
A L S W E I G A R T

B E Y O N D T H E B A S I C
S T U F F W I T H P Y T H O N

B E S T P R A C T I C E S F O R W R I T I N G

C L E A N C O D E

BEYOND THE BASIC STUFF WITH PYTHON

San Francisco

B E YO N D T H E
B A S I C S T U F F

W I T H P Y T H O N
B e s t P r a c t i c e s f o r

W r i t i n g C l e a n C o d e

Al Sweigar t

BEYOND THE BASIC STUFF WITH PYTHON. Copyright © 2021 by Al Sweigart.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13: 978-1-59327-966-0 (print)
ISBN-13: 978-1-59327-967-7 (ebook)

Publisher: William Pollock
Executive Editor: Barbara Yien
Production Editor: Maureen Forys, Happenstance Type-O-Rama
Developmental Editor: Frances Saux
Cover Design: Octopod Studios
Interior Design: Octopod Studios
Cover Illustration: Josh Ellingson
Technical Reviewer: Kenneth Love
Copyeditor: Anne Marie Walker
Compositor: Happenstance Type-O-Rama
Proofreader: Rachel Monaghan
Indexer: Valerie Perry

For information on book distributors or translations, please contact No Starch Press, Inc. directly:
No Starch Press, Inc.
245 8th Street, San Francisco, CA 94103
phone: 1-415-863-9900; info@nostarch.com
www.nostarch.com

Library of Congress Cataloging-in-Publication Data

Library of Congress Cataloging-in-Publication Data

Names: Sweigart, Al, author.
Title: Beyond the basic stuff with python : best practices for writing clean code /
 Al Sweigart.
Description: San Francisco, CA : No Starch Press, Inc., [2021] | Includes
 index.
Identifiers: LCCN 2020034287 (print) | LCCN 2020034288 (ebook) | ISBN
 9781593279660 (paperback) | ISBN 9781593279677 (ebook)
Subjects: LCSH: Python (Computer program language) | Computer programming.
Classification: LCC QA76.73.P98 S943 2021 (print) | LCC QA76.73.P98
 (ebook) | DDC 005.13/3—dc23
LC record available at https://lccn.loc.gov/2020034287
LC ebook record available at https://lccn.loc.gov/2020034288

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Other
product and company names mentioned herein may be the trademarks of their respective owners. Rather
than use a trademark symbol with every occurrence of a trademarked name, we are using the names only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of
the trademark.

For my nephew Jack

About the Author
Al Sweigart is a software developer and tech book author living in Seattle.
Python is his favorite programming language, and he is the developer of sev-
eral open source modules for it. His other books are freely available under a
Creative Commons license on his website at https://www.inventwithpython.com/.
His cat Zophie weighs 11 pounds.

About the Technical Reviewer
Kenneth Love is a programmer, teacher, and conference organizer. He is a
Django contributor and PSF Fellow, and currently works as a tech lead and
software engineer for O’Reilly Media.

http://www.inventwithpython.com/

B R I E F C O N T E N T S

Acknowledgments . xix

Introduction . xxi

PART I: GETTING STARTED . 1
Chapter 1: Dealing with Errors and Asking for Help . 3

Chapter 2: Environment Setup and the Command Line . . 17

PART II: BEST PRACTICES, TOOLS, AND TECHNIQUES 43
Chapter 3: Code Formatting with Black . 45

Chapter 4: Choosing Understandable Names . 59

Chapter 5: Finding Code Smells . 69

Chapter 6: Writing Pythonic Code . 87

Chapter 7: Programming Jargon . 107

Chapter 8: Common Python Gotchas . . 133

Chapter 9: Esoteric Python Oddities . 153

Chapter 10: Writing Effective Functions . 161

Chapter 11: Comments, Docstrings, and Type Hints . 181

Chapter 12: Organizing Your Code Projects with Git . 199

Chapter 13: Measuring Performance and Big O Algorithm Analysis 225

Chapter 14: Practice Projects . 247

PART III: OBJECT-ORIENTED PYTHON 273
Chapter 15: Object-Oriented Programming and Classes . 275

Chapter 16: Object-Oriented Programming and Inheritance . . 293

Chapter 17: Pythonic OOP: Properties and Dunder Methods . 315

Index . . 339

Acknowledgments . xix

Introduction . . xxi

PART 1: GETTING STARTED . 1
Chapter 1: Dealing with Errors and Asking for Help . . 3

Chapter 2: Environment Setup and the Command Line 17

PART 2: BEST PRACTICES, TOOLS, AND TECHNIQUES . . 43
Chapter 3: Code Formatting with Black . 45

Chapter 4: Choosing Understandable Names . 59

Chapter 5: Finding Code Smells . 69

Chapter 6: Writing Pythonic Code . 87

Chapter 7: Programming Jargon . 107

Chapter 8: Common Python Gotchas . 133

Chapter 9: Esoteric Python Oddities . . 153

Chapter 10: Writing Effective Functions . 161

Chapter 11: Comments, Docstrings, and Type Hints . 181

Chapter 12: Organizing Your Code Projects with Git 199

Chapter 13: Measuring Performance and Big O Algorithm Analysis 225

Chapter 14: Practice Projects . 247

PART 3: OBJECT-ORIENTED PYTHON 273
Chapter 15: Object-Oriented Programming and Classes 275

Chapter 16: Object-Oriented Programming and Inheritance 293

Chapter 17: Pythonic OOP: Properties and Dunder Methods 315

Index . 339

﻿ xi

C O N T E N T S I N D E T A I L

ACKNOWLEDGMENTS	 xix

INTRODUCTION	 xxi
Who Should Read This Book and Why . xxii
About This Book . xxii
Your Programming Journey . xxiv

PART I: GETTING STARTED	 1

1
DEALING WITH ERRORS AND ASKING FOR HELP	 3
How to Understand Python Error Messages . 4

Examining Tracebacks . 4
Searching for Error Messages . 7

Preventing Errors with Linters . 8
How to Ask for Programming Help . 9

Limit Back and Forth by Providing Your Information Upfront 10
State Your Question in the Form of an Actual Question 10
Ask Your Question on the Appropriate Website . 10
Summarize Your Question in the Headline . . 11
Explain What You Want the Code to Do . 11
Include the Full Error Message . 11
Share Your Complete Code . 11
Make Your Code Readable with Proper Formatting . 12
Tell Your Helper What You’ve Already Tried . 13
Describe Your Setup . 13

Examples of Asking a Question . 14
Summary . 14

2
ENVIRONMENT SETUP AND THE COMMAND LINE	 17
The Filesystem . . 18

Paths in Python . 18
The Home Directory . 19
The Current Working Directory . 19
Absolute vs. Relative Paths . 20

Programs and Processes . . 21
The Command Line . 22

Opening a Terminal Window . 23
Running Programs from the Command Line . 23
Using Command Line Arguments . 24
Running Python Code from the Command Line with -c 26
Running Python Programs from the Command Line . 26

C O N T E N T S I N D E T A I L

About the Author . vii
About the Technical Reviewer . vii

ACKNOWLEDGMENTS	 XIX

INTRODUCTION	 XXI
Who Should Read This Book and Why . xxii
About This Book . xxii
Your Programming Journey . . xxiv

PART 1

GETTING STARTED	 1

1

DEALING WITH ERRORS AND ASKING FOR HELP	 3
How to Understand Python Error Messages 4
Examining Tracebacks . 4
Searching for Error Messages . . 7
Preventing Errors with Linters . 8
How to Ask for Programming Help . 9
Limit Back and Forth by Providing Your Information Upfront 10
State Your Question in the Form of an Actual Question 10
Ask Your Question on the Appropriate Website 10
Summarize Your Question in the Headline 11
Explain What You Want the Code to Do . 11
Include the Full Error Message . 11
Share Your Complete Code . 11
Make Your Code Readable with Proper Formatting 12
Tell Your Helper What You’ve Already Tried 13
Describe Your Setup . 13
Examples of Asking a Question . 14
Summary . 14

2

ENVIRONMENT SETUP AND THE COMMAND LINE	17
The Filesystem . 18
Paths in Python . 18
The Home Directory . 19
The Current Working Directory . 19
Absolute vs. Relative Paths . 20
Programs and Processes . 21
The Command Line . 22
Opening a Terminal Window . 23
Running Programs from the Command Line 23
Using Command Line Arguments . 24
Running Python Code from the Command Line with -c 26
Running Python Programs from the Command Line 26
Running the py.exe Program . . 26
Running Commands from a Python Program 27
Minimizing Typing with Tab Completion . 27

xii Contents in Detail

Running the py.exe Program . 26
Running Commands from a Python Program . 27
Minimizing Typing with Tab Completion . 27
Viewing the Command History . 28
Working with Common Commands . 28

Environment Variables and PATH . . 35
Viewing Environment Variables . 36
Working with the PATH Environment Variable . 36
Changing the Command Line’s PATH Environment Variable 37
Permanently Adding Folders to PATH on Windows . 38
Permanently Adding Folders to PATH on macOS and Linux 39

Running Python Programs Without the Command Line . 39
Running Python Programs on Windows . . 40
Running Python Programs on macOS . 41
Running Python Programs on Ubuntu Linux . 41

Summary . 42

PART III: BEST PRACTICES, TOOLS,
AND TECHNIQUES	 43

3
CODE FORMATTING WITH BLACK	 45
How to Lose Friends and Alienate Co-Workers . 46
Style Guides and PEP 8 . 46
Horizontal Spacing . 47

Use Space Characters for Indentation . 47
Spacing Within a Line . 48

Vertical Spacing . 51
A Vertical Spacing Example . 51
Vertical Spacing Best Practices . . 52

Black: The Uncompromising Code Formatter . 53
Installing Black . . 54
Running Black from the Command Line . 54
Disabling Black for Parts of Your Code . 57

Summary . 58

4
CHOOSING UNDERSTANDABLE NAMES	 59
Casing Styles . 60
PEP 8’s Naming Conventions . 61
Appropriate Name Length . 61

Too Short Names . 61
Too Long Names . 63

Make Names Searchable . . 64
Avoid Jokes, Puns, and Cultural References . 64
Don’t Overwrite Built-in Names . 65
The Worst Possible Variable Names Ever . 66
Summary . 67

Contents in Detail xiii

5
FINDING CODE SMELLS	 69
Duplicate Code . . 70
Magic Numbers . 71
Commented-Out Code and Dead Code . 74
Print Debugging . 75
Variables with Numeric Suffixes . 76
Classes That Should Just Be Functions or Modules . 77
List Comprehensions Within List Comprehensions . 77
Empty except Blocks and Poor Error Messages . 79
Code Smell Myths . 80

Myth: Functions Should Have Only One return Statement at the End 80
Myth: Functions Should Have at Most One try Statement 81
Myth: Flag Arguments Are Bad . 82
Myth: Global Variables Are Bad . 82
Myth: Comments Are Unnecessary . 83

Summary . 84

6
WRITING PYTHONIC CODE	 87
The Zen of Python . 88
Learning to Love Significant Indentation . 91
Commonly Misused Syntax . 92

Use enumerate() Instead of range() . 92
Use the with Statement Instead of open() and close() 93
Use is to Compare with None Instead of == . 94

Formatting Strings . 95
Use Raw Strings If Your String Has Many Backslashes 95
Format Strings with F-Strings . 96

Making Shallow Copies of Lists . . 97
Pythonic Ways to Use Dictionaries . 98

Use get() and setdefault() with Dictionaries . 98
Use collections.defaultdict for Default Values . 99
Use Dictionaries Instead of a switch Statement . 100

Conditional Expressions: Python’s “Ugly” Ternary Operator . 101
Working with Variable Values . . 103

Chaining Assignment and Comparison Operators . 103
Checking Whether a Variable Is One of Many Values 103

Summary . 104

7
PROGRAMMING JARGON	 107
Definitions . 108

Python the Language and Python the Interpreter . 108
Garbage Collection . 109
Literals . 109
Keywords . 110
Objects, Values, Instances, and Identities . 111
Items . 114

xiv Contents in Detail

Mutable and Immutable . 114
Indexes, Keys, and Hashes . 117
Containers, Sequences, Mapping, and Set Types . 119
Dunder Methods and Magic Methods . . 120
Modules and Packages . . 120
Callables and First-Class Objects . 121

Commonly Confused Terms . 122
Statements vs. Expressions . . 122
Block vs. Clause vs. Body . 123
Variable vs. Attribute . 124
Function vs. Method . 124
Iterable vs. Iterator . 125
Syntax vs. Runtime vs. Semantic Errors . 126
Parameters vs. Arguments . 128
Type Coercion vs. Type Casting . 128
Properties vs. Attributes . . 128
Bytecode vs. Machine Code . 129
Script vs. Program, Scripting Language vs. Programming Language 129
Library vs. Framework vs. SDK vs. Engine vs. API . . 130

Summary . 131
Further Reading . 131

8
COMMON PYTHON GOTCHAS	 133
Don’t Add or Delete Items from a List While Looping Over It 134
Don’t Copy Mutable Values Without copy.copy() and copy.deepcopy() 140
Don’t Use Mutable Values for Default Arguments . 142
Don’t Build Strings with String Concatenation . 144
Don’t Expect sort() to Sort Alphabetically . 146
Don’t Assume Floating-Point Numbers Are Perfectly Accurate 147
Don’t Chain Inequality != Operators . 149
Don’t Forget the Comma in Single-Item Tuples . 150
Summary . 150

9
ESOTERIC PYTHON ODDITIES	 153
Why 256 Is 256 but 257 Is Not 257 . 154
String Interning . 155
Python’s Fake Increment and Decrement Operators . 156
All of Nothing . . 157
Boolean Values Are Integer Values . 158
Chaining Multiple Kinds of Operators . 159
Python’s Antigravity Feature . 160
Summary . 160

10
WRITING EFFECTIVE FUNCTIONS	 161
Function Names . 162
Function Size Trade-Offs . 162

Contents in Detail xv

Function Parameters and Arguments . 165
Default Arguments . 165
Using * and ** to Pass Arguments to Functions . 166
Using * to Create Variadic Functions . 167
Using ** to Create Variadic Functions . 169
Using * and ** to Create Wrapper Functions . 171

Functional Programming . 172
Side Effects . 172
Higher-Order Functions . 174
Lambda Functions . 174
Mapping and Filtering with List Comprehensions . 175

Return Values Should Always Have the Same Data Type . 177
Raising Exceptions vs. Returning Error Codes . 178
Summary . 179

11
COMMENTS, DOCSTRINGS, AND TYPE HINTS	 181
Comments . 182

Comment Style . . 183
Inline Comments . 184
Explanatory Comments . 184
Summary Comments . . 185
“Lessons Learned” Comments . 185
Legal Comments . . 186
Professional Comments . 186
Codetags and TODO Comments . 187
Magic Comments and Source File Encoding . 187

Docstrings . 188
Type Hints . 190

Using Static Analyzers . 192
Setting Type Hints for Multiple Types . . 194
Setting Type Hints for Lists, Dictionaries, and More 195
Backporting Type Hints with Comments . . 196

Summary . 197

12
ORGANIZING YOUR CODE PROJECTS WITH GIT	 199
Git Commits and Repos . 200
Using Cookiecutter to Create New Python Projects . 200
Installing Git . 202

Configuring Your Git Username and Email . 203
Installing GUI Git Tools . 203

The Git Workflow . 204
How Git Keeps Track of File Status . 204
Why Stage Files? . 206

Creating a Git Repo on Your Computer . 206
Adding Files for Git to Track . 208
Ignoring Files in the Repo . 209
Committing Changes . 210
Deleting Files from the Repo . 214
Renaming and Moving Files in the Repo . 215

xvi Contents in Detail

Viewing the Commit Log . 216
Recovering Old Changes . 217

Undoing Uncommitted Local Changes . 218
Unstaging a Staged File . 218
Rolling Back the Most Recent Commits . 218
Rolling Back to a Specific Commit for a Single File 219
Rewriting the Commit History . . 220

GitHub and the git push Command . 221
Pushing an Existing Repository to GitHub . 222
Cloning a Repo from an Existing GitHub Repo . . 222

Summary . 223

13
MEASURING PERFORMANCE AND BIG O
ALGORITHM ANALYSIS	 225
The timeit Module . 226
The cProfile Profiler . 228
Big O Algorithm Analysis . 230
Big O Orders . 230

A Bookshelf Metaphor for Big O Orders . 231
Big O Measures the Worst-Case Scenario . 235

Determining the Big O Order of Your Code . 237
Why Lower Orders and Coefficients Don’t Matter . 238
Big O Analysis Examples . 239
The Big O Order of Common Function Calls . 242
Analyzing Big O at a Glance . 243
Big O Doesn’t Matter When n Is Small, and n Is Usually Small 244

Summary . 244

14
PRACTICE PROJECTS	 247
The Tower of Hanoi . 248

The Output . 249
The Source Code . 250
Writing the Code . 252

Four-in-a-Row . 259
The Output . 259
The Source Code . 260
Writing the Code . 264

Summary . 271

PART III: OBJECT-ORIENTED PYTHON 	 273

15
OBJECT-ORIENTED PROGRAMMING AND CLASSES	 275
Real-World Analogy: Filling Out a Form . . 276
Creating Objects from Classes . 278

Contents in Detail xvii

Creating a Simple Class: WizCoin . 279
Methods, __init__(), and self . 280
Attributes . 282
Private Attributes and Private Methods . 282

The type() Function and __qualname__ Attribute . 284
Non-OOP vs. OOP Examples: Tic-Tac-Toe . . 285
Designing Classes for the Real World Is Hard . 290
Summary . 291

16
OBJECT-ORIENTED PROGRAMMING AND INHERITANCE	 293
How Inheritance Works . 294

Overriding Methods . 296
The super() Function . 297
Favor Composition Over Inheritance . . 299
Inheritance’s Downside . 301

The isinstance() and issubclass() Functions . 303
Class Methods . 304
Class Attributes . 306
Static Methods . 306
When to Use Class and Static Object-Oriented Features . 307
Object-Oriented Buzzwords . 307

Encapsulation . 307
Polymorphism . 308

When Not to Use Inheritance . 308
Multiple Inheritance . . 309
Method Resolution Order . 311
Summary . 312

17
PYTHONIC OOP: PROPERTIES AND DUNDER METHODS	 315
Properties . . 316

Turning an Attribute into a Property . 316
Using Setters to Validate Data . 319
Read-Only Properties . 320
When to Use Properties . 322

Python’s Dunder Methods . 322
String Representation Dunder Methods . 323
Numeric Dunder Methods . 325
Reflected Numeric Dunder Methods . 328
In-Place Augmented Assignment Dunder Methods . 330
Comparison Dunder Methods . 332

Summary . 337

INDEX	 339

A C K N O W L E D G M E N T S

It’s misleading to have just my name on the cover. This book wouldn’t
exist without the efforts of many people. I’d like to thank my publisher,
Bill Pollock; and my editors, Frances Saux, Annie Choi, Meg Sneeringer,
and Jan Cash. I’d like to also thank production editor Maureen Forys, copy
editor Anne Marie Walker, and No Starch Press executive editor Barbara
Yien. Thanks to Josh Ellingson for another great cover illustration. Thank
you to my technical reviewer, Kenneth Love, and all the other great friends
I’ve met in the Python community.

I N T R O D U C T I O N

Hello again, world! As a teenage program-
mer and wannabe hacker in the late 1990s,

I would pore over the latest issues of 2600:
The Hacker Quarterly. One day, I finally summoned

the courage to attend the magazine’s monthly meetup
in my city and was in awe of how knowledgeable every-
one else seemed. (Later, I’d realize that many of them
had more confidence than actual knowledge.) I spent
the entire meeting nodding along to what others were
saying, trying to keep up with their conversations. I left that meetup deter-
mined to spend every waking hour studying computing, programming, and
network security so I could join the discussions at the next month’s meetup.

At the next meetup, I continued to just nod and feel dumb compared to
everyone else. So again I resolved to study and become “smart enough” to

xxii Introduction

keep up. Month after month, I would increase my knowledge but always felt
behind. I began to realize the enormity of the computing field and worried
I would never know enough.

I knew more about programming than my high school friends but cer-
tainly not enough to get a job as a software developer. In the 1990s, Google,
YouTube, and Wikipedia didn’t exist. But even if those resources were avail-
able, I wouldn’t have known how to use them; I wouldn’t have been sure what
to study next. Instead, I learned how to write Hello, world! programs in dif-
ferent programming languages but still felt I wasn’t making real progress. I
didn’t know how to move beyond the basics.

There’s so much more to software development than loops and func-
tions. But once you’ve completed a beginner course or read an introductory
programming book, your search for more guidance leads to yet another
Hello, world! tutorial. Programmers often call this period the desert of despair:
the time you spend wandering aimlessly through different learning materi-
als, feeling like you’re not improving. You become too advanced for begin-
ner materials but too inexperienced to tackle more complex topics.

Those in this desert experience a strong sense of impostor syndrome.
You don’t feel like a “real” programmer or know how to craft code the way
“real” programmers do. I wrote this book to address this audience. If you’ve
learned the basics of Python, this book should help you become a more
capable software developer and lose this sense of despair.

Who Should Read This Book and Why
This book targets those who have completed a basic Python tutorial and
want to know more. The tutorial you learned from could have been my pre-
vious book, Automate the Boring Stuff with Python (No Starch Press, 2019), a
book such as Python Crash Course (No Starch Press, 2019) by Eric Matthes, or
an online course.

These tutorials might have hooked you on programming, but you still
need more skills. If you feel like you’re not yet at the professional program-
mer level but don’t know how to get to that level, this is the book for you.

Or perhaps you were introduced to programming via another language
besides Python and you want to jump right in to Python and its ecosystem
of tools without retreading the same Hello, world! basics. If so, you don’t
need to read hundreds of pages that explain basic syntax; instead, skim-
ming the “Learn Python in Y Minutes” article at https://learnxinyminutes.com/
docs/python/ or Eric Matthes’s “Python Crash Course—Cheat Sheet” page at
https://ehmatthes.github.io/pcc/cheatsheets/README.html will suffice before you
tackle this book.

About This Book
This book covers more than just deeper-level Python syntax. It also dis-
cusses using the command line and the command line tools that profes-
sional developers use, such as code formatters, linters, and version control.

https://learnxinyminutes.com/docs/python/
https://learnxinyminutes.com/docs/python/
https://ehmatthes.github.io/pcc/cheatsheets/README.html

Introduction xxiii

I explain what makes code readable and how you can write clean code.
I’ve featured a few programming projects, so you can see these principles
applied in actual software. Although this isn’t a computer science textbook,
I also explain Big O algorithm analysis and object-oriented design.

No single book can transform a person into a professional software
developer, but I’ve written this book to further your knowledge toward
that end. I introduce several topics that you might only otherwise discover,
piecemeal, through hard-earned experience. After completing this book,
your footing will be on a firmer foundation so you’ll be better equipped to
take on new challenges.

Although I recommend you read the chapters in this book in order, feel
free to skip to whichever chapters capture your interest:

Part I: Getting Started

Chapter 1: Dealing with Errors and Asking for Help	   Shows you
how to effectively ask questions and find answers on your own. It also
teaches you how to read error messages and the etiquette for asking for
help online.

Chapter 2: Environment Setup and the Command Line    Explains
how to navigate the command line along with setting up your develop-
ment environment and the PATH environment variable.

Part II: Best Practices, Tools, and Techniques

Chapter 3: Code Formatting with Black   Describes the PEP 8 style
guide and how to format your code to make it more readable. You’ll
learn how to automate this process using the Black code-formatting tool.

Chapter 4: Choosing Understandable Names    Describes how you
should name your variables and functions to improve code readability.

Chapter 5: Finding Code Smells   Lists several potential red flags that
could indicate the existence of bugs in your code.

Chapter 6: Writing Pythonic Code   Details several ways to write idiom-
atic Python code and what makes for Pythonic code.

Chapter 7: Programming Jargon   Explains technical terms used in the
programming field and terms that are commonly confused with each
other.

Chapter 8: Common Python Gotchas   Covers common sources of con-
fusion and bugs in the Python language and how to correct them, as
well as coding strategies to avoid.

Chapter 9: Esoteric Python Oddities   Covers several odd quirks of the
Python language, such as string interning and the antigravity Easter
egg, that you might not otherwise notice. You’ll get an advanced under-
standing of how Python works by figuring out why some data types and
operators result in such unexpected behavior.

Chapter 10: Writing Effective Functions   Details how to structure
your functions for the most utility and readability. You’ll learn about

xxiv Introduction

the * and ** argument syntax, the trade-offs between large and
small functions, and functional programming techniques, such as
lambda functions.

Chapter 11: Comments, Docstrings, and Type Hints   Covers the
importance of the non-code parts of your program and how they
affect maintainability. It includes how often you should write com-
ments and docstrings, and how to make them informative. The chap-
ter also discusses type hints and how to use static analyzers, such as
Mypy, to detect bugs.

Chapter 12: Organizing Your Code Projects with Git   Describes using
the Git version control tool to record the history of changes you make
to your source code and recover previous versions of your work or track
down when a bug first appeared. It also touches on how to structure
your code projects’ files using the Cookiecutter tool.

Chapter 13: Measuring Performance and Big O Algorithm Analysis   
Explains how to objectively measure your code’s speed using the timeit
and cProfile modules. In addition, it covers Big O algorithm analysis and
how it lets you predict the way your code’s performance slows down as
the amount of data it has to process grows.

Chapter 14: Practice Projects   Has you apply the techniques you
learned in this part by writing two command line games: the Tower of
Hanoi, a puzzle game involving moving disks from one tower to the
next, and the classic Four-in-a-Row board game for two players.

Part III: Object-Oriented Python

Chapter 15: Object-Oriented Programming and Classes   Defines
the role of object-oriented programming (OOP) because it’s often mis-
understood. Many developers overuse OOP techniques in their code
because they believe it’s what everyone else does, but this leads to com-
plicated source code. This chapter teaches you how to write classes, but
more important, it teaches you why you should and shouldn’t use them.

Chapter 16: Object-Oriented Programming and Inheritance   Explains
class inheritance and its utility for code reuse.

Chapter 17: Pythonic OOP: Properties and Dunder Methods   Covers
the Python-specific features in object-oriented design, such as proper-
ties, dunder methods, and operator overloading.

Your Programming Journey
The journey from novice to capable programmer can often feel like
attempting to drink from a fire hose. With so many resources to choose
from, you might worry that you’re wasting time on suboptimal program-
ming guides.

Introduction xxv

After you finish reading this book (or even while you’re reading this
book), I recommend following up by reading these additional introductory
materials:

Python Crash Course (No Starch Press, 2019) by Eric Matthes is a book for
beginners, but its project-based approach gives even experienced pro-
grammers a taste of Python’s Pygame, matplotlib, and Django libraries.

Impractical Python Projects (No Starch Press, 2018) by Lee Vaughan provides
a project-based approach to expand your Python skills. The programs
you’ll create by following the instructions in this book are fun and
great programming practice.

Serious Python (No Starch Press, 2018) by Julien Danjou describes the
steps you need to take to progress from a garage project hobbyist to a
knowledgeable software developer who follows industry best practices
and writes code that can scale.

But the technical aspects of Python are only one of its strengths. The
programming language has attracted a diverse community responsible for
creating a friendly, accessible body of documentation and support that no
other programming ecosystem has matched. The annual PyCon confer-
ence, along with the many regional PyCons, hosts a wide variety of talks
for all experience levels. The PyCon organizers make these talks available
online for free at https://pyvideo.org/. The Tags page lets you easily find talks
on topics that correspond to your interests.

To take a deeper dive into the advanced features of Python’s syntax and
standard library, I recommend reading the following titles:

Effective Python (Addison-Wesley Professional, 2019) by Brett Slatkin
is an impressive collection of Pythonic best practices and language
features.

Python Cookbook (O’Reilly Media, 2013) by David Beazley and Brian K.
Jones offers an extensive list of code snippets to upgrade any Python
novice’s repertoire.

Fluent Python (O’Reilly Media, 2021) by Luciano Ramalho is a mas-
terwork for exploring the intricacies of the Python language, and
although its near-800-page size might be intimidating, it’s well worth
the effort.

Good luck on your programming journey. Let’s get started!

https://pyvideo.org/

PART 1
G E T T I N G S T A R T E D

Please don’t anthropomorphize computers;
they find it very annoying. When a com-

puter presents you with an error message,
it’s not because you’ve offended it. Computers

are the most sophisticated tools most of us will ever
interact with, but still, they’re just tools.

Even so, it’s easy to blame these tools. Because much of learning to
program is self-directed, it’s common to feel like a failure when you still
need to consult the internet multiple times a day, even though you’ve been
studying Python for months. But even professional software developers
search the internet or consult documentation to answer their programming
questions.

Unless you have the financial or social resources to hire a private tutor
who can answer your programming questions, you’re stuck with your com-
puter, internet search engines, and your own fortitude. Fortunately, your
questions have almost certainly been asked before. As a programmer, being

1
D E A L I N G W I T H E R R O R S A N D

A S K I N G F O R H E L P

4 Chapter 1

able to find answers on your own is far more important than any algorithms
or data structure knowledge. This chapter guides you through developing
this crucial skill.

How to Understand Python Error Messages
When they’re confronted with an error message’s large wall of technobab-
ble text, many programmers’ first impulse is to completely ignore it. But
inside this error message is the answer to what’s wrong with your program.
Finding this answer is a two-step process: examining the traceback and
doing an internet search of the error message.

Examining Tracebacks
Python programs crash when the code raises an exception that an except
statement doesn’t handle. When this happens, Python displays the excep-
tion’s message and a traceback. Also called a stack trace, the traceback shows
the place in your program where the exception happened and the trail of
function calls that led up to it.

To practice reading tracebacks, enter the following buggy program and
save it as abcTraceback.py. The line numbers are for reference only and aren’t
part of the program.

 1. def a():
 2. print('Start of a()')

1 3. b() # Call b().
 4.
 5. def b():
 6. print('Start of b()')

2 7. c() # Call c().
 8.
 9. def c():
10. print('Start of c()')

3 11. 42 / 0 # This will cause a zero divide error.
12.
13. a() # Call a().

In this program, the a() function calls b() 1, which calls c() 2. Inside
c(), the 42 / 0 expression 3 causes a zero divide error. When you run this
program, the output should look like this:

Start of a()
Start of b()
Start of c()
Traceback (most recent call last):
 File "abcTraceback.py", line 13, in <module>
 a() # Call a().
 File "abcTraceback.py", line 3, in a
 b() # Call b().
 File "abcTraceback.py", line 7, in b
 c() # Call c().

Dealing with Errors and Asking for Help 5

 File "abcTraceback.py", line 11, in c
 42 / 0 # This will cause a zero divide error.
ZeroDivisionError: division by zero

Let’s examine this traceback line by line, starting with this line:

Traceback (most recent call last):

This message lets you know that what follows is a traceback. The most
recent call last text indicates that each of the function calls is listed in
order, starting with the first function call and ending with the most recent.

The next line shows the traceback’s first function call:

 File "abcTraceback.py", line 13, in <module>
 a() # Call a().

These two lines are the frame summary, and they show the information
inside a frame object. When a function is called, the local variable data
as well as where in the code to return to after the function call ends are
stored in a frame object. Frame objects hold local variables and other data
associated with function calls. Frame objects are created when the function
is called and destroyed when the function returns. The traceback shows a
frame summary for each frame leading up to the crash. We can see that
this function call is on line 13 of abcTraceback.py, and the <module> text tells
us this line is in the global scope. Line 13 is displayed with two spaces of
indentation next.

The four lines that follow are the next two frame summaries:

 File "abcTraceback.py", line 3, in a
 b() # Call b().
 File "abcTraceback.py", line 7, in b
 c() # Call c().

We can tell from the line 3, in a text that b() was called on line 3 inside
the a() function, which led to c() being called on line 7 inside the b() func-
tion. Notice that the print() calls on lines 2, 6, and 10 aren’t displayed in the
traceback, even though they ran before the function calls occurred. Only the
lines containing function calls that lead up to the exception are displayed in
the traceback.

The last frame summary shows the line that caused the unhandled
exception, followed by the name of the exception and the exception’s
message:

 File "abcTraceback.py", line 11, in c
 42 / 0 # This will cause a zero divide error.
ZeroDivisionError: division by zero

Note that the line number given by the traceback is where Python
finally detected an error. The true source of the bug could be somewhere
before this line.

6 Chapter 1

Error messages are notoriously short and inscrutable: the three words
division by zero won’t mean anything to you unless you know that dividing a
number by zero is mathematically impossible and a common software bug.
In this program, the bug isn’t too hard to find. Looking at the line of code
in the frame summary, it’s clear where in the 42 / 0 code the zero divide
error is happening.

But let’s look at a more difficult case. Enter the following code into a
text editor and save it as zeroDivideTraceback.py:

def spam(number1, number2):
 return number1 / (number2 - 42)

spam(101, 42)

When you run this program, the output should look like this:

Traceback (most recent call last):
 File "zeroDivideTraceback.py", line 4, in <module>
 spam(101, 42)
 File "zeroDivideTraceback.py", line 2, in spam
 return number1 / (number2 - 42)
ZeroDivisionError: division by zero

The error message is the same, but the zero divide in return number1 /
(number2 - 42) isn’t quite so obvious. You can deduce that there is a division
happening from the / operator, and that the expression (number2 - 42) must
evaluate to 0. This would lead you to conclude that the spam() function fails
whenever the number2 parameter is set to 42.

Sometimes the traceback might indicate that an error is on the line
after the true cause of the bug. For example, in the following program, the
first line is missing the closing parenthesis:

print('Hello.'
print('How are you?')

But the error message for this program indicates the problem is on the
second line:

 File "example.py", line 2
 print('How are you?')
 ^
SyntaxError: invalid syntax

The reason is that the Python interpreter didn’t notice the syntax error
until it read the second line. The traceback can indicate where things went
wrong, but that isn’t always the same as where the actual cause of a bug
is. If the frame summary doesn’t give you enough information to figure
out the bug, or if the true cause of the bug is on a previous line not shown
by the traceback, you’ll have to step through the program with a debugger

Dealing with Errors and Asking for Help 7

or check any logging messages to find the cause. This can take a significant
amount of time. An internet search of the error message might give you
critical clues about the solution much more quickly.

Searching for Error Messages
Often, error messages are so short they’re not even full sentences. Because
programmers encounter them regularly, they’re intended as reminders
rather than full explanations. If you’re encountering an error message for the
first time, copying and pasting it into an internet search frequently returns a
detailed explanation of what the error means and what its likely causes are.
Figure 1-1 shows the results of a search for python “ZeroDivisionError: divi-
sion by zero”. Including quotation marks around the error message helps
find the exact phrase, and adding the word python can narrow down your
search as well.

Figure 1-1: Copying and pasting an error message into an internet search tool can quickly
provide explanations and solutions.

Searching for error messages isn’t cheating. Nobody can be expected
to memorize every possible error message for a programming language.
Professional software developers search the internet for programming
answers on a daily basis.

You might want to exclude any part of the error message that is particu-
lar to your code. For example, consider the following error messages:

>>> print(employeRecord)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>

8 Chapter 1

1 NameError: name 'employeRecord' is not defined
>>> 42 - 'hello'
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>

2 TypeError: unsupported operand type(s) for -: 'int' and 'str'

This example has a typo in the variable employeRecord, causing an error 1.
Because the identifier employeRecord in NameError: name 'employeRecord' is not
defined is specific to your code, you might want to instead search for python
“NameError: name” “is not defined”. In the last line, the 'int' and 'str'
part of the error message 2 seems to refer to the 42 and 'hello' values, so
truncating the search to python “TypeError: unsupported operand type(s)
for” would avoid including parts particular to your code. If these searches
don’t yield useful results, try including the full error message.

Preventing Errors with Linters
The best way to fix mistakes is to not make them in the first place. Lint
software, or linters, are applications that analyze your source code to warn
you of any potential errors. The name references the small fibers and
debris collected by a clothes dryer’s lint trap. Although a linter won’t catch
all errors, static analysis (examining source code without running it) can
identify common errors caused by typos. (Chapter 11 explores how to use
type hints for static analysis.) Many text editors and integrated development
environments (IDEs) incorporate a linter that runs in the background and
can point out problems in real time, such as in Figure 1-2.

Figure 1-2: A linter points out an undefined variable in
Mu (top), PyCharm (middle), and Sublime Text (bottom).

Dealing with Errors and Asking for Help 9

The near-instant notifications that a linter provides greatly improves
your programming productivity. Without one, you’d have to run your pro-
gram, watch it crash, read the traceback, and then find the line in your
source code to fix a typo. And if you’ve made multiple typos, this run-fix
cycle would only find them one at a time. Linting can point out multiple
errors at once, and it does so directly in the editor, so you can see the line
on which they occur.

Your editor or IDE might not come with a lint feature, but if it supports
plug-ins, almost certainly a linter will be available. Often, these plug-ins use
a linting module called Pyflakes or some other module to do their analysis.
You can install Pyflakes from https://pypi.org/project/pyflakes/ or by running
pip install --user pyflakes. It’s well worth the effort.

N O T E 	 On Windows, you can run the python and pip commands. But on macOS and
Linux, these command names are for Python version 2 only, so instead you’ll need
to run python3 and pip3. Keep this in mind whenever you see python or pip in
this book.

IDLE, the IDE that comes with Python, doesn’t have a linter or the
capability of having one installed.

How to Ask for Programming Help
When internet searches and linters fail to solve your problem, you can
ask for programming help on the internet. But there is an etiquette to
efficiently asking for advice. If experienced software developers are will-
ing to answer your questions at no charge, it’s best to make efficient use
of their time.

Asking strangers for programming help should always be a last resort.
Hours or days could pass before someone replies to your posted question,
if you get a reply at all. It’s much faster to search the web for other people
who have already asked your question and read their answers. Online docu-
mentation and search engines were made to relieve the question-answering
work that would otherwise have to be done by humans.

But when you’ve exhausted your options and must ask a human audi-
ence your programming question, avoid the following common mistakes:

•	 Asking if it’s okay to ask a question instead of just asking it

•	 Implying your question instead of asking it directly

•	 Asking your question on the wrong forum or website

•	 Writing an unspecific post headline or email subject, such as “I have a
problem” or “Please help”

•	 Saying “my program doesn’t work” but not explaining how you want it
to work

•	 Not including the full error message

•	 Not sharing your code

https://pypi.org/project/pyflakes/

10 Chapter 1

•	 Sharing poorly formatted code

•	 Not explaining what you’ve already tried

•	 Not giving operating system or version information

•	 Asking someone to write a program for you

This list of “don’ts” isn’t just for decorum; these habits prevent your
helpers from helping you. Your helper’s first step will be to run your code
and try to reproduce your problem. To do so, they’ll need a lot of informa-
tion about your code, computer, and intentions. It’s far more common to
provide too little information than too much. The next several sections
explore what you can do to prevent these common mistakes. I’ll assume
that you’re posting your question to an online forum, but these guidelines
also apply to cases when you’re emailing questions to a single person or
mailing list.

Limit Back and Forth by Providing Your Information Upfront
If you approached someone in person, asking “Can I ask you a question?”
would be a short, pleasant means to see if your helper was available. But on
online forums, your helper can hold off on a reply until they have the time
to do so. Because there could be hours between replies, it’s best to supply
all the information your helper might need in your initial post instead of
asking for permission to ask your question. If they don’t reply, you can copy
and paste this information to a different forum.

State Your Question in the Form of an Actual Question
It’s easy to assume that your helpers know what you’re talking about when
you explain your problem. But programming is an expansive field, and they
might not have experience with the particular area in which you’re having
trouble. So it’s important to state your question in the form of an actual
question. Although sentences that begin with “I want to . . .” or “The code
isn’t working” can imply what your question is, be sure to include explicit
questions: literally, sentences that end with a question mark. Otherwise, it’s
probably unclear what you’re asking.

Ask Your Question on the Appropriate Website
Asking a Python question on a JavaScript forum or an algorithms ques-
tion on a network security mailing list will likely be unproductive. Often,
mailing lists and online forums have Frequently Asked Questions (FAQ)
documents or description pages that explain which topics are appropriate
to discuss. For example, the python-dev mailing list is about the Python lan-
guage’s design features, so it isn’t a general Python help mailing list. The
web page at https://www.python.org/about/help/ can direct you to an appropri-
ate place to ask whatever sort of Python question you have.

https://www.python.org/about/help/

Dealing with Errors and Asking for Help 11

Summarize Your Question in the Headline
The benefit of posting your question to an online forum is that future
programmers who have the same question can find it and its answers
using an internet search. Be sure to use a headline that summarizes the
question to make it easy for search engines to organize. A generic head-
line like “Help please” or “Why isn’t this working?” is too vague. If you’re
asking your question in an email, a meaningful subject line tells your
helper what your question is as they scan their inbox.

Explain What You Want the Code to Do
The question “Why doesn’t my program work?” omits the critical detail of
what you want your program to do. This isn’t always obvious to your helper,
because they don’t know what your intention is. Even if your question is just
“Why am I getting this error?” it helps to also say what your program’s end
goal is. In some cases, your helper can tell you if you need an entirely differ-
ent approach, and you can abandon your problem rather than wasting time
trying to solve it.

Include the Full Error Message
Be sure to copy and paste the entire error message, including the trace-
back. Merely describing your error, such as “I’m getting an out of range
error,” doesn’t provide enough detail for your helper to figure out what is
wrong. Also, specify whether you always encounter this error or if it’s an
intermittent problem. If you’ve identified the specific circumstances in
which the error happens, include those details as well.

Share Your Complete Code
Along with the full error message and traceback, provide the source
code for your entire program. That way, your helper can run your pro-
gram on their machine under a debugger to examine what is happening.
Always produce a minimum, complete, and reproducible (MCR) example that
reliably reproduces the error you’re getting. The MCR term comes from
Stack Overflow and is discussed in detail at https://stackoverflow.com/help/
mcve/. Minimal means your code example is as short as possible while still
reproducing the problem you’re encountering. Complete means that your
code example contains everything it needs to reproduce the problem.
Reproducible means that your code example reliably reproduces the prob-
lem you’re describing.

But if your program is contained in one file, sending it to your helper is
a simple matter. Just ensure that it’s properly formatted, as discussed in the
next section.

https://stackoverflow.com/help/mcve/
https://stackoverflow.com/help/mcve/

12 Chapter 1

S TACK OV E R F LOW A ND BUIL DING A N A NS W E R A RCHI V E

Stack Overflow is a popular website for answering programming questions, but
many new programmers express frustration, or even intimidation, about using
it. Stack Overflow moderators have a reputation for ruthlessly closing ques-
tions that don’t meet their strict guidelines. But there’s a good reason that Stack
Overflow runs such a tight ship.

Stack Overflow isn’t intended to answer questions so much as to build an
archive of programming questions matched with their answers. Accordingly,
they want questions that are specific, unique, and not opinion based. Questions
need to be detailed and well stated so search engine users can easily find
them. (The internet for programmers before Stack Overflow is the basis for the
joke in the “Wisdom of the Ancients” XKCD comic at https://xkcd.com/
979/.) Thirty entries for the same question not only would duplicate the answer-
ing efforts of the site’s volunteer experts, but could confuse search engine users
with multiple results. Questions need to have concrete, objective answers:
“What is the best programming language?” is a matter of opinion and can
cause needless argument. (Besides, we already know that Python is the best
programming language.)

But being in the position of needing and requesting help only to have your
question promptly closed can be hurtful and embarrassing. My advice is to first
carefully read the advice in this chapter and on Stack Overflow’s “How do I
ask a good question?” guide at https://stackoverflow.com/help/how-to-ask/.
Second, feel free to use a pseudonym if you’re afraid of asking “dumb” ques-
tions. Stack Overflow doesn’t require real names for its accounts. If you prefer
a more casual place for your questions, consider posting them to https://reddit
.com/r/learnpython/, which is more lax about which questions they accept. Still,
be sure to read their posting guidelines before submitting a question.

Make Your Code Readable with Proper Formatting
The point of sharing your code is so your helper can run your program and
reproduce the error you’re getting. Not only do they need the code, but
they also need it properly formatted. Make sure that they can easily copy
your source and run it as is. If you’re copying and pasting your source code
in an email, be aware that many email clients might remove the indenta-
tion, resulting in code that looks like this:

def knuts(self, value):
if not isinstance(value, int) or value < 0:
raise WizCoinException('knuts attr must be a positive int')
self._knuts = value

https://xkcd.com/979/
https://xkcd.com/979/
https://stackoverflow.com/help/how-to-ask/
https://reddit.com/r/learnpython/
https://reddit.com/r/learnpython/

Dealing with Errors and Asking for Help 13

Not only would it take a long time for your helper to reinsert the inden-
tation for every line in your program, but it’s ambiguous as to how much
indentation each line had to begin with. To ensure your code is properly
formatted, copy and paste your code to a pastebin website, such as https://
pastebin.com/ or https://gist.github.com/, which stores your code at a short, pub-
lic URL, such as https://pastebin.com/XeU3yusC. Sharing this URL is easier
than using a file attachment.

If you’re posting code to a website, such as https://stackoverflow.com/ or
https://reddit.com/r/learnpython/, make sure you use the formatting tools its
text boxes provide. Often, indenting a line with four spaces will ensure that
line uses a monospace “code font,” which is easier to read. You can also
enclose text with a backtick (`) character to put it in the monospace code
font. These sites frequently have a link to formatting information. Not using
these tips might mangle your source code, making it all appear on one line,
like the following:

def knuts(self, value):if not isinstance(value, int) or value < 0:raise
WizCoinException('knuts attr must be a positive int') self._knuts = value

In addition, don’t share your code by taking a screenshot or a photo of
your screen and sending the image. It’s impossible to copy and paste the
code from the image, and it’s usually unreadable as well.

Tell Your Helper What You’ve Already Tried
When posting your question, tell your helper what you’ve already tried and
the results of those tries. This information saves your helper the effort of
retrying these false leads and shows that you’ve put effort into solving your
own problem.

Additionally, this information ensures that you’re asking for help, not
just asking for someone to write your software for you. Unfortunately, it’s
common for computer science students to ask online strangers to do their
homework or for entrepreneurs to ask for someone to create a “quick app”
for them for free. Programming help forums aren’t made for this purpose.

Describe Your Setup
Your computer’s particular setup might affect how your program runs and
what errors it produces. To ensure that your helpers can reproduce your
problem on their computer, give them the following information about
your computer:

•	 The operating system and version, such as “Windows 10 Professional
Edition” or “macOS Catalina”

•	 The Python version running the program, such as “Python 3.7” or
“Python 3.6.6”

•	 Any third-party modules your program uses and their versions, such
as “Django 2.1.1”

https://pastebin.com/
https://pastebin.com/
https://gist.github.com/
https://pastebin.com/XeU3yusC
https://stackoverflow.com/
https://reddit.com/r/learnpython/

14 Chapter 1

You can find the versions of your installed third-party modules by run-
ning pip list. It’s also a convention to include the module’s version in the
__version__ attribute, as in the following interactive shell example:

>>> import django
>>> django.__version__
'2.1.1'

Most likely, this information won’t be necessary. But to reduce the back
and forth, offer this information in your initial post anyway.

Examples of Asking a Question
Here is a properly asked question that follows the dos and don’ts of the pre-
vious section:

Selenium webdriver: How do I find ALL of an element’s attributes?

In the Python Selenium module, once I have a WebElement object I
can get the value of any of its attributes with get_attribute():

foo = elem.get_attribute('href')

If the attribute named 'href' doesn’t exist, None is returned.

My question is, how can I get a list of all the attributes that an
element has? There doesn’t seem to be a get_attributes() or
get_attribute_names() method.

I’m using version 2.44.0 of the Selenium module for Python.

This question comes from https://stackoverflow.com/q/27307131/1893164/.
The headline summarizes the question in a single sentence. The problem
is stated in the form of a question and ends with a question mark. In the
future, if a person reads this headline in an internet search result, they’ll
immediately know whether or not it’s relevant to their own question.

The question formats the code using the monospace code font
and breaks up text across multiple paragraphs. It’s clear what the ques-
tion in this post is: it’s even prefaced with “My question is.” It suggests
that get_attributes() or get_attribute_names() could have been, but aren’t,
answers, which shows that the asker has tried to find a solution while hint-
ing at what they believe the true answer to this question would look like.
The asker also includes the Selenium module’s version information just
in case it’s relevant. It’s better to include too much information than not
enough.

Summary
Independently answering your own programming questions is the most
important skill a programmer must learn. The internet, which was built by
programmers, has a wealth of resources that provide the answers you need.

https://stackoverflow.com/q/27307131/1893164/

Dealing with Errors and Asking for Help 15

But first, you must parse the often cryptic error messages that Python
raises. It’s fine if you can’t understand the text of an error message. You
can still submit this text to a search engine to find the error message’s
plain English explanation and the likely cause. The error’s traceback will
indicate where in your program the error occurred.

A real-time linter can point out typos and potential bugs as you write
code. Linters are so useful that modern software development effectively
requires them. If your text editor or IDE doesn’t have a linter or the ability
to add a linter plug-in, consider switching to one that does.

If you can’t find the solution to your problem by searching the internet,
try posting your question to an online forum or email someone. To make
this process efficient, this chapter provided guidelines for asking a good
programming question. This includes asking a specific, well-stated ques-
tion, providing full source code and error message details, explaining what
you’ve already tried, and telling your helper which operating system and
Python version you’re using. Not only will the posted answers solve your
problem, but they can help future programmers who have the same ques-
tion and find your post.

Don’t feel discouraged if you seem to be constantly looking up answers
and asking for help. Programming is an extensive field, and no one can hold
all of its details in their head at once. Even experienced software develop-
ers check online for documentation and solutions daily. Instead, focus on
becoming skillful at finding solutions, and you’ll be on your way to becom-
ing a proficient Pythonista.

Environment setup is the process of organiz-
ing your computer so you can write code.

This involves installing any necessary tools,
configuring them, and handling any hiccups

during the setup. There is no single setup process
because everyone has a different computer with a
different operating system, version of the operating
system, and version of the Python interpreter. Even so, this chapter describes
some basic concepts to help you administer your own computer using the
command line, environment variables, and filesystem.

Learning these concepts and tools might seem like a headache. You
want to write code, not poke around configuration settings or understand
inscrutable console commands. But these skills will save you time in the
long run. Ignoring error messages or randomly changing configuration
settings to get your system working well enough might hide problems, but it
won’t fix them. By taking the time to understand these issues now, you can
prevent them from reoccurring.

2
E N V I R O N M E N T S E T U P

A N D T H E C O M M A N D L I N E

18 Chapter 2

The Filesystem
The filesystem is how your operating system organizes data to be stored and
retrieved. A file has two key properties: a filename (usually written as one word)
and a path. The path specifies the location of a file on the computer. For exam-
ple, a file on my Windows 10 laptop has the filename project.docx in the path
C:\Users\Al\Documents. The part of the filename after the last period is the file’s
extension and tells you a file’s type. The filename project.docx is a Word docu-
ment, and Users, Al, and Documents all refer to folders (also called directories).
Folders can contain files and other folders. For example, project.docx is in
the Documents folder, which is in the Al folder, which is in the Users folder.
Figure 2-1 shows this folder organization.

Figure 2-1: A file in a hierarchy of folders

The C:\ part of the path is the root folder, which contains all other folders.
On Windows, the root folder is named C:\ and is also called the C: drive. On
macOS and Linux, the root folder is /. In this book, I’ll use the Windows-
style root folder, C:\. If you’re entering the interactive shell examples on
macOS or Linux, enter / instead.

Additional volumes, such as a DVD drive or USB flash drive, will appear
differently on different operating systems. On Windows, they appear as new,
lettered root drives, such as D:\ or E:\. On macOS, they appear as new folders
within the /Volumes folder. On Linux, they appear as new folders within the
/mnt (“mount”) folder. Note that folder names and filenames are not case
sensitive on Windows and macOS, but they’re case sensitive on Linux.

Paths in Python
On Windows, the backslash (\) separates folders and filenames, but on
macOS and Linux, the forward slash (/) separates them. Instead of writing
code both ways to make your Python scripts cross-platform compatible, you
can use the pathlib module and / operator instead.

The typical way to import pathlib is with the statement from pathlib
import Path. Because the Path class is the most frequently used class in

Environment Setup and the Command Line 19

pathlib, this form lets you type Path instead of pathlib.Path. You can pass a
string of a folder or filename to Path() to create a Path object of that folder
or filename. As long as the leftmost object in an expression is a Path object,
you can use the / operator to join together Path objects or strings. Enter the
following into the interactive shell:

>>> from pathlib import Path
>>> Path('spam') / 'bacon' / 'eggs'
WindowsPath('spam/bacon/eggs')
>>> Path('spam') / Path('bacon/eggs')
WindowsPath('spam/bacon/eggs')
>>> Path('spam') / Path('bacon', 'eggs')
WindowsPath('spam/bacon/eggs')

Note that because I ran this code on a Windows machine, Path()
returns WindowsPath objects. On macOS and Linux, a PosixPath object is
returned. (POSIX is a set of standards for Unix-like operating systems and
is beyond the scope of this book.) For our purposes, there’s no difference
between these two types.

You can pass a Path object to any function in the Python stan-
dard library that expects a filename. For example, the function call
open(Path('C:\\') / 'Users' / 'Al' / 'Desktop' / 'spam.py') is equivalent to
open(r'C:\Users\Al\Desktop\spam.py').

The Home Directory
All users have a folder called the home folder or home directory for their own
files on the computer. You can get a Path object of the home folder by call-
ing Path.home():

>>> Path.home()
WindowsPath('C:/Users/Al')

The home directories are located in a set place depending on your
operating system:

•	 On Windows, home directories are in C:\Users.

•	 On Mac, home directories are in /Users.

•	 On Linux, home directories are often in /home.

Your scripts will almost certainly have permissions to read from and
write to the files in your home directory, so it’s an ideal place to store the
files that your Python programs will work with.

The Current Working Directory
Every program that runs on your computer has a current working directory
(cwd). Any filenames or paths that don’t begin with the root folder you can
assume are in the cwd. Although “folder” is the more modern name for a

20 Chapter 2

directory, note that cwd (or just working directory) is the standard term,
not “current working folder.”

You can get the cwd as a Path object using the Path.cwd() function and
change it using os.chdir(). Enter the following into the interactive shell:

>>> from pathlib import Path
>>> import os
1>>> Path.cwd()
WindowsPath('C:/Users/Al/AppData/Local/Programs/Python/Python38')
2>>> os.chdir('C:\\Windows\\System32')
>>> Path.cwd()
WindowsPath('C:/Windows/System32')

Here, the cwd was set to C:\Users\Al\AppData\Local\Programs\Python\
Python38 1, so the filename project.docx would refer to C:\Users\Al\AppData\
Local\Programs\Python\Python38\project.docx. When we change the cwd to
C:\Windows\System32 2, the filename project.docx would refer to C:\Windows\
System32\project.docx.

Python displays an error if you try to change to a directory that doesn’t
exist:

>>> os.chdir('C:/ThisFolderDoesNotExist')
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
FileNotFoundError: [WinError 2] The system cannot find the file specified:
'C:/ThisFolderDoesNotExist'

The os.getcwd() function in the os module is a former way of getting the
cwd as a string.

Absolute vs. Relative Paths
There are two ways to specify a file path:

•	 An absolute path, which always begins with the root folder

•	 A relative path, which is relative to the program’s cwd

There are also the dot (.) and dot-dot (..) folders. These are not real fold-
ers but special names that you can use in a path. A single period (.) for a
folder name is shorthand for “this directory.” Two periods (..) means “the
parent folder.”

Figure 2-2 shows an example of some folders and files. When the cwd
is set to C:\bacon, the relative paths for the other folders and files are set as
they are in the figure.

The .\ at the start of a relative path is optional. For example, .\spam.txt
and spam.txt refer to the same file.

Environment Setup and the Command Line 21

Figure 2-2: The relative paths for folders and files in the working directory C:\bacon

Programs and Processes
A program is any software application that you can run, such as a web
browser, spreadsheet application, or word processor. A process is a running
instance of a program. For example, Figure 2-3 shows five running pro-
cesses of the same calculator program.

Figure 2-3: One calculator program running multiple times as multiple, separate processes

22 Chapter 2

Processes remain separate from each other, even when running the
same program. For example, if you ran several instances of a Python pro-
gram at the same time, each process might have separate variable values.
Every process, even processes running the same program, has its own cwd
and environment variable settings. Generally speaking, a command line
will run only one process at a time (although you can have multiple com-
mand lines open simultaneously).

Each operating system has a way of viewing a list of running processes.
On Windows, you can press CTRL-SHIFT-ESC to bring up the Task Manager
application. On macOS, you can run ApplicationsUtilitiesActivity
Monitor. On Ubuntu Linux, you can press CTRL-ALT-DEL to open an
application also called the Task Manager. These task managers can force
a running process to terminate if it’s unresponsive.

The Command Line
The command line is a text-based program that lets you enter commands to
interact with the operating system and run programs. You might also hear
it called the command line interface (CLI, which rhymes with “fly”), com-
mand prompt, terminal, shell, or console. It provides an alternative to a
graphical user interface (GUI, pronounced “gooey”), which allows the user to
interact with the computer through more than just a text-based interface.
A GUI presents visual information to a user to guide them through tasks
more easily than the command line does. Most computer users treat the
command line as an advanced feature and never touch it. Part of the intimi-
dation factor is due to the complete lack of hints of how to use it; although
a GUI might display a button showing you where to click, a blank terminal
window doesn’t remind you what to type.

But there are good reasons for becoming adept at using the com-
mand line. For one, setting up your environment often requires you to use
the command line rather than the graphical windows. For another, enter-
ing commands can be much faster than clicking graphical windows with
the mouse. Text-based commands are also less ambiguous than dragging
an icon to some other icon. This lends them to automation better, because
you can combine multiple specific commands into scripts to perform
sophisticated operations.

The command line program exists in an executable file on your com-
puter. In this context, we often call it a shell or shell program. Running the
shell program makes the terminal window appear:

•	 On Windows, the shell program is at C:\Windows\System32\cmd.exe.

•	 On macOS, the shell program is at /bin/bash.

•	 On Ubuntu Linux, the shell program is at /bin/bash.

Over the years, programmers have created many shell programs for
the Unix operating system, such as the Bourne Shell (in an executable
file named sh) and later the Bourne-Again Shell (in an executable file
named Bash). Linux uses Bash by default, whereas macOS uses the similar

Environment Setup and the Command Line 23

Zsh or Z shell in Catalina and later versions. Due to its different develop-
ment history, Windows uses a shell named Command Prompt. All these
programs do the same thing: they present a terminal window with a text-
based CLI into which the user enters commands and runs programs.

In this section, you’ll learn some of the command line’s general concepts
and common commands. You could master a large number of cryptic com-
mands to become a real sorcerer, but you only need to know about a dozen or
so to solve most problems. The exact command names might vary slightly on
different operating systems, but the underlying concepts are the same.

Opening a Terminal Window
To open a terminal window, do the following:

•	 On Windows, click the Start button, type Command Prompt, and then press
ENTER.

•	 On macOS, click the Spotlight icon in the upper-right corner, type
Terminal, and then press ENTER.

•	 On Ubuntu Linux, press the WIN key to bring up Dash, type Terminal,
and press ENTER. Alternatively, use the keyboard shortcut CTRL-ALT-T.

Like the interactive shell, which displays a >>> prompt, the terminal
displays a shell prompt at which you can enter commands. On Windows, the
prompt will be the full path to the current folder you are in:

C:\Users\Al>your commands go here

On macOS, the prompt shows your computer’s name, a colon, and the
cwd with your home folder represented as a tilde (~). After this is your user-
name followed by a dollar sign ($):

Als-MacBook-Pro:~ al$ your commands go here

On Ubuntu Linux, the prompt is similar to the macOS prompt except
it begins with the username and an at (@) symbol:

al@al-VirtualBox:~$ your commands go here

Many books and tutorials represent the command line prompt as just
$ to simplify their examples. It’s possible to customize these prompts, but
doing so is beyond the scope of this book.

Running Programs from the Command Line
To run a program or command, enter its name into the command line.
Let’s run the default calculator program that comes with the operating
system. Enter the following into the command line:

•	 On Windows, enter calc.exe.

24 Chapter 2

•	 On macOS, enter open -a Calculator. (Technically, this runs the open
program, which then runs the Calculator program.)

•	 On Linux, enter gnome-calculator.

Program names and commands are case sensitive on Linux but case
insensitive on Windows and macOS. This means that even though you must
type gnome-calculator on Linux, you could type Calc.exe on Windows and
OPEN –a Calculator on macOS.

Entering these calculator program names into the command line is
equivalent to running the Calculator program from the Start menu, Finder,
or Dash. These calculator program names work as commands because the
calc.exe, open, and gnome-calculator programs exist in folders that are included
in the PATH environment variables. “Environment Variables and PATH” on
page 35 explains this further. But suffice it to say that when you enter a
program name on the command line, the shell checks whether a program
with that name exists in one of the folders listed in PATH. On Windows, the
shell looks for the program in the cwd (which you can see in the prompt)
before checking the folders in PATH. To tell the command line on macOS and
Linux to first check the cwd, you must enter ./ before the filename.

If the program isn’t in a folder listed in PATH, you have two options:

•	 Use the cd command to change the cwd to the folder that contains the
program, and then enter the program name. For example, you could
enter the following two commands:

cd C:\Windows\System32
calc.exe

•	 Enter the full file path for the executable program file. For example,
instead of entering calc.exe, you could enter C:\Windows\System32\calc.exe.

On Windows, if a program ends with the file extension .exe or .bat,
including the extension is optional: entering calc does the same thing as
entering calc.exe. Executable programs in macOS and Linux often don’t
have file extensions marking them as executable; rather, they have the exe-
cutable permission set. “Running Python Programs Without the Command
Line” on page 39 has more information.

Using Command Line Arguments
Command line arguments are bits of text you enter after the command name.
Like the arguments passed to a Python function call, they provide the com-
mand with specific options or additional directions. For example, when you
run the command cd C:\Users, the C:\Users part is an argument to the cd
command that tells cd to which folder to change the cwd. Or, when you run
a Python script from a terminal window with the python yourScript.py com-
mand, the yourScript.py part is an argument telling the python program what
file to look in for the instructions it should carry out.

Environment Setup and the Command Line 25

Command line options (also called flags, switches, or simply options) are
a single-letter or short-word command line arguments. On Windows, com-
mand line options often begin with a forward slash (/); on macOS and
Linux, they begin with a single dash (–) or double dash (--). You already
used the –a option when running the macOS command open –a Calculator.
Command line options are often case sensitive on macOS and Linux but
are case insensitive on Windows, and we separate multiple command line
options with spaces.

Folders and filenames are common command line arguments. If the
folder or filename has a space as part of its name, enclose the name in dou-
ble quotes to avoid confusing the command line. For example, if you want
to change directories to a folder called Vacation Photos, entering cd Vacation
Photos would make the command line think you were passing two argu-
ments, Vacation and Photos. Instead, you enter cd "Vacation Photos":

C:\Users\Al>cd "Vacation Photos"

C:\Users\Al\Vacation Photos>

Another common argument for many commands is --help on macOS
and Linux and /? on Windows. These bring up information associated with
the command. For example, if you run cd /? on Windows, the shell tells you
what the cd command does and lists other command line arguments for it:

C:\Users\Al>cd /?
Displays the name of or changes the current directory.

CHDIR [/D] [drive:][path]
CHDIR [..]
CD [/D] [drive:][path]
CD [..]

 .. Specifies that you want to change to the parent directory.

Type CD drive: to display the current directory in the specified drive.
Type CD without parameters to display the current drive and directory.

Use the /D switch to change current drive in addition to changing current
directory for a drive.
--snip—

This help information tells us that the Windows cd command also goes
by the name chdir. (Most people won’t type chdir when the shorter cd com-
mand does the same thing.) The square brackets contain optional argu-
ments. For example, CD [/D] [drive:][path] tells you that you could specify a
drive or path using the /D option.

Unfortunately, although the /? and --help information for commands
provides reminders for experienced users, the explanations can often be
cryptic. They’re not good resources for beginners. You’re better off using a

26 Chapter 2

book or web tutorial instead, such as The Linux Command Line, 2nd Edition
(2019) by William Shotts, Linux Basics for Hackers (2018) by OccupyTheWeb, or
PowerShell for Sysadmins (2020) by Adam Bertram, all from No Starch Press.

Running Python Code from the Command Line with -c
If you need to run a small amount of throwaway Python code that you
run once and then discard, pass the –c switch to python.exe on Windows or
python3 on macOS and Linux. The code to run should come after the –c
switch, enclosed in double quotes. For example, enter the following into the
terminal window:

C:\Users\Al>python -c "print('Hello, world')"
Hello, world

The –c switch is handy when you want to see the results of a single
Python instruction and don’t want to waste time entering the interactive
shell. For example, you could quickly display the output of the help() func-
tion and then return to the command line:

C:\Users\Al>python -c "help(len)"
Help on built-in function len in module builtins:

len(obj, /)
 Return the number of items in a container.

C:\Users\Al>

Running Python Programs from the Command Line
Python programs are text files that have the .py file extension. They’re not
executable files; rather, the Python interpreter reads these files and carries
out the Python instructions in them. On Windows, the interpreter’s execut-
able file is python.exe. On macOS and Linux, it’s python3 (the original python
file contains the Python version 2 interpreter). Running the commands
python yourScript.py or python3 yourScript.py will run the Python instruc-
tions saved in a file named yourScript.py.

Running the py.exe Program
On Windows, Python installs a py.exe program in the C:\Windows folder. This
program is identical to python.exe but accepts an additional command line
argument that lets you run any Python version installed on your computer.
You can run the py command from any folder, because the C:\Windows folder
is included in the PATH environment variable. If you have multiple Python
versions installed, running py automatically runs the latest version installed
on your computer. You can also pass a -3 or -2 command line argument to
run the latest Python version 3 or version 2 installed, respectively. Or you
could enter a more specific version number, such as -3.6 or -2.7, to run that

Environment Setup and the Command Line 27

particular Python installation. After the version switch, you can pass all the
same command line arguments to py.exe as you do to python.exe. Run the fol-
lowing from the Windows command line:

C:\Users\Al>py -3.6 -c "import sys;print(sys.version)"
3.6.6 (v3.6.6:4cf1f54eb7, Jun 27 2018, 03:37:03) [MSC v.1900 64 bit (AMD64)]

C:\Users\Al>py -2.7
Python 2.7.14 (v2.7.14:84471935ed, Sep 16 2017, 20:25:58) [MSC v.1500 64 bit
(AMD64)] on win32
Type "help", "copyright", "credits" or "license" for more information.
>>>

The py.exe program is helpful when you have multiple Python versions
installed on your Windows machine and need to run a specific version.

Running Commands from a Python Program
Python’s subprocess.run() function, found in the subprocess module, can run
shell commands within your Python program and then present the com-
mand output as a string. For example, the following code runs the ls –al
command:

>>> import subprocess, locale
1>>> procObj = subprocess.run(['ls', '-al'], stdout=subprocess.PIPE)
2>>> outputStr = procObj.stdout.decode(locale.getdefaultlocale()[1])
>>> print(outputStr)
total 8
drwxr-xr-x 2 al al 4096 Aug 6 21:37 .
drwxr-xr-x 17 al al 4096 Aug 6 21:37 ..
-rw-r--r-- 1 al al 0 Aug 5 15:59 spam.py

We pass the ['ls', '-al'] list to subprocess.run()1. This list contains the
command name ls, followed by its arguments, as individual strings. Note
that passing ['ls –al'] wouldn’t work. We store the command’s output as a
string in outputStr 2. Online documentation for subprocess.run() and locale.
getdefaultlocale() will give you a better idea of how these functions work, but
they make the code work on any operating system running Python.

Minimizing Typing with Tab Completion
Because advanced users enter commands into computers for hours a
day, modern command lines offer features to minimize the amount of
typing necessary. The tab completion feature (also called command line
completion or autocomplete) lets a user type the first few characters of a
folder or filename and then press the TAB key to have the shell fill in the
rest of the name.

For example, when you type cd c:\u and press TAB on Windows, the
current command checks which folders or files in C:\ begin with u and tab
completes to c:\Users. It corrects the lowercase u to U as well. (On macOS
and Linux, tab completion doesn’t correct the casing.) If multiple folders

28 Chapter 2

or filenames begin with U in the C:\ folder, you can continue to press TAB
to cycle through all of them. To narrow down the number of matches, you
could also type cd c:\us, which filters the possibilities to folders and file-
names that begin with us.

Pressing the TAB key multiple times works on macOS and Linux as
well. In the following example, the user typed cd D, followed by TAB twice:

al@al-VirtualBox:~$ cd D
Desktop/ Documents/ Downloads/
al@al-VirtualBox:~$ cd D

Pressing TAB twice after typing the D causes the shell to display all the
possible matches. The shell gives you a new prompt with the command as
you’ve typed it so far. At this point, you could type, say, e and then press
TAB to have the shell complete the cd Desktop/ command.

Tab completion is so useful that many GUI IDEs and text editors
include this feature as well. Unlike command lines, these GUI programs
usually display a small menu under your words as you type them, letting you
select one to autocomplete the rest of the command.

Viewing the Command History
In their command history, modern shells also remember the commands
you’ve entered. Pressing the up arrow key in the terminal fills the command
line with the last command you entered. You can continue to press the up
arrow key to find earlier commands, or press the down arrow key to return
to more recent commands. If you want to cancel the command currently in
the prompt and start from a fresh prompt, press CTRL-C.

On Windows, you can view the command history by running doskey
/history. (The oddly named doskey program goes back to Microsoft’s pre-
Windows operating system, MS-DOS.) On macOS and Linux, you can
view the command history by running the history command.

Working with Common Commands
This section contains a short list of the common commands you’ll use in
the command line. There are far more commands and arguments than
listed here, but you can treat these as the bare minimum you’ll need to
navigate the command line.

Command line arguments for the commands in this section appear
between square brackets. For example, cd [destination folder] means you
should enter cd, followed by the name of a new folder.

Match Folder and Filenames with Wildcard Characters

Many commands accept folder and filenames as command line arguments.
Often, these commands also accept names with the wildcard characters
* and ?, allowing you to specify multiple matching files. The * character

Environment Setup and the Command Line 29

matches any number of characters, whereas the ? character matches any
single character. We call expressions that use the * and ? wildcard charac-
ters glob patterns (short for “global patterns”).

Glob patterns let you specify patterns of filenames. For example, you
could run the dir or ls command to display all the files and folders in the
cwd. But if you wanted to see just the Python files, dir *.py or ls *.py would
display only the files that end in .py. The glob pattern *.py means “any
group of characters, followed by .py”:

C:\Users\Al>dir *.py
 Volume in drive C is Windows
 Volume Serial Number is DFF3-8658

 Directory of C:\Users\Al

03/24/2019 10:45 PM 8,399 conwaygameoflife.py
03/24/2019 11:00 PM 7,896 test1.py
10/29/2019 08:18 PM 21,254 wizcoin.py
 3 File(s) 37,549 bytes
 0 Dir(s) 506,300,776,448 bytes free

The glob pattern records201?.txt means “records201, followed by any sin-
gle character, followed by .txt.” This would match record files for the years
records2010.txt to records2019.txt (as well as filenames, such as records201X.txt).
The glob pattern records20??.txt would match any two characters, such as
records2021.txt or records20AB.txt.

Change Directories with cd

Running cd [destination folder] changes the shell’s cwd to the destination
folder:

C:\Users\Al>cd Desktop

C:\Users\Al\Desktop>

The shell displays the cwd as part of its prompt, and any folders or files
used in commands will be interpreted relative to this directory.

If the folder has spaces in its name, enclose the name in double quotes.
To change the cwd to the user’s home folder, enter cd ~ on macOS and
Linux, and cd %USERPROFILE% on Windows.

On Windows, if you also want to change the current drive, you’ll first
need to enter the drive name as a separate command:

C:\Users\Al>d:

D:\>cd BackupFiles

D:\BackupFiles>

30 Chapter 2

To change to the parent directory of the cwd, use the .. folder name:

C:\Users\Al>cd ..

C:\Users>

List Folder Contents with dir and ls

On Windows, the dir command displays the folders and files in the cwd.
The ls command does the same thing on macOS and Linux. You can dis-
play the contents of another folder by running dir [another folder] or
 ls [another folder].

The -l and -a switches are useful arguments for the ls command. By
default, ls displays only the names of files and folders. To display a long list-
ing format that includes file size, permissions, last modification timestamps,
and other information, use –l. By convention, the macOS and Linux oper-
ating systems treat files beginning with a period as configuration files and
keep them hidden from normal commands. You can use -a to make ls dis-
play all files, including hidden ones. To display both the long listing format
and all files, combine the switches as ls -al. Here’s an example in a macOS
or Linux terminal window:

al@ubuntu:~$ ls
Desktop Downloads mu_code Pictures snap Videos
Documents examples.desktop Music Public Templates
al@ubuntu:~$ ls -al
total 112
drwxr-xr-x 18 al al 4096 Aug 4 18:47 .
drwxr-xr-x 3 root root 4096 Jun 17 18:11 ..
-rw------- 1 al al 5157 Aug 2 20:43 .bash_history
-rw-r--r-- 1 al al 220 Jun 17 18:11 .bash_logout
-rw-r--r-- 1 al al 3771 Jun 17 18:11 .bashrc
drwx------ 17 al al 4096 Jul 30 10:16 .cache
drwx------ 14 al al 4096 Jun 19 15:04 .config
drwxr-xr-x 2 al al 4096 Aug 4 17:33 Desktop
--snip--

The Windows analog to ls –al is the dir command. Here’s an example
in a Windows terminal window:

C:\Users\Al>dir
 Volume in drive C is Windows
 Volume Serial Number is DFF3-8658

 Directory of C:\Users\Al

06/12/2019 05:18 PM <DIR> .
06/12/2019 05:18 PM <DIR> ..
12/04/2018 07:16 PM <DIR> .android
--snip--
08/31/2018 12:47 AM 14,618 projectz.ipynb
10/29/2014 04:34 PM 121,474 foo.jpg

Environment Setup and the Command Line 31

List Subfolder Contents with dir /s and find
On Windows, running dir /s displays the cwd’s folders and their subfolders.
For example, the following command displays every .py file in my C:\github\
ezgmail folder and all of its subfolders:

C:\github\ezgmail>dir /s *.py
 Volume in drive C is Windows
 Volume Serial Number is DEE0-8982

 Directory of C:\github\ezgmail

06/17/2019 06:58 AM 1,396 setup.py
 1 File(s) 1,396 bytes

 Directory of C:\github\ezgmail\docs

12/07/2018 09:43 PM 5,504 conf.py
 1 File(s) 5,504 bytes

 Directory of C:\github\ezgmail\src\ezgmail

06/23/2019 07:45 PM 23,565 __init__.py
12/07/2018 09:43 PM 56 __main__.py
 2 File(s) 23,621 bytes

 Total Files Listed:
 4 File(s) 30,521 bytes
 0 Dir(s) 505,407,283,200 bytes free

The find . –name command does the same thing on macOS and Linux:

al@ubuntu:~/Desktop$ find . -name "*.py"
./someSubFolder/eggs.py
./someSubFolder/bacon.py
./spam.py

The . tells find to start searching in the cwd. The –name option tells find
to find folders and filenames by name. The "*.py" tells find to display folders
and files with names that match the *.py pattern. Note that the find com-
mand requires the argument after –name to be enclosed in double quotes.

Copy Files and Folders with copy and cp
To create a duplicate of a file or folder in a different directory, run copy
[source file or folder] [destination folder] or cp [source file or folder]
[destination folder]. Here’s an example in a Linux terminal window:

al@ubuntu:~/someFolder$ ls
hello.py someSubFolder
al@ubuntu:~/someFolder$ cp hello.py someSubFolder
al@ubuntu:~/someFolder$ cd someSubFolder
al@ubuntu:~/someFolder/someSubFolder$ ls
hello.py

32 Chapter 2

SHOR T COMM A ND N A ME S

When I started learning the Linux operating system, I was surprised to find that
the Windows copy command I knew well was named cp on Linux. The name
“copy” was much more readable than “cp.” Was a terse, cryptic name really
worth saving two characters’ worth of typing?

As I gained more experienced in the command line, I realized the answer
is a firm “yes.” We read source code more often than we write it, so using ver-
bose names for variables and functions helps. But we type commands into the
command line more often than we read them, so in this case, the opposite is
true: short command names make the command line easier to use and reduce
strain on your wrists.

Move Files and Folders with move and mv
On Windows, you can move a source file or folder to a destination folder
by running move [source file or folder] [destination folder]. The mv [source
file or folder] [destination folder] command does the same thing on
macOS and Linux.

Here’s an example in a Linux terminal window:

al@ubuntu:~/someFolder$ ls
hello.py someSubFolder
al@ubuntu:~/someFolder$ mv hello.py someSubFolder
al@ubuntu:~/someFolder$ ls
someSubFolder
al@ubuntu:~/someFolder$ cd someSubFolder/
al@ubuntu:~/someFolder/someSubFolder$ ls
hello.py

The hello.py file has moved from ~/someFolder to ~/someFolder/someSubFolder
and no longer appears in its original location.

Rename Files and Folders with ren and mv

Running ren [file or folder] [new name] renames the file or folder on
Windows, and mv [file or folder] [new name] does so on macOS and Linux.
Note that you can use the mv command on macOS and Linux for moving
and renaming a file. If you supply the name of an existing folder for the
second argument, the mv command moves the file or folder there. If you
supply a name that doesn’t match an existing file or folder, the mv command
renames the file or folder. Here’s an example in a Linux terminal window:

al@ubuntu:~/someFolder$ ls
hello.py someSubFolder

Environment Setup and the Command Line 33

al@ubuntu:~/someFolder$ mv hello.py goodbye.py
al@ubuntu:~/someFolder$ ls
goodbye.py someSubFolder

The hello.py file now has the name goodbye.py.

Delete Files and Folders with del and rm

To delete a file or folder on Windows, run del [file or folder]. To do so on
macOS and Linux, run rm [file] (rm is short for, remove).

These two delete commands have some slight differences. On Windows,
running del on a folder deletes all of its files, but not its subfolders. The del
command also won’t delete the source folder; you must do so with the rd or
rmdir commands, which I’ll explain in “Delete Folders with rd and rmdir”
on page 34. Additionally, running del [folder] won’t delete any files
inside the subfolders of the source folder. You can delete the files by run-
ning del /s /q [folder]. The /s runs the del command on the subfolders,
and the /q essentially means “be quiet and don’t ask me for confirmation.”
Figure 2-4 illustrates this difference.

Figure 2-4: The files are deleted in these example folders when you run del delicious
(left) or del /s /q delicious (right).

On macOS and Linux, you can’t use the rm command to delete folders.
But you can run rm –r [folder] to delete a folder and all of its contents. On
Windows, rd /s /q [folder] will do the same thing. Figure 2-5 illustrates
this task.

34 Chapter 2

Figure 2-5: The files are deleted in these example folders
when you run rd /s /q delicious or rm –r delicious.

Make Folders with md and mkdir

Running md [new folder] creates a new, empty folder on Windows, and run-
ning mkdir [new folder] does so on macOS and Linux. The mkdir command
also works on Windows, but md is easier to type.

Here’s an example in a Linux terminal window:

al@ubuntu:~/Desktop$ mkdir yourScripts
al@ubuntu:~/Desktop$ cd yourScripts

1 al@ubuntu:~/Desktop/yourScripts$ ls
al@ubuntu:~/Desktop/yourScripts$

Notice that the newly created yourScripts folder is empty; nothing
appears when we run the ls command to list the folder’s contents 1.

Delete Folders with rd and rmdir

Running rd [source folder] deletes the source folder on Windows, and rmdir
[source folder] deletes the source folder on macOS and Linux. Like mkdir,
the rmdir command also works on Windows, but rd is easier to type. The
folder must be empty before you can remove it.

Here’s an example in a Linux terminal window:

al@ubuntu:~/Desktop$ mkdir yourScripts
al@ubuntu:~/Desktop$ ls
yourScripts

Environment Setup and the Command Line 35

al@ubuntu:~/Desktop$ rmdir yourScripts
al@ubuntu:~/Desktop$ ls
al@ubuntu:~/Desktop$

In this example, we created an empty folder named yourScripts and then
removed it.

To delete nonempty folders (along with all the folders and files it con-
tains), run rd /s/q [source folder] on Windows or rm –rf [source folder] on
macOS and Linux.

Find Programs with where and which

Running where [program] on Windows or which [program] on macOS and
Linux tells you the exact location of the program. When you enter a com-
mand on the command line, your computer checks for the program in the
folders listed in the PATH environment variable (although Windows checks
the cwd first).

These commands can tell you which executable Python program is
run when you enter python in the shell. If you have multiple Python versions
installed, your computer might have several executable programs of the same
name. The one that is run depends on the order of folders in your PATH envi-
ronment variable, and the where and which commands will output it:

C:\Users\Al>where python
C:\Users\Al\AppData\Local\Programs\Python\Python38\python.exe

In this example, the folder name indicates that the Python version
run from the shell is located at C:\Users\Al\AppData\Local\Programs\Python\
Python38\.

Clear the Terminal with cls and clear

Running cls on Windows or clear on macOS and Linux will clear all the
text in the terminal window. This is useful if you simply want to start with a
fresh-looking terminal window.

Environment Variables and PATH
All running processes of a program, no matter the language in which it’s
written, have a set of variables called environment variables that can store
a string. Environment variables often hold systemwide settings that every
program would find useful. For example, the TEMP environment variable
holds the file path where any program can store temporary files. When the
operating system runs a program (such as a command line), the newly cre-
ated process receives its own copy of the operating system’s environment
variables and values. You can change a process’s environment variables
independently of the operating system’s set of environment variables. But
those changes apply only to the process, not to the operating system or any
other process.

36 Chapter 2

I discuss environment variables in this chapter because one such vari-
able, PATH, can help you run your programs from the command line.

Viewing Environment Variables
You can see a list of the terminal window’s environment variables by running
set (on Windows) or env (on macOS and Linux) from the command line:

C:\Users\Al>set
ALLUSERSPROFILE=C:\ProgramData
APPDATA=C:\Users\Al\AppData\Roaming
CommonProgramFiles=C:\Program Files\Common Files
--snip--
USERPROFILE=C:\Users\Al
VBOX_MSI_INSTALL_PATH=C:\Program Files\Oracle\VirtualBox\
windir=C:\WINDOWS

The text on the left side of the equal sign (=) is the environment vari-
able name, and the text on the right side is the string value. Every process
has its own set of environment variables, so different command lines can
have different values for their environment variables.

You can also view the value of a single environment variable with the
echo command. Run echo %HOMEPATH% on Windows or echo $HOME on macOS
and Linux to view the value of the HOMEPATH or HOME environment variables,
respectively, which contain the current user’s home folder. On Windows, it
looks like this:

C:\Users\Al>echo %HOMEPATH%
\Users\Al

On macOS or Linux, it looks like this:

al@al-VirtualBox:~$ echo $HOME
/home/al

If that process creates another process (such as when a command line
runs the Python interpreter), that child process receives its own copy of the
parent process’s environment variables. The child process can change the
values of its environment variables without affecting the parent process’s
environment variables, and vice versa.

You can think of the operating system’s set of environment variables as
the “master copy” from which a process copies its environment variables.
The operating system’s environment variables change less frequently than
a Python program’s. In fact, most users never directly touch their environ-
ment variable settings.

Working with the PATH Environment Variable
When you enter a command, like python on Windows or python3 on macOS
and Linux, the terminal checks for a program with that name in the folder

Environment Setup and the Command Line 37

you’re currently in. If it doesn’t find it there, it will check the folders listed
in the PATH environment variable.

For example, on my Windows computer, the python.exe program file is
located in the C:\Users\Al\AppData\Local\Programs\Python\Python38 folder.
To run it, I have to enter C:\Users\Al\AppData\Local\Programs\Python\Python38\
python.exe, or switch to that folder first and then enter python.exe.

This lengthy pathname requires a lot of typing, so instead I add this
folder to the PATH environment variable. Then, when I enter python.exe, the
command line searches for a program with this name in the folders listed
in PATH, saving me from having to type the entire file path.

Because environment variables can contain only a single string value,
adding multiple folder names to the PATH environment variable requires
using a special format. On Windows, semicolons separate the folder names.
You can view the current PATH value with the path command:

C:\Users\Al>path
C:\Path;C:\WINDOWS\system32;C:\WINDOWS;C:\WINDOWS\System32\Wbem;
--snip--
C:\Users\Al\AppData\Local\Microsoft\WindowsApps

On macOS and Linux, colons separate the folder names:

al@ubuntu:~$ echo $PATH
/home/al/.local/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/
bin:/usr/games:/usr/local/games:/snap/bin

The order of the folder names is important. If I have two files named
someProgram.exe in C:\WINDOWS\system32 and C:\WINDOWS, entering
someProgram.exe will run the program in C:\WINDOWS\system32 because
that folder appears first in the PATH environment variable.

If a program or command you enter doesn’t exist in the cwd or any of
the directories listed in PATH, the command line will give you an error, such
as command not found or not recognized as an internal or external command. If
you didn’t make a typo, check which folder contains the program and see if
it appears in the PATH environment variable.

Changing the Command Line’s PATH Environment Variable
You can change the current terminal window’s PATH environment variable
to include additional folders. The process for adding folders to PATH varies
slightly between Windows and macOS/Linux. On Windows, you can run
the path command to add a new folder to the current PATH value:

1 C:\Users\Al>path C:\newFolder;%PATH%

2 C:\Users\Al>path
C:\newFolder;C:\Path;C:\WINDOWS\system32;C:\WINDOWS;C:\WINDOWS\System32\Wbem;
--snip--
C:\Users\Al\AppData\Local\Microsoft\WindowsApps

38 Chapter 2

The %PATH% part 1 expands to the current value of the PATH environment
variable, so you’re adding the new folder and a semicolon to the beginning
of the existing PATH value. You can run the path command again to see the
new value of PATH 2.

On macOS and Linux, you can set the PATH environment variable with
syntax similar to an assignment statement in Python:

1 al@al-VirtualBox:~$ PATH=/newFolder:$PATH
2 al@al-VirtualBox:~$ echo $PATH

/newFolder:/home/al/.local/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/
bin:/sbin:/bin:/usr/games:/usr/local/games:/snap/bin

The $PATH part 1 expands to the current value of the PATH environ-
ment variable, so you’re adding the new folder and a colon to the existing
PATH value. You can run the echo $PATH command again to see the new value
of PATH 2.

But the previous two methods for adding folders to PATH apply only
to the current terminal window and any programs run from it after the
addition. If you open a new terminal window, it won’t have your changes.
Permanently adding folders requires changing the operating system’s set
of environment variables.

Permanently Adding Folders to PATH on Windows
Windows has two sets of environment variables: system environment variables
(which apply to all users) and user environment variables (which override the
system environment variable but apply to the current user only). To edit
them, click the Start menu and then enter Edit environment variables for
your account, which opens the Environment Variables window, as shown in
Figure 2-6.

Select Path from the user variable list (not the system variable list), click
Edit, add the new folder name in the text field that appears (don’t forget
the semicolon separator), and click OK.

This interface isn’t the easiest to work with, so if you’re frequently edit-
ing environment variables on Windows, I recommend installing the free
Rapid Environment Editor software from https://www.rapidee.com/. Note that
after installing it, you must run this software as the administrator to edit
system environment variables. Click the Start menu, type Rapid Environment
Editor, right-click the software’s icon, and click Run as administrator.

From the Command Prompt, you can permanently modify the system
PATH variable using the setx command:

C:\Users\Al>setx /M PATH "C:\newFolder;%PATH%"

You’ll need to run the Command Prompt as the administrator to run
the setx command.

https://www.rapidee.com/

Environment Setup and the Command Line 39

Figure 2-6: The Environment Variables window on Windows

Permanently Adding Folders to PATH on macOS and Linux
To add folders to the PATH environment variables for all terminal windows
on macOS and Linux, you’ll need to modify the .bashrc text file in your
home folder and add the following line:

export PATH=/newFolder:$PATH

This line modifies PATH for all future terminal windows. On macOS
Catalina and later versions, the default shell program has changed from
Bash to Z Shell, so you’ll need to modify .zshrc in the home folder instead.

Running Python Programs Without the Command Line
You probably already know how to run programs from whatever launcher
your operating system provides. Windows has the Start menu, macOS has
the Finder and Dock, and Ubuntu Linux has Dash. Programs will add
themselves to these launchers when you install them. You can also double-
click a program’s icon in a file explorer app (such as File Explorer on
Windows, Finder on macOS, and Files on Ubuntu Linux) to run them.

40 Chapter 2

But these methods don’t apply to your Python programs. Often,
double-clicking a .py file will open the Python program in an editor or
IDE instead of running it. And if you try running Python directly, you’ll
just open the Python interactive shell. The most common way of running a
Python program is opening it in an IDE and clicking the Run menu option
or executing it in the command line. Both methods are tedious if you sim-
ply want to launch a Python program.

Instead, you can set up your Python programs to easily run them
from your operating system’s launcher, just like other applications you’ve
installed. The following sections detail how to do this for your particular
operating system.

Running Python Programs on Windows
On Windows, you can run Python programs in a few other ways. Instead of
opening a terminal window, you can press WIN-R to open the Run dialog
and enter py C:\path\to\yourScript.py, as shown in Figure 2-7. The py.exe
program is installed at C:\Windows\py.exe, which is already in the PATH environ-
ment variable, and the .exe file extension is optional when you are running
programs.

Figure 2-7: The Run dialog on Windows

Still, this method requires you to enter your script’s full path. Also, the
terminal window that displays the program’s output will automatically close
when the program ends, and you might miss some output.

You can solve these problems by creating a batch script, which is a small
text file with the .bat file extension that can run multiple terminal com-
mands at once, much like a shell script in macOS and Linux. You can use a
text editor, such as Notepad, to create these files. Make a new text file con-
taining the following two lines:

@py.exe C:\path\to\yourScript.py %*
@pause

Environment Setup and the Command Line 41

Replace this path with the absolute path to your program, and save
this file with a .bat file extension (for example, yourScript.bat). The @ sign
at the start of each command prevents it from being displayed in the ter-
minal window, and the %* forwards any command line arguments entered
after the batch filename to the Python script. The Python script, in turn,
reads the command line arguments in the sys.argv list. This batch file will
spare you from having to type the Python program’s full absolute path
every time you want to run it. The @pause command adds Press any key to
continue... to the end of the Python script to prevent the program’s window
from disappearing too quickly.

I recommend you place all of your batch and .py files in a single folder
that already exists in the PATH environment variable, such as your home
folder at C:\Users\<USERNAME>. With a batch file set up, you can run your
Python script by simply pressing WIN-R, entering the name of your batch
file (entering the .bat file extension is optional), and pressing ENTER.

Running Python Programs on macOS
On macOS, you can create a shell script to run your Python scripts by creat-
ing a text file with the .command file extension. Make one in a text editor,
such as TextEdit, and add the following content:

#!/usr/bin/env bash
python3 /path/to/yourScript.py

Save this file in your home folder. In a terminal window, make this shell
script executable by running chmod u+x yourScript.command. Now you should
be able to click the Spotlight icon (or press COMMAND-SPACE) and enter
the name of your shell script to run it. The shell script, in turn, will run
your Python script.

Running Python Programs on Ubuntu Linux
There isn’t a quick way to run your Python scripts on Ubuntu Linux like
there is in Windows and macOS, although you can shorten some of the
steps involved. First, make sure your .py file is in your home folder. Second,
add this line as the first line of your .py file:

#!/usr/bin/env python3

This is called a shebang line, and it tells Ubuntu that when you run this
file, you want to use python3 to run it. Third, add the execute permission to
this file by running the chmod command from the terminal:

al@al-VirtualBox:~$ chmod u+x yourScript.py

Now whenever you want to quickly run your Python script, you can
press CTRL-ALT-T to open a new terminal window. This terminal will be

42 Chapter 2

set to the home folder, so you can simply enter ./yourScript.py to run this
script. The ./ is required because it tells Ubuntu that yourScript.py exists in
the cwd (the home folder, in this case).

Summary
Environment setup involves all the steps necessary to get your computer
into a state where you can easily run your programs. It requires you to know
several low-level concepts about how your computer works, such as the file-
system, file paths, processes, the command line, and environment variables.

The filesystem is how your computer organizes all the files on your
computer. A file is a complete, absolute file path or a file path relative to the
cwd. You’ll navigate the filesystem through the command line. The com-
mand line has several other names, such as terminal, shell, and console,
but they all refer to the same thing: the text-based program that lets you
enter commands. Although the command line and the names of common
commands are slightly different between Windows and macOS/Linux, they
effectively perform the same tasks.

When you enter a command or program name, the command line
checks the folders listed in the PATH environment variable for the name.
This is important to understand to figure out any command not found errors
you might encounter. The steps for adding new folders to the PATH environ-
ment variable are also slightly different between Windows and macOS/
Linux.

Becoming comfortable with the command line takes time because
there are so many commands and command line arguments to learn. Don’t
worry if you spend a lot of time searching for help online; this is what expe-
rienced software developers do every day.

PART 2
B E S T P R A C T I C E S ,

T O O L S , A N D T E C H N I Q U E S

Code formatting is applying a set of rules
to source code to give it a certain appear-

ance. Although unimportant to the com-
puter parsing your program, code formatting is

vital for readability, which is necessary for maintain-
ing your code. If your code is difficult for humans
(whether it’s you or a co-worker) to understand, it will
be hard to fix bugs or add new features. Formatting
code isn’t a mere cosmetic issue. Python’s readability
is a critical reason for the language’s popularity.

This chapter introduces you to Black, a code formatting tool that can
automatically format your source code into a consistent, readable style
without changing your program’s behavior. Black is useful, because it’s
tedious to manually format your code in a text editor or IDE. You’ll first
learn about the rationalization for the code style choices Black makes.
Then you’ll learn how to install, use, and customize the tool.

3
C O D E F O R M A T T I N G W I T H B L A C K

46 Chapter 3

How to Lose Friends and Alienate Co-Workers
We can write code in many ways that result in identical behavior. For exam-
ple, we can write a list with a single space after each comma and use one
kind of quote character consistently:

spam = ['dog', 'cat', 'moose']

But even if we wrote the list with a varying number of spaces and quote
styles, we’d still have syntactically valid Python code:

spam= ['dog' ,'cat',"moose"]

Programmers who prefer the former approach might like the visual
separation that the spaces add and the uniformity of the quote characters.
But programmers sometimes choose the latter, because they don’t want
to worry about details that have no impact on whether the program works
correctly.

Beginners often ignore code formatting because they’re focused on
programming concepts and language syntax. But it’s valuable for beginners
to establish good code formatting habits. Programming is difficult enough,
and writing understandable code for others (or for yourself in the future)
can minimize this problem.

Although you might start out coding on your own, programming is
often a collaborative activity. If several programmers working on the same
source code files write in their own style, the code can become an incon-
sistent mess, even if it runs without error. Or worse, the programmers will
constantly be reformatting each other’s code to their own style, wasting
time and causing arguments. Deciding whether to, say, put one or zero
spaces after a comma is a matter of personal preference. These style choices
can be much like deciding which side of the road to drive on; it doesn’t
matter whether people drive on the right side of the road or the left side, as
long as everyone consistently drives on the same side.

Style Guides and PEP 8
An easy way to write readable code is to follow a style guide, a document
that outlines a set of formatting rules a software project should follow. The
Python Enhancement Proposal 8 (PEP 8) is one such style guide written by the
Python core development team. But some software companies have estab-
lished their own style guides as well.

You can find PEP 8 online at https://www.python.org/dev/peps/pep-0008/.
Many Python programmers view PEP 8 as an authoritative set of rules,
although the PEP 8 creators argue otherwise. The “A Foolish Consistency
Is the Hobgoblin of Little Minds” section of the guide reminds the reader
that maintaining consistency and readability within a project, rather than

https://www.python.org/dev/peps/pep-0008/

Code Formatting with Black 47

adhering to any individual formatting rule, is the prime reason for enforc-
ing style guides.

PEP 8 even includes the following advice: “Know when to be
inconsistent—sometimes style guide recommendations just aren’t appli-
cable. When in doubt, use your best judgment.” Whether you follow all
of it, some of it, or none of it, it’s worthwhile to read the PEP 8 document.

Because we’re using the Black code formatter, our code will follow
Black’s style guide, which is adapted from PEP 8’s style guide. You should
learn these code formatting guidelines, because you might not always have
Black conveniently at hand. The Python code guidelines you learn in this
chapter also generally apply to other languages, which might not have auto-
matic formatters available.

I don’t like everything about how Black formats code, but I take that
as the sign of a good compromise. Black uses formatting rules that pro-
grammers can live with, letting us spend less time arguing and more time
programming.

Horizontal Spacing
Empty space is just as important for readability as the code you write. These
spaces help separate distinct parts of code from each other, making them
easier to identify. This section explains horizontal spacing—that is, the place-
ment of blank space within a single line of code, including the indentation
at the front of the line.

Use Space Characters for Indentation
Indentation is the whitespace at the beginning of a code line. You can use
one of two whitespace characters, a space or a tab, to indent your code.
Although either character works, the best practice is to use spaces instead
of tabs for indentation.

The reason is that these two characters behave differently. A space
character is always rendered on the screen as a string value with a single
space, like this ' '. But a tab character, which is rendered as a string value
containing an escape character, or '\t', is more ambiguous. Tabs often,
but not always, render as a variable amount of spacing so the following text
begins at the next tab stop. The tab stop are positioned every eight spaces
across the width of a text file. You can see this variation in the following
interactive shell example, which first separates words with space characters
and then with tab characters:

>>> print('Hello there, friend!\nHow are you?')
Hello there, friend!
How are you?
>>> print('Hello\tthere,\tfriend!\nHow\tare\tyou?')
Hello there, friend!
How are you?

48 Chapter 3

Because tabs represent a varying width of whitespace, you should avoid
using them in your source code. Most code editors and IDEs will automati-
cally insert four or eight space characters when you press the TAB key
instead of one tab character.

You also can’t use tabs and spaces for indentation in the same block of
code. Using both for indentation was such a source of tedious bugs in ear-
lier Python programs that Python 3 won’t even run code indented like this;
it raises a TabError: inconsistent use of tabs and spaces in indentation excep-
tion instead. Black automatically converts any tab characters you use for
indentation into four space characters.

As for the length of each indentation level, the common practice in
Python code is four spaces per level of indentation. The space characters
in the following example have been marked with periods to make them
visible:

def getCatAmount():
....numCats = input('How many cats do you have?')
....if int(numCats) < 6:
........print('You should get more cats.')

The four-space standard has practical benefits compared to the alter-
natives; using eight spaces per level of indentation results in code that
quickly runs up against line length limits, whereas using two space charac-
ters per level of indentation can make the differences in indentation hard
to see. Programmers often don’t consider other amounts, such as three or
six spaces, because they, and binary computing in general, have a bias for
numbers that are powers of two: 2, 4, 8, 16, and so on.

Spacing Within a Line
Horizontal spacing has more to it than just the indentation. Spaces are
important for making different parts of a code line appear visually distinct.
If you never use space characters, your line can end up dense and hard to
parse. The following subsections provide some spacing rules to follow.

Put a Single Space Between Operators and Identifiers

If you don’t leave spaces between operators and identifiers, your code will
appear to run together. For example, this line has spaces separating opera-
tors and variables:

YES: blanks = blanks[:i] + secretWord[i] + blanks[i + 1 :]

This line removes all spacing:

NO: blanks=blanks[:i]+secretWord[i]+blanks[i+1:]

In both cases, the code uses the + operator to add three values, but with-
out spacing, the + in blanks[i+1:] can appear to be adding a fourth value. The
spaces make it more obvious that this + is part of a slice for the value in blanks.

Code Formatting with Black 49

Put No Spaces Before Separators and a Single Space After Separators

We separate the items lists and dictionaries, as well as the parameters
in function def statements, using comma characters. You should place
no spaces before these commas and a single space after them, as in this
example:

YES: def spam(eggs, bacon, ham):
YES: weights = [42.0, 3.1415, 2.718]

Otherwise, you’ll end up with “bunched up” code that is harder to read:

NO: def spam(eggs,bacon,ham):
NO: weights = [42.0,3.1415,2.718]

Don’t add spaces before the separator, because that unnecessarily draws
the eye to the separator character:

NO: def spam(eggs , bacon , ham):
NO: weights = [42.0 , 3.1415 , 2.718]

Black automatically inserts a space after commas and removes spaces
before them.

Don’t Put Spaces Before or After Periods

Python allows you to insert spaces before and after the periods marking the
beginning of a Python attribute, but you should avoid doing so. By not plac-
ing spaces there, you emphasize the connection between the object and its
attribute, as in this example:

YES: 'Hello, world'.upper()

If you put spaces before or after the period, the object and attribute
look like they’re unrelated to each other:

NO: 'Hello, world' . upper()

Black automatically removes spaces surrounding periods.

Don’t Put Spaces After a Function, Method, or Container Name

We can readily identify function and method names because they’re fol-
lowed by a set of parentheses, so don’t put a space between the name and
the opening parenthesis. We would normally write a function call like this:

YES: print('Hello, world!')

But adding a space makes this singular function call look like it’s two
separate things:

NO: print ('Hello, world!')

50 Chapter 3

Black removes any spaces between a function or method name and its
opening parenthesis.

Similarly, don’t put spaces before the opening square bracket for an
index, slice, or key. We normally access items inside a container type (such
as a list, dictionary, or tuple) without adding spaces between the variable
name and opening square bracket, like this:

YES: spam[2]
YES: spam[0:3]
YES: pet['name']

Adding a space once again makes the code look like two separate things:

NO: spam [2]
NO: spam [0:3]
NO: pet ['name']

Black removes any spaces between the variable name and opening
square bracket.

Don’t Put Spaces After Opening Brackets or Before Closing Brackets

There should be no spaces separating parentheses, square brackets, or
braces and their contents. For example, the parameters in a def statement
or values in a list should start and end immediately after and before their
parentheses and square brackets:

YES: def spam(eggs, bacon, ham):
YES: weights = [42.0, 3.1415, 2.718]

You should not put a space after an opening or before a closing paren-
theses or square brackets:

NO: def spam(eggs, bacon, ham):
NO: weights = [42.0, 3.1415, 2.718]

Adding these spaces doesn’t improve the code’s readability, so it’s
unnecessary. Black removes these spaces if they exist in your code.

Put Two Spaces Before End-of-Line Comments

If you add comments to the end of a code line, put two spaces after the end
of the code and before the # character that begins the comment:

YES: print('Hello, world!') # Display a greeting.

The two spaces make it easier to distinguish the code from the
comment. A single space, or worse, no space, makes it more difficult to
notice this separation:

NO: print('Hello, world!') # Display a greeting.
NO: print('Hello, world!')# Display a greeting.

Code Formatting with Black 51

Black puts two spaces between the end of the code and the start of the
comment.

In general, I advise against putting comments at the end of a code line,
because they can make the line too lengthy to read onscreen.

Vertical Spacing
Vertical spacing is the placement of blank lines between lines of code. Just
as a new paragraph in a book keeps sentences from forming a wall of text,
vertical spacing can group certain lines of code together and separate those
groups from one another.

PEP 8 has several guidelines for inserting blank lines in code: it states
that you should separate functions with two blank lines, classes with two
blank lines, and methods within a class with one blank line. Black automati-
cally follows these rules by inserting or removing blank lines in your code,
turning this code:

NO: class ExampleClass:
 def exampleMethod1():
 pass
 def exampleMethod2():
 pass
 def exampleFunction():
 pass

. . . into this code:

YES: class ExampleClass:
 def exampleMethod1():
 pass

 def exampleMethod2():
 pass

 def exampleFunction():
 pass

A Vertical Spacing Example
What Black can’t do is decide where blank lines within your functions, meth-
ods, or global scope should go. Which of those lines to group together is a
subjective decision that is up to the programmer.

For example, let’s look at the EmailValidator class in validators.py in the
Django web app framework. It’s not necessary for you to understand how

52 Chapter 3

this code works. But pay attention to how blank lines separate the __call__()
method’s code into four groups:

--snip--
 def __call__(self, value):

 1 if not value or '@' not in value:
 raise ValidationError(self.message, code=self.code)

 2 user_part, domain_part = value.rsplit('@', 1)

 3 if not self.user_regex.match(user_part):
 raise ValidationError(self.message, code=self.code)

 4 if (domain_part not in self.domain_whitelist and
 not self.validate_domain_part(domain_part)):
 # Try for possible IDN domain-part
 try:
 domain_part = punycode(domain_part)
 except UnicodeError:
 pass
 else:
 if self.validate_domain_part(domain_part):
 return
 raise ValidationError(self.message, code=self.code)
--snip--

Even though there are no comments to describe this part of the code, the
blank lines indicate that the groups are conceptually distinct from each other.
The first group 1 checks for an @ symbol in the value parameter. This task
is different from that of the second group 2, which splits the email address
string in value into two new variables, user_part and domain_part. The third 3
and fourth 4 groups use these variables to validate the user and domain
parts of the email address, respectively.

Although the fourth group has 11 lines, far more than the other groups,
they’re all related to the same task of validating the domain of the email
address. If you felt that this task was really composed of multiple subtasks,
you could insert blank lines to separate them.

The programmer for this part of Django decided that the domain vali-
dation lines should all belong to one group, but other programmers might
disagree. Because it’s subjective, Black won’t modify the vertical spacing
within functions or methods.

Vertical Spacing Best Practices
One of Python’s lesser-known features is that you can use a semicolon to
separate multiple statements on a single line. This means that the following
two lines:

print('What is your name?')
name = input()

Code Formatting with Black 53

. . . can be written on the same line if separated by a semicolon:

print('What is your name?'); name = input()

As you do when using commas, you should put no space before the
semicolon and one space after it.

For statements that end with a colon, such as if, while, for, def, or class
statements, a single-line block, like the call to print() in this example:

if name == 'Alice':
 print('Hello, Alice!')

. . . can be written on the same line as its if statement:

if name == 'Alice': print('Hello, Alice!')

But just because Python allows you to include multiple statements on
the same line doesn’t make it a good practice. It results in overly wide lines
of code and too much content to read on a single line. Black splits these
statements into separate lines.

Similarly, you can import multiple modules with a single import statement:

import math, os, sys

Even so, PEP 8 recommends that you split this statement into one import
statement per module:

import math
import os
import sys

If you write separate lines for imports, you’ll have an easier time spot-
ting any additions or removals of imported modules when you’re compar-
ing changes in a version control system’s diff tool. (Version control systems,
such as Git, are covered in Chapter 12.)

PEP 8 also recommends grouping import statements into the following
three groups in this order:

1.	 Modules in the Python standard library, like math, os, and sys

2.	 Third-party modules, like Selenium, Requests, or Django

3.	 Local modules that are a part of the program

These guidelines are optional, and Black won’t change the formatting
of your code’s import statements.

Black: The Uncompromising Code Formatter
Black automatically formats the code inside your .py files. Although you
should understand the formatting rules covered in this chapter, Black can

54 Chapter 3

do all the actual styling for you. If you’re working on a coding project with
others, you can instantly settle many arguments on how to format code by
just letting Black decide.

You can’t change many of the rules that Black follows, which is why
it’s described as “the uncompromising code formatter.” Indeed, the tool’s
name comes from Henry Ford’s quote about the automobile colors choices he
offered his customers: “You can have any color you want, as long as it’s black.”

I’ve just described the exact styles that Black uses; you can find Black’s
full style guide at https://black.readthedocs.io/en/stable/the_black_code_style.html.

Installing Black
Install Black using the pip tool that comes with Python. In Windows, do this
by opening a Command Prompt window and entering the following:

C:\Users\Al\>python -m pip install --user black

On macOS and Linux, open a Terminal window and enter python3
rather than python (you should do this for all the instructions in this book
that use python):

Als-MacBook-Pro:~ al$ python3 -m pip install --user black

The -m option tells Python to run the pip module as an application,
which some Python modules are set up to do. Test that the installation was
successful by running python -m black. You should see the message No paths
given. Nothing to do. rather than No module named black.

Running Black from the Command Line
You can run Black for any Python file from the Command Prompt or
Terminal window. In addition, your IDE or code editor can run Black in
the background. You’ll find instructions for getting Black to work with
Jupyter Notebook, Visual Studio Code, PyCharm, and other editors on
Black’s home page at https://github.com/psf/black/.

Let’s say that you want to format a file called yourScript.py automatically.
From the command line in Windows, run the following (on macOS and
Linux, use the python3 command instead of python):

C:\Users\Al>python -m black yourScript.py

After you run this command, the content of yourScript.py will be format-
ted according to Black’s style guide.

Your PATH environment variable might already be set up to run Black
directly, in which case you can format yourScript.py by simply entering the
following:

C:\Users\Al>black yourScript.py

https://black.readthedocs.io/en/stable/the_black_code_style.html
https://github.com/psf/black/

Code Formatting with Black 55

If you want to run Black over every .py file in a folder, specify a single
folder instead of an individual file. The following Windows example for-
mats every file in the C:\yourPythonFiles folder, including its subfolders:

C:\Users\Al>python -m black C:\yourPythonFiles

Specifying the folder is useful if your project contains several Python
files and you don’t want to enter a command for each one.

Although Black is fairly strict about how it formats code, the next three
subsections describe a few options that you can change. To see the full
range of options that Black offers, run python -m black --help.

Adjusting Black’s Line Length Setting

The standard line of Python code is 80 characters long. The history of the
80 character line dates back to the era of punch card computing in the
1920s when IBM introduced punch cards that had 80 columns and 12 rows.
The 80 column standard remained for the printers, monitors, and com-
mand line windows developed over the next several decades.

But in the 21st century, high-resolution screens can display text that
is more than 80 characters wide. A longer line length can keep you from
having to scroll vertically to view a file. A shorter line length can keep too
much code from crowding on a single line and allow you to compare two
source code files side by side without having to scroll horizontally.

Black uses a default of 88 characters per line for the rather arbitrary
reason that it is 10 percent more than the standard 80 character line. My
preference is to use 120 characters. To tell Black to format your code with,
for example, a 120-character line length limit, use the -l 120 (that’s the low-
ercase letter L, not the number 1) command line option. On Windows, the
command looks like this:

C:\Users\Al>python -m black -l 120 yourScript.py

No matter what line length limit you choose for your project, all .py files
in a project should use the same limit.

Disabling Black’s Double-Quoted Strings Setting

Black automatically changes any string literals in your code from using
single quotes to double quotes unless the string contains double quote char-
acters, in which case it uses single quotes. For example, let’s say yourScript.py
contains the following:

a = 'Hello'
b = "Hello"
c = 'Al\'s cat, Zophie.'
d = 'Zophie said, "Meow"'
e = "Zophie said, \"Meow\""
f = '''Hello'''

56 Chapter 3

Running Black on yourScript.py would format it like this:

1 a = "Hello"
b = "Hello"
c = "Al's cat, Zophie."

2 d = 'Zophie said, "Meow"'
e = 'Zophie said, "Meow"'

3 f = """Hello"""

Black’s preference for double quotes makes your Python code look simi-
lar to code written in other programming languages, which often use dou-
ble quotes for string literals. Notice that the strings for variables a, b, and c
use double quotes. The string for variable d retains its original single quotes
to avoid escaping any double quotes within the string 2. Note that Black
also uses double quotes for Python’s triple-quoted, multiline strings 3.

But if you want Black to leave your string literals as you wrote them
and not change the type of quotes used, pass it the -S command line option.
(Note that the S is uppercase.) For example, running Black on the original
yourScript.py file in Windows would produce the following output:

C:\Users\Al>python –m black -S yourScript.py
All done!
1 file left unchanged.

You can also use the -l line length limit and -S options in the same
command:

C:\Users\Al>python –m black –l 120 -S yourScript.py

Previewing the Changes Black Will Make

Although Black won’t rename your variable or change your program’s
behavior, you might not like the style changes Black makes. If you want to
stick to your original formatting, you could either use version control for
your source code or maintain your own backups. Alternatively, you can
preview the changes Black would make without letting it actually alter your
files by running Black with the --diff command line option. In Windows, it
looks like this:

C:\Users\Al>python -m black --diff yourScript.py

This command outputs the differences in the diff format commonly
used by version control software, but it’s generally readable by humans. For
example, if yourScript.py contains the line weights=[42.0,3.1415,2.718], run-
ning the --diff option would display this result:

C:\Users\Al\>python -m black --diff yourScript.py
--- yourScript.py 2020-12-07 02:04:23.141417 +0000

Code Formatting with Black 57

+++ yourScript.py 2020-12-07 02:08:13.893578 +0000
@@ -1 +1,2 @@
-weights=[42.0,3.1415,2.718]
+weights = [42.0, 3.1415, 2.718]

The minus sign indicates that Black would remove the line weights=
[42.0,3.1415,2.718] and replace it with the line prefixed with a plus sign:
weights = [42.0, 3.1415, 2.718]. Keep in mind that once you’ve run Black to
change your source code files, there’s no way to undo this change. You need
to either make backup copies of your source code or use version control
software, such as Git, before running Black.

Disabling Black for Parts of Your Code
As great as Black is, you might not want it to format some sections of your
code. For example, I like to do my own special spacing whenever I’m lining
up multiple related assignment statements, as in the following example:

Set up constants for different time amounts:
SECONDS_PER_MINUTE = 60
SECONDS_PER_HOUR = 60 * SECONDS_PER_MINUTE
SECONDS_PER_DAY = 24 * SECONDS_PER_HOUR
SECONDS_PER_WEEK = 7 * SECONDS_PER_DAY

Black would remove the additional spaces before the = assignment oper-
ator, making them, in my opinion, less readable:

Set up constants for different time amounts:
SECONDS_PER_MINUTE = 60
SECONDS_PER_HOUR = 60 * SECONDS_PER_MINUTE
SECONDS_PER_DAY = 24 * SECONDS_PER_HOUR
SECONDS_PER_WEEK = 7 * SECONDS_PER_DAY

By adding # fmt: off and # fmt: on comments, we can tell Black to turn
off its code formatting for these lines and then resume code formatting
afterward:

Set up constants for different time amounts:
fmt: off
SECONDS_PER_MINUTE = 60
SECONDS_PER_HOUR = 60 * SECONDS_PER_MINUTE
SECONDS_PER_DAY = 24 * SECONDS_PER_HOUR
SECONDS_PER_WEEK = 7 * SECONDS_PER_DAY
fmt: on

Running Black on this file now won’t affect the unique spacing, or any
other formatting, in the code between these two comments.

58 Chapter 3

Summary
Although good formatting can be invisible, poor formatting can make read-
ing code frustrating. Style is subjective, but the software development field
generally agrees on what constitutes good and poor formatting while still
leaving room for personal preferences.

Python’s syntax makes it rather flexible when it comes to style. If you’re
writing code that nobody else will ever see, you can write it however you
like. But much of software development is collaborative. Whether you’re
working with others on a project or simply want to ask more experienced
developers to review your work, formatting your code to fit accepted style
guides is important.

Formatting your code in an editor is a boring task that you can auto-
mate with a tool like Black. This chapter covered several of the guidelines
that Black follows to make your code more readable, including spacing code
vertically and horizontally, which keeps it from being too dense to read eas-
ily, and setting a limit on how long each line should be. Black enforces these
rules for you, preventing potential style arguments with collaborators.

But there’s more to code style than spacing and deciding between single
and double quotes. For instance, choosing descriptive variable names is also
a critical factor for code readability. Although automated tools like Black can
make syntactic decisions, such as the amount of spacing code should have,
they can’t make semantic decisions, such as what a good variable name is.
That responsibility is yours, and we’ll discuss this topic in the next chapter.

“The two hardest problems in computer
science are naming things, cache invali

dation, and off-by-one errors.” This classic
joke, attributed to Leon Bambrick and based

on a quote by Phil Karlton, contains a kernel of truth:
it’s hard to come up with good names, formally called
identifiers, for variables, functions, classes, and any-
thing else in programming. Concise, descriptive
names are important for your program’s readability.
But creating names is easier said than done. If you
were moving to a new house, labeling all your moving boxes as “Stuff”
would be concise but not descriptive. A descriptive name for a program-
ming book might be Invent Your Own Computer Games with Python, but it’s
not concise.

4
C H O O S I N G

U N D E R S T A N D A B L E N A M E S

60 Chapter 4

Unless you’re writing “throwaway” code that you don’t intend to main-
tain after you run the program once, you should put some thought into
selecting good names in your program. If you simply use a, b, and c for vari-
able names, your future self will expend unnecessary effort to remember
what these variables were initially used for.

Names are a subjective choice that you must make. An automated for-
matting tool, such as Black, described in Chapter 3, can’t decide what you
should name your variables. This chapter provides you with some guide-
lines to help you choose suitable names and avoid poor names. As always,
these guidelines aren’t written in stone: use your judgment to decide when
to apply them to your code.

ME TA SY N TAC T IC VA R I A BL E S

We commonly use a metasyntactic variable in tutorials or code snippets when
we need a generic variable name. In Python, we often name variables spam,
eggs, bacon, and ham in code examples where the variable name isn’t important.
That’s why this book uses these names in code examples; they aren’t meant
for you to use them in real-world programs. These names come from Monty
Python’s “Spam” sketch (https://en.wikipedia.org/wiki/Spam_(Monty_Python)).
The names foo and bar are also common for metasyntactic variables. These are
derived from FUBAR, the World War II era US Army slang acronym that indi-
cates a situation is “[messed] up beyond all recognition.”

Casing Styles
Because Python identifiers are case sensitive and cannot contain white
space, programmers use several styles for identifiers that include
multiple words:

snake_case separates words with an underscore, which looks like a flat
snake in between each word. This case often implies that all letters are
lowercase, although constants are often written in UPPER_SNAKE_CASE.

camelCase separates words by capitalizing the start of each word after the
first. This case often implies the first word begins with a lowercase let-
ter. The uppercase letters look like a camel’s humps.

PascalCase, named for its use in the Pascal programming language, is
similar to camelCase but capitalizes the first word as well.

Casing is a code formatting issue and we cover it in Chapter 3. The
most common styles are snake_case and camelCase. Either is fine to use as long
as your project consistently uses one or the other, not both.

https://en.wikipedia.org/wiki/Spam_(Monty_Python)

Choosing Understandable Names 61

PEP 8’s Naming Conventions
The PEP 8 document introduced in Chapter 3 has some recommendations
for Python naming conventions:

•	 All letters should be ASCII letters—that is, uppercase and lowercase
English letters that don’t have accent marks.

•	 Modules should have short, all lowercase names.

•	 Class names should be written in PascalCase.

•	 Constant variables should be written in uppercase SNAKE_CASE.

•	 Function, method, and variable names should be written in lowercase
snake_case.

•	 The first argument for methods should always be named self in
lowercase.

•	 The first argument for class methods should always be named cls in
lowercase.

•	 Private attributes in classes should always begin with an underscore (_).

•	 Public attributes in classes should never begin with an underscore (_).

You can bend or break these rules as required. For example, although
English is the dominant language in programming, you can use letter char-
acters in any language as identifiers: コンピューター = 'laptop' is syntactically
valid Python code. As you can see in this book, my preference for variable
names goes against PEP 8, because I use camelCase rather than snake_case.
PEP 8 contains a reminder that a programmer doesn’t need to strictly fol-
low PEP 8. The important readability factor isn’t which style you choose but
consistency in using that style.

You can read PEP 8’s “Naming Conventions” section online at https://
www.python.org/dev/peps/pep-0008/#naming-conventions.

Appropriate Name Length
Obviously, names shouldn’t be too long or too short. Long variable names
are tedious to type, whereas short variable names can be confusing or mys-
terious. Because code is read more often than it’s written, it’s safer to err on
the side of too long variable names. Let’s look at some examples of names
that are too short and too long.

Too Short Names
The most common naming mistake is choosing names that are too short.
Short names often make sense to you when you first write them, but their
precise meaning can be lost a few days or weeks later. Let’s consider a few
types of short names.

•	 A one- or two-letter name like g probably refers to some other word that
begins with g, but there are many such words. Acronyms and names

https://www.python.org/dev/peps/pep-0008/#naming-conventions
https://www.python.org/dev/peps/pep-0008/#naming-conventions

62 Chapter 4

that are only one or two letters long are easy for you to write but diffi-
cult for someone else to read. This also applies to . . .

•	 . . . an abbreviated name like mon, which could stand for monitor, month,
monster, or any number of words.

•	 A single-word name like start can be vague: the start of what? Such
names could be missing context that isn’t readily apparent when read
by someone else.

One- or two-letter, abbreviated, or single-word names might be under-
standable to you, but you always need to keep in mind that other pro-
grammers (or even you a few weeks into the future) will have difficulty
understanding their meaning.

There are some exceptions where short variable names are fine. For
example, it’s common to use i (for index) as a variable name in for loops
that loop over a range of numbers or indexes of a list, and j and k (because
they come after i in the alphabet) if you have nested loops:

>>> for i in range(10):
... for j in range(3):
... print(i, j)
...
0 0
0 1
0 2
1 0
--snip--

Another exception is using x and y for Cartesian coordinates. In
most other cases, I caution against using single-letter variable names.
Although it might be tempting to use, say, w and h as shorthand for width
and height, or n as shorthand for number, these meanings might not be
apparent to others.

DN’T DR P LT T RS F R M Y R SRC CD

Don’t drop letters from your source code. Although dropped letters in names
like memcpy (memory copy) and strcmp (string compare) were popular in the C
programming language before the 1990s, they’re an unreadable style of nam-
ing that you shouldn’t use today. If a name isn’t easily pronounceable, it isn’t
easily understood.

Additionally, feel free to use short phrases that can make your code read
like plain English. For example, number_of_trials is more readable than simply
number_trials.

Choosing Understandable Names 63

Too Long Names
In general, the larger the name’s scope, the more descriptive it should be. A
short name like payment is fine for a local variable inside a single, short func-
tion. But payment might not be descriptive enough if you use it for a global
variable across a 10,000-line program, because such a large program might
process multiple kinds of payment data. A more descriptive name, such as
salesClientMonthlyPayment or annual_electric_bill_payment, could be more suit-
able. The additional words in the name provide more context and resolve
ambiguity.

It’s better to be overly descriptive than not descriptive enough. But
there are guidelines for determining when longer names are unnecessary.

Prefixes in Names

The use of common prefixes in names could indicate unnecessary detail
in the name. If a variable is an attribute of a class, the prefix might provide
information that doesn’t need to be in the variable name. For example,
if you have a Cat class with a weight attribute, it’s obvious that weight refers
to the cat’s weight. So the name catWeight would be overly descriptive and
unnecessarily long.

Similarly, an old and now obsolete practice is the use of Hungarian nota-
tion, the practice of including an abbreviation of the data type in names. For
example, the name strName indicates that the variable contains a string value,
and iVacationDays indicates that the variable contains an integer. Modern
languages and IDEs can relay this data type information to the programmer
without the need for these prefixes, making Hungarian notation an unnec-
essary practice today. If you find you’re including the name of a data type in
your names, consider removing it.

On the other hand, the is and has prefixes for variables that contain
Boolean values, or functions and methods that return Boolean values,
make those names more readable. Consider the following use of a vari-
able named is_vehicle and a method named has_key():

if item_under_repair.has_key('tires'):
 is_vehicle = True

The has_key() method and is_vehicle variable support a plain English
reading of the code: “if the item under repair has a key named ‘tires,’ then
it’s true that the item is a vehicle.”

Similarly, adding units to your names can provide useful information. A
weight variable that stores a floating-point value is ambiguous: is the weight in
pounds, kilograms, or tons? This unit information isn’t a data type, so includ-
ing a prefix or suffix of kg or lbs or tons isn’t the same as Hungarian notation.
If you aren’t using a weight-specific data type that contains unit information,
naming the variable something like weight_kg could be prudent. Indeed, in
1999 the Mars Climate Orbiter robotic space probe was lost when software
supplied by Lockheed Martin produced calculations in imperial standard

64 Chapter 4

units, whereas NASA’s systems used metric, resulting in an incorrect trajec-
tory. The spacecraft reportedly cost $125 million.

Sequential Numeric Suffixes in Names

Sequential numeric suffixes in your names indicate that you might need
to change the variable’s data type or add different details to the name.
Numbers alone often don’t provide enough information to distinguish
these names.

Variable names like payment1, payment2, and payment3 don’t tell the person
reading the code what the difference is between these payment values. The
programmer should probably refactor these three variables into a single list
or tuple variable named payments that contains three values.

Functions with calls like makePayment1(amount), makePayment2(amount), and so
on should probably be refactored into a single function that accepts an integer
argument: makePayment(1, amount), makePayment(2, amount), and so on. If these
functions have different behaviors that justify separate functions, the meaning
behind the numbers should be stated in the name: makeLowPriorityPayment
(amount) and makeHighPriorityPayment(amount), or make1stQuarterPayment(amount)
and make2ndQuarterPayment(amount), for example.

If you have a valid reason for choosing names with sequential numeric
suffixes, it’s fine to use them. But if you’re using these names because it’s an
easy choice to make, consider revising them.

Make Names Searchable
For all but the smallest programs, you’ll probably need to use your editor or
IDE’s CTRL-F “find” feature to locate where your variables and functions
are referenced. If you choose a short, generic variable name, such as num or
a, you’ll end up with several false matches. To make the name easy to find
immediately, form unique names by using longer variable names that con-
tain specific details.

Some IDEs will have refactoring features that can identify names
based on how your program uses them. For example, a common feature
is a “rename” tool that can differentiate between variables named num and
number, as well as between local num and global num variables. But you should
still choose names as though these tools weren’t available.

Keeping this rule in mind will naturally help you pick descriptive
names instead of generic ones. The name email is vague, so consider a more
descriptive name like emailAddress, downloadEmailAttachment, emailMessage, or
replyToAddress. Not only would such a name be more precise, it would be
easier to find in your source code files as well.

Avoid Jokes, Puns, and Cultural References
At one of my previous software jobs, our codebase contained a function
named gooseDownload(). I had no idea what this meant, because the product

Choosing Understandable Names 65

we were creating had nothing to do with birds or the downloading of birds.
When I found the more-senior co-worker who had originally written the func-
tion, he explained that goose was meant as a verb, as in “goose the engine.” I
had no idea what this phrase meant, either. He had to further explain that
“goose the engine” was automotive jargon that meant press down on the
gas pedal to make the engine go faster. Thus, gooseDownload() was a function
to make downloads go faster. I nodded my head and went back to my desk.
Years later, after this co-worker left the company, I renamed his function to
increaseDownloadSpeed().

When choosing names in your program, you might be tempted to use
jokes, puns, or cultural references to add some levity to your code. Don’t
do this. Jokes can be hard to convey in text, and the joke probably won’t be
as funny in the future. Puns can also be easy to miss, and handling repeat
bug reports from co-workers who confused a pun for a typo can be quite
punishing.

Culture-specific references can get in the way of communicating your
code’s intent clearly. The internet makes it easier than ever to share source
code with strangers around the world who won’t necessarily be fluent in
English or understand English jokes. As noted earlier in the chapter, the
names spam, eggs, and bacon used in Python documentation reference a
Monty Python comedy sketch, but we use these as metasyntactic variables
only; it’s inadvisable to use them in real-world code.

The best policy is to write your code in a way that non-native English
speakers can readily understand: polite, direct, and humorless. My former
co-worker might have thought gooseDownload() was a funny joke, but nothing
kills a joke faster than having to explain it.

Don’t Overwrite Built-in Names
You should also never use Python’s built-in names for your own variables.
For example, if you name a variable list or set, you’ll overwrite Python’s
list() and set() functions, possibly causing bugs later in your code. The
list() function creates list objects. But overwriting it can lead to this error:

>>> list(range(5))
[0, 1, 2, 3, 4]

1 >>> list = ['cat', 'dog', 'moose']
2 >>> list(range(5))

Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: 'list' object is not callable

If we assign a list value to the name list 1, we’ll lose the original list()
function. Attempting to call list()2 would result in a TypeError. To find out
whether Python is already using a name, type it into the interactive shell or
try to import it. You’ll get a NameError or ModuleNotFoundError if the name isn’t

66 Chapter 4

being used. For example, Python uses the names open and test but doesn’t
use spam and eggs:

>>> open
<built-in function open >
>>> import test
>>> spam
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
NameError: name 'spam' is not defined
>>> import eggs
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ModuleNotFoundError: No module named 'eggs'

Some commonly overwritten Python names are all, any, date, email, file,
format, hash, id, input, list, min, max, object, open, random, set, str, sum, test, and
type. Don’t use these names for your identifiers.

Another common problem is naming your .py files the same names
as third-party modules. For example, if you installed the third-party
Pyperclip module but also created a pyperclip.py file, an import pyperclip
statement imports pyperclip.py instead of the Pyperclip module. When
you try to call Pyperclip’s copy() or paste() functions, you’ll get an error
saying they don’t exist:

>>> # Run this code with a file named pyperclip.py in the current folder.
>>> import pyperclip # This imports your pyperclip.py, not the real one.
>>> pyperclip.copy('hello')
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
AttributeError: module 'pyperclip' has no attribute 'copy'

Be aware of overwriting existing names in your Python code, especially
if you’re unexpectedly getting these has no attribute error messages.

The Worst Possible Variable Names Ever
The name data is a terrible, generic variable name, because literally all
variables contain data. The same goes for naming variables var, which is a
bit like naming your pet dog “Dog.” The name temp is common for variables
that temporarily hold data but is still a poor choice: after all, from a Zen
perspective, all variables are temporary. Unfortunately, these names occur
frequently despite their vagueness; avoid using them in your code.

If you need a variable to hold the statistical variance of your tempera-
ture data, please use the name temperatureVariance. It should go without say-
ing that the name tempVarData would be a poor choice.

Choosing Understandable Names 67

Summary
Choosing names has nothing to do with algorithms or computer science,
and yet it’s a vital part of writing readable code. Ultimately, the names you
use in your code are up to you, but be aware of the many guidelines that
exist. The PEP 8 document recommends several naming conventions, such
as lowercase names for modules and PascalCase names for classes. Names
shouldn’t be too short or too long. But it’s often better to err on the side of
too descriptive instead of not detailed enough.

A name should be concise but descriptive. A name that is easy to find
using a CTRL-F search feature is the sign of a distinct and descriptive vari-
able. Think about how searchable your name is to determine whether you’re
using a too generic name. Also, consider whether a programmer who doesn’t
speak fluent English would understand the name: avoid using jokes, puns,
and cultural references in your names; instead, choose names that are polite,
direct, and humorless.

Although many of the suggestions in this chapter are simply guidelines,
you should always avoid names Python’s standard library already uses, such
as all, any, date, email, file, format, hash, id, input, list, min, max, object, open,
random, set, str, sum, test, and type. Using these names could cause subtle
bugs in your code.

The computer doesn’t care whether your names are descriptive or
vague. Names make code easier to read by humans, not easier to run by
computers. If your code is readable, it’s easy to understand. If it’s easy to
understand, it’s easy to change. And if it’s easy to change, it’s easier to fix
bugs or add new features. Using understandable names is a foundational
step to producing quality software.

Code that causes a program to crash is
obviously wrong, but crashes aren’t the only

indicator of issues in your programs. Other
signs can suggest the presence of more subtle

bugs or unreadable code. Just as the smell of gas can
indicate a gas leak or the smell of smoke could indi-
cate a fire, a code smell is a source code pattern that sig-
nals potential bugs. A code smell doesn’t necessarily
mean a problem exists, but it does mean you should
investigate your program.

This chapter lists several common code smells. It takes much less time
and effort to prevent a bug than to encounter, understand, and fix a bug
later. Every programmer has stories of spending hours debugging only to

5
F I N D I N G C O D E S M E L L S

70 Chapter 5

find that the fix involved changing a single line of code. For this reason,
even a whiff of a potential bug should give you pause, prompting you to
double-check that you aren’t creating future problems.

Of course, a code smell isn’t necessarily a problem. Ultimately, whether
to address or ignore a code smell is a judgment call for you to make.

Duplicate Code
The most common code smell is duplicate code. Duplicate code is any source
code that you could have created by copying and pasting some other code
into your program. For example, this short program contains duplicate
code. Notice that it asks how the user is feeling three times:

print('Good morning!')
print('How are you feeling?')
feeling = input()
print('I am happy to hear that you are feeling ' + feeling + '.')
print('Good afternoon!')
print('How are you feeling?')
feeling = input()
print('I am happy to hear that you are feeling ' + feeling + '.')
print('Good evening!')
print('How are you feeling?')
feeling = input()
print('I am happy to hear that you are feeling ' + feeling + '.')

Duplicate code is a problem because it makes changing the code diffi-
cult; a change you make to one copy of the duplicate code must be made to
every copy of it in the program. If you forget to make a change somewhere,
or if you make different changes to different copies, your program will
likely end up with bugs.

The solution to duplicate code is to deduplicate it; that is, make it appear
once in your program by placing the code in a function or loop. In the fol-
lowing example, I’ve moved the duplicate code into a function and then
repeatedly called that function:

def askFeeling():
 print('How are you feeling?')
 feeling = input()
 print('I am happy to hear that you are feeling ' + feeling + '.')

print('Good morning!')
askFeeling()
print('Good afternoon!')
askFeeling()
print('Good evening!')
askFeeling()

Finding Code Smells 71

In this next example, I’ve moved the duplicate code into a loop:

for timeOfDay in ['morning', 'afternoon', 'evening']:
 print('Good ' + timeOfDay + '!')
 print('How are you feeling?')
 feeling = input()
 print('I am happy to hear that you are feeling ' + feeling + '.')

You could also combine these two techniques and use a function and
a loop:

def askFeeling(timeOfDay):
 print('Good ' + timeOfDay + '!')
 print('How are you feeling?')
 feeling = input()
 print('I am happy to hear that you are feeling ' + feeling + '.')

for timeOfDay in ['morning', 'afternoon', 'evening']:
 askFeeling(timeOfDay)

Notice that the code that produces the “Good morning/afternoon/
evening!” messages is similar but not identical. In the third improvement to
the program, I parameterized the code to deduplicate the identical parts.
Meanwhile, the timeOfDay parameter and timeOfDay loop variable replace the
parts that differ. Now that I’ve deduplicated this code by removing the extra
copies, I only need to make any necessary changes in one place.

As with all code smells, avoiding duplicate code isn’t a hard-and-fast
rule you must always follow. In general, the longer the duplicate code sec-
tion or the more duplicate copies that appear in your program, the stronger
the case for deduplicating it. I don’t mind copying and pasting code once or
even twice. But I generally start to consider deduplicating code when three
or four copies exist in my program.

Sometimes, code is just not worth the trouble of deduplicating. Compare
the first code example in this section to the most recent one. Although the
duplicate code is longer, it’s simple and straightforward. The deduplicated
example does the same thing but involves a loop, a new timeOfDay loop vari-
able, and a new function with a parameter that is also named timeOfDay.

Duplicate code is a code smell because it makes your code harder to
change consistently. If several duplicates are in your program, the solution
is to place code inside a function or loop so it appears only once.

Magic Numbers
It’s no surprise that programming involves numbers. But some of the num-
bers that appear in your source code can confuse other programmers (or
you a couple weeks after writing them). For example, consider the number
604800 in the following line:

expiration = time.time() + 604800

72 Chapter 5

The time.time() function returns an integer representing the current
time. We can assume that the expiration variable will represent some point
604,800 seconds into the future. But 604800 is rather mysterious: what’s the
significance of this expiration date? A comment can help clarify:

expiration = time.time() + 604800 # Expire in one week.

This is a good solution, but an even better one is to replace these
“magic” numbers with constants. Constants are variables whose names are
written in uppercase letters to indicate that their values shouldn’t change
after their initial assignment. Usually, constants are defined as global vari-
ables at the top of the source code file:

Set up constants for different time amounts:
SECONDS_PER_MINUTE = 60
SECONDS_PER_HOUR = 60 * SECONDS_PER_MINUTE
SECONDS_PER_DAY = 24 * SECONDS_PER_HOUR
SECONDS_PER_WEEK = 7 * SECONDS_PER_DAY

--snip--

expiration = time.time() + SECONDS_PER_WEEK # Expire in one week.

You should use separate constants for magic numbers that serve dif-
ferent purposes, even if the magic number is the same. For example, there
are 52 cards in a deck of playing cards and 52 weeks in a year. But if you
have both amounts in your program, you should do something like the
following:

NUM_CARDS_IN_DECK = 52
NUM_WEEKS_IN_YEAR = 52

print('This deck contains', NUM_CARDS_IN_DECK, 'cards.')
print('The 2-year contract lasts for', 2 * NUM_WEEKS_IN_YEAR, 'weeks.')

When you run this code, the output will look like this:

This deck contains 52 cards.
The 2-year contract lasts for 104 weeks.

Using separate constants allows you to change them independently
in the future. Note that constant variables should never change values while
the program is running. But this doesn’t mean that the programmer can
never update them in the source code. For example, if a future version of
the code includes a joker card, you can change the cards constant without
affecting the weeks one:

NUM_CARDS_IN_DECK = 53
NUM_WEEKS_IN_YEAR = 52

Finding Code Smells 73

The term magic number can also apply to non-numeric values. For
example, you might use string values as constants. Consider the following
program, which asks the user to enter a direction and displays a warning if
the direction is north. A 'nrth' typo causes a bug that prevents the program
from displaying the warning:

while True:
 print('Set solar panel direction:')
 direction = input().lower()
 if direction in ('north', 'south', 'east', 'west'):
 break

print('Solar panel heading set to:', direction)
1 if direction == 'nrth':

 print('Warning: Facing north is inefficient for this panel.')

This bug can be hard to detect: the typo in the 'nrth' string 1 is still
syntactically correct Python. The program doesn’t crash, and it’s easy to
overlook the lack of a warning message. But if we used constants and made
this same typo, the typo would cause the program to crash because Python
would notice that a NRTH constant doesn’t exist:

Set up constants for each cardinal direction:
NORTH = 'north'
SOUTH = 'south'
EAST = 'east'
WEST = 'west'

while True:
 print('Set solar panel direction:')
 direction = input().lower()
 if direction in (NORTH, SOUTH, EAST, WEST):
 break

print('Solar panel heading set to:', direction)
1 if direction == NRTH:

 print('Warning: Facing north is inefficient for this panel.')

The NameError exception raised by the code line with the NRTH typo 1
makes the bug immediately obvious when you run this program:

Set solar panel direction:
west
Solar panel heading set to: west
Traceback (most recent call last):
 File "panelset.py", line 14, in <module>
 if direction == NRTH:
NameError: name 'NRTH' is not defined

Magic numbers are a code smell because they don’t convey their pur-
pose, making your code less readable, harder to update, and prone to unde-
tectable typos. The solution is to use constant variables instead.

74 Chapter 5

Commented-Out Code and Dead Code
Commenting out code so it doesn’t run is fine as a temporary measure. You
might want to skip some lines to test other functionality, and commenting
them out makes them easy to add back in later. But if commented-out code
remains in place, it’s a complete mystery why it was removed and under what
condition it might ever be needed again. Consider the following example:

doSomething()
#doAnotherThing()
doSomeImportantTask()
doAnotherThing()

This code prompts many unanswered questions: Why was doAnother
Thing() commented out? Will we ever include it again? Why wasn’t the sec-
ond call to doAnotherThing() commented out? Were there originally two
calls to doAnotherThing(), or was there one call that was moved after doSome
ImportantTask()? Is there a reason we shouldn’t remove the commented-out
code? There are no readily available answers to these questions.

Dead code is code that is unreachable or logically can never run. For
example, code inside a function but after a return statement, code in an if
statement block with an always False condition, or code in a function that is
never called is all dead code. To see this in practice, enter the following into
the interactive shell:

>>> import random
>>> def coinFlip():
... if random.randint(0, 1):
... return 'Heads!'
... else:
... return 'Tails!'
... return 'The coin landed on its edge!'
...
>>> print(coinFlip())
Tails!

The return 'The coin landed on its edge!' line is dead code because
the code in the if and else blocks returns before the execution could ever
reach that line. Dead code is misleading because programmers reading it
assume that it’s an active part of the program when it’s effectively the same
as commented-out code.

Stubs are an exception to these code smell rules. These are place-
holders for future code, such as functions or classes that have yet to be
implemented. In lieu of real code, a stub contains a pass statement, which
does nothing. (It’s also called a no operation or no-op.) The pass statement
exists so you can create stubs in places where the language syntax requires
some code:

>>> def exampleFunction():
... pass
...

Finding Code Smells 75

When this function is called, it does nothing. Instead, it indicates that
code will eventually be added in.

Alternatively, to avoid accidentally calling an unimplemented function,
you can stub it with a raise NotImplementedError statement. This will immedi-
ately indicate that the function isn’t yet ready to be called:

>>> def exampleFunction():
... raise NotImplementedError
...
>>> exampleFunction()
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "<stdin>", line 2, in exampleFunction
NotImplementedError

Raising a NotImplementedError will warn you whenever your program calls
a stub function or method by accident.

Commented-out code and dead code are code smells because they can
mislead programmers into thinking that the code is an executable part of
the program. Instead, remove them and use a version control system, such
as Git or Subversion, to keep track of changes. Version control is covered in
Chapter 12. With version control, you can remove the code from your pro-
gram and, if needed, easily add it back in later.

Print Debugging
Print debugging is the practice of placing temporary print() calls in a pro-
gram to display the values of variables and then rerunning the program.
The process often follows these steps:

1.	 Notice a bug in your program.

2.	 Add print() calls for some variables to find out what they contain.

3.	 Rerun the program.

4.	 Add some more print() calls because the earlier ones didn’t show
enough information.

5.	 Rerun the program.

6.	 Repeat the previous two steps a few more times before finally figuring
out the bug.

7.	 Rerun the program.

8.	 Realize you forgot to remove some of the print() calls and remove them.

Print debugging is deceptively quick and simple. But it often requires mul-
tiple iterations of rerunning the program before you display the information
you need to fix your bug. The solution is to use a debugger or set up logfiles
for your program. By using a debugger, you can run your programs one line of
code at a time and inspect any variable. Using a debugger might seem slower
than simply inserting a print() call, but it saves you time in the long run.

76 Chapter 5

Logfiles can record large amounts of information from your program
so you can compare one run of it to previous runs. In Python, the built-in
logging module provides the functionality you need to easily create logfiles
by using just three lines of code:

import logging
logging.basicConfig(filename='log_filename.txt', level=logging.DEBUG,
format='%(asctime)s - %(levelname)s - %(message)s')
logging.debug('This is a log message.')

After importing the logging module and setting up its basic configu-
ration, you can call logging.debug() to write information to a text file, as
opposed to using print() to display it onscreen. Unlike print debugging,
calling logging.debug() makes it obvious what output is debugging informa-
tion and what output is the result of the program’s normal run. You can
find more information about debugging in Chapter 11 of Automate the
Boring Stuff with Python, 2nd edition (No Starch, 2019), which you can read
online at https://autbor.com/2e/c11/.

Variables with Numeric Suffixes
When writing programs, you might need multiple variables that store the
same kind of data. In those cases, you might be tempted to reuse a variable
name by adding a numeric suffix to it. For example, if you’re handling a
signup form that asks users to enter their password twice to prevent typos,
you might store those password strings in variables named password1 and
password2. These numeric suffixes aren’t good descriptions of what the vari-
ables contain or the differences between them. They also don’t indicate
how many of these variables there are: is there a password3 or a password4 as
well? Try to create distinct names rather than lazily adding numeric suf-
fixes. A better set of names for this password example would be password and
confirm_password.

Let’s look at another example: if you have a function that deals with
start and destination coordinates, you might have the parameters x1, y1, x2,
and y2. But the numeric suffix names don’t convey as much information as
the names start_x, start_y, end_x, and end_y. It’s also clearer that the start_x
and start_y variables are related to each other, compared to x1 and y1.

If your numeric suffixes extend past 2, you might want to use a list
or set data structure to store your data as a collection. For example, you
could store the values of pet1Name, pet2Name, pet3Name, and so on in a list
called petNames.

This code smell doesn’t apply to every variable that simply ends with a
number. For example, it’s perfectly fine to have a variable named enableIPv6,
because “6” is part of the “IPv6” proper name, not a numeric suffix. But if
you’re using numeric suffixes for a series of variables, consider replacing
them with a data structure, such as a list or dictionary.

https://autbor.com/2e/c11/

Finding Code Smells 77

Classes That Should Just Be Functions or Modules
Programmers who use languages such as Java are used to creating classes to
organize their program’s code. For example, let’s look at this example Dice
class, which has a roll() method:

>>> import random
>>> class Dice:
... def __init__(self, sides=6):
... self.sides = sides
... def roll(self):
... return random.randint(1, self.sides)
...
>>> d = Dice()
>>> print('You rolled a', d.roll())
You rolled a 1

This might seem like well-organized code, but think about what our
actual needs are: a random number between 1 and 6. We could replace this
entire class with a simple function call:

>>> print('You rolled a', random.randint(1, 6))
You rolled a 6

Compared to other languages, Python uses a casual approach to organiz-
ing code, because its code isn’t required to exist in a class or other boilerplate
structure. If you find you’re creating objects simply to make a single function
call, or if you’re writing classes that contain only static methods, these are
code smells that indicate you might be better off writing functions instead.

In Python, we use modules rather than classes to group functions
together. Because classes must be in a module anyway, putting this code
in classes just adds an unnecessary layer of organization to your code.
Chapters 15 through 17 discuss these object-oriented design principles
in more detail. Jack Diederich’s PyCon 2012 talk “Stop Writing Classes”
covers other ways that you might be overcomplicating your Python code.

List Comprehensions Within List Comprehensions
List comprehensions are a concise way to create complex list values. For
example, to create a list of strings of digits for the numbers 0 through 100,
excluding all multiples of 5, you’d typically need a for loop:

>>> spam = []
>>> for number in range(100):
... if number % 5 != 0:
... spam.append(str(number))
...
>>> spam
['1', '2', '3', '4', '6', '7', '8', '9', '11', '12', '13', '14', '16', '17',
--snip--
'86', '87', '88', '89', '91', '92', '93', '94', '96', '97', '98', '99']

78 Chapter 5

Alternatively, you can create this same list in a single line of code by
using the list comprehension syntax:

>>> spam = [str(number) for number in range(100) if number % 5 != 0]
>>> spam
['1', '2', '3', '4', '6', '7', '8', '9', '11', '12', '13', '14', '16', '17',
--snip--
'86', '87', '88', '89', '91', '92', '93', '94', '96', '97', '98', '99']

Python also has syntax for set comprehensions and dictionary
comprehensions:

1 >>> spam = {str(number) for number in range(100) if number % 5 != 0}
>>> spam
{'39', '31', '96', '76', '91', '11', '71', '24', '2', '1', '22', '14', '62',
--snip--
'4', '57', '49', '51', '9', '63', '78', '93', '6', '86', '92', '64', '37'}

2 >>> spam = {str(number): number for number in range(100) if number % 5 != 0}
>>> spam
{'1': 1, '2': 2, '3': 3, '4': 4, '6': 6, '7': 7, '8': 8, '9': 9, '11': 11,
--snip--
'92': 92, '93': 93, '94': 94, '96': 96, '97': 97, '98': 98, '99': 99}

A set comprehension 1 uses braces instead of square brackets and
produces a set value. A dictionary comprehension 2 produces a dictionary
value and uses a colon to separate the key and value in the comprehension.

These comprehensions are concise and can make your code more read-
able. But notice that the comprehensions produce a list, set, or dictionary
based on an iterable object (in this example, the range object returned by
the range(100) call). Lists, sets, and dictionaries are iterable objects, which
means you could have comprehensions nested inside of comprehensions, as
in the following example:

>>> nestedIntList = [[0, 1, 2, 3], [4], [5, 6], [7, 8, 9]]
>>> nestedStrList = [[str(i) for i in sublist] for sublist in nestedIntList]
>>> nestedStrList
[['0', '1', '2', '3'], ['4'], ['5', '6'], ['7', '8', '9']]

But nested list comprehensions (or nested set and dictionary compre-
hensions) cram a lot of complexity into a small amount of code, making
your code hard to read. It’s better to expand the list comprehension into
one or more for loops instead:

>>> nestedIntList = [[0, 1, 2, 3], [4], [5, 6], [7, 8, 9]]
>>> nestedStrList = []
>>> for sublist in nestedIntList:
... nestedStrList.append([str(i) for i in sublist])
...
>>> nestedStrList
[['0', '1', '2', '3'], ['4'], ['5', '6'], ['7', '8', '9']]

Finding Code Smells 79

Comprehensions can also contain multiple for expressions, although
this tends to produce unreadable code as well. For example, the following
list comprehension produces a flattened list from a nested list:

>>> nestedList = [[0, 1, 2, 3], [4], [5, 6], [7, 8, 9]]
>>> flatList = [num for sublist in nestedList for num in sublist]
>>> flatList
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

This list comprehension contains two for expressions, but it’s difficult
for even experienced Python developers to understand. The expanded
form, which uses two for loops, creates the same flattened list but is much
easier to read:

>>> nestedList = [[0, 1, 2, 3], [4], [5, 6], [7, 8, 9]]
>>> flatList = []
>>> for sublist in nestedList:
... for num in sublist:
... flatList.append(num)
...
>>> flatList
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

Comprehensions are syntactic shortcuts that can produce concise code,
but don’t go overboard and nest them within each other.

Empty except Blocks and Poor Error Messages
Catching exceptions is one of the primary ways to ensure that your pro-
grams will continue to function even when problems arise. When an excep-
tion is raised but there is no except block to handle it, the Python program
crashes by immediately stopping. This could result in losing your unsaved
work or leaving files in a half-finished state.

You can prevent crashes by supplying an except block that contains
code for handling the error. But it can be difficult to decide how to handle
an error, and programmers can be tempted to simply leave the except block
blank with a pass statement. For example, in the following code we use pass
to create an except block that does nothing:

>>> try:
... num = input('Enter a number: ')
... num = int(num)
... except ValueError:
... pass
...
Enter a number: forty two
>>> num
'forty two'

80 Chapter 5

This code doesn’t crash when 'forty two' is passed to int() because the
ValueError that int() raises is handled by the except statement. But doing noth-
ing in response to an error might be worse than a crash. Programs crash
so they don’t continue to run with bad data or in incomplete states, which
could lead to even worse bugs later on. Our code doesn’t crash when nondigit
characters are entered. But now the num variable contains a string instead of
an integer, which could cause issues whenever the num variable gets used. Our
except statement isn’t handling errors so much as hiding them.

Handling exceptions with poor error messages is another code smell.
Look at this example:

>>> try:
... num = input('Enter a number: ')
... num = int(num)
... except ValueError:
... print('An incorrect value was passed to int()')
...
Enter a number: forty two
An incorrect value was passed to int()

This code doesn’t crash, which is good, but it doesn’t give the user
enough information to know how to fix the problem. Error messages are
meant to be read by users, not programmers. Not only does this error
message have technical details that a user wouldn’t understand, such as a
reference to the int() function, but it doesn’t tell the user how to fix the
problem. Error messages should explain what happened as well as what
the user should do about it.

It’s easier for programmers to quickly write a single, unhelpful descrip-
tion of what happened rather than detailed steps that the user can take to
fix the problem. But keep in mind that if your program doesn’t handle all
possible exceptions that could be raised, it’s an unfinished program.

Code Smell Myths
Some code smells aren’t really code smells at all. Programming is full of
half-remembered bits of bad advice that are taken out of context or stick
around long after they’ve outlived their usefulness. I blame tech book
authors who try to pass off their subjective opinions as best practices.

You might have been told some of these practices are code smells, but
they’re mostly fine. I call them code smell myths: they’re warnings that you
can and should ignore. Let’s look at a few of them.

Myth: Functions Should Have Only One return Statement at the End
The “one entry, one exit” idea comes from misinterpreted advice from the
days of programming in assembly and FORTRAN languages. These lan-
guages allowed you to enter a subroutine (a structure similar to a function)
at any point, including in the middle of it, making it hard to debug which

Finding Code Smells 81

parts of the subroutine had been executed. Functions don’t have this prob-
lem (execution always begins at the start of the function). But the advice
lingered, becoming “functions and methods should only have one return
statement, which should be at the end of the function or method.”

Trying to achieve a single return statement per function or method
often requires a convoluted series of if-else statements that’s far more con-
fusing than having multiple return statements. Having more than one return
statement in a function or method is fine.

Myth: Functions Should Have at Most One try Statement
“Functions and methods should do one thing” is good advice in general.
But taking this to mean that exception handling should occur in a separate
function goes too far. For example, let’s look at a function that indicates
whether a file we want to delete is already nonexistent:

>>> import os
>>> def deleteWithConfirmation(filename):
... try:
... if (input('Delete ' + filename + ', are you sure? Y/N') == 'Y'):
... os.unlink(filename)
... except FileNotFoundError:
... print('That file already did not exist.')
...

Proponents of this code smell myth argue that because functions should
always do just one thing, and error handling is one thing, we should split this
function into two functions. They argue that if you use a try-except statement,
it should be the first statement in a function and envelop all of the function’s
code to look like this:

>>> import os
>>> def handleErrorForDeleteWithConfirmation(filename):
... try:
... _deleteWithConfirmation(filename)
... except FileNotFoundError:
... print('That file already did not exist.')
...
>>> def _deleteWithConfirmation(filename):
... if (input('Delete ' + filename + ', are you sure? Y/N') == 'Y'):
... os.unlink(filename)
...

This is unnecessarily complicated code. The _deleteWithConfirmation()
function is now marked as private with the _ underscore prefix to clarify
that it should never be called directly, only indirectly through a call to
handleErrorForDeleteWithConfirmation(). This new function’s name is awkward,
because we call it intending to delete a file, not handle an error to delete
a file.

82 Chapter 5

Your functions should be small and simple, but this doesn’t mean they
should always be limited to doing “one thing” (however you define that). It’s
fine if your functions have more than one try-except statement and the state-
ments don’t envelop all of the function’s code.

Myth: Flag Arguments Are Bad
Boolean arguments to function or method calls are sometimes referred to as
flag arguments. In programming, a flag is a value that indicates a binary set-
ting, such as “enabled” or “disabled,” and it’s often represented by a Boolean
value. We can describe these settings as set (that is, True) or cleared (that
is, False).

The false belief that flag arguments to function calls are bad is based
on the claim that, depending on the flag value, the function does two
entirely different things, such as in the following example:

def someFunction(flagArgument):
 if flagArgument:
 # Run some code...
 else:
 # Run some completely different code...

Indeed, if your function looks like this, you should create two sepa-
rate functions rather than making an argument decide which half of the
function’s code to run. But most functions with flag arguments don’t do
this. For example, you can pass a Boolean value for the sorted() function’s
reverse keyword argument to determine the sort order. This code wouldn’t
be improved by splitting the function into two functions named sorted()
and reverseSorted() (while also duplicating the amount of documenta-
tion required). So the idea that flag arguments are always bad is a code
smell myth.

Myth: Global Variables Are Bad
Functions and methods are like mini-programs within your program: they
contain code, including local variables that are forgotten when the function
returns. This is similar to how a program’s variables are forgotten after it
terminates. Functions are isolated: their code either performs correctly or
has a bug depending on the arguments passed when they’re called.

But functions and methods that use global variables lose some of this
helpful isolation. Every global variable you use in a function effectively
becomes another input to the function, just like the arguments. More
arguments mean more complexity, which in turn means a higher likeli-
hood for bugs. If a bug manifests in a function due to a bad value in a
global variable, that bad value could have been set anywhere in the pro-
gram. To search for a likely cause of this bad value, you can’t just analyze
the code in the function or the line of code calling the function; you must
look at the entire program’s code. For this reason, you should limit your
use of global variables.

Finding Code Smells 83

For example, let’s look at the calculateSlicesPerGuest() function in a fic-
tional partyPlanner.py program that is thousands of lines long. I’ve included
line numbers to give you a sense of the program’s size:

1504. def calculateSlicesPerGuest(numberOfCakeSlices):
1505. global numberOfPartyGuests
1506. return numberOfCakeSlices / numberOfPartyGuests

Let’s say when we run this program, we encounter the following
exception:

Traceback (most recent call last):
 File "partyPlanner.py", line 1898, in <module>
 print(calculateSlicesPerGuest(42))
 File "partyPlanner.py", line 1506, in calculateSlicesPerGuest
 return numberOfCakeSlices / numberOfPartyGuests
ZeroDivisionError: division by zero

The program has a zero divide error, caused by the line return
numberOfCakeSlices / numberOfPartyGuests. The numberOfPartyGuests variable
must be set to 0 to have caused this, but where did numberOfPartyGuests get
assigned this value? Because it’s a global variable, it could have happened
anywhere in the thousands of lines in this program! From the traceback
information, we know that calculateSlicesPerGuest() was called on line
1898 of our fictional program. If we looked at line 1898, we could find out
what argument was passed for the numberOfCakeSlices parameter. But the
numberOfPartyGuests global variable could have been set at any time before
the function call.

Note that global constants aren’t considered poor programming prac-
tice. Because their values never change, they don’t introduce complex-
ity into the code the way other global variables do. When programmers
mention that “global variables are bad,” they aren’t referring to constant
variables.

Global variables broaden the amount of debugging needed to find
where an exception-causing value could have been set. This makes abun-
dant use of global variables a bad idea. But the idea that all global variables
are bad is a code smell myth. Global variables can be useful in smaller pro-
grams or for keeping track of settings that apply across the entire program.
If you can avoid using a global variable, that’s a sign you probably should
avoid using one. But “global variables are bad” is an oversimplified opinion.

Myth: Comments Are Unnecessary
Bad comments are indeed worse than no comments at all. A comment with
outdated or misleading information creates more work for the programmer
instead of a better understanding. But this potential problem is sometimes
used to proclaim that all comments are bad. The argument asserts that
every comment should be replaced with more readable code, to the point
that programs should have no comments at all.

84 Chapter 5

Comments are written in English (or whatever language the program-
mer speaks), allowing them to convey information to a degree that variable,
function, and class names cannot. But writing concise, effective comments
is hard. Comments, like code, require rewrites and multiple iterations to get
right. We understand the code we write immediately after writing it, so writ-
ing comments seems like pointless extra work. As a result, programmers are
primed to accept the “comments are unnecessary” viewpoint.

The far more common experience is that programs have too few or no
comments rather than too many or misleading comments. Rejecting com-
ments is like saying, “Flying across the Atlantic Ocean in a passenger jet is
only 99.999991 percent safe, so I’m going to swim across it instead.”

Chapter 10 has more information about how to write effective
comments.

Summary
Code smells indicate that there might be a better way to write your code.
They don’t necessarily require a change, but they should make you take
another look. The most common code smell is duplicate code, which can
signal an opportunity to place code inside a function or loop. This ensures
future code changes will need to be made in only one place. Other code
smells include magic numbers, which are unexplained values in your
code that can be replaced by constants with descriptive names. Similarly,
commented-out code and dead code are never run by the computer, and
might mislead programmers who later read the program’s code. It’s best to
remove them and rely on a source control system like Git if you later need
to add them back to your program.

Print debugging uses print() calls to display debugging information.
Although this approach to debugging is easy, it’s often faster in the long
run to rely on a debugger and logs to diagnose bugs.

Variables with numeric suffixes, such as x1, x2, x3, and so on, are often
best replaced with a single variable containing a list. Unlike in languages
such as Java, in Python we use modules rather than classes to group func-
tions together. A class that contains a single method or only static meth-
ods is a code smell suggesting that you should put that code into a module
rather than a class. And although list comprehensions are a concise way
to create list values, nested list comprehensions are usually unreadable.

Additionally, any exceptions handled with empty except blocks are
a code smell that you’re simply silencing the error rather than handling
it. A short, cryptic error message is just as useless to the user as no error
message.

Along with these code smells are the code smell myths: programming
advice that is no longer valid or has, over time, proven counterproductive.
These include putting only a single return statement or try-except block in
each function, never using flag arguments or global variables, and believing
that comments are unnecessary.

Finding Code Smells 85

Of course, as with all programming advice, the code smells described
in this chapter might or might not apply to your project or personal prefer-
ences. A best practice isn’t an objective measure. As you gain more exper
ience, you’ll come to different conclusions about what code is readable or
reliable, but the recommendations in this chapter outline issues to consider.

Powerful is a meaningless adjective for pro-
gramming languages. Every programming

language describes itself as powerful: the
official Python Tutorial begins with the sen-

tence “Python is an easy to learn, powerful program-
ming language.” But there’s no algorithm that one
language can do that another can’t, and no unit of
measurement to quantify a programming language’s
“power” (although you certainly can measure the vol-
ume at which programmers argue for their favorite
language).

6
W R I T I N G P Y T H O N I C C O D E

88 Chapter 6

But every language does have its own design patterns and gotchas that
make up its strengths and weaknesses. To write Python code like a true
Pythonista, you’ll need to know more than just the syntax and standard
library. The next step is to learn its idioms, or Python-specific coding prac-
tices. Certain Python language features lend themselves to writing code in
ways that have become known as pythonic.

In this chapter, I’ll provide several common ways of writing idiomatic
Python code along with their unpythonic counterparts. What counts as
pythonic can vary from programmer to programmer, but it commonly
includes the examples and practices I discuss here. Experienced Python
programmers use these techniques, so becoming familiar with them allows
you to recognize them in real-world code.

The Zen of Python
The Zen of Python by Tim Peters is a set of 20 guidelines for the design of the
Python language and for Python programs. Your Python code doesn’t nec-
essarily have to follow these guidelines, but they’re good to keep in mind.
The Zen of Python is also an Easter egg, or hidden joke, that appears when
you run import this:

>>> import this
The Zen of Python, by Tim Peters

Beautiful is better than ugly.
Explicit is better than implicit.
--snip--

N O T E 	 Mysteriously, only 19 of the guidelines are written down. Guido van Rossum,
creator of Python, reportedly said that the missing 20th aphorism is “some bizarre
Tim Peters in-joke.” Tim left it blank for Guido to fill, which he seems to never
have gotten around to doing.

In the end, these guidelines are opinions that programmers can argue
for or against. Like all good sets of moral codes, they contradict themselves
to provide the most flexibility. Here’s my interpretation of these aphorisms:

Beautiful is better than ugly.   Beautiful code can be thought of as easy
to read and understand. Programmers often write code quickly without
concern for readability. The computer will run unreadable code, but
unreadable code is difficult for human programmers to maintain and
debug. Beauty is subjective, but code that is written without regard for
how understandable it is often ugly to others. The reason for Python’s
popularity is that its syntax isn’t cluttered with cryptic punctuation
marks like other languages, making it easy to work with.

Writing Pythonic Code 89

Explicit is better than implicit.   If I’d written only “This is self-
explanatory,” I would have provided a terrible explanation for this
aphorism. Similarly, in code, it’s best to be verbose and explicit. You
should avoid hiding code’s functionality behind obscure language fea-
tures that require deep language familiarity to fully understand.

Simple is better than complex. Complex is better than complicated.  
These two aphorisms remind us that we can build anything with simple
or complex techniques. If you have a simple problem that requires a
shovel, it’s overkill to use a 50-ton hydraulic bulldozer. But for an enor-
mous job, the complexity of operating a single bulldozer is preferable
to the complications of coordinating a team of 100 shovelers. Prefer
simplicity to complexity, but know the limits of simplicity.

Flat is better than nested.   Programmers love to organize their code
into categories, especially categories that contain subcategories that
contain other sub-subcategories. These hierarchies often don’t add
organization so much as they add bureaucracy. It’s okay to write code
in just one top-level module or data structure. If your code looks like
spam.eggs.bacon.ham() or spam['eggs']['bacon']['ham'], you’re making your
code too complicated.

Sparse is better than dense.   Programmers often like to cram as much
functionality into as little code as possible, as in the following line:
print('\n'.join("%i bytes = %i bits which has %i possiblevalues." % (j,
j*8, 256**j-1) for j in (1 << i for i in range(8)))). Although code like
this might impress their friends, it’ll infuriate their co-workers who
have to try to understand it. Don’t make your code try to do too much
at once. Code that is spread out over multiple lines is often easier to
read than dense one-liners. This aphorism is roughly the same as sim-
ple is better than complex.

Readability counts.   Although strcmp() might obviously mean the
“string compare” function to someone who has been programming in
C since the 1970s, modern computers have enough memory to write
out the full function name. Don’t drop letters from your names or write
overly terse code. Take the time to come up with descriptive, specific
names for your variables and functions. A blank line in between sections
of your code can serve the same function as paragraph breaks in a book,
letting the reader know which parts are meant to be read together. This
aphorism is roughly the same as beautiful is better than ugly.

Special cases aren’t special enough to break the rules. Although
practicality beats purity.   These two aphorisms contradict each
other. Programming is full of “best practices” that programmers
should strive for in their code. Skirting these practices for a quick
hack might be tempting but can lead to a rat’s nest of inconsistent,
unreadable code. On the other hand, bending over backward to
adhere to rules can result in highly abstract, unreadable code. For
example, the Java programming language’s attempt to fit all code to
its object-oriented paradigm often results in lots of boilerplate code

90 Chapter 6

for even the smallest program. Walking the line between these two
aphorisms becomes easier with experience. In time, you’ll learn not
only the rules but also when to break them.

Errors should never pass silently. Unless explicitly silenced.   Just
because programmers often ignore error messages doesn’t mean the
program should stop emitting them. Silent errors can happen when
functions return error codes or None instead of raising exceptions.
These two aphorisms tell us that it’s better for a program to fail fast
and crash than to silence the error and continue running. The bugs
that inevitably happen later on will be harder to debug because they’re
detected long after the original cause. Although you can always decide
to explicitly ignore the errors your programs cause, be sure you’re mak-
ing the conscious choice to do so.

In the face of ambiguity, refuse the temptation to guess.   Computers
have made humans superstitious: to exorcise the demons in our com-
puters, we perform the sacred ritual of turning them off and then on.
Supposedly this will fix any mysterious problem. But computers are
not magic. If your code isn’t working, there’s a reason why, and only
careful, critical thinking will solve the problem. Refuse the temptation
to blindly try solutions until something seems to work; often, you’ve
merely masked the problem rather than solved it.

There should be one—and preferably only one—obvious way to
do it.   This is a broadside against the Perl programming language’s
motto, “There’s more than one way to do it!” It turns out that having
three or four different ways to write code that does the same task is
a double-edged sword: you have flexibility in how you write code, but
now you have to learn every possible way it could have been written to
read other people’s code. This flexibility isn’t worth the increased effort
needed to learn a programming language.

Although that way may not be obvious at first unless you’re Dutch.  
This line is a joke. Guido van Rossum, the creator of Python, is Dutch.

Now is better than never. Although never is often better than *right*
now.   These two aphorisms tell us that code that runs slowly is obvi-
ously worse than code that runs quickly. But it’s better to have to wait
for your program to finish than to finish it too early with incorrect
results.

If the implementation is hard to explain, it’s a bad idea. If the imple-
mentation is easy to explain, it may be a good idea.   Many things get
more complicated over time: tax laws, romantic relationships, Python
programming books. Software is no different. These two aphorisms
remind us that if code is so complicated as to be impossible for pro-
grammers to understand and debug, it’s bad code. But just because it’s
easy to explain a program’s code to someone else doesn’t mean it isn’t
bad code. Unfortunately, figuring out how to make code as simple as
possible, and not any simpler, is hard.

Writing Pythonic Code 91

Namespaces are one honking great idea—let’s do more of those!  
Namespaces are separate containers for identifiers to prevent naming
conflicts. For example, the open() built-in function and the webbrowser
.open() function have the same name but refer to different functions.
Importing webbrowser doesn’t overwrite the built-in open() function
because both open() functions exist in different namespaces: the built-
in namespace and the webbrowser module’s namespace, respectively. But
keep in mind that flat is better than nested: as great as namespaces are,
you should make them only to prevent naming conflicts, not to add
needless categorization.

As with all opinions about programming, you can argue against
those I’ve listed here, or they might simply be irrelevant to your situation.
Arguing over how you should write code or what counts as “pythonic” is
rarely as productive as you think it is. (Unless you’re writing an entire book
full of programming opinions.)

Learning to Love Significant Indentation
The most common concern I hear about Python from programmers com-
ing from other languages is that Python’s significant indentation (often mis-
takenly called significant whitespace) is weird and unfamiliar. The amount of
indentation at the start of a line of code has meaning in Python, because it
determines which lines of code are in the same code block.

Grouping blocks of Python code using indentation can seem odd,
because other languages begin and end their blocks with braces, { and }.
But programmers in non-Python languages usually indent their blocks
too, just like Python programmers, to make their code more readable. For
example, the Java programming language doesn’t have significant inden-
tation. Java programmers don’t need to indent blocks of code, but they
often do anyway for readability. The following example has a Java function
named main() that contains a single call to a println() function:

// Java Example
public static void main(String[] args) {
 System.out.println("Hello, world!");
}

This Java code would run just fine if the println() line weren’t indented,
because the braces, rather than the indentation, are what mark the start
and end of blocks in Java. Instead of allowing indentation to be optional,
Python forces your code to be consistently readable. But note that Python
doesn’t have significant whitespace, because Python doesn’t restrict how you
can use nonindentation whitespace (both 2 + 2 and 2+2 are valid Python
expressions).

92 Chapter 6

Some programmers argue that the opening brace should be on the
same line as the opening statement, while others argue it should be on the
following line. Programmers will argue the merits of their preferred style
until the end of time. Python neatly sidesteps this issue by not using braces
at all, letting Pythonistas get back to more productive work. I’ve come to
wish that all programming languages would adopt Python’s approach to
grouping blocks of code.

But some people still long for braces and want to add them to a future
version of Python—despite how unpythonic they are. Python’s __future__
module backports features to earlier Python versions, and you’ll find a hid-
den Easter egg if you try to import a braces feature into Python:

>>> from __future__ import braces
SyntaxError: not a chance

I wouldn’t count on braces being added to Python any time soon.

Commonly Misused Syntax
If Python isn’t your first programming language, you might write your
Python code with the same strategies you use to write code in other pro-
gramming languages. Or perhaps you learned an unusual way of writing
your Python code because you were unaware that there are more estab-
lished best practices. This awkward code works, but you could save some
time and effort by learning more standard approaches to writing pythonic
code. This section explains common missteps programmers make and how
you should write the code instead.

Use enumerate() Instead of range()
When looping over a list or other sequence, some programmers use the
range() and len() functions to generate the index integers from 0 up to, but
not including, the length of the sequence. It’s common to use the variable
name i (for index) in these for loops. For example, enter the following unpy-
thonic example into the interactive shell:

>>> animals = ['cat', 'dog', 'moose']
>>> for i in range(len(animals)):
... print(i, animals[i])
...
0 cat
1 dog
2 moose

The range(len()) convention is straightforward but less than ideal because
it can be difficult to read. Instead, pass the list or sequence to the built-in
enumerate() function, which will return an integer for the index and the item
at that index. For example, you can write the following pythonic code.

Writing Pythonic Code 93

>>> # Pythonic Example
>>> animals = ['cat', 'dog', 'moose']
>>> for i, animal in enumerate(animals):
... print(i, animal)
...
0 cat
1 dog
2 moose

The code you write will be slightly cleaner using enumerate() instead of
range(len()). If you need only the items but not the indexes, you can still
directly iterate over the list in a pythonic way:

>>> # Pythonic Example
>>> animals = ['cat', 'dog', 'moose']
>>> for animal in animals:
... print(animal)
...
cat
dog
moose

Calling enumerate() and iterating over a sequence directly are preferable
to using the old-fashioned range(len()) convention.

Use the with Statement Instead of open() and close()
The open() function will return a file object that contains methods for reading
or writing a file. When you’re done, the file object’s close() method makes the
file available to other programs for reading and writing. You can use these
functions individually. But doing so is unpythonic. For example, enter the
following into the interactive shell to write the text “Hello, world!” to a file
named spam.txt:

>>> # Unpythonic Example
>>> fileObj = open('spam.txt', 'w')
>>> fileObj.write('Hello, world!')
13
>>> fileObj.close()

Writing code this way can lead to unclosed files if, say, an error occurs
in a try block and the program skips the call to close(). For example:

>>> # Unpythonic Example
>>> try:
... fileObj = open('spam.txt', 'w')
... eggs = 42 / 0 # A zero divide error happens here.

94 Chapter 6

... fileObj.close() # This line never runs.

... except:

... print('Some error occurred.')

...
Some error occurred.

Upon reaching the zero divide error, the execution moves to the except
block, skipping the close() call and leaving the file open. This can lead to
file corruption bugs later that are hard to trace back to the try block.

Instead, you can use the with statement to automatically call close()
when the execution leaves the with statement’s block. The following pythonic
example does the same task as the first example in this section:

>>> # Pythonic Example
>>> with open('spam.txt', 'w') as fileObj:
... fileObj.write('Hello, world!')
...

Even though there’s no explicit call to close(), the with statement will
know to call it when the execution leaves the block. .

Use is to Compare with None Instead of ==
The == equality operator compares two object’s values, whereas the is iden-
tity operator compares two object’s identities. Chapter 7 covers value and
identity. Two objects can store equivalent values, but being two separate
objects means they have separate identities. However, whenever you com-
pare a value to None, you should almost always use the is operator rather
than the == operator.

In some cases, the expression spam == None could evaluate to True even
when spam merely contains None. This can happen due to overloading the
== operator, which Chapter 17 covers in more detail. But spam is None will
check whether the value in the spam variable is literally None. Because None is
the only value of the NoneType data type, there is only one None object in
any Python program. If a variable is set to None, the is None comparison will
always evaluate to True. Chapter 17 describes the specifics of overloading the
== operator, but the following is an example of this behavior:

>>> class SomeClass:
... def __eq__(self, other):
... if other is None:
... return True
...
>>> spam = SomeClass()
>>> spam == None
True
>>> spam is None
False

Writing Pythonic Code 95

The possibility that a class overloads the == operator this way is rare,
but it’s become idiomatic Python to always use is None instead of == None
just in case.

Finally, you shouldn’t use the is operator with the values True and False.
You can use the == equality operator to compare a value with True or False,
such as spam == True or spam == False. Even more common is to leave out the
operator and Boolean value altogether, writing code like if spam: or if not
spam: instead of if spam == True: or if spam == False:.

Formatting Strings
Strings appear in almost every computer program, no matter the language.
This data type is common, so it’s no surprise there are many approaches to
manipulating and formatting strings. This section highlights a couple of
best practices.

Use Raw Strings If Your String Has Many Backslashes
Escape characters allow you to insert text into string literals that would other
wise be impossible to include. For example, you need the \ in 'Zophie\'s
chair' so Python interprets the second quote as part of the string, not the
symbol marking the end of the string. Because the backslash has this spe-
cial escape meaning, if you want to put an actual backslash character in
your string, you must enter it as \\.

Raw strings are string literals that have an r prefix, and they don’t treat
the backslash characters as escape characters. Instead, they just put the
backslashes into the string. For example, this string of a Windows file path
requires several escaped backslashes, which isn’t very pythonic:

>>> # Unpythonic Example
>>> print('The file is in C:\\Users\\Al\\Desktop\\Info\\Archive\\Spam')
The file is in C:\Users\Al\Desktop\Info\Archive\Spam

This raw string (notice the r prefix) produces the same string value
while being more readable:

>>> # Pythonic Example
>>> print(r'The file is in C:\Users\Al\Desktop\Info\Archive\Spam')
The file is in C:\Users\Al\Desktop\Info\Archive\Spam

Raw strings aren’t a different kind of string data type; they’re just a
convenient way to type string literals that contain several backslash charac-
ters. We often use raw strings to type the strings for regular expressions or
Windows file paths, which often have several backslash characters in them
that would be a pain to escape individually with \\.

96 Chapter 6

Format Strings with F-Strings
String formatting, or string interpolation, is the process of creating strings that
include other strings and has had a long history in Python. Originally, the +
operator could concatenate strings together, but this resulted in code with
many quotes and pluses: 'Hello, ' + name + '. Today is ' + day + ' and it is
' + weather + '.'. The %s conversion specifier made the syntax a bit easier:
'Hello, %s. Today is %s and it is %s.' % (name, day, weather). Both tech-
niques will insert the strings in the name, day, and weather variables into the
string literals to evaluate to a new string value, like this: 'Hello, Al. Today is
Sunday and it is sunny.'.

The format() string method adds the Format Specification Mini-Language
(https://docs.python.org/3/library/string.html#formatspec), which involves using
{} brace pairs in a way similar to the %s conversion specifier. However, the
method is somewhat convoluted and can produce unreadable code, so I dis-
courage its use.

But as of Python 3.6, f-strings (short for format strings) offer a more con-
venient way to create strings that include other strings. Just like how raw
strings are prefixed with an r before the first quote, f-strings are prefixed
with an f. You can include variable names in between braces in the f-string
to insert the strings stored in those variables:

>>> name, day, weather = 'Al', 'Sunday', 'sunny'
>>> f'Hello, {name}. Today is {day} and it is {weather}.'
'Hello, Al. Today is Sunday and it is sunny.'

The braces can contain entire expressions as well:

>>> width, length = 10, 12
>>> f'A {width} by {length} room has an area of {width * length}.'
'A 10 by 12 room has an area of 120.'

If you need to use a literal brace inside an f-string, you can escape it
with an additional brace:

>>> spam = 42
>>> f'This prints the value in spam: {spam}'
'This prints the value in spam: 42'
>>> f'This prints literal curly braces: {{spam}}'
'This prints literal curly braces: {spam}'

Because you can put variable names and expressions inline inside the
string, your code becomes more readable than using the old ways of string
formatting.

All of these different ways to format strings go against the Zen of Python
aphorism that there should be one—and preferably only one—obvious way
to do something. But f-strings are an improvement to the language (in my

https://docs.python.org/3/library/string.html#formatspec

Writing Pythonic Code 97

opinion), and as the other guideline states, practicality beats purity. If you’re
writing code for Python 3.6 or later only, use f-strings. If you’re writing code
that might be run by earlier Python versions, stick to the format() string
method or %s conversion specifiers.

Making Shallow Copies of Lists
The slice syntax can easily create new strings or lists from existing ones.
Enter the following into the interactive shell to see how it works:

>>> 'Hello, world!'[7:12] # Create a string from a larger string.
'world'
>>> 'Hello, world!'[:5] # Create a string from a larger string.
'Hello'
>>> ['cat', 'dog', 'rat', 'eel'][2:] # Create a list from a larger list.
['rat', 'eel']

The colon (:) separates the starting and ending indexes of the items to
put in the new list you’re creating. If you omit the starting index before the
colon, as in 'Hello, world!'[:5], the starting index defaults to 0. If you omit
the ending index after the colon, as in ['cat', 'dog', 'rat', 'eel'][2:], the
ending index defaults to the end of the list.

If you omit both indexes, the starting index is 0 (the start of the list)
and the ending index is the end of the list. This effectively creates a copy of
the list:

>>> spam = ['cat', 'dog', 'rat', 'eel']
>>> eggs = spam[:]
>>> eggs
['cat', 'dog', 'rat', 'eel']
>>> id(spam) == id(eggs)
False

Notice that the identities of the lists in spam and eggs are different. The
eggs = spam[:] line creates a shallow copy of the list in spam, whereas eggs =
spam would copy only the reference to the list. But the [:] does look a bit
odd, and using the copy module’s copy() function to produce a shallow copy
of the list is more readable:

>>> # Pythonic Example
>>> import copy
>>> spam = ['cat', 'dog', 'rat', 'eel']
>>> eggs = copy.copy(spam)
>>> id(spam) == id(eggs)
False

98 Chapter 6

You should know about this odd syntax in case you come across Python
code that uses it, but I don’t recommend writing it in your own code. Keep
in mind that both [:] and copy.copy() create shallow copies.

Pythonic Ways to Use Dictionaries
Dictionaries are at the core of many Python programs because of the flex-
ibility that key-value pairs (discussed further in Chapter 7) provide by map-
ping one piece of data to another. Therefore, it’s useful to learn about some
of the dictionary idioms Python code commonly uses.

For further information about dictionaries, consult Python program-
mer Brandon Rhodes’s incredible talks about dictionaries and how they
work: “The Mighty Dictionary” at PyCon 2010, viewable at https://invpy.com/
mightydictionary, and “The Dictionary Even Mightier” at PyCon 2017, view-
able at https://invpy.com/dictionaryevenmightier.

Use get() and setdefault() with Dictionaries
Trying to access a dictionary key that doesn’t exist will result in a KeyError
error, so programmers will often write unpythonic code to avoid the situa-
tion, like this:

>>> # Unpythonic Example
>>> numberOfPets = {'dogs': 2}
>>> if 'cats' in numberOfPets: # Check if 'cats' exists as a key.
... print('I have', numberOfPets['cats'], 'cats.')
... else:
... print('I have 0 cats.')
...
I have 0 cats.

This code checks whether the string 'cats' exists as a key in the
numberOfPets dictionary. If it does, a print() call accesses numberOfPets['cats']
as part of a message for the user. If it doesn’t, another print() call prints a
string without accessing numberOfPets['cats'] so it doesn’t raise a KeyError.

This pattern happens so often that dictionaries have a get() method
that allows you to specify a default value to return when a key doesn’t exist
in the dictionary. The following pythonic code is equivalent to the previous
example:

>>> # Pythonic Example
>>> numberOfPets = {'dogs': 2}
>>> print('I have', numberOfPets.get('cats', 0), 'cats.')
I have 0 cats.

The numberOfPets.get('cats', 0) call checks whether the key 'cats' exists
in the numberOfPets dictionary. If it does, the method call returns the value
for the 'cats' key. If it doesn’t, it returns the second argument, 0, instead.

https://invpy.com/mightydictionary
https://invpy.com/mightydictionary
https://invpy.com/dictionaryevenmightier

Writing Pythonic Code 99

Using the get() method to specify a default value to use for nonexistent keys
is shorter and more readable than using if-else statements.

Conversely, you might want to set a default value if a key doesn’t exist.
For example, if the dictionary in numberOfPets doesn’t have a 'cats' key, the
instruction numberOfPets['cats'] += 10 would result in a KeyError error. You
might want to add code that checks for the key’s absence and sets a default
value:

>>> # Unpythonic Example
>>> numberOfPets = {'dogs': 2}
>>> if 'cats' not in numberOfPets:
... numberOfPets['cats'] = 0
...
>>> numberOfPets['cats'] += 10
>>> numberOfPets['cats']
10

But because this pattern is also common, dictionaries have a more
pythonic setdefault() method. The following code is equivalent to the previ-
ous example:

>>> # Pythonic Example
>>> numberOfPets = {'dogs': 2}
>>> numberOfPets.setdefault('cats', 0) # Does nothing if 'cats' exists.
0
>>> numberOfPets['cats'] += 10
>>> numberOfPets['cats']
10

If you’re writing if statements that check whether a key exists in a
dictionary and sets a default value if the key is absent, use the setdefault()
method instead.

Use collections.defaultdict for Default Values
You can use the collections.defaultdict class to eliminate KeyError errors
entirely. This class lets you create a default dictionary by importing the
collections module and calling collections.defaultdict(), passing it a data
type to use for a default value. For example, by passing int to collections
.defaultdict(), you can make a dictionary-like object that uses 0 for a default
value of nonexistent keys. Enter the following into the interactive shell:

>>> import collections
>>> scores = collections.defaultdict(int)
>>> scores
defaultdict(<class 'int'>, {})
>>> scores['Al'] += 1 # No need to set a value for the 'Al' key first.
>>> scores
defaultdict(<class 'int'>, {'Al': 1})
>>> scores['Zophie'] # No need to set a value for the 'Zophie' key first.

100 Chapter 6

0
>>> scores['Zophie'] += 40
>>> scores
defaultdict(<class 'int'>, {'Al': 1, 'Zophie': 40})

Note that you’re passing the int() function, not calling it, so you omit
the parentheses after int in collections.defaultdict(int). You can also pass
list to use an empty list as the default value. Enter the following into the
interactive shell:

>>> import collections
>>> booksReadBy = collections.defaultdict(list)
>>> booksReadBy['Al'].append('Oryx and Crake')
>>> booksReadBy['Al'].append('American Gods')
>>> len(booksReadBy['Al'])
2
>>> len(booksReadBy['Zophie']) # The default value is an empty list.
0

If you need a default value for every possible key, it’s much easier to use
collections.defaultdict() than use a regular dictionary and constantly call
the setdefault() method.

Use Dictionaries Instead of a switch Statement
Languages such as Java have a switch statement, which is a kind of if-elif-
else statement that runs code based on which one of many values a specific
variable contains. Python doesn’t have a switch statement, so Python pro-
grammers sometimes write code like the following example, which runs
a different assignment statement based on which one of many values the
season variable contains:

All of the following if and elif conditions have "season ==":
if season == 'Winter':
 holiday = 'New Year\'s Day'
elif season == 'Spring':
 holiday = 'May Day'
elif season == 'Summer':
 holiday = 'Juneteenth'
elif season == 'Fall':
 holiday = 'Halloween'
else:
 holiday = 'Personal day off'

This code isn’t necessarily unpythonic, but it’s a bit verbose. By default,
Java switch statements have “fall-through” that requires each block to end
with a break statement. Otherwise, the execution continues on to the next
block. Forgetting to add this break statement is a common source of bugs.
But all the if-elif statements in our Python example can be repetitive.

Writing Pythonic Code 101

Some Python programmers prefer to set up a dictionary value instead of
using if-elif statements. The following concise and pythonic code is equiv-
alent to the previous example:

holiday = {'Winter': 'New Year\'s Day',
 'Spring': 'May Day',
 'Summer': 'Juneteenth',
 'Fall': 'Halloween'}.get(season, 'Personal day off')

This code is just a single assignment statement. The value stored in holiday
is the return value of the get() method call, which returns the value for the key
that season is set to. If the season key doesn’t exist, get() returns 'Personal day
off'. Using a dictionary will result in more concise code, but it can also make
your code harder to read. It’s up to you whether or not to use this convention.

Conditional Expressions: Python’s “Ugly” Ternary Operator
Ternary operators (officially called conditional expressions, or sometimes ternary
selection expressions, in Python) evaluate an expression to one of two values
based on a condition. Normally, you would do this with a pythonic if-else
statement:

>>> # Pythonic Example
>>> condition = True
>>> if condition:
... message = 'Access granted'
... else:
... message = 'Access denied'
...
>>> message
'Access granted'

Ternary simply means an operator with three inputs, but in program-
ming it’s synonymous with conditional expression. Conditional expressions
also offer a more concise one-liner for code that fits this pattern. In Python,
they’re implemented with an odd arrangement of the if and else keywords:

>>> valueIfTrue = 'Access granted'
>>> valueIfFalse = 'Access denied'
>>> condition = True

1 >>> message = valueIfTrue if condition else valueIfFalse
>>> message
'Access granted'

2 >>> print(valueIfTrue if condition else valueIfFalse)
'Access granted'
>>> condition = False
>>> message = valueIfTrue if condition else valueIfFalse
>>> message
'Access denied'

102 Chapter 6

The expression valueIfTrue if condition else valueIfFalse 1 evaluates
to valueIfTrue if the condition variable is True. When the condition variable is
False, the expression evaluates to valueIfFalse. Guido van Rossum jokingly
described his syntax design as “intentionally ugly.” Most languages with a
ternary operator list the condition first, followed by the true value and then
the false value. You can use a conditional expression anywhere you can use
an expression or value, including as the argument to a function call 2.

Why would Python introduce this syntax in Python 2.5 even though it
breaks the first guideline that beautiful is better than ugly? Unfortunately,
despite being somewhat unreadable, many programmers use ternary opera-
tors and wanted Python to support this syntax. It’s possible to abuse Boolean
operator short-circuiting to create a sort of ternary operator. The expres-
sion condition and valueIfTrue or valueIfFalse will evaluate to valueIfTrue if
condition is True, and valueIfFalse if condition is False (except in one impor-
tant case). Enter the following into the interactive shell:

>>> # Unpythonic Example
>>> valueIfTrue = 'Access granted'
>>> valueIfFalse = 'Access denied'
>>> condition = True
>>> condition and valueIfTrue or valueIfFalse
'Access granted'

This condition and valueIfTrue or valueIfFalse style of pseudo-ternary
operator has a subtle bug: if valueIfTrue is a falsey value (such as 0, False, None,
or the blank string), the expression unexpectedly evaluates to valueIfFalse if
condition is True.

But programmers continued to use this fake ternary operator anyway,
and “Why doesn’t Python have a ternary operator?” became a perennial
question to the Python core developers. Conditional expressions were cre-
ated so programmers would stop asking for a ternary operator and wouldn’t
use the bug-prone pseudo-ternary operator. But conditional expressions are
also ugly enough to discourage programmers from using them. Although
beautiful may be better than ugly, Python’s “ugly” ternary operator is an
example of a case when practicality beats purity.

Conditional expressions aren’t exactly pythonic, but they’re not
unpythonic, either. If you do use them, avoid nesting conditional expres-
sions inside other conditional expressions:

>>> # Unpythonic Example
>>> age = 30
>>> ageRange = 'child' if age < 13 else 'teenager' if age >= 13 and age < 18
else 'adult'
>>> ageRange
'adult'

Nested conditional expressions are a good example of how a dense
one-liner can be technically correct but frustrating to make sense of
when reading.

Writing Pythonic Code 103

Working with Variable Values
You’ll often need to check and modify the values that variables store.
Python has several ways of doing this. Let’s look at a couple of examples.

Chaining Assignment and Comparison Operators
When you have to check whether a number is within a certain range, you
might use the Boolean and operator like this:

Unpythonic Example
if 42 < spam and spam < 99:

But Python lets you chain comparison operators so you don’t need
to use the and operator. The following code is equivalent to the previous
example:

Pythonic Example
if 42 < spam < 99:

The same applies to chaining the = assignment operator. You can set
multiple variables to the same value in a single line of code:

>>> # Pythonic Example
>>> spam = eggs = bacon = 'string'
>>> print(spam, eggs, bacon)
string string string

To check whether all three of these variables are the same, you can
use the and operator, or more simply, chain the == comparison operator for
equality.

>>> # Pythonic Example
>>> spam = eggs = bacon = 'string'
>>> spam == eggs == bacon == 'string'
True

Chaining operators is a small but useful shortcut in Python. However,
if you use them incorrectly, they can cause problems. Chapter 8 demon-
strates some instances where using them can introduce unexpected bugs
in your code.

Checking Whether a Variable Is One of Many Values
You might sometimes encounter the inverse of the situation described in
the preceding section: checking whether a single variable is one of mul-
tiple possible values. You could do this using the or operator, such as in the
expression spam == 'cat' or spam == 'dog' or spam == 'moose'. All of those
redundant “spam ==” parts make this expression a bit unwieldy.

104 Chapter 6

Instead, you can put the multiple values into a tuple and check for
whether a variable’s value exists in that tuple using the in operator, as in the
following example:

>>> # Pythonic Example
>>> spam = 'cat'
>>> spam in ('cat', 'dog', 'moose')
True

Not only is this idiom easier to understand, it’s also slightly faster,
according to timeit.

Summary
All programming languages have their own idioms and best practices. This
chapter focuses on the particular ways that Python programmers have come
to write “pythonic” code to make the best use of Python’s syntax.

At the core of pythonic code are the 20 aphorisms from the Zen of
Python, which are rough guidelines for writing Python. These aphorisms are
opinions and not strictly necessary for writing Python code, but they are good
to keep in mind.

Python’s significant indentation (not to be confused with significant
whitespace) provokes the most protest from new Python programmers.
Although almost all programming languages commonly use indentation to
make code readable, Python requires it in place of the more typical braces
that other languages use.

Although many Python programmers use the range(len()) convention
for for loops, the enumerate() function offers a cleaner approach to getting
the index and value while iterating over a sequence. Similarly, the with state-
ment is a cleaner and less bug-prone way to handle files compared to calling
open() and close() manually. The with statement ensures that close() gets
called whenever the execution moves outside the with statement’s block.

Python has had several ways to interpolate strings. The original way was
to use the %s conversion specifier to mark where strings should be included
in the original string. The modern way as of Python 3.6 is to use f-strings.
F-strings prefix the string literal with the letter f and use braces to mark
where you can place strings (or entire expressions) inside the string.

The [:] syntax for making shallow copies of lists is a bit odd-looking
and not necessarily pythonic, but it’s become a common way to quickly cre-
ate a shallow list.

Dictionaries have a get() and setdefault() method for dealing with
nonexistent keys. Alternatively, a collections.defaultdict dictionary will
use a default value for nonexistent keys. Also, although there is no switch

Writing Pythonic Code 105

statement in Python, using a dictionary is a terse way to implement its
equivalent without using several if-elif-else statements, and you can use
ternary operators when evaluating between two values.

A chain of == operators can check whether multiple variables are equal
to each other, whereas the in operator can check whether a variable is one
of many possible values.

This chapter covered several Python language idioms, providing you
with hints for how to write more pythonic code. In the next chapter, you’ll
learn about some of the Python gotchas and pitfalls that beginners fall into.

In the XKCD comic “Up Goer Five”
(https://xkcd.com/1133/), the webcomic’s

artist Randall Munroe created a technical
schematic for the Saturn V rocket using only

the 1,000 most common English words. The comic
breaks down all the technical jargon into sentences a
young child could understand. But it also highlights
why we can’t explain everything using simple terms:
The explanation “Thing to help people escape really
fast if there’s a problem and everything is on fire so they decide not to go
to space” might be easier to understand for a lay audience than “Launch
Escape System.” But it’s too verbose for NASA engineers to say in their day-
to-day work. Even then, they’d probably rather use the acronym LES.

7
P R O G R A M M I N G J A R G O N

https://xkcd.com/1133/

108 Chapter 7

Although computer jargon can be confusing and intimidating for
new programmers, it’s a necessary shorthand. Several terms in Python
and software development have subtle differences in meaning, and even
experienced developers sometimes carelessly use them interchangeably.
The technical definitions for these terms can vary between programming
languages, but this chapter covers the terms as they relate to Python. You’ll
get a broad, albeit not deep, understanding of the programming language
concepts behind them.

This chapter assumes you aren’t yet familiar with classes and object-
oriented programming (OOP). I’ve limited the explanations for classes
and other OOP jargon here, but the jargon is explained in more detail in
Chapters 15 to 17.

Definitions
As the number of programmers in a room approaches two, the likelihood
of an argument about semantics approaches 100 percent. Language is fluid
and humans are the masters of words rather than the other way around.
Some developers might use terms slightly differently, but becoming familiar
with these terms is still useful. This chapter explores these terms and how
they compare with each other. If you need a glossary of terms in alphabetical
order, you can rely on the official Python glossary at https://docs.python.org/3/
glossary.html to provide canonical definitions.

No doubt, some programmers will read the definitions in this chapter
and bring up special cases or exceptions that can be endlessly nitpicked.
Rather than being a definitive guide, this chapter is intended to give you
accessible definitions, even if they’re not comprehensive. As with everything
in programming, there’s always more to learn.

Python the Language and Python the Interpreter
The word python can have multiple meanings. The Python programming
language gets its name from the British comedy group Monty Python, rather
than the snake (although Python tutorials and documentation use both
Monty Python and snake references). Similarly, Python can have two meanings
in regard to computer programming.

When we say, “Python runs a program” or “Python will raise an excep-
tion,” we’re talking about the Python interpreter—the actual software that
reads the text of a .py file and carries out its instructions. When we say,
“the Python interpreter,” we’re almost always talking about CPython, the
Python interpreter maintained by the Python Software Foundation, avail-
able at https://www.python.org. CPython is an implementation of the Python
language—that is, software created to follow a specification—but there
are others. Although CPython is written in the C programming language,
Jython is written in Java for running Python scripts that are interoperable
with Java programs. PyPy, a just-in-time compiler for Python that compiles as
programs execute, is written in Python.

https://docs.python.org/3/glossary.html
https://docs.python.org/3/glossary.html
https://www.python.org

Programming Jargon 109

All of these implementations run source code written in the Python pro-
gramming language, which is what we mean when we say, “This is a Python
program” or “I’m learning Python.” Ideally, any Python interpreter can run
any source code written in the Python language; however, in the real world
there’ll be some slight incompatibilities and differences between interpret-
ers. CPython is called the Python language’s reference implementation because
if there’s a difference between how CPython and another interpreter inter-
pret Python code, CPython’s behavior is considered canonical and correct.

Garbage Collection
In many early programming languages, a programmer had to instruct the
program to allocate and then deallocate, or free, memory for data struc-
tures as needed. Manual memory allocation was the source of numerous
bugs, such as memory leaks (where programmers forgot to free memory) or
double-free bugs (where programmers freed the same memory twice, leading
to data corruption).

To avoid these bugs, Python has garbage collection, a form of automatic
memory management that tracks when to allocate and free memory so
the programmer doesn’t have to. You can think of garbage collection as
memory recycling, because it makes memory available for new data. For
example, enter the following into the interactive shell:

>>> def someFunction():
... print('someFunction() called.')
... spam = ['cat', 'dog', 'moose']
...
>>> someFunction()
someFunction() called.

When someFunction() is called, Python allocates memory for the list
['cat', 'dog', 'moose']. The programmer doesn’t need to figure out how
many bytes of memory to request because Python manages this automati-
cally. Python’s garbage collector will free the local variables when the func-
tion call returns to make that memory available for other data. Garbage
collection makes programming much easier and less bug-prone.

Literals
A literal is text in the source code for a fixed, typed-out value. In the follow-
ing code example

>>> age = 42 + len('Zophie')

the 42 and 'Zophie' text are integer and string literals. Think of a literal as a
value that literally appears in source code text. Only the built-in data types
can have literal values in Python source code, so the variable age isn’t a lit-
eral value. Table 7-1 lists some example Python literals.

110 Chapter 7

Table 7-1: Examples of Literals in Python

Literal Data type

42 Integer

3.14 Float

1.4886191506362924e+36 Float

"""Howdy!""" String

r'Green\Blue' String

[] List

{'name': 'Zophie'} Dictionary

b'\x41' Bytes

True Boolean

None NoneType

Nitpickers will argue that some of my choices aren’t literals based on
the official Python language documentation. Technically, -5 isn’t a literal in
Python because the language defines the negative symbol (-) as an opera-
tor that operates on the 5 literal. In addition, True, False, and None are con-
sidered Python keywords rather than literals, whereas [] and {} are called
displays or atoms depending on what part of the official documentation
you’re looking at. Regardless, literal is a common term that software profes-
sionals will use for all of these examples.

Keywords
Every programming language has its own keywords. The Python keywords
are a set of names reserved for use as part of the language and cannot be
used as variable names (that is, as identifiers). For example, you cannot
have a variable named while because while is a keyword reserved for use in
while loops. The following are the Python keywords as of Python 3.9.

and continue finally is raise

as def for lambda return

assert del from None True

async elif global nonlocal try

await else if not while

break except import or with

class False in pass yield

Note that the Python keywords are always in English and aren’t available
in alternative languages. For example, the following function has identifiers
written in Spanish, but the def and return keywords remain in English.

Programming Jargon 111

def agregarDosNúmeros(primerNúmero, segundoNúmero):
 return primerNúmero + segundoNúmero

Unfortunately for the 6.5 billion people who don’t speak it, English
dominates the programming field.

Objects, Values, Instances, and Identities
An object is a representation of a piece of data, such as a number, some text, or
a more complicated data structure, such as a list or dictionary. All objects can
be stored in variables, passed as arguments to function calls, and returned
from function calls.

All objects have a value, identity, and data type. The value is the data
the object represents, such as the integer 42 or the string 'hello'. Although
somewhat confusing, some programmers use the term value as a synonym for
object, especially for simple data types like integers or strings. For example, a
variable that contains 42 is a variable that contains an integer value, but we
can also say it’s a variable that contains an integer object with a value of 42.

An object is created with an identity that is a unique integer you can
view by calling the id() function. For example, enter the following code into
the interactive shell:

>>> spam = ['cat', 'dog', 'moose']
>>> id(spam)
33805656

The variable spam stores an object of the list data type. Its value is ['cat',
'dog', 'moose']. Its identity is 33805656, although the integer ID varies each
time a program runs so you’ll likely get a different ID on your computer.
Once created, an object’s identity won’t change for as long as the program
runs. Although the data type and the object’s identity will never change, an
object’s value can change, as we’ll see in this example:

>>> spam.append('snake')
>>> spam
['cat', 'dog', 'moose', 'snake']
>>> id(spam)
33805656

Now the list also contains 'snake'. But as you can see from the id(spam)
call, its identity hasn’t changed and it’s still the same list. But let’s see what
happens when you enter this code:

>>> spam = [1, 2, 3]
>>> id(spam)
33838544

112 Chapter 7

The value in spam has been overwritten by a new list object with a new
identity: 33838544 instead of 33805656. An identifier like spam isn’t the same
as an identity because multiple identifiers can refer to the same object, as
is the case in this example of two variables that are assigned to the same
dictionary:

>>> spam = {'name': 'Zophie'}
>>> id(spam)
33861824
>>> eggs = spam
>>> id(eggs)
33861824

The identities of the spam and eggs identifiers are both 33861824 because
they refer to the same dictionary object. Now change the value of spam in
the interactive shell:

>>> spam = {'name': 'Zophie'}
>>> eggs = spam

1 >>> spam['name'] = 'Al'
>>> spam
{'name': 'Al'}
>>> eggs

2 {'name': 'Al'}

You’ll see that changes to spam 1 mysteriously also appear in eggs 2.
The reason is that they both refer to the same object.

VA R I A BL E ME TA PHORS: BOX V S. L A BE L

Many introductory books use boxes as a metaphor for variables, which is an
oversimplification. It’s easy to think of variables as a box that a value is stored
in, as in Figure 7-1, but this metaphor falls apart when it comes to references.
The previous spam and eggs variables don’t store separate dictionaries; rather,
they store references to the same dictionary in the computer’s memory.

Figure 7-1: Many books say you can think of a variable as a box that contains a value.

Programming Jargon 113

In Python, all variables are technically references, not containers of values,
regardless of their data type. The box metaphor is simple but also flawed.
Instead of thinking of variables as boxes, you can think of variables as labels
for objects in memory. Figure 7-2 shows labels on the previous spam and eggs
examples.

Figure 7-2: Variables can also be thought of as labels on values.

Because multiple variables can refer to the same object, that object can
be “stored” in multiple variables. Multiple boxes can’t store the same object, so
it might be easier for you to use the label metaphor instead. Ned Batchelder’s
PyCon 2015 talk, “Facts and Myths about Python Names and Values” has more
information on this topic at https://youtu.be/_AEJHKGk9ns.

Without understanding that the = assignment operator always copies
the reference, not the object, you might introduce bugs by thinking that
you’re making a duplicate copy of an object when really you’re copying the
reference to the original object. Fortunately, this isn’t an issue for immu-
table values like integers, strings, and tuples for reasons that I’ll explain in
“Mutable and Immutable” on page 114.

You can use the is operator to compare whether two objects have the
same identity. In contrast, the == operator checks only whether object values
are the same. You can consider x is y to be shorthand for id(x) == id(y).
Enter the following into the interactive shell to see the difference:

>>> spam = {'name': 'Zophie'}
1 >>> eggs = spam

>>> spam is eggs
True
>>> spam == eggs
True

2 >>> bacon = {'name': 'Zophie'}
>>> spam == bacon
True
>>> spam is bacon
False

https://youtu.be/_AEJHKGk9ns

114 Chapter 7

The variables spam and eggs refer to the same dictionary object 1, so
their identities and values are the same. But bacon refers to a separate dic-
tionary object 2, even though it contains data identical to spam and eggs.
The identical data means bacon has the same value as spam and eggs, but
they’re two different objects with two different identities.

Items
In Python, an object that is inside a container object, like a list or diction-
ary, is also called an item or an element. For example, the strings in the list
['dog', 'cat', 'moose'] are objects but are also called items.

Mutable and Immutable
As noted earlier, all objects in Python have a value, data type, and identity,
and of these only the value can change. If you can change the object’s
value, it’s a mutable object. If you can’t change its value, it’s an immutable
object. Table 7-2 lists some mutable and immutable data types in Python.

Table 7-2: Some of Python’s Mutable and Immutable Data Types

Mutable data types Immutable data types

List Integer

Dictionaries Floating-point number

Sets Boolean

Bytearray String

Array Frozen set

Bytes

Tuple

When you overwrite a variable, it might look like you’re changing the
object’s value, as in this interactive shell example:

>>> spam = 'hello'
>>> spam
'hello'
>>> spam = 'goodbye'
>>> spam
'goodbye'

But in this code, you haven’t changed the 'hello' object’s value from
'hello' to 'goodbye'. They’re two separate objects. You’ve only switched spam
from referring to the 'hello' object to the 'goodbye' object. You can check
whether this is true by using the id() function to show the two objects’
identities:

>>> spam = 'hello'
>>> id(spam)

Programming Jargon 115

40718944
>>> spam = 'goodbye'
>>> id(spam)
40719224

These two string objects have different identities (40718944 and
40719224) because they’re different objects. But variables that refer to
mutable objects can have their values modified in-place. For example, enter
the following into the interactive shell:

>>> spam = ['cat', 'dog']
>>> id(spam)
33805576

1 >>> spam.append('moose')
2 >>> spam[0] = 'snake'

>>> spam
['snake', 'dog', 'moose']
>>> id(spam)
33805576

The append() method 1 and item assignment by indexing 2 both mod-
ify the value of the list in-place. Even though the list’s value has changed, its
identity remains the same (33805576). But when you concatenate a list using
the + operator, you create a new object (with a new identity) that overwrites
the old list:

>>> spam = spam + ['rat']
>>> spam
['snake', 'dog', 'moose', 'rat']
>>> id(spam)
33840064

List concatenation creates a new list with a new identity. When this hap-
pens, the old list will eventually be freed from memory by the garbage collec-
tor. You’ll have to consult the Python documentation to see which methods
and operations modify objects in-place and which overwrite objects. A good
rule to keep in mind is that if you see a literal in the source code, such as
['rat'] in the previous example, Python will most likely create a new object.
A method that is called on the object, such as append(), often modifies the
object in-place.

Assignment is simpler for objects of immutable data types like integers,
strings, or tuples. For example, enter the following into the interactive shell:

>>> bacon = 'Goodbye'
>>> id(bacon)
33827584

1 >>> bacon = 'Hello'
>>> id(bacon)
33863820

2 >>> bacon = bacon + ', world!'
>>> bacon
'Hello, world!'

116 Chapter 7

>>> id(bacon)
33870056

3 >>> bacon[0] = 'J'
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: 'str' object does not support item assignment

Strings are immutable, so you cannot change their value. Although
it looks like the string’s value in bacon is being changed from 'Goodbye'
to 'Hello' 1, it’s actually being overwritten by a new string object with a
new identity. Similarly, an expression using string concatenation creates
a new string object 2 with a new identity. Attempting to modify the string
in-place with item assignment isn’t allowed in Python 3.

A tuple’s value is defined as the objects it contains and the order of
those objects. Tuples are immutable sequence objects that enclose values in
parentheses. This means that items in a tuple can’t be overwritten:

>>> eggs = ('cat', 'dog', [2, 4, 6])
>>> id(eggs)
39560896
>>> id(eggs[2])
40654152
>>> eggs[2] = eggs[2] + [8, 10]
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: 'tuple' object does not support item assignment

But a mutable list inside an immutable tuple can still be modified
in-place:

>>> eggs[2].append(8)
>>> eggs[2].append(10)
>>> eggs
('cat', 'dog', [2, 4, 6, 8, 10])
>>> id(eggs)
39560896
>>> id(eggs[2])
40654152

Although this is an obscure special case, it’s important to keep in mind.
The tuple still refers to the same objects, as depicted in Figure 7-3. But if a
tuple contains a mutable object and that object changes its value—that is, if
the object mutates—the value of the tuple also changes.

I, and almost every Pythonista, call tuples immutable. But whether some
tuples can be called mutable depends on your definition. I explore this topic
more in my PyCascades 2019 talk, “The Amazing Mutable, Immutable Tuple”
at https://invpy.com/amazingtuple/. You can also read Luciano Ramalho’s expla-
nation in Chapter 2 of Fluent Python. (O’Reilly Media, 2015)

https://invpy.com/amazingtuple/

Programming Jargon 117

Figure 7-3: Although the set of objects in a tuple is immutable, the objects can be
mutable.

Indexes, Keys, and Hashes
Python lists and dictionaries are values that can contain multiple other val-
ues. To access these values, you use an index operator, which is composed of a
pair of square brackets ([]) and an integer called an index to specify which
value you want to access. Enter the following into the interactive shell to see
how indexing works with lists:

>>> spam = ['cat', 'dog', 'moose']
>>> spam[0]
'cat'
>>> spam[-2]
'dog'

In this example, 0 is an index. The first index is 0, not 1, because Python
(as most languages do) uses zero-based indexing. Languages that use one-based
indexing are rare: Lua and R are the most predominant. Python also sup-
ports negative indexes, where -1 refers to the last item in a list, -2 refers to
the second-to-last item, and so on. You can think of a negative index spam[–n]
as being the same as spam[len(spam) – n].

N O T E 	 Computer scientist and singer-songwriter Stan Kelly-Bootle once joked, “Should array
indices start at 0 or 1? My compromise of 0.5 was rejected without, I thought, proper
consideration.”

You can also use the index operator on a list literal, although all those
square brackets can look confusing and unnecessary in real-world code:

>>> ['cat', 'dog', 'moose'][2]
'moose'

118 Chapter 7

Indexing can also be used for values other than lists, such as on a string
to obtain individual characters:

>>> 'Hello, world'[0]
'H'

Python dictionaries are organized into key-value pairs:

>>> spam = {'name': 'Zophie'}
>>> spam['name']
'Zophie'

Although list indexes are limited to integers, a Python dictionary’s
index operator is a key and can be any hashable object. A hash is an integer
that acts as a sort of fingerprint for a value. An object’s hash never changes
for the lifetime of the object, and objects with the same value must have
the same hash. The string 'name' in this instance is the key for the value
'Zophie'. The hash() function will return an object’s hash if the object is
hashable. Immutable objects, such as strings, integers, floats, and tuples,
can be hashable. Lists (as well as other mutable objects) aren’t hashable.
Enter the following into the interactive shell:

>>> hash('hello')
-1734230105925061914
>>> hash(42)
42
>>> hash(3.14)
322818021289917443
>>> hash((1, 2, 3))
2528502973977326415
>>> hash([1, 2, 3])
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: unhashable type: 'list'

Although the details are beyond the scope of this book, the key’s hash
is used to find items stored in a dictionary and set data structures. That’s
why you can’t use a mutable list for a dictionary’s keys:

>>> d = {}
>>> d[[1, 2, 3]] = 'some value'
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: unhashable type: 'list'

A hash is different from an identity. Two different objects with the same
value will have different identities but the same hash. For example, enter
the following into the interactive shell:

>>> a = ('cat', 'dog', 'moose')
>>> b = ('cat', 'dog', 'moose')
>>> id(a), id(b)

Programming Jargon 119

(37111992, 37112136)
1 >>> id(a) == id(b)

False
>>> hash(a), hash(b)
(-3478972040190420094, -3478972040190420094)

2 >>> hash(a) == hash(b)
True

The tuples referred to by a and b have different identities 1, but their
identical values mean they’ll have identical hashes 2. Note that a tuple is
hashable if it contains only hashable items. Because you can use only hash-
able items as keys in a dictionary, you can’t use a tuple that contains an
unhashable list as a key. Enter the following into the interactive shell:

>>> tuple1 = ('cat', 'dog')
>>> tuple2 = ('cat', ['apple', 'orange'])
>>> spam = {}

1 >>> spam[tuple1] = 'a value'
2 >>> spam[tuple2] = 'another value'

Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: unhashable type: 'list'

Notice that tuple1 is hashable 1, but tuple2 contains an unhashable
list 2 and so is also unhashable.

Containers, Sequences, Mapping, and Set Types
The words container, sequence, and mapping have meanings in Python that
don’t necessarily apply to other programming languages. In Python, a con-
tainer is an object of any data type that can contain multiple other objects.
Lists and dictionaries are common container types used in Python.

A sequence is an object of any container data type with ordered values
accessible through integer indexes. Strings, tuples, lists, and bytes objects
are sequence data types. Objects of these types can access values using inte-
ger indexes in the index operator (the [and] brackets) and can also be
passed to the len() function. By “ordered,” we mean that there is a first value,
second value, and so on in the sequence. For example, the following two list
values aren’t considered equal because their values are ordered differently:

>>> [1, 2, 3] == [3, 2, 1]
False

A mapping is an object of any container data type that uses keys instead of
an index. A mapping can be ordered or unordered. Dictionaries in Python 3.4
and earlier are unordered because there is no first or last key-value pair in a
dictionary:

>>> spam = {'a': 1, 'b': 2, 'c': 3, 'd': 4} # This is run from CPython 3.5.
>>> list(spam.keys())
['a', 'c', 'd', 'b']
>>> spam['e'] = 5

120 Chapter 7

>>> list(spam.keys())
['e', 'a', 'c', 'd', 'b']

You have no guarantee of getting items in a consistent order from dic-
tionaries in early versions of Python. As a result of dictionaries’ unordered
nature, two dictionary literals written with different orders for their key-
value pairs are still considered equal:

>>> {'a': 1, 'b': 2, 'c': 3} == {'c': 3, 'a': 1, 'b': 2}
True

But starting in CPython 3.6, dictionaries do retain the insertion order
of their key-value pairs:

>>> spam = {'a': 1, 'b': 2, 'c': 3, 'd': 4} # This is run from CPython 3.6.
>>> list(spam)
['a', 'b', 'c', 'd']
>>> spam['e'] = 5
>>> list(spam)
['a', 'b', 'c', 'd', 'e']

This is a feature in the CPython 3.6 interpreter but not in other
interpreters for Python 3.6. All Python 3.7 interpreters support ordered
dictionaries, which became standard in the Python language in 3.7. But
just because a dictionary is ordered doesn’t mean that its items are acces-
sible through integer indexes: spam[0] won’t evaluate to the first item in
an ordered dictionary (unless by coincidence there is a key 0 for the first
item). Ordered dictionaries are also considered the same if they contain
the same key-value pairs, even if the key-value pairs are in a different order
in each dictionary.

The collections module contains many other mapping types, including
OrderedDict, ChainMap, Counter, and UserDict, which are described in the online
documentation at https://docs.python.org/3/library/collections.html.

Dunder Methods and Magic Methods
Dunder methods, also called magic methods, are special methods in Python
whose names begin and end with two underscores. These methods are used
for operator overloading. Dunder is short for double underscore. The most
familiar dunder method is __init__() (pronounced “dunder init dunder,”
or simply “init”), which initializes objects. Python has a few dozen dunder
methods, and Chapter 17 explains them in detail.

Modules and Packages
A module is a Python program that other Python programs can import so
they can use the module’s code. The modules that come with Python are
collectively called the Python Standard Library, but you can create your own

https://docs.python.org/3/library/collections.html

Programming Jargon 121

modules as well. If you save a Python program as, for example, spam.py,
other programs can run import spam to access the spam.py program’s func-
tions, classes, and top-level variables.

A package is a collection of modules that you form by placing a file
named __init__.py inside a folder. You use the folder’s name as the name of
the package. Packages can contain multiple modules (that is, .py files) or
other packages (other folders containing __init__.py files).

For more explanation and detail about modules and packages, check
out the official Python documentation at https://docs.python.org/3/tutorial/
modules.html.

Callables and First-Class Objects
Functions and methods aren’t the only things that you can call in Python.
Any object that implements the callable operator—the two parentheses ()—
is a callable object. For example, if you have a def hello(): statement, you can
think of the code as a variable named hello that contains a function object.
Using the callable operator on this variable calls the function in the vari-
able: hello().

Classes are an OOP concept, and a class is an example of a callable
object that isn’t a function or method. For example, the date class in
the datetime module is called using the callable operator, as in the code
datetime.date(2020, 1, 1). When the class object is called, the code inside
the class’s __init__() method is run. Chapter 15 has more details about
classes.

Functions are first-class objects in Python, meaning you can store them
in variables, pass them as arguments in function calls, return them from
function calls, and do anything else you can do with an object. Think of a
def statement as assigning a function object to a variable. For example, you
could create a spam() function that you can then call:

>>> def spam():
... print('Spam! Spam! Spam!')
...
>>> spam()
Spam! Spam! Spam!

You can also assign the spam() function object to other variables. When
you call the variable you’ve assigned the function object to, Python executes
the function:

>>> eggs = spam
>>> eggs()
Spam! Spam! Spam!

These are called aliases, which are different names for existing func-
tions. They’re often used if you need to rename a function. But a large
amount of existing code uses the old name, and it would be too much work
to change it.

https://docs.python.org/3/tutorial/modules.html
https://docs.python.org/3/tutorial/modules.html

122 Chapter 7

The most common use of first-class functions is so you can pass func-
tions to other functions. For example, we can define a callTwice() function,
which can be passed a function that needs to be called twice:

>>> def callTwice(func):
... func()
... func()
...
>>> callTwice(spam)
Spam! Spam! Spam!
Spam! Spam! Spam!

You could just write spam() twice in your source code. But you can pass
the callTwice() function to any function at runtime rather than having to
type the function call twice into the source code beforehand.

Commonly Confused Terms
Technical jargon is confusing enough, especially for terms that have related but
distinct definitions. To make matters worse, languages, operating systems, and
fields in computing might use different terms to mean the same thing or the
same terms to mean different things. To communicate clearly with other pro-
grammers, you’ll need to learn the difference between the following terms.

Statements vs. Expressions
Expressions are the instructions made up of operators and values that evalu-
ate to a single value. A value can be a variable (which contains a value) or a
function call (which returns a value). So, 2 + 2 is an expression that evalu-
ates down to the single value of 4. But len(myName) > 4 and myName.isupper() or
myName == 'Zophie' are expressions as well. A value by itself is also an expres-
sion that evaluates to itself.

Statements are, effectively, all other instructions in Python. These include
if statements, for statements, def statements, return statements, and so on.
Statements do not evaluate to a value. Some statements can include expres-
sions, such as an assignment statement like spam = 2 + 2 or an if statement
like if myName == 'Zophie':.

Although Python 3 uses a print() function, Python 2 instead has a print
statement. The difference might seem like just the introduction of parenthe-
ses, but it’s important to note that the Python 3 print() function has a return
value (which is always None), can be passed as an argument to other functions,
and can be assigned to a variable. None of these actions are possible with
statements. However, you can still use the parentheses in Python 2, as in the
following interactive shell example:

>>> print 'Hello, world!' # run in Python 2
Hello, world!

1 >>> print('Hello, world!') # run in Python 2
Hello, world!

Programming Jargon 123

Although this looks like a function call 1, it’s actually a print statement
with a string value wrapped in parentheses, the same way assigning spam =
(2 + 2) is equivalent to spam = 2 + 2. In Python 2 and 3, you can pass multi-
ple values to the print statement or print() function, respectively. In Python
3, this would look like the following:

>>> print('Hello', 'world') # run in Python 3
Hello world

But using this same code in Python 2 would be interpreted as passing a
tuple of two string values in a print statement, producing this output:

>>> print('Hello', 'world') # run in Python 2
('Hello', 'world')

A statement and an expression composed of a function call have subtle
but real differences.

Block vs. Clause vs. Body
The terms block, clause, and body are often used interchangeably to refer to
a group of Python instructions. A block begins with indentation and ends
when that indentation returns to the previous indent level. For example,
the code that follows an if or for statement is called the statement’s block.
A new block is required following statements that end with a colon, such as
if, else, for, while, def, class, and so on.

But Python does allow one-line blocks. This is valid, although not rec-
ommended, Python syntax:

if name == 'Zophie': print('Hello, kitty!')

By using the semicolon, you can also have multiple instructions in the
if statement’s block:

if name == 'Zophie': print('Hello, kitty!'); print('Do you want a treat?')

But you can’t have one-liners with other statements that require new
blocks. The following isn’t valid Python code:

if name == 'Zophie': if age < 2: print('Hello, kitten!')

This is invalid because if an else statement is on the next line, it would
be ambiguous as to which if statement the else statement would refer to.

The official Python documentation prefers the term clause rather than
block (https://docs.python.org/3/reference/compound_stmts.html). The following
code is a clause:

if name == 'Zophie':
 print('Hello, kitty!')
 print('Do you want a treat?')

https://docs.python.org/3/reference/compound_stmts.html

124 Chapter 7

The if statement is the clause header, and the two print() calls nested in
the if are the clause suite or body. The official Python documentation uses
block to refer to a piece of Python code that executes as a unit, such as a
module, a function, or a class definition (https://docs.python.org/3/reference/
executionmodel.html).

Variable vs. Attribute
Variables are simply names that refer to objects. Attributes are, to quote the
official documentation, “any name following a dot” (https://docs.python.org/3/
tutorial/classes.html#python-scopes-and-namespaces). Attributes are associated
with objects (the name before the dot/period). For example, enter the fol-
lowing into the interactive shell:

>>> import datetime
>>> spam = datetime.datetime.now()
>>> spam.year
2018
>>> spam.month
1

In this code example, spam is a variable that contains a datetime object
(returned from datetime.datetime.now()), and year and month are attributes of
that object. Even in the case of, say, sys.exit(), the exit() function is consid-
ered an attribute of the sys module object.

Other languages call attributes fields, properties, or member variables.

Function vs. Method
A function is a collection of code that runs when called. A method is a function
(or a callable, described in the next section) that is associated with a class,
just as an attribute is a variable associated with an object. Functions include
built-in functions or functions associated with a module. For example, enter
the following into the interactive shell:

>>> len('Hello')
5
>>> 'Hello'.upper()
'HELLO'
>>> import math
>>> math.sqrt(25)
5.0

In this example, len() is a function and upper() is a string method.
Methods are also considered attributes of the objects they’re associated
with. Note that a period doesn’t necessarily mean you’re dealing with a
method instead of a function. The sqrt() function is associated with math,
which is a module, not a class.

https://docs.python.org/3/reference/executionmodel.html
https://docs.python.org/3/reference/executionmodel.html
https://docs.python.org/3/tutorial/classes.html#python-scopes-and-namespaces
https://docs.python.org/3/tutorial/classes.html#python-scopes-and-namespaces

Programming Jargon 125

Iterable vs. Iterator
Python’s for loops are versatile. The statement for i in range(3): will run a
block of code three times. The range(3) call isn’t just Python’s way of telling
a for loop, “repeat some code three times.” Calling range(3) returns a range
object, just like calling list('cat') returns a list object. Both of these objects
are examples of iterable objects (or simply, iterables).

You use iterables in for loops. Enter the following into the interactive
shell to see a for loop iterate over a range object and a list object:

>>> for i in range(3):
... print(i) # body of the for loop
...
0
1
2
>>> for i in ['c', 'a', 't']:
... print(i) # body of the for loop
...
c
a
t

Iterables also include all sequence types, such as range, list, tuple, and
string objects, but also some container objects, such as dictionary, set, and file
objects.

However, more is going on under the hood in these for loop examples.
Behind the scenes, Python is calling the built-in iter() and next() functions
for the for loop. When used in a for loop, iterable objects are passed to the
built-in iter() function, which returns iterator objects. Although the iterable
object contains the items, the iterator object keeps track of which item is
next to be used in a loop. On each iteration of the loop, the iterator object
is passed to the built-in next() function to return the next item in the iter-
able. We can call the iter() and next() functions manually to directly see
how for loops work. Enter the following into the interactive shell to perform
the same instructions as the previous loop example:

>>> iterableObj = range(3)
>>> iterableObj
range(0, 3)
>>> iteratorObj = iter(iterableObj)
>>> i = next(iteratorObj)
>>> print(i) # body of the for loop
0
>>> i = next(iteratorObj)
>>> print(i) # body of the for loop
1
>>> i = next(iteratorObj)
>>> print(i) # body of the for loop

126 Chapter 7

2
>>> i = next(iteratorObj)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>

1 StopIteration

Notice that if you call next() after the last item in the iterable has been
returned, Python raises a StopIteration exception 1. Instead of crashing
your programs with this error message, Python’s for loops catch this excep-
tion to know when they should stop looping.

An iterator can only iterate over the items in an iterable once. This is
similar to how you can only use open() and readlines() to read the contents
of a file once before having to reopen the file to read its contents again. If
you want to iterate over the iterable again, you must call iter() again to cre-
ate another iterator object. You can create as many iterator objects as you
want; each will independently track the next item it should return. Enter
the following into the interactive shell to see how this works:

>>> iterableObj = list('cat')
>>> iterableObj
['c', 'a', 't']
>>> iteratorObj1 = iter(iterableObj)
>>> iteratorObj2 = iter(iterableObj)
>>> next(iteratorObj1)
'c'
>>> next(iteratorObj1)
'a'
>>> next(iteratorObj2)
'c'

Remember that iterable objects are passed as an argument to the
iter() function, whereas the object returned from iter() calls is an itera-
tor object. Iterator objects are passed to the next() function. When you
create your own data types with class statements, you can implement the
__iter__() and __next__() special methods to use your objects in for loops.

Syntax vs. Runtime vs. Semantic Errors
There are many ways to categorize bugs. But at a high level you could divide
programming errors into three types: syntax errors, runtime errors, and
semantic errors.

Syntax is the set of rules for the valid instructions in a given program-
ming language. A syntax error, such as a missing parenthesis, a period instead
of a comma, or some other typo will immediately generate a SyntaxError.
Syntax errors are also known as parsing errors, which occur when the Python
interpreter can’t parse the text of the source code into valid instructions. In
English, this error would be the equivalent of having incorrect grammar or
a string of nonsense words like, “by uncontaminated cheese certainly it’s.”
Computers require specific instructions and can’t read the programmer’s
mind to determine what the program should do, so a program with a syntax
error won’t even run.

Programming Jargon 127

A runtime error is when a running program fails to perform some task,
such as trying to open a file that doesn’t exist or dividing a number by
zero. In English, a runtime error is the equivalent of giving an impossible
instruction like, “Draw a square with three sides.” If a runtime error isn’t
addressed, the program will crash and display a traceback. But you can
catch runtime errors using try-except statements that run error handling
code. For example, enter the following into the interactive shell:

>>> slices = 8
>>> eaters = 0
>>> print('Each person eats', slices / eaters, 'slices.')

This code will display this traceback when you run it:

Traceback (most recent call last):
 File "<pyshell#4>", line 1, in <module>
 print('Each person eats', slices / eaters, 'slices.')
ZeroDivisionError: division by zero

It’s helpful to remember that the line number the traceback mentions is
only the point at which the Python interpreter detected an error. The true
cause of the error might be on the previous line of code or even much ear-
lier in the program.

Syntax errors in the source code are caught by the interpreter before
the program runs, but syntax errors can also happen at runtime. The eval()
function can take a string of Python code and run it, which might produce
a SyntaxError at runtime. For example, eval('print("Hello, world)') is missing
a closing double quote, which the program won’t encounter until the code
calls eval().

A semantic error (also called a logical error) is a more subtle bug. Semantic
errors won’t cause error messages or crashes, but the computer carries out
instructions in a way the programmer didn’t intend. In English, the equiva-
lent of a semantic error would be telling the computer, “Buy a carton of milk
from the store and if they have eggs, buy a dozen.” The computer would then
buy 13 cartons of milk because the store had eggs. For better or worse, com-
puters do exactly what you tell them to. For example, enter the following into
the interactive shell:

>>> print('The sum of 4 and 2 is', '4' + '2')

You would get the following output:

The sum of 4 and 2 is 42

Obviously, 42 isn’t the answer. But notice that the program didn’t crash.
Because Python’s + operator adds integer values and concatenates string
values, mistakenly using the string values '4' and '2' instead of integers
caused unintended behavior.

128 Chapter 7

Parameters vs. Arguments
Parameters are the variable names between the parentheses in a def state-
ment. Arguments are the values passed in a function call, which are then
assigned to the parameters. For example, enter the following into the inter-
active shell:

1 >>> def greeting(name, species):
... print(name + ' is a ' + species)
...

2 >>> greeting('Zophie', 'cat')
Zophie is a cat

In the def statement, name and species are parameters 1. In the func-
tion call, 'Zophie' and 'cat' are arguments 2. These two terms are often
confused with each other. Remember that parameters and arguments are
just other names for variables and values, respectively, when they are used
in this context.

Type Coercion vs. Type Casting
You can convert an object of one type to an object of another type. For
example, int('42') converts a string '42' to an integer 42. In actuality, the
string object '42' isn’t converted so much as the int() function creates a new
integer object based on the original object. When conversion is done explic-
itly like this, we’re casting the object, although programmers often still refer
to this process as converting the object.

Python will often implicitly do a type conversion, such as when evaluat-
ing the expression 2 + 3.0 to 5.0. Values, such as the 2 and 3.0, are coerced
to a common data type that the operator can work with. This conversion,
which is done implicitly, is called type coercion.

Coercion can sometimes lead to surprising results. The Boolean True
and False values in Python can be coerced to the integer values 1 and 0,
respectively. Although you’d never write Booleans as those values in real-
world code, this means that the expression True + False + True is the equiva-
lent of 1 + 0 + 1 and evaluates to 2. After learning this, you might think that
passing a list of Booleans to sum() would be a good way to count the number
of True values in a list. But it turns out that calling the count() list method is
faster.

Properties vs. Attributes
In many languages, the terms property and attribute are used synonymously,
but in Python these words have distinct meanings. An attribute, explained
in “Variable vs. Attribute” on page 124, is a name associated with an object.
Attributes include the object’s member variables and methods.

Other languages, such as Java, have getter and setter methods for
classes. Instead of being able to directly assign an attribute a (potentially
invalid) value, a program must call the setter method for that attribute.

Programming Jargon 129

The code inside the setter method can ensure that the member variable
only has a valid value assigned to it. The getter method reads an attribute’s
value. If an attribute is named, say, accountBalance, the setter and getter
methods are usually named setAccountBalance() and getAccountBalance(),
respectively.

In Python, properties allow programmers to use getters and setters with
much cleaner syntax. Chapter 17 explores Python properties in more detail.

Bytecode vs. Machine Code
Source code is compiled into a form of instructions called machine code that
the CPU directly carries out. Machine code is composed of instructions
from the CPU’s instruction set, the computer’s built-in set of commands.
A compiled program composed of machine code is called a binary. A ven-
erable language like C has compiler software that can compile C source
code into binaries for almost every CPU available. But if a language such
as Python wants to run on the same set of CPUs, a large amount of work
would have to go into writing Python compilers for each of them.

There is another way of turning source code into machine-usable code.
Instead of creating machine code that is carried out directly by CPU hard-
ware, you could create bytecode. Also called portable code or p-code, bytecode
is carried out by a software interpreter program instead of directly by the
CPU. Python bytecode is composed of instructions from an instruction
set, although no real-world hardware CPU carries out these instructions.
Instead, the software interpreter executes the bytecode. Python bytecode is
stored in the .pyc files you sometimes see alongside your .py source files. The
CPython interpreter, which is written in C, can compile Python source code
into Python bytecode and then carry out the instructions. (The same goes
for the Java Virtual Machine [JVM] software, which carries out Java byte-
code.) Because it’s written in C, CPython has a Python interpreter and can
be compiled for any CPU that C already has a compiler for.

The PyCon 2016 talk, “Playing with Python Bytecode” by Scott Sanderson
and Joe Jevnik, is an excellent resource to learn more about this topic (https://
youtu.be/mxjv9KqzwjI).

Script vs. Program, Scripting Language vs. Programming Language
The differences between a script and a program, or even a scripting lan-
guage and a programming language, are vague and arbitrary. It’s fair to say
that all scripts are programs and all scripting languages are programming
languages. But scripting languages are sometimes regarded as easier or
“not real” programming languages.

One way to distinguish scripts from programs is by how the code
executes. Scripts written in scripting languages are interpreted directly from
the source code, whereas programs written in programming languages are
compiled into binaries. But Python is commonly thought of as a script-
ing language, even though there is a compilation step to bytecode when
a Python program is run. Meanwhile, Java isn’t commonly thought of as a
scripting language, even though it produces bytecode instead of machine

https://youtu.be/mxjv9KqzwjI
https://youtu.be/mxjv9KqzwjI

130 Chapter 7

code binaries, just like Python. Technically, languages aren’t compiled or
interpreted; rather, there are compiler or interpreter implementations of
a language, and it’s possible to create a compiler or interpreter for any
language.

The differences can be argued but ultimately aren’t very important.
Scripting languages aren’t necessarily less powerful, nor are compiled
programming languages more difficult to work with.

Library vs. Framework vs. SDK vs. Engine vs. API
Using other people’s code is a great time-saver. You can often find code to
use packaged as libraries, frameworks, SDKs, engines, or APIs. The differ-
ences between these entities are subtle but important.

A library is a generic term for a collection of code made by a third
party. A library can contain functions, classes, or other pieces of code for a
developer to use. A Python library might take the form of a package, a set
of packages, or even just a single module. Libraries are often specific to a
particular language. The developer doesn’t need to know how the library
code works; they only need to know how to call or interface with the code
in a library. A standard library, such as the Python standard library, is a code
library that is assumed to be available to all implementations of a program-
ming language.

A framework is a collection of code that operates with inversion of control;
the developer creates functions that the framework will call as needed,
as opposed to the developer’s code calling functions in the framework.
Inversion of control is often described as “don’t call us, we’ll call you.” For
example, writing code for a web app framework involves creating functions
for the web pages that the framework will call when a web request comes in.

A software development kit (SDK) includes code libraries, documenta-
tion, and software tools to assist in creating applications for a particular
operating system or platform. For example, the Android SDK and iOS SDK
are used to create mobile apps for Android and iOS, respectively. The Java
Development Kit (JDK) is an SDK for creating applications for the JVM.

An engine is a large, self-contained system that can be externally con-
trolled by the developer’s software. Developers usually call functions in
an engine to perform a large, complex task. Examples of engines include
game engines, physics engines, recommendation engines, database engines,
chess engines, and search engines.

An application programming interface (API) is the public-facing interface
for a library, SDK, framework, or engine. The API specifies how to call the
functions or make requests of the library to access resources. The library cre-
ators will (hopefully) make documentation for the API available. Many pop-
ular social networks and websites make an HTTP API available for programs
to access their services rather than a human with a web browser. Using these
APIs allows you to write programs that can, for example, automatically post
on Facebook or read Twitter timelines.

Programming Jargon 131

Summary
It’s easy to program for years and still be unfamiliar with certain program-
ming terms. But most major software applications are created by teams of
software developers, not individuals. So being able to communicate unambig
uously is important when you’re working with a team.

This chapter explained that Python programs are made up of identi-
fiers, variables, literals, keywords, and objects, and that all Python objects
have a value, data type, and identity. Although every object has a data
type, there are also several broad categories of types, such as container,
sequence, mapping, set, built-in, and user-defined.

Some terms, like values, variables, and functions, have different names
in specific contexts, such as items, parameters, arguments, and methods.

Several terms are also easy to confuse with each other. It’s not a big deal
to confuse some of these terms in day-to-day programming: for example,
property versus attribute, block versus body, exception versus error, or
the subtle differences between library, framework, SDK, engine, and API.
Other misunderstandings won’t make the code you write wrong but might
make you look unprofessional: for example, statement and expression, func-
tion and method, and parameter and argument are commonly used inter-
changeably by beginners.

But other terms, such as iterable versus iterator, syntax error versus
semantic error, and bytecode versus machine code, have distinct meanings
that you should never confuse with each other unless you want to confuse
your colleagues.

You’ll still find that the use of terms varies from language to language
and even programmer to programmer. You’ll become more familiar with
jargon with experience (and frequent web searches) in time.

Further Reading
The official Python glossary at https://docs.python.org/3/glossary.html lists
short but helpful definitions the Python ecosystem uses. The official Python
documentation at https://docs.python.org/3/reference/datamodel.html describes
Python objects in greater detail.

Nina Zakharenko’s PyCon 2016 talk, “Memory Management in Python—
The Basics,” at https://youtu.be/F6u5rhUQ6dU, explains many details about
how Python’s garbage collector works. The official Python documentation
at https://docs.python.org/3/library/gc.html has more information about the gar-
bage collector.

The Python mailing list discussion about making dictionaries ordered
in Python 3.6 makes for good reading as well and is at https://mail.python.org/
pipermail/python-dev/2016-September/146327.html.

 https://docs.python.org/3/glossary.html
https://docs.python.org/3/reference/datamodel.html
https://youtu.be/F6u5rhUQ6dU
https://docs.python.org/3/library/gc.html
https://mail.python.org/pipermail/python-dev/2016-September/146327.html
https://mail.python.org/pipermail/python-dev/2016-September/146327.html

Although Python is my favorite program-
ming language, it isn’t without flaws. Every

language has warts (some more than others),
and Python is no exception. New Python pro-

grammers must learn to avoid some common “gotchas.”
Programmers learn this kind of knowledge randomly,
from experience, but this chapter collects it in one
place. Knowing the programming lore behind these
gotchas can help you understand why Python behaves
strangely sometimes.

8
C O M M O N P Y T H O N G O T C H A S

134 Chapter 8

This chapter explains how mutable objects, such as lists and dictionar-
ies, can behave unexpectedly when you modify their contents. You’ll learn
how the sort() method doesn’t sort items in an exact alphabetical order
and how floating-point numbers can have rounding errors. The inequality
operator != has unusual behavior when you chain them together. And you
must use a trailing comma when you write tuples that contain a single item.
This chapter informs you how to avoid these common gotchas.

Don’t Add or Delete Items from a List While Looping Over It
Adding or deleting items from a list while looping (that is, iterating) over it
with a for or while loop will most likely cause bugs. Consider this scenario:
you want to iterate over a list of strings that describe items of clothing and
ensure that there is an even number of socks by inserting a matching sock
each time a sock is found in the list. The task seems straightforward: iter-
ate over the list’s strings, and when you find 'sock' in a string, such as 'red
sock', append another 'red sock' string to the list.

But this code won’t work. It gets caught in an infinite loop, and you’ll
have to press CTRL-C to interrupt it:

>>> clothes = ['skirt', 'red sock']
>>> for clothing in clothes: # Iterate over the list.
... if 'sock' in clothing: # Find strings with 'sock'.
... clothes.append(clothing) # Add the sock's pair.
... print('Added a sock:', clothing) # Inform the user.
...
Added a sock: red sock
Added a sock: red sock
Added a sock: red sock
--snip--
Added a sock: red sock
Traceback (most recent call last):
 File "<stdin>", line 3, in <module>
KeyboardInterrupt

You’ll find a visualization of the execution of this code at https://autbor
.com/addingloop/.

The problem is that when you append 'red sock' to the clothes list, the list
now has a new, third item that it must iterate over: ['skirt', 'red sock', 'red
sock']. The for loop reaches the second 'red sock' on the next iteration, so
it appends another 'red sock' string. This makes the list ['skirt', 'red sock',
'red sock', 'red sock'], giving the list another string for Python to iterate
over. This will continue happening, as shown in Figure 8-1, which is why we
see the never-ending stream of 'Added a sock.' messages. The loop only stops
once the computer runs out of memory and crashes the Python program or
until you interrupt it by pressing CTRL-C.

https://autbor.com/addingloop
https://autbor.com/addingloop

Common Python Gotchas 135

Figure 8-1: On each iteration of the for loop, a new 'red sock' is appended to the list,
which clothing refers to on the next iteration. This cycle repeats forever.

The takeaway is don’t add items to a list while you’re iterating over that
list. Instead, use a separate list for the contents of the new, modified list,
such as newClothes in this example:

>>> clothes = ['skirt', 'red sock', 'blue sock']
>>> newClothes = []
>>> for clothing in clothes:
... if 'sock' in clothing:
... print('Appending:', clothing)
... newClothes.append(clothing) # We change the newClothes list, not
clothes.
...
Appending: red sock
Appending: blue sock
>>> print(newClothes)
['red sock', 'blue sock']
>>> clothes.extend(newClothes) # Appends the items in newClothes to clothes.
>>> print(clothes)
['skirt', 'red sock', 'blue sock', 'red sock', 'blue sock']

A visualization of the execution of this code is at https://autbor.com/
addingloopfixed/.

https://autbor.com/addingloopfixed/
https://autbor.com/addingloopfixed/

136 Chapter 8

Our for loop iterated over the items in the clothes list but didn’t mod-
ify clothes inside the loop. Instead, it changed a separate list, newClothes.
Then, after the loop, we modify clothes by extending it with the contents
of newClothes. You now have a clothes list with matching socks.

Similarly, you shouldn’t delete items from a list while iterating over it.
Consider code in which we want to remove any string that isn’t 'hello' from
a list. The naive approach is to iterate over the list, deleting the items that
don’t match 'hello':

>>> greetings = ['hello', 'hello', 'mello', 'yello', 'hello']
>>> for i, word in enumerate(greetings):
... if word != 'hello': # Remove everything that isn't 'hello'.
... del greetings[i]
...
>>> print(greetings)
['hello', 'hello', 'yello', 'hello']

A visualization of the execution of this code is at https://autbor.com/
deletingloop/.

It seems that 'yello' is left in the list. The reason is that when the for
loop was examining index 2, it deleted 'mello' from the list. But this shifted
all the remaining items in the list down one index, moving 'yello' from
index 3 to index 2. The next iteration of the loop examines index 3, which is
now the last 'hello', as in Figure 8-2. The 'yello' string slipped by unexam-
ined! Don’t remove items from a list while you’re iterating over that list.

Figure 8-2: When the loop removes 'mello', the items in the list shift down
one index, causing i to skip over 'yello'.

Instead, create a new list that copies all the items except the ones you
want to delete, and then replace the original list. For a bug-free equivalent
of the previous example, enter the following code into the interactive shell.

https://autbor.com/deletingloop/
https://autbor.com/deletingloop/

Common Python Gotchas 137

>>> greetings = ['hello', 'hello', 'mello', 'yello', 'hello']
>>> newGreetings = []
>>> for word in greetings:
... if word == 'hello': # Copy everything that is 'hello'.
... newGreetings.append(word)
...
>>> greetings = newGreetings # Replace the original list.
>>> print(greetings)
['hello', 'hello', 'hello']

A visualization of the execution of this code is at https://autbor.com/
deletingloopfixed/.

Remember that because this code is just a simple loop that creates a
list, you can replace it with a list comprehension. The list comprehension
doesn’t run faster or use less memory, but it’s shorter to type without los-
ing much readability. Enter the following into the interactive shell, which is
equivalent to the code in the previous example:

>>> greetings = ['hello', 'hello', 'mello', 'yello', 'hello']
>>> greetings = [word for word in greetings if word == 'hello']
>>> print(greetings)
['hello', 'hello', 'hello']

Not only is the list comprehension more succinct, it also avoids the got-
cha that occurs when changing a list while iterating over it.

R E F E R E NCE S, ME MORY US AGE, A ND SYS.GE T SI Z EOF()

It might seem like creating a new list instead of modifying the original one
wastes memory. But remember that, just as variables technically contain refer-
ences to values instead of the actual values, lists also contain references to
values. The newGreetings.append(word) line shown earlier isn’t making a copy of
the string in the word variable, just a copy of the reference to the string, which is
much smaller.

You can see this by using the sys.getsizeof() function, which returns the
number of bytes that the object passed to it takes up in memory. In this interac-
tive shell example, we can see that the short string 'cat' takes up 52 bytes,
whereas a longer string takes up 85 bytes:

>>> import sys
>>> sys.getsizeof('cat')
52
>>> sys.getsizeof('a much longer string than just "cat"')
85

(continued)

https://autbor.com/deletingloopfixed/
https://autbor.com/deletingloopfixed/

138 Chapter 8

(In the Python version I use, the overhead for the string object takes up 49
bytes, whereas each actual character in the string takes up 1 byte.) But a list
containing either of these strings takes up 72 bytes, no matter how long the
string is:

>>> sys.getsizeof(['cat'])
72
>>> sys.getsizeof(['a much longer string than just "cat"'])
72

The reason is that a list technically doesn’t contain the strings, but rather
just a reference to the strings, and a reference is the same size no matter the
size of the referred data. Code like newGreetings.append(word) isn’t copying the
string in word, but the reference to the string. If you want to find out how much
memory an object, and all the objects it refers to, take up, Python core devel-
oper Raymond Hettinger has written a function for this, which you can access
at https://code.activestate.com/recipes/577504-compute-memory-footprint
-of-an-object-and-its-cont/.

So you shouldn’t feel like you’re wasting memory by creating a new list
rather than modifying the original list while iterating over it. Even if your list-
modifying code seemingly works, it can be the source of subtle bugs that take a
long time to discover and fix. Wasting a programmer’s time is far more expen-
sive than wasting a computer’s memory.

Although you shouldn’t add or remove items from a list (or any iter-
able object) while iterating over it, it’s fine to modify the list’s contents. For
example, say we have a list of numbers as strings: ['1', '2', '3', '4', '5'].
We can convert this list of strings into a list of integers [1, 2, 3, 4, 5] while
iterating over the list:

>>> numbers = ['1', '2', '3', '4', '5']
>>> for i, number in enumerate(numbers):
... numbers[i] = int(number)
...
>>> numbers
[1, 2, 3, 4, 5]

A visualization of the execution of this code is at https://autbor.com/
covertstringnumbers. Modifying the items in the list is fine; it’s changing
the number of items in the list that is bug prone.

Another possible way to add or delete items in a list safely is by iterating
backward from the end of the list to the beginning. This way, you can delete
items from the list as you iterate over it, or add items to the list as long as
you add them to the end of the list. For example, enter the following code,
which removes even integers from the someInts list.

https://autbor.com/convertstringnumbers
https://autbor.com/convertstringnumbers

Common Python Gotchas 139

>>> someInts = [1, 7, 4, 5]
>>> for i in range(len(someInts)):
...
... if someInts[i] % 2 == 0:
... del someInts[i]
...
Traceback (most recent call last):
 File "<stdin>", line 2, in <module>
IndexError: list index out of range
>>> someInts = [1, 7, 4, 5]
>>> for i in range(len(someInts) - 1, -1, -1):
... if someInts[i] % 2 == 0:
... del someInts[i]
...
>>> someInts
[1, 7, 5]

This code works because none of the items that the loop will iterate
over in the future ever have their index changed. But the repeated shift-
ing up of values after the deleted value makes this technique inefficient for
long lists. A visualization of the execution of this code is at https://autbor.com/
iteratebackwards1. You can see the difference between iterating forward and
backward in Figure 8-3.

Figure 8-3: Removing even numbers from a list while iterating forward (left) and backward (right)

Similarly, you can add items to the end of the list as you iterate back-
ward over it. Enter the following into the interactive shell, which appends a
copy of any even integers in the someInts list to the end of the list:

>>> someInts = [1, 7, 4, 5]
>>> for i in range(len(someInts) - 1, -1, -1):

https://autbor.com/iteratebackwards1
https://autbor.com/iteratebackwards1

140 Chapter 8

... if someInts[i] % 2 == 0:

... someInts.append(someInts[i])

...
>>> someInts
[1, 7, 4, 5, 4]

A visualization of the execution of this code is at https://autbor.com/
iteratebackwards2. By iterating backward, we can append items to or
remove items from the list. But this can be tricky to do correctly because
slight changes to this basic technique could end up introducing bugs. It’s
much simpler to create a new list rather than modifying the original list.
As Python core developer Raymond Hettinger put it:

Q. What are the best practices for modifying a list while looping over it?

A. Don’t.

Don’t Copy Mutable Values Without copy.copy() and
copy.deepcopy()

It’s better to think of variables as labels or name tags that refer to objects
rather than as boxes that contain objects. This mental model is especially
useful when it comes to modifying mutable objects: objects such as lists,
dictionaries, and sets whose value can mutate (that is, change). A common
gotcha occurs when copying one variable that refers to a mutable object
to another variable and thinking that the actual object is being copied. In
Python, assignment statements never copy objects; they only copy the refer-
ences to an object. (Python developer Ned Batchelder has a great PyCon
2015 talk on this idea titled, “Facts and Myths about Python Names and
Values.” Watch it at https://youtu.be/_AEJHKGk9ns.)

For example, enter the following code into the interactive shell, and
note that even though we change the spam variable only, the cheese variable
changes as well:

>>> spam = ['cat', 'dog', 'eel']
>>> cheese = spam
>>> spam
['cat', 'dog', 'eel']
>>> cheese
['cat', 'dog', 'eel']
>>> spam[2] = 'MOOSE'
>>> spam
['cat', 'dog', 'MOOSE']
>>> cheese
['cat', 'dog', 'MOOSE']
>>> id(cheese), id(spam)
2356896337288, 2356896337288

A visualization of the execution of this code is at https://autbor.com/
listcopygotcha1. If you think that cheese = spam copied the list object, you
might be surprised that cheese seems to have changed even though we only

https://autbor.com/iteratebackwards2
https://autbor.com/iteratebackwards2
https://youtu.be/_AEJHKGk9ns
https://autbor.com/listcopygotcha1
https://autbor.com/listcopygotcha1

Common Python Gotchas 141

modified spam. But assignment statements never copy objects, only references
to objects. The assignment statement cheese = spam makes cheese refer to the
same list object in the computer’s memory as spam. It doesn’t duplicate the list
object. This is why changing spam also changes cheese: both variables refer to
the same list object.

The same principle applies to mutable objects passed to a function
call. Enter the following into the interactive shell, and note that the global
variable spam and the local parameter (remember, parameters are variables
defined in the function’s def statement) theList both refer to the same object:

>>> def printIdOfParam(theList):
... print(id(theList))
...
>>> eggs = ['cat', 'dog', 'eel']
>>> print(id(eggs))
2356893256136
>>> printIdOfParam(eggs)
2356893256136

A visualization of the execution of this code is at https://autbor.com/
listcopygotcha2. Notice that the identities returned by id() for eggs and
theList are the same, meaning these variables refer to the same list object.
The eggs variable’s list object wasn’t copied to theList; rather, the reference was
copied, which is why both variables refer to the same list. A reference is only
a few bytes in size, but imagine if Python copied the entire list instead of just
the reference. If eggs contained a billion items instead of just three, passing
it to the printIdOfParam() function would require copying this giant list. This
would eat up gigabytes of memory just to do a simple function call! That’s
why Python assignment only copies references and never copies objects.

One way to prevent this gotcha is to make a copy of the list object (not
just the reference) with the copy.copy() function. Enter the following into
the interactive shell:

>>> import copy
>>> bacon = [2, 4, 8, 16]
>>> ham = copy.copy(bacon)
>>> id(bacon), id(ham)
(2356896337352, 2356896337480)
>>> bacon[0] = 'CHANGED'
>>> bacon
['CHANGED', 4, 8, 16]
>>> ham
[2, 4, 8, 16]
>>> id(bacon), id(ham)
(2356896337352, 2356896337480)

A visualization of the execution of this code is at https://autbor.com/
copycopy1. The ham variable refers to a copied list object rather than the
original list object referred to by bacon, so it doesn’t suffer from this gotcha.

But just as variables are like labels or name tags rather than boxes that
contain objects, lists also contain labels or name tags that refer to objects

https://autbor.com/listcopygotcha2
https://autbor.com/listcopygotcha2
https://autbor.com/copycopy1
https://autbor.com/copycopy1

142 Chapter 8

rather than the actual objects. If your list contains other lists, copy.copy()
only copies the references to these inner lists. Enter the following into the
interactive shell to see this problem:

>>> import copy
>>> bacon = [[1, 2], [3, 4]]
>>> ham = copy.copy(bacon)
>>> id(bacon), id(ham)
(2356896466248, 2356896375368)
>>> bacon.append('APPENDED')
>>> bacon
[[1, 2], [3, 4], 'APPENDED']
>>> ham
[[1, 2], [3, 4]]
>>> bacon[0][0] = 'CHANGED'
>>> bacon
[['CHANGED', 2], [3, 4], 'APPENDED']
>>> ham
[['CHANGED', 2], [3, 4]]
>>> id(bacon[0]), id(ham[0])
(2356896337480, 2356896337480)

A visualization of the execution of this code is at https://autbor.com/
copycopy2. Although bacon and ham are two different list objects, they refer
to the same [1, 2] and [3, 4] inner lists, so changes to these inner lists get
reflected in both variables, even though we used copy.copy(). The solution
is to use copy.deepcopy(), which will make copies of any list objects inside the
list object being copied (and any list objects in those list objects, and so on).
Enter the following into the interactive shell:

>>> import copy
>>> bacon = [[1, 2], [3, 4]]
>>> ham = copy.deepcopy(bacon)
>>> id(bacon[0]), id(ham[0])
(2356896337352, 2356896466184)
>>> bacon[0][0] = 'CHANGED'
>>> bacon
[['CHANGED', 2], [3, 4]]
>>> ham
[[1, 2], [3, 4]]

A visualization of the execution of this code is at https://autbor.com/
copydeepcopy. Although copy.deepcopy() is slightly slower than copy.copy(), it’s
safer to use if you don’t know whether the list being copied contains other
lists (or other mutable objects like dictionaries or sets). My general advice is
to always use copy.deepcopy(): it might prevent subtle bugs, and the slowdown
in your code probably won’t be noticeable.

https://autbor.com/copycopy2
https://autbor.com/copycopy2
https://autbor.com/copydeepcopy
https://autbor.com/copydeepcopy

Common Python Gotchas 143

Don’t Use Mutable Values for Default Arguments
Python allows you to set default arguments for parameters in the functions you
define. If a user doesn’t explicitly set a parameter, the function will execute
using the default argument. This is useful when most calls to the function
use the same argument, because default arguments make the parameter
optional. For example, passing None for the split() method makes it split
on whitespace characters, but None is also the default argument: calling
'cat dog'.split() does the same thing as calling 'cat dog'.split(None).
The function uses the default argument for the parameter’s argument
unless the caller passes one in.

But you should never set a mutable object, such as a list or dictionary,
as a default argument. To see how this causes bugs, look at the following
example, which defines an addIngredient() function that adds an ingredient
string to a list that represents a sandwich. Because the first and last items
of this list are often 'bread', the mutable list ['bread', 'bread'] is used as a
default argument:

>>> def addIngredient(ingredient, sandwich=['bread', 'bread']):
... sandwich.insert(1, ingredient)
... return sandwich
...
>>> mySandwich = addIngredient('avocado')
>>> mySandwich
['bread', 'avocado', 'bread']

But using a mutable object, such as a list like ['bread', 'bread'], for the
default argument has a subtle problem: the list is created when the func-
tion’s def statement executes, not each time the function is called. This
means that only one ['bread', 'bread'] list object gets created, because
we only define the addIngredient() function once. But each function call to
addIngredient() will be reusing this list. This leads to unexpected behavior,
like the following:

>>> mySandwich = addIngredient('avocado')
>>> mySandwich
['bread', 'avocado', 'bread']
>>> anotherSandwich = addIngredient('lettuce')
>>> anotherSandwich
['bread', 'lettuce', 'avocado', 'bread']

Because addIngredient('lettuce') ends up using the same default argu-
ment list as the previous calls, which already had 'avocado' added to it, instead
of ['bread', 'lettuce', 'bread'] the function returns ['bread', 'lettuce',
'avocado', 'bread']. The 'avocado' string appears again because the list for the
sandwich parameter is the same as the last function call. Only one ['bread',
'bread'] list was created, because the function’s def statement only executes
once, not each time the function is called. A visualization of the execution of
this code is at https://autbor.com/sandwich.

144 Chapter 8

If you need to use a list or dictionary as a default argument, the
pythonic solution is to set the default argument to None. Then have code
that checks for this and supplies a new list or dictionary whenever the func-
tion is called. This ensures that the function creates a new mutable object
each time the function is called instead of just once when the function is
defined, such as in the following example:

>>> def addIngredient(ingredient, sandwich=None):
... if sandwich is None:
... sandwich = ['bread', 'bread']
... sandwich.insert(1, ingredient)
... return sandwich
...
>>> firstSandwich = addIngredient('cranberries')
>>> firstSandwich
['bread', 'cranberries', 'bread']
>>> secondSandwich = addIngredient('lettuce')
>>> secondSandwich
['bread', 'lettuce', 'bread']
>>> id(firstSandwich) == id(secondSandwich)

1 False

Notice that firstSandwich and secondSandwich don’t share the same list
reference 1 because sandwich = ['bread', 'bread'] creates a new list object
each time addIngredient() is called, not just once when addIngredient() is
defined.

Mutable data types include lists, dictionaries, sets, and objects made
from the class statement. Don’t put objects of these types as default argu-
ments in a def statement.

Don’t Build Strings with String Concatenation
In Python, strings are immutable objects. This means that string values can’t
change, and any code that seems to modify the string is actually creating a
new string object. For example, each of the following operations changes
the content of the spam variable, not by changing the string value, but by
replacing it with a new string value that has a new identity:

>>> spam = 'Hello'
>>> id(spam), spam
(38330864, 'Hello')
>>> spam = spam + ' world!'
>>> id(spam), spam
(38329712, 'Hello world!')
>>> spam = spam.upper()
>>> id(spam), spam
(38329648, 'HELLO WORLD!')
>>> spam = 'Hi'
>>> id(spam), spam
(38395568, 'Hi')
>>> spam = f'{spam} world!'

Common Python Gotchas 145

>>> id(spam), spam
(38330864, 'Hi world!')

Notice that each call to id(spam) returns a different identity, because
the string object in spam isn’t being changed: it’s being replaced by a whole
new string object with a different identity. Creating new strings by using
f-strings, the format() string method, or the %s format specifiers also creates
new string objects, just like string concatenation. Normally, this technical
detail doesn’t matter. Python is a high-level language that handles many of
these details for you so you can focus on creating your program.

But building a string through a large number of string concatenations
can slow down your programs. Each iteration of the loop creates a new string
object and discards the old string object: in code, this looks like concatena-
tions inside a for or while loop, as in the following:

>>> finalString = ''
>>> for i in range(100000):
... finalString += 'spam '
...
>>> finalString
spam spam spam spam spam spam spam spam spam spam spam spam --snip--

Because the finalString += 'spam ' happens 100,000 times inside the
loop, Python is performing 100,000 string concatenations. The CPU has
to create these intermediate string values by concatenating the current
finalString with 'spam ', put them into memory, and then almost imme-
diately discard them on the next iteration. This is a lot of wasted effort,
because we only care about the final string.

The pythonic way to build strings is to append the smaller strings to a
list and then join the list together into one string. This method still creates
100,000 string objects, but it only performs one string concatenation, when
it calls join(). For example, the following code produces the equivalent
finalString but without the intermediate string concatenations:

>>> finalString = []
>>> for i in range(100000):
... finalString.append('spam ')
...
>>> finalString = ''.join(finalString)
>>> finalString
spam spam spam spam spam spam spam spam spam spam spam spam --snip--

When I measure the runtime of these two pieces of code on my machine,
the list appending approach is 10 times faster than the string concatenation
approach. (Chapter 13 describes how to measure how fast your programs
run.) This difference becomes greater the more iterations the for loop
makes. But when you change range(100000) to range(100), although concat-
enation remains slower than list appending, the speed difference is neg-
ligible. You don’t need to obsessively avoid string concatenation, f-strings,

146 Chapter 8

the format() string method, or %s format specifiers in every case. The speed
only significantly improves when you’re performing large numbers of string
concatenations.

Python frees you from having to think about many underlying details.
This allows programmers to write software quickly, and as mentioned ear-
lier, programmer time is more valuable than CPU time. But there are cases
when it’s good to understand details, such as the difference between immu-
table strings and mutable lists, to avoid tripping on a gotcha, like building
strings through concatenation.

Don’t Expect sort() to Sort Alphabetically
Understanding sorting algorithms—algorithms that systematically arrange
values by some established order—is an important foundation for a com-
puter science education. But this isn’t a computer science book; we don’t
need to know these algorithms, because we can just call Python’s sort()
method. However, you’ll notice that sort() has some odd sorting behavior
that puts a capital Z before a lowercase a:

>>> letters = ['z', 'A', 'a', 'Z']
>>> letters.sort()
>>> letters
['A', 'Z', 'a', 'z']

The American Standard Code for Information Interchange (ASCII,
pronounced “ask-ee”) is a mapping between numeric codes (called code
points or ordinals) and text characters. The sort() method uses ASCII-betical
sorting (a general term meaning sorted by ordinal number) rather than
alphabetical sorting. In the ASCII system, A is represented by code point
65, B by 66, and so on, up to Z by 90. The lowercase a is represented by
code point 97, b by 98, and so on, up to z by 122. When sorting by ASCII,
uppercase Z (code point 90) comes before lowercase a (code point 97).

Although it was almost universal in Western computing prior to and
throughout the 1990s, ASCII is an American standard only: there’s a code
point for the dollar sign, $ (code point 36), but there is no code point for
the British pound sign, £. ASCII has largely been replaced by Unicode,
because Unicode contains all of ASCII’s code points and more than 100,000
other code points.

You can get the code point, or ordinal, of a character by passing it to
the ord() function. You can do the reverse by passing an ordinal integer
to the chr() function, which returns a string of the character. For example,
enter the following into the interactive shell:

>>> ord('a')
97
>>> chr(97)
'a'

Common Python Gotchas 147

If you want to make an alphabetical sort, pass the str.lower method to
the key parameter. This sorts the list as if the values had the lower() string
method called on them:

>>> letters = ['z', 'A', 'a', 'Z']
>>> letters.sort(key=str.lower)
>>> letters
['A', 'a', 'z', 'Z']

Note that the actual strings in the list aren’t converted to lowercase;
they’re only sorted as if they were. Ned Batchelder provides more informa-
tion about Unicode and code points in his talk “Pragmatic Unicode, or,
How Do I Stop the Pain?” at https://nedbatchelder.com/text/unipain.html.

Incidentally, the sorting algorithm that Python’s sort() method uses is
Timsort, which was designed by Python core developer and “Zen of Python”
author Tim Peters. It’s a hybrid of the merge sort and insertion sort algo-
rithms, and is described at https://en.wikipedia.org/wiki/Timsort.

Don’t Assume Floating-Point Numbers Are Perfectly Accurate
Computers can only store the digits of the binary number system, which
are 1 and 0. To represent the decimal numbers we’re familiar with, we
need to translate a number like 3.14 into a series of binary ones and zeros.
Computers do this according to the IEEE 754 standard, published by the
Institute of Electrical and Electronics Engineers (IEEE, pronounced “eye-
triple-ee”). For simplicity, these details are hidden from the programmer,
allowing you to type numbers with decimal points and ignore the decimal-
to-binary conversion process:

>>> 0.3
0.3

Although the details of specific cases are beyond the scope of this book,
the IEEE 754 representation of a floating-point number won’t always exactly
match the decimal number. One well-known example is 0.1:

>>> 0.1 + 0.1 + 0.1
0.30000000000000004
>>> 0.3 == (0.1 + 0.1 + 0.1)
False

This bizarre, slightly inaccurate sum is the result of rounding errors
caused by how computers represent and process floating-point numbers.
This isn’t a Python gotcha; the IEEE 754 standard is a hardware standard
implemented directly into a CPU’s floating-point circuits. You’ll get the
same results in C++, JavaScript, and every other language that runs on a
CPU that uses IEEE 754 (which is effectively every CPU in the world).

148 Chapter 8

The IEEE 754 standard, again for technical reasons beyond the
scope of this book, also cannot represent all whole number values greater
than 253. For example, 253 and 253 + 1, as float values, both round to
9007199254740992.0:

>>> float(2**53) == float(2**53) + 1
True

As long as you use the floating-point data type, there’s no workaround
for these rounding errors. But don’t worry. Unless you’re writing software for
a bank, a nuclear reactor, or a bank’s nuclear reactor, rounding errors are
small enough that they’ll likely not be an important issue for your program.
Often, you can resolve them by using integers with smaller denominations:
for example, 133 cents instead of 1.33 dollars or 200 milliseconds instead of
0.2 seconds. This way, 10 + 10 + 10 adds up to 30 cents or milliseconds rather
than 0.1 + 0.1 + 0.1 adding up to 0.30000000000000004 dollars or seconds.

But if you need exact precision, say for scientific or financial calcula-
tions, use Python’s built-in decimal module, which is documented at https://
docs.python.org/3/library/decimal.html. Although they’re slower, Decimal objects
are precise replacements for float values. For example, decimal.Decimal('0.1')
creates an object that represents the exact number 0.1 without the impreci-
sion that a 0.1 float value would have.

Passing the float value 0.1 to decimal.Decimal() creates a Decimal object
that has the same imprecision as a float value, which is why the resulting
Decimal object isn’t exactly Decimal('0.1'). Instead, pass a string of the float
value to decimal.Decimal(). To illustrate this point, enter the following into
the interactive shell:

>>> import decimal
>>> d = decimal.Decimal(0.1)
>>> d
Decimal('0.1000000000000000055511151231257827021181583404541015625')
>>> d = decimal.Decimal('0.1')
>>> d
Decimal('0.1')
>>> d + d + d
Decimal('0.3')

Integers don’t have rounding errors, so it’s always safe to pass them to
decimal.Decimal(). Enter the following into the interactive shell:

>>> 10 + d
Decimal('10.1')
>>> d * 3
Decimal('0.3')
>>> 1 - d
Decimal('0.9')
>>> d + 0.1
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: unsupported operand type(s) for +: 'decimal.Decimal' and 'float'

Common Python Gotchas 149

But Decimal objects don’t have unlimited precision; they simply have a
predictable, well-established level of precision. For example, consider the
following operations:

>>> import decimal
>>> d = decimal.Decimal(1) / 3
>>> d
Decimal('0.3333333333333333333333333333')
>>> d * 3
Decimal('0.9999999999999999999999999999')
>>> (d * 3) == 1 # d is not exactly 1/3
False

The expression decimal.Decimal(1) / 3 evaluates to a value that isn’t
exactly one-third. But by default, it’ll be precise to 28 significant digits.
You can find out how many significant digits the decimal module uses by
accessing the decimal.getcontext().prec attribute. (Technically, prec is an
attribute of the Context object returned by getcontext(), but it’s convenient
to put it on one line.) You can change this attribute so that all Decimal
objects created afterward use this new level of precision. The following
interactive shell example lowers the precision from the original 28 signifi-
cant digits to 2:

>>> import decimal
>>> decimal.getcontext().prec
28
>>> decimal.getcontext().prec = 2
>>> decimal.Decimal(1) / 3
Decimal('0.33')

The decimal module provides you with fine control over how numbers
interact with each other. The decimal module is documented in full at
https://docs.python.org/3/library/decimal.html.

Don’t Chain Inequality != Operators
Chaining comparison operators like 18 < age < 35 or chaining assignment
operators like six = halfDozen = 6 are handy shortcuts for (18 < age) and (age
< 35) and six = 6; halfDozen = 6, respectively.

But don’t chain the != comparison operator. You might think the follow-
ing code checks whether all three variables have different values from each
other, because the following expression evaluates to True:

>>> a = 'cat'
>>> b = 'dog'
>>> c = 'moose'
>>> a != b != c
True

150 Chapter 8

But this chain is actually equivalent to (a != b) and (b != c). This means
that a could still be the same as c and the a != b != c expression would still
be True:

>>> a = 'cat'
>>> b = 'dog'
>>> c = 'cat'
>>> a != b != c
True

This bug is subtle and the code is misleading, so it’s best to avoid using
chained != operators altogether.

Don’t Forget the Comma in Single-Item Tuples
When writing tuple values in your code, keep in mind that you’ll still need
a trailing comma even if the tuple only contains a single item. Although the
value (42,) is a tuple that contains the integer 42, the value (42) is simply
the integer 42. The parentheses in (42) are similar to those used in the
expression (20 + 1) * 2, which evaluates to the integer value 42. Forgetting
the comma can lead to this:

>>> spam = ('cat', 'dog', 'moose')
>>> spam[0]
'cat'
>>> spam = ('cat')

1 >>> spam[0]
'c'

2 >>> spam = ('cat',)
>>> spam[0]
'cat'

Without a comma, ('cat') evaluates to the string value, which is why
spam[0] evaluates to the first character of the string, 'c' 1. The trailing
comma is required for the parentheses to be recognized as a tuple value 2.
In Python, the commas make a tuple more than the parentheses.

Summary
Miscommunication happens in every language, even in programming lan-
guages. Python has a few gotchas that can trap the unwary. Even if they
rarely come up, it’s best to know about them so you can quickly recognize
and debug the problems they can cause.

Although it’s possible to add or remove items from a list while iterating
over that list, it’s a potential source of bugs. It’s much safer to iterate over a
copy of the list and then make changes to the original. When you do make
copies of a list (or any other mutable object), remember that assignment

Common Python Gotchas 151

statements copy only the reference to the object, not the actual object. You
can use the copy.deepcopy() function to make copies of the object (and cop-
ies of any objects it references).

You shouldn’t use mutable objects in def statements for default argu-
ments, because they’re created once when the def statement is run rather
than each time the function is called. A better idea is to make the default
argument None, and then add code that checks for None and creates a muta-
ble object when the function is called.

A subtle gotcha is the string concatenation of several smaller strings
with the + operator in a loop. For small numbers of iteration, this syntax
is fine. But under the hood, Python is constantly creating and destroying
string objects on each iteration. A better approach is to append the smaller
strings into a list and then call the join() operator to create the final string.

The sort() method sorts by numeric code points, which isn’t the same
as alphabetical order: uppercase Z is sorted before lowercase a. To fix this
issue, you can call sort(key=str.lower).

Floating-point numbers have slight rounding errors as a side effect of
how they represent numbers. For most programs, this isn’t important. But if
it does matter for your program, you can use Python’s decimal module.

Never chain together != operators, because expressions like 'cat'
!= 'dog' != 'cat' will, confusingly, evaluate to True.

Although this chapter described the Python gotchas that you’re
most likely to encounter, they don’t occur daily in most real-world code.
Python does a great job of minimizing the surprises you might find in
your programs. In the next chapter, we’ll cover some gotchas that are
even rarer and downright bizarre. It’s almost impossible that you’ll ever
encounter these Python language oddities if you aren’t searching for
them, but it’ll be fun to explore the reasons they exist.

The systems of rules that define a pro-
gramming language are complicated and

can lead to code that, although not wrong,
is quite odd and unexpected. This chapter

dives into the more obscure Python language oddi-
ties. You’re unlikely to actually run into these cases
in real-world coding, but they’re interesting uses of
the Python syntax (or abuses of it, depending on
your perspective).

By studying the examples in this chapter, you’ll get a better idea of how
Python works under the hood. Let’s have a little fun and explore some eso-
teric gotchas.

9
E S O T E R I C P Y T H O N O D D I T I E S

154 Chapter 9

Why 256 Is 256 but 257 Is Not 257
The == operator compares two objects for equal value, but the is operator
compares them for equal identity. Although the integer value 42 and the
float value 42.0 have the same value, they’re two different objects held in
separate places in the computer’s memory. You can confirm this by check-
ing their different IDs using the id() function:

>>> a = 42
>>> b = 42.0
>>> a == b
True
>>> a is b
False
>>> id(a), id(b)
(140718571382896, 2526629638888)

When Python creates a new integer object and stores it in memory,
that object creation takes very little time. As a tiny optimization, CPython
(the Python interpreter available for download at https://python.org) creates
integer objects for -5 to 256 at the start of every program. These integers
are called preallocated integers, and CPython automatically creates objects for
them because they’re fairly common: a program is more likely to use the
integer 0 or 2 than, say, 1729. When creating a new integer object in memory,
CPython first checks whether it’s between -5 and 256. If so, CPython saves
time by simply returning the existing integer object instead of creating a
new one. This behavior also saves memory by not storing duplicate small
integers, as illustrated in Figure 9-1.

Figure 9-1: Python saves memory by using multiple references to a single integer object
(left) instead of separate, duplicate integer objects for each reference (right).

Because of this optimization, certain contrived situations can produce
bizarre results. To see an example of one, enter the following into the inter-
active shell:

>>> a = 256
>>> b = 256

1 >>> a is b
True
>>> c = 257
>>> d = 257

2 >>> c is d
False

https://python.org

Esoteric Python Oddities 155

All 256 objects are really the same object, so the is operator for a and b
returns True 1. But Python created separate 257 objects for c and d, which is
why the is operator returns False 2.

The expression 257 is 257 evaluates to True, but CPython reuses the
integer object made for identical literals in the same statement:

>>> 257 is 257
True

Of course, real-world programs usually only use an integer’s value,
not its identity. They would never use the is operator to compare integers,
floats, strings, bools, or values of other simple data types. One exception
occurs when you use is None instead of == None, as explained in “Use is to
Compare with None Instead of ==” on page 96. Otherwise, you’ll rarely
run into this problem.

String Interning
Similarly, Python reuses objects to represent identical string literals in your
code rather than making separate copies of the same string. To see this in
practice, enter the following into the interactive shell:

>>> spam = 'cat'
>>> eggs = 'cat'
>>> spam is eggs
True
>>> id(spam), id(eggs)
(1285806577904, 1285806577904)

Python notices that the 'cat' string literal assigned to eggs is the same
as the 'cat' string literal assigned to spam; so instead of making a second,
redundant string object, it just assigns eggs a reference to the same string
object that spam uses. This explains why the IDs of their strings are the same.

This optimization is called string interning, and like the preallocated inte-
gers, it’s nothing more than a CPython implementation detail. You should
never write code that relies on it. Also, this optimization won’t catch every
possible identical string. Trying to identify every instance in which you can
use an optimization often takes up more time than the optimization would
save. For example, try creating the 'cat' string from 'c' and 'at' in the inter-
active shell; you’ll notice that CPython creates the final 'cat' string as a new
string object rather than reusing the string object made for spam:

>>> bacon = 'c'
>>> bacon += 'at'
>>> spam is bacon
False
>>> id(spam), id(bacon)
(1285806577904, 1285808207384)

156 Chapter 9

String interning is an optimization technique that interpreters and
compilers use for many different languages. You’ll find further details at
https://en.wikipedia.org/wiki/String_interning.

Python’s Fake Increment and Decrement Operators
In Python, you can increase the value of a variable by 1 or reduce it by 1 using
the augmented assignment operators. The code spam += 1 and spam -= 1 incre-
ments and decrements the numeric values in spam by 1, respectively.

Other languages, such as C++ and JavaScript, have the ++ and -- opera-
tors for incrementing and decrementing. (The name “C++” itself reflects
this; it’s a tongue-in-cheek joke that indicates it’s an enhanced form of the
C language.) Code in C++ and JavaScript could have operations like ++spam or
spam++. Python wisely doesn’t include these operators because they’re notori-
ously susceptible to subtle bugs (as discussed at https://softwareengineering
.stackexchange.com/q/59880).

But it’s perfectly legal to have the following Python code:

>>> spam = --spam
>>> spam
42

The first detail you should notice is that the ++ and -- “operators” in
Python don’t actually increment or decrement the value in spam. Rather, the
leading - is Python’s unary negation operator. It allows you to write code
like this:

>>> spam = 42
>>> -spam
-42

It’s legal to have multiple unary negative operators in front of a value.
Using two of them gives you the negative of the negative of the value, which
for integer values just evaluates to the original value:

>>> spam = 42
>>> -(-spam)
42

This is a very silly operation to perform, and you likely won’t ever see a
unary negation operator used twice in real-world code. (But if you did, it’s
probably because the programmer learned to program in another language
and has just written buggy Python code!)

There is also a + unary operator. It evaluates an integer value to the
same sign as the original value, which is to say, it does absolutely nothing:

>>> spam = 42
>>> +spam
42
>>> spam = -42

https://en.wikipedia.org/wiki/String_interning
https://softwareengineering.stackexchange.com/q/59880
https://softwareengineering.stackexchange.com/q/59880

Esoteric Python Oddities 157

>>> +spam
-42

Writing +42 (or ++42) seems just as silly as --42, so why does Python even
have this unary operator? It exists only to complement the - operator if you
need to overload these operators for your own classes. (That’s a lot of terms
you might not be familiar with! You’ll learn more about operator overload-
ing in Chapter 17.)

The + and - unary operators are only valid when in front of a Python
value, not after it. Although spam++ and spam-- might be legal code in C++ or
JavaScript, they produce syntax errors in Python:

>>> spam++
 File "<stdin>", line 1
 spam++
 ^
SyntaxError: invalid syntax

Python doesn’t have increment and decrement operators. A quirk of
the language syntax merely makes it seem like it does.

All of Nothing
The all() built-in function accepts a sequence value, such as a list, and
returns True if all the values in that sequence are “truthy.” It returns False if
one or more values are “falsey.” You can think of the function call all([False,
True, True]) as equivalent to the expression False and True and True.

You can use all() in conjunction with list comprehensions to first create
a list of Boolean values based on another list and then evaluate their collec-
tive value. For example, enter the following into the interactive shell:

>>> spam = [67, 39, 20, 55, 13, 45, 44]
>>> [i > 42 for i in spam]
[True, False, False, True, False, True, True]
>>> all([i > 42 for i in spam])
False
>>> eggs = [43, 44, 45, 46]
>>> all([i > 42 for i in eggs])
True

The all() utility returns True if all numbers in spam or eggs are greater
than 42.

But if you pass an empty sequence to all(), it always returns True. Enter
the following into the interactive shell:

>>> all([])
True

It’s best to think of all([]) as evaluating the claim “none of the items in
this list are falsey” instead of “all the items in this list are truthy.” Otherwise,

158 Chapter 9

you might get some odd results. For instance, enter the following into the
interactive shell:

>>> spam = []
>>> all([i > 42 for i in spam])
True
>>> all([i < 42 for i in spam])
True
>>> all([i == 42 for i in spam])
True

This code seems to be showing that not only are all the values in spam
(an empty list) greater than 42, but they’re also less than 42 and exactly
equal to 42! This seems logically impossible. But remember that each of
these three list comprehensions evaluates to the empty list, which is why
none of the items in them are falsey and the all() function returns True.

Boolean Values Are Integer Values
Just as Python considers the float value 42.0 to be equal to the integer value
42, it considers the Boolean values True and False to be equivalent to 1 and 0,
respectively. In Python, the bool data type is a subclass of the int data type.
(We’ll cover classes and subclasses in Chapter 16.) You can use int() to con-
vert Boolean values to integers:

>>> int(False)
0
>>> int(True)
1
>>> True == 1
True
>>> False == 0
True

You can also use isinstance() to confirm that a Boolean value is consid-
ered a type of integer:

>>> isinstance(True, bool)
True
>>> isinstance(True, int)
True

The value True is of the bool data type. But because bool is a subclass of
int, True is also an int. This means you can use True and False in almost any
place you can use integers. This can lead to some bizarre code:

>>> True + False + True + True # Same as 1 + 0 + 1 + 1
3
>>> -True # Same as -1.
-1

Esoteric Python Oddities 159

>>> 42 * True # Same as 42 * 1 mathematical multiplication.
42
>>> 'hello' * False # Same as 'hello' * 0 string replication.
' '
>>> 'hello'[False] # Same as 'hello'[0]
'h'
>>> 'hello'[True] # Same as 'hello'[1]
'e'
>>> 'hello'[-True] # Same as 'hello'[-1]
'o'

Of course, just because you can use bool values as numbers doesn’t
mean you should. The previous examples are all unreadable and should
never be used in real-world code. Originally, Python didn’t have a bool data
type. It didn’t add Booleans until Python 2.3, at which point it made bool a
subclass of int to ease the implementation. You can read the history of the
bool data type in PEP 285 at https://www.python.org/dev/peps/pep-0285/.

Incidentally, True and False were only made keywords in Python 3. This
means that in Python 2, it was possible to use True and False as variable
names, leading to seemingly paradoxical code like this:

Python 2.7.14 (v2.7.14:84471935ed, Sep 16 2017, 20:25:58) [MSC v.1500 64 bit
(AMD64)] on win32
Type "help", "copyright", "credits" or "license" for more information.
>>> True is False
False
>>> True = False
>>> True is False
True

Fortunately, this sort of confusing code isn’t possible in Python 3, which
will raise a syntax error if you try to use the keywords True or False as vari-
able names.

Chaining Multiple Kinds of Operators
Chaining different kinds of operators in the same expression can produce
unexpected bugs. For example, this (admittedly unrealistic) example uses
the == and in operators in a single expression:

>>> False == False in [False]
True

This True result is surprising, because you would expect it to evaluate as
either:

•	 (False == False) in [False], which is False.

•	 False == (False in [False]), which is also False.

But False == False in [False] isn’t equivalent to either of these expres-
sions. Rather, it’s equivalent to (False == False) and (False in [False]), just

160 Chapter 9

as 42 < spam < 99 is equivalent to (42 < spam) and (spam < 99). This expression
evaluates according to the following diagram:

(False == False) and (False in [False])

(True) and (False in [False])

(True) and (True)

True

The False == False in [False] expression is a fun Python riddle, but it’s
unlikely to come up in any real-world code.

Python’s Antigravity Feature
To enable Python’s antigravity feature, enter the following into the interac-
tive shell:

>>> import antigravity

This line is a fun Easter egg that opens the web browser to a classic XKCD
comic strip about Python at https://xkcd.com/353/. It might surprise you that
Python can open your web browser, but this is a built-in feature the webbrowser
module provides. Python’s webbrowser module has an open() function that finds
your operating system’s default web browser and opens a browser window to a
specific URL. Enter the following into the interactive shell:

>>> import webbrowser
>>> webbrowser.open('https://xkcd.com/353/')

The webbrowser module is limited, but it can be useful for directing the
user to further information on the internet.

Summary
It’s easy to forget that computers and programming languages are designed
by humans and have their own limitations. So much software is built on top
of and relies upon the creations of language designers and hardware engi-
neers. They work incredibly hard to make sure that if you have a bug in your
program, it’s because your program is faulty, not the interpreter software or
CPU hardware running it. We can end up taking these tools for granted.

But this is why there’s value in learning the odd nooks and crannies of
computers and software. When your code raises errors or crashes (or even
just acts weirdly and makes you think, “that’s odd”), you’ll need to under-
stand the common gotchas to debug these problems.

You almost certainly won’t run into any of the issues brought up in this
chapter, but being aware of these small details is what will make you an
experienced Python programmer.

Functions are like mini programs within
our programs that allow us to break code

into smaller units. This spares us from hav-
ing to write duplicate code, which can intro-

duce bugs. But writing effective functions requires
making many decisions about naming, size, param-
eters, and complexity.

This chapter explores the different ways we can write functions and
the benefits and drawbacks of different trade-offs. We’ll delve into how to
trade off between small and large functions, how the number of parameters
affects the function’s complexity, and how to write functions with variable
numbers of arguments using the * and ** operators. We’ll also explore the
functional programming paradigm and the benefits of writing functions
according to this paradigm.

10
W R I T I N G E F F E C T I V E F U N C T I O N S

162 Chapter 10

Function Names
Function names should follow the same convention we use for identifiers in
general, as described in Chapter 4. But they should usually include a verb,
because functions typically perform some action. You might also include
a noun to describe the thing being acted on. For example, the names
refreshConnection(), setPassword(), and extract_version() clarify what the
function does and to what.

You might not need a noun for methods that are part of a class or mod-
ule. A reset() method in a SatelliteConnection class or an open() function in
the webbrowser module already provides the necessary context. You can tell
that a satellite connection is the item being reset and that a web browser is
the item being opened.

It’s better to use long, descriptive names rather than an acronym or a
name that’s too short. A mathematician might immediately understand that
a function named gcd() returns the greatest common denominator of two
numbers, but everyone else would find getGreatestCommonDenominator() more
informative.

Remember not to use any of Python’s built-in function or module
names, such as all, any, date, email, file, format, hash, id, input, list, min, max,
object, open, random, set, str, sum, test, and type.

Function Size Trade-Offs
Some programmers say that functions should be as short as possible and no
longer than what can fit on a single screen. A function that is only a dozen
lines long is relatively easy to understand, at least compared to one that is
hundreds of lines long. But making functions shorter by splitting up their
code into multiple smaller functions can also have its downsides. Let’s look
at some of the advantages of small functions:

•	 The function’s code is easier to understand.

•	 The function likely requires fewer parameters.

•	 The function is less likely to have side effects, as described in
“Functional Programming” on page 172.

•	 The function is easier to test and debug.

•	 The function likely raises fewer different kinds of exceptions.

But there are also some disadvantages to short functions:

•	 Writing short functions often means a larger number of functions in
the program.

•	 Having more functions means the program is more complicated.

•	 Having more functions also means having to come up with additional
descriptive, accurate names, which is a difficult task.

•	 Using more functions requires you to write more documentation.

•	 The relationships between functions become more complicated.

Writing Effective Functions 163

Some people take the guideline “the shorter, the better” to an extreme
and claim that all functions should be three or four lines of code at most.
This is madness. For example, here’s the getPlayerMove() function from
Chapter 14’s Tower of Hanoi game. The specifics of how this code works are
unimportant. Just look at the function’s general structure:

def getPlayerMove(towers):
 """Asks the player for a move. Returns (fromTower, toTower)."""

 while True: # Keep asking player until they enter a valid move.
 print('Enter the letters of "from" and "to" towers, or QUIT.')
 print("(e.g. AB to moves a disk from tower A to tower B.)")
 print()
 response = input("> ").upper().strip()

 if response == "QUIT":
 print("Thanks for playing!")
 sys.exit()

 # Make sure the user entered valid tower letters:
 if response not in ("AB", "AC", "BA", "BC", "CA", "CB"):
 print("Enter one of AB, AC, BA, BC, CA, or CB.")
 continue # Ask player again for their move.

 # Use more descriptive variable names:
 fromTower, toTower = response[0], response[1]

 if len(towers[fromTower]) == 0:
 # The "from" tower cannot be an empty tower:
 print("You selected a tower with no disks.")
 continue # Ask player again for their move.
 elif len(towers[toTower]) == 0:
 # Any disk can be moved onto an empty "to" tower:
 return fromTower, toTower
 elif towers[toTower][-1] < towers[fromTower][-1]:
 print("Can't put larger disks on top of smaller ones.")
 continue # Ask player again for their move.
 else:
 # This is a valid move, so return the selected towers:
 return fromTower, toTower

This function is 34 lines long. Although it covers multiple tasks, includ-
ing allowing the player to enter a move, checking whether this move is valid,
and asking the player again to enter a move if the move is invalid, these tasks
all fall under the umbrella of getting the player’s move. On the other hand,
if we were devoted to writing short functions, we could break the code in
getPlayerMove() into smaller functions, like this:

def getPlayerMove(towers):
 """Asks the player for a move. Returns (fromTower, toTower)."""

 while True: # Keep asking player until they enter a valid move.
 response = askForPlayerMove()

164 Chapter 10

 terminateIfResponseIsQuit(response)
 if not isValidTowerLetters(response):
 continue # Ask player again for their move.

 # Use more descriptive variable names:
 fromTower, toTower = response[0], response[1]

 if towerWithNoDisksSelected(towers, fromTower):
 continue # Ask player again for their move.
 elif len(towers[toTower]) == 0:
 # Any disk can be moved onto an empty "to" tower:
 return fromTower, toTower
 elif largerDiskIsOnSmallerDisk(towers, fromTower, toTower):
 continue # Ask player again for their move.
 else:
 # This is a valid move, so return the selected towers:
 return fromTower, toTower

def askForPlayerMove():
 """Prompt the player, and return which towers they select."""
 print('Enter the letters of "from" and "to" towers, or QUIT.')
 print("(e.g. AB to moves a disk from tower A to tower B.)")
 print()
 return input("> ").upper().strip()

def terminateIfResponseIsQuit(response):
 """Terminate the program if response is 'QUIT'"""
 if response == "QUIT":
 print("Thanks for playing!")
 sys.exit()

def isValidTowerLetters(towerLetters):
 """Return True if `towerLetters` is valid."""
 if towerLetters not in ("AB", "AC", "BA", "BC", "CA", "CB"):
 print("Enter one of AB, AC, BA, BC, CA, or CB.")
 return False
 return True

def towerWithNoDisksSelected(towers, selectedTower):
 """Return True if `selectedTower` has no disks."""
 if len(towers[selectedTower]) == 0:
 print("You selected a tower with no disks.")
 return True
 return False

def largerDiskIsOnSmallerDisk(towers, fromTower, toTower):
 """Return True if a larger disk would move on a smaller disk."""
 if towers[toTower][-1] < towers[fromTower][-1]:
 print("Can't put larger disks on top of smaller ones.")
 return True
 return False

Writing Effective Functions 165

These six functions are 56 lines long, nearly double the line count of
the original code, but they do the same tasks. Although each function is
easier to understand than the original getPlayerMove() function, the group
of them together represents an increase in complexity. Readers of your
code might have trouble understanding how they all fit together. The
getPlayerMove() function is the only one called by other parts of the pro-
gram; the other five functions are called only once, from getPlayerMove().
But the mass of functions doesn’t convey this fact.

I also had to come up with new names and docstrings (the triple-quoted
strings under each def statement, further explained in Chapter 11) for each
new function. This leads to functions with confusingly similar names, such
as getPlayerMove() and askForPlayerMove(). Also, getPlayerMove() is still longer
than three or four lines, so if I were following the guideline “the shorter, the
better,” I’d need to split it into even smaller functions!

In this case, the policy of allowing only incredibly short functions might
have resulted in simpler functions, but the overall complexity of the pro-
gram increased drastically. In my opinion, functions should be fewer than
30 lines ideally and definitely no longer than 200 lines. Make your func-
tions as short as reasonably possible but not any shorter.

Function Parameters and Arguments
A function’s parameters are the variable names between the parentheses of
the function’s def statement, whereas the arguments are the values between
a function call’s parentheses. The more parameters a function has, the
more configurable and generalized its code can be. But more parameters
also mean greater complexity.

A good rule to adhere to is that zero to three parameters is fine, but
more than five or six is probably too many. Once functions become overly
complicated, it’s best to consider how to split them into smaller functions
with fewer parameters.

Default Arguments
One way to reduce the complexity of your function’s parameters is by pro-
viding default arguments for your parameters. A default argument is a value
used as an argument if the function call doesn’t specify one. If the majority
of function calls use a particular parameter value, we can make that value a
default argument to avoid having to enter it repeatedly in the function call.

We specify a default argument in the def statement, following the
parameter name and an equal sign. For example, in this introduction() func-
tion, a parameter named greeting has the value 'Hello' if the function call
doesn’t specify it:

>>> def introduction(name, greeting='Hello'):
... print(greeting + ', ' + name)
...
>>> introduction('Alice')

166 Chapter 10

Hello, Alice
>>> introduction('Hiro', 'Ohiyo gozaimasu')
Ohiyo gozaimasu, Hiro

When the introduction() function is called without a second argument,
it uses the string 'Hello' by default. Note that parameters with default argu-
ments must always come after parameters without default arguments.

Recall from Chapter 8 that you should avoid using a mutable object, such
as an empty list [] or empty dictionary {}, as the default value. “Don’t Use
Mutable Values for Default Arguments” on page 143 explains the prob-
lem that this approach causes and its solution.

Using * and ** to Pass Arguments to Functions
You can use the * and ** syntax (often pronounced as star and star star) to
pass groups of arguments to functions separately. The * syntax allows you
to pass in the items in an iterable object (such as a list or tuple). The ** syn-
tax allows you to pass in the key-value pairs in a mapping object (such as a
dictionary) as individual arguments.

For example, the print() function can take multiple arguments. It
places a space in between them by default, as the following code shows:

>>> print('cat', 'dog', 'moose')
cat dog moose

These arguments are called positional arguments, because their posi-
tion in the function call determines which argument is assigned to which
parameter. But if you stored these strings in a list and tried to pass the list,
the print() function would think you were trying to print the list as a single
value:

>>> args = ['cat', 'dog', 'moose']
>>> print(args)
['cat', 'dog', 'moose']

Passing the list to print() displays the list, including brackets, quotes,
and comma characters.

One way to print the individual items in the list would be to split the list
into multiple arguments by passing each item’s index to the function indi-
vidually, resulting in code that is harder to read:

>>> # An example of less readable code:
>>> args = ['cat', 'dog', 'moose']
>>> print(args[0], args[1], args[2])
cat dog moose

There’s an easier way to pass these items to print(). You can use the
* syntax to interpret the items in a list (or any other iterable data type)
as individual positional arguments. Enter the following example into the
interactive shell.

Writing Effective Functions 167

>>> args = ['cat', 'dog', 'moose']
>>> print(*args)
cat dog moose

The * syntax allows you pass the list items to a function individually, no
matter how many items are in the list.

You can use the ** syntax to pass mapping data types (such as dictionar-
ies) as individual keyword arguments. Keyword arguments are preceded by a
parameter name and equal sign. For example, the print() function has a sep
keyword argument that specifies a string to put in between the arguments it
displays. It’s set to a single space string ' ' by default. You can assign a keyword
argument to a different value using either an assignment statement or the **
syntax. To see how this works, enter the following into the interactive shell:

>>> print('cat', 'dog', 'moose', sep='-')
cat-dog-moose
>>> kwargsForPrint = {'sep': '-'}
>>> print('cat', 'dog', 'moose', **kwargsForPrint)
cat-dog-moose

Notice that these instructions produce identical output. In the example,
we used only one line of code to set up the kwargsForPrint dictionary. But for
more complex cases, you might need more code to set up a dictionary of key-
word arguments. The ** syntax allows you to create a custom dictionary of
configuration settings to pass to a function call. This is useful especially for
functions and methods that accept a large number of keyword arguments.

By modifying a list or dictionary at runtime, you can supply a variable
number of arguments for a function call using the * and ** syntax.

Using * to Create Variadic Functions
You can also use the * syntax in def statements to create variadic or varargs
functions that receive a varying number of positional arguments. For instance,
print() is a variadic function, because you can pass any number of strings
to it: print('Hello!') or print('My name is', name), for example. Note that
although we used the * syntax in function calls in the previous section, we
use the * syntax in function definitions in this section.

Let’s look at an example by creating a product() function that takes any
number of arguments and multiplies them together:

>>> def product(*args):
... result = 1
... for num in args:
... result *= num
... return result
...
>>> product(3, 3)
9
>>> product(2, 1, 2, 3)
12

168 Chapter 10

Inside the function, args is just a regular Python tuple containing all
the positional arguments. Technically, you can name this parameter any-
thing, as long as it begins with the star (*), but it’s usually named args by
convention.

Knowing when to use the * takes some thought. After all, the alterna-
tive to making a variadic function is to have a single parameter that accepts
a list (or other iterable data type), which contains a varying number of
items. This is what the built-in sum() function does:

>>> sum([2, 1, 2, 3])
8

The sum() function expects one iterable argument, so passing it mul-
tiple arguments results in an exception:

>>> sum(2, 1, 2, 3)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: sum() takes at most 2 arguments (4 given)

Meanwhile, the built-in min() and max() functions, which find the mini-
mum or maximum value of several values, accept a single iterable argument
or multiple separate arguments:

>>> min([2, 1, 3, 5, 8])
1
>>> min(2, 1, 3, 5, 8)
1
>>> max([2, 1, 3, 5, 8])
8
>>> max(2, 1, 3, 5, 8)
8

All of these functions take a varying number of arguments, so why are
their parameters designed differently? And when should we design func-
tions to take a single iterable argument or multiple separate arguments
using the * syntax?

How we design our parameters depends on how we predict a pro
grammer will use our code. The print() function takes multiple arguments
because programmers more often pass a series of strings, or variables that
contain strings, to it, as in print('My name is', name). It isn’t as common to col-
lect these strings into a list over several steps and then pass the list to print().
Also, if you passed a list to print(), the function would print that list value in
its entirety, so you can’t use it to print the individual values in the list.

There’s no reason to call sum() with separate arguments because Python
already uses the + operator for that. Because you can write code like 2 + 4 + 8,
you don’t need to be able to write code like sum(2, 4, 8). It makes sense
that you must pass the varying number of arguments only as a list to sum().

Writing Effective Functions 169

The min() and max() functions allow both styles. If the programmer
passes one argument, the function assumes it’s a list or tuple of values to
inspect. If the programmer passes multiple arguments, it assumes these are
the values to inspect. These two functions commonly handle lists of values
while the program is running, as in the function call min(allExpenses). They
also deal with separate arguments the programmer selects while writing the
code, such as in max(0, someNumber). Therefore, the functions are designed to
accept both kinds of arguments. The following myMinFunction(), which is my
own implementation of the min() function, demonstrates this:

def myMinFunction(*args):
 if len(args) == 1:

 1 values = args[0]
 else:

 2 values = args

 if len(values) == 0:
 3 raise ValueError('myMinFunction() args is an empty sequence')

 4 for i, value in enumerate(values):
 if i == 0 or value < smallestValue:
 smallestValue = value
 return smallestValue

The myMinFunction() uses the * syntax to accept a varying number of
arguments as a tuple. If this tuple contains only one value, we assume it’s a
sequence of values to inspect 1. Otherwise, we assume that args is a tuple of
values to inspect 2. Either way, the values variable will contain a sequence
of values for the rest of the code to inspect. Like the actual min() function,
we raise ValueError if the caller didn’t pass any arguments or passed an
empty sequence 3. The rest of the code loops through values and returns
the smallest value found 4. To keep this example simple, myMinFunction()
accepts only sequences like lists or tuples rather than any iterable value.

You might wonder why we don’t always write functions to accept both
ways of passing a varying number of arguments. The answer is that it’s best
to keep your functions as simple as possible. Unless both ways of calling the
function are common, choose one over the other. If a function usually deals
with a data structure created while the program is running, it’s better to have
it accept a single parameter. If a function usually deals with arguments that
the programmer specifies while writing the code, it’s better to use the * syn-
tax to accept a varying number of arguments.

Using ** to Create Variadic Functions
Variadic functions can use the ** syntax, too. Although the * syntax in def
statements represents a varying number of positional arguments, the ** syn-
tax represents a varying number of optional keyword arguments.

If you define a function that could take numerous optional keyword
arguments without using the ** syntax, your def statement could become

170 Chapter 10

unwieldy. Consider a hypothetical formMolecule() function, which has param-
eters for all 118 known elements:

>>> def formMolecule(hydrogen, helium, lithium, beryllium, boron, --snip--

Passing 2 for the hydrogen parameter and 1 for the oxygen parameter to
return 'water' would also be burdensome and unreadable, because you’d
have to set all of the irrelevant elements to zero:

>>> formMolecule(2, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0 --snip--
'water'

You could make the function more manageable by using named key-
word parameters that each have a default argument, freeing you from hav-
ing to pass that parameter an argument in a function call.

N O T E 	 Although the terms argument and parameter are well defined, programmers tend
to use keyword argument and keyword parameter interchangeably.

For example, this def statement has default arguments of 0 for each of
the keyword parameters:

>>> def formMolecule(hydrogen=0, helium=0, lithium=0, beryllium=0, --snip--

This makes calling formMolecule() easier, because you only need to spec-
ify arguments for parameters that have a different value than the default
argument. You can also specify the keyword arguments in any order:

>>> formMolecule(hydrogen=2, oxygen=1)
'water'
>>> formMolecule(oxygen=1, hydrogen=2)
'water'
>>> formMolecule(carbon=8, hydrogen=10, nitrogen=4, oxygen=2)
'caffeine'

But you still have an unwieldy def statement with 118 parameter names.
And what if new elements were discovered? You’d have to update the function’s
def statement along with any documentation of the function’s parameters.

Instead, you can collect all the parameters and their arguments as
key-value pairs in a dictionary using the ** syntax for keyword arguments.
Technically, you can name the ** parameter anything, but it’s usually
named kwargs by convention:

>>> def formMolecules(**kwargs):
... if len(kwargs) == 2 and kwargs['hydrogen'] == 2 and
 kwargs['oxygen'] == 1:
... return 'water'
... # (rest of code for the function goes here)
...
>>> formMolecules(hydrogen=2, oxygen=1)
'water'

Writing Effective Functions 171

The ** syntax indicates that the kwargs parameter can handle all key-
word arguments passed in a function call. They’ll be stored as key-value
pairs in a dictionary assigned to the kwargs parameter. As new chemical ele-
ments are discovered, you’d need to update the function’s code but not its
def statement, because all keyword arguments are put into kwargs:

1 >>> def formMolecules(**kwargs):
2 ... if len(kwargs) == 1 and kwargs.get('unobtanium') == 12:

... return 'aether'

... # (rest of code for the function goes here)

...
>>> formMolecules(unobtanium=12)
'aether'

As you can see, the def statement 1 is the same as before, and only the
function’s code 2 needed updating. When you use the ** syntax, the def
statement and the function calls become much simpler to write and still
produce readable code.

Using * and ** to Create Wrapper Functions
A common use case for the * and ** syntax in def statements is to create
wrapper functions, which pass on arguments to another function and
return that function’s return value. You can use the * and ** syntax to for-
ward any and all arguments to the wrapped function. For example, we can
create a printLowercase() function that wraps the built-in print() function.
It relies on print() to do the real work but converts the string arguments to
lowercase first:

1 >>> def printLower(*args, **kwargs):
2 ... args = list(args)

... for i, value in enumerate(args):

... args[i] = str(value).lower()
3 ... return print(*args, **kwargs)

...
>>> name = 'Albert'
>>> printLower('Hello,', name)
hello, albert
>>> printLower('DOG', 'CAT', 'MOOSE', sep=', ')
dog, cat, moose

The printLower() function 1 uses the * syntax to accept a varying
number of positional arguments in a tuple assigned to the args parameter,
whereas the ** syntax assigns any keyword arguments to a dictionary in the
kwargs parameter. If a function uses *args and **kwargs together, the *args
parameter must come before the **kwargs parameter. We pass these on to
the wrapped print() function, but first our function modifies some of the
arguments, so we create a list form of the args tuple 2.

After changing the strings in args to lowercase, we pass the items in args
and key-value pairs in kwargs as separate arguments to print() using the *

172 Chapter 10

and ** syntax 3. The return value of print() also gets returned as the return
value of printLower(). These steps effectively wrap the print() function.

Functional Programming
Functional programming is a programming paradigm that emphasizes
writing functions that perform calculations without modifying global vari-
ables or any external state (such as files on the hard drive, internet connec-
tions, or databases). Some programming languages, such as Erlang, Lisp,
and Haskell, are heavily designed around functional programming con-
cepts. Although not shackled to the paradigm, Python has some functional
programming features. The main ones that Python programs can use are
side-effect-free functions, higher-order functions, and lambda functions.

Side Effects
Side effects are any changes a function makes to the parts of the program
that exist outside of its own code and local variables. To illustrate this,
let’s create a subtract() function that implements Python’s subtraction
operator (-):

>>> def subtract(number1, number2):
... return number1 - number2
...
>>> subtract(123, 987)
-864

This subtract() function has no side effects. That is, it doesn’t affect any-
thing in the program that isn’t a part of its code. There’s no way to tell from
the program’s or the computer’s state whether the subtract() function has
been called once, twice, or a million times before. A function might modify
local variables inside the function, but these changes remain isolated from
the rest of the program.

Now consider an addToTotal() function, which adds the numeric argu-
ment to a global variable named TOTAL:

>>> TOTAL = 0
>>> def addToTotal(amount):
... global TOTAL
... TOTAL += amount
... return TOTAL
...
>>> addToTotal(10)
10
>>> addToTotal(10)
20
>>> addToTotal(9999)
10019
>>> TOTAL
10019

Writing Effective Functions 173

The addToTotal() function does have a side effect, because it modifies
an element that exists outside of the function: the TOTAL global variable.
Side effects can be more than changes to global variables. They include
updating or deleting files, printing text onscreen, opening a database con-
nection, authenticating to a server, or making any other change outside of
the function. Any trace that a function call leaves behind after returning is
a side effect.

Side effects can also include making in-place changes to mutable
objects referred to outside of the function. For example, the following
removeLastCatFromList() function modifies the list argument in-place:

>>> def removeLastCatFromList(petSpecies):
... if len(petSpecies) > 0 and petSpecies[-1] == 'cat':
... petSpecies.pop()
...
>>> myPets = ['dog', 'cat', 'bird', 'cat']
>>> removeLastCatFromList(myPets)
>>> myPets
['dog', 'cat', 'bird']

In this example, the myPets variable and petSpecies parameter hold ref-
erences to the same list. Any in-place modifications made to the list object
inside the function would also exist outside the function, making this modi-
fication a side effect.

A related concept, a deterministic function, always returns the same
return value given the same arguments. The subtract(123, 987) function call
always returns −864. Python’s built-in round() function always returns 3 when
passed 3.14 as an argument. A nondeterministic function won’t always return
the same values when passed the same arguments. For example, calling
random.randint(1, 10) returns a random integer between 1 and 10. The time.
time() function has no arguments, but it returns a different value depend-
ing on what your computer’s clock is set to when the function was called. In
the case of time.time(), the clock is an external resource that is effectively
an input into the function the same way an argument is. Functions that
depend on resources external to the function (including global variables,
files on the hard drive, databases, and internet connections) are not consid-
ered deterministic.

One benefit of deterministic functions is that you can cache their val-
ues. There’s no need for subtract() to calculate the difference of 123 and 987
more than once if it can remember the return value from the first time it’s
called with those arguments. Therefore, deterministic functions allow us
to make a space-time trade-off, quickening the runtime of a function by using
space in memory to cache previous results.

A function that is deterministic and free of side effects is called a pure
function. Functional programmers strive to create only pure functions in
their programs. In addition to those already noted, pure functions offer
several benefits:

•	 They’re well suited for unit testing, because they don’t require you to
set up any external resources.

174 Chapter 10

•	 It’s easy to reproduce bugs in a pure function by calling the function
with the same arguments.

•	 Pure functions can call other pure functions and remain pure.

•	 In multithreaded programs, pure functions are thread-safe and can safely
run concurrently. (Multithreading is beyond the scope of this book.)

•	 Multiple calls to pure functions can run on parallel CPU cores or in a
multithreaded program because they don’t have to depend on any exter-
nal resources that require them to be run in any particular sequence.

You can and should write pure functions in Python whenever possible.
Python functions are made pure by convention only; there’s no setting that
causes the Python interpreter to enforce purity. The most common way to
make your functions pure is to avoid using global variables in them and
ensure they don’t interact with files, the internet, the system clock, random
numbers, or other external resources.

Higher-Order Functions
Higher-order functions can accept other functions as arguments or return
functions as return values. For example, let’s define a function named
callItTwice() that will call a given function twice:

>>> def callItTwice(func, *args, **kwargs):
... func(*args, **kwargs)
... func(*args, **kwargs)
...
>>> callItTwice(print, 'Hello, world!')
Hello, world!
Hello, world!

The callItTwice() function works with any function it’s passed. In
Python, functions are first-class objects, meaning they’re like any other object:
you can store functions in variables, pass them as arguments, or use them
as return values.

Lambda Functions
Lambda functions, also known as anonymous functions or nameless functions,
are simplified functions that have no names and whose code consists solely
of one return statement. We often use lambda functions when passing func-
tions as arguments to other functions.

For example, we could create a normal function that accepts a list con-
taining a 4 by 10 rectangle’s width and height, like this:

>>> def rectanglePerimeter(rect):
... return (rect[0] * 2) + (rect[1] * 2)
...
>>> myRectangle = [4, 10]
>>> rectanglePerimeter(myRectangle)
28

Writing Effective Functions 175

The equivalent lambda function would look like this:

lambda rect: (rect[0] * 2) + (rect[1] * 2)

To define a Python lambda function, use the lambda keyword, followed
by a comma-delimited list of parameters (if any), a colon, and then an
expression that acts as the return value. Because functions are first-class
objects, you can assign a lambda function to a variable, effectively replicat-
ing what a def statement does:

>>> rectanglePerimeter = lambda rect: (rect[0] * 2) + (rect[1] * 2)
>>> rectanglePerimeter([4, 10])
28

We assigned this lambda function to a variable named rectanglePerimeter,
essentially giving us a rectanglePerimeter() function. As you can see, func-
tions created by lambda statements are the same as functions created by def
statements.

N O T E 	 In real-world code, use def statements rather than assigning lambda functions to a
constant variable. Lambda functions are specifically made for situations in which a
function doesn’t need a name.

The lambda function syntax is helpful for specifying small functions
to serve as arguments to other function calls. For example, the sorted()
function has a keyword argument named key that lets you specify a func-
tion. Instead of sorting items in a list based on the item’s value, it sorts
them based on the function’s return value. In the following example, we
pass sorted() a lambda function that returns the perimeter of the given
rectangle. This makes the sorted() function sort based on the calculated
perimeter of its [width, height] list rather than based directly on the [width,
height] list:

>>> rects = [[10, 2], [3, 6], [2, 4], [3, 9], [10, 7], [9, 9]]
>>> sorted(rects, key=lambda rect: (rect[0] * 2) + (rect[1] * 2))
[[2, 4], [3, 6], [10, 2], [3, 9], [10, 7], [9, 9]]

Rather than sorting the values [10, 2] or [3, 6], for example, the func-
tion now sorts based on the returned perimeter integers 24 and 18. Lambda
functions are a convenient syntactic shortcut: you can specify a small one-
line lambda function instead of defining a new, named function with a def
statement.

Mapping and Filtering with List Comprehensions
In earlier Python versions, the map() and filter() functions were common
higher-order functions that could transform and filter lists, often with

176 Chapter 10

the help of lambda functions. Mapping could create a list of values based
on the values of another list. Filtering could create a list that contained only
the values from another list that match some criteria.

For example, if you wanted to create a new list that had strings instead
of the integers [8, 16, 18, 19, 12, 1, 6, 7], you could pass that list and
lambda n: str(n) to the map() function:

>>> mapObj = map(lambda n: str(n), [8, 16, 18, 19, 12, 1, 6, 7])
>>> list(mapObj)
['8', '16', '18', '19', '12', '1', '6', '7']

The map() function returns a map object, which we can get in list form by
passing it to the list() function. The mapped list now contains string values
based on the original list’s integer values. The filter() function is similar,
but here, the lambda function argument determines which items in the list
remain (if the lambda function returns True) or are filtered out (if it returns
False). For example, we could pass lambda n: n % 2 == 0 to filter out any odd
integers:

>>> filterObj = filter(lambda n: n % 2 == 0, [8, 16, 18, 19, 12, 1, 6, 7])
>>> list(filterObj)
[8, 16, 18, 12, 6]

The filter() function returns a filter object, which we can once again
pass to the list() function. Only the even integers remain in the filtered list.

But the map() and filter() functions are outdated ways to create
mapped or filtered lists in Python. Instead, you can now create them with
list comprehensions. List comprehensions not only free you from writing
out a lambda function, but are also faster than map() and filter().

Here we replicate the map() function example using a list comprehension:

>>> [str(n) for n in [8, 16, 18, 19, 12, 1, 6, 7]]
['8', '16', '18', '19', '12', '1', '6', '7']

Notice that the str(n) part of the list comprehension is similar to lambda
n: str(n).

And here we replicate the filter() function example using a list
comprehension:

>>> [n for n in [8, 16, 18, 19, 12, 1, 6, 7] if n % 2 == 0]
[8, 16, 18, 12, 6]

Notice that the if n % 2 == 0 part of the list comprehension is similar to
lambda n: n % 2 == 0.

Many languages have a concept of functions as first-class objects, allow-
ing for the existence of higher-order functions, including mapping and
filtering functions.

Writing Effective Functions 177

Return Values Should Always Have the Same Data Type
Python is a dynamically typed language, which means that Python func-
tions and methods are free to return values of any data type. But to make
your functions more predictable, you should strive to have them return val-
ues of only a single data type.

For example, here’s a function that, depending on a random number,
returns either an integer value or a string value:

>>> import random
>>> def returnsTwoTypes():
... if random.randint(1, 2) == 1:
... return 42
... else:
... return 'forty two'

When you’re writing code that calls this function, it can be easy to
forget that you must handle several possible data types. To continue this
example, say we call returnsTwoTypes() and want to convert the number that it
returns to hexadecimal:

>>> hexNum = hex(returnsTwoTypes())
>>> hexNum
'0x2a'

Python’s built-in hex() function returns a string of a hexadecimal
number of the integer value it was passed. This code works fine as long
as returnsTwoTypes() returns an integer, giving us the impression that this
code is bug free. But when returnsTwoTypes() returns a string, it raises an
exception:

>>> hexNum = hex(returnsTwoTypes())
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: 'str' object cannot be interpreted as an integer

Of course, we should always remember to handle every possible data
type that the return value could have. But in the real world, it’s easy to for-
get this. To prevent these bugs, we should always attempt to make functions
return values of a single data type. This isn’t a strict requirement, and some-
times there’s no way around having your function return values of different
data types. But the closer you get to returning only one type, the simpler
and less bug prone your functions will be.

There is one case in particular to be aware of: don’t return None from
your function unless your function always returns None. The None value is the
only value in the NoneType data type. It’s tempting to have a function return
None to signify that an error occurred (I discuss this practice in the next
section, “Raising Exceptions vs. Returning Error Codes”), but you should
reserve returning None for functions that have no meaningful return value.

178 Chapter 10

The reason is that returning None to indicate an error is a common
source of uncaught 'NoneType' object has no attribute exceptions:

>>> import random
>>> def sometimesReturnsNone():
... if random.randint(1, 2) == 1:
... return 'Hello!'
... else:
... return None
...
>>> returnVal = sometimesReturnsNone()
>>> returnVal.upper()
'HELLO!'
>>> returnVal = sometimesReturnsNone()
>>> returnVal.upper()
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
AttributeError: 'NoneType' object has no attribute 'upper'

This error message is rather vague, and it could take some effort to
trace its cause back to a function that normally returns an expected result
but could also return None when an error happens. The problem occurred
because sometimesReturnsNone() returned None, which we then assigned to the
returnVal variable. But the error message would lead you to think the prob-
lem occurred in the call to the upper() method.

In a 2009 conference talk, computer scientist Tony Hoare apologized for
inventing the null reference (the general analogous value to Python’s None
value) in 1965, saying “I call it my billion dollar mistake. […] I couldn’t resist
the temptation to put in a null reference, simply because it was so easy to
implement. This has led to innumerable errors, vulnerabilities, and system
crashes, which have probably caused a billion dollars of pain and damage
in the last 40 years.” You can view his full talk online at https://autbor.com/
billiondollarmistake.

Raising Exceptions vs. Returning Error Codes
In Python, the meanings of the terms exception and error are roughly the
same: an exceptional circumstance in your program that usually indicates a
problem. Exceptions became popular as a programming language feature
in the 1980s and 1990s with C++ and Java. They replaced the use of error
codes, which are values returned from functions to indicate a problem. The
benefit of exceptions is that return values are only related to the function’s
purpose instead of also indicating the presence of errors.

Error codes can also cause issues in your program. For example, Python’s
find() string method normally returns the index where it found a substring,
and if it’s unable to find it, it returns -1 as an error code. But because we can
also use -1 to specify the index from the end of a string, inadvertently using
-1 as an error code might introduce a bug. Enter the following in the interac-
tive shell to see how this works.

https://autbor.com/billiondollarmistake
https://autbor.com/billiondollarmistake

Writing Effective Functions 179

>>> print('Letters after b in "Albert":', 'Albert'['Albert'.find('b') + 1:])
Letters after b in "Albert": ert
>>> print('Letters after x in "Albert":', 'Albert'['Albert'.find('x') + 1:])
Letters after x in "Albert": Albert

The 'Albert'.find('x') part of the code evaluates to the error code -1.
That makes the expression 'Albert'['Albert'.find('x') + 1:] evaluate to
'Albert'[-1 + 1:], which further evaluates to 'Albert'[0:] and then to 'Albert'.
Obviously, this isn’t the code’s intended behavior. Calling index() instead of
find(), as in 'Albert'['Albert'.index('x') + 1:], would have raised an excep-
tion, making the problem obvious and unignorable.

The index() string method, on the other hand, raises a ValueError excep-
tion if it’s unable to find a substring. If you don’t handle this exception, it
will crash the program—behavior that is often preferable to not noticing
the error.

The names of exception classes often end with “Error” when the excep-
tion indicates an actual error, such as ValueError, NameError, or SyntaxError.
Exception classes that represent exceptional cases that aren’t necessarily
errors include StopIteration, KeyboardInterrupt, or SystemExit.

Summary
Functions are a common way of grouping our programs’ code together,
and they require you to make certain decisions: what to name them, how
big to make them, how many parameters they should have, and how many
arguments you should pass for those parameters. The * and ** syntax in
def statements allows functions to receive a varying number of parameters,
making them variadic functions.

Although not a functional programming language, Python has many
features that functional programming languages use. Functions are first-
class objects, meaning you can store them in variables and pass them as
arguments to other functions (which are called higher-order functions in
this context). Lambda functions offer a short syntax for specifying name-
less, anonymous functions as the arguments for higher-order functions.
The most common higher-order functions in Python are map() and filter(),
although you can execute the functionality they provide faster with list
comprehensions.

The return values of your functions should always be the same data type.
You shouldn’t use return values as error codes: exceptions are for indicating
errors. The None value in particular is often mistakenly used as an error code.

The comments and documentation in your
source code can be just as important as the

code. The reason is that software is never
finished; you’ll always need to make changes,

whether you’re adding new features or fixing bugs. But
you can’t change code unless you understand it, so it’s
important that you keep it in a readable state. As com-
puter scientists Harold Abelson, Gerald Jay Sussman,
and Julie Sussman once wrote, “Programs must be
written for people to read, and only incidentally for
machines to execute.”

Comments, docstrings, and type hints help you maintain your code’s legibil-
ity. Comments are short, plain-English explanations that you write directly
in the source code and the computer ignores them. Comments offer help-
ful notes, warnings, and reminders to others who didn’t write the code, or

11
C O M M E N T S , D O C S T R I N G S ,

A N D T Y P E H I N T S

182 Chapter 11

sometimes even to the code’s programmer in the future. Almost every pro-
grammer has asked themselves, “Who wrote this unreadable mess?” only to
find the answer is, “I did.”

Docstrings are a Python-specific form of documentation for your func-
tions, methods, and modules. When you specify comments in the docstring
format, automated tools, such as documentation generators or Python’s
built-in help() module, make it easy for developers to find information
about your code.

Type hints are directives you can add to your Python source code to
specify the data types of variables, parameters, and return values. This
allows static code analysis tools to verify that your code won’t generate any
exceptions due to incorrectly typed values. Type hints first appeared in
Python 3.5, but because they’re based on comments, you can use them in
any Python version.

This chapter focuses on the aforementioned three techniques for
embedding documentation inside your code to make it more readable.
External documentation, such as user manuals, online tutorials, and refer-
ence materials, are important but not covered in this book. If you want to
learn more about external documentation, check out the Sphinx documen-
tation generator at https://www.sphinx-doc.org/.

Comments
Like most programming languages, Python supports single-line comments
and multiline comments. Any text that appears between the number sign #
and the end of the line is a single-line comment. Although Python doesn’t
have a dedicated syntax for multiline comments, a triple-quotes multiline
string can serve as one. After all, a string value by itself doesn’t cause the
Python interpreter to do anything. Look at this example:

This is a single-line comment.

"""This is a
multiline string that
also works as a multiline comment. """

If your comment spans multiple lines, it’s better to use a single multi-
line comment than several consecutive single-line comments, which are
harder to read, as you can see here:

"""This is a good way
to write a comment
that spans multiple lines. """
This is not a good way
to write a comment
that spans multiple lines.

Comments, Docstrings, and Type Hints 183

Comments and documentation are often afterthoughts in the program-
ming process or are even considered by some to do more harm than good.
But as “Myth: Comments Are Unnecessary” on page 83 explained, com-
ments are not optional if you want to write professional, readable code. In
this section, we’ll write useful comments that inform the reader without
detracting from the program’s readability.

Comment Style
Let’s look at some comments that follow good style practices:

1 # Here is a comment about this code:
someCode()

2 # Here is a lengthier block comment that spans multiple lines using
several single-line comments in a row.

3 #
These are known as block comments.

if someCondition:
 4 # Here is a comment about some other code:
 5 someOtherCode() # Here is an inline comment.

Comments should generally exist on their own line rather than at the
end of a line of code. Most of the time, they should be complete sentences
with appropriate capitalization and punctuation rather than phrases or
single words 1. The exception is that comments should obey the same
line-length limits that the source code does. Comments that span multiple
lines 2 can use multiple single-line comments in a row, known as block com-
ments. We separate paragraphs in block comments using a blank, single-line
comment 3. Comments should have the same level of indentation as the
code they’re commenting 4. Comments that follow a line of code are
called inline comments 5 and at least two spaces should separate the code
from the comment.

Single-line comments should have one space after the # sign:

#Don't write comments immediately after the # sign.

Comments can include links to URLs with related information, but
links should never replace comments because linked content could disap-
pear from the internet at any time:

Here is a detailed explanation about some aspect of the code
that is supplemented by a URL. More info at https://example.com

The aforementioned conventions are matters of style rather than con-
tent, but they contribute to the comments’ readability. The more readable
your comments are, the more likely programmers will pay attention to
them, and comments are only useful if programmers read them.

184 Chapter 11

Inline Comments
Inline comments come at the end of a line of code, as in the following case:

 while True: # Keep asking player until they enter a valid move.

Inline comments are brief so they fit within the line-length limits set
by the program’s style guide. This means they can easily end up being too
short to provide enough information. If you do decide to use inline com-
ments, make sure the comment describes only the line of code it imme-
diately follows. If your inline comment requires more space or describes
additional lines of code, put it on its own line.

One common and appropriate use of inline comments is to explain the
purpose of a variable or give some other kind of context for it. These inline
comments are written on the assignment statement that creates the variable:

TOTAL_DISKS = 5 # More disks means a more difficult puzzle.

Another common use of inline comments is to add context about the
values of variables when you create them:

month = 2 # Months range from 0 (Jan) to 11 (Dec).
catWeight = 4.9 # Weight is in kilograms.
website = 'inventwithpython.com' # Don't include "https://" at front.

Inline comments should not specify the variable’s data type, because
this is obvious from the assignment statement, unless it’s done in the com-
ment form of a type hint, as described in “Backporting Type Hints with
Comments” later in this chapter.

Explanatory Comments
In general, comments should explain why code is written the way it is rather
than what the code does or how it does what it does. Even with the proper code
style and useful naming conventions covered in Chapters 3 and 4, the actual
code can’t explain the original programmer’s intentions. If you wrote the code,
you might even forget details about it after a few weeks. Present You should
write informative code comments to prevent Future You from cursing Past You.

For example, here’s an unhelpful comment that explains what the code
is doing. Rather than hinting at the motivation for this code, it states the
obvious:

>>> currentWeekWages *= 1.5 # Multiply the current week's wages by 1.5

This comment is worse than useless. It’s obvious from the code that
the currentWeekWages variable is being multiplied by 1.5, so omitting the com-
ment entirely would simplify your code. The following would be a much bet-
ter comment:

>>> currentWeekWages *= 1.5 # Account for time-and-a-half wage rate.

Comments, Docstrings, and Type Hints 185

This comment explains the intention behind this line of code rather
than repeating how the code works. It provides context that even well-
written code cannot.

Summary Comments
Explaining the programmer’s intent isn’t the only way comments can be use-
ful. Brief comments that summarize several lines of code allow the reader to
skim the source code and get a general idea of what it does. Programmers
often use a blank space to separate “paragraphs” of code from each other,
and the summarizing comments usually occupy one line at the start of these
paragraphs. Unlike one-line comments that explain single lines of code, the
summarizing comments describe what the code does at a higher level of
abstraction.

For example, you can tell from reading these four lines of code that
they set the playerTurn variable to a value representing the opposite player.
But the short, single-line comment spares the reader from having to read
and reason about the code to understand the purpose of doing this:

Switch turns to other player:
if playerTurn == PLAYER_X:
 playerTurn = PLAYER_O
elif playerTurn == PLAYER_O:
 playerTurn = PLAYER_X

A scattering of these summary comments throughout your program
makes it much easier to skim. The programmer can then take a closer look
at any particular points of interest. Summary comments can also prevent
programmers from developing a misleading idea about what the code does.
A brief, summarizing comment can confirm that the developer properly
understood how the code works.

“Lessons Learned” Comments
When I worked at a software company, I was once asked to adapt a graph
library so it could handle the real-time updates of millions of data points
in a chart. The library we were using could either update graphs in real
time or support graphs with millions of data points, but not both. I thought
I could finish the task in a few days. By the third week, I was still convinced
that I could finish in a few days. Each day, the solution seemed to be just
around the corner, and during the fifth week I had a working prototype.

During this entire process, I learned a lot of details about how the graph-
ing library worked and what its capabilities and limitations were. I then spent
a few hours writing up these details into a page-long comment that I placed
in the source code. I knew that anyone else who needed to make changes to
my code later would encounter all the same, seemingly simple issues I had,
and that the documentation I was writing would save them literally weeks
of effort.

186 Chapter 11

These lessons-learned comments, as I call them, might span several
paragraphs, making them seem out of place in a source code file. But
the information they contain is gold for anyone who needs to maintain
this code. Don’t be afraid to write lengthy, detailed comments in your
source code file to explain how something works. To other program-
mers, many of these details will be unknown, misunderstood, or easily
overlooked. Software developers who don’t need them can easily skip
past them, but developers who do need them will be grateful for them.
Remember that, as with other comments, a lessons-learned comment is
not the same as module or function documentation (which docstrings
handle). It also isn’t a tutorial or how-to guide aimed at users of the soft-
ware. Instead, lessons-learned comments are for developers reading the
source code.

Because my lessons-learned comment concerned an open source graph
library and could be useful to others, I took a moment to post it as an answer
to the public question-and-answer site https://stackoverflow.org, where others
in a similar situation could find it.

Legal Comments
Some software companies or open source projects have a policy of includ-
ing copyright, software license, and authorship information in comments at
the top of each source code file for legal reasons. These annotations should
consist of a few lines at most and look something like this:

"""Cat Herder 3.0 Copyright (C) 2021 Al Sweigart. All rights reserved.
See license.txt for the full text."""

If possible, refer to an external document or website that contains the
full text of the license rather than including the entire lengthy license at
the top of every source code file. It’s tiring to have to scroll past several
screen lengths of text whenever you open a source code file, and including
the full license doesn’t provide additional legal protection.

Professional Comments
At my first software job, a senior co-worker I greatly respected took me aside
and explained that because we sometimes released our products’ source
code to clients, it was important that the comments maintain a professional
tone. Apparently, I had written “WTF” in one of the comments for an espe-
cially frustrating part of the code. I felt embarrassed, immediately apolo-
gized, and edited the comment. Since that moment, I’ve kept my code, even
for personal projects, at a certain level of professionalism.

You might be tempted to add levity or vent your frustrations in your
program’s comments, but make it a habit to avoid doing so. You don’t know
who will read your code in the future, and it’s easy to misinterpret the tone
of a text. As explained in “Avoid Jokes, Puns, and Cultural References” on
page 64, the best policy is to write your comments in a polite, direct, and
humorless tone.

https://stackoverflow.org

Comments, Docstrings, and Type Hints 187

Codetags and TODO Comments
Programmers sometimes leave short comments to remind themselves about
work that remains to be done. This usually takes the form of a codetag:
a comment with an all-uppercase label, such as TODO, followed by a short
description. Ideally, you would use project management tools to track these
sorts of issues rather than burying them deep in the source code. But for
smaller, personal projects that aren’t using such tools, the occasional TODO
comment can serve as a helpful reminder. Here’s an example:

_chargeIonFluxStream() # TODO: Investigate why this fails every Tuesday.

You can use a few different codetags for these reminders:

TODO  Introduces a general reminder about work that needs to be done

FIXME  Introduces a reminder that this part of the code doesn’t
entirely work

HACK  Introduces a reminder that this part of the code works, perhaps
barely, but that the code should be improved

XXX  Introduces a general warning, often of high severity

You should follow these always-uppercase labels with more specific
descriptions of the task or problem at hand. Later, you can search the
source code for the labels to find the code that needs fixing. The downside
is that you can easily forget about these reminders unless you happen to be
reading the section of your code that they’re in. Codetags shouldn’t replace
a formal issue tracker or bug reporter tool. If you do use a codetag in your
code, I recommend keeping it simple: use only TODO and forgo the others.

Magic Comments and Source File Encoding
You might have seen .py source files with something like the following lines
at the top:

1 #!/usr/bin/env python3
2 # -*- coding: utf-8 -*-

These magic comments, which always appear at the top of the file, pro-
vide interpreter or encoding information. The shebang line 1 (introduced
in Chapter 2) tells your operating system which interpreter to use to run
the instructions in the file.

The second magic comment is an encoding definition line 2. In this
case, the line defines UTF-8 as the Unicode encoding scheme to use for the
source file. You almost never need to include this line, because most editors
and IDEs already save source code files in the UTF-8 encoding, and Python
versions starting with Python 3.0 treat UTF-8 as the defined encoding by
default. Files encoded in UTF-8 can contain any character, so your .py source
file will be just fine whether it includes English, Chinese, or Arabic letters.

188 Chapter 11

For an introduction to Unicode and string encodings, I highly recommend
Ned Batchelder’s blog post, “Pragmatic Unicode” at https://nedbatchelder.com/
text/unipain.html.

Docstrings
Docstrings are multiline comments that appear either at the top of a mod-
ule’s .py source code file or directly following a class or def statement. They
provide documentation about the module, class, function, or method being
defined. Automated documentation generator tools use these docstrings to
generate external documentation files, such as help files or web pages.

Docstrings must use triple-quoted, multiline comments rather than sin-
gle-line comments that begin with a hash mark, #. Docstrings should always
use three double quotes for its triple-quoted strings rather than three single
quotes. For example, here is an excerpt from the sessions.py file in the popu-
lar requests module:

1 # -*- coding: utf-8 -*-

2 """
requests.session
~~~~~~~~~~~~~~~~

This module provides a Session object to manage and persist settings across
requests (cookies, auth, proxies).
"""
import os
import sys
--snip—
class Session(SessionRedirectMixin):
   3 """A Requests session.

    Provides cookie persistence, connection-pooling, and configuration.

    Basic Usage::

      >>> import requests
      >>> s = requests.Session()
      >>> s.get('https://httpbin.org/get')
      <Response [200]>
--snip--

    def get(self, url, **kwargs):
       4 r"""Sends a GET request. Returns :class:`Response` object.

        :param url: URL for the new :class:`Request` object.
        :param \*\*kwargs: Optional arguments that ``request`` takes.
        :rtype: requests.Response
        """
--snip--

https://nedbatchelder.com/text/unipain.html
https://nedbatchelder.com/text/unipain.html


Comments, Docstrings, and Type Hints   189

The sessions.py file’s request contains docstrings for the module 2, the 
Session class 3, and the Session class’s get() method 4. Note that although 
the module’s docstring must be the first string to appear in the module, it 
should come after any magic comments, such as the shebang line or encod-
ing definition 1. 

Later, you can retrieve the docstring for a module, class, function, or 
method by checking the respective object’s __doc__ attribute. For example, 
here we examine the docstrings to find out more about the sessions mod-
ule, the Session class, and the get() method:

>>> from requests import sessions
>>> sessions.__doc__
'\nrequests.session\n~~~~~~~~~~~~~~~~\n\nThis module provides a Session object 
to manage and persist settings across\nrequests (cookies, auth, proxies).\n'
>>> sessions.Session.__doc__
"A Requests session.\n\n    Provides cookie persistence, connection-pooling, 
and configuration.\n\n    Basic Usage::\n\n      >>> import requests\n      
--snip--
>>> sessions.Session.get.__doc__
'Sends a GET request. Returns :class:`Response` object.\n\n        :param url: 
URL for the new :class:`Request` object.\n        :param \\*\\*kwargs:
--snip--

Automated documentation tools can take advantage of docstrings to pro-
vide context-appropriate information. One of these tools is Python’s built-in 
help() function, which displays the docstring of the object you pass it in a more 
readable format than the raw __doc__ string directly. This is useful when you’re 
experimenting in the interactive shell, because you can immediately pull up 
information on any modules, classes, or functions you’re trying to use:

>>> from requests import sessions
>>> help(sessions)
Help on module requests.sessions in requests:

NAME
    requests.sessions

DESCRIPTION
    requests.session
    ~~~~~~~~~~~~~~~~

 This module provides a Session object to manage and persist settings
-- More --

If the docstring is too large to fit onscreen, Python displays -- More -- at
the bottom of the window. You can press ENTER to scroll to the next line,
press the spacebar to scroll to the next page, or press Q to quit viewing the
docstring.

Generally speaking, a docstring should contain a single line that
summarizes the module, class, or function, followed by a blank line and
more detailed information. For functions and methods, this can include

190 Chapter 11

information about their parameters, return value, and side effects. We write
docstrings for other programmers rather than users of the software, so they
should contain technical information, not tutorials.

Docstrings provide a second key benefit because they integrate docu-
mentation into the source code. When you write documentation separate
from code, you can often forget about it entirely. Instead, when you place
docstrings at the top of the modules, classes, and functions, the informa-
tion remains easy to review and update.

You might not always immediately be able to write docstrings if you’re
still working on the code it’s meant to describe. In that case, include a TODO
comment in the docstring as a reminder to fill in the rest of the details. For
example, the following fictional reverseCatPolarity() function has a poor
docstring that states the obvious:

def reverseCatPolarity(catId, catQuantumPhase, catVoltage):
 """Reverses the polarity of a cat.

 TODO Finish this docstring."""
--snip--

Because every class, function, and method should have a docstring, you
might be tempted to write only the minimal amount of documentation and
move on. Without a TODO comment, it’s easy to forget that this docstring will
eventually need rewriting.

PEP 257 contains further documentation on docstrings at https://www
.python.org/dev/peps/pep-0257/.

Type Hints
Many programming languages have static typing, meaning that program-
mers must declare the data types of all variables, parameters, and return
values in the source code. This allows the interpreter or compiler to check
that the code uses all objects correctly before the program runs. Python
has dynamic typing: variables, parameters, and return values can be of any
data type or even change data types while the program runs. Dynamic lan-
guages are often easier to program with because they require less formal
specification, but they lack the bug-preventing advantages that static lan-
guages have. If you write a line of Python code, such as round('forty two'),
you might not realize that you’re passing a string to a function that accepts
only int or float arguments until you run the code and it causes an error. A
statically typed language gives you an early warning when you assign a value
or pass an argument of the wrong type.

Python’s type hints offer optional static typing. In the following example,
the type hints are in bold:

def describeNumber(number: int) -> str:
 if number % 2 == 1:
 return 'An odd number. '

https://www.python.org/dev/peps/pep-0257/
https://www.python.org/dev/peps/pep-0257/

Comments, Docstrings, and Type Hints 191

 elif number == 42:
 return 'The answer. '
 else:
 return 'Yes, that is a number. '

myLuckyNumber: int = 42
print(describeNumber(myLuckyNumber))

As you can see, for parameters or variables, the type hint uses a colon
to separate the name from the type, whereas for return values, the type
hint uses an arrow (->) to separate the def statement’s closing parentheses
from the type. The describeNumber() function’s type hints show that it takes
an integer value for its number parameter and returns a string value.

If you use type hints, you don’t have to apply them to every bit of data
in your program. Instead, you could use a gradual typing approach, which
is a compromise between the flexibility of dynamic typing and the safety
of static typing in which you include type hints for only certain variables,
parameters, and return values. But the more type hinted your program
is, the more information the static code analysis tool has to spot potential
bugs in your program.

Notice in the preceding example that the names of the specified types
match the names of the int() and str() constructor functions. In Python,
class, type, and data type have the same meaning. For any instances made
from classes, you should use the class name as the type:

import datetime
1 noon: datetime.time = datetime.time(12, 0, 0)

class CatTail:
 def __init__(self, length: int, color: str) -> None:
 self.length = length
 self.color = color

2 zophieTail: CatTail = CatTail(29, 'grey')

The noon variable has the type hint datetime.time 1 because it’s a time
object (which is defined in the datetime module). Likewise, the zophieTail
object has the CatTail type hint 2 because it’s an object of the CatTail class
we created with a class statement. Type hints automatically apply to all sub-
classes of the specified type. For example, a variable with the type hint dict
could be set to any dictionary value but also to any collections.OrderedDict
and collections.defaultdict values, because these classes are subclasses of
dict. Chapter 16 covers subclasses in more detail.

Static type-checking tools don’t necessarily need type hints for vari-
ables. The reason is that static type-checking tools do type inference, infer-
ring the type from the variable’s first assignment statement. For example,
from the line spam = 42, the type checker can infer that spam is supposed
to have a type hint of int. But I recommend setting a type hint anyway. A
future change to a float, as in spam = 42.0, would also change the inferred
type, which might not be your intention. It’s better to force the programmer

192 Chapter 11

to change the type hint when changing the value to confirm that they’ve
made an intentional rather than incidental change.

Using Static Analyzers
Although Python supports syntax for type hints, the Python interpreter
completely ignores them. If you run a Python program that passes an inval-
idly typed variable to a function, Python will behave as though the type
hints don’t exist. In other words, type hints don’t cause the Python inter-
preter to do any runtime type checking. They exist only for the benefit of
static type-checking tools, which analyze the code before the program runs,
not while the program is running.

We call these tools static analysis tools because they analyze the source
code before the program runs, whereas runtime analysis or dynamic analy-
sis tools analyze running programs. (Confusingly, static and dynamic in this
case refer to whether the program is running, but static typing and dynamic
typing refer to how we declare the data types of variables and functions.
Python is a dynamically typed language that has static analysis tools, such
as Mypy, written for it.)

Installing and Running Mypy

Although Python doesn’t have an official type-checker tool, Mypy is cur-
rently the most popular third-party type checker. You can install Mypy with
pip by running this command:

python –m pip install –user mypy

Run python3 instead of python on macOS and Linux. Other well-known
type checkers include Microsoft’s Pyright, Facebook’s Pyre, and Google’s
Pytype.

To run the type checker, open a Command Prompt or Terminal win-
dow and run the python –m mypy command (to run the module as an applica-
tion), passing it the filename of the Python code to check. In this example,
I’m checking the code for an example program I created in a file named
example.py:

C:\Users\Al\Desktop>python –m mypy example.py
Incompatible types in assignment (expression has type "float", variable has
type "int")
Found 1 error in 1 file (checked 1 source file)

The type checker outputs nothing if there are no problems and prints
error messages if there are. In this example.py file, there’s a problem on
line 171, because a variable named spam has a type hint of int but is being
assigned a float value. This could possibly cause a failure and should be investi-
gated. Some error messages might be hard to understand at first reading. Mypy
can report a large number of possible errors, too many to list here. The easiest
way to find out what the error means is to search for it on the web. In this case,
you might search for something like “Mypy incompatible types in assignment.”

Comments, Docstrings, and Type Hints 193

Running Mypy from the command line every time you change your
code is rather inefficient. To make better use of a type checker, you’ll need
to configure your IDE or text editor to run it in the background. This way,
the editor will constantly run Mypy as you type your code and then display
any errors in the editor. Figure 11-1 shows the error from the previous
example in the Sublime Text text editor.

Figure 11-1: The Sublime Text text editor displaying errors from Mypy

The steps to configure your IDE or text editor to work with Mypy differ
depending on which IDE or text editor you’re using. You can find instruc-
tions online by searching for “<your IDE> Mypy configure,” “<your IDE> type
hints setup,” or something similar. If all else fails, you can always run Mypy
from the Command Prompt or Terminal window.

Telling Mypy to Ignore Code

You might write code that for whatever reason you don’t want to receive
type hint warnings about. To the static analysis tool, the line might appear
to use the incorrect type, but it’s actually fine when the program runs. You
can suppress any type hint warnings by adding a # type: ignore comment to
the end of the line. Here is an example:

def removeThreesAndFives(number: int) -> int:
 number = str(number) # type: ignore
 number = number.replace('3', '').replace('5', '') # type: ignore
 return int(number)

To remove all the 3 and 5 digits from the integer passed to removeThrees
AndFives(), we temporarily set the integer number variable to a string. This
causes the type checker to warn us about the first two lines in the function,
so we add the # type: ignore type hints to these lines to suppress the type
checker’s warnings.

Use # type: ignore sparingly. Ignoring warnings from the type checker
provides an opening for bugs to sneak into your code. You can almost cer-
tainly rewrite your code so the warnings don’t occur. For example, if we
create a new variable with numberAsStr = str(number) or replace all three lines
with a single return int(str(number.replace('3', '').replace('5', ''))) line of

194 Chapter 11

code, we can avoid reusing the number variable for multiple types. We wouldn’t
want to suppress the warning by changing the type hint for the parameter to
Union[int, str], because the parameter is meant to allow integers only.

Setting Type Hints for Multiple Types
Python’s variables, parameters, and return values can have multiple data
types. To accommodate this, you can specify type hints with multiple types
by importing Union from the built-in typing module. Specify a range of types
inside square brackets following the Union class name:

from typing import Union
spam: Union[int, str, float] = 42
spam = 'hello'
spam = 3.14

In this example, the Union[int, str, float] type hint specifies that
you can set spam to an integer, string, or floating-point number. Note that
it’s preferable to use the from typing import X form of the import statement
rather than the import typing form and then consistently use the verbose
typing.X for type hints throughout your program.

You might specify multiple data types in situations where a variable
or return value could have the None value in addition to another type. To
include NoneType, which is the type of the None value, in the type hint, place
None inside the square brackets rather than NoneType. (Technically, NoneType
isn’t a built-in identifier the way int or str is.)

Better yet, instead of using, say, Union[str, None], you can import Optional
from the typing module and use Optional[str]. This type hint means that the
function or method could return None rather than a value of the expected
type. Here’s an example:

from typing import Optional
lastName: Optional[str] = None
lastName = 'Sweigart'

In this example, you could set the lastName variable to None or a str value.
But it’s best to make sparing use of Union and Optional. The fewer types your
variables and functions allow, the simpler your code will be, and simple code
is less bug prone than complicated code. Remember the Zen of Python maxim
that simple is better than complex. For functions that return None to
indicate an error, consider raising an exception instead. See “Raising
Exceptions vs. Returning Error Codes” on page 178.

You can use the Any type hint (also from the typing module) to specify
that a variable, parameter, or return value can be of any data type:

from typing import Any
import datetime
spam: Any = 42
spam = datetime.date.today()
spam = True

Comments, Docstrings, and Type Hints 195

In this example, the Any type hint allows you to set the spam variable to
a value of any data type, such as int, datetime.date, or bool. You can also use
object as the type hint, because this is the base class for all data types in
Python. But Any is a more readily understandable type hint than object.

As you should with Union and Optional, use Any sparingly. If you set all of
your variables, parameters, and return values to the Any type hint, you’d lose
the type-checking benefits of static typing. The difference between specify-
ing the Any type hint and specifying no type hint is that Any explicitly states
that the variable or function accepts values of any type, whereas an absent
type hint indicates that the variable or function has yet to be type hinted.

Setting Type Hints for Lists, Dictionaries, and More
Lists, dictionaries, tuples, sets, and other container data types can hold
other values. If you specify list as the type hint for a variable, that variable
must contain a list, but the list could contain values of any type. The follow-
ing code won’t cause any complaints from a type checker:

spam: list = [42, 'hello', 3.14, True]

To specifically declare the data types of the values inside the list, you
must use the typing module’s List type hint. Note that List has a capital L,
distinguishing it from the list data type:

from typing import List, Union
1 catNames: List[str] = ['Zophie', 'Simon', 'Pooka', 'Theodore']
2 numbers: List[Union[int, float]] = [42, 3.14, 99.9, 86]

In this example, the catNames variable contains a list of strings, so after
importing List from the typing module, we set the type hint to List[str] 1.
The type checker catches any call to the append() or insert() method, or
any other code that puts a nonstring value into the list. If the list should
contain multiple types, we can set the type hint using Union. For example,
the numbers list can contain integer and float values, so we set its type hint
to List[Union[int, float]] 2.

The typing module has a separate type alias for each container type.
Here’s a list of the type aliases for common container types in Python:

List is for the list data type.

Tuple is for the tuple data type.

Dict is for the dictionary (dict) data type.

Set is for the set data type.

FrozenSet is for the frozenset data type.

Sequence is for the list, tuple, and any other sequence data type.

Mapping is for the dictionary (dict), set, frozenset, and any other mapping
data type.

ByteString is for the bytes, bytearray, and memoryview types.

196 Chapter 11

You’ll find the full list of these types online at https://docs.python.org/3/
library/typing.html#classes-functions-and-decorators.

Backporting Type Hints with Comments
Backporting is the process of taking features from a new version of soft-
ware and porting (that is, adapting and adding) them to an earlier version.
Python’s type hints feature is new to version 3.5. But in Python code that
might be run by interpreter versions earlier than 3.5, you can still use type
hints by putting the type information in comments. For variables, use an
inline comment after the assignment statement. For functions and meth-
ods, write the type hint on the line following the def statement. Begin the
comment with type:, followed by the data type. Here’s an example of some
code with type hints in the comments:

1 from typing import List

2 spam = 42 # type: int
def sayHello():
 3 # type: () -> None
 """The docstring comes after the type hint comment."""
 print('Hello!')

def addTwoNumbers(listOfNumbers, doubleTheSum):
 4 # type: (List[float], bool) -> float
 total = listOfNumbers[0] + listOfNumbers[1]
 if doubleTheSum:
 total *= 2
 return total

Note that even if you’re using the comment type hint style, you still
need to import the typing module 1, as well as any type aliases that you use
in the comments. Versions earlier than 3.5 won’t have a typing module in
their standard library, so you must install typing separately by running this
command:

python –m pip install --user typing

Run python3 instead of python on macOS and Linux.
To set the spam variable to an integer, we add # type: int as the end-of-line

comment 2. For functions, the comment should include parentheses with
a comma-separated list of type hints in the same order as the parameters.
Functions with zero parameters would have an empty set of parentheses 3.
If there are multiple parameters, separate them inside the parentheses with
commas 4.

The comment type hint style is a bit less readable than the normal
style, so use it only for code that might be run by versions of Python earlier
than 3.5.

https://docs.python.org/3/library/typing.html#classes-functions-and-decorators
https://docs.python.org/3/library/typing.html#classes-functions-and-decorators

Comments, Docstrings, and Type Hints 197

Summary
Programmers often forget about documenting their code. But by taking
a little time to add comments, docstrings, and type hints to your code,
you can avoid wasting time later. Well-documented code is also easier to
maintain.

It’s tempting to adopt the opinion that comments and documentation
don’t matter or are even a disadvantage when writing software. (Conveniently,
this view allows programmers to avoid the work of writing documentation.)
Don’t be fooled; well-written documentation consistently saves you far more
time and effort than it takes to write it. It’s more common for programmers
to stare at a screen of inscrutable, uncommented code than to have too much
helpful information.

Good comments offer concise, useful, and accurate information to
programmers who need to read the code at a later time and understand
what it does. These comments should explain the original programmer’s
intent and summarize small sections of code rather than state the obvious
about what a single line of code does. Comments sometimes offer detailed
accounts of lessons the programmer learned while writing the code. This
valuable information might spare future maintainers from having to
relearn these lessons the hard way.

Docstrings, a Python-specific kind of comment, are multiline strings
that appear immediately after the class or def statement, or at the top of the
module. Documentation tools, such as Python’s built-in help() function, can
extract docstrings to provide specific information about the purpose of the
class, function, or module.

Introduced in Python 3.5, type hints bring gradual typing to Python
code. Gradual typing allows the programmer to apply the bug-detection
benefits of static typing while maintaining the flexibility of dynamic typing.
The Python interpreter ignores type hints, because Python doesn’t have
runtime type checking. Even so, static type-checking tools use type hints to
analyze the source code when it isn’t running. Type checkers, such as Mypy,
can ensure that you aren’t assigning invalid values to the variables you pass
to functions. This saves you time and effort by preventing a broad category
of bugs.

Version control systems are tools that record
all source code changes and make it easy

to retrieve older versions of the code. Think
of these tools as sophisticated undo features.

For example, if you replace a function and then later
decide you liked the old one better, you can restore
your code to the original version. Or if you discover a
new bug, you can go back to earlier versions to iden-
tify when it first appeared and which code change
caused it.

A version control system manages files as you make changes to them.
This is preferable to, say, making a copy of your myProject folder and nam-
ing it myProject-copy. If you keep making changes, you’ll eventually have to
make another copy named myProject-copy2, then myProject-copy3, myProject-
copy3b, myProject-copyAsOfWednesday, and so on. Copying folders might be

12
O R G A N I Z I N G Y O U R C O D E

P R O J E C T S W I T H G I T

200 Chapter 12

simple, but the approach doesn’t scale. Learning to use a version control
system saves you time and headaches in the long run.

Git, Mercurial, and Subversion are popular version control applications,
although Git is by far the most popular. In this chapter, you’ll learn how to
set up files for code projects and use Git to track their changes.

Git Commits and Repos
Git allows you to save the state of your project files, called snapshots or
commits, as you make changes to them. That way, you can roll back to any
previous snapshot if you ever need to. Commit is a noun and a verb; pro-
grammers commit (or save) their commits (or snapshots). Check-in is also a
less popular term for commits.

Version control systems also make it easy for a software developer team
to remain in sync with each other while they make changes to a project’s
source code. As each programmer commits their changes, other program-
mers can pull these updates onto their computers. The version control sys-
tem tracks what commits were made, who made them, and when they made
them, along with the developers’ comments describing the changes.

Version control manages a project’s source code in a folder called a
repository, or repo. In general, you should keep a separate Git repo for each
project you’re working on. This chapter assumes you’re mostly working on
your own and don’t need the advanced Git features, such as branching and
merging, that help programmers collaborate. But even if you’re working
alone, there is no programming project too small to benefit from version
control.

Using Cookiecutter to Create New Python Projects
We call the folder that contains all the source code, documentation, tests,
and other files related to a project the working directory or working tree in Git
parlance, and project folder more generally. The files in the working directory
are collectively called the working copy. Before we create our Git repo, let’s
create the files for a Python project.

Every programmer has a preferred method for doing so. Even so,
Python projects follow conventions for folder names and hierarchies. Your
simpler programs might consist of a single .py file. But as you tackle more
sophisticated projects, you’ll start to include additional .py files, data files,
documentation, unit tests, and more. Typically, the root of the project folder
contains a src folder for the .py source code files, a tests folder for unit tests,
and a docs folder for any documentation (such as those generated by the
Sphinx documentation tool). Other files contain project information and
tool configuration: README.md for general information, .coveragerc for code
coverage configuration, LICENSE.txt for the project’s software license, and
so on. These tools and files are beyond the scope of this book, but they’re
worth investigating. As you gain more coding experience, re-creating the
same basic files for new programming projects becomes tedious. To speed

Organizing Your Code Projects with Git 201

up your coding tasks, you can use the cookiecutter Python module to create
these files and folders automatically. You’ll find the full documentation for
both the module and the Cookiecutter command line program at https://
cookiecutter.readthedocs.io/.

To install Cookiecutter, run pip install --user cookiecutter (on Windows)
or pip3 install --user cookiecutter (on macOS and Linux). This installa-
tion includes the Cookiecutter command line program and the cookiecutter
Python module. The output might warn you that the command line program
is installed to a folder not listed in the PATH environment variable:

Installing collected packages: cookiecutter
 WARNING: The script cookiecutter.exe is installed in 'C:\Users\Al\AppData\
Roaming\Python\Python38\Scripts' which is not on PATH.
 Consider adding this directory to PATH or, if you prefer to suppress this
warning, use --no-warn-script-location.

Consider adding the folder (C:\Users\Al\AppData\Roaming\Python\
Python38\Scripts in this case) to the PATH environment variable by follow-
ing the instructions in “Environment Variables and PATH” on page 35.
Otherwise, you’ll have to run Cookiecutter as a Python module by entering
python -m cookiecutter (on Windows) or python3 –m cookiecutter (on macOS
and Linux) instead of simply cookiecutter.

In this chapter, we’ll create a repo for a module named wizcoin, which
handles the galleon, sickle, and knut coins of a fictional wizarding currency.
The cookiecutter module uses templates to create the starting files for several
different kinds of projects. Often, the template is simply a GitHub.com link.
For example, from a C:\Users\Al folder, you could enter the following in a
Terminal window to create a C:\Users\Al\wizcoin folder with the boilerplate
files for a basic Python project. The cookiecutter module downloads the tem-
plate from GitHub and asks you a series of questions about the project you
want to create:

C:\Users\Al>cookiecutter gh:asweigart/cookiecutter-basicpythonproject
project_name [Basic Python Project]: WizCoin
module_name [basicpythonproject]: wizcoin
author_name [Susie Softwaredeveloper]: Al Sweigart
author_email [susie@example.com]: al@inventwithpython.com
github_username [susieexample]: asweigart
project_version [0.1.0]:
project_short_description [A basic Python project.]: A Python module to
represent the galleon, sickle, and knut coins of wizard currency.

If you get an error, you can also run python -m cookiecutter instead of
cookiecutter. This command downloads a template I’ve created from https://
github.com/asweigart/cookiecutter-basicpythonproject. You’ll find templates for
many programming languages at https://github.com/cookiecutter/cookiecutter.
Because Cookiecutter templates are often hosted on GitHub, you could also
enter gh: as a shortcut for https://github.com/ in the command line argument.

As Cookiecutter asks you questions, you can either enter a response
or simply press ENTER to use the default response shown in between

https://cookiecutter.readthedocs.io/
https://cookiecutter.readthedocs.io/
https://github.com/asweigart/cookiecutter-basicpythonproject
https://github.com/asweigart/cookiecutter-basicpythonproject
https://github.com/cookiecutter/cookiecutter

202 Chapter 12

square brackets. For example, project_name [Basic Python Project]: asks you
to name your project. If you enter nothing, Cookiecutter will use “Basic
Python Project” as the project name. These defaults also hint at what sort of
response is expected. The project_name [Basic Python Project]: prompt shows
you a capitalized project name that includes spaces, whereas the module_name
[basicpythonproject]: prompt shows you that the module name is lower-
case and has no spaces. We didn’t enter a response for the project_version
[0.1.0]: prompt, so the response defaults to “0.1.0.”

After answering the questions, Cookiecutter creates a wizcoin folder in
the current working directory with the basic files you’ll need for a Python
project, as shown in Figure 12-1.

Figure 12-1: The files in the wizcoin folder created by Cookiecutter

It’s okay if you don’t understand the purpose of these files. A full
explanation of each is beyond the scope of this book, but https://github.com/
asweigart/cookiecutter-basicpythonproject has links and descriptions for fur-
ther reading. Now that we have our starting files, let’s keep track of them
using Git.

Installing Git
Git might already be installed on your computer. To find out, run git
--version from the command line. If you see a message like git version
2.29.0.windows.1, you already have Git. If you see a “command not found”
error message, you must install Git. On Windows, go to https://git-scm
.com/download, and then download and run the Git installer. On macOS
Mavericks (10.9) and later, simply run git --version from the terminal and
you’ll be prompted to install Git, as shown in Figure 12-2.

On Ubuntu or Debian Linux, run sudo apt install git-all from the ter-
minal. On Red Hat Linux, run sudo dnf install git-all from the terminal.
Find instructions for other Linux distributions at https://git-scm.com/download/
linux. Confirm that the install worked by running git --version.

https://github.com/asweigart/cookiecutter-basicpythonproject
https://github.com/asweigart/cookiecutter-basicpythonproject
https://git-scm.com/download
https://git-scm.com/download
https://git-scm.com/download/linux
https://git-scm.com/download/linux

Organizing Your Code Projects with Git 203

Figure 12-2: The first time you run git --version on macOS 10.9 or later,
you’ll be prompted to install Git.

Configuring Your Git Username and Email
After installing Git, you need to configure your name and email so your
commits include your author information. From a terminal, run the follow-
ing git config commands using your name and email information:

C:\Users\Al>git config --global user.name "Al Sweigart"
C:\Users\Al>git config --global user.email al@inventwithpython.com

This configuration information is stored in a .gitconfig file in your home
folder (such as C:\Users\Al on my Windows laptop). You’ll never need to edit
this text file directly. Instead, you can change it by running the git config
command. You can list the current Git configuration settings using the git
config --list command.

Installing GUI Git Tools
This chapter focuses on the Git command line tool, but installing software
that adds a GUI for Git can help you with day-to-day tasks. Even professional
software developers who know the CLI Git commands often use GUI Git
tools. The web page at https://git-scm.com/downloads/guis suggests several of
these tools, such as TortoiseGit for Windows, GitHub Desktop for macOS,
and GitExtensions for Linux.

For example, Figure 12-3 shows how TortoiseGit on Windows adds
overlays to File Explorer’s icons based on their status: green for unmodified
repo files, red for modified repo files (or folders containing modified files),
and no icon for untracked files. Checking these overlays is certainly more
convenient than constantly entering commands into a terminal for this
information. TortoiseGit also adds a context menu for running Git com-
mands, as shown in Figure 12-3.

Using GUI Git tools is convenient, but it’s not a substitute for learning
the command line commands featured in this chapter. Keep in mind that
you might need to one day use Git on a computer that doesn’t have these
GUI tools installed.

https://git-scm.com/downloads/guis

204 Chapter 12

Figure 12-3: TortoiseGit for Windows adds a
GUI to run Git commands from File Explorer.

The Git Workflow
Using a Git repo involves the following steps. First, you create the Git repo
by running the git init or git clone command. Second, you add files with
the git add <filename> command for the repo to track. Third, once you’ve
added files, you can commit them with the git commit -am "<descriptive
commit message>" command. At this point, you’re ready to make more
changes to your code.

You can view the help file for each of these commands by running git
help <command>, such as git help init or git help add. These help pages are
handy for reference, although they’re too dry and technical to use as tutori-
als. You’ll learn more details about each of these commands later, but first,
you need to understand a few Git concepts to make the rest of this chapter
easier to digest.

How Git Keeps Track of File Status
All files in a working directory are either tracked or untracked by Git.
Tracked files are the files that have been added and committed to the repo,
whereas every other file is untracked. To the Git repo, untracked files in the
working copy might as well not exist. On the other hand, the tracked files
exist in one of three other states:

•	 The committed state is when a file in the working copy is identical to the
repo’s most recent commit. (This is also sometimes called the unmodi-
fied state or clean state.)

•	 The modified state is when a file in the working copy is different than the
repo’s most recent commit.

Organizing Your Code Projects with Git 205

•	 The staged state is when a file has been modified and marked to be
included in the next commit. We say that the file is staged or in the stag-
ing area. (The staging area is also known as the index or cache.)

Figure 12-4 contains a diagram of how a file moves between these
four states. You can add an untracked file to the Git repo, in which case it
becomes tracked and staged. You can then commit staged files to put them
into the committed state. You don’t need any Git command to put a file into
the modified state; once you make changes to a committed file, it’s auto-
matically labeled as modified.

Untracked Tracked

Committed

Modified

Staged

Figure 12-4: The possible states of a file in a Git repo and
the transitions between them

At any step after you’ve created the repo, run git status to view the
current status of the repo and its files’ states. You’ll frequently run this com-
mand as you work in Git. In the following example, I’ve set up files in differ-
ent states. Notice how these four files appear in the output of git status:

C:\Users\Al\ExampleRepo>git status
On branch master
Changes to be committed:
 (use "git restore --staged <file>..." to unstage)
 1 new file: new_file.py
 2 modified: staged_file.py

Changes not staged for commit:
 (use "git add <file>..." to update what will be committed)
 (use "git restore <file>..." to discard changes in working directory)
 3 modified: modified_file.py

Untracked files:
 (use "git add <file>..." to include in what will be committed)
 4 untracked_file.py

206 Chapter 12

In this working copy, there’s a new_file.py 1, which has recently been
added to the repo and is therefore in the staged state. There are also two
tracked files, staged_file.py 2 and modified_file.py 3, which are in the staged
and modified states, respectively. Then there’s an untracked file named
untracked_file.py 4. The output of git status also has reminders for the Git
commands that move the files to other states.

Why Stage Files?
You might wonder what the point of the staged state is. Why not just go
between modified and committed without staging files? Dealing with the stag-
ing area is full of thorny special cases and a large source of confusion for
Git beginners. For instance, a file can be modified after it has been staged,
leading to files existing in both the modified and staged states, as described
in the previous section. Technically, the staging area doesn’t contain files
so much as changes, because parts of a single modified file can be staged
and other parts unstaged. Cases like these are why Git has a reputation
for being complex, and many sources of information on how Git works are
often imprecise at best and misleading at worst.

But we can avoid most of this complexity. In this chapter, I recommend
avoiding it by using the git commit –am command to stage and commit modi-
fied files in a single step. This way they’ll move directly from the modified
state to the clean state. Also, I recommend always immediately committing
files after adding, renaming, or removing them in your repo. Additionally,
using GUI Git tools (explained later) rather than the command line can
help you avoid these tricky cases.

Creating a Git Repo on Your Computer
Git is a distributed version control system, which means it stores all of its snap-
shots and repo metadata locally on your computer in a folder named .git.
Unlike a centralized version control system, Git doesn’t need to connect to a
server over the internet to make commits. This makes Git fast and available
to work with when you’re offline.

From a terminal, run the following commands to create the .git folder.
(On macOS and Linux, you’ll need to run mkdir instead of md.)

C:\Users\Al>md wizcoin
C:\Users\Al>cd wizcoin
C:\Users\Al\wizcoin>git init
Initialized empty Git repository in C:/Users/Al/wizcoin/.git/

When you convert a folder into a Git repo by running git init, all the
files in it start as untracked. For our wizcoin folder, the git init command
creates the wizcoin/.git folder, which contains the Git repo metadata. The
presence of this .git folder makes a folder a Git repository; without it, you
simply have a collection of source code files in an ordinary folder. You’ll

Organizing Your Code Projects with Git 207

never have to directly modify the files in .git, so just ignore this folder. In
fact, it’s named .git because most operating systems automatically hide fold-
ers and files whose names begin with a period.

Now you have a repo in your C:\Users\Al\wizcoin working directory. A repo
on your computer is known as a local repo; a repo located on someone else’s
computer is known as a remote repo. This distinction is important, because
you’ll often have to share commits between local and remote repos so you
can work with other developers on the same project.

You can now use the git command to add files and track changes within
the working directory. If you run git status in your newly created repo, you’ll
see the following:

C:\Users\Al\wizcoin>git status
On branch master

No commits yet

nothing to commit (create/copy files and use "git add" to track)

The output from this command informs you that you have no commits
yet in this repo.

RUNNING GI T S TAT US W I T H T HE WATCH COMM A ND

While using the Git command line tool, you’ll often run git status to see your
repo’s status. Instead of entering this command manually, you can use the watch
command to run it for you. The watch command runs a given command repeat-
edly every two seconds, refreshing the screen with its latest output.

On Windows, you can obtain the watch command by downloading
https://inventwithpython.com/watch.exe and placing this file into a PATH folder,
such as C:\Windows. On macOS, you can go to https://www.macports.org/
to download and install MacPorts, and then run sudo ports install watch. On
Linux, the watch command is already installed. Once it’s installed, open a new
Command Prompt or Terminal window, run cd to change directory to your Git
repo’s project folder, and run watch "git status". The watch command will run
git status every two seconds, displaying the latest results onscreen. You can
leave this window open while you use the Git command line tool in a different
Terminal window to see how your repo’s status changes in real time. You can
open another Terminal window and run watch "git log –online" to view a
summary of the commits you make, also updated in real time. This information
helps remove the guesswork as to what the Git commands you enter are doing
to your repo.

https://inventwithpython.com/watch.exe
https://www.macports.org/

208 Chapter 12

Adding Files for Git to Track
Only tracked files can be committed, rolled back, or otherwise interacted
with through the git command. Run git status to see the status of the files
in the project folder:

C:\Users\Al\wizcoin>git status
On branch master

No commits yet

1 Untracked files:
 (use "git add <file>..." to include in what will be committed)

 .coveragerc
 .gitignore
 LICENSE.txt
 README.md
--snip--
 tox.ini

nothing added to commit but untracked files present (use "git add" to track)

All the files in the wizcoin folder are currently untracked 1. We can track
them by doing an initial commit of these files, which takes two steps: running
git add for each file to be committed, and then running git commit to create a
commit of all these files. Once you’ve committed a file, Git tracks it.

The git add command moves files from the untracked state or modified
state to the staged state. We could run git add for every file we plan to stage
(for example, git add .coveragerc, git add .gitignore, git add LICENSE.txt, and
so on), but that’s tedious. Instead, let’s use the * wildcard to add several files
at once. For example, git add *.py adds all .py files in the current working
directory and its subdirectories. To add every untracked file, use a single
period (.) to tell Git to match all files:

C:\Users\Al\wizcoin>git add .

Run git status to see the files you’ve staged:

C:\Users\Al\wizcoin>git status
On branch master

No commits yet

1 Changes to be committed:
 (use "git rm --cached <file>..." to unstage)

 2 new file: .coveragerc
 new file: .gitignore
--snip--
 new file: tox.ini

Organizing Your Code Projects with Git 209

The output of git status tells you which files are staged to be commit-
ted the next time you run git commit 1. It also tells you that these are new
files added to the repo 2 rather than existing files in the repo that have
been modified.

After running git add to select the files to add to the repo, run git
commit –m "Adding new files to the repo." (or a similar commit message)
and git status again to view the repo status:

C:\Users\Al\wizcoin>git commit -m "Adding new files to the repo."
[master (root-commit) 65f3b4d] Adding new files to the repo.
 15 files changed, 597 insertions(+)
 create mode 100644 .coveragerc
 create mode 100644 .gitignore
--snip--
 create mode 100644 tox.ini

C:\Users\Al\wizcoin>git status
On branch master
nothing to commit, working tree clean

Note that any files listed in the .gitignore file won’t be added to staging,
as I explain in the next section.

Ignoring Files in the Repo
Files not tracked by Git appear as untracked when you run git status. But
in the course of writing your code, you might want to exclude certain files
from version control completely so you don’t accidentally track them. These
include:

•	 Temporary files in the project folder

•	 The .pyc, .pyo, and .pyd files that the Python interpreter generates when
it runs .py programs

•	 The .tox, htmlcov, and other folders that various software development
tools generate docs/_build

•	 Any other compiled or generated files that could be regenerated
(because the repo is for source files, not the products created from
source files)

•	 Source code files that contain database passwords, authentication
tokens, credit card numbers, or other sensitive information

To avoid including these files, create a text file named .gitignore that
lists the folders and files that Git should never track. Git will automatically
exclude these from git add or git commit commands, and they won’t appear
when you run git status.

210 Chapter 12

The .gitignore file that the cookiecutter-basicpythonproject template cre-
ates looks like this:

Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]
*$py.class
--snip--

The .gitignore file uses * for wildcards and # for comments. You can
read more about it in the online documentation at https://git-scm.com/docs/
gitignore.

You should add the actual .gitignore file to the Git repo so other pro-
grammers have it if they clone your repo. If you want to see which files in
your working directory are being ignored based on the settings in .gitignore,
run the git ls-files --other --ignored --exclude-standard command.

Committing Changes
After adding new files to the repo, you can continue writing code for your
project. When you want to create another snapshot, you can run git add .
to stage all modified files and git commit –m <commit message> to commit all
staged files. But doing so is easier with the single git commit –am <commit
message> command:

C:\Users\Al\wizcoin>git commit -am "Fixed the currency conversion bug."
[master (root-commit) e1ae3a3] Fixed the currency conversion bug.
 1 file changed, 12 insertions(+)

If you want to commit only certain modified files instead of every modi-
fied file, you can omit the –a option from –am and specify the files after the
commit message, such as git commit –m <commit message> file1.py file2.py.

The commit message provides a hint for future use: it’s a reminder
about what changes we made in this commit. It might be tempting to write
a short, generic message, such as “Updated code,” or “Fixed a few bugs,” or
even just “x” (because blank commit messages aren’t allowed). But three
weeks from now, when you need to roll back to an earlier version of your
code, detailed commit messages will save you a lot of grief in determining
exactly how far back you need to go.

If you forget to add the -m "<message>" command line argument, Git will
open the Vim text editor in the Terminal window. Vim is beyond the scope
of this book, so press the ESC key and enter qa! to safely exit Vim and can-
cel the commit. Then enter the git commit command again, this time with
the -m "<message>" command line argument.

For examples of what professional commit messages look like, check out
the commit history for the Django web framework at https://github.com/django/
django/commits/master. Because Django is a large, open source project, the com-
mits occur frequently and are formal commit messages. Infrequent commits
with vague commit messages might work well enough for your small, personal

https://git-scm.com/docs/gitignore
https://git-scm.com/docs/gitignore
https://github.com/django/django/commits/master
https://github.com/django/django/commits/master

Organizing Your Code Projects with Git 211

programming projects, but Django has more than 1,000 contributors. Poor
commit messages from any of them becomes a problem for all of them.

The files are now safely committed to the Git repo. Run git status one
more time to view their status:

C:\Users\Al\wizcoin>git status
On branch master
nothing to commit, working tree clean

By committing the staged files, you’ve moved them back to the com-
mitted state, and Git tells us that the working tree is clean; in other words,
there are no modified or staged files. To recap, when we added files to the
Git repo, the files went from untracked to staged and then to committed.
The files are now ready for future modifications.

Note that you can’t commit folders to a Git repo. Git automatically
includes folders in the repo when a file in them is committed, but you can’t
commit an empty folder.

If you made a typo in the most recent commit message, you can rewrite
it using the git commit --amend -m "<new commit message>" command.

Using git diff to View Changes Before Committing

Before you commit code, you should quickly review the changes you’ll com-
mit when you run git commit. You can view the differences between the code
currently in your working copy and the code in the latest commit using the
git diff command.

Let’s walk through an example of using git diff. Open README.md
in a text editor or IDE. (You should have created this file when you ran
Cookiecutter. If it doesn’t exist, create a blank text file and save it as
README.md.) This is a Markdown-formatted file, but like Python scripts,
it’s written in plaintext. Change the TODO - fill this in later text in the
Quickstart Guide section to the following (keep the xample typo in it for now;
we’ll fix it later):

Quickstart Guide

Here's some xample code demonstrating how this module is used:

 >>> import wizcoin
 >>> coin = wizcoin.WizCoin(2, 5, 10)
 >>> str(coin)
 '2g, 5s, 10k'
 >>> coin.value()
 1141

Before we add and commit README.md, run the git diff command to
see the changes we’ve made:

C:\Users\Al\wizcoin>git diff
diff --git a/README.md b/README.md

212 Chapter 12

index 76b5814..3be49c3 100644
--- a/README.md
+++ b/README.md
@@ -13,7 +13,14 @@ To install with pip, run:
 Quickstart Guide

-TODO - fill this in later
+Here's some xample code demonstrating how this module is used:
+
+ >>> import wizcoin
+ >>> coin = wizcoin.WizCoin(2, 5, 10)
+ >>> str(coin)
+ '2g, 5s, 10k'
+ >>> coin.value()
+ 1141

 Contribute

The output shows that README.md in your working copy has changed
from the README.md as it exists in the latest commit of the repo. The lines
that begin with a minus sign – have been removed; the lines that begin with
a plus sign + have been added.

While reviewing the changes, you’ll also notice that we made a typo by
writing xample instead of example. We shouldn’t check in this typo. Let’s cor-
rect it. Then run git diff again to inspect the change and add and commit
it to the repo:

C:\Users\Al\wizcoin>git diff
diff --git a/README.md b/README.md
index 76b5814..3be49c3 100644
--- a/README.md
+++ b/README.md
@@ -13,7 +13,14 @@ To install with pip, run:
 Quickstart Guide

-TODO - fill this in later
+Here's some example code demonstrating how this module is used:
--snip--
C:\Users\Al\wizcoin>git add README.md

C:\Users\Al\wizcoin>git commit -m "Added example code to README.md"
[master 2a4c5b8] Added example code to README.md
 1 file changed, 8 insertions(+), 1 deletion(-)

The correction is now safely committed to the repo.

Using git difftool to View Changes with a GUI Application

It’s easier to see changes with a diff program that uses a GUI. On Windows,
you can download WinMerge (https://winmerge.org/), a free, open source diff

https://winmerge.org/

Organizing Your Code Projects with Git 213

program, and then install it. On Linux, you can install either Meld by using
the sudo apt-get install meld command or Kompare by using the sudo apt-
get install kompare command. On macOS, you can install tkdiff by using
commands that first install and configure Homebrew (a package manager
that installs software) and then using Homebrew to install tkdiff:

/bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/
master/install.sh)"
brew install tkdiff

You can configure Git to use these tools by running git config diff.tool
<tool_name>, where <tool_name> is winmerge, tkdiff, meld, or kompare. Then run
git difftool <filename> to view the changes made to a file in the tool’s GUI,
as shown in Figure 12-5.

Figure 12-5: A GUI diff tool, in this case WinMerge, is more readable than the text output
of git diff.

Additionally, run git config --global difftool.prompt false so Git doesn’t
ask for confirmation each time you want to open the diff tool. If you
installed a GUI Git client, you can also configure it to use these tools (or it
might come with a visual diff tool of its own).

How Often Should I Commit Changes?

Even though version control allows you to roll back your files to an ear-
lier commit, you might wonder how often you should make commits. If you
commit too frequently, you’ll have trouble sorting through a large number
of insignificant commits to find the version of the code you’re looking for.

214 Chapter 12

If you commit too infrequently, each commit will contain a large number of
changes, and reverting to a particular commit will undo more changes than
you want to. In general, programmers tend to commit less frequently than
they should.

You should commit code when you’ve completed an entire piece of
functionality, such as a feature, class, or bug fix. Don’t commit any code that
contains syntax errors or is obviously broken. Commits can consist of a few
lines of changed code or several hundred, but either way, you should be able
to jump back to any earlier commit and still have a working program. You
should always run any unit tests before committing. Ideally, all your tests
should pass (and if they don’t pass, mention this in the commit message).

Deleting Files from the Repo
If you no longer need Git to track a file, you can’t simply delete the file from
the filesystem. You must delete it through Git using the git rm command,
which also tells Git to untrack the file. To practice doing so, run the echo
"Test file" > deleteme.txt command to create a small file named deleteme.
txt with the contents "Test file". Then commit it to the repo by running the
following commands:

C:\Users\Al\wizcoin>echo "Test file" > deleteme.txt
C:\Users\Al\wizcoin>git add deleteme.txt
C:\Users\Al\wizcoin>git commit -m "Adding a file to test Git deletion."
[master 441556a] Adding a file to test Git deletion.
 1 file changed, 1 insertion(+)
 create mode 100644 deleteme.txt
C:\Users\Al\wizcoin>git status
On branch master
nothing to commit, working tree clean

Don’t delete the file using the del command on Windows or rm com-
mand on macOS and Linux. (If you do, you can run git restore <filename>
to recover it or simply continue with the git rm command to remove it
from the repo.) Instead, use the git rm command to delete and stage the
deleteme.txt file such as in this example:

C:\Users\Al\wizcoin>git rm deleteme.txt
rm deleteme.txt'

The git rm command deletes the file from your working copy, but you’re
not done yet. Like git add, the git rm command stages the file. You need to
commit file deletion just like any other change:

C:\Users\Al\wizcoin>git status
On branch master
Changes to be committed:
 1 (use "git reset HEAD <file>..." to unstage)

 deleted: deleteme.txt

Organizing Your Code Projects with Git 215

C:\Users\Al\wizcoin>git commit -m "Deleting deleteme.txt from the repo to
finish the deletion test."
[master 369de78] Deleting deleteme.txt from the repo to finish the deletion
test.
 1 file changed, 1 deletion(-)
 delete mode 100644 deleteme.txt
C:\Users\Al\Desktop\wizcoin>git status
On branch master
nothing to commit, working tree clean

Even though you’ve deleted deleteme.txt from your working copy, it still
exists in the repo’s history. The “Recovering Old Changes” section later in
this chapter describes how to recover a deleted file or undo a change.

The git rm command only works on files that are in the clean, commit-
ted state, without any modifications. Otherwise, Git asks you to commit the
changes or revert them with the git reset HEAD <filename> command. (The
output of git status reminds you of this command 1.) This procedure pre-
vents you from accidentally deleting uncommitted changes.

Renaming and Moving Files in the Repo
Similar to deleting a file, you shouldn’t rename or move a file in a repo
unless you use Git. If you try to do so without using Git, it will think you
deleted a file and then created a new file that just happens to have the
same content. Instead, use the git mv command, followed by git commit.
Let’s rename the README.md file to README.txt by running the following
commands:

C:\Users\Al\wizcoin>git mv README.md README.txt
C:\Users\Al\wizcoin>git status
On branch master
Changes to be committed:
 (use "git reset HEAD <file>..." to unstage)

 renamed: README.md -> README.txt

C:\Users\Al\wizcoin>git commit -m "Testing the renaming of files in Git."
[master 3fee6a6] Testing the renaming of files in Git.
 1 file changed, 0 insertions(+), 0 deletions(-)
 rename README.md => README.txt (100%)

This way, the history of changes to README.txt also includes the his-
tory of README.md.

We can also use the git mv command to move a file to a new folder.
Enter the following commands to create a new folder called movetest and
move the README.txt into it:

C:\Users\Al\wizcoin>mkdir movetest
C:\Users\Al\wizcoin>git mv README.txt movetest/README.txt
C:\Users\Al\wizcoin>git status
On branch master

216 Chapter 12

Changes to be committed:
 (use "git reset HEAD <file>..." to unstage)

 renamed: README.txt -> movetest/README.txt

C:\Users\Al\wizcoin>git commit -m "Testing the moving of files in Git."
[master 3ed22ed] Testing the moving of files in Git.
 1 file changed, 0 insertions(+), 0 deletions(-)
 rename README.txt => movetest/README.txt (100%)

You can also rename and move a file at the same time by passing git mv
a new name and location. Let’s move the README.txt back to its original
place at the root of the working directory and give it its original name:

C:\Users\Al\wizcoin>git mv movetest/README.txt README.md
C:\Users\Al\wizcoin>git status
On branch master
Changes to be committed:
 (use "git reset HEAD <file>..." to unstage)

 renamed: movetest/README.txt -> README.md

C:\Users\Al\wizcoin>git commit -m "Moving the README file back to its original
place and name."
[master 962a8ba] Moving the README file back to its original place and name.
 1 file changed, 0 insertions(+), 0 deletions(-)
 rename movetest/README.txt => README.md (100%)

Note that even though the README.md file is back in its original folder
and has its original name, the Git repo remembers the moves and name
changes. You can see this history using the git log command, described in
the next section.

Viewing the Commit Log
The git log command outputs a list of all commits:

C:\Users\Al\wizcoin>git log
commit 962a8baa29e452c74d40075d92b00897b02668fb (HEAD -> master)
Author: Al Sweigart <al@inventwithpython.com>
Date: Wed Sep 1 10:38:23 2021 -0700

 Moving the README file back to its original place and name.

commit 3ed22ed7ae26220bbd4c4f6bc52f4700dbb7c1f1
Author: Al Sweigart <al@inventwithpython.com>
Date: Wed Sep 1 10:36:29 2021 -0700

 Testing the moving of files in Git.

--snip—

Organizing Your Code Projects with Git 217

This command can display a large amount of text. If the log won’t fit in
your Terminal window, it’ll let you scroll up or down using the up and down
arrow keys. To quit, press the q key.

If you want to set your files to a commit that’s earlier than the latest one,
you need to first find the commit hash, a 40-character string of hexadecimal
digits (composed of numbers and the letters A to F), which works as a unique
identifier for a commit. For example, the full hash for the most recent com-
mit in our repo is 962a8baa29e452c74d40075d92b00897b02668fb. But it’s
common to use only the first seven digits: 962a8ba.

Over time, the log can get very lengthy. The --oneline option trims the
output to abbreviated commit hashes and the first line of each commit mes-
sage. Enter git log --oneline into the command line:

C:\Users\Al\wizcoin>git log --oneline
962a8ba (HEAD -> master) Moving the README file back to its original place and
name.
3ed22ed Testing the moving of files in Git.
15734e5 Deleting deleteme.txt from the repo to finish the deletion test.
441556a Adding a file to test Git deletion.
2a4c5b8 Added example code to README.md
e1ae3a3 An initial add of the project files.

If this log is still too long, you can use -n to limit the output to the most
recent commits. Try entering git log --oneline –n 3 to view only the last
three commits:

C:\Users\Al\wizcoin>git log --oneline -n 3
962a8ba (HEAD -> master) Moving the README file back to its original place and
name.
3ed22ed Testing the moving of files in Git.
15734e5 Deleting deleteme.txt from the repo to finish the deletion test.

To display the contents of a file as it was at a particular commit, you can
run the git show <hash>:<filename> command. But GUI Git tools will provide
a more convenient interface for examining the repo log than the command
line Git tool provides.

Recovering Old Changes
Let’s say you want to work with an earlier version of your source code because
you’ve introduced a bug, or perhaps you accidentally deleted a file. A version
control system lets you undo, or roll back, your working copy to the content of
an earlier commit. The exact command you’ll use depends on the state of the
files in the working copy.

Keep in mind that version control systems only add information. Even
when you delete a file from a repo, Git will remember it so you can restore it
later. Rolling back a change actually adds a new change that sets a file’s con-
tent to its state in a previous commit. You’ll find detailed information on
various kinds of rollbacks at https://github.blog/2015-06-08-how-to-undo-almost
-anything-with-git/.

https://github.blog/2015-06-08-how-to-undo-almost-anything-with-git/
https://github.blog/2015-06-08-how-to-undo-almost-anything-with-git/

218 Chapter 12

Undoing Uncommitted Local Changes
If you’ve made uncommitted changes to a file but want to revert it to the
version in the latest commit, you can run git restore <filename>. In the fol-
lowing example, we modify the README.md file but don’t yet stage or com-
mit it:

 C:\Users\Al\wizcoin>git status
On branch master

Changes not staged for commit:
 (use "git add <file>..." to update what will be committed)
 (use "git restore <file>..." to discard changes in working directory)
 modified: README.md

no changes added to commit (use "git add" and/or "git commit -a")
C:\Users\Al\wizcoin>git restore README.md
C:\Users\Al\wizcoin>git status
On branch master
Your branch is up to date with 'origin/master'.

nothing to commit, working tree clean

After you’ve run the git restore README.md command, the content of
README.md reverts to that of the last commit. This is effectively an undo
for the changes you’ve made to the file (but haven’t yet staged or commit-
ted). But be careful: you can’t undo this “undo” to get those changes back.

You can also run git checkout . to revert all changes you’ve made to
every file in your working copy.

Unstaging a Staged File
If you’ve staged a modified file by running the git add command on it but
now want to remove it from staging so it won’t be included in the next com-
mit, run git restore --staged <filename> to unstage it:

C:\Users\Al>git restore --staged README.md
Unstaged changes after reset:
M	 spam.txt

README.md remains modified as it was before git add staged the file,
but the file is no longer in the staged state.

Rolling Back the Most Recent Commits
Suppose you’ve made several unhelpful commits and you want to start over
from a previous commit. To undo a specific number of the most recent
commits, say, three, use the git revert -n HEAD~3..HEAD command. You
can replace the 3 with any number of commits. For example, let’s say you
tracked the changes to a mystery novel you were writing and have the fol-
lowing Git log of all your commits and commit messages.

Organizing Your Code Projects with Git 219

C:\Users\Al\novel>git log --oneline
de24642 (HEAD -> master) Changed the setting to outer space.
2be4163 Added a whacky sidekick.
97c655e Renamed the detective to 'Snuggles'.
8aa5222 Added an exciting plot twist.
2590860 Finished chapter 1.
2dece36 Started my novel.

Later you decide you want to start over again from the exciting plot
twist at hash 8aa5222. This means you should undo the changes from the last
three commits: de24642, 2be4163, and 97c655e. Run git revert -n HEAD~3..HEAD
to undo these changes, and then run git add . and git commit -m "<commit
message>" to commit this content, just as you would with any other change:

C:\Users\Al\novel>git revert -n HEAD~3..HEAD

C:\Users\Al\novel>git add .

C:\Users\Al\novel>git commit -m "Starting over from the plot twist."
[master faec20e] Starting over from the plot twist.
 1 file changed, 34 deletions(-)

C:\Users\Al\novel>git log --oneline
faec20e (HEAD -> master) Starting over from the plot twist.
de24642 Changed the setting to outer space.
2be4163 Added a whacky sidekick.
97c655e Renamed the detective to 'Snuggles'.
8aa5222 Added an exciting plot twist.
2590860 Finished chapter 1.
2dece36 Started my novel.

Git repos generally only add information, so undoing these commits
still leaves them in the commit history. If you ever want to undo this “undo,”
you can roll it back using git revert again.

Rolling Back to a Specific Commit for a Single File
Because commits capture the state of the entire repo instead of individual
files, you’ll need a different command if you want to roll back changes for
a single file. For example, let’s say I had a Git repo for a small software proj-
ect. I’ve created an eggs.py file and added functions spam() and bacon(), and
then renamed bacon() to cheese(). The log for this repo would look some-
thing like this:

C:\Users\Al\myproject>git log --oneline
895d220 (HEAD -> master) Adding email support to cheese().
df617da Renaming bacon() to cheese().
ef1e4bb Refactoring bacon().
ac27c9e Adding bacon() function.
009b7c0 Adding better documentation to spam().
0657588 Creating spam() function.
d811971 Initial add.

220 Chapter 12

But I’ve decided I want to revert the file back to before I added bacon()
without changing any other files in the repo. I can use the git show <hash>:
<filename> command to display this file as it was after a specific commit. The
command would look something like this:

C:\Users\Al\myproject>git show 009b7c0:eggs.py
<contents of eggs.py as it was at the 009b7c0 commit>

Using the git checkout <hash> -- <filename>, I could set the contents
of eggs.py to this version and commit the changed file as normal. The git
checkout command only changes the working copy. You’ll still need to stage
and commit these changes like any other change:

C:\Users\Al\myproject>git checkout 009b7c0 -- eggs.py

C:\Users\Al\myproject>git add eggs.py

C:\Users\Al\myproject>git commit -m "Rolled back eggs.py to 009b7c0"
[master d41e595] Rolled back eggs.py to 009b7c0
 1 file changed, 47 deletions(-)

C:\Users\Al\myproject>git log --oneline
d41e595 (HEAD -> master) Rolled back eggs.py to 009b7c0
895d220 Adding email support to cheese().
df617da Renaming bacon() to cheese().
ef1e4bb Refactoring bacon().
ac27c9e Adding bacon() function.
009b7c0 Adding better documentation to spam().
0657588 Creating spam() function.
d811971 Initial add.

The eggs.py file has been rolled back, and the rest of the repo remains
the same.

Rewriting the Commit History
If you’ve accidentally committed a file that contains sensitive information,
such as passwords, API keys, or credit card numbers, it’s not enough to
edit that information out and make a new commit. Anyone with access to
the repo, either on your computer or cloned remotely, could roll back to the
commit that includes this info.

Actually removing this information from your repo so it’s unrecover-
able is tricky but possible. The exact steps are beyond the scope of this
book, but you can use either the git filter-branch command or, preferably,
the BFG Repo-Cleaner tool. You can read about both at https://help.github
.com/en/articles/removing-sensitive-data-from-a-repository.

The easiest preventative measure for this problem is to have a secrets.txt,
confidential.py, or similarly named file where you place sensitive, private infor-
mation, and add it to .gitignore so you’ll never accidentally commit it to the
repo. Your program can read this file for the sensitive info instead of having
the sensitive info directly in its source code.

https://help.github.com/en/articles/removing-sensitive-data-from-a-repository
https://help.github.com/en/articles/removing-sensitive-data-from-a-repository

Organizing Your Code Projects with Git 221

GitHub and the git push Command
Although Git repos can exist entirely on your computer, many free websites
can host clones of your repo online, letting others easily download and
contribute to your projects. The largest of these sites is GitHub. If you keep
a clone of your project online, others can add to your code, even if the com-
puter from which you develop is turned off. The clone also acts as an effec-
tive backup.

N O T E 	 Although the terms can cause confusion, Git is version control software that main-
tains a repo and includes the git command, whereas GitHub is a website that hosts
Git repos online.

Go to https://github.com and sign up for a free account. From the GitHub
home page or your profile page’s Repositories tab, click the New button to
start a new project. Enter wizcoin for the repository name and the same
project description that we gave Cookiecutter in “Using Cookiecutter
to Create New Python Projects” on page 200, as shown in Figure 12-6.
Mark the repo as Public and deselect the Initialize this repository with
a README checkbox, because we’ll import an existing repository. Then
click Create repository. These steps are effectively like running git init
on the GitHub website.

Figure 12-6: Creating a new repo on GitHub

You’ll find the web page for your repos at https://github.com/<username>/
<repo_name>. In my case, my wizcoin repo is hosted at https://github.com/
asweigart/wizcoin.

https://github.com
https://github.com/<username>/<repo_name>
https://github.com/<username>/<repo_name>
https://github.com/asweigart/wizcoin
https://github.com/asweigart/wizcoin

222 Chapter 12

Pushing an Existing Repository to GitHub
To push an existing repository from the command line, enter the following:

C:\Users\Al\wizcoin>git remote add origin https://github.com/<github_
username>/wizcoin.git
C:\Users\Al\wizcoin>git push -u origin master
Username for 'https://github.com': <github_username>
Password for 'https://<github_username>@github.com': <github_password>
Counting objects: 3, done.
Writing objects: 100% (3/3), 213 bytes | 106.00 KiB/s, done.
Total 3 (delta 0), reused 0 (delta 0)
To https://github.com/<your github>/wizcoin.git
 * [new branch] master -> master
Branch 'master' set up to track remote branch 'master' from 'origin'.

The git remote add origin https://github.com/<github_username>/wizcoin.
git command adds GitHub as a remote repo corresponding to your local
repo. You then push any commits you’ve made on your local repo to the
remote repo using the git push -u origin master command. After this first
push, you can push all future commits from your local repo by simply run-
ning git push. Pushing your commits to GitHub after every commit is a
good idea to ensure the remote repo on GitHub is up to date with your
local repo, but it’s not strictly necessary.

When you reload the repo’s web page on GitHub, you should see the
files and commits displayed on the site. There’s a lot more to learn about
GitHub, including how you can accept other people’s contributions to your
repos through pull requests. These, along with GitHub’s other advanced fea-
tures, are beyond the scope of this book.

Cloning a Repo from an Existing GitHub Repo
It’s also possible to do the opposite: create a new repo on GitHub and clone
it to your computer. Create a new repo on the GitHub website, but this time,
select the Initialize this repository with a README checkbox.

To clone this repo to your local computer, go to the repo’s page on
GitHub and click the Clone or download button to open a window whose
URL should look something like https://github.com/<github_username>/wizcoin.
git. Use your repo’s URL with the git clone command to download it to your
computer:

C:\Users\Al>git clone https://github.com/<github_username>/wizcoin.git
Cloning into 'wizcoin'...
remote: Enumerating objects: 5, done.
remote: Counting objects: 100% (5/5), done.
remote: Compressing objects: 100% (3/3), done.
remote: Total 5 (delta 0), reused 5 (delta 0), pack-reused 0
Unpacking objects: 100% (5/5), done.

You can now commit and push changes using this Git repo just as you
would if you had run git init to create the repo.

https://github.com/<your_github>/wizcoin.git
https://github.com/<your_github>/wizcoin.git

Organizing Your Code Projects with Git 223

The git clone command is also useful in case your local repo gets into
a state that you don’t know how to undo. Although it’s less than ideal, you
can always save a copy of the files in your working directory, delete the
local repo, and use git clone to re-create the repo. This scenario happens
so often, even to experienced software developers, that it’s the basis of the
joke at https://xkcd.com/1597/.

Summary
Version control systems are lifesavers for programmers. Committing snap-
shots of your code makes it easy to review your progress and, in certain
cases, roll back changes you don’t need. Learning the basics of a version
control system like Git certainly saves you time in the long run.

Python projects typically have several standard files and folders, and
the cookiecutter module helps you create the starting boilerplate for many
of these files. These files make up the first files you commit to your local Git
repo. We call the folder containing all of this content the working directory or
project folder.

Git tracks the files in your working directory, all of which can exist in
one of three states: committed (also called unmodified or clean), modified,
or staged. The Git command line tool has several commands, such as git
status or git log, that let you view this information, but you can also install
several third-party GUI Git tools.

The git init command creates a new, empty repo on your local com-
puter. The git clone command copies a repo from a remote server, such as
the popular GitHub website. Either way, once you have a repo, you can use
git add and git commit to commit changes to your repo, and use git push to
push these commits to a remote GitHub repo. Several commands were also
described in this chapter to undo the commits you’ve made. Performing an
undo allows you to roll back to an earlier version of your files.

Git is a extensive tool with many features, and this chapter covers only
the basics of the version control system. Many resources are available to you
to learn more about Git’s advanced features. I recommend two free books
that you can find online: Pro Git by Scott Charcon at https://git-scm.com/book/
en/v2 and Version Control by Example by Eric Sink at https://ericsink.com/vcbe/
index.html.

https://xkcd.com/1597/
https://git-scm.com/book/en/v2
https://git-scm.com/book/en/v2
https://ericsink.com/vcbe/index.html
https://ericsink.com/vcbe/index.html

For most small programs, performance
isn’t all that important. We might spend an

hour writing a script to automate a task that
needs only a few seconds to run. Even if it takes

longer, the program will probably finish by the time
we’ve returned to our desk with a cup of coffee.

Sometimes it’s prudent to invest time in learning how to make a script
faster. But we can’t know if our changes improve a program’s speed until
we know how to measure program speed. This is where Python’s timeit and
cProfile modules come in. These modules not only measure how fast code
runs, but also create a profile of which parts of the code are already fast and
which parts we could improve.

In addition to measuring program speed, in this chapter you’ll also
learn how to measure the theoretical increases in runtime as the data
for your program grows. In computer science, we call this big O notation.
Software developers without traditional computer science backgrounds
might sometimes feel they have gaps in their knowledge. But although a
computer science education is fulfilling, it’s not always directly relevant to

13
M E A S U R I N G P E R F O R M A N C E A N D

B I G O A L G O R I T H M A N A LY S I S

226 Chapter 13

software development. I joke (but only half so) that big O notation makes
up about 80 percent of the usefulness of my degree. This chapter provides
an introduction to this practical topic.

The timeit Module
“Premature optimization is the root of all evil” is a common saying in
software development. (It’s often attributed to computer scientist Donald
Knuth, who attributes it to computer scientist Tony Hoare. Tony Hoare, in
turn, attributes it to Donald Knuth.) Premature optimization, or optimizing
before knowing what needs to be optimized, often manifests itself when
programmers try to use clever tricks to save memory or write faster code.
For example, one of these tricks is using the XOR algorithm to swap two
integer values without using a third, temporary variable:

>>> a, b = 42, 101 # Set up the two variables.
>>> print(a, b)
42 101
>>> # A series of ^ XOR operations will end up swapping their values:
>>> a = a ^ b
>>> b = a ^ b
>>> a = a ^ b
>>> print(a, b) # The values are now swapped.
101 42

Unless you’re unfamiliar with the XOR algorithm (which uses the ^ bit-
wise operator), this code looks cryptic. The problem with using clever pro-
gramming tricks is that they can produce complicated, unreadable code.
Recall that one of the Zen of Python tenets is readability counts.

Even worse, your clever trick might turn out not to be so clever. You
can’t just assume a crafty trick is faster or that the old code it’s replacing
was even all that slow to begin with. The only way to find out is by measur-
ing and comparing the runtime: the amount of time it takes to run a pro-
gram or piece of code. Keep in mind that increasing the runtime means the
program is slowing down: the program is taking more time to do the same
amount of work. (We also sometimes use the term runtime to refer to the
period during which the program is running. This error happened at runtime
means the error happened while the program was running as opposed to
when the program was being compiled into bytecode.)

The Python standard library’s timeit module can measure the runtime
speed of a small snippet of code by running it thousands or millions of times,
letting you determine an average runtime. The timeit module also temporar-
ily disables the automatic garbage collector to ensure more consistent run-
times. If you want to test multiple lines, you can pass a multiline code string
or separate the code lines using semicolons:

>>> import timeit
>>> timeit.timeit('a, b = 42, 101; a = a ^ b; b = a ^ b; a = a ^ b')
0.1307766629999998
>>> timeit.timeit("""a, b = 42, 101

Measuring Performance and Big O Algorithm Analysis 227

... a = a ^ b

... b = a ^ b

... a = a ^ b""")
0.13515726800000039

On my computer, the XOR algorithm takes roughly one-tenth of a sec-
ond to run this code. Is this fast? Let’s compare it to some integer swapping
code that uses a third temporary variable:

>>> import timeit
>>> timeit.timeit('a, b = 42, 101; temp = a; a = b; b = temp')
0.027540389999998638

That’s a surprise! Not only is using a third temporary variable more read-
able, but it’s also twice as fast! The clever XOR trick might save a few bytes of
memory but at the expense of speed and code readability. Sacrificing code
readability to reduce a few bytes of memory usage or nanoseconds of runtime
isn’t worthwhile.

Better still, you can swap two variables using the multiple assignment trick,
also called iterable unpacking, which also runs in a small amount of time:

>>> timeit.timeit('a, b = 42, 101; a, b = b, a')
0.024489236000007963

Not only is this the most readable code, it’s also the quickest. We know
this not because we assumed it, but because we objectively measured it.

The timeit.timeit() function can also take a second string argument of
setup code. The setup code runs only once before running the first string’s
code. You can also change the default number of trials by passing an integer
for the number keyword argument. For example, the following test measures
how quickly Python’s random module can generate 10,000,000 random num-
bers from 1 to 100. (On my machine, it takes about 10 seconds.)

>>> timeit.timeit('random.randint(1, 100)', 'import random', number=10000000)
10.020913950999784

By default, the code in the string you pass to timeit.timeit() won’t be
able to access the variables and the functions in the rest of the program:

>>> import timeit
>>> spam = 'hello' # We define the spam variable.
>>> timeit.timeit('print(spam)', number=1) # We measure printing spam.
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "C:\Users\Al\AppData\Local\Programs\Python\Python37\lib\timeit.py",
line 232, in timeit
 return Timer(stmt, setup, timer, globals).timeit(number)
 File "C:\Users\Al\AppData\Local\Programs\Python\Python37\lib\timeit.py",
line 176, in timeit
 timing = self.inner(it, self.timer)
 File "<timeit-src>", line 6, in inner
NameError: name 'spam' is not defined

228 Chapter 13

To fix this, pass the function the return value of globals() for the globals
keyword argument:

>>> timeit.timeit('print(spam)', number=1, globals=globals())
hello
0.000994909999462834

A good rule for writing your code is to first make it work and then make
it fast. Only once you have a working program should you focus on making
it more efficient.

The cProfile Profiler
Although the timeit module is useful for measuring small code snippets,
the cProfile module is more effective for analyzing entire functions or pro-
grams. Profiling analyzes your program’s speed, memory usage, and other
aspects systematically. The cProfile module is Python’s profiler, or software
that can measure a program’s runtime as well as build a profile of runtimes
for the program’s individual function calls. This information provides sub-
stantially more granular measurements of your code.

To use the cProfile profiler, pass a string of the code you want to mea-
sure to cProfile.run(). Let’s look at how cProfiler measures and reports
the execution of a short function that sums all the numbers from 1 to
1,000,000:

import time, cProfile
def addUpNumbers():
 total = 0
 for i in range(1, 1000001):
 total += i

cProfile.run('addUpNumbers()')

When you run this program, the output will look something like this:

 4 function calls in 0.064 seconds

 Ordered by: standard name

 ncalls tottime percall cumtime percall filename:lineno(function)
 1 0.000 0.000 0.064 0.064 <string>:1(<module>)
 1 0.064 0.064 0.064 0.064 test1.py:2(addUpNumbers)
 1 0.000 0.000 0.064 0.064 {built-in method builtins.exec}
 1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}

Each line represents a different function and the amount of time spent
in that function. The columns in cProfile.run()’s output are:

ncalls   The number of calls made to the function

tottime   The total time spent in the function, excluding time in
subfunctions

Measuring Performance and Big O Algorithm Analysis 229

percall   The total time divided by the number of calls

cumtime   The cumulative time spent in the function and all
subfunctions

percall   The cumulative time divided by the number of calls

filename:lineno(function)   The file the function is in and at which line
number

For example, download the rsaCipher.py and al_sweigart_pubkey.txt files
from https://nostarch.com/crackingcodes/. This RSA Cipher program was fea-
tured in Cracking Codes with Python (No Starch Press, 2018). Enter the follow-
ing into the interactive shell to profile the encryptAndWriteToFile() function
as it encrypts a 300,000-character message created by the 'abc' * 100000
expression:

>>> import cProfile, rsaCipher
>>> cProfile.run("rsaCipher.encryptAndWriteToFile('encrypted_file.txt', 'al_sweigart_pubkey.
txt', 'abc'*100000)")
 11749 function calls in 28.900 seconds

 Ordered by: standard name

 ncalls tottime percall cumtime percall filename:lineno(function)
 1 0.001 0.001 28.900 28.900 <string>:1(<module>)
 2 0.000 0.000 0.000 0.000 _bootlocale.py:11(getpreferredencoding)
--snip--
 1 0.017 0.017 28.900 28.900 rsaCipher.py:104(encryptAndWriteToFile)
 1 0.248 0.248 0.249 0.249 rsaCipher.py:36(getBlocksFromText)
 1 0.006 0.006 28.873 28.873 rsaCipher.py:70(encryptMessage)
 1 0.000 0.000 0.000 0.000 rsaCipher.py:94(readKeyFile)
--snip--
 2347 0.000 0.000 0.000 0.000 {built-in method builtins.len}
 2344 0.000 0.000 0.000 0.000 {built-in method builtins.min}
 2344 28.617 0.012 28.617 0.012 {built-in method builtins.pow}
 2 0.001 0.000 0.001 0.000 {built-in method io.open}
 4688 0.001 0.000 0.001 0.000 {method 'append' of 'list' objects}
--snip--

You can see that the code passed to cProfile.run() took 28.9 seconds to
complete. Pay attention to the functions with the highest total times; in this
case, Python’s built-in pow() function takes up 28.617 seconds. That’s nearly
the entire code’s runtime! We can’t change this code (it’s part of Python),
but perhaps we could change our code to rely on it less.

This isn’t possible in this case, because rsaCipher.py is already fairly
optimized. Even so, profiling this code has provided us insight that pow()
is the main bottleneck. So there’s little sense in trying to improve, say, the
readKeyFile() function (which takes so little time to run that cProfile reports
its runtime as 0).

This idea is captured by Amdahl’s Law, a formula that calculates how
much the overall program speeds up given an improvement to one of
its components. The formula is speed-up of whole task = 1 / ((1 – p) + (p / s))
where s is the speed-up made to a component and p is the portion of that

https://nostarch.com/crackingcodes

230 Chapter 13

component of the overall program. So if you double the speed of a compo-
nent that makes up 90 percent of the program’s total runtime, you’ll get
1 / ((1 – 0.9) + (0.9 / 2)) = 1.818, or an 82 percent speed-up of the overall
program. This is better than, say, tripling the speed of a component that
only makes up 25 percent of the total runtime, which would only be a
1 / ((1 – 0.25) + (0.25 / 2)) = 1.143, or 14 percent overall speed-up. You
don’t need to memorize the formula. Just remember that doubling the
speed of your code’s slow or lengthy parts is more productive than dou-
bling the speed of an already quick or short part. This is common sense:
a 10 percent price discount on an expensive house is better than a 10 per-
cent discount on a cheap pair of shoes.

Big O Algorithm Analysis
Big O is a form of algorithm analysis that describes how code will scale. It
classifies the code into one of several orders that describes, in general terms,
how much longer the code’s runtime will take as the amount of work it has
to do increases. Python developer Ned Batchelder describes big O as an
analysis of “how code slows as data grows,” which is also the title of his infor-
mative PyCon 2018 talk, which is available at https://youtu.be/duvZ-2UK0fc/.

Let’s consider the following scenario. Say you have a certain amount
of work that takes an hour to complete. If the workload doubles, how long
would it take then? You might be tempted to think it takes twice as long, but
actually, the answer depends on the kind of work that’s being done.

If it takes an hour to read a short book, it will take more or less two
hours to read two short books. But if you can alphabetize 500 books in an
hour, alphabetizing 1,000 books will most likely take longer than two hours,
because you have to find the correct place for each book in a much larger
collection of books. On the other hand, if you’re just checking whether or
not a bookshelf is empty, it doesn’t matter if there are 0, 10, or 1,000 books
on the shelf. One glance and you’ll immediately know the answer. The
runtime remains roughly constant no matter how many books there are.
Although some people might be faster or slower at reading or alphabetizing
books, these general trends remain the same.

The big O of the algorithm describes these trends. An algorithm can
run on a fast or slow computer, but we can still use big O to describe how
well an algorithm performs in general, regardless of the actual hardware
executing the algorithm. Big O doesn’t use specific units, such as seconds
or CPU cycles, to describe an algorithm’s runtime, because these would
vary between different computers or programming languages.

Big O Orders
Big O notation commonly defines the following orders. These range from
the lower orders, which describe code that, as the amount of data grows,

https://youtu.be/duvZ-2UK0fc

Measuring Performance and Big O Algorithm Analysis 231

slows down the least, to the higher orders, which describe code that slows
down the most:

	1.	 O(1), Constant Time (the lowest order)

	2.	 O(log n), Logarithmic Time

	3.	 O(n), Linear Time

	4.	 O(n log n), N-Log-N Time

	5.	 O(n2), Polynomial Time

	6.	 O(2n), Exponential Time

	7.	 O(n!), Factorial Time (the highest order)

Notice that big O uses the following notation: a capital O, followed
by a pair of parentheses containing a description of the order. The capi-
tal O represents order or on the order of. The n represents the size of the
input data the code will work on. We pronounce O(n) as “big oh of n” or
“big oh n.”

You don’t need to understand the precise mathematic meanings of
words like logarithmic or polynomial to use big O notation. I’ll describe each
of these orders in detail in the next section, but here’s an oversimplified
explanation of them:

•	 O(1) and O(log n) algorithms are fast.

•	 O(n) and O(n log n) algorithms aren’t bad.

•	 O(n2), O(2n), and O(n!) algorithms are slow.

Certainly, you could find counterexamples, but these descriptions are
good rules in general. There are more big O orders than the ones listed
here, but these are the most common. Let’s look at the kinds of tasks that
each of these orders describes.

A Bookshelf Metaphor for Big O Orders
In the following big O order examples, I’ll continue using the bookshelf
metaphor. The n refers to the number of books on the bookshelf, and the
big O ordering describes how the various tasks take longer as the number
of books increases.

O(1), Constant Time

Finding out “Is the bookshelf empty?” is a constant time operation. It
doesn’t matter how many books are on the shelf; one glance tells us
whether or not the bookshelf is empty. The number of books can vary,
but the runtime remains constant, because as soon as we see one book
on the shelf, we can stop looking. The n value is irrelevant to the speed
of the task, which is why there is no n in O(1). You might also see constant
time written as O(c).

232 Chapter 13

O(log n), Logarithmic

Logarithms are the inverse of exponentiation: the exponent 24, or 2 × 2 × 2 × 2,
equals 16, whereas the logarithm log2(16) (pronounced “log base 2 of 16”)
equals 4. In programming, we often assume base 2 to be the logarithm base,
which is why we write O(log n) instead of O(log2 n).

Searching for a book on an alphabetized bookshelf is a logarithmic
time operation. To find one book, you can check the book in the middle of
the shelf. If that is the book you’re searching for, you’re done. Otherwise,
you can determine whether the book you’re searching for comes before or
after this middle book. By doing so, you’ve effectively reduced the range
of books you need to search in half. You can repeat this process again,
checking the middle book in the half that you expect to find it. We call this
the binary search algorithm, and there’s an example of it in “Big O Analysis
Examples” later in this chapter.

The number of times you can split a set of n books in half is log2 n.
On a shelf of 16 books, it will take at most four steps to find the right one.
Because each step reduces the number of books you need to search by one
half, a bookshelf with double the number of books takes just one more step
to search. If there were 4.2 billion books on the alphabetized bookshelf, it
would still only take 32 steps to find a particular book.

Log n algorithms usually involve a divide and conquer step, which selects
half of the n input to work on and then another half from that half, and so
on. Log n operations scale nicely: the workload n can double in size, but the
runtime increases by only one step.

O(n), Linear Time

Reading all the books on a bookshelf is a linear time operation. If the
books are roughly the same length and you double the number of books
on the shelf, it will take roughly double the amount of time to read all the
books. The runtime increases in proportion to the number of books n.

O(n log n), N-Log-N Time

Sorting a set of books into alphabetical order is an n-log-n time operation.
This order is the runtime of O(n) and O(log n) multiplied together. You
can think of a O(n log n) task as a O(log n) task that must be performed n
times. Here’s a casual description of why.

Start with a stack of books to alphabetize and an empty bookshelf.
Follow the steps for a binary search algorithm, as detailed in “O(log n),
Logarithmic” on page 232, to find where a single book belongs on the
shelf. This is an O(log n) operation. With n books to alphabetize, and each
book taking log n steps to alphabetize, it takes n × log n, or n log n, steps
to alphabetize the entire set of books. Given twice as many books, it takes
a bit more than twice as long to alphabetize all of them, so n log n algo-
rithms scale fairly well.

Measuring Performance and Big O Algorithm Analysis 233

In fact, all of the efficient general sorting algorithms are O(n log n):
merge sort, quicksort, heapsort, and Timsort. (Timsort, invented by Tim
Peters, is the algorithm that Python’s sort() method uses.)

O(n2), Polynomial Time

Checking for duplicate books on an unsorted bookshelf is a polynomial
time operation. If there are 100 books, you could start with the first book
and compare it with the 99 other books to see whether they’re the same.
Then you take the second book and check whether it’s the same as any of
the 99 other books. Checking for a duplicate of a single book is 99 steps
(we’ll round this up to 100, which is our n in this example). We have to
do this 100 times, once for each book. So the number of steps to check
for any duplicate books on the bookshelf is roughly n × n, or n2. (This
approximation to n2 still holds even if we were clever enough not to repeat
comparisons.)

The runtime increases by the increase in books squared. Checking
100 books for duplicates is 100 × 100, or 10,000 steps. But checking twice
that amount, 200 books, is 200 × 200, or 40,000 steps: four times as
much work.

In my experience writing code in the real world, I’ve found the most com-
mon use of big O analysis is to avoid accidentally writing an O(n2) algorithm
when an O(n log n) or O(n) algorithm exists. The O(n2) order is when algo-
rithms dramatically slow down, so recognizing your code as O(n2) or higher
should give you pause. Perhaps there’s a different algorithm that can solve the
problem faster. In these cases, taking a data structure and algorithms (DSA)
course, whether at a university or online, can be helpful.

We also call O(n2) quadratic time. Algorithms could have O(n3), or cubic
time, which is slower than O(n2); O(n4), or quartic time, which is slower than
O(n3); or other polynomial time complexities.

O(2n), Exponential Time

Taking photos of the shelf with every possible combination of books on it is
an exponential time operation. Think of it this way: each book on the shelf
can either in be included in the photo or not included. Figure 13-1 shows
every combination where n is 1, 2, or 3. If n is 1, there are two possible pho-
tos: with the book and without. If n is 2, there are four possible photos: both
books on the shelf, both books off, the first on and second off, and the sec-
ond on and first off. When you add a third book, you’ve once again doubled
the amount of work you have to do: you need to do every subset of two books
that includes the third book (four photos) and every subset of two books
that excludes the third book (another four photos, for 23 or eight photos).
Each additional book doubles the workload. For n books, the number of
photos you need to take (that is, the amount of work you need to do) is 2n.

234 Chapter 13

Figure 13-1: Every combination of books on a bookshelf for one, two, or three books

The runtime for exponential tasks increases very quickly. Six books
require 26 or 32 photos, but 32 books would include 232 or more than
4.2 billion photos. O(2n), O(3n), O(4n), and so on are different orders
ut all have exponential time complexity.

O(n!), Factorial Time

Taking a photo of the books on the shelf in every conceivable order is a
factorial time operation. We call every possible order the permutation of n
books. This results in n!, or n factorial, orderings. The factorial of a number
is the multiplication product of all positive integers up to the number. For
example, 3! is 3 × 2 × 1, or 6. Figure 13-2 shows every possible permutation
of three books.

Figure 13-2: All 3! (that is, 6) permutations of three books on a bookshelf

To calculate this yourself, think about how you would come up with
every permutation of n books. You have n possible choices for the first
book; then n – 1 possible choices for the second book (that is, every book
except the one you picked for the first book); then n – 2 possible choices

Measuring Performance and Big O Algorithm Analysis 235

for the third book; and so on. With 6 books, 6! results in 6 × 5 × 4 × 3 ×
2 × 1, or 720 photos. Adding just one more book makes this 7!, or 5,040
photos needed. Even for small n values, factorial time algorithms quickly
become impossible to complete in a reasonable amount of time. If you
had 20 books and could arrange them and take a photo every second, it
would still take longer than the universe has existed to get through every
possible permutation.

One well-known O(n!) problem is the traveling salesperson conun-
drum. A salesperson must visit n cities and wants to calculate the distance
travelled for all n! possible orders in which they could visit them. From
these calculations, they could determine the order that involves the short-
est travel distance. In a region with many cities, this task proves impossible
to complete in a timely way. Fortunately, optimized algorithms can find a
short (but not guaranteed to be the shortest) route much faster than O(n!).

Big O Measures the Worst-Case Scenario
Big O specifically measures the worst-case scenario for any task. For exam-
ple, finding a particular book on an unorganized bookshelf requires
you to start from one end and scan the books until you find it. You might
get lucky, and the book you’re looking for might be the first book you
check. But you might be unlucky; it could be the last book you check or
not on the bookshelf at all. So in a best-case scenario, it wouldn’t matter
if there were billions of books you had to search through, because you’ll
immediately find the one you’re looking for. But that optimism isn’t use-
ful for algorithm analysis. Big O describes what happens in the unlucky
case: if you have n books on the shelf, you’ll have to check all n books. In
this example, the runtime increases at the same rate as the number of
books.

Some programmers also use big Omega notation, which describes the
best-case scenario for an algorithm. For example, a Ω(n) algorithm per-
forms at linear efficiency at its best. In the worst case, it might perform
slower. Some algorithms encounter especially lucky cases where no work
has to be done, such as finding driving directions to a destination when
you’re already at the destination.

Big Theta notation describes algorithms that have the same best- and
worst-case order. For example, Θ(n) describes an algorithm that has linear
efficiency at best and at worst, which is to say, it’s an O(n) and Ω(n) algo-
rithm. These notations aren’t used in software engineering as often as big
O, but you should still be aware of their existence.

It isn’t uncommon for people to talk about the “big O of the average
case” when they mean big Theta, or “big O of the best case” when they
mean big Omega. This is an oxymoron; big O specifically refers to an algo-
rithm’s worst-case runtime. But even though their wording is technically
incorrect, you can understand their meaning irregardless.

236 Chapter 13

MOR E T H A N E NOUGH M AT H TO DO BIG O

If your algebra is rusty, here’s more than enough math to do big O analysis:

Multiplication  Repeated addition. 2 × 4 = 8, just like 2 + 2 + 2 + 2 = 8. With
variables, n + n + n is 3 × n.

Multiplication notation  Algebra notation often omits the × sign, so 2 × n is writ-
ten as 2n. With numbers, 2 × 3 is written as 2(3) or simply 6.

The multiplicative identity property  Multiplying a number by 1 results in that
number: 5 × 1 = 5 and 42 × 1 = 42. More generally, n × 1 = n.

The distributive property of multiplication  2 × (3 + 4) = (2 × 3) + (2 × 4). Both
sides of the equation equal 14. More generally, a(b + c) = ab + ac.

Exponentiation  Repeated multiplication. 24 = 16 (pronounced “2 raised to the
4th power is 16”), just like 2 × 2 × 2 × 2 = 16. Here, 2 is the base and 4 is the
exponent. With variables, n × n × n × n is n4. In Python, we use the ** operator:
2 ** 4 evaluates to 16.

The 1st power evaluates to the base  21 = 2 and 99991 = 9999. More gener-
ally, n1 = n.

The 0th power always evaluates to 1   20 = 1 and 99990 = 1. More generally,
n0 = 1.

Coefficients  Multiplicative factors. In 3n2 + 4n + 5, the coefficients are 3, 4,
and 5. You can see that 5 is a coefficient because 5 can be rewritten as 5(1)
and then rewritten as 5n0.

Logarithms  The inverse of exponentiation. Because 24 = 16, we know that
log2(16) = 4. We pronounce this “the log base 2 of 16 is 4.” In Python, we use
the math.log() function: math.log(16, 2) evaluates to 4.0.

Calculating big O often involves simplifying equations by combining like
terms. A term is some combination of numbers and variables multiplied together:
in 3n2 + 4n + 5, the terms are 3n2, 4n, and 5. Like terms have the same variables
raised to the same exponent. In the expression 3n2 + 4n + 6n + 5, the terms 4n
and 6n are like terms. We could simplify and rewrite this as 3n2 + 10n + 5.

Keep in mind that because n × 1 = n, an expression like 3n2 + 5n + 4 can
be thought of as 3n2 + 5n + 4(1). The terms in this expression match with the
big O orders O(n2), O(n), and O(1). This will come up later when we’re drop-
ping coefficients for our big O calculations.

These math rule reminders might come in handy when you’re first learn-
ing how to figure out the big O of a piece of code. But by the time you finish
“Analyzing Big O at a Glance” later in this chapter, you probably won’t need
them anymore. Big O is a simple concept and can be useful even if you don’t
strictly follow mathematical rules.

Measuring Performance and Big O Algorithm Analysis 237

Determining the Big O Order of Your Code
To determine the big O order for a piece of code, we must do four tasks:
identify what the n is, count the steps in the code, drop the lower orders,
and drop the coefficients.

For example, let’s find the big O of the following readingList() function:

def readingList(books):
 print('Here are the books I will read:')
 numberOfBooks = 0
 for book in books:
 print(book)
 numberOfBooks += 1
 print(numberOfBooks, 'books total.')

Recall that the n represents the size of the input data that the code
works on. In functions, the n is almost always based on a parameter. The
readingList() function’s only parameter is books, so the size of books seems
like a good candidate for n, because the larger books is, the longer the func-
tion takes to run.

Next, let’s count the steps in this code. What counts as a step is some-
what vague, but a line of code is a good rule to follow. Loops will have as
many steps as the number of iterations multiplied by the lines of code in
the loop. To see what I mean, here are the counts for the code inside the
readingList() function:

def readingList(books):
 print('Here are the books I will read:') # 1 step
 numberOfBooks = 0 # 1 step
 for book in books: # n * steps in the loop
 print(book) # 1 step
 numberOfBooks += 1 # 1 step
 print(numberOfBooks, 'books total.') # 1 step

We’ll treat each line of code as one step except for the for loop. This
line executes once for each item in books, and because the size of books is
our n, we say that this executes n steps. Not only that, but it executes all the
steps inside the loop n times. Because there are two steps inside the loop,
the total is 2 × n steps. We could describe our steps like this:

def readingList(books):
 print('Here are the books I will read:') # 1 step
 numberOfBooks = 0 # 1 step
 for book in books: # n * 2 steps
 print(book) # (already counted)
 numberOfBooks += 1 # (already counted)
 print(numberOfBooks, 'books total.') # 1 step

Now when we compute the total number of steps, we get 1 + 1 + (n × 2) + 1.
We can rewrite this expression more simply as 2n + 3.

238 Chapter 13

Big O doesn’t intend to describe specifics; it’s a general indicator.
Therefore, we drop the lower orders from our count. The orders in 2n + 3
are linear (2n) and constant (3). If we keep only the largest of these orders,
we’re left with 2n.

Next, we drop the coefficients from the order. In 2n, the coefficient is
2. After dropping it, we’re left with n. This gives us the final big O of the
readingList() function: O(n), or linear time complexity.

This order should make sense if you think about it. There are several
steps in our function, but in general, if the books list increases tenfold in
size, the runtime increases about tenfold as well. Increasing books from
10 books to 100 books moves the algorithm from 1 + 1 + (2 × 10) + 1, or
23 steps, to 1 + 1 + (2 × 100) + 1, or 203 steps. The number 203 is roughly
10 times 23, so the runtime increases proportionally with the increase to n.

Why Lower Orders and Coefficients Don’t Matter
We drop the lower orders from our step count because they become less
significant as n grows in size. If we increased the books list in the previous
readingList() function from 10 to 10,000,000,000 (10 billion), the number
of steps would increase from 23 to 20,000,000,003. With a large enough n,
those extra three steps matter very little.

When the amount of data increases, a large coefficient for a smaller
order won’t make a difference compared to the higher orders. At a certain
size n, the higher orders will always be slower than the lower orders. For
example, let’s say we have quadraticExample(), which is O(n2) and has 3n2
steps. We also have linearExample(), which is O(n) and has 1,000n steps. It
doesn’t matter that the 1,000 coefficient is larger than the 3 coefficient; as n
increases, eventually an O(n2) quadratic operation will become slower than
an O(n) linear operation. The actual code doesn’t matter, but we can think
of it as something like this:

def quadraticExample(someData): # n is the size of someData
 for i in someData: # n steps
 for j in someData: # n steps
 print('Something') # 1 step
 print('Something') # 1 step
 print('Something') # 1 step

def linearExample(someData): # n is the size of someData
 for i in someData: # n steps
 for k in range(1000): # 1 * 1000 steps
 print('Something') # (Already counted)

The linearExample() function has a large coefficient (1,000) compared
to the coefficient (3) of quadraticExample(). If the size of the input n is 10,
the O(n2) function appears faster with only 300 steps compared to the O(n)
function with 10,000 steps.

But big O notation is chiefly concerned with the algorithm’s per-
formance as the workload scales up. When n reaches the size of 334 or
greater, the quadraticExample() function will always be slower than the

Measuring Performance and Big O Algorithm Analysis 239

linearExample() function. Even if linearExample() were 1,000,000n steps,
the quadraticExample() function would still become slower once n reached
333,334. At some point, an O(n2) operation always becomes slower than
an O(n) or lower operation. To see how, look at the big O graph shown in
Figure 13-3. This graph features all the major big O notation orders. The
x-axis is n, the size of the data, and the y-axis is the runtime needed to
carry out the operation.

Time

data

n² n log n n

log n

1

Figure 13-3: The graph of the big O orders

As you can see, the runtime of the higher orders grows at a faster rate
than that of the lower orders. Although the lower orders could have large
coefficients that make them temporarily larger than the higher orders, the
higher orders eventually outpace them.

Big O Analysis Examples
Let’s determine the big O orders of some example functions. In these
examples, we’ll use a parameter named books that is a list of strings of book
titles.

The countBookPoints() function calculates a score based on the number
of books in the books list. Most books are worth one point, and books by a
certain author are worth two points:

def countBookPoints(books):
 points = 0 # 1 step
 for book in books: # n * steps in the loop
 points += 1 # 1 step

 for book in books: # n * steps in the loop
 if 'by Al Sweigart' in book: # 1 step
 points += 1 # 1 step
 return points # 1 step

240 Chapter 13

The number of steps comes to 1 + (n × 1) + (n × 2) + 1, which becomes
3n + 2 after combining the like terms. Once we drop the lower orders and
coefficients, this becomes O(n), or linear complexity, no matter if we loop
through books once, twice, or a billion times.

So far, all examples that used a single loop have had linear complexity,
but notice that these loops iterated n times. As you’ll see in the next exam-
ple, a loop in your code alone doesn’t imply linear complexity, although a
loop that iterates over your data does.

This iLoveBooks() function prints “I LOVE BOOKS!!!” and “BOOKS
ARE GREAT!!!” 10 times:

def iLoveBooks(books):
 for i in range(10): # 10 * steps in the loop
 print('I LOVE BOOKS!!!') # 1 step
 print('BOOKS ARE GREAT!!!') # 1 step

This function has a for loop, but it doesn’t loop over the books list, and it
performs 20 steps no matter what the size of books is. We can rewrite this as
20(1). After dropping the 20 coefficient, we are left with O(1), or constant
time complexity. This makes sense; the function takes the same amount
of time to run, no matter what n, the size of the books list, is.

Next, we have a cheerForFavoriteBook() function that searches through
the books list to look for a favorite book:

def cheerForFavoriteBook(books, favorite):
 for book in books: # n * steps in the loop
 print(book) # 1 step
 if book == favorite: # 1 step
 for i in range(100): # 100 * steps in the loop
 print('THIS IS A GREAT BOOK!!!') # 1 step

The for book loop iterates over the books list, which requires n steps
multiplied by the steps inside the loop. This loop includes a nested for i
loop, which iterates 100 times. This means the for book loop runs 102 × n, or
102n steps. After dropping the coefficient, we find that cheerForFavoriteBook()
is still just an O(n) linear operation. This 102 coefficient might seem rather
large to just ignore, but consider this: if favorite never appears in the books
list, this function would only run 1n steps. The impact of coefficients can
vary so wildly that they aren’t very meaningful.

Next, the findDuplicateBooks() function searches through the books list (a
linear operation) once for each book (another linear operation):

def findDuplicateBooks(books):
 for i in range(books): # n steps
 for j in range(i + 1, books): # n steps
 if books[i] == books[j]: # 1 step
 print('Duplicate:', books[i]) # 1 step

The for i loop iterates over the entire books list, performing the steps
inside the loop n times. The for j loop also iterates over a portion of the

Measuring Performance and Big O Algorithm Analysis 241

books list, although because we drop coefficients, this also counts as a linear
time operation. This means the for i loop performs n × n operations—that
is, n2. This makes findDuplicateBooks() an O(n2) polynomial time operation.

Nested loops alone don’t imply a polynomial operation, but nested loops
where both loops iterate n times do. These result in n2 steps, implying an
O(n2) operation.

Let’s look at a challenging example. The binary search algorithm men-
tioned earlier works by searching the middle of a sorted list (we’ll call it the
haystack) for an item (we’ll call it the needle). If we don’t find the needle there,
we’ll proceed to search the previous or latter half of the haystack, depend-
ing on which half we expect to find the needle in. We’ll repeat this process,
searching smaller and smaller halves until either we find the needle or we
conclude it isn’t in the haystack. Note that binary search only works if the
items in the haystack are in sorted order.

def binarySearch(needle, haystack):
 if not len(haystack): # 1 step
 return None # 1 step
 startIndex = 0 # 1 step
 endIndex = len(haystack) - 1 # 1 step

 haystack.sort() # ??? steps

 while start <= end: # ??? steps
 midIndex = (startIndex + endIndex) // 2 # 1 step
 if haystack[midIndex] == needle: # 1 step
 # Found the needle.
 return midIndex # 1 step
 elif needle < haystack[midIndex]: # 1 step
 # Search the previous half.
 endIndex = midIndex - 1 # 1 step
 elif needle > haystack[mid]: # 1 step
 # Search the latter half.
 startIndex = midIndex + 1 # 1 step

Two of the lines in binarySearch() aren’t easy to count. The haystack
.sort() method call’s big O order depends on the code inside Python’s
sort() method. This code isn’t very easy to find, but you can look up its
big O order on the internet to learn that it’s O(n log n). (All general
sorting functions are, at best, O(n log n).) We’ll cover the big O order of
several common Python functions and methods in “The Big O Order of
Common Function Calls” later in this chapter.

The while loop isn’t as straightforward to analyze as the for loops we’ve
seen. We must understand the binary search algorithm to determine how
many iterations this loop has. Before the loop, the startIndex and endIndex
cover the entire range of haystack, and midIndex is set to the midpoint of this
range. On each iteration of the while loop, one of two things happens. If
haystack[midIndex] == needle, we know we’ve found the needle, and the func-
tion returns the index of the needle in haystack. If needle < haystack[midIndex]
or needle > haystack[midIndex], the range covered by startIndex and endIndex
is halved, either by adjusting startIndex or adjusting endIndex. The number of

242 Chapter 13

times we can divide any list of size n in half is log2(n). (Unfortunately, this is
simply a mathematical fact that you’d be expected to know.) Thus, the while
loop has a big O order of O(log n).

But because the O(n log n) order of the haystack.sort() line is higher
than O(log n), we drop the lower O(log n) order, and the big O order of the
entire binarySearch() function becomes O(n log n). If we can guarantee that
binarySearch() will only ever be called with a sorted list for haystack, we can
remove the haystack.sort() line and make binarySearch() an O(log n) func-
tion. This technically improves the function’s efficiency but doesn’t make
the overall program more efficient, because it just moves the required sort-
ing work to some other part of the program. Most binary search implemen-
tations leave out the sorting step and therefore the binary search algorithm
is said to have O(log n) logarithmic complexity.

The Big O Order of Common Function Calls
Your code’s big O analysis must consider the big O order of any functions it
calls. If you wrote the function, you can just analyze your own code. But to
find the big O order of Python’s built-in functions and methods, you’ll have
to consult lists like the following.

This list contains the big O orders of some common Python operations
for sequence types, such as strings, tuples, and lists:

s[i] reading and s[i] = value assignment   O(1) operations.

s.append(value)  An O(1) operation.

s.insert(i, value)  An O(n) operation. Inserting values into a sequence
(especially at the front) requires shifting all the items at indexes above i
up by one place in the sequence.

s.remove(value)  An O(n) operation. Removing values from a sequence
(especially at the front) requires shifting all the items at indexes above I
down by one place in the sequence.

s.reverse()  An O(n) operation, because every item in the sequence
must be rearranged.

s.sort()  An O(n log n) operation, because Python’s sorting algorithm
is O(n log n).

value in s  An O(n) operation, because every item must be checked.

for value in s:  An O(n) operation.

len(s)  An O(1) operation, because Python keeps track of how many
items are in a sequence so it doesn’t need to recount them when passed
to len().

This list contains the big O orders of some common Python operations
for mapping types, such as dictionaries, sets, and frozensets:

m[key] reading and m[key] = value assignment  O(1) operations.

m.add(value)  An O(1) operation.

Measuring Performance and Big O Algorithm Analysis 243

value in m   An O(1) operation for dictionaries, which is much faster
than using in with sequences.

for key in m:  An O(n) operation.

len(m)  An O(1) operation, because Python keeps track of how many
items are in a mapping, so it doesn’t need to recount them when passed
to len().

Although a list generally has to search through its items from start to
finish, dictionaries use the key to calculate the address, and the time needed
to look up the key’s value remains constant. This calculation is called a hash-
ing algorithm, and the address is called a hash. Hashing is beyond the scope
of this book, but it’s the reason so many of the mapping operations are O(1)
constant time. Sets also use hashing, because sets are essentially dictionaries
with keys only instead of key-value pairs.

But keep in mind that converting a list to a set is an O(n) operation, so
you don’t achieve any benefit by converting a list to a set and then accessing
the items in the set.

Analyzing Big O at a Glance
Once you’ve become familiar with performing big O analysis, you usually
won’t need to run through each of the steps. After a while you’ll be able
to just look for some telltale features in the code to quickly determine the
big O order.

Keeping in mind that n is the size of the data the code operates on,
here are some general rules you can use:

•	 If the code doesn’t access any of the data, it’s O(1).

•	 If the code loops over the data, it’s O(n).

•	 If the code has two nested loops that each iterate over the data, it’s O(n2).

•	 Function calls don’t count as one step but rather the total steps of the
code inside the function. See “Big O Order of Common Function Calls”
on page 242.

•	 If the code has a divide and conquer step that repeatedly halves the data,
it’s O(log n).

•	 If the code has a divide and conquer step that is done once per item in
the data, it’s an O(n log n).

•	 If the code goes through every possible combination of values in the n
data, it’s O(2n), or some other exponential order.

•	 If the code goes through every possible permutation (that is, ordering)
of the values in the data, it’s O(n!).

•	 If the code involves sorting the data, it will be at least O(n log n).

These rules are good starting points. But they’re no substitute for
actual big O analysis. Keep in mind that big O order isn’t the final

244 Chapter 13

judgment on whether code is slow, fast, or efficient. Consider the following
waitAnHour() function:

import time
def waitAnHour():
 time.sleep(3600)

Technically, the waitAnHour() function is O(1) constant time. We think
of constant time code as fast, yet its runtime is one hour! Does that make
this code inefficient? No: it’s hard to see how you could have programmed
a waitAnHour() function that runs faster than, well, one hour.

Big O isn’t a replacement for profiling your code. The point of big O
notation is to give you insights as to how the code will perform under
increasing amounts of input data.

Big O Doesn’t Matter When n Is Small, and n Is Usually Small
Armed with the knowledge of big O notation, you might be eager to ana-
lyze every piece of code you write. Before you start using this tool to ham-
mer every nail in sight, keep in mind that big O notation is most useful
when there is a large amount of data to process. In real-world cases, the
amount of data is usually small.

In those situations, coming up with elaborate, sophisticated algorithms
with lower big O orders might not be worth the effort. Go programming
language designer Rob Pike has five rules about programming, one of which
is: “Fancy algorithms are slow when ‘n’ is small, and ‘n’ is usually small.” Most
software developers won’t be dealing with massive data centers or complex
calculations but rather more mundane programs. In these circumstances,
running your code under a profiler will yield more concrete information
about the code’s performance than big O analysis.

Summary
The Python standard library comes with two modules for profiling: timeit
and cProfile. The timeit.timeit() function is useful for running small snip-
pets of code to compare the speed difference between them. The cProfile.
run() function compiles a detailed report on larger functions and can point
out any bottlenecks.

It’s important to measure the performance of your code rather than
make assumptions about it. Clever tricks to speed up your program might
actually slow it down. Or you might spend lots of time optimizing what turns
out to be an insignificant aspect of your program. Amdahl’s Law captures
this mathematically. The formula describes how a speed-up to one compo-
nent affects the speed-up of the overall program.

Big O is the most widely used practical concept in computer science for
programmers. It requires a bit of math to understand, but the underlying
concept of figuring out how code slows as data grows can describe algo-
rithms without requiring significant number crunching.

Measuring Performance and Big O Algorithm Analysis 245

There are seven common orders of big O notation: O(1), or constant
time, describes code that doesn’t change as the size of the data n grows;
O(log n), or logarithmic time, describes code that increases by one step as
the n data doubles in size; O(n), or linear time, describes code that slows in
proportion to the n data’s growth; O(n log n), or n-log-n time, describes code
that is a bit slower than O(n), and many sorting algorithms have this order.

The higher orders are slower, because their runtime grows much faster
than the size of their input data: O(n2), or polynomial time, describes code
whose runtime increases by the square of the n input; O(2n), or exponen-
tial time, and O(n!), or factorial time, orders are uncommon, but come up
when combinations or permutations are involved, respectively.

Keep in mind that although big O is a helpful analysis tool, it isn’t a
substitute for running your code under a profiler to find out where any
bottlenecks are. But an awareness of big O notation and how code slows
as data grows can help you avoid writing code that is orders slower than it
needs to be.

14
P R A C T I C E P R O J E C T S

So far, this book has taught you techniques
for writing readable, Pythonic code. Let’s

put these techniques into practice by look-
ing at the source code for two command line

games: the Tower of Hanoi and Four-in-a-Row.
These projects are short and text-based to keep their scope small,

but they demonstrate the principles this book outlines so far. I formatted
the code using the Black tool described in “Black: The Uncompromising
Code Formatter” on page 53. I chose the variable names according to the
guidelines in Chapter 4. I wrote the code in a Pythonic style, as described
in Chapter 6. In addition, I wrote comments and docstrings as described in
Chapter 11. Because the programs are small and we haven’t yet covered
object-oriented programming (OOP), I wrote these two projects without
the classes you’ll learn more about in Chapters 15 to 17.

This chapter presents the full source code for these two projects along
with a detailed breakdown of the code. These explanations aren’t so much
for how the code works (a basic understanding of Python syntax is all that’s
needed for that), but why the code was written the way it was. Still, different

248 Chapter 14

software developers have different opinions on how to write code and what
they deem as Pythonic. You’re certainly welcome to question and critique the
source code in these projects.

After reading through a project in this book, I recommend typing the
code yourself and running the programs a few times to understand how
they work. Then try to reimplement the programs from scratch. Your code
doesn’t have to match the code in this chapter, but rewriting the code will
give you a sense of the decision making and design trade-offs that program-
ming requires.

The Tower of Hanoi
The Tower of Hanoi puzzle uses a stack of disks of different sizes. The disks
have holes in their centers, so you can place them over one of three poles
(Figure 14-1). To solve the puzzle, the player must move the stack of disks to
one of the other poles. There are three restrictions:

1.	 The player can move only one disk at a time.

2.	 The player can only move disks to and from the top of a tower.

3.	 The player can never place a larger disk on top of a smaller disk.

Figure 14-1: A physical Tower of Hanoi puzzle set

Solving this puzzle is a common computer science problem used for
teaching recursive algorithms. Our program won’t solve this puzzle; rather, it
will present the puzzle to a human player to solve. You’ll find more informa-
tion about the Tower of Hanoi at https://en.wikipedia.org/wiki/Tower_of_Hanoi.

https://en.wikipedia.org/wiki/Tower_of_Hanoi

Practice Projects 249

The Output
The Tower of Hanoi program displays the towers as ASCII art by using text
characters to represent the disks. It might look primitive compared to mod-
ern apps, but this approach keeps the implementation simple, because we
only need print() and input() calls to interact with the user. When you run
the program, the output will look something like the following. The text the
player enters is in bold.

THE TOWER OF HANOI, by Al Sweigart al@inventwithpython.com

Move the tower of disks, one disk at a time, to another tower. Larger
disks cannot rest on top of a smaller disk.

More info at https://en.wikipedia.org/wiki/Tower_of_Hanoi

 || || ||
 @_1@ || ||
 @@_2@@ || ||
 @@@_3@@@ || ||
 @@@@_4@@@@ || ||
@@@@@_5@@@@@ || ||
 A B C

Enter the letters of "from" and "to" towers, or QUIT.
(e.g., AB to moves a disk from tower A to tower B.)

> AC
 || || ||
 || || ||
 @@_2@@ || ||
 @@@_3@@@ || ||
 @@@@_4@@@@ || ||
@@@@@_5@@@@@ || @_1@
 A B C

Enter the letters of "from" and "to" towers, or QUIT.
(e.g., AB to moves a disk from tower A to tower B.)

--snip--

 || || ||
 || || @_1@
 || || @@_2@@
 || || @@@_3@@@
 || || @@@@_4@@@@
 || || @@@@@_5@@@@@
 A B C

You have solved the puzzle! Well done!

For n disks, it takes a minimum of 2n – 1 moves to solve the Tower of
Hanoi. So this five-disk tower requires 31 steps: AC, AB, CB, AC, BA, BC,
AC, AB, CB, CA, BA, CB, AC, AB, CB, AC, BA, BC, AC, BA, CB, CA, BA,

250 Chapter 14

BC, AC, AB, CB, AC, BA, BC, and finally AC. If you want a greater chal-
lenge to solve on your own, you can increase the TOTAL_DISKS variable in the
program from 5 to 6.

The Source Code
Open a new file in your editor or IDE, and enter the following code. Save it
as towerofhanoi.py.

"""THE TOWER OF HANOI, by Al Sweigart al@inventwithpython.com
A stack-moving puzzle game."""

import copy
import sys

TOTAL_DISKS = 5 # More disks means a more difficult puzzle.

Start with all disks on tower A:
SOLVED_TOWER = list(range(TOTAL_DISKS, 0, -1))

def main():
 """Runs a single game of The Tower of Hanoi."""
 print(
 """THE TOWER OF HANOI, by Al Sweigart al@inventwithpython.com

Move the tower of disks, one disk at a time, to another tower. Larger
disks cannot rest on top of a smaller disk.

More info at https://en.wikipedia.org/wiki/Tower_of_Hanoi
"""
)

 """The towers dictionary has keys "A", "B", and "C" and values
 that are lists representing a tower of disks. The list contains
 integers representing disks of different sizes, and the start of
 the list is the bottom of the tower. For a game with 5 disks,
 the list [5, 4, 3, 2, 1] represents a completed tower. The blank
 list [] represents a tower of no disks. The list [1, 3] has a
 larger disk on top of a smaller disk and is an invalid
 configuration. The list [3, 1] is allowed since smaller disks
 can go on top of larger ones."""
 towers = {"A": copy.copy(SOLVED_TOWER), "B": [], "C": []}

 while True: # Run a single turn on each iteration of this loop.
 # Display the towers and disks:
 displayTowers(towers)

 # Ask the user for a move:
 fromTower, toTower = getPlayerMove(towers)

 # Move the top disk from fromTower to toTower:
 disk = towers[fromTower].pop()
 towers[toTower].append(disk)

Practice Projects 251

 # Check if the user has solved the puzzle:
 if SOLVED_TOWER in (towers["B"], towers["C"]):
 displayTowers(towers) # Display the towers one last time.
 print("You have solved the puzzle! Well done!")
 sys.exit()

def getPlayerMove(towers):
 """Asks the player for a move. Returns (fromTower, toTower)."""

 while True: # Keep asking player until they enter a valid move.
 print('Enter the letters of "from" and "to" towers, or QUIT.')
 print("(e.g., AB to moves a disk from tower A to tower B.)")
 print()
 response = input("> ").upper().strip()

 if response == "QUIT":
 print("Thanks for playing!")
 sys.exit()

 # Make sure the user entered valid tower letters:
 if response not in ("AB", "AC", "BA", "BC", "CA", "CB"):
 print("Enter one of AB, AC, BA, BC, CA, or CB.")
 continue # Ask player again for their move.

 # Use more descriptive variable names:
 fromTower, toTower = response[0], response[1]

 if len(towers[fromTower]) == 0:
 # The "from" tower cannot be an empty tower:
 print("You selected a tower with no disks.")
 continue # Ask player again for their move.
 elif len(towers[toTower]) == 0:
 # Any disk can be moved onto an empty "to" tower:
 return fromTower, toTower
 elif towers[toTower][-1] < towers[fromTower][-1]:
 print("Can't put larger disks on top of smaller ones.")
 continue # Ask player again for their move.
 else:
 # This is a valid move, so return the selected towers:
 return fromTower, toTower

def displayTowers(towers):
 """Display the three towers with their disks."""

 # Display the three towers:
 for level in range(TOTAL_DISKS, -1, -1):
 for tower in (towers["A"], towers["B"], towers["C"]):
 if level >= len(tower):
 displayDisk(0) # Display the bare pole with no disk.
 else:
 displayDisk(tower[level]) # Display the disk.
 print()

252 Chapter 14

 # Display the tower labels A, B, and C:
 emptySpace = " " * (TOTAL_DISKS)
 print("{0} A{0}{0} B{0}{0} C\n".format(emptySpace))

def displayDisk(width):
 """Display a disk of the given width. A width of 0 means no disk."""
 emptySpace = " " * (TOTAL_DISKS - width)

 if width == 0:
 # Display a pole segment without a disk:
 print(f"{emptySpace}||{emptySpace}", end="")
 else:
 # Display the disk:
 disk = "@" * width
 numLabel = str(width).rjust(2, "_")
 print(f"{emptySpace}{disk}{numLabel}{disk}{emptySpace}", end="")

If this program was run (instead of imported), run the game:
if __name__ == "__main__":
 main()

Run this program and play a few games to get an idea of what this pro-
gram does before reading the explanation of the source code. To check for
typos, copy and paste it to the online diff tool at https://inventwithpython.com/
beyond/diff/.

Writing the Code
Let’s take a closer look at the source code to see how it follows the best prac-
tices and patterns described in this book.

We’ll begin at the top of the program:

"""THE TOWER OF HANOI, by Al Sweigart al@inventwithpython.com
A stack-moving puzzle game."""

The program starts with a multiline comment that serves as a docstring
for the towerofhanoi module. The built-in help() function will use this infor-
mation to describe the module:

>>> import towerofhanoi
>>> help(towerofhanoi)
Help on module towerofhanoi:

NAME
 towerofhanoi

DESCRIPTION
 THE TOWER OF HANOI, by Al Sweigart al@inventwithpython.com
 A stack-moving puzzle game.

https://inventwithpython.com/beyond/diff/
https://inventwithpython.com/beyond/diff/

Practice Projects 253

FUNCTIONS
 displayDisk(width)
 Display a single disk of the given width.
--snip--

You can add more words, even paragraphs of information, to the mod-
ule’s docstring if you need to. I’ve written only a small amount here because
the program is so simple.

After the module docstring are the import statements:

import copy
import sys

Black formats these as separate statements rather than a single one,
such as import copy, sys. This makes the addition or removal of imported
modules easier to see in version control systems, such as Git, that track
changes programmers make.

Next, we define the constants this program will need:

TOTAL_DISKS = 5 # More disks means a more difficult puzzle.

Start with all disks on tower A:
SOLVED_TOWER = list(range(TOTAL_DISKS, 0, -1))

We define these near the top of the file to group them together and
make them global variables. We’ve written their names in capitalized
snake_case to mark them as constants.

The TOTAL_DISKS constant indicates how many disks the puzzle has. The
SOLVED_TOWER variable is an example of a list that contains a solved tower: it
contains every disk with the largest at the bottom and the smallest at the
top. We generate this value from the TOTAL_DISKS value, and for five disks it’s
[5, 4, 3, 2, 1].

Notice that there are no type hints in this file. The reason is that we
can infer the types of all variables, parameters, and return values from
the code. For example, we’ve assigned the TOTAL_DISKS constant the integer
value 5. From this, type checkers, such as Mypy, would infer that TOTAL_DISKS
should contain integers only.

We define a main() function, which the program calls near the bottom
of the file:

def main():
 """Runs a single game of The Tower of Hanoi."""
 print(
 """THE TOWER OF HANOI, by Al Sweigart al@inventwithpython.com

Move the tower of disks, one disk at a time, to another tower. Larger
disks cannot rest on top of a smaller disk.

More info at https://en.wikipedia.org/wiki/Tower_of_Hanoi
"""
)

254 Chapter 14

Functions can have docstrings, too. Notice the docstring for main()
below the def statement. You can view this docstring by running import
towerofhanoi and help(towerofhanoi.main) from the interactive shell.

Next, we write a comment that extensively describes the data structure
we use to represent the tower, because it forms the core of how this pro-
gram works:

 """The towers dictionary has keys "A", "B", and "C" and values
 that are lists representing a tower of disks. The list contains
 integers representing disks of different sizes, and the start of
 the list is the bottom of the tower. For a game with 5 disks,
 the list [5, 4, 3, 2, 1] represents a completed tower. The blank
 list [] represents a tower of no disks. The list [1, 3] has a
 larger disk on top of a smaller disk and is an invalid
 configuration. The list [3, 1] is allowed since smaller disks
 can go on top of larger ones."""
 towers = {"A": copy.copy(SOLVED_TOWER), "B": [], "C": []}

We use the SOLVED_TOWER list as a stack, one of the simplest data structures
in software development. A stack is an ordered list of values altered only
through adding (also called pushing) or removing (also called popping) val-
ues from the top of the stack. This data structure perfectly represents the
tower in our program. We can turn a Python list into a stack if we use the
append() method for pushing and the pop() method for popping, and avoid
altering the list in any other way. We’ll treat the end of the list as the top of
the stack.

Each integer in the towers list represents a single disk of a certain size.
For example, in a game with five disks, the list [5, 4, 3, 2, 1] would repre-
sent a full stack of disks from the largest (5) at the bottom to the smallest
(1) at the top.

Notice that our comment also provides examples of a valid and invalid
tower stack.

Inside the main() function, we write an infinite loop that runs a single
turn of our puzzle game:

 while True: # Run a single turn on each iteration of this loop.
 # Display the towers and disks:
 displayTowers(towers)

 # Ask the user for a move:
 fromTower, toTower = getPlayerMove(towers)

 # Move the top disk from fromTower to toTower:
 disk = towers[fromTower].pop()
 towers[toTower].append(disk)

In a single turn, the player views the current state of the towers and
enters a move. The program then updates the towers data structure. We’ve
hid the details of these tasks in the displayTowers() and getPlayerMove() func-
tions. These descriptive function names allow the main() function to provide
a general overview of what the program does.

Practice Projects 255

The next lines check whether the player has solved the puzzle by com-
paring the complete tower in SOLVED_TOWER to towers["B"] and towers["C"]:

 # Check if the user has solved the puzzle:
 if SOLVED_TOWER in (towers["B"], towers["C"]):
 displayTowers(towers) # Display the towers one last time.
 print("You have solved the puzzle! Well done!")
 sys.exit()

We don’t compare it to towers["A"], because that pole begins with an
already complete tower; a player needs to form the tower on the B or C poles
to solve the puzzle. Note that we reuse SOLVED_TOWER to make the starting tow-
ers and check whether the player solved the puzzle. Because SOLVED_TOWER is
a constant, we can trust that it will always have the value we assigned to it at
the beginning of the source code.

The condition we use is equivalent to but shorter than SOLVED_TOWER ==
towers["B"] or SOLVED_TOWER == towers["C"], a Python idiom we covered in
Chapter 6. If this condition is True, the player has solved the puzzle, and we
end the program. Otherwise, we loop back for another turn.

The getPlayerMove() function asks the player for a disk move and vali-
dates the move against the game rules:

def getPlayerMove(towers):
 """Asks the player for a move. Returns (fromTower, toTower)."""
 while True: # Keep asking player until they enter a valid move.
 print('Enter the letters of "from" and "to" towers, or QUIT.')
 print("(e.g., AB to moves a disk from tower A to tower B.)")
 print()
 response = input("> ").upper().strip()

We start an infinite loop that continues looping until either a return state-
ment causes the execution to leave the loop and function or a sys.exit() call
terminates the program. The first part of the loop asks the player to enter a
move by specifying from and to towers.

Notice the input("> ").upper().strip() instruction that receives key-
board input from the player. The input("> ") call accepts text input from
the player by presenting a > prompt. This symbol indicates that the player
should enter something. If the program didn’t present a prompt, the player
might momentarily think the program had frozen.

We call the upper() method on the string returned from input() so it
returns an uppercase form of the string. This allows the player to enter
either uppercase or lowercase tower labels, such as 'a' or 'A' for tower A.
In turn, the uppercase string’s strip() method is called, returning a string
without any whitespace on either side in case the user accidentally added a
space when entering their move. This user friendliness makes our program
slightly easier for players to use.

Still in the getPlayerMove() function, we check the input the user enters:

 if response == "QUIT":
 print("Thanks for playing!")

256 Chapter 14

 sys.exit()

 # Make sure the user entered valid tower letters:
 if response not in ("AB", "AC", "BA", "BC", "CA", "CB"):
 print("Enter one of AB, AC, BA, BC, CA, or CB.")
 continue # Ask player again for their move.

If the user enters 'QUIT' (in any case, or even with spaces at the begin-
ning or end of the string, due to the calls to upper() and strip()), the program
terminates. We could have made getPlayerMove() return 'QUIT' to indicate to
the caller that it should call sys.exit(), rather than have getPlayerMove() call
sys.exit(). But this would complicate the return value of getPlayerMove(): it
would return either a tuple of two strings (for the player’s move) or a single
'QUIT' string. A function that returns values of a single data type is easier to
understand than a function that can return values of many possible types. I
discussed this in “Return Values Should Always Have the Same Data Type”
on page 177.

Between the three towers, only six to-from tower combinations are
possible. Despite the fact that we hardcoded all six values in the condition
that checks the move, the code is much easier to read than something like
len(response) != 2 or response[0] not in 'ABC' or response[1] not in 'ABC'
or response[0] == response[1]. Given these circumstances, the hardcoding
approach is the most straightforward.

Generally, it’s considered bad practice to hardcode values such as "AB",
"AC", and other values as magic values, which are valid only as long as the
program has three poles. But although we might want to adjust the number
of disks by changing the TOTAL_DISKS constant, it’s highly unlikely that we’ll
add more poles to the game. Writing out every possible pole move on this
line is fine.

We create two new variables, fromTower and toTower, as descriptive names
for the data. They don’t serve a functional purpose, but they make the code
easier to read than response[0] and response[1]:

 # Use more descriptive variable names:
 fromTower, toTower = response[0], response[1]

Next, we check whether or not the selected towers constitute a legal
move:

 if len(towers[fromTower]) == 0:
 # The "from" tower cannot be an empty tower:
 print("You selected a tower with no disks.")
 continue # Ask player again for their move.
 elif len(towers[toTower]) == 0:
 # Any disk can be moved onto an empty "to" tower:
 return fromTower, toTower
 elif towers[toTower][-1] < towers[fromTower][-1]:
 print("Can't put larger disks on top of smaller ones.")
 continue # Ask player again for their move.

Practice Projects 257

If not, a continue statement causes the execution to move back to the
beginning of the loop, which asks the player to enter their move again.
Note that we check whether toTower is empty; if it is, we return fromTower,
toTower to emphasize that the move was valid, because you can always put a
disk on an empty pole. These first two conditions ensure that by the time
the third condition is checked, towers[toTower] and towers[fromTower] won’t
be empty or cause an IndexError. We’ve ordered these conditions in such a
way to prevent IndexError or additional checking.

It’s important that your programs handle any invalid input from the
user or potential error cases. Users might not know what to enter, or they
might make typos. Similarly, files could unexpectedly go missing, or data-
bases could crash. Your programs need to be resilient to the exceptional
cases; otherwise, they’ll crash unexpectedly or cause subtle bugs later on.

If none of the previous conditions are True, getPlayerMove() returns
fromTower, toTower:

 else:
 # This is a valid move, so return the selected towers:
 return fromTower, toTower

In Python, return statements always return a single value. Although this
return statement looks like it returns two values, Python actually returns a
single tuple of two values, which is equivalent to return (fromTower, toTower).
Python programmers often omit the parentheses in this context. The paren-
theses don’t define a tuple as much as the commas do.

Notice that the program calls the getPlayerMove() function only once
from the main() function. The function doesn’t save us from duplicate code,
which is the most common purpose for using one. There’s no reason we
couldn’t put all the code in getPlayerMove() in the main() function. But we
can also use functions as a way to organize code into separate units, which
is how we’re using getPlayerMove(). Doing so prevents the main() function
from becoming too long and unwieldy.

The displayTowers() function displays the disks on towers A, B, and C in
the towers argument:

def displayTowers(towers):
 """Display the three towers with their disks."""

 # Display the three towers:
 for level in range(TOTAL_DISKS, -1, -1):
 for tower in (towers["A"], towers["B"], towers["C"]):
 if level >= len(tower):
 displayDisk(0) # Display the bare pole with no disk.
 else:
 displayDisk(tower[level]) # Display the disk.
 print()

It relies on the displayDisk() function, which we’ll cover next, to display
each disk in the tower. The for level loop checks every possible disk for a
tower, and the for tower loop checks towers A, B, and C.

258 Chapter 14

The displayTowers() function calls displayDisk() to display each disk at a
specific width, or if 0 is passed, the pole with no disk:

 # Display the tower labels A, B, and C:
 emptySpace = ' ' * (TOTAL_DISKS)
 print('{0} A{0}{0} B{0}{0} C\n'.format(emptySpace))

We display the A, B, and C labels onscreen. The player needs this infor-
mation to distinguish between the towers and to reinforce that the towers
are labeled A, B, and C rather than 1, 2, and 3 or Left, Middle, and Right. I
chose not to use 1, 2, and 3 for the tower labels to prevent players from con-
fusing these numbers with the numbers used for the disks’ sizes.

We set the emptySpace variable to the number of spaces to place in between
each label, which in turn is based on TOTAL_DISKS, because the more disks in
the game, the wider apart the poles are. Rather than use an f-string, as in
print(f'{emptySpace} A{emptySpace}{emptySpace} B{emptySpace}{emptySpace} C\n'),
we use the format() string method. This allows us to use the same emptySpace
argument wherever {0} appears in the associated string, producing shorter
and more readable code than the f-string version.

The displayDisk() function displays a single disk along with its width. If
no disk is present, it displays just the pole:

def displayDisk(width):
 """Display a disk of the given width. A width of 0 means no disk."""
 emptySpace = ' ' * (TOTAL_DISKS - width)
 if width == 0:
 # Display a pole segment without a disk:
 print(f'{emptySpace}||{emptySpace}', end='')
 else:
 # Display the disk:
 disk = '@' * width
 numLabel = str(width).rjust(2, '_')
 print(f"{emptySpace}{disk}{numLabel}{disk}{emptySpace}", end='')

We represent a disk using a leading empty space, a number of @ char-
acters equal to the disk width, two characters for the width (including an
underscore if the width is a single digit), another series of @ characters, and
then the trailing empty space. To display just the empty pole, all we need
are the leading empty space, two pipe characters, and trailing empty space.
As a result, we’ll need six calls to displayDisk() with six different arguments
for width to display the following tower:

 ||
 @_1@
 @@_2@@
 @@@_3@@@
 @@@@_4@@@@
@@@@@_5@@@@@

Notice how the displayTowers() and displayDisk() functions split the
responsibility of displaying the towers. Although displayTowers() decides

Practice Projects 259

how to interpret the data structures that represent each tower, it relies on
displayDisk() to actually display each disk of the tower. Breaking your pro-
gram into smaller functions like this makes each part easier to test. If the
program displays the disks incorrectly, the problem is likely in displayDisk().
If the disks appear in the wrong order, the problem is likely in displayTowers().
Either way, the section of code you’ll have to debug will be much smaller.

To call the main() function, we use a common Python idiom:

If this program was run (instead of imported), run the game:
if __name__ == '__main__':
 main()

Python automatically sets the __name__ variable to '__main__' if a player
runs the towerofhanoi.py program directly. But if someone imports the pro-
gram as a module using import towerofhanoi, then __name__ would be set to
'towerofhanoi'. The if __name__ == '__main__': line will call the main() func-
tion if someone runs our program, starting a game of Tower of Hanoi. But
if we simply want to import the program as a module so we could, say, call
the individual functions in it for unit testing, this condition will be False
and main() won’t be called.

Four-in-a-Row
Four-in-a-Row is a two-player, tile-dropping game. Each player tries to cre-
ate a row of four of their tiles, whether horizontally, vertically, or diagonally.
It’s similar to the board games Connect Four and Four Up. The game uses a
7 by 6 stand-up board, and tiles drop to the lowest unoccupied space in a
column. In our Four-in-a-Row game, two human players, X and O, will play
against each other, as opposed to one human player against the computer.

The Output
When you run the Four-in-a-Row program in this chapter, the output will
look like this:

Four-in-a-Row, by Al Sweigart al@inventwithpython.com

Two players take turns dropping tiles into one of seven columns, trying
to make four in a row horizontally, vertically, or diagonally.

 1234567
 +-------+
 |.......|
 |.......|
 |.......|
 |.......|
 |.......|
 |.......|
 +-------+

260 Chapter 14

Player X, enter 1 to 7 or QUIT:
> 1

 1234567
 +-------+
 |.......|
 |.......|
 |.......|
 |.......|
 |.......|
 |X......|
 +-------+
Player O, enter 1 to 7 or QUIT:
--snip--
Player O, enter 1 to 7 or QUIT:
> 4

 1234567
 +-------+
 |.......|
 |.......|
 |...O...|
 |X.OO...|
 |X.XO...|
 |XOXO..X|
 +-------+
Player O has won!

Try to figure out the many subtle strategies you can use to get four tiles
in a row while blocking your opponent from doing the same.

The Source Code
Open a new file in your editor or IDE, enter the following code, and save it
as fourinarow.py:

"""Four-in-a-Row, by Al Sweigart al@inventwithpython.com
A tile-dropping game to get four-in-a-row, similar to Connect Four."""

import sys

Constants used for displaying the board:
EMPTY_SPACE = "." # A period is easier to count than a space.
PLAYER_X = "X"
PLAYER_O = "O"

Note: Update BOARD_TEMPLATE & COLUMN_LABELS if BOARD_WIDTH is changed.
BOARD_WIDTH = 7
BOARD_HEIGHT = 6
COLUMN_LABELS = ("1", "2", "3", "4", "5", "6", "7")
assert len(COLUMN_LABELS) == BOARD_WIDTH

The template string for displaying the board:
BOARD_TEMPLATE = """

Practice Projects 261

 1234567
 +-------+
 |{}{}{}{}{}{}{}|
 |{}{}{}{}{}{}{}|
 |{}{}{}{}{}{}{}|
 |{}{}{}{}{}{}{}|
 |{}{}{}{}{}{}{}|
 |{}{}{}{}{}{}{}|
 +-------+"""

def main():
 """Runs a single game of Four-in-a-Row."""
 print(
 """Four-in-a-Row, by Al Sweigart al@inventwithpython.com

Two players take turns dropping tiles into one of seven columns, trying
to make Four-in-a-Row horizontally, vertically, or diagonally.
"""
)

 # Set up a new game:
 gameBoard = getNewBoard()
 playerTurn = PLAYER_X

 while True: # Run a player's turn.
 # Display the board and get player's move:
 displayBoard(gameBoard)
 playerMove = getPlayerMove(playerTurn, gameBoard)
 gameBoard[playerMove] = playerTurn

 # Check for a win or tie:
 if isWinner(playerTurn, gameBoard):
 displayBoard(gameBoard) # Display the board one last time.
 print("Player {} has won!".format(playerTurn))
 sys.exit()
 elif isFull(gameBoard):
 displayBoard(gameBoard) # Display the board one last time.
 print("There is a tie!")
 sys.exit()

 # Switch turns to other player:
 if playerTurn == PLAYER_X:
 playerTurn = PLAYER_O
 elif playerTurn == PLAYER_O:
 playerTurn = PLAYER_X

def getNewBoard():
 """Returns a dictionary that represents a Four-in-a-Row board.

 The keys are (columnIndex, rowIndex) tuples of two integers, and the
 values are one of the "X", "O" or "." (empty space) strings."""
 board = {}

262 Chapter 14

 for rowIndex in range(BOARD_HEIGHT):
 for columnIndex in range(BOARD_WIDTH):
 board[(columnIndex, rowIndex)] = EMPTY_SPACE
 return board

def displayBoard(board):
 """Display the board and its tiles on the screen."""

 # Prepare a list to pass to the format() string method for the board
 # template. The list holds all of the board's tiles (and empty
 # spaces) going left to right, top to bottom:
 tileChars = []
 for rowIndex in range(BOARD_HEIGHT):
 for columnIndex in range(BOARD_WIDTH):
 tileChars.append(board[(columnIndex, rowIndex)])

 # Display the board:
 print(BOARD_TEMPLATE.format(*tileChars))

def getPlayerMove(playerTile, board):
 """Let a player select a column on the board to drop a tile into.

 Returns a tuple of the (column, row) that the tile falls into."""
 while True: # Keep asking player until they enter a valid move.
 print(f"Player {playerTile}, enter 1 to {BOARD_WIDTH} or QUIT:")
 response = input("> ").upper().strip()

 if response == "QUIT":
 print("Thanks for playing!")
 sys.exit()

 if response not in COLUMN_LABELS:
 print(f"Enter a number from 1 to {BOARD_WIDTH}.")
 continue # Ask player again for their move.

 columnIndex = int(response) - 1 # -1 for 0-based column indexes.

 # If the column is full, ask for a move again:
 if board[(columnIndex, 0)] != EMPTY_SPACE:
 print("That column is full, select another one.")
 continue # Ask player again for their move.

 # Starting from the bottom, find the first empty space.
 for rowIndex in range(BOARD_HEIGHT - 1, -1, -1):
 if board[(columnIndex, rowIndex)] == EMPTY_SPACE:
 return (columnIndex, rowIndex)

def isFull(board):
 """Returns True if the `board` has no empty spaces, otherwise
 returns False."""
 for rowIndex in range(BOARD_HEIGHT):
 for columnIndex in range(BOARD_WIDTH):

Practice Projects 263

 if board[(columnIndex, rowIndex)] == EMPTY_SPACE:
 return False # Found an empty space, so return False.
 return True # All spaces are full.

def isWinner(playerTile, board):
 """Returns True if `playerTile` has four tiles in a row on `board`,
 otherwise returns False."""

 # Go through the entire board, checking for four-in-a-row:
 for columnIndex in range(BOARD_WIDTH - 3):
 for rowIndex in range(BOARD_HEIGHT):
 # Check for four-in-a-row going across to the right:
 tile1 = board[(columnIndex, rowIndex)]
 tile2 = board[(columnIndex + 1, rowIndex)]
 tile3 = board[(columnIndex + 2, rowIndex)]
 tile4 = board[(columnIndex + 3, rowIndex)]
 if tile1 == tile2 == tile3 == tile4 == playerTile:
 return True

 for columnIndex in range(BOARD_WIDTH):
 for rowIndex in range(BOARD_HEIGHT - 3):
 # Check for four-in-a-row going down:
 tile1 = board[(columnIndex, rowIndex)]
 tile2 = board[(columnIndex, rowIndex + 1)]
 tile3 = board[(columnIndex, rowIndex + 2)]
 tile4 = board[(columnIndex, rowIndex + 3)]
 if tile1 == tile2 == tile3 == tile4 == playerTile:
 return True

 for columnIndex in range(BOARD_WIDTH - 3):
 for rowIndex in range(BOARD_HEIGHT - 3):
 # Check for four-in-a-row going right-down diagonal:
 tile1 = board[(columnIndex, rowIndex)]
 tile2 = board[(columnIndex + 1, rowIndex + 1)]
 tile3 = board[(columnIndex + 2, rowIndex + 2)]
 tile4 = board[(columnIndex + 3, rowIndex + 3)]
 if tile1 == tile2 == tile3 == tile4 == playerTile:
 return True

 # Check for four-in-a-row going left-down diagonal:
 tile1 = board[(columnIndex + 3, rowIndex)]
 tile2 = board[(columnIndex + 2, rowIndex + 1)]
 tile3 = board[(columnIndex + 1, rowIndex + 2)]
 tile4 = board[(columnIndex, rowIndex + 3)]
 if tile1 == tile2 == tile3 == tile4 == playerTile:
 return True
 return False

If this program was run (instead of imported), run the game:
if __name__ == "__main__":
 main()

264 Chapter 14

Run this program and play a few games to get an idea of what this pro-
gram does before reading the explanation of the source code. To check for
typos, copy and paste it to the online diff tool at https://inventwithpython.com/
beyond/diff/.

Writing the Code
Let’s look at the program’s source code, as we did for the Tower of Hanoi
program. Once again, I formatted this code using Black with a line limit of
75 characters.

We’ll begin at the top of the program:

"""Four-in-a-Row, by Al Sweigart al@inventwithpython.com
A tile-dropping game to get four-in-a-row, similar to Connect Four."""

import sys

Constants used for displaying the board:
EMPTY_SPACE = "." # A period is easier to count than a space.
PLAYER_X = "X"
PLAYER_O = "O"

We start the program with a docstring, module imports, and constant
assignments, as we did in the Tower of Hanoi program. We define the
PLAYER_X and PLAYER_O constants so we don’t have to use the strings "X" and
"O" throughout the program, making errors easier to catch. If we enter a
typo while using the constants, such as PLAYER_XX, Python will raise NameError,
instantly pointing out the problem. But if we make a typo with the "X" charac-
ter, such as "XX" or "Z", the resulting bug might not be immediately obvious.
As explained in “Magic Numbers” on page 71, using constants instead
of the string value directly provides not just a description, but also an early
warning for any typos in your source code.

Constants shouldn’t change while the program runs. But the program-
mer can update their values in future versions of the program. For this
reason, we make a note telling programmers that they should update the
BOARD_TEMPLATE and COLUMN_LABELS constants, described later, if they change
the value of BOARD_WIDTH:

Note: Update BOARD_TEMPLATE & COLUMN_LABELS if BOARD_WIDTH is changed.
BOARD_WIDTH = 7
BOARD_HEIGHT = 6

Next, we create the COLUMN_LABELS constant:

COLUMN_LABELS = ("1", "2", "3", "4", "5", "6", "7")
assert len(COLUMN_LABELS) == BOARD_WIDTH

We’ll use this constant later to ensure the player selects a valid column.
Note that if we ever set BOARD_WIDTH to a value other than 7, we’ll have to add
labels to or remove labels from the COLUMN_LABELS tuple. I could have avoided
this by generating the value of COLUMN_LABELS based on BOARD_WIDTH with code

https://inventwithpython.com/beyond/diff/
https://inventwithpython.com/beyond/diff/

Practice Projects 265

like this: COLUMN_LABELS = tuple([str(n) for n in range(1, BOARD_WIDTH + 1)]).
But COLUMN_LABELS is unlikely to change in the future, because the standard
Four-in-a-Row game is played on a 7 by 6 board, so I decided to write out an
explicit tuple value.

Sure, this hardcoding is a code smell, as described in “Magic Num
bers” on page 71, but it’s more readable than the alternative. Also, the
assert statement warns us about changing BOARD_WIDTH without updating
COLUMN_LABELS.

As with Tower of Hanoi, the Four-in-a-Row program uses ASCII art to
draw the game board. The following lines are a single assignment statement
with a multiline string:

The template string for displaying the board:
BOARD_TEMPLATE = """
 1234567
 +-------+
 |{}{}{}{}{}{}{}|
 |{}{}{}{}{}{}{}|
 |{}{}{}{}{}{}{}|
 |{}{}{}{}{}{}{}|
 |{}{}{}{}{}{}{}|
 |{}{}{}{}{}{}{}|
 +-------+"""

This string contains braces ({}) that the format() string method will
replace with the board’s contents. (The displayBoard() function, explained
later, will handle this.) Because the board consists of seven columns and
six rows, we use seven brace pairs {} in each of the six rows to represent
every slot. Note that just like COLUMN_LABELS, we’re technically hardcoding
the board to create a set number of columns and rows. If we ever change
BOARD_WIDTH or BOARD_HEIGHT to new integers, we’ll have to update the multi-
line string in BOARD_TEMPLATE as well.

We could have written code to generate BOARD_TEMPLATE based on the
BOARD_WIDTH and BOARD_HEIGHT constants, like so:

BOARD_EDGE = " +" + ("-" * BOARD_WIDTH) + "+"
BOARD_ROW = " |" + ("{}" * BOARD_WIDTH) + "|\n"
BOARD_TEMPLATE = "\n " + "".join(COLUMN_LABELS) + "\n" + BOARD_EDGE + "\n"
+ (BOARD_ROW * BOARD_WIDTH) + BOARD_EDGE

But this code is not as readable as a simple multiline string, and we’re
unlikely to change the game board’s size anyway, so we’ll use the simple
multiline string.

We begin writing the main() function, which will call all the other func-
tions we’ve made for this game:

def main():
 """Runs a single game of Four-in-a-Row."""
 print(
 """Four-in-a-Row, by Al Sweigart al@inventwithpython.com

266 Chapter 14

Two players take turns dropping tiles into one of seven columns, trying
to make four-in-a-row horizontally, vertically, or diagonally.
"""
)

 # Set up a new game:
 gameBoard = getNewBoard()
 playerTurn = PLAYER_X

We give the main() function a docstring, viewable with the built-in help()
function. The main() function also prepares the game board for a new game
and chooses the first player.

Inside the main() function is an infinite loop:

 while True: # Run a player's turn.
 # Display the board and get player's move:
 displayBoard(gameBoard)
 playerMove = getPlayerMove(playerTurn, gameBoard)
 gameBoard[playerMove] = playerTurn

Each iteration of this loop consists of a single turn. First, we display the
game board to the player. Second, the player selects a column to drop a tile
in, and third, we update the game board data structure.

Next, we evaluate the results of the player’s move:

 # Check for a win or tie:
 if isWinner(playerTurn, gameBoard):
 displayBoard(gameBoard) # Display the board one last time.
 print("Player {} has won!".format(playerTurn))
 sys.exit()
 elif isFull(gameBoard):
 displayBoard(gameBoard) # Display the board one last time.
 print("There is a tie!")
 sys.exit()

If the player made a winning move, isWinner() returns True and the
game ends. If the player filled the board and there is no winner, isFull()
returns True and the game ends. Note that instead of calling sys.exit(),
we could have used a simple break statement. This would have caused the
execution to break out of the while loop, and because there is no code in
the main() function after this loop, the function would return to the main()
call at the bottom of the program, causing the program to end. But I opted
to use sys.exit() to make it clear to programmers reading the code that the
program will immediately terminate.

If the game hasn’t ended, the following lines set playerTurn to the other
player:

 # Switch turns to other player:
 if playerTurn == PLAYER_X:
 playerTurn = PLAYER_O
 elif playerTurn == PLAYER_O:
 playerTurn = PLAYER_X

Practice Projects 267

Notice that I could have made the elif statement into a simple else
statement without a condition. But recall the Zen of Python tenet that
explicit is better than implicit. This code explicitly says that if it’s player O’s turn
now, it will be player X’s turn next. The alternative would have just said that
if it’s not player X’s turn now, it will be player X’s turn next. Even though if
and else statements are a natural fit with Boolean conditions, the PLAYER_X
and PLAYER_O values aren’t the same as True, and False: not PLAYER_X is not
the same as PLAYER_O. Therefore, it’s helpful to be direct when checking the
value of playerTurn.

Alternatively, I could have performed the same actions in a one-liner:

playerTurn = {PLAYER_X: PLAYER_O, PLAYER_O: PLAYER_X}[playerTurn]

This line uses the dictionary trick mentioned in “Use Dictionaries
Instead of a switch Statement” on page 101. But like many one-liners, it’s
not as readable as a direct if and elif statement.

Next, we define the getNewBoard() function:

def getNewBoard():
 """Returns a dictionary that represents a Four-in-a-Row board.

 The keys are (columnIndex, rowIndex) tuples of two integers, and the
 values are one of the "X", "O" or "." (empty space) strings."""
 board = {}
 for rowIndex in range(BOARD_HEIGHT):
 for columnIndex in range(BOARD_WIDTH):
 board[(columnIndex, rowIndex)] = EMPTY_SPACE
 return board

This function returns a dictionary that represents a Four-in-a-Row
board. It has (columnIndex, rowIndex) tuples for keys (where columnIndex and
rowIndex are integers), and the 'X', 'O', or '.' character for the tile at each
place on the board. We store these strings in PLAYER_X, PLAYER_O, and EMPTY_
SPACE, respectively.

Our Four-in-a-Row game is rather simple, so using a dictionary to rep-
resent the game board is a suitable technique. Still, we could have used an
OOP approach instead. We’ll explore OOP in Chapters 15 through 17.

The displayBoard() function takes a game board data structure for the
board argument and displays the board onscreen using the BOARD_TEMPLATE
constant:

def displayBoard(board):
 """Display the board and its tiles on the screen."""

 # Prepare a list to pass to the format() string method for the board
 # template. The list holds all of the board's tiles (and empty
 # spaces) going left to right, top to bottom:
 tileChars = []

268 Chapter 14

Recall that the BOARD_TEMPLATE is a multiline string with several brace
pairs. When we call the format() method on BOARD_TEMPLATE, these braces
will be replaced by the arguments passed to format().

The tileChars variable will contain a list of these arguments. We start
by assigning it a blank list. The first value in tileChars will replace the first
pair of braces in BOARD_TEMPLATE, the second value will replace the second
pair, and so on. Essentially, we’re creating a list of the values from the board
dictionary:

 for rowIndex in range(BOARD_HEIGHT):
 for columnIndex in range(BOARD_WIDTH):
 tileChars.append(board[(columnIndex, rowIndex)])

 # Display the board:
 print(BOARD_TEMPLATE.format(*tileChars))

These nested for loops iterate over every possible row and column on
the board, appending them to the list in tileChars. Once these loops have
finished, we pass the values in the tileChars list as individual arguments
to the format() method using the star * prefix. “Using * to Create Variadic
Functions” section on page 167 explained how to use this syntax to treat
the values in a list as separate function arguments: the code print(*['cat',
'dog', 'rat']) is equivalent to print('cat', 'dog', 'rat'). We need the star
because the format() method expects one argument for every brace pair, not
a single list argument.

Next, we write the getPlayerMove() function:

def getPlayerMove(playerTile, board):
 """Let a player select a column on the board to drop a tile into.

 Returns a tuple of the (column, row) that the tile falls into."""
 while True: # Keep asking player until they enter a valid move.
 print(f"Player {playerTile}, enter 1 to {BOARD_WIDTH} or QUIT:")
 response = input("> ").upper().strip()

 if response == "QUIT":
 print("Thanks for playing!")
 sys.exit()

The function begins with an infinite loop that waits for the player to
enter a valid move. This code resembles the getPlayerMove() function in the
Tower of Hanoi program. Note that the print() call at the start of the while
loop uses an f-string so we don’t have to change the message if we update
BOARD_WIDTH.

We check that the player’s response is a column; if it isn’t, the continue
statement moves the execution back to the start of the loop to ask the player
for a valid move:

 if response not in COLUMN_LABELS:
 print(f"Enter a number from 1 to {BOARD_WIDTH}.")
 continue # Ask player again for their move.

Practice Projects 269

We could have written this input validation condition as not response.
isdecimal() or spam < 1 or spam > BOARD_WIDTH, but it’s simpler to just use
response not in COLUMN_LABELS.

Next, we need to find out which row a tile dropped in the player’s
selected column would land on:

 columnIndex = int(response) - 1 # -1 for 0-based column indexes.

 # If the column is full, ask for a move again:
 if board[(columnIndex, 0)] != EMPTY_SPACE:
 print("That column is full, select another one.")
 continue # Ask player again for their move.

The board displays the column labels 1 to 7 onscreen. But the
(columnIndex, rowIndex) indexes on the board use 0-based indexing, so
they range from 0 to 6. To solve this discrepancy, we convert the string
values '1' to '7' to the integer values 0 to 6.

The row indexes start at 0 at the top of the board and increase to 6
at the bottom of the board. We check the top row in the selected column
to see whether it’s occupied. If so, this column is completely full and the
continue statement moves the execution back to the start of the loop to ask
the player for another move.

If the column isn’t full, we need to find the lowest unoccupied space for
the tile to land on:

 # Starting from the bottom, find the first empty space.
 for rowIndex in range(BOARD_HEIGHT - 1, -1, -1):
 if board[(columnIndex, rowIndex)] == EMPTY_SPACE:
 return (columnIndex, rowIndex)

This for loop starts at the bottom row index, BOARD_HEIGHT - 1 or 6, and
moves up until it finds the first empty space. The function then returns the
indexes of the lowest empty space.

 Anytime the board is full, the game ends in a tie:

def isFull(board):
 """Returns True if the `board` has no empty spaces, otherwise
 returns False."""
 for rowIndex in range(BOARD_HEIGHT):
 for columnIndex in range(BOARD_WIDTH):
 if board[(columnIndex, rowIndex)] == EMPTY_SPACE:
 return False # Found an empty space, so return False.
 return True # All spaces are full.

The isFull() function uses a pair of nested for loops to iterate over
every place on the board. If it finds a single empty space, the board isn’t
full, and the function returns False. If the execution makes it through both
loops, the isFull() function found no empty space, so it returns True.

270 Chapter 14

The isWinner() function checks whether a player has won the game:

def isWinner(playerTile, board):
 """Returns True if `playerTile` has four tiles in a row on `board`,
 otherwise returns False."""

 # Go through the entire board, checking for four-in-a-row:
 for columnIndex in range(BOARD_WIDTH - 3):
 for rowIndex in range(BOARD_HEIGHT):
 # Check for four-in-a-row going across to the right:
 tile1 = board[(columnIndex, rowIndex)]
 tile2 = board[(columnIndex + 1, rowIndex)]
 tile3 = board[(columnIndex + 2, rowIndex)]
 tile4 = board[(columnIndex + 3, rowIndex)]
 if tile1 == tile2 == tile3 == tile4 == playerTile:
 return True

This function returns True if playerTile appears four times in a row
horizontally, vertically, or diagonally. To figure out whether the condition is
met, we have to check every set of four adjacent spaces on the board. We’ll
use a series of nested for loops to do this.

The (columnIndex, rowIndex) tuple represents a starting point. We check
the starting point and the three spaces to the right of it for the playerTile
string. If the starting space is (columnIndex, rowIndex), the space to its right
will be (columnIndex + 1, rowIndex), and so on. We’ll save the tiles in these
four spaces to the variables tile1, tile2, tile3, and tile4. If all of these vari-
ables have the same value as playerTile, we’ve found a four-in-a-row, and the
isWinner() function returns True.

In “Variables with Numeric Suffixes” on page 76, I mentioned that
variable names with sequential numeric suffixes (like tile1 through tile4
in this game) are often a code smell that indicates you should use a single
list instead. But in this context, these variable names are fine. We don’t need
to replace them with a list, because the Four-in-a-Row program will always
require exactly four of these tile variables. Remember that a code smell
doesn’t necessarily indicate a problem; it only means we should take a second
look and confirm that we’ve written our code in the most readable way. In
this case, using a list would make our code more complicated, and it wouldn’t
add any benefit, so we’ll stick to using tile1, tile2, tile3, and tile4.

We use a similar process to check for vertical four-in-a-row tiles:

 for columnIndex in range(BOARD_WIDTH):
 for rowIndex in range(BOARD_HEIGHT - 3):
 # Check for four-in-a-row going down:
 tile1 = board[(columnIndex, rowIndex)]
 tile2 = board[(columnIndex, rowIndex + 1)]
 tile3 = board[(columnIndex, rowIndex + 2)]
 tile4 = board[(columnIndex, rowIndex + 3)]
 if tile1 == tile2 == tile3 == tile4 == playerTile:
 return True

Practice Projects 271

Next, we check for four-in-a-row tiles in a diagonal pattern going down
and to the right; then we check for four-in-a-row tiles in a diagonal pattern
going down and to the left:

 for columnIndex in range(BOARD_WIDTH - 3):
 for rowIndex in range(BOARD_HEIGHT - 3):
 # Check for four-in-a-row going right-down diagonal:
 tile1 = board[(columnIndex, rowIndex)]
 tile2 = board[(columnIndex + 1, rowIndex + 1)]
 tile3 = board[(columnIndex + 2, rowIndex + 2)]
 tile4 = board[(columnIndex + 3, rowIndex + 3)]
 if tile1 == tile2 == tile3 == tile4 == playerTile:
 return True

 # Check for four-in-a-row going left-down diagonal:
 tile1 = board[(columnIndex + 3, rowIndex)]
 tile2 = board[(columnIndex + 2, rowIndex + 1)]
 tile3 = board[(columnIndex + 1, rowIndex + 2)]
 tile4 = board[(columnIndex, rowIndex + 3)]
 if tile1 == tile2 == tile3 == tile4 == playerTile:
 return True

This code is similar to the horizontal four-in-a-row checks, so I won’t
repeat the explanation here. If all the checks for four-in-a-row tiles fail to
find any, the function returns False to indicate that playerTile is not a win-
ner on this board:

 return False

The only task left is to call the main() function:

If this program was run (instead of imported), run the game:
if __name__ == '__main__':
 main()

Once again, we use a common Python idiom that will call main() if
fourinarow.py is run directly but not if fourinarow.py is imported as a module.

Summary
The Tower of Hanoi puzzle game and Four-in-a-Row game are short pro-
grams, but by following the practices in this book, you can ensure that their
code is readable and easy to debug. These programs follow several good
practices: they’ve been automatically formatted with Black, use docstrings
to describe the module and functions, and place the constants near the
top of the file. They limit the variables, function parameters, and function
return values to a single data type so type hinting, although a beneficial
form of additional documentation, is unnecessary.

In the Tower of Hanoi, we represent the three towers as a dictionary
with keys 'A', 'B', and 'C' whose values are lists of integers. This works,
but if our program were any larger or more complicated, it would be a

272 Chapter 14

good idea to represent this data using a class. Classes and OOP techniques
weren’t used in this chapter because I don’t cover OOP until Chapters 15
through 17. But keep in mind that it’s perfectly valid to use a class for this
data structure. The towers render as ASCII art onscreen, using text charac-
ters to show each disk of the towers.

The Four-in-a-Row game uses ASCII art to display a representation
of the game board. We display this using a multiline string stored in the
BOARD_TEMPLATE constant. This string has 42 brace pairs {} to display each
space on the 7 by 6 board. We use braces so the format() string method
can replace them with the tile at that space. This way, it’s more obvious how
the BOARD_TEMPLATE string produces the game board as it appears onscreen.

Although their data structures differ, these two programs share many
similarities. They both render their data structures onscreen, ask the
player for input, validate that input, and then use it to update their data
structures before looping back to the beginning. But there are many dif-
ferent ways we could have written code to carry out these actions. What
makes code readable is ultimately a subjective opinion rather than an
objective measure of how closely it adheres to some list of rules. The
source code in this chapter shows that although we should always give any
code smells a second look, not all code smells indicate a problem that we
need to fix. Code readability is more important than mindlessly following
a “zero code smells” policy for your programs.

PART 3
O B J E C T - O R I E N T E D P Y T H O N

OOP is a programming language feature
that allows you to group variables and func-

tions together into new data types, called
classes, from which you can create objects. By

organizing your code into classes, you can break down
a monolithic program into smaller parts that are eas-
ier to understand and debug.

For small programs, OOP doesn’t add organization so much as it adds
bureaucracy. Although some languages, such as Java, require you to organize
all your code into classes, Python’s OOP features are optional. Programmers
can take advantage of classes if they need them or ignore them if they don’t.
Python core developer Jack Diederich’s PyCon 2012 talk, “Stop Writing
Classes” (https://youtu.be/o9pEzgHorH0/), points out many cases where pro-
grammers write classes when a simpler function or module would have
worked better.

15
O B J E C T - O R I E N T E D

P R O G R A M M I N G A N D C L A S S E S

https://youtu.be/o9pEzgHorH0/

276 Chapter 15

That said, as a programmer, you should be familiar with the basics of
what classes are and how they work. In this chapter, you’ll learn what classes
are, why they’re used in programs, and the syntax and programming con-
cepts behind them. OOP is a broad topic, and this chapter acts only as an
introduction.

Real-World Analogy: Filling Out a Form
You’ve most likely had to fill out paper or electronic forms numerous times
in your life: for doctor’s visits, for online purchases, or to RSVP to a wed-
ding. Forms exist as a uniform way for another person or organization to
collect the information they need about you. Different forms ask for differ-
ent kinds of information. You would report a sensitive medical condition on
a doctor’s form, and you would report any guests you’re bringing on a wed-
ding RSVP, but not the other way around.

In Python, class, type, and data type have the same meaning. Like a paper
or electronic form, a class is a blueprint for Python objects (also called instances),
which contain the data that represents a noun. This noun could be a doc-
tor’s patient, an ecommerce purchase, or a wedding guest. Classes are like a
blank form template, and the objects created from that class are like filled-
out forms that contain actual data about the kind of thing the form repre-
sents. For example, in Figure 15-1, the RSVP response form is like a class,
whereas the filled-out RSVP is like an object.

Figure 15-1: Wedding RSVP form templates are like classes, and filled-out forms are like
objects.

You can also think of classes and objects as spreadsheets, as in
Figure 15-2.

Object-Oriented Programming and Classes 277

Figure 15-2: A spreadsheet of all RSVP data

The column headers would make up the class, and the individual rows
would each make up an object.

Classes and objects are often talked about as data models of items
in the real world, but don’t confuse the map for the territory. What goes
into the class depends on what the program needs to do. Figure 15-3
shows some objects of different classes that represent the same real-world
person, and other than the person’s name, they store completely different
information.

Figure 15-3: Four objects made from different classes that represent
the same real-world person, depending on what the software application
needs to know about the person

278 Chapter 15

Also, the information contained in your classes should depend on
your program’s needs. Many OOP tutorials use a Car class as their basic
example without noting that what goes into a class depends entirely on
the kind of software you’re writing. There’s no such thing as a generic Car
class that would obviously have a honkHorn() method or a numberOfCupholders
attribute just because those are characteristics real-world cars have. Your
program might be for a car dealership web app, a car racing video game,
or a road traffic simulation. The car dealership web app’s Car class might
have milesPerGallon or manufacturersSuggestedRetailPrice attributes (just as
a car dealership’s spreadsheets might use these as columns). But the video
game and road traffic simulation wouldn’t have these attributes, because
this information isn’t relevant to them. The video game’s Car class might
have an explodeWithLargeFireball() method, but the car dealership and traf-
fic simulation, hopefully, would not.

Creating Objects from Classes
You’ve already used classes and objects in Python, even if you haven’t cre-
ated classes yourself. Consider the datetime module, which contains a class
named date. Objects of the datetime.date class (also simply called datetime.
date objects or date objects) represent a specific date. Enter the following in
the interactive shell to create an object of the datetime.date class:

>>> import datetime
>>> birthday = datetime.date(1999, 10, 31) # Pass the year, month, and day.
>>> birthday.year
1999
>>> birthday.month
10
>>> birthday.day
31
>>> birthday.weekday() # weekday() is a method; note the parentheses.
6

Attributes are variables associated with objects. The call to datetime.date()
creates a new date object, initialized with the arguments 1999, 10, 31 so the
object represents the date October 31, 1999. We assign these arguments as
the date class’s year, month, and day attributes, which all date objects have.

With this information, the class’s weekday() method can calculate the
day of the week. In this example, it returns 6 for Sunday, because according
to Python’s online documentation, the return value of weekday() is an inte-
ger that starts at 0 for Monday and goes to 6 for Sunday. The documentation
lists several other methods that objects of the date class have. Even though
the date object contains multiple attributes and methods, it’s still a single
object that you can store in a variable, such as birthday in this example.

Object-Oriented Programming and Classes 279

Creating a Simple Class: WizCoin
Let’s create a WizCoin class, which represents a number of coins in a fictional
wizard currency. In this currency, the denominations are knuts, sickles
(worth 29 knuts), and galleons (worth 17 sickles or 493 knuts). Keep in
mind that the objects in the WizCoin class represent a quantity of coins, not
an amount of money. For example, it will inform you that you’re holding
five quarters and one dime rather than $1.35.

In a new file named wizcoin.py, enter the following code to create the
WizCoin class. Note that the __init__ method name has two underscores
before and after init (we’ll discuss __init__ in “Methods, __init__(), and
self” later in this chapter):

1 class WizCoin:
2 def __init__(self, galleons, sickles, knuts):

 """Create a new WizCoin object with galleons, sickles, and knuts."""
 self.galleons = galleons
 self.sickles = sickles
 self.knuts = knuts
 # NOTE: __init__() methods NEVER have a return statement.

3 def value(self):
 """The value (in knuts) of all the coins in this WizCoin object."""
 return (self.galleons * 17 * 29) + (self.sickles * 29) + (self.knuts)

4 def weightInGrams(self):
 """Returns the weight of the coins in grams."""
 return (self.galleons * 31.103) + (self.sickles * 11.34) + (self.knuts
* 5.0)

This program defines a new class called WizCoin using a class state-
ment 1. Creating a class creates a new type of object. Using a class statement
to define a class is similar to def statements that define new functions. Inside
the block of code following the class statement are the definitions for three
methods: __init__() (short for initializer) 2, value() 3, and weightInGrams() 4.
Note that all methods have a first parameter named self, which we’ll explore
in the next section.

As a convention, module names (like wizcoin in our wizcoin.py file) are
lowercase, whereas class names (like WizCoin) begin with an uppercase let-
ter. Unfortunately, some classes in the Python Standard Library, such as
date, don’t follow this convention.

To practice creating new objects of the WizCoin class, enter the following
source code in a separate file editor window and save the file as wcexample1.py
in the same folder as wizcoin.py:

import wizcoin

1 purse = wizcoin.WizCoin(2, 5, 99) # The ints are passed to __init__().
print(purse)
print('G:', purse.galleons, 'S:', purse.sickles, 'K:', purse.knuts)
print('Total value:', purse.value())
print('Weight:', purse.weightInGrams(), 'grams')

280 Chapter 15

print()

2 coinJar = wizcoin.WizCoin(13, 0, 0) # The ints are passed to __init__().
print(coinJar)
print('G:', coinJar.galleons, 'S:', coinJar.sickles, 'K:', coinJar.knuts)
print('Total value:', coinJar.value())
print('Weight:', coinJar.weightInGrams(), 'grams')

The calls to WizCoin() 1 2 create a WizCoin object and run the code in
the __init__() method for them. We pass in three integers as arguments to
WizCoin(), which are forwarded to the parameters of __init__(). These argu-
ments are assigned to the object’s self.galleons, self.sickles, and self.knuts
attributes. Note that, just as the time.sleep() function requires you to first
import the time module and put time. before the function name, we must
also import wizcoin and put wizcoin. before the WizCoin() function name.

When you run this program, the output will look something like this:

<wizcoin.WizCoin object at 0x000002136F138080>
G: 2 S: 5 K: 99
Total value: 1230
Weight: 613.906 grams

<wizcoin.WizCoin object at 0x000002136F138128>
G: 13 S: 0 K: 0
Total value: 6409
Weight: 404.339 grams

If you get an error message, such as ModuleNotFoundError: No module named
'wizcoin', check to make sure that your file is named wizcoin.py and that it’s
in the same folder as wcexample1.py.

The WizCoin objects don’t have useful string representations, so print-
ing purse and coinJar displays a memory address in between angle brackets.
(You’ll learn how to change this in Chapter 17.)

Just as we can call the lower() string method on a string object, we can
call the value() and weightInGrams() methods on the WizCoin objects we’ve
assigned to the purse and coinJar variables. These methods calculate values
based on the object’s galleons, sickles, and knuts attributes.

Classes and OOP can lead to more maintainable code—that is, code that
is easier to read, modify, and extend in the future. Let’s explore this class’s
methods and attributes in more detail.

Methods, __init__(), and self
Methods are functions associated with objects of a particular class. Recall
that lower() is a string method, meaning that it’s called on string objects.
You can call lower() on a string, as in 'Hello'.lower(), but you can’t call it on
a list, such as ['dog', 'cat'].lower(). Also, notice that methods come after
the object: the correct code is 'Hello'.lower(), not lower('Hello'). Unlike

Object-Oriented Programming and Classes 281

a method like lower(), a function like len() is not associated with a single
data type; you can pass strings, lists, dictionaries, and many other types of
objects to len().

As you saw in the previous section, we create objects by calling the class
name as a function. This function is referred to as a constructor function (or
constructor, or abbreviated as ctor, pronounced “see-tore”) because it con-
structs a new object. We also say the constructor instantiates a new instance
of the class.

Calling the constructor causes Python to create the new object and then
run the __init__() method. Classes aren’t required to have an __init__()
method, but they almost always do. The __init__() method is where you
commonly set the initial values of attributes. For example, recall that the
__init__() method of WizCoin looks like the following:

 def __init__(self, galleons, sickles, knuts):
 """Create a new WizCoin object with galleons, sickles, and knuts."""
 self.galleons = galleons
 self.sickles = sickles
 self.knuts = knuts

 # NOTE: __init__() methods NEVER have a return statement.

When the wcexample1.py program calls WizCoin(2, 5, 99), Python cre-
ates a new WizCoin object and then passes three arguments (2, 5, and 99)
to an __init__() call. But the __init__() method has four parameters: self,
galleons, sickles, and knuts. The reason is that all methods have a first
parameter named self. When a method is called on an object, the object is
automatically passed in for the self parameter. The rest of the arguments
are assigned to parameters normally. If you see an error message, such as
TypeError: __init__() takes 3 positional arguments but 4 were given, you’ve
probably forgotten to add the self parameter to the method’s def statement.

You don’t have to name a method’s first parameter self; you can name it
anything. But using self is conventional, and choosing a different name will
make your code less readable to other Python programmers. When you’re
reading code, the presence of self as the first parameter is the quickest way
you can distinguish methods from functions. Similarly, if your method’s
code never needs to use the self parameter, it’s a sign that your method
should probably just be a function.

The 2, 5, and 99 arguments of WizCoin(2, 5, 99) aren’t automatically
assigned to the new object’s attributes; we need the three assignment state-
ments in __init__() to do this. Often, the __init__() parameters are named
the same as the attributes, but the presence of self in self.galleons indicates
that it’s an attribute of the object, whereas galleons is a parameter. This stor-
ing of the constructor’s arguments in the object’s attributes is a common
task for a class’s __init__() method. The datetime.date() call in the previous
section did a similar task except the three arguments we passed were for
the newly created date object’s year, month, and day attributes.

You’ve previously called the int(), str(), float(), and bool() functions to
convert between data types, such as str(3.1415) returning the string value
'3.1415' based on the float value 3.1415. Previously, we described these as

282 Chapter 15

functions, but int, str, float, and bool are actually classes, and the int(),
str(), float(), and bool() functions are constructor functions that return
new integer, string, float, and Boolean objects. Python’s style guide rec-
ommends using capitalized camelcase for your class names (like WizCoin),
although many of Python’s built-in classes don’t follow this convention.

Note that calling the WizCoin() construction function returns the new
WizCoin object, but the __init__() method never has a return statement with a
return value. Adding a return value causes this error: TypeError: __init__()
should return None.

Attributes
Attributes are variables associated with an object. The Python documenta-
tion describes attributes as “any name following a dot.” For example, con-
sider the birthday.year expression in the previous section. The year attribute
is a name following a dot.

Every object has its own set of attributes. When the wcexample1.py pro-
gram created two WizCoin objects and stored them in the purse and coinJar
variables, their attributes had different values. You can access and set these
attributes just like any variable. To practice setting attributes, open a new
file editor window and enter the following code, saving it as wcexample2.py in
the same folder as the wizcoin.py file:

import wizcoin

change = wizcoin.WizCoin(9, 7, 20)
print(change.sickles) # Prints 7.
change.sickles += 10
print(change.sickles) # Prints 17.

pile = wizcoin.WizCoin(2, 3, 31)
print(pile.sickles) # Prints 3.
pile.someNewAttribute = 'a new attr' # A new attribute is created.
print(pile.someNewAttribute)

When you run this program, the output looks like this:

7
17
3
a new attr

You can think of an object’s attributes as similar to a dictionary’s keys.
You can read and modify their associated values and assign an object new
attributes. Technically, methods are considered attributes of a class, as well.

Private Attributes and Private Methods
In languages such as C++ or Java, attributes can be marked as having private
access, which means the compiler or interpreter only lets code inside the
class’s methods access or modify the attributes of objects of that class. But

Object-Oriented Programming and Classes 283

in Python, this enforcement doesn’t exist. All attributes and methods are
effectively public access: code outside of the class can access and modify any
attribute in any object of that class.

But private access is useful. For example, objects of a BankAccount class
could have a balance attribute that only methods of the BankAccount class
should have access to. For those reasons, Python’s convention is to start pri-
vate attribute or method names with a single underscore. Technically, there
is nothing to stop code outside the class from accessing private attributes
and methods, but it’s a best practice to let only the class’s methods access
them.

Open a new file editor window, enter the following code, and save it as
privateExample.py. In it, objects of a BankAccount class have private _name and
_balance attributes that only the deposit() and withdraw() methods should
directly access:

class BankAccount:
 def __init__(self, accountHolder):
 # BankAccount methods can access self._balance, but code outside of
 # this class should not:

1 self._balance = 0
2 self._name = accountHolder

 with open(self._name + 'Ledger.txt', 'w') as ledgerFile:
 ledgerFile.write('Balance is 0\n')

 def deposit(self, amount):
3 if amount <= 0:

 return # Don't allow negative "deposits".
 self._balance += amount

4 with open(self._name + 'Ledger.txt', 'a') as ledgerFile:
 ledgerFile.write('Deposit ' + str(amount) + '\n')
 ledgerFile.write('Balance is ' + str(self._balance) + '\n')

 def withdraw(self, amount):
5 if self._balance < amount or amount < 0:

 return # Not enough in account, or withdraw is negative.
 self._balance -= amount

6 with open(self._name + 'Ledger.txt', 'a') as ledgerFile:
 ledgerFile.write('Withdraw ' + str(amount) + '\n')
 ledgerFile.write('Balance is ' + str(self._balance) + '\n')

acct = BankAccount('Alice') # We create an account for Alice.
acct.deposit(120) # _balance can be affected through deposit()
acct.withdraw(40) # _balance can be affected through withdraw()

Changing _name or _balance outside of BankAccount is impolite, but allowed:
7 acct._balance = 1000000000

acct.withdraw(1000)

8 acct._name = 'Bob' # Now we're modifying Bob's account ledger!
acct.withdraw(1000) # This withdrawal is recorded in BobLedger.txt!

284 Chapter 15

When you run privateExample.py, the ledger files it creates are inac-
curate because we modified the _balance and _name outside the class, which
resulted in invalid states. AliceLedger.txt inexplicably has a lot of money in it:

Balance is 0
Deposit 120
Balance is 120
Withdraw 40
Balance is 80
Withdraw 1000
Balance is 999999000

Now there’s a BobLedger.txt file with an inexplicable account balance,
even though we never created a BankAccount object for Bob:

Withdraw 1000
Balance is 999998000

Well-designed classes will be mostly self-contained, providing methods
to adjust the attributes to valid values. The _balance and _name attributes are
marked as private 1 2, and the only valid way of adjusting the BankAccount
class’s value is through the deposit() and withdraw() methods. These two
methods have checks 3 5 to make sure _balance isn’t put into an invalid
state (such as a negative integer value). These methods also record each
transaction to account for the current balance 4 6.

Code outside the class that modifies these attributes, such as acct._
balance = 1000000000 7 or acct._name = 'Bob' 8 instructions, can put the
object into an invalid state and introduce bugs (and audits from the bank
examiner). By following the underscore prefix convention for private
access, you make debugging easier. The reason is that you know the cause
of the bug will be in the code in the class instead of anywhere in the entire
program.

Note that unlike Java and other languages, Python has no need for
public getter and setter methods for private attributes. Instead Python uses
properties, as explained in Chapter 17.

The type() Function and __qualname__ Attribute
Passing an object to the built-in type() function tells us the object’s data
type through its return value. The objects returned from the type() func-
tion are type objects, also called class objects. Recall that the terms type, data
type, and class all have the same meaning in Python. To see what the type()
function returns for various values, enter the following into the interactive
shell:

>>> type(42) # The object 42 has a type of int.
<class 'int'>
>>> int # int is a type object for the integer data type.
<class 'int'>
>>> type(42) == int # Type check 42 to see if it is an integer.

Object-Oriented Programming and Classes 285

True
>>> type('Hello') == int # Type check 'Hello' against int.
False
>>> import wizcoin
>>> type(42) == wizcoin.WizCoin # Type check 42 against WizCoin.
False
>>> purse = wizcoin.WizCoin(2, 5, 10)
>>> type(purse) == wizcoin.WizCoin # Type check purse against WizCoin.
True

Note that int is a type object and is the same kind of object as what
type(42) returns, but it can also be called as the int() constructor function:
the int('42') function doesn’t convert the '42' string argument; instead, it
returns an integer object based on the argument.

Say you need to log some information about the variables in your pro-
gram to help you debug them later. You can only write strings to a logfile,
but passing the type object to str() will return a rather messy-looking string.
Instead, use the __qualname__ attribute, which all type objects have, to write a
simpler, human-readable string:

>>> str(type(42)) # Passing the type object to str() returns a messy string.
"<class 'int'>"
>>> type(42).__qualname__ # The __qualname__ attribute is nicer looking.
'int'

The __qualname__ attribute is most often used for overriding the __repr__()
method, which is explained in more detail in Chapter 17.

Non-OOP vs. OOP Examples: Tic-Tac-Toe
At first, it can be difficult to see how to use classes in your programs. Let’s
look at an example of a short tic-tac-toe program that doesn’t use classes,
and then rewrite it so it does.

Open a new file editor window and enter the following program; then
save it as tictactoe.py:

tictactoe.py, A non-OOP tic-tac-toe game.

ALL_SPACES = list('123456789') # The keys for a TTT board dictionary.
X, O, BLANK = 'X', 'O', ' ' # Constants for string values.

def main():
 """Runs a game of tic-tac-toe."""
 print('Welcome to tic-tac-toe!')
 gameBoard = getBlankBoard() # Create a TTT board dictionary.
 currentPlayer, nextPlayer = X, O # X goes first, O goes next.

 while True:
 print(getBoardStr(gameBoard)) # Display the board on the screen.

 # Keep asking the player until they enter a number 1-9:

286 Chapter 15

 move = None
 while not isValidSpace(gameBoard, move):
 print(f'What is {currentPlayer}\'s move? (1-9)')
 move = input()
 updateBoard(gameBoard, move, currentPlayer) # Make the move.

 # Check if the game is over:
 if isWinner(gameBoard, currentPlayer): # First check for victory.
 print(getBoardStr(gameBoard))
 print(currentPlayer + ' has won the game!')
 break
 elif isBoardFull(gameBoard): # Next check for a tie.
 print(getBoardStr(gameBoard))
 print('The game is a tie!')
 break
 currentPlayer, nextPlayer = nextPlayer, currentPlayer # Swap turns.
 print('Thanks for playing!')

def getBlankBoard():
 """Create a new, blank tic-tac-toe board."""
 board = {} # The board is represented as a Python dictionary.
 for space in ALL_SPACES:
 board[space] = BLANK # All spaces start as blank.
 return board

def getBoardStr(board):
 """Return a text-representation of the board."""
 return f'''
 {board['1']}|{board['2']}|{board['3']} 1 2 3
 -+-+-
 {board['4']}|{board['5']}|{board['6']} 4 5 6
 -+-+-
 {board['7']}|{board['8']}|{board['9']} 7 8 9'''

def isValidSpace(board, space):
 """Returns True if the space on the board is a valid space number
 and the space is blank."""
 return space in ALL_SPACES or board[space] == BLANK

def isWinner(board, player):
 """Return True if player is a winner on this TTTBoard."""
 b, p = board, player # Shorter names as "syntactic sugar".
 # Check for 3 marks across the 3 rows, 3 columns, and 2 diagonals.
 return ((b['1'] == b['2'] == b['3'] == p) or # Across the top
 (b['4'] == b['5'] == b['6'] == p) or # Across the middle
 (b['7'] == b['8'] == b['9'] == p) or # Across the bottom
 (b['1'] == b['4'] == b['7'] == p) or # Down the left
 (b['2'] == b['5'] == b['8'] == p) or # Down the middle
 (b['3'] == b['6'] == b['9'] == p) or # Down the right
 (b['3'] == b['5'] == b['7'] == p) or # Diagonal
 (b['1'] == b['5'] == b['9'] == p)) # Diagonal

def isBoardFull(board):
 """Return True if every space on the board has been taken."""

Object-Oriented Programming and Classes 287

 for space in ALL_SPACES:
 if board[space] == BLANK:
 return False # If a single space is blank, return False.
 return True # No spaces are blank, so return True.

def updateBoard(board, space, mark):
 """Sets the space on the board to mark."""
 board[space] = mark

if __name__ == '__main__':
 main() # Call main() if this module is run, but not when imported.

When you run this program, the output will look something like this:

Welcome to tic-tac-toe!

 | | 1 2 3
 -+-+-
 | | 4 5 6
 -+-+-
 | | 7 8 9
What is X's move? (1-9)
1

 X| | 1 2 3
 -+-+-
 | | 4 5 6
 -+-+-
 | | 7 8 9
What is O's move? (1-9)
--snip--
 X| |O 1 2 3
 -+-+-
 |O| 4 5 6
 -+-+-
 X|O|X 7 8 9
What is X's move? (1-9)
4

 X| |O 1 2 3
 -+-+-
 X|O| 4 5 6
 -+-+-
 X|O|X 7 8 9
X has won the game!
Thanks for playing!

Briefly, this program works by using a dictionary object to represent
the nine spaces on a tic-tac-toe board. The dictionary’s keys are the strings
'1' through '9', and its values are the strings 'X', 'O', or ' '. The numbered
spaces are in the same arrangement as a phone’s keypad.

288 Chapter 15

The functions in tictactoe.py do the following:

•	 The main() function contains the code that creates a new board data
structure (stored in the gameBoard variable) and calls other functions in
the program.

•	 The getBlankBoard() function returns a dictionary with the nine spaces
set to ' ' for a blank board.

•	 The getBoardStr() function accepts a dictionary representing the board
and returns a multiline string representation of the board that can be
printed to the screen. This is what renders the tic-tac-toe board’s text
that the game displays.

•	 The isValidSpace() function returns True if it’s passed a valid space num-
ber and that space is blank.

•	 The isWinner() function’s parameters accept a board dictionary and
either 'X' or 'O' to determine whether that player has three marks in a
row on the board.

•	 The isBoardFull() function determines whether the board has no blank
spaces, meaning the game has ended. The updateBoard() function’s
parameters accept a board dictionary, a space, and a player’s X or O
mark and updates the dictionary.

Notice that many of the functions accept the variable board as their first
parameter. That means these functions are related to each other in that
they all operate on a common data structure.

When several functions in the code all operate on the same data struc-
ture, it’s usually best to group them together as the methods and attributes
of a class. Let’s redesign this in the tictactoe.py program to use a TTTBoard
class that will store the board dictionary in an attribute named spaces.
The functions that had board as a parameter will become methods of our
TTTBoard class and use the self parameter instead of a board parameter.

Open a new file editor window, enter the following code, and save it as
tictactoe_oop.py:

tictactoe_oop.py, an object-oriented tic-tac-toe game.

ALL_SPACES = list('123456789') # The keys for a TTT board.
X, O, BLANK = 'X', 'O', ' ' # Constants for string values.

def main():
 """Runs a game of tic-tac-toe."""
 print('Welcome to tic-tac-toe!')
 gameBoard = TTTBoard() # Create a TTT board object.
 currentPlayer, nextPlayer = X, O # X goes first, O goes next.

 while True:
 print(gameBoard.getBoardStr()) # Display the board on the screen.

 # Keep asking the player until they enter a number 1-9:
 move = None

Object-Oriented Programming and Classes 289

 while not gameBoard.isValidSpace(move):
 print(f'What is {currentPlayer}\'s move? (1-9)')
 move = input()
 gameBoard.updateBoard(move, currentPlayer) # Make the move.

 # Check if the game is over:
 if gameBoard.isWinner(currentPlayer): # First check for victory.
 print(gameBoard.getBoardStr())
 print(currentPlayer + ' has won the game!')
 break
 elif gameBoard.isBoardFull(): # Next check for a tie.
 print(gameBoard.getBoardStr())
 print('The game is a tie!')
 break
 currentPlayer, nextPlayer = nextPlayer, currentPlayer # Swap turns.
 print('Thanks for playing!')

class TTTBoard:
 def __init__(self, usePrettyBoard=False, useLogging=False):
 """Create a new, blank tic tac toe board."""
 self._spaces = {} # The board is represented as a Python dictionary.
 for space in ALL_SPACES:
 self._spaces[space] = BLANK # All spaces start as blank.

 def getBoardStr(self):
 """Return a text-representation of the board."""
 return f'''
 {self._spaces['1']}|{self._spaces['2']}|{self._spaces['3']} 1 2 3
 -+-+-
 {self._spaces['4']}|{self._spaces['5']}|{self._spaces['6']} 4 5 6
 -+-+-
 {self._spaces['7']}|{self._spaces['8']}|{self._spaces['9']} 7 8 9'''

 def isValidSpace(self, space):
 """Returns True if the space on the board is a valid space number
 and the space is blank."""
 return space in ALL_SPACES and self._spaces[space] == BLANK

 def isWinner(self, player):
 """Return True if player is a winner on this TTTBoard."""
 s, p = self._spaces, player # Shorter names as "syntactic sugar".
 # Check for 3 marks across the 3 rows, 3 columns, and 2 diagonals.
 return ((s['1'] == s['2'] == s['3'] == p) or # Across the top
 (s['4'] == s['5'] == s['6'] == p) or # Across the middle
 (s['7'] == s['8'] == s['9'] == p) or # Across the bottom
 (s['1'] == s['4'] == s['7'] == p) or # Down the left
 (s['2'] == s['5'] == s['8'] == p) or # Down the middle
 (s['3'] == s['6'] == s['9'] == p) or # Down the right
 (s['3'] == s['5'] == s['7'] == p) or # Diagonal
 (s['1'] == s['5'] == s['9'] == p)) # Diagonal

 def isBoardFull(self):
 """Return True if every space on the board has been taken."""

290 Chapter 15

 for space in ALL_SPACES:
 if self._spaces[space] == BLANK:
 return False # If a single space is blank, return False.
 return True # No spaces are blank, so return True.

 def updateBoard(self, space, player):
 """Sets the space on the board to player."""
 self._spaces[space] = player

if __name__ == '__main__':
 main() # Call main() if this module is run, but not when imported.

Functionally, this program is the same as the non-OOP tic-tac-toe
program. The output looks identical. We’ve moved the code that used to
be in getBlankBoard() to the TTTBoard class’s __init__() method, because they
perform the same task of preparing the board data structure. We converted
the other functions into methods, with the self parameter replacing the
old board parameter, because they also serve a similar purpose: they’re both
blocks of code that operate on a tic-tac-toe board data structure.

When the code in these methods needs to change the dictionary stored
in the _spaces attribute, the code uses self._spaces. When the code in these
methods need to call other methods, the calls would also be preceded
by self and a period. This is similar to how coinJars.values() in “Creating
a Simple Class: WizCoin” had an object in the coinJars variable. In this
example, the object that has the method to call is in a self variable.

Also, notice that the _spaces attribute begins with an underscore, mean-
ing that only code inside the methods of TTTBoard should access or modify
it. Code outside the class should only be able to modify _spaces indirectly by
calling methods that modify it.

It can be helpful to compare the source code of the two tic-tac-toe pro-
grams. You can compare the code in this book or view a side-by-side com-
parison at https://autbor.com/compareoop/.

Tic-tac-toe is a small program, so it doesn’t take much effort to under-
stand. But what if this program were tens of thousands of lines long with
hundreds of different functions? A program with a few dozen classes would
be easier to understand than a program with several hundred disparate func-
tions. OOP breaks down a complicated program into easier-to-understand
chunks.

Designing Classes for the Real World Is Hard
Designing a class, just like designing a paper form, seems deceptively
straightforward. Forms and classes are, by their nature, simplifications
of the real-world objects they represent. The question is, how should we
simplify these objects? For example, if we’re creating a Customer class, the
customer should have a firstName and lastName attribute, right? But actually
creating classes to model real-world objects can be tricky. In most Western
countries, a person’s last name is their family name, but in China, the fam-
ily name is first. If we don’t want to exclude more than one billion potential

https://autbor.com/compareoop/

Object-Oriented Programming and Classes 291

customers, how should we change our Customer class? Should we change
firstName and lastName to givenName and familyName? But some cultures don’t
use family names. For example, former UN Secretary General U Thant,
who is Burmese, has no family name: Thant is his given name and U is an
initialization of his father’s given name. We might want to record the cus-
tomer’s age, but an age attribute would soon become out of date; instead, it’s
best to calculate the age each time you need it using a birthdate attribute.

The real world is complicated, and designing forms and classes to cap-
ture this complexity in a uniform structure on which our programs can
operate is difficult. Phone number formats vary between countries. ZIP codes
don’t apply to addresses outside the United States. Setting a maximum num-
ber of characters for city names could be a problem for the German hamlet
of Schmedeswurtherwesterdeich. In Australia and New Zealand, your legally
recognized gender can be X. A platypus is a mammal that lays eggs. A peanut
is not a nut. A hotdog might or might not be a sandwich, depending on who
you ask. As a programmer writing programs for use in the real world, you’ll
have to navigate this complexity.

To learn more about this topic, I recommend the PyCon 2015 talk
“Schemas for the Real World” by Carina C. Zona at https://youtu.be/PYYfVqtcWQY/
and the North Bay Python 2018 talk “Hi! My name is . . .” by James Bennett at
https://youtu.be/NIebelIpdYk/. There are also popular “Falsehoods Programmers
Believe” blog posts, such as “Falsehoods Programmers Believe About Names”
and “Falsehoods Programmers Believe About Time Zones.” These blog posts
also cover topics like maps, email addresses, and many more kinds of data that
programmers often poorly represent. You’ll find a collection of links to these
articles at https://github.com/kdeldycke/awesome-falsehood/. Additionally, you’ll
find a good example of a poorly executed method of capturing real-world
complexity in CGP Grey’s video, “Social Security Cards Explained,” at https://
youtu.be/Erp8IAUouus/.

Summary
OOP is a useful feature for organizing your code. Classes allow you to
group together data and code into new data types. You can also create
objects from these classes by calling their constructors (the class’s name
called as a function), which in turn, calls the class’s __init__() method.
Methods are functions associated with objects, and attributes are vari-
ables associated with objects. All methods have a self parameter as their
first parameter, which is assigned the object when the method is called.
This allows the methods to read or set the object’s attributes and call its
methods.

Although Python doesn’t allow you to specify private or public access for
attributes, it does have a convention of using an underscore prefix for any
methods or attributes that should only be called or accessed from the class’s
own methods. By following this convention, you can avoid misusing the class

https://youtu.be/PYYfVqtcWQY/
https://youtu.be/NIebelIpdYk/
https://github.com/kdeldycke/awesome-falsehood
https://youtu.be/Erp8IAUouus/
https://youtu.be/Erp8IAUouus/

292 Chapter 15

and setting it into an invalid state that could cause bugs. Calling type(obj) will
return the obj type’s class object. Class objects have a __qualname___ attribute,
which contains a string with a human-readable form of the class’s name.

At this point, you might be thinking, why we should bother using classes,
attributes, and methods when we could do the same task with functions?
OOP is a useful way to organize your code into more than just a .py file with
100 functions in it. By breaking up your program into several well-designed
classes, you can focus on each class separately.

OOP is an approach that focuses on data structures and the methods to
handle those data structures. This approach isn’t mandatory for every pro-
gram, and it’s certainly possible to overuse OOP. But OOP provides oppor-
tunities to use many advanced features that we’ll explore in the next two
chapters. The first of these features is inheritance, which we’ll delve into in
the next chapter.

Defining a function and calling it from
several places saves you from having to

copy and paste source code. Not duplicat-
ing code is a good practice, because if you

need to change it (either for a bug fix or to add new
features), you only need to change it in one place.
Without duplicate code, the program is also shorter
and easier to read.

Similar to functions, inheritance is a code reuse technique that you can
apply to classes. It’s the act of putting classes into parent-child relationships
in which the child class inherits a copy of the parent class’s methods, free-
ing you from duplicating a method in multiple classes.

Many programmers think inheritance is overrated or even dangerous
because of the added complexity that large webs of inherited classes add to
a program. Blog posts with titles like “Inheritance Is Evil” are not entirely
off the mark; inheritance is certainly easy to overuse. But limited use of this
technique can be a huge time-saver when it comes to organizing your code.

16
O B J E C T - O R I E N T E D

P R O G R A M M I N G A N D
I N H E R I T A N C E

294 Chapter 16

How Inheritance Works
To create a new child class, you put the name of the existing parent class
in between parentheses in the class statement. To practice creating a child
class, open a new file editor window and enter the following code; save it as
inheritanceExample.py:

1 class ParentClass:
2 def printHello(self):

 print('Hello, world!')

3 class ChildClass(ParentClass):
 def someNewMethod(self):
 print('ParentClass objects don't have this method.')

4 class GrandchildClass(ChildClass):
 def anotherNewMethod(self):
 print('Only GrandchildClass objects have this method.')

print('Create a ParentClass object and call its methods:')
parent = ParentClass()
parent.printHello()

print('Create a ChildClass object and call its methods:')
child = ChildClass()
child.printHello()
child.someNewMethod()

print('Create a GrandchildClass object and call its methods:')
grandchild = GrandchildClass()
grandchild.printHello()
grandchild.someNewMethod()
grandchild.anotherNewMethod()

print('An error:')
parent.someNewMethod()

When you run this program, the output should look like this:

Create a ParentClass object and call its methods:
Hello, world!
Create a ChildClass object and call its methods:
Hello, world!
ParentClass objects don't have this method.
Create a GrandchildClass object and call its methods:
Hello, world!
ParentClass objects don't have this method.
Only GrandchildClass objects have this method.
An error:
Traceback (most recent call last):
 File "inheritanceExample.py", line 35, in <module>
 parent.someNewMethod() # ParentClass objects don't have this method.
AttributeError: 'ParentClass' object has no attribute 'someNewMethod'

Object-Oriented Programming and Inheritance 295

We’ve created three classes named ParentClass 1, ChildClass 3, and
GrandchildClass 4. The ChildClass subclasses ParentClass, meaning that ChildClass
will have all the same methods as ParentClass. We say that ChildClass inherits
methods from ParentClass. Also, GrandchildClass subclasses ChildClass, so it
has all the same methods as ChildClass and its parent, ParentClass.

Using this technique, we’ve effectively copied and pasted the code
for the printHello() method 2 into the ChildClass and GrandchildClass
classes. Any changes we make to the code in printHello() update not only
ParentClass, but also ChildClass and GrandchildClass. This is the same as
changing the code in a function updates all of its function calls. You can
see this relationship in Figure 16-1. Notice that in class diagrams, the arrow
is drawn from the subclass pointing to the base class. This reflects the fact
that a class will always know its base class but won’t know its subclasses.

ParentClass
printHello()

ChildClass
someNewMethod()

GrandchildClass
anotherNewMethod()

ParentClass
printHello()

ChildClass
printHello() (inherited)

someNewMethod()

GrandchildClass
printHello() (inherited)

someNewMethod() (inherited)
anotherNewMethod()

Figure 16-1: A hierarchical diagram (left) and Venn diagram (right) showing the relation-
ships between the three classes and the methods they have

It’s common to say that parent-child classes represent “is a” relation-
ships. A ChildClass object is a ParentClass object because it has all the same
methods that a ParentClass object has, including some additional methods it
defines. This relationship is one way: a ParentClass object is not a ChildClass
object. If a ParentClass object tries to call someNewMethod(), which only exists
for ChildClass objects (and the subclasses of ChildClass), Python raises an
AttributeError.

Programmers often think of related classes as having to fit into some
real-world “is a” hierarchy. OOP tutorials commonly have parent, child, and
grandchild classes of VehicleFourWheelVehicleCar, AnimalBirdSparrow, or
ShapeRectangleSquare. But remember that the primary purpose of inheri-
tance is code reuse. If your program needs a class with a set of methods that
is a complete superset of some other class’s methods, inheritance allows you
to avoid copying and pasting code.

296 Chapter 16

We also sometimes call a child class a subclass or derived class and call a
parent class the super class or base class.

Overriding Methods
Child classes inherit all the methods of their parent classes. But a child
class can override an inherited method by providing its own method with
its own code. The child class’s overriding method will have the same name
as the parent class’s method.

To illustrate this concept, let’s return to the tic-tac-toe game we created
in the previous chapter. This time, we’ll create a new class, MiniBoard, that
subclasses TTTBoard and overrides getBoardStr() to provide a smaller drawing
of the tic-tac-toe board. The program will ask the player which board style
to use. We don’t need to copy and paste the rest of the TTTBoard methods
because MiniBoard will inherit them.

Add the following to the end of your tictactoe_oop.py file to create a
child class of the original TTTBoard class and then override the getBoardStr()
method:

class MiniBoard(TTTBoard):
 def getBoardStr(self):
 """Return a tiny text-representation of the board."""
 # Change blank spaces to a '.'
 for space in ALL_SPACES:
 if self._spaces[space] == BLANK:
 self._spaces[space] = '.'

 boardStr = f'''
 {self._spaces['1']}{self._spaces['2']}{self._spaces['3']} 123
 {self._spaces['4']}{self._spaces['5']}{self._spaces['6']} 456
 {self._spaces['7']}{self._spaces['8']}{self._spaces['9']} 789'''

 # Change '.' back to blank spaces.
 for space in ALL_SPACES:
 if self._spaces[space] == '.':
 self._spaces[space] = BLANK
 return boardStr

As with the getBoardStr() method for the TTTBoard class, the getBoardStr()
method for MiniBoard creates a multiline string of a tic-tac-toe board to dis-
play when passed to the print() function. But this string is much smaller,
forgoing the lines between the X and O marks and using periods to indicate
blank spaces.

Change the line in main() so it instantiates a MiniBoard object instead of a
TTTBoard object:

 if input('Use mini board? Y/N: ').lower().startswith('y'):
 gameBoard = MiniBoard() # Create a MiniBoard object.
 else:
 gameBoard = TTTBoard() # Create a TTTBoard object.

Object-Oriented Programming and Inheritance 297

Other than this one line change to main(), the rest of the program
works the same as before. When you run the program now, the output will
look something like this:

Welcome to Tic-Tac-Toe!
Use mini board? Y/N: y

 ... 123
 ... 456
 ... 789
What is X's move? (1-9)
1

 X.. 123
 ... 456
 ... 789
What is O's move? (1-9)
--snip--
 XXX 123
 .OO 456
 O.X 789
X has won the game!
Thanks for playing!

Your program can now easily have both implementations of these tic-
tac-toe board classes. Of course, if you only want the mini version of the
board, you could simply replace the code in the getBoardStr() method for
TTTBoard. But if you need both, inheritance lets you easily create two classes
by reusing their common code.

If we didn’t use inheritance, we could have, say, added a new attribute to
TTTBoard called useMiniBoard and put an if-else statement inside getBoardStr()
to decide when to show the regular board or the mini one. This would work
well for such a simple change. But what if the MiniBoard subclass needed to
override 2, 3, or even 100 methods? What if we wanted to create several dif-
ferent subclasses of TTTBoard? Not using inheritance would cause an explosion
of if-else statements inside our methods and a large increase in our code’s
complexity. By using subclasses and overriding methods, we can better orga-
nize our code into separate classes to handle these different use cases.

The super() Function
A child class’s overridden method is often similar to the parent class’s
method. Even though inheritance is a code reuse technique, overriding
a method might cause you to rewrite the same code from the parent class’s
method as part of the child class’s method. To prevent this duplicate code,
the built-in super() function allows an overriding method to call the origi-
nal method in the parent class.

For example, let’s create a new class called HintBoard that subclasses
TTTBoard. The new class overrides getBoardStr(), so after drawing the tic-
tac-toe board, it also adds a hint if either X or O could win on their next
move. This means that the HintBoard class’s getBoardStr() method has to do

298 Chapter 16

all the same tasks that the TTTBoard class’s getBoardStr() method does to draw
the tic-tac-toe board. Instead of repeating the code to do this, we can use
super() to call the TTTBoard class’s getBoardStr() method from the HintBoard
class’s getBoardStr() method. Add the following to the end of your tictactoe
_oop.py file:

class HintBoard(TTTBoard):
 def getBoardStr(self):
 """Return a text-representation of the board with hints."""

1 boardStr = super().getBoardStr() # Call getBoardStr() in TTTBoard.

 xCanWin = False
 oCanWin = False

2 originalSpaces = self._spaces # Backup _spaces.
 for space in ALL_SPACES: # Check each space:
 # Simulate X moving on this space:
 self._spaces = copy.copy(originalSpaces)
 if self._spaces[space] == BLANK:
 self._spaces[space] = X
 if self.isWinner(X):
 xCanWin = True
 # Simulate O moving on this space:

3 self._spaces = copy.copy(originalSpaces)
 if self._spaces[space] == BLANK:
 self._spaces[space] = O
 if self.isWinner(O):
 oCanWin = True
 if xCanWin:
 boardStr += '\nX can win in one more move.'
 if oCanWin:
 boardStr += '\nO can win in one more move.'
 self._spaces = originalSpaces
 return boardStr

First, super().getBoardStr() 1 runs the code inside the parent TTTBoard
class’s getBoardStr(), which returns a string of the tic-tac-toe board. We
save this string in a variable named boardStr for now. With the board string
created by reusing TTTBoard class’s getBoardStr(), the rest of the code in this
method handles generating the hint. The getBoardStr() method then sets
xCanWin and oCanWin variables to False, and backs up the self._spaces diction-
ary to an originalSpaces variable 2. Then a for loop loops over all board
spaces from '1' to '9'. Inside the loop, the self._spaces attribute is set to a
copy of the originalSpaces dictionary, and if the current space being looped
on is blank, an X is placed there. This simulates X moving on this blank space
for its next move. A call to self.isWinner() will determine if this would be a
winning move, and if so, xCanWin is set to True. Then these steps are repeated
for O to see whether O could win by moving on this space 3. This method
uses the copy module to make a copy of the dictionary in self._spaces, so
add the following line to the top of tictactoe.py:

import copy

Object-Oriented Programming and Inheritance 299

Next, change the line in main() so it instantiates a HintBoard object
instead of a TTTBoard object:

 gameBoard = HintBoard() # Create a TTT board object.

Other than this one line change to main(), the rest of the program
works exactly as before. When you run the program now, the output will
look something like this:

Welcome to Tic-Tac-Toe!
--snip--
 X| | 1 2 3
 -+-+-
 | |O 4 5 6
 -+-+-
 | |X 7 8 9
X can win in one more move.
What is O's move? (1-9)
5

 X| | 1 2 3
 -+-+-
 |O|O 4 5 6
 -+-+-
 | |X 7 8 9
O can win in one more move.
--snip--
The game is a tie!
Thanks for playing!

At the end of the method, if xCanWin or oCanWin is True, an additional
message stating so is added to the boardStr string. Finally, boardStr is
returned.

Not every overridden method needs to use super()! If a class’s over-
riding method does something completely different from the overridden
method in the parent class, there’s no need to call the overridden method
using super(). The super() function is especially useful when a class has
more than one parent method, as explained in “Multiple Inheritance” later
in this chapter.

Favor Composition Over Inheritance
Inheritance is a great technique for code reuse, and you might want to start
using it immediately in all your classes. But you might not always want the
base and subclasses to be so tightly coupled. Creating multiple levels of
inheritance doesn’t add organization so much as bureaucracy to your code.

Although you can use inheritance for classes with “is a” relationships (in
other words, when the child class is a kind of the parent class), it’s often favor-
able to use a technique called composition for classes with “has a” relationships.
Composition is the class design technique of including objects in your class
rather than inheriting those objects’ class. This is what we do when we add

300 Chapter 16

attributes to our classes. When designing your classes using inheritance, favor
composition instead of inheritance. This is what we’ve been doing with all the
examples in this and the previous chapter, as described in the following list:

•	 A WizCoin object “has an” amount of galleon, sickle, and knut coins.

•	 A TTTBoard object “has a” set of nine spaces.

•	 A MiniBoard object “is a” TTTBoard object, so it also “has a” set of nine spaces.

•	 A HintBoard object “is a” TTTBoard object, so it also “has a” set of nine spaces.

Let’s return to our WizCoin class from the previous chapter. If we created a
new WizardCustomer class to represent customers in the wizarding world, those
customers would be carrying an amount of money, which we could represent
through the WizCoin class. But there is no “is a” relationship between the two
classes; a WizardCustomer object is not a kind of WizCoin object. If we used inheri-
tance, it could create some awkward code:

import wizcoin

1 class WizardCustomer(wizcoin.WizCoin):
 def __init__(self, name):
 self.name = name
 super().__init__(0, 0, 0)

wizard = WizardCustomer('Alice')
print(f'{wizard.name} has {wizard.value()} knuts worth of money.')
print(f'{wizard.name}\'s coins weigh {wizard.weightInGrams()} grams.')

In this example, WizardCustomer inherits the methods of a WizCoin 1
object, such as value() and weightInGrams(). Technically, a WizardCustomer that
inherits from WizCoin can do all the same tasks that a WizardCustomer that
includes a WizCoin object as an attribute can. But the wizard.value() and
wizard.weightInGrams() method names are misleading: it seems like they
would return the wizard’s value and weight rather than the value and weight
of the wizard’s coins. In addition, if we later wanted to add a weightInGrams()
method for the wizard’s weight, that method name would already be taken.

It’s much better to have a WizCoin object as an attribute, because a wiz-
ard customer “has a” quantity of wizard coins:

import wizcoin

class WizardCustomer:
 def __init__(self, name):
 self.name = name

1 self.purse = wizcoin.WizCoin(0, 0, 0)

wizard = WizardCustomer('Alice')
print(f'{wizard.name} has {wizard.purse.value()} knuts worth of money.')
print(f'{wizard.name}\'s coins weigh {wizard.purse.weightInGrams()} grams.')

Object-Oriented Programming and Inheritance 301

Instead of making the WizardCustomer class inherit methods from WizCoin,
we give the WizardCustomer class a purse attribute 1, which contains a WizCoin
object. When you use composition, any changes to the WizCoin class’s meth-
ods won’t change the WizardCustomer class’s methods. This technique offers
more flexibility in future design changes for both classes and leads to more
maintainable code.

Inheritance’s Downside
The primary downside of inheritance is that any future changes you make
to parent classes are necessarily inherited by all its child classes. In most
cases, this tight coupling is exactly what you want. But in some instances,
your code requirements won’t easily fit your inheritance model.

For example, let’s say we have Car, Motorcycle, and LunarRover classes
in a vehicle simulation program. They all need similar methods, such
as startIgnition() and changeTire(). Instead of copying and pasting this
code into each class, we can create a parent Vehicle class and have Car,
Motorcycle, and LunarRover inherit it. Now if we need to fix a bug in, say,
the changeTire() method, there’s only one place we need to make the
change. This is especially helpful if we have dozens of different vehicle-
related classes inheriting from Vehicle. The code for these classes would
look like this:

class Vehicle:
 def __init__(self):
 print('Vehicle created.')
 def startIgnition(self):
 pass # Ignition starting code goes here.
 def changeTire(self):
 pass # Tire changing code goes here.

class Car(Vehicle):
 def __init__(self):
 print('Car created.')

class Motorcycle(Vehicle):
 def __init__(self):
 print('Motorcycle created.')

class LunarRover(Vehicle):
 def __init__(self):
 print('LunarRover created.')

But all future changes to Vehicle will affect these subclasses as well.
What happens if we need a changeSparkPlug() method? Cars and motorcycles
have combustion engines with spark plugs, but lunar rovers don’t. By favor-
ing composition over inheritance, we can create separate CombustionEngine
and ElectricEngine classes. Then we design the Vehicle class so it “has an”

302 Chapter 16

engine attribute, either a CombustionEngine or ElectricEngine object, with the
appropriate methods:

class CombustionEngine:
 def __init__(self):
 print('Combustion engine created.')
 def changeSparkPlug(self):
 pass # Spark plug changing code goes here.

class ElectricEngine:
 def __init__(self):
 print('Electric engine created.')

class Vehicle:
 def __init__(self):
 print('Vehicle created.')
 self.engine = CombustionEngine() # Use this engine by default.
--snip--

class LunarRover(Vehicle):
 def __init__(self):
 print('LunarRover created.')
 self.engine = ElectricEngine()

This could require rewriting large amounts of code, particularly if
you have several classes that inherit from a preexisting Vehicle class: all the
vehicleObj.changeSparkPlug() calls would need to become vehicleObj.engine
.changeSparkPlug() for every object of the Vehicle class or its subclasses. Because
such a sizeable change could introduce bugs, you might want to simply have
the changeSparkPlug() method for LunarVehicle do nothing. In this case, the
Pythonic way is to set changeSparkPlug to None inside the LunarVehicle class:

class LunarRover(Vehicle):
 changeSparkPlug = None
 def __init__(self):
 print('LunarRover created.')

The changeSparkPlug = None line follows the syntax described in “Class
Attributes” later in this chapter. This overrides the changeSparkPlug() method
inherited from Vehicle, so calling it with a LunarRover object causes an error:

>>> myVehicle = LunarRover()
LunarRover created.
>>> myVehicle.changeSparkPlug()
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: 'NoneType' object is not callable

This error allows us to fail fast and immediately see a problem if we try
to call this inappropriate method with a LunarRover object. Any child classes
of LunarRover also inherit this None value for changeSparkPlug(). The TypeError:
'NoneType' object is not callable error message tells us that the programmer

Object-Oriented Programming and Inheritance 303

of the LunarRover class intentionally set the changeSparkPlug() method to
None. If no such method existed in the first place, we would have received a
NameError: name 'changeSparkPlug' is not defined error message.

Inheritance can create classes with complexity and contradiction. It’s
often favorable to use composition instead.

The isinstance() and issubclass() Functions
When we need to know the type of an object, we can pass the object to the
built-in type() function, as described in the previous chapter. But if we’re
doing a type check of an object, it’s a better idea to use the more flexible
isinstance() built-in function. The isinstance() function will return True if
the object is of the given class or a subclass of the given class. Enter the follow-
ing into the interactive shell:

>>> class ParentClass:
... pass
...
>>> class ChildClass(ParentClass):
... pass
...
>>> parent = ParentClass() # Create a ParentClass object.
>>> child = ChildClass() # Create a ChildClass object.
>>> isinstance(parent, ParentClass)
True
>>> isinstance(parent, ChildClass)
False

1 >>> isinstance(child, ChildClass)
True

2 >>> isinstance(child, ParentClass)
True

Notice that isinstance() indicates that the ChildClass object in child is an
instance of ChildClass 1 and an instance of ParentClass 2. This makes sense,
because a ChildClass object “is a” kind of ParentClass object.

You can also pass a tuple of class objects as the second argument to see
whether the first argument is one of any of the classes in the tuple:

>>> isinstance(42, (int, str, bool)) # True if 42 is an int, str, or bool.
True

The less commonly used issubclass() built-in function can identify
whether the class object passed for the first argument is a subclass of (or
the same class as) the class object passed for the second argument:

>>> issubclass(ChildClass, ParentClass) # ChildClass subclasses ParentClass.
True
>>> issubclass(ChildClass, str) # ChildClass doesn't subclass str.
False
>>> issubclass(ChildClass, ChildClass) # ChildClass is ChildClass.
True

304 Chapter 16

As you can with isinstance(), you can pass a tuple of class objects as
the second argument to issubclass() to see whether the first argument is
a subclass of any of the classes in the tuple. The key difference between
isinstance() and issubclass() is that issubclass() is passed two class objects,
whereas isinstance() is passed an object and a class object.

Class Methods
Class methods are associated with a class rather than with individual objects,
like regular methods are. You can recognize a class method in code when
you see two markers: the @classmethod decorator before the method’s def
statement and the use of cls as the first parameter, as shown in the follow-
ing example.

class ExampleClass:
 def exampleRegularMethod(self):
 print('This is a regular method.')

 @classmethod
 def exampleClassMethod(cls):
 print('This is a class method.')

Call the class method without instantiating an object:
ExampleClass.exampleClassMethod()

obj = ExampleClass()
Given the above line, these two lines are equivalent:
obj.exampleClassMethod()
obj.__class__.exampleClassMethod()

The cls parameter acts like self except self refers to an object, but the
cls parameter refers to an object’s class. This means that the code in a class
method cannot access an individual object’s attributes or call an object’s
regular methods. Class methods can only call other class methods or access
class attributes. We use the name cls because class is a Python keyword,
and just like other keywords, such as if, while, or import, we can’t use it for
parameter names. We often call class attributes through the class object, as
in ExampleClass.exampleClassMethod(). But we can also call them through any
object of the class, as in obj.exampleClassMethod().

Class methods aren’t commonly used. The most frequent use case is
to provide alternative constructor methods besides __init__(). For exam-
ple, what if a constructor function could accept either a string of data the
new object needs or a string of a filename that contains the data the new
object needs? We don’t want the list of the __init__() method’s parameters
to be lengthy and confusing. Instead let’s use class methods to return a
new object.

For example, let’s create an AsciiArt class. As you saw in Chapter 14,
ASCII art uses text characters to form an image.

Object-Oriented Programming and Inheritance 305

class AsciiArt:
 def __init__(self, characters):
 self._characters = characters

 @classmethod
 def fromFile(cls, filename):
 with open(filename) as fileObj:
 characters = fileObj.read()
 return cls(characters)

 def display(self):
 print(self._characters)

 # Other AsciiArt methods would go here...

face1 = AsciiArt(' _______\n' +
 '| . . |\n' +
 '| ___/ |\n' +
 '|_______|')
face1.display()

face2 = AsciiArt.fromFile('face.txt')
face2.display()

The AsciiArt class has an __init__() method that can be passed the text
characters of the image as a string. It also has a fromFile() class method that
can be passed the filename string of a text file containing the ASCII art.
Both methods create AsciiArt objects.

When you run this program and there is a face.txt file that contains the
ASCII art face, the output will look something like this:

| . . |
| ___/ |
|_______|

| . . |
| ___/ |
|_______|

The fromFile() class method makes your code a bit easier to read, com-
pared to having __init__() do everything.

Another benefit of class methods is that a subclass of AsciiArt can
inherit its fromFile() method (and override it if necessary). This is why
we call cls(characters) in the AsciiArt class’s fromFile() method instead of
AsciiArt(characters). The cls() call will also work in subclasses of AsciiArt
without modification because the AsciiArt class isn’t hardcoded into the
method. But an AsciiArt() call would always call AsciiArt class’s __init__()
instead of the subclass’s __init__(). You can think of cls as meaning “an
object representing this class.”

306 Chapter 16

Keep in mind that just as regular methods should always use their
self parameter somewhere in their code, a class method should always use
its cls parameter. If your class method’s code never uses the cls parameter,
it’s a sign that your class method should probably just be a function.

Class Attributes
A class attribute is a variable that belongs to the class rather than to an
object. We create class attributes inside the class but outside all methods,
just like we create global variables in a .py file but outside all functions.
Here’s an example of a class attribute named count, which keeps track of
how many CreateCounter objects have been created:

class CreateCounter:
 count = 0 # This is a class attribute.

 def __init__(self):
 CreateCounter.count += 1

print('Objects created:', CreateCounter.count) # Prints 0.
a = CreateCounter()
b = CreateCounter()
c = CreateCounter()
print('Objects created:', CreateCounter.count) # Prints 3.

The CreateCounter class has a single class attribute named count. All
CreateCounter objects share this attribute rather than having their own
separate count attributes. This is why the CreateCounter.count += 1 line in the
constructor function can keep count of every CreateCounter object created.
When you run this program, the output will look like this:

Objects created: 0
Objects created: 3

We rarely use class attributes. Even this “count how many CreateCounter
objects have been created” example can be done more simply by using a
global variable instead of a class attribute.

Static Methods
A static method doesn’t have a self or cls parameter. Static methods are effec-
tively just functions, because they can’t access the attributes or methods of
the class or its objects. Rarely, if ever, do you need to use static methods in
Python. If you do decide to use one, you should strongly consider just creat-
ing a regular function instead.

We define static methods by placing the @staticmethod decorator before
their def statements. Here is an example of a static method.

Object-Oriented Programming and Inheritance 307

class ExampleClassWithStaticMethod:
 @staticmethod
 def sayHello():
 print('Hello!')

Note that no object is created, the class name precedes sayHello():
ExampleClassWithStaticMethod.sayHello()

There would be almost no difference between the sayHello() static
method in the ExampleClassWithStaticMethod class and a sayHello() function.
In fact, you might prefer to use a function, because you can call it without
having to enter the class name beforehand.

Static methods are more common in other languages that don’t have
Python’s flexible language features. Python’s inclusion of static methods
imitates the features of other languages but doesn’t offer much practical
value.

When to Use Class and Static Object-Oriented Features
You’ll rarely need class methods, class attributes, and static methods.
They’re also prone to overuse. If you’re thinking, “Why can’t I just use a
function or global variable instead?” this is a hint that you probably don’t
need to use a class method, class attribute, or static method. The only rea-
son this intermediate-level book covers them is so you can recognize them
when you encounter them in code, but I’m not encouraging you to use
them. They can be useful if you’re creating your own framework with an
elaborate family of classes that are, in turn, expected to be subclassed by
programmers using the framework. But you most likely won’t need them
when you’re writing straightforward Python applications.

For more discussion on these features and why you do or don’t need
them, read Phillip J. Eby’s post “Python Is Not Java” at https://dirtsimple.org/
2004/12/python-is-not-java.html and Ryan Tomayko’s “The Static Method
Thing” at https://tomayko.com/blog/2004/the-static-method-thing.

Object-Oriented Buzzwords
Explanations of OOP often begin with a lot of jargon, such as inheritance,
encapsulation, and polymorphism. The importance of knowing these terms
is overrated, but you should have at least a basic understanding of them. I
already covered inheritance, so I’ll describe the other concepts here.

Encapsulation
The word encapsulation has two common but related definitions. The first
definition is that encapsulation is the bundling of related data and code
into a single unit. To encapsulate means to box up. This is essentially what

http://dirtsimple.org/2004/12/python-is-not-java.html
http://dirtsimple.org/2004/12/python-is-not-java.html
https://tomayko.com/blog/2004/the-static-method-thing

308 Chapter 16

classes do: they combine related attributes and methods. For example, our
WizCoin class encapsulates three integers for knuts, sickles, and galleons into
a single WizCoin object.

The second definition is that encapsulation is an information hiding
technique that lets objects hide complex implementation details about
how the object works. You saw this in “Private Attributes and Private
Methods” on page 282, where BankAccount objects present deposit() and
withdraw() methods to hide the details of how their _balance attributes are
handled. Functions serve a similar black box purpose: how the math.sqrt()
function calculates the square root of a number is hidden. All you need
to know is that the function returns the square root of the number you
passed it.

Polymorphism
Polymorphism allows objects of one type to be treated as objects of another
type. For example, the len() function returns the length of the argument
passed to it. You can pass a string to len() to see how many characters it
has, but you can also pass a list or dictionary to len() to see how many items
or key-value pairs it has, respectively. This form of polymorphism is called
generic functions or parametric polymorphism, because it can handle objects of
many different types.

Polymorphism also refers to ad hoc polymorphism or operator overload-
ing, where operators (such as + or *) can have different behavior based on
the type of objects they’re operating on. For example, the + operator does
mathematical addition when operating on two integer or float values, but
it does string concatenation when operating on two strings. Operator over-
loading is covered in Chapter 17.

When Not to Use Inheritance
It’s easy to overengineer your classes using inheritance. As Luciano
Ramalho states, “Placing objects in a neat hierarchy appeals to our sense
of order; programmers do it just for fun.” We’ll create classes, subclasses,
and sub-subclasses when a single class, or a couple of functions in a mod-
ule, would achieve the same effect. But recall the Zen of Python tenet in
Chapter 6 that simple is better than complex.

Using OOP allows you to organize your code into smaller units (in this
case, classes) that are easier to reason about than one large .py file with hun-
dreds of functions defined in no particular order. Inheritance is useful if
you have several functions that all operate on the same dictionary or list
data structure. In that case, it’s beneficial to organize them into a class.

But here are some examples of when you don’t need to create a class or
use inheritance:

•	 If your class consists of methods that never use the self or cls param-
eter, delete the class and use functions in place of the methods.

Object-Oriented Programming and Inheritance 309

•	 If you’ve created a parent with only a single child class but never create
objects of the parent class, you can combine them into a single class.

•	 If you create more than three or four levels of subclasses, you’re prob-
ably using inheritance unnecessarily. Combine those subclasses into
fewer classes.

As the non-OOP and OOP versions of the tic-tac-toe program in the
previous chapter illustrate, it’s certainly possible to not use classes and still
have a working, bug-free program. Don’t feel that you have to design your
program as some complex web of classes. A simple solution that works is bet-
ter than a complicated solution that doesn’t. Joel Spolsky writes about this in
his blog post, “Don’t Let the Astronaut Architects Scare You” at https://www
.joelonsoftware.com/2001/04/21/dont-let-architecture-astronauts-scare-you/.

You should know how object-oriented concepts like inheritance work,
because they can help you organize your code and make development and
debugging easier. Due to Python’s flexibility, the language not only offers
OOP features, but also doesn’t require you to use them when they aren’t
suited for your program’s needs.

Multiple Inheritance
Many programming languages limit classes to at most one parent class.
Python supports multiple parent classes by offering a feature called multiple
inheritance. For example, we can have an Airplane class with a flyInTheAir()
method and a Ship class with a floatOnWater() method. We could then create
a FlyingBoat class that inherits from both Airplane and Ship by listing both in
the class statement, separated by commas. Open a new file editor window
and save the following as flyingboat.py:

class Airplane:
 def flyInTheAir(self):
 print('Flying...')

class Ship:
 def floatOnWater(self):
 print('Floating...')

class FlyingBoat(Airplane, Ship):
 pass

The FlyingBoat objects we create will inherit the flyInTheAir() and
floatOnWater() methods, as you can see in the interactive shell:

>>> from flyingboat import *
>>> seaDuck = FlyingBoat()
>>> seaDuck.flyInTheAir()
Flying...
>>> seaDuck.floatOnWater()
Floating...

https://www.joelonsoftware.com/2001/04/21/dont-let-architecture-astronauts-scare-you/
https://www.joelonsoftware.com/2001/04/21/dont-let-architecture-astronauts-scare-you/

310 Chapter 16

Multiple inheritance is straightforward as long as the parent classes’
method names are distinct and don’t overlap. These sorts of classes are
called mixins. (This is just a general term for a kind of class; Python has no
mixin keyword.) But what happens when we inherit from multiple compli-
cated classes that do share method names?

For example, consider the MiniBoard and HintTTTBoard tic-tac-toe board
classes from earlier in this chapter. What if we want a class that displays a
miniature tic-tac-toe board and also provides hints? With multiple inheri-
tance, we can reuse these existing classes. Add the following to the end
of your tictactoe_oop.py file but before the if statement that calls the main()
function:

class HybridBoard(HintBoard, MiniBoard):
 pass

This class has nothing in it. It reuses code by inheriting from HintBoard
and MiniBoard. Next, change the code in the main() function so it creates a
HybridBoard object:

gameBoard = HybridBoard() # Create a TTT board object.

Both parent classes, MiniBoard and HintBoard, have a method named
getBoardStr(), so which one does HybridBoard inherit? When you run this
program, the output displays a miniature tic-tac-toe board but also
provides hints:

--snip--
 X.. 123
 .O. 456
 X.. 789
X can win in one more move.

Python seems to have magically merged the MiniBoard class’s getBoardStr()
method and the HintBoard class’s getBoardStr() method to do both! But this
is because I’ve written them to work with each other. In fact, if you switch
the order of the classes in the HybridBoard class’s class statement so it looks
like this:

class HybridBoard(MiniBoard, HintBoard):

you lose the hints altogether:

--snip--
 X.. 123
 .O. 456
 X.. 789

To understand why this happens, you need to understand Python’s
method resolution order (MRO) and how the super() function actually works.

Object-Oriented Programming and Inheritance 311

Method Resolution Order
Our tic-tac-toe program now has four classes to represent boards, three
with defined getBoardStr() methods and one with an inherited getBoardStr()
method, as shown in Figure 16-2.

TTTBoard
getBoardStr()

HintBoard

getBoardStr()
(overridden, calls super())

MiniBoard

getBoardStr() (overridden)

HybridBoard
(inherited getBoardStr())

Figure 16-2: The four classes in our tic-tac-toe board program

When we call getBoardStr() on a HybridBoard object, Python knows that
the HybridBoard class doesn’t have a method with this name, so it checks
its parent class. But the class has two parent classes, both of which have a
getBoardStr() method. Which one gets called?

You can find out by checking the HybridBoard class’s MRO, which is the
ordered list of classes that Python checks when inheriting methods or when
a method calls the super() function. You can see the HybridBoard class’s MRO
by calling its mro() method in the interactive shell:

>>> from tictactoe_oop import *
>>> HybridBoard.mro()
[<class 'tictactoe_oop.HybridBoard'>, <class 'tictactoe_oop.HintBoard'>,
<class 'tictactoe_oop.MiniBoard'>, <class 'tictactoe_oop.TTTBoard'>, <class
'object'>]

From this return value, you can see that when a method is called on
HybridBoard, Python first checks for it in the HybridBoard class. If it’s not there,
Python checks the HintBoard class, then the MiniBoard class, and finally the
TTTBoard class. At the end of every MRO list is the built-in object class, which
is the parent class of all classes in Python.

For single inheritance, determining the MRO is easy: just make a chain
of parent classes. For multiple inheritance, it’s trickier. Python’s MRO fol-
lows the C3 algorithm, whose details are beyond the scope of this book. But
you can determine the MRO by remembering two rules:

•	 Python checks child classes before parent classes.

•	 Python checks inherited classes listed left to right in the class statement.

312 Chapter 16

If we call getBoardStr() on a HybridBoard object, Python checks the
HybridBoard class first. Then, because the class’s parents from left to right
are HintBoard and MiniBoard, Python checks HintBoard. This parent class has
a getBoardStr() method, so HybridBoard inherits and calls it.

But it doesn’t end there: next, this method calls super().getBoardStr().
Super is a somewhat misleading name for Python’s super() function, because
it doesn’t return the parent class but rather the next class in the MRO. This
means that when we call getBoardStr() on a HybridBoard object, the next class
in its MRO, after HintBoard, is MiniBoard, not the parent class TTTBoard. So the
call to super().getBoardStr() calls the MiniBoard class’s getBoardStr() method,
which returns the miniature tic-tac-toe board string. The remaining code
in the HintBoard class’s getBoardStr() after this super() call appends the hint
text to this string.

If we change the HybridBoard class’s class statement so it lists MiniBoard first
and HintBoard second, its MRO will put MiniBoard before HintBoard. This means
HybridBoard inherits getBoardStr() from MiniBoard, which doesn’t have a call to
super(). This ordering is what caused the bug that made the miniature tic-
tac-toe board display without hints: without a super() call, the MiniBoard class’s
getBoardStr() method never calls the HintBoard class’s getBoardStr() method.

Multiple inheritance allows you to create a lot of functionality in a small
amount of code but easily leads to overengineered, hard-to-understand
code. Favor single inheritance, mixin classes, or no inheritance. These tech-
niques are often more than capable of carrying out your program’s tasks.

Summary
Inheritance is a technique for code reuse. It lets you create child classes that
inherit the methods of their parent classes. You can override the methods
to provide new code for them but also use the super() function to call the
original methods in the parent class. A child class has an “is a” relationship
with its parent class, because an object of the child class is a kind of object
of the parent class.

In Python, using classes and inheritance is optional. Some program-
mers see the complexity that heavy use of inheritance creates as not worth
its benefits. It’s often more flexible to use composition instead of inheri-
tance, because it implements a “has a” relationship with an object of one
class and objects of other classes rather than inheriting methods directly
from those other classes. This means that objects of one class can have an
object of another class. For example, a Customer object could have a birthdate
method that is assigned a Date object rather than the Customer class subclass-
ing Date.

Just as type() can return the type of the object passed to it, the isinstance()
and issubclass() functions return type and inheritance information about
the object passed to them.

Object-Oriented Programming and Inheritance 313

Classes can have object methods and attributes, but they can also have
class methods, class attributes, and static methods. Although these are
rarely used, they can enable other object-oriented techniques that global
variables and functions can’t provide.

Python lets classes inherit from multiple parents, although this can lead
to code that is difficult to understand. The super() function and a class’s
methods figure out how to inherit methods based on the MRO. You can
view a class’s MRO in the interactive shell by calling the mro() method on
the class.

This chapter and the previous one covered general OOP concepts. In
the next chapter, we’ll explore Python-specific OOP techniques.

Many languages have OOP features, but
Python has some unique OOP features,

including properties and dunder methods.
Learning how to use these Pythonic techniques

can help you write concise and readable code.
Properties allow you to run some specific code each time an object’s attri-

bute is read, modified, or deleted to ensure the object isn’t put into an invalid
state. In other languages, this code is often called getters or setters. Dunder
methods allow you to use your objects with Python’s built-in operators, such
as the + operator. This is how you can combine two datetime.timedelta objects,
such as datetime.timedelta(days=2) and datetime.timedelta(days=3), to create a
new datetime.timedelta(days=5) object.

In addition to using other examples, we’ll continue to expand the
WizCoin class we started in Chapter 15 by adding properties and overload-
ing operators with dunder methods. These features will make WizCoin
objects more expressive and easier to use in any application that imports
the wizcoin module.

17
P Y T H O N I C O O P : P R O P E R T I E S

A N D D U N D E R M E T H O D S

316 Chapter 17

Properties
The BankAccount class that we used in Chapter 15 marked its _balance attribute
as private by placing an underscore at the start of its name. But remember
that designating an attribute as private is only a convention: all attributes in
Python are technically public, meaning they’re accessible to code outside
the class. There’s nothing to prevent code from intentionally or maliciously
changing the _balance attribute to an invalid value.

But you can prevent accidental invalid changes to these private attri-
butes with properties. In Python, properties are attributes that have specially
assigned getter, setter, and deleter methods that can regulate how the attribute
is read, changed, and deleted. For example, if the attribute is only supposed
to have integer values, setting it to the string '42' will likely cause bugs. A
property would call the setter method to run code that fixes, or at least pro-
vides early detection of, setting an invalid value. If you’ve thought, “I wish I
could run some code each time this attribute was accessed, modified with
an assignment statement, or deleted with a del statement,” then you want to
use properties.

Turning an Attribute into a Property
First, let’s create a simple class that has a regular attribute instead of a prop-
erty. Open a new file editor window and enter the following code, saving it
as regularAttributeExample.py:

class ClassWithRegularAttributes:
 def __init__(self, someParameter):
 self.someAttribute = someParameter

obj = ClassWithRegularAttributes('some initial value')
print(obj.someAttribute) # Prints 'some initial value'
obj.someAttribute = 'changed value'
print(obj.someAttribute) # Prints 'changed value'
del obj.someAttribute # Deletes the someAttribute attribute.

This ClassWithRegularAttributes class has a regular attribute named
someAttribute. The __init__() method sets someAttribute to 'some initial
value', but we then directly change the attribute’s value to 'changed value'.
When you run this program, the output looks like this:

some initial value
changed value

This output indicates that code can easily change someAttribute to any
value. The downside of using regular attributes is that your code can set the
someAttribute attribute to invalid values. This flexibility is simple and conve-
nient, but it also means someAttribute could be set to some invalid value that
causes bugs.

Pythonic OOP: Properties and Dunder Methods 317

Let’s rewrite this class using properties by following these steps to do
this for an attribute named someAttribute:

1.	 Rename the attribute with an underscore prefix: _someAttribute.

2.	 Create a method named someAttribute with the @property decorator. This
getter method has the self parameter that all methods have.

3.	 Create another method named someAttribute with the @someAttribute
.setter decorator. This setter method has parameters named self and
value.

4.	 Create another method named someAttribute with the @someAttribute
.deleter decorator. This deleter method has the self parameter that
all methods have.

Open a new file editor window and enter the following code, saving it as
propertiesExample.py:

class ClassWithProperties:
 def __init__(self):
 self.someAttribute = 'some initial value'

 @property
 def someAttribute(self): # This is the "getter" method.
 return self._someAttribute

 @someAttribute.setter
 def someAttribute(self, value): # This is the "setter" method.
 self._someAttribute = value

 @someAttribute.deleter
 def someAttribute(self): # This is the "deleter" method.
 del self._someAttribute

obj = ClassWithProperties()
print(obj.someAttribute) # Prints 'some initial value'
obj.someAttribute = 'changed value'
print(obj.someAttribute) # Prints 'changed value'
del obj.someAttribute # Deletes the _someAttribute attribute.

This program’s output is the same as the regularAttributeExample.py code,
because they effectively do the same task: they print an object’s initial attri-
bute and then update that attribute and print it again.

But notice that the code outside the class never directly accesses the
_someAttribute attribute (it’s private, after all). Instead, the outside code
accesses the someAttribute property. What this property actually consists
of is a bit abstract: the getter, setter, and deleter methods combined make
up the property. When we rename an attribute named someAttribute to
_someAttribute while creating getter, setter, and deleter methods for it, we
call this the someAttribute property.

318 Chapter 17

In this context, the _someAttribute attribute is called a backing field or
backing variable and is the attribute on which the property is based. Most,
but not all, properties use a backing variable. We’ll create a property with-
out a backing variable in “Read-Only Properties” later in this chapter.

You never call the getter, setter, and deleter methods in your code
because Python does it for you under the following circumstances:

•	 When Python runs code that accesses a property, such as print(obj.
someAttribute), behind the scenes, it calls the getter method and uses
the returned value.

•	 When Python runs an assignment statement with a property, such as
obj.someAttribute = 'changed value', behind the scenes, it calls the setter
method, passing the 'changed value' string for the value parameter.

•	 When Python runs a del statement with a property, such as del obj
.someAttribute, behind the scenes, it calls the deleter method.

The code in the property’s getter, setter, and deleter methods acts on
the backing variable directly. You don’t want the getter, setter, or deleter
methods to act on the property, because this could cause errors. In one pos-
sible example, the getter method would access the property, causing the get-
ter method to call itself, which makes it access the property again, causing it
to call itself again, and so on until the program crashes. Open a new file edi-
tor window and enter the following code, saving it as badPropertyExample.py:

class ClassWithBadProperty:
 def __init__(self):
 self.someAttribute = 'some initial value'

 @property
 def someAttribute(self): # This is the "getter" method.
 # We forgot the _ underscore in `self._someAttribute here`, causing
 # us to use the property and call the getter method again:
 return self.someAttribute # This calls the getter again!

 @someAttribute.setter
 def someAttribute(self, value): # This is the "setter" method.
 self._someAttribute = value

obj = ClassWithBadProperty()
print(obj.someAttribute) # Error because the getter calls the getter.

When you run this code, the getter continually calls itself until Python
raises a RecursionError exception:

Traceback (most recent call last):
 File "badPropertyExample.py", line 16, in <module>
 print(obj.someAttribute) # Error because the getter calls the getter.
 File "badPropertyExample.py", line 9, in someAttribute
 return self.someAttribute # This calls the getter again!

Pythonic OOP: Properties and Dunder Methods 319

 File "badPropertyExample.py", line 9, in someAttribute
 return self.someAttribute # This calls the getter again!
 File "badPropertyExample.py", line 9, in someAttribute
 return self.someAttribute # This calls the getter again!
 [Previous line repeated 996 more times]
RecursionError: maximum recursion depth exceeded

To prevent this recursion, the code inside your getter, setter, and del-
eter methods should always act on the backing variable (which should have
an underscore prefix in its name), never the property. Code outside these
methods should use the property, although as with the private access under-
score prefix convention, nothing prevents you from writing code on the
backing variable anyway.

Using Setters to Validate Data
The most common need for using properties is to validate data or to make
sure it’s in the format you want it to be in. You might not want code outside
the class to be able to set an attribute to just any value; this could lead to
bugs. You can use properties to add checks that ensure only valid values
are assigned to an attribute. These checks let you catch bugs earlier in
code development, because they raise an exception as soon as an invalid
value is set.

Let’s update the wizcoin.py file from Chapter 15 to turn the galleons,
sickles, and knuts attributes into properties. We’ll change the setter for
these properties so only positive integers are valid. Our WizCoin objects
represent an amount of coins, and you can’t have half a coin or an amount
of coins less than zero. If code outside the class tries to set the galleons,
sickles, or knuts properties to an invalid value, we’ll raise a WizCoinException
exception.

Open the wizcoin.py file that you saved in Chapter 15 and modify it to
look like the following:

1 class WizCoinException(Exception):
2 """The wizcoin module raises this when the module is misused."""

 pass

class WizCoin:
 def __init__(self, galleons, sickles, knuts):
 """Create a new WizCoin object with galleons, sickles, and knuts."""

3 self.galleons = galleons
 self.sickles = sickles
 self.knuts = knuts
 # NOTE: __init__() methods NEVER have a return statement.

--snip--

 @property
4 def galleons(self):

 """Returns the number of galleon coins in this object."""
 return self._galleons

320 Chapter 17

 @galleons.setter
5 def galleons(self, value):
6 if not isinstance(value, int):
7 raise WizCoinException('galleons attr must be set to an int, not a
' + value.__class__.__qualname__)
8 if value < 0:

 raise WizCoinException('galleons attr must be a positive int, not
' + value.__class__.__qualname__)
 self._galleons = value

--snip--

The new changes add a WizCoinException class 1 that inherits from
Python’s built-in Exception class. The class’s docstring describes how the
wizcoin module 2 uses it. This is a best practice for Python modules:
the WizCoin class’s objects can raise this when they’re misused. That way, if
a WizCoin object raises other exception classes, like ValueError or TypeError,
this will mostly likely signify that it’s a bug in the WizCoin class.

In the __init__() method, we set the self.galleons, self.sickles, and
self.knuts properties 3 to the corresponding parameters.

At the bottom of the file, after the total() and weight() methods, we
add a getter 4 and setter method 5 for the self._galleons attribute. The
getter simply returns the value in self._galleons. The setter checks whether
the value being assigned to the galleons property is an integer 6 and posi-
tive 8. If either check fails, WizCoinException is raised with an error message.
This check prevents _galleons from ever being set with an invalid value as
long as code always uses the galleons property.

All Python objects automatically have a __class__ attribute, which refers
to the object’s class object. In other words, value.__class__ is the same class
object that type(value) returns. This class object has an attribute named
__qualname__ that is a string of the class’s name. (Specifically, it’s the qualified
name of the class, which includes the names of any classes the class object
is nested in. Nested classes are of limited use and beyond the scope of this
book.) For example, if value stored the date object returned by datetime.
date(2021, 1, 1), then value.__class__.__qualname__ would be the string 'date'.
The exception messages use value.__class__.__qualname__ 7 to get a string
of the value object’s name. The class name makes the error message more
useful to the programmer reading it, because it identifies not only that the
value argument was not the right type, but what type it was and what type it
should be.

You’ll need to copy the code for the getter and setter for _galleons to use
for the _sickles and _knuts attributes as well. Their code is identical except
they use the _sickles and _knuts attributes, instead of _galleons, as backing
variables.

Read-Only Properties
Your objects might need some read-only properties that can’t be set with
the assignment operator =. You can make a property read-only by omitting
the setter and deleter methods.

Pythonic OOP: Properties and Dunder Methods 321

For example, the total() method in the WizCoin class returns the value
of the object in knuts. We could change this from a regular method to a
read-only property, because there is no reasonable way to set the total of a
WizCoin object. After all, if you set total to the integer 1000, does this mean
1,000 knuts? Or does it mean 1 galleon and 493 knuts? Or does it mean
some other combination? For this reason, we’ll make total a read-only prop-
erty by adding the code in bold to the wizcoin.py file:

 @property
 def total(self):
 """Total value (in knuts) of all the coins in this WizCoin object."""
 return (self.galleons * 17 * 29) + (self.sickles * 29) + (self.knuts)

 # Note that there is no setter or deleter method for `total`.

After you add the @property function decorator in front of total(),
Python will call the total() method whenever total is accessed. Because
there is no setter or deleter method, Python raises AttributeError if any code
attempts to modify or delete total by using it in an assignment or del state-
ment, respectively. Notice that the value of the total property depends on
the value in the galleons, sickles, and knuts properties: this property isn’t
based on a backing variable named _total. Enter the following into the
interactive shell:

>>> import wizcoin
>>> purse = wizcoin.WizCoin(2, 5, 10)
>>> purse.total
1141
>>> purse.total = 1000
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
AttributeError: can't set attribute

You might not like that your program immediately crashes when you
attempt to change a read-only property, but this behavior is preferable to
allowing a change to a read-only property. Your program being able to mod-
ify a read-only property would certainly cause a bug at some point while the
program runs. If this bug happens much later after you modify the read-only
property, it would be hard to track down the original cause. Crashing imme-
diately allows you to notice the problem sooner.

Don’t confuse read-only properties with constant variables. Constant
variables are written in all uppercase and rely on the programmer to not
modify them. Their value is supposed to remain constant and unchang-
ing for the duration of a program’s run. A read-only property is, as with
any attribute, associated with an object. A read-only property cannot be
directly set or deleted. But it might evaluate to a changing value. Our
WizCoin class’s total property changes as its galleons, sickles, and knuts
properties change.

322 Chapter 17

When to Use Properties
As you saw in the previous sections, properties provide more control over
how we can use a class’s attributes, and they’re a Pythonic way to write code.
Methods with names like getSomeAttribute() or setSomeAttribute() signal that
you should probably use properties instead.

This isn’t to say that every instance of a method beginning with get or
set should immediately be replaced with a property. There are situations in
which you should use a method, even if its name begins with get or set. Here
are some examples:

•	 For slow operations that take more than a second or two—for example,
downloading or uploading a file

•	 For operations that have side effects, such as changes to other attributes
or objects

•	 For operations that require additional arguments to be passed to
the get or set operation—for example, in a method call like emailObj
.getFileAttachment(filename)

Programmers often think of methods as verbs (in the sense that methods
perform some action), and they think of attributes and properties as nouns
(in the sense that they represent some item or object). If your code seems to
be performing more of an action of getting or setting rather than getting or
setting an item, it might be best to use a getter or setter method. Ultimately,
this decision depends on what sounds right to you as the programmer.

The great advantage of using Python’s properties is that you don’t have
to use them when you first create your class. You can use regular attributes,
and if you need properties later, you can convert the attributes to properties
without breaking any code outside the class. When we make a property with
the attribute’s name, we can rename the attribute using a prefix underscore
and our program will still work as it did before.

Python’s Dunder Methods
Python has several special method names that begin and end with double
underscores, abbreviated as dunder. These methods are called dunder
methods, special methods, or magic methods. You’re already familiar with the
__init__() dunder method name, but Python has several more. We often use
them for operator overloading—that is, adding custom behaviors that allow
us to use objects of our classes with Python operators, such as + or >=. Other
dunder methods let objects of our classes work with Python’s built-in func-
tions, such as len() or repr().

As with __init__() or the getter, setter, and deleter methods for prop-
erties, you almost never call dunder methods directly. Python calls them
behind the scenes when you use the objects with operators or built-in func-
tions. For example, if you create a method named __len__() or __repr__() for
your class, they’ll be called behind the scenes when an object of that class is

Pythonic OOP: Properties and Dunder Methods 323

passed to the len() or repr() function, respectively. These methods are doc-
umented online in the official Python documentation at https://docs.python
.org/3/reference/datamodel.html.

As we explore the many different types of dunder methods, we’ll
expand our WizCoin class to take advantage of them.

String Representation Dunder Methods
You can use the __repr_() and __str__() dunder methods to create string
representations of objects that Python typically doesn’t know how to han-
dle. Usually, Python creates string representations of objects in two ways.
The repr (pronounced “repper”) string is a string of Python code that,
when run, creates a copy of the object. The str (pronounced “stir”) string is
a human-readable string that provides clear, useful information about the
object. The repr and str strings are returned by the repr() and str() built-in
functions, respectively. For example, enter the following into the interactive
shell to see a datetime.date object’s repr and str strings:

>>> import datetime
1 >>> newyears = datetime.date(2021, 1, 1)

>>> repr(newyears)
2 'datetime.date(2021, 1, 1)'

>>> str(newyears)
3 '2021-01-01'
4 >>> newyears

datetime.date(2021, 1, 1)

In this example, the 'datetime.date(2021, 1, 1)' repr string of the date
time.date object 2 is literally a string of Python code that creates a copy of
that object 1. This copy provides a precise representation of the object. On
the other hand, the '2021-01-01' str string of the datetime.date object 3 is a
string representing the object’s value in a way that’s easy for humans to read.
If we simply enter the object into the interactive shell 4, it displays the repr
string. An object’s str string is often displayed to users, whereas an object’s
repr string is used in technical contexts, such as error messages and logfiles.

Python knows how to display objects of its built-in types, such as inte-
gers and strings. But it can’t know how to display objects of the classes we
create. If repr() doesn’t know how to create a repr or str string for an object,
by convention the string will be enclosed in angle brackets and contain
the object’s memory address and class name: '<wizcoin.WizCoin object at
0x00000212B4148EE0>'. To create this kind of string for a WizCoin object, enter
the following into the interactive shell:

>>> import wizcoin
>>> purse = wizcoin.WizCoin(2, 5, 10)
>>> str(purse)
'<wizcoin.WizCoin object at 0x00000212B4148EE0>'
>>> repr(purse)
'<wizcoin.WizCoin object at 0x00000212B4148EE0>'
>>> purse
<wizcoin.WizCoin object at 0x00000212B4148EE0>

https://docs.python.org/3/reference/datamodel.html
https://docs.python.org/3/reference/datamodel.html

324 Chapter 17

These strings aren’t very readable or useful, so we can tell Python what
strings to use by implementing the __repr__() and __str__() dunder methods.
The __repr__() method specifies what string Python should return when the
object is passed to the repr() built-in function, and the __str__() method
specifies what string Python should return when the object is passed to the
str() built-in function. Add the following to the end of the wizcoin.py file:

--snip--
 def __repr__(self):
 """Returns a string of an expression that re-creates this object."""
 return f'{self.__class__.__qualname__}({self.galleons}, {self.sickles}, {self.knuts})'

 def __str__(self):
 """Returns a human-readable string representation of this object."""
 return f'{self.galleons}g, {self.sickles}s, {self.knuts}k'

When we pass purse to repr() and str(), Python calls the __repr__() and
__str__() dunder methods. We don’t call the dunder methods in our code.

Note that f-strings that include the object in braces will implicitly call
str() to get an object’s str string. For example, enter the following into the
interactive shell:

>>> import wizcoin
>>> purse = wizcoin.WizCoin(2, 5, 10)
>>> repr(purse) # Calls WizCoin's __repr__() behind the scenes.
'WizCoin(2, 5, 10)'
>>> str(purse) # Calls WizCoin's __str__() behind the scenes.
'2g, 5s, 10k'
>>> print(f'My purse contains {purse}.') # Calls WizCoin's __str__().
My purse contains 2g, 5s, 10k.

When we pass the WizCoin object in purse to the repr() and str() func-
tions, behind the scenes Python calls the WizCoin class’s __repr__() and __str__
() methods. We programmed these methods to return more readable and
useful strings. If you entered the text of the 'WizCoin(2, 5, 10)' repr string
into the interactive shell, it would create a WizCoin object that has the same
attributes as the object in purse. The str string is a more human-readable rep-
resentation of the object’s value: '2g, 5s, 10k'. If you use a WizCoin object in
an f-string, Python uses the object’s str string.

If WizCoin objects were so complex that it would be impossible to create
a copy of them with a single constructor function call, we would enclose
the repr string in angle brackets to denote that it’s not meant to be Python
code. This is what the generic representation strings, such as '<wizcoin.
WizCoin object at 0x00000212B4148EE0>', do. Typing this string into the inter-
active shell would raise a SyntaxError, so it couldn’t possibly be confused for
Python code that creates a copy of the object.

Inside the __repr__() method, we use self.__class__.__qualname__ instead
of hardcoding the string 'WizCoin'; so if we subclass WizCoin, the inherited
__repr__() method will use the subclass’s name instead of 'WizCoin'. In addi-
tion, if we rename the WizCoin class, the __repr__() method will automatically
use the updated name.

Pythonic OOP: Properties and Dunder Methods 325

But the WizCoin object’s str string shows us the attribute values in a neat,
concise form. I highly recommended you implement __repr__() and __str__()
in all your classes.

SE NSI T I V E INFOR M AT ION IN R E PR S T R INGS

As mentioned earlier, we usually display the str string to users, and we use the
repr string in technical contexts, such as logfiles. But the repr string can cause
security issues if the object you’re creating contains sensitive information, such
as passwords, medical details, or personally identifiable information. If this
is the case, make sure the __repr__() method doesn’t include this information
in the string it returns. When software crashes, it’s frequently set up to include
the contents of variables in a logfile to aid in debugging. Often, these logfiles
aren’t treated as sensitive information. In several security incidents, publicly
shared logfiles have inadvertently included passwords, credit card numbers,
home addresses, and other sensitive information. Keep this in mind when
you’re writing __repr__() methods for your class.

Numeric Dunder Methods
The numeric dunder methods, also called the math dunder methods, overload
Python’s mathematical operators, such as +, -, *, /, and so on. Currently, we
can’t perform an operation like adding two WizCoin objects together with
the + operator. If we try to do so, Python will raise a TypeError exception,
because it doesn’t know how to add WizCoin objects. To see this error, enter
the following into the interactive shell:

>>> import wizcoin
>>> purse = wizcoin.WizCoin(2, 5, 10)
>>> tipJar = wizcoin.WizCoin(0, 0, 37)
>>> purse + tipJar
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: unsupported operand type(s) for +: 'WizCoin' and 'WizCoin'

Instead of writing an addWizCoin() method for the WizCoin class, you can
use the __add__() dunder method so WizCoin objects work with the + opera-
tor. Add the following to the end of the wizcoin.py file:

--snip--
1 def __add__(self, other):

 """Adds the coin amounts in two WizCoin objects together."""
2 if not isinstance(other, WizCoin):
 return NotImplemented

3 �return WizCoin(other.galleons + self.galleons, other.sickles +
self.sickles, other.knuts + self.knuts)

326 Chapter 17

When a WizCoin object is on the left side of the + operator, Python calls
the __add__() method 1 and passes in the value on the right side of the +
operator for the other parameter. (The parameter can be named anything,
but other is the convention.)

Keep in mind that you can pass any type of object to the __add__()
method, so the method must include type checks 2. For example, it doesn’t
make sense to add an integer or a float to a WizCoin object, because we don’t
know whether it should be added to the galleons, sickles, or knuts amount.

The __add__() method creates a new WizCoin object with amounts equal
to the sum of the galleons, sickles, and knuts attributes of self and other 3.
Because these three attributes contain integers, we can use the + operator
on them. Now that we’ve overloaded the + operator for the WizCoin class, we
can use the + operator on WizCoin objects.

Overloading the + operator like this allows us to write more readable
code. For example, enter the following into the interactive shell:

>>> import wizcoin
>>> purse = wizcoin.WizCoin(2, 5, 10) # Create a WizCoin object.
>>> tipJar = wizcoin.WizCoin(0, 0, 37) # Create another WizCoin object.
>>> purse + tipJar # Creates a new WizCoin object with the sum amount.
WizCoin(2, 5, 47)

If the wrong type of object is passed for other, the dunder method
shouldn’t raise an exception but rather return the built-in value NotImplemented.
For example, in the following code, other is an integer:

>>> import wizcoin
>>> purse = wizcoin.WizCoin(2, 5, 10)
>>> purse + 42 # WizCoin objects and integers can't be added together.
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: unsupported operand type(s) for +: 'WizCoin' and 'int'

Returning NotImplemented signals Python to try calling other methods to
perform this operation. (See “Reflected Numeric Dunder Methods” later in
this chapter for more details.) Behind the scenes, Python calls the __add__()
method with 42 for the other parameter, which also returns NotImplemented,
causing Python to raise a TypeError.

Although we shouldn’t be able to add integers to or subtract them from
WizCoin objects, it would make sense to allow code to multiply WizCoin objects
by positive integer amounts by defining a __mul__() dunder method. Add the
following to the end of wizcoin.py:

--snip--
 def __mul__(self, other):
 """Multiplies the coin amounts by a non-negative integer."""
 if not isinstance(other, int):
 return NotImplemented
 if other < 0:
 # Multiplying by a negative int results in negative
 # amounts of coins, which is invalid.

Pythonic OOP: Properties and Dunder Methods 327

 raise WizCoinException('cannot multiply with negative integers')

 return WizCoin(self.galleons * other, self.sickles * other, self.knuts * other)

This __mul__() method lets you multiply WizCoin objects by positive inte-
gers. If other is an integer, it’s the data type the __mul__() method is expect-
ing and we shouldn’t return NotImplemented. But if this integer is negative,
multiplying the WizCoin object by it would result in negative amounts of
coins in our WizCoin object. Because this goes against our design for this
class, we raise a WizCoinException with a descriptive error message.

N O T E 	 You shouldn’t change the self object in a numeric dunder method. Rather, the method
should always create and return a new object. The + and other numeric operators are
always expected to evaluate to a new object rather than modifying an object’s value
in-place.

Enter the following into the interactive shell to see the __mul__()
dunder method in action:

>>> import wizcoin
>>> purse = wizcoin.WizCoin(2, 5, 10) # Create a WizCoin object.
>>> purse * 10 # Multiply the WizCoin object by an integer.
WizCoin(20, 50, 100)
>>> purse * -2 # Multiplying by a negative integer causes an error.
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "C:\Users\Al\Desktop\wizcoin.py", line 86, in __mul__
 raise WizCoinException('cannot multiply with negative integers')
wizcoin.WizCoinException: cannot multiply with negative integers

Table 17-1 shows the full list of numeric dunder methods. You don’t
always need to implement all of them for your class. It’s up to you to decide
which methods are relevant.

Table 17-1: Numeric Dunder Methods

Dunder method Operation Operator or built-in function

__add__() Addition +

__sub__() Subtraction -

__mul__() Multiplication *

__matmul__() Matrix multiplication (new in
Python 3.5)

@

__truediv__() Division /

__floordiv__() Integer division //

__mod__() Modulus %

__divmod__() Division and modulus divmod()

(continued)

328 Chapter 17

Dunder method Operation Operator or built-in function

__pow__() Exponentiation **, pow()

__lshift__() Left shift >>

__rshift__() Right shift <<

__and__() Bitwise and &

__or__() Bitwise or |

__xor__() Bitwise exclusive or ^

__neg__() Negation Unary -, as in -42

__pos__() Identity Unary +, as in +42

__abs__() Absolute value abs()

__invert__() Bitwise inversion ~

__complex__() Complex number form complex()

__int__() Integer number form int()

__float__() Floating-point number form float()

__bool__() Boolean form bool()

__round__() Rounding round()

__trunc__() Truncation math.trunc()

__floor__() Rounding down math.floor()

__ceil__() Rounding up math.ceil()

Some of these methods are relevant to our WizCoin class. Try writing
your own implementation of the __sub__(), __pow__(), __int__(), __float__(),
and __bool__() methods. You can see an example of an implementation
at https://autbor.com/wizcoinfull. The full documentation for the numeric
dunder methods is in the Python documentation at https://docs.python.org/3/
reference/datamodel.html#emulating-numeric-types.

The numeric dunder methods allow objects of your classes to use
Python’s built-in math operators. If you’re writing methods with names
like multiplyBy(), convertToInt(), or something similar that describes a task
typically done by an existing operator or built-in function, use the numeric
dunder methods (as well as the reflected and in-place dunder methods
described in the next two sections).

Reflected Numeric Dunder Methods
Python calls the numeric dunder methods when the object is on the left
side of a math operator. But it calls the reflected numeric dunder methods
(also called the reverse or right-hand dunder methods) when the object is on
the right side of a math operator.

Reflected numeric dunder methods are useful because programmers
using your class won’t always write the object on the left side of the opera-
tor, which could lead to unexpected behavior. For example, let’s consider

Table 17-1: Numeric Dunder Methods (continued)

https://autbor.com/wizcoinfull
https://docs.python.org/3/reference/datamodel.html#emulating-numeric-types
https://docs.python.org/3/reference/datamodel.html#emulating-numeric-types

Pythonic OOP: Properties and Dunder Methods 329

what happens when purse contains a WizCoin object, and Python evaluates
the expression 2 * purse, where purse is on the right side of the operator:

1.	 Because 2 is an integer, the int class’s __mul__() method is called with
purse passed for the other parameter.

2.	 The int class’s __mul__() method doesn’t know how to handle WizCoin
objects, so it returns NotImplemented.

3.	 Python doesn’t raise a TypeError just yet. Because purse contains a WizCoin
object, the WizCoin class’s __rmul__() method is called with 2 passed for
the other parameter.

4.	 If __rmul__() returns NotImplemented, Python raises a TypeError.

Otherwise, the returned object from __rmul__() is what the 2 * purse
expression evaluates to.

But the expression purse * 2, where purse is on the left side of the opera-
tor, works differently:

1.	 Because purse contains a WizCoin object, the WizCoin class’s __mul__()
method is called with 2 passed for the other parameter.

2.	 The __mul__() method creates a new WizCoin object and returns it.

3.	 This returned object is what the purse * 2 expression evaluates to.

Numeric dunder methods and reflected numeric dunder methods have
identical code if they are commutative. Commutative operations, like addi-
tion, have the same result backward and forward: 3 + 2 is the same as 2 + 3.
But other operations aren’t commutative: 3 – 2 is not the same as 2 – 3. Any
commutative operation can just call the original numeric dunder method
whenever the reflected numeric dunder method is called. For example, add
the following to the end of the wizcoin.py file to define a reflected numeric
dunder method for the multiplication operation:

--snip--
 def __rmul__(self, other):
 """Multiplies the coin amounts by a non-negative integer."""
 return self.__mul__(other)

Multiplying an integer and a WizCoin object is commutative: 2 * purse is
the same as purse * 2. Instead of copying and pasting the code from __mul__(),
we just call self.__mul__() and pass it the other parameter.

After updating wizcoin.py, practice using the reflected multiplication
dunder method by entering the following into the interactive shell:

>>> import wizcoin
>>> purse = wizcoin.WizCoin(2, 5, 10)
>>> purse * 10 # Calls __mul__() with 10 for the `other` parameter.
WizCoin(20, 50, 100)
>>> 10 * purse # Calls __rmul__() with 10 for the `other` parameter.
WizCoin(20, 50, 100)

330 Chapter 17

Keep in mind that in the expression 10 * purse, Python first calls the
int class’s __mul__() method to see whether integers can be multiplied with
WizCoin objects. Of course, Python’s built-in int class doesn’t know anything
about the classes we create, so it returns NotImplemented. This signals to Python
to next call WizCoin class’s __rmul__(), and if it exists, to handle this opera-
tion. If the calls to the int class’s __mul__() and WizCoin class’s __rmul__() both
return NotImplemented, Python raises a TypeError exception.

Only WizCoin objects can be added to each other. This guarantees that
the first WizCoin object’s __add__() method will handle the operation, so we
don’t need to implement __radd__(). For example, in the expression purse +
tipJar, the __add__() method for the purse object is called with tipJar passed
for the other parameter. Because this call won’t return NotImplemented, Python
doesn’t try to call the tipJar object’s __radd__() method with purse as the other
parameter.

Table 17-2 contains a full listing of the available reflected dunder methods.

Table 17-2: Reflected Numeric Dunder Methods

Dunder method Operation Operator or built-in function

__radd__() Addition +

__rsub__() Subtraction -

__rmul__() Multiplication *

__rmatmul__() Matrix multiplication (new in
Python 3.5)

@

__rtruediv__() Division /

__rfloordiv__() Integer division //

__rmod__() Modulus %

__rdivmod__() Division and modulus divmod()

__rpow__() Exponentiation **, pow()

__rlshift__() Left shift >>

__rrshift__() Right shift <<

__rand__() Bitwise and &

__ror__() Bitwise or |

__rxor__() Bitwise exclusive or ^

The full documentation for the reflected dunder methods is in the
Python documentation at https://docs.python.org/3/reference/datamodel.html
#emulating-numeric-types.

In-Place Augmented Assignment Dunder Methods
The numeric and reflected dunder methods always create new objects rather
than modifying the object in-place. The in-place dunder methods, called by the
augmented assignment operators, such as += and *=, modify the object in-place

https://docs.python.org/3/reference/datamodel.html#emulating-numeric-types
https://docs.python.org/3/reference/datamodel.html#emulating-numeric-types

Pythonic OOP: Properties and Dunder Methods 331

rather than creating new objects. (There is an exception to this, which I’ll
explain at the end of this section.) These dunder method names begin with
an i, such as __iadd__() and __imul__() for the += and *= operators, respectively.

For example, when Python runs the code purse *= 2, the expected behav-
ior isn’t that the WizCoin class’s __imul__() method creates and returns a new
WizCoin object with twice as many coins, and then assigns it the purse variable.
Instead, the __imul__() method modifies the existing WizCoin object in purse
so it has twice as many coins. This is a subtle but important difference if you
want your classes to overload the augmented assignment operators.

Our WizCoin objects already overload the + and * operators, so let’s define
the __iadd__() and __imul__() dunder methods so they overload the += and *=
operators as well. In the expressions purse += tipJar and purse *= 2, we call
the __iadd__() and __imul__() methods, respectively, with tipJar and 2 passed
for the other parameter, respectively. Add the following to the end of the
wizcoin.py file:

--snip--
 def __iadd__(self, other):
 """Add the amounts in another WizCoin object to this object."""
 if not isinstance(other, WizCoin):
 return NotImplemented

 # We modify the `self` object in-place:
 self.galleons += other.galleons
 self.sickles += other.sickles
 self.knuts += other.knuts
 return self # In-place dunder methods almost always return self.

 def __imul__(self, other):
 """Multiply the amount of galleons, sickles, and knuts in this object
 by a non-negative integer amount."""
 if not isinstance(other, int):
 return NotImplemented
 if other < 0:
 raise WizCoinException('cannot multiply with negative integers')

 # The WizCoin class creates mutable objects, so do NOT create a
 # new object like this commented-out code:
 #return WizCoin(self.galleons * other, self.sickles * other, self.knuts * other)

 # We modify the `self` object in-place:
 self.galleons *= other
 self.sickles *= other
 self.knuts *= other
 return self # In-place dunder methods almost always return self.

The WizCoin objects can use the += operator with other WizCoin objects
and the *= operator with positive integers. Notice that after ensuring that
the other parameter is valid, the in-place methods modify the self object
in-place rather than creating a new WizCoin object. Enter the following into

332 Chapter 17

the interactive shell to see how the augmented assignment operators mod-
ify the WizCoin objects in-place:

>>> import wizcoin
>>> purse = wizcoin.WizCoin(2, 5, 10)
>>> tipJar = wizcoin.WizCoin(0, 0, 37)

1 >>> purse + tipJar
2 WizCoin(2, 5, 46)

>>> purse
WizCoin(2, 5, 10)

3 >>> purse += tipJar
>>> purse
WizCoin(2, 5, 47)

4 >>> purse *= 10
>>> purse
WizCoin(20, 50, 470)

The + operator 1 calls the __add__() or __radd__() dunder methods to
create and return new objects 2. The original objects operated on by the
+ operator remain unmodified. The in-place dunder methods 3 4 should
modify the object in-place as long as the object is mutable (that is, it’s an
object whose value can change). The exception is for immutable objects:
because an immutable object can’t be modified, it’s impossible to modify
it in-place. In that case, the in-place dunder methods should create and
return a new object, just like the numeric and reflected numeric dunder
methods.

We didn’t make the galleons, sickles, and knuts attributes read-only,
which means they can change. So WizCoin objects are mutable. Most of the
classes you write will create mutable objects, so you should design your in-
place dunder methods to modify the object in-place.

If you don’t implement an in-place dunder method, Python will instead
call the numeric dunder method. For example, if the WizCoin class had no
__imul__() method, the expression purse *= 10 will call __mul__() instead and
assign its return value to purse. Because WizCoin objects are mutable, this is
unexpected behavior that could lead to subtle bugs.

Comparison Dunder Methods
Python’s sort() method and sorted() function contain an efficient sorting
algorithm that you can access with a simple call. But if you want to compare
and sort objects of the classes you make, you’ll need to tell Python how to
compare two of these objects by implementing the comparison dunder
methods. Python calls the comparison dunder methods behind the scenes
whenever your objects are used in an expression with the <, >, <=, >=, ==, and
!= comparison operators.

Before we explore the comparison dunder methods, let’s examine six
functions in the operator module that perform the same operations as the
six comparison operators. Our comparison dunder methods will be calling
these functions. Enter the following into the interactive shell.

Pythonic OOP: Properties and Dunder Methods 333

>>> import operator
>>> operator.eq(42, 42) # "EQual", same as 42 == 42
True
>>> operator.ne('cat', 'dog') # "Not Equal", same as 'cat' != 'dog'
True
>>> operator.gt(10, 20) # "Greater Than ", same as 10 > 20
False
>>> operator.ge(10, 10) # "Greater than or Equal", same as 10 >= 10
True
>>> operator.lt(10, 20) # "Less Than", same as 10 < 20
True
>>> operator.le(10, 20) # "Less than or Equal", same as 10 <= 20
True

The operator module gives us function versions of the comparison oper-
ators. Their implementations are simple. For example, we could write our
own operator.eq() function in two lines:

def eq(a, b):
 return a == b

It’s useful to have a function form of the comparison operators because,
unlike operators, functions can be passed as arguments to function calls.
We’ll be doing this to implement a helper method for our comparison
dunder methods.

First, add the following to the start of wizcoin.py. These imports give
us access to the functions in the operator module and allow us to check
whether the other argument in our method is a sequence by comparing it to
collections.abc.Sequence:

import collections.abc
import operator

Then add the following to the end of the wizcoin.py file:

--snip--
1 def _comparisonOperatorHelper(self, operatorFunc, other):

 """A helper method for our comparison dunder methods."""

2 if isinstance(other, WizCoin):
 return operatorFunc(self.total, other.total)

3 elif isinstance(other, (int, float)):
 return operatorFunc(self.total, other)

4 elif isinstance(other, collections.abc.Sequence):
 otherValue = (other[0] * 17 * 29) + (other[1] * 29) + other[2]
 return operatorFunc(self.total, otherValue)
 elif operatorFunc == operator.eq:
 return False
 elif operatorFunc == operator.ne:
 return True
 else:
 return NotImplemented

334 Chapter 17

 def __eq__(self, other): # eq is "EQual"
5 return self._comparisonOperatorHelper(operator.eq, other)

 def __ne__(self, other): # ne is "Not Equal"
6 return self._comparisonOperatorHelper(operator.ne, other)

 def __lt__(self, other): # lt is "Less Than"
7 return self._comparisonOperatorHelper(operator.lt, other)

 def __le__(self, other): # le is "Less than or Equal"
8 return self._comparisonOperatorHelper(operator.le, other)

 def __gt__(self, other): # gt is "Greater Than"
9 return self._comparisonOperatorHelper(operator.gt, other)

 def __ge__(self, other): # ge is "Greater than or Equal"
a return self._comparisonOperatorHelper(operator.ge, other)

Our comparison dunder methods call the _comparisonOperatorHelper()
method 1 and pass the appropriate function from the operator module for
the operatorFunc parameter. When we call operatorFunc(), we’re calling the
function that was passed for the operatorFunc parameter—eq()5, ne()6,
lt()7, le()8, gt()9, or ge()a—from the operator module. Otherwise, we’d
have to duplicate the code in _comparisonOperatorHelper() in each of our six
comparison dunder methods.

N O T E 	 Functions (or methods) like _comparisonOperatorHelper() that accept other functions as
arguments are called higher-order functions.

Our WizCoin objects can now be compared with other WizCoin objects 2,
integers and floats 3, and sequence values of three number values that
represent the galleons, sickles, and knuts 4. Enter the following into the
interactive shell to see this in action:

>>> import wizcoin
>>> purse = wizcoin.WizCoin(2, 5, 10) # Create a WizCoin object.
>>> tipJar = wizcoin.WizCoin(0, 0, 37) # Create another WizCoin object.
>>> purse.total, tipJar.total # Examine the values in knuts.
(1141, 37)
>>> purse > tipJar # Compare WizCoin objects with a comparison operator.
True
>>> purse < tipJar
False
>>> purse > 1000 # Compare with an int.
True
>>> purse <= 1000
False
>>> purse == 1141
True
>>> purse == 1141.0 # Compare with a float.
True
>>> purse == '1141' # The WizCoin is not equal to any string value.
False

Pythonic OOP: Properties and Dunder Methods 335

>>> bagOfKnuts = wizcoin.WizCoin(0, 0, 1141)
>>> purse == bagOfKnuts
True
>>> purse == (2, 5, 10) # We can compare with a 3-integer tuple.
True
>>> purse >= [2, 5, 10] # We can compare with a 3-integer list.
True
>>> purse >= ['cat', 'dog'] # This should cause an error.
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "C:\Users\Al\Desktop\wizcoin.py", line 265, in __ge__
 return self._comparisonOperatorHelper(operator.ge, other)
 File "C:\Users\Al\Desktop\wizcoin.py", line 237, in _
comparisonOperatorHelper
 otherValue = (other[0] * 17 * 29) + (other[1] * 29) + other[2]
IndexError: list index out of range

Our helper method calls isinstance(other, collections.abc.Sequence) to
see whether other is a sequence data type, such as a tuple or list. By making
WizCoin objects comparable with sequences, we can write code such as purse
>= [2, 5, 10] for a quick comparison.

SEQUE NCE COMPA R ISONS

When comparing two objects of the built-in sequence types, such as strings,
lists, or tuples, Python puts more significance on the earlier items in the
sequence. That is, it won’t compare the later items unless the earlier items have
equal values. For example, enter the following into the interactive shell:

>>> 'Azriel' < 'Zelda'
True
>>> (1, 2, 3) > (0, 8888, 9999)
True

The string 'Azriel' comes before (in other words, is less than) 'Zelda'
because 'A' comes before 'Z'. The tuple (1, 2, 3) comes after (in other words,
is greater than) (0, 8888, 9999) because 1 is greater than 0. On the other
hand, enter the following into the interactive shell:

>>> 'Azriel' < 'Aaron'
False
>>> (1, 0, 0) > (1, 0, 9999)
False

The string 'Azriel' doesn’t come before 'Aaron' because even though the
'A' in 'Azriel' is equal to the 'A' in 'Aaron', the subsequent 'z' in 'Azriel'
doesn’t come before the 'a' in 'Aaron'. The same applies to the tuples (1, 0, 0)

(continued)

336 Chapter 17

and (1, 0, 9999): the first two items in each tuple are equal, so it’s the third
items (0 and 9999, respectively) that determine that (1, 0, 0) comes before
(1, 0, 9999).

This forces us to make a design decision about our WizCoin class. Should
WizCoin(0, 0, 9999) come before or after WizCoin(1, 0, 0)? If the number of
galleons is more significant than the number of sickles or knuts, WizCoin(0, 0,
9999) should come before WizCoin(1, 0, 0). Or if we compare objects based
on their values in knuts, WizCoin(0, 0, 9999) (worth 9,999 knuts) comes after
WizCoin(1, 0, 0) (worth 493 knuts). In wizcoin.py, I decided to use the object’s
value in knuts because it makes the behavior consistent with how WizCoin objects
compare with integers and floats. These are the kinds of decisions you’ll have to
make when designing your own classes.

There are no reflected comparison dunder methods, such as __req__() or
__rne__(), that you’ll need to implement. Instead, __lt__() and __gt__() reflect
each other, __le__() and __ge__() reflect each other, and __eq__() and __ne__()
reflect themselves. The reason is that the following relationships hold true
no matter what the values on the left or right side of the operator are:

•	 purse > [2, 5, 10] is the same as [2, 5, 10] < purse

•	 purse >= [2, 5, 10] is the same as [2, 5, 10] <= purse

•	 purse == [2, 5, 10] is the same as [2, 5, 10] == purse

•	 purse != [2, 5, 10] is the same as [2, 5, 10] != purse

Once you’ve implemented the comparison dunder methods, Python’s
sort() function will automatically use them to sort your objects. Enter the
following into the interactive shell:

>>> import wizcoin
>>> oneGalleon = wizcoin.WizCoin(1, 0, 0) # Worth 493 knuts.
>>> oneSickle = wizcoin.WizCoin(0, 1, 0) # Worth 29 knuts.
>>> oneKnut = wizcoin.WizCoin(0, 0, 1) # Worth 1 knut.
>>> coins = [oneSickle, oneKnut, oneGalleon, 100]
>>> coins.sort() # Sort them from lowest value to highest.
>>> coins
[WizCoin(0, 0, 1), WizCoin(0, 1, 0), 100, WizCoin(1, 0, 0)]

Table 17-3 contains a full listing of the available comparison dunder
methods and operator functions.

Table 17-3: Comparison Dunder Methods and operator Module Functions

Dunder method Operation
Comparison
operator

Function in operator
module

__eq__() EQual == operator.eq()

__ne__() Not Equal != operator.ne()

Pythonic OOP: Properties and Dunder Methods 337

Dunder method Operation
Comparison
operator

Function in operator
module

__lt__() Less Than < operator.lt()

__le__() Less than or Equal <= operator.le()

__gt__() Greater Than > operator.gt()

__ge__() Greater than or Equal >= operator.ge()

You can see the implementation for these methods at https://autbor.com/
wizcoinfull. The full documentation for the comparison dunder methods is
in the Python documentation at https://docs.python.org/3/reference/datamodel
.html#object.__lt__.

The comparison dunder methods let objects of your classes use Python’s
comparison operators rather than forcing you to create your own meth-
ods. If you’re creating methods named equals() or isGreaterThan(), they’re
not Pythonic, and they’re a sign that you should use comparison dunder
methods.

Summary
Python implements object-oriented features differently than other OOP
languages, such as Java or C++. Instead of explicit getter and setter meth-
ods, Python has properties that allow you to validate attributes or make
attributes read-only.

Python also lets you overload its operators via its dunder methods, which
begin and end with double underscore characters. We overload common
mathematical operators using the numeric and reflected numeric dunder
methods. These methods provide a way for Python’s built-in operators to
work with objects of the classes you create. If they’re unable to handle the
data type of the object on the other side of the operator, they’ll return the
built-in NotImplemented value. These dunder methods create and return new
objects, whereas the in-place dunder methods (which overload the aug-
mented assignment operators) modify the object in-place. The comparison
dunder methods not only implement the six Python comparison operators
for objects, but also allow Python’s sort() function to sort objects of your
classes. You might want to use the eq(), ne(), lt(), le(), gt(), and ge() func-
tions in the operator module to help you implement these dunder methods.

Properties and dunder methods allow you to write classes that are con-
sistent and readable. They let you avoid much of the boilerplate code that
other languages, such as Java, require you to write. To learn more about
writing Pythonic code, two PyCon talks by Raymond Hettinger expand
on these ideas: “Transforming Code into Beautiful, Idiomatic Python”
at https://youtu.be/OSGv2VnC0go/ and “Beyond PEP 8—Best Practices for
Beautiful, Intelligible Code” at https://youtu.be/wf-BqAjZb8M/ cover some
of the concepts in this chapter and beyond.

https://autbor.com/wizcoinfull
https://autbor.com/wizcoinfull
https://docs.python.org/3/reference/datamodel.html#object.__lt__
https://docs.python.org/3/reference/datamodel.html#object.__lt__
https://youtu.be/OSGv2VnC0go/
https://youtu.be/wf-BqAjZb8M/

338 Chapter 17

There’s much more to learn about how to use Python effectively.
The books Fluent Python (O’Reilly Media, 2021) by Luciano Ramalho and
Effective Python (Addison-Wesley Professional, 2019) by Brett Slatkin pro-
vide more in-depth information about Python’s syntax and best practices,
and are must-reads for anyone who wants to continue to learn more about
Python.

I N D E X

Numbers and Symbols
256 objects and 257 objects, 154–155
./, using with Ubuntu, 42
/? command line argument, 25–26
= assignment operator, 113
== comparison operator, 113, 336

chaining, 103, 105
using to compare objects, 154
using with None, 94–95

!= comparison operator, 336
* and ** syntax

using to create variadic functions,
167–171

using to create wrapper functions,
171–172

using with arguments and
functions, 166–167

* character, using as wildcard, 28–29
? character, using as wildcard, 28–29
[:] syntax, using, 104
< comparison operator, 337
<= comparison operator, 337
> comparison operator, 337
>= comparison operator, 337
-> (arrow), using with type hints, 191
\ (backslash)

purpose of, 18
using with strings, 95

: (colon), using with lists, 97–98, 104
, (comma), including in single-item

tuples, 150
- (dash), using with command line

arguments, 25
$ (dollar sign), using in macOS, 23
. (dot), using with commands, 31
-- (double dash), using with command

line arguments, 25

__(double underscore), using in
dunder methods, 322. See also
underscore (_)

/ (forward slash)
purpose of, 18
using with command line

arguments, 25
(hash mark)

using with comments, 183
using with docstrings, 188

[] (index operator), using, 117
; (semicolons), using with timeit

module, 226–227
' (single quote), using, 46
~ (tilde), using in macOS, 23
- (unary operator), 155–157
+ (unary operator), 156–157
_ (underscore)

PEP 8’s naming conventions,
60–61

as prefix for methods and
attributes, 291–292

private prefix, 81
using with _spaces attribute, 290
using with dunder methods, 120
using with private attributes and

methods, 283
using with WizCoin class, 279

A
abcTraceback.py program, saving, 4
__abs__() numeric dunder

method, 328
absolute versus relative paths, 20–21
__add__() numeric dunder method, 327
addToTotal() function, creating,

172–173

340 Index

algebra for big O, 236
algorithm analysis. See big O algorithm
aliases, defined, 121
all() function, 157–158
alphabetical sort, performing, 146–147
ALT key. See keyboard shortcuts
Amdahl’s Law, 229–230
and operator, using, 103
__and__() numeric dunder method, 328
anonymous functions, 174–175
answer archive, building with Stack

Overflow, 12
antigravity feature, enabling, 160
API (application programming

interface), 130
API vs. library vs. framework vs. SDK vs.

engine, 130
append() method, using, 115
applications, opening, 22
arguments. See also positional

arguments
vs. parameters, 128
passing to functions, 166–167
setting defaults for parameters,

142–143
arrow (->), using with type hints, 191
ASCII (American Standard Code for

Information Interchange), 146
ASCII art, using in Four-in-a-Row

game, 272
AsciiArt class, creating, 304–305
assignment and comparison operators,

chaining, 103, 105
atoms and literals, 110
attributes

as backing fields, 317–318
defined, 278, 282–284
vs. properties, 128–129
turning into properties, 316–319
vs. variable, 124

B
backing field, relationship to attributes,

317–318
backporting type hints, 196
backslash (\)

purpose of, 18
using with strings, 95

base class, relationship to
inheritance, 296

Bash file, 22–23
BFG Repo-Cleaner tool, 220
big O algorithm

algebra, 236
algorithm analysis, 230
analysis, 230
analysis examples, 239–242
analyzing, 243–244
best practice, 244
bookshelf metaphor for orders,

231–235
determining order for code,

237–244
doing analysis, 236
function calls, 242–243
lower and higher orders, 230–231
lower orders and coefficients,

238–239
math for analysis, 236
measuring worst-case

scenario, 235
“n” is small, 244
order of function calls, 242–243
orders of notation, 245

big Omega notation, 235
big Theta notation, 235
binary code, explained, 129
Black code formatting tool

adjusting line length setting, 55
described, 45
disabling double-quoted strings

setting, 55–56
disabling for parts of code, 57
installing, 54
previewing changes, 56–57
running from command line,

54–57
semantic decisions, 58
syntactic decisions, 58

block vs. clause vs. body, 123–124
__bool__() numeric dunder method, 328
Boolean values, 158–159. See also

values
Bourne Shells, 22–23
bugs, types of, 109, 150–151
bytecode vs. machine code, 129

Index 341

C
C:\ part of path, 18
-c switch, using to run code from

command line, 26
callables and first-class objects, 121–122
camelCase, 60
casing styles, 60
Catalina version, 23
cd (change directories) command,

29–30
__ceil__() numeric dunder

method, 328
chaining operators, 103, 105, 159–160
child class, creating, 294
class attributes, 306
class methods, 304–306
class objects, 284
classes. See also inheritance

creating, 77
creating objects from, 278
creating WizCoin, 279–284
defined, 276
designing for real world, 290–291
as functions or modules, 77
“is a” relationships, 299

clause vs. block vs. body, 123–124
CLI (command line interface), 22
close() and open() functions, 93–94
cls and clear (clear terminal)

commands, 35
code. See also source code

avoiding guesses, 90
beauty of, 88
commented out, 74–75
flat vs. nested, 89
formatting for readability, 12–13
implementation, 90
interrupting, 134
namespaces, 91
organizing, 77
readability of, 89
running from command line, 26
silenced errors, 89–90
simplicity and complexity of, 89
sparse vs. dense, 89
special cases, 89
speed of, 90
verbose and explicit, 89

code formatting, defined, 45
code point, getting for characters,

146–147
code smells. See also source code

classes as functions or modules, 77
commented-out code, 74–75
dead code, 74–75
defined, 69
duplicate code, 70–71
empty except blocks, 79–80
error messages, 79–80
list comprehensions, 77–79
magic numbers, 71–73
myths, 80–84
print debugging, 75–76
summary, 84–85
variables with numeric suffixes, 76

codetags and TODO comments, 187
coercion, explained, 128
collections module, contents of, 120
collections.defaultdict, using for

default values, 99–100
colon (:), using with lists, 97–98, 104
comma (,), including in single-item

tuples, 150
command history, viewing, 28
command line

arguments, 24–26
options, 25
overview, 22–23, 42
running code with -c switch, 26
running programs from, 23–24
running py.exe program, 26–27
running Python programs

from, 26
tab completion, 27–28
terminal window, 23

Command Prompt shell, 23
commands

canceling, 28
cd (change directories), 29–30
cls and clear (clear terminal), 35
copy and cp (copy files), 31–32
del (delete files and folders), 33–34
dir (list folder contents), 30
dir /s (list subfolder contents), 31
find (list subfolder contents), 31
ls (list folder contents), 30

342 Index

md and mkdir (make folders), 34
move and mv (move files), 32
mv (rename files and folders),

32–33
rd and rmdir (delete folders),

34–35
ren (rename files and folders),

32–33
rm (delete files and folders), 33–34
running from Python

programs, 27
shortened names, 32
where (find programs), 35
which (find programs), 35
wildcard characters, 28–29

commented-out code, 74–75
comments

best practices, 197
myth about, 83–84
using, 182–188
using with type hints, 196

commit history, rewriting in Git, 220
commit log, viewing in Git, 216–217
commits, rolling back in Git, 218–220
comparing objects, 154–155
comparison operators. See also

sequence comparisons
chaining with assignment

operators, 103, 105
function form of, 333

comparisons, making, 94–95
__complex__() numeric dunder

method, 328
composition vs. inheritance, 299–301
conditional expressions, ternary

operator, 101–102
containers, defined, 119–120
Cookiecutter, using to create projects,

200–202
copy and cp commands, 31
copy.copy() and copy.deepcopy(), using

with mutable values, 140–142
copying

files and folders, 31
mutable values, 140–142

cProfile profiler, 154, 228–230
CPU, instruction set of, 129

CPython implementation, 108
CTRL key. See keyboard shortcuts
cwd (current working directory),

19–20, 31

D
dash (-) using with command line

arguments, 25
data, validating with setters, 319
data types

defined, 276
and return values, 177–178

dead code, 74–75
decimal.Decimal(), passing integers to,

148–149
decrement and increment operators,

156–157
default arguments, setting for

parameters, 142–143, 165–166
default values, using collections

.defaultdict for, 99–100
deleting

files and folders, 33–34
files from repo, 214–215
folders, 34–35
items from list, 134–140
and moving files in repo, 215–216

derived class, relationship to
inheritance, 296

deterministic function, 173. See also
functions

dictionaries
get() and setdefault()

methods, 104
key-value pairs, 118
Python mailing list discussion, 131
setting type hints for, 195–196
using, 98–101
using as default arguments,

143–144
diff program, seeing changes with,

211–212
dir command, using, 30
dir /s command, 31
displays and literals, 110
__divmod__() numeric dunder

method, 327
docs folder, contents of, 200

commands (continued)

Index 343

docstrings
defined, 182
summary, 197
using, 188–190

dollar sign ($), using in macOS, 23
doskey program, 28
dot (.), using with commands, 31
double dash (--), using with command

line arguments, 25
double-free bugs, 109
double underscore (__), using in

dunder methods, 322. See also
underscore (_)

dunder methods. See also methods; OOP
(object-oriented programming)

comparison, 332–337
defined, 120
numeric, 325–328
in-place augmented assignment,

330–332
reflected numeric, 328–330
string representation, 323–325
using, 322–323

duplicate code, 70–71
dynamic typing, 190

E
Easter egg, The Zen of Python as, 88
encapsulation, explained, 307–308
encoding definition, using with magic

comment, 187–188
engine vs. library vs. framework vs. SDK

vs. API, 130
enumerate() vs. range(), 92–93, 104
environment setup, process of, 17, 42
environment variables and PATH, 35–39
__eq__() comparison dunder

method, 336
EQual operation, 336
equality (==) operator, using with

None, 94–95
error codes, returning, 178–179
error messages

and except blocks, 79–80
getting help with, 11
parsing, 15
tracing, 178
understanding, 4–8

errors, preventing with linters, 8–9
exceptions

catching, 79–80
raising, 4, 90, 178–179
RecursionError, 318–319

explanatory comments, 184–185
expressions vs. statements, 122–123

F
False and True keywords, 158–159
FAQs (Frequently Asked Questions), 10
filenames, as command line

arguments, 25
filenames and folders, matching with

wildcards, 28–29
file paths, specifying, 20–21
files

copying, 31
deleting, 33–34
moving, 32
renaming, 32–33

filesystem, 18–21, 42
filtering with list comprehensions,

175–176
find command, 31
find feature, accessing, 64, 67
find() string method, error related

to, 178
finding programs, 35
first-class objects and callables,

121–122. See also objects
flag arguments, myth about, 82
__float__() numeric dunder

method, 328
floating-point numbers, accuracy of,

147–149, 151
__floor__() numeric dunder

method, 328
__floordiv__() numeric dunder

method, 327
folders

adding to PATH on macOS and
Linux, 39

adding to PATH on Windows, 38–39
as command line arguments, 25
copying, 31
deleting, 33–34
in filesystem, 18

344 Index

home directory, 19
listing contents of, 30
making, 34
moving, 32
renaming, 32–33

folders and filenames, matching with
wildcards, 28–29

for expressions, including in list
comprehension, 79

for loops
in big O analysis, 240
getting index and value, 104
and lists, 134–140
versatility of, 125

form, filling out, 276–278
format() string method, 96–97
formatting for readability, 58
formatting strings, 96–97
forward slash (/)

purpose of, 18
using with command line

arguments, 25
Four-in-a-Row tile-dropping game

output, 259–260
source code, 260–264
summary, 271–272
writing code, 264–271

frame object, explained, 5
frame summary, explained, 5
framework vs. library vs. SDK vs. engine

vs. API, 130
f-strings, formatting strings with, 96–97
functional programming

higher-order functions, 174
lambda functions, 174–175
list comprehensions, 175–176
mapping and filtering, 175–176
side effects, 172–174

function calls, order in big O, 242–243
functions. See also deterministic

function; higher-order
functions; nondeterministic
function; pure function;
variadic functions; wrapper
functions

default arguments, 165–166
vs. methods, 82, 124

names, 162
parameters and arguments,

165–172
passing arguments to, 166–167
and return statements, 80–81
size trade-offs, 162–165
and try statements, 81–82
using default arguments with,

142–143

G
garbage collection, 109, 226
__ge__() comparison dunder

method, 337
get(), using with dictionaries, 98–101
getPlayerMove() function, 163–165
getters and setters, 315, 318
Git. See also repo

adding files to track, 208–209
command line tool, 207
commits and repos, 200, 206–207
committed state, 204
committing changes, 210–214
configuring username and

email, 203
deleting files from repo, 214–215
as distributed version control

system, 206
frequency of committing changes,

213–214
ignoring files in repo, 209–210
installing, 202–204
keeping track of file status,

204–206
log command, 216–217

modified state, 204
recovering old changes, 217–220
renaming and moving files in

repo, 215–216
rewriting commit history, 220
running status with watch

command, 207
staged state, 205–206
storing private information in, 220
viewing changes before

committing, 211–212
viewing commit log, 216–217
workflow, 204–206

folders (continued)

Index 345

git add command, 223
git clone command, 223
git commit command, 223
git diff, using, 211–213
git filter-branch command, 220
git init command, 223
GitHub and git push command,

221–223
glob patterns, explained, 29
global variables, myth about, 82–83
glossary, accessing, 108, 131
GrandchildClass, creating, 294–295
Greater Than operation, 337
Greater than or Equal operation, 337
__gt__() comparison dunder

method, 337
GUI (graphical user interface), 22
GUI Git tools, installing, 203–204

H
hash mark (#)

using with comments, 183
using with docstrings, 188

hashes, defined, 117–119
--help command line argument, 25–26
help with programming, asking for,

9–14
higher-order functions, 174. See also

functions
home directory, 19
Homebrew, installing and

configuring, 213
horizontal spacing, 47–51
Hungarian notation, 63

I
id() function, calling, 111, 154
identifiers, defined, 59
identities, defined, 111–114
IEEE 754 standard and floating-point

numbers, 147–148
if statement as clause header, 124
immutable and mutable objects,

114–117, 144
in operator, using with values of

variables, 105
increment and decrement operators,

156–157

indentation, using space characters
for, 47–48. See also significant
indentation

index operator ([]), using, 117–118
index() string method, exception

related to, 179
indexes, defined, 117–119
inequality != operators, avoiding

chaining, 149–150
inheritance. See also classes;

multiple inheritance;
OOP (object-oriented
programming)

base classes, 296
best practice, 308–309
class attributes, 306–307
class methods, 304–306
vs. composition, 299–301
creating child classes, 294
derived classes, 296
downside, 301–303
explained, 293
isinstance() and issubclass()

functions, 303–304
MRO (method resolution order),

310–312
overriding methods, 296–297
static methods, 306–307
subclasses, 296
super classes, 296
super() function, 297–299

__init__(), and self, 280–282
__init__.py file and packages, 121
inline comments, 183–184
in-place augmented assignment dunder

methods, 330–332
installing

Black code formatting tool, 54
Git, 202–204
Homebrew, 213
Meld for Linux, 213
Mypy, 192–193
Pyflakes, 9
tkdiff, 213

instances, defined, 111–114, 276. See
also isinstance()

instruction set, explained, 129
int() function, using, 158

346 Index

__int__() numeric dunder method, 328
integers, passing to decimal.Decimal(),

148–149.
__invert__() numeric dunder

method, 328
“is a” relationships for classes, 299
is operator, using, 113
isinstance(). See also instances

and issubclass() functions,
303–304, 312

using with Boolean values, 158
items

best practices for dealing with,
134–140

defined, 114
iterable unpacking, using to swap

variables, 227
iterable vs. iterator, 125–126
iterating

explained, 134
forward and backward, 139

J
JDK (Java Development Kit), 130
join() operator, using with

strings, 151
JVM (Java Virtual Machine), 129

K
keyboard shortcuts

canceling commands, 28
find feature, 64, 67
interrupting code, 134
interrupting infinite loops, 134
opening applications, 22
opening terminal window, 23, 41
Task Manager, 22
viewing running processes, 22

keys, defined, 117–119
keywords

arguments, 167
defined, 110–111
True and False, 158–159

Kompare, using, 213

L
lambda functions, 174–175. See also

functions

__le__() comparison dunder
method, 337

legal comments, 186
len() function, using, 92
Less Than operation, 337
Less than or Equal operation, 337
“lessons learned” comments, 185–186
library vs. framework vs. SDK vs. engine

vs. API, 130. See also Python
Standard Library

LICENSE.txt file, 200
links to URLs, including in

comments, 183
linters, preventing errors with, 8–9, 15
Linux

installing Meld for, 213
running Python programs on, 41

list comprehensions
and all() function, 157
mapping and filtering with,

175–176
using, 77–79, 137

list concatenation, 115
lists

adding or deleting items from,
134–140

best practices for dealing with,
134–140

contents of, 141–142
making shallow copies of, 97–98
setting type hints for, 195–196
using as default arguments,

143–144
literals, defined, 109–110
logfiles, setting up, 75–76
logical error, defined, 127
looping, explained, 134
loops

interrupting, 134
moving duplicate code into, 71

ls command, using, 30
__lshift__() numeric dunder

method, 328
__lt__() comparison dunder

method, 337

M
machine code vs. bytecode, 129

Index 347

macOS
installing tkdiff, 213
running Python programs on, 41

magic comments and source file
encoding, 187–188

magic methods, defined, 120
magic numbers, 71–73
main() function, changing to override

methods, 296–297
mapping. See also objects

defined, 119–120
and filtering with list

comprehensions, 175–176
mapping data types, passing, 167
math dunder methods, 325–328
__matmul__() numeric dunder

method, 327
max() and min() functions, 169
MCR (minimum, complete,

reproducible) example, 11
md and mkdir commands, 34
Meld, installing for Linux, 213
memory leaks, 109
memory usage, 137–138
metasyntactic variables, 60. See also

variables
methods. See also dunder methods;

private attributes and private
methods

vs. functions, 82, 124
__init__(), and self, 280–282
overriding, 296–297

min() and max() functions, 169
__mod__() numeric dunder method, 327
modules

defined, 120–121
finding, 14
and packages, 120–121
requests, 188–189
typing, 195–196

move and mv (move files) commands, 32
moving files and folders, 32
MRO (method resolution order),

310–312
__mul__() numeric dunder

method, 327
multiple assignment trick, using to

swap variables, 227

multiple inheritance, 309–310. See also
inheritance

mutable and immutable objects,
114–117, 151

mutable values
best practices for dealing with,

142–144
copying, 140–144
and default arguments, 142–144

Mypy, using, 192–194

N
name length, considering, 61–64
nameless functions, 174–175
names.

advice about, 64–65
avoiding overwriting, 65–66
choosing, 67
making searchable, 64
prefixes in, 63–64
sequential numeric suffixes in, 64

namespaces, 90–91
__ne__() comparison dunder

method, 336
__neg__() numeric dunder method, 328
nested conditional expressions, 102
nested loops, using in big O

analysis, 241
next() function, calling, 126
no operation, explained, 74
nondeterministic function, 173. See also

functions
None, using == (equality) operator with,

94–95
Not Equal operation, 336
NotImplementedError, raising, 75
numbers, magic, 71–73.
numeric dunder methods, 325–328

O
O(1), Constant time, 231–232
objects. See also mapping

and classes, 276
comparing, 154–155, 334
creating from classes, 278
defined, 111–114
mutable and immutable, 114–117
sorting, 336

348 Index

O(log n), Logarithmic, 232
O(n!), Factorial Time, 234–235
O(n), Linear Time, 232
O(n log n), N-Log-N Time, 232–233
O(n2), Polynomial Time, 233
O(n11), Exponential Time, 233–234
OOP (object-oriented programming).

See also dunder methods;
inheritance

creating objects from classes, 278
defined, 275
designing classes, 290–291
encapsulation, 307–308
filling out form, 276–278
and non-OOP examples, 285–290
polymorphism, 308
properties, 316–322
summary, 292
tic-tac-toe, 285–290
type() function and __

qualname__attribute, 284–285
using class and static features, 307
WizCoin class, 279–284

open()
and close() functions, 93–94
and readlines() functions, 126

operator module, 333, 336–337
operators, chaining, 103, 105, 151,

159–160
optimizations

preallocated integers, 154
string interning, 155

__or__() numeric dunder method, 328
ordinal, getting for characters, 146–147
os.chdir(), using, 20

P
packages

defined, 120–121
and modules, 120–121

parameters vs. arguments, 128
ParentClass, creating, 294–295
PascalCase, 60
pass statement

relationship to stubs, 74–75
using with except block, 79–80

PATH and environment variables, 35–39
pathlib module, importing, 18–19

paths, specifying, 18–21
p-code, explained, 129
PEP (Python Enhancement

Proposal) 8
documentation, 67
naming conventions, 61
and style guides, 46–47

Perl programming language, 90
pip list, running, 14
polymorphism, explained, 308
portable code, explained, 129
porting vs. backporting, 196
__pos__() numeric dunder

method, 328
positional arguments, defined, 166–167.

See also arguments
__pow__() numeric dunder method, 328
practice projects. See also projects

Four-in-a-Row, 259–271
The Tower of Hanoi, 248–259

preallocated integers, 154.
premature optimization, 226
print debugging, 75–76
print() function

arguments for, 168
passing list to, 166
using with wrapper functions, 171

private attributes and private methods,
282–284. See also methods

processes and programs, 21–22
professional comments, 186
profiling, explained, 228
program vs. script, 129–130
programming help, asking for, 9–14
programming language vs. scripting

language, 129–130
programs. See also Python programs

finding, 35
and processes, 21–22
running from command line,

23–24, 26
running without command line,

39–42
vs. scripts, 129–130

project folder, contents of, 200
projects, creating with Cookiecutter,

200–202. See also practice
projects

Index 349

properties
vs. attributes, 128–129
best practices, 322
read-only, 320–321
turning attributes into, 316–319
using, 316

public access attributes and methods, 283
pure function, 173–174. See also

functions
push command, using in Git, 221–223
.py source code files, locating, 200
.pyc files, bytecode in, 129
py.exe program, running, 26–27
Pyflakes, installing, 9
PyPy just-in-time compiler, 108
Python

documentation, 121
error messages, 4–8
glossary, 108, 131
language and interpreter, 108–109
programming language, 109

Python programs, running without
command line, 39–42. See also
programs; The Zen of Python

Python Standard Library, 120–121. See
also library vs. framework vs.
SDK vs. engine vs. API

pythonic code, core of, 104

Q
__qualname__attribute and type()

function, 284–285
questions, asking, 10–11, 14–15

R
__radd__() reflected numeric dunder

method, 330
raising exceptions, 90, 178–179
__rand__() reflected numeric dunder

method, 330
range() vs. enumerate(), 92–93, 103–104
rd and rmdir commands, 34–35
__rdivmod__() reflected numeric

dunder method, 330
readlines() and open() functions,

using, 126
README files, 200, 211–212,

215–216, 218

read-only properties, 320–321
RecursionError exception, raising,

318–319
references, explained, 137–138
reflected numeric dunder methods,

328–330
relative vs. absolute paths, 20–21
renaming files and folders, 32–33
repo. See also Git

cloning for GitHub repo, 222–223
creating, 223
creating on computer, 206–207
deleting and moving files in,

215–216
deleting files from, 214–215
ignoring files in, 209–210
and version control systems, 200

__repr__() method, using, 325
repr string, sensitive information

in, 325
requests module, sessions.py file,

188–189
return values and data types, 177–178.

See also values
__rfloordiv__() reflected numeric

dunder method, 330
__rlshift__() reflected numeric

dunder method, 330
rm (removing files and folders)

command, 33–34
__rmatmul__() reflected numeric

dunder method, 330
__rmod__() reflected numeric dunder

method, 330
__rmul__() reflected numeric dunder

method, 330
roll back, performing in Git, 217–220
root folder, explained, 18
__ror__() reflected numeric dunder

method, 330
__round__() numeric dunder

method, 328
__rpow__() reflected numeric dunder

method, 330
__rrshift__() reflected numeric

dunder method, 330
__rshift__() numeric dunder

method, 328

350 Index

__rsub__() reflected numeric dunder
method, 330

__rtruediv__() reflected numeric
dunder method, 330

running processes, viewing, 22
runtime

defined, 226
quickening for functions, 173
vs. syntax vs. semantic errors,

126–127
__rxor__() reflected numeric dunder

method, 330

S
%s conversion specifiers, using, 96–97
script vs. program, 129–130
scripting language vs. programming

language, 129–130
SDK vs. library vs. framework vs. engine

vs. API, 130
self and __init__(), 280–282
semantic vs. syntax vs. runtime errors,

126–127
semicolons (;), using with timeit

module, 227
sensitive information in repr strings, 325
sequence comparisons, 335–336. See

also comparison operators
sequences

defined, 119–120
and iterables, 125

sessions.py file in requests module,
188–189

set types, defined, 119–120
setdefault(), using with dictionaries,

98–100
setters

and getters, 315, 318
using to validate data, 319–320

sh file, 22–23
shell programs, 22–23
side effects, 172–174
significant indentation, 91–92, 104. See

also indentation
single quote ('), using, 46
slice syntax, explained, 97
snake_case, 60
snapshots, saving with Git, 200

software license, file for, 200
sort() function, behavior of, 146–147,

151, 332, 336
source code, avoiding dropping letters

from, 62. See also code; code
smells

source file encoding and magic
comments, 187–188

space characters, rendering on
screen, 47

spacing within lines, 48–51
Stack Overflow, building answer

archive, 12
stack trace, 4–7
staged files

committing, 211
unstaging in Git, 218

statements vs. expressions, 122–123
static analysis, explained, 8, 192–194
static methods, 306–307
string concatenation, 144–146, 151
string interning, 155–156
strings

formatting, 95–97
as immutable objects, 144
immutable quality of, 116
interpolating, 104

stubs, relationship to code smells, 74
style guides and PEP (Python

Enhancement Proposal) 8,
46–47

__sub__() numeric dunder method, 327
subclass, relationship to inheritance,

296. See also isinstance()
subfolders, listing contents of, 31
Sublime Text editor, 193
subprocess.run() function, 27
subtract() function, creating, 172
sum() function, 168
summary comments, 185
super class, relationship to i

nheritance, 296
super() function, relationship to

overriding method, 297–299
switch statement vs. dictionaries,

100–101
syntax

catching errors, 6

Index 351

misuse of, 92–95
vs. runtime vs. semantic errors, 58,

126–127
sys.getsizeof() function, 137–138
system environment variables, 38

T
tab completion, 27–28
Task Manager, opening, 22
terminal window

clearing, 35
opening, 23, 41

ternary operator, 101–102
tests folder, contents of, 200
text editor, Sublime Text, 193
tic-tac-toe program

creating, 285–290
MRO (method resolution order),

311–312
tilde (~), using in macOS, 23
timeit module, using to measure

performance, 226–228. See
also modules

time.time() function, 72, 227
tkdiff, installing on macOS, 213
TODO comments and codetags, 187
The Tower of Hanoi puzzle

getPlayerMove() function, 163, 165,
254–257, 268

output, 249–250
restrictions, 248
source code, 250–252
summary, 271–272
writing code, 252–259

tracebacks, examining, 4–7
True and False keywords, 158–159
__truediv__() numeric dunder

method, 327
__trunc__() numeric dunder method,

328
tuples

identities, 119
immutable quality of, 116–117
using commas with, 150
values of, 116

type coercion vs. type casting, 128
type() function and __

qualname__attribute, 284–285

type hints, 182, 190–196
types, defined, 276
typing, minimizing with tab

completion, 27–28
typing module, 195–196

U
Ubuntu Linux, running Python

programs on, 41–42
underscore (_). See also double

underscore (__)
PEP 8’s naming conventions, 60–61
as prefix for methods and

attributes, 291–292
private prefix, 81

using with _spaces attribute, 290
using with dunder methods, 120
using with private attributes and

methods, 283
using with WizCoin class, 279

undo features, 199, 217–220
Unicode resource, 188
unit tests, folder for, 200
Unix operating system, shell programs,

22–23
URL links, including in comments, 183
user environment variables, 38
UTF-8 encoding, 187–188

V
validating data using setters, 319–320
values. See also Boolean values; return

values and data types
defined, 111–114
modifying in place, 115

variable names, 64, 66. See also names
variable values, 103–104
variables. See also metasyntactic variables

vs. attributes, 124
box vs. label metaphor, 112–113
checking values, 103–104
with numeric suffixes, 76
swapping, 227

variadic functions, creating, 167–171.
See also functions

version control systems, 199–200
vertical spacing, 51–53
volumes, explained, 18

352 Index

W
watch command, using with Git, 207
webbrowser module, 160
where command, 35
which command, 35
while keyword, 110
while loops

in big O analysis, 241
and lists, 134–140

wildcard characters, 28–29
Windows, running Python programs

on, 40–41
WinMerge, downloading, 212–213
with statement, 93–94
WizCoin class, creating, 279–284

worst-case scenario, measuring with
Big O, 235

wrapper functions, creating, 171–172.
See also functions

X
XOR algorithm, using, 226–227
__xor__() numeric dunder method, 328

Z
Zakharenko, Nina, 131
The Zen of Python, 88–91. See also

programs; Python programs
zero-based indexing, using, 117
Zsh and Z shells, 23

Beyond the Basic Stuff with Python is set in New Baskerville, Futura, Dogma,
and TheSansMono Condensed. The book was printed and bound by
Sheridan Books, Inc. in Chelsea, Michigan. The paper is 60# Finch Offset,
which is certified by the Forest Stewardship Council (FSC).

The book uses a layflat binding, in which the pages are bound together
with a cold-set, flexible glue and the first and last pages of the resulting book
block are attached to the cover. The cover is not actually glued to the book’s
spine, and when open, the book lies flat and the spine doesn’t crack.

RESOURCES
Visit nostarch.com/beyond-basic-stuff-python/ for errata and more information.

phone:
800.420.7240 or
415.863.9900

email:
sales@nostarch.com

web:
www.nostarch.com

PYTHON ONE-LINERS
Write Concise, Eloquent Python
Like a Professional
by christian mayer
216 pp., $39.95
isbn 978-1-7185-0050-1

SERIOUS PYTHON
Black-Belt Advice on Deployment,
Scalability, Testing, and More
by julien danjou
240 pp., $39.95
isbn 978-1-59327-878-6

REAL WORLD PYTHON
A Hacker’s Guide to
Solving Problems with Code
by lee vaughan
360 pp., $34.95
isbn 978-1-7185-0062-4

PYTHON CRASH COURSE,
2ND EDITION
A Hands-On, Project-Based
Introduction to Programming
by eric matthes
544 pp., $39.95
isbn 978-1-59327-928-8

More no-nonsense books from NO STARCH PRESS

AUTOMATE THE BORING STUFF
WITH PYTHON, 2ND EDITION
Practical Programming for Total
Beginners
by al sweigart
592 pp., $39.95
isbn 978-1-59327-992-9

ALGORITHMIC THINKING
A Problem-Based Introduction
by daniel zingaro
408 pp., $49.95
isbn 978-1-7185-0080-8

http://nostarch.com/beyond-basic-stuff-python/

Index 323

THE F INEST IN GEEK ENTERTA INMENT ™

www.nostarch.com

You’ve completed a basic Python programming tutorial
or finished Al Sweigart’s bestseller, Automate the
Boring Stuff with Python. What’s the next step toward
becoming a capable, confident software developer?

Welcome to Beyond the Basic Stuff with Python. More
than a mere collection of masterful tips for writing
clean code, this book will show you how to navigate
the command line and use other professional tools,
including code formatters, type checkers, linters,
and version control. Sweigart takes you through best
practices for setting up your development environment,
naming variables, and improving readability, then
tackles documentation, organization, performance
measurement, object-oriented design, and even
Big-O algorithm analysis. These advanced skills will
significantly boost your programming abilities—not
just in Python but in any language.

You’ll learn:

• Coding style, and how to use Python’s Black
auto-formatting tool for cleaner code

• Common sources of bugs, and how to detect
them with static analyzers

• How to structure the files in your code projects
with the Cookiecutter template tool

• Functional programming techniques like lambda
and higher-order functions

• How to profile the speed of your code with
Python’s built-in timeit and cProfile modules

• How to make your comments and docstrings
informative, and how often to write them

Of course, no single book can make you a professional
software developer. But Beyond the Basic Stuff with
Python will get you further down that path, as you
learn to write readable code that’s easy to debug
and perfectly Pythonic.

A B O U T T H E A U T H O R

Al Sweigart is a celebrated software developer, the
creator of a wildly popular Udemy Python course,
and a programming teacher. A fellow at the Python
Software Foundation, Sweigart is also the author
of three other Python books with No Starch Press,
including the worldwide bestseller Automate the
Boring Stuff with Python.

REQUIREMENTS: Covers Python 3.6 and higher

B R I D G E T H E
G A P B E T W E E N

N O V I C E A N D
P R O F E S S I O N A L

$34.95 ($45.95 CDN)

	About the Author
	About the Technical Reviewer
	Introduction
	Who Should Read This Book and Why
	About This Book
	Your Programming Journey

	Acknowledgments
	Part 1: Getting Started
	Chapter 1: Dealing with Errors and Asking for Help
	How to Understand Python Error Messages
	Examining Tracebacks
	Searching for Error Messages

	Preventing Errors with Linters
	How to Ask for Programming Help
	Limit Back and Forth by Providing Your Information Upfront
	State Your Question in the Form of an Actual Question
	Ask Your Question on the Appropriate Website
	Summarize Your Question in the Headline
	Explain What You Want the Code to Do
	Include the Full Error Message
	Share Your Complete Code
	Make Your Code Readable with Proper Formatting
	Tell Your Helper What You’ve Already Tried
	Describe Your Setup

	Examples of Asking a Question
	Summary

	Chapter 2: Environment Setup and the Command Line
	The Filesystem
	Paths in Python
	The Home Directory
	The Current Working Directory
	Absolute vs. Relative Paths

	Programs and Processes
	The Command Line
	Opening a Terminal Window
	Running Programs from the Command Line
	Using Command Line Arguments
	Running Python Code from the Command Line with -c
	Running Python Programs from the Command Line
	Running the py.exe Program
	Running Commands from a Python Program
	Minimizing Typing with Tab Completion
	Viewing the Command History
	Working with Common Commands

	Environment Variables and PATH
	Viewing Environment Variables
	Working with the PATH Environment Variable
	Changing the Command Line’s PATH Environment Variable
	Permanently Adding Folders to PATH on Windows
	Permanently Adding Folders to PATH on macOS and Linux

	Running Python Programs Without the Command Line
	Running Python Programs on Windows
	Running Python Programs on macOS
	Running Python Programs on Ubuntu Linux

	Summary

	Part 2: Best Practices, Tools, and Techniques
	Chapter 3: Code Formatting with Black
	How to Lose Friends and Alienate Co-Workers
	Style Guides and PEP 8
	Horizontal Spacing
	Use Space Characters for Indentation
	Spacing Within a Line

	Vertical Spacing
	A Vertical Spacing Example
	Vertical Spacing Best Practices

	Black: The Uncompromising Code Formatter
	Installing Black
	Running Black from the Command Line
	Disabling Black for Parts of Your Code

	Summary

	Chapter 4: Choosing Understandable Names
	Casing Styles
	PEP 8’s Naming Conventions
	Appropriate Name Length
	Too Short Names
	Too Long Names

	Make Names Searchable
	Avoid Jokes, Puns, and Cultural References
	Don’t Overwrite Built-in Names
	The Worst Possible Variable Names Ever
	Summary

	Chapter 5: Finding Code Smells
	Duplicate Code
	Magic Numbers
	Commented-Out Code and Dead Code
	Print Debugging
	Variables with Numeric Suffixes
	Classes That Should Just Be Functions or Modules
	List Comprehensions Within List Comprehensions
	Empty except Blocks and Poor Error Messages
	Code Smell Myths
	Myth: Functions Should Have Only One return Statement at the End
	Myth: Functions Should Have at Most One try Statement
	Myth: Flag Arguments Are Bad
	Myth: Global Variables Are Bad
	Myth: Comments Are Unnecessary

	Summary

	Chapter 6: Writing Pythonic Code
	The Zen of Python
	Learning to Love Significant Indentation
	Commonly Misused Syntax
	Use enumerate() Instead of range()
	Use the with Statement Instead of open() and close()
	Use is to Compare with None Instead of ==

	Formatting Strings
	Use Raw Strings If Your String Has Many Backslashes
	Format Strings with F-Strings

	Making Shallow Copies of Lists
	Pythonic Ways to Use Dictionaries
	Use get() and setdefault() with Dictionaries
	Use collections.defaultdict for Default Values
	Use Dictionaries Instead of a switch Statement

	Conditional Expressions: Python’s “Ugly” Ternary Operator
	Working with Variable Values
	Chaining Assignment and Comparison Operators
	Checking Whether a Variable Is One of Many Values

	Summary

	Chapter 7: Programming Jargon
	Definitions
	Python the Language and Python the Interpreter
	Garbage Collection
	Literals
	Keywords
	Objects, Values, Instances, and Identities
	Items
	Mutable and Immutable
	Indexes, Keys, and Hashes
	Containers, Sequences, Mapping, and Set Types
	Dunder Methods and Magic Methods
	Modules and Packages
	Callables and First-Class Objects

	Commonly Confused Terms
	Statements vs. Expressions
	Block vs. Clause vs. Body
	Variable vs. Attribute
	Function vs. Method
	Iterable vs. Iterator
	Syntax vs. Runtime vs. Semantic Errors
	Parameters vs. Arguments
	Type Coercion vs. Type Casting
	Properties vs. Attributes
	Bytecode vs. Machine Code
	Script vs. Program, Scripting Language vs. Programming Language
	Library vs. Framework vs. SDK vs. Engine vs. API

	Summary
	Further Reading

	Chapter 8: Common Python Gotchas
	Don’t Add or Delete Items from a List While Looping Over It
	Don’t Copy Mutable Values Without copy.copy() and copy.deepcopy()
	Don’t Use Mutable Values for Default Arguments
	Don’t Build Strings with String Concatenation
	Don’t Expect sort() to Sort Alphabetically
	Don’t Assume Floating-Point Numbers Are Perfectly Accurate
	Don’t Chain Inequality != Operators
	Don’t Forget the Comma in Single-Item Tuples
	Summary

	Chapter 9: Esoteric Python Oddities
	Why 256 Is 256 but 257 Is Not 257
	String Interning
	Python’s Fake Increment and Decrement Operators
	All of Nothing
	Boolean Values Are Integer Values
	Chaining Multiple Kinds of Operators
	Python’s Antigravity Feature
	Summary

	Chapter 10: Writing Effective Functions
	Function Names
	Function Size Trade-Offs
	Function Parameters and Arguments
	Default Arguments
	Using * and ** to Pass Arguments to Functions
	Using * to Create Variadic Functions
	Using ** to Create Variadic Functions
	Using * and ** to Create Wrapper Functions

	Functional Programming
	Side Effects
	Higher-Order Functions
	Lambda Functions
	Mapping and Filtering with List Comprehensions

	Return Values Should Always Have the Same Data Type
	Raising Exceptions vs. Returning Error Codes
	Summary

	Chapter 11: Comments, Docstrings, and Type Hints
	Comments
	Comment Style
	Inline Comments
	Explanatory Comments
	Summary Comments
	“Lessons Learned” Comments
	Legal Comments
	Professional Comments
	Codetags and TODO Comments
	Magic Comments and Source File Encoding

	Docstrings
	Type Hints
	Using Static Analyzers
	Setting Type Hints for Multiple Types
	Setting Type Hints for Lists, Dictionaries, and More
	Backporting Type Hints with Comments

	Summary

	Chapter 12: Organizing Your Code Projects with Git
	Git Commits and Repos
	Using Cookiecutter to Create New Python Projects
	Installing Git
	Configuring Your Git Username and Email
	Installing GUI Git Tools

	The Git Workflow
	How Git Keeps Track of File Status
	Why Stage Files?

	Creating a Git Repo on Your Computer
	Adding Files for Git to Track
	Ignoring Files in the Repo
	Committing Changes
	Deleting Files from the Repo
	Renaming and Moving Files in the Repo

	Viewing the Commit Log
	Recovering Old Changes
	Undoing Uncommitted Local Changes
	Unstaging a Staged File
	Rolling Back the Most Recent Commits
	Rolling Back to a Specific Commit for a Single File
	Rewriting the Commit History

	GitHub and the git push Command
	Pushing an Existing Repository to GitHub
	Cloning a Repo from an Existing GitHub Repo

	Summary

	Chapter 13: Measuring Performance and Big O Algorithm Analysis
	The timeit Module
	The cProfile Profiler
	Big O Algorithm Analysis
	Big O Orders
	A Bookshelf Metaphor for Big O Orders
	Big O Measures the Worst-Case Scenario

	Determining the Big O Order of Your Code
	Why Lower Orders and Coefficients Don’t Matter
	Big O Analysis Examples
	The Big O Order of Common Function Calls
	Analyzing Big O at a Glance
	Big O Doesn’t Matter When n Is Small, and n Is Usually Small

	Summary

	Chapter 14: Practice Projects
	The Tower of Hanoi
	The Output
	The Source Code
	Writing the Code

	Four-in-a-Row
	The Output
	The Source Code
	Writing the Code

	Summary

	Part 3: Object-Oriented Python
	Chapter 15: Object-Oriented Programming and Classes
	Real-World Analogy: Filling Out a Form
	Creating Objects from Classes
	Creating a Simple Class: WizCoin
	Methods, __init__(), and self
	Attributes
	Private Attributes and Private Methods

	The type() Function and __qualname__ Attribute
	Non-OOP vs. OOP Examples: Tic-Tac-Toe
	Designing Classes for the Real World Is Hard
	Summary

	Chapter 16: Object-Oriented Programming and Inheritance
	How Inheritance Works
	Overriding Methods
	The super() Function
	Favor Composition Over Inheritance
	Inheritance’s Downside

	The isinstance() and issubclass() Functions
	Class Methods
	Class Attributes
	Static Methods
	When to Use Class and Static Object-Oriented Features
	Object-Oriented Buzzwords
	Encapsulation
	Polymorphism

	When Not to Use Inheritance
	Multiple Inheritance
	Method Resolution Order
	Summary

	Chapter 17: Pythonic OOP: Properties and Dunder Methods
	Properties
	Turning an Attribute into a Property
	Using Setters to Validate Data
	Read-Only Properties
	When to Use Properties

	Python’s Dunder Methods
	String Representation Dunder Methods
	Numeric Dunder Methods
	Reflected Numeric Dunder Methods
	In-Place Augmented Assignment Dunder Methods
	Comparison Dunder Methods

	Summary

	Index

