alternatively assign each endpoint its own static IP address that
it’ll keep every time it connects to your network. This helps you know
to which endpoint a given IP address corresponds and can prevent
unknown devices from connecting by limiting available dynamic
addresses.

You’ll find the static IP address settings in the DHCP menu of most
Wi-Fi routers. For this example, we’ll be using the DHCP Leases
menu of the Netgate SG-3100 covered in Chapter 3, but the process
should be similar regardless of the device you’re using. To reach the
DHCP Leases menu in the SG-3100, click Status▸DHCP Leases.
In similar devices, it might appear in the LAN or Advanced settings.
You should see a table similar to Figure 4-1.

Figure 4-1: DHCP leases menu on the Netgate SG-3100 pfSense firewall

To create a static IP address (also called a static lease), click the
Add button (in the SG-3100 it’s the left, unfilled + button). The
resulting page allows you to specify an IP address for the host you
selected. Specify any address you’d like, as long as it’s within your
addressing scheme, and then click Save. For example, if your
address scheme is 192.168.1.x, you might choose 192.168.1.100.
The IP addresses you choose don’t have to be consecutive; you can
use 192.168.1.100 for this host and 192.168.1.54 for the next. After
you’ve assigned the host’s static address, it will probably need to
reconnect to the network to acquire it; force it to do so by power-
cycling the device (turn it off and on).

Once you’ve assigned static IP addresses to your authorized
devices, update your asset list and network map. Then, to effectively
ban additional devices from joining without authorization, reduce the
range of addresses the DHCP server may assign.

By default, the DHCP server service makes the entire IP address
range available for devices to connect to the network. If your IP
addressing scheme is 192.168.0.0/16, your network can have up to
65,534 hosts connected. No small network needs that many hosts,
and leaving this wide open is a security risk.

To see the DHCP address range in the SG-3100, click
Services▸DHCP Server. Your device should have an IP address
range similar to Figure 4-2.

Figure 4-2: DHCP address range

The numbers may be different, but the general configuration
should be close. To manually authorize every device that connects to
your network, disable the DHCP server and add new static
addresses for every endpoint. An alternative is to shorten the
available DHCP address range. Instead of allowing the range to be
open from 192.168.1.100 to 192.168.1.245, you could specify of
range of 192.168.1.100 to 192.168.1.105, limiting the number of
devices that can be assigned a DHCP address to six. When these IP
addresses have been statically assigned to the devices within your
network, no additional devices can receive an IP address from the
DHCP server without one of those devices going offline or being
removed from the network. Reducing the available address space
reduces the ability for unauthorized devices to connect to your
network, thereby minimizing your attack surface.

You might be wondering if these steps are necessary, when
anyone wanting to connect to your wireless network will need to be
nearby, and you probably don’t let strangers into your home or office.
Consider, though, that “close proximity” might be as far away as a
car on the street outside your building, or the suite of offices next
door.

MAC Address Filtering
MAC address filtering can be implemented as either a stand-alone
defense or an additional layer of security. Most wireless routers allow
you to specify the MAC addresses allowed to connect to your
network, thereby blocking unspecified MAC addresses. MAC
addresses are less likely to change than IP addresses, as they’re
tied to a device’s hardware.

These days it’s not that difficult to fake, or spoof, a hardware
address. However, any additional obstacle you can place between
an adversary and your network will make it more secure. As an
example, to access the MAC address filtering page on an ASUS RT-
AC5300 wireless router, you’d click Wireless▸Wireless Mac Filter,
as shown in Figure 4-3.

Figure 4-3: Wireless MAC address filtering on an ASUS AC-RT5300 router

The Basic Config options shown in Figure 4-3—the wireless band,
whether the filter is enabled or disabled, and whether the filter

mode is Accept or Reject—can be applied to either the 2.4 GHz or
5 GHz radio.

2.4 GHZ AND 5 GHZ WIRELESS BANDS
These two frequencies have several differences. One is the
wavelength: the 2.4 GHz band will result in a wireless network that
functions over greater distances, while the 5 GHz band will be less
effective over longer distances, but it can provide faster speeds
within its shorter range. There will likely be more interference on
the 2.4 GHz band, as this is an older technology, so far more
wireless networks and devices use this frequency (including
microwaves, which can cause wireless interference). Finally, not
all wireless devices are capable of handling both 2.4 GHz and 5
GHz wireless signals.

In Figure 4-3, the MAC filter for the 5 GHz band is Enabled, and
the Mode option is set to Reject. This mode causes the filter to
function as a denylist, meaning anything on the list will be blocked or
denied access. An allowlist, on the other hand, is a list of endpoints
that will be allowed access. Use a denylist when you know the MAC
address of a device to which you want to deny access. In most
cases, you’ll use the Accept, or allowlist, mode instead. In Accept
mode, the MAC filter list contains the MAC addresses that you’ve
explicitly allowed access to the network.

Select Enable Mac Filter and Accept and then enter the MAC
addresses from your asset list. Once you’ve added all the MAC
addresses and saved your configuration, no devices except those
specified can connect to the wireless network and acquire an IP
address. You can test this by removing one of the less critical
devices from the Accept list and trying to connect it to the network. If
it refuses to connect, your MAC filtering is working correctly.

#17: Segmenting Your Network

Wireless networking grants you the ability to share an internet
connection with guests by using a separate guest network without
compromising your security. Most mid-range wireless routers offer
this functionality. The ASUS RT-AC5300, for example, allows for
multiple guest networks on both the 2.4 GHz and 5 GHz wireless
frequencies, as shown in Figure 4-4.

Figure 4-4: Multiple wireless network capability

A guest network is not only convenient for your visitors; it also
allows you to group users and devices by their level of risk or trust.
For example, on your private internal network, you might connect
your primary devices: laptops, mobile devices, and so on. Then, on
the guest network, you might connect your IoT devices: your Google
Home, Amazon Alexa, LIFX or other smart lightbulbs, and other
similar devices.

Certain categories of devices are inherently less secure. For
instance, IoT devices are susceptible to botnet infections. A botnet is
a group of internet-connected devices, usually linked via malware
installed on each device. The malware causes the group to be
controlled as a collective, usually for malicious activity, such as
distributed denial-of-service attacks, data theft, or spamming.
Allowing devices with lower standards of security onto the same
network segment as your primary devices is risky. The best way to
mitigate this risk is to separate them, either logically or physically.

As shown in Figure 4-4, you can allow guest devices on the
network for an unlimited amount of time or a specific period of your
choosing, which is useful for guests who may need access for only a
few hours. By configuring your router to allow guests unlimited
access, you trade security for convenience. Conversely, limiting the
amount of time a guest can connect before needing to be re-
authorized requires more work. Still, it’s a far more secure manner of
access control.

One last feature provided by some wireless routers and access
points is the option to allow or deny access to your intranet, which is
the internal network where your private devices are connected.
Allowing guests access to this segment of your network lessens your
security, as it provides them with access to your computers and
mobile devices. If you let guests access your entire network, you
might as well give them access to your primary wireless network
instead of configuring a guest network. The ASUS wireless router
I’ve been discussing has this capability; if you configure a guest
network, you can choose to allow endpoints connected to that
wireless network to access your intranet or allow them to access
only the gateway to the internet. The router handles this access by
allowing or disallowing devices connected to your guest network to
see devices connected to your primary network. Banning access
from the guest network to your intranet is the more secure option
and one that you should implement. If your router has this capability,
a fairly obvious checkbox should be present in the wireless network
settings. If you can’t find it, chances are your router doesn’t have it
(although you can make sure by reading the manual or doing a quick
internet search).

#18: Configuring Wireless Authentication
You should protect your Wi-Fi network with encryption by creating a
passphrase to access the network. An open wireless network—with
no protection or encryption—provides a prime target for an
adversary. Today, most networks use one of three security
algorithms to secure their communications: WEP, WPA/WPA2, or
WPA3.

WEP
Wired Equivalent Privacy (WEP) is the oldest of the three security
protocols and by far the least secure. WEP uses either a 40- or 104-
bit encryption key, both of which are small when compared to those
of later protocols. WEP combines this encryption key with 24-bit
initialization vectors (IVs) meant to provide enhanced security, but
the shortness of these IVs means the algorithm will likely reuse keys,
which in turn makes the encryption easier to crack. Understanding
the details isn’t necessary; just know that WEP is an insecure
technology and shouldn’t be used. In fact, vendors phased out WEP
by 2001; it’s no longer available on most hardware.

WPA/WPA2
Wi-Fi Protected Access (WPA), the successor to WEP, improved
upon WEP’s protection. Although it relied on the same RC4
encryption cipher, it also introduced the Temporal Key Integrity
Protocol (TKIP). TKIP strengthened wireless security by using a 256-
bit key and implementing message integrity checking, larger 48-bit
IVs, and mechanisms to minimize IV reuse.

In turn, WPA2 improved the original WPA protocol. Both WPA and
WPA2 allow users to choose between personal and enterprise
modes. Personal mode, called WPA-PSK, uses a preshared key
(PSK) or passphrase to grant access, while enterprise mode
requires an authentication server. WPA2 replaced both the RC4

encryption cipher and TKIP in favor of more secure algorithms and
encryption protocols. Moreover, it implemented Counter Mode CBC-
MAC Protocol (CCMP), a more secure encryption mechanism. All of
this made WPA2 far more secure than the earlier encryption
protocols and facilitated roaming between access points, providing
a smoother user experience. If possible, choose WPA2 or greater in
your wireless network.

Having said that, an adversary could still capture your wireless
traffic and brute-force your network password. Though WPA2 is
good, there’s no such thing as perfect security. As a result, ensure
that you use strong passphrases to secure your wireless networks.
Passphrases are discussed in detail in Chapter 11.

WPA3
Wi-Fi Protected Access version 3 (WPA3) is the latest wireless
security technology. It’s very recent and hasn’t yet seen wide
adoption. WPA3 improves security by keeping users who are
connected to the same network from eavesdropping on each other’s
wireless communications—even if the wireless network is open and
doesn’t require a password to authenticate.

WPA3 achieves this by replacing the preshared key authentication
used in WPA2 with a new protocol: Simultaneous Authentication of
Equals (SAE). This change also means adversaries can’t capture the
traffic needed to crack the network’s password, making it even more
difficult for them to gain unauthorized access to the network.

For now, WPA3 is in its infancy, so very few devices are
compatible. Newer wireless routers and access points will come with
WPA3 as standard. Even then, other devices will need to catch up
before you can use it; there’s little value in having a WPA3 router if
your phones and computers can’t connect to it. Once this changes,
you should use WPA3 over any other wireless security standard.

To configure the ASUS router we’ve been discussing, in the
wireless settings, under Advanced Settings▸Wireless▸General,
you’d create your primary, internal network by specifying the network

name (SSID) and a security key or passphrase, as shown in Figure
4-5. Then, in General▸Guest Network▸Enable, create one or
more guest networks to which you’ll connect all of your other devices
by specifying a network name and security key or passphrase, just
as you did for your primary wireless network.

Figure 4-5: Primary wireless network settings

The ASUS router used in this example keeps your main wireless
network and the guest networks divided. The same process could be
followed on most modern mid- to high-end wireless routers. Any
endpoints connected to the main wireless network will be unable to
communicate with endpoints connected to the guest networks, and
vice versa. However, if you create multiple guest networks, devices
on any of those networks will be able to see and communicate with
one another. Some wireless routers may provide the ability to keep
each of your guest networks completely separate as well. Do your

research before investing in a wireless router if you want this
capability.

Be sure to follow secure practices and take advantage of any
security options available, such as those discussed earlier. For
example, the ASUS router has several features available for
securing your wireless networks, as shown in Figure 4-6.

Figure 4-6: Wireless network security settings

Where you have the ability to set a WPA passphrase or preshared
key, do so. You should always take any opportunity to harden the
network against opportunistic adversaries. In some cases, it’s also
beneficial to limit the access time allowed to endpoints connected to
these networks. If you plan to use a secondary network for endpoints
that are expected to be always on and connected, that option may
not suit your needs. However, if you’ll use these networks for guests,
or endpoints that need only limited connectivity, limit the amount of
time those endpoints are allowed to remain connected to a
reasonable number of minutes or hours as you see fit. The last
option shown in Figure 4-6, Enable MAC Filter, lets you allow or
deny devices access to your networks based on their hardware
addresses.

WIRELESS NETWORK TIPS
Most routers allow you to hide your wireless network by
preventing the network name, or SSID, from being broadcast.
Doing so will keep the network from appearing in the list of
available networks on your device. Even if your network is hidden,
you’ll still be able to connect to it with the right access credentials.
Hiding your network isn’t recommended, however. Even though
regular users won’t be able to see it, an adversary with a network
analyzer could still identify it. What’s worse, a hidden wireless
network actually creates more noise and is easier to discover than
a nonhidden one. That’s because devices connected to a hidden
network have to constantly broadcast beacons to determine if the
network is still available, generating traffic that an adversary can
capture to attempt to breach the network. Hidden networks are
great for protecting your network from your not-so-tech-savvy
neighbors but will do the opposite for potential attackers.

Consider turning your Wi-Fi off when it isn’t in use, such as
when everyone in the house is asleep or when your office has
closed down for the night. If the wireless is turned off, adversaries
won’t be able to detect it, much less breach it. The same goes for
your guest network; if it isn’t being used, turn it off to reduce your
attack surface.

Summary
In this chapter, we’ve discussed common wireless network security
risks and methods to mitigate them within your network by
implementing measures such as IP and MAC address filtering and
reducing the available address space in your DHCP server. Creating
and maintaining an asset list and network map can help to ensure no
unauthorized devices are connecting to your network.
Eavesdropping is the easiest risk to mitigate. Add encryption to your
network in the form of WPA security (ideally WPA3, as it becomes

more common) and implement a passphrase rather than a password
for network access.

5
CREATING A VIRTUAL PRIVATE

NETWORK

A virtual private network (VPN) is a means of providing privacy and
security for communications over the public internet. If you don’t
want a malicious third party to intercept your Google search traffic as
it traverses the internet from your local laptop to Google’s servers,
you should use a VPN to encrypt the traffic between the two
endpoints. If you frequently transfer sensitive files or data, such as
personally identifiable information or banking information, it’s wise to
protect this information using encryption.

The other primary function of a VPN is to extend a private network,
such as those in homes and offices, from one geographic location to
another. A VPN creates a tunnel over the internet from one network
to a second network. This means that if a user usually based in
Australia is traveling in Europe, they could connect to their home
network from Europe as if they were physically located in Australia.
Conversely, if a user located in Australia wants to appear as if
they’re physically located in Europe, they can place the VPN
endpoint in Europe, usually via some third-party service.

This chapter outlines a method for creating a private VPN whose
exit node (that is, the place where the VPN tunnel ends) is located
somewhere outside of your local network, in a different geographic
location somewhere in the world, to make your actual physical

location private. We’ll discuss how to achieve this with OpenVPN or
Wireguard.

Drawbacks of Third-Party VPNs and Remote
Access Services
Although you could subscribe to a VPN service like NordVPN or
ExpressVPN, operating your own VPN is beneficial because you
control everything about it, including connection and traffic logging
levels, as well as the cost of the service. Also, whereas third-party
services provide some benefits, such as the possibility of using
multiple exit nodes in different locations, they usually don’t offer the
ability to connect into your own network remotely. One last challenge
of using third-party VPN services is that they usually set a limit to the
number of devices you can connect at a time. A privately managed
VPN has no such limitation.

Recently, there’s been a boom in the number of applications
designed to allow remote access to endpoints from the wider
internet. This includes software and vendors such as Teamviewer
and AnyDesk. Although these solutions are convenient and have a
low barrier to entry, they increase the attack surface of your private
network by opening up remote access from your computer to the
internet, something you should rarely do, if ever. There have also
been several well-known compromises of these solutions, indicating
that they are vulnerable to attack. A VPN provides a much more
secure solution.

OpenVPN
OpenVPN is one of the most common VPN solutions available.
Because of its age and ubiquity, you can be confident in its security
when compared to newer solutions, which have been less rigorously
tested for bugs and vulnerabilities. OpenVPN comes built-in to a
variety of networking hardware, which is beneficial because in a lot

of cases your router can act as your VPN endpoint inside of your
network (that is, the VPN server). This means your router can also
act as a VPN client, connecting to a VPN server in the cloud, and
then everything connected to the router on your internal network can
send and receive traffic via your VPN tunnel. Encrypting your
internet traffic in this way provides much greater privacy than using
the internet without a VPN. Ideally, though, you’ll want more control
over the VPN exit node than this allows; most routers use either a
cut-down version of Linux or a proprietary operating system, so you’ll
learn how to create a VPN server using Ubuntu for greater flexibility.

EasyRSA
EasyRSA is a command-line utility for creating and managing
certificate authorities. To encrypt and protect traffic, OpenVPN
requires a certificate authority (CA) to issue certificates. Digital
certificates are used to enable trust between different parties, usually
networks and computers. Public key infrastructure (PKI) is
responsible for the distribution, authentication, and revocation of
public key certificates, which are used to verify ownership of digital
certificates. These certificates contain the public key that an entity
uses as part of a public/private key pair to encrypt data, which can
then be decrypted only by the public key owner with the matching
private key. This method secures most communication on the
internet today.

The CA you create will generate, sign, verify, and revoke (if
necessary) all the certificates required to encrypt and secure
communications between the VPN server and VPN clients.
Technically, you can install both OpenVPN and the CA on the same
server, but doing so is less secure than installing them on separate
servers. Any adversary who gains access to the server would have
access to the certificates and private keys used by the server, as
well as the ability to generate new certificates. Therefore, you’ll need
two Ubuntu servers: one to act as the OpenVPN server and one to
serve as the certificate server. You’ll use the certificate server to sign
requests generated on the OpenVPN server for both the VPN server

and any client devices connecting to the VPN, whether they’re
laptops, workstations, mobile devices, or any other type of device.

Wireguard
Wireguard, a relatively new alternative to OpenVPN, is simple and
incredibly fast by comparison. The drawback of being newer is that
although Wireguard is open source, it’s had less time to be tested for
bugs and vulnerabilities. However, it has gathered a sizable following
in the security community and a good reputation for being reliable
and secure.

NOTE If you plan to connect to your private network remotely, keep
in mind that you’ll need a static IP address on your home or office
internet connection, as well as some port forwarding on your
border router. Most internet service providers supply static IP
addresses upon request, usually for a nominal fee.

#19: Creating a VPN with OpenVPN
In this first project, you’ll start by creating an OpenVPN server and a
certificate authority to secure communication via the VPN. Next,
you’ll generate the relevant certificates, create the OpenVPN
configuration files, configure the host firewall, and start the VPN.
Finally, you’ll configure each of the VPN clients that will use this VPN
to send and receive traffic, and you’ll connect to and test the VPN
connection.

The entire process of spinning up an OpenVPN server in the cloud
and connecting a client to it should take no longer than a couple of
hours. Adding subsequent clients should take up to 30 minutes per
endpoint. You’ll need to enable and configure a firewall on your
server as part of creating your VPN. Ubuntu’s built-in firewall, the
Uncomplicated Firewall (UFW), is designed to reduce the complexity
of firewall configuration. It’s much simpler than solutions like iptables
(covered in Chapter 3). We’ll introduce you to UFW and its use in
this project as an alternative host firewall solution. Alternatively, you

can apply what you learned in Chapter 3 and implement the same
rules described for UFW in an iptables deployment. Even if you have
a perimeter firewall in place like pfSense, be sure to enable either
the host-based firewall offered by Ubuntu or iptables, as laid out in
Chapter 3, to provide an additional layer of protection at the host
level. Implementing a host-based firewall also allows more granular
configuration of the servers’ network connections.

Once you enable the firewall, you’ll have to adjust the settings of
the Ubuntu installation so that OpenVPN traffic is capable of
traversing that firewall. (I’ll cover how to do this later in the project.)

Securing internet traffic originating inside your network will require
a VPN exit node elsewhere, as well as a certificate server, so follow
Project 3 in Chapter 1 to create two base Ubuntu servers in the
cloud, using the cloud service provider of your choice.

Once your Ubuntu servers are up and running, log in to the server
you plan to use as your OpenVPN server (as opposed to the
certificate authority) via SSH as a standard, non-root user:

$ ssh user@your_server_IP

Once logged in to the OpenVPN server, at the bash terminal, use
apt to install OpenVPN:

$ sudo apt install openvpn -y

You also need to install EasyRSA on both the OpenVPN server
and the certificate server. Install the latest version using apt as well:

$ sudo apt install easy-rsa -y

Make sure to install this on both Ubuntu servers. EasyRSA will be
installed to the /usr/share/easy-rsa/ directory by default.

Set Up the Certificate Authority

Next, you must configure and build the certificate server to act as a
CA. The easiest way to do this is to make a copy of the template that
EasyRSA provides and then modify its configuration to suit your
needs. You can then initialize the PKI, build the CA, and generate its
public certificate and private key.

Navigate to the easy-rsa folder on the certificate server and then
create a copy of the vars.example file. Call it vars:

$ cd /usr/share/easy-rsa/
$ sudo cp vars.example vars

Keep in mind that most of the time when a command in bash runs
successfully, there will be no output to the screen, and you’ll be
returned to the prompt.

Open the resulting vars file in a text editor:

$ sudo nano vars

In the file, find the organizational fields that contain information
about the organization for which the certificates will be generated by
this server; for example:

--snip--
#set_var EASYRSA_REQ_COUNTRY "US"
#set_var EASYRSA_REQ_PROVINCE "California"
#set_var EASYRSA_REQ_CITY "San Francisco"
#set_var EASYRSA_REQ_ORG "Copyleft Certificate Co"
#set_var EASYRSA_REQ_EMAIL "me@example.net"
#set_var EASYRSA_REQ_OU "My Organizational Unit"
--snip--

Each of these lines in the file is a comment by default, so they
won’t be read or interpreted when the file is run; they’ll be ignored or
suppressed. Remove the hash (#) at the beginning of each line to
ensure they’re read when this file is invoked. Alter the values in
quotations on the right to match your organization or personal

network. The values can be anything you choose, but they can’t be
blank. Here’s an example:

--snip--
set_var EASYRSA_REQ_COUNTRY "AU"
set_var EASYRSA_REQ_PROVINCE "Queensland"
set_var EASYRSA_REQ_CITY "Brisbane"
set_var EASYRSA_REQ_ORG "Smithco"
set_var EASYRSA_REQ_EMAIL "john@smithco.net"
set_var EASYRSA_REQ_OU "Cyber Unit"
--snip--

Save and close the file. Execute the easyrsa script within the easy-
rsa folder (which should still be your current working directory) to
initialize the PKI and then build the CA with the same easyrsa script,
which will generate both the CA public certificate (ca.crt) and the
private key (ca.key):

$ sudo ./easyrsa init-pki
--snip--
Your newly created PKI dir is: /usr/share/easy-rsa/pki
$ sudo ./easyrsa build-ca nopass
--snip--
CA creation complete and you may now import and sign cert
requests.
Your new CA certificate file for publishing is at:
/usr/share/easy-rsa/pki/ca.crt

When prompted for the server’s Common Name, you can enter
any string of characters you’d like, but it’s often easier to use the
hostname of the server or press ENTER to accept the default
Common Name. The output will contain the path to your PKI
directory and ca.crt file; the ca.key file will be inside the private folder
in the same location. The nopass option keeps you from being
prompted for a password every time the CA is queried during this
process.

That concludes the configuration of the CA server for now. The
next set of configuration steps takes place on the OpenVPN server.

Create the OpenVPN Server Certificate and Key
Each client you plan to connect to the VPN needs its own public
certificate and private key. These files allow the certificate server, the
VPN server, and any other clients on the VPN to authenticate the
client and enable communication between all devices within the
VPN. The VPN server also needs its own certificate and key for the
same reasons. This part of the project describes how to sign a
certificate and generate a key for the OpenVPN server. You’ll follow
a similar process for connecting clients to the OpenVPN server.

On the OpenVPN server, navigate to the easy-rsa folder, and
initialize the PKI for this server in the same way as before:

$ cd /usr/share/easy-rsa
$ sudo ./easyrsa init-pki

Just as every client connected to the VPN requires a certificate
and key, the OpenVPN server itself needs a certificate signed by the
CA. To this end, generate a certificate request from the OpenVPN
server:

$ sudo ./easyrsa gen-req server nopass
Using SSL: openssl OpenSSL 1.1.1f 31 Mar 2020
Generating a RSA private key
.................................+++++
..+++++
writing new private key to '/usr/share/easy-
rsa/pki/private/server.key.2ljAQtgUYY'

You are about to be asked to enter information that will be
incorporated
into your certificate request.

What you are about to enter is what is called a Distinguished
Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Common Name (eg: your user, host, or server name) [server]:

Keypair and certificate request completed. Your files are:
req: /usr/share/easy-rsa/pki/reqs/server.req
key: /usr/share/easy-rsa/pki/private/server.key

When prompted, press ENTER to accept the default Common Name
for the VPN server, server, or give it a custom name. The output
indicates that an RSA private key is generated and shows where the
script stored the resulting server key and certificate request.

Copy the generated server.key file to the OpenVPN configuration
directory on the VPN server:

$ sudo cp /usr/share/easy-rsa/pki/private/server.key
/etc/openvpn/

Copy the server.req file to your certificate server using rsync,
replacing the user and CA-ip placeholders with the relevant
username and IP address for your certificate server:

$ sudo rsync -ruhP /usr/share/easy-rsa/pki/reqs/server.req
user@CA_ip:/tmp/

Next, enter the following commands to log in to your certificate
server and then import and sign the VPN certificate request
generated earlier, enabling the VPN communications to be encrypted
and secured:

$ ssh user@CA_ip
$ cd /usr/share/easy-rsa/

$ sudo ./easyrsa import-req /tmp/server.req ❶ server
$ sudo ./easyrsa sign-req ❷ server

The first easyrsa import-req command imports the request. The
second argument is the Common Name you created for your VPN
server earlier ❶ . To sign the request, pass easyrsa sign-req the
argument server ❷ to specify the request type and then the
Common Name again. (Later, when signing client requests, you’ll
use the same command with client as the argument.)

When asked to confirm whether the details are correct, double-
check to ensure the Common Name is set as expected and then
type yes and press ENTER to complete the import and signing
process. You’ll need to copy the resulting server.crt certificate file
belonging to the OpenVPN server (along with the CA certificate)
back to the OpenVPN server from the CA server so that each can
authenticate the other:

$ sudo rsync -ruhP /usr/share/easy-rsa/pki/issued/server.crt
user@vpn_ip:/tmp/
$ sudo rsync -ruhP /usr/share/easy-rsa/pki/ca.crt
user@vpn_ip:/tmp/

On the OpenVPN server, move the relevant files to the
/etc/openvpn/ directory:

$ sudo mv /tmp/server.crt /etc/openvpn/
$ sudo mv /tmp/ca.crt /etc/openvpn/

Next, you’ll need a Diffie-Hellman key to exchange keys between
devices. A Diffie-Hellman key exchange is a way to communicate
public and private key information between two parties over a public
communication channel securely. Without this capability, it wouldn’t
be possible to create secure encrypted channels over a public
network like the internet.

You’ll also need an HMAC signature to make the process more
secure. An HMAC signature, used in HMAC authentication and with
a secret key, is a method of verifying the integrity of a message or

payload. Using an HMAC signature in this process will maintain the
key exchange’s integrity and allow you to verify the keys’
authenticity.

On your VPN server, navigate to your easy-rsa directory and
generate a shared secret key using the easyrsa script created
earlier:

$ cd /usr/share/easy-rsa/

$ sudo ./easyrsa ❶ gen-dh
$ sudo ❷ openvpn --genkey secret ta.key
$ sudo cp /usr/share/easy-rsa/ta.key /etc/openvpn/
$ sudo cp /usr/share/easy-rsa/pki/dh.pem /etc/openvpn/

The gen-dh argument ❶ creates the Diffie-Hellman key, which may
take a long time and generate a lot of output. The openvpn --gen-key
secret ❷ command quickly generates the HMAC signature, and
you’ll see no output if it’s successful. These processes create the
/usr/share/easy-rsa/ta.key and /usr/share/easy-rsa/pki/dh.pem files.
Copy each of them to the OpenVPN configuration directory,
/etc/openvpn/, on your OpenVPN server:

$ sudo cp /usr/share/easy-rsa/ta.key /etc/openvpn/
$ sudo cp /usr/share/easy-rsa/pki/dh.pem /etc/openvpn/

At this point, you’ve created all the required certificates and keys
for the servers.

Create a Client Certificate
Next, you’ll need to create client certificates and keys to allow clients
to connect to the VPN, which are the same as the server certificates
but relate to each individual client device. The most efficient way to
do this is to create the necessary files on the server, rather than on
the client, which prevents you from having to transfer files between

devices unnecessarily. On the OpenVPN server, create a safe
location for the files:

$ sudo mkdir -p /etc/openvpn/client-configs/keys/

Navigate to the easy-rsa directory, generate a new certificate
request for the client, copy the key to the directory you just created,
and securely copy the request file to your CA server as shown here:

$ cd /usr/share/easy-rsa/

$ sudo ./easyrsa gen-req ❶ myclient nopass
$ sudo cp /usr/share/easy-rsa/pki/private/myclient.key \
 /etc/openvpn/client-configs/keys/
$ sudo rsync -ruhP /usr/share/easy-rsa/pki/reqs/myclient.req
user@CA_ip:/tmp/

You’ll be asked for a passphrase for the request; enter one and be
sure to save it for later reference. You’ll also be asked for a Common
Name for your VPN client. This name will need to be different for
each client that you provide access to the VPN, so consider using
the client hostname (myclient in this example; change myclient ❶ to
the client name of your choice).

On your certificate server, navigate to the easy-rsa directory:

$ cd /usr/share/easy-rsa/

Import the request using the client’s Common Name (myclient in
this example) and then sign it using the client directive, rather than
the server directive you used earlier:

$ sudo ./easyrsa import-req /tmp/myclient.req myclient
$ sudo ./easyrsa sign-req client myclient

Confirm that the Common Name is correct and then type yes and
press ENTER to complete the command.

Finally, securely copy the newly generated certificate back to your
OpenVPN server:

$ sudo rsync -ruhP /usr/share/easy-
rsa/pki/issued/myclient.crt user@vpn_ip:/tmp/

For the VPN to function correctly, the ta.key and ca.crt files you
created earlier, as well as the myclient.crt file, need to be in the client
configuration directory on the OpenVPN server. On your VPN server,
copy those files to the /etc/openvpn/client-configs/keys/ directory:

$ sudo cp /usr/share/easy-rsa/ta.key /etc/openvpn/client-
configs/keys/
$ sudo mv /tmp/myclient.crt /etc/openvpn/client-configs/keys/
$ sudo cp /etc/openvpn/ca.crt /etc/openvpn/client-configs/keys/

And with that, you’ve created the necessary files to connect a
client to the OpenVPN server. You can repeat this process as many
times as necessary. Just be sure to change the client name from
myclient to something else each time you generate files for a new
client.

Configure OpenVPN
Now that the certificate server is set up, you can configure the
OpenVPN server. To do so, you’ll copy a template OpenVPN
configuration and modify it to suit your needs.

On your OpenVPN server, copy the configuration template to the
OpenVPN configuration directory:

$ sudo cp /usr/share/doc/openvpn/examples/sample-config-
files/server.conf /etc/openvpn/

Open the resulting server.conf file in a text editor (this example
uses nano):

$ sudo nano /etc/openvpn/server.conf

As with any configuration file, open it and familiarize yourself with
its contents. You might notice that these configuration files use both
and ; to mark lines as comments.

Once you feel comfortable with the options available, you might
decide to alter the port or protocol your VPN uses. Find the lines that
start with port or proto, and notice a semicolon is used to comment
out the inactive lines:

--snip--
port 1194
--snip--
;proto tcp
proto udp
--snip--

OpenVPN can run over either UDP or TCP, but it uses UDP by
default, and the default port is 1194. However, you can tell it to run
over any port you like, but if you make changes, you’ll need to make
those same changes in any commands or files that follow. Also,
make sure that the certificates and keys mentioned in this file match
your configurations from earlier sections of the chapter:

--snip--
ca ca.crt
cert server.crt
key server.key
--snip--

When you reach the Diffie-Hellman section, ensure that the file
matches the one you created earlier; the configuration file lists
dh2048.pem by default, which will need to be changed to dh.pem:

--snip--
#dh dh2048.pem

dh dh.pem
--snip--

In addition, the redirect-gateway and dhcp-option DNS directives
should not be commented out, so remove the semicolons at the
beginning of those lines:

--snip--
push "redirect-gateway def1 bypass-dhcp"
--snip--
push "dhcp-option DNS 208.67.222.222"
push "dhcp-option DNS 208.67.220.220"
--snip--

These directives ensure that all traffic will traverse the VPN and
not the unsecured internet. You can leave DNS with the default
settings, or you can set it to any DNS servers you desire, such as
Quad9 (9.9.9.9), Google (8.8.8.8), or your Pi-Hole DNS server if you
have one configured as described in Chapter 7.

Next, check that the tls-auth directive is set to 0 and not
commented out with a semicolon and that the cipher is set to AES-
256-CBC. Then, immediately after the cipher directive, add an auth
directive:

--snip--
tls-auth ta.key 0
--snip--
cipher AES-256-CBC
auth SHA256
--snip--

The tls-auth directive ensures that the HMAC signature you
configured earlier will indeed be used to secure the VPN. Several
settings are available for the cipher, and AES-256 is a reasonable
choice as the encryption offered is good and well supported. The
SHA256 indicates the algorithm used for the HMAC message digest,

meaning the hash calculated will be an SHA256 hash, which is
considered secure and less prone to hash collisions than some other
hashing algorithms.

To make the VPN more secure, remove the semicolons from the
user and group directives, which makes the VPN service run with
fewer privileges and ideally mitigates the risk of privilege escalation
attacks:

--snip--
user nobody
group nogroup
--snip--

After making these changes, save and close the configuration file.
The OpenVPN configuration is complete, but you’ll need to make

some changes to the server’s network settings. First, you must
configure IP forwarding or the VPN won’t do anything with the traffic
received:

$ sudo sysctl -w net.ipv4.ip_forward=1

Reload sysctl to make the change take effect, as follows.

$ sudo sysctl -p
net.ipv4.ip_forward = 1

The command may output the lines modified in the sysctl.conf file.

Configure the Firewall
The first step in this process is to find your VPN server’s public
network interface; your server may have multiple network interfaces,
and selecting the wrong interface for the following commands would
result in a VPN that is unable to route traffic to the internet correctly:

$ ip route | grep -i default
default via 202.182.98.1 dev ens3 proto dhcp src 202.182.98.40
metric 100

In this output, the network interface is called ens3, but yours might
be different. The default route shown by ip route will be the public
network interface of your host. You’ll need this to configure your
firewall correctly.

In most firewalls, the order in which you set your rules is the most
important consideration. In UFW, rules are evaluated from rule files
in the following order: first before.rules, then user.rules, and finally
after.rules. The firewall must correctly identify and push through the
VPN traffic, so rules are needed at the top of the firewall
configuration. To do this in UFW, open the before.rules file in a text
editor:

$ sudo nano /etc/ufw/before.rules

Then add these lines at the top of the file to allow OpenVPN client
traffic via the public network interface you identified in the previous
commands:

*nat
:POSTROUTING ACCEPT [0:0]
-A POSTROUTING -s 10.8.0.0/24-o ens3 -j MASQUERADE
COMMIT

The network 10.8.0.0/24 indicates the addresses that clients
connecting to your VPN will be assigned. These addresses should
be different from the addresses used in your network. If you use
192.168.1.x addresses in your network, do not use 192.168.1.x
addresses for your VPN network addressing. As long as your
network uses addresses other than 10.8.0.x, the previous
configuration is safe to use.

Save and close the file. UFW also needs to accept, rather than
drop, forwarded packets. You can allow this by changing the UFW
configuration file:

$ sudo ufw default allow FORWARD

Finally, the firewall needs to allow the port and protocol used for
the VPN to send and receive traffic, as well as SSH for server
administration. Enter the following command to allow the correct port
and protocol based on the configurations you set in
etc/openvpn/server.conf:

$ sudo ufw allow 1194/udp

Next, allow OpenSSH:

$ sudo ufw allow OpenSSH

Restart the firewall for the changes to take effect permanently:

$ sudo ufw disable
$ sudo ufw enable

Your SSH connection might be interrupted as the firewall restarts,
and you may need to log in again.

Start the VPN
At this point, you’re ready to start the VPN. Do so using systemctl,
the utility used to control services in Ubuntu, passing it your server’s
Common Name:

$ sudo systemctl start openvpn@server

Check the VPN’s status:

$ sudo systemctl status openvpn@server

If it’s working properly, the output should say active (running).
Press Q to return to the terminal and then make the VPN start

whenever the server boots:

$ sudo systemctl enable openvpn@server

Your VPN should now be up and running and ready for client
connections.

Configure a VPN Client
Clients must have .ovpn files configured to connect to the VPN
server and send and receive traffic across the secure tunnel.
Creating these configurations can be tedious if you have several
clients to connect, so we’ll use an easily repeatable procedure to do
it for us. We’ll generate configuration files on the OpenVPN server
and then transfer those configuration files to the relevant clients.

On your OpenVPN server, create a safe location for the client
configuration files (such as /etc/openvpn/client-configs/files/), copy
another template provided by OpenVPN, and open the resulting
base.conf file in a text editor:

$ sudo mkdir -p /etc/openvpn/client-configs/files/
$ sudo cp /usr/share/doc/openvpn/examples/sample-config-
files/client.conf \
 /etc/openvpn/client-configs/base.conf
$ nano /etc/openvpn/client-configs/base.conf

Familiarize yourself with the file’s contents. If you made changes
to the port or protocol in previous steps, make the same changes in
this file.

--snip--

;proto tcp
proto udp
--snip--
remote vpn_ip 1194
;remote vpn_ip 1194
--snip--

Also, uncomment the user and group directives:

--snip--
user nobody
group nogroup
--snip--

Comment out the SSL/TLS parameters:

--snip--
#ca ca.crt
#cert client.crt
#key client.key
--snip--

Comment out the tls-auth directive:

--snip--
#tls-auth ta.key 1
--snip--

Set the cipher and auth directives to the values found in the other
configuration files:

--snip--
cipher AES-256-CBC
auth SHA256
--snip--

Finally, add the following line to the end of the file:

--snip--
key-direction 1

The key-direction directive indicates to the client which device in
the client-server pair will provide the key and therefore the
encryption for the VPN tunnel. This can be set to either 0 or 1, but
this configuration should be set to 1, as this should provide better
overall security by forcing different keys to be used for client-server
and server-client communication. Save and close the file.

You can easily create client configurations by writing and
executing a script to pull all of these elements together. Create an
.sh file in which to put your script, make it executable, and then open
it with a text editor (nano in this example):

$ sudo touch /etc/openvpn/client-configs/client_config.sh
$ sudo chmod +x /etc/openvpn/client-configs/client_config.sh
$ sudo nano /etc/openvpn/client-configs/client_config.sh

Copy the script in Listing 5-1 into the file.

#!/bin/bash
KEY_DIR=/etc/openvpn/client-configs/keys
OUTPUT_DIR=/etc/openvpn/client-configs/files
BASE_CONFIG=/etc/openvpn/client-configs/base.conf

cat ${BASE_CONFIG} \

 <(echo -e '<ca>') ${KEY_DIR}/ca.crt \

 <(echo -e '</ca>\n<cert>') ${KEY_DIR}/${1}.crt \
 <(echo -e '</cert>\n<key>') ${KEY_DIR}/${1}.key \
 <(echo -e '</key>\n<tls-auth>') ${KEY_DIR}/ta.key \
 <(echo -e '</tls-auth>') > $ {OUTPUT_DIR}/${1}.ovpn

Listing 5-1: A script for generating client configuration (.ovpn) file

Save and close the file. The first line tells bash that what follows in
this file is a script. The next three lines are variables, which you can
modify if your key directory, output directory, or base config files and
folders are different from the examples in this chapter.

Execute the script from within the client-configs directory as shown
in Listing 5-2, with a client name as the only parameter. The client
name should match one in the certificate and key files you created in
earlier steps. To generate configuration files for further clients, be
sure to generate their certificates and keys, and then use those files
to create the relevant .ovpn file for that client with the script in Listing
5-1. Don’t forget this entails creating a certificate request,
transferring it to your certificate server for signing, and then
transferring it back to your VPN server, in the client-configs directory.

Listing 5-2 shows a run of the script for the myclient client, and a
command to list the resulting file.

$ cd /etc/openvpn/client-configs/
$ sudo ./client_config.sh myclient
$ ls -lah /etc/openvpn/client-configs/files/
total 20
drwxrwxr-x 2 test test 4096 Apr 28 23:22 ./
drwxrwxr-x 4 test test 4096 Apr 28 23:21 ../
-rw-rw-r-- 1 test test 11842 Apr 28 23:22 myclient.ovpn

Listing 5-2: Executing the script from Listing 5-1

Once the .ovpn file is created for this client, download the file to
your local machine via rsync and then import it into the OpenVPN
client for that device.

$ rsync -ruhP user@vpn_ip:/etc/openvpn/client-
configs/files/myclient.ovpn ./

OpenVPN has client applications for most operating systems,
including Windows, Linux, macOS, iOS, and Android. You can find

these on the OpenVPN website: https://openvpn.net/community-
downloads/.

With that done, you can now import the .ovpn configuration file,
connect to your VPN, and use the internet in a much more private
and secure manner. If you plan to connect to your VPN using a Linux
client, you can install OpenVPN using the following command:

$ sudo apt install openvpn -y

Then, connect to your VPN using your configuration file and this
command:

$ sudo openvpn myclient.ovpn

See “Test Your VPN” on page 89 for additional testing you can do
to ensure your VPN is secure.

#20: Creating a VPN with Wireguard
Modern versions of Ubuntu (those from March 2020 onward) have
Wireguard built into the kernel, so it’s simple to install and get up and
running. Wireguard isn’t built into a lot of networking hardware at this
stage, so you’ll have to configure each of your endpoints to connect
to it manually, rather than simply configuring your router and passing
all network traffic through the VPN tunnel. In this project, you’ll
create a Wireguard server using the instructions to create a virtual
machine in the cloud, and then you’ll install and configure Wireguard.
We’ll create the relevant public and private key pairs for the server
and any clients, configure the server firewall as required, configure
and connect a client, and test the VPN to ensure that it’s working
correctly. Your internet traffic will then be safe and secure, as long as
you’re connected to your Wireguard VPN.

Installing Wireguard

https://openvpn.net/community-downloads/

Create a new Ubuntu server using the instructions provided in
Project 3 in Chapter 1. Log in to the server via SSH as a standard,
non-root user:

$ ssh user@your_server_IP

Then, use apt to install Wireguard, specifying -y to skip the
confirmation prompt:

$ sudo apt install wireguard -y

Next, you’ll create the necessary public and private keys required
to connect to and encrypt your VPN.

Set Up the Key Pairs
Due to the sensitive nature of the files or folders you’re about to
create, it’s wise to enforce more restrictive permissions than usual.
You can run the following command to ensure that only the owner of
a file can read and write to that file:

$ umask 077

This umask command won’t last after you exit the terminal session,
but only the owner is allowed to read and write to the folders and
files you create during this session.

Now, using the wg genkey command, create the private Wireguard
key:

$ wg genkey | sudo tee /etc/wireguard/private.key

The output shown in the terminal is your private key, which will be
stored in the private.key file specified in the command. Do not share
this key. Treat it like a password—it’s how your VPN will be secured.

With the private key created, you’ll need a corresponding public
key to provide to your clients so they can authenticate to the server:

$ sudo cat /etc/wireguard/private.key | wg pubkey | sudo
tee /etc/wireguard/public.key

This command first reads the contents of the private.key file using
cat. Then, the wg pubkey command uses the private key to generate
the public key. The public key is then output to the terminal and
saved to the public.key file.

Now that you have your public/private key pair, you can configure
your VPN server and clients.

Configure Wireguard
Wireguard requires a configuration file to function. This file is not
created when Wireguard is installed, so you need to create one from
scratch. Create and open the /etc/wireguard/wg0.conf file using a
text editor:

$ sudo nano /etc/wireguard/wg0.conf

Add the following contents to the file:

[Interface]
PrivateKey = your_private_key
Address = 10.8.0.1/24
ListenPort = 26535
SaveConfig = true

Replace your_private_key with the private key you created earlier.
Your key will be the contents of your /etc/wireguard/private.key file.
The address will be the address of your server within the subnet you
want your VPN clients to be assigned when they connect to your
server; ensure that this subnet is different from your private network.

For example, if you use 192.168.1.x addresses in your network,
avoid using 192.168.1.x addresses for your VPN. The listening port
should be any port between 1025 and 65535, chosen at random.
This port is the one your server and clients will use to communicate.
Once complete, save and exit the configuration file.

At this point, the server’s network settings require some
modification. Configure IP forwarding so the VPN will forward the
traffic it receives using the following command and then restart
sysctl so that the changes take effect:

$ sudo sysctl -w net.ipv4.ip_forward=1
$ sudo sysctl -p

Next, you need to configure the firewall to allow VPN traffic to
ingress and egress the server.

Configure the Firewall
In this section we’ll discuss the use of the Uncomplicated Firewall
(UFW), Ubuntu’s built-in firewall that is designed to reduce the
complexity of firewall configuration. To configure the firewall, first
identify the correct network interface for the VPN. Specifying the
wrong interface will result in a nonfunctional VPN. Enter the following
command to locate your server’s default network interface:

$ ip route | grep -i default
default via 172.16.90.1 dev ens33 proto dhcp metric 100

In this output, the network interface is called ens33 (yours might be
different). The default route shown by ip route will be your host’s
public network interface. You’ll need this to configure your firewall
correctly.

Next, add the following rules to the bottom of your Wireguard
configuration file by opening /etc/wireguard/wg0.conf with a text
editor again and replacing ens33 with your network interface name:

$ sudo nano /etc/wireguard/wg0.conf
--snip--
SaveConfig = true
PostUp = ufw route allow in on wg0 out on ens33
PostUp = iptables -t nat -I POSTROUTING -o ens33 -j MASQUERADE
PreDown = ufw route delete allow in on wg0 out on ens33
PreDown = iptables -t nat -D POSTROUTING -o ens33 -j MASQUERADE

Save and close the file. This allows Wireguard to modify the
firewall configuration after Wireguard starts and before it stops to
enable the VPN to function correctly.

Additionally, you need to allow traffic via the listening port you
configured earlier in the chapter (port 26535 in the example):

$ sudo ufw allow 26535/udp

Next, allow OpenSSH:

$ sudo ufw allow ssh

Finally, with this rule updated, you need to disable and enable
UFW to reload the rules (your SSH session might be interrupted, and
you may need to log in again):

$ sudo ufw disable
$ sudo ufw enable

And with that, your firewall configuration is complete.

Identify the DNS Server
To secure your internet traffic, your VPN needs to have correctly
configured DNS to prevent DNS leaks, which can compromise your
security. To solve this problem, you’ll force your Wireguard VPN to

use the DNS that’s used by the Wireguard server itself. Identify that
DNS server(s) with the following command:

$ resolvectl dns ens33

The resulting output is the DNS address you will provide to the client
in its configuration later in this project—take note of it.

Start the VPN
Ideally, the VPN should start and be ready to accept client
connections whenever the server starts up. You can achieve this by
creating and starting a Wireguard system service using systemctl:

$ sudo systemctl enable wg-quick@wg0.service
$ sudo systemctl start wg-quick@wg0.service

Once done, check the status to ensure Wireguard is running:

$ sudo systemctl status wg-quick@wg0.service

If it’s working properly, the output should say active. If the service
is not active or has a failed status, double-check your configuration
file and firewall status to ensure there are no typos or other errors in
your configuration.

Configure a VPN Client
There are official client applications available for Wireguard for
Windows, macOS, Android, and iOS—the setup of which is
reasonably similar across the board. The Linux client setup is a little
more involved, but if you’ve been able to configure the Wireguard
server successfully, configuring a Linux client will seem very familiar.

Windows, macOS, Android, or iOS Client Configuration

To configure a client on any of these operating systems, follow these
steps:

1. Download and install the relevant client program from
https://www.wireguard.com/install/.

2. In the client interface, click + or Add Tunnel▸Add Empty
Tunnel to create a new VPN profile from scratch.

3. Note that the public and private keys for the client are
displayed.

4. Supply a friendly name in the Name field.
5. Ignore any On Demand settings or check boxes.
6. Add the following details to the configuration, below the

PrivateKey automatically generated for the client:

--snip--
Address = 10.8.0.2
DNS = 108.61.10.10

[Peer]
PublicKey = server_public_key
AllowedIPs = 0.0.0.0/0
Endpoint = server_public_ip:listening_port

Address is the IP address you want your client to have
within the VPN subnet and should be different for every
VPN client. DNS should be the IP address of the DNS server
you identified in “Identify the DNS Server” on page 85.
PublicKey is the public key you created for your Wireguard
server earlier in the process. AllowedIPs is a setting used
for split tunneling; traffic to and from the networks or
addresses listed with this directive will be sent through the
VPN tunnel, and all other traffic will go straight out and
circumvent the VPN. Setting this to 0.0.0.0/0 sends all
traffic from your client through the VPN. Endpoint is the
public IP address of your VPN server, followed by the
listening port you specified earlier (26535 in the example).

https://www.wireguard.com/install/

7. Save the configuration.
8. On the Wireguard server, stop the Wireguard service,

noting that there will be downtime for any users currently
connected, using the following:

$ sudo systemctl stop wg-quick@wg0.service

9. Open the /etc/wireguard/wg0.conf configuration file with a
text editor:

$ sudo nano /etc/wireguard/wg0.conf

10. Add the client details to the bottom of the configuration
file, keeping in mind that each peer you add will need its
own [Peer] section added to this file:

--snip--
[Peer]
PublicKey = client_public_key
AllowedIPs = 10.8.0.2

This instance of PublicKey is the public key created for
your Wireguard client by the client application. Within the
[Peer] section of the file, AllowedIPs refers to the IP
addresses allowed to send traffic through the VPN tunnel.
Set this to the specific host IP you want your client to have
on the VPN network, which must match the IP you
configured for this peer in the client configuration.

11. Save and close the file.
12. Start the Wireguard service and double-check that the

status says active:

$ sudo systemctl start wg-quick@wg0.service
$ sudo systemctl status wg-quick@wg0.service

Back on your client, activate the VPN connection. Once
successfully connected, ping your Wireguard server’s VPN
address (such as 10.8.0.1):

$ ping 10.8.0.1
PING 10.8.0.1 (10.8.0.1): 56 data bytes
64 bytes from 10.8.0.1: icmp_seq=0 ttl=57 time=43.969
ms
64 bytes from 10.8.0.1: icmp_seq=0 ttl=57 time=43.969
ms
64 bytes from 10.8.0.1: icmp_seq=0 ttl=57 time=43.969
ms
64 bytes from 10.8.0.1: icmp_seq=0 ttl=57 time=43.969
ms
--- 10.8.0.1 ping statistics ---
4 packets transmitted, 4 packets received, 0.0% packet
loss
round-trip min/avg/max/stddev = 43.969/43.969/43.969/0
ms

A successful result indicates your VPN connection is
working between your client and server. Repeat this
process for any additional clients.

Linux Client
To configure a Linux client, follow these steps:

1. Install Wireguard and resolvconf (used for DNS
configuration):

$ sudo apt install wireguard resolvconf -y

2. Generate the client public/private key pair for the client:

$ wg genkey | sudo tee /etc/wireguard/private.key
$ sudo cat /etc/wireguard/private.key | wg pubkey |
sudo tee \

 /etc/wireguard/public.key

3. Create the Wireguard client configuration file:

$ sudo nano /etc/wireguard/wg0.conf
[Interface]
PrivateKey = client_private_key
Address = 10.8.0.3
DNS = 108.61.10.10

[Peer]
PublicKey = server_public_key
AllowedIPs = 0.0.0.0/0
Endpoint = server_public_ip:listening_port

4. Save and close the file.
5. On the Wireguard server, stop the Wireguard service:

$ sudo systemctl stop wg-quick@wg0.service

6. Open the /etc/wireguard/wg0.conf configuration file with a
text editor:

$ sudo nano /etc/wireguard/wg0.conf

7. Add the client details to the bottom of the configuration file:

--snip--
[Peer]
PublicKey = client_public_key
AllowedIPs = 10.8.0.3

This instance of PublicKey is the public key created for
your Wireguard client by the client application. Within the
[Peer] section of the file, AllowedIPs refers to the IP
addresses allowed to send traffic through the VPN tunnel.

Set this to the specific host IP you want your client to have
on the VPN network.

8. Save and close the file.
9. Start the Wireguard service and double-check that the

status says active:

$ sudo systemctl start wg-quick@wg0.service
$ sudo systemctl status wg-quick@wg0.service

Back on your client, activate the VPN connection using
the following command:

$ wg-quick up wg0

Once successfully connected, ping your Wireguard
server’s VPN address (such as 10.8.0.1). A successful
result indicates your VPN connection is working between
your client and server. To disconnect a Linux client from
your VPN server, use the following command:

$ wg-quick down wg0

Repeat this process for any additional clients you want to
add.

Test Your VPN
Regardless of which VPN you chose, find your public IP address
from a website such as https://www.whatismyip.com/ while not
connected to the VPN. Once done, connect to your VPN and refresh
the page. Your public IP address should now be the IP address of
your VPN server. Another way to test your VPN is to use a service
such as DNS leak at https://dnsleaktest.com/. Performing a standard
test should show you clearly whether there are any issues with your

https://www.whatismyip.com/
https://dnsleaktest.com/

VPN configuration. If your actual public IP is masked and the DNS
leak test shows only the DNS servers you’ve configured the VPN to
use, then you’ve been successful in setting up your own private VPN
server.

Summary
Connecting multiple clients to either your OpenVPN or Wireguard
servers will allow traffic to pass between them as if they were on the
same network. This means you can easily manage multiple devices
remotely simply by having them all connected to your VPN at the
same time. This chapter covered setting up your own private VPN,
which provides you with complete control, using either OpenVPN or
the much lighter and faster Wireguard. Your private internet traffic
will now be truly private and secure while you are connected to your
VPN.

6
IMPROVING BROWSING AND

PRIVACY WITH THE SQUID PROXY

A proxy server acts as an intermediary between you and the internet.
When you request a web page, the proxy receives the request and
then forwards it on to the web server (if necessary). A proxy allows
you to protect your privacy by obfuscating the metadata that is
usually available to the services we interact with daily on the internet.
Proxies also allow the administrator to block access to certain
content, like social media or online gambling.

This chapter will show you how to install, configure, and use the
Squid proxy, a solution that runs on most operating systems. With
Squid, you’ll be able to speed up access to websites, enhance your
security, and allow or prevent access to specific domains or
websites. Chapter 7 covers another proxy solution, Pi-Hole, which
offers the same benefits as Squid, but additionally blocks ads and
prevents other tracking and privacy issues as well. Choosing the
best proxy for your needs will depend on which you find easier to
use and which provides you the best user experience.

Why Use a Proxy?
Every time you visit a website, your computer makes a request to a
web server that responds by sending you the information necessary

to view the website. The communication between your browser and
the server may expose your personal information (the browser you’re
using, your public IP address, and so on) through metadata. The
metadata allows the web server to make guesses about you and
your device, such as your location, what time of day it is where you
are, and your browsing habits. For lots of reasons, you might want to
keep this information private. Additionally, loading web pages and
their content consumes bandwidth, so as more people use an
internet connection, the connection can begin to slow down,
negatively affecting everyone using it.

One great thing about proxies is that they cache any traffic that
passes through them. This means that every time a web page is
retrieved, the proxy will keep a local copy of that page. The next time
someone tries to browse to that site, the proxy first checks its cache
for a copy, and if it holds a copy, it presents that copy to the user
rather than sending a request to the web server for a fresh copy of
the web page. By default, Squid will keep a cached copy of a
website for a set period before it no longer considers the cache
“fresh” and will then retrieve the latest version of the page, whether
or not the content has changed. This reduces the load on the
network, the time it takes to load frequently visited sites, and the
overall amount of bandwidth used, leading to a better experience for
everyone involved.

Proxies also reduce the amount of personally identifiable
information (PII) leaked to web servers. PII is any data or information
that can be used to identify any specific individual (such as you). For
example, a proxy can identify itself to a web server as any web
browser. You might be using Google Chrome, but the proxy could
present Firefox to the server instead. The proxy can also have a
different public IP address to hide the one you’re using if it’s located
somewhere other than where you are (like in the cloud), obscuring
your physical location and internet service provider.

Even though it isn’t directly relevant to small network
administrators, you might be interested to know that commercial
organizations often rely on proxies (including Squid) for the benefits
we’ve already discussed, as well as for content delivery, such as

streaming audio and video. Content providers, such as Netflix and
YouTube, strategically place proxy servers globally to keep local
copies of content. This practice allows users of those services to
access the content from a source closer to home, rather than all
users accessing the content from a single location, which would be
far less efficient and would result in poor performance in a lot of
cases.

#21: Setting Up Squid
The Squid web proxy provides all the benefits you just learned
about: it reduces bandwidth, making surfing the web faster for users.
It’s also capable of anonymizing your personal information if
configured correctly; information about your identity, such as where
your web requests are coming from or the web browser you’re using,
can be stripped or changed before traffic is sent to the internet. Many
enterprise-grade devices use Squid. While you could use many other
proxy solutions, such as NGINX, Apache Traffic Server, or
Forcepoint, Squid is free and open source, so it provides greater
access to underlying configurations and data than a commercial
solution might.

A wealth of information is available online about using Squid to
protect and enhance your network. You can find more information on
Squid proxy configuration in the Squid wiki at https://wiki.squid-
cache.org/SquidFaq/.

This project will cover the initial installation and configuration of
Squid, configuring clients in your network to use the proxy, testing
the proxy once configured, and performing some additional steps to
allow or deny access to certain internet resources using the proxy.

Configuring Squid
Create a base Ubuntu server following the steps in Chapter 1. If you
want to hide your location or prefer not to give away your internet
service provider (in addition to preventing your metadata being
recorded), create the proxy server in the cloud in a country different

https://wiki.squid-cache.org/SquidFaq/

from your own. Otherwise, locate the proxy server inside your
network. Don’t forget to add your new server to your network map
and asset list you created in previous chapters. Once you’ve done
so, log in to the server via SSH as a standard, non-root user. To
install the proxy, use the following command:

$ sudo apt install squid

The installation should complete in less than a minute. By default,
you’ll find the configuration file located at /etc/squid/squid.conf, the
logfiles at /var/log/squid/, and the cache data (that is, cached website
information) at /var/spool/squid/.

Open the squid.conf configuration file with a text editor to
familiarize yourself with the settings:

$ sudo nano /etc/squid/squid.conf

Squid has many possible configurations, so it’s easy to become
overwhelmed. Notice, though, that many settings aren’t active as
they’re commented out by default. Let’s start by focusing on the
active settings. You can explore other changes when your proxy
server is functioning as you want it to.

Search by pressing CTRL-W; then type your search term and
press ENTER to find the section marked Recommended minimum

configuration:

--snip--
Recommended minimum configuration:
#

Example rule allowing access from your local networks.
Adapt to list your (internal) IP networks from where browsing
should be allowed
acl localnet src 0.0.0.1-0.255.255.255 # RFC 1122 "this"
network (LAN)
acl localnet src 10.0.0.0/8 # RFC 1918 local
private network (LAN)

--snip--

This section details the access controls lists (ACLs) that tell Squid
which endpoints should have permission to access internet
resources via the proxy server. An ACL is a list of ports, addresses,
or resources that you’ve specifically allowed or banned from
communication within the network.

An ACL consists of several elements. First is a unique name, such
as localnet, that identifies a specific ACL. Each named ACL then
contains an ACL type (such as src) followed by a value or list of
values, such as IP addresses or port numbers. These values can be
entered over multiple lines, and Squid will combine them into a
single list.

Keywords like src indicate to Squid the direction in which the
traffic is flowing; src 10.0.0.0/8, for example, indicates any traffic
coming from an address in the 10.0.0.0/8 IP address range to any IP
address in any range.

Comment out any lines that don’t apply to your network. For
example, if your internal IP addresses follow the 10.x.x.x format,
leave the relevant directive as is and comment out all other lines
beginning with acl localnet src by adding a # at the start of each
line:

--snip--
#acl localnet src 0.0.0.1-0.255.255.255 # RFC 1122 "this"

network (LAN)
acl localnet src 10.0.0.0/8 # RFC 1918 local

private network (LAN)
#acl localnet src 100.64.0.0/10 # RFC 6598 shared

address space (CGN)
#acl localnet src 169.254.0.0/16 # RFC 3927 link-

local machines
#acl localnet src 172.16.0.0/12 # RFC 1918 local

private network (LAN)
#acl localnet src 192.168.0.0/16 # RFC 1918 local

private network (LAN)
#acl localnet src fc00::/7 # RFC 4193 local

private network range

#acl localnet src fe80::/10 # RFC 4291 link-
local machines

--snip--

The second portion of the recommended minimum configuration
section tells Squid which ports can send and receive traffic:

--snip--
acl SSL_ports port 443
acl Safe_ports port 80 # http
acl Safe_ports port 21 # ftp
acl Safe_ports port 443 # https
#acl Safe_ports port 70 # gopher
#acl Safe_ports port 210 # wais
acl Safe_ports port 1025-65535 # unregistered ports
#acl Safe_ports port 280 # http-mgmt
--snip--

Here, SSL_ports and Safe_ports are ACL names, and the port
type tells Squid to interpret the number that follows as a port number
used for communication by a specific service (see Chapter 1). The
acl SSL_ports port 443 line sets the port your proxy should use for
secured, filtered tunnels, such as those used for HTTPS traffic.
Directives containing the label Safe_ports determine the ports on
which Squid should allow connections. If you don’t need a certain
protocol or port, comment it out to reduce your attack surface. To be
prudent, you might keep only ports 80 and 443 and comment out the
acl Safe_ports port 1025-65535 line, thereby blocking ports from
1025 through 65535. However, doing so may cause some
applications or services to malfunction if they require other ports. You
can use Google and the website or manual for a given application to
determine what other ports it might need to function correctly.

A little further in the configuration file, you’ll find directives that
enable these ACLs:

--snip--
Recommended minimum Access Permission configuration:

#
Deny requests to certain unsafe ports
http_access deny !Safe_ports

Deny CONNECT to other than secure SSL ports
http_access deny CONNECT !SSL_ports
--snip--

The http_access deny !Safe_ports directive tells Squid to prohibit
communication between all ports except those listed in the
Safe_ports list. Likewise, the http_access deny CONNECT !SSL_ports
line tells Squid to prohibit filtered tunnels on any port other than the
one specified in SSL_ports.

The next section of the configuration file relates to your local
network as opposed to the internet:

--snip--
Example rule allowing access from your local networks.
Adapt localnet in the ACL section to list your (internal) IP
networks
from where browsing should be allowed
#http_access allow localnet
http_access allow localhost

And finally deny all other access to this proxy
http_access deny all
--snip--

Remove the # from the http_access allow localnet directive to
enable the localnet settings you specified earlier, which allow
endpoints on your local network to access the internet through your
proxy. Finally, http_access deny all ensures the proxy denies all
other traffic to keep it from affecting your internal network. By
denying all traffic that isn’t specifically allowed, you’ll protect your
network from unwanted traffic, which can include malware.

If you want to change the port on which Squid listens for requests,
modify the following line in your configuration file:

--snip--
Squid normally listens to port 3128
http_port 3128
--snip--

Your devices will use this port to connect to the proxy server so
they can send requests, receive traffic, and generally browse the
internet.

Once you’ve finished your edits, save and close the configuration
file. Reload the updated Squid configuration using the following
command so the changes take effect (be aware, though, that
reloading the configuration can interrupt any open connections):

$ sudo systemctl reload squid

You can now make sure that Squid was able to start successfully
and is running with the following command:

$ sudo systemctl status squid
 squid.service - Squid Web Proxy Server
 Loaded: loaded (/lib/systemd/system/squid.service;

enabled; vendor preset: enabled)
 Active: active (running); 2min 5s ago
--snip--

A green dot before squid.service and a status of active

(running) indicates Squid is running as expected. If Squid didn’t start
properly due to an error, you’ll see a failed message with a red dot
before squid.service:

$ sudo systemctl status squid
 squid.service - Squid Web Proxy Server
 Loaded: loaded (/lib/systemd/system/squid.service;

enabled; vendor preset: enabled)
 Active: failed (Result: exit-code); 2min 5s ago
--snip--

Go back and check your configuration again or validate your
configuration file using this command:

$ squid -k parse
2024/05/06 00:44:06| Processing: acl denylist dstdomain

.twitter.com
2024/05/06 00:44:06| Processing: http_deny denylist
2024/05/06 00:44:06| /etc/squid/squid.conf:1406

unrecognized: 'http_deny'
2024/05/06 00:44:06| Processing: anonymize_headers deny

From Referer Server
2024/05/06 00:44:06| /etc/squid/squid.conf:1408

unrecognized: 'anonymize_headers'
2024/05/06 00:44:06| Processing: anonymize_headers deny

User-Agent WWW-Authenticate
2024/05/06 00:44:06| /etc/squid/squid.conf:1409

unrecognized: 'anonymize_headers'
2024/05/06 00:44:06| Processing: http_access allow localnet
--snip--

This output shows what you’d see if you used the unrecognized
directives http_deny and anonymize_headers. When you’ve resolved
any errors with the configuration, start Squid with the start

command:

$ sudo systemctl start squid

You’ve now finished the basic Squid proxy configuration.

Configuring Devices to Use Squid
Next, you’ll need to configure the proxy settings on each device that
will use the proxy. We’ll explain how to configure Windows, macOS,
and Linux devices.

Windows

1. On your Windows host, open the Windows Settings
dialog.

2. In the Find a Setting box, search for Proxy Settings.
3. Turn on the Use a Proxy Server toggle in the Proxy

window.
4. Enter your proxy server’s IP address and port—for

example, 192.168.1.50:3128.
5. Be sure to tick the Don’t Use the Proxy Server for Local

(Intranet) Addresses checkbox.

macOS

1. Open System Preferences.
2. Choose Network and select your wireless or Ethernet

adapter.
3. Click Advanced▸Proxies.
4. Check the box for Web Proxy (HTTP). Enter your proxy

server’s IP address and port number—for example,
192.168.1.50:3128. Do this for each of the protocols listed,
which you configured earlier in your /etc/squid/squid.conf
file.

5. Enter your local network into the Bypass Proxy Settings for
these Hosts & Domains box.

6. Click OK and then Apply.

Linux

1. On your Linux endpoint, open the Settings dialog.
2. Go to the Network▸Network Proxy settings.
3. Set the proxy to Manual and enter the HTTP Proxy IP

address and port number—for example,
192.168.1.50:3128.

4. Make sure to enter your local network in the Ignore Hosts
box, and then close any open settings windows.

Testing Squid
With both the Squid server and at least one of your devices
configured, make sure the device is actually using the proxy and that
the proxy functions as expected. On the Squid server, use the
following command to view the Squid proxy logfile as it’s populated:

$ sudo tail -f /var/log/squid/access.log
--snip--
1619747519.519 54 172.16.90.1 TCP_TUNNEL/200 39 CONNECT
play.google.com:443 - HIER_DIRECT/172.217.25.174 -
1619747519.755 54 172.16.90.1 TCP_TUNNEL/200 39 CONNECT
mail.google.com:443 - HIER_DIRECT/216.58.200.101 -
1619747519.776 55 172.16.90.1 TCP_TUNNEL/200 39 CONNECT
mail.google.com:443 - HIER_DIRECT/216.58.200.101 -
1619747520.190 161 172.16.90.1 TCP_MISS/200 985 GET
--snip--

Your output will differ depending on the applications you’re using in
your network.

If you don’t see any output (and your host is unable to browse the
internet), update your iptables or other firewall rules using the steps
in Chapter 3 to allow traffic to and from the Squid proxy on port 3128
(or whichever port you configured Squid to listen on).

If you browse to Facebook from a host configured to use your
proxy server while the tail command is running, you should see this
request appear in the log as multiple requests to Facebook services:

--snip--
1584414232.470 3 192.168.1.51 NONE/503 0 CONNECT

pixel.facebook.com:443 - HIER_NONE/- -
1584414237.647 0 192.168.1.51 NONE/503 0 CONNECT

pixel.facebook.com:443 - HIER_NONE/- -
1584414242.652 0 192.168.1.51 NONE/503 0 CONNECT

pixel.facebook.com:443 - HIER_NONE/- -
1584414247.864 69023 192.168.1.51 TCP_TUNNEL/200 6426

CONNECT static.xx.fbcdn.net:443 -
HIER_DIRECT/157.240.8.23 -

1584414248.566 0 192.168.1.51 NONE/503 0 CONNECT
pixel.facebook.com:443 - HIER_NONE/- -

1584414254.535 0 192.168.1.51 NONE/503 0 CONNECT
pixel.facebook.com:443 - HIER_NONE/- -

--snip--

If not, try restarting the proxy server, your host, or both.

Blocking and Allowing Domains
Now that your proxy works, you’ll probably want to block (denylist) or
allow (allowlist) some domains. For example, if you have children,
you may want to prevent them from visiting distracting or
inappropriate websites. To do this, open the squid.conf file in a text
editor:

$ sudo nano /etc/squid/squid.conf

Now, find the comment that reads INSERT YOUR OWN RULE(S) HERE.
In that section, you can define rules (that is, ACLs) of your own. As
mentioned, an ACL is made up of an ACL name, an ACL type such
as allow or deny, and a list of elements, such as IP addresses or
domains. Your configuration will consist of one or more of these
rules, identifying what is and is not allowed through the proxy.
(Previously, you enabled rules like http_access allow localnet and
http_access deny !Safe_ports to use the ACLs from the
recommended minimum configuration section.)

For example, to denylist Facebook, enter the following lines after
the include directive:

--snip--
include /etc/squid/conf.d/*

acl denylist dstdomain .facebook.com
http_access deny CONNECT denylist
--snip--

The acl directive at the beginning of the line tells Squid to treat
what follows as a list of items to either allow or deny. Next, denylist
is the unique name of the list; choose any name you’d like, so long
as it consists of alphanumeric characters. The dstdomain directive
indicates that what follows is a list of destination domains. The
period at the start of a domain indicates to Squid that it should
denylist the entire domain, including subdomains. For example,
www.facebook.com is a top-level domain name that might have a
subdomain of campus.facebook.com or hertz.facebook.com. If you
omit the leading period, Squid will block only the parent domain
(facebook.com). Finally, the http_access directive with deny and
CONNECT parameters tells the proxy to forbid connections to the
domains or URLs specified in the ACL.

Save the configuration file and reload Squid to make the change
take effect:

$ sudo systemctl reload squid

Now, try browsing to www.facebook.com from a host configured to
use the proxy server. You should see an error page as in Figure 6-1.

Figure 6-1: Web browser error caused by Squid

To allow access to Facebook again, either delete or comment out
the lines you added, save the configuration file, and reload Squid.

You can repeat the process for additional domains by adding them
to the same denylist ACL:

http://www.facebook.com/
http://www.facebook.com/
http://www.facebook.com/

acl denylist dstdomain .facebook.com .twitter.com .linkedin.com

Alternatively, you could create separate ACLs for each website or
for groups or categories of websites as you desire.

Allowlisting works in pretty much the same way; any domains that
are added to the allowlist will be allowed, but only for users who are
authenticated to the proxy:

--snip--
include /etc/squid/conf.d/*

acl allowlist dstdomain .facebook.com .twitter.com
.linkedin.com
http_access allow CONNECT allowlist
--snip--

If you add new ACL rules, be aware of where they are located in
relation to each other in the configuration file. Squid will interpret the
ACL rules in the order they appear, much like a firewall. If there’s a
deny all rule at the beginning of the list of ACL rules, Squid will
interpret this rule first and then ignore any further rules in the file.
That means you should put any custom rules before the following
lines:

--snip--
And finally deny all other access to this proxy
http_access deny all
--snip--

Protecting Personal Information with Squid
Squid is highly configurable and allows you as the administrator to
set how much information about your users and their devices you
want exposed to the internet. By default, there is no anonymization
of the traffic that passes from a client device through the proxy to the
internet.

To prevent anyone outside your network knowing where your
traffic is coming from (that is, the server information or from which
website or resource you may have been referred, like Amazon or a
blog), use the request_header_access directive to deny this
information:

--snip--
include /etc/squid/conf.d/*

request_header_access From deny all
request_header_access Referer deny all
request_header_access Server deny all
--snip--

To further anonymize your traffic, it may be wise to also deny the
User-Agent, WWW-Authenticate, and Link header values, which may
leak additional information about your browser or browsing activity:

--snip--
include /etc/squid/conf.d/*

request_header_access From deny all
request_header_access Referer deny all
request_header_access Server deny all
request_header_access User-Agent deny all
request_header_access WWW-Authenticate deny all
request_header_access Link deny all
--snip--

Anonymizing your traffic with these options will limit the amount of
PII you’re sending over the internet, making you more difficult to
track and protecting, to some extent, your browsing history and
habits.

NOTE Some websites and services use user agents to determine
how to display content to users, so be mindful that by removing
the header information, you may experience content differently.

Disabling Caching for Specific Sites
There may be some websites that you don’t want Squid to cache, as
you always want to retrieve the latest version from the web server
rather than the cached version from your proxy. This is achieved by
denying caching of that site or sites:

--snip--
include /etc/squid/conf.d/*

acl deny_cache dstdomain .facebook.com
no_cache deny deny_cache
--snip--

Remember to add an ACL entry for each website you want to
prevent Squid from creating and keeping a cached copy.

Squid Proxy Reports
You may have noticed that the Squid logs can be difficult to read and
take some getting used to. Third-party solutions are available that
make activity reporting and reviewing logs easier. One of the simpler
solutions is Squid Analysis Report Generator (SARG). SARG is a
web-based report generator and viewer that allows you to view your
Squid logs in a browser window, rather than from the terminal.

On your Squid server, install SARG:

$ sudo apt install sarg

The SARG report files will be accessed via a web browser, so you
also need to install a web server. Install Apache:

$ sudo apt install apache2

Next, open the SARG configuration file that should be located at
/etc/sarg/sarg.conf:

$ sudo nano /etc/sarg/sarg.conf

Find the line that starts with access_log, which specifies the Squid
access log location:

--snip--
access_log /var/log/squid/access.log
--snip--

Then, close the file and use the find command to make sure it
matches the actual location of the logfile:

$ sudo find / -name access.log
/var/log/squid/access.log

Open the file in a text editor and find the output directory tag (the
line that starts with output_dir), comment out the line containing
/var/lib/sarg, and replace it with a line that sets the directory to the
Apache web location /var/www/html/squid-reports/:

--snip--
#output_dir /var/lib/sarg
output_dir /var/www/html/squid-reports/
--snip--

Save and close the file. Feel free to peruse the other settings if
you would like.

To generate a SARG report, run the following command on your
Squid server:

$ sudo sarg -x

In your web browser, navigate to the reports location on your proxy
server: http://<proxy_ip_address>/squid-reports. You should see a
basic website, as shown in Figure 6-2.

Figure 6-2: SARG reports summary

Click the relevant report on the page displayed, and you should
see information about each user connection through the proxy, how
much data was transferred for each connection, how long the
connection lasted, and a timestamp indicating when the connection
was established, as shown in Figure 6-3.

Figure 6-3: SARG report output

The report shows the users, or hosts, that have used the proxy;
the level of traffic they have sent and received (represented as
bytes); and various other useful things about the use of the proxy.

There are also links included for subreports, such as the top sites
accessed via the proxy; the sites and users report, which lists the
sites accessed and a list of the users or hosts that accessed each;
and any cache or website access that was denied by the proxy
based on the rules and configuration you provided.

Try using your new proxy server for a few weeks to see if it helps
your bandwidth usage and browsing speed. Once you’re
comfortable, you could investigate and begin experimenting with the
proxy’s more advanced features, such as preventing users from
downloading large files (this might be advisable if your internet
service provider has data caps and charges for bandwidth).

Summary
Using a proxy server such as Squid offers you a great deal of control
over what’s allowed in and out of your network. You’ll be able to
control the PII exposed from your endpoints, such as the web
browser you’re using, to improve your network’s online privacy. A
proxy server also provides a better overall browsing experience.

7
BLOCKING INTERNET

ADVERTISEMENTS

Companies monetize the internet through advertising, which has
caused the number of online ads to proliferate (or more accurately,
explode). These ads have become more insidious over time, as
websites track your activity to display the promotions most likely to
lead to purchases. Even worse, advertising has caused slower
internet connections through websites becoming so bloated with
autoplaying advertisements.

You can block ads from your network in several ways. This chapter
will first discuss various browser ad-blocking solutions. Then, we’ll
build an ad-blocking DNS proxy server using Pi-Hole to provide
users with a much better browsing experience while also improving
data and privacy protection.

Browser-Level Ad Blocking
Most modern browsers have some form of ad-blocking technology
built-in to the application itself. By default, some browsers prevent
various trackers and scripts from operating as designed. These
include social media trackers, cookies, fingerprinters, and
cryptominers. Blocking social media trackers disallows sites such as
Facebook, Twitter, and LinkedIn from tracking you as you browse

websites that implement social media buttons or instant sharing
links. Cookies are files used by sites to track information and user
preferences between visits; this can leak your private information
from one site to another. Fingerprinters are similar in that they
identify a specific user by a number of metrics collected from their
browsing habits, which allows advertisers to track your activity during
a browsing session. Finally, cryptominers are applications (some
might say malware) that use your computer hardware to mine
cryptocurrency, such as Bitcoin. This is a highly resource-intensive
process that can cause system instability. All of these can negatively
impact your browsing experience and should be blocked.

Besides the built-in functionality provided by some web browsers,
some of the most popular browser ad blockers are browser
extensions, also known as add-ons—software that you can add to
your browser to improve its functionality or add capabilities. For
example, Adblock Plus—installable in most browsers—works by
intercepting advertisements before they’re displayed to the user,
though the ads are still downloaded to your computer.

Many websites can identify when browser extensions are in use
and will either modify their content or completely block users from
viewing web pages until the extension has been disabled or the site
is allowlisted to play ads. Browser extensions are discussed further
in Chapter 11. The following projects cover how to set up browser ad
blocking for Google Chrome, Mozilla Firefox, and Brave browsers.

#22: Blocking Ads in Google Chrome
Chrome’s ad blocker (https://www.google.com/chrome/) is designed
to hide ads on websites that have too many ads or whose ads
detract from the user experience, such as by flashing or making
noise. Chrome also blocks ads on sites that put content behind a
paywall, which obscures the website entirely until the user either
allows the ads to display or pays a fee to view the content. This
behavior applies to the Android version of Chrome in addition to the
desktop version. It’s possible to activate or deactivate the built-in ad
blocker, as well as to allowlist specific sites:

https://www.google.com/chrome/

1. At the top right of the Chrome browser, click the More icon
(three horizontal lines).

2. Click Settings▸Advanced▸Site Settings▸Ads.
3. If the text “Blocked on sites that tend to show intrusive ads

(recommended)” is displayed, Chrome is currently blocking
ads for you.

4. If you’d like to turn ad blocking off, hit the toggle to switch
the setting to Allowed.

Another way to protect your privacy online is to use a private
browsing window. Chrome’s incognito mode either won’t save your
personal information or immediately deletes it (including tracking
information such as cookies) when you close the browser. Your
browsing history and internet searches won’t be saved. To open an
incognito window, follow these steps:

5. At the top right of the Chrome browser, click the More icon
(three horizontal lines).

6. Click New Private Window.

A new browser window will open that has a different appearance
when compared to a normal Chrome window—text such as “You’ve
gone Incognito” is typically displayed. This is how you know you’re
browsing privately.

#23: Blocking Ads in Mozilla Firefox
Firefox’s Private browsing (https://www.mozilla.org/) windows block
not only ads but also tracking content, including videos and other
media displayed on a web page. To open a new Private window,
follow these steps:

1. At the top right of the Firefox browser, click the More icon
(three horizontal lines).

2. Click New Private Window.

https://www.mozilla.org/

You can change Firefox’s default behavior to disable tracking
content in all Firefox windows, rather than just Private windows. To
modify these settings, follow these steps:

1. Click More in the top right of the Firefox window.
2. Click Preferences▸Privacy & Security.
3. Set your Enhanced Tracking Protection settings to

Standard (the default), Strict (provides greater privacy but
may break some websites), or Custom.

4. Configure your Cookie settings to delete cookies on
browser exit by ticking the Delete Cookies and Site Data
When Firefox is Closed checkbox.

5. Make Firefox forget your browsing history by setting the
History drop-down menu to Never Remember History.

6. Set permissions for things like your webcam and
microphone so that Firefox isn’t able to watch or listen
without authorization.

You can find more information on disabling trackers and other
security and privacy settings in the Mozilla knowledge base at
https://support.mozilla.org/en-US/kb/enhanced-tracking-protection-
firefox-desktop/.

#24: Controlling Brave’s Privacy Settings
Brave (https://brave.com/) is a relatively new web browser based on
Google’s Chromium (so it shares a lot of the same features as
Chrome); all the extensions that are compatible with Chrome are
also compatible with Brave. The great thing about Brave, when
compared to other browsers, is that its goal is to provide a private,
tracker- and ad-free experience for users. By having an aggressive
approach to blocking ads in the browser, Brave claims not only to
save you time and bandwidth while using the internet but also to
reduce the amount of battery your browser uses.

https://support.mozilla.org/en-US/kb/enhanced-tracking-protection-firefox-desktop/
https://brave.com/

Brave provides much more granular control over your security and
privacy settings, and it makes these settings much easier to get to
than other browsers:

1. At the top right of the Brave browser, click the More icon
(three horizontal lines).

2. Click Settings▸Shields.
3. Set Trackers & Ads Blocking to Standard or Aggressive.
4. Turn on Upgrade Connections to HTTPS.
5. Set Cookie Blocking to Only Cross-site or All (your browser

won’t remember your session information once closed).
6. Set Fingerprinting blocking to Standard or Strict (might

break some websites).

Experiment with these settings, as well as the social media
blocking settings, until you find a combination that works for you.

#25: Blocking Ads with Pi-Hole
Blocking ads with a browser extension or built-in tools is a great start
to enhancing your internet browsing experience. However, those
options apply to only one device at a time, and managing settings for
multiple devices can quickly become onerous. Not only that, but
some websites can block browser extensions. Blocking ads at the
DNS level mitigates all of these issues.

The Domain Name System (DNS) enables your computer (or
browser) to communicate with websites on the internet. All websites
have an IP address (or more than one) assigned to them. Compared
to IP addresses, the URLs that you use to access websites (for
example, www.facebook.com) are human-readable and easy to
remember. Your computer translates that URL into an IP address to
find the web server on the internet that serves Facebook to you—
enter DNS. DNS acts like the postal service, in that IP addresses are
equivalent to physical addresses, and URLs are like street names.
DNS allows you to send and receive internet traffic to a specific

http://www.facebook.com/

address (or server) without having to remember the exact address
(the IP address) of that server.

Given that advertising domains also use DNS to serve you ads,
let’s build a Pi-Hole server to send all of those requests to a
blackhole and provide your users with a better browsing experience.
Pi-Hole is similar to the Squid proxy discussed in Chapter 6; it sits
between you and the websites you want to browse, observing all
internet traffic, identifying advertising at the DNS level via a curated
list of known advertising domains and addresses, and allowing only
legitimate, non-ad traffic to pass through to your browser. Pi-Hole is
capable of blocking a larger percentage of ads than browser
solutions, and it’s much harder for websites to detect and
circumvent.

Set up an Ubuntu server in your local network, as discussed in
Chapter 1, and add it to your network map and asset list. It’s
possible to use a server located in the cloud, but exposing a DNS
server to the open internet creates some technical challenges we
won’t cover in this chapter. The right mitigating controls can solve
these challenges, so if you choose to use a cloud server, proceed
cautiously and do some research into how to mitigate the risks. If
you’ve installed a perimeter firewall as discussed in Chapter 3 and
you create your Pi-Hole server using a virtual machine, the server
should be located behind the firewall (that is, on the network side of
the firewall, rather than the internet side).

It’s possible to use Pi-Hole in conjunction with Squid (discussed in
Chapter 6) by using Pi-Hole to handle DNS requests and Squid to
handle HTTP traffic. However, by default Squid uses an internal DNS
client—this can’t be changed without rebuilding Squid, which is
outside the scope of this book. If you choose to use both Squid and
Pi-Hole, you can follow the instructions supplied for configuring each
solution separately on your endpoints and achieve the same
outcome.

Configure Pi-Hole

Begin by creating a base Ubuntu server, as described in Chapter 1.
Then, install the Pi-Hole server using the following steps:

1. Log in to your Ubuntu server via SSH as a standard, non-
root user. Then, download the Pi-Hole installation script
from https://install.pi-hole.net/, make it executable, and
execute the script using sudo:

$ ssh user@your_server_ip
$ wget -O basic-install.sh https://install.pi-hole.net
$ chmod +x basic-install.sh
$ sudo ./basic-install.sh

2. At this point, the automated installer will take over your
terminal window. Read the various informational screens
that come up, pressing ENTER to move to the next one.

3. When prompted to select an upstream DNS server, as
shown in Figure 7-1, choose whichever upstream
(authoritative) DNS provider you’re comfortable with.
Google or Quad9 is a good choice.

NOTE Use the arrow keys or TAB to navigate through the
options, spacebar to select options, and ENTER to
accept settings.

https://install.pi-hole.net/

Figure 7-1: Upstream DNS provider

To perform DNS lookups, your Pi-Hole server will need
an authoritative DNS server to query when it attempts to
resolve domains that aren’t already cached by the proxy
server. An authoritative DNS server is a nameserver that
holds the actual DNS records for a particular domain or
address, such as www.google.com. By contrast, your server
is recursive, an intermediary between you and your host
and one or more authoritative DNS servers. When you
make a request for a website, your device will pass this
request to the Pi-Hole server, which will then farm this
request out to an authoritative server to find the address of
the website you want to view.

4. Select all the available blocklists when prompted.
Pi-Hole uses blocklists (curated lists of advertising

domains maintained by third parties) to identify and
intercept advertisements on the internet. The chosen lists
can be changed later.

http://www.google.com/

5. Select IPv6 in addition to IPv4 at the protocol screen if you
use IPv6 in your network.

In most cases, IPv6 isn’t necessary. IPv6 provides
internet-addressable IP space to endpoints, which you don’t
need to do in this situation. It’s best to disable IPv6 to
reduce your attack surface, unless you have a legitimate
use for it.

6. The following screen indicates the static IP address and
gateway of your server. If the address details listed on this
page are correct, press ENTER to accept them. Otherwise,
select No and press ENTER; then set your desired static IP
details manually.

The gateway for your Pi-Hole could be your firewall or
router. Once you’ve configured or accepted the IP settings
for your server, the automated installer will warn about
configuring your router or DHCP server to reserve the IP
address for this server. If you don’t do this, your network
may encounter address conflicts, but most routers will be
able to avoid this conflict without your input. (See “Static IP
Addressing” in Chapter 4 for configuring static IP addresses
on a router.) Press ENTER to acknowledge the warning.

7. Select On to install the web interface, which makes the
server configuration easier to manage (even for advanced
administrators), and then press ENTER.

8. Select On to install the web server offered by the
automated installer, unless you plan to install your own (this
is beyond the scope of this book).

9. Select On to log the DNS queries that pass through your
Pi-Hole server.

Since Pi-Hole is a proxy, it will record and cache all web
requests that pass through it. This means that any endpoint
configured to use your Pi-Hole server for DNS will have its
browsing history recorded. If this poses concerns for your
users, either get their permission or turn logging off. You
don’t need logging to use Pi-Hole’s ad-blocking features,
but enabling it can help troubleshoot any issues.

10. Select a privacy level that is acceptable within your
network.

Pi-Hole uses Faster Than Light (FTL) DNS, which
provides statistics about Pi-Hole activity and displays it
graphically. You’ll be able to see information such as how
many ads were blocked, and for which endpoints, over a
given period. FTL gets this data by parsing the Pi-Hole text
logs. Like logging, this isn’t necessary for Pi-Hole to
function and can cause privacy concerns for your users. Be
sure to get their permission ahead of time, or set the
privacy levels to Hide Domains and Clients, as shown in
Figure 7-2. Doing so will prompt FTL to collect anonymized
data, allowing the statistics and graphical displays to
function while preserving the privacy of your users. You
could also decide to disable statistics entirely by turning
logging off in the previous step.

Figure 7-2: FTL DNS settings

11. When the installation finishes, you’ll be presented with a
screen showing your configuration, as well as the URL and

administrator password for the web interface, as shown in
Figure 7-3. Be sure to record these values, ideally in a
password vault (discussed in Chapter 11) for security and
safety purposes; then press ENTER to return to the
terminal.

Figure 7-3: Pi-Hole installation complete

You can change the administrator password with the following
command:

$ sudo pihole -a -p

To keep Pi-Hole up-to-date, periodically run the following
command:

$ sudo pihole -up

Ensuring that Pi-Hole and its components are up-to-date is crucial
in keeping your Pi-Hole server, and your network, secure.

Using Pi-Hole
Browse to the administrator URL displayed in the last configuration
step (http://<your_server_ip>/admin/) where you should see the user
dashboard. When a new update is available, you’ll be notified at the
bottom of this screen, as in Figure 7-4. At this time, it’s not possible
to update Pi-Hole from the web interface; it must be updated using
the commands in the previous section.

Figure 7-4: Pi-Hole update required

Click Login on the left side of the screen and authenticate with
your administrator username and password. The dashboard will then
display more detailed information. You’ll find additional options in the
administrator menu once logged in, as shown in Figure 7-5.

Figure 7-5: Pi-Hole administrator dashboard

Brief descriptions of the important options in the navigation
dashboard are as follows:

Query Log A chronological, searchable history of all browser
requests for websites that pass through the Pi-Hole proxy server.
Long-term Data A more extensive history of requests to the proxy
server that you can filter based on ranges of dates.
Whitelist Websites that Pi-Hole blocks by default but to which
you’d like to allow access.
Blacklist Domains that the proxy may not block by default but that
you’d like to block explicitly.

NOTE While we’ve been using allowlist/denylist, Pi-Hole uses
whitelist/blacklist for its menu options and configuration. When
discussing Pi-Hole, we’ll adhere to this terminology.

Disable Disable the proxy for a set period.
Tools Used to debug or update the blocklists, and review backend
proxy logs. The backend logs provide debug information about Pi-
Hole itself, rather than web traffic.
Tools▸Network Displays all clients connected to the Pi-Hole
server to help identify which endpoints are using the proxy and
which may be bypassing it (your network map and asset list will
come in handy).
Settings▸System Contains the Pi-Hole proxy settings (including
settings configured during installation); displays critical
information; allows you to disable, restart, and power off the
server; and lets you flush (delete) DNS proxy logs.
Settings▸DNS Change the authoritative DNS servers used for
domain name translation and modify the network interface on
which requests are received and passed through the proxy filter
(though the default settings are usually the safest).
Settings▸DHCP Allows the Pi-Hole server to act as a DHCP
server if desired.
Settings▸Privacy Increase or decrease the level of privacy used
when reporting about queries by choosing to link endpoints with

their browsing activity or anonymize the data captured by the
proxy.
Settings▸Teleporter Imports or exports Pi-Hole settings to or
from another server.
Logout Logs you out of the administration dashboard.
Explore the various menus and options to familiarize yourself with

Pi-Hole’s settings and configurations. Consider reading the manual
as well to get a better understanding of how Pi-Hole works and how
powerful it really is.

Configure DNS on Your Endpoints
At this point, there’s only one thing left to do: make your clients use
the Pi-Hole server as their DNS server. You need to configure your
DHCP server or router to push the DNS settings to devices that
access the internet. Alternatively, you can configure each endpoint
individually using its internal network settings. You might want to do
this if you’d like only specific devices on the network to connect
through the proxy while letting others connect to the internet directly.
That said, making all devices go through the Pi-Hole server will
provide the best experience to users and allow you to have better
control of network traffic and identify issues earlier. The server will
also cache more websites as users browse to them, which will make
browsing to frequently visited sites faster for everyone.

NOTE Your router is capable of specifying the DNS server your
endpoints use to access the internet. In the ASUS router we’ve
been using as an example, it’s under Advanced
Settings▸LAN▸DNS Server. Enter your Pi-Hole server’s IP
address in the DNS Server1 box and click Apply to set the DNS
server connected clients will use.

If you want only some of your endpoints to use the Pi-Hole server,
either you can configure those clients using their local DNS settings

or you can use the DNS settings in your pfSense firewall (if you
implemented pfSense, as discussed in Chapter 3).

Windows DNS Settings
To configure the DNS settings on a Windows client, follow these
steps:

1. Open Settings▸Network & Internet4Change Adapter
Options.

2. Right-click Ethernet Adapter.
3. Click Properties.
4. Click Internet Protocol Version 4

(TCP/IPv4)▸Properties.
5. Select the Use the Following DNS Server Addresses

radio button.
6. Enter the IP address of your Pi-Hole server in the Preferred

DNS Server box.
7. Click OK and close all remaining windows.

macOS DNS Settings
To configure your Mac to use your Pi-Hole server for DNS, follow
these steps:

1. Open System Preferences▸Network.
2. Select your network adapter (Ethernet or Wi-Fi) in the

connection list on the left.
3. Click Advanced▸DNS.
4. Add your Pi-Hole server’s IP address to the DNS servers

list on the left.
5. Click OK▸Apply.

Linux DNS Settings
To route DNS requests through your Pi-Hole server on Linux
endpoints, follow these steps:

1. Open Settings▸Network.
2. Click the configuration Cog to the right of your Wired or

Wireless connection.
3. Select the IPv4 tab.
4. Enter your Pi-Hole server’s IP address in the DNS box.
5. Click Apply.

pfSense DNS Settings
Using pfSense, you’re able to configure DNS settings either per
client within the static IP addressing settings you will have used
earlier or en masse by pointing your pfSense appliance at your Pi-
Hole server for DNS. To send all DNS requests through your Pi-Hole
server, enter your Pi-Hole IP address in the DNS servers box on the
Services▸DHCP Server page. If you want to specify which
endpoints will use the Pi-Hole server for DNS, follow these steps:

1. Browse to the Services▸DHCP Server page of your
pfSense appliance.

2. Find the Static Mapping option for the relevant endpoint in
the DHCP Static Mappings table at the bottom of the page.

3. Click the Edit pencil icon for that endpoint.
4. Enter your Pi-Hole server’s IP address in the DNS box.
5. Click Save▸Apply Changes.

Once you’ve configured your endpoints using any of the previous
options, you can test your ad-blocking capability using a website like
https://canyoublockit.com/. Such websites provide several options for
testing your ad blockers, whether they’re browser-based or
something more substantial like Pi-Hole, from simple to advanced

https://canyoublockit.com/

testing methods. If you run these tests and see no ads, your ad
blocker is working. If you still see ads, review the earlier sections of
this chapter and ensure your settings are correct. Log in to your Pi-
Hole server and check the dashboard to see if your DNS queries are
being seen by, and are therefore passing through, the server.

Summary
Regardless of how you choose to use Pi-Hole, you now have a
means of monitoring and controlling internet usage in your network,
and everyone should have a better internet browsing experience.
You can choose to use Pi-Hole in addition to the Squid proxy you
might have implemented in Chapter 6, or you can use either Squid or
Pi-Hole without the other. Whichever solution you choose, you’ll
experience the benefits associated with that technology.
Alternatively, you can forego DNS-level ad blocking if you prefer to
use browser-based blocking utilizing browser add-ons; the choice is
yours.

8
DETECTING, REMOVING, AND

PREVENTING MALWARE

Malware such as viruses, trojans, and ransomware are significant
threats to internet users and likely will be for the foreseeable future.
As a result, it’s important to arm yourself and your users with an
antivirus solution that detects and removes malware. Additionally,
keeping your endpoints up-to-date can prevent malware from
infecting your network and in some cases provide more protection
than an antivirus (AV) solution.

Antivirus solutions can be tricky to manage because they typically
are not cross-platform (that is, they work on only one operating
system). If you have multiple operating systems in your network,
you’ll need to find an effective AV product for each of them. Although
this chapter discusses installing, configuring, and scanning with
specific products, most options and settings will be the same across
most antivirus solutions. The names of the settings and configuration
options may differ slightly, but the same logic and processes should
work for most products.

After exploring some antivirus solutions for various operating
systems, we’ll consider the differences between malware signatures
and heuristic scans, the pros and cons of each approach, and the
concept of creating an antivirus farm to catch as much malware as
possible across different endpoints. Finally, we’ll cover patch

management for various operating systems and how best to keep
your endpoints up-to-date.

Microsoft Defender for Windows
The latest iteration of the built-in Microsoft antivirus solution is
Microsoft Defender. Defender automatically updates its virus
definitions and scans for threats on a regular schedule, so Windows
computers have decent protection out of the box.

Defender’s automatic scans are quick scans that check only the
folders where threats are commonly found. While a quick scan offers
fast results and uses few system resources, it’s unlikely to discover
and remove malware residing outside of these folders. A full scan
scans all your files and running programs, performing a thorough
search for malware. It’s recommended to run full scans somewhere
between once a week and once a month. The longer the period
between full scans, the more time an adversary has to wreak havoc
on your systems.

You also have the option to choose custom and offline scans. A
custom scan lets you select which folders and files to scan. An
offline scan is similar to the Boot to Safe Mode method of malware
removal available in earlier versions of Windows. Windows is now
capable of automatically rebooting to a state that allows Microsoft
Defender to remove persistent malware via this offline scan. This
option is a last resort, rather than a scan you would run regularly. If
you believe your computer is infected but are unable to find the
infection using a full scan, run the offline scan to be certain. Failing
this, your only recourse is to wipe your hard drive and re-install
Windows from scratch.

To run scans, open Settings▸Update & Security▸Windows
Security▸Virus & Threat Protection. Click Scan Options, select
the type of scan you want, and then click Scan now.

In the Virus & Threat Protection4Manage Settings menu, ensure
Real-time Protection is turned on to enable Defender to protect your
computer constantly. You can also add file and folder exclusions

from this menu. You might add exclusions when you have files or
programs that are legitimate and not a risk to your system, but
Defender classifies them as malware and tries to quarantine them
anyway.

One setting in particular could be considered a risk to your privacy,
Automatic Sample Submission, which allows Microsoft Defender to
upload your files to Microsoft’s servers in the cloud automatically to
be analyzed and scanned for malware. This practice poses a risk:
private or confidential data could be leaked to a third party without
your knowledge, as Defender won’t ask or advise you of files being
uploaded to Microsoft. To turn off this setting, toggle Automatic
Sample Submissions.

Related to this setting is the Cloud-Delivered Protection setting.
This one isn’t as risky, as it relays only file metadata to Microsoft
rather than entire file contents. Cloud-Delivered Protection will still
work with Automatic Sample Submission turned off, although it might
not perform as well.

Windows will keep Microsoft Defender up-to-date, but it never
hurts to update manually occasionally. To update, click Check for
Updates on the main Virus & Threat Protection page.

XPROTECT FOR MACOS
macOS has a built-in antivirus solution called XProtect. When you
download an application from the internet, XProtect will check its
definitions file of known-bad files, which is updated when you
receive software and operating system updates for your computer.
This is less beneficial than an antivirus program that performs a
heuristics-based scan (see the upcoming “Signatures and
Heuristics” section for more information on heuristics) that
evaluates files based on their content or behavior, rather than a
specific file signature.

Choosing Malware Detection and Antivirus Tools
When deciding on the antivirus and malware detection tools you’d
like to use, consider whether it’s worth paying for a commercial tool
(or the premium version of a free tool) and whether the tool will use
signatures or heuristics to detect malware.

In general, if all you want is a simple malware scanning tool,
there’s rarely a good reason to pay for a commercial product.
Typically, you’ll pay for advanced features, such as an email or web
browser scanner built-in to the malware file scanner.

Oftentimes, paid solutions allow for some form of centralized
management. Whether that’s a web portal or a management server
or agent, you gain visibility and the ability to manage all of your
devices from one place. If you have a larger network, there’s value in
having this capability; if your network consists of less than 30
devices, you probably don’t need it.

Antivirus Farm
There’s also a benefit in foregoing a single solution in favor of using
multiple antivirus products in smaller networks. Antivirus farms use
several products aiming to catch more malware than a single
solution might. It also makes the attacker’s job more difficult; instead
of evading a single antivirus product, they need to evade multiple to
move laterally through a network.

Antivirus farms are helpful because every antivirus vendor curates
their own databases of malware signatures—sequences of bytes in
the executable that can be used to identify that specific malware
sample. These databases have to be optimized every so often;
otherwise, the virus definitions that you download with the software
would become too large and unwieldy to be useful. Therefore, older
virus definitions may be removed from these databases over time,
which means having products from multiple vendors will likely lead to
greater coverage of known threats.

Signatures and Heuristics
You should also aim to use antivirus products that perform both
signature-based detection and heuristics. Signatures identify known-
malicious software by the contents of an executable or other file,
though it’s trivial for an attacker to change the signature of their
malware by changing the contents slightly. This is a major weakness
when it comes to malware detection software. Heuristics, on the
other hand, analyze the way a file behaves and the commands a file
might run to determine whether it’s malicious. This is a much more
reliable way of detecting known and unknown threats. How do you
tell whether a particular antivirus program performs signature-based
detection or heuristic scanning? The best way, if it’s not listed on
their website, is to contact the vendor and ask. There will always be
a contact method listed on their website.

#26: Installing Avast on macOS
Apple devices, commonly believed to be less prone to malware, are
becoming infected more often, which means you should install
antivirus software on any Macs on your network. There are many
options, both free and commercial, when installing a third-party
heuristics-based antivirus solution on your Apple computer. Among
these, Avast has topped many lists for several years. To install and
configure Avast, use the following steps:

1. Download Avast from http://www.avast.com/ and install the
software. When the installation has completed, you should
be presented with the Avast Security window (see Figure 8-
1).

http://www.avast.com/

Figure 8-1: Avast Security window

2. Click Menu▸Preferences to reach Avast’s settings page.
3. In the General tab, ensure that the Turn on Automatic

Updates checkbox is ticked.
4. In the Privacy tab, untick the two checkboxes allowing your

data to be shared with Avast. Similar to Windows Defender,
it’s best to protect your privacy.

5. In the Core Shields tab, enable each of the security checks
Avast will run, such as file scanning and web and email
protection.

6. Click the Add Exceptions button under each of the shields
to specify any necessary exceptions. Add exceptions if you
have files or programs that you know to be legitimate or low
risk but that your antivirus classifies as potentially
malicious.

7. In the Scans tab, ensure the checkboxes Scan Whole
Files, Scan External Drives, Scan Mounted Network
Volumes, Scan All Time Machine Backups, and Scan

Archives are ticked. By doing so, you can be certain your
antivirus is doing as much as possible to identify threats
and protect you from them.

A Smart Scan is designed to scan the most vulnerable areas of
your computer quickly. While this is less resource intensive and less
time consuming, it’s not likely to catch all threats on your computer
because it doesn’t scan all areas of your hard drives. A Deep Scan is
more comprehensive and includes all areas of storage on your
device, optionally including external storage, network locations, Time
Machine backups, memory, and rootkit detection. A Targeted Scan
scans only specified areas.

All of these scans are run from the Scan Central screen in Avast
on your Mac. Click the Search button to select the type of scan you
want to run and then click Scan Now. Selecting Targeted, USB/DVD,
or Custom Scans will prompt you for the locations to scan. Avast will
scan your computer for threats, and if any are detected, it will ask
what you’d like to do with the relevant files. Select all the files and
click Resolve Selected to move them all to the Virus Chest; then
click Done. Your computer should now be clean of all potentially
malicious files and applications.

#27: Installing ClamAV on Linux
Linux is susceptible to viruses as well. However, Linux operating
systems rarely come with a built-in antivirus application, and there
are fewer available than for other operating systems. Most of the
available solutions are commercial and therefore have a cost
attached, such as Avast Core Security for Linux, though there is an
open source solution: ClamAV.

ClamAV is a free application that can be used on Windows,
macOS, and Linux. To install it on Ubuntu, log in to your server via
SSH as a standard, non-root user. Run the following command to
install the version of ClamAV that allows you to automate your virus
scanning activity, as well as the GUI, clamtk, which may be useful
later:

$ sudo apt install clamav clamav-daemon clamtk

With the installation complete, your antivirus definitions (the
database that tells ClamAV what is malware) should be up-to-date,
but you can run the following commands to update the virus
definitions—either now or in the future—to stop, update, and then
restart ClamAV:

$ sudo systemctl stop clamav-freshclam
$ sudo freshclam
$ sudo systemctl start clamav-freshclam

To run a malware scan, use the clamscan folder_to_scan

command. To scan everything on the system, use / to indicate to
ClamAV to scan everything in the root of the filesystem, supply the -
r parameter to make the scan recurse all directories, and use sudo
so that ClamAV has the necessary permission to read all files in the
filesystem:

$ sudo clamscan -r /
--snip--
----------- SCAN SUMMARY -----------
Known viruses: 8927215
Engine version: 0.102.3
Scanned directories: 89954
Scanned files: 362758
Infected files: 0
Total errors: 82216
Data scanned: 8767.58 MB
Data read: 14195.27 MB (ratio 0.62:1)
Time: 1171.021 sec (19 m 31 s)

When the scan completes, clamscan will output a scan summary.
In addition to known malware, ClamAV can detect potentially

unwanted applications (PUAs), including software such as adware,
peer-to-peer (p2p) programs, remote administration tools, bitcoin

miners, and bundleware (software included with but not related to
the application being installed), which are not inherently malicious
but may pose a risk to or negatively impact your endpoints’ security
and performance. To scan for PUAs, include the --detect-pua=yes
argument when running ClamAV.

If your scans are taking too long, you can use other advanced
parameters to reduce their duration. You can limit the size of the files
ClamAV will scan with --max-filesize=n, where n is the maximum
file size in kilobytes. Any files larger than the size you specify will be
skipped and assumed to be clean, reducing the time it takes your
scan to complete. Similarly, --max-scansize=n scans only archive
files (.rar files, .zip files, and so on) up to the specified size—all other
archives will be skipped. To limit the depth of the recursion (that is,
how many directories will be scanned below the directory where you
start the scan), use the --max-dir-recursion=n parameter. For more
parameters, use the -h argument, as in sudo clamscan -h, to print
the help menu.

To run a scan on a regular schedule, use Crontab, a Linux utility
designed to execute programs at preset times or intervals. In your
terminal, use the crontab -e command to edit the scheduled tasks
file:

$ sudo crontab -e
[sudo] password for user:

Edit this file to introduce tasks to be run by cron.
#
Each task to run has to be defined through a single line
indicating with different fields when the task will be run
and what command to run for the task
#
To define the time you can provide concrete values for
minute (m), hour (h), day of month (dom), month (mon),
and day of week (dow) or use '*' in these fields (for 'any').
#
Notice that tasks will be started based on the cron’s system
daemon’s notion of time and timezones.
#

Output of the crontab jobs (including errors) is sent through
email to the user the crontab file belongs to (unless
redirected).
#
For example, you can run a backup of all your user accounts
at 5 a.m every week with:
0 5 * * 1 tar -zcf /var/backups/home.tgz /home/
#
For more information see the manual pages of crontab(5) and
cron(8)
#
m h dom mon dow command

The large comment at the start of the file explains how to specify
tasks with an example. The last line of the comment provides the
syntax for scheduling execution of scripts and applications. The
order is minute, hour, day of month, month, day of week, and
command to execute. Minutes and hours must be numbers, 0 to 59
and 0 to 23, respectively, and you can specify a list of minutes or
hours by separating the values with commas (that is, you can run a
command at 1, 2, and 3 AM by specifying 1,2,3). You can specify
days numerically (1 to 7, where 1 is Sunday), or as Sun, Mon, Tue,
and so on. Months are 1 to 12 (where 1 is January). An asterisk (*)
stands for all possible values for a field; if you want your command to
run every month, put an asterisk in the month (mon) position.

Say you want to run clamscan over the entire filesystem at 1 AM
every Sunday, including scanning for potentially unwanted
applications. At the bottom of the Crontab file, add a new line and
enter the following:

0 1 * * sun clamscan -r / --detect-pua=yes -l
/path_to_logfile/clamav.log

By default, you won’t be able to see the results of your scans
unless you specify the logfile with the -l parameter. If you want to
scan a specific folder, like the user home folders (/home/), every day,
in addition to the full system scan, add another entry to the Crontab,
following the previous example as a guideline.

Add another line to the Crontab to ensure ClamAV is kept up to
date:

0 0 * * mon systemctl stop clamav-freshclam && freshclam &&
systemctl start clamav-freshclam

You can link multiple commands together and separate them with
a pair of ampersands to run them in series. Find more information on
Crontab (or any other terminal command) with the man function. Enter
man crontab to open the manual for the application on the command
line.

#28: Using VirusTotal
VirusTotal (VT) tests files to determine whether they’re likely to be
malicious (https://www.virustotal.com/) by taking the concept of an
antivirus farm and implementing it on a large scale. It’s a publicly
available service where you can upload any file to scan for malware,
and VT will scan it with more than 60 antivirus programs. It will then
produce a report to let you know whether it contains malware or
behaves in a way that may negatively impact your endpoints,
security, or privacy. This capability is especially useful if you believe
a file is malicious but is undetected by your antivirus.

Be aware that anything uploaded to VT becomes public, so
anyone can search for and download the files you upload. To use VT
without making your private information public, search VT for the
hash of the file you want to check. Hashing is a process for
calculating a fixed-length string based on the contents of a file.
Hashing is expected to be a one-way process, meaning you can’t
take the hash of a file and reverse it to get the original file contents.
By creating the hash of a file, you should get a unique string of
characters that identify said file. Some hashing algorithms can result
in collisions, where two files yield the same hash, though the
chances of this happening in most modern hashing functions are
slim to none. You can get the hash of a file by using built-in tools in
any operating system.

https://www.virustotal.com/

Windows PowerShell In Windows, open a PowerShell window
and enter the following command to get the MD5 hash of any file:

$ Get-FileHash path_to_file -Algorithm MD5

You can then search for the hash directly in the VirusTotal web
portal.
Linux and macOS Terminal You can get the MD5 hash of a file in
both Linux and macOS using the following command:

$ md5sum path_to_file

Then, search for the resulting hash in the VT web portal.
If a file with the same hash has been uploaded to VT at any point

in the past, you’ll be presented with the public report for that file,
detailing the malware scan results from all the providers in VT. If it
hasn’t been uploaded previously, there’s a good chance the file isn’t
malicious.

#29: Managing Patches and Updates
Along with using antivirus tools, patch management is an important
defense because malware exploits are written to attack a specific
vulnerability in a network, application, protocol, or operating system.
Adversaries pay close attention to Windows updates and patches for
other operating systems, as the patch notes call out the vulnerability
it’s designed to remediate. Attackers use that vulnerability
information to write malware specifically for that security flaw, and
anyone who hasn’t downloaded the update can fall victim. This is
why operating systems constantly ask you to install updates and
patches.

In most cases, end users don’t install updates right away, and
adversaries have a window of opportunity to target unpatched
systems. It’s in your best interest to install software updates as soon
as they become available. Luckily, the process of updating is
exceedingly simple and easy to automate. This project describes

how to configure system updates on individual systems, and the
following section discusses a solution for patch management across
multiple endpoints.

Windows Update
For Windows updates, open Windows Settings▸Update &
Security. Windows checks for updates automatically at least once
per day (assuming the device is left on at all times). To check for,
download, and install updates manually, click the Check for
Updates button.

If you’d prefer not to worry about updates for a while, click Pause
Updates for 7 Days. Updates are critical for keeping your system
secure, so pausing the updates is not recommended.

You can restrict Windows from updating your computer during
certain times by setting active hours. If you use your computer
primarily between 9 AM and 5 PM, you can tell Windows not to
update during this window, which is a better option than pausing
updates for an extended period of time.

In Advanced Options, you can allow Windows to update other
Microsoft products via Windows Update—I recommend turning this
on. You can also make Windows force devices to restart after
updates are installed, which is useful if you, as the administrator,
want to force your end users to restart their machines. You’ll be
unpopular, but your network will be more secure.

In the Advanced Options▸Delivery Optimization menu, you can
enable the option to download updates from other PCs in your
network. This reduces the bandwidth required to download the same
updates to multiple computers from the internet. You should turn on
this setting, with the caveat that downloads be allowed only from
PCs on your local network and not from PCs on the internet.

Back in the Advanced Options pane, the last settings of particular
interest are the Privacy settings. You can increase your privacy
within this menu by disallowing Windows and Microsoft from sending

you targeted ads and content based on your location, browsing
habits, and application usage statistics.

macOS Software Update
Apple devices are much simpler than Windows or Linux because
their update process can be almost entirely automated and requires
very little user input. To ensure your Apple computers are kept up-to-
date, open System Preferences▸Software Update. To allow
automatic updates, check Automatically Keep My Mac Up-to-date.

With this check box ticked, click the Advanced button to select
what actions should be taken automatically. From this menu (Figure
8-2), choose whether your computer can check for updates,
download updates, or complete the installation process without user
input, and then click OK to save the settings. In most cases, allowing
your computer to keep itself up-to-date with no input from the user is
desirable; the computer will still confirm with the user before
restarting after any updates that require a reboot (which doesn’t
happen often).

Figure 8-2: macOS advanced software update configuration

Keeping your devices up-to-date in this way ensures they are as
secure as possible and protects your and your users’ privacy.

Linux Updates with apt
As discussed in Chapter 1, the Linux operating system comes in
multiple implementations, called distributions. Each of those
distributions uses a package manager to maintain and update the
software that the system or user installs. Throughout this book, we
use Ubuntu Linux, which uses the Advanced Package Tool (APT)
package manager. Package managers simplify the process of
keeping your Linux endpoints up-to-date and secure.

To update an Ubuntu system, log in via SSH as a standard, non-
root user. When you log in, you should be presented with a welcome
message, including information about required and recommended
updates:

--snip--
 * Documentation: https://help.ubuntu.com
 * Management: https://landscape.canonical.com
 * Support: https://ubuntu.com/advantage

105 updates can be installed immediately.
68 of these updates are security updates.
To see these additional updates run: apt list --upgradable
--snip--

To make sure the list of updates is complete, run the apt update
command:

$ sudo apt update

Once the list is up-to-date, run the upgrade command to update all
of the software packages:

$ sudo apt upgrade

The command output will show the number of packages to update,
the disk space they’ll use, and various status messages. When
prompted, type Y and press ENTER to continue.

As with Windows and macOS, some updates require you to reboot
the system. If that’s the case, you’ll see something like:

A reboot is required to replace the running dbus-daemon.
Please reboot the system when convenient.

To make Ubuntu update the system and installed packages
automatically, use the following command:

$ sudo dpkg-reconfigure -plow unattended-upgrades

The command will produce the prompt shown in Figure 8-3.

Figure 8-3: Ubuntu unattended updates

By selecting Yes and pressing ENTER, you’ll ensure your servers
are kept up-to-date, thereby making them inherently more secure.
However, you should still check for updates manually and reboot
your server once a month.

#30: Installing Automox
Depending on the size of your network, keeping all your endpoints
up to date manually or even semi-manually might feel tedious or
overwhelming. A centralized patch management solution like
Automox allows you to easily manage all of these things in one

place. Automox operates on a per-endpoint subscription model: you
can start managing one or more Windows, macOS, or Linux systems
(workstations or servers) for a nominal monthly fee, which allows you
to patch all of your endpoints, with both system and third-party
software patches, from one dashboard. Automox also maintains an
asset and software inventory, which is the first step anyone should
take to keep their network secure.

Installing Automox
Head to the Automox website (https://www.automox.com/) to sign up
for an account (or free trial). Then log in to your account dashboard
at https://console.automox.com/. The dashboard is where you’ll see
a summary of your managed endpoints and the updates they
require. Of course, until you add some endpoints to your account,
this dashboard will be sparse. In the following sections you’ll require
a user key to connect your endpoints to Automox. Your key can be
found by going to your profile settings page in the Automox web UI,
under the Keys tab.

Windows
To install the Automox agent on Windows endpoints, access the
Devices tab from your Automox console, and then click the Add
Devices link at the top of the page. You’ll be presented with an OS
selection pop-up. Select Windows, and then download the agent.

Once the agent is downloaded, run the installer (an .msi file) as an
administrator. Follow the installation wizard, entering your Automox
user key from the console when prompted. When the installation has
completed, refresh your Automox dashboard to see the newly added
endpoint (Figure 8-4).

Figure 8-4: Automox asset list

https://www.automox.com/
https://console.automox.com/

macOS and Linux
In a Terminal window on a Mac or Linux computer, run the following
command, substituting your user key for yourkey:

$ curl -sS "https://console.automox.com/downloadInstaller?
accesskey=yourkey" | sudo bash

Refresh your console again to see the newly added endpoint(s).

Using Automox
Now that you’ve installed Automox on your endpoints, you’ll be able
to manage operating system and third-party software patches from a
central console. From the Devices tab, you can view all of your
managed endpoints and add them to groups—if you’d like to
manage them that way. You can also scan your endpoints to identify
hardware changes and check for new updates they require, reboot
your endpoints remotely, or remove endpoints from your account. By
clicking an endpoint, you can see its hardware configuration, IP and
MAC addresses, device type, operating system, CPU and RAM
details, and other critical information, as shown in Figure 8-5. You
can also force updates to be applied to the endpoint immediately,
rather than wait for the endpoint to be updated according to the
update policies specified in the System Management tab.

Figure 8-5: Automox device details

The System Management tab allows you to create and assign
patching policies, which is useful if you want to schedule patch
installation. For example, you may decide to automatically install any
critical patches daily at 5 PM. Alternatively, you might want to force
the installation of all required patches at 12 AM every Saturday,
when people are less likely to be using their computers. You will
need to define your own requirements and decide what patching
schedule works best for you and your network.

In the Reports tab, you can generate reports of actions taken by
Automox to keep your endpoints up-to-date, report on the state of
any or all endpoints in your console, or identify noncompliant
endpoints. Depending on the size of your network, it may be easier
to view this information in your dashboard than to run these reports.

Automox will provide you with an inventory of all the software
installed on your managed endpoints and their patch level in the
Software tab. This allows you to easily identify software that requires
updating and to update it if possible. You can also use this list to
identify software that you don’t want in your environment, whether
it’s potentially unwanted applications or specific software, like games
or other software that violates an organizational policy.

Finally, the Settings tab allows you to create new users to allow
other administrators to access your Automox console to manage
your endpoints. You can also find and add your agent access keys in

this tab. One thing you should absolutely take advantage of is the
two-factor authentication setting. By enabling two-factor
authentication, you make your account more secure and therefore
make unauthorized access to your devices and patch management
information much more difficult (discussed further in Chapter 11).

Summary
Keeping your systems up-to-date is critical in keeping your network
secure. Whether you choose to use the built-in antivirus and
patching options for your operating system or a managed patching
solution like Automox, updates should be regularly scheduled and
virus scans regularly run; otherwise, you leave your network
vulnerable to all sorts of adversaries and unnecessary risk.

9
BACKING UP YOUR DATA

Having a reliable, well-defined, and well-implemented backup
strategy is one of the best defenses any network can have against
malicious or accidental data loss. Whether you mistakenly delete a
folder of critical documents, an adversary executes ransomware
inside your network, or a natural disaster destroys your devices,
backups can save you from catastrophe.

This chapter introduces various backup considerations, including
different backup types, creating backup schedules, the value of
onsite and offsite backups, what to back up, and backup storage
options. Finally, we’ll show how to implement different solutions
within your network.

Backup Types
You should consider three types of backups when implementing your
backup schedule: full, incremental, and differential.

Full Backup

A full backup contains a complete copy of everything you
want to back up from a specific host or location (called a
backup set). For example, you might decide you want to

regularly create backup copies of everything in your user
profile on your computer. Alternatively, you may want a
copy of the entire disk or volume, including operating
system files. Either of these options is viable and could
be considered a different backup set.

Full backups provide quick, easy restoration of all files
from a backup set. Because all data is contained in a
single backup, the process to restore will be faster than
other backup options. However, full backups require more
storage, especially if you’re keeping more than one, and
they take the longest amount of time to create.

Differential Backup

Differential backups contain only copies of the data that’s
changed since the last full backup, thus lending
themselves to more frequent use than full backups. If you
decide to take a full backup once a month, it’s a good
idea to schedule a differential backup once a week. It’s
recommended to create a full backup regularly to keep
the size of your differential backups under control (rather
than taking one full backup of your backup set and then
creating differential backups only from that point forward).

Differential backups take up a lot of storage space, as
the first backup contains copies of all the files modified
since the last full backup, and then the next differential
backup contains all of that data, plus all of the additional
modified files between the first and second differential
backups. Without a full backup at some point in the chain,
differential backups will become exponentially larger as
time goes on. Also, if one or more of the differential
backups is incomplete, you won’t be able to achieve a full
recovery from the partial differential backup and the full
backup of the data.

Incremental Backup

Incremental backups create copies of any data that has
changed since the last backup of any kind, whether it’s a
prior full, differential, or incremental. This type of backup
takes the least amount of space and requires the least
amount of time to create. If you create a full backup once
a month and a differential backup once a week, you’d do
well to create your incremental backups daily to ensure
that any changes made to your data will be captured.

Incremental backups are difficult in that it can be
challenging to restore all your files across multiple
backups, as each will have to be opened individually and
specific files restored from the desired backup point. That
means using all the available restore points to complete a
full restoration, whereas a differential backup requires
only the most recent differential and the most recent full
backup to complete a full restoration.

Devising a Backup Schedule
Backups are of little value if not taken regularly. Your most critical
data probably changes daily, so having a two-month-old backup of a
document isn’t helpful if it becomes corrupted or otherwise
permanently unavailable. Therefore, it’s essential to decide how
often backups should be created. Your backup strategy will be highly
individual and unique to your particular set of circumstances and
requirements, though there are some best practices you can follow.

It’s usually best to create full backups less frequently than
differential or incremental backups, because of how much space and
time they take up. Taking differential or incremental backups allows
modified data to be backed up more frequently, and these backup
types are less prone to failure due to time constraints than a full
backup would be. As a general rule, taking a full backup of your
primary systems or critical data once a month is a good place to
start, and you can adjust your backup strategy as needed.

Depending on the backup software you choose, you may have
access to some, all, or none of these specific scheduling options.
Some software, for example, technically has all of this functionality
and will allow you to restore data from your backups from different
points in time, but the differential/incremental/full backup and restore
options will not be displayed to you directly. Most operating systems
come with an integrated backup solution (discussed later).
Depending on your requirements, the built-in options might be
sufficient. Otherwise, you can consider various paid solutions.

Onsite and Offsite Backups
Depending on the criticality of the data you choose to back up,
keeping offsite backups in addition to onsite backups might be a
good idea. Onsite backups are held in the same physical location as
your original data, such as your home or office. Offsite backups are
stored away from your primary location. Storing your backups in
multiple locations provides data redundancy; if your onsite backups
and original data are destroyed, an offsite backup may be your only
option for recovery. Typically, an offsite backup will be stored offline,
not connected to your network, and ideally in something like a
fireproof safe. Alternatively, you might choose to use a cloud
solution, but that comes with its own security risks.

Having an offsite backup may create additional administrative
overhead. In most cases, you’ll create your backup onsite, either by
using a backup application or by copying the onsite backup in its
entirety, and then remove that backup physically from the premises.
This should be done on a regular schedule in the same way as
onsite backups, as it affords you more options in the event of an
emergency.

What to Back Up and What Storage to Use
Choosing exactly what you want to back up can be a challenge at
first. Do you need to be able to recover an entire device from a

previous checkpoint, or do you need only specific files? If you don’t
need to recover the whole operating system, it’s best to determine
which files and folders are critical or would be useful to recover.
Consider how long you can be without the data before it really starts
to impact you, your users, or your business. The time it takes to
restore data from backup depends entirely on how much data you
have to restore.

The other consideration when determining what to include in your
backup strategy is what kind of storage, and how much, you have
available to store your backups. You could choose to create backups
of files on the device itself, but doing so isn’t very useful if the device
is lost, stolen, destroyed, or otherwise unavailable. A better option is
to use an external hard drive, which can be obtained from any local
computer store in any capacity that suits your needs. It’s a cheap,
easy option that allows you to create onsite backups and secondary
backups that can be easily stored offsite. Finally, you could purchase
dedicated storage for your backups in the form of a network-attached
storage (NAS) device. An NAS connects to your network, has high
storage capacity, and usually includes additional features like drive
redundancy and automation. It offers greater performance and
reliability than a stand-alone external hard drive but is often more
expensive and requires some administration.

Whichever storage solution you choose, it should match your
needs in terms of what you plan to back up. Full-disk backups of
your devices will take up a lot of space, as internal storage for
computers is typically up to or greater than 1TB. If you’re planning to
back up only critical personal files, you won’t need as much storage
for your backups. Chances are you’ll start with an external hard drive
and then upgrade your storage as your needs increase over time.
The solution you choose will depend largely on your operating
system, whether your endpoint is physical or virtual, and how much
data you want to keep in your backup set.

If you want to maintain your own backups, most operating systems
have built-in backup solutions, some of which are more fully featured
than others.

#31: Using Windows Backup
To access the built-in backup solution for Windows, open Windows
Settings▸Update & Security▸Backup. You’ll need to connect a
drive to the computer that will store your backup data. Once
connected, click Add a Drive and select it, as shown in Figure 9-1.
Note that in Windows 11, Windows Backup is found under Windows
Settings▸Accounts▸Windows backup, and the settings are per
user. You can use Windows Backup in Windows 11 to sync your
files, applications, and preferences to OneDrive, but the option to
back up a local drive to an external or network drive is no longer
available.

Figure 9-1: Windows backup to an external drive

When you’ve selected the drive, the Automatically Back Up My
Files option will be turned on. This will keep various copies of the
more critical data in your user profile folder (C:\Users\<username>)
such as your Documents, Desktop, and Downloads folders, as well
as application settings from the AppData folder. You can choose
which folders to include in your backup by clicking More Options.

Windows Backup is essentially a full backup plus differential
backup strategy. It’ll take a complete backup of your chosen files to
start with and will then keep every new version or modification to any

of those files on an hourly basis by default, forever (or until your
backup drive space is exhausted). This allows you to view and
restore your files from any point in the backup timeline. There are a
few limitations to this, including being unable to save your backup to
a network location and not being able to take full system images.

#32: Using Windows Backup and Restore
Windows Backup, discussed in the previous project, is great for
backing up specific files and folders, but not for taking full system
backups. Luckily, all versions of Windows since Windows 7 include
Back up and Restore, which is useful for creating full system
backups including system images that can completely restore a
system (if it were to become corrupted by ransomware, for example).
It’s also capable of creating backups to an external or network drive,
though it doesn’t keep older versions of your files or file history.

In Windows 10, you can get to Back up and Restore by going to
Windows Settings▸Update & Security▸Back up▸Go to Back up
and Restore (Windows 7). In Windows 11, Back up and Restore is
found in Control Panel▸System Security▸Back up and Restore
(Windows 7). You’ll be presented with the screen shown in Figure 9-
2.

Figure 9-2: Windows Back up and Restore window

On the left, you have options to create a system image or a
system repair disc. In case your computer becomes inaccessible due
to issues with the hardware or the operating system, you’ll be able
use either of these to restore the computer to its current, known-
good configuration, with all of your files intact in their present state.

1. Click the Set Up Back-up button on the right to create a
regular backup schedule of your personal and system files.

2. Attach an external drive and click Refresh to select it as a
backup location, or specify a network drive or location by
clicking Save On a Network and specifying the network
location and the necessary username and password (if
any); then click Next.

At this point, Windows will ask you what you want to include in
your backup. By default, you can let Windows choose what to
include, which will be your personal files and folders from C:\Users\
<username>.

3. Select the Let Me Choose radio button and then click
Next.

4. Choose what to back up.
a. Enable or disable backup of new users’ files

(assuming new user accounts will be created on this
computer).

b. Include and exclude any personal libraries such as
Documents or Pictures and locations like your
Desktop and Downloads folders.

c. Select any folders from the drives on your computer.
d. If you’d like to regularly back up your entire system,

ensure that the checkbox to include a system image
of your device is checked. When you’re happy with
the settings, click Next.

5. At this point, you can choose the schedule on which you
want this backup to run, which can be daily, weekly, or
monthly.

6. Click Save Settings and Run Backup to take the first full
backup of your data.

You now have a regular backup of your folders to either an
external or network drive on your Windows system.

#33: Using macOS Time Machine
Apple devices come with their own built-in solution for backing up
your data called Time Machine, accessed via System
Settings▸Time Machine (Figure 9-3).

Figure 9-3: macOS Time Machine

Time Machine can back up your data either to an external drive
directly connected to your computer or to network-attached storage.
This network storage can be in the form of an Apple Airport Time
Capsule (designed explicitly for Time Machine backups), a drive
connected to an Apple Airport Extreme base station, another Mac
that has been shared as a Time Machine backup destination, or a
dedicated NAS device that supports Time Machine over SMB. If you
have any of these in your network already, I recommend using that
solution. If you don’t have one of these available, the simplest and
cheapest solution to back up your Mac is to use an external drive
rather than a network location. Typically, when you plug in a high-
capacity drive to your Apple device, you’ll be presented with a
prompt asking if you’d like to use that drive for Time Machine
backups. Alternatively, you can select a specific backup disk using
the Select Backup Disk option shown in Figure 9-3.

Time Machine doesn’t provide the option to schedule backups; it’ll
back up your data at predefined times. Time Machine keeps 24-
hourly snapshots of your data, rolling daily backups for one month,

and rolling weekly backups for as long as there’s space remaining on
your backup drive. Once the space is exhausted, Time Machine will
delete its oldest backup set to accommodate the more recent
versions of your data. Check Back Up Automatically to allow Time
Machine to do so.

The options for selecting the data you want to back up are
somewhat limited. By default, Time Machine will back up your entire
device, including system files, applications, accounts, preferences,
emails, music, photos, movies, and documents. Click Options to
exclude any of these using the dialog shown in Figure 9-4.

Figure 9-4: Time Machine backup options

Overall, Time Machine is a robust solution for backing up and
restoring your Apple endpoints.

#34: Using Linux duplicity
In Ubuntu, several utilities are available for creating backups of your
files. The easiest to use is duplicity, a command line utility that

creates full and incremental backup archives to local storage,
external hard drives, or network locations. Use the following
command to install duplicity on your Ubuntu endpoints:

$ sudo apt install duplicity

Once the command completes, execute duplicity with the -h option
to display its help file and confirm the installation was successful:

$ duplicity -h
Usage:
 duplicity [full|incremental] [options] source_dir target_url
 duplicity [restore] [options] source_url target_dir
 duplicity verify [options] source_url target_dir
 duplicity collection-status [options] target_url
 duplicity list-current-files [options] target_url
 duplicity cleanup [options] target_url
 duplicity remove-older-than time [options] target_url
 duplicity remove-all-but-n-full count [options] target_url
 duplicity remove-all-inc-of-but-n-full count [options]
target_url
 duplicity replicate source_url target_url
--snip--

Read through the output to familiarize yourself with the available
options and configurations. In the following sections, we’ll discuss
some of the most commonly used features.

Creating Local Backups with duplicity
The following example uses duplicity to create an initial full backup of
a user’s home directory, saving the output to the /tmp/ directory on
the local system:

$ duplicity /home/user file:///tmp/
Last full backup date: none

GnuPG passphrase for decryption:
Retype passphrase for decryption to confirm:
--------------[Backup Statistics]--------------
StartTime 1634779305.32
EndTime 1634779305.94
ElapsedTime 0.62 (0.62 seconds)
SourceFiles 139
SourceFileSize 5793461 (5.53 MB)
NewFiles 139
NewFileSize 5793461 (5.53 MB)
DeletedFiles 0
ChangedFiles 0
ChangedFileSize 0 (0 bytes)
ChangedDeltaSize 0 (0 bytes)
DeltaEntries 139
RawDeltaSize 5465781 (5.21 MB)
TotalDestinationSizeChange 660694 (645 KB)
Errors 0

Note that the target directory (where the backup archive will be
saved) must have the file:// prefix. The /tmp/ directory is a holding
location for the backup; you should either move the backup
elsewhere once completed or save the backup somewhere else. The
first time this command is run, duplicity will take a full backup of the
source files or folders. Subsequent execution of the same command
will create incremental backups of the source data. The command
outputs statistics, as shown in the listing, including the start and end
time of the backup operation, how many files were included, and the
total size of the backup archive. Backups created with duplicity must
be protected with a passphrase.

To create another full backup, specify the full option, like so:

$ duplicity full /home/user file:///tmp/

Doing so will force duplicity to create a full, rather than an
incremental, backup of the data.

Creating Network Backups with duplicity
Saving backups to a network location is preferable to saving them to
a local folder for several reasons. Saving backups locally is risky,
because if you lose access to the endpoint or it becomes otherwise
unavailable, you have no backups to restore from in other locations.
Also, if an adversary gains access to the system, they’ve gained
access to your (encrypted) backups as well. Therefore, it’s safer to
save to a remote location like a fileserver. This can be achieved
using the rsync functionality built in to duplicity. The following
command assumes you’ve followed the instructions in Chapter 1 to
create SSH keys and use SSH key authentication instead of
password authentication. If this is not the case, go back and do so
now. SSH key authentication requires the use of a public/private key
pair that’s shared between the local and remote endpoints, enabling
them to perform cryptographically secure communication that offers
greater security than the use of password or passphrase
authentication.

$ duplicity /home/user rsync://user@server_ip//path/to/folder/

Once you’ve decided which files and folders you want to back up,
and the backup location, schedule duplicity to create regular
backups of your files using Crontab, a built-in Linux job discussed in
detail in Project 27 on page 122:

$ sudo crontab -e
--snip--
m h dom mon dow command
0 0 * * 1 duplicity /home/user
rsync://user@server_ip//path/to/folder/
0 2 1 * * duplicity full /home/user
rsync://user@server_ip//path/to/folder/

The -e option of the Crontab application indicates that you will edit
the cron file and the scheduled jobs maintained by cron. The
commands shown in the Crontab in this example schedule duplicity

to run at midnight every day, create an incremental backup, and
force a full backup to be created on the first day of every month at 2
AM.

Restoring duplicity Backups
Use the command line to restore backups created with duplicity:

$ duplicity restore file:///tmp/ /home/user/backup_folder_name/

Entering the restore command with a source and target path
restores all files from the backup set to the specified location.

There are various options to restore specific files and folders from
a backup set if required. Here’s an example:

$ duplicity -t 3D --file-to-restore
/home/user/Documents/test.txt \
 file:///tmp/ /home/user/Documents/restored_file

In this command, we invoke duplicity, tell it to restore the version
of the test.txt file (specified immediately after the --file-to-restore
argument) from three days ago with the -t 3D parameters from the
backup we created in the /tmp/ folder on the local system, and we
then save the resulting file to the /home/user/Documents/ folder. For
more information on restoring files and the options available, review
duplicity’s man page.

Additional duplicity Considerations
The duplicity utility has several other powerful options. You might
want to exclude certain files or folders from your backups; for
example, you’ll often want to exclude system folders when creating
backups of user data. Use the --exclude argument to exclude files
and folders:

$ duplicity --exclude /proc --exclude /mnt / file:///tmp/

Once your backups have run to completion, use the verify
parameter and swap the source and target locations from your
original backup command to confirm they were created successfully:

$ duplicity verify file:///tmp/ /home/user/
Local and Remote metadata are synchronized, no sync needed.
--snip--
Verify complete: 325 files compared, 0 differences found.

If the output reveals no errors, your backups were successful.
There will be times when you want to delete older backups, either

because they’re no longer needed or to free up space for newer
backups. First, review the available backups in your backup set
using the collection-status parameter:

$ duplicity collection-status file:///tmp/
--snip--
Collection Status

Connecting with backend: BackendWrapper
Archive dir:
/home/user/.cache/duplicity/c2731c0788339744944161fd8afb74dd

Found 1 secondary backup chain.
Secondary chain 1 of 1:

Chain start time: Wed Oct 20 19:53:09 2022
Chain end time: Wed Oct 29 20:11:39 2022
Number of contained backup sets: 2
Total number of contained volumes: 2
 Type of backup set: Time: Num
volumes:
 Full Wed Oct 20 19:53:09
2022 1
 Incremental Wed Oct 29 20:11:39
2022 1

Found primary backup chain with matching signature chain:

Chain start time: Wed Oct 20 20:11:53 2022
Chain end time: Wed Oct 20 20:11:53 2022
Number of contained backup sets: 1
Total number of contained volumes: 1
 Type of backup set: Time: Num
volumes:
 Full Wed Oct 20 20:11:53
2022 1

No orphaned or incomplete backup sets found.

Once you know how many backups are in your backup set and
how old they are, you can delete older backups based on age:

$ duplicity remove-older-than 3D file:///tmp/

The 3D means older than three days.
You also can remove all but the desired number of full backups:

$ duplicity remove-all-but-n-full 1 file:///tmp/

Here the 1 indicates to duplicity that it should delete all but the
most recent full backup from the backup set. Read duplicity’s man
page to become familiar with the available options for creating,
restoring, or deleting backups.

Cloud Backup Solutions
Although cloud services like Google Drive and Dropbox are not true
backups, they’re capable of keeping a secondary copy of your local
data in the cloud (akin to an offsite backup), keeping tertiary copies
on your other systems, and maintaining a version history of each of
your files—and they do all of this consistently and regularly. Most of
these services come with some level of free storage as well, so you

can try them out and upgrade to a paid plan if you decide they work
for you.

Google Drive and Dropbox are generally designed for file sharing
and online collaboration rather than for backing up data. Using a
service geared explicitly toward backing up data, although not free,
will generally provide more features, granular control, and storage at
a lower cost. Backblaze and Carbonite are two reliable cloud backup
services that encrypt your data locally and automatically back it up
using a client application on your computer. Backblaze will back up
your files, and Carbonite is capable of backing up your entire
computer. In general, look for services that encrypt your data both at
rest and in transit. Carbonite and Backblaze are currently available
for Mac, Windows, and Linux.

Backblaze
Backblaze is a great option if you want a set-and-forget backup
solution. Once downloaded and installed, it immediately begins
backing up your files to the Backblaze cloud servers and will
continuously do so unless set to do otherwise. Virtual machine files
and folders are the only data automatically excluded, although you
can remove those from the exclusions list. You’ll be able to back up
not only your computer’s internal hard drive but any attached
external drives as well. Backblaze maintains all versions of your files
for the previous 30 days, which can be extended to one year or more
with an additional fee. You can restore your files from the application
(shown in Figure 9-5), the web UI, the mobile app, or by having
Backblaze physically mail your files to you on a USB drive.

Figure 9-5: Backblaze GUI

The security features Backblaze offers are worth considering. Your
files are first encrypted by the application, are transferred to the
cloud using SSL (encrypted transmission), and are then stored,
encrypted, on the Backblaze servers. Even better, you’re able to
configure your own decryption key, so Backblaze itself is unable to
decrypt your data, which adds another layer of complexity for any
adversary who might gain access to your encrypted data. You also
can add two-factor authentication so that, in addition to your
password, your decryption key, and your email address, anyone who
wants to access your data, including yourself, requires a one-time
password. With all of those features combined, any third party trying
to access your data will have a lot of layers of defense to contend
with. Additionally, Backblaze is one of the cheapest cloud backup
solutions available.

Carbonite

If you need a backup provider capable of restoring your entire
computer in the event of catastrophic failure, Carbonite is one
possible solution. In extreme cases, like the event of ransomware,
having the capability to restore your computer all the way down to
the operating system settings and configuration in addition to your
critical files is beneficial because you might find the entire operating
system becomes corrupted or otherwise unusable. Carbonite has
several plans at tiered price points so you can choose the level of
cover for your specific needs. As with Backblaze, Carbonite locally
encrypts all the data it backs up, which is sent to the cloud over SSL
and encrypted on the Carbonite servers. Depending on the plan you
choose, it’s capable of backing up external hard drives and provides
unlimited cloud storage (in some cases). Carbonite will also keep
your backed-up files for an unlimited amount of time, and it won’t
delete file versions older than 30 days.

Once you’ve downloaded and installed the application (shown in
Figure 9-6), it’ll start uploading the first backup of your data
automatically. You can tell it which files to include or exclude.

Figure 9-6: Carbonite GUI

Carbonite, like Backblaze, will run in the background, continuously
backing up your data. When you want to restore a file from your

backup, you can do so through the application. There is no web UI or
mobile app available.

Virtual Machine Snapshots
Virtual machines provide a lot of benefits not seen in physical
computers. They’re able to share hardware (processors and RAM),
are fast to start up or reboot, and can be created with just the right
amount of resources for their specific purpose. One of the best
things about them is the capability to create snapshots.

A virtual machine snapshot is a copy of that virtual machine at a
given point in time. A snapshot generally includes all information
related to a virtual machine at the time the snapshot is taken,
including its power state (on, off, or paused/suspended), the
contents of its virtual memory, and the contents of its virtual hard
disk.

Whenever you’re making significant changes to a virtual machine,
it’s wise to create a snapshot of that machine beforehand to protect
yourself from the eventuality that your modifications will break your
virtual machine. Having a snapshot just before the changes that
rendered your virtual machine unusable allows you to revert to the
known-good configuration as if the changes were never made in the
first place. It’s like a real-life undo button.

All major virtual machine software (such as VMware, VirtualBox,
and Hyper-V) are capable of creating snapshots of the virtual
machines they manage. Figure 9-7 shows an example of VMware’s
Snapshot Manager.

Figure 9-7: VMware Snapshot Manager

From within Snapshot Manager, you can create a new snapshot
with the Take Snapshot button, go to a specific snapshot (that is,
revert the virtual machine to the point in time a given snapshot was
taken), delete or clone a snapshot, or enable AutoProtect, a feature
that creates snapshots on a predefined schedule, allowing you to
revert to a snapshot from multiple points in the past. Snapshots are
available in most hypervisors, but the settings and options might
differ slightly.

While snapshots aren’t a backup in the literal sense, they are
useful for restoring a working virtual machine configuration. You
shouldn’t use snapshots as your only means of backing up, but
including them as part of your strategy is often handy. A sensible
solution would be to include all the virtual machine files in your
regular backup strategy.

Testing and Restoring Backups
Once you’ve created your backup strategy and your most important
data is being regularly backed up onsite and offsite, it’s important to
test these backups at regular intervals. If you suffer a loss of data
and try to restore it from your backup only to find out it has become
corrupt, your backup strategy is providing no value.

To restore your files on Windows, open the Backup and Restore
menu. Click Restore My Files or Restore All Users’ Files. You can
look through the contents of your backups by using the Browse for
Files or Browse for Folders options. You can also search the
contents of your backup via this menu.

To restore your files on a Mac using Time Machine, browse to the
folder from which you want to restore files, such as your Documents
or Downloads folder. Open Time Machine and then use the arrows
and timeline to browse the available local snapshots and backups.
Select one or more of the items you want to restore and then click
Restore. This can include files, folders, or your entire disk. Restored
items will return to their original location on your computer.

To restore files using Carbonite, Backblaze, or any other solution,
open the web portal or the application GUI. Then, locate the files or
folders you want to restore and follow the instructions provided.

When your first full backup of any system has been created, test a
few files or folders at random to restore. It may be worth finding
some larger files to include as part of this test, as the larger the file,
the higher chance there is of the backup failing partway through. If
you restore a sample of data and all seems well, set a reminder to
do the same again in a week and then a month following. If all of
your test restorations go smoothly, you can choose how often you
want to test your backups from that point forward. Somewhere
between one and six months is prudent.

With that done, your backup strategy should be complete and
robust enough to recover from pretty much any data loss event or
disaster.

Summary
The solutions discussed in this chapter will be adequate for most
situations, but they aren’t guaranteed to fit your needs. When looking
for a backup solution, ensure that the one you choose is right for
your operating system, allows for the creation of backups containing
the data you want to back up (and nothing else), and is capable of
the type of backups you want to create. It should also be capable of
automatically creating backups on a schedule or creating a backup
of your data constantly. Finally, make sure that, once backed up,
you’re able to restore your data within a reasonable timeframe and
high confidence in the integrity of the restored data.

10
MONITORING YOUR NETWORK WITH

DETECTION AND ALERTING

Network monitoring provides real-time visibility into your network
activity, enabling you to stay ahead of potential threats and (ideally)
stop adversaries before they’ve performed any disruptive action.
Monitoring your network is a huge undertaking, so alerts are often a
useful starting point for investigations. Without meaningful alerts,
network monitoring is like finding a needle in a haystack—trying to
identify malicious activity within a very large dataset.

Your firewalls, proxies, antivirus, and other solutions should be up
and running for at least a month before you start trying to actively
monitor your hosts and network traffic, just to ensure they’re
functioning correctly. Up until this point, everything has been relatively
passive; once set up, no further input from you is required, unless you
need to update or change the configuration.

Due to their nature, active monitoring and alerting can take
considerable time and effort—not only to implement but to maintain,
and that is especially true as a network expands. Not only will you
need to check in regularly to see whether your network monitoring
software has identified any threats or unusual behavior, but you’ll also
need to investigate this behavior and potentially work to mitigate the
identified activity. Depending on the size of the network, monitoring it
could be a full-time job for one or more people.

This chapter will arm you with the knowledge and tools required to
monitor your network and alert you to suspicious behavior
successfully. We’ll discuss how, when, and where to implement
network traffic access points (TAPs) and a switch port analyzer
(SPAN) in your network to enable network traffic capture, monitoring,
and analysis. Finally, we’ll build a network monitoring appliance using
Security Onion—a free suite of network security monitoring tools—and
discuss how best to utilize its built-in capabilities.

Network Monitoring Methods
You can use several methods to monitor and capture network traffic for
real-time or post-facto analysis and alerting. The method you choose
depends mostly on your network’s hardware, as each device has
different capabilities. We’ll discuss two of the most common methods
in the following sections.

Network Traffic Access Points
In small networks without switches, you can install a network traffic
access point (TAP) to monitor the data that passes through it. A TAP is
an inline device, placed between two nodes on a network; it becomes
an extension of the transmission medium (like an Ethernet cable) that
already exists between those two devices. In Figure 10-1, the TAP is
between the firewall and router.

Figure 10-1: Placement of a network TAP

In this configuration, all traffic passing between the router and the
firewall is sent by the TAP to a monitoring device, where it’s stored for
analysis.

TAPS AND INTRUSION DETECTION SYSTEMS

Coupling TAPs with an intrusion detection system (IDS) allows
administrators to identify suspicious activity occurring across this
ingress and egress point. An IDS is a software or hardware tool that
uses a set of rules or signatures to identify known-bad behavior.
When an IDS identifies something suspicious in your network traffic,
it will generate an alert that you can investigate to decide whether
it’s actually malicious (a true positive) or benign (a false positive).
You can then ignore the alert or take action to mitigate and
remediate the problem, which we’ll discuss at length later.

When placing a TAP, consider what you actually want to see and
investigate. In a configuration like the one shown in Figure 10-1, you’d
capture all the traffic between your endpoints and the firewall (the
network’s boundary). Monitoring your major egress point lets you
investigate things like data exfiltration, where an adversary is trying to
steal your data by sending it outside your network. However, with this
configuration, you won’t be able to see traffic between your endpoint
devices, as that is handled by the wireless router and never reaches
the TAP.

If you placed the TAP behind the firewall (as opposed to on the
internet side), you wouldn’t see any traffic from the internet attempting
to reach the internal network that’s blocked by the firewall. If the TAP is
in front of the firewall, you wouldn’t see the outbound traffic being
blocked by the firewall; the security monitoring system also would lose
the protection of that firewall and become an easy route into your
network. Decide which of those scenarios you’re comfortable with and
place your TAP accordingly. In most cases, it’s best to place the TAP
behind the firewall (inside your network) and review the firewall logs
for what the TAP doesn’t see.

A TAP is an inline device. Be aware that if the TAP becomes
unavailable or goes offline—if any of its limited network ports fail—your
entire network will lose access to the internet. Your endpoint devices
should still be able to communicate with each other via the router, but
traffic will no longer pass through the TAP.

Several TAP devices are available at reasonable prices. One of the
simplest is the Dualcomm ETAP. One possible configuration of such a

TAP would be to connect the firewall in Figure 10-1 to the A inline port,
connect the B inline port to the wireless router, and connect a separate
cable to the monitoring port of your network security monitoring device
(discussed in the next section). Such a configuration would allow traffic
to flow through the TAP as if it wasn’t there, except that it would be
intercepted, monitored, and analyzed by the network security
monitoring system.

Switch Port Analyzers
An alternative to a network TAP is the switch port analyzer (SPAN) or
mirror port (interchangeable terms) functionality provided by a switch.
A SPAN does the same thing as a TAP; it mirrors (or copies) all the
data passing through a source port(s) to the destination SPAN port on
the switch. Your network security monitoring system is then connected
to the SPAN port to capture the network traffic for analysis and
alerting. In most modern switches, it’s possible to create a SPAN
configuration with multiple source ports, so you can capture data from
any port(s) on a switch.

A SPAN configuration in a small network might look like the one
shown Figure 10-2, where the firewall or other system provides IP
addresses to endpoints. Each host is connected by Ethernet to a port
on the switch, and then the network security monitoring device is
connected to the SPAN configured on the switch. Unlike TAPs, if a port
on the switch fails, the rest of the network continues functioning, but if
the entire switch goes offline due to a power failure, the entire network
will go down with it.

Figure 10-2: A small network with a switch and SPAN port

Unlike a TAP configuration, with a SPAN set up on a switch, you’ll
be able to capture and analyze computer-to-computer traffic in addition
to inbound and outbound data. You’ll still have the placement issue,
though; when the switch is on the internal side of the firewall (as it
should be), your security monitoring system won’t have visibility over
the traffic blocked by the firewall.

#35: Configuring a SPAN Port

To configure a SPAN port on a managed switch, like the Netgear
switch that we used in Chapter 2, follow these steps:

1. Log in to the switch with administrator credentials.
2. Select System▸Monitoring▸Mirroring.
3. In the Port Mirroring Configuration table that appears, click

the source ports from which you want to capture network
traffic to select them. Selected ports will have a check mark.

4. In the Destination Port drop-down box, enter the port to use
as the SPAN port you’ll connect to your security monitoring
system.

5. Finally, in the Mirroring drop-down menu, select
Enable▸Apply.

Whether you choose to set up a TAP or a switch with a SPAN port,
you’ll need a network monitoring solution capable of aggregating
collected data. The best solution currently available for small networks
is Security Onion, which includes various components for capturing
and aggregating network data and enables you to quickly analyze that
data.

Security Onion
Security Onion is an open source platform for threat hunting, network
security monitoring, and log management. It’s an operating system,
like Ubuntu, that includes several open source tools we’ll utilize to
monitor our network for security and configuration issues.

Security Onion’s tools include suricata, an intrusion detection
system, and zeek, a software framework for analyzing network traffic
to identify anomalous behavior. Grafana is a set of visualizations and
dashboards for monitoring the health of the Security Onion system,
and osquery gathers data about the endpoints in your network and the
operating systems they’re running for analysis. Wazuh is similar to
osquery; it’s an agent-based tool that gathers analyzable data from
your endpoints and is used for active endpoint detection and response

(in the case of a security incident). Finally, Strelka is a real-time file-
scanning utility that analyzes network traffic and scans any files
traversing the network; it’s useful for identifying malware or data
exfiltration.

SECURITY ONION TOOLS FOR LARGER NETWORKS
Security Onion makes use of the ELK stack (which includes Elastic,
Logstash, and Kibana) to create visualizations and dashboards.
ELK is similar to Grafana, except where Grafana is used to display
information about the system itself, ELK displays information about
the network data being captured, allowing the user to view and
analyze the data easily. ELK is a powerful tool but is outside the
scope of this book as it is more advanced than the tools within
Security Onion’s security dashboard. However, many online
resources discuss ELK and its use in great detail if you’d like to
investigate it further.

Security Onion is designed to be scalable and is capable of
monitoring very large networks, so it includes tools that aren’t
necessary on small networks, such as TheHive, an incident
management system, and Playbook, a tool for creating incident
management playbooks; those tools are primarily used in larger
networks, so they aren’t covered here.

In the following sections, we’ll discuss creating your network security
monitoring system using Security Onion and its built-in tools. We’ll
explore how to utilize these tools to start monitoring your network, and
how to triage and investigate problems when they arise. It’s up to you
whether you’d like to buy or build your Security Onion appliance.
Security Onion Solutions has preconfigured appliances ready to go out
of the box.

#36: Building a Security Onion System
To build a Security Onion system, you’ll need a device with a minimum
of two network interfaces: a management interface and a capture

interface (connected to the TAP or SPAN). We’ll use an Intel NUC (a
small form factor computing unit) with two Ethernet ports, which is very
customizable and available at various price points depending on your
budget and requirements. The following minimum hardware
specifications are detailed in the Security Onion documentation:

• 12GB of RAM
• Four CPU cores
• 200GB of storage
• Two network interfaces

One additional consideration is how much storage you need. For
reference, a NUC with an internal storage space of 2TB might be
capable of storing around three weeks of data, depending on the
number of devices, number of users, and amount of network traffic in
your network. After that point, the data will be kept on a rolling cycle,
where older data is deleted in favor of newer data. To enable better
incident response capabilities in your network, the more data you
keep, the better. If you discover an adversary in your network that has
been there for 12 months but you have only one month of data, you’ll
never be able to determine root cause, making it difficult to kick them
out and prevent the problem from recurring.

Once you have a NUC (or similar device), you’ll install Security
Onion. At this stage, it’s also a good idea to connect the network port
you plan to use for management (not the port you’ll use for capturing
network traffic) to your network so you can set up its configuration. It
doesn’t matter which of the two network ports you use for
management and traffic capture. This device will need a static IP
address, and while you could do that on the device itself, it’s better to
configure the static addressing on your router or whichever device is
responsible for IP address leases in your environment (like your
wireless router or pfSense device). Having the management port on
your NUC (and only this port) connected will make it easier to identify
when installing and configuring the rest of the software. After this
process is complete, you can then configure the capture port
independently. You should configure the static IP address for the
management interface now, as some of the agents we’ll install have

requirements and dependencies based on this address, so changing it
later can create challenges.

Installing Security Onion
You can install Security Onion from an ISO file (available directly from
Security Onion Solutions at
https://securityonionsolutions.com/software/) or manually using
CentOS 7 as the base operating system and then installing the
Security Onion package like any other application in a Linux
environment (note that CentOS 7 is the only OS supported by Security
Onion). Using the ISO file is a simpler and faster method of creating a
Security Onion system, whereas manual installation requires slightly
more effort. However, manual installation allows you to have more
granular control over things like disk partitioning. If that is of interest to
you, choose the manual installation method. If not, install Security
Onion using the ISO file.

Installing Security Onion from the ISO File
Start by downloading the latest ISO from Security Onion Solutions,
and follow the procedure outlined in Chapter 1’s “Creating a Physical
Linux System” to create a bootable USB drive from the ISO file. Plug
your bootable USB into your NUC, turn on the NUC, and you’ll be
presented with the Security Onion installation wizard. Follow these
steps to complete the installation:

1. The wizard will prompt you to install Security Onion,
destroying all data and partitions. Type yes and press
ENTER to accept this and begin the installation process.

2. Enter an administrator username when prompted; then press
ENTER.

3. Enter a strong passphrase for the user; then press ENTER.
4. Repeat the passphrase to confirm it; then press ENTER to

initiate the installation.

https://securityonionsolutions.com/software/

5. Once installation completes, the computer will reboot. Log in
with your newly created credentials and the Security Onion
setup wizard will pop up. Press ENTER to continue.

6. Using the arrow keys, select Install to run the standard
Security Onion installation; then press ENTER.

At this point, the process for completing the installation of
Security Onion is the same for both the ISO file installation
and the manual installation paths. Jump to the section
“Completing the Security Onion Installation” on page 157.

Installing Security Onion Manually
You can install Security Onion entirely from scratch by installing
CentOS 7 on your NUC and then installing the Security Onion
packages and tools on top. To do this, follow these steps:

1. Download the most recent CentOS 7 ISO (the correct format
is x86_64) from https://www.centos.org/.

2. Follow the procedure outlined in Chapter 1’s “Creating a
Physical Linux System” section to create a bootable USB
drive from the ISO file.

3. Plug your bootable USB into your NUC and boot from the
USB. You’ll be presented with a few options; choose Test
this Media & Install CentOS 7.

4. At this point, a graphical installation wizard appears. Select
your desired language and click Continue.

5. Set the correct time zone and keyboard layout.
6. Under Software Selection, it’s recommended to choose

Server with GUI for ease of administration.
7. Under System▸Installation Destination, select the internal

disk where you plan to install Security Onion and then choose
I Will Configure Partitioning. Click Done to proceed to the
partitioning wizard. Partitioning defines how the hard drive
storage will be divided among the users and applications on
the system.

8. Select LVM Partitioning and create the following partitions:

https://www.centos.org/

a. /boot: CentOS will boot from this partition; it should
have at least 500MB of space available.

b. /boot/efi: Part of the boot partition; it should be at least
500MB.

c. /: The root of the filesystem; should be 300GB.
d. /tmp: For temporary files; should be 2GB.
e. swap: For swap files; should be 8GB.
f. /home: A space for any user files; should be 40GB.
g. /nsm: For all the security tools and captured data; it

should be assigned the remainder of drive space.
9. Click Done▸Accept Changes to write the changes to disk.
10. Click Begin Installation to install the operating system.
11. Set your root passphrase and create a non-root,

administrative account on the following screen. If you want to
connect to this system via SSH, ensure that your
administrative account has a strong passphrase.

12. Once the installation is complete, reboot the machine and
remove the installation USB. Then, boot to your CentOS
operating system.

13. Accept the license information.
14. You might need to turn the network card on to enable the

network. Click Network & Host Name, toggle the network
button to On, and then click Done.

15. Click Finish Configuration.

With CentOS installed, next install Security Onion. First, connect to
your server via SSH or log in directly. Change directory to the /nsm
partition you created during the initial setup:

$ cd /nsm

Use sudo yum install to install Git (an application for software
management) and then git clone to download Security Onion:

$ sudo yum install git -y
$ sudo git clone \
 https://github.com/Security-Onion-Solutions/securityonion

(Whereas Ubuntu is based on Debian Linux and uses the apt utility to
manage software packages, CentOS is based on Red Hat Linux and
uses yum.)

Navigate to the newly created securityonion directory and run the
setup script:

$ cd /nsm/securityonion/
$ sudo bash so-setup-network

Running this script starts an interactive installation wizard that leads
you through the initial setup and configuration of your Security Onion
server.

Completing the Security Onion Installation
Now that the basic configuration of the operating system has been
completed, you’ll start installing and configuring the tools you’ll use to
monitor and analyze the network traffic. Zeek is a security monitoring
platform that will enable you to analyze network traffic more efficiently
and alert on suspicious activity within your network automatically. It
does this by utilizing rulesets containing information on suspicious or
malicious activity, software, and network traffic, such as the ETOPEN
ruleset you’ll use here.

Regardless of how you’ve installed Security Onion, follow these
steps to complete the process:

1. Press ENTER to continue past the welcome screen (and to
progress to all other screens).

2. On the Installation Type page, navigate to STANDALONE
with the arrow keys, and press the spacebar to select the
option.

3. If you used the Security Onion ISO, select Standard on the
next page to indicate that this machine has internet access.

4. If you performed the manual installation of Security Onion,
type AGREE to accept the Elastic License on the next page.

5. On the next page, keep the default hostname for simplicity or
change it if you like (in larger installations that have more
than one server, changing the hostname will be beneficial). If
prompted to change the hostname, choose to proceed
anyway.

6. On the next page, enter a short description for this computer
or leave it blank.

7. On the network card configuration page, shown in Figure 10-
3, select the interface with the words Link UP next to it as the
management interface. It should be the only interface
plugged into the network at this point.

Figure 10-3: NIC setup wizard

8. Press the spacebar to set the monitor interface.
On the management interface page, you may receive an

informational error about using DHCP; as long as you’ve
configured a static address for this device, you can ignore
this message.

9. When asked how this computer should connect to the
internet, select Direct.

10. Select Automatic on the OS Patch Schedule page to keep
your operating system automatically up-to-date.

11. Specify your home network address range, identified in
Chapter 1. If your network uses 10.0.0.0/8 addresses, leave
that in the box provided and delete the other two subnets. If
your network uses 192.168.0.0/16 addresses, keep that in
the box and delete the other two, and so on.

12. When asked which type of manager to install, select
BASIC.

13. Select ZEEK as the tool to use to generate metadata.
14. Select ETOPEN as the IDS ruleset to use to generate

alerts.

NOTE ETOPEN is an open source ruleset updated regularly with new
and emerging threats and alerts. ETPRO and TALOS are similar to
ETOPEN, but they require a subscription. For small networks,
ETOPEN is sufficient.

15. The wizard then asks which components of the Security
Onion suite of tools you want to install. Select Osquery,
Wazuh, and Strelka.

16. If asked if you’d like to keep the default Docker IP range,
select Yes.

17. Enter your email address for the Security Onion
administrator.

18. Enter and re-enter the password for your account.
19. When asked how you will access the web interface, select

IP.
20. Set a strong passphrase for the soremote user account (for

performing some administrative actions).
21. Choose BASIC to install the network security monitoring

components with the recommended settings.
22. Type 2 for the number of Zeek and Suricata processes.

The number of processes dictates how much network
traffic your system can process. For small networks, two
processes should be sufficient; you can change this later if
necessary.

23. If asked if you’d like to configure NTP servers, choose Yes.
Network Time Protocol (NTP) is used to keep endpoints
synchronized. It’s best to keep your monitoring server in sync
with a time server to prevent time drift, which can cause
issues when troubleshooting alerts. Browse to
https://www.ntppool.org/ and choose an NTP server in your
region to keep your Security Onion server’s time in sync.

24. Select NODEBASIC when asked.
25. Run so-allow by pressing ENTER when asked to correctly

configure the firewall on the system to allow access to all the
tools being installed.

When asked for an IP address to allow access to your network
monitoring system, you can choose to allow access to the Security
Onion web interfaces from a single computer or device or from any
host in your network. For security purposes, you allow access only
from a single IP address.

26. Enter the IP address you plan to use; then press ENTER.
27. Finally, accept the configuration you’ve just created by

pressing TAB to select Yes; then press ENTER to finish the
setup wizard and commit the changes.

NOTE Security Onion and some of its tools, like Zeek, can run in a
cluster configuration, where the agents are installed on multiple
systems for enhanced data collection and processing. In small
networks, a stand-alone system is sufficient. In larger networks with
multiple network segments and switches, a cluster configuration
might make more sense.

At the end of the installation, the screen will display the URL to
access the Security Onion web interface; write this down (it should be

https://www.ntppool.org/

http://<your_server_ip>/). The system will reboot. Once it comes back
up, you’ll be able to log in via the URL using the email address and
passphrase you entered earlier. To test the Security Onion
configuration, run the following:

$ sudo so-status

This command lists the tools Security Onion is running and the
status of each, which should appear as OK if everything worked.

If any services haven’t started, wait a few minutes before running
the status command again. If they still fail to start, try starting services
manually using these commands:

$ sudo so-servicename-stop
$ sudo so-servicename-start
$ sudo so-servicename-restart

If you’re still unable to get the services to start, reboot the computer.
If all else fails, reinstall Security Onion.

Once you can access the Security Onion console, you’ll see a menu
on the left side that lists all the tools at your disposal (see Figure 10-4).

Figure 10-4: Security Onion tools

At this point, click Kibana, and a new tab will be launched in your
browser. You should see a minimal number of records because you
haven’t plugged in the capture port on your device.

Connect this port to the SPAN or TAP you configured earlier. Once
that’s done, refresh the page after a few minutes to see Kibana
populated with newly acquired data.

#37: Installing Wazuh
Security Onion’s additional tools help you to understand what’s
happening in your network and take action to investigate, mitigate, and
remediate issues when they arise. One of these packages is Wazuh.

Wazuh is an open source endpoint detection and response (EDR)
platform that monitors your endpoints for malicious activity, alerts you
within the Security Onion console, and provides the incident response
capabilities of blocking network traffic, stopping malicious processes,
and quarantining malware files.

Using agents like Wazuh can be controversial. In larger networks,
oftentimes so much is going on that adding something new to the
network, especially across all the systems, can cause stability issues
or create/exacerbate challenges around limited resources like
bandwidth. This is usually less of an issue in smaller networks
because capacity isn’t shared between so many devices, users, or
processes, and there generally aren’t as many solutions competing for
resources.

Installing Wazuh won’t have a meaningful impact on the daily
operations of your small network. Conversely, the value you receive
from the additional monitoring and security uplift far outweighs any
potential negative consequences of using multiple agents. Ultimately,
it’s your decision whether to install these agents on one, some, or all of
the endpoints in your network. The more complete your coverage and
network monitoring, the more secure your network is likely to be.

This section provides instructions for installing the Wazuh agent on
Windows, macOS, and Linux.

Installing Wazuh on Windows
To install the Wazuh agent on your Windows endpoint(s), follow these
steps:

1. Log in to your Security Onion console and click Downloads
in the left menu.

2. Click the MSI installer agent option to download the correct
installer; then run the downloaded executable on your
Windows computer.

3. Accept the license agreement and click Install.
4. Once the installation completes, tick the Run Agent

Configuration Interface checkbox and click Finish.
5. To add this new system to your Security Onion, log in to

Security Onion via SSH and run the manage_agents script.
Following the prompts, add an agent with A, list agents with L
to confirm the addition was successful, and extract the
authentication key for your new agent with E:

$ sudo docker exec -it so-wazuh
/var/ossec/bin/manage_agents
--snip--
Choose your action: A,E,L,R or Q: A
- Adding a new agent (use '\q' to return to the main
menu).
 Please provide the following:

 ❶ * A name for the new agent: Test
 * The IP Address of the new agent: 192.168.1.50
Confirm adding it?(y/n): y
Agent added with ID 002.
--snip--
Choose your action: A,E,L,R or Q: L
Available agents:
 ID: 001, Name: securityonion, IP: 192.168.1.49

 ❷ ID: 002, Name: Test, IP: 192.168.1.50
** Press ENTER to return to the main menu.
--snip--
Choose your action: A,E,L,R or Q: E

Available agents:
 ID: 001, Name: securityonion, IP: 192.168.1.49
 ID: 002, Name: Test, IP: 192.168.1.50
Provide the ID of the agent to extract the key (or '\q'
to quit): 002
Agent key information for '002' is:

❸ MDAyIFJvcnkgMTkyLjE2OC4xL . . .
** Press ENTER to return to the main menu.
--snip--
Choose your action: A,E,L,R or Q: Q
manage_agents: Exiting.

You’ll have to provide a name and IP address when you
add an agent ❶ . For the name, use the hostname of the
computer being added. Run the hostname command to find
the name:

$ hostname
Test

Find your IP address (see Project 8 in Chapter 1) or
consult the asset list or network map you’ve been
maintaining. When you list the agents, verify that an agent
with that name and IP address is present ❷. Use the agent’s
ID number to get its authentication key ❸. Return to the main
menu with ENTER and use the Q option to quit.

6. Open the Wazuh Agent Manager on your Windows
computer (see Figure 10-5) and enter the IP address of your
Security Onion system and the agent authentication key; click
Save.

Figure 10-5: Wazuh agent configuration

7. Click Manage▸Start to start the agent.
8. Every time you add an agent or make a change to Security

Onion or the systems that communicate with it, run the so-
allow script to enable communication between the devices
(otherwise, the host firewall on Security Onion will block it).
You should do this at the terminal, logged in to the Security
Onion system via SSH:

$ sudo so-allow

9. When prompted, enter w to add a firewall rule for a Wazuh
agent; then enter the agent’s IP address.

Wazuh will now manage this PC. Repeat the process for all other
devices (computers, laptops, virtual machines, and so on) in your

network that you want to manage in this way. System event logs will
then start showing up in your Kibana dashboard, so expect to see new
data and alerts in Security Onion.

Installing Wazuh on macOS
To install the Wazuh agent on your macOS endpoint(s), follow these
steps:

1. Log in to your Security Onion console, click Downloads, and
download the macOS package.

2. Run the installation wizard on your Mac.
3. Once complete, log in to your Security Onion system and run

sudo so-allow to allow your Mac access through the firewall
(this must be done before agent registration; otherwise, the
agent won’t be able to connect to the management server).

4. Following the prompts, choose the Wazuh registration
service with r and enter the IP address of your endpoint.

5. Now, register the agent with the Security Onion server:

$ sudo /Library/Ossec/bin/agent-auth -m
security_onion_IP

Next, you’ll add the Security Onion’s IP address to the agent
configuration file on your Mac so the agent can communicate with the
Security Onion server.

6. Open /Library/Ossec/etc/ossec.conf with a text editor.
7. Find the following lines and change MANAGER_IP to your

Security Onion server’s IP address:

<client>
 <server>
 <address>MANAGER_IP</address>

8. Restart the Wazuh agent:

$ sudo /Library/Ossec/bin/ossec-control restart

9. Confirm the agent has been successfully configured by listing
the agents on the Security Onion server; run the
manage_agents script and enter L when prompted for an
action:

$ sudo docker exec -it so-wazuh
/var/ossec/bin/manage_agents
--snip--
Choose your action: A,E,L,R or Q: L
Available agents:
 ID: 001, Name: securityonion, IP: 192.168.1.49
 ID: 002, Name: Computer1, IP: 192.168.1.50
 ID: 003, Name: MacBook-Pro.local, IP: 192.168.1.51
** Press ENTER to return to the main menu.
--snip--
Choose your action: A,E,L,R or Q: Q
manage_agents: Exiting.

If you see the hostname and IP address of the Mac, the agent is
active. Return to the main menu with ENTER and use the Q option to
quit.

Installing Wazuh on Linux
To install the Wazuh agent on your Linux endpoint(s), follow these
steps:

1. Log in to your Security Onion console, click Downloads, and
download the relevant package. For Ubuntu, this will be the
DEB package (it’ll be the RPM package for CentOS and
Fedora).

You can download the package directly from your Ubuntu
system, or you can download the package to your Windows
or Mac computer and transfer it to your Ubuntu system:

$ rsync -ruhP wazuh-agent.deb user@linux_ip:/home/user

When installing packages directly from package files (like
.deb files), use the dpkg utility instead of the APT package
manager (dpkg is the Debian package manager and is used
similarly to APT).

2. To install the Wazuh agent, run the following:

$ sudo dpkg -i wazuh-agent_3.13.1-1_amd64.deb

Your package’s version number may be different.
3. Next, log in to your Security Onion system via SSH and run

sudo so-allow to allow your Linux system access through the
firewall.

4. Following the prompts, choose the Wazuh registration
service with r and enter your endpoint’s IP address.

5. Register the Linux agent and connect it to the Wazuh
management server (that is, the Security Onion server):

$ sudo /var/ossec/bin/agent-auth -m security_onion_IP

6. Then, modify the configuration file on your Linux system to
allow it to communicate with the management server by
changing the MANAGER_IP placeholder in the ossec.conf file to
the IP address of your Security Onion server:

$ sudo nano /var/ossec/etc/ossec.conf
--snip--
<client>
 <server>
 <address>security_onion_IP</address>

--snip--

7. Restart the Wazuh agent to start sending data to Security
Onion with this:

$ sudo systemctl restart wazuh-agent

8. Finally, confirm the agent has been successfully configured
by listing the agents on the Security Onion server; run the
manage_agents script and enter L when prompted for an
action:

$ sudo docker exec -it so-wazuh
/var/ossec/bin/manage_agents
--snip--
Choose your action: A,E,L,R or Q: L
Available agents:
 ID: 001, Name: securityonion, IP: 192.168.1.49
 ID: 002, Name: Computer1, IP: 192.168.1.50
 ID: 003, Name: MacBook-Pro.local, IP: 192.168.1.51
 ID: 004, Name: Linux1, IP: 192.168.1.52
** Press ENTER to return to the main menu.
--snip--
Choose your action: A,E,L,R or Q: Q
manage_agents: Exiting.

9. If you see the Linux computer’s hostname and IP address,
the agent should be active. Press ENTER to return to the
main menu, and enter Q to quit.

You can now manage all types of computers in your network with
Wazuh.

#38: Installing osquery
osquery provides improved visibility within your network. It gathers
endpoint data such as the operating system details, installed software,
command-line history, and details of running processes; you can then

query this data to identify suspicious activity or devices not in
compliance with your security policies or configurations. When used
together with Wazuh, these tools provide a detailed view of the
systems in your network and what each of them is doing or being used
for, legitimately or not. Once installed, osquery uses a user interface
called Fleet to display and manage the details of your monitored
endpoints.

Installing osquery on Windows
To install the osquery agent on your Windows endpoint(s), follow these
steps:

1. Log in to your Security Onion console, click Downloads, and
download the osquery package for Windows (the MSI file).

2. Execute this file on your Windows system and complete the
installation wizard.

Once osquery is installed, it’ll be invisible and run in the
background; there’s no user interface to deal with.

3. Next, log in to your Security Onion system via SSH and run
sudo so-allow to allow your computer and osquery access
through the firewall. Enter o (for osquery) and the IP address
of your Windows system when prompted.

4. To view and manage systems with osquery, log in to your
Security Onion console. In the left menu, click the Fleet link
to open the Fleet Manager Dashboard.

When you install osquery on an endpoint and after you run so-allow
to enable communication between the osquery agent and the Security
Onion server, your managed hosts should show up here as cards; it
can take a few minutes for communication to begin.

Installing osquery on macOS

To install the osquery agent on your macOS endpoint(s), follow these
steps:

1. Log in to your Security Onion console, click Downloads, and
download the osquery package for Mac (the PKG file).

2. Run sudo so-allow on your Security Onion server and add
your Mac to the list of allowed agents for osquery. Enter o (for
osquery) and the IP address of your Mac when prompted.

3. Execute the file you downloaded and complete the
installation wizard on your Mac.

4. Log in to the Fleet Manager Dashboard and click Add New
Host to find your Fleet Secret.

5. Add your Fleet Secret to the /etc/so-launcher/secret file using
any text editor.

6. Update /etc/so-launcher/launcher.flags so the hostname
value is security_onion_IP:8090 and the root directory value
is /var/so-launcher/security_onion_IP-8090:

autoupdate
hostname 192.168.1.200:8090
root_directory /var/so-launcher/192.168.1.200-8090
osqueryd_path /usr/local/so-launcher/bin/osqueryd
enroll_secret_path /etc/so-launcher/secret
update_channel stable
root_pem /etc/so-launcher/roots.pem

7. Copy the contents of the /etc/ssl/certs/intca.crt file on your
Security Onion server into the /etc/so-launcher/roots.pem file
on your Mac.

After a few minutes, your Mac should show up as a new card in the
Fleet Manager Dashboard.

Installing osquery on Linux

To install the osquery agent on your Linux endpoint(s), follow these
steps:

1. Log in to your Security Onion console, click Downloads, and
download the osquery package for Linux (the DEB file for
Ubuntu, RPM for CentOS, and so on).

2. Run sudo so-allow on your Security Onion server to add your
Linux system to the list of allowed agents for osquery. Enter o
(for osquery) and the IP address of your Linux system when
prompted.

3. Install the downloaded file on your Linux system; here’s an
example using dpkg on Ubuntu:

$ sudo dpkg -i deb-launcher.deb

Your Linux system should automatically show up as a new card in
your Fleet Manager dashboard.

A Network Security Monitoring Crash Course
You’ve now installed the necessary hardware and software to monitor
your network for suspicious and malicious activity. You need to be able
to identify issues, respond to incidents when they occur, and keep your
network, users, and data secure. In this section, we’ll cover the
fundamentals of how to configure and make use of osquery, Wazuh,
and the Security Onion Alerts Dashboard.

Using osquery
If you’re familiar with relational databases and Structured Query
Language (SQL), using osquery will be reasonably easy for you. If not,
here are the basics. You can view all the data for the devices in your
network that osquery manages in the Fleet Manager Dashboard. To
reach the dashboard, log in to your Security Onion console at

https://<security_onion_IP>/ and click Fleet in the administrator menu
on the left.

Data is stored in a series of data tables, wherein each table contains
two or more columns (also called tuples) that include information such
as hostname, IP address, MAC address, uptime, last shutdown time,
and so on, for each device. Each row in the table relates to a specific
entity, such as a computer or laptop, or something more atomic, like a
specific user account on a device. For example, the users table looks
similar to Table 10-1.

Table 10-1: The osquery Users Table

UID GID UID_Signed GID_Signed Username Description

0 0 0 0 testuser A test user
account

The Username column’s first row of data pertains to the testuser
account on a device. Each of these tables is related to one or more of
the other tables in the database (of which there are more than 200).
These tables and their relationships allow you to perform powerful
queries about the details and status of each managed device.

We can ask questions of this data using a query language called
SQL, a high-level language for accessing and manipulating databases.
A SQL query looks like this:

SELECT c1,c2 FROM tablename

In this query, the uppercase commands, SELECT and FROM, indicate the
action you want to perform—in this case, asking for the data in
columns 1 and 2, represented by the c1 and c2 parameters, from the
table called tablename.

In practice, that query would look like this:

SELECT username FROM users
SELECT * FROM users

The first command returns (displays to the user running the query) all
the usernames that exist in the users table and no other columns. The
second command returns all (*) of the columns and rows from the
users table.

NOTE Several SQL commands are available for retrieving data in
different ways; see the SQL cheat sheet at
https://www.sqltutorial.org/sql-cheat-sheet/ for more details. See
also the osquery documentation at https://osquery.io/ for a listing of
all available tables and their data.

Fleet stores a lot of queries in your Fleet dashboard. Click the
Query menu on the left of the page (see Figure 10-6).

Figure 10-6: Stored SQL queries in Fleet Manager

https://www.sqltutorial.org/sql-cheat-sheet/
https://osquery.io/

From this menu, you can scroll through the available queries or
search for a specific query using the search bar at the top of the page.
Once you’ve identified a query you want to run, click to select it, and
then click the EDIT/RUN QUERY button on the right side. Before
you’re able to execute the query, you need to select the devices you
want to query for this information. Select the relevant device(s) from
the Select Targets drop-down menu and then click Run. When the
query completes, Fleet will present you with the results of the query at
the bottom of the screen; you can filter the results using the column
filters provided.

It’s up to you which queries you run, and it depends on what kinds of
problems or examples of noncompliance are most concerning to your
network. However, these are a few good places to start:

users Useful for identifying user accounts that should or should not
exist on given endpoints
browser_plugins Shows all browser plug-ins on a device(s); useful if
your users install potentially malicious browser plug-ins
chrome_extension As previously, specifically looking for Chrome
plug-ins
crontab Identifies scheduled tasks on Linux systems performing
suspicious or malicious activity
disk_free_space_pct Identifies devices with low disk space
installed_applications Identifies malicious or potentially unwanted
applications installed on devices
The Hosts dashboard in Fleet shows the details for each managed

device at a glance in the form of cards (see Figure 10-7).

Figure 10-7: Fleet Host dashboard view

Here you can see the hostname, operating system, osquery version,
processor details, amount of RAM, uptime, MAC address, and IP
address of this host. Clicking the blue query button (the stacked
cylinders) at the top right will allow you to easily query this device.

Spend some time familiarizing yourself with the available queries
and do some online research to find other potentially useful queries.
Try reviewing some of the saved queries and edit or copy them to get
the queries you want.

Using Wazuh
We installed the Wazuh agent in Project 35, and we’ll configure it in
this section. Wazuh allows us to review the logs and alerts in Security
Onion, which we’ll explore in the next section.

The primary Wazuh config file is located at
/opt/so/conf/wazuh/ossec.conf on the Security Onion system. Each
section of this configuration file is separate and identified with a line
like the following:

<!-- Files/directories to ignore -->

You can revise the settings in this file to change the way Wazuh
behaves, which can be useful if, for example, Wazuh reacts to a false
positive detection and stops you from doing something benign. Review
this file to get an understanding of the types of things Wazuh monitors
for.

The section shown in the following snippet specifies files that
contain lists of files that are known or expected to be malicious based
on identified adversary behaviors, followed by files that are expected
to contain trojans (a type of virus) and then files and folders to audit for
various vulnerabilities:

--snip--
<rootkit_files>/var/ossec/etc/shared/rootkit_files.txt</rootk

it_files>
 <rootkit_trojans>/var/ossec/etc/shared/rootkit_trojans.tx

t</rootkit_trojans>
 <system_audit>/var/ossec/etc/shared/system_audit_rcl.txt<

/system_audit>
 <system_audit>/var/ossec/etc/shared/system_audit_ssh.txt<

/system_audit>
 <system_audit>/var/ossec/etc/shared/cis_rhel7_linux_rcl.t

xt</system_audit>
--snip--

Each of these files contains a list of things Wazuh will monitor. If the
agent detects a file or configuration on a device that matches a

behavior or setting in the rootkit_files.txt file, it will take action to
remediate that threat. If you don’t want it to take that action, delete or
comment out that line in the configuration file with a #.

When you update Wazuh as part of your efforts to consistently
update and patch your Security Onion and other systems, the
configuration files such as rootkit_files.txt may also receive updates.
This ensures that as new threats are identified and indicators of
compromise are made publicly available, your network stays
protected. To avoid losing any changes you make to these files,
consider creating new, custom configuration files (such as
my_custom_trojans.txt) and adding a reference to this file in the
ossec.conf file, such as the following example:

--snip--
<rootkit_files>/var/ossec/etc/shared/rootkit_files.txt</rootk

it_files>
 <rootkit_trojans>/var/ossec/etc/shared/rootkit_trojans.tx

t</rootkit_trojans>
 <rootkit_trojans>/var/ossec/etc/shared/my_custom_trojans.

txt</rootkit_trojans>
--snip--

Adding files to the ossec.conf file will result in Wazuh referring to
those files for its configuration and settings, in addition to its default
configuration files. Using custom files is a good way to add custom
configurations that you might have.

If you want Wazuh to ignore a directory or list of directories on any
of the endpoints on which it’s installed, add that information in the
relevant section. You can also tell the agent to ignore specific files or
file types, to exclude certain devices from active response (if you want
the agent to never block activity on a specific device that might impact
your network), and to set various other options. Familiarize yourself
with these configuration files so you can tailor them to your
environment.

Using Security Onion as a SIEM Tool

Security Onion, in addition to the other useful capabilities it provides,
acts as a security information and event management (SIEM) tool.
Several SIEMs are available on the market, including Splunk,
SolarWinds, or ManageEngine, all of which are commercial solutions
and can be very expensive. Security Onion, on the other hand, is open
source and free.

A SIEM is designed to aggregate data from devices in a network
and act as a central repository for logs and other data. Implementing a
SIEM like Security Onion centralizes your logs, making it harder for an
adversary to hide their tracks by deleting the logs on any one system.
It also enables you to query your logs and other system data in one
location so you don’t have to check every system or device
individually, streamlining the process. Security Onion then analyzes
this data and alerts you to potentially malicious activity. Figure 10-8
shows a list of alerts, found by logging in to the Security Onion console
and clicking the Alerts option in the menu on the left.

Figure 10-8: Security Onion alerts

When you click an alert, a context menu is displayed with filtering
options; you can include, exclude, show only, or group by the alert
you’ve selected. You can also drill down into an alert to show every
instance of the alert in the timeframe you’re filtering for. By expanding
any of these alerts, you can see all of its information, including
metadata (see Figure 10-9) such as the alert’s timestamp, the source
and destination IP address of the network traffic, the full message
associated with the alert, the actual decoded network data that caused

the rule or alert to fire, the rule itself, and often a reference so that you
can learn more about the alert, including potential remediation steps or
other solutions.

Figure 10-9: Security Onion alert metadata

In practice, the alerts dashboard will show a lot of different
categories and types of activity; you’ll almost always see alerts that
require further investigation. Let’s discuss a few to help get you
started.

Table 10-2: Examples of Potentially Unwanted Software in an
Environment

Rule name
Event

module Severity

ET INFO [eSentire] Possible Kali Linux
Updates

suricata high

ET USER_AGENTS Steam HTTP Client
User-Agent

suricata high

ET POLICY curl User-Agent Outbound suricata medium

ET POLICY Dropbox.com Offsite File
Backup in Use

suricata high

ET SCAN Possible Nmap User-Agent
Observed

suricata high

http://www.dropbox.com/

Table 10-2: Examples of Potentially Unwanted Software in an
Environment

Rule name
Event

module Severity

ET TFTP Outbound TFTP Read Request suricata high

ET P2P eMule KAD Network Connection
Request

suricata high

Table 10-2 shows several examples of software that is potentially
vulnerable, could lead to or be used for malicious activity, or shouldn’t
be on your network in the first place. Kali Linux, for example, is
typically used for penetration testing, but attackers can also use it to
compromise your network. If you receive this alert, investigate it,
identify the system responsible, and remove it from the network.
Security Onion provides all of the information you need to do this. You
could choose to take the source IP address in the alert and add
firewall rules (on your hosts as well as your border firewall) to block all
traffic to and from that address, as an example of one mitigation
strategy.

Looking at the other alerts in Table 10-2, several pieces of software
have been identified that might not be allowed or necessary in your
network. Steam is a game client. Curl is a utility for transferring data to
or from a server and can be used to exfiltrate data from your network
or download malware. Dropbox is a cloud storage solution that can
likewise be used to exfiltrate or steal data. Nmap is a network mapping
tool that attackers can use to identify potential targets and
vulnerabilities within your network. Trivial File Transfer Protocol (TFPT)
is a vulnerable protocol used for transferring files, and eMule is a peer-
to-peer application typically used for file sharing.

Generally, if you aren’t using a tool or application, you should
uninstall or otherwise remove it to prevent attackers from using it and
make your network more secure. If you don’t use curl, for example,

track down the client responsible for this alert using the hostname,
source and destination IP address, or other metadata in the alert itself,
and uninstall or remove the offending software. If you use Dropbox,
you can safely ignore the alert. Otherwise, investigate and remove it
from your network. Do this for all software-related alerts.

Then, use the same process to investigate and remediate all the
alerts related to potential malware activity; Table 10-3 shows an
example. Drill down into each alert, identify the device(s) related to the
alert, look at the references for the rule behind the alert, and identify
and resolve the root cause. If you get stuck, an internet search is
usually the best tool to solve a lot of problems.

Table 10-3: Possible Malware Alerts in Security Onion

Rule name
Event

module Severity

ET JA3 Hash - [Abuse.ch] Possible Adware suricata Low

ET JA3 Hash - Possible Malware - Neutrino suricata Low

ET INFO Packed Executable Download suricata Low

ET INFO EXE IsDebuggerPresent (Used in
Malware Anti-Debugging)

suricata Low

ET EXPLOIT Possible OpenSSL HeartBleed
Large HeartBeat Response (Client Init Vuln
Server)

suricata Medium

ET EXPLOIT Possible OpenSSL HeartBleed
Large HeartBeat Response (Server Init Vuln
Client)

suricata Medium

Other alerts of interest are those related to account login or log-off
actions and elevation of privileges, such as Successful sudo to ROOT
executed, as shown in Table 10-4.

Table 10-4: Successful and Failed Login Alerts in Security Onion

Rule name Event module Severity

Windows Logon Success windows_eventlog Low

PAM: Login session closed. ossec Low

PAM: Login session opened. ossec Low

Successful sudo to ROOT
executed.

ossec Low

Logon Failure - Unknown user or
bad password

windows_eventlog Low

While successful logon attempts alert you to accounts that may
already be compromised, failed logon attempts can alert you to an
attacker trying to break in. In both cases, investigate those alerts to
determine whether it’s legitimate activity. If, for example, you see an
account increasing their privileges to root on a Linux system,
determine whether it was you or another trusted user in your network.
If it wasn’t you or another administrator in your network, change your
passwords and investigate any related activity that occurred around
the same time.

Summary

Security Onion’s alerts provide a starting point for you to identify and
chase down suspicious activity; use them to your advantage when
securing your network. Use every tool you have at your disposal, as
you can be sure that adversaries are doing the same. Simply
increasing the visibility of activity on your network enables you to
better protect it. With the instructions and tools described in this
chapter, you’ll soon find a multitude of potential activity to investigate
and remediate. Expect this investigation activity to be ongoing and try
to keep up with the alerts in Security Onion as your network continues
to grow and evolve over time.

11
TIPS FOR MANAGING USER

SECURITY ON YOUR NETWORK

Being responsible for a network containing more than one user is
challenging. You can’t reasonably expect to manage other users’
activity within your network, especially when they use their own
devices. However, there are some strategies that you can use to
mitigate the risks associated with multiple users.

This chapter discusses the value of strong passphrases versus
passwords, password managers, multifactor authentication, and
privacy-protecting browser plug-ins. It should provide the information
you need to have productive discussions about security with your
users.

Passwords
Having strong passwords and using different credentials for every
website are the best first steps to remaining safe online.
Passphrases and password managers make it harder for
adversaries to guess your passwords and easier for you to manage
them. Passphrases consist of several words, such as
libertyextremecluecustodyjerky. You can make them more
challenging to guess by adding uppercase letters, numbers, and
special characters, but generally speaking, it’s better to have longer

passphrases that are easy to remember than complex passwords
that aren’t. The same rules for typical password security still apply.
Don’t use personally identifiable information, such as birthdays, pets’
or relatives’ names, or the schools you’ve attended. Refrain from
including words that relate to the current month or season or the
name of the company you work for. Basically, avoid constructing a
passphrase from easy-to-guess elements.

Passphrases are longer than passwords, making them more
resilient against the brute-force attacks adversaries use to crack
them. In a brute-force attack, the attacker tries every possible
combination of characters until they find the right one. They can do
this programmatically, allowing for millions (or billions) of password
guesses per second. The shorter the password and the smaller the
keyspace (the number of character types—letters, numbers, and
symbols—available), the less time it takes to crack. For example, an
eight-character password consisting of lowercase letters and
numbers would take less than two hours to crack on today’s
computing hardware. Adding one character increases that time to
more than two days, and every additional character grows the time it
takes to crack the password exponentially—a 30-character
passphrase’s cracking time approaches infinity with the computing
power available today.

NOTE Be sure to change any default passwords for your accounts
and devices. Default passwords for devices such as routers and
switches (such as username: admin, password: admin) are well-
known and documented, so if you don’t change those in your
network, you’re leaving the door wide open for adversaries to
infiltrate your environment. Even if they aren’t well known, they’re
easy to guess.

Password Managers
Use a password manager (also called a password safe or vault) to
securely store your passwords. A password manager can store
hundreds of unique passphrases that are accessed by one master

passphrase. This practice removes the temptation to write
passphrases down, which is never a good idea. Several password
managers are available, such as 1Password
(https://1password.com/) or LastPass (https://www.lastpass.com/).

The best way to convey the value of a password manager is to
discuss credential stuffing, an attack that exploits the fact that most
people still use the same password across multiple services. When
adversaries obtain a list of passwords and email addresses during or
after a data breach, they try logging in with those credentials on
various well-known sites and services, and they’re often successful
because a significant percentage of the password and email address
combinations are reused on other sites. Users can prevent credential
stuffing by using a different passphrase for every account and
storing those passphrases in a password manager.

Password Breach Detection
The free service Have I Been Pwned (https://haveibeenpwned.com/)
lets you enter your email address and immediately find out whether
it’s been identified in any data leaks or breaches. Figure 11-1 shows
an example of a report for a compromised email account.

https://1password.com/
https://www.lastpass.com/
https://haveibeenpwned.com/

Figure 11-1: Example report of a compromised email account

The service also provides ongoing updates and monitoring; you
can opt to receive a notification to change your password(s) if your
email address is identified in future data breaches.

Multifactor Authentication
Once you’ve created strong passphrases, you should implement
multifactor authentication (sometimes called two-factor
authentication, 2FA, or MFA) on all accounts and services that offer
it. While single-factor authentication typically requires a combination
of only two things—your email address or username plus your

passphrase—MFA requires two or more factors of authentication.
Usually, the first factor is something you know, and the second is
either something you have, like a hardware or software token, or
something you are, like a fingerprint or other biometric. By requiring
a second or third authentication factor, adversaries will have an
exponentially more difficult task when trying to gain access to your
accounts and systems. Adding a second factor may introduce a
minor inconvenience to you or your users, but you’ll be much more
secure.

One of the most common MFA solutions uses SMS as a second
factor, sending the user a text message containing a code or one-
time password; they then use this code to log in to their account or
perform certain types of transactions, particularly if it’s from a new or
unknown device or location. Everyone can receive text messages
regardless of their phone model or service provider, it’s free or
cheap, it’s more or less instant, and it alerts you to suspicious activity
if you aren’t actively trying to log in. The main drawback is that SMS
isn’t a secure technology, and it’s relatively trivial for an attacker to
gain access to someone’s phone number and text messages.

Next, there are software solutions, including Google Authenticator,
Authy, Microsoft Authenticator, and even password vaults like
1Password that offer MFA tokens. Typically, you’ll download the app
to your smartphone and scan or type in a code from your service
provider (such as your bank or social media) to set up the app.
When you want to log in, you’ll check the app for an authentication
token that you’ll use along with your passphrase. The tokens change
every 60 seconds. This is a significant improvement on SMS as a
second factor, as an adversary would have to physically access and
unlock your mobile device to retrieve the token. The rolling tokens
also mean the access window is minimal, unlike SMS where access
windows can be a few minutes long. Software tokens such as these
are the most convenient and secure MFA option for many users.

Finally, there are hardware tokens, like Yubikey and Google Titan
Key. If the key isn’t plugged in to your computer, you can’t access
the encrypted or protected data. Hardware tokens are considered
the most hardcore of the MFA solutions because losing your

hardware key means you can’t access your data. They offer the
same or better protection as a software token, as an adversary
needs physical access, but they are the least convenient; most
people carry their phones with them, but it’s easy to leave a
hardware token at home when you need it at the office. Additionally,
hardware tokens can’t be phished; while SMS and other similar MFA
tokens can be drawn out of a potential victim via social engineering
and phishing attacks, an adversary can’t access your hardware key
remotely.

WEBCAM COVERS
An important aside when discussing computer security is the
necessity of webcam covers. Adversaries can gain access to the
webcam on your laptop or computer and surreptitiously monitor
whatever may be happening in front of the computer without
alerting you that the camera is on. To protect your own privacy
and that of those around you, invest in some low-tech, opaque
tape or a webcam cover (available inexpensively from many
online stores).

Browser Plug-ins
All major internet browsers, such as Google Chrome, Mozilla Firefox,
and Microsoft Edge, have several browser plug-ins or add-ons to
block ads and trackers (see Chapter 7 for more on trackers) and
more generally improve user privacy. The plug-ins mentioned here
have been vetted and are known to be legitimate or are created and
maintained by well-known and trusted sources. Browser plug-ins are
designed to provide additional functionality to a standard browser,
and users can choose from a wide range of available plug-ins to
improve their browsing experience. It’s beneficial to discuss the pros
and cons of these browser add-ons with your users to enable them

to make educated decisions about which plug-ins to use and which
to avoid.

Adblock Plus
Adblock Plus removes “unacceptable” or disruptive ads from
websites. To install this plug-in, navigate to
https://adblockplus.org/en/download and download the appropriate
version for your browser or device. Once it’s installed, go to the
Settings page for the plug-in (shown in Figure 11-2) and select
Block Additional Tracking, Block Social Media Icons Tracking,
and Disallow Acceptable Ads. You can also choose to allowlist
specific websites if you choose.

https://adblockplus.org/en/download

Figure 11-2: Adblock Plus settings

Additional Tracking includes methods such as websites gathering
your browsing habits. Blocking Social Media Icons Tracking keeps
you from being tracked by social media buttons across the websites
you visit. Finally, Disallow Acceptable Ads removes all ads from
websites (as much as possible anyway). All of this results in a
cleaner, faster web-browsing experience.

Ghostery

Similar to Adblock Plus, Ghostery’s mission is to improve user
privacy by removing many user tracking capabilities on websites. To
install Ghostery, browse to https://www.ghostery.com/ and sign up for
an account. Download and install the plug-in for your browser; once
it’s installed, the plug-in will function out of the box, but you can
modify the settings from the plug-in menu if you so choose, as
shown in Figure 11-3.

Figure 11-3: Ghostery settings

If you want to manually allow or disable a specific website and
pause or resume Ghostery, you can do so from this menu.

https://www.ghostery.com/

HTTPS Everywhere
HTTPS is the secure internet protocol preceded by the insecure
HTTP protocol. HTTPS uses SSL/TLS to secure your internet traffic
while you browse the internet. Using encryption protects your traffic
so adversaries can’t intercept it and decrypt it. Unfortunately, not all
websites provide encryption for their users. This is where a plug-in
like HTTPS Everywhere comes in handy; it provides the encryption
layer for you, keeping you secure no matter what you’re doing in
your browser.

To install this plug-in, browse to https://www.eff.org/https-
everywhere/ and download and install it. From here, the options are
simple: on or off (as shown in Figure 11-4).

https://www.eff.org/https-everywhere/

Figure 11-4: HTTPS Everywhere settings

With this plug-in installed and running, you can feel safe knowing
all of your browser traffic is being encrypted.

Internet of Things Considerations
We discussed internet of things devices like Google Home and
Amazon Alexa and the methods by which you can mitigate the risks
of smart devices using network segmentation in detail in Chapter 2.

However, there are still risks associated with devices with always-on
cameras and/or microphones that need to be considered.

Whether it’s a laptop of desktop computer, a gaming console, or a
smart home device, many modern endpoints have a microphone or
camera (or both) built in. For a determined adversary, these devices
can be used to spy on you and those around you. Therefore,
wherever possible, it’s best to invest in smart home devices that
have a physical off switch or button for these features. If that isn’t
possible, consider using a webcam cover (available cheaply from
many online stores) or even a piece of opaque tape to cover your
web cameras when not in use. Doing so is one of the best ways to
protect your privacy.

Besides covering any cameras, consider where you place and use
smart home devices. In the case of smart speakers, you might
choose to use them only in common areas, away from private areas
like bedrooms or private offices. Consider the activities and
conversations that might take place in range of the microphone and
place devices accordingly.

Additional Resources
This book has been an introduction to the fundamentals of
cybersecurity and ideally has enabled you to think more deeply
about the security of your network and users and implement
solutions to help protect your privacy. However, there are so many
more resources available that delve further into these topics than
could be covered here. The first I’d like to mention is
https://chrissanders.org/. Chris has written several books and online
courses covering topics such as network security monitoring,
intrusion detection, and advanced use of the ELK stack, which we
briefly discussed in Chapter 10. If you’d like more information on any
of these topics, this is a great place to start.

Another fantastic resource for anyone interested in cybersecurity,
digital forensics, or incident response is https://dfir.training/. This
website contains a wealth of information related to tools, training

https://chrissanders.org/
https://dfir.training/

courses (free and commercial), practice materials, and other
resources to add to your knowledgebase and improve your security
maturity.

Finally, SANS is a research and training organization with a focus
on cybersecurity. At https://www.sans.org/, you can find more
information on their training courses, but also several resources and
research papers related to tools and techniques for securing
networks and endpoints, from both a defensive and offensive
viewpoint.

Summary
Ultimately, your online privacy and security can be as well-protected
as you like. The trade-off for being secure on the internet is one of
compromising privacy, security, or both, for convenience. At the cost
of slightly less convenience, you’ll receive a better overall experience
on the internet and enjoy a higher level of security and privacy,
whether it’s yours alone or shared with your users. The benefits of
being secure far outweigh the inconvenience of implementing these
solutions.

https://www.sans.org/

INDEX

Symbols
prompt, 11
$ prompt, 11

A
access controls lists (ACLs), 94–95, 98–101
acl directive, 99
ad blocking, 105–116

in Brave, 108
browser plug-ins, 181–182
in Google Chrome, 106–107
in Mozilla Firefox, 107–108
with Pi-Hole, 108–116

configuring, 109–113
configuring DNS on endpoints, 115–116
using, 113–114

Adblock Plus, 106, 181–182
add-ons (extensions), 106
adduser command, 11
Advanced Package Tool (APT), 10–11, 127
-aG (add group) parameter, 12
Airport Extreme base station, 137
Airport Time Capsule, 137
allowlists, 60, 98, 100
Amazon Alexa, 183
Amazon Web Services, 7
anonymize_headers directive, 97
antivirus farms, 120
AnyDesk, 68
Apache Traffic Server, 93

-A parameter, 37, 39–40, 50
APT (Advanced Package Tool), 10–11, 127
asset lists

creating, 56–57
defined, 55
MAC address filtering, 60
network segmentation, 30
Squid proxy, 93
static IP addressing, 58
template, 56

ASUS RT-AC5300 wireless router, xxii, 59, 59, 60, 61, 62–64
attack surface reduction

configuring iptables, 39, 41
defined, 34
disabling IPv6, 48, 54, 111
guest networks, 65
Squid proxy, 95
static IP addressing, 59
third-party VPNs, 68

auth directive, 77, 80
Authy, 180
Automox, 128–130
Avast, 120–122

B
Backblaze, 143–144, 146
backup strategies, 131–147

cloud backup solutions, 142–144
Backblaze, 143–144, 146
Carbonite, 144, 146

duplicity, 138–142
considerations, 141–142
creating local backups, 139–140
creating network backups, 140
restoring backups, 141

onsite vs. offsite, 133–134

restoring backups, 146
schedules, 133
storage, 134
testing backups, 146
Time Machine, 137–138, 146
types of backup, 132–133
virtual machine snapshots, 145–146
what to back up, 134
Windows Backup, 134–135
Windows Backup and Restore, 135–137, 146

basic input/output system (BIOS)
bootable USBs, 7
UEFI vs., 7

blacklists, 114
blocklists, 110
bogon networks, 48
bootable USBs

creating physical systems
on macOS, 6–7
on Windows, 6

defined, 6
using, 7

Brave, 108
broadcast address, 19
browser plug-ins, 181–183

Adblock Plus, 181–182
Ghostery, 182
HTTPS Everywhere, 182–183

brute-force attacks, 178

C
CA. See certificate authority
caching

defined, 92
disabling for specific sites, 101
Squid proxy, 93, 101

Can You Block It, 116
Carbonite, 143, 144, 146
CCMP (Counter Mode CBC-MAC Protocol), 63
CentOS Linux, 2
certificate authority (CA)

overview of, 69
setting up, 71–73

CIDR notation, 19
cipher directive, 77, 80
ClamAV, 122–124
CLI (command line interface) utilities, 10
client directive, 73, 75
cloud backup solutions, 142–144

Backblaze, 143–144, 146
Carbonite, 144, 146

collection-status parameter, 141
collision domain, 26
command line interface (CLI) utilities, 10
Command Prompt, 10
Common Name, 72–73, 75, 79
connbytes tool, 38
CONNECT parameter, 95, 99
connrate tool, 38
cookies, 106
Counter Mode CBC-MAC Protocol (CCMP), 63
Crontab utility, 123, 140
cryptominers, 106
--ctstate argument, 38
curl tool, 42

D
data exfiltration, 151
data tables, 169
default gateway, 19
default route, 78, 84
defense-in-depth architecture, xx, 44

deluser command, 12
denylists, 60, 98–100
deny parameter, 99
DFIR Training, 184
DHCP. See Dynamic Host Configuration Protocol
dhcp-option directive, 77
differential backups, 132–133, 135
Diffie-Hellman key exchange, 74
digital certificates, 69

creating client certificate, 74–75
creating server certificate and key, 72–75
setting up certificate authority, 71–72

distributions, defined, 2, 127
dist-upgrade command, 15
Domain Name System (DNS)

ad blocking, 108–110, 114–116
configuring OpenVPN, 77
configuring Wireguard, 85–86
defined, 108
Faster Than Light, 111, 112
firewalls, 41
identifying DNS server, 85
testing VPNs, 89

dotted quad notation, 17
-D parameter, 37, 42
dpkg utility, 165
draw.io, 20
Dropbox, 28, 142, 174
dstdomain directive, 99
Dualcomm ETAP, 151
duplicity, 138–142

considerations, 141–142
creating local backups, 139–140
creating network backups, 140
restoring backups, 141

Dynamic Host Configuration Protocol (DHCP), 2
ad blocking, 114–115
checking IP addresses, 18, 30
creating asset lists, 56
disabling IPv6, 55
static IP addressing, 57–59

E
EasyRSA

installing, 70
overview of, 69

easyrsa import-req command, 73
ECDSA key fingerprint, 14
endpoint detection and response (EDR) platforms, 162
endpoints (hosts). See also virtual private networks

defined, xx
firewalls, 33–34, 44
hostnames, 12
network devices, 26–27
network segmentation, 28, 31
static IP addressing, 57, 59
wireless authentication, 64–65

ETAP-2003, xxii
Etcher utility, 6–7
EternalBlue vulnerability, 48
ETOPEN ruleset, 158–159
--exclude argument, 141
ExpressVPN, 68
extensions (add-ons), 106
external hard drives, 134–138, 143–144

F
Faster Than Light (FTL) DNS, 111, 112
Fedora Linux, 2
file transfer, 22–23
find command, 102

fingerprinters, 106
firewalls, xxii, 33–51

common protocols to block, 49
configuring in OpenVPN, 78–79
configuring in Wireguard, 84–85
defined, 33
iptables, 33, 35–44

configuring, 38–42
creating rules, 37–38
installing, 36–44
logging behavior, 43–44

pfSense, 33–34, 44–49
creating rules, 48–49
hardening, 47–48
installing, 44–47

testing, 48–49
types of, 34–35

hardware firewalls, 34
host-based firewalls, 33, 34–35
packet-filtering firewalls, 34
perimeter firewalls, 34
software firewalls, 34
stateful firewalls, 34
stateless firewalls, 34

Uncomplicated Firewall, 70, 84–85
--flush parameter, 40
Forcepoint, 93
forward chains, 35–36, 37, 39, 40
-F parameter, 40, 42
FreeBSD Unix, 44
FROM command, 169
FTL (Faster Than Light) DNS, 111, 112
full backups, 132–135

duplicity, 138–140
storage, 134

testing, 146
Windows Backup, 135
Windows Backup and Restore, 135–137

G
gen-dh argument, 74
Ghostery, 182
Google Authenticator, 180
Google Chrome

ad blocking, 106–107
incognito mode, 107

Google Chromecast, 28
Google Drive, 28, 142
Google Home, 183
Google Titan Key, 180
government information and identification, xix
Grafana, 153–154
group directive, 77, 80
guest networks, 28, 60–65

H
hardware firewalls, 34
hashing, 124–125
Have I Been Pwned service, 179
heuristics, 120
hexadecimal (hex), 19
h flag, 22
host-based firewalls, 33, 34–35
hostname command, 12–13, 163
hostnames

asset lists, 56
changing, 12–13
checking, 12
defined, 12

hosts. See endpoints; virtual private networks
HTTP

firewalls, 42, 47
Squid proxy, 109

http_access allow localnet directive, 95
http_access deny all directive, 95–96
http_access directive, 99
http_deny directive, 97
HTTPS

firewalls, 42, 47
Squid proxy, 95

HTTPS Everywhere, 182–183
hubs, 26
hypervisors

creating Ubuntu virtual machines, 3–5
defined, 3
VirtualBox, 4–5, 8
VMware Fusion, 4
VMware Fusion Player for macOS, 4
VMware Player for Windows, 3–4
VMware Workstation, 3–4

I
icanhazip, 42
ICMP. See Internet Control Message Protocol
IDSs (intrusion detection systems), 151, 153
include directive, 99
incremental backups, 132–133, 138, 140
input chains, 35, 37, 39, 40, 42–43
intellectual property, xix
Intel Next Unit of Computing (NUC), 44, 154–155
Internet Control Message Protocol (ICMP)

firewalls, 41
output chains, 35

internet of things (IoT), 2, 183
network maps, 22
network segmentation, 25, 27–28, 31, 61
wireless network security, 53, 61

Internet Protocol (IP). See also IP addresses
defined, 17
versions of, 17

Internet Protocol version 6 (IPv6). See also IP addresses
disabling, 48, 54–55, 111
ip6tables, 36
overview of, 17

intranets, 27, 62
intrusion detection systems (IDSs), 151, 153
IoT. See internet of things
IP. See Internet Protocol
ip6tables, 36
IP addresses

checking, 18–19
on Linux, 19
on Mac, 19
on Windows, 18–19

defined, 17
dynamic, 57
overview of, 17–18
RFC1918 addresses, 48
routers, 27
static, 56–59, 69

-I parameter, 37
iptables firewall, 33, 35–44

configuring, 38–42
creating rules, 37–38
installing, 36–44
logging behavior, 43–44
policy chains, 35–37, 39–43
testing, 49–51
VPNs, 70

iptables-persistent tool, 36, 43
IPv6. See Internet Protocol version 6

J

-j parameter, 38

K
Kali Linux, 2
key-direction directive, 80
keyspace, 178
Kibana, 161

L
LANs (local area networks), 47, 53–55, 58
Linux, 1–23

configuration options, 9
creating cloud-based systems, 7–8
creating physical systems, 5–7
creating virtual machines, 2–5

hypervisors, 3
VirtualBox, 4–5
VMware Fusion, 4
VMware Fusion Player for macOS, 4
VMware Player for Windows, 3–4
VMware Workstation, 3–4

finalizing installation, 8–9
hardening system, 9–16

capturing VM configurations, 16
defined, 9–10
installing system packages, 10–11
securing remote access, 13–16
user management, 11–13

operating systems, 2–8
overview of, 2
patches and updates, 126–127

local area networks (LANs), 47, 53–55, 58
loopback addresses, 38

M
MAC addresses

asset lists, 56–57
filtering, 56, 59–60, 59
network devices, 26–27, 55–56
network maps, 21

malware, 117–130
Automox, 128–130, 129, 130
Avast, 120–122, 121
ClamAV, 122–124
Microsoft Defender, 118–119
patches and updates, 125–128

Linux, 126–127
macOS, 126–127
Windows, 126

tools, 119
antivirus farms, 120
heuristics, 120
signatures, 120

VirusTotal, 124–125
manage_agents script, 162, 165–166
managed switches, xxii, 28–29
-m argument, 38
metadata, 92–93
MFA (multifactor authentication), 179–180
Microsoft Authenticator, 180
Microsoft Azure, 7
Microsoft Defender, 118–119
Microsoft Visio, 20
mirror ports. See switch port analyzers
modems

disabling IPv6, 55
network maps, 20–21

Mozilla Firefox, 107–108
multifactor authentication (MFA), 179–180

N
Nano, 14

NAS (network attached storage), xxi, 134, 137
NAT (network address translation), 17–18, 36, 54
netfilter command, 43
Netgate 1100 pfSense+, 44
Netgate 2100 Base pfSense+, 44
Netgear GS308E switch, xxii, 28–29
Netgear Nighthawk series routers, 54
Netgate SG-3100, xxii, 44, 57, 58
Netgear Switch Discovery Tool (NSDT), 30
network address translation (NAT), 17–18, 36, 54
network attached storage (NAS), xxi, 134, 137
network devices, 26

hubs, 26
limiting, 54–60

creating asset lists, 56–57
MAC address filtering, 59–60
static IP addressing, 57–59

routers, 27
switches, 26–27

network maps
creating, 20–22
keeping up-to-date, 21

network monitoring and detection, 149–175
Security Onion, 153–175

installing, 155–161
osquery, 166–172
using as SIEM tool, 172–175
Wazuh, 161–166, 171–172

switch port analyzers, 152–153
traffic access points, 150–151

network segmentation, 25–31
defined, 27
Ethernet segmentation, 29–31
logical segmentation, 28
network devices, 26

hubs, 26
routers, 27
switches, 26–27

physical segmentation, 27
trust zones, 27–29, 31
wireless networks, 60–62

Network Time Protocol (NTP), 159
network topology, 17

checking IP addresses, 18
on Linux, 19
on Mac, 19
on Windows, 18–19

creating network maps, xx–xxi, 20–22
defined, xx
transferring files, 22–23

NGINX, 93
Nmap tool, 49–50
NordVPN, 68
-N parameter, 43
NSDT (Netgear Switch Discovery Tool), 30
NTP (Network Time Protocol), 159
NUC (Intel Next Unit of Computing), 44, 154–155

O
offsite backups, 133–134
1Password, 180
onsite backups, 133–134
OpenSSH, 79, 85
OpenVPN

configuring, 76–82
firewall, 78–79
starting VPN, 79
VPN client, 79–82

creating client certificate, 74–75
creating server certificate and key, 72–75
creating VPNs with, 70–82

EasyRSA, 69–70
overview of, 68–69
setting up certificate authority, 71–72

openvpn --gen-key secret command, 74
organizational fields, 71
osquery, 159, 166–172

defined, 153
Fleet, 167–171
installing on Linux, 168
installing on macOS, 167–168
installing on Windows, 167
using, 168–171

output chains, 35, 37, 39, 40–43

P
-p 445 argument, 50
packet-filtering firewalls, 34
passwd command, 12
passwords and passphrases, 177–179

changing default, 30, 178
disallowing password authentication, 14
password breach detection, 179
password managers, 178
remote access security, 13–14
strong, 47, 177–178
user management, 11–12
wireless authentication, 62–63, 65

patches and updates, 125–128
Linux, 126–127
macOS, 126–127
Windows, 126

perimeter firewalls, 34
personal identifiable information (PII), xix, 92, 100–101
P flag, 22
pfSense firewall, xxii, 44–49

creating rules, 48–49

DNS settings, 116
hardening, 47–48
installing, 44–47

on Linux, 45–46
on Mac, 45
on Windows, 45

testing, 49–51
VPNs, 70

PHI (protected health information), xix
Pi-Hole, 77, 91

ad blocking, 108–116
configuring, 109–113
configuring DNS on endpoints, 115–116
using, 113–114

PII (personal identifiable information), xix, 92, 100–101
PKI (public key infrastructure), 69, 71–72
policy chains, 35–37, 39–43
potentially unwanted applications (PUAs), 123
PowerShell, 10
-P parameter, 39, 40
PPPoE, 46
--protect-args argument, 22
protected health information (PHI), xix
proxies, 91–104

overview of, 91–92
Squid proxy

blocking and allowing domains, 98–100
configuring, 93–97
configuring devices to use, 97
defined, 91
disabling caching for specific sites, 101
protecting personal information, 100–101
reports, 101–104
testing, 98

PUAs (potentially unwanted applications), 123

public key infrastructure (PKI), 69, 71–72

R
-R argument, 37
Red Hat Linux, 2
redirect-gateway directive, 77
relational databases, 168
--remove-source-files argument, 22
request_header_access directive, 100
restore command, 141
RFC1918 addresses, 48
r flag, 22
root users. See superusers
routers

disabling IPv6, 55
overview of, 27

rsync command, 22–23, 73
Rufus utility, 6
rulesets, 34

S
SAE (Simultaneous Authentication of Equals), 63
Safe_ports directives, 95
Sanders, Chris, 184
SANS, 184
SARG (Squid Analysis Report Generator), 101–104
Secure Copy Protocol (SCP), 23
Secure File Transfer Protocol (SFTP), 23
secure shell (SSH), 13–16

firewalls, 39–40, 48, 78
installing, 11
SSH key pairs, 13–16

creating, 13–14
disabling root login, 14–15
disallowing password authentication, 14
duplicity backups, 140

login information, 15–16
passphrase, 13, 23
public key file, 13–14
remote login, 15–16

security information and event management (SIEM) tools
defined, 173
using Security Onion as, 172–175

Security Onion, 153–175
defined, 153
Grafana, 153–154
installing, 155–161

completing installation, 157–161
from ISO file, 155–156
manually, 155–156

Kibana, 161
minimum specifications, 154
osquery, 159, 166–172

defined, 153
installing on Linux, 168
installing on macOS, 167–168
installing on Windows, 167
using, 168–171

Strelka, 153, 159
suricata, 153
using as SIEM tool, 172–175
Wazuh, 159, 161–166

defined, 153
installing on Linux, 165–166
installing on macOS, 164–165
installing on Windows, 162–164
using, 171–172

zeek, 153, 158–160
SELECT command, 169
server argument, 73, 75
Server Message Block (SMB), 48–49

SFTP (Secure File Transfer Protocol), 23
SIEM tools. See security information and event management tools
signatures, 120
Simultaneous Authentication of Equals (SAE), 63
small networks, defined, xx
SMB (Server Message Block), 48–49
snapshots

defined, 16
removing old, 16
taking in VirtualBox, 16
taking in VMware, 16, 145–146

so-allow script, 164–165, 167–168
social media trackers, 106
software firewalls, 34
SPANs. See switch port analyzers
-s parameter, 39
split tunneling, 86
SQL (Structured Query Language), 168–169
Squid Analysis Report Generator (SARG), 101–104
Squid proxy, 91–104

blocking and allowing domains, 98–100
configuring, 93–97
configuring devices to use, 97
defined, 91
disabling caching for specific sites, 101
Pi-Hole and, 109
protecting personal information, 100–101
reports, 101–104
testing, 98

SSH (secure shell). See secure shell
SSID, 63, 65
stateful firewalls, 34
stateless firewalls, 34
static leases, 56–59, 69
Strelka, 153, 159

Structured Query Language (SQL), 168–169
subnet mask, 19
subnets, 27
sudo command, 10–11
superusers (root users), 10–11

disabling root login, 14–15
securing remote access, 13

suricata, 153
switches

managed, 28–29
overview of, 26–27

switch port analyzers (SPANs; mirror ports)
configuring, 152–153
defined, 152

system images, 136
system repair discs, 136

T
tail command, 98
TAPs. See traffic access points
TCP. See Transmission Control Protocol
Teamviewer, 68
Temporal Key Integrity Protocol (TKIP), 62
Terminal, 10
TFPT (Trivial File Transfer Protocol), 174
Time Machine, 137–138, 146
tls-auth directive, 77, 80
traffic access points (TAPs), 150–151

defined, xxii, 150
intrusion detection systems and, 151
placement, 150, 151

Transmission Control Protocol (TCP)
common protocols to block, 49
firewalls, 37–39, 41
VPNs, 76

Trivial File Transfer Protocol (TFPT), 174

trust zones, 27–29, 31
tuples, 169
two-factor authentication (2FA), 179–180

U
Ubiquiti, xxii
Ubuntu Linux

configuration options, 9
creating cloud-based systems, 7–8
creating physical systems, 5–7
creating virtual machines, 2–5

hypervisors, 3
VirtualBox, 4–5
VMware Fusion, 4
VMware Fusion Player for macOS, 4
VMware Player for Windows, 3–4
VMware Workstation, 3–4

downloading, 2
editions of, 2
finalizing installation, 8–9
hardening system, 9–16

capturing VM configurations, 16
defined, 9–10
installing system packages, 10–11
securing remote access, 13–16
user management, 11–13

overview of, 2
patches and updates, 126–127
Uncomplicated Firewall, 70, 78, 84–85
Wireguard, 82

u flag, 22
umask command, 83
Uncomplicated Firewall (UFW), 70, 78, 84–85
Unified Extensible Firmware Interface (UEFI), 6
update command, 127
upgrade command, 127

User Datagram Protocol (UDP)
common protocols to block, 49
defined, 38
output chains, 41
VPNs, 76

user directive, 77, 80
user management and security, 11–12, 177–183

adding users, 11–12
adding users to sudo group, 12
browser plug-ins, 181–183
deleting users, 12
internet of things, 183
multifactor authentication, 179–180
passwords and passphrases, 11–12, 177–179

resetting, 12
sudo privileges, 12
Ubuntu Linux, 11–13

usermod command, 12

V
VDI format, 5
verify parameter, 141
VHD format, 5
VirtualBox

creating Ubuntu virtual machines, 4–5
finalizing installation, 8
taking snapshots, 16

virtual local area networks (VLANs)
defined, 28
network segmentation, 28–31, 30

virtual machines (VMs)
capturing configurations, 16

taking snapshots in VirtualBox, 16
taking snapshots in VMware, 16, 145–146

creating, 2–5
hypervisors, 3

VirtualBox, 4–5
VMware Fusion, 4
VMware Fusion Player for macOS, 4
VMware Player for Windows, 3–4
VMware Workstation, 3–4

defined, xxi
finalizing installation, 8
host system, xxi

virtual private networks (VPNs), 67–89
drawbacks of third-party VPNs and remote access services, 68
functions of, 67–68
input chains, 35
OpenVPN

creating VPNs with, 70–82
EasyRSA, 69
overview of, 68–69

testing, 89
Wireguard

creating VPNs with, 82–89
overview of, 69

VirusTotal (VT), 124–125
VLANs. See virtual local area networks
VMDK format, 5
VMs. See virtual machines
VMware Fusion, 4
VMware Fusion Player for macOS, 4
VMware Player for Windows, 3–4
VMware Snapshot Manager, 16, 145–146
VMware Workstation, 3–4
VPNs. See virtual private networks
VT (VirusTotal), 124–125
Vultr, 7–8

W
WannaCry ransomware, 48
Wazuh, 159, 161–166

defined, 153
installing on Linux, 165–166
installing on macOS, 164–165
installing on Windows, 162–164
using, 171–172

webcam covers, 180, 183
WEP (Wired Equivalent Privacy), 62
wg pubkey command, 83
WhatIsMyIP.com, 89
whitelists, 114
Wi-Fi Protected Access (WPA), 62–63
Wi-Fi Protected Access preshared key (WPA-PSK), 63
Wi-Fi Protected Access version 2 (WPA2), 63
Wi-Fi Protected Access version 3 (WPA3), 63
Windows Backup, 134–135
Windows Backup and Restore, 135–137, 146
Wired Equivalent Privacy (WEP), 62
Wireguard

configuring, 83–89
firewall, 84–85
identifying DNS server, 85
starting VPN, 85
VPN client, 85–89

creating VPNs with, 82–89
installing, 82
overview of, 69
setting up key pairs, 83

wireless authentication, 62–65
WEP, 62
WPA/WPA2, 62–63
WPA3, 63–65

wireless network security, 53–65
2.4 GHz and 5 GHz wireless bands, 60
configuring wireless authentication, 62–65

WEP, 62

WPA/WPA2, 62–63
WPA3, 63–65

disabling IPv6, 54–55
hiding SSID, 65
limiting network devices, 54–60

creating asset lists, 56–57
MAC address filtering, 59–60
static IP addressing, 57–59

network segmentation, 60–62
upgrading hardware, 54

wireless routers, xxii
WPA (Wi-Fi Protected Access), 62–63
WPA2 (Wi-Fi Protected Access version 2), 63
WPA3 (Wi-Fi Protected Access version 3), 63
WPA-PSK (Wi-Fi Protected Access preshared key), 63

X
XProtect, 119

Y
Yubikey, 180
yum utility, 157

Z
zeek, 153, 158–160
Zenmap tool, 49–50

RESOURCES
Visit https://nostarch.com/cybersecurity-small-networks/ for errata
and more information.

More no-nonsense books from

ETHICAL HACKING
A Hands-On Introduction to Breaking In
�� ������ �. ������
376 ��., $49.99
���� 978-1-7185-0187-4

https://nostarch.com/cybersecurity-small-networks/

THE LINUX COMMAND LINE, 2ND EDITION
A Complete Introduction
�� ������� ������
504 ��., $39.95
���� 978-1-59327-952-3

PRACTICAL PACKET ANALYSIS, 3RD EDITION
Using Wireshark to Solve Real-World Network Problems
�� ����� �������
368 ��., $49.95
���� 978-1-59327-802-1

THE TCP/IP GUIDE
A Comprehensive, Illustrated Internet Protocols Reference
�� ������� �. ��������

1616 ��., $99.95
���� 978-1-59327-047-6

GO H*CK YOURSELF
A Simple Introduction to Cyber Attacks and Defense
�� �. ������ �����
192 ��., $29.99
���� 978-1-7185-0200-0

HOW CYBERSECURITY REALLY WORKS
A Hands-On Guide for Total Beginners
�� ��� �����
216 ��., $24.99
���� 978-1-7185-0128-7

PHONE:
800.420.7240 ��
415.863.9900

EMAIL:
�����@��������.���

WEB:
���.��������.���

mailto:sales@nostarch.com
http://www.nostarch.com/

	Cover
	Title Page
	Copyright Page
	Dedication
	About the Author
	Brief Contents
	Contents in Detail
	Acknowledgments
	Introduction
	How to Use This Book: What to Expect
	Recommended (But Not Required) Knowledge
	Recommended Hardware
	Summary

	1: Getting Started with a Base Linux System and Network Map
	Linux Operating Systems
	#1: Creating an Ubuntu Virtual Machine
	Hypervisor Options
	VMware Workstation and VMware Player for Windows
	VMware Fusion and VMware Fusion Player for macOS
	VirtualBox
	#2: Creating a Physical Linux System

	Bootable USB on Windows
	Bootable USB on macOS
	Using the Bootable USB
	#3: Creating a Cloud-Based Linux System

	Finalizing the Linux Installation
	Hardening Your Ubuntu System
	#4: Installing System Packages
	#5: Managing Linux Users
	#6: Securing Remote Access
	Generating SSH Keys
	Remote Login with SSH
	#7: Capturing VM Configurations

	Taking Snapshots in VMware
	Taking Snapshots in VirtualBox

	Network Topology
	#8: Checking Your IP Address
	On Windows
	On a Mac
	On Linux
	#9: Creating a Network Map
	#10: Transferring Files

	Summary

	2: Architecting and Segmenting Your Network
	Network Devices
	Hubs
	Switches
	Routers

	Creating Trust Zones
	Physical Segmentation
	Logical Segmentation
	#11: Segmenting Your Network

	Ethernet Segmentation

	Summary

	3: Filtering Network Traffic with Firewalls
	Types of Firewalls
	iptables
	#12: Installing iptables
	iptables Firewall Rules
	Configuring iptables
	Logging iptables Behavior

	pfSense
	#13: Installing the pfSense Firewall
	Hardening pfSense
	pfSense Firewall Rules
	#14: Testing Your Firewall

	Summary

	4: Securing Wireless Networks
	#15: Disabling IPv6
	#16: Limiting Network Devices
	Creating an Asset List
	Static IP Addressing
	MAC Address Filtering
	#17: Segmenting Your Network
	#18: Configuring Wireless Authentication

	WEP
	WPA/WPA2
	WPA3
	Summary

	5: Creating a Virtual Private Network
	Drawbacks of Third-Party VPNs and Remote Access Services
	OpenVPN
	EasyRSA
	Wireguard
	#19: Creating a VPN with OpenVPN
	Set Up the Certificate Authority
	Create the OpenVPN Server Certificate and Key
	Configure OpenVPN
	#20: Creating a VPN with Wireguard

	Installing Wireguard
	Set Up the Key Pairs
	Configure Wireguard

	Test Your VPN
	Summary

	6: Improving Browsing and Privacy with the Squid Proxy
	Why Use a Proxy?
	#21: Setting Up Squid
	Configuring Squid
	Configuring Devices to Use Squid
	Testing Squid
	Blocking and Allowing Domains
	Protecting Personal Information with Squid
	Disabling Caching for Specific Sites

	Squid Proxy Reports
	Summary

	7: Blocking Internet Advertisements
	Browser-Level Ad Blocking
	#22: Blocking Ads in Google Chrome
	#23: Blocking Ads in Mozilla Firefox
	#24: Controlling Brave’s Privacy Settings
	#25: Blocking Ads with Pi-Hole
	Configure Pi-Hole
	Using Pi-Hole
	Configure DNS on Your Endpoints

	Summary

	8: Detecting, Removing, and Preventing Malware
	Microsoft Defender for Windows
	Choosing Malware Detection and Antivirus Tools
	Antivirus Farm
	Signatures and Heuristics
	#26: Installing Avast on macOS
	#27: Installing ClamAV on Linux
	#28: Using VirusTotal
	#29: Managing Patches and Updates

	Windows Update
	macOS Software Update
	Linux Updates with apt
	#30: Installing Automox

	Installing Automox
	Using Automox

	Summary

	9: Backing Up Your Data
	Backup Types
	Devising a Backup Schedule
	Onsite and Offsite Backups
	What to Back Up and What Storage to Use
	#31: Using Windows Backup
	#32: Using Windows Backup and Restore
	#33: Using macOS Time Machine
	#34: Using Linux duplicity
	Creating Local Backups with duplicity
	Creating Network Backups with duplicity
	Restoring duplicity Backups
	Additional duplicity Considerations

	Cloud Backup Solutions
	Backblaze
	Carbonite

	Virtual Machine Snapshots
	Testing and Restoring Backups
	Summary

	10: Monitoring Your Network with Detection and Alerting
	Network Monitoring Methods
	Network Traffic Access Points
	Switch Port Analyzers
	#35: Configuring a SPAN Port

	Security Onion
	#36: Building a Security Onion System
	Installing Security Onion
	#37: Installing Wazuh

	Installing Wazuh on Windows
	Installing Wazuh on macOS
	Installing Wazuh on Linux
	#38: Installing osquery

	Installing osquery on Windows
	Installing osquery on macOS
	Installing osquery on Linux

	A Network Security Monitoring Crash Course
	Using osquery
	Using Wazuh
	Using Security Onion as a SIEM Tool

	Summary

	11: Tips for Managing User Security on Your Network
	Passwords
	Password Managers
	Password Breach Detection

	Multifactor Authentication
	Browser Plug-ins
	Adblock Plus
	Ghostery
	HTTPS Everywhere

	Internet of Things Considerations
	Additional Resources
	Summary

	Index
	Resources

