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INTRODUCTION 

 

Virtually everything in life is, to some extent, uncertain. This may seem like a bit of an exaggeration, 
but to see the truth of it you can try a quick experiment. At the start of the day, write down 
something you think will happen in the next half-hour, hour, three hours, and six hours. Then see 
how many of these things happen exactly like you imagined. You’ll quickly realize that your day is 
full of uncertainties. Even something as predictable as “I will brush my teeth” or “I’ll have a cup of 
coffee” may not, for some reason or another, happen as you expect. 

For most of the uncertainties in life, we’re able to get by quite well by planning our day. For 
example, even though traffic might make your morning commute longer than usual, you can make a 
pretty good estimate about what time you need to leave home in order to get to work on time. If 
you have a super-important morning meeting, you might leave earlier to allow for delays. We all 
have an innate sense of how to deal with uncertain situations and reason about uncertainty. When 
you think this way, you’re starting to think probabilistically. 

WHY LEARN STATISTICS? 
The subject of this book, Bayesian statistics, helps us get better at reasoning about uncertainty, just 
as studying logic in school helps us to see the errors in everyday logical thinking. Given that 
virtually everyone deals with uncertainty in their daily life, as we just discussed, this makes the 
audience for this book pretty wide. Data scientists and researchers already using statistics will 
benefit from a deeper understanding and intuition for how these tools work. Engineers and 
programmers will learn a lot about how they can better quantify decisions they have to make (I’ve 
even used Bayesian analysis to identify causes of software bugs!). Marketers and salespeople can 
apply the ideas in this book when running A/B tests, trying to understand their audience, and 
better assessing the value of opportunities. Anyone making high-level decisions should have at least 
a basic sense of probability so they can make quick back-of-the-envelope estimates about the costs 
and benefits of uncertain decisions. I wanted this book to be something a CEO could study on a 
flight and develop a solid enough foundation by the time they land to better assess choices that 
involve probabilities and uncertainty. 

I honestly believe that everyone will benefit from thinking about problems in a Bayesian way. With 
Bayesian statistics, you can use mathematics to model that uncertainty so you can make better 
choices given limited information. For example, suppose you need to be on time for work for a 
particularly important meeting and there are two different routes you could take. The first route is 
usually faster, but has pretty regular traffic back-ups that can cause huge delays. The second route 
takes longer in general but is less prone to traffic. Which route should you take? What type of 
information would you need to decide this? And how certain can you be in your choice? Even just a 
small amount of added complexity requires some extra thought and technique. 



Typically when people think of statistics, they think of scientists working on a new drug, 
economists following trends in the market, analysts predicting the next election, baseball managers 
trying to build the best team with fancy math, and so on. While all of these are certainly fascinating 
uses of statistics, understanding the basics of Bayesian reasoning can help you in far more areas in 
everyday life. If you’ve ever questioned some new finding reported in the news, stayed up late 
browsing the web wondering if you have a rare disease, or argued with a relative over their 
irrational beliefs about the world, learning Bayesian statistics will help you reason better. 

WHAT IS “BAYESIAN” STATISTICS? 
You may be wondering what all this “Bayesian” stuff is. If you’ve ever taken a statistics class, it was 
likely based on frequentist statistics. Frequentist statistics is founded on the idea that probability 
represents the frequency with which something happens. If the probability of getting heads in a 
single coin toss is 0.5, that means after a single coin toss we can expect to get one-half of a head of a 
coin (with two tosses we can expect to get one head, which makes more sense). 

Bayesian statistics, on the other hand, is concerned with how probabilities represent how uncertain 
we are about a piece of information. In Bayesian terms, if the probability of getting heads in a coin 
toss is 0.5, that means we are equally unsure about whether we’ll get heads or tails. For problems 
like coin tosses, both frequentist and Bayesian approaches seem reasonable, but when you’re 
quantifying your belief that your favorite candidate will win the next election, the Bayesian 
interpretation makes much more sense. After all, there’s only one election, so speaking about how 
frequently your favorite candidate will win doesn’t make much sense. When doing Bayesian 
statistics, we’re just trying to accurately describe what we believe about the world given the 
information we have. 

One particularly nice thing about Bayesian statistics is that, because we can view it simply as 
reasoning about uncertain things, all of the tools and techniques of Bayesian statistics make 
intuitive sense. 

Bayesian statistics is about looking at a problem you face, figuring out how you want to describe it 
mathematically, and then using reason to solve it. There are no mysterious tests that give results 
that you aren’t quite sure of, no distributions you have to memorize, and no traditional experiment 
designs you must perfectly replicate. Whether you want to figure out the probability that a new 
web page design will bring you more customers, if your favorite sports team will win the next game, 
or if we really are alone in the universe, Bayesian statistics will allow you to start reasoning about 
these things mathematically using just a few simple rules and a new way of looking at problems. 

WHAT’S IN THIS BOOK  
Here’s a quick breakdown of what you’ll find in this book. 

Part I: Introduction to Probability 

Chapter 1: Bayesian Thinking and Everyday Reasoning This first chapter introduces you to 
Bayesian thinking and shows you how similar it is to everyday methods of thinking critically about 
a situation. We’ll explore the probability that a bright light outside your window at night is a UFO 
based on what you already know and believe about the world. 

Chapter 2: Measuring Uncertainty In this chapter you’ll use coin toss examples to assign actual 
values to your uncertainty in the form of probabilities: a number from 0 to 1 that represents how 
certain you are in your belief about something. 



Chapter 3: The Logic of Uncertainty In logic we use AND, NOT, and OR operators to combine true 
or false facts. It turns out that probability has similar notions of these operators. We’ll investigate 
how to reason about the best mode of transport to get to an appointment, and the chances of you 
getting a traffic ticket. 

Chapter 4: Creating a Binomial Probability Distribution Using the rules of probability as logic, 
in this chapter, you’ll build your own probability distribution, the binomial distribution, which you 
can apply to many probability problems that share a similar structure. You’ll try to predict the 
probability of getting a specific famous statistician collectable card in a Gacha card game. 

Chapter 5: The Beta Distribution Here you’ll learn about your first continuous probability 
distribution and get an introduction to what makes statistics different from probability. The 
practice of statistics involves trying to figure out what unknown probabilities might be based on 
data. In this chapter’s example, we’ll investigate a mysterious coin-dispensing box and the chances 
of making more money than you lose. 

Part II: Bayesian Probability and Prior Probabilities 

Chapter 6: Conditional Probability In this chapter, you’ll condition probabilities based on your 
existing information. For example, knowing whether someone is male or female tells us how likely 
they are to be color blind. You’ll also be introduced to Bayes’ theorem, which allows us to reverse 
conditional probabilities. 

Chapter 7: Bayes’ Theorem with LEGO Here you’ll gain a better intuition for Bayes’ theorem by 
reasoning about LEGO bricks! This chapter will give you a spatial sense of what Bayes’ theorem is 
doing mathematically. 

Chapter 8: The Prior, Likelihood, and Posterior of Bayes’ Theorem Bayes’ theorem is typically 
broken into three parts, each of which performs its own function in Bayesian reasoning. In this 
chapter, you’ll learn what they’re called and how to use them by investigating whether an apparent 
break-in was really a crime or just a series of coincidences. 

Chapter 9: Bayesian Priors and Working with Probability Distributions This chapter explores 
how we can use Bayes’ theorem to better understand the classic asteroid scene from Star Wars: The 
Empire Strikes Back, through which you’ll gain a stronger understanding of prior probabilities in 
Bayesian statistics. You’ll also see how you can use entire distributions as your prior. 

Part III: Parameter Estimation 

Chapter 10: Introduction to Averaging and Parameter Estimation Parameter estimation is the 
method we use to formulate a best guess for an uncertain value. The most basic tool in parameter 
estimation is to simply average your observations. In this chapter we’ll see why this works by 
analyzing snowfall levels. 

Chapter 11: Measuring the Spread of Our Data Finding the mean is a useful first step in 
estimating parameters, but we also need a way to account for how spread out our observations are. 
Here you’ll be introduced to mean absolute deviation (MAD), variance, and standard deviation as 
ways to measure how spread out our observations are. 

Chapter 12: The Normal Distribution By combining our mean and standard deviation, we get a 
very useful distribution for making estimates: the normal distribution. In this chapter, you’ll learn 
how to use the normal distribution to not only estimate unknown values but also to know how 
certain you are in those estimates. You’ll use these new skills to time your escape during a bank 
heist. 



Chapter 13: Tools of Parameter Estimation: The PDF, CDF, and Quantile Function Here you’ll 
learn about the PDF, CDF, and quantile function to better understand the parameter estimations 
you’re making. You’ll estimate email conversion rates using these tools and see what insights each 
provides. 

Chapter 14: Parameter Estimation with Prior Probabilities The best way to improve our 
parameter estimates is to include a prior probability. In this chapter, you’ll see how adding prior 
information about the past success of email click-through rates can help us better estimate the true 
conversion rate for a new email. 

Chapter 15: From Parameter Estimation to Hypothesis Testing: Building a Bayesian A/B 
Test Now that we can estimate uncertain values, we need a way to compare two uncertain values in 
order to test a hypothesis. You’ll create an A/B test to determine how confident you are in a new 
method of email marketing. 

Part IV: Hypothesis Testing: The Heart of Statistics 

Chapter 16: Introduction to the Bayes Factor and Posterior Odds: The Competition of 
Ideas Ever stay up late, browsing the web, wondering if you might have a super-rare disease? This 
chapter will introduce another approach to testing ideas that will help you determine how worried 
you should actually be! 

Chapter 17: Bayesian Reasoning in The Twilight Zone How much do you believe in psychic 
powers? In this chapter, you’ll develop your own mind-reading skills by analyzing a situation from a 
classic episode of The Twilight Zone. 

Chapter 18: When Data Doesn’t Convince You Sometimes data doesn’t seem to be enough to 
change someone’s mind about a belief or help you win an argument. Learn how you can change a 
friend’s mind about something you disagree on and why it’s not worth your time to argue with your 
belligerent uncle! 

Chapter 19: From Hypothesis Testing to Parameter Estimation Here we come full circle back to 
parameter estimation by looking at how to compare a range of hypotheses. You’ll derive your first 
example of statistics, the beta distribution, using the tools that we’ve covered for simple hypothesis 
tests to analyze the fairness of a particular fairground game. 

Appendix A: A Quick Introduction to R This quick appendix will teach you the basics of the R 
programming language. 

Appendix B: Enough Calculus to Get By Here we’ll cover just enough calculus to get you 
comfortable with the math used in the book. 

BACKGROUND FOR READING THE BOOK 
The only requirement of this book is basic high school algebra. If you flip forward, you’ll see a few 
instances of math, but nothing particularly onerous. We’ll be using a bit of code written in the R 
programming language, which I’ll provide and talk through, so there’s no need to have learned R 
beforehand. We’ll also touch on calculus, but again no prior experience is required, and the 
appendixes will give you enough information to cover what you’ll need. 

In other words, this book aims to help you start thinking about problems in a mathematical way 
without requiring significant mathematical background. When you finish reading it, you may find 
yourself inadvertently writing down equations to describe problems you see in everyday life! 

If you do happen to have a strong background in statistics (even Bayesian statistics), I believe you’ll 
still have a fun time reading through this book. I have always found that the best way to understand 
a field well is to revisit the fundamentals over and over again, each time in a different light. Even as 



the author of this book, I found plenty of things that surprised me just in the course of the writing 
process! 

NOW OFF ON YOUR ADVENTURE! 
As you’ll soon see, aside from being very useful, Bayesian statistics can be a lot of fun! To help you 
learn Bayesian reasoning we’ll be taking a look at LEGO bricks, The Twilight Zone, Star Wars, and 
more. You’ll find that once you begin thinking probabilistically about problems, you’ll start using 
Bayesian statistics all over the place. This book is designed to be a pretty quick and enjoyable read, 
so turn the page and let’s begin our adventure in Bayesian statistics! 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

PART I 
INTRODUCTION TO PROBABILITY 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1 

BAYESIAN THINKING AND EVERYDAY REASONING 

 

In this first chapter, I’ll give you an overview of Bayesian reasoning, the formal process we use to 
update our beliefs about the world once we’ve observed some data. We’ll work through a scenario 
and explore how we can map our everyday experience to Bayesian reasoning. 

The good news is that you were already a Bayesian even before you picked up this book! Bayesian 
statistics is closely aligned with how people naturally use evidence to create new beliefs and reason 
about everyday problems; the tricky part is breaking down this natural thought process into a 
rigorous, mathematical one. 

In statistics, we use particular calculations and models to more accurately quantify probability. For 
now, though, we won’t use any math or models; we’ll just get you familiar with the basic concepts 
and use our intuition to determine probabilities. Then, in the next chapter, we’ll put exact numbers 
to probabilities. Throughout the rest of the book, you’ll learn how we can use rigorous 
mathematical techniques to formally model and reason about the concepts we’ll cover in this 
chapter. 

REASONING ABOUT STRANGE EXPERIENCES 

One night you are suddenly awakened by a bright light at your window. You jump up from bed and 
look out to see a large object in the sky that can only be described as saucer shaped. You are 
generally a skeptic and have never believed in alien encounters, but, completely perplexed by the 
scene outside, you find yourself thinking, Could this be a UFO?! 

Bayesian reasoning involves stepping through your thought process when you’re confronted with a 
situation to recognize when you’re making probabilistic assumptions, and then using those 
assumptions to update your beliefs about the world. In the UFO scenario, you’ve already gone 
through a full Bayesian analysis because you: 

1. Observed data 

2. Formed a hypothesis 

3. Updated your beliefs based on the data 

This reasoning tends to happen so quickly that you don’t have any time to analyze your own 
thinking. You created a new belief without questioning it: whereas before you did not believe in the 
existence of UFOs, after the event you’ve updated your beliefs and now think you’ve seen a UFO. 

In this chapter, you’ll focus on structuring your beliefs and the process of creating them so you can 
examine it more formally, and we’ll look at quantifying this process in chapters to come. 



Let’s look at each step of reasoning in turn, starting with observing data. 

Observing Data 

Founding your beliefs on data is a key component of Bayesian reasoning. Before you can draw any 
conclusions about the scene (such as claiming what you see is a UFO), you need to understand the 
data you’re observing, in this case: 

• An extremely bright light outside your window 

• A saucer-shaped object hovering in the air 

Based on your past experience, you would describe what you saw out your window as “surprising.” 
In probabilistic terms, we could write this as: 

P(bright light outside window, saucer-shaped object in sky) = very low 

where P denotes probability and the two pieces of data are listed inside the parentheses. You would 
read this equation as: “The probability of observing bright lights outside the window and a saucer-
shaped object in the sky is very low.” In probability theory, we use a comma to separate events 
when we’re looking at the combined probability of multiple events. Note that this data does not 
contain anything specific about UFOs; it’s simply made up of your observations—this will be 
important later. 

We can also examine probabilities of single events, which would be written as: 

P(rain) = likely 

This equation is read as: “The probability of rain is likely.” 

For our UFO scenario, we’re determining the probability of both events occurring together. The 
probability of one of these two events occurring on its own would be entirely different. For 
example, the bright lights alone could easily be a passing car, so on its own the probability of this 
event is more likely than its probability coupled with seeing a saucer-shaped object (and the 
saucer-shaped object would still be surprising even on its own). 

So how are we determining this probability? Right now we’re using our intuition—that is, our 
general sense of the likelihood of perceiving these events. In the next chapter, we’ll see how we can 
come up with exact numbers for our probabilities. 

Holding Prior Beliefs and Conditioning Probabilities 

You are able to wake up in the morning, make your coffee, and drive to work without doing a lot of 
analysis because you hold prior beliefs about how the world works. Our prior beliefs are collections 
of beliefs we’ve built up over a lifetime of experiences (that is, of observing data). You believe that 
the sun will rise because the sun has risen every day since you were born. Likewise, you might have 
a prior belief that when the light is red for oncoming traffic at an intersection, and your light is 
green, it’s safe to drive through the intersection. Without prior beliefs, we would go to bed terrified 
each night that the sun might not rise tomorrow, and stop at every intersection to carefully inspect 
oncoming traffic. 

Our prior beliefs say that seeing bright lights outside the window at the same time as seeing a 
saucer-shaped object is a rare occurrence on Earth. However, if you lived on a distant planet 
populated by vast numbers of flying saucers, with frequent interstellar visitors, the probability of 
seeing lights and saucer-shaped objects in the sky would be much higher. 

In a formula we enter prior beliefs after our data, separated with a | like so: 



 

We would read this equation as: “The probability of observing bright lights and a saucer-shaped 
object in the sky, given our experience on Earth, is very low.” 

The probability outcome is called a conditional probability because we are conditioning the 
probability of one event occurring on the existence of something else. In this case, we’re 
conditioning the probability of our observation on our prior experience. 

In the same way we used P for probability, we typically use shorter variable names for events and 
conditions. If you’re unfamiliar with reading equations, they can seem too terse at first. After a 
while, though, you’ll find that shorter variable names aid readability and help you to see how 
equations generalize to larger classes of problems. We’ll assign all of our data to a single variable, D: 

D = bright light outside window, saucer-shaped object in sky 

So from now on when we refer to the probability of set of data, we’ll simply say, P(D). 

Likewise, we use the variable X to represent our prior belief, like so: 

X = experience on Earth 

We can now write this equation as P(D | X). This is much easier to write and doesn’t change the 
meaning. 

Conditioning on Multiple Beliefs 

We can add more than one piece of prior knowledge, too, if more than one variable is going to 
significantly affect the probability. Suppose that it’s July 4th and you live in the United States. From 
prior experience you know that fireworks are common on the Fourth of July. Given your experience 
on Earth and the fact that it’s July 4th, the probability of seeing lights in the sky is less unlikely, and 
even the saucer-shaped object could be related to some fireworks display. You could rewrite this 
equation as: 

 

Taking both these experiences into account, our conditional probability changed from “very low” to 
“low.” 

Assuming Prior Beliefs in Practice 

In statistics, we don’t usually explicitly include a condition for all of our existing experiences, 
because it can be assumed. For that reason, in this book we won’t include a separate variable for 
this condition. However, in Bayesian analysis, it’s essential to keep in mind that our understanding 
of the world is always conditioned on our prior experience in the world. For the rest of this chapter, 
we’ll keep the “experience on Earth” variable around to remind us of this. 

Forming a Hypothesis 

So far we have our data, D (that we have seen a bright light and a saucer-shaped object), and our 
prior experience, X. In order to explain what you saw, you need to form some kind of hypothesis—a 



model about how the world works that makes a prediction. Hypotheses can come in many forms. 
All of our basic beliefs about the world are hypotheses: 

• If you believe the Earth rotates, you predict the sun will rise and set at certain times. 

• If you believe that your favorite baseball team is the best, you predict they will win 
more than the other teams. 

• If you believe in astrology, you predict that the alignment of the stars will describe 
people and events. 

Hypotheses can also be more formal or sophisticated: 

• A scientist may hypothesize that a certain treatment will slow the growth of cancer. 

• A quantitative analyst in finance may have a model of how the market will behave. 

• A deep neural network may predict which images are animals and which ones are 
plants. 

All of these examples are hypotheses because they have some way of understanding the world and 
use that understanding to make a prediction about how the world will behave. When we think of 
hypotheses in Bayesian statistics, we are usually concerned with how well they predict the data we 
observe. 

When you see the evidence and think A UFO!, you are forming a hypothesis. The UFO hypothesis is 
likely based on countless movies and television shows you’ve seen in your prior experience. We 
would define our first hypothesis as: 

H1 = A UFO is in my back yard! 

But what is this hypothesis predicting? If we think of this situation backward, we might ask, “If 
there was a UFO in your back yard, what would you expect to see?” And you might answer, “Bright 
lights and a saucer-shaped object.” Because H1 predicts the data D, when we observe our data given 
our hypothesis, the probability of the data increases. Formally we write this as: 

P(D| H1,X) >> P(D| X) 

This equation says: “The probability of seeing bright lights and a saucer-shaped object in the sky, 
given my belief that this is a UFO and my prior experience, is much higher [indicated by the double 
greater-than sign >>] than just seeing bright lights and a saucer-shaped object in the sky without 
explanation.” Here we’ve used the language of probability to demonstrate that our hypothesis 
explains the data. 

Spotting Hypotheses in Everyday Speech 

It’s easy to see a relationship between our everyday language and probability. Saying something is 
“surprising,” for example, might be the same as saying it has low-probability data based on our 
prior experiences. Saying something “makes sense” might indicate we have high-probability data 
based on our prior experiences. This may seem obvious once pointed out, but the key to 
probabilistic reasoning is to think carefully about how you interpret data, create hypotheses, and 
change your beliefs, even in an ordinary, everyday scenario. Without H1, you’d be in a state of 
confusion because you have no explanation for the data you observed. 

GATHERING MORE EVIDENCE AND UPDATING YOUR BELIEFS 
Now you have your data and a hypothesis. However, given your prior experience as a skeptic, that 
hypothesis still seems pretty outlandish. In order to improve your state of knowledge and draw 



more reliable conclusions, you need to collect more data. This is the next step in statistical 
reasoning, as well as in your own intuitive thinking. 

To collect more data, we need to make more observations. In our scenario, you look out your 
window to see what you can observe: 

As you look toward the bright light outside, you notice more lights in the area. You also see that the 
large saucer-shaped object is held up by wires, and notice a camera crew. You hear a loud clap and 
someone call out “Cut!” 

You have, very likely, instantly changed your mind about what you think is happening in this scene. 
Your inference before was that you might be witnessing a UFO. Now, with this new evidence, you 
realize it looks more like someone is shooting a movie nearby. 

With this thought process, your brain has once again performed some sophisticated Bayesian 
analysis in an instant! Let’s break down what happened in your head in order to reason about 
events more carefully. 

You started with your initial hypothesis: 

H1 = A UFO has landed! 

In isolation, this hypothesis, given your experience, is extremely unlikely: 

P(H1 | X) = very, very low 

However, it was the only useful explanation you could come up with given the data you had 
available. When you observed additional data, you immediately realized that there’s another 
possible hypothesis—that a movie is being filmed nearby: 

H2 = A film is being made outside your window 

In isolation, the probability of this hypothesis is also intuitively very low (unless you happen to live 
near a movie studio): 

P(H2 | X) = very low 

Notice that we set the probability of H1 as “very, very low” and the probability of H2 as just “very 
low.” This corresponds to your intuition: if someone came up to you, without any data, and asked, 
“Which do you think is more likely, a UFO appearing at night in your neighborhood or a movie being 
filmed next door?” you would say the movie scenario is more likely than a UFO appearance. 

Now we just need a way to take our new data into account when changing our beliefs. 

COMPARING HYPOTHESES 
You first accepted the UFO hypothesis, despite it being unlikely, because you didn’t initially have 
any other explanation. Now, however, there’s another possible explanation—a movie being 
filmed—so you have formed an alternate hypothesis. Considering alternate hypotheses is the 
process of comparing multiple theories using the data you have. 

When you see the wires, film crew, and additional lights, your data changes. Your updated data are: 

 



On observing this extra data, you change your conclusion about what was happening. Let’s break 
this process down into Bayesian reasoning. Your first hypothesis, H1, gave you a way to explain your 
data and end your confusion, but with your additional observations H1 no longer explains the data 
well. We can write this as: 

P(Dupdated | H1, X) = very, very low 

You now have a new hypothesis, H2, which explains the data much better, written as follows: 

P(Dupdated | H2, X) >> P(Dupdated | H1, X) 

The key here is to understand that we’re comparing how well each of these hypotheses explains the 
observed data. When we say, “The probability of the data, given the second hypothesis, is much 
greater than the first,” we’re saying that what we observed is better explained by the second 
hypothesis. This brings us to the true heart of Bayesian analysis: the test of your beliefs is how well 
they explain the world. We say that one belief is more accurate than another because it provides a 
better explanation of the world we observe. 

Mathematically, we express this idea as the ratio of the two probabilities: 

 

When this ratio is a large number, say 1,000, it means “H2 explains the data 1,000 times better 
than H1.” Because H2 explains the data many times better than another H1, we update our beliefs 
from H1 to H2. This is exactly what happened when you changed your mind about the likely 
explanation for what you observed. You now believe that what you’ve seen is a movie being made 
outside your window, because this is a more likely explanation of all the data you observed. 

DATA INFORMS BELIEF; BELIEF SHOULD NOT INFORM DATA 
One final point worth stressing is that the only absolute in all these examples is your data. Your 
hypotheses change, and your experience in the world, X, may be different from someone else’s, but 
the data, D, is shared by all. 

Consider the following two formulas. The first is one we’ve used throughout this chapter: 

P(D | H,X) 

which we read as “The probability of the data given my hypotheses and experience in the world,” or 
more plainly, “How well my beliefs explain what I observe.” 

But there is a reversal of this, common in everyday thinking, which is: 

P(H | D,X) 

We read this as “The probability of my beliefs given the data and my experiences in the world,” or 
“How well what I observe supports what I believe.” 

In the first case, we change our beliefs according to data we gather and observations we make 
about the world that describe it better. In the second case, we gather data to support our existing 
beliefs. Bayesian thinking is about changing your mind and updating how you understand the 



world. The data we observe is all that is real, so our beliefs ultimately need to shift until they align 
with the data. 

In life, too, your beliefs should always be mutable. 

As the film crew packs up, you notice that all the vans bear military insignia. The crew takes off 
their coats to reveal army fatigues and you overhear someone say, “Well, that should have fooled 
anyone who saw that . . . good thinking.” 

With this new evidence, your beliefs may shift again! 

WRAPPING UP 
Let’s recap what you’ve learned. Your beliefs start with your existing experience of the world, X. 
When you observe data, D, it either aligns with your experience, P(D | X) = very high, or it surprises 
you, P(D | X) = very low. To understand the world, you rely on beliefs you have about what you 
observe, or hypotheses, H. Oftentimes a new hypothesis can help you explain the data that surprises 
you, P(D | H, X) >> P(D | X). When you gather new data or come up with new ideas, you can create 
more hypotheses, H1, H2, H3, . . . You update your beliefs when a new hypothesis explains your data 
much better than your old hypothesis: 

 

Finally, you should be far more concerned with data changing your beliefs than with ensuring data 
supports your beliefs, P(H | D). 

With these foundations set up, you’re ready to start adding numbers into the mix. In the rest of Part 
I, you’ll model your beliefs mathematically to precisely determine how and when you should 
change them. 

EXERCISES 
Try answering the following questions to see how well you understand Bayesian reasoning. The 
solutions can be found at https://nostarch.com/learnbayes/. 

1. Rewrite the following statements as equations using the mathematical notation you 
learned in this chapter: 

• The probability of rain is low 

• The probability of rain given that it is cloudy is high 

• The probability of you having an umbrella given it is raining is much greater 
than the probability of you having an umbrella in general. 

2. Organize the data you observe in the following scenario into a mathematical notation, 
using the techniques we’ve covered in this chapter. Then come up with a hypothesis to 
explain this data: 

You come home from work and notice that your front door is open and the side window is 
broken. As you walk inside, you immediately notice that your laptop is missing. 

3. The following scenario adds data to the previous one. Demonstrate how this new 
information changes your beliefs and come up with a second hypothesis to explain the data, 
using the notation you’ve learned in this chapter. 



A neighborhood child runs up to you and apologizes profusely for accidentally throwing a 
rock through your window. They claim that they saw the laptop and didn’t want it stolen so 
they opened the front door to grab it, and your laptop is safe at their house. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



2 

MEASURING UNCERTAINTY 

 

In Chapter 1 we looked at some basic reasoning tools we use intuitively to understand how data 
informs our beliefs. We left a crucial issue unresolved: how can we quantify these tools? In 
probability theory, rather than describing beliefs with terms like very low and high, we need to 
assign real numbers to these beliefs. This allows us to create quantitative models of our 
understanding of the world. With these models, we can see just how much the evidence changes 
our beliefs, decide when we should change our thinking, and gain a solid understanding of our 
current state of knowledge. In this chapter, we will apply this concept to quantify the probability of 
an event. 

WHAT IS A PROBABILITY? 
The idea of probability is deeply ingrained in our everyday language. Whenever you say something 
such as “That seems unlikely!” or “I would be surprised if that’s not the case” or “I’m not sure about 
that,” you’re making a claim about probability. Probability is a measurement of how strongly we 
believe things about the world. 

In the previous chapter we used abstract, qualitative terms to describe our beliefs. To really analyze 
how we develop and change beliefs, we need to define exactly what a probability is by more 
formally quantifying P(X)—that is, how strongly we believe in X. 

We can consider probability an extension of logic. In basic logic we have two values, true and false, 
which correspond to absolute beliefs. When we say something is true, it means that we are 
completely certain it is the case. While logic is useful for many problems, very rarely do we believe 
anything to be absolutely true or absolutely false; there is almost always some level of uncertainty 
in every decision we make. Probability allows us to extend logic to work with uncertain values 
between true and false. 

Computers commonly represent true as 1 and false as 0, and we can use this model with probability 
as well. P(X) = 0 is the same as saying that X = false, and P(X) = 1 is the same as X = true. Between 0 
and 1 we have an infinite range of possible values. A value closer to 0 means we are more certain 
that something is false, and a value closer to 1 means we’re more certain something is true. It’s 
worth noting that a value of 0.5 means that we are completely unsure whether something is true or 
false. 

Another important part of logic is negation. When we say “not true” we mean false. Likewise, saying 
“not false” means true. We want probability to work the same way, so we make sure that the 



probability of X and the negation of the probability of X sum to 1 (in other words, values are 
either X, or not X). We can express this using the following equation: 

P(X) + ¬P(X) = 1 

NOTE 

The ¬ symbol means “negation” or “not.” 

Using this logic, we can always find the negation of P(X) by subtracting it from 1. So, for example, 
if P(X) = 1, then its negation, 1 – P(X), must equal 0, conforming to our basic logic rules. And if P(X) = 
0, then its negation 1 – P(X) = 1. 

The next question is how to quantify that uncertainty. We could arbitrarily pick values: say 0.95 
means very certain, and 0.05 means very uncertain. However, this doesn’t help us determine 
probability much more than the abstract terms we’ve used before. Instead, we need to use formal 
methods to calculate our probabilities. 

CALCULATING PROBABILITIES BY COUNTING OUTCOMES OF 

EVENTS 
The most common way to calculate probability is to count outcomes of events. We have two sets of 
outcomes that are important. The first is all possible outcomes of an event. For a coin toss, this 
would be “heads” or “tails.” The second is the count of the outcomes you’re interested in. If you’ve 
decided that heads means you win, the outcomes you care about are those involving heads (in the 
case of a single coin toss, just one event). The events you’re interested in can be anything: flipping a 
coin and getting heads, catching the flu, or a UFO landing outside your bedroom. Given these two 
sets of outcomes—ones you’re interested in and ones you’re not interested in—all we care about is 
the ratio of outcomes we’re interested in to the total number of possible outcomes. 

We’ll use the simple example of a coin flip, where the only possible outcomes are the coin landing 
on heads or landing on tails. The first step is to make a count of all the possible events, which in this 
case is only two: heads or tails. In probability theory, we use Ω (the capital Greek letter omega) to 
indicate the set of all events: 

Ω = {heads, tails} 

We want to know the probability of getting a heads in a single coin toss, written as P(heads). We 
therefore look at the number of outcomes we care about, 1, and divide that by the total number of 
possible outcomes, 2: 

 

For a single coin toss, we can see that there is one outcome we care about out of two possible 
outcomes. So the probability of heads is just: 

 

Now let’s ask a trickier question: what is the probability of getting at least one heads when we toss 
two coins? Our list of possible events is more complicated; it’s not just {heads, tails} but rather all 
possible pairs of heads and tails: 



Ω = {(heads, heads),(heads, tails),(tails, tails),(tails, heads)} 

To figure out the probability of getting at least one heads, we look at how many of our pairs match 
our condition, which in this case is: 

{(heads, heads),(heads, tails),(tails, heads)} 

As you can see, the set of events we care about has 3 elements, and there are 4 possible pairs we 
could get. This means that P(at least one heads) = 3/4. 

These are simple examples, but if you can count the events you care about and the total possible 
events, you can come up with a quick and easy probability. As you can imagine, as examples get 
more complicated, manually counting each possible outcome becomes unfeasible. Solving harder 
probability problems of this nature often involves a field of mathematics called combinatorics. 
In Chapter 4 we’ll see how we can use combinatorics to solve a slightly more complex problem. 

CALCULATING PROBABILITIES AS RATIOS OF BELIEFS 
Counting events is useful for physical objects, but it’s not so great for the vast majority of real-life 
probability questions we might have, such as: 

• “What’s the probability it will rain tomorrow?” 

• “Do you think she’s the president of the company?” 

• “Is that a UFO!?” 

Nearly every day you make countless decisions based on probability, but if someone asked you to 
solve “How likely do think you are to make your train on time?” you couldn’t calculate it with the 
method just described. 

This means we need another approach to probability that can be used to reason about these more 
abstract problems. As an example, suppose you’re chatting about random topics with a friend. Your 
friend asks if you’ve heard of the Mandela effect and, since you haven’t, proceeds to tell you: “It’s 
this weird thing where large groups of people misremember events. For example, many people 
recall Nelson Mandela dying in prison in the 80s. But the wild thing is that he was released from 
prison, became president of South Africa, and didn’t die until 2013!” Skeptically, you turn to your 
friend and say, “That sounds like internet pop psychology. I don’t think anyone seriously 
misremembered that; I bet there’s not even a Wikipedia entry on it!” 

From this, you want to measure P(No Wikipedia article on Mandela effect). Let’s assume you are in 
an area with no cell phone reception, so you can’t quickly verify the answer. You have a high 
certainty of your belief that there is no such article, and therefore you want to assign a high 
probability for this belief, but you need to formalize that probability by assigning it a number from 
0 to 1. Where do you start? 

You decide to put your money where your mouth is, telling your friend: “There’s no way that’s real. 
How about this: you give me $5 if there is no article on the Mandela effect, and I’ll give you $100 if 
there is one!” Making bets is a practical way that we can express how strongly we hold our beliefs. 
You believe that the article’s existence is so unlikely that you’ll give your friend $100 if you are 
wrong and only get $5 from them if you are right. Because we’re talking about quantitative values 
regarding our beliefs, we can start to figure out an exact probability for your belief that there is no 
Wikipedia article on the Mandela effect. 



Using Odds to Determine Probability 

Your friend’s hypothesis is that there is an article about the Mandela effect: Harticle. And you have an 
alternate hypothesis: Hno article. 

We don’t have concrete probabilities yet, but your bet expresses how strongly you believe in your 
hypothesis by giving the odds of the bet. Odds are a common way to represent beliefs as a ratio of 
how much you would be willing to pay if you were wrong about the outcome of an event to how 
much you’d want to receive for being correct. For example, say the odds of a horse winning a race 
are 12 to 1. That means if you pay $1 to take the bet, the track will pay you $12 if the horse wins. 
While odds are commonly expressed as “m to n” we can also view them as a simple ratio: m/n. 
There is a direct relationship between odds and probabilities. 

We can express your bet in terms of odds as “100 to 5.” So how can we turn this into probability? 
Your odds represent how many times more strongly you believe there isn’t an article than you 
believe there is an article. We can write this as the ratio of your belief in there being no article, P(Hno 

article), to your friend’s belief that there is one, P(Harticle), like so: 

 

From the ratio of these two hypotheses, we can see that your belief in the hypothesis that there is 
no article is 20 times greater than your belief in your friend’s hypothesis. We can use this fact to 
work out the exact probability for your hypothesis using some high school algebra. 

Solving for the Probabilities 

We start writing our equation in terms of the probability of your hypothesis, since this is what we 
are interested in knowing: 

P(Hno article) = 20 × P(Harticle) 

We can read this equation as “The probability that there is no article is 20 times greater than the 
probability there is an article.” 

There are only two possibilities: either there is a Wikipedia article on the Mandela effect or there 
isn’t. Because our two hypotheses cover all possibilities, we know that the probability of an articleis 
just 1 minus the probability of no article, so we can substitute P(Harticle) with its value in terms 
of P(Hno article) in our equation like so: 

P(Hno article) = 20 × (1 – P(Harticle)) 

Next we can expand 20 × (1 – P(Hno article)) by multiplying both parts in the parentheses by 20 and we 
get: 

P(Hno article) = 20 – 20 × P(Hno article) 

We can remove the P(Hno article) term from the right side of the equation by adding 20 × P(Hno article) to 
both sides to isolate P(Hno article) on the left side of the equation: 

21 × P(Hno article) = 20 

And we can divide both sides by 21, finally arriving at: 



 

Now you have a nice, clearly defined value between 0 and 1 to assign as a concrete, quantitative 
probability to your belief in the hypothesis that there is no article on the Mandela effect. We can 
generalize this process of converting odds to probability using the following equation: 

 

Often in practice, when you’re confronted with assigning a probability to an abstract belief, it can be 
very helpful to think of how much you would bet on that belief. You would likely take a billion to 1 
bet that the sun will rise tomorrow, but you might take much lower odds for your favorite baseball 
team winning. In either case, you can calculate an exact number for the probability of that belief 
using the steps we just went through. 

Measuring Beliefs in a Coin Toss 

We now have a method for determining the probability of abstract ideas using odds, but the real 
test of the robustness of this method is whether or not it still works with our coin toss, which we 
calculated by counting outcomes. Rather than thinking about a coin toss as an event, we can 
rephrase the question as “How strongly do I believe the next coin toss will be heads?” Now we’re 
not talking about P(heads) but rather a hypothesis or belief about the coin toss, P(Hheads). 

Just like before, we need an alternate hypothesis to compare our belief with. We could say the 
alternate hypothesis is simply not getting heads H¬heads, but the option of getting tails Htails is closer to 
our everyday language, so we’ll use that. At the end of the day what we care about most is making 
sense. However, it is important for this discussion to acknowledge that: 

Htails = H¬heads, and P(Htails) = 1 – P(Hheads) 

We can look at how to model our beliefs as the ratio between these competing hypotheses: 

 

Remember that we want to read this as “How many times greater do I believe that the outcome will 
be heads than I do that it will be tails?” As far as bets go, since each outcome is equally uncertain, 
the only fair odds are 1 to 1. Of course, we can pick any odds as long as the two values are equal: 2 
to 2, 5 to 5, or 10 to 10. All of these have the same ratio: 

 

Given that the ratio of these is always the same, we can simply repeat the process we used to 
calculate the probability of there being no Wikipedia article on the Mandela effect. We know that 
our probability of heads and probability of tails must sum to 1, and we know that the ratio of these 
two probabilities is also 1. So, we have two equations that describe our probabilities: 

 



If you walk through the process we used when reasoning about the Mandela effect, solving in terms 
of P(Hheads) you should find the only possible solution to this problem is 1/2. This is exactly the same 
result we arrived at with our first approach to calculating probabilities of events, and it proves that 
our method for calculating the probability of a belief is robust enough to use for the probability of 
events! 

With these two methods in hand, it’s reasonable to ask which one you should use in which 
situation. The good news is, since we can see they are equivalent, you can use whichever method is 
easiest for a given problem. 

WRAPPING UP 
In this chapter we explored two different types of probabilities: those of events and those of beliefs. 
We define probability as the ratio of the outcome(s) we care about to the number of all possible 
outcomes. 

While this is the most common definition of probability, it is difficult to apply to beliefs because 
most practical, everyday probability problems do not have clear-cut outcomes and so aren’t 
intuitively assigned discrete numbers. 

To calculate the probability of beliefs, then, we need to establish how many times more we believe 
in one hypothesis over another. One good test of this is how much you would be willing to bet on 
your belief—for example, if you made a bet with a friend in which you’d give them $1,000 for proof 
that UFOs exist and would receive only $1 from them for proof that UFOs don’t exist. Here you are 
saying you believe UFOs do not exist 1,000 times more than you believe they do exist. 

With these tools in hand, you can calculate the probability for a wide range of problems. In the next 
chapter you’ll learn how you can apply the basic operators of logic, AND and OR, to our 
probabilities. But before moving on, try using what you’ve learned in this chapter to complete the 
following exercises. 

EXERCISES 
Try answering the following questions to make sure you understand how we can assign real values 
between 0 and 1 to our beliefs. Solutions to the questions can be found 
at https://nostarch.com/learnbayes/. 

1. What is the probability of rolling two six-sided dice and getting a value greater than 
7? 

2. What is the probability of rolling three six-sided dice and getting a value greater than 
7? 

3. The Yankees are playing the Red Sox. You’re a diehard Sox fan and bet your friend 
they’ll win the game. You’ll pay your friend $30 if the Sox lose and your friend will have to 
pay you only $5 if the Sox win. What is the probability you have intuitively assigned to the 
belief that the Red Sox will win? 

 

 

 

 

 



3 

THE LOGIC OF UNCERTAINTY 

 

In Chapter 2, we discussed how probabilities are an extension of the true and false values in logic 
and are expressed as values between 1 and 0. The power of probability is in the ability to express 
an infinite range of possible values between these extremes. In this chapter, we’ll discuss how the 
rules of logic, based on these logical operators, also apply to probability. In traditional logic, there 
are three important operators: 

• AND 

• OR 

• NOT 

With these three simple operators we can reason about any argument in traditional logic. For 
example, consider this statement: If it is raining AND I am going outside, I will need an umbrella. This 
statement contains just one logical operator: AND. Because of this operator we know that if it’s true 
that it is raining, AND it is true that I am going outside, I’ll need an umbrella. 

We can also phrase this statement in terms of our other operators: If it is NOT raining OR if I am 
NOT going outside, I will NOT need an umbrella. In this case we are using basic logical operators and 
facts to make a decision about when we do and don’t need an umbrella. 

However, this type of logical reasoning works well only when our facts have absolute true or false 
values. This case is about deciding whether I need an umbrella right now, so we can know for 
certain if it’s currently raining and whether I’m going out, and therefore I can easily determine if I 
need an umbrella. Suppose instead we ask, “Will I need an umbrella tomorrow?” In this case our 
facts become uncertain, because the weather forecast gives me only a probability for rain tomorrow 
and I may be uncertain whether or not I need to go out. 

This chapter will explain how we can extend our three logical operators to work with probability, 
allowing us to reason about uncertain information the same way we can with facts in traditional 
logic. We’ve already seen how we can define NOT for probabilistic reasoning: 

¬P(X) = 1 – P(X) 

In the rest of this chapter we’ll see how we can use the two remaining operators, AND and OR, to 
combine probabilities and give us more accurate and useful data. 



COMBINING PROBABILITIES WITH AND 
In statistics we use AND to talk about the probability of combined events. For example, the 
probability of: 

• Rolling a 6 AND flipping a heads 

• It raining AND you forgetting your umbrella 

• Winning the lottery AND getting struck by lightning 

To understand how we can define AND for probability, we’ll start with a simple example involving a 
coin and a six-sided die. 

Solving a Combination of Two Probabilities 

Suppose we want to know the probability of getting a heads in a coin flip AND rolling a 6 on a die. 
We know that the probability of each of these events individually is: 

 

Now we want to know the probability of both of these things occurring, written as: 

P(heads, six) = ? 

We can calculate this the same way we did in Chapter 2: we count the outcomes we care about and 
divide that by the total outcomes. 

For this example, let’s imagine these events happening in sequence. When we flip the coin we have 
two possible outcomes, heads and tails, as depicted in Figure 3-1. 

 

Figure 3-1: Visualizing the two possible outcomes from a coin toss as distinct paths 

Now, for each possible coin flip there are six possible results for the roll of our die, as depicted 
in Figure 3-2. 



 

Figure 3-2: Visualizing the possible outcomes from a coin toss and the roll of a die 

Using this visualization, we can just count our possible solutions. There are 12 possible outcomes of 
flipping a coin and rolling a die, and we care about only one of these outcomes, so: 

 



Now we have a solution for this particular problem. However, what we really want is a general rule 
that will help us calculate this for any number of probability combinations. Let’s see how to expand 
our solution. 

Applying the Product Rule of Probability 

We’ll use the same problem for this example: what is the probability of flipping a heads and rolling 
a 6? First we need to figure out the probability of flipping a heads. Looking at our branching paths, 
we can figure out how many paths split off given the probabilities. We care only about the paths 
that include heads. Because the probability of heads is 1/2, we eliminate half of our possibilities. 
Then, if we look only at the remaining branch of possibilities for the heads, we can see that there is 
only a 1/6 chance of getting the result we want: rolling a 6 on a six-sided die. In Figure 3-3 we can 
visualize this reasoning and see that there is only one outcome we care about. 



 

Figure 3-3: Visualizing the probability of both getting a heads and rolling a 6 

If we multiply these two probabilities, we can see that: 

 



This is exactly the answer we had before, but rather than counting all possible events, we counted 
only the probabilities of the events we care about by following along the branches. This is easy 
enough to do visually for such a simple problem, but the real value of showing you this is that it 
illustrates a general rule for combining probabilities with AND: 

P(A,B) = P(A) × P(B) 

Because we are multiplying our results, also called taking the product of these results, we refer to 
this as the product rule of probability. 

This rule can then be expanded to include more probabilities. If we think of P(A,B) as a single 
probability, we can combine it with a third probability, P(C), by repeating this process: 

P(P(A,B),C) = P(A,B) × P(C) = P(A) × P(B) × P(C) 

So we can use our product rule to combine an unlimited number of events to get our final 
probability. 

Example: Calculating the Probability of Being Late 

Let’s look at an example of using the product rule for a slightly more complex problem than rolling 
dice or flipping coins. Suppose you promised to meet a friend for coffee at 4:30 on the other side of 
town, and you plan to take public transportation. It’s currently 3:30. Thankfully the station you’re at 
has both a train and bus that can take you where you need to go: 

• The next bus comes at 3:45 and takes 45 minutes to get you to the coffee shop. 

• The next train comes at 3:50, and will get you within a 10-minute walk in 30 minutes. 

Both the train and the bus will get you there at 4:30 exactly. Because you’re cutting it so close, any 
delay will make you late. The good news is that, since the bus arrives before the train, if the bus is 
late and the train is not you’ll still be on time. If the bus is on time and the train is late, you’ll also be 
fine. The only situation that will make you late is if both the bus and the train are late to arrive. How 
can you figure out the probability of being late? 

First, you need to establish the probability of both the train being late and the bus being late. Let’s 
assume the local transit authority publishes these numbers (later in the book, you’ll learn how to 
estimate this from data). 

P(Latetrain) = 0.15 
P(Latebus) = 0.2 

The published data tells us that 15 percent of the time the train is late, and 20 percent of the time 
the bus is late. Since you’ll be late only if both the bus and the train are late, we can use the product 
rule to solve this problem: 

P(Late) = P(Latetrain) × P(Latebus) = 0.15 × 0.2 = 0.03 

Even though there’s a pretty reasonable chance that either the bus or the train will be late, the 
probability that they will both be late is significantly less, at only 0.03. We can also say there is a 3 
percent chance that both will be late. With this calculation done, you can be a little less stressed 
about being late. 



COMBINING PROBABILITIES WITH OR 
The other essential rule of logic is combining probabilities with OR, some examples of which 
include: 

• Catching the flu OR getting a cold 

• Flipping a heads on a coin OR rolling a 6 on a die 

• Getting a flat tire OR running out of gas 

The probability of one event OR another event occurring is slightly more complicated because the 
events can either be mutually exclusive or not mutually exclusive. Events are mutually exclusiveif 
one event happening implies the other possible events cannot happen. For example, the possible 
outcomes of rolling a die are mutually exclusive because a single roll cannot yield both a 1 and a 6. 
However, say a baseball game will be cancelled if it is either raining or the coach is sick; these 
events are not mutually exclusive because it is perfectly possible that the coach is sick and it rains. 

Calculating OR for Mutually Exclusive Events 

The process of combining two events with OR feels logically intuitive. If you’re asked, “What is the 
probability of getting heads or tails on a coin toss?” you would say, “1.” We know that: 

 

Intuitively, we might just add the probability of these events together. We know this works because 
heads and tails are the only possible outcomes, and the probability of all possible outcomes must 
equal 1. If the probabilities of all possible events did not equal 1, then we would have some 
outcome that was missing. So how do we know that there would need to be a missing outcome if 
the sum was less than 1? 

Suppose we know that the probability of heads is P(heads) = 1/2, but someone claimed that the 
probability of tails was P(tails) = 1/3. We also know from before that the probability of not getting 
heads must be: 

 

Since the probability of not getting heads is 1/2 and the claimed probability for tails is only 1/3, 
either there is a missing event or our probability for tails is incorrect. 

From this we can see that, as long as events are mutually exclusive, we can simply add up all of the 
probabilities of each possible event to get the probability of either event happening to calculate the 
probability of one event OR the other. Another example of this is rolling a die. We know that the 
probability of rolling a 1 is 1/6, and the same is true for rolling a 2: 

 

So we can perform the same operation, adding the two probabilities, and see that the combined 
probability of rolling either a 1 OR a 2 is 2/6, or 1/3: 

 

Again, this makes intuitive sense. 



This addition rule applies only to combinations of mutually exclusive outcomes. In probabilistic 
terms, mutually exclusive means that: 

P(A) AND P(B) = 0 

That is, the probability of getting both A AND B together is 0. We see that this holds for our 
examples: 

• It is impossible to flip one coin and get both heads and tails. 

• It is impossible to roll both a 1 and a 2 on a single roll of a die. 

To really understand combining probabilities with OR, we need to look at the case where events 
are not mutually exclusive. 

Using the Sum Rule for Non–Mutually Exclusive Events 

Again using the example of rolling a die and flipping a coin, let’s look at the probability of either 
flipping heads OR rolling a 6. Many newcomers to probability may naively assume that adding 
probabilities will work in this case as well. Given that we know that P(heads) = 1/2 and P(six) = 
1/6, it might initially seem plausible that the probability of either of these events is simply 4/6. It 
becomes obvious that this doesn’t work, however, when we consider the possibility of either 
flipping a heads or rolling a number less than 6. Because P(less than six) = 5/6, adding these 
probabilities together gives us 8/6, which is greater than 1! Since this violates the rule that 
probabilities must be between 0 and 1, we must have made a mistake. 

The trouble is that flipping a heads and rolling a 6 are not mutually exclusive. As we know from 
earlier in the chapter, P(heads, six) = 1/12. Because the probability of both events happening at the 
same time is not 0, we know they are, by definition, not mutually exclusive. 

The reason that adding our probabilities doesn’t work for non–mutually exclusive events is that 
doing so doubles the counting of events where both things happen. As an example of overcounting, 
let’s look at all of the outcomes of our combined coin toss and die roll that contain heads: 

Heads — 1 
Heads — 2 
Heads — 3 
Heads — 4 
Heads — 5 
Heads — 6 

These outcomes represent 6 out of the 12 possible outcomes, which we expect since P(heads) = 
1/2. Now let’s look at all outcomes that include rolling a 6: 

Heads — 6 
Tails — 6 

These outcomes represent the 2 out of 12 possible outcomes that will result in us rolling a 6, which 
again we expect because P(six) = 1/6. Since there are six outcomes that satisfy the condition of 
flipping a heads and two that satisfy the condition of rolling a 6, we might be tempted to say that 
there are eight outcomes that represent getting either heads or rolling a 6. However, we would be 
double-counting because Heads — 6 appears in both lists. There are, in fact, only 7 out of 12 unique 
outcomes. If we naively add P(heads) and P(six), we end up overcounting. 



To correct our probabilities, we must add up all of our probabilities and then subtract the 
probability of both events occurring. This leads us to the rule for combining non–mutually exclusive 
probabilities with OR, known as the sum rule of probability: 

P(A) OR P(B) = P(A) + P(B) – P(A,B) 

We add the probability of each event happening and then subtract the probability of both events 
happening, to ensure we are not counting these probabilities twice since they are a part of 
both P(A) and P(B). So, using our die roll and coin toss example, the probability of rolling a number 
less than 6 or flipping a heads is: 

 

Let’s take a look at a final OR example to really cement this idea. 

Example: Calculating the Probability of Getting a Hefty Fine 

Imagine a new scenario. You were just pulled over for speeding while on a road trip. You realize 
you haven’t been pulled over in a while and may have forgotten to put either your new registration 
or your new insurance card in the glove box. If either one of these is missing, you’ll get a more 
expensive ticket. Before you open the glove box, how can you assign a probability that you’ll have 
forgotten one or the other of your cards and you’ll get the higher ticket? 

You’re pretty confident that you put your registration in the car, so you assign a 0.7 probability to 
your registration being in the car. However, you’re also pretty sure that you left your insurance 
card on the counter at home, so you assign only a 0.2 chance that your new insurance card is in the 
car. So we know that: 

P(registration) = 0.7 
P(insurance) = 0.2 

However, these values are the probabilities that you do have these things in the glove box. You’re 
worried about whether either one is missing. To get the probabilities of missing items, we simply 
use negation: 

P(Missingreg) = 1 – P(registration) = 0.3 
P(Missingins) = 1 – P(insurance) = 0.8 

If we try using our addition method, instead of the complete sum rule, to get the combined 
probability, we see that we have a probability greater than 1: 

P(Missingreg) + P(Missingins) = 1.1 

This is because these events are non–mutually exclusive: it’s entirely possible that you have 
forgotten both cards. Therefore, using this method we’re double-counting. That means we need to 
figure out the probability that you’re missing both cards so we can subtract it. We can do this with 
the product rule: 

P(Missingreg, Missingins) = 0.24 

Now we can use the sum rule to determine the probability that either one of these cards is missing, 
just as we worked out the probability of a flipping a heads or rolling a 6: 



P(Missing) = P(Missingreg) + P(Missingins) – P(Missingreg, Missingins) = 0.86 

With an 0.86 probability that one of these important pieces of paper is missing from your glove box, 
you should make sure to be extra nice when you greet the officer! 

WRAPPING UP 
In this chapter you developed a complete logic of uncertainty by adding rules for combining 
probabilities with AND and OR. Let’s review the logical rules we have covered so far. 

In Chapter 2, you learned that probabilities are measured on a scale of 0 to 1, 0 
being false(definitely not going to happen), and 1 being true (definitely going to happen). The next 
important logical rule involves combining two probabilities with AND. We do this using the product 
rule, which simply states that to get the probability of two events occurring together, P(A) and P(B), 
we just multiply them together: 

P(A,B) = P(A) × P(B) 

The final rule involves combining probabilities with OR using the sum rule. The tricky part of the 
sum rule is that if we add non–mutually exclusive probabilities, we’ll end up overcounting for the 
case where they both occur, so we have to subtract the probability of both events occurring 
together. The sum rule uses the product rule to solve this (remember, for mutually exclusive 
events, P(A, B) = 0): 

P(A OR B) = P(A) + P(B) – P(A,B) 

These rules, along with those covered in Chapter 2, allow us to express a very large range of 
problems. We’ll be using these as the foundation for our probabilistic reasoning throughout the rest 
of the book. 

EXERCISES 
Try answering the following questions to make sure you understand the rules of logic as they apply 
to probability. The solutions can be found at https://nostarch.com/learnbayes/. 

1. What is the probability of rolling a 20 three times in a row on a 20-sided die? 

2. The weather report says there’s a 10 percent chance of rain tomorrow, and you forget 
your umbrella half the time you go out. What is the probability that you’ll be caught in the 
rain without an umbrella tomorrow? 

3. Raw eggs have a 1/20,000 probability of having salmonella. If you eat two raw eggs, 
what is the probability you ate a raw egg with salmonella? 

4. What is the probability of either flipping two heads in two coin tosses or rolling three 
6s in three six-sided dice rolls? 
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CREATING A BINOMIAL PROBABILITY DISTRIBUTION 

 

In Chapter 3, you learned some basic rules of probability corresponding to the common logical 
operators: AND, OR, and NOT. In this chapter we’re going to use these rules to build our 
first probability distribution, a way of describing all possible events and the probability of each one 
happening. Probability distributions are often visualized to make statistics more palatable to a 
wider audience. We’ll arrive at our probability distribution by defining a function that generalizesa 
particular group of probability problems, meaning we’ll create a distribution to calculate the 
probabilities for a whole range of situations, not just one particular case. 

We generalize in this way by looking at the common elements of each problem and abstracting 
them out. Statisticians use this approach to make solving a wide range of problems much easier. 
This can be especially useful when problems are very complex, or some of the necessary details 
may be unknown. In these cases, we can use well-understood probability distributions as estimates 
for real-world behavior that we don’t fully understand. 

Probability distributions are also very useful for asking questions about ranges of possible values. 
For example, we might use a probability distribution to determine the probability that a customer 
makes between $30,000 and $45,000 a year, the probability of an adult being taller than 6’ 10’’, or 
the probability that between 25 percent and 35 percent of people who visit a web page will sign up 
for an account there. Many probability distributions involve very complex equations and can take 
some time to get used to. However, all the equations for probability distributions are derived from 
the basic rules of probability covered in the previous chapters. 

STRUCTURE OF A BINOMIAL DISTRIBUTION 
The distribution you’ll learn about here is the binomial distribution, used to calculate the probability 
of a certain number of successful outcomes, given a number of trials and the probability of the 
successful outcome. The “bi” in the term binomial refers to the two possible outcomes that we’re 
concerned with: an event happening and an event not happening. If there are more than two 
outcomes, the distribution is called multinomial. Example problems that follow a binomial 
distribution include the probability of: 

• Flipping two heads in three coin tosses 

• Buying 1 million lottery tickets and winning at least once 

• Rolling fewer than three 20s in 10 rolls of a 20-sided die 

Each of these problems shares a similar structure. Indeed, all binomial distributions involve 
three parameters: 



k The number of outcomes we care about 

n The total number of trials 

p The probability of the event happening 

These parameters are the inputs to our distribution. So, for example, when we’re calculating the 
probability of flipping two heads in three coin tosses: 

• k = 2, the number of events we care about, in this case flipping a heads 

• n = 3, the number times the coin is flipped 

• p = 1/2, the probability of flipping a heads in a coin toss 

We can build out a binomial distribution to generalize this kind of problem, so we can easily solve 
any problem involving these three parameters. The shorthand notation to express this distribution 
looks like this: 

B(k;n, p) 

For the example of three coin tosses, we would write B(2; 3, 1/2). The B is short 
for binomialdistribution. Notice that the k is separated from the other parameters by a semicolon. 
This is because when we are talking about a distribution of values, we usually care about all values 
of kfor a fixed n and p. So B(k; n, p) denotes each value in our distribution, but the entire 
distribution is usually referred to by simply B(n, p). 

Let’s take a look at this more closely and see how we can build a function that allows us to 
generalize all of these problems into the binomial distribution. 

UNDERSTANDING AND ABSTRACTING OUT THE DETAILS OF 

OUR PROBLEM 
One of the best ways to see how creating distributions can simplify your probabilities is to start 
with a concrete example and try to solve that, and then abstract out as many of the variables as you 
can. We’ll continue with the example of calculating the probability of flipping two heads in three 
coin tosses. 

Since the number of possible outcomes is small, we can quickly figure out the results we care about 
with just pencil and paper. There are three possible outcomes with two heads in three tosses: 

HHT, HTH, THH 

Now it may be tempting to just solve this problem by enumerating all the other possible outcomes 
and dividing the number we care about by the total number of possible outcomes (in this case, 8). 
That would work fine for solving just this problem, but our aim here is to solve any problem that 
involves desiring a set of outcomes, from a number of trials, with a given probability that the event 
occurs. If we did not generalize and solved only this one instance of the problem, changing these 
parameters would mean we have to solve the new problem again. For example, just saying, “What is 
the probability of getting two heads in four coin tosses?” means we need to come up with yet 
another unique solution. Instead, we’ll use the rules of probability to reason about this problem. 

To start generalizing, we’ll break this problem down into smaller pieces we can solve right now, 
and reduce those pieces into manageable equations. As we build up the equations, we’ll put them 
together to create a generalized function for the binomial distribution. 

The first thing to note is that each outcome we care about will have the same probability. Each 
outcome is just a permutation, or reordering, of the others: 



P({heads, heads, tails}) = P({heads, tails, heads}) = P({tails, heads, heads}) 

Since this is true, we’ll simply call it: 

P(Desired Outcome) 

There are three outcomes, but only one of them can possibly happen and we don’t care which. And 
because it’s only possible for one outcome to occur, we know that these are mutually exclusive, 
denoted as: 

P({heads, heads, tails},{heads, tails, heads},{tails, heads, heads}) = 0 

This makes using the sum rule of probability easy. Now we can summarize this nicely as: 

P({heads, heads, tails} or {heads, tails, heads} or {tails, heads, heads}) = P(Desired Outcome) 
+ P(Desired Outcome) + P(Desired Outcome) 

Of course adding these three is just the same as: 

3 × P(Desired Outcome) 

We’ve got a condensed way of referencing the outcomes we care about, but the trouble as far as 
generalizing goes is that the value 3 is specific to this problem. We can fix this by simply replacing 3 
with a variable called Noutcomes. This leaves us with a pretty nice generalization: 

B(k;n, p) = Noutcomes × P(Desired Outcome) 

Now we have to figure out two subproblems: how to count the number of outcomes we care about, 
and how to determine the probability for a single outcome. Once we have these fleshed out, we’ll be 
all set! 

COUNTING OUR OUTCOMES WITH THE BINOMIAL 

COEFFICIENT 
First we need to figure out how many outcomes there are for a given k (the outcomes we care 
about) and n (the number of trials). For small numbers we can simply count. If we were looking at 
four heads in five coin tosses, we know there are five outcomes we care about: 

HHHHT, HTHHH, HHTHH, HHHTH, HHHHT 

But it doesn’t take much for this to become too difficult to do by hand—for example, “What is the 
probability of rolling two 6s in three rolls of a six-sided die?” 

This is still a binomial problem, because the only two possible outcomes are getting a 6 or not 
getting a 6, but there are far more events that count as “not getting a 6.” If we start enumerating we 
quickly see this gets tedious, even for a small problem involving just three rolls of a die: 

6 – 6 – 1 
6 – 6 – 2 
6 – 6 – 3 
. . . 
4 – 6 – 6 



. . . 
5 – 6 – 6 
. . . 

Clearly, enumerating all of the possible solutions will not scale to even reasonably trivial problems. 
The solution is combinatorics. 

Combinatorics: Advanced Counting with the Binomial Coefficient 

We can gain some insight into this problem if we take a look at a field of mathematics 
called combinatorics. This is simply the name for a kind of advanced counting. 

There is a special operation in combinatorics, called the binomial coefficient, that represents 
counting the number of ways we can select k from n—that is, selecting the outcomes we care about 
from the total number of trials. The notation for the binomial coefficient looks like this: 

 

We read this expression as “n choose k.” So, for our example, we would represent “in three tosses 
choose two heads” as: 

 

The definition of this operation is: 

 

The ! means factorial, which is the product of all the numbers up to and including the number 
before the ! symbol, so 5! = (5 × 4 × 3 × 2 × 1). 

Most mathematical programming languages indicate the binomial coefficient using 
the choose()function. For example, with the mathematical language R, we would compute the 
binomial coefficient for the case of flipping two heads in three tosses with the following call: 

choose(3,2) 
>>3 

With this general operation for calculating the number of outcomes we care about, we can update 
our generalized formula like so: 

 

Recall that P(Desired Outcome) is the probability of any one of the combinations of getting two 
heads in three coin tosses. In the preceding equation, we use this value as a placeholder, but we 
don’t actually know how to calculate what this value is. The only missing piece of our puzzle is 
solving P(Single Outcome). After that, we’ll be able to easily generalize an entire class of problems! 



Calculating the Probability of the Desired Outcome 

All we have left to figure out is the P(Desired Outcome), which is the probability of any of the 
possible events we care about. So far we’ve been using P(Desired Outcome) as a variable to help 
organize our solution to this problem, but now we need to figure out exactly how to calculate this 
value. Let’s look at the probability of getting two heads in five tosses. We’ll focus on a single case of 
an outcome that meets this condition: HHTTT. 

We know the probability of flipping a heads in a single toss is 1/2, but to generalize the problem 
we’ll work with it as P(heads) so we won’t be stuck with a fixed value for our probability. Using the 
product rule and negation from the previous chapter, we can describe this problem as: 

P(heads, heads, not heads, not heads, not heads) 

Or, more verbosely, as: “The probability of flipping heads, heads, not heads, not heads, and not 
heads.” 

Negation tells us that we can represent “not heads” as 1 – P(heads). Then we can use the product 
rule to solve the rest: 

P(heads, heads, not heads, not heads, not heads) = P(heads) × P(heads) × (1 – P(heads)) × (1 
– P(heads)) × (1 – P(heads)) 

Let’s simplify the multiplication by using exponents: 

P(heads)2 × (1 – P(heads))3 

If we put this all together, we see that: 

(two heads in five tosses) = P(heads)2 × (1 – P(heads))3 

You can see that the exponents for P(heads)2 and 1 – P(heads)3 are just the number of heads and the 
number of not heads in that scenario. These equate to k, the number of outcomes we care about, 
and n – k, the number of trials minus the outcomes we care about. We can put all of this together to 
create this much more general formula, which eliminates numbers specific to this case: 

 

Now let’s generalize it for any probability, not just heads, by replacing P(heads) with just p. This 
gives us a general solution for k, the number of outcomes we care about; n, the number of trials; 
and p, the probability of the individual outcome: 

 

Now that we have this equation, we can solve any problem related to outcomes of a coin toss. For 
example, we could calculate the probability of flipping exactly 12 heads in 24 coin tosses like so: 

 



Before you learned about the binomial distribution, solving this problem would have been much 
trickier! 

This formula, which is the basis of the binomial distribution, is called a Probability Mass Function 
(PMF). The mass part of the name comes from the fact that we can use it to calculate the amount of 
probability for any given k using a fixed n and p, so this is the mass of our probability. 

For example, we can plug in all the possible values for k in 10 coin tosses into our PMF and visualize 
what the binomial distribution looks like for all possible values, as shown in Figure 4-1. 

 

Figure 4-1: Bar graph showing the probability of getting k in 10 coin flips 

We can also look at the same distribution for the probability of getting a 6 when rolling a six-sided 
die 10 times, shown in Figure 4-2. 



 

Figure 4-2: The probability of getting a 6 when rolling a six-sided die 10 times 

As you can see, a probability distribution is a way of generalizing an entire class of problems. Now 
that we have our distribution, we have a powerful method to solve a wide range of problems. But 
always remember that we derived this distribution from our simple rules of probability. Let’s put it 
to the test. 

EXAMPLE: GACHA GAMES 
Gacha games are a genre of mobile games, particularly popular in Japan, in which players are able 
to purchase virtual cards with in-game currency. The catch is that all cards are given at random, so 
when players purchase cards they can’t choose which ones they receive. Since not all cards are 
equally desirable, players are encouraged to keep pulling cards from the stack until they hit the one 
they want, in a fashion similar to a slot machine. We’ll see how the binomial distribution can help us 
to decide to take a particular risk in an imaginary Gacha game. 

Here’s the scenario. You have a new mobile game, Bayesian Battlers. The current set of cards you 
can pull from is called a banner. The banner contains some average cards and some featured cards 
that are more valuable. As you may suspect, all of the cards in Bayesian Battlers are famous 
probabilists and statisticians. The top cards in this banner are as follows, each with its respective 
probability of being pulled: 



• Thomas Bayes: 0.721% 

• E. T. Jaynes: 0.720% 

• Harold Jeffreys: 0.718% 

• Andrew Gelman: 0.718% 

• John Kruschke: 0.714% 

These featured cards account for only 0.03591 of the total probability. Since probability must sum 
to 1, the chance of pulling the less desirable cards is the other 0.96409. Additionally, we treat the 
pile of cards that we pull from as effectively infinite, meaning that pulling a specific card does not 
change the probability of getting any other card—the card you pull here does not then disappear 
from the pile. This is different than if you were to pull a physical card from a single deck of cards 
without shuffling the card back in. 

You really want the E. T. Jaynes card to complete your elite Bayesian team. Unfortunately, you have 
to purchase the in-game currency, Bayes Bucks, in order to pull cards. It costs one Bayes Buck to 
pull one card, but there’s a special on right now allowing you to purchase 100 Bayes Bucks for only 
$10. That’s the maximum you are willing to spend on this game, and only if you have at least an 
even chance of pulling the card you want. This means you’ll buy the Bayes Bucks only if the 
probability of getting that awesome E. T. Jaynes card is greater than or equal to 0.5. 

Of course we can plug our probability of getting the E. T. Jaynes card into our formula for the 
binomial distribution to see what we get: 

 

Our result is less than 0.5, so we should give up. But wait—we forgot something very important! In 
the preceding formula we calculated only the probability of getting exactly one E. T. Jaynes card. But 
we might pull two E. T. Jaynes cards, or even three! So what we really want to know is the 
probability of getting one or more. We could write this out as: 

 

And so on, for the 100 cards you can pull with your Bayes Bucks, but this gets really tedious, so 
instead we use the special mathematical notation Σ (the capital Greek letter sigma): 

 

The Σ is the summation symbol; the number at the bottom represents the value we start with and 
the number at the top represents the value we end with. So the preceding equation is simply adding 
up the values for the binomial distribution for every value of k from 1 to n, for a p of 0.00720. 

We’ve made writing this problem down much easier, but now we actually need to compute this 
value. Rather than pulling out your calculator to solve this problem, now is a great time to start 
using R. In R, we can use the pbinom() function to automatically sum up all these values for k in our 
PMF. Figure 4-3 shows how we use pbinom() to solve our specific problem. 



 

Figure 4-3: Using the pbinom() function to solve our Bayesian Battlers problem 

The pbinom() function takes three required arguments and an optional fourth called lower.tail(which 
defaults to TRUE). When the fourth argument is TRUE, the first argument sums up all of the 
probabilities less than or equal to our argument. When lower.tail is set to FALSE, it sums up the 
probabilities strictly greater than the first argument. By setting the first argument to 0, we are 
looking at the probability of getting one or more E. T. Jaynes cards. We set lower.tail to FALSEbecause 
that means we want values greater than the first argument (by default, we get values less than the 
first argument). The next value represents n, the number of trials, and the third argument 
represents p, the probability of success. 

If we plug in our numbers here and set lower.tail to FALSE as shown in Figure 4-3, R will calculate your 
probability of getting at least one E. T. Jaynes card for your 100 Bayes Bucks: 

 

Even though the probability of getting exactly one E. T. Jaynes card is only 0.352, the probability of 
getting at least one E. T. Jaynes card is high enough for you to risk it. So shell out that $10 and 
complete your set of elite Bayesians! 

WRAPPING UP 
In this chapter we saw that we can use our rules of probability (combined with a trick from 
combinatorics) to create a general rule that solves an entire class of problems. Any problem that 
involves wanting to determine the probability of k outcomes in n trials, where the probability of the 
outcomes is p, we can solve easily using the binomial distribution: 

 



Perhaps surprisingly, there is nothing more to this rule than counting and applying our rules of 
probability. 

EXERCISES 
Try answering the following questions to make sure you’ve grasped binomial distributions fully. 
The solutions can be found at https://nostarch.com/learnbayes/. 

1. What are the parameters of the binomial distribution for the probability of rolling 
either a 1 or a 20 on a 20-sided die, if we roll the die 12 times? 

2. There are four aces in a deck of 52 cards. If you pull a card, return the card, then 
reshuffle and pull a card again, how many ways can you pull just one ace in five pulls? 

3. For the example in question 2, what is the probability of pulling five aces in 10 pulls 
(remember the card is shuffled back in the deck when it is pulled)? 

4. When you’re searching for a new job, it’s always helpful to have more than one offer 
on the table so you can use it in negotiations. If you have a 1/5 probability of receiving a job 
offer when you interview, and you interview with seven companies in a month, what is the 
probability you’ll have at least two competing offers by the end of that month? 

5. You get a bunch of recruiter emails and find out you have 25 interviews lined up in 
the next month. Unfortunately, you know this will leave you exhausted, and the probability 
of getting an offer will drop to 1/10 if you’re tired. You really don’t want to go on this many 
interviews unless you are at least twice as likely to get at least two competing offers. Are you 
more likely to get at least two offers if you go for 25 interviews, or stick to just 7? 
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THE BETA DISTRIBUTION 

 

This chapter builds on the ideas behind the binomial distribution from the previous chapter to 
introduce another probability distribution, the beta distribution. You use the beta distribution to 
estimate the probability of an event for which you’ve already observed a number of trials and the 
number of successful outcomes. For example, you would use it to estimate the probability of 
flipping a heads when so far you have observed 100 tosses of a coin and 40 of those were heads. 

While exploring the beta distribution, we’ll also look at the differences between probability and 
statistics. Often in probability texts, we are given the probabilities for events explicitly. However, in 
real life, this is rarely the case. Instead, we are given data, which we use to come up with estimates 
for probabilities. This is where statistics comes in: it allows us to take data and make estimates 
about what probabilities we’re dealing with. 

A STRANGE SCENARIO: GETTING THE DATA 
Here’s the scenario for this chapter. One day you walk into a curiosity shop. The owner greets you 
and, after you browse for a bit, asks if there is anything in particular you’re looking for. You respond 
that you’d love to see the strangest thing he has to show you. He smiles and pulls something out 
from behind the counter. You’re handed a black box, about the size of a Rubik’s Cube, that seems 
impossibly heavy. Intrigued, you ask, “What does it do?” 

The owner points out a small slit on the top of the box and another on the bottom. “If you put a 
quarter in the top,” he tells you, “sometimes two come out the bottom!” Excited to try this out, you 
grab a quarter from your pocket and put it in. You wait and nothing happens. Then the shop owner 
says, “And sometimes it just eats your quarter. I’ve had this thing a while, and I’ve never seen it run 
out of quarters or get too full to take more!” 

Perplexed by this but eager to make use of your newfound probability skills, you ask, “What’s the 
probability of getting two quarters?” The owner replies quizzically, “I have no idea. As you can see, 
it’s just a black box, and there are no instructions. All I know is how it behaves. Sometimes you get 
two quarters back, and sometimes it eats your quarter.” 

Distinguishing Probability, Statistics, and Inference 

While this is a somewhat unusual everyday problem, it’s actually an extremely common type of 
probability problem. In all of the examples so far, outside of the first chapter, we’ve known the 
probability of all the possible events, or at least how much we’d be willing to bet on them. In real 



life we are almost never sure what the exact probability of any event is; instead, we just have 
observations and data. 

This is commonly considered the division between probability and statistics. In probability, we 
know exactly how probable all of our events are, and what we are concerned with is how likely 
certain observations are. For example, we might be told that there is 1/2 probability of getting 
heads in a fair coin toss and want to know the probability of getting exactly 7 heads in 20 coin 
tosses. 

In statistics, we would look at this problem backward: assuming you observe 7 heads in 20 coin 
tosses, what is the probability of getting heads in a single coin toss? As you can see, in this example 
we don’t know what the probability is. In a sense, statistics is probability in reverse. The task of 
figuring out probabilities given data is called inference, and it is the foundation of statistics. 

Collecting Data 

The heart of statistical inference is data! So far we have only a single sample from the strange box: 
you put in a quarter and got nothing back. All we know at this point is that it’s possible to lose your 
money. The shopkeeper said you can win, but we don’t know that for sure yet. 

We want to estimate the probability that the mysterious box will deliver two quarters, and to do 
that, we first need to see how frequently you win after a few more tries. 

The shopkeeper informs you that he’s just as curious as you are and will gladly donate a roll of 
quarters—containing $10 worth of quarters, or 40 quarters—provided you return any winnings to 
him. You put a quarter in, and happily, two more quarters pop out! Now we have two pieces of data: 
the mystical box does in fact pay out sometimes, and sometimes it eats the coin. 

Given our two observations, one where you lose the quarter and another where you win, you might 
guess naively that P(two quarters) = 1/2. Since our data is so limited, however, there is still a range 
of probabilities we might consider for the true rate at which this mysterious box returns two coins. 
To gather more data, you’ll use the rest of the quarters in the roll. In the end, including your first 
quarter, you get: 

14 wins 
27 losses 

Without doing any further analysis, you might intuitively want to update your guess that P(two 
quarters) = 1/2 to P(two quarters) = 14/41. But what about your original guess—does your new 
data mean it’s impossible that 1/2 is the real probability? 

Calculating the Probability of Probabilities 

To help solve this problem, let’s look at our two possible probabilities. These are just our 
hypotheses about the rate at which the magic box returns two quarters: 

 

To simplify, we’ll assign each hypothesis a variable: 

 



Intuitively, most people would say that H2 is more likely because this is exactly what we observed, 
but we need to demonstrate this mathematically to be sure. 

We can think of this problem in terms of how well each hypothesis explains what we saw, so in 
plain English: “How probable is what we observed if H1 were true versus if H2 were true?” As it 
turns out, we can easily calculate this using the binomial distribution from Chapter 4. In this case, 
we know that n = 41 and k = 14, and for now, we’ll assume that p = H1 or H2. We’ll use D as a variable 
for our data. When we plug these numbers into the binomial distribution, we get the following 
results (recall that you can do this with the formula for the binomial distribution in Chapter 4): 

 

In other words, if H1 were true and the probability of getting two coins was 1/2, then the 
probability of observing 14 occasions where we get two coins out of 41 trials would be about 0.016. 
However, if H2 were true and the real probability of getting two coins out of the box was 14/41, 
then the probability of observing the same outcomes would be about 0.130. 

This shows us that, given the data (observing 14 cases of getting two coins out of 41 trials), H2 is 
almost 10 times more probable than H1! However, it also shows that neither hypothesis 
is impossible and that there are, of course, many other hypotheses we could make based on our 
data. For example, we might read our data as H3 P(two coins) = 15/42. If we wanted to look for a 
pattern, we could also pick every probability from 0.1 to 0.9, incrementing by 0.1; calculate the 
probability of the observed data in each distribution; and develop our hypothesis from that. Figure 
5-1 illustrates what each value looks like in the latter case. 



 

Figure 5-1: Visualization of different hypotheses about the rate of getting two quarters 

Even with all these hypotheses, there’s no way we could cover every possible eventuality because 
we’re not working with a finite number of hypotheses. So let’s try to get more information by 
testing more distributions. If we repeat the last experiment, testing each possibility at certain 
increments starting with 0.01 and ending with 0.99, incrementing by only 0.01 would give us the 
results in Figure 5-2. 



 

Figure 5-2: We see a definite pattern emerging when we look at more hypotheses. 

We may not be able to test every possible hypothesis, but it’s clear a pattern is emerging here: we 
see something that looks like a distribution representing what we believe is the behavior of the 
black box. 

This seems like valuable information; we can easily see where the probability is highest. Our goal, 
however, is to model our beliefs in all possible hypotheses (that is, the full probability distribution 
of our beliefs). There are still two problems with our approach. First, because there’s an infinite 
number of possible hypotheses, incrementing by smaller and smaller amounts doesn’t accurately 
represent the entire range of possibilities—we’re always missing an infinite amount. In practice, 
this isn’t a huge problem because we often don’t care about the extremes like 0.000001 and 
0.0000011, but the data would be more useful if we could represent this infinite range of 
possibilities a bit more accurately. 

Second, if you looked at the graph closely, you may have noticed a larger problem here: there are at 
least 10 dots above 0.1 right now, and we have an infinite number of points to add. This means that 
our probabilities don’t sum to 1! From the rules of probability, we know that the probabilities of all 
our possible hypotheses must sum to 1. If they don’t, it means that some hypotheses are not 
covered. If they add up to more than 1, we would be violating the rule that probabilities must be 
between 0 and 1. Even though there are infinitely many possibilities here, we still need them all to 
sum to 1. This is where the beta distribution comes in. 



THE BETA DISTRIBUTION 
To solve both of these problems, we’ll be using the beta distribution. Unlike the binomial 
distribution, which breaks up nicely into discrete values, the beta distribution represents a 
continuous range of values, which allows us to represent our infinite number of possible 
hypotheses. 

We define the beta distribution with a probability density function (PDF), which is very similar to 
the probability mass function we use in the binomial distribution, but is defined for continuous 
values. Here is the formula for the PDF of the beta distribution: 

 

Now this looks like a much more terrifying formula than the one for our binomial distribution! But 
it’s actually not that different. We won’t build this formula entirely from scratch like we did with the 
probability mass function, but let’s break down some of what’s happening here. 

Breaking Down the Probability Density Function 

Let’s first take a look at our parameters: p, α (lowercase Greek letter alpha), and β (lowercase Greek 
letter beta). 

p Represents the probability of an event. This corresponds to our different hypotheses for the 
possible probabilities for our black box. 

α Represents how many times we observe an event we care about, such as getting two quarters 
from the box. 

β Represents how many times the event we care about didn’t happen. For our example, this is the 
number of times that the black box ate the quarter. 

The total number of trials is α + β. This is different than the binomial distribution, where we 
have k observations we’re interested in and a finite number of n total trials. 

The top part of the PDF function should look pretty familiar because it’s almost the same as the 
binomial distribution’s PMF, which looks like this: 

 

In the PDF, rather than pk × (1 – p)n–k, we have pα–1 × (1 – p)β–1 where we subtract 1 from the exponent 
terms. We also have another function in the denominator of our equation: the betafunction (note 
the lowercase) for which the beta distribution is named. We subtract 1 from the exponent and use 
the beta function to normalize our values—this is the part that ensures our distribution sums to 1. 
The beta function is the integral from 0 to 1 of pα–1 × (1 – p)β–1. We’ll talk about integrals more in the 
next section, but you can think of this as the sum of all the possible values of pα–1 × (1 – p)β–

1 when p is every number between 0 and 1. A discussion of how subtracting 1 from the exponents 
and dividing by the beta functions normalizes our values is beyond the scope of this chapter; for 
now, you just need to know that this allows our values to sum to 1, giving us a workable probability. 

What we get in the end is a function that describes the probability of each possible hypothesis for 
our true belief in the probability of getting two heads from the box, given that we have observed α 
examples of one outcome and β examples of another. Remember that we arrived at the beta 
distribution by comparing how well different binomial distributions, each with its own 



probability p, described our data. In other words, the beta distribution represents how well all 
possible binomial distributions describe the data observed. 

Applying the Probability Density Function to Our Problem 

When we plug in our values for our black box data and visualize the beta distribution, shown 
in Figure 5-3, we see that it looks like a smooth version of the plot in Figure 5-2. This illustrates the 
PDF of Beta(14,27). 

 

Figure 5-3: Visualizing the beta distribution for our data collected about the black box 

As you can see, most of the plot’s density is less than 0.5, as we would expect given that our data 
shows that fewer than half of the quarters placed in the black box returned two quarters. 

The plot also shows that it’s very unlikely the black box will return two quarters at least half the 
time, which is the point at which we break even if we continually put quarters in the box. We’ve 
figured out that we’re more likely to lose money than make money through the box, without 
sacrificing too many quarters. While we can see the distribution of our beliefs by looking at a plot, 
we’d still like to be able to quantify exactly how strongly we believe that “the probability that the 
true rate at which the box returns two quarters is less than 0.5.” To do this, we need just a bit of 
calculus (and some R). 



Quantifying Continuous Distributions with Integration 

The beta distribution is fundamentally different from the binomial distribution in that with the 
latter, we are looking at the distribution of k, the number of outcomes we care about, which is 
always something we can count. For the beta distribution, however, we are looking at the 
distribution of p, for which we have an infinite number of possible values. This leads to an 
interesting problem that might be familiar if you’ve studied calculus before (but it’s okay if you 
haven’t!). For our example of α=14 and β=27, we want to know: what is the probability that the 
chance of getting two coins is 1/2? 

While it’s easy to ask the likelihood of an exact value with the binomial distribution thanks to its 
finite number of outcomes, this is a really tricky question for a continuous distribution. We know 
that the fundamental rule of probability is that the sum of all our values must be 1, but each of our 
individual values is infinitely small, meaning the probability of any specific value is in practice 0. 

This may seem strange if you aren’t familiar with continuous functions from calculus, so as a quick 
explanation: this is just the logical consequence of having something made up of an infinite number 
of pieces. Imagine, for example, you divide a 1-pound bar of chocolate (pretty big!) into two pieces. 
Each piece would then weigh 1/2 a pound. If you divided it into 10 pieces, each piece would weigh 
1/10 a pound. As the number of pieces you divide the chocolate into grows, each piece becomes so 
small you can’t even see it. For the case where the number of pieces goes to infinity, eventually 
those pieces disappear! 

Even though the individual pieces disappear, we can still talk about ranges. For example, even if we 
divided a 1-pound bar of chocolate into infinitely many pieces, we can still add up the weight of the 
pieces in one half of the chocolate bar. Similarly, when talking about probability in continuous 
distributions, we can sum up ranges of values. But if every specific value is 0, then isn’t the sum just 
0 as well? 

This is where calculus comes in: in calculus, there’s a special way of summing up infinitely small 
values called the integral. If we want to know whether the probability that the box will return a coin 
is less than 0.5 (that is, the value is somewhere between 0 and 0.5), we can sum it up like this: 

 

If you’re rusty on calculus, the stretched-out S is the continuous function equivalent to ∑ for 
discrete functions. It’s just a way to express that we want to add up all the little bits of our function 
(see Appendix B for a quick overview of the basic principles of calculus). 

If this math is starting to look too scary, don’t worry! We’ll use R to calculate this for us. R includes a 
function called dbeta() that is the PDF for the beta distribution. This function takes three arguments, 
corresponding to p, α, and β. We use this together with R’s integrate() function to perform this 
integration automatically. Here we calculate the probability that the chance of getting two coins 
from the box is 0.5, given the data: 

> integrate(function(p) dbeta(p,14,27),0,0.5) 

The result is as follows: 

0.9807613 with absolute error < 5.9e-06 



The “absolute error” message appears because computers can’t perfectly calculate integrals so 
there is always some error, though usually it is far too small for us to worry about. This result from 
R tells us that there is a 0.98 probability that, given our evidence, the true probability of getting two 
coins out of the black box is less than 0.5. This means it would not be good idea to put any more 
quarters in the box, since you very likely won’t break even. 

REVERSE-ENGINEERING THE GACHA GAME 
In real-life situations, we almost never know the true probabilities for events. That’s why the beta 
distribution is one of our most powerful tools for understanding our data. In the Gacha game 
in Chapter 4, we knew the probability of each card we wanted to pull. In reality, the game 
developers are very unlikely to give players this information, for many reasons (such as not 
wanting players to calculate how unlikely they are to get the card they want). Now suppose we are 
playing a new Gacha game called Frequentist Fighters! and it also features famous statisticians. This 
time, we are pulling for the Bradley Efron card. 

We don’t know the rates for the card, but we really want that card—and more than one if possible. 
We spend a ridiculous amount of money and find that from 1,200 cards pulled, we received only 5 
Bradley Efron cards. Our friend is thinking of spending money on the game but only wants to do it if 
there is a better than 0.7 probability that the chance of pulling a Bradley Efron is greater than 
0.005. 

Our friend has asked us to figure out whether he should spend the money and pull. Our data tells us 
that of 1,200 cards pulled, only 5 were Bradley Efron, so we can visualize this as Beta(5,1195), 
shown in Figure 5-4 (remember that the total cards pulled is α + β). 



 

Figure 5-4: The beta distribution for getting a Bradley Efron card given our data 

From our visualization we can see that nearly all the probability density is below 0.01. We need to 
know exactly how much is above 0.005, the value that our friend cares about. We can solve this by 
integrating over the beta distribution in R, as earlier: 

integrate(function(x) dbeta(x,5,1195),0.005,1) 
0.29 

This tells us the probability that the rate of pulling a Bradley Efron card is 0.005 or greater, given 
the evidence we have observed, is only 0.29. Our friend will pull for this card only if the probability 
is around 0.7 or greater, so based on the evidence from our data collection, our friend should not try 
his luck. 

WRAPPING UP 
In this chapter, you learned about the beta distribution, which is closely related to the binomial 
distribution but behaves quite differently. We built up to the beta distribution by observing how 
well an increasing number of possible binomial distributions explained our data. Because our 
number of possible hypotheses was infinite, we needed a continuous probability distribution that 



could describe all of them. The beta distribution allows us to represent how strongly we believe in 
all possible probabilities for the data we observed. This enables us to perform statistical inference 
on observed data by determining which probabilities we might assign to an event and how strongly 
we believe in each one: a probability of probabilities. 

The major difference between the beta distribution and the binomial distribution is that the beta 
distribution is a continuous probability distribution. Because there are an infinite number of values 
in the distribution, we cannot sum results the same way we do in a discrete probability distribution. 
Instead, we need to use calculus to sum ranges of values. Fortunately, we can use R instead of 
solving tricky integrals by hand. 

EXERCISES 
Try answering the following questions to make sure you understand how we can use the Beta 
distribution to estimate probabilities. The solutions can be found 
at https://nostarch.com/learnbayes/. 

1. You want to use the beta distribution to determine whether or not a coin you have is 
a fair coin—meaning that the coin gives you heads and tails equally. You flip the coin 10 
times and get 4 heads and 6 tails. Using the beta distribution, what is the probability that the 
coin will land on heads more than 60 percent of the time? 

2. You flip the coin 10 more times and now have 9 heads and 11 tails total. What is the 
probability that the coin is fair, using our definition of fair, give or take 5 percent? 

3. Data is the best way to become more confident in your assertions. You flip the coin 
200 more times and end up with 109 heads and 111 tails. Now what is the probability that 
the coin is fair, give or take 5 percent? 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

PART II 
BAYESIAN PROBABILITY AND PRIOR PROBABILITIES 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



6 

CONDITIONAL PROBABILITY 

 

So far, we have dealt only with independent probabilities. Probabilities are independent when the 
outcome of one event does not affect the outcome of another. For example, flipping heads on a coin 
doesn’t impact whether or not a die will roll a 6. Calculating probabilities that are independent is 
much easier than calculating probabilities that aren’t, but independent probabilities often don’t 
reflect real life. For example, the probability that your alarm doesn’t go off and the probability that 
you’re late for work are not independent. If your alarm doesn’t go off, you are far more likely to be 
late for work than you would otherwise be. 

In this chapter, you’ll learn how to reason about conditional probabilities, where probabilities are 
not independent but rather depend on the outcome of particular events. I’ll also introduce you to 
one of the most important applications of conditional probability: Bayes’ theorem. 

INTRODUCING CONDITIONAL PROBABILITY 
In our first example of conditional probabilities, we’ll look at flu vaccines and possible 
complications of receiving them. When you get a flu vaccine, you’re typically handed a sheet of 
paper that informs you of the various risks associated with it. One example is an increased 
incidence of Guillain-Barré syndrome (GBS), a very rare condition that causes the body’s immune 
system to attack the nervous system, leading to potentially life-threatening complications. 
According to the Centers for Disease Control and Prevention (CDC), the probability of contracting 
GBS in a given year is 2 in 100,000. We can represent this probability as follows: 

 

Normally the flu vaccine increases your probability of getting GBS only by a trivial amount. In 2010, 
however, there was an outbreak of swine flu, and the probability of getting GBS if you received the 
flu vaccine that year rose to 3/100,000. In this case, the probability of contracting GBS directly 
depended on whether or not you got the flu vaccine, and thus it is an example of a conditional 
probability. We express conditional probabilities as P(A | B), or the probability of A given B. 
Mathematically, we can express the chance of getting GBS as: 

 

We read this expression in English as “The probability of having GBS, given that you got the flu 
vaccine, is 3 in 100,000.” 



Why Conditional Probabilities Are Important 

Conditional probabilities are an essential part of statistics because they allow us to demonstrate 
how information changes our beliefs. In the flu vaccine example, if you don’t know whether or not 
someone got the vaccine, you can say that their probability of getting GBS is 2/100,000 since this is 
the probability that any given person picked out of the population would have GBS that year. If the 
year is 2010 and a person tells you that they got the flu shot, you know that the true probability is 
3/100,000. We can also look at this as a ratio of these two probabilities, like so: 

 

So if you had the flu shot in 2010, we have enough information to believe you’re 50 percent more 
likely to get GBS than a stranger picked at random. Fortunately, on an individual level, the 
probability of getting GBS is still very low. But if we’re looking at populations as a whole, we would 
expect 50 percent more people to have GBS in a population of people that had the flu vaccine than 
in the general population. 

There are also other factors that can increase the probability of getting GBS. For example, males and 
older adults are more likely to have GBS. Using conditional probabilities, we can add all of this 
information to better estimate the likelihood that an individual gets GBS. 

Dependence and the Revised Rules of Probability 

As a second example of conditional probabilities, we’ll use color blindness, a vision deficiency that 
makes it difficult for people to discern certain colors. In the general population, about 4.25 percent 
of people are color blind. The vast majority of cases of color blindness are genetic. Color blindness 
is caused by a defective gene in the X chromosome. Because males have only a single X chromosome 
and females have two, men are about 16 times more likely to suffer adverse effects of a defective X 
chromosome and therefore to be color blind. So while the rate of color blindness for the entire 
population is 4.25 percent, it is only 0.5 percent in females but 8 percent in males. For all of our 
calculations, we’ll be making the simplifying assumption that the male/female split of the 
population is exactly 50/50. Let’s represent these facts as conditional probabilities: 

P(color blind) = 0.0425 
P(color blind | female) = 0.005 
P(color blind | male) = 0.08 

Given this information, if we pick a random person from the population, what’s the probability that 
they are male and color blind? 

In Chapter 3, we learned how we can combine probabilities with AND using the product rule. 
According to the product rule, we would expect the result of our question to be: 

P(male, color blind) = P(male) × P(color blind) = 0.5 × 0.0425 = 0.02125 

But a problem arises when we use the product rule with conditional probabilities. The problem 
becomes clearer if we try to find the probability that a person is female and color blind: 

P(female, color blind) = P(female) × P(color blind) = 0.5 × 0.0425 = 0.02125 

This can’t be right because the two probabilities are the same! We know that, while the probability 
of picking a male or a female is the same, if we pick a female, the probability that she is color blind 



should be much lower than for a male. Our formula should account for the fact that if we pick 
our person at random, then the probability that they are color blind depends on whether they are 
male or female. The product rule given in Chapter 3 works only when the probabilities are 
independent. Being male (or female) and color blind are dependent probabilities. 

So the true probability of finding a male who is color blind is the probability of picking a male 
multiplied by the probability that he is color blind. Mathematically, we can write this as: 

P(male, color blind) = P(male) × P(color blind | male) = 0.5 × 0.08 = 0.04 

We can generalize this solution to rewrite our product rule as follows: 

P(A,B) = P(A) × P(B | A) 

This definition works for independent probabilities as well, because for independent 
probabilities P(B) = P(B | A). This makes intuitive sense when you think about flipping heads and 
rolling a 6; because P(six) is 1/6 independent of the coin toss, P(six | heads) is also 1/6. 

We can also update our definition of the sum rule to account for this fact: 

P(A or B) = P(A) + P(B) – P(A) × P(B | A) 

Now we can still easily use our rules of probabilistic logic from Part I and handle conditional 
probabilities. 

An important thing to note about conditional probabilities and dependence is that, in practice, 
knowing how two events are related is often difficult. For example, we might ask about the 
probability of someone owning a pickup truck and having a work commute of over an hour. While 
we can come up with plenty of reasons one might be dependent on the other—maybe people with 
pickup trucks tend to live in more rural areas and commute less—we might not have the data to 
support this. Assuming that two events are independent (even when they likely aren’t) is a very 
common practice in statistics. But, as with our example for picking a color blind male, this 
assumption can sometimes give us very wrong results. While assuming independence is often a 
practical necessity, never forget how much of an impact dependence can have. 

CONDITIONAL PROBABILITIES IN REVERSE AND BAYES’ 

THEOREM 
One of the most amazing things we can do with conditional probabilities is reversing the condition 
to calculate the probability of the event we’re conditioning on; that is, we can use P(A | B) to arrive 
at P(B | A). As an example, say you’re emailing a customer service rep at a company that sells color 
blindness–correcting glasses. The glasses are a little pricey, and you mention to the rep that you’re 
worried they might not work. The rep replies, “I’m also color blind, and I have a pair myself—they 
work really well!” 

We want to figure out the probability that this rep is male. However, the rep provides no 
information except an ID number. So how can we figure out the probability that the rep is male? 

We know that P(color blind | male) = 0.08 and that P(color blind | female) = 0.005, but how can we 
determine P(male | color blind)? Intuitively, we know that it is much more likely that the customer 
service rep is in fact male, but we need to quantify that to be sure. 

Thankfully, we have all the information we need to solve this problem, and we know that we are 
solving for the probability that someone is male, given that they are color blind: 



P(male | color blind) = ? 

The heart of Bayesian statistics is data, and right now we have only one piece of data (other than 
our existing probabilities): we know that the customer support rep is color blind. Our next step is to 
look at the portion of the total population that is color blind; then, we can figure out what portion of 
that subset is male. 

To help reason about this, let’s add a new variable N, which represents the total population of 
people. As stated before, we first need to calculate the total subset of the population that is color 
blind. We know P(color blind), so we can write this part of the equation like so: 

 

Next we need to calculate the number of people who are male and color blind. This is easy to do 
since we know P(male) and P(color blind | male), and we have our revised product rule. So we can 
simply multiply this probability by the population: 

P(male) × P(color blind | male) × N 

So the probability that the customer service rep is male, given that they’re color blind, is: 

 

Our population variable N is on both the top and the bottom of the fraction, so the Ns cancel out: 

 

We can now solve our problem since we know each piece of information: 

 

Given the calculation, we know there is a 94.1 percent chance that the customer service rep is in 
fact male! 

INTRODUCING BAYES’ THEOREM 
There is nothing actually specific to our case of color blindness in the preceding formula, so we 
should be able to generalize it to any given A and B probabilities. If we do this, we get the most 
foundational formula in this book, Bayes’ theorem: 

 

To understand why Bayes’ theorem is so important, let’s look at a general form of this problem. Our 
beliefs describe the world we know, so when we observe something, its conditional probability 
represents the likelihood of what we’ve seen given what we believe, or: 

P(observed | belief) 



For example, suppose you believe in climate change, and therefore you expect that the area where 
you live will have more droughts than usual over a 10-year period. Your belief is that climate 
change is taking place, and your observation is the number of droughts in your area; let’s say there 
were 5 droughts in the last 10 years. Determining how likely it is that you’d see exactly 5 droughts 
in the past 10 years if there were climate change during that period may be difficult. One way to do 
this would be to consult an expert in climate science and ask them the probability of droughts given 
that their model assumes climate change. 

At this point, all you’ve done is ask, “What is the probability of what I’ve observed, given that I 
believe climate change is true?” But what you want is some way to quantify how strongly you 
believe climate change is really happening, given what you have observed. Bayes’ theorem allows 
you to reverse P(observed | belief), which you asked the climate scientist for, and solve for the 
likelihood of your beliefs given what you’ve observed, or: 

P(belief | observed) 

In this example, Bayes’ theorem allows you to transform your observation of five droughts in a 
decade into a statement about how strongly you believe in climate change after you have observed 
these droughts. The only other pieces of information you need are the general probability of 5 
droughts in 10 years (which could be estimated with historical data) and your initial certainty of 
your belief in climate change. And while most people would have a different initial probability for 
climate change, Bayes’ theorem allows you to quantify exactly how much the data changes any 
belief. 

For example, if the expert says that 5 droughts in 10 years is very likely if we assume that climate 
change is happening, most people will change their previous beliefs to favor climate change a little, 
whether they’re skeptical of climate change or they’re Al Gore. 

However, suppose that the expert told you that in fact, 5 droughts in 10 years was very unlikely 
given your assumption that climate change is happening. In that case, your prior belief in climate 
change would weaken slightly given the evidence. The key takeaway here is that Bayes’ theorem 
ultimately allows evidence to change the strength of our beliefs. 

Bayes’ theorem allows us to take our beliefs about the world, combine them with data, and then 
transform this combination into an estimate of the strength of our beliefs given the evidence we’ve 
observed. Very often our beliefs are just our initial certainty in an idea; this is the P(A) in Bayes’ 
theorem. We often debate topics such as whether gun control will reduce violence, whether 
increased testing increases student performance, or whether public health care will reduce overall 
health care costs. But we seldom think about how evidence should change our minds or the minds 
of those we’re debating. Bayes’ theorem allows us to observe evidence about these beliefs and 
quantify exactly how much this evidence changes our beliefs. 

Later in this book, you’ll see how we can compare beliefs as well as cases where data can 
surprisingly fail to change beliefs (as anyone who has argued with relatives over dinner can attest!). 

In the next chapter, we’re going to spend a bit more time with Bayes’ theorem. We’ll derive it once 
more, but this time with LEGO; that way, we can clearly visualize how it works. We’ll also explore 
how we can understand Bayes’ theorem in terms of more specifically modeling our existing beliefs 
and how data changes them. 

WRAPPING UP 
In this chapter, you learned about conditional probabilities, which are any probability of an event 
that depends on another event. Conditional probabilities are more complicated to work with than 



independent probabili-ties—we had to update our product rule to account for dependencies—but 
they lead us to Bayes’ theorem, which is fundamental to understanding how we can use data to 
update what we believe about the world. 

EXERCISES 
Try answering the following questions to see how well you understand conditional probability and 
Bayes’ theorem. The solutions can be found at https://nostarch.com/learnbayes/. 

• What piece of information would we need in order to use Bayes’ theorem to 
determine the probability that someone in 2010 who had GBS also had the flu vaccine that 
year? 

• What is the probability that a random person picked from the population is female 
and is notcolor blind? 

• What is the probability that a male who received the flu vaccine in 2010 is either 
color blind or has GBS? 
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BAYES’ THEOREM WITH LEGO 

 

In the previous chapter, we covered conditional probability and arrived at a very important idea in 
probability, Bayes’ theorem, which states: 

 

Notice that here we’ve made a very small change from Chapter 6, writing P(B | A)P(A) instead 
of P(A)P(B | A); the meaning is identical, but sometimes changing the terms around can help clarify 
different approaches to problems. 

With Bayes’ theorem, we can reverse conditional probabilities—so when we know the 
probability P(B | A), we can work out P(A | B). Bayes’ theorem is foundational to statistics because it 
allows us to go from having the probability of an observation given a belief to determining the 
strength of that belief given the observation. For example, if we know the probability of sneezing 
given that you have a cold, we can work backward to determine the probability that you have a cold 
given that you sneezed. In this way, we use evidence to update our beliefs about the world. 

In this chapter, we’ll use LEGO to visualize Bayes’ theorem and help solidify the mathematics in 
your mind. To do this, let’s pull out some LEGO bricks and put some concrete questions to our 
equation. Figure 7-1 shows a 6 × 10 area of LEGO bricks; that’s a 60-stud area (studs are the 
cylindrical bumps on LEGO bricks that connect them to each other). 



 

Figure 7-1: A 6 × 10-stud LEGO area to help us visualize the space of possible events 

We can imagine this as the space of 60 possible, mutually exclusive events. For example, the blue 
studs could represent 40 students who passed an exam and the red studs 20 students who failed 
the exam in a class of 60. In the 60-stud area, there are 40 blue studs, so if we put our finger on a 
random spot, the probably of touching a blue brick is defined like this: 

 

We would represent the probability of touching a red brick as follows: 

 

The probability of touching either a blue or a red brick, as you would expect, is 1: 



P(blue) + P(red) = 1 

This means that red and blue bricks alone can describe our entire set of possible events. 

Now let’s put a yellow brick on top of these two bricks to represent some other possibility—for 
example, the students that pulled an all-nighter studying and didn’t sleep—so it looks like Figure 7-
2. 

 

Figure 7-2: Placing a 2 × 3 LEGO brick on top of the 6 × 10-stud LEGO area 

Now if we pick a stud at random, the probability of touching the yellow brick is: 

 

But if we add P(yellow) to P(red) + P(blue), we’d get a result greater than 1, and that’s impossible! 

The issue, of course, is that our yellow studs all sit on top of the space of red and blue studs, so the 
probability of getting a yellow brick is conditional on whether we’re on a blue or red space. As we 



know from the previous chapter, we can express this conditional probability as P(yellow | red), 
or the probability of yellow given red. Given our example from earlier, this would be the probability 
that a student pulled an all-nighter, given that they had failed an exam. 

WORKING OUT CONDITIONAL PROBABILITIES VISUALLY 
Let’s go back to our LEGO bricks and work out P(yellow | red). Figure 7-3 gives us a bit of visual 
insight into the problem. 

 

Figure 7-3: Visualizing P(yellow | red) 

Let’s walk through the process for determining P(yellow | red) by working with our physical 
representation: 

1. Split the red section off from the blue. 



2. Get the area of the entire red space; it’s a 2 × 10-stud area, so that’s 20 studs. 

3. Get the area of the yellow block on the red space, which is 4 studs. 

4. Divide the area of the yellow block by the area of the red block. 

This gives us P(yellow | red) = 4/20 = 1/5. 

Great—we have arrived at the conditional probability of yellow given red! So far, so good. So what if 
we now reverse that conditional probability and ask what is P(red | yellow)? In plain English, if we 
know we are on a yellow space, what is the probability that it’s red underneath? Or, in our test 
example, what is the probability that a student failed the exam, given that they pulled an all-
nighter? 

Looking at Figure 7-3, you may have intuitively figured out P(red | yellow)by reasoning, “There are 
6 yellow studs, 4 of which are over red, so the probability of choosing a yellow that’s over a red 
block is 4/6.” If you did follow this line of thinking, then congratulations! You just independently 
discovered Bayes’ theorem. But let’s quantify that with math to make sure it’s right. 

WORKING THROUGH THE MATH 
Getting from our intuition to Bayes’ theorem will require a bit of work. Let’s begin formalizing our 
intuition by coming up with a way to calculate that there are 6 yellow studs. Our minds arrive at 
this conclusion through spatial reasoning, but we need to use a mathematical approach. To solve 
this, we just take the probability of being on a yellow stud multiplied by the total number of studs: 

 

The next part of our intuitive reasoning is that 4 of the yellow studs are over red, and this requires a 
bit more work to prove mathematically. First, we have to establish how many red studs there are; 
luckily, this is the same process as calculating yellow studs: 

 

We’ve also already figured out the ratio of red studs covered by yellow as P(yellow | red). To make 
this a count—rather than a probability—we multiply it by the number of red studs that we just 
calculated: 

 

Finally, we get the ratio of the red studs covered by yellow to the total number of yellow: 

 

This lines up with our intuitive analysis. However, it doesn’t quite look like a Bayes’ theorem 
equation, which should have the following structure: 

 

To get there we’ll have to go back and expand the terms in this equation, like so: 

 



We know that we calculate this as follows: 

 

Finally, we just need to cancel out totalStuds from the equation, which gives us: 

 

From intuition, we have arrived back at Bayes’ theorem! 

WRAPPING UP 
Conceptually, Bayes’ theorem follows from intuition, but that doesn’t mean that the formalization of 
Bayes’ theorem is obvious. The benefit of our mathematical work is that it extracts reason out of 
intuition. We’ve confirmed that our original, intuitive beliefs are consistent, and now we have a 
powerful new tool to deal with problems in probability that are more complicated than LEGO 
bricks. 

In the next chapter, we’ll take a look at how to use Bayes’ theorem to reason about and update our 
beliefs using data. 

EXERCISES 
Try answering the following questions to see if you have a solid understanding of how we can use 
Bayes’ Theorem to reason about conditional probabilities. The solutions can be found 
at https://nostarch.com/learnbayes/. 

1. Kansas City, despite its name, sits on the border of two US states: Missouri and 
Kansas. The Kansas City metropolitan area consists of 15 counties, 9 in Missouri and 6 in 
Kansas. The entire state of Kansas has 105 counties and Missouri has 114. Use Bayes’ 
theorem to calculate the probability that a relative who just moved to a county in the Kansas 
City metropolitan area also lives in a county in Kansas. Make sure to show P(Kansas) 
(assuming your relative either lives in Kansas or Missouri), P(Kansas City metropolitan 
area), and P(Kansas City metropolitan area | Kansas). 

2. A deck of cards has 52 cards with suits that are either red or black. There are four 
aces in a deck of cards: two red and two black. You remove a red ace from the deck and 
shuffle the cards. Your friend pulls a black card. What is the probability that it is an ace? 
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THE PRIOR, LIKELIHOOD, AND POSTERIOR OF BAYES’ 

THEOREM 

 

Now that we’ve covered how to derive Bayes’ theorem using spatial reasoning, let’s examine how 
we can use Bayes’ theorem as a probability tool to logically reason about uncertainty. In this 
chapter, we’ll use it to calculate and quantify how likely our belief is, given our data. To do so, we’ll 
use the three parts of the theorem—the posterior probability, likelihood, and prior probability—all 
of which will come up frequently in your adventures with Bayesian statistics and probability. 

THE THREE PARTS 
Bayes’ theorem allows us to quantify exactly how much our observed data changes our beliefs. In 
this case, what we want to know is: P(belief | data). In plain English, we want to quantify how 
strongly we hold our beliefs given the data we’ve observed. The technical term for this part of the 
formula is the posterior probability, and it’s what we’ll use Bayes’ theorem to solve for. 

To solve for the posterior, we need the next part: the probability of the data given our beliefs about 
the data, or P(data | belief). This is known as the likelihood, because it tells us how likely the data is 
given our belief. 

Finally, we want to quantify how likely our initial belief is in the first place, or P(belief). This part of 
Bayes’ theorem is called the prior probability, or simply “the prior,” because it represents the 
strength of our belief before we see the data. The likelihood and the prior combine to produce a 
posterior. Typically we need to use the probability of the data, P(data), in order to normalize our 
posterior so it accurately reflects a probability from 0 to 1. However, in practice, we don’t always 
need P(data), so this value doesn’t have a special name. 

As you know by now, we refer to our belief as a hypothesis, H, and we represent our data with the 
variable D. Figure 8-1 shows each part of Bayes’ theorem. 



 

Figure 8-1: The parts of Bayes’ theorem 

In this chapter, we’ll investigate a crime, combining these pieces to reason about the situation. 

INVESTIGATING THE SCENE OF A CRIME 
Let’s suppose you come home from work one day and find your window broken, your front door 
open, and your laptop missing. Your first thought is probably “I’ve been robbed!” But how did you 
come to this conclusion, and more importantly, how can you quantify this belief? 

Your immediate hypothesis is that you have been robbed, so H = I’ve been robbed. We want a 
probability that describes how likely it is that you’ve been robbed, so the posterior we want to solve 
for given our data is: 

P(robbed | broken window, open front door, missing laptop) 

To solve this problem, we’ll fill in the missing pieces from Bayes’ theorem. 

Solving for the Likelihood 

First, we need to solve for the likelihood, which in this case is the probability that the same 
evidence would have been observed if you were in fact robbed—in other words, how closely the 
evidence lines up with the hypothesis: 

P(broken window, open front door, missing laptop | robbed) 

What we’re asking is, “If you were robbed, how likely is it that you would see the evidence you saw 
here?” You can imagine a wide range of scenarios where not all of this evidence was present at a 
robbery. For example, a clever thief might have picked the lock on your door, stolen your laptop, 
then locked the door behind them and not needed to break a window. Or they might have just 
smashed the window, taken the laptop, and then climbed right back out the window. The evidence 
we’ve seen seems intuitively like it would be pretty common at the scene of a robbery, so we’ll say 
there’s a 3/10 probability that if you were robbed, you would come home and find this evidence. 

It’s important to note that, even though we’re making a guess in this example, we could also do 
some research to get a better estimate. We could go to the local police department and ask for 
statistics about evidence at crime scenes involving robbery, or read through news reports of recent 
robberies. This would give us a more accurate estimate for the likelihood that if you were robbed 
you would see this evidence. 



The incredible thing about Bayes’ theorem is that we can use it both for organizing our casual 
beliefs and for working with large data sets of very exact probabilities. Even if you don’t think 3/10 
is a good estimate, you can always go back to the calculations—as we will do—and see how the 
value changes given a different assumption. For example, if you think that the probability of seeing 
this evidence given a robbery is just 3/100, you can easily go back and plug in those numbers 
instead. Bayesian statistics lets people disagree about beliefs in a measurable way. Because we are 
dealing with our beliefs in a quantitative way, you can recalculate everything we do in this chapter 
to see if this different probability has a substantial impact on any of the final outcomes. 

Calculating the Prior 

Next, we need to determine the probability that you would get robbed at all. This is our prior. Priors 
are extremely important, because they allow us to use background information to adjust a 
likelihood. For example, suppose the scene described earlier happened on a deserted island where 
you are the only inhabitant. In this case, it would be nearly impossible for you to get robbed (by a 
human, at least). In another example, if you owned a home in a neighborhood with a high crime 
rate, robberies might be a frequent occurrence. For simplicity, let’s set our prior for being robbed 
as: 

 

Remember, we can always adjust these figures later given different or additional evidence. 

We have nearly everything we need to calculate the posterior; we just need to normalize the data. 
Before moving on, then, let’s look at the unnormalized posterior: 

 

This value is incredibly small, which is surprising since intuition tells us that the probability of your 
house being robbed given the evidence you observed seems very, very high. But we haven’t yet 
looked at the probability of observing our evidence. 

Normalizing the Data 

What’s missing from our equation is the probability of the data you observed whether or not you 
were robbed. In our example, this is the probability that you observe that your window is broken, 
the door is open, and your laptop is missing all at once, regardless of the cause. As of now, our 
equation looks like this: 

 

The reason the probability in the numerator is so low is that we haven’t normalized it with the 
probability that you would find this strange evidence. 

We can see how our posterior changes as we change our P(D) in Table 8-1. 

Table 8-1: How the P(D) Affects the Posterior 



P(D) Posterior 

0.050 0.006 

0.010 0.030 

0.005 0.060 

0.001 0.300 

As the probability of our data decreases, our posterior probability increases. This is because as the 
data we observe becomes increasingly unlikely, a typically unlikely explanation does a better job of 
explaining the event (see Figure 8-2). 

 

Figure 8-2: As the probability of the data decreases, the posterior probability increases. 

Consider this extreme example: the only way your friend could become a millionaire is if they won 
the lottery or inherited money from some family member they didn’t know existed. Your friend 
becoming a millionaire is therefore shockingly unlikely. However, you find out that your 
friend did become a millionaire. The possibility that your friend won the lottery then becomes much 
more likely, because it is one of the only two ways they could have become a millionaire. 



Being robbed is, of course, only one possible explanation for what you observed, and there are 
many more explanations. However, if we don’t know the probability of the evidence, we can’t figure 
out how to normalize all these other possibilities. So what is our P(D)? That’s the tricky part. 

The common problem with P(D) is that it’s very difficult to accurately calculate in many real-world 
cases. With every other part of the formula—even though we just guessed at a value for this 
exercise—we can collect real data to provide a more concrete probability. For our prior, P(robbed), 
we might simply look at historical crime data and pin down a probability that a given house on your 
street would be robbed any given day. Likewise, we could, theoretically, investigate past robberies 
and come up with a more accurate likelihood for observing the evidence you did given a robbery. 
But how could we ever really even guess at P(broken window,open front door,missing laptop)? 

Instead of researching the probability of the data you observed, we could try to calculate the 
probabilities of all other possible events that could explain your observations. Since they must sum 
to 1, we could work backward and find P(D). But for the case of this particular evidence, there’s a 
virtually limitless number of possibilities. 

We’re a bit stuck without P(D). In Chapters 6 and 7, where we calculated the probability that a 
customer service rep was male and the probability of choosing different colored LEGO studs, 
respectively, we had plenty of information about P(D). This allowed us to come up with an exact 
probability of our belief in our hypothesis given what we observed. Without P(D) we cannot come 
up with a value for P(robbed | broken window,open front door,missing laptop). However, we’re not 
completely lost. 

The good news is that in some cases we don’t need to explicitly know P(D), because we often just 
want to compare hypotheses. In this example, we’ll compare how likely it is that you were robbed 
with another possible explanation. We can do this by looking at the ratio of our unnormalized 
posterior distributions. Because the P(D) would be a constant, we can safely remove it without 
changing our analysis. 

So, instead of calculating the P(D), for the remainder of this chapter we’ll develop an alternative 
hypothesis, calculate its posterior, and then compare it to the posterior from our original 
hypothesis. While this means we can’t come up with an exact probability of being robbed as the 
only possible explanation for the evidence you observed, we can still use Bayes’ theorem to play 
detective and investigate other possibilities. 

CONSIDERING ALTERNATIVE HYPOTHESES 
Let’s come up with another hypothesis to compare with our original one. Our new hypothesis 
consists of three events: 

1. A neighborhood kid hit a baseball through the front window. 

2. You left your door unlocked. 

3. You forgot that you brought your laptop to work and it’s still there. 

We’ll refer to each of these explanations simply by its number in our list, and refer to them 
collectively as H2 so that P(H2) = P(1,2,3). Now we need to solve for the likelihood and prior of this 
data. 

The Likelihood for Our Alternative Hypothesis 

Recall that, for our likelihood, we want to calculate the probability of what you observed given our 
hypothesis, or P(D | H2). Interestingly—and logically, as you’ll see—the likelihood for this 
explanation turns out to be 1: P(D | H2) = 1 



If all the events in our hypothesis did happen, then your observations of a broken window, 
unlocked door, and missing laptop would be certain. 

The Prior for Our Alternative Hypothesis 

Our prior represents the possibility of all three events happening. This means we need to first work 
out the probability of each of these events and then use the product rule to determine the prior. For 
this example, we’ll assume that each of these possible outcomes is conditionally independent. 

The first part of our hypothesis is that a neighborhood kid hit a baseball through the front window. 
While this is common in movies, I’ve personally never heard of it happening. I have known far more 
people who have been robbed, though, so let’s say that a baseball being hit through the window is 
half as likely as the probability of getting robbed we used earlier: 

 

The second part of our hypothesis is that you left the door unlocked. This is fairly common; let’s say 
this happens about once a month, so: 

 

Finally, let’s look at leaving your laptop at work. While bringing a laptop to work and leaving it 
there might be common, completely forgetting you took it in the first place is less common. Maybe 
this happens about once a year: 

 

Since we’ve given each of these pieces of H2 a probability, we can now calculate our prior 
probability by applying the product rule: 

 

As you can see, the prior probability of all three events happening is extremely low. Now we need a 
posterior for each of our hypotheses to compare. 

The Posterior for Our Alternative Hypothesis 

We know that our likelihood, P(D | H2), equals 1, so if our second hypothesis were to be true, we 
would be certain to see our evidence. Without a prior probability in our second hypothesis, it looks 
like the posterior probability for our new hypothesis will be much stronger than it is for our 
original hypothesis that you were robbed (since we aren’t as likely to see the data even if we were 
robbed). We can now see how the prior radically alters our unnormalized posterior probability: 

 

Now we want to compare our posterior beliefs as well as the strength of our hypotheses with a 
ratio. You’ll see that we don’t need a P(D) to do this. 



COMPARING OUR UNNORMALIZED POSTERIORS 
First, we want to compare the ratio of the two posteriors. A ratio tells us how many times more 
likely one hypothesis is than the other. We’ll define our original hypothesis as H1, and the ratio 
looks like this: 

 

Next let’s expand this using Bayes’ theorem for each of these. We’ll write Bayes’ theorem as P(H) 
× P(D | H) × 1/P(D) to make the formula easier to read in this context: 

 

Notice that both the numerator and denominator contain 1/P(D), which means we can remove that 
and maintain the ratio. This is why P(D) doesn’t matter when we compare hypotheses. Now we 
have a ratio of the unnormalized posteriors. Because the posterior tells us how strong our belief is, 
this ratio of posteriors tells us how many times better H1 explains our data than H2without 
knowing P(D). Let’s cancel out the P(D) and plug in our numbers: 

 

What this means is that H1 explains what we observed 6,570 times better than H2. In other words, 
our analysis shows that our original hypothesis (H1) explains our data much, much better than our 
alternate hypothesis (H2). This also aligns well with our intuition—given the scene you observed, a 
robbery certainly sounds like a more likely assessment. 

We’d like to express this property of the unnormalized posterior mathematically to be able to use it 
for comparison. For that, we use the following version of Bayes’ theorem, where the symbol ∝ 
means “proportional to”: 

P(H | D) ∝ P(H) × P(D | H) 

We can read this as: “The posterior—that is, the probability of the hypothesis given the data—
is proportional to the prior probability of H multiplied by the probability of the data given H.” 

This form of Bayes’ theorem is extremely useful whenever we want to compare the probability of 
two ideas but can’t easily calculate P(D). We cannot come up with a meaningful value for the 
probability of our hypothesis in isolation, but we’re still using a version of Bayes’ theorem to 
compare hypotheses. Comparing hypotheses means that we can always see exactly how much 
stronger one explanation of what we’ve observed is than another. 

WRAPPING UP 
This chapter explored how Bayes’ theorem provides a framework for modeling our beliefs about 
the world, given data that we have observed. For Bayesian analysis, Bayes’ theorem consists of 



three major parts: the posterior probability, P(H | D); the prior probability, P(H); and the 
likelihood, P(D | H). 

The data itself, or P(D), is notably absent from this list, because we often won’t need it to perform 
our analysis if all we’re worried about is comparing beliefs. 

EXERCISES 
Try answering the following questions to see if you have a solid understanding of the different parts 
of Bayes’ Theorem. The solutions can be found at https://nostarch.com/learnbayes/. 

1. As mentioned, you might disagree with the original probability assigned to the 
likelihood: 

 
How much does this change our strength in believing H1 over H2? 

2. How unlikely would you have to believe being robbed is—our prior for H1—in order 
for the ratio of H1 to H2 to be even? 
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BAYESIAN PRIORS AND WORKING WITH PROBABILITY 

DISTRIBUTIONS 

 

Prior probabilities are the most controversial aspect of Bayes’ theorem, because they’re frequently 
considered subjective. In practice, however, they often demonstrate how to apply vital background 
information to fully reason about an uncertain situation. 

In this chapter, we’ll look at how to use a prior to solve a problem, and at ways to use probability 
distributions to numerically describe our beliefs as a range of possible values rather than single 
values. Using probability distributions instead of single values is useful for two major reasons. 

First, in reality there is often a wide range of possible beliefs we might have and consider. Second, 
representing ranges of probabilities allows us to state our confidence in a set of hypotheses. We 
explored both of these examples when examining the mysterious black box in Chapter 5. 

C-3PO’S ASTEROID FIELD DOUBTS 
As an example, we’ll use one of the most memorable errors in statistical analysis from a scene 
in Star Wars: The Empire Strikes Back. When Han Solo, attempting to evade enemy fighters, flies 
the Millennium Falcon into an asteroid field, the ever-knowledgeable C-3PO informs Han that 
probability isn’t on his side. C-3PO says, “Sir, the possibility of successfully navigating an asteroid 
field is approximately 3,720 to 1!” 

“Never tell me the odds!” replies Han. 

Superficially, this is just a fun movie dismissing “boring” data analysis, but there’s actually an 
interesting dilemma here. We the viewers know that Han can pull it off, but we probably also don’t 
disagree with C-3PO’s analysis. Even Han believes it’s dangerous, saying, “They’d have to be crazy 
to follow us.” Plus, none of the pursuing TIE fighters make it through, which provides pretty strong 
evidence that C-3PO’s numbers aren’t totally off. 

What C-3PO is missing in his calculations is that Han is a badass! C-3PO isn’t wrong, he’s just 
forgetting to add essential information. The question now is: can we find a way to avoid C-3PO’s 
error without dismissing probability entirely, as Han proposes? To answer this question, we need 
to model both how C-3PO thinks and what we believe about Han, then blend those models using 
Bayes’ theorem. 

We’ll start with C-3PO’s reasoning in the next section, and then we’ll capture Han’s badassery. 



DETERMINING C-3PO’S BELIEFS 
C-3PO isn’t just making up numbers. He’s fluent in over 6 million forms of communication, and that 
takes a lot of data to support, so we can assume that he has actual data to back up his claim of 
“approximately 3,720 to 1.” Because C-3PO provides the approximate odds of successfully 
navigating an asteroid field, we know that the data he has gives him only enough information to 
suggest a range of possible rates of success. To represent that range, we need to look at 
a distribution of beliefs regarding the probability of success, rather than a single value representing 
the probability. 

To C-3PO, the only possible outcomes are successfully navigating the asteroid field or not. We’ll 
determine the various possible probabilities of success, given C-3PO’s data, using the beta 
distribution you learned about in Chapter 5. We’re using the beta distribution because it correctly 
models a range of possible probabilities for an event, given information we have on the rate of 
successes and failures. 

Recall that the beta distribution is parameterized with an α (number of observed successes) and a β 
(the number of observed failures): 

P(RateOfSuccess | Successes and Failures) = Beta(α,β) 

This distribution tells us which rates of success are most likely given the data we have. 

To figure out C-3PO’s beliefs, we’ll make some assumptions about where his data comes from. Let’s 
say that C-3PO has records of 2 people surviving the asteroid field, and 7,440 people ending their 
trip in a glorious explosion! Figure 9-1 shows a plot of the probability density function that 
represents C-3PO’s belief in the true rate of success. 



 

Figure 9-1: A beta distribution representing C-3PO’s belief that Han will survive 

For any ordinary pilot entering an asteroid field, this looks bad. In Bayesian terms, C-3PO’s estimate 
of the true rate of success given observed data, 3,720:1, is the likelihood, which we discussed 
in Chapter 8. Next, we need to determine our prior. 

ACCOUNTING FOR HAN’S BADASSERY 
The problem with C-3PO’s analysis is that his data is on all pilots, but Han is far from your average 
pilot. If we can’t put a number to Han’s badassery, then our analysis is broken—not just because 
Han makes it through the asteroid field, but because we believe he’s going to. Statistics is a tool that 
aids and organizes our reasoning and beliefs about the world. If our statistical analysis not only 
contradicts our reasoning and beliefs, but also fails to change them, then something is wrong with 
our analysis. 

We have a prior belief that Han will make it through the asteroid field, because Han has survived 
every improbable situation so far. What makes Han Solo legendary is that no matter how unlikely 
survival seems, he always succeeds! 

The prior probability is often very controversial for data analysts outside of Bayesian analysis. 
Many people feel that just “making up” a prior is not objective. But this scene is an object chapter in 
why dismissing our prior beliefs is even more absurd. Imagine watching Empire for the first time, 



getting to this scene, and having a friend sincerely tell you, “Welp, Han is dead now.” There’s not a 
chance you’d think it was true. Remember that C-3PO isn’t entirely wrong about how unlikely 
survival is: if your friend said, “Welp, those TIE fighters are dead now,” you would likely chuckle in 
agreement. 

Right now, we have many reasons for believing Han will survive, but no numbers to back up that 
belief. Let’s try to put something together. 

We’ll start with some sort of upper bound on Han’s badassery. If we believed Han absolutely could 
not die, the movie would become predictable and boring. At the other end, our belief that Han will 
succeed is stronger than C-3PO’s belief that he won’t, so let’s say that our belief that Han will 
survive is 20,000 to 1. 

Figure 9-2 shows the distribution for our prior probability that Han will make it. 

 

Figure 9-2: The beta distribution representing the range of our prior belief in Han Solo’s survival 

This is another beta distribution, which we use for two reasons. First, our beliefs are very 
approximate, so we need to concede a variable rate of survival. Second, a beta distribution will 
make future calculations much easier. 

Now, with our likelihood and prior in hand, we can calculate our posterior probability in the next 
section. 



CREATING SUSPENSE WITH A POSTERIOR 
We have now established what C-3PO believes (the likelihood), and we’ve modeled our own beliefs 
in Han (the prior), but we need a way to combine these. By combining beliefs, we create 
our posterior distribution. In this case, the posterior models our sense of suspense upon learning the 
likelihood from C-3PO: the purpose of C-3PO’s analysis is in part to poke fun at his analytical 
thinking, but also to create a sense of real danger. Our prior alone would leave us completely 
unconcerned for Han, but when we adjust it based on C-3PO’s data, we develop a new belief that 
accounts for the real danger. 

The formula for the posterior is actually very simple and intuitive. Given that we have only a 
likelihood and a prior, we can use the proportional form of Bayes’ theorem that we discussed in the 
previous chapter: 

Posterior ∝ Likelihood × Prior 

Remember, using this proportional form of Bayes’ theorem means that our posterior distribution 
doesn’t necessarily sum to 1. But we’re lucky because there’s an easy way to combine beta 
distributions that will give us a normalized posterior when all we have is the likelihood and the 
prior. Combining our two beta distributions—one representing C-3PO’s data (the likelihood) and 
the other our prior belief in Han’s ability to survive anything (our prior)—in this way is remarkably 
easy: 

Beta (αposterior,βposterior) = Beta(αlikelihood + αprior, βlikelihood + βprior) 

We just add the alphas for our prior and posterior and the betas for our prior and posterior, and we 
arrive at a normalized posterior. Because this is so simple, working with the beta distribution is 
very convenient for Bayesian statistics. To determine our posterior for Han making it through the 
asteroid field, we can perform this simple calculation: 

Beta(20002,7401) = Beta(2 + 20000, 7400 + 1) 

Now we can visualize our new distribution for our data. Figure 9-3 plots our final posterior belief. 



 

Figure 9-3: Combining our likelihood with our prior gives us a more intriguing posterior. 

By combining the C-3PO belief with our Han-is-a-badass belief, we find that we have a far more 
reasonable position. Our posterior belief is a roughly 73 percent chance of survival, which means 
we still think Han has a good shot of making it, but we’re also still in suspense. 

What’s really useful is that we don’t simply have a raw probability for how likely Han is to make it, 
but rather a full distribution of possible beliefs. For many examples in the book, we’ve stuck to 
simply using a single value for our probabilities, but in practice, using a full distribution helps us to 
be flexible with the strength of our beliefs. 

WRAPPING UP 
In this chapter, you learned how important background information is to analyzing the data in front 
of you. C-3PO’s data provided us with a likelihood function that didn’t match up with our prior 
understanding of Han’s abilities. Rather than simply dismissing C-3PO, as Han famously does, we 
combine C-3PO’s likelihood with our prior to come up with an adjusted belief about the possibility 
of Han’s success. In Star Wars: The Empire Strikes Back, this uncertainty is vital for the tension the 
scene creates. If we completely believe C-3PO’s data or our own prior, we would either be nearly 
certain that Han would die or be nearly certain that he would survive without trouble. 



You also saw that you can use probability distributions, rather than a single probability, to express 
a range of possible beliefs. In later chapters in this book, you’ll look at these distributions in more 
detail to explore the uncertainty of your beliefs in a more nuanced way. 

EXERCISES 
Try answering the following questions to see if you understand how to combine prior probability 
and likelihood distributions to come up with an accurate posterior distribution; solutions to the 
questions can be found at https://nostarch.com/learnbayes/. 

1. A friend finds a coin on the ground, flips it, and gets six heads in a row and then one 
tails. Give the beta distribution that describes this. Use integration to determine the 
probability that the true rate of flipping heads is between 0.4 and 0.6, reflecting that the coin 
is reasonably fair. 

2. Come up with a prior probability that the coin is fair. Use a beta distribution such that 
there is at least a 95 percent chance that the true rate of flipping heads is between 0.4 and 
0.6. 

3. Now see how many more heads (with no more tails) it would take to convince you 
that there is a reasonable chance that the coin is not fair. In this case, let’s say that this 
means that our belief in the rate of the coin being between 0.4 and 0.6 drops below 0.5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

PART III 
PARAMETER ESTIMATION 
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INTRODUCTION TO AVERAGING AND PARAMETER 

ESTIMATION 

 

This chapter introduces you to parameter estimation, an essential part of statistical inference where 
we use our data to guess the value of an unknown variable. For example, we might want to estimate 
the probability of a visitor on a web page making a purchase, the number of jelly beans in a jar at a 
carnival, or the location and momentum of a particle. In all of these cases, we have an unknown 
value we want to estimate, and we can use information we have observed to make a guess. We refer 
to these unknown values as parameters, and the process of making the best guess about these 
parameters as parameter estimation. 

We’ll focus on averaging, which is the most basic form of parameter estimation. Nearly everyone 
understands that taking an average of a set of observations is the best way to estimate a true value, 
but few people really stop to ask why this works—if it really does at all. We need to prove that we 
can trust averaging, because in later chapters, we build it into more complex forms of parameter 
estimation. 

ESTIMATING SNOWFALL 
Imagine there was a heavy snow last night and you’d like to figure out exactly how much snow fell, 
in inches, in your yard. Unfortunately, you don’t have a snow gauge that will give you an accurate 
measurement. Looking outside, you see that the wind has blown the snow around a bit overnight, 
meaning it isn’t uniformly smooth. You decide to use a ruler to measure the depth at seven roughly 
random locations in your yard. You come up with the following measurements (in inches): 

6.2, 4.5, 5.7, 7.6, 5.3, 8.0, 6.9 

The snow has clearly shifted around quite a bit and your yard isn’t perfectly level either, so your 
measurements are all pretty different. Given that, how can we use these measurements to make a 
good guess as to the actual snowfall? 

This simple problem is a great example case for parameter estimation. The parameter we’re 
estimating is the actual depth of the snowfall from the previous night. Note that, since the wind has 
blown the snow around and you don’t have a snow gauge, we can never know the exactamount of 
snow that fell. Instead, we have a collection of data that we can combine using probability, to 
determine the contribution of each observation to our estimate, in order to help us make the best 
possible guess. 



Averaging Measurements to Minimize Error 

You first instinct is probably to average these measurements. In grade school, we learn to average 
elements by adding them up and dividing the sum by the total number of elements. So if there 
are n measurements, each labeled as mi where i is the ith measurement, we get: 

 

If we plug in our data, we get the following solution: 

 

So, given our seven observations, our best guess is that about 6.31 inches of snow fell. 

Averaging is a technique embedded in our minds from childhood, so its application to this problem 
seems obvious, but in actuality, it’s hard to reason about why it works and what it has to do with 
probability. After all, each of our measurements is different, and all of them are likely different from 
the true value of the snow that fell. For many centuries, even great mathematicians feared that 
averaging data compounds all of these erroneous measurements, making for a very inaccurate 
estimate. 

When we estimate parameters, it’s vital that we understand why we’re making a decision; 
otherwise, we risk using an estimate that may be unintentionally biased or otherwise wrong in a 
systematic way. One error commonly made in statistics is to blindly apply procedures without 
understanding them, which frequently leads to applying the wrong solution to a problem. 
Probability is our tool for reasoning about uncertainty, and parameter estimation is perhaps the 
most common process for dealing with uncertainty. Let’s dive a little deeper into averaging to see if 
we can become more confident that it is the correct path. 

Solving a Simplified Version of Our Problem 

Let’s simplify our snowfall problem a bit: rather than imagining all possible depths of snow, 
imagine the snow falling into nice, uniform blocks so that your yard forms a simple two-
dimensional grid. Figure 10-1 shows this perfectly even, 6-inch-deep snowfall, visualized from the 
side (rather than as a bird’s-eye view). 



 

Figure 10-1: Visualizing a perfectly uniform, discrete snowfall 

This is the perfect scenario. We don’t have an unlimited number of possible measurements; instead, 
we sample our six possible locations, and each location has only one possible measurement—6 
inches. Obviously, averaging works in this case, because no matter how we sample from this data, 
our answer will always be 6 inches. 

Compare that to Figure 10-2, which illustrates the data when we include the windblown snow 
against the left side of your house. 



 

Figure 10-2: Representing the snow shifted by the wind 

Now, rather than having a nice, smooth surface, we’ve introduced some uncertainty into our 
problem. Of course, we’re cheating because we can easily count each block of snow and know 
exactly how much snow has fallen, but we can use this example to explore how we would reason 
about an uncertain situation. Let’s start investigating our problem by measuring each of the blocks 
in your yard: 



8, 7, 6, 6, 5, 4 

Next, we want to associate some probabilities with each value. Since we’re cheating and know the 
true value of the snowfall is 6 inches, we’ll also record the difference between the observation and 
the true value, known as the error value (see Table 10-1). 

Table 10-1: Our Observations, and Their Frequencies and Differences from Truth 

Observation Difference from truth Probability 

8 2 1/6 

7 1 1/6 

6 0 2/6 

5 –1 1/6 

4 –2 1/6 

Looking at the distance from the true measurement for each possible observation, we can see that 
the probability of overestimating by a certain value is balanced out by the probability of an 
undervalued measurement. For example, there is a 1/6 probability of picking a measurement that 
is 2 inches higher than the true value, but there’s an equally probable chance of picking a 
measurement that is 2 inches lower than the true measurement. This leads us to our first key 
insight into why averaging works: errors in measurement tend to cancel each other out. 

Solving a More Extreme Case 

With such a smooth distribution of errors, the previous scenario might not have convinced you that 
errors cancel out in more complex situations. To demonstrate how this effect still holds in other 
cases, let’s look at a much more extreme example. Suppose the wind has blown 21 inches of snow to 
one of the six squares and left only 3 inches at each of the remaining squares, as shown in Figure 
10-3. 



 



Figure 10-3: A more extreme case of wind shifting the snow 

Now we have a very different distribution of snowfall. For starters, unlike the preceding example, 
none of the values we can sample from have the true level of snowfall. Also, our errors are no 
longer nicely distributed—we have a bunch of lower-than-anticipated measurements and one 
extremely high measurement. Table 10-2 shows the possible measurements, the difference from 
the true value, and the probability of each measurement. 

Table 10-2: Observations, Differences, and Probabilities for Our Extreme Example 

Observation Difference from truth Probability 

21 15 1/6 

3 –3 5/6 

We obviously can’t just match up one observation’s error value with another’s and have them 
cancel out. However, we can use probability to show that even in this extreme distribution, our 
errors still cancel each other out. We can do this by thinking of each error measurement as a value 
that’s being voted on by our data. The probability of each error observed is how strongly we believe 
in that error. When we want to combine our observations, we can consider the probability of the 
observation as a value representing the strength of its vote toward the final estimate. In this case, 
the error of –3 inches is five times more likely than the error of 15 inches, so –3 gets weighted more 
heavily. So, if we were taking a vote, –3 would get five votes, whereas 15 would only get one vote. 
We combine all of the votes by multiplying each value by its probability and adding them together, 
giving us a weighted sum. In the extreme case where all the values are the same, we would just have 
1 multiplied by the value observed and the result would just be that value. In our example, we get: 

 

The errors in each observation cancel out to 0! So, once again, we find that it doesn’t matter if none 
of the possible values is a true measurement or if the distribution of errors is uneven. When we 
weight our observations by our belief in that observation, the errors tend to cancel each other out. 

Estimating the True Value with Weighted Probabilities 

We are now fairly confident that errors from our true measurements cancel out. But we still have a 
problem: we’ve been working with the errors from the true observation, but to use these we need 
to know the true value. When we don’t know the true value, all we have to work with are our 
observations, so we need to see if the errors still cancel out when we have the weighted sum of our 
original observations. 

To demonstrate that our method works, we need some “unknown” true values. Let’s start with the 
following errors: 

2, 1, –1, –2 

Since the true measurement is unknown, we’ll represent it with the variable t, then add the error. 
Now we can weight each of these observations by its probability: 

 



All we’ve done here is add our error to our constant value t, which represents our true measure, 
then weight each of the results by its probability. We’re doing this to see if we can still get our 
errors to cancel out and leave us with just the value t. If so, we can expect errors to cancel out even 
when we’re just averaging raw observations. 

Our next step is to apply the probability weight to the values in our terms to get one long 
summation: 

 

Now if we reorder these terms so that all the errors are together, we can see that our errors will 
still cancel out, and the weighted t value sums up to just t, our unknown true value: 

 

This shows that even when we define our measurements as an unknown true value t and add some 
error value, the errors still cancel out! We are left with just the t in the end. Even when we don’t 
know what our true measurement or true error is, when we average our values the errors tend to 
cancel out. 

In practice, we typically can’t sample the entire space of possible measurements, but the more 
samples we have, the more the errors are going to cancel out and, in general, the closer our 
estimate will be to the true value. 

Defining Expectation, Mean, and Averaging 

What we’ve arrived at here is formally called the expectation or mean of our data. It is simply the 
sum of each value weighted by its probability. If we denote each of our measurements as xi and the 
probability of each measurement as pi, we mathematically define the mean—which is generally 
represented by μ (the lowercase Greek letter mu)—as follows: 

 

To be clear, this is the exact same calculation as the averaging we learned in grade school, just with 
notation to make the use of probability more explicit. As an example, to average four numbers, in 
school we wrote it as: 

 

which is identical to writing: 

 

or we can just say pi = 1/4 and write it as: 

 

So even though the mean is really just the average nearly everyone is familiar with, by building it up 
from the principles of probability, we see why averaging our data works. No matter how the errors 
are distributed, the probability of errors at one extreme is canceled out by probabilities at the other 



extreme. As we take more samples, the averages are more likely to cancel out and we start to 
approach the true measurement we’re looking for. 

MEANS FOR MEASUREMENT VS. MEANS FOR SUMMARY 
We’ve been using our mean to estimate a true measurement from a distribution of observations 
with some added error. But the mean is often used as a way to summarize a set of data. For 
example, we might refer to things like: 

• The mean height of a person 

• The average price of a home 

• The average age of a student 

In all of these cases, we aren’t using mean as a parameter estimate for a single true measurement; 
instead, we’re summarizing the properties of a population. To be precise, we’re estimating a 
parameter of some abstract property of these populations that may not even be real. Even though 
mean is a very simple and well-known parameter estimate, it can be easily abused and lead to 
strange results. 

A fundamental question you should always ask yourself when averaging data is: “What exactly am I 
trying to measure and what does this value really mean?” For our snowfall example, the answer is 
easy: we’re trying to estimate how much snow actually fell last night before the wind blew it 
around. However, when we’re measuring the “average height,” the answer is less clear. There is no 
such thing as an average person, and the differences in heights we observe aren’t errors—they’re 
truly different heights. A person isn’t 5’5” because part of their height drifted onto a 6’3” person! 

If you were building an amusement park and wanted to know what height restrictions to put on a 
roller coaster so that at least half of all visitors could ride it, then you have a real value you are 
trying to measure. However, in that case, the mean suddenly becomes less helpful. A better 
measurement to estimate is the probability that someone entering your park will be taller than x, 
where x is the minimum height to ride a roller coaster. 

All of the claims I’ve made in this chapter assume we are talking about trying to measure a specific 
value and using the average to cancel the errors out. That is, we’re using averaging as a form of 
parameter estimation, where our parameter is an actual value that we simply can never know. 
While averaging can also be useful to summarize large sets of data, we can no longer use the 
intuition of “errors canceling out” because the variation in the data is genuine, meaningful variation 
and not error in a measurement. 

WRAPPING UP 
In this chapter, you learned that you can trust your intuition about averaging out your 
measurements in order to make a best estimate of an unknown value. This is true because errors 
tend to cancel out. We can formalize this notion of averaging into the idea of the expectation or 
mean. When we calculate the mean, we are weighting all of our observations by the probability of 
observing them. Finally, even though averaging is a simple tool to understand, we should always 
identify and understand what we’re trying to determine by averaging; otherwise, our results may 
end up being invalid. 

 

 



EXERCISES 
Try answering the following questions to see how well you understand averaging to estimate an 
unknown measurement. The solutions can be found at https://nostarch.com/learnbayes/. 

1. It’s possible to get errors that don’t quite cancel out the way we want. In the 
Fahrenheit temperature scale, 98.6 degrees is the normal body temperature and 100.4 
degrees is the typical threshold for a fever. Say you are taking care of a child that feels warm 
and seems sick, but you take repeated readings from the thermometer and they all read 
between 99.5 and 100.0 degrees: warm, but not quite a fever. You try the thermometer 
yourself and get several readings between 97.5 and 98. What could be wrong with the 
thermometer? 

2. Given that you feel healthy and have traditionally had a very consistently normal 
temperature, how could you alter the measurements 100, 99.5, 99.6, and 100.2 to estimate if 
the child has a fever? 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



11 

MEASURING THE SPREAD OF OUR DATA 

 

In this chapter, you’ll learn three different methods—mean absolute deviation, variance, and 
standard deviation—for quantifying the spread, or the different extremes, of your observations. 

In the previous chapter, you learned that the mean is the best way to guess the value of an 
unknown measurement, and that the more spread out our observations, the more uncertain we are 
about our estimate of the mean. As an example, if we’re trying to figure out the location of a 
collision between two cars based only on the spread of the remaining debris after the cars have 
been towed away, then the more spread out the debris, the less sure we’d be of where precisely the 
two cars collided. 

Because the spread of our observations is related to the uncertainty in the measurement, we need 
to be able to quantify it so we can make probabilistic statements about our estimates (which you’ll 
learn how to do in the next chapter). 

DROPPING COINS IN A WELL 
Say you and a friend are wandering around the woods and stumble across a strange-looking old 
well. You peer inside and see that it seems to have no bottom. To test it, you pull a coin from your 
pocket and drop it in, and sure enough, after a few seconds you hear a splash. From this, you 
conclude that the well is deep, but not bottomless. 

With the supernatural discounted, you and your friend are now equally curious as to how deep the 
well actually is. To gather more data, you grab five more coins from your pocket and drop them in, 
getting the following measurements in seconds: 

3.02, 2.95, 2.98, 3.08, 2.97 

As expected, you find some variation in your results; this is primarily due to the challenge of 
making sure you drop the coin from the same height and time then record the splash correctly. 

Next, your friend wants to try his hand at getting some measurements. Rather than picking five 
similarly sized coins, he grabs a wider assortment of objects, from small pebbles to twigs. Dropping 
them in the well, your friend gets the following measurements: 

3.31, 2.16, 3.02, 3.71, 2.80 

Both of these samples have a mean (μ) of about 3 seconds, but your measurements and your 
friend’s measurements are spread to different degrees. Our aim in this chapter is to come up with a 



way to quantify the difference between the spread of your measurements and the spread of your 
friend’s. We’ll use this result in the next chapter to determine the probability of certain ranges of 
values for our estimate. 

For the rest of this chapter we’ll indicate when we’re talking about the first group of values (your 
observations) with the variable a and the second group (your friend’s observations) with the 
variable b. For each group, each observation is denoted with a subscript; for example, a2 is the 
second observation from group a. 

FINDING THE MEAN ABSOLUTE DEVIATION 
We’ll begin by measuring the spread of each observation from the mean (μ). The mean for 
both aand b is 3. Since μ is our best estimate for the true value, it makes sense to start quantifying 
the difference in the two spreads by measuring the distance between the mean and each of the 
values. Table 11-1 displays each observation and its distance from the mean. 

Table 11-1: Your and Your Friend’s Observations and Their Distances from the Mean 

Observation Difference from mean 

Group a   

3.02 0.02 

2.95 –0.05 

2.98 –0.02 

3.08 0.08 

2.97 –0.03 

Group b   

3.31 0.31 

2.16 –0.84 

3.02 0.02 

3.71 0.71 

2.80 –0.16 

NOTE 

The distance from the mean is different than the error value, which is the distance from the true value 
and is unknown in this case. 



A first guess at how to quantify the difference between the two spreads might be to just sum up 
their differences from the mean. However, when we try this out, we find that the sum of the 
differences for both sets of observations is exactly the same, which is odd given the notable 
difference in the spread of the two data sets: 

 

The reason we can’t simply sum the differences from the mean is related to why the mean works in 
the first place: as we know from Chapter 10, the errors tend to cancel each other out. What we need 
is a mathematical method that makes sure our differences don’t cancel out without affecting the 
validity of our measurements. 

The reason the differences cancel out is that some are negative and some are positive. So, if we 
convert all the differences to positives, we can eliminate this problem without invalidating the 
values. 

The most obvious way to do this is to take the absolute value of the differences; this is the number’s 
distance from 0, so the absolute value of 4 is 4, and the absolute value of –4 is also 4. This gives us 
the positive version of our negative numbers without actually changing them. To represent an 
absolute value, we enclose the value in vertical lines, as in | –6 | = | 6 | = 6. 

If we take the absolute value of the differences in Table 11-1 and use those in our calculation 
instead, we get a result we can work with: 

 

Try working this out by hand, and you should get the same results. This is a more useful approach 
for our particular situation, but it applies only when the two sample groups are the same size. 

Imagine we had 40 more observations for group a—let’s say 20 observations of 2.9 and 20 of 3.1. 
Even with these additional observations, the data in group a seems less spread out than the data in 
group b, but the absolute sum of group a is now 85.19 simply because it has more observations! 

To correct for this, we can normalize our values by dividing by the total number of observations. 
Rather than dividing, though, we’ll just multiply by 1 over the total, which is known as multiplying 
the reciprocal and looks like this: 

 

Now we have a measurement of the spread that isn’t dependent on the sample size! The 
generalization of this approach is as follows: 

 

Here we’ve calculated the mean of the absolute differences between our observations and the 
mean. This means that for group a the average observation is 0.04 from the mean, and for 
group b it’s about 0.416 seconds from the mean. We call the result of this formula the mean absolute 
deviation (MAD). The MAD is a very useful and intuitive measure of how spread out your 
observations are. Given that group a has a MAD of 0.04 and group b around 0.4, we can now say 
that group b is about 10 times as spread out as group a. 



FINDING THE VARIANCE 
Another way to mathematically make all of our differences positive without invalidating the data is 
to square them: (xi – μ)2. This method has at least two benefits over using MAD. 

The first benefit is a bit academic: squaring values is much easier to work with mathematically than 
taking their absolute value. In this book, we won’t take advantage of this directly, but for 
mathematicians, the absolute value function can be a bit annoying in practice. 

The second, and more practical, reason is that squaring results in having an exponential penalty, 
meaning measurements very far away from the mean are penalized much more. In other words, 
small differences aren’t nearly as important as big ones, as we would feel intuitively. If someone 
scheduled your meeting in the wrong room, for example, you wouldn’t be too upset if you ended up 
next door to the right room, but you’d almost certainly be upset if you were sent to an office on the 
other side of the country. 

If we substitute the absolute value for the squared difference, we get the following: 

 

This formula, which has a very special place in the study of probability, is called the variance. Notice 
that the equation for variance is exactly the same as MAD except that the absolute value function in 
MAD has been replaced with squaring. Because it has nicer mathematical properties, variance is 
used much more frequently in the study of probability than MAD. We can see how different our 
results look when we calculate their variance: 

Var(group a) = 0.002, Var(group b) = 0.269 

Because we’re squaring, however, we no longer have an intuitive understanding of what the results 
of variance mean. MAD gave us an intuitive definition: this is the average distance from the mean. 
Variance, on the other hand, says: this is the average squared difference. Recall that when we used 
MAD, group b was about 10 times more spread out than group a, but in the case of variance, 
group b is now 100 times more spread out! 

FINDING THE STANDARD DEVIATION 
While in theory variance has many properties that make it useful, in practice it can be hard to 
interpret the results. It’s difficult for humans to think about what a difference of 0.002 seconds 
squared means. As we’ve mentioned, the great thing about MAD is that the result maps quite well to 
our intuition. If the MAD of group b is 0.4, that means that the average distance between any given 
observation and the mean is literally 0.4 seconds. But averaging over squared differences doesn’t 
allow us to reason about a result as nicely. 

To fix this, we can take the square root of the variance in order to scale it back into a number that 
works with our intuition a bit better. The square root of a variance is called the standard 
deviationand is represented by the lowercase Greek letter sigma (σ). It is defined as follows: 

 

The formula for standard deviation isn’t as scary as it might seem at first. Looking at all of the 
different parts, given that our goal is to numerically represent how spread out our data is, we can 
see that: 



1. We want the difference between our data and the mean, xi – μ. 

2. We need to convert negative numbers to positives, so we take the square, (xi – μ)2. 

3. We need to add up all the differences: 

 
4. We don’t want the sum to be affected by the number of observations, so we normalize 
it with 1/n. 

5. Finally, we take the square root of everything so that the numbers are closer to what 
they would be if we used the more intuitive absolute distance. 

If we look at the standard deviation for our two groups, we can see that it’s very similar to the MAD: 

σ(group a) = 0.046, σ(group b) = 0.519 

The standard deviation is a happy medium between the intuitiveness of MAD and the mathematical 
ease of variance. Notice that, just like with MAD, the difference in the spread between b and a is a 
factor of 10. The standard deviation is so useful and ubiquitous that, in most of the literature on 
probability and statistics, variance is defined simply as σ2, or sigma squared! 

So we now have three different ways of measuring the spread of our data. We can see the results 
in Table 11-2. 

Table 11-2: Measurements of Spread by Method 

Method of measuring spread Group a Group b 

Mean absolute deviations 0.040 0.416 

Variance 0.002 0.269 

Standard deviation 0.046 0.519 

None of these methods for measuring spread is more correct than any other. By far the most 
commonly used value is the standard deviation, because we can use it, together with the mean, to 
define a normal distribution, which in turn allows us to define explicit probabilities to possible true 
values of our measurements. In the next chapter, we’ll take a look at the normal distribution and 
see how it can help us understand our level of confidence in our measurements. 

WRAPPING UP 
In this chapter, you learned three methods for quantifying the spread of a group of observations. 
The most intuitive measurement of the spread of values is the mean absolute deviation (MAD), 
which is the average distance of each observation from the mean. While intuitive, MAD isn’t as 
useful mathematically as the other options. 

The mathematically preferred method is the variance, which is the squared difference of our 
observations. But when we calculate the variance, we lose the intuitive feel for what our calculation 
means. 

Our third option is to use the standard deviation, which is the square root of the variance. The 
standard deviation is mathematically useful and also gives us results that are reasonably intuitive. 



EXERCISES 
Try answering the following questions to see how well you understand these different methods of 
measuring the spread of data. The solutions can be found at https://nostarch.com/learnbayes/. 

1. One of the benefits of variance is that squaring the differences makes the penalties 
exponential. Give some examples of when this would be a useful property. 

2. Calculate the mean, variance, and standard deviation for the following values: 1, 2, 3, 
4, 5, 6, 7, 8, 9, 10. 
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THE NORMAL DISTRIBUTION 

 

In the previous two chapters, you learned about two very important concepts: mean (μ), which 
allows us to estimate a measurement from various observations, and standard deviation (σ), which 
allows us to measure the spread of our observations. 

On its own, each concept is useful, but together, they are even more powerful: we can use them as 
parameters for the most famous probability distribution of all, the normal distribution. 

In this chapter you’ll learn how to use the normal distribution to determine an exact probability for 
your degree of certainty about one estimate proving true compared to others. The true goal of 
parameter estimation isn’t simply to estimate a value, but rather to assign a probability for 
a range of possible values. This allows us to perform more sophisticated reasoning with uncertain 
values. 

We established in the preceding chapter that the mean is a solid method of estimating an unknown 
value based on existing data, and that the standard deviation can be used to measure the spread of 
that data. By measuring the spread of our observations, we can determine how confidently we 
believe in our mean. It makes sense that the more spread out our observations, the less sure we are 
in our mean. The normal distribution allows us to precisely quantify how certain we are in various 
beliefs when taking our observations into account. 

MEASURING FUSES FOR DASTARDLY DEEDS 
Imagine a mustachioed cartoon villain wants to set off a bomb to blow a hole in a bank vault. 
Unfortunately, he has only one bomb, and it’s rather large. He knows that if he gets 200 feet away 
from the bomb, he can escape to safety. It takes him 18 seconds to make it that far. If he’s any closer 
to the bomb, he risks death. 

Although the villain has only one bomb, he has six fuses of equal size, so he decides to test out five 
of the six fuses, saving the last one for the bomb. The fuses are all the same size and should take the 
same amount of time to burn through. He sets off each fuse and measures how long it takes to burn 
through to make sure he has the 18 seconds he needs to get away. Of course, being in a rush leads 
to some inconsistent measurements. Here are the times he recorded (in seconds) for each fuse to 
burn through: 19, 22, 20, 19, 23. 

So far so good: none of the fuses takes less than 18 seconds to burn. Calculating the mean gives us μ 
= 20.6, and calculating the standard deviation gives us σ = 1.62. 

But now we want to determine a concrete probability for how likely it is that, given the data we 
have observed, a fuse will go off in less than 18 seconds. Since our villain values his life even more 



than the money, he wants to be 99.9 percent sure he’ll survive the blast, or he won’t attempt the 
heist. 

In Chapter 10, you learned that the mean is a good estimate for the true value given a set of 
measurements, but we haven’t yet come up with any way to express how strongly we believe this 
value to be true. 

In Chapter 11, you learned that you can quantify how spread out your observations are by 
calculating the standard deviation. It seems rational that this might also help us figure out how 
likely the alternatives to our mean might be. For example, suppose you drop a glass on the floor and 
it shatters. When you’re cleaning up, you might search adjacent rooms based on how dispersed the 
pieces of glass are. If, as shown in Figure 12-1, the pieces are very close together, you would feel 
more confident that you don’t need to check for glass in the next room. 

 

Figure 12-1: When the broken pieces are closer together, you’re more sure of where to clean up. 

However, if the glass pieces are widely dispersed, as in Figure 12-2, you’ll likely want to sweep 
around the entrance of the next room, even if you don’t immediately see broken glass there. 
Likewise, if the villain’s fuse timings are very spread out, even if he didn’t observe any fuses lasting 
less than 18 seconds, it’s possible that the real fuse could still burn through in less than 18 seconds. 



 

Figure 12-2: When the pieces are spread out, you’re less sure of where they might be. 

When observations are scattered visually, we intuitively feel that there might be other observations 
at the extreme limits of what we can see. We are also less confident in exactly where the center is. 
In the glass example, it’s harder to be sure of where the glass fell if you weren’t there to witness the 
fall and the glass fragments are dispersed widely. 

We can quantify this intuition with the most studied and well-known probability distribution: the 
normal distribution. 

THE NORMAL DISTRIBUTION 
The normal distribution is a continuous probability distribution (like the beta distribution 
in Chapter 5) that best describes the strength of possible beliefs in the value of an uncertain 
measurement, given a known mean and standard deviation. It takes μ and σ (the mean and 
standard deviation, respectively) as its only two parameters. A normal distribution with μ = 0 and σ 
= 1 has a bell shape, as shown in Figure 12-3. 



 

Figure 12-3: A normal distribution with μ = 0 and σ = 1 

As you can see, the center of the normal distribution is its mean. The width of a normal distribution 
is determined by its standard deviation. Figures 12-4 and 12-5 show normal distributions with μ = 
0 and σ = 0.5 and 2, respectively. 



 

Figure 12-4: A normal distribution with μ = 0 and σ = 0.5 



 

Figure 12-5: A normal distribution with μ = 0 and σ = 2 

As the standard deviation shrinks, so does the width of the normal distribution. 

The normal distribution, as we’ve discussed, reflects how strongly we believe in our mean. So, if our 
observations are more scattered, we believe in a wider range of possible values and have less 
confidence in the central mean. Conversely, if all of our observations are more or less the same 
(meaning a small σ), we believe our estimate is pretty accurate. 

When the only thing we know about a problem is the mean and standard deviation of the data we 
have observed, the normal distribution is the most honest representation of our state of beliefs. 

SOLVING THE FUSE PROBLEM 
Going back to our original problem, we have a normal distribution with μ = 20.6 and σ = 1.62. We 
don’t really know anything else about the properties of the fuses beyond the recorded burn times, 
so we can model the data with a normal distribution using the observed mean and standard 
deviation (see Figure 12-6). 



 

Figure 12-6: A normal distribution with μ = 20.6 and σ = 1.62 

The question we want to answer is: what is the probability, given the data observed, that the fuse 
will run for 18 seconds or less? To solve this problem, we need to use the probability density 
function (PDF), a concept you first learned about in Chapter 5. The PDF for the normal distribution 
is: 

 

And to get the probability, we need to integrate this function over values less than 18: 

 

You can imagine integration as simply taking the area under the curve for the region you’re 
interested in, as shown in Figure 12-7. 



 

Figure 12-7: The area under the curve that we’re interested in 

The area of the shaded region represents the probability of the fuse lasting 18 seconds or less given 
the observations. Notice that even though none of the observed values was less than 18, because of 
the spread of the observations, the normal distribution in Figure 12-6 shows that a value of 18 or 
less is still possible. By integrating over all values less than 18, we can calculate the probability that 
the fuse will not last as long as our villain needs it to. 

Integrating this function by hand is not an easy task. Thankfully, we have R to do the integration for 
us. 

Before we do this, though, we need to determine what number to start integrating from. The 
normal distribution is defined on the range of all possible values from negative infinity (–∞) to 
infinity (∞). So in theory what we want is: 

 

But obviously we cannot integrate our function from negative infinity on a computer! Luckily, as 
you can see in Figures 12-6 and 12-7, the probability density function becomes an incredibly small 
value very quickly. We can see that the line in the PDF is nearly flat at 10, meaning there is virtually 
no probability in this region, so we can just integrate from 10 to 18. We could also choose a lower 
value, like 0, but because there’s effectively no probability in this region, it won’t change our result 
in any meaningful way. In the next section, we’ll discuss a heuristic that makes choosing a lower or 
upper bound easier. 



We’ll integrate this function using R’s integrate() function and the dnorm() function (which is just R’s 
function for the normal distribution PDF), calculating the PDF of the normal distribution as follows: 

integrate(function(x) dnorm(x,mean=20.6,sd=1.62),10,18) 
0.05425369 with absolute error < 3e-11 

Rounding the value, we can see that P(fuse time < 18) = 0.05, telling us there is a 5 percent chance 
that the fuse will last 18 seconds or less. Even villains value their own lives, and in this case our 
villain will attempt the bank robbery only if he is 99.9 percent sure that he can safely escape the 
blast. For today then, the bank is safe! 

The power of the normal distribution is that we can reason probabilistically about a wide range of 
possible alternatives to our mean, giving us an idea of how realistic our mean is. We can use the 
normal distribution any time we want to reason about data for which we know only the mean and 
standard deviation. 

However, this is also the danger of the normal distribution. In practice, if you have information 
about your problem besides the mean and standard deviation, it is usually best to make use of that. 
We’ll see an example of this in a later section. 

SOME TRICKS AND INTUITIONS 
While R makes integrating the normal distribution significantly easier than trying to solve the 
integral by hand, there’s a very useful trick that can simplify things even further when you’re 
working with the normal distribution. For any normal distribution with a known mean and 
standard deviation, you can estimate the area under the curve around μ in terms of σ. 

For example, the area under the curve for the range from μ – σ (one standard deviation less than 
the mean) to μ + σ (one standard deviation greater than the mean) holds 68 percent of the mass of 
the distribution. 

This means that 68 percent of the possible values fall within ± one standard deviation of the mean, 
as shown in Figure 12-8. 



 

Figure 12-8: Sixty-eight percent of the probability density (area under the curve) lies between one 
standard deviation of the mean in either direction. 

We can continue by increasing our distance from the mean by multiples of σ. Table 12-1 gives 
probabilities for these other areas. 

Table 12-1: Areas Under the Curve for Different Means 

Distance from the mean Probability 

σ 68 percent 

2σ 95 percent 

3σ 99.7 percent 

This little trick is very useful for quickly assessing the likelihood of a value given even a small 
sample. All you need is a calculator to easily figure out the μ and σ, which means you can do some 
pretty accurate estimations even in the middle of a meeting! 

As an example, when measuring snowfall in Chapter 10 we had the following measurements: 6.2, 
4.5, 5.7, 7.6, 5.3, 8.0, 6.9. For these measurements, the mean is 6.31 and the standard deviation is 
1.17. This means that we can be 95 percent sure that the true value of the snowfall was somewhere 
between 3.97 inches (6.31 – 2 × 1.17) and 8.65 inches (6.31 + 2 × 1.17). No need to manually 
calculate an integral or boot up a computer to use R! 



Even when we do want to use R to integrate, this trick can be useful for determining a minimum or 
maximum value to integrate from or to. For example, if we want to know the probability that the 
villain’s bomb fuse will last longer than 21 seconds, we don’t want to have to integrate from 21 to 
infinity. What can we use for our upper bound? We can integrate from 21 to 25.46 (which is 20.6 + 
3 × 1.62), which is 3 standard deviations from our mean. Being three standard deviations from the 
mean will account for 99.7 percent of our total probability. The remaining 0.3 percent lies on either 
side of the distribution, so only half of that, 0.15 percent of our probability density, lies in the region 
greater than 25.46. So if we integrate from 21 to 25.46, we’ll only be missing a tiny amount of 
probability in our result. Clearly, we could easily use R to integrate from 21 to something really safe 
such as 30, but this trick allows us to figure out what “really safe” means. 

“N SIGMA” EVENTS 
You may have heard an event being described in terms of sigma events, such as “the fall of the stock 
price was an eight-sigma event.” What this expression means is that the observed data is eight 
standard deviations from the mean. We saw the progression of one, two, and three standard 
deviations from the mean in Table 12-1, which were values at 68, 95, and 99.7 percent, 
respectively. You can easily intuit from this that an eight-sigma event must be extremely unlikely. In 
fact, if you ever observe data that is five standard deviations from the mean, it’s likely a good sign 
that your normal distribution is not modeling the underlying data accurately. 

To show the growing rarity of an event as it increases by n sigma, say you are looking at events you 
might observe on a given day. Some are very common, such as waking up to the sunrise. Others are 
less common, such as waking up and it being your birthday. Table 12-2 shows how many days it 
would take to expect the event to happen per one sigma increase. 

Table 12-2: Rarity of an Event as It Increases by n Sigma 

(–/+) Distance from the mean Expected every . . . 

σ 3 days 

2σ 3 weeks 

3σ 1 year 

4σ 4 decades 

5σ 5 millennia 

6σ 1.4 million years 

So a three-sigma event is like waking up and realizing it’s your birthday, but a six-sigma event is 
like waking up and realizing that a giant asteroid is crashing toward earth! 

THE BETA DISTRIBUTION AND THE NORMAL DISTRIBUTION 
You may remember from Chapter 5 that the beta distribution allows us to estimate the true 
probability given that we have observed α desired outcomes and β undesired outcomes, where the 



total number of outcomes is α + β. Based on that, you might take some issue with the notion that the 
normal distribution is truly the best method to model parameter estimation given that we know 
only the mean and standard deviation of any given data set. After all, we could describe a situation 
where α = 3 and β = 4 by simply observing three values of 1 and four values of 0. This would give us 
μ = 0.43 and σ = 0.53. We can then compare the beta distribution with α = 3 and β = 4 to a normal 
distribution with μ = 0.43 and σ = 0.53, as shown in Figure 12-9. 

 

Figure 12-9: Comparing the beta distribution to the normal distribution 

It’s clear that these distributions are quite different. We can see that for both distributions the 
center of mass appears in roughly the same place, but the bounds for the normal distribution 
extend way beyond the limits of our graph. This demonstrates a key point: only when you know 
nothing about the data other than its mean and variance is it safe to assume a normal distribution. 

For the beta distribution, we know that the value we’re looking for must lie in the range 0 to 1. The 
normal distribution is defined from –∞ to ∞, which often includes values that cannot possibly exist. 
However, in most cases this is not practically important because measurements out that far are 



essentially impossible in probabilistic terms. But for our example of measuring the probability of an 
event happening, this missing information is important for modeling our problem. 

So, while the normal distribution is a very powerful tool, it is no substitute for having more 
information about a problem. 

WRAPPING UP 
The normal distribution is an extension of using the mean for estimating a value from observations. 
The normal distribution combines the mean and the standard deviation to model how spread out 
our observations are from the mean. This is important because it allows us to reason about the 
error in our measurements in a probabilistic way. Not only can we use the mean to make our best 
guess, but we can also make probabilistic statements about ranges of possible values for our 
estimate. 

EXERCISES 
Try answering the following questions to see how well you understand the normal distribution. The 
solutions can be found at https://nostarch.com/learnbayes/. 

1. What is the probability of observing a value five sigma greater than the mean or 
more? 

2. A fever is any temperature greater than 100.4 degrees Fahrenheit. Given the 
following measurements, what is the probability that the patient has a fever? 

100.0, 99.8, 101.0, 100.5, 99.7 

3. Suppose in Chapter 11 we tried to measure the depth of a well by timing coin drops 
and got the following values: 

2.5, 3, 3.5, 4, 2 

The distance an object falls can be calculated (in meters) with the following formula: 

distance = 1/2 × G × time2 

where G is 9.8 m/s/s. What is the probability that the well is over 500 meters deep? 

4. What is the probability there is no well (i.e., the well is really 0 meters deep)? You’ll 
notice that probability is higher than you might expect, given your observation that there is a 
well. There are two good explanations for this probability being higher than it should. The 
first is that the normal distribution is a poor model for our measurements; the second is 
that, when making up numbers for an example, I chose values that you likely wouldn’t see in 
real life. Which is more likely to you? 
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TOOLS OF PARAMETER ESTIMATION: THE PDF, CDF, AND 

QUANTILE FUNCTION 

 

In this part so far, we’ve focused heavily on the building blocks of the normal distribution and its 
use in estimating parameters. In this chapter, we’ll dig in a bit more, exploring some mathematical 
tools we can use to make better claims about our parameter estimates. We’ll walk through a real-
world problem and see how to approach it in different ways using a variety of metrics, functions, 
and visualizations. 

This chapter will cover more on the probability density function (PDF); introduce the cumulative 
distribution function (CDF), which helps us more easily determine the probability of ranges of 
values; and introduce quantiles, which divide our probability distributions into parts with equal 
probabilities. For example, a percentile is a 100-quantile, meaning it divides the probability 
distribution into 100 equal pieces. 

ESTIMATING THE CONVERSION RATE FOR AN EMAIL SIGNUP 

LIST 
Say you run a blog and want to know the probability that a visitor to your blog will subscribe to 
your email list. In marketing terms, getting a user to perform a desired event is referred to as 
the conversion event, or simply a conversion, and the probability that a user will subscribe is 
the conversion rate. 

As discussed in Chapter 5, we would use the beta distribution to estimate p, the probability of 
subscribing, when we know k, the number of people subscribed, and n, the total number of visitors. 
The two parameters needed for the beta distribution are α, which in this case represents the total 
subscribed (k), and β, representing the total not subscribed (n – k). 

When the beta distribution was introduced, you learned only the basics of what it looked like and 
how it behaved. Now you’ll see how to use it as the foundation for parameter estimation. We want 
to not only make a single estimate for our conversion rate, but also come up with a range of 
possible values within which we can be very confident the real conversion rate lies. 

THE PROBABILITY DENSITY FUNCTION 
The first tool we’ll use is the probability density function. We’ve seen the PDF several times so far in 
this book: in Chapter 5 where we talked about the beta distribution; in Chapter 9 when we used 



PDFs to combine Bayesian priors; and once again in Chapter 12, when we talked about the normal 
distribution. The PDF is a function that takes a value and returns the probability of that value. 

In the case of estimating the true conversion rate for your email list, let’s say for the first 40,000 
visitors, you get 300 subscribers. The PDF for our problem is the beta distribution where α = 300 
and β = 39,700: 

 

We’ve spent a lot of time talking about using the mean as a good estimate for a measurement, given 
some uncertainty. Most PDFs have a mean, which we compute specifically for the beta distribution 
as follows: 

 

This formula is relatively intuitive: simply divide the number of outcomes we care about (300) by 
the total number of outcomes (40,000). This is the same mean you’d get if you simply considered 
each email an observation of 1 and all the others an observation of 0 and then averaged them out. 

The mean is our first stab at estimating a parameter for the true conversion rate. But we’d still like 
to know other possible values for our conversion rate. Let’s continue exploring the PDF to see what 
else we can learn. 

Visualizing and Interpreting the PDF 

The PDF is usually the go-to function for understanding a distribution of probabilities. Figure 13-
1 illustrates the PDF for the blog conversion rate’s beta distribution. 

 



Figure 13-1: Visualizing the beta PDF for our beliefs in the true conversion rate 

What does this PDF represent? From the data we know that the blog’s average conversion rate is 
simply 

 

or the mean of our distribution. It seems unlikely that the conversion rate is exactly 0.0075 rather 
than, say, 0.00751. We know the total area under the curve of the PDF must add up to 1, since this 
PDF represents the probability of all possible estimates. We can estimate ranges of values for our 
true conversion rate by looking at the area under the curve for the ranges we care about. In 
calculus, this area under the curve is the integral, and it tells us how much of the total probability is 
in the region of the PDF we’re interested in. This is exactly like how we used integration with the 
normal distribution in the prior chapter. 

Given that we have uncertainty in our measurement, and we have a mean, it could be useful to 
investigate how much more likely it is that the true conversion rate is 0.001 higher or lower than 
the mean of 0.0075 we observed. Doing so would give us an acceptable margin of error (that is, 
we’d be happy with any values in this range). To do this, we can calculate the probability of the 
actual rate being lower than 0.0065, and the probability of the actual rate being higher than 0.0085, 
and then compare them. The probability that our conversion rate is actually much lower than our 
observations is calculated like so: 

 

Remember that when we take the integral of a function, we are just summing all the little pieces of 
our function. So, if we take the integral from 0 to 0.0065 for the beta distribution with an α of 300 
and a β of 39,700, we are adding up all the probabilities for the values in this range and determining 
the probability that our true conversion rate is somewhere between 0 and 0.0065. 

We can ask questions about the other extreme as well, such as: how likely is it that we actually got 
an unusually bad sample and our true conversion rate is much higher, such as a value greater than, 
say, 0.0085 (meaning a better conversion rate than we had hoped)? 

 

Here we are integrating from 0.0085 to the largest possible value, which is 1, to determine the 
probability that our true value lies somewhere in this range. So, in this example, the probability that 
our conversion rate is 0.001 higher or more than we observed is actually more likely than the 
probability that it is 0.001 less or worse than observed. This means that if we had to make a 
decision with the limited data we have, we could still calculate how much likelier one extreme is 
than the other: 

 

Thus, it’s 50 percent more likely that our true conversion rate is greater than 0.0085 than that it’s 
lower than 0.0065. 



Working with the PDF in R 

In this book we’ve already used two R functions for working with PDFs, dnorm() and dbeta(). For most 
well-known probability distributions, R supports an equivalent dfunction() function for calculating 
the PDF. 

Functions like dbeta() are also useful for approximating the continuous PDF—for example, when you 
want to quickly plot out values like these: 

xs <- seq(0.005,0.01,by=0.00001) 
xs.all <- seq(0,1,by=0.0001) 
plot(xs,dbeta(xs,300,40000-300),type='l',lwd=3, 
     ylab="density", 
     xlab="probability of subscription", 
     main="PDF Beta(300,39700)") 

NOTE 

To understand the plotting code, see Appendix A. 

In this example code, we’re creating a sequence of values that are each 0.00001 apart—small, but 
not infinitely small, as they would be in a truly continuous distribution. Nonetheless, when we plot 
these values, we see something that looks close enough to a truly continuous distribution (as shown 
earlier in Figure 13-1). 

INTRODUCING THE CUMULATIVE DISTRIBUTION FUNCTION 
The most common mathematical use of the PDF is in integration, to solve for probabilities 
associated with various ranges, just as we did in the previous section. However, we can save 
ourselves a lot of effort with the cumulative distribution function (CDF), which sums all parts of our 
distribution, replacing a lot of calculus work. 

The CDF takes in a value and returns the probability of getting that value or lower. For example, the 
CDF for Beta(300,397000) when x = 0.0065 is approximately 0.008. This means that the probability 
of the true conversion rate being 0.0065 or less is 0.008. 

The CDF gets this probability by taking the cumulative area under the curve for the PDF (for those 
comfortable with calculus, the CDF is the anti-derivative of the PDF). We can summarize this 
process in two steps: (1) figure out the cumulative area under the curve for each value of the PDF, 
and (2) plot those values. That’s our CDF. The value of the curve at any given x-value is the 
probability of getting a value of x or lower. At 0.0065, the value of the curve would be 0.008, just as 
we calculated earlier. 

To understand how this works, let’s break the PDF for our problem into chunks of 0.0005 and focus 
on the region of our PDF that has the most probability density: the region between 0.006 and 0.009. 

Figure 13-2 shows the cumulative area under the curve for the PDF of Beta(300,39700). As you can 
see, our cumulative area under the curve takes into account all of the area in the pieces to its left. 



 

Figure 13-2: Visualizing the cumulative area under the curve 

Mathematically speaking, Figure 13-2 represents the following sequence of integrals: 

 

Using this approach, as we move along the PDF, we take into account an increasingly higher 
probability until our total area is 1, or complete certainty. To turn this into the CDF, we can imagine 
a function that looks at only these areas under the curve. Figure 13-3 shows what happens if we 
plot the area under the curve for each of our points, which are 0.0005 apart. 

Now we have a way of visualizing just how the cumulative area under the curve changes as we 
move along the values for our PDF. Of course, the problem is that we’re using these discrete chunks. 
In reality, the CDF just uses infinitely small pieces of the PDF, so we get a nice smooth line 
(see Figure 13-4). 



In our example, we derived the CDF visually and intuitively. Deriving the CDF mathematically is 
much more difficult, and often leads to very complicated equations. Luckily, we typically use code to 
work with the CDF, as we’ll see in a few more sections. 

 

Figure 13-3: Plotting just the cumulative probability from Figure 13-2 



 

Figure 13-4: The CDF for our problem 

Visualizing and Interpreting the CDF 

The PDF is most useful visually for quickly estimating where the peak of a distribution is, and for 
getting a rough sense of the width (variance) and shape of a distribution. However, with the PDF it 
is very difficult to reason about the probability of various ranges visually. The CDF is a much better 
tool for this. For example, we can use the CDF in Figure 13-4 to visually reason about a much wider 
range of probabilistic estimates for our problem than we can using the PDF alone. Let’s go over a 
few visual examples of how we can use this amazing mathematical tool. 

Finding the Median 

The median is the point in the data at which half the values fall on one side and half on the other—it 
is the exact middle value of our data. In other words, the probability of a value being greater than 
the median and the probability of it being less than the median are both 0.5. The median is 
particularly useful for summarizing the data in cases where it contains extreme values. 

Unlike the mean, computing the median can actually be pretty tricky. For small, discrete cases, it’s 
as simple as putting your observations in order and selecting the value in the middle. But for 
continuous distributions like our beta distribution, it’s a little more complicated. 



Thankfully, we can easily spot the median on a visualization of the CDF. We can simply draw a line 
from the point where the cumulative probability is 0.5, meaning 50 percent of the values are below 
this point and 50 percent are above. As Figure 3-5 illustrates, the point where this line intersects 
the x-axis gives us our median! 

 

Figure 13-5: Estimating the median visually using the CDF 

We can see that the median for our data is somewhere between 0.007 and 0.008 (this happens to be 
very close the mean of 0.0075, meaning the data isn’t particularly skewed). 

Approximating Integrals Visually 

When working with ranges of probabilities, we’ll often want to know the probability that the true 
value lies somewhere between some value y and some value x. 

We can solve this kind of problem using integration, but even if R makes solving integrals easier, it’s 
very time-consuming to make sense of the data and to constantly rely on R to compute integrals. 
Since all we want is a rough estimate that the probability of a visitor subscribing to the blog falls 
within a particular range, we don’t need to use integration. The CDF makes it very easy to eyeball 
whether or not a certain range of values has a very high probability or a very low probability of 
occurring. 

To estimate the probability that the conversion rate is between 0.0075 and 0.0085, we can trace 
lines from the x-axis at these points, then see where they meet up with the y-axis. The distance 
between the two points is the approximate integral, as shown in Figure 13-6. 



 

Figure 13-6: Visually performing integration using the CDF 

We can see that on the y-axis these values range from roughly 0.5 to 0.99, meaning that there is 
approximately a 49 percent chance that our true conversion rate lies somewhere between these 
two values. The best part is we didn’t have to do any integration! This is, of course, because the CDF 
represents the integral from the minimum of our function to all possible values. 

So, since nearly all of the probabilistic questions about a parameter estimate involve knowing the 
probability associated with certain ranges of beliefs, the CDF is often a far more useful visual tool 
than the PDF. 

Estimating Confidence Intervals 

Looking at the probability of ranges of values leads us to a very important concept in probability: 
the confidence interval. A confidence interval is a lower and upper bound of values, typically 
centered on the mean, describing a range of high probability, usually 95, 99, or 99.9 percent. When 
we say something like “The 95 percent confidence interval is from 12 to 20,” what we mean is that 
there is a 95 percent probability that our true measurement is somewhere between 12 and 20. 
Confidence intervals provide a good method of describing the range of possibilities when we’re 
dealing with uncertain information. 

NOTE 

In Bayesian statistics what we are calling a “confidence interval” can go by a few other names, such as 
“critical region” or “critical interval.” In some more traditional schools of statistics, “confidence 
interval” has a slightly different meaning, which is beyond the scope of this book. 

We can estimate confidence intervals using the CDF. Say we wanted to know the range that covers 
80 percent of the possible values for the true conversion rate. We solve this problem by combining 



our previous approaches: we draw lines at the y-axis from 0.1 and 0.9 to cover 80 percent, and then 
simply see where on the x-axis these intersect with our CDF, as shown in Figure 13-7. 

 

Figure 13-7: Estimating our confidence intervals visually using the CDF 

As you can see, the x-axis is intersected at roughly 0.007 and 0.008, which means that there’s an 80 
percent chance that our true conversion rate falls somewhere between these two values. 

Using the CDF in R 

Just as nearly all major PDFs have a function starting with d, like dnorm(), CDF functions start with p, 
such as pnorm(). In R, to calculate the probability that Beta(300,39700) is less than 0.0065, we can 
simply call pbeta() like this: 

pbeta(0.0065,300,39700) 
> 0.007978686 

And to calculate the true probability that the conversion rate is greater than 0.0085, we can do the 
following: 

pbeta(1,300,39700) - pbeta(0.0085,300,39700) 
> 0.01248151 

The great thing about CDFs is that it doesn’t matter if your distribution is discrete or continuous. If 
we wanted to determine the probability of getting three or fewer heads in five coin tosses, for 
example, we would use the CDF for the binomial distribution like this: 



pbinom(3,5,0.5) 
> 0.8125 

THE QUANTILE FUNCTION 
You might have noticed that the median and confidence intervals we took visually with the CDF are 
not easy to do mathematically. With the visualizations, we simply drew lines from the y-axis and 
used those to find a point on the x-axis. 

Mathematically, the CDF is like any other function in that it takes an x value, often representing the 
value we’re trying to estimate, and gives us a y value, which represents the cumulative probability. 
But there is no obvious way to do this in reverse; that is, we can’t give the same function a y to get 
an x. As an example, imagine we have a function that squares values. We know that square(3) = 9, 
but we need an entirely new function—the square root function—to know that the square root of 9 
is 3. 

However, reversing the function is exactly what we did in the previous section to estimate the 
median: we looked at the y-axis for 0.5, then traced it back to the x-axis. What we’ve done visually is 
compute the inverse of the CDF. 

While computing the inverse of the CDF visually is easy for estimates, we need a separate 
mathematical function to compute it for exact values. The inverse of the CDF is an incredibly 
common and useful tool called the quantile function. To compute an exact value for our median and 
confidence interval, we need to use the quantile function for the beta distribution. Just like the CDF, 
the quantile function is often very tricky to derive and use mathematically, so instead we rely on 
software to do the hard work for us. 

Visualizing and Understanding the Quantile Function 

Because the quantile function is simply the inverse of the CDF, it just looks like the CDF rotated 90 
degrees, as shown in Figure 13-8. 



 

Figure 13-8: Visually, the quantile function is just a rotation of the CDF. 

Whenever you hear phrases like: 

“The top 10 percent of students . . .” 

“The bottom 20 percent of earners earn less than . . .” 

“The top quartile has notably better performance than . . .” 

you’re talking about values that are found using the quantile function. To look up a quantile 
visually, just find the quantity you’re interested in on the x-axis and see where it meets the y-axis. 
The value on the y-axis is the value for that quantile. Keep in mind that if you’re talking about the 
“top 10 percent,” you really want the 0.9 quantile. 

Calculating Quantiles in R 

R also includes the function qnorm() for calculating quantiles. This function is very useful for quickly 
answering questions about what values are bounds of our probability distribution. For example, if 
we want to know the value that 99.9 percent of the distribution is less than, we can use qbeta() with 
the quantile we’re interested in calculating as the first argument, and the alpha and beta 
parameters of our beta distribution as the second and third arguments, like so: 

qbeta(0.999,300,39700) 
> 0.008903462 

The result is 0.0089, meaning we can be 99.9 percent certain that the true conversion rate for our 
emails is less than 0.0089. We can then use the quantile function to quickly calculate exact values 
for confidence intervals for our estimates. To find the 95 percent confidence interval, we can find 
the values greater than the 2.5 percent lower quantile and the values lower than the 97.5 percent 



upper quantile, and the interval between them is the 95 percent confidence interval (the 
unaccounted region totals 5 percent of the probability density at both extremes). We can easily 
calculate these for our data with qbeta(): 

Our lower bound is qbeta(0.025,300,39700) = 0.0066781 

Our upper bound is qbeta(0.975,300,39700) = 0.0083686 

Now we can confidently say that we are 95 percent certain that the real conversion rate for blog 
visitors is somewhere between 0.67 percent and 0.84 percent. 

We can, of course, increase or decrease these thresholds depending on how certain we want to be. 
Now that we have all of the tools of parameter estimation, we can easily pin down an exact range 
for the conversion rate. The great news is that we can also use this to predict ranges of values for 
future events. 

Suppose an article on your blog goes viral and gets 100,000 visitors. Based on our calculations, we 
know that we should expect between 670 and 840 new email subscribers. 

WRAPPING UP 
We’ve covered a lot of ground and touched on the interesting relationship between the probability 
density function (PDF), cumulative distribution function (CDF), and the quantile function. These 
tools form the basis of how we can estimate parameters and calculate our confidence in those 
estimations. That means we can not only make a good guess as to what an unknown value might be, 
but also determine confidence intervals that very strongly represent the possible values for a 
parameter. 

EXERCISES 
Try answering the following questions to see how well you understand the tools of parameter 
estimation. The solutions can be found at https://nostarch.com/learnbayes/. 

1. Using the code example for plotting the PDF on page 127, plot the CDF and quantile 
functions. 

2. Returning to the task of measuring snowfall from Chapter 10, say you have the 
following measurements (in inches) of snowfall: 

7.8, 9.4, 10.0, 7.9, 9.4, 7.0, 7.0, 7.1, 8.9, 7.4 

What is your 99.9 percent confidence interval for the true value of snowfall? 

3. A child is going door to door selling candy bars. So far she has visited 30 houses and 
sold 10 candy bars. She will visit 40 more houses today. What is the 95 percent confidence 
interval for how many candy bars she will sell the rest of the day? 
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PARAMETER ESTIMATION WITH PRIOR PROBABILITIES 

 

In the previous chapter, we looked at using some important mathematical tools to estimate the 
conversion rate for blog visitors subscribing to an email list. However, we haven’t yet covered one 
of the most important parts of parameter estimation: using our existing beliefs about a problem. 

In this chapter, you’ll see how we can use our prior probabilities, combined with observed data, to 
come up with a better estimate that blends existing knowledge with the data we’ve collected. 

PREDICTING EMAIL CONVERSION RATES 
To understand how the beta distribution changes as we gain information, let’s look at another 
conversion rate. In this example, we’ll try to figure out the rate at which your subscribers click a 
given link once they’ve opened an email from you. Most companies that provide email list 
management services tell you, in real time, how many people have opened an email and clicked the 
link. 

Our data so far tells us that of the first five people that open an email, two of them click the 
link. Figure 14-1 shows our beta distribution for this data. 



 

Figure 14-1: The beta distribution for our observations so far 

Figure 14-1 shows Beta(2,3). We used these numbers because two people clicked and three did not 
click. Unlike in the previous chapter, where we had a pretty narrow spike in possible values, here 
we have a huge range of possible values for the true conversion rate because we have very little 
information to work with. Figure 14-2 shows the CDF for this data, to help us more easily reason 
about these probabilities. 

The 95 percent confidence interval (i.e., a 95 percent chance that our true conversion rate is 
somewhere in that range) is marked to make it easier to see. At this point our data tells us that the 
true conversion rate could be anything between 0.05 and 0.8! This is a reflection of how little 
information we’ve actually acquired so far. Given that we’ve had two conversions, we know the true 
rate can’t be 0, and since we’ve had three non-conversions, we also know it can’t be 1. Almost 
everything else is fair game. 



 

Figure 14-2: CDF for our observation 

TAKING IN WIDER CONTEXT WITH PRIORS 
But wait a second—you may be new to email lists, but an 80 percent click-through rate sounds 
pretty unlikely. I subscribe to plenty of lists, but I definitely don’t click through to the content 80 
percent of the time that I open the email. Taking that 80 percent rate at face value seems naive 
when I consider my own behavior. 

As it turns out, your email service provider thinks it’s suspicious too. Let’s look at some wider 
context. For blogs listed in the same category as yours, the provider’s data claims that on average 
only 2.4 percent of people who open emails click through to the content. 

In Chapter 9, you learned how we could use past information to modify our belief that Han Solo can 
successfully navigate an asteroid field. Our data tells us one thing, but our background information 
tells us another. As you know by now, in Bayesian terms the data we have observed is 
our likelihood, and the external context information—in this case from our personal experience and 
our email service—is our prior probability. Our challenge now is to figure out how to model our 
prior. Luckily, unlike the case with Han Solo, we actually have some data here to help us. 

The conversion rate of 2.4 percent from your email provider gives us a starting point: now we know 
we want a beta distribution whose mean is roughly 0.024. (The mean of a beta distribution is α / (α 
+ β).) However, this still leaves us with a range of possible options: Beta(1,41), Beta(2,80), 
Beta(5,200), Beta(24,976), and so on. So which should we use? Let’s plot some of these out and see 
what they look like (Figure 14-3). 



 

Figure 14-3: Comparing different possible prior probabilities 

As you can see, the lower the combined α + β, the wider our distribution. The problem now is that 
even the most liberal option we have, Beta(1,41), seems a little too pessimistic, as it puts a lot of our 
probability density in very low values. We’ll stick with this distribution nonetheless, since it is 
based on the 2.4 percent conversion rate in the data from the email provider, and is the weakest of 
our priors. Being a “weak” prior means it will be more easily overridden by actual data as we collect 
more of it. A stronger prior, like Beta(5,200), would take more evidence to change (we’ll see how 
this happens next). Deciding whether or not to use a strong prior is a judgment call based on how 
well you expect the prior data to describe what you’re currently doing. As we’ll see, even a weak 
prior can help keep our estimates more realistic when we’re working with small amounts of data. 

Remember that, when working with the beta distribution, we can calculate our posterior 
distribution (the combination of our likelihood and our prior) by simply adding together the 
parameters for the two beta distributions: 

Beta(αposterior, βposterior) = Beta(αlikelihood + αprior, βlikelihood + βprior) 



Using this formula, we can compare our beliefs with and without priors, as shown in Figure 14-4. 

 

Figure 14-4: Comparing our likelihood (no prior) to our posterior (with prior) 

Wow! That’s quite sobering. Even though we’re working with a relatively weak prior, we can see 
that it has made a huge impact on what we believe are realistic conversion rates. Notice that for the 
likelihood with no prior, we have some belief that our conversion rate could be as high as 80 
percent. As mentioned, this is highly suspicious; any experienced email marketer would tell you 
than an 80 percent conversion rate is unheard of. Adding a prior to our likelihood adjusts our 
beliefs so that they become much more reasonable. But I still think our updated beliefs are a bit 
pessimistic. Maybe the email’s true conversion rate isn’t 40 percent, but it still might be better than 
this current posterior distribution suggests. 

How can we prove that our blog has a better conversion rate than the sites in the email provider’s 
data, which have a 2.4 percent conversion rate? The way any rational person does: with more data! 
We wait a few hours to gather more results and now find that out of 100 people who opened your 
email, 25 have clicked the link! Let’s look at the difference between our new posterior and 
likelihood, shown in Figure 14-5. 



 

Figure 14-5: Updating our beliefs with more data 

As we continue to collect data, we see that our posterior distribution using a prior is starting to shift 
toward the one without the prior. Our prior is still keeping our ego in check, giving us a more 
conservative estimate for the true conversion rate. However, as we add evidence to our likelihood, 
it starts to have a bigger impact on what our posterior beliefs look like. In other words, the 
additional observed data is doing what it should: slowly swaying our beliefs to align with what it 
suggests. So let’s wait overnight and come back with even more data! 

In the morning we find that 300 subscribers have opened their email, and 86 of those have clicked 
through. Figure 14-6 shows our updated beliefs. 

What we’re witnessing here is the most important point about Bayesian statistics: the more data we 
gather, the more our prior beliefs become diminished by evidence. When we had almost no 
evidence, our likelihood proposed some rates we know are absurd (e.g., 80 percent click-through), 
both intuitively and from personal experience. In light of little evidence, our prior beliefs squashed 
any data we had. 

But as we continue to gather data that disagrees with our prior, our posterior beliefs shift toward 
what our own collected data tells us and away from our original prior. 



Another important takeaway is that we started with a pretty weak prior. Even then, after just a day 
of collecting a relatively small set of information, we were able to find a posterior that seems much, 
much more reasonable. 

 

Figure 14-6: Our posterior beliefs with even more data added 

The prior probability distribution in this case helped tremendously with keeping our estimate 
much more realistic in the absence of data. This prior probability distribution was based on real 
data, so we could be fairly confident that it would help us get our estimate closer to reality. 
However, in many cases we simply don’t have any data to back up our prior. So what do we do 
then? 

PRIOR AS A MEANS OF QUANTIFYING EXPERIENCE 
Because we knew the idea of an 80 percent click-through rate for emails was laughable, we used 
data from our email provider to come up with a better estimate for our prior. However, even if we 
didn’t have data to help establish our prior, we could still ask someone with a marketing 
background to help us make a good estimate. A marketer might know from personal experience 
that you should expect about a 20 percent conversion rate, for example. 



Given this information from an experienced professional, you might choose a relatively weak prior 
like Beta(2,8) to suggest that the expected conversion rate should be around 20 percent. This 
distribution is just a guess, but the important thing is that we can quantify this assumption. For 
nearly every business, experts can often provide powerful prior information based simply on 
previous experience and observation, even if they have no training in probability specifically. 

By quantifying this experience, we can get more accurate estimates and see how they can change 
from expert to expert. For example, if a marketer is certain that the true conversion rate should be 
20 percent, we might model this belief as Beta(200,800). As we gather data, we can compare 
models and create multiple confidence intervals that quantitatively model any expert beliefs. 
Additionally, as we gain more and more information, the difference due to these prior beliefs will 
decrease. 

IS THERE A FAIR PRIOR TO USE WHEN WE KNOW NOTHING? 
There are certain schools of statistics that teach that you should always add 1 to both α and β when 
estimating parameters with no other prior. This corresponds to using a very weak prior that holds 
that each outcome is equally likely: Beta(1,1). The argument is that this is the “fairest” (i.e., 
weakest) prior we can come up with in the absence of information. The technical term for a fair 
prior is a noninformative prior. Beta(1,1) is illustrated in Figure 14-7. 

 

Figure 14-7: The noninformative prior Beta(1,1) 



As you can see, this is a perfectly straight line, so that all outcomes are then equally likely and the 
mean likelihood is 0.5. The idea of using a noninformative prior is that we can add a prior to help 
smooth out our estimate, but that prior isn’t biased toward any particular outcome. However, while 
this may initially seem like the fairest way to approach the problem, even this very weak prior can 
lead to some strange results when we test it out. 

Take, for example, the probability that the sun will rise tomorrow. Say you are 30 years old, and so 
you’ve experienced about 11,000 sunrises in your lifetime. Now suppose someone asks the 
probability that the sun will rise tomorrow. You want to be fair and use a noninformative prior, 
Beta(1,1). The distribution that represents your belief that the sun will not rise tomorrow would be 
Beta(1,11001), based on your experiences. While this gives a very low probability for the sun not 
rising tomorrow, it also suggests that we would expect to see the sun not rise at least once by the 
time you reach 60 years old. The so-called “noninformative” prior is providing a pretty strong 
opinion about how the world works! 

You could argue that this is only a problem because we understand celestial mechanics, so we 
already have strong prior information we can’t forget. But the real problem is that we’ve never 
observed the case where the sun doesn’t rise. If we go back to our likelihood function without the 
noninformative prior, we get Beta(0,11000). 

However, when either α or β ≤ 0, the beta distribution is undefined, which means that the correct 
answer to “What is the probability that the sun will rise tomorrow?” is that the question doesn’t 
make sense because we’ve never seen a counterexample. 

As another example, suppose you found a portal that transported you and a friend to a new world. 
An alien creature appears before you and fires a strange-looking gun at you that just misses. Your 
friend asks you, “What’s the probability that the gun will misfire?” This is a completely alien world 
and the gun looks strange and organic, so you know nothing about its mechanics at all. 

This is, in theory, the ideal scenario for using a noninformative prior, since you have absolutely no 
prior information about this world. If you add your noninformative prior, you get a posterior 
Beta(1,2) probability that the gun will misfire (we observed α = 0 misfires and β = 1 successful 
fires). This distribution tells us the mean posterior probability of a misfire is 1/3, which seems 
astoundingly high given that you don’t even know if the strange gun can misfire. Again, even though 
Beta(0,1) is undefined, using it seems like the rational approach to this problem. In the absence of 
sufficient data and any prior information, your only honest option is to throw your hands in the air 
and tell your friend, “I have no clue how to even reason about that question!” 

The best priors are backed by data, and there is never really a true “fair” prior when you have a 
total lack of data. Everyone brings to a problem their own experiences and perspective on the 
world. The value of Bayesian reasoning, even when you are subjectively assigning priors, is that you 
are quantifying your subjective belief. As we’ll see later in the book, this means you can compare 
your prior to other people’s and see how well it explains the world around you. A Beta(1,1) prior is 
sometimes used in practice, but you should use it only when you earnestly believe that the two 
possible outcomes are, as far as you know, equally likely. Likewise, no amount of mathematics can 
make up for absolute ignorance. If you have no data and no prior understanding of a problem, the 
only honest answer is to say that you can’t conclude anything at all until you know more. 

All that said, it’s worth noting that this topic of whether to use Beta(1,1) or Beta(0,0) has a long 
history, with many great minds arguing various positions. Thomas Bayes (namesake of Bayes’ 
theorem) hesitantly believed in Beta(1,1); the great mathematician Simon-Pierre Laplace was quite 
certain Beta(1,1) was correct; and the famous economist John Maynard Keynes thought using 
Beta(1,1) was so preposterous that it discredited all of Bayesian statistics! 



WRAPPING UP 
In this chapter, you learned how to incorporate prior information about a problem to arrive at 
much more accurate estimates for unknown parameters. When we have only a little information 
about a problem, we can easily get probabilistic estimates that seem impossible. But we might have 
prior information that can help us make better inferences from that small amount of data. By 
adding this information to our estimates, we get much more realistic results. 

Whenever possible, it’s best to use a prior probability distribution based on actual data. However, 
often we won’t have data to support our problem, but we either have personal experience or can 
turn to experts who do. In these cases, it’s perfectly fine to estimate a probability distribution that 
corresponds to your intuition. Even if you’re wrong, you’ll be wrong in a way that is recorded 
quantitatively. Most important, even if your prior is wrong, it will eventually be overruled by data 
as you collect more observations. 

EXERCISES 
Try answering the following questions to see how well you understand priors. The solutions can be 
found at https://nostarch.com/learnbayes/. 

1. Suppose you’re playing air hockey with some friends and flip a coin to see who starts 
with the puck. After playing 12 times, you realize that the friend who brings the coin almost 
always seems to go first: 9 out of 12 times. Some of your other friends start to get suspicious. 
Define prior probability distributions for the following beliefs: 

• One person who weakly believes that the friend is cheating and the true rate of 
coming up heads is closer to 70 percent. 

• One person who very strongly trusts that the coin is fair and provided a 50 
percent chance of coming up heads. 

• One person who strongly believes the coin is biased to come up heads 70 
percent of the time. 

2. To test the coin, you flip it 20 more times and get 9 heads and 11 tails. Using the 
priors you calculated in the previous question, what are the updated posterior beliefs in the 
true rate of flipping a heads in terms of the 95 percent confidence interval? 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

PART IV 
HYPOTHESIS TESTING: THE HEART OF STATISTICS 
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FROM PARAMETER ESTIMATION TO HYPOTHESIS TESTING: 

BUILDING A BAYESIAN A/B TEST 

 

In this chapter, we’re going to build our first hypothesis test, an A/B test. Companies often use A/B 
tests to try out product web pages, emails, and other marketing materials to determine which will 
work best for customers. In this chapter, we’ll test our belief that removing an image from an email 
will increase the click-through rate against the belief that removing it will hurt the click-through 
rate. 

Since we already know how to estimate a single unknown parameter, all we need to do for our test 
is estimate both parameters—that is, the conversion rates of each email. Then we’ll use R to run a 
Monte Carlo simulation and determine which hypothesis is likely to perform better—in other 
words, which variant, A or B, is superior. A/B tests can be performed using classical statistical 
techniques such as t-tests, but building our test the Bayesian way will help us understand each part 
of it intuitively and give us more useful results as well. 

We’ve covered the basics of parameter estimation pretty well at this point. We’ve seen how to use 
the PDF, CDF, and quantile functions to learn the likelihood of certain values, and we’ve seen how to 
add a Bayesian prior to our estimate. Now we want to use our estimates to compare twounknown 
parameters. 

SETTING UP A BAYESIAN A/B TEST 
Keeping with our email example from the previous chapter, imagine we want to see whether 
adding an image helps or hurts the conversion rate for our blog. Previously, the weekly email has 
included some image. For our test we’re going to send one variant with images like usual, and 
another without images. The test is called an A/B test because we are comparing variant A (with 
image) and variant B (without) to determine which one performs better. 

Let’s assume at this point we have 600 blog subscribers. Because we want to exploit the knowledge 
gained during this experiment, we’re only going to be running our test on 300 of them; that way, we 
can send the remaining 300 subscribers what we believe to be the most effective variant of the 
email. 

The 300 people we’re going to test will be split up into two groups, A and B. Group A will receive 
the usual email with a big picture at the top, and group B will receive an email with no picture. The 
hope is that a simpler email will feel less “spammy” and encourage users to click through to the 
content. 



Finding Our Prior Probability 

Next, we need to figure out what prior probability we’re going to use. We’ve run an email campaign 
every week, so from that data we have a reasonable expectation that the probability of clicking the 
link to the blog on any given email should be around 30 percent. To make things simple, we’ll use 
the same prior for both variants. We’ll also choose a pretty weak version of our prior distribution, 
meaning that it considers a wider range of conversion rates to be probable. We’re using a weak 
prior because we don’t really know how well we expect B to do, and this is a new email campaign, 
so other factors could cause a better or worse conversion. We’ll settle on Beta(3,7) for our prior 
probability distribution. This distribution allows us to represent a beta distribution where 0.3 is the 
mean, but a wide range of possible alternative rates are considered. We can see this distribution 
in Figure 15-1. 

 

Figure 15-1: Visualizing our prior probability distribution 

All we need now is our likelihood, which means we need to collect data. 

Collecting Data 

We send out our emails and get the results in Table 15-1. 

Table 15-1: Email Click-through Rates 

  Clicked Not clicked Observed conversion rate 

Variant A 36 114 0.24 

Variant B 50 100 0.33 



We can treat each of these variants as a separate parameter we’re trying to estimate. In order to 
arrive at a posterior distribution for each, we need to combine both their likelihood distribution 
and prior distribution. We’ve already decided that the prior for these distributions should be 
Beta(3,7), representing a relatively weak belief in what possible values we expect the conversion 
rate to be, given no additional information. We say this is a weak belief because we don’t believe 
very strongly in a particular range of values, and consider all possible rates with a reasonably high 
probability. For the likelihood of each, we’ll again use the beta distribution, making α the number of 
times the link was clicked through and β the number of times it was not. 

Recall that: 

Beta(αposterior, βposterior) = Beta(αprior + αlikelihood, βprior + βlikelihood) 

Variant A will be represented by Beta(36+3,114+7) and variant B by Beta(50+3,100+7). Figure 15-
2 shows the estimates for each parameter side by side. 

 

Figure 15-2: Beta distributions for our estimates for both variants of our email 

Clearly, our data suggests that variant B is superior, in that it garners a higher conversion rate. 
However, from our earlier discussion on parameter estimation, we know that the true conversion 
rate is one of a range of possible values. We can also see here that there’s an overlap between the 
possible true conversion rates for A and B. What if we were just unlucky in our A responses, and A’s 
true conversion rate is in fact much higher? What if we were also just lucky with B, and its 
conversion rate is in fact much lower? It’s easy to see a possible world in which A is actually the 
better variant, even though it did worse on our test. So the real question is: how sure can we be that 
B is the better variant? This is where the Monte Carlo simulation comes in. 



MONTE CARLO SIMULATIONS 
The accurate answer to which email variant generates a higher click-through rate lies somewhere 
in the intersection of the distributions of A and B. Fortunately, we have a way to figure it out: a 
Monte Carlo simulation. A Monte Carlo simulation is any technique that makes use of random 
sampling to solve a problem. In this case, we’re going to randomly sample from the two 
distributions, where each sample is chosen based on its probability in the distribution so that 
samples in a high-probability region will appear more frequently. For example, as we can see 
in Figure 15-2, a value greater than 0.2 is far more likely to be sampled from A than a value less 
than 0.2. However, a random sample from distribution B is nearly certain to be above 0.2. In our 
random sampling, we might pick out a value of 0.2 for variant A and 0.35 for variant B. Each sample 
is random, and based on the relative probability of values in the A and B distributions. The values 
0.2 for A and 0.35 for B both could be the true conversion rate for each variant based on the 
evidence we’ve observed. This individual sampling from the two distributions confirms the belief 
that variant B is, in fact, superior to A, since 0.35 is larger than 0.2. 

However, we could also sample 0.3 for variant A and 0.27 for variant B, both of which are 
reasonably likely to be sampled from their respective distributions. These are also both realistic 
possible values for the true conversion rate of each variant, but in this case, they indicate that 
variant B is actually worse than variant A. 

We can imagine that the posterior distribution represents all the worlds that could exist based on 
our current state of beliefs regarding each conversion rate. Every time we sample from each 
distribution, we’re seeing what one possible world could look like. We can tell visually in Figure 15-
1 that we should expect more worlds where B is truly the better variant. The more frequently we 
sample, the more precisely we can tell in exactly how many worlds, of all the worlds we’ve sampled 
from, B is the better variant. Once we have our samples, we can look at the ratio of worlds where B 
is the best to the total number of worlds we’ve looked at and get an exact probability that B is in 
fact greater than A. 

In How Many Worlds Is B the Better Variant? 

Now we just have to write the code that will perform this sampling. R’s rbeta() function allows us to 
automatically sample from a beta distribution. We can consider each comparison of two samples a 
single trial. The more trials we run, the more precise our result will be, so we’ll start with 100,000 
trials by assigning this value to the variable n.trials: 

n.trials <- 100000 

Next we’ll put our prior alpha and beta values into variables: 

prior.alpha <- 3 

prior.beta <- 7 

Then we need to collect samples from each variant. We’ll use rbeta() for this: 

a.samples <- rbeta(n.trials,36+prior.alpha,114+prior.beta) 
b.samples <- rbeta(n.trials,50+prior.alpha,100+prior.beta) 



We’re saving the results of the rbeta() samples into variables, too, so we can access them more easily. 
For each variant, we input the number of people who clicked through to the blog and the number of 
people who didn’t. 

Finally, we compare how many times the b.samples are greater than the a.samples and divide that 
number by n.trials, which will give us the percentage of the total trials where variant B was greater 
than variant A: 

p.b_superior <- sum(b.samples > a.samples)/n.trials 

The result we end up with is: 

p.b_superior 
> 0.96 

What we see here is that in 96 percent of the 100,000 trials, variant B was superior. We can imagine 
this as looking at 100,000 possible worlds. Based on the distribution of possible conversion rates 
for each variant, in 96 percent of the worlds variant B was the better of the two. This result shows 
that, even with a relatively small number of observed samples, we have a pretty strong belief that B 
is the better variant. If you’ve ever done t-tests in classical statistics, this is roughly equivalent—if 
we used a Beta(1,1) prior—to getting a p-value of 0.04 from a single-tailed t-test (often considered 
“statistically significant”). However, the beauty of our approach is that we were able to build this 
test from scratch using just our knowledge of probability and a straightforward simulation. 

How Much Better Is Each Variant B Than Each Variant A? 

Now we can say precisely how certain we are that B is the superior variant. However, if this email 
campaign were for a real business, simply saying “B is better” wouldn’t be a very satisfactory 
answer. Don’t you really want to know how much better? 

This is the real power of our Monte Carlo simulation. We can take the exact results from our last 
simulation and test how much better variant B is likely to be by looking at how many times greater 
the B samples are than the A samples. In other words, we can look at this ratio: 

 

In R, if we take the a.samples and b.samples from before, we can compute b.samples/a.samples. This will 
give us a distribution of the relative improvements from variant A to variant B. When we plot out 
this distribution as a histogram, as shown in Figure 15-3, we can see how much we expect variant B 
to improve our click-through rate. 

From this histogram we can see that variant B will most likely be about a 40 percent improvement 
(ratio of 1.4) over A, although there is an entire range of possible values. As we discussed in Chapter 
13, the cumulative distribution function (CDF) is much more useful than a histogram for reasoning 
about our results. Since we’re working with data rather than a mathematical function, we’ll 
compute the empirical cumulative distribution function with R’s ecdf() function. The eCDF is 
illustrated in Figure 15-4. 



 

Figure 15-3: A histogram of possible improvements we might see 

 

Figure 15-4: A distribution of possible improvements we might see 

Now we can see our results more clearly. There is really just a small, small chance that A is better, 
and even if it is better, it’s not going to be by much. We can also see that there’s about a 25 percent 



chance that variant B is a 50 percent or more improvement over A, and even a reasonable chance it 
could be more than double the conversion rate! Now, in choosing B over A, we can actually reason 
about our risk by saying, “The chance that B is 20 percent worse is roughly the same that it’s 100 
percent better.” Sounds like a good bet to me, and a much better statement of our knowledge than, 
“There is a statistically significant difference between B and A.” 

WRAPPING UP 
In this chapter we saw how parameter estimation naturally extends to a form of hypothesis testing. 
If the hypothesis we want to test is “variant B has a better conversion rate than variant A,” we can 
start by first doing parameter estimation for the possible conversion rates of each variant. Once we 
know those estimates, we can use the Monte Carlo simulation in order to sample from them. By 
comparing these samples, we can come up with a probability that our hypothesis is true. Finally, we 
can take our test one step further by seeing how well our new variant performs in these possible 
worlds, estimating not only whether the hypothesis is true, but also how much improvement we are 
likely to see. 

EXERCISES 
Try answering the following questions to see how well you understand running A/B tests. The 
solutions can be found at https://nostarch.com/learnbayes/. 

1. Suppose a director of marketing with many years of experience tells you he believes 
very strongly that the variant without images (B) won’t perform any differently than the 
original variant. How could you account for this in our model? Implement this change and 
see how your final conclusions change as well. 

2. The lead designer sees your results and insists that there’s no way that variant B 
should perform better with no images. She feels that you should assume the conversion rate 
for variant B is closer to 20 percent than 30 percent. Implement a solution for this and again 
review the results of our analysis. 

3. Assume that being 95 percent certain means that you’re more or less “convinced” of a 
hypothesis. Also assume that there’s no longer any limit to the number of emails you can 
send in your test. If the true conversion for A is 0.25 and for B is 0.3, explore how many 
samples it would take to convince the director of marketing that B was in fact superior. 
Explore the same for the lead designer. You can generate samples of conversions with the 
following snippet of R: 

true.rate <- 0.25 
number.of.samples <- 100 
results <- runif(number.of.samples) <= true.rate 
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INTRODUCTION TO THE BAYES FACTOR AND POSTERIOR 

ODDS: THE COMPETITION OF IDEAS 

 

In the previous chapter, we saw that we can view a hypothesis test as an extension of parameter 
estimation. In this chapter, we’ll think about hypothesis tests instead as a way to compare ideas 
with an important mathematical tool called the Bayes factor. The Bayes factor is a formula that tests 
the plausibility of one hypothesis by comparing it to another. The result tells us how many times 
more likely one hypothesis is than the other. 

We’ll then see how to combine the Bayes factor with our prior beliefs to come up with the posterior 
odds, which tells us how much stronger one belief is than the other at explaining our data. 

REVISITING BAYES’ THEOREM 
Chapter 6 introduced Bayes’ theorem, which takes the following form: 

 

Recall that there are three parts of this formula that have special names: 

• P(H | D) is the posterior probability, which tells us how strongly we should believe in 
our hypothesis, given our data. 

• P(H) is the prior belief, or the probability of our hypothesis prior to looking at the 
data. 

• P(D | H) is the likelihood of getting the existing data if our hypothesis were true. 

The last piece, P(D), is the probability of the data observed independent of the hypothesis. We 
need P(D) in order to make sure that our posterior probability is correctly placed somewhere 
between 0 and 1. If we have all of these pieces of information, we can calculate exactly how strongly 
we should believe in our hypothesis given the data we’ve observed. But as I mentioned in Chapter 
8, P(D) is often very hard to define. In many cases, it’s not obvious how we can figure out the 
probability of our data. P(D) is also totally unnecessary if all we care about is comparing the relative 
strength of two different hypotheses. 

For these reasons, we often use the proportional form of Bayes’ theorem, which allows us to analyze 
the strength of our hypotheses without knowing P(D). It looks like this: 

P(H | D) ∝ P(H) × P(D | H) 



In plain English, the proportional form of Bayes’ theorem says that the posterior probability of our 
hypothesis is proportional to the prior multiplied by the likelihood. We can use this to compare two 
hypotheses by examining the ratio of the prior belief multiplied by the likelihood for each 
hypothesis using the ratio of posteriors formula: 

 

What we have now is a ratio of how well each of our hypotheses explains the data we’ve observed. 
That is, if the ratio is 2, then H1 explains the observed data twice as well as H2, and if the ratio is 1/2, 
then H2 explains the data twice as well as H1. 

BUILDING A HYPOTHESIS TEST USING THE RATIO OF 

POSTERIORS 
The ratio of posteriors formula gives us the posterior odds, which allows us to test hypotheses or 
beliefs we have about data. Even when we do know P(D), the posterior odds is a useful tool because 
it allows us to compare ideas. To better understand the posterior odds, we’ll break down the ratio 
of posteriors formula into two parts: the likelihood ratio, or the Bayes factor, and the ratio of prior 
probabilities. This is a standard, and very helpful, practice that makes it much easier to reason 
about the likelihood and the prior probability separately. 

The Bayes Factor 

Using the ratio of posteriors formula, let’s assume that P(H1) = P(H2)—that is, that our prior belief in 
each hypothesis is the same. In that case, the ratio of prior beliefs in the hypotheses is just 1, so all 
that’s left is: 

 

This is the Bayes factor, the ratio between the likelihoods of two hypotheses. 

Take a moment to really think about what this equation is saying. When we consider how we’re 
going to argue for our H1—that is, our belief about the world—we think about gathering evidence 
that supports our beliefs. A typical argument, therefore, involves building up a set of data, D1, that 
supports H1, and then arguing with a friend who has gathered a set of data, D2, that supports their 
hypothesis, H2. 

In Bayesian reasoning, though, we’re not gathering evidence to support our ideas; we’re looking to 
see how well our ideas explain the evidence in front of us. What this ratio tells us is the likelihood of 
what we’ve seen given what we believe to be true compared to what someone elsebelieves to be 
true. Our hypothesis wins when it explains the world better than the competing hypothesis. 

If, however, the competing hypothesis explains the data much better than ours, it might be time to 
change our beliefs. The key here is that in Bayesian reasoning, we don’t worry about supporting our 
beliefs—we are focused on how well our beliefs support the data we observe. In the end, data can 
either confirm our ideas or lead us to change our minds. 

Prior Odds 

So far we have assumed that the prior probability of each hypothesis is the same. This is clearly not 
always the case: a hypothesis may explain the data well even if it is very unlikely. If you’ve lost your 



phone, for example, both the belief that you left it in the bathroom and the belief that aliens took it 
to examine human technology explain the data quite well. However, the bathroom hypothesis is 
clearly much more likely. This is why we need to consider the ratio of prior probabilities: 

 

This ratio compares the probability of two hypotheses before we look at the data. When used in 
relation to the Bayes factor, this ratio is called the prior odds in our H1 and written as O(H1). This 
representation is helpful because it lets us easily note how strongly (or weakly) we believe in the 
hypothesis we’re testing. When this number is greater than 1, it means the prior odds favor our 
hypothesis, and when it is a fraction less than 1, it means they’re against our hypothesis. For 
example, O(H1) = 100 means that, without any other information, we believe H1 is 100 times more 
likely than the alternative hypothesis. On the other hand, when O(H1) = 1/100, the alternative 
hypothesis is 100 times more likely than ours. 

Posterior Odds 

If we put together the Bayes factor and the prior odds, we get the posterior odds: 

 

The posterior odds calculates how many times better our hypothesis explains the data than a 
competing hypothesis. 

Table 16-1 lists some guidelines for evaluating various posterior odds values. 

Table 16-1: Guidelines for Evaluating Posterior Odds 

Posterior odds Strength of evidence 

1 to 3 Interesting, but nothing conclusive 

3 to 20 Looks like we’re on to something 

20 to 150 Strong evidence in favor of H1 

> 150 Overwhelming evidence 

We can look at the reciprocal of these odds to decide when to change our mind about an idea. 

While these values can serve as a useful guide, Bayesian reasoning is still a form of reasoning, which 
means you have to use some judgment. If you’re having a casual disagreement with a friend, a 
posterior odds of 2 might be enough to make you feel confident. If you’re trying to figure out if 
you’re drinking poison, a posterior odds of 100 still might not cut it. 

Next, we’ll look at two examples in which we use the Bayes factor to determine the strength of our 
beliefs. 



Testing for a Loaded Die 

We can use the Bayes factor and posterior odds as a form of hypothesis testing in which each test is 
a competition between two ideas. Suppose your friend has a bag with three six-sided dice in it, and 
one die is weighted so that it lands on 6 half the time. The other two are traditional dice whose 
probability of rolling a 6 is ⅙. Your friend pulls out a die and rolls 10 times, with the following 
results: 

6, 1, 3, 6, 4, 5, 6, 1, 2, 6 

We want to figure out if this is the loaded die or a regular die. We can call the loaded die H1 and the 
regular die H2. 

Let’s start by working out the Bayes factor: 

 

The first step is calculating P(D | H), or the likelihood of H1 and H2 given the data we’ve observed. In 
this example, your friend rolled four 6s and six non-6s. We know that if the die is loaded, the 
probability of rolling a 6 is 1/2 and the probability of rolling any non-6 is also 1/2. This means the 
likelihood of seeing this data given that we’ve used the loaded die is: 

 

In the case of the fair die, the probability of rolling a 6 is 1/6, while the probability of rolling 
anything else is 5/6. This means our likelihood of seeing this data for H2, the hypothesis that the die 
is fair, is: 

 

Now we can compute our Bayes factor, which will tell us how much better H1 is than H2 at 
explaining our data, assuming each hypothesis was equally probable in the first place (meaning that 
the prior odds ratio is 1): 

 

This means that H1, the belief that the die is loaded, explains the data we observed almost four 
times better than H2. 

However, this is true only if H1 and H2 are both just as likely to be true in the first place. But we 
know there are two fair dice in the bag and only one loaded die, which means that each hypothesis 
was not equally likely. Based on the distribution of the dice in the bag, we know that these are the 
prior probabilities for each hypothesis: 

 

From these, we can calculate the prior odds for H1: 



 

Because there is only one loaded die in the bag and two fair dice, we’re twice as likely to pull a fair 
die than a loaded one. With our prior odds for H1, we can now compute our full posterior odds: 

 

While the initial likelihood ratio showed that H1 explained the data almost four times as well as H2, 
the posterior odds shows us that, because H1 is only half as likely as H2, H1 is actually only about 
twice as strong of an explanation as H2. 

From this, if you absolutely had to draw a conclusion about whether the die was loaded or not, your 
best bet would be to say that it is indeed loaded. However, a posterior odds of less than 2 is not 
particularly strong evidence in favor of H1. If you really wanted to know whether or not the die was 
loaded, you would need to roll it a few more times until the evidence in favor of one hypothesis or 
the other was great enough for you to make a stronger decision. 

Now let’s look at a second example of using the Bayes factor to determine the strength of our 
beliefs. 

Self-Diagnosing Rare Diseases Online 

Many people have made the mistake of looking up their symptoms and ailments online late at night, 
only to find themselves glued to the screen in terror, sure they are the victim of some strange and 
terrible disease! Unfortunately for them, their analysis almost always excludes Bayesian reasoning, 
which might help alleviate some unnecessary anxiety. In this example, let’s assume you’ve made the 
mistake of looking up your symptoms and have found two possible ailments that fit. Rather than 
panicking for no reason, you’ll use posterior odds to weigh the odds of each. 

Suppose you wake up one day with difficulty hearing and a ringing (tinnitus) in one ear. It annoys 
you all day, and when you get home from work, you decide it’s high time to search the web for 
potential causes of your symptoms. You become increasingly concerned, and finally come to two 
possible hypotheses: 

Earwax impaction You have too much earwax in one ear. A quick visit to the doctor will clear up 
this condition. 

Vestibular schwannoma You have a brain tumor growing on the myelin sheath of the vestibular 
nerve, causing irreversible hearing loss and possibly requiring brain surgery. 

Of the two, the possibility of vestibular schwannoma is the most worrying. Sure, it could be just 
earwax, but what if it’s not? What if you do have a brain tumor? Since you’re most worried about 
the possibility of a brain tumor, you decide to make this your H1. Your H2 is the hypothesis that you 
have too much earwax in one ear. 

Let’s see if posterior odds can calm you down. 

As in our last example, we’ll start our exploration by looking at the likelihood of observing these 
symptoms if each hypothesis were true, and compute the Bayes factor. This means we need to 
compute P(D | H). You’ve observed two symptoms: hearing loss and tinnitus. 



For vestibular schwannoma, the probability of experiencing hearing loss is 94 percent, and the 
probability of experiencing tinnitus is 83 percent, which means the probability of having hearing 
loss and tinnitus if you have vestibular schwannoma is: 

P (D | H1) = 0.94 × 0.89 = 0.78 

Next, we’ll do the same for H2. For earwax impaction, the probability of experiencing hearing loss is 
63 percent, and the probability of experiencing tinnitus is 55 percent. The likelihood of having your 
symptoms if you have impacted earwax is: 

P (D | H2) = 0.63 × 0.55 = 0.35 

Now we have enough information to look at our Bayes factor: 

 

Yikes! Looking at just the Bayes factor doesn’t do much to help alleviate your concerns of having a 
brain tumor. Taking only the likelihood ratio into account, it appears that you’re more than twice as 
likely to experience these symptoms if you have vestibular schwannoma than if you have earwax 
impaction! Luckily, we’re not done with our analysis yet. 

The next step is to determine the prior odds of each hypothesis. Symptoms aside, how likely is it for 
someone to have one issue versus the other? We can find epidemiological data for each of these 
diseases. It turns out that vestibular schwannoma is a rare condition. Only 11 in 1,000,000 people 
contract it each year. The prior odds look like this: 

 

Unsurprisingly, earwax impaction is much, much more common, with 37,000 cases per 1,000,000 
people in a year: 

 

To get the prior odds for H1, we need to look at the ratio of these two prior probabilities: 

 

Based on prior information alone, a given person is about 3,700 times more likely to have an 
earwax impaction than vestibular schwannoma. But before you can breathe easy, we need to 
compute the full posterior odds. This just means multiplying our Bayes factor by our prior odds: 

 

This result shows that H2 is about 1,659 times more likely than H1. Finally, you can relax, knowing 
that a visit to the doctor in the morning for a simple ear cleaning will likely clear all this up! 



In everyday reasoning, it’s easy to overestimate the probability of scary situations, but by using 
Bayesian reasoning, we can break down the real risks and see how likely they actually are. 

WRAPPING UP 
In this chapter, you learned how to use the Bayes factor and posterior odds to compare two 
hypotheses. Rather than focusing on providing data to support our beliefs, the Bayes factor tests 
how well our beliefs support the data we’ve observed. The result is a ratio that reflects how many 
times better one hypothesis explains the data than the other. We can use it to strengthen our prior 
beliefs when they explain the data better than alternative beliefs. On the other hand, when the 
result is a fraction, we might want to consider changing our minds. 

EXERCISES 
Try answering the following questions to see how well you understand the Bayes factor and 
posterior odds. The solutions can be found at https://nostarch.com/learnbayes/. 

1. Returning to the dice problem, assume that your friend made a mistake and suddenly 
realized that there were, in fact, two loaded dice and only one fair die. How does this change 
the prior, and therefore the posterior odds, for our problem? Are you more willing to believe 
that the die being rolled is the loaded die? 

2. Returning to the rare diseases example, suppose you go to the doctor, and after 
having your ears cleaned you notice that your symptoms persist. Even worse, you have a 
new symptom: vertigo. The doctor proposes another possible explanation, labyrinthitis, 
which is a viral infection of the inner ear in which 98 percent of cases involve vertigo. 
However, hearing loss and tinnitus are less common in this disease; hearing loss occurs only 
30 percent of the time, and tinnitus occurs only 28 percent of the time. Vertigo is also a 
possible symptom of vestibular schwannoma, but occurs in only 49 percent of cases. In the 
general population, 35 people per million contract labyrinthitis annually. What is the 
posterior odds when you compare the hypothesis that you have labyrinthitis against the 
hypothesis that you have vestibular schwannoma? 
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BAYESIAN REASONING IN THE TWILIGHT ZONE 

 

In Chapter 16, we used the Bayes factor and posterior odds to find out how many times better one 
hypothesis was than a competing one. But these tools of Bayesian reasoning can do even more than 
just compare ideas. In this chapter, we’ll use the Bayes factor and posterior odds to quantify how 
much evidence it should take to convince someone of a hypothesis. We’ll also see how to estimate 
the strength of someone else’s prior belief in a certain hypothesis. We’ll do all of this using a famous 
episode of the classic TV series The Twilight Zone. 

BAYESIAN REASONING IN THE TWILIGHT ZONE 
One of my favorite episodes of The Twilight Zone is called “The Nick of Time.” In this episode, a 
young, newly married couple, Don and Pat, wait in a small-town diner while a mechanic repairs 
their car. In the diner, they come across a fortune-telling machine called the Mystic Seer that 
accepts yes or no questions and, for a penny, spits out cards with answers to each question. 

Don, who is very superstitious, asks the Mystic Seer a series of questions. When the machine 
answers correctly, he begins to believe in its supernatural powers. However, Pat remains skeptical 
of the machine’s powers, even as the Seer continues to provide correct answers. 

Although Don and Pat are looking at the same data, they come to different conclusions. How can we 
explain why they reason differently when given the same evidence? We can use the Bayes factor to 
get deeper insight into how these two characters are thinking about the data. 

USING THE BAYES FACTOR TO UNDERSTAND THE MYSTIC 

SEER 

In the episode, we are faced with two competing hypotheses. Let’s call them H and  (or “not H”), 
since one hypothesis is the negation of the other: 

H The Mystic Seer truly can predict the future. 

 The Mystic Seer just got lucky. 

Our data, D, in this case is the sequence of n correct answers the Mystic Seer provides. The 
greater n is, the stronger the evidence in favor of H. The major assumption in the Twilight 
Zoneepisode is that the Mystic Seer is correct every time, so the question is: is this result 
supernatural, or is it merely a coincidence? For us, D, our data, always represents a sequence 



of n correct answers. Now we can assess our likelihoods, or the probability of getting our data given 
each hypothesis. 

P(D | H) is the probability of getting n correct answers in a row given that the Mystic Seer can 
predict the future. This likelihood will always be 1, no matter the number of questions asked. This is 
because, if the Mystic Seer is supernatural, it will always pick the right answer, whether it is asked 
one question or a thousand. Of course, this also means that if the Mystic Seer gets a single answer 
wrong, the probability for this hypothesis will drop to 0, because a psychic machine wouldn’t ever 
guess incorrectly. In that case, we might want to come up with a weaker hypothesis—for example, 
that the Mystic Seer is correct 90 percent of the time (we’ll explore a similar problem in Chapter 
19). 

P(D | ) is the probability of getting n correct answers in a row if the Mystic Seer is randomly 

spitting out answers. Here, P(D | ) is 0.5n. In other words, if the machine is just guessing, then 
each answer has a 0.5 chance of being correct. 

To compare these hypotheses, let’s look at the ratio of the two likelihoods: 

 

As a reminder, this ratio measures how many times more likely the data is, given H as opposed 

to , when we assume both hypotheses are equally likely. Now let’s see how these ideas compare. 

Measuring the Bayes Factor 

As we did in the preceding chapter, we’ll temporarily ignore the ratio of our prior odds and 
concentrate on comparing the ratio of the likelihoods, or the Bayes factor. We’re assuming (for the 
time being) that the Mystic Seer has an equal chance of being supernatural as it does of being 
simply lucky. 

In this example, our numerator, P(D | H), is always 1, so for any value of n we have: 

 

Let’s imagine the Mystic Seer has given three correct answers so far. At this point, P(D3 | H) = 1, 
and P(D | H) = 0.53 = 0.125. Clearly H explains the data better, but certainly nobody—not even 
superstitious Don—will be convinced by only three correct guesses. Assuming the prior odds are 
the same, our Bayes factor for three questions is: 

 

We can use the same guidelines we used for evaluating posterior odds in Table 16-1 to evaluate 
Bayes factors here (if we assume each hypothesis is equally likely), as shown in Table 17-1. As you 
can see, a Bayes factor (BF) of 8 is far from conclusive. 

Table 17-1: Guidelines for Evaluating Bayes Factors 

BF Strength of evidence 

1 to 3 Interesting, but nothing conclusive 



BF Strength of evidence 

3 to 20 Looks like we’re on to something 

20 to 150 Strong evidence in favor of H1 

> 150 Overwhelming evidence in favor of H1 

So, at three questions answered correctly and with BF = 8, we should at least be curious about the 
power of the Mystic Seer, though we shouldn’t be convinced yet. 

But by this point in the episode, Don already seems pretty sure that the Mystic Seer is psychic. It 
takes only four correct answers for him to feel certain of it. On the other hand, it takes 14 questions 
for Pat to even start considering the possibility seriously, resulting in a Bayes factor of 16,384—way 
more evidence than she should need. 

Calculating the Bayes factor doesn’t explain why Don and Pat form different beliefs about the 
evidence, though. What’s going on there? 

Accounting for Prior Beliefs 

The element missing in our model is each character’s prior belief in the hypotheses. Remember that 
Don is extremely superstitious, while Pat is a skeptic. Clearly, Don and Pat are using extra 
information in their mental models, because each of them arrives at a conclusion of a different 
strength, and at very different times. This is fairly common in everyday reasoning: two people often 
respond differently to the exact same facts. 

We can model this phenomenon by simply imagining the initial odds of P(H) and P( ) given no 
additional information. We call this the prior odds ratio, as you saw in Chapter 16: 

 

The concept of prior beliefs in relation to the Bayes factor is actually pretty intuitive. Say we walk 
into the diner from The Twilight Zone, and I ask you, “What are the odds that the Mystic Seer is 
psychic?” You might reply, “Uh, one in a million! There’s no way that thing is supernatural.” 
Mathematically, we can express this as: 

 

Now let’s combine this prior belief with our data. To do this, we’ll multiply our prior odds with the 
results of the likelihood ratio to get our posterior odds for the hypothesis, given the data we’ve 
observed: 

 

Thinking there’s only a one in a million chance the Mystic Seer is psychic before looking at any 
evidence is pretty strong skepticism. The Bayesian approach reflects this skepticism quite well. If 
you think the hypothesis that the Mystic Seer is supernatural is extremely unlikely from the start, 



then you’ll require significantly more data to be convinced otherwise. Suppose the Mystic Seer gets 
five answers correct. Our Bayes factor then becomes: 

 

A Bayes factor of 32 is a reasonably strong belief that the Mystic Seer is truly supernatural. 
However, if we add in our very skeptical prior odds to calculate our posterior odds, we get the 
following results: 

 

Now our posterior odds tell us it’s extremely unlikely that the machine is psychic. This result 
corresponds quite well with our intuition. Again, if you really don’t believe in a hypothesis from the 
start, it’s going to take a lot of evidence to convince you otherwise. 

In fact, if we work backward, posterior odds can help us figure out how much evidence we’d need to 
make you believe H. At a posterior odds of 2, you’d just be starting to consider the supernatural 
hypothesis. So, if we solve for a posterior odds of greater than 2, we can determine what it would 
take to convince you. 

 

If we solve for n to the nearest whole number, we get: 

n > 21 

At 21 correct answers in a row, even a strong skeptic should start to think that the Seer may, in fact, 
be psychic. 

Thus, our prior odds can do much more than tell us how strongly we believe something given our 
background. It can also help us quantify exactly how much evidence we would need to be convinced 
of a hypothesis. The reverse is true, too; if, after 21 correct answers in a row, you find yourself 
believing strongly in H, you might want to weaken your prior odds. 

DEVELOPING OUR OWN PSYCHIC POWERS 
At this point, we’ve learned how to compare hypotheses and calculate how much favorable 
evidence it would take to convince us of H, given our prior belief in H. Now we’ll look at one more 
trick we can do with posterior odds: quantifying Don and Pat’s prior beliefs based on their 
reactions to the evidence. 

We don’t know exactly how strongly Don and Pat believe in the possibility that the Mystic Seer is 
psychic when they first walk into the diner. But we do know it takes Don about seven correct 
questions to become essentially certain of the Mystic Seer’s supernatural abilities. We can estimate 
that at this point Don’s posterior odds are 150—the threshold for very strong beliefs, according 
to Table 17-1. Now we can write out everything we know, except for O(H), which we’ll be solving 
for: 

 



Solving this for O(H) gives us: 

O(H)Don = 1.17 

What we have now is a quantitative model for Don’s superstitious beliefs. Because his initial odds 
ratio is greater than 1, Don walks into the diner being slightly more willing than not to believe that 
the Mystic Seer is supernatural, before collecting any data at all. This makes sense, of course, given 
his superstitious nature. 

Now on to Pat. At around 14 correct answers, Pat grows nervous, calling the Mystic Seer “a stupid 
piece of junk!” Although she has begun to suspect that the Mystic Seer might be psychic, she’s not 
nearly as certain as Don. I would estimate that her posterior odds are 5—the point at which she 
might start thinking, “Maybe the Mystic Seer could have psychic powers . . .” Now we can create the 
posterior odds for Pat’s beliefs in the same way: 

 

When we solve for O(H), we can model Pat’s skepticism as: 

O(H)Pat = 0.0003 

In other words, Pat, walking into the diner, would claim that the Seer has about a 1 in 3,000 chance 
of being supernatural. Again, this corresponds to our intuition; Pat begins with the very strong 
belief that the fortune-telling machine is nothing more than a fun game to play while she and Don 
wait for food. 

What we’ve done here is remarkable. We’ve used our rules of probability to come up with a 
quantitative statement about what someone believes. In essence, we have become mind readers! 

WRAPPING UP 
In this chapter, we explored three ways of using Bayes factors and posterior odds in order to reason 
about problems probabilistically. We started by revisiting what we learned in the previous chapter: 
that we can use posterior odds as a way to compare two ideas. Then we saw that if we know our 
prior belief in the odds of one hypothesis versus another, we can calculate exactly how much 
evidence it will take to convince us that we should change our beliefs. Finally, we used posterior 
odds to assign a value for each person’s prior beliefs by looking at how much evidence it takes to 
convince them. In the end, posterior odds is far more than just a way to test ideas. It provides us 
with a framework for thinking about reasoning under uncertainty. 

You can now use your own “mystic” powers of Bayesian reasoning to answer the exercises below: 

 

 

 

 

 



EXERCISES 
Try answering the following questions to see how well you understand quantifying the amount of 
evidence it should take to convince someone of a hypothesis and estimating the strength of 
someone else’s prior belief. The solutions can be found at https://nostarch.com/learnbayes/. 

1. Every time you and your friend get together to watch movies, you flip a coin to 
determine who gets to choose the movie. Your friend always picks heads, and every Friday 
for 10 weeks, the coin lands on heads. You develop a hypothesis that the coin has two heads 
sides, rather than both a heads side and a tails side. Set up a Bayes factor for the hypothesis 
that the coin is a trick coin over the hypothesis that the coin is fair. What does this ratio 
alone suggest about whether or not your friend is cheating you? 

2. Now imagine three cases: that your friend is a bit of a prankster, that your friend is 
honest most of the time but can occasionally be sneaky, and that your friend is very 
trustworthy. In each case, estimate some prior odds ratios for your hypothesis and compute 
the posterior odds. 

3. Suppose you trust this friend deeply. Make the prior odds of them cheating 1/10,000. 
How many times would the coin have to land on heads before you feel unsure about their 
innocence—say, a posterior odds of 1? 

4. Another friend of yours also hangs out with this same friend and, after only four 
weeks of the coin landing on heads, feels certain you’re both being cheated. This confidence 
implies a posterior odds of about 100. What value would you assign to this other friend’s 
prior belief that the first friend is a cheater? 
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WHEN DATA DOESN’T CONVINCE YOU 

 

In the previous chapter, we used Bayesian reasoning to reason about two hypotheses from an 
episode of The Twilight Zone: 

• H The fortune-telling Mystic Seer is supernatural. 

•  The fortune-telling Mystic Seer isn’t supernatural, just lucky. 

We also learned how to account for skepticism by changing the prior odds ratio. For example, if 
you, like me, believe that the Mystic Seer definitely isn’t psychic, then you might want to set the 
prior odds extremely low—something like 1/1,000,000. 

However, depending on your level of personal skepticism, you might feel that even a 1/1,000,000 
odds ratio wouldn’t be quite enough to convince you of the seer’s power. 

Maybe even after receiving 1,000 correct answers from the seer—which, despite your very 
skeptical prior odds, would suggest you were astronomically in favor of believing the seer is 
psychic—you still wouldn’t buy into its supernatural powers. We could represent this by simply 
making our prior odds even more extreme, but I personally don’t find this solution very satisfying 
because no amount of data would convince me that the Mystic Seer is, in fact, psychic. 

In this chapter, we’ll take a deeper look at problems where the data doesn’t convince people in the 
way we expect it to. In the real world, these situations are fairly common. Anyone who has argued 
with a relative over a holiday dinner has likely noticed that oftentimes the more contradictory 
evidence you give, the more they seem to be convinced of their preexisting belief! In order to fully 
understand Bayesian reasoning, we need to be able to understand, mathematically, why situations 
like these arise. This will help us identify and avoid them in our statistical analysis. 

A PSYCHIC FRIEND ROLLING DICE 
Suppose your friend tells you they can predict the outcome of a six-sided die roll with 90 percent 
accuracy because they are psychic. You find this claim difficult to believe, so you set up a hypothesis 
test using the Bayes factor. As in the Mystic Seer example, you have two hypotheses you want to 
compare: 

 

The first hypothesis, H1, represents your belief that the die is fair, and that your friend is not 
psychic. If the die is fair, there is a 1 in 6 chance of guessing the result correctly. The second 
hypothesis, H2, represents your friend’s belief that they can, in fact, predict the outcome of a die roll 



90 percent of the time and is therefore given a 9/10 ratio. Next we need some data to start testing 
their claim. Your friend rolls the die 10 times and correctly guesses the outcome of the roll 9 times. 

Comparing Likelihoods 

As we often have in previous chapters, we’ll start by looking at the Bayes factor, assuming for now 
that the prior odds for each hypothesis are equal. We’ll formulate our likelihood ratio as: 

 

so that our results will tell us how many times better (or worse) your friend’s claim of being 
psychic explains the data than your hypothesis does. For this example, we’ll use the variable BFfor 
“Bayes factor” in our equations for brevity. Here is our result, taking into account the fact that your 
friend correctly predicted 9 out of 10 rolls: 

 

Our likelihood ratio shows that the friend-being-psychic hypothesis explains the data 468,517 
times better than the hypothesis that your friend is just lucky. This is a bit concerning. According to 
the Bayes factor chart we saw in earlier chapters, this means we should be nearly certain that H2 is 
true and your friend is psychic. Unless you’re already a deep believer in the possibility of psychic 
powers, something seems very wrong here. 

Incorporating Prior Odds 

In most cases in this book where the likelihood alone gives us strange results, we can solve the 
problem by including our prior probabilities. Clearly, we don’t believe in our friend’s hypothesis 
nearly as strongly as we believe in our own, so it makes sense to create a strong prior odds in favor 
of our hypothesis. We can start by simply setting our odds ratio high enough that it cancels out the 
extreme result of the Bayes factor, and see if this fixes our problem: 

 

Now, when we work out our full posterior odds, we find that we are, once again, unconvinced that 
your friend is psychic: 

 

For now, it looks like prior odds have once again saved us from a problem that occurred when we 
looked only at the Bayes factor. 

But suppose your friend rolls the die five more times and successfully predicts all five outcomes. 
Now we have a new set of data, D15, which represents 15 rolls of a die, 14 of which your friend 
guessed accurately. Now when we calculate our posterior odds, we see that even our extreme prior 
is of little help: 



 

Using our existing prior, with just five more rolls of the die, we have posterior odds of 4,592—
which means we’re back to being nearly certain that your friend is truly psychic! 

In most of our previous problems, we’ve corrected nonintuitive posterior results by adding a sane 
prior. We’ve added a pretty extreme prior against your friend being psychic, but our posterior odds 
are still strongly in favor of the hypothesis that they’re psychic. 

This is a major problem, because Bayesian reasoning should align with our everyday sense of logic. 
Clearly, 15 rolls of a die with 14 successful guesses is highly unusual, but it’s unlikely to convince 
many people that the guesser truly possesses psychic powers! However, if we can’t explain what’s 
going on here with our hypothesis test, it means that we really can’t rely on our test to solve our 
everyday statistical problems. 

Considering Alternative Hypotheses 

The issue here is that we don’t want to believe your friend is psychic. If you found yourself in this 
situation in real life, it’s likely you would quickly come to some alternative conclusion. You might 
come to believe that your friend is using a loaded die that rolls a certain value about 90 percent of 
the time, for example. This represents a third hypothesis. Our Bayes factor is looking at only two 
possible hypotheses: H1, the hypothesis that the die is fair, and H2, the hypothesis that your friend is 
psychic. 

Our Bayes factor so far tells us that it’s far more likely that our friend is psychic than that they are 
guessing the rolls of a fair die correctly. When we think of the conclusion in those terms, it makes 
more sense: with these results, it’s extremely unlikely that the die is fair. We don’t feel comfortable 
accepting the H2 alternative, because our own beliefs about the world don’t support the idea 
that H2 is a realistic explanation. 

It’s important to understand that a hypothesis test compares only two explanations for an event, 
but very often there are countless possible explanations. If the winning hypothesis doesn’t convince 
you, you could always consider a third one. 

Let’s look at what happens when we compare H2, our winning hypothesis, with a new 
hypothesis, H3: that the die is rigged so it has a certain outcome 90 percent of the time. 

We’ll start with a new prior odds about H2, which we’ll call O(H2)′ (the tick mark is a common 
notation in mathematics meaning “like but not the same as”). This will represent the odds of H2/H3. 
For now, we’ll just say that we believe it’s 1,000 times more likely that your friend is using a loaded 
die than that your friend is really psychic (though our real prior might be much more extreme). 
That means the prior odds of your friend being psychic is 1/1,000. If we reexamine our new 
posterior odds, we get the following interesting result: 

 



According to this calculation, our posterior odds are the same as our prior odds, O(H2)′. This 
happens because our two likelihoods are the same. In other words, P(D15 | H2) = P(D15 | H3). For both 
hypotheses, the likelihood of your friend correctly guessing the outcome of the die roll is exactly the 
same for the loaded die because the probability each assigns to success is the same. This means that 
our Bayes factor will always be 1. 

These results correspond quite well to our everyday intuition; after all, prior odds aside, each 
hypothesis explains the data we’ve seen equally well. That means that if, before considering the 
data, we believe one explanation is far more likely than the other, then no amount of new evidence 
will change our minds. So we no longer have a problem with the data we observed; we’ve simply 
found a better explanation for it. 

In this scenario, no amount of data will change our mind about believing H3 over H2 because both 
explain what we’ve observed equally well, and we already think that H3 is a far more likely 
explanation than H2. What’s interesting here is that we can find ourselves in this situation even if 
our prior beliefs are entirely irrational. Maybe you’re a strong believer in psychic phenomena and 
think that your friend is the most honest person on earth. In this case, you might make the prior 
odds O(H2)′ = 1,000. If you believed this, no amount of data could convince you that your friend is 
using a loaded die. 

In cases like this, it’s important to realize that if you want to solve a problem, you need to be willing 
to change your prior beliefs. If you’re unwilling to let go of unjustifiable prior beliefs, then, at the 
very least, you must acknowledge that you’re no longer reasoning in a Bayesian—or logical—way 
at all. We all hold irrational beliefs, and that’s perfectly okay, so long as we don’t attempt to use 
Bayesian reasoning to justify them. 

ARGUING WITH RELATIVES AND CONSPIRACY THEORISTS 
Anyone who has argued with relatives over a holiday dinner about politics, climate change, or their 
favorite movies has experienced firsthand a situation in which they are comparing two hypotheses 
that both explain the data equally well (to the person arguing), and only the prior remains. How can 
we change someone else’s (or our own) beliefs even when more data doesn’t change anything? 

We’ve already seen that if you compare the belief that your friend has a loaded die and the belief 
that they are psychic, more data will do nothing to change your beliefs about your friend’s claim. 
This is because both your hypothesis and your friend’s hypothesis explain the data equally well. In 
order for your friend to convince you that they are psychic, they have to alter your prior beliefs. For 
example, since you’re suspicious that the die might be loaded, your friend could then offer to let you 
choose the die they roll. If you bought a new die and gave it to your friend, and they continued to 
accurately predict their rolls, you might start to be convinced. This same logic holds anytime you 
run into a problem where two hypotheses equally explain the data. In these cases, you must then 
see if there’s anything you can change in your prior. 

Suppose after you purchase the new die for your friend and they continue to succeed, you stilldon’t 
believe them; you now claim that they must have a secret way of rolling. In response, your friend 
lets you roll the die for them, and they continue to successfully predict the rolls—yet you still don’t 
believe them. In this scenario, something else is happening beyond just a hidden hypothesis. You 
now have an H4—that your friend is completely cheating—and you won’t change your mind. This 
means that for any Dn, P(Dn | H4) = 1. Clearly we’re out of Bayesian territory since you’ve essentially 
conceded that you won’t change your mind, but let’s see what happens mathematically if your 
friend persists in trying to convince you. 

Let’s look at how these two explanations, H2 and H4, compete using our data D10 with 9 correct 
predictions and 1 missed prediction. The Bayes factor for this is: 



 

Because you refuse to believe anything other than that your friend is cheating, the probability of 
what you observe is, and will always be, 1. Even though the data is exactly as we would expect in 
the case of your friend being psychic, we find our beliefs explain the data 26 times as well. Your 
friend, deeply determined to change your stubborn mind, persists and rolls 100 times, getting 90 
guesses right and 10 wrong. Our Bayes factor shows something very strange that happens: 

 

Even though the data seems to strongly support your friend’s hypothesis, because you refuse to 
budge in your beliefs, you’re now even more wildly convinced that you’re right! When we don’t 
allow our minds to be changed at all, more data only further convinces us we are correct. 

This pattern may seem familiar to anyone who has argued with a politically radical relative or 
someone who adamantly believes in a conspiracy theory. In Bayesian reasoning, it is vital that our 
beliefs are at least falsifiable. In traditional science, falsifiability means that something can be 
disproved, but in our case it just means there has to be some way to reduce our belief in a 
hypothesis. 

The danger of nonfalsifiable beliefs in Bayesian reasoning isn’t just that they can’t be proved 
wrong—it’s that they are strengthened even by evidence that seems to contradict them. Rather 
than persisting in trying to convince you, your friend should have first asked, “What can I show you 
that would change your mind?” If your reply had been that nothing could change your mind, then 
your friend would be better off not presenting you with more evidence. 

So, the next time you argue with a relative over politics or conspiracy theories, you should ask 
them: “What evidence would change your mind?” If they have no answer to this, you’re better off 
not trying to defend your views with more evidence, as it will only increase your relative’s certainty 
in their belief. 

WRAPPING UP 
In this chapter, you learned about a few ways hypothesis tests can go wrong. Although the Bayes 
factor is a competition between two ideas, it’s quite possible that there are other, equally valid, 
hypotheses worth testing out. 

Other times, we find that two hypotheses explain the data equally well; you’re just as likely to see 
your friend’s correct predictions if they were caused by your friend’s psychic ability or a trick in the 
die. When this is the case, only the prior odds ratio for each hypothesis matters. This also means 
that acquiring more data in those situations will never change our beliefs, because it will never give 
either hypothesis an edge over the other. In these cases, it’s best to consider how you can alter the 
prior beliefs that are affecting the results. 

In more extreme cases, we might have a hypothesis that simply refuses to be changed. This is like 
having a conspiracy theory about the data. When this is the case, not only will more data never 
convince us to change our beliefs, but it will actually have the opposite effect. If a hypothesis is not 
falsifiable, more data will only serve to make us more certain of the conspiracy. 



EXERCISES 
Try answering the following questions to see how well you understand how to deal with extreme 
cases in Bayesian reasoning. The solutions can be found at https://nostarch.com/learnbayes/. 

1. When two hypotheses explain the data equally well, one way to change our minds is 
to see if we can attack the prior probability. What are some factors that might increase your 
prior belief in your friend’s psychic powers? 

2. An experiment claims that when people hear the word Florida, they think of the 
elderly and this has an impact on their walking speed. To test this, we have two groups of 15 
students walk across a room; one group hears the word Florida and one does not. 
Assume H1 = the groups don’t move at different speeds, and H2 = the Florida group is slower 
because of hearing the word Florida. Also assume: 

 
The experiment shows that H2 has a Bayes factor of 19. Suppose someone is unconvinced by 
this experiment because H2 had a lower prior odds. What prior odds would explain someone 
being unconvinced and what would the BF need to be to bring the posterior odds to 50 for 
this unconvinced person? 

Now suppose the prior odds do not change the skeptic’s mind. Think of an alternate H3 that 
explains the observation that the Florida group is slower. Remember if H2 and H3 both 
explain the data equally well, only prior odds in favor of H3 would lead someone to claim H3is 
true over H2, so we need to rethink the experiment so that these odds are decreased. Come 
up with an experiment that could change the prior odds in H3 over H2. 
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FROM HYPOTHESIS TESTING TO PARAMETER ESTIMATION 

 

So far, we’ve used posterior odds to compare only two hypotheses. That’s fine for simple problems; 
even if we have three or four hypotheses, we can test them all by conducting multiple hypothesis 
tests, as we did in the previous chapter. But sometimes we want to search a really large space of 
possible hypotheses to explain our data. For example, you might want to guess how many jelly 
beans are in a jar, the height of a faraway building, or the exact number of minutes it will take for a 
flight to arrive. In all these cases, there are many, many possible hypotheses—too many to conduct 
hypothesis tests for all of them. 

Luckily, there’s a technique for handling this scenario. In Chapter 15, we learned how to turn a 
parameter estimation problem into a hypothesis test. In this chapter, we’re going to do the 
opposite: by looking at a virtually continuous range of possible hypotheses, we can use the Bayes 
factor and posterior odds (a hypothesis test) as a form of parameter estimation! This approach 
allows us to evaluate more than just two hypotheses and provides us with a simple framework for 
estimating any parameter. 

IS THE CARNIVAL GAME REALLY FAIR? 
Suppose you’re at a carnival. While walking through the games, you notice someone arguing with a 
carnival attendant near a pool of little plastic ducks. Curious, you get closer and hear the player 
yelling, “This game is rigged! You said there was a 1 in 2 chance of getting a prize and I’ve picked up 
20 ducks and only received one prize! It looks to me like the chance of getting a prize is only 1 in 
20!” 

Now that you have a strong understanding of probability, you decide to settle this argument 
yourself. You explain to the attendant and the angry customer that if you observe some more games 
that day, you’ll be able to use the Bayes factor to determine who’s right. You decide to break up the 
results into two hypotheses: H1, which represents the attendant’s claim that the probability of a 
prize is 1/2, and H2, the angry customer’s claim that the probability of a prize is just 1/20: 

 



The attendant argues that because he didn’t watch the customer pick up ducks, he doesn’t think you 
should use his reported data, since no one else can verify it. This seems fair to you. You decide to 
watch the next 100 games and use that as your data instead. After the customer has picked up 100 
ducks, you observe that 24 of them came with prizes. 

Now, on to the Bayes factor! Since we don’t have a strong opinion about the claim from either the 
customer or the attendant, we won’t worry about the prior odds or calculating our full posterior 
odds yet. 

To get our Bayes factor, we need to compute P(D | H) for each hypothesis: 

P(D | H1) = (0.5)24 × (1 – 0.5)76 

P(D | H2) = (0.05)24 × (1 – 0.05)76 

Now, individually, both of these probabilities are quite small, but all we care about is the ratio. We’ll 
look at our ratio in terms of H2/H1 so that our result will tell us how many times better the 
customer’s hypothesis explains the data than the attendant’s: 

 

Our Bayes factor tells us that H1, the attendant’s hypothesis, explains the data 653 times as well 
as H2, which means that the attendant’s hypothesis (that the probability of getting a prize when 
picking up a duck is 0.5) is the more likely one. 

This should immediately seem strange. Clearly, the probability of getting only 24 prizes out of a 
total of 100 ducks seems really unlikely if the true probability of a prize is 0.5. We can use 
R’s pbinom() function (introduced in Chapter 13) to calculate the binomial distribution, which will 
tell us the probability of seeing 24 or fewer prizes, assuming that the probability of getting a prize is 
really 0.5: 

> pbinom(24,100,0.5) 
9.050013e-08 

As you can see, the probability of getting 24 or fewer prizes if the true probability of a prize is 0.5 is 
extremely low; expanding it out to the full decimal values, we get a probability of 
0.00000009050013! Something is definitely up with H1. Even though we don’t believe the 
attendant’s hypothesis, it still explains the data much better than the customer’s. 

So what’s missing? In the past, we’ve often found that the prior probability usually matters a lot 
when the Bayes factor alone doesn’t give us an answer that makes sense. But as we saw in Chapter 
18, there are cases in which the prior isn’t the root cause of our problem. In this case, using the 
following equation seems reasonable, since we don’t have a strong opinion either way: 

 

But maybe the problem here is that you have a preexisting mistrust in carnival games. Because the 
result of the Bayes factor favors the attendant’s hypothesis so strongly, we’d need our prior odds to 
be at least 653 to get a posterior odds that favors the customer’s hypothesis: 



 

That’s a really deep distrust of the fairness of the game! There must be some problem here other 
than the prior. 

Considering Multiple Hypotheses 

One obvious problem is that, while it seems intuitively clear that the attendant is wrong in his 
hypothesis, the customer’s alternative hypothesis is just too extreme to be right, either, so we have 
two wrong hypotheses. What if the customer thought the probability of winning was 0.2, rather 
than 0.05? We’ll call this hypothesis H3. Testing H3 against the attendant’s hypothesis radically 
changes the results of our likelihood ratio: 

 

Here we see that H3 explains the data wildly better than H1. With a Bayes factor of 917,399, we can 
be certain that H1 is far from the best hypothesis for explaining the data we’ve observed, 
because H3 blows it out of the water. The trouble we had in our first hypothesis test was that the 
customer’s belief was a far worse description of the event than the attendant’s belief. As we can see, 
though, that doesn’t mean the attendant was right. When we came up with an alternative 
hypothesis, we saw that it was a much better guess than either the attendant’s or the customer’s. 

Of course, we haven’t really solved our problem. What if there’s an even better hypothesis out 
there? 

Searching for More Hypotheses with R 

We want a more general solution that searches all of our possible hypotheses and picks out the best 
one. To do this, we can use R’s seq() function to create a sequence of hypotheses we want to 
compare to our H1. 

We’ll consider every increment of 0.01 between 0 and 1 as a possible hypothesis. That means we’ll 
consider 0.01, 0.02, 0.03, and so on. We’ll call 0.01—the amount we’re increasing each hypothesis 
by—dx (a common notation from calculus representing the “smallest change”) and use it to define 
a hypotheses variable, which represents all of the possible hypotheses we want to consider. Here we 
use R’s seq() function to generate a range of values for each hypothesis between 0 and 1 by 
incrementing the values by our dx: 

dx <- 0.01 
hypotheses <- seq(0,1,by=dx) 

Next, we need a function that can calculate our likelihood ratio for any two hypotheses. 
Our bayes.factor() function will take two arguments: h_top, which is the probability of getting a prize 
for the hypothesis on the top (the numerator) and h_bottom, which is the hypothesis we’re competing 
against (the attendant’s hypothesis). We set this up like so: 



bayes.factor <- function(h_top,h_bottom){ 
  ((h_top)^24*(1-h_top)^76)/((h_bottom)^24*(1-h_bottom)^76) 
} 

Finally, we compute the likelihood ratio for all of these possible hypotheses: 

bfs <- bayes.factor(hypotheses,0.5) 

Then, we use R’s base plotting functionality to see what these likelihood ratios look like: 

plot(hypotheses,bfs, type='l') 

Figure 19-1 shows the resulting plot. 

 

Figure 19-1: Plotting the Bayes factor for each of our hypotheses 

Now we can see a clear distribution of different explanations for the data we’ve observed. Using R, 
we can look at a wide range of possible hypotheses, where each point in our line represents the 
Bayes factor for the corresponding hypothesis on the x-axis. 

We can also see how high the largest Bayes factor is by using the max() function with our vector 
of bfs: 

> max(bfs) 
1.47877610^{6} 

Then we can check which hypothesis corresponds to the highest likelihood ratio, telling us which 
hypothesis we should believe in the most. To do this, enter: 



> hypotheses[which.max(bfs)] 
0.24 

Now we know that a probability of 0.24 is our best guess, since this hypothesis produces the 
highest likelihood ratio when compared with the attendant’s. In Chapter 10, you learned that using 
the mean or expectation of our data is often a good way to come up with a parameter estimate. 
Here we’ve simply chosen the hypothesis that individually explains the data the best, because we 
don’t currently have a way to weigh our estimates by their probability of occurring. 

Adding Priors to Our Likelihood Ratios 

Now suppose you present your findings to the customer and the attendant. Both agree that your 
findings are pretty convincing, but then another person walks up to you and says, “I used to make 
games like these, and I can tell you that for some strange industry reason, the people who design 
these duck games never put the prize rate between 0.2 and 0.3. I’d bet you the odds are 1,000 to 1 
that the real prize rate is not in this range. Other than that, I have no clue.” 

Now we have some prior odds that we’d like to use. Since the former game maker has given us 
some solid odds about his prior beliefs in the probability of getting a prize, we can try to multiply 
this by our current list of Bayes factors and compute the posterior odds. To do this, we create a list 
of prior odds ratios for every hypothesis we have. As the former game maker told us, the prior odds 
ratio for all probabilities between 0.2 and 0.3 should be 1/1,000. Since the maker has no opinion 
about other hypotheses, the odds ratio for these will just be 1. We can use a simple ifelsestatement, 
using our vector of hypotheses, to create a vector of our odds ratios: 

priors <- ifelse(hypotheses >= 0.2 & hypotheses <= 0.3, 1/1000,1) 

Then we can once again use plot() to display this distribution of priors: 

plot(hypotheses,priors,type='l') 

Figure 19-2 shows our distribution of prior odds. 

Because R is a vector-based language (for more information on this, see Appendix A), we can simply 
multiply our priors by our bfs and get a new vector of posteriors representing our Bayes factors: 

posteriors <- priors*bfs 

Finally, we can plot a chart of the posterior odds of each of our many hypotheses: 

plot(hypotheses,posteriors,type='l') 

Figure 19-3 shows the plot. 



 

Figure 19-2: Visualizing our prior odds ratios 

 

Figure 19-3: Plotting our distribution of Bayes factors 

As we can see, we get a very strange distribution of possible beliefs. We have reasonable confidence 
in the values between 0.15 and 0.2 and between 0.3 and 0.35, but find the range between 0.2 and 



0.3 to be extremely unlikely. But this distribution is an honest representation of the strength of 
belief in each hypothesis, given what we’ve learned about the duck game manufacturing process. 

While this visualization is helpful, we really want to be able to treat this data like a true probability 
distribution. That way, we can ask questions about how much we believe in ranges of possible 
hypotheses and calculate the expectation of our distribution to get a single estimate for what we 
believe the hypothesis to be. 

BUILDING A PROBABILITY DISTRIBUTION 
A true probability distribution is one where the sum of all possible beliefs equals 1. Having a 
probability distribution would allow us to calculate the expectation (or mean) of our data to make a 
better estimate about the true rate of getting a prize. It would also allow us to easily sum ranges of 
values so we could come up with confidence intervals and other similar estimates. 

The problem is that if we add up all the posterior odds for our hypotheses, they don’t equal 1, as 
shown in this calculation: 

> sum(posteriors) 
3.140687510^{6} 

This means we need to normalize our posterior odds so that they do sum to 1. To do so, we simply 
divide each value in our posteriors vector by the sum of all the values: 

p.posteriors <- posteriors/sum(posteriors) 

Now we can see that our p.posteriors values add up to 1: 

> sum(p.posteriors) 
1 

Finally, let’s plot our new p.posteriors: 

plot(hypotheses,p.posteriors,type='l') 

Figure 19-4 shows the plot. 



 

Figure 19-4: Our normalized posterior odds (note the scale on the y-axis) 

We can also use our p.posteriors to answer some common questions we might have about our data. 
For example, we can now calculate the probability that the true rate of getting a prize is less than 
what the attendant claims. We just add up all the probabilities for values less than 0.5: 

sum(p.posteriors[which(hypotheses < 0.5)]) 
> 0.9999995 

As we can see, the probability that the prize rate is lower than the attendant’s hypothesis is nearly 
1. That is, we can be almost certain that the attendant is overstating the true prize rate. 

We can also calculate the expectation of our distribution and use this result as our estimate for the 
true probability. Recall that the expectation is just the sum of the estimates weighted by their value: 

> sum(p.posteriors*hypotheses) 
0.2402704 

Of course, we can see our distribution is a bit atypical, with a big gap in the middle, so we might 
want to simply choose the most likely estimate, as follows: 

> hypotheses[which.max(p.posteriors)] 
0.19 

Now we’ve used the Bayes factor to come up with a range of probabilistic estimates for the true 
possible rate of winning a prize in the duck game. This means that we’ve used the Bayes factor as a 
form of parameter estimation! 



FROM THE BAYES FACTOR TO PARAMETER ESTIMATION 
Let’s take a moment to look at our likelihood ratios alone again. When we weren’t using a prior 
probability for any of the hypotheses, you might have felt that we already had a perfectly good 
approach to solving this problem without needing the Bayes factor. We observed 24 ducks with 
prizes and 76 ducks without prizes. Couldn’t we just use our good old beta distribution to solve this 
problem? As we’ve discussed many times since Chapter 5, if we want to estimate the rate of some 
event, we can always use the beta distribution. Figure 19-5 shows a plot of a beta distribution with 
an alpha of 24 and a beta of 76. 

 

Figure 19-5: The beta distribution with an alpha of 24 and a beta of 76 

Except for the scale of the y-axis, the plot looks nearly identical to the original plot of our likelihood 
ratios! In fact, if we do a few simple tricks, we can get these two plots to line up perfectly. If we scale 
our beta distribution by the size of our dx and normalize our bfs, we can see that these two 
distributions get quite close (Figure 19-6). 



 

Figure 19-6: Our initial distribution of likelihood ratios maps pretty closely to Beta(24,76). 

There seems to be only a slight difference now. We can fix it by using the weakest prior that 
indicates that getting a prize and not getting a prize are equally likely—that is, by adding 1 to both 
the alpha and beta parameters, as shown in Figure 19-7. 



 

Figure 19-7: Our likelihood ratios map perfectly to a Beta(24+1,76+1) distribution. 

Now we can see that the two distributions are perfectly aligned. Chapter 5 mentioned that the beta 
distribution was difficult to derive from our basic rules of probability. However, by using the Bayes 
factor, we’ve been able to empirically re-create a modified version of it that assumes a prior of 
Beta(1,1). And we did it without any fancy mathematics! All we had to do was: 

1. Define the probability of the evidence given a hypothesis. 

2. Consider all possible hypotheses. 

3. Normalize these values to create a probability distribution. 

Every time we’ve used the beta distribution in this book, we’ve used a beta-distributed prior. This 
made the math easier, since we can arrive at the posterior by combining the alpha and beta 
parameters from the likelihood and prior beta distributions. In other words: 

Beta(αposterior, βposterior) = Beta(αprior + αlikelihood, βprior + βlikelihood) 

However, by building our distribution from the Bayes factor, we were able to easily use a unique 
prior distribution. Not only is the Bayes factor a great tool for setting up hypothesis tests, but, as it 
turns out, it’s also all we need to create any probability distribution we might want to use to solve 
our problem, whether that’s hypothesis testing or parameter estimation. We just need to be able to 
define the basic comparison between two hypotheses, and we’re on our way. 

When we built our A/B test in Chapter 15, we figured out how to reduce many hypothesis tests to a 
parameter estimation problem. Now you’ve seen how the most common form of hypothesis testing 



can also be used to perform parameter estimation. Given these two related insights, there is 
virtually no limit to the type of probability problems we can solve using only the most basic rules of 
probability. 

WRAPPING UP 
Now that you’ve finished your journey into Bayesian statistics, you can appreciate the true beauty 
of what you’ve been learning. From the basic rules of probability, we can derive Bayes’ theorem, 
which lets us convert evidence into a statement expressing the strength of our beliefs. From Bayes’ 
theorem, we can derive the Bayes factor, a tool for comparing how well two hypotheses explain the 
data we’ve observed. By iterating through possible hypotheses and normalizing the results, we can 
use the Bayes factor to create a parameter estimate for an unknown value. This, in turn, allows us to 
perform countless other hypothesis tests by comparing our estimates. And all we need to do to 
unlock all this power is use the basic rules of probability to define our likelihood, P(D | H)! 

EXERCISES 
Try answering the following questions to see how well you understand using the Bayes factor and 
posterior odds to do parameter estimation. The solutions can be found 
at https://nostarch.com/learnbayes/. 

1. Our Bayes factor assumed that we were looking at H1: P(prize) = 0.5. This allowed us 
to derive a version of the beta distribution with an alpha of 1 and a beta of 1. Would it matter 
if we chose a different probability for H1? Assume H1: P(prize) = 0.24, then see if the resulting 
distribution, once normalized to sum to 1, is any different than the original hypothesis. 

2. Write a prior for the distribution in which each hypothesis is 1.05 times more likely 
than the previous hypothesis (assume our dx remains the same). 

3. Suppose you observed another duck game that included 34 ducks with prizes and 66 
ducks without prizes. How would you set up a test to answer “What is the probability that 
you have a better chance of winning a prize in this game than in the game we used in our 
example?” Implementing this requires a bit more sophistication than the R used in this book, 
but see if you can learn this on your own to kick off your adventures in more advanced 
Bayesian statistics! 

 

 

 

 

 

 

 

 

 

 

 



A 

A QUICK INTRODUCTION TO R 

 

In this book, we use the R programming language to do some tricky mathematical work for us. R is 
a programming language that specializes in statistics and data science. If you don’t have experience 
with R, or with programming in general, don’t worry—this appendix will get you started. 

R AND RSTUDIO 
To run the code examples in this book, you’ll need to have R installed on your computer. To install 
R, visit https://cran.rstudio.com/ and follow the installation steps for the operating system you’re 
using. 

Once you’ve installed R, you should also install RStudio, an integrated development environment 
(IDE) that makes it extremely easy to run R projects. Download and install RStudio 
from www.rstudio.com/products/rstudio/download/. 

When you open RStudio, you should be greeted with several panels (Figure A-1). 



 

Figure A-1: Viewing the console in RStudio 

The most important panel is the big one in the middle, called the console. In the console, you can 
enter any of the code examples from the book and run them simply by pressing ENTER. The console 
runs all the code you enter immediately, which makes it hard to keep track of the code you’ve 
written so far. 

To write programs that you can save and come back to, you can place your code in an R script, 
which is a text file that you can load into the console later. R is an extremely interactive 
programming language, so rather than thinking of the console as a place you can test out code, think 
of R scripts as a way to quickly load tools you can use in the console. 

CREATING AN R SCRIPT 
To create an R script, go to File▸New File▸R Script in RStudio. This should create a new blank 
panel in the top left (Figure A-2). 



 

Figure A-2: Creating an R script 

In this panel, you can enter code and save it as a file. To run the code, simply click the Sourcebutton 
at the top right of the panel, or run individual lines by clicking the Run button. The Source button 
will automatically load your file into the console as though you had typed it there yourself. 

BASIC CONCEPTS IN R 
We’ll be using R as an advanced calculator in this book, which means you’ll only need to understand 
a few basics to work through the problems and extend the examples in the book on your own. 

Data Types 

All programming languages have different types of data, which you can use for different purposes 
and manipulate in different ways. R has a rich variety of types and data structures, but we’ll only be 
using a very small number of them in this book. 

Doubles 

The numbers we use in R will all be of the type double (short for “double-precision floating-point,” 
which is the most common way to represent decimal numbers on a computer). The double is the 
default type for representing decimal numbers. Unless otherwise specified, all numbers you enter 
into the console are of the double type. 



We can manipulate numbers in the double type using standard mathematical operations. For 
example, we can add two numbers with the + operator. Try this out in the console: 

> 5 + 2 
[1] 7 

We can also divide any numbers that give us decimal results using the / operator: 

> 5/2 
[1] 2.5 

We can multiply values with the * operator like so: 

> 5 * 2 
[1] 10 

and take the exponential of a value using the ^ operator. For example, 52 is: 

> 5^2 
[1] 25 

We can also add - in front of a number to make it negative: 

> 5 - -2 
[1] 7 

And we can also use scientific notation with e+. So 5 × 102 is just: 

> 5e+2 
[1] 500 

If we use e- we get the same result as 5 × 10–2: 

> 5e-2 
[1] 0.05 

This is useful to know because sometimes R will return the result in scientific notation if it is too 
large to easily fit on the screen, like so: 

> 5*10^20 
[1] 5e+20 

Strings 

Another important type in R is the string, which is just a group of characters used to represent text. 
In R, we surround a string with quotation marks, like this: 



> "hello" 
[1] "hello" 

Note that if you put a number inside a string, you can’t use that number in regular numeric 
operations because strings and numbers are different types. For example: 

> "2" + 2 
Error in "2" + 2 : non-numeric argument to binary operator 

We won’t be making much use of strings in this book. We’ll primarily use them to pass arguments 
to functions and to give labels to plots. But it’s important to remember them if you’re using text. 

Logicals 

Logical or binary types are true or false values represented by the codes TRUE and FALSE. Note 
that TRUE and FALSE aren’t strings—they’re not surrounded by quotes, and they’re written in all 
uppercase. (R also allows you to simply use T or F instead of writing out the full words.) 

We can combine logical types with the symbols & (“and”) and | (“or”) to perform basic logical 
operations. For example, if we wanted to know whether it’s possible for something to be both 
true and false at the same time, we might enter: 

> TRUE & FALSE 

R would return: 

[1] FALSE 

telling us that a value can’t be both true and false. 

But what about true or false? 

> TRUE | FALSE 
[1] TRUE 

Like strings, in this book logical values will primarily be used to provide arguments to functions 
we’ll be using, or as the results of comparing two different values. 

Missing Values 

In practical statistics and data science, data is often missing some values. For example, say you have 
temperature data for the morning and afternoon of every day for a month, but something 
malfunctioned one day and you’re missing a morning temperature. Because missing values are so 
common, R has a special way of representing them: using the value NA. It’s important to have a way 
to handle missing values because they can mean very different things in different contexts. For 
example, when you’re measuring rainfall a missing value might mean there was no rain in the 
gauge, or it might mean that there was plenty of rain but temperatures were freezing that night, 
cracking the gauge and causing all the water to leak out. In the first case, we might consider missing 
values to mean 0, but in the latter case it’s not clear what the value should be. Keeping missing 
values separate from other values forces us to consider these differences. 



To prompt us to make sense of what our missing values are whenever we try to use one, R will 
output NA for any operation using a missing value: 

> NA + 2 
[1] NA 

As we’ll see in a bit, various functions in R can handle missing values in different ways, but you 
shouldn’t have to worry about missing values for the R you’ll use in this book. 

Vectors 

Nearly every programming language contains certain features that make it unique and especially 
suited to solving problems in its domain. R’s special feature is that it is a vector language. A vector is 
a list of values, and everything R does is an operation on a vector. We use the code c(...) to define 
vectors (but even if we put in just a single value, R does this for us!). 

To understand how vectors work, let’s consider an example. Enter the next example in a script, 
rather than the console. We first create a new vector by assigning the variable x to the 
vector c(1,2,3) using the assignment operator <- like so: 

x <- c(1,2,3) 

Now that we have a vector, we can use it in our calculations. When we perform a simple operation, 
like adding 3 to x, when we enter this in the console, we get a rather unexpected result (especially if 
you’re used to another programming language): 

> x + 3 
[1] 4 5 6 

The result of x + 3 tells us what happens if we add 3 to each value in our x vector. (In many other 
programming languages, we’d need to use a for loop or some other iterator to perform this 
operation.) 

We can also add vectors to each other. Here, we’ll create a new vector containing three elements, 
each with a value of 2. We’ll name this vector y, then add y to x: 

> y <- c(2,2,2) 
> x + y 
[1] 3 4 5 

As you can see, this operation added each element in x to its corresponding element in y. 

What if we multiply our two vectors? 

> x * y 
[1] 2 4 6 

Each value in x was multiplied by its corresponding value in y. If the lists weren’t the same size, or a 
multiple of the same size, then we’d get an error. If a vector is a multiple of the same size, R will just 



repeatedly apply the smaller vector to the larger one. However, we won’t be making use of this 
feature in this book. 

We can quite easily combine vectors in R by defining another vector based on the existing ones. 
Here, we’ll create the vector z by combining x and y: 

> z <- c(x,y) 
> z 
[1] 1 2 3 2 2 2 

Notice that this operation didn’t give us a vector of vectors; instead, we got a single vector that 
contains the values from both, in the order you set x and y when you defined z. 

Learning to use vectors efficiently in R can be a bit tricky for beginners. Ironically, programmers 
who are experienced in a non-vector-based language often have the most difficulty. Don’t worry, 
though: in this book, we’ll use vectors to make reading code easier. 

FUNCTIONS 
Functions are blocks of code that perform a particular operation on a value, and we’ll use them in R 
to solve problems. 

In R and RStudio, all functions come equipped with documentation. If you enter ? followed by a 
function name into the R console, you’ll get the full documentation for that function. For example, if 
you enter ?sum into the RStudio console, you should see the documentation shown in Figure A-3 in 
the bottom-right screen. 



 

Figure A-3: Viewing the documentation for the sum() function 

This documentation gives us the definition of the sum() function and some of its uses. 
The sum()function takes a vector’s values and adds them all together. The documentation says it 
takes ... as an argument, which means it can accept any number of values. Usually these values will 
be a vector of numbers, but they can consist of multiple vectors, too. 

The documentation also lists an optional argument: na.rm = FALSE. Optional arguments are arguments 
that you don’t have to pass in to the function for it to work; if you don’t pass an optional argument 
in, R will use the argument’s default value. In the case of na.rm, which automatically removes any 
missing values, the default value, after the equal sign, is FALSE. That means that, by 
default, sum() won’t remove missing values. 

Basic Functions 

Here are some of R’s most important functions. 



The length() and nchar() Functions 

The length() function will return the length of a vector: 

> length(c(1,2,3)) 
[1] 3 

Since there are three elements in this vector, the length() function returns 3. 

Because everything in R is a vector, you can use the length() function to find the length of anything—
even a string, like “doggies”: 

> length("doggies") 
[1] 1 

R tells us that “doggies” is a vector containing one string. 

Now, if we had two strings, “doggies” and “cats”, we’d get: 

> length(c("doggies","cats")) 
[1] 2 

To find the number of characters in a string, we use the nchar() function: 

> nchar("doggies") 
[1] 7 

Note that if we use nchar() on the c(“doggies”,”cats”) vector, R returns a new vector containing the 
number of characters in each string: 

> nchar(c("doggies","cats")) 
[1] 7 4 

The sum(), cumsum(), and diff() Functions 

The sum() function takes a vector of numbers and adds all those numbers together: 

> sum(c(1,1,1,1,1)) 
[1] 5 

As we saw in the documentation in the previous section, sum() takes ... as its argument, which means 
it can accept any number of values: 

> sum(2,3,1) 
[1] 6 
> sum(c(2,3),1) 
[1] 6 
> sum(c(2,3,1)) 
[1] 6 



As you can see, no matter how many vectors we provide, sum() adds them up as though they were a 
single vector of integers. If you wanted to sum up multiple vectors, you’d call sum() on them each 
separately. 

Remember, also, that the sum() function takes the optional argument na.rm, which by default is set 
to FALSE. The na.rm argument determines if sum() removes NA values or not. 

If we leave na.rm set to FALSE, here’s what happens if we try to use sum() on a vector with a missing 
value: 

> sum(c(1,NA,3)) 
[1] NA 

As we saw when NA was introduced, adding a value to an NA value results in NA. If we’d like R to give 
us a number as an answer instead, we can tell sum() to remove NA values by setting na.rm = TRUE: 

> sum(c(1,NA,3),na.rm = TRUE) 
[1] 4 

The cumsum() function takes a vector and calculates its cumulative sum—a vector of the same length 
as the input that replaces each number with the sum of the numbers that come before it (including 
that number). Here’s an example in code to make this clearer: 

> cumsum(c(1,1,1,1,1)) 
[1] 1 2 3 4 5 
> cumsum(c(2,10,20)) 
[1] 2 12 32 

The diff() function takes a vector and subtracts each number from the number that precedes it in the 
vector: 

> diff(c(1,2,3,4,5)) 
[1] 1 1 1 1 
> diff(c(2,10,3)) 
[1]  8 -7 

Notice that the result of the diff() function contains one fewer element than the original vector did. 
That’s because nothing gets subtracted from the first value in the vector. 

The : operator and the seq() Function 

Often, rather than manually listing each element of a vector, we’d prefer to generate vectors 
automatically. To automatically create a vector of whole numbers in a certain range, we can use 
the : operator to separate the start and end of the range. R can even figure out if you want to count 
up or down (the c() wrapping this operator is not strictly necessary): 

> c(1:5) 
[1] 1 2 3 4 5 
 



> c(5:1) 
[1] 5 4 3 2 1 

When you use :, R will count from the first value to the last. 

Sometimes we’ll want to count by something other than increments of one. The seq() function allows 
us to create vectors of a sequence of values that increment by a specified amount. The arguments 
to seq() are, in order: 

1. The start of the sequence 

2. The end of the sequence 

3. The amount to increment the sequence by 

Here are some examples of using seq(): 

> seq(1,1.1,0.05) 
[1] 1.00 1.05 1.10 
 
> seq(0,15,5) 
[1]  0  5 10 15 
 
> seq(1,2,0.3) 
[1] 1.0 1.3 1.6 1.9 

If we want to count down to a certain value using the seq() function, we use a minus value as our 
increment, like this: 

> seq(10,5,-1) 
[1] 10  9  8  7  6  5 

The ifelse() Function 

The ifelse() function tells R to take one of two actions based on some condition. This function can be 
a bit confusing if you’re used to the normal if ... else control structure in other languages. In R, it takes 
the following three arguments (in order): 

1. A statement about a vector that may be either true or false of its values 

2. What happens in the case that the statement is true 

3. What happens in the case that the statement is false 

The ifelse() function operates on entire vectors at once. When it comes to vectors containing a single 
value, its use is pretty intuitive: 

> ifelse(2 < 3,"small","too big") 
[1] "small" 

Here the statement is that 2 is smaller than 3, and we ask R to output “small” if it is, and “too big”if it 
isn’t. 

Suppose we have a vector x that contains multiple values: 

> x <- c(1,2,3) 



The ifelse() function will return a value for each element in the vector: 

> ifelse(x < 3,"small","too big") 
[1] "small"   "small"   "too big" 

We can also use vectors in the results arguments for the ifelse(). Suppose that, in addition to 
our x vector, we had another vector, y: 

y <- c(2,1,6) 

We want to generate a new list that contains the greatest value from x and y for each element in the 
vector. We could use ifelse() to solve this very simply: 

> ifelse(x > y,x,y) 
[1] 2 2 6 

You can see R has compared the values in x to the respective value in y and outputs the largest of the 
two for each element. 

RANDOM SAMPLING 
We’ll often use R to randomly sample values. This allows us to have the computer pick a random 
number or value for us. We use this sample to simulate activities like flipping a coin, playing “rock, 
paper, scissors,” or picking a number between 1 and 100. 

The runif() Function 

One way to randomly sample values is with the function runif(), short for “random uniform,” which 
takes a required argument n and gives that many samples in the range 0 to 1: 

> runif(5) 
[1] 0.8688236 0.1078877 0.6814762 0.9152730 0.8702736 

We can use this function with ifelse() to generate a value A 20 percent of the time. In this case we’ll 
use runif(5) to create five random values between 0 and 1. Then if the value is less than 0.2, we’ll 
return “A”; otherwise, we’ll return “B”: 

> ifelse(runif(5) < 0.2,"A","B") 
[1] "B" "B" "B" "B" "A" 

Since the numbers we’re generating are random, we’ll get a different result each time we run 
the ifelse() function. Here are some possible outcomes: 

> ifelse(runif(5) < 0.2,"A","B") 
[1] "B" "B" "B" "B" "B" 
> ifelse(runif(5) < 0.2,"A","B") 
 [1] "A" "A" "B" "B" "B" 



The runif() function can take optional second and third arguments, which are the minimum and 
maximum values of the range to be uniformly sampled from. By default, the function uses the range 
between 0 and 1 inclusive, but you can set the range to be whatever you’d like: 

> runif(5,0,2) 
[1] 1.4875132 0.9368703 0.4759267 1.8924910 1.6925406 

The rnorm() Function 

We can also sample from a normal distribution using the rnorm() function, which we’ll discuss in 
more depth in the book (the normal distribution is covered in Chapter 12): 

> rnorm(3) 
[1]  0.28352476  0.03482336 -0.20195303 

By default, rnorm() samples from a normal distribution with a mean of 0 and standard deviation of 1, 
as is the case in this example. For readers unfamiliar with the normal distribution, this means that 
samples will have a “bell-shaped” distribution around 0, with most samples being close to 0 and 
very few being less than –3 or greater than 3. 

The rnorm() function has two optional arguments, mean and sd, which allow you to set a different 
mean and standard deviation, respectively: 

> rnorm(4,mean=2,sd=10) 
[1] -12.801407  -9.648737   1.707625  -8.232063 

In statistics, sampling from a normal distribution is often more common than sampling from a 
uniform distribution, so rnorm() comes in quite handy. 

The sample() Function 

Sometimes, we want to sample from something other than just a well-studied distribution. Suppose 
you have a drawer containing socks of many colors: 

socks <- c("red","grey","white","red","black") 

If you wanted to simulate the act of randomly picking any two socks, you could use 
R’s sample()function, which takes as arguments a vector of values and the number of elements to 
sample: 

> sample(socks,2) 
[1] "grey" "red" 

The sample() function behaves as though we’ve picked two random socks out of the drawer—
without putting any back. If we sample five socks, we’ll get all of the socks we originally had in the 
drawer: 



> sample(socks,5) 
[1] "grey"  "red"   "red"   "black" "white" 

That means that if we try to take six socks from the drawer where there are only five available 
socks, we’ll get an error: 

> sample(socks,6) 
Error in sample.int(length(x), size, replace, prob) : 
  cannot take a sample larger than the population when 'replace = FALSE' 

If we want to both sample and “put the socks back,” we can set the optional argument replace to TRUE. 
Now, each time we sample a sock, we put it back in the drawer. This allows us to sample more socks 
than are in the drawer. It also means the distribution of socks in the drawer never changes. 

> sample(socks,6,replace=TRUE) 
[1] "black" "red"   "black" "red"   "black" "black" 

With these simple sampling tools, you can run surprisingly sophisticated simulations in R that save 
you from doing a lot of math. 

Using set.seed() for Predictable Random Results 

The “random numbers” generated by R aren’t truly random numbers. As in all programming 
languages, random numbers are generated by a pseudorandom number generator, which takes 
a seed value and uses that to create a sequence of numbers that are random enough for most 
purposes. The seed value sets the initial state of the random number generator and determines 
which numbers will come next in the sequence. In R, we can manually set this seed using 
the set.seed()function. Setting the seed is extremely useful for cases when we want to use the same 
random results again: 

> set.seed(1337) 
> ifelse(runif(5) < 0.2,"A","B") 
[1] "B" "B" "A" "B" "B" 
 
> set.seed(1337) 
> ifelse(runif(5) < 0.2,"A","B") 
[1] "B" "B" "A" "B" "B" 

As you can see, when we used the same seed twice with the runif() function, it generated the same 
set of supposedly random values. The main benefit of using set.seed() is making the results 
reproducible. This can make tracking down bugs in programs that involve sampling much easier, 
since the results don’t change each time the program is run. 

DEFINING YOUR OWN FUNCTIONS 
Sometimes it’s helpful to write our own functions for specific operations we’ll have to perform 
repeatedly. In R, we can define functions using the keyword function (a keyword in a programming 
language is simply a special word reserved by the programming language for a specific use). 



Here’s the definition of a function that takes a single argument, val—which here stands for the value 
the user will input to the function—and then doubles val and cubes it. 

double_then_cube <- function(val){ 
  (val*2)^3 
} 

Once we’ve defined our function, we can use it, just like R’s built-in functions. Here’s 
our double_then_cube() function applied to the number 8: 

> double_then_cube(8) 
[1] 4096 

Also, because everything we did to define our function is vectorized (that is, all values work on 
vectors of values), our function will work on vectors as well as single values: 

> double_then_cube(c(1,2,3)) 
[1] 8 64 216 

We can define functions that take more than one argument as well. The sum_then_square()function, 
defined here, adds two arguments together, then squares the result: 

sum_then_square <- function(x,y){ 
  (x+y)^2 
} 

By including the two arguments (x,y) in the function definition, we’re telling R 
the sum_then_square() function expects two arguments. Now we can use our new function, like this: 

> sum_then_square(2,3) 
[1] 25 
> sum_then_square(c(1,2),c(5,3)) 
[1] 36 25 

We can also define functions that require multiple lines. In R, when a function is called it will always 
return the result of the calculation on the final line of the function definition. That means we could 
have rewritten sum_then_square() like this: 

sum_then_square <- function(x,y){ 
  sum_of_args <- x+y 
  square_of_result <- sum_of_args^2 
  square_of_result 
} 

Typically, when you write functions, you’ll want to write them in an R script file so you can save 
them and reuse them later. 



CREATING BASIC PLOTS 
In R, we can quickly generate plots of data very easily. Though R has an extraordinary plotting 
library called ggplot2, which contains many useful functions for generating beautiful plots, we’ll 
restrict ourselves to R’s base plotting functions for now, which are plenty useful on their own. 

To show how plotting works, we’ll create two vectors of values, our xs and our ys: 

> xs <- c(1,2,3,4,5) 
> ys <- c(2,3,2,4,6) 

Next, we can use these vectors as arguments to the plot() function, which will plot our data for us. 
The plot() function takes two arguments: the values of the plot’s points on the x-axis and the values 
of those points on the y-axis, in that order: 

> plot(xs,ys) 

This function should generate the plot shown in Figure A-4 in the bottom-left window of RStudio. 

 

Figure A-4: A simple plot created with R’s plot() function 

This plot shows the relationship between our xs values and their corresponding ys values. If we 
return to the function, we can give this plot a title using the optional main argument. We can also 
change the x- and y-axis labels with the xlab and ylab arguments, like this: 

plot(xs,ys, 
     main="example plot", 
     xlab="x values", 



     ylab="y values" 
     ) 

The new labels should show up as they appear in Figure A-5. 

 

Figure A-5: Changing the plot title and labels with the plot() function 

We can also change the plot’s type using the type argument. The first kind of plot we generated is 
called a point plot, but if we wanted to make a line plot, which draws a line through each value, we 
could set type=”l”: 

plot(xs,ys, 
     type="l", 
     main="example plot", 
     xlab="x values", 
     ylab="y values" 
     ) 

It would then look like Figure A-6. 



 

Figure A-6: A line plot generated with R’s plot() function 

Or we can do both! An R function called lines() can add lines to an existing plot. It takes most of the 
same arguments as plot(): 

plot(xs,ys, 
     main="example plot", 
     xlab="x values", 
     ylab="y values" 
     ) 
lines(xs,ys) 

Figure A-7 shows the plot this function would generate. 



 

Figure A-7: Adding lines to an existing plot with R’s lines() function 

There are many more amazing ways to use R’s basic plots, and you can consult ?plot for more 
information on them. However, if you want to create truly beautiful plots in R, you should research 
the ggplot2 library (https://ggplot2.tidyverse.org/). 

EXERCISE: SIMULATING A STOCK PRICE 
Now let’s put everything we’ve learned together to create a simulated stock ticker! People often 
model stock prices using the cumulative sum of normally distributed random values. To start, we’ll 
simulate stock movement for a period of time by generating a sequence of values from 1 to 20, 
incrementing by 1 each time using the seq() function. We’ll call the vector representing the period of 
time t.vals. 

 t.vals <- seq(1,20,by=1) 

Now t.vals is a vector containing the sequence of numbers from 1 to 20 incremented by 1. Next, we’ll 
create some simulated prices by taking the cumulative sum of a normally distributed value for each 
time in your t.vals. To do this we’ll use rnorm() to sample the number of values equal to the length 
of t.vals. Then we’ll use cumsum() to calculate the cumulative sum of this vector of values. This will 
represent the idea of a price moving up or down based on random motion; less extreme movements 
are more common than more extreme ones. 

 price.vals <- cumsum(rnorm(length(t.vals),mean=5,sd=10)) 



Finally, we can plot all these values to see how they look! We’ll use both 
the plot() and lines()functions, and label the axes according to what they represent. 

plot(t.vals,price.vals, 
     main="Simulated stock ticker", 
     xlab="time", 
     ylab="price") 
lines(t.vals,price.vals) 

The plot() and lines() functions should generate the plot shown in Figure A-8. 

 

Figure A-8: The plot generated for our simulated stock ticker 

SUMMARY 
This appendix should cover enough R to give you a grasp of the examples in this book. I recommend 
following along with the book’s chapters, then playing around by modifying the code examples to 
learn more. R also has some great online documentation if you want to take your experimentation 
further. 
 

 

 

 



B 

ENOUGH CALCULUS TO GET BY 

 

In this book, we’ll occasionally use ideas from calculus, though no actual manual solving of calculus 
problems will be required! What will be required is an understanding of some of the basics of 
calculus, such as the derivative and (especially) the integral. This appendix is by no means an 
attempt to teach these concepts deeply or show you how to solve them; instead, it offers a brief 
overview of these ideas and how they’re represented in mathematical notation. 

FUNCTIONS 
A function is just a mathematical “machine” that takes one value, does something with it, and 
returns another value. This is very similar to how functions in R work (see Appendix A): they take 
in a value and return a result. For example, in calculus we might have a function called f defined like 
this: 

f(x) = x2 

In this example, f takes a value, x, and squares it. If we input the value 3 into f, for example, we get: 

f(3) = 9 

This is a little different than how you might have seen it in high school algebra, where you’d usually 
have a value y and some equation involving x. 

y = x2 

One reason why functions are important is that they allow us to abstract away the actual 
calculations we’re doing. That means we can say something like y = f(x), and just concern ourselves 
with the abstract behavior of the function itself, not necessarily how it’s defined. That’s the 
approach we’ll take for this appendix. 

As an example, say you’re training to run a 5 km race and you’re using a smartwatch to keep track 
of your distance, speed, time, and other factors. You went out for a run today and ran for half an 
hour. However, your smartwatch malfunctioned and recorded only your speed in miles per hour 
(mph) throughout your 30-minute run. Figure B-1 shows the data you were able to recover. 

For this appendix, think of your running speed as being created by a function, s, that takes an 
argument t, the time in hours. A function is typically written in terms of the argument it takes, so we 
would write s(t), which results in a value that gives your current speed at time t. You can think of 



the function s as a machine that takes the current time and returns your speed at that time. In 
calculus, we’d usually have a specific definition of s(t), such as s(t) = t2 + 3t + 2, but here we’re just 
talking about general concepts, so we won’t worry about the exact definition of s. 

NOTE 

Throughout the book we’ll be using R to handle all our calculus needs, so it’s really only important that 
you understand the fundamental ideas behind it, rather than the mechanics of solving calculus 
problems. 

From this function alone, we can learn a few things. It’s clear that your pace was a little uneven 
during this run, going up and down from a high of nearly 8 mph near the end and a low of just 
under 4.5 mph in the beginning. 

 

Figure B-1: The speed for a given time in your run 

However, there are still a lot of interesting questions you might want to answer, such as: 

• How far did you run? 

• When did you lose the most speed? 

• When did you gain the most speed? 

• During what times was your speed relatively consistent? 

We can make a fairly accurate estimate of the last question from this plot, but the others seem 
impossible to answer from what we have. However, it turns out that we can answer all of these 
questions with the power of calculus! Let’s see how. 



Determining How Far You’ve Run 

So far our chart just shows your running speed at a certain time, so how do we find out how far 
you’ve run? 

This doesn’t sound too difficult in theory. Suppose, for example, you ran 5 mph consistently for the 
whole run. In that case, you ran 5 mph for 0.5 hour, so your total distance was 2.5 miles. This 
intuitively makes sense, since you would have run 5 miles each hour, but you ran for only half an 
hour, so you ran half the distance you would have run in an hour. 

But our problem involves a different speed at nearly every moment that you were running. Let’s 
look at the problem another way. Figure B-2 shows the plotted data for a constant running speed. 

 

Figure B-2: Visualizing distance as the area of the speed/time plot 

You can see that this data creates a straight line. If we think about the space under this line, we can 
see that it’s a big block that actually represents the distance you’ve run! The block is 5 high and 0.5 
long, so the area of this block is 5 × 0.5 = 2.5, which gives us the 2.5 miles result! 

Now let’s look at a simplified problem with varying speeds, where you ran 4.5 mph from 0.0 to 0.3 
hours, 6 mph from 0.3 to 0.4 hours, and 3 mph the rest of the way to 0.5 miles. If we visualize these 
results as blocks, or towers, as in Figure B-3, we can solve our problem the same way. 

The first tower is 4.5 × 0.3, the second is 6 × 0.1, and the third is 3 × 0.1, so that: 

4.5 × 0.3 + 6 × 0.1 + 3 × 0.1 = 2.25 



By looking at the area under the tower, then, we get the total distance you traveled: 2.25 miles. 

 

Figure B-3: We can easily calculate your total distance traveled by adding together these towers. 

Measuring the Area Under the Curve: The Integral 

You’ve now seen that we can figure out the area under the line to tell us how far you traveled. 
Unfortunately, the line for our original data is curved, which makes our problem a bit difficult: how 
can we calculate the towers under our curvy line? 

We can start this process by imagining some large towers that are fairly close to the pattern of our 
curve. If we start with just three towers, as we can see in Figure B-4, it isn’t a bad estimate. 



 

Figure B-4: Approximating the curve with three towers 

By calculating the area under each of these towers, we get a value of 3.055 miles for your estimated 
total miles traveled. But we could clearly do better by making more, smaller towers, as shown 
in Figure B-5. 



 

Figure B-5: Approximating the curve better by using 10 towers instead of 3 

Adding up the areas of these towers, we get 3.054 miles, which is a more accurate estimate. 

If we imagine repeating this process forever, using more and thinner towers, eventually we would 
get the full area under the curve, as in Figure B-6. 



 

Figure B-6: Completely capturing the area under the curve 

This represents the exact area traveled for your half-hour run. If we could add up infinitely many 
towers, we would get a total of 3.053 miles. Our estimates were pretty close, and as we use more 
and smaller towers, our estimate gets closer. The power of calculus is that it allows us to calculate 
this exact area under the curve, or the integral. In calculus, we’d represent the integral for our s(t) 
from 0 to 0.5 in mathematical notation as: 

 

That ∫ is just a fancy S, meaning the sum (or total) of the area of all the little towers in s(t). 
The dtnotation reminds us that we’re talking about little bits of the variable t; the d is a 
mathematical way to refer to these little towers. Of course, in this bit of notation, there’s only one 
variable, t, so we aren’t likely to get confused. Likewise, in this book, we typically drop the dt (or its 
equivalent for the variable being used) since it’s obvious in the examples. 

In our last notation we set the beginning and end of our integral, which means we can find the 
distance not just for the whole run but also for a section of it. Suppose we wanted to know how far 
you ran between 0.1 to 0.2 of an hour. We would note this as: 

 

We can visualize this integral as shown in Figure B-7. 



 

Figure B-7: Visualizing the area under the curve for the region from 0.1 to 0.2 

The area of just this shaded region is 0.556 miles. 

We can even think of the integral of our function as another function. Suppose we define a new 
function, dist(T), where T is our “total time run”: 

 

This gives us a function that tells us the distance you’ve traveled at time T. We can also see why we 
want to use dt because we can see that our integral is being applied to the lowercase targument 
rather than the capital T argument. Figure B-8 plots this out to the total distance you’ve run at any 
given time T during your run. 



 

Figure B-8: Plotting out the integral transforms a time and speed plot to a time and distance plot. 

In this way, the integral has transformed our function s, which was “speed at a time,” to a 
function dist, “distance covered at a time.” As shown earlier, the integral of our function between 
two points represents the distance traveled between two different times. Now we’re looking at the 
total distance traveled at any given time t from the beginning time of 0. 

The integral is important because it allows us to calculate the area under curves, which is much 
trickier to calculate than if we have straight lines. In this book, we’ll use the concept of the integral 
to determine the probabilities that events are between two ranges of values. 

Measuring the Rate of Change: The Derivative 

You’ve seen how we can use the integral to figure out the distance traveled when all we have is a 
recording of your speed at various times. But with our varying speed measurements, we might also 
be interested in figuring out the rate of change for your speed at various times. When we talk about 
the rate at which speed is changing, we’re referring to acceleration. In our chart, there are a few 
interesting points regarding the rate of change: the points when you’re losing speed the fastest, 
when you’re gaining speed the fastest, and when the speed is the most steady (i.e., the rate of 
change is near 0). 

Just as with integration, the main challenge of figuring out your acceleration is that it seems to 
always be changing. If we had a constant rate of change, calculating the acceleration isn’t that 
difficult, as shown in Figure B-9. 



 

Figure B-9: Visualizing a constant rate of change (compared with your actual changing rate) 

You might remember from basic algebra that we can draw any line using this formula: 

y = mx + b 

where b is the point at which the line crosses the y-axis and m is the slope of the line. 
The sloperepresents the rate of change of a straight line. For the line in Figure B-9, the full formula 
is: 

y = 5x + 4.8 

The slope of 5 means that for every time x grows by 1, y grows by 5; 4.8 is the point at which the 
line crosses the x-axis. In this example, we’d interpret this formula as s(t) = 5t + 4.8, meaning that 
for every mile you travel you accelerate by 5 mph, and that you started off at 4.8 mph. Since you’ve 
run half a mile, using this simple formula, we can figure out: 

s(t) = 5 × 0.5 + 4.8 = 7.3 

which means at the end of your run, you would be traveling 7.3 mph. We could similarly determine 
your exact speed at any point in the run, as long as the acceleration is constant! 



For our actual data, because the line is curvy it’s not easy to determine the slope at a single point in 
time. Instead, we can figure out the slopes of parts of the line. If we divide our data into three 
subsections, we could draw lines between each part as in Figure B-10. 

 

Figure B-10: Using multiple slopes to get a better estimate of your rate of change 

Now, clearly these lines aren’t a perfect fit to our curvy line, but they allow us to see the parts 
where you accelerated the fastest, slowed down the most, and were relatively stable. 

If we split our function up into even more pieces we can get even better estimates, as in Figure B-
11. 



 

Figure B-11: Adding more slopes allows us to better approximate your curve. 

Here we have a similar pattern to when we found the integral, where we split the area under the 
curve into smaller and smaller towers until we were adding up infinitely many small towers. Now 
we want to break up our line into infinitely many small line segments. Eventually, rather than a 
single m representing our slope, we have a new function representing the rate of change at each 
point in our original function. This is called the derivative, represented in mathematical notation 
like this: 

 

Again, the dx just reminds us that we’re looking at very small pieces of our argument x. Figure B-
12 shows the plot of the derivative for our s(t) function, which allows us to see the exact rate of 
speed change at each moment in your run. In other words, this is a plot of your acceleration during 
your run. Looking at the y-axis, you can see that you rapidly lost speed in the beginning, and at 
around 0.3 hours you had a period of 0 acceleration, meaning your pace did not change (this is 
usually a good thing when practicing for a race!). We can also see exactly when you gained the most 
speed. Looking at the original plot, we couldn’t easily tell if you were gaining speed faster around 
0.1 hours (just after your first speedup) or at the end of your run. With the derivative, though, it’s 
clear that the final burst of speed at the end was indeed faster than at the beginning. 



 

Figure B-12: The derivative is another function that describes the slope of s(x) at each point. 

The derivative works just like the slope of a straight line, only it tells us how much a curvy line is 
sloping at a certain point. 

THE FUNDAMENTAL THEOREM OF CALCULUS 
We’ll look at one last truly remarkable calculus concept. There’s a very interesting relationship 
between the integral and the derivative. (Proving this relationship is far beyond the scope of this 
book, so we’ll focus only on the relationship itself here.) Suppose we have a function F(x), with a 
capital F. What makes this function special is that its derivative is f(x). For example, the derivative of 
our dist function is our s function; that is, your change in distance at each point in time is your speed. 
The derivative of speed is acceleration. We can describe this mathematically as: 

 

In calculus terms we call F the antiderivative of f, because f is F’s derivative. Given our examples, the 
antiderivative of acceleration would be speed, and the antiderivative of speed would be distance. 
Now suppose for any value of f, we want to take its integral between 10 and 50; that is, we want: 

 



We can get this simply by subtracting F(10) from F(50), so that: 

 

The relationship between the integral and the derivative is called the fundamental theorem of 
calculus. It’s a pretty amazing tool, because it allows us to solve integrals mathematically, which is 
often much more difficult than finding derivatives. Using the fundamental theorem, if we can find 
the antiderivative of the function we want to find the integral of, we can easily perform integration. 
Figuring this out is the heart of performing integration by hand. 

A full course on calculus (or two) typically explores the topics of integrals and derivatives in much 
greater depth. However, as mentioned, in this book we’ll only be making occasional use of calculus, 
and we’ll be using R for all of the calculations. Still, it’s helpful to have a rough understanding of 
what calculus and those unfamiliar ∫ symbols are all about! 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



MAKE SENSE OF YOUR DATA — THE FUN WAY! 

 

With any given problem, traditional statistical analysis often just generates another pile of data. But 
how do you make real-world sense of these cold, hard numbers? Bayesian Statistics the Fun 
Way shows you how to make better probabilistic decisions using your natural intuition and some 
simple math. 

This accessible primer shows you how to apply Bayesian methods through clear explanations and 
fun examples. You’ll go UFO hunting to explore everyday reasoning, calculate whether Han Solo will 
survive an asteroid field using probability distributions, and quantify the probability that you have 
a serious brain tumor and not just too much ear wax. 

These eclectic exercises will help you build a flexible and robust framework for working through a 
wide range of challenges, from truly grokking current events to handling the daily surprises of the 
business world. 

You‘ll learn how to: 

• Calculate distributions to see the range of your beliefs 

• Compare hypotheses and draw reliable conclusions 

• Calculate Bayes’ theorem and understand what it’s useful for 

• Find the posterior, likelihood, and prior to check the accuracy of your conclusions 

• Use the R programming language to perform data analysis 

Make better choices with more confidence—and enjoy doing it! Crack open Bayesian Statistics the 
Fun Way to get the most value from your data. 
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