

THE BOOK OF KUBERNETES
A Complete Guide to Container Orchestration

by Alan Hohn

San Francisco

THE BOOK OF KUBERNETES. Copyright © 2022 by Alan Hohn.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording, or by any information storage or
retrieval system, without the prior written permission of the copyright owner and the publisher.

First printing

26 25 24 23 22 1 2 3 4 5

ISBN-13: 978-1-7185-0264-2 (print)
ISBN-13: 978-1-7185-0265-9 (ebook)

Publisher: William Pollock
Managing Editor: Jill Franklin
Production Manager: Rachel Monaghan
Production Editors: Paula Williamson and Jennifer Kepler
Developmental Editor: Jill Franklin
Cover Illustrator: Gina Redman
Interior Design: Octopod Studios
Technical Reviewer: Xander Soldaat
Production Services: Octal Publishing, Inc.

For information on distribution, bulk sales, corporate sales, or translations, please contact No Starch
Press, Inc. directly at info@nostarch.com or:

No Starch Press, Inc.
245 8th Street, San Francisco, CA 94103
phone: 1.415.863.9900
www.nostarch.com

Library of Congress Control Number: 2022020536

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Other
product and company names mentioned herein may be the trademarks of their respective owners.
Rather than use a trademark symbol with every occurrence of a trademarked name, we are using the
names only in an editorial fashion and to the benefit of the trademark owner, with no intention of
infringement of the trademark.

The information in this book is distributed on an “As Is” basis, without warranty. While every
precaution has been taken in the preparation of this work, neither the author nor No Starch Press, Inc.
shall have any liability to any person or entity with respect to any loss or damage caused or alleged to
be caused directly or indirectly by the information contained in it.

mailto:info@nostarch.com
http://www.nostarch.com

For my wife, Sheryl

About the Author
Alan Hohn is the director for software strategy for Lockheed Martin. He has
25 years of experience as a Lockheed Martin Fellow, software developer,
architect, lead, and manager. He has delivered real applications to production
in Ada, Java, Python, and Go, among others, and has worked with Linux
since the early 1990s. He is an Agile and DevSecOps coach and is an
experienced trainer for Java, Ansible, containers, software architecture, and
Kubernetes. Alan has a degree in computer science from Embry-Riddle
Aeronautical University, a master’s in business administration from the
University of Minnesota, and a master’s in industrial engineering from the
Georgia Institute of Technology.

About the Technical Reviewer
Xander Soldaat started his Linux journey back in 1994 with a sports bag full
of floppy disks, a 486DX2/66, and a spare weekend. He has a deep
background in IT infrastructure architecture, as well as embedded systems,
compiler, and STEM curriculum development. He is currently an OpenShift
Cloud Success Architect at Red Hat. In his spare time, he likes to tinker with
robots, electronics, retro computers, and tabletop games.

BRIEF CONTENTS

Acknowledgments

Introduction

PART I: MAKING AND USING CONTAINERS

Chapter 1: Why Containers Matter

Chapter 2: Process Isolation

Chapter 3: Resource Limiting

Chapter 4: Network Namespaces

Chapter 5: Container Images and Runtime Layers

PART II: CONTAINERS IN KUBERNETES

Chapter 6: Why Kubernetes Matters

Chapter 7: Deploying Containers to Kubernetes

Chapter 8: Overlay Networks

Chapter 9: Service and Ingress Networks

Chapter 10: When Things Go Wrong

Chapter 11: Control Plane and Access Control

Chapter 12: Container Runtime

Chapter 13: Health Probes

Chapter 14: Limits and Quotas

Chapter 15: Persistent Storage

Chapter 16: Configuration and Secrets

Chapter 17: Custom Resources and Operators

PART III: PERFORMANT KUBERNETES

Chapter 18: Affinity and Devices

Chapter 19: Tuning Quality of Service

Chapter 20: Application Resiliency

Index

CONTENTS IN DETAIL

ACKNOWLEDGMENTS

INTRODUCTION
The Approach
Running Examples

What You Will Need
Run in the Cloud or Local
Terminal Windows

PART I
MAKING AND USING CONTAINERS

1
WHY CONTAINERS MATTER
Modern Application Architecture

Attribute: Cloud Native
Attribute: Modular
Attribute: Microservice-Based
Benefit: Scalability
Benefit: Reliability
Benefit: Resilience

Why Containers
Requirements for Containers
Requirements for Orchestration

Running Containers
What Containers Look Like
What Containers Really Are

Deploying Containers to Kubernetes
Talking to the Kubernetes Cluster
Application Overview

Kubernetes Features
Final Thoughts

2
PROCESS ISOLATION
Understanding Isolation

Why Processes Need Isolation
File Permissions and Change Root
Container Isolation

Container Platforms and Container Runtimes
Installing containerd
Using containerd
Introducing Linux Namespaces
Containers and Namespaces in CRI-O

Running Processes in Namespaces Directly
Final Thoughts

3
RESOURCE LIMITING
CPU Priorities

Real-Time and Non-Real-Time Policies
Setting Process Priorities

Linux Control Groups
CPU Quotas with cgroups
CPU Quota with CRI-O and crictl

Memory Limits
Network Bandwidth Limits
Final Thoughts

4
NETWORK NAMESPACES
Network Isolation
Network Namespaces

Inspecting Network Namespaces

Creating Network Namespaces
Bridge Interfaces

Adding Interfaces to a Bridge
Tracing Traffic

Masquerade
Final Thoughts

5
CONTAINER IMAGES AND RUNTIME LAYERS
Filesystem Isolation

Container Image Contents
Image Versions and Layers

Building Container Images
Using a Dockerfile
Tagging and Publishing Images

Image and Container Storage
Overlay Filesystems
Understanding Container Layers
Practical Image Building Advice

Open Container Initiative
Final Thoughts

PART II
CONTAINERS IN KUBERNETES

6
WHY KUBERNETES MATTERS
Running Containers in a Cluster

Cross-Cutting Concerns
Kubernetes Concepts

Cluster Deployment
Prerequisite Packages
Kubernetes Packages
Cluster Initialization

Joining Nodes to the Cluster
Installing Cluster Add-ons

Network Driver
Installing Storage
Ingress Controller
Metrics Server

Exploring a Cluster
Final Thoughts

7
DEPLOYING CONTAINERS TO KUBERNETES
Pods

Deploying a Pod
Pod Details and Logging

Deployments
Creating a Deployment
Monitoring and Scaling
Autoscaling

Other Controllers
Jobs and CronJobs
StatefulSets
Daemon Sets

Final Thoughts

8
OVERLAY NETWORKS
Cluster Networking

CNI Plug-ins
Pod Networking

Cross-Node Networking
Calico Networking
WeaveNet
Choosing a Network Plug-in

Network Customization

Final Thoughts

9
SERVICE AND INGRESS NETWORKS
Services

Creating a Service
Service DNS
Name Resolution and Namespaces
Traffic Routing

External Networking
External Services
Ingress Services
Ingress in Production

Final Thoughts

10
WHEN THINGS GO WRONG
Scheduling

No Available Nodes
Insufficient Resources

Pulling Images
Running Containers

Debugging Using Logs
Debugging Using Exec
Debugging Using Port Forwarding

Final Thoughts

11
CONTROL PLANE AND ACCESS CONTROL
API Server
API Server Authentication

Client Certificates
Bootstrap Tokens
Service Accounts

Role-Based Access Controls
Roles and Cluster Roles
Role Bindings and Cluster Role Bindings
Assigning a Service Account to Pods
Binding Roles to Users

Final Thoughts

12
CONTAINER RUNTIME
Node Service

Kubelet Cluster Configuration
Kubelet Container Runtime Configuration
Kubelet Network Configuration

Static Pods
Node Maintenance

Node Draining and Cordoning
Unhealthy Nodes
Node Unreachable

Final Thoughts

13
HEALTH PROBES
About Probes
Liveness Probes

Exec Probes
HTTP Probes
TCP Probes

Startup Probes
Readiness Probes
Final Thoughts

14
LIMITS AND QUOTAS
Requests and Limits

Processing and Memory Limits
Cgroup Enforcement
Network Limits

Quotas
Final Thoughts

15
PERSISTENT STORAGE
Storage Classes

Storage Class Definition
CSI Plug-in Internals

Persistent Volumes
Stateful Sets
Volumes and Claims
Deployments
Access Modes

Final Thoughts

16
CONFIGURATION AND SECRETS
Injecting Configuration

Externalizing Configuration
Protecting Secrets

Injecting Files
Cluster Configuration Repository

Using etcdctl
Deciphering Data in etcd

Final Thoughts

17
CUSTOM RESOURCES AND OPERATORS
Custom Resources

Creating CRDs
Watching CRDs

Operators
Final Thoughts

PART III
PERFORMANT KUBERNETES

18
AFFINITY AND DEVICES
Affinity and Anti-affinity

Anti-affinity
Affinity

Service Traffic Routing
Hardware Resources
Final Thoughts

19
TUNING QUALITY OF SERVICE
Achieving Predictability
Quality of Service Classes

BestEffort
Burstable
Guaranteed
QoS Class Eviction
Choosing a QoS Class

Pod Priority
Final Thoughts

20
APPLICATION RESILIENCY
Example Application Stack

Database
Application Deployment
Pod Autoscaling
Application Service

Application and Cluster Monitoring
Prometheus Monitoring
Deploying kube-prometheus
Cluster Metrics
Adding Monitoring for Services

Final Thoughts

INDEX

ACKNOWLEDGMENTS

Thanks to the many people who have been generous with knowledge and
help in creating this book. First, thanks to my editor, Jill Franklin, my
technical reviewer, Xander Soldaat, and my copyeditor, Bob Russell, for
spotting errors I didn’t see and filling gaps in my knowledge. The remaining
mistakes are mine. They would have been much more numerous without your
help.

Thanks to my colleagues at Lockheed Martin, especially our Software
Factory team. I have learned a great deal from you, and we have built many
cool things together. Thanks to my Application Based Architecture
colleagues who explored Kubernetes with me in the early days. Thanks also
to the many people who build the open source products and the community
around containers and Kubernetes; I am humbled by the chance to contribute.

I am most grateful to my family for helping to make this book possible
and for listening patiently as I described each current challenge in writing it.

My thanks goes to all these, but Soli Deo Gloria.

INTRODUCTION

Containers and Kubernetes together are changing the way that applications
are architected, developed, and deployed. Containers ensure that software
runs reliably no matter where it’s deployed, and Kubernetes lets you manage
all of your containers from a single control plane.

This book is designed to help you take full advantage of these essential
new technologies, using hands-on examples not only to try out the major
features but also to explore how each feature works. In this way, beyond
simply being ready to deploy an application to Kubernetes, you’ll gain the
skills to architect applications to be performant and reliable in a Kubernetes
cluster, and to quickly diagnose problems when they arise.

The Approach
The biggest advantage of a Kubernetes cluster is that it hides the work of
running containers across multiple hosts behind an abstraction layer. A
Kubernetes cluster is a “black box” that runs what we tell it to run, with
automatic scaling, failover, and upgrades to new versions of our application.

Even though this abstraction makes it easier to deploy and manage
applications, it also makes it difficult to understand what a cluster is doing.
For this reason, this book presents each feature of container runtimes and
Kubernetes clusters from a “debugging” perspective. Every good debugging
session starts by treating the application as a black box and observing its
behavior, but it doesn’t end there. Skilled problem solvers know how to open

the black box, diving below the current abstraction layer to see how the
program runs, how data is stored, and how traffic flows across the network.
Skilled architects use this deep knowledge of a system to avoid performance
and reliability issues. This book provides the detailed understanding of
containers and Kubernetes that only comes from exploring not only what
these technologies do but also how they work.

In Part I, we’ll begin by running a container, but then we’ll dive into the
container runtime to understand what a container is and how we can simulate
a container using normal operating system commands. In Part II, we’ll install
a Kubernetes cluster and deploy containers to it. We’ll also see how the
cluster works, including how it interacts with the container runtime and how
packets flow from container to container across the host network. The
purpose is not to duplicate the reference documentation to show every option
offered by every feature but to demonstrate how each feature is implemented
so that all that documentation will make sense and be useful.

A Kubernetes cluster is complicated, so this book includes extensive
hands-on examples, with enough automation to allow you to explore each
chapter independently. This automation, which is available at
https://github.com/book-of-kubernetes/examples, is published under a
permissive open source license, so you can explore, experiment, and use it in
your own projects.

Running Examples
In many of this book’s example exercises, you’ll be combining multiple hosts
together to make a cluster, or working with low-level features of the Linux
kernel. For this reason, and to help you feel more comfortable with
experimentation, you’ll be running examples entirely on temporary virtual
machines. That way, if you make a mistake, you can quickly delete the
virtual machine and start over.

The example repository for this book is available at
https://github.com/book-of-kubernetes/examples. All of the instructions for
setting up to run examples are provided in a README.md file within the
setup folder of the example repository.

What You Will Need

https://github.com/book-of-kubernetes/examples
https://github.com/book-of-kubernetes/examples

Even though you’ll be working in virtual machines, you’ll need a control
machine to start from that can run Windows, macOS, or Linux. It can even be
a Chromebook that supports Linux. If you are running Windows, you’ll need
to use the Windows Subsystem for Linux (WSL) in order to get Ansible
working. See the README.md in the setup folder for instructions.

Run in the Cloud or Local
To make these examples as accessible as possible, I’ve provided automation
to run them either using Vagrant or Amazon Web Services (AWS). If you
have access to a Windows, macOS, or Linux computer with at least eight
cores and 8GB of memory, try installing VirtualBox and Vagrant and work
with local virtual machines. If not, you can set yourself up to work with
AWS.

We use Ansible to perform AWS setup and automate some of the tedious
steps. Each chapter includes a separate Ansible playbook that makes use of
common roles and collections. This means that you can work examples from
chapter to chapter, starting with a fresh installation each time. In some cases,
I’ve also provided an “extra” provisioning playbook that you can optionally
use to skip some of the detailed installation steps and get straight to the
learning. See the README.md in each chapter’s directory for more
information.

Terminal Windows
After you’ve used Ansible to provision your virtual machines, you’ll need to
get at least one terminal window connected to run commands. The
README.md file in each chapter will tell you how to do that. Before running
any examples, you’ll first need to become the root user, as follows:

sudo su -

This will give you a root shell and set up your environment and home
directory to match.

RUNNING AS ROOT

If you’ve worked with Linux before, you probably have a healthy
aversion to working as root on a regular basis, so it might surprise you
that all of the examples in this book are run as the root user. This is a
big advantage of using temporary virtual machines and containers;
when we act as the root user, we are doing so in a temporary, confined
space that can’t reach out and affect anything else.

As you move from learning about containers and Kubernetes to running
applications in production, you’ll be applying security controls to your
cluster that will limit administrative access and will ensure that
containers cannot break out of their isolated environment. This often
includes configuring your containers so that they run as a non-root user.

In some examples, you’ll need to open multiple terminal windows in order
to leave one process running while you inspect it from another terminal. How
you do that is up to you; most terminal applications support multiple tabs or
multiple windows. If you need a way to open multiple terminals within a
single tab, try exploring a terminal multiplexer application. All of the
temporary virtual machines used in the examples come with both screen and
tmux installed and ready to use.

PART I
MAKING AND USING CONTAINERS

Containers are essential to modern application architecture. They simplify
packaging, deploying, and scaling application components. They enable
building reliable and resilient applications that handle failure gracefully.
However, containers can also be confusing. They look like completely
different systems, with separate hostnames, networking, and storage, but they
do not have many of the features of a separate system, such as a separate
console or system services. To understand how containers look like separate
systems without really being separate, let’s explore containers, container
engines, and Linux kernel features.

1
WHY CONTAINERS MATTER

It’s a great time to be a software developer. Creating a brand-new application
and making it available to millions of people has never been easier. Modern
programming languages, open source libraries, and application platforms
make it possible to write a small amount of code and end up with lots of
functionality. However, although it’s easy to get started and create a new
application quickly, the best application developers are those who move
beyond treating the application platform as a “black box” and really
understand how it works. Creating a reliable, resilient, and scalable
application requires more than just knowing how to create a Deployment in
the browser or on the command line.

In this chapter, we’ll look at application architecture in a scalable, cloud
native world. We will show why containers are the preferred way to package
and deploy application components, and how container orchestration
addresses key needs for containerized applications. We’ll finish with an
example application deployed to Kubernetes to give you an introductory
glimpse into the power of these technologies.

Modern Application Architecture
The main theme of modern software applications is scale. We live in a world
of applications with millions of simultaneous users. What is remarkable is the

ability of these applications to achieve not only this scale but also a level of
stability such that an outage makes headlines and serves as fodder for weeks
or months of technical analysis.

With so many modern applications running at large scale, it can be easy to
forget that a lot of hard work goes into architecting, building, deploying, and
maintaining applications of this caliber, whether the scale they’re designed
for is thousands, millions, or billions of users. Our job in this chapter is to
identify what we need from our application platform to run a scalable,
reliable application, and to see how containerization and Kubernetes meet
those requirements. We’ll start by looking at three key attributes of modern
application architecture. Then we’ll move on to looking at three key benefits
these attributes bring.

Attribute: Cloud Native
There are lots of ways to define cloud native technologies (and a good place
to start is the Cloud Native Computing Foundation at https://cncf.io). I like to
start with an idea of what “the cloud” is and what it enables so that we can
understand what kind of architecture can make best use of it.

At its heart, the cloud is an abstraction. We talked about abstractions in
the introduction, so you know that abstractions are essential to computing,
but we also need a deep understanding of our abstractions to use them
properly. In the case of the cloud, the provider is abstracting away the real
physical processors, memory, storage, and networking, allowing cloud users
to simply declare a need for these resources and have them provisioned on
demand. To have a “cloud native” application, then, we need an application
that can take advantage of that abstraction. As much as possible, the
application shouldn’t be tied to a specific host or a specific network layout,
because we don’t want to constrain our flexibility in how application
components are divided among hosts.

Attribute: Modular
Modularity is nothing new to application architecture. The goal has always
been high cohesion, where everything within a module relates to a single
purpose, and low coupling, where modules are organized to minimize
intermodule communication. However, even though modularity remains a
key design goal, the definition of what makes a module is different. Rather

https://cncf.io

than just treat modularity as a way of organizing the code, modern
application architecture today prefers to carry modularity into the runtime,
providing each module with a separate operating system process and
discouraging the use of a shared filesystem or shared memory for
communication. Because modules are separate processes, communication
between modules is standard network (socket) communication.

This approach seems wasteful of hardware resources. It is more compact
and faster to share memory than it is to copy data over a socket. But there are
two good reasons to prefer separate processes. First, modern hardware is fast
and getting faster, and it would be a form of premature optimization to
imagine that sockets are not fast enough for our application. Second, no
matter how large a server we have, there is going to be a limit to how many
processes we can fit on it, so a shared memory model ultimately limits our
ability to grow.

Attribute: Microservice-Based
Modern application architecture is based on modules in the form of separate
processes—and these individual modules tend to be very small. In theory, a
cloud can provide us with virtual servers that are as powerful as we need;
however, in practice, using a few powerful servers is more expensive and less
flexible than many small servers. If our modules are small enough, they can
be deployed to cheap commodity servers, which means that we can leverage
our cloud provider’s hardware to best advantage. Although there is no single
answer as to how small a module needs to be in order to be a microservice,
“small enough that we can be flexible regarding where it is deployed” is a
good first rule.

A microservice architecture also has practical advantages for organizing
teams. Ever since Fred Brooks wrote The Mythical Man-Month, architects
have understood that organizing people is one of the biggest challenges to
developing large, complex systems. Building a system from many small
pieces reduces the complexity of testing but also makes it possible to
organize a large team of people without everyone getting in everyone else’s
way.

WHAT ABOUT APPLICATION SERVERS?

The idea of modular services has a long history, and one popular way to
implement it was building modules to run in an application server, such
as a Java Enterprise environment. Why not then just continue to follow
that pattern for applications?

Although application servers were successful for many uses, they don’t
have the same degree of isolation that a microservice architecture has.
As a result, there are more issues with interdependency, leading to more
complex testing and reduced team independence. Additionally, the
typical model of having a single application server per host, with many
applications deployed to it and sharing the same process space, is much
less flexible than the containerized approaches you will see in this book.

This is not to say that you should immediately throw away your
application server architecture to use containers. There are lots of
benefits to containerization for any architecture. But as you adopt a
containerized architecture, over time it will make sense for you to move
your code toward a true microservice architecture to take best advantage
of what containers and Kubernetes offer.

We’ve looked at three key attributes of modern architecture. Now, let’s
look at three key benefits that result.

Benefit: Scalability
Let’s begin by envisioning the simplest application possible. We create a
single executable that runs on a single machine and interacts with only a
single user at a time. Now, suppose that we want to grow this application so
that it can interact with thousands or millions of users at once. Obviously, no
matter how powerful a server we use, eventually some computing resource
will become a bottleneck. It doesn’t matter whether the bottleneck is
processing, or memory, or storage, or network bandwidth; the moment we hit
that bottleneck, our application cannot handle any additional users without
hurting performance for others.

The only possible way to solve this issue is to stop sharing the resource
that caused the bottleneck. This means that we need to find a way to
distribute our application across multiple servers. But if we’re really scaling

up, we can’t stop there. We need to distribute across multiple networks as
well, or we’ll hit the limit of what one network switch can do. And
eventually, we will even need to distribute geographically, or we’ll saturate
the broader network.

To build applications with no limit to scalability, we need an architecture
that can run additional application instances at will. And because an
application is only as slow as its slowest component, we need to find a way to
scale everything, including our data stores. It’s obvious that the only way to
do this effectively is to create our application from many independent pieces
that are not tied to specific hardware. In other words, cloud native
microservices.

Benefit: Reliability
Let’s go back to our simplest possible application. In addition to scalability
limits, it has another flaw. It runs on one server, and if that server fails, the
entire application fails. Our application is lacking reliability. As before, the
only possible way to solve this issue is to stop sharing the resource that could
potentially fail. Fortunately, when we start distributing our application across
many servers, we have the opportunity to avoid a single point of failure in the
hardware that would bring down our application. And as an application is
only as reliable as its least reliable component, we need to find a way to
distribute everything, including storage and networks. Again, we need cloud
native microservices that are flexible about where they are run and about how
many instances are running at once.

Benefit: Resilience
There is a third, subtler advantage to cloud native microservice architecture.
This time, imagine an application that runs on a single server, but it can
easily be installed as a single package on as many servers as we like. Each
instance can serve a new user. In theory, this application would have good
scalability, given that we can always install it on another server. And overall,
the application could be said to be reliable because a failure of a single server
is going to affect only that one user, whereas the others can keep running as
normal.

What is missing from this approach is the concept of resilience, or the
ability of an application to respond meaningfully to failure. A truly resilient

application can handle a hardware or software failure somewhere in the
application without an end user noticing at all. And although separate,
unrelated instances of this application keep running when one instance fails,
we can’t really say that the application exhibits resilience, at least not from
the perspective of the unlucky user with the failed system.

On the other hand, if we construct our application out of separate
microservices, each of which has the ability to communicate over a network
with other microservices on any server, the loss of a single server might cost
us several microservice instances, but end users can be moved to other
instances on other servers transparently, such that they don’t even notice the
failure.

Why Containers
I’ve made modern application architecture with its fancy cloud native
microservices sound pretty appealing. Engineering is full of trade-offs,
however, so experienced engineers will suspect that there must be some
pretty significant trade-offs, and, of course, there are.

It’s very difficult to build an application from lots of small pieces.
Organizing teams around microservices so that they can work independently
from one another might be great, but when it comes time to put those together
into a working application, the sheer number of pieces means worrying about
how to package them up, how to deliver them to the runtime environment,
how to configure them, how to provide them with (potentially conflicting)
dependencies, how to update them, and how to monitor them to make sure
they are working.

This problem only grows worse when we consider the need to run
multiple instances of each microservice. Now, we need a microservice to be
able to find a working instance of another microservice, balancing the load
across all of the working instances. We need that load balancing to
reconfigure itself immediately if we have a hardware or software failure. We
need to fail over seamlessly and retry failed work in order to hide that failure
from the end user. And we need to monitor not just each individual service,
but how all of them are working together to get the job done. After all, our
users don’t care if 99 percent of our microservices are working correctly if
the 1 percent failure prevents them from using our application.

We have lots of problems to solve if we want to build an application out
of many individual microservices, and we do not want each of our
microservice teams working those problems, or they would never have time
to write code! We need a common way to manage the packaging,
deployment, configuration, and maintenance of our microservices. Let’s look
at two categories of required attributes: those that apply to a single
microservice, and those that apply to multiple microservices working
together.

Requirements for Containers
For a single microservice, we need the following:

Packaging Bundle the application for delivery, which needs to include
dependencies so that the package is portable and we avoid conflicts between
microservices.

Versioning Uniquely identify a version. We need to update microservices
over time, and we need to know what version is running.

Isolation Keep microservices from interfering with one another. This allows
us to be flexible about what microservices are deployed together.

Fast startup Start new instances rapidly. We need this to scale and respond
to failures.

Low overhead Minimize required resources to run a microservice in order to
avoid limits on how small a microservice can be.

Containers are designed to address exactly these needs. Containers
provide isolation together with low overhead and fast startup. And, as we’ll
see in Chapter 5, a container runs from a container image, which provides a
way to package an application with its dependencies and to uniquely identify
the version of that package.

Requirements for Orchestration
For multiple microservices working together, we need:

Clustering Provide processing, memory, and storage for containers across
multiple servers.

Discovery Provide a way for one microservice to find another. Our
microservices might run anywhere on the cluster, and they might move
around.

Configuration Separate configuration from runtime, allowing us to
reconfigure our application without rebuilding and redeploying our
microservices.

Access control Manage authorization to create containers. This ensures that
the right containers run, and the wrong ones don’t.

Load balancing Spread requests among working instances in order to avoid
the need for end users or other microservices to track all microservice
instances and balance the load themselves.

Monitoring Identify failed microservice instances. Load balancing won’t
work well if traffic is going to failed instances.

Resilience Automatically recover from failures. If we don’t have this ability,
a chain of failures could kill our application.

These requirements come into play only when we are running containers
on multiple servers. It’s a different problem from just packaging up and
running a single container. To address these needs, we require a container
orchestration environment. A container orchestration environment such as
Kubernetes allows us to treat multiple servers as a single set of resources to
run containers, dynamically allocating containers to available servers and
providing distributed communication and storage.

Running Containers
By now, hopefully you’re excited by the possibilities of building an
application using containerized microservices and Kubernetes. Let’s walk
through the basics so that you can see what these ideas look like in practice,
providing a foundation for the deeper dive into container technology that
you’ll find in the rest of this book.

What Containers Look Like
In Chapter 2, we’ll look at the difference between a container platform and a

container runtime, and we’ll run containers using multiple container
runtimes. For now, let’s begin with a simple example running in the most
popular container platform, Docker. Our goal is to learn the basic Docker
commands, which align to universal container concepts.

Running a Container
The first command is run, which creates a container and runs a command
inside it. We will tell Docker the name of the container image to use. We
discuss container images more in Chapter 5; for now, it’s enough to know
that it provides a unique name and version so that Docker knows exactly
what to run. Let’s get started using the example for this chapter.

NOTE
The example repository for this book is at https://github.com/book-of-
kubernetes/examples. See “Running Examples” on page xx for details on
getting set up.

A key idea for this section is that containers look like a completely
separate system. To illustrate this, before we run a container, let’s look at the
host system:

root@host01:~# cat /etc/os-release
NAME="Ubuntu"
...
root@host01:~# ps -ef
UID PID PPID C STIME TTY TIME CMD
root 1 0 0 12:59 ? 00:00:07 /sbin/init
...
root@host01:~# uname -v
#...-Ubuntu SMP ...
root@host01:~# ip addr
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 ...
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
 inet 127.0.0.1/8 scope host lo
 valid_lft forever preferred_lft forever
 inet6 ::1/128 scope host
 valid_lft forever preferred_lft forever
...
3: enp0s8: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel ...
 link/ether 08:00:27:bf:63:1f brd ff:ff:ff:ff:ff:ff
 inet 192.168.61.11/24 brd 192.168.61.255 scope global enp0s8

https://github.com/book-of-kubernetes/examples

 valid_lft forever preferred_lft forever
 inet6 fe80::a00:27ff:febf:631f/64 scope link
 valid_lft forever preferred_lft forever
...

The first command looks at a file called /etc/os-release, which has
information about the installed Linux distribution. In this case, our example
virtual machine is running Ubuntu. That matches the output of the next
command, in which we see an Ubuntu-based Linux kernel. Finally, we list
network interfaces and see an IP address of 192.168.61.11.

The example setup steps automatically installed Docker, so we have it
ready to go. First, let’s download and start a Rocky Linux container with a
single command:

root@host01:~# docker run -ti rockylinux:8
Unable to find image 'rockylinux:8' locally
8: Pulling from library/rockylinux
...
Status: Downloaded newer image for rockylinux:8

We use -ti in our docker run command to tell Docker that we need an
interactive terminal to run commands. The only other parameter to docker run is
the container image, rockylinux:8, which specifies the name rockylinux and the
version 8. Because we don’t provide a command to run, the default bash
command for that container image is used.

Now that we have a shell prompt inside the container, we can run a few
commands and then use exit to leave the shell and stop the container:

➊ [root@18f20e2d7e49 /]# cat /etc/os-release
➋ NAME="Rocky Linux"
 ...
➌ [root@18f20e2d7e49 /]# yum install -y procps iproute
 ...
 [root@18f20e2d7e49 /]# ps -ef
 UID PID PPID C STIME TTY TIME CMD
 root ➍ 1 0 0 13:30 pts/0 00:00:00 /bin/bash
 root 19 1 0 13:46 pts/0 00:00:00 ps -ef
 [root@18f20e2d7e49 /]# ip addr
 1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 ...
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
 inet 127.0.0.1/8 scope host lo
 valid_lft forever preferred_lft forever
➎ 18: eth0@if19: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 ...
 link/ether 02:42:ac:11:00:02 brd ff:ff:ff:ff:ff:ff link-netnsid 0

 inet 172.17.0.2/16 brd 172.17.255.255 scope global eth0
 valid_lft forever preferred_lft forever
 [root@18f20e2d7e49 /]# uname -v
➏ #...-Ubuntu SMP ...
 [root@18f20e2d7e49 /]# exit

When we run commands within our container, it looks like we are running
in a Rocky Linux system. Compared to the host system, there are multiple
differences:

A different hostname in the shell prompt ➊ (18f20e2d7e49 for mine,
though yours will be different)
Different filesystem contents ➋, including basic files like /etc/os-
release
The use of yum ➌ to install packages, and the need to install packages
even for basic commands
A limited set of running processes, with no base system services and our
bash shell ➍ as process ID (PID) 1
Different network devices ➎, including a different MAC address and IP
address

Strangely, however, when we run uname -v, we see the exact same Ubuntu
Linux kernel ➏ as when we were on the host. Clearly, a container is not a
wholly separate system as we might otherwise believe.

Images and Volume Mounts
At first glance, a container looks like a mix between a regular process and a
virtual machine. And the way we interact with Docker only deepens that
impression. Let’s illustrate that by running an Alpine Linux container. We’ll
start by “pulling” the container image, which feels a lot like downloading a
virtual machine image:

root@host01:~# docker pull alpine:3
3: Pulling from library/alpine
...
docker.io/library/alpine:3

Next, we’ll run a container from the image. We’ll use a volume mount to

see files from the host, a common task with a virtual machine. However,
we’ll also tell Docker to specify an environment variable, which is the kind
of thing we would do when running a regular process:

root@host01:~# docker run -ti -v /:/host -e hello=world alpine:3
/ # hostname
75b51510ab61

We can print the contents of /etc/os-release inside the container, as before
with Rocky Linux:

/ # cat /etc/os-release
NAME="Alpine Linux"
ID=alpine
...

However, this time we can also print the host’s /etc/os-release file because
the host filesystem is mounted at /host:

/ # cat /host/etc/os-release
NAME="Ubuntu"
...

And finally, within the container we also have access to the environment
variable we passed in:

/ # echo $hello
world
/ # exit

This mix of ideas from virtual machines and regular processes sometimes
leads new container users to ask questions like, “Why can’t I SSH into my
container?” A major goal of the next few chapters is to make clear what
containers really are.

What Containers Really Are
Despite what a container looks like, with its own hostname, filesystem,
process space, and networking, a container is not a virtual machine. It does
not have a separate kernel, so it cannot have separate kernel modules or
device drivers. A container can have multiple processes, but they must be
started explicitly by the first process (PID 1). So a container will not have an

SSH server in it by default, and most containers do not have any system
services running.

In the next several chapters, we’ll look at how a container manages to
look like a separate system while being a group of processes. For now, let’s
try one more Docker example to see what a container looks like from the host
system.

First, we’ll download and run NGINX with a single command:

root@host01:~# docker run -d -p 8080:80 nginx
Unable to find image 'nginx:latest' locally
latest: Pulling from library/nginx
...
Status: Downloaded newer image for nginx:latest
e9c5e87020372a23ce31ad10bd87011ed29882f65f97f3af8d32438a8340f936

This example illustrates a couple of additional useful Docker commands.
And again, we are mixing ideas from virtual machines and regular processes.
By using the -d flag, we tell Docker to run this container in daemon mode (in
the background), which is the kind of thing we would do for a regular
process. Using -p 8080:80, however, brings in another concept from virtual
machines, as it instructs Docker to forward port 8080 on the host to port 80 in
the container, letting us connect to NGINX from the host even though the
container has its own network interfaces.

NGINX is now running in the background in a Docker container. To see
it, run the following:

root@host01:~# docker ps
CONTAINER ID IMAGE ... PORTS NAMES
e9c5e8702037 nginx ... 0.0.0.0:8080->80/tcp funny_montalcini

Because of the port forwarding, we can connect to it from our host system
using curl:

root@host01:~# curl http://localhost:8080/
<!DOCTYPE html>
<html>
<head>
<title>Welcome to nginx!</title>
...

With this example, we’re starting to see how containerization meets some

of the needs we identified earlier in this chapter. Because NGINX is
packaged into a container image, we can download and run it with a single
command, with no concern for any conflict with anything else that might be
installed on our host.

Let’s run one more command to explore our NGINX server:

root@host01:~# ps -ef | grep nginx | grep -v grep
root 35729 35703 0 14:17 ? 00:00:00 nginx: master ...
systemd+ 35796 35729 0 14:17 ? 00:00:00 nginx: worker ...

If NGINX were running in a virtual machine, we would not see it in a ps
listing on the host system. Clearly, NGINX in a container is running as a
regular process. At the same time, we didn’t need to install NGINX onto our
host system to get it working. In other words, we are getting the benefits of a
virtual machine approach without the overhead of a virtual machine.

Deploying Containers to Kubernetes
To have load balancing and resilience in our containerized applications, we
need a container orchestration framework like Kubernetes. Our example
system also has a Kubernetes cluster automatically installed, with a web
application and database deployed to it. As a preparation for our deep dive
into Kubernetes in Part II, let’s look at that application.

There are many different options for installing and configuring a
Kubernetes cluster, with distributions available from many companies. We
discuss multiple options for Kubernetes distributions in Chapter 6. For this
chapter, we’ll use a lightweight distribution called “K3s” from a company
called Rancher.

To use a container orchestration environment like Kubernetes, we have to
give up some control over our containers. Rather than executing commands
directly to run containers, we’ll tell Kubernetes what containers we want it to
run, and it will decide where to run each container. Kubernetes will then
monitor our containers for us and handle automatic restart, failover, updates
to new versions, and even autoscaling based on load. This style of
configuration is called declarative.

Talking to the Kubernetes Cluster

A Kubernetes cluster has an API server that we can use to get status and
change the cluster configuration. We interact with the API server using the
kubectl client application. K3s comes with its own embedded kubectl command
that we’ll use. Let’s begin by getting some basic information about the
Kubernetes cluster:

root@host01:~# k3s kubectl version
Client Version: version.Info{Major:"1", ...
Server Version: version.Info{Major:"1", ...
root@host01:~# k3s kubectl get nodes
NAME STATUS ROLES AGE VERSION
host01 Ready control-plane... 2d v1...

As you can see, we’re working with a single-node Kubernetes cluster. Of
course, this would not meet our needs for high availability. Most Kubernetes
distributions, including K3s, support a multinode, highly available cluster,
and we will look at how that works in detail in Part II.

Application Overview
Our example application provides a “to-do” list with a web interface,
persistent storage, and tracking of item state. It will take several minutes for
this to be running in Kubernetes, even after the automated scripts are
finished. After it’s running, we can access it in a browser and should see
something like Figure 1-1.

Figure 1-1: An example application in Kubernetes

This application is divided into two types of containers, one for each
application component. A Node.js application serves files to the browser and
provides a REST API. The Node.js application communicates with a
PostgreSQL database. The Node.js component is stateless, so it is easy to
scale up to as many instances as we need based on the number of users. In
this case, our application’s Deployment asked Kubernetes for three Node.js
containers:

root@host01:~# k3s kubectl get pods
NAME READY STATUS RESTARTS AGE
todo-db-7df8b44d65-744mt 1/1 Running 0 2d
todo-655ff549f8-l4dxt 1/1 Running 0 2d
todo-655ff549f8-gc7b6 1/1 Running 1 2d
todo-655ff549f8-qq8ff 1/1 Running 1 2d

The command get pods tells Kubernetes to list Pods. A Pod is a group of
one or more containers that Kubernetes treats as a single unit for scheduling
and monitoring. We look at Pods more closely throughout Part II.

Here, we have one Pod whose name starts with todo-db, which is our
PostgreSQL database. The other three Pods, with names starting with todo, are
the Node.js containers. (We’ll explain later why the names have random
characters after them; you can ignore that for now.)

According to Kubernetes, our application component containers are
running, so we should be able to access our application in a browser. How
you do this depends on whether you are running in AWS or Vagrant; the
example setup scripts will print out what URL you should use in your
browser. If you visit that URL, you should see something like Figure 1-1.

Kubernetes Features
If our only goal were to run four containers, we could have done that just
using the Docker commands described earlier. Kubernetes is providing a lot
more functionality, though. Let’s take a quick tour of the most important
features.

In addition to running our containers, Kubernetes is also monitoring them.
Because we asked for three instances, Kubernetes will work to keep three
instances running. Let’s destroy one and watch Kubernetes automatically
recover:

root@host01:~# k3s kubectl delete pod todo-655ff549f8-qq8ff
pod "todo-655ff549f8-qq8ff" deleted
root@host01:~# k3s kubectl get pods
NAME READY STATUS RESTARTS AGE
todo-db-7df8b44d65-744mt 1/1 Running 0 2d
todo-655ff549f8-l4dxt 1/1 Running 0 2d
todo-655ff549f8-gc7b6 1/1 Running 1 2d
todo-655ff549f8-rm8sh 1/1 Running 0 11s

To run this command, you will need to copy and paste the full name of
one of your three Pods. The name will be a little different from mine. When
you delete a Pod, you should see that Kubernetes immediately creates a new
one. (You can identify which one is brand new by the AGE field.)

Next let’s explore how Kubernetes can automatically scale our
application. Later, we’ll see how to make Kubernetes do this automatically,
but for now, we will do it manually. Suppose that we decide we need five
Pods instead of three. We can do this with one command:

root@host01:~# k3s kubectl scale --replicas=5 deployment todo
deployment.apps/todo scaled
root@host01:~# k3s kubectl get pods
NAME READY STATUS RESTARTS AGE
todo-db-7df8b44d65-744mt 1/1 Running 0 2d
todo-655ff549f8-l4dxt 1/1 Running 0 2d
todo-655ff549f8-gc7b6 1/1 Running 1 2d
todo-655ff549f8-rm8sh 1/1 Running 0 5m13s
todo-655ff549f8-g7lxg 1/1 Running 0 6s
todo-655ff549f8-zsqp6 1/1 Running 0 6s

We tell Kubernetes to scale the Deployment that manages our Pods. For
now, you can think of the Deployment as the “owner” of the Pods; it
monitors them and controls how many there are. Here, two extra Pods are
immediately created. We just scaled up our application.

Before we close, let’s look at one more critically important Kubernetes
feature. When you load the application in your web browser, Kubernetes is
sending your browser’s request to one of the available Pods. Each time you
reload, the request might be routed to a different Pod because Kubernetes is
automatically balancing the application’s load. To make this happen, when
we deploy our application to Kubernetes, the application configuration
includes a Service:

root@host01:~# k3s kubectl describe service todo

Name: todo
...
IPs: 10.43.231.177
Port: <unset> 80/TCP
TargetPort: 5000/TCP
Endpoints: 10.42.0.10:5000,10.42.0.11:5000,10.42.0.14:5000 + 2 more...
...

A Service has its own IP address and routes traffic to one or more
endpoints. In this case, because we scaled up to five Pods, the Service is
balancing traffic across all five endpoints.

Final Thoughts
Modern applications achieve scalability and reliability through an
architecture based on microservices that can be deployed independently and
dynamically to available hardware, including cloud resources. By using
containers and container orchestration to run our microservices, we achieve a
common approach for packaging, scaling, monitoring, and maintaining
microservices, enabling our development teams to focus on the hard work of
actually building the application.

In this chapter, we saw how containerization can create the appearance of
a separate system while really being a regular process run in an isolated way.
We also saw how we can use Kubernetes to deploy an entire application as a
set of containers, with scalability and self-healing. Of course, Kubernetes has
a lot more important features than what we’ve mentioned here, enough that it
will take the whole book for us to cover them all! With this brief overview, I
hope you are excited to dive more deeply into containers and Kubernetes in
order to understand how to build applications that perform well and are
reliable.

We’ll come back to Kubernetes in Part II of this book. For now, let’s look
closely at how containers create the illusion of a separate system. We’ll start
by looking at process isolation using Linux namespaces.

2
PROCESS ISOLATION

Containers build on a rich history of technologies designed to isolate one
computer program from another while allowing many programs to share the
same CPU, memory, storage, and network resources. Containers use
fundamental capabilities of the Linux kernel, particularly namespaces, which
create separate views of process identifiers, users, the filesystem, and
network interfaces. Container runtimes use multiple types of namespaces to
give each container an isolated view of the system.

In this chapter, we’ll consider some of the reasons for process isolation
and look at how Linux has historically isolated processes. We’ll then
examine how containers use namespaces to provide isolation. We’ll test this
using a couple of different container runtimes. Finally, we will use Linux
commands to create namespaces directly.

Understanding Isolation
Before running some containers and inspecting their isolation, let’s look at
the motivation for process isolation. We’ll also consider traditional process
isolation in Linux and how that has led to the isolation capabilities that
containers use.

Why Processes Need Isolation

The whole idea of a computer is that it is a general-purpose machine that can
run many different kinds of programs. Ever since the beginning of
computing, there has been a need to share a single computer between
multiple programs. It started with people taking turns submitting programs on
punch cards, but as computer multitasking became more sophisticated, people
could start multiple programs, and the computer would make it seem as if
they were all running on the same CPU at once.

Of course, as soon as something needs to be shared, there is a need to
make sure it is shared fairly, and computer programs are no different. So
although we think of a process as an independent program with its own time
on the CPU and its own memory space, there are many ways that one process
can cause trouble for another, including:

Using too much CPU, memory, storage, or network
Overwriting the memory or files of another process
Extracting secret information from another process
Sending another process bad data to cause it to misbehave
Flooding another process with requests so that it stops responding

Bugs can cause processes to do these same things by accident, but a
bigger concern is a security vulnerability that allows a bad actor to use one
process to cause problems for another. It takes only one vulnerability to
create major problems in a system, so we need ways to isolate processes that
limit damage from both accidental and intentional behavior.

Physical isolation is best—air-gapped systems are regularly used to
protect government-classified information and safety-critical systems—but
this approach is also too expensive and inconvenient for many uses. Virtual
machines can give the appearance of separation while sharing physical
hardware, but a virtual machine has the overhead of running its own
operating system, services, and virtual devices, making it slower to start and
less scalable. The solution is to run regular processes, but use process
isolation to reduce the risk of affecting other processes.

File Permissions and Change Root
Most of the effort in process isolation involves preventing one process from
seeing things it shouldn’t. After all, if a process can’t even see another

process, it will be far more difficult to cause trouble, either accidentally or on
purpose. The traditional ways that Linux has controlled what processes can
see and do serve as the foundation for the ideas behind containers.

One of the most basic visibility controls is filesystem permissions. Linux
associates an owner and group with each file and directory, and manages
read, write, and execute permissions. This basic permission scheme works
well to ensure that user files are kept private, that a process cannot overwrite
the files of another process, and that only a privileged user like root can
install new software or modify critical system configuration files.

Of course, this permission scheme relies on us ensuring that each process
is run as the authentic user and that users are in the appropriate groups.
Typically, each new service install creates a user just for running that service.
Even better, this service user can be configured without a real login shell,
which means that the user cannot be exploited to log in to the system. To
make this clear, let’s look at an example.

NOTE
The example repository for this book is at https://github.com/book-of-
kubernetes/examples. See “Running Examples” on page xx for details on
getting set up.

The Linux rsyslogd service provides logging services, so it needs to write to
files in /var/log, but it should not have permissions to read or write all of the
files in that directory. File permissions are used to control this, as shown in
this example:

 root@host01:~# ps -ef | grep rsyslogd | grep -v grep
➊ syslog 698 1 0 Mar05 ? 00:00:04 /usr/sbin/rsyslogd -n -iNONE
 root@host01:~# su syslog
➋ This account is currently not available.
 root@host01:~# ls -l /var/log/auth.log
➌ -rw-r----- 1 syslog adm 18396 Mar 6 01:27 /var/log/auth.log
 root@host01:~# ls -ld /var/log/private
➍ drwx------ 2 root root 4096 Mar 5 21:04 /var/log/private

The syslog user ➊ exists specifically to run rsyslogd, and that user is
configured with no login shell for security reasons ➋. Because rsyslogd needs
to be able to write to auth.log, it’s given write permission, as shown in the

https://github.com/book-of-kubernetes/examples

file mode printout ➌. Members of the admin (adm) group have read-only
access to this file.

An initial d in the file mode ➍ indicates that this is a directory. The
following rwx indicates that the root user has read, write, and execute
permissions. The remaining dashes indicate that there are no rights for
members of the root group or for other system users, so we can conclude that
the rsyslogd process cannot see the contents of this directory.

Permission control is important, but it doesn’t fully satisfy our goal of
process isolation. One reason is that it is not enough to protect us from
privilege escalation, wherein a vulnerable process and a vulnerable system
allow a bad actor to obtain root privileges. To help deal with this, some Linux
services go a step beyond by running in an isolated part of the filesystem.
This approach is known as chroot for “change root.” Running in a chroot
environment requires quite a bit of setup, as you can see in this example:

 root@host01:~# mkdir /tmp/newroot
 root@host01:~# ➊ cp --parents /bin/bash /bin/ls /tmp/newroot
 root@host01:~# cp --parents /lib64/ld-linux-x86-64.so.2 \
 ➋ $(ldd /bin/bash /bin/ls | grep '=>' | awk '{print $3}') /tmp/newroot
 ...
 root@host01:~# ➌ chroot /tmp/newroot /bin/bash
 bash-5.0# ls -l /bin
 total 1296
➍ -rwxr-xr-x 1 0 0 1183448 Mar 6 02:15 bash
 -rwxr-xr-x 1 0 0 142144 Mar 6 02:15 ls
 bash-5.0# exit
 exit

First, we need to copy in all of the executables that we intend to run ➊.
We also need to copy in all of the shared libraries these executables use,
which we specify with the ldd | grep | awk command ➋. When both binaries and
libraries are copied in, we can use the chroot command ➌ to move into our
isolated environment. Only the files we copied in are visible ➍.

Container Isolation
For experienced Linux system administrators, file permissions and change
root are basic-level knowledge. However, those concepts also serve as the
foundation for how containers work. Even though a running container
appears like a completely separate system, with its own hostname, network,
processes, and filesystem (as we saw in Chapter 1), it’s really a regular Linux

process using isolation rather than a virtual machine.
A container has multiple kinds of isolation, including several essential

kinds of isolation that we haven’t seen before:

Mounted filesystems
Hostname and domain name
Interprocess communication
Process identifiers
Network devices

These separate kinds of isolation work together so that a process or
collection of processes looks like a completely separate system. Although
these processes still share the kernel and physical hardware, this isolation
goes a long way toward ensuring that they cannot cause trouble for other
processes, especially when we configure containers correctly to control the
CPU, memory, storage, and network resources available to them.

Container Platforms and Container Runtimes
Specifying all the binaries, libraries, and configuration files needed to run a
process in an isolated filesystem would be laborious. Fortunately, as we saw
in Chapter 1, container images come prepackaged with the needed
executables and libraries. Using Docker, we were able to easily download
and run NGINX in a container. Docker is an example of a container platform,
providing not only the ability to run containers but also container storage,
networking, and security.

Under the covers, modern versions of Docker are using containerd as the
container runtime, also known as a container engine. A container runtime
provides low-level functionality to run processes in containers.

To explore isolation further, let’s experiment with two different container
runtimes to start containers from preexisting images and then inspect how
processes in containers are isolated from the rest of the system.

Installing containerd
We’ll be using containerd in Part II in support of our Kubernetes clusters, so

let’s begin by installing and interacting with this runtime directly. Interacting
directly with containerd will also benefit our exploration of process isolation.

You can skip install commands by using the extra provisioning script
provided with this chapter’s examples. See the README file for this chapter
for instructions.

Even though containerd is available in the standard Ubuntu package
repository, we’ll install it from the official Docker package registry so that
we get the latest stable version. To do that, we need Apt to support HTTP/S,
so let’s do that first:

root@host01:~# apt update
...
root@host01:~# apt -y install apt-transport-https
...

Now let’s add the package registry and install:

root@host01:~# curl -fsSL https://download.docker.com/linux/ubuntu/gpg | \
 gpg --dearmor -o /usr/share/keyrings/docker-archive-keyring.gpg
root@host01:~# echo "deb [arch=amd64" \
 "signed-by=/usr/share/keyrings/docker-archive-keyring.gpg]" \
 "https://download.docker.com/linux/ubuntu focal stable" > \
 /etc/apt/sources.list.d/docker.list
root@host01:~# apt update && apt install -y containerd.io
...
root@host01:~# ctr images ls
REF TYPE DIGEST SIZE PLATFORMS LABELS

The final command just ensures that the package installed correctly, that
the service is running, and that the ctr command is working. We don’t see any
images because we haven’t installed any yet.

Container runtimes are low-level libraries. They are typically not used
directly but are used by a higher-level container platform or orchestration
environment such as Docker or Kubernetes. This means that they put a lot of
focus into a quality application programming interface (API) but not as much
effort into user-facing tools we can use from the command line. Fortunately,
command line tools are still needed for testing, and containerd provides the ctr
tool that we’ll use for experimentation.

Using containerd

Our initial containerd command showed that no images have been downloaded
yet. Let’s download a small image with which we can run a container. We
will use BusyBox, a tiny container image that includes a shell and basic Linux
utilities. To download the image, we use the pull command:

root@host01:~# ctr image pull docker.io/library/busybox:latest
...
root@host01:~# ctr images ls
REF ...
docker.io/library/busybox:latest ...

Our list of images is no longer empty. Let’s run a container from that
image:

root@host01:~# ctr run -t --rm docker.io/library/busybox:latest v1
/ #

This looks similar to using Docker. We use -t to create a TTY for this
container, allowing us to interact with it, and we use --rm to tell containerd to
delete the container when the main process stops. However, there are some
important differences to note. When we used Docker in Chapter 1, we didn’t
worry about pulling the image before running it, and we were able to use
simpler names like nginx or rockylinux:8. The ctr tool requires us to specify
docker.io/library/busybox:latest, the full path to the image, with registry
hostname and tag included. Also, we are required to pull the image first
because the runtime won’t do this for us automatically.

Now that we’re inside this container, we can see that it has an isolated
network stack and process space:

/ # ip a
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue qlen 1000
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
 inet 127.0.0.1/8 scope host lo
 valid_lft forever preferred_lft forever
 inet6 ::1/128 scope host
 valid_lft forever preferred_lft forever
/ # ps -ef
PID USER TIME COMMAND
 1 root 0:00 sh
 8 root 0:00 ps -ef
/ #

Inside the container, we see a loopback network interface. We also see our

shell process and the ps command that we ran. As far as the processes in our
container are concerned, we are running on a separate system with no other
processes running or listening on the network.

WHY NO BRIDGE INTERFACE?
If you’ve worked with Docker, you might be surprised to see that this
container has only a loopback interface. Default networking on a
container platform also provides an additional interface that is attached
to a bridge. This allows containers to see one another and also allows
containers to use the host interface to access external networks via
Network Address Translation (NAT).

In this case, we are talking directly to a lower-level container runtime.
This container runtime handles managing images and running
containers only. If we want a bridge interface and a connection to the
internet, we’ll need to provide it ourselves (and we do exactly that in
Chapter 4).

We’ve illustrated that we can talk to the containerd runtime to run a
container, and that inside the container, we’re isolated from the rest of the
system. How does that isolation work? To find out, let’s keep the container
running and investigate it from the host system.

Introducing Linux Namespaces
Like other container runtimes, containerd uses a Linux kernel feature called
namespaces to isolate the processes in the container. As mentioned earlier,
most of the effort in process isolation is to ensure that a process can’t see
things it shouldn’t. A process running in a namespace sees a limited view of a
particular system resource.

Even though containerization seems like new technology, Linux
namespaces have been available for many years. Over time, more types of
namespaces were added. We can find out what namespaces are associated
with our container using the lsns command, but first we need to know the
process ID (PID) on the host for our container’s shell process. While leaving

the container running, open another terminal tab or window. (See “Running
Examples” on page xx for more information.) Then, use ctr to list running
containers:

root@host01:~# ctr task ls
TASK PID STATUS
v1 18088 RUNNING

Let’s use ps to verify that we have the correct PID. When you run these
commands yourself, be sure to use the PID that displays in your listing:

root@host01:~# ps -ef | grep 18088 | grep -v grep
root 18088 18067 0 18:46 pts/0 00:00:00 sh
root@host01:~# ps -ef | grep 18067 | grep -v grep
root 18067 1 0 18:46 ? 00:00:00
 /usr/bin/containerd-shim-runc-v2 -namespace default -id v1 -address
 /run/containerd/containerd.sock
root 18088 18067 0 18:46 pts/0 00:00:00 sh

As expected, the parent of this PID is containerd. Next let’s use lsns to list the
namespaces that containerd has created to isolate this process:

root@host01:~# lsns | grep 18088
4026532180 mnt 1 18088 root sh
4026532181 uts 1 18088 root sh
4026532182 ipc 1 18088 root sh
4026532183 pid 1 18088 root sh
4026532185 net 1 18088 root sh

Here, containerd is using five different types of namespaces in order to fully
isolate the processes running in the busybox container:

mnt Mount points

uts Unix time sharing (hostname and network domain)

ipc Interprocess communication (for example, shared memory)

pid Process identifiers (and list of running processes)

net Network (including interfaces, routing table, and firewall)

Finally, we’ll close out the BusyBox container by running exit from within
that container (first terminal window):

/ # exit

This command returns us to a regular shell prompt so that we can be ready
for the next set of examples.

Containers and Namespaces in CRI-O
In addition to containerd, Kubernetes supports other container runtimes.
Depending on which Kubernetes distribution you use, you might find that the
container runtime is different. For example, Red Hat OpenShift uses CRI-O,
an alternative container runtime. CRI-O is also used by the Podman, Buildah,
and Skopeo suite of tools, which are the standard way to manage containers
on Red Hat 8 and related systems.

Let’s run the same container image using CRI-O to get a better picture of
how container runtimes are different from one another but also to show how
they use the same underlying Linux kernel capabilities for process isolation.

You can skip these install commands by using the extra provisioning
script provided with this chapter’s examples. See the README file for this
chapter for instructions.

The OpenSUSE Kubic project hosts repositories for CRI-O for various
Linux distributions, including Ubuntu, so we will install from there. The
exact URL is dependent on the version of CRI-O we want to install, and the
URLs are long and challenging to type, so the automation installs a script to
configure some useful environment variables. Before proceeding, we need to
load that script:

root@host01:~# source /opt/crio-ver

We can now use the environment variables to set up the CRI-O
repositories and install CRI-O:

root@host01:~# echo "deb $REPO/$OS/ /" > /etc/apt/sources.list.d/kubic.list
root@host01:~# echo "deb $REPO:/cri-o:/$VERSION/$OS/ /" \
 > /etc/apt/sources.list.d/kubic.cri-o.list
root@host01:~# curl -L $REPO/$OS/Release.key | apt-key add -
...
OK
root@host01:~# apt update && apt install -y cri-o cri-o-runc
...
root@host01:~# systemctl enable crio && systemctl start crio

...
root@host01:~# curl -L -o /tmp/crictl.tar.gz $CRICTL_URL
...
root@host01:~# tar -C /usr/local/bin -xvzf /tmp/crictl.tar.gz
crictl
root@host01:~# rm -f /tmp/crictl.tar.gz

We first add to the list of repositories for apt by adding files to
/etc/apt/sources.list.d. We then use apt to install CRI-O packages. After CRI-
O is installed, we use systemd to enable and start its service.

Unlike containerd, CRI-O does not ship with any command line tools that we
can use for testing, so the last command installs crictl, which is part of the
Kubernetes project and is designed for testing any container runtime
compatible with the Container Runtime Interface (CRI) standard. CRI is the
programming API that Kubernetes itself uses to communicate with container
runtimes.

Because crictl is compatible with any container runtime that supports CRI,
it needs configuration to connect to CRI-O. CRI-O has installed a
configuration file /etc/crictl.yaml to configure crictl:
crictl.yaml

runtime-endpoint: unix:///var/run/crio/crio.sock
image-endpoint: unix:///var/run/crio/crio.sock
...

This configuration tells crictl to connect to CRI-O’s socket.
To create and run containers, the crictl command requires us to provide

definition files in the JSON or YAML file format. The automated scripts for
this chapter added two crictl definition files to /opt. The first file, shown in
Listing 2-1, creates a Pod:
pod.yaml

metadata:
 name: busybox
 namespace: crio
linux:
 security_context:
 namespace_options:
 network: 2

Listing 2-1: CRI-O Pod definition

Similar to the Kubernetes Pod we saw in Chapter 1, the Pod is a group of
one or more containers that run in the same isolated space. In our case, we
need only one container in the Pod, and the second file, shown in Listing 2-2,
defines the container process that CRI-O should start. We provide a name
(busybox) and namespace (crio) to distinguish this Pod from any others.
Otherwise, we need to provide only network configuration. CRI-O expects to
use a Container Network Interface (CNI) plug-in to configure the network
namespace. We cover CNI plug-ins in Chapter 8, so for now, we’ll use
network: 2 to tell CRI-O not to create a separate network namespace and instead
use the host network:
container.yaml

metadata:
 name: busybox
image:
 image: docker.io/library/busybox:latest
args:
 - "/bin/sleep"
 - "36000"

Listing 2-2: CRI-O container definition

Again we are using BusyBox because its small size makes it fast and
lightweight. However, because crictl will create this container in the
background without a terminal, we need to specify /bin/sleep as the command
to be run inside the container; otherwise, the container will immediately
terminate when the shell realizes that it doesn’t have a TTY.

Before we can run the container, we first need to pull the image:

root@host01:~# crictl pull docker.io/library/busybox:latest
Image is up to date for docker.io/library/busybox@sha256:...

Then, we provide the pod.yaml and container.yaml files to crictl to create
and start our BusyBox container:

root@host01:~# cd /opt
root@host01:~# POD_ID=$(crictl runp pod.yaml)
root@host01:~# crictl pods
POD ID CREATED STATE ...
3bf297ace44b5 Less than a second ago Ready ...
root@host01:~# CONTAINER_ID=$(crictl create $POD_ID container.yaml pod.yaml)

root@host01:~# crictl start $CONTAINER_ID
91394a7f37e3da3a557782ed6d6eb2cf8c23e5b3dd4e2febd415bba071d10734
root@host01:~# crictl ps
CONTAINER ... STATE
91394a7f37e3d ... Running

We capture the Pod’s unique identifier and the container in POD_ID and
CONTAINER_ID variables, so we can use them here and upcoming commands.

Before looking at the Linux namespaces created by CRI-O, let’s look
inside the busybox container by using the crictl exec command to start a new shell
process inside it:

root@host01:~# crictl exec -ti $CONTAINER_ID /bin/sh
/ # ip a
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue qlen 1000
...
2: enp0s3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel qlen 1000
...
3: enp0s8: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel qlen 1000
...
/ # ps -ef
PID USER TIME COMMAND
 1 root 0:00 /pause
 7 root 0:00 /bin/sleep 36000
 13 root 0:00 /bin/sh
 20 root 0:00 ps -ef
/ # exit

This BusyBox container running in CRI-O looks a little different from
BusyBox running in containerd. First, because we configured our Pod with
network: 2, the container can see the same network devices that a regular
process would see. Second, we see a couple of additional processes. We look
at the pause process with PID 1 when we discuss container runtimes under
Kubernetes in Chapter 12. The other extra process is sleep, which we created
as the entry point for this container.

CRI-O is also using Linux namespaces for process isolation, as we can see
from examining the container processes and listing namespaces:

root@host01:~# PID=$(crictl inspect $CONTAINER_ID | jq '.info.pid')
root@host01:~# ps -ef | grep $PID | grep -v grep
root 23906 23894 0 20:15 ? 00:00:00 /bin/sleep 36000
root@host01:/opt# ps -ef | grep 23894 | grep -v grep
root 23894 1 0 20:15 ? 00:00:00 /usr/bin/conmon ...
root 23906 23894 0 20:15 ? 00:00:00 /bin/sleep 36000

The crictl inspect command provides a wealth of information about the
container, but for the moment, we need only the PID. Because crictl returns
JSON-formatted output, we can use jq to extract the pid field from the info
structure and save it to an environment variable called PID. Try running crictl
inspect $CONTAINER_ID to see the full information.

Using the PID we discovered, we can see our sleep command. We then can
use its parent PID to verify that it is managed by conmon, a CRI-O utility.
Next, let’s see the namespaces that CRI-O has created. The allocation of
namespaces to processes is more complex in CRI-O, so let’s just list all of the
namespaces on our Linux system and pick out the ones related to the
container:

root@host01:~# lsns
 NS TYPE NPROCS PID USER COMMAND
...
4026532183 uts 2 23867 root /pause
4026532184 ipc 2 23867 root /pause
4026532185 mnt 1 23867 root /pause
4026532186 pid 2 23867 root /pause
4026532187 mnt 1 23906 root /bin/sleep 36000
...

Here, we see only four types of namespaces. Because we told CRI-O to
give the container access to the host’s network namespace, it didn’t need to
create a net namespace. Also, with CRI-O, most namespaces are associated
with the pause command (although some are shared by multiple processes, as
we can see via the NPROCS column). There are two mnt namespaces because
each separate container in a Pod gets a different set of mount points for
reasons that we cover in Chapter 5.

Running Processes in Namespaces Directly
One of the trickier jobs when running a process in a container is handling the
responsibility that comes with being PID 1. To better understand this, we
won’t have our container runtime create a namespace for us. Instead, we’ll
talk directly to the Linux kernel to run a process in a namespace manually.
We’ll use the command line, although container runtimes use the Linux
kernel API, but the result will be the same.

Because namespaces are a Linux kernel feature, nothing else needs to be

installed or configured. We just use the unshare command when launching the
process:

root@host01:~# unshare -f -p --mount-proc -- /bin/sh -c /bin/bash

The unshare command runs a program with different namespaces from the
parent. By adding -p, we specify that a new PID namespace is needed. The
option --mount-proc goes along with that, adding a new mount namespace and
ensuring /proc is remounted correctly, so that the process sees the correct
process information. Otherwise, the process would still be able to see
information about other processes in the system. Finally, the content after --
indicates the command to run.

Because this is an isolated process namespace, it cannot see a list of
processes outside this namespace:

root@host01:~# ps -ef
UID PID PPID C STIME TTY TIME CMD
root 1 0 0 22:21 pts/0 00:00:00 /bin/sh -c /bin/bash
root 2 1 0 22:21 pts/0 00:00:00 /bin/bash
root 9 2 0 22:22 pts/0 00:00:00 ps -ef

Let’s get the ID of this namespace so that we can recognize it in a list:

root@host01:~# ls -l /proc/self/ns/pid
lrwxrwxrwx 1 root root 0 Mar 6 22:22 /proc/self/ns/pid -> 'pid:[4026532190]'

Now, from another terminal window, list all of the namespaces and look
for those related to our isolated shell:

root@host01:~# lsns
 NS TYPE NPROCS PID USER COMMAND
...
4026532189 mnt 3 12110 root unshare -f -p ...
4026532190 pid 2 12111 root /bin/sh -c /bin/bash
...
root@host01:~# exit

We see a pid namespace matching what we saw. In addition, we see a mnt
namespace. This namespace ensures that our shell sees the proper
information in /proc.

Because the pid namespace is owned by the sh command, that command is
PID 1 when we run ps within the namespace. This means that sh has the

responsibility to manage its children properly (such as bash). For example, sh
is responsible for passing signals to its children to ensure that they terminate
correctly. It’s important to keep this in mind as it is a common problem when
running containers that can result in zombie processes or other issues
cleaning up a stopped container.

Fortunately, sh handles its management duties well, as we can see by the
fact that when we pass a kill signal to it, it passes that signal on to its children.
Run this from the second terminal window, outside the namespace:

root@host01:~# kill -9 12111

Inside the first window you will see this output:

root@host01:~# Killed

This indicates that bash received the kill signal and terminated correctly.

Final Thoughts
Although containers create the appearance of a completely separate system,
it’s done in a way that has nothing in common with virtual machines. Instead,
the process is similar to traditional means of process isolation, such as user
permissions and separate filesystems. Container runtimes use namespaces,
which are built in to the Linux kernel and enable various types of process
isolation. In this chapter, we examined how the containerd and CRI-O container
runtimes use multiple types of Linux namespaces to give each container an
independent view of other processes, network devices, and the filesystem.
The use of namespaces prevents processes running in a container from seeing
and interfering with other processes.

At the same time, processes in a container are still sharing the same CPU,
memory, and network. A process that uses too many of those resources will
prevent other processes from running properly. Namespaces can’t solve that
problem, however. To prevent this issue, we’ll need to look at resource
limiting—the topic of our next chapter.

3
RESOURCE LIMITING

The process isolation work we did in Chapter 2 was very important, as a
process cannot generally affect what it cannot “see.” However, our process
can see the host’s CPU, memory, and networking, so it is possible for a
process to prevent other processes from running correctly by using too much
of these resources, not leaving enough room for others. In this chapter, we
will see how to guarantee that a process uses only its allocated CPU,
memory, and network resources, ensuring that we can divide up our resources
accurately. This will help when we move on to container orchestration
because it will provide Kubernetes with certainty about the resources
available on each host when it schedules a container.

CPU, memory, and network are important, but there’s one more really
important shared resource: storage. However, in a container orchestration
environment like Kubernetes, storage is distributed, and limits need to be
applied at the level of the whole cluster. For this reason, our discussion of
storage must wait until we introduce distributed storage in Chapter 15.

CPU Priorities
We’ll need to look at CPU, memory, and network separately, as the effect of
applying limits is different in each case. Let’s begin by looking at how to
control CPU usage. To understand CPU limits, we first need to look at how

the Linux kernel decides which process to run and for how long. In the Linux
kernel, the scheduler keeps a list of all of the processes. It also tracks which
processes are ready to run and how much time each process has received
lately. This allows it to create a prioritized list so that it can choose the
process that will run next. The scheduler is designed to be as fair as possible
(it’s even known as the Completely Fair Scheduler); thus, it tries to give all
processes a chance to run. However, it does accept outside input on which of
these processes are more important than others. This prioritization is made up
of two parts: the scheduling policy, and the priority of each process within
that policy.

Real-Time and Non-Real-Time Policies
The scheduler supports several different policies, but for our purposes we can
group them into real-time policies and non-real-time policies. The term real-
time means that some real-world event is critical to the process that creates a
deadline. The process needs to complete its processing before this deadline
expires, or something bad will happen. For example, the process might be
collecting data from an embedded hardware device. In that case, the process
must read the data before the hardware buffer overflows. A real-time process
is typically not extremely CPU intensive, but when it needs the CPU, it
cannot wait, so all processes under a real-time policy are higher priority than
any process under a non-real-time policy. Let’s explore this on an example
Linux system.

NOTE
The example repository for this book is at https://github.com/book-of-
kubernetes/examples. See “Running Examples” on page xx for details on
getting set up.

The Linux ps command tells us the specific policy that applies to each
process. Run this command on host01 from this chapter’s examples:

root@host01:~# ps -e -o pid,class,rtprio,ni,comm
 PID CLS RTPRIO NI COMMAND
 1 TS - 0 systemd
...
 6 TS - -20 kworker/0:0H-kblockd

https://github.com/book-of-kubernetes/examples

...
 11 FF 99 - migration/0
 12 FF 50 - idle_inject/0
...
 85 FF 99 - watchdogd
...
 484 RR 99 - multipathd
...
7967 TS - 0 ps

The -o flag provides ps with a custom list of output fields, including the
scheduling policy class (CLS) and two numeric priority fields: RTPRIO and NI.

Looking at the CLS field first, lots of processes are listed as TS, which
stands for “time-sharing” and is the default non-real-time policy. This
includes commands we run ourselves (like the ps command we ran) as well as
important Linux system processes like systemd. However, we also see
processes with policy FF for first in–first out (FIFO) and policy RR for round-
robin. These are real-time processes, and as such, they have priority over all
non-real-time policies in the system. Real-time processes in the list include
watchdog, which detects system lockups and thus might need to preempt other
processes, and multipathd, which watches for device changes and must be able
to configure those devices before other processes get a chance to talk to them.

In addition to the class, the two numeric priority fields tell us how
processes are prioritized within the policy. Not surprisingly, the RTPRIO field
means “real-time priority” and applies only to real-time processes. The NI
field is the “nice” level of the process and applies only to non-real-time
processes. For historical reasons, the nice level runs from –20 (least nice, or
highest priority) to 19 (nicest, lowest priority).

Setting Process Priorities
Linux allows us to set the priority for processes we start. Let’s try to use
priorities to control CPU usage. We’ll run a program called stress that is
designed to exercise our system. Let’s use a containerized version of stress
using CRI-O.

As before, we need to define YAML files for the Pod and container to tell
crictl what to run. The Pod YAML shown in Listing 3-1 is almost the same as
the BusyBox example in Chapter 2; only the name is different:
po-nolim.yaml

metadata:
 name: stress
 namespace: crio
linux:
 security_context:
 namespace_options:
 network: 2

Listing 3-1: BusyBox Pod

The container YAML has more changes compared to the BusyBox
example. In addition to using a different container image, one that already has
stress installed, we also need to provide arguments to stress to tell it to exercise
a single CPU:
co-nolim.yaml

metadata:
 name: stress
image:
 image: docker.io/bookofkubernetes/stress:stable
args:
 - "--cpu"
 - "1"
 - "-v"

CRI-O is already installed on host01, so it just takes a few commands to
start this container. First, we’ll pull the image:

root@host01:/opt# crictl pull docker.io/bookofkubernetes/stress:stable
Image is up to date for docker.io/bookofkubernetes/stress...

Then, we can run a container from the image:

root@host01:~# cd /opt
root@host01:/opt# PUL_ID=$(crictl runp po-nolim.yaml)
root@host01:/opt# CUL_ID=$(crictl create $PUL_ID co-nolim.yaml po-nolim.yaml)
root@host01:/opt# crictl start $CUL_ID
...
root@host01:/opt# crictl ps
CONTAINER IMAGE ...
971e83927329e docker.io/bookofkubernetes/stress:stable ...

The crictl ps command is just to check that our container is running as

expected.
The stress program is now running on our system, and we can see the

current priority and CPU usage. We want the current CPU usage, so we’ll use
top:

root@host01:/opt# top -b -n 1 -p $(pgrep -d , stress)
top - 18:01:58 up 1:39, 1 user, load average: 1.01, 0.40, 0.16
Tasks: 2 total, 1 running, 1 sleeping, 0 stopped, 0 zombie
%Cpu(s): 34.8 us, 0.0 sy, 0.0 ni, 65.2 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
MiB Mem : 1987.5 total, 1024.5 free, 195.8 used, 767.3 buff/cache
MiB Swap: 0.0 total, 0.0 free, 0.0 used. 1643.7 avail Mem

 PID USER PR NI ... %CPU %MEM TIME+ COMMAND
 13459 root 20 0 ... 100.0 0.2 0:29.78 stress-ng
 13435 root 20 0 ... 0.0 0.2 0:00.01 stress-ng

The pgrep command looks up the process IDs (PIDs) for stress; there are two
because stress forked a separate process for the CPU exercise we requested.
This CPU worker is using up 100 percent of one CPU; fortunately, our VM
has two CPUs, so it’s not overloaded.

We started this process with default priority, so it has a nice value of 0, as
shown in the NI column. What happens if we change that priority? Let’s find
out using renice:

root@host01:/opt# renice -n 19 -p $(pgrep -d ' ' stress)
13435 (process ID) old priority 0, new priority 19
13459 (process ID) old priority 0, new priority 19

The ps command used previously expected the PIDs to be separated with a
comma, whereas the renice command expects the PIDs to be separated with a
space; fortunately, pgrep can handle both.

We have successfully changed the priority of the process:

root@host01:/opt# top -b -n 1 -p $(pgrep -d , stress)
top - 18:11:04 up 1:48, 1 user, load average: 1.07, 0.95, 0.57
Tasks: 2 total, 1 running, 1 sleeping, 0 stopped, 0 zombie
%Cpu(s): 0.0 us, 0.0 sy, 28.6 ni, 71.4 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
MiB Mem : 1987.5 total, 1035.6 free, 182.2 used, 769.7 buff/cache
MiB Swap: 0.0 total, 0.0 free, 0.0 used. 1657.2 avail Mem

 PID USER PR NI ... %CPU %MEM TIME+ COMMAND
 13459 root 39 19 ... 100.0 0.2 9:35.50 stress-ng
 13435 root 39 19 ... 0.0 0.2 0:00.01 stress-ng

The new nice value is 19, meaning that our process is lower priority than
before. However, the stress program is still using 100 percent of one CPU!
What’s going on here? The problem is that priority is only a relative
measurement. If nothing else needs the CPU, as is true in this case, even a
lower-priority process can use as much as it wants.

This arrangement may seem to be what we want. After all, if the CPU is
available, shouldn’t we want our application components to be able to use it?
Unfortunately, even though that sounds reasonable, it’s not suitable for our
containerized applications for two main reasons. First, a container
orchestration environment like Kubernetes works best when a container can
be allocated to any host with enough resources to run it. It’s not reasonable
for us to know the relative priority of every single container in our
Kubernetes cluster, especially when we consider that a single Kubernetes
cluster can be multitenant, meaning multiple separate applications or teams
might be using a single cluster. Second, without some idea of how much CPU
a particular container will use, Kubernetes cannot know which hosts are full
and which ones have more room available. We don’t want to get into a
situation in which multiple containers on the same host all become busy at
the same time, because they will fight for the available CPU cores, and the
whole host will slow down.

Linux Control Groups
As we saw in the last section, process prioritization will not help a container
orchestration environment like Kubernetes know what host to use when
scheduling a new container, because even low-priority processes can get a lot
of CPU time when the CPU is idle. And because our Kubernetes cluster
might be multitenant, the cluster can’t just trust each container to promise to
use only a certain amount of CPU. First, that would allow one process to
affect another negatively, either maliciously or accidentally. Second,
processes don’t really control their own scheduling; they get CPU time when
the Linux kernel decides to give them CPU time. We need a different
solution for controlling CPU utilization.

To find the answer, we can take an approach used by real-time processing.
As we mentioned in the previous section, a real-time process is typically not
compute intensive, but when it needs the CPU, it needs it immediately. To

ensure that all real-time processes get the CPU they need, it is common to
reserve a slice of the CPU time for each process. Even though our container
processes are non-real-time, we can use the same strategy. If we can
configure our containers so that they can use no more than their allocated
slice of the CPU time, Kubernetes will be able to calculate how much space
is available on each host and will be able to schedule containers onto hosts
with sufficient space.

To manage container use of CPU cores, we will use control groups.
Control groups (cgroups) are a feature of the Linux kernel that manage
process resource utilization. Each resource type, such as CPU, memory, or a
block device, can have an entire hierarchy of cgroups associated with it. After
a process is in a cgroup, the kernel automatically applies the controls from
that group.

The creation and configuration of cgroups is handled through a specific
kind of filesystem, similar to the way that Linux reports information on the
system through the /proc filesystem. By default, the filesystem for cgroups is
located at /sys/fs/cgroup:

root@host01:~# ls /sys/fs/cgroup
blkio cpuacct freezer net_cls perf_event systemd
cpu cpuset hugetlb net_cls,net_prio pids unified
cpu,cpuacct devices memory net_prio rdma

Each of the entries in /sys/fs/cgroup is a different resource that can be
limited. If we look in one of those directories, we can begin to see what
controls can be applied. For example, for cpu:

root@host01:~# cd /sys/fs/cgroup/cpu
root@host01:/sys/fs/cgroup/cpu# ls -F
cgroup.clone_children cpuacct.stat cpuacct.usage_user
cgroup.procs cpuacct.usage init.scope/
cgroup.sane_behavior cpuacct.usage_all notify_on_release
cpu.cfs_period_us cpuacct.usage_percpu release_agent
cpu.cfs_quota_us cpuacct.usage_percpu_sys system.slice/
cpu.shares cpuacct.usage_percpu_user tasks
cpu.stat cpuacct.usage_sys user.slice/

The -F flag on ls adds a slash character to directories, which enables us to
begin to see the hierarchy. Each of those subdirectories (init.scope,
system.slice, and user.slice) is a separate CPU cgroup, and each has its own
set of configuration files that apply to processes in that cgroup.

CPU Quotas with cgroups
To understand the contents of this directory, let’s see how we can use
cgroups to limit the CPU usage of our stress container. We’ll begin by
checking its CPU usage again:

root@host01:/sys/fs/cgroup/cpu# top -b -n 1 -p $(pgrep -d , stress)
top - 22:40:12 up 12 min, 1 user, load average: 0.81, 0.35, 0.21
Tasks: 2 total, 1 running, 1 sleeping, 0 stopped, 0 zombie
%Cpu(s): 37.0 us, 0.0 sy, 0.0 ni, 63.0 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
MiB Mem : 1987.5 total, 1075.1 free, 179.4 used, 733.0 buff/cache
MiB Swap: 0.0 total, 0.0 free, 0.0 used. 1646.3 avail Mem

 PID USER PR NI ... %CPU %MEM TIME+ COMMAND
 5964 root 20 19 ... 100.0 0.2 1:19.72 stress-ng
 5932 root 20 19 ... 0.0 0.2 0:00.02 stress-ng

If you don’t still see stress running, start it up again using the commands
from earlier in this chapter. Next, let’s explore what CPU cgroup our stress
CPU process is in. We can do this by finding its PID inside a file within the
/sys/fs/cgroup/cpu hierarchy:

root@host01:/sys/fs/cgroup/cpu# grep -R $(pgrep stress-ng-cpu)
system.slice/runc-050c.../cgroup.procs:5964
system.slice/runc-050c.../tasks:5964

The stress process is part of the system.slice hierarchy, and is in a
subdirectory created by runc, which is one of the internal components of CRI-
O. This is really convenient, as it means we don’t need to create our own
cgroup and move this process into it. It is also no accident; as we’ll see in a
moment, CRI-O supports CPU limits on containers, so it naturally needs to
create a cgroup for each container it runs. In fact, the cgroup is named after
the container ID.

Let’s move into the directory for our container’s cgroup:

root@host01:/sys/fs/cgroup/cpu# cd system.slice/runc-${CUL_ID}.scope

We use the container ID variable we saved earlier to change into the
appropriate directory. As soon as we’re in this directory, we can see that it
has the same configuration files as the root of the hierarchy
/sys/fs/cgroup/cpu:

root@host01:/sys/fs/...07.scope# ls
cgroup.clone_children cpu.uclamp.max cpuacct.usage_percpu_sys
cgroup.procs cpu.uclamp.min cpuacct.usage_percpu_user
cpu.cfs_period_us cpuacct.stat cpuacct.usage_sys
cpu.cfs_quota_us cpuacct.usage cpuacct.usage_user
cpu.shares cpuacct.usage_all notify_on_release
cpu.stat cpuacct.usage_percpu tasks

The cgroup.procs file lists the processes in this control group:

root@host01:/sys/fs/...07.scope# cat cgroup.procs
5932
5964

This directory has many other files, but we are mostly interested in three:

cpu.shares Slice of the CPU relative to this cgroup’s peers

cpu.cfs_period_us Length of a period, in microseconds

cpu.cfs_quota_us CPU time during a period, in microseconds

We’ll look at how Kubernetes uses cpu.shares in Chapter 14. For now, we
need a way to get our instance under control so that it doesn’t overwhelm our
system. To do that, we’ll set an absolute quota on this container. First, let’s
see the value of cpu.cfs_period_us:

root@host01:/sys/fs/...07.scope# cat cpu.cfs_period_us
100000

The period is set to 100,000 μs, or 0.1 seconds. We can use this number to
figure out what quota to set in order to limit the amount of CPU the stress
container can use. At the moment, there is no quota:

root@host01:/sys/fs/...07.scope# cat cpu.cfs_quota_us
-1

We can set a quota by just updating the cpu.cfs_quota_us file:

root@host01:/sys/fs/...07.scope# echo "50000" > cpu.cfs_quota_us

This provides the processes in this cgroup with 50,000 μs of CPU time per
100,000 μs, which averages out to 50 percent of a CPU. The processes are

immediately affected, as we can confirm:

root@host01:/sys/fs/...07.scope# top -b -n 1 -p $(pgrep -d , stress)
top - 23:53:05 up 1:24, 1 user, load average: 0.71, 0.93, 0.98
Tasks: 2 total, 1 running, 1 sleeping, 0 stopped, 0 zombie
%Cpu(s): 0.0 us, 3.6 sy, 7.1 ni, 89.3 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
MiB Mem : 1987.5 total, 1064.9 free, 174.6 used, 748.0 buff/cache
MiB Swap: 0.0 total, 0.0 free, 0.0 used. 1663.9 avail Mem

 PID USER PR NI ... %CPU %MEM TIME+ COMMAND
 5964 root 39 19 ... 50.0 0.2 73:45.68 stress-ng-cpu
 5932 root 39 19 ... 0.0 0.2 0:00.02 stress-ng

Your listing might not show exactly 50 percent CPU usage, because the
period during which the top command measures CPU usage might not align
perfectly with the kernel’s scheduling period. But on average, our stress
container now cannot use more than 50 percent of one CPU.

Before we move on, let’s stop the stress container:

root@host01:/sys/fs/...07.scope# cd
root@host01:/opt# crictl stop $CUL_ID
...
root@host01:/opt# crictl rm $CUL_ID
...
root@host01:/opt# crictl stopp $PUL_ID
Stopped sandbox ...
root@host01:/opt# crictl rmp $PUL_ID
Removed sandbox ...

CPU Quota with CRI-O and crictl
It would be tiresome to have to go through the process of finding the cgroup
location in the filesystem and updating the CPU quota for every container in
order to control CPU usage. Fortunately, we can specify the quota in our crictl
YAML files, and CRI-O will enforce it for us. Let’s look at an example that
was installed into /opt when we set up this example virtual machine.

The Pod configuration is only slightly different from Listing 3-1. We add
a cgroup_parent setting so that we can control where CRI-O creates the cgroup,
which will make it easier to find the cgroup to see the configuration:
po-clim.yaml

metadata:

 name: stress-clim
 namespace: crio
linux:
 cgroup_parent: pod.slice
 security_context:
 namespace_options:
 network: 2

The container configuration is where we include the CPU limits. Our
stress1 container will be allotted only 10 percent of a CPU:
co-clim.yaml

metadata:
 name: stress-clim
image:
 image: docker.io/bookofkubernetes/stress:stable
args:
 - "--cpu"
 - "1"
 - "-v"
linux:
 resources:
 cpu_period: 100000
 cpu_quota: 10000

The value for cpu_period corresponds with the file cpu.cfs_period_us and
provides the length of the period during which the quota applies. The value
for cpu_quota corresponds with the file cpu.cfs_quota_us. Dividing the quota by
the period, we can determine that this will set a CPU limit of 10 percent.
Let’s go ahead and launch this stress container with its CPU limit:

root@host01:~# cd /opt
root@host01:/opt# PCL_ID=$(crictl runp po-clim.yaml)
root@host01:/opt# CCL_ID=$(crictl create $PCL_ID co-clim.yaml po-clim.yaml)
root@host01:/opt# crictl start $CCL_ID
...
root@host01:/opt# crictl ps
CONTAINER IMAGE ...
ea8bccd711b86 docker.io/bookofkubernetes/stress:stable ...

Our container is immediately restricted to 10 percent of a CPU:

root@host01:/opt# top -b -n 1 -p $(pgrep -d , stress)
top - 17:26:55 up 19 min, 1 user, load average: 0.27, 0.16, 0.13

Tasks: 4 total, 2 running, 2 sleeping, 0 stopped, 0 zombie
%Cpu(s): 10.3 us, 0.0 sy, 0.0 ni, 89.7 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
MiB Mem : 1987.5 total, 1053.4 free, 189.3 used, 744.9 buff/cache
MiB Swap: 0.0 total, 0.0 free, 0.0 used. 1640.4 avail Mem

 PID USER PR NI ... %CPU %MEM TIME+ COMMAND
 8349 root 20 0 ... 10.0 0.2 0:22.67 stress-ng
 8202 root 20 0 ... 0.0 0.2 0:00.02 stress-ng

As in our earlier example, the CPU usage shown is a snapshot during the
time that top was running, so it might not match the limit exactly, but over the
long term, this process will use no more than its allocated CPU.

We can inspect the cgroup to confirm that CRI-O put it in the place we
specified and automatically configured the CPU quota:

root@host01:/opt# cd /sys/fs/cgroup/cpu/pod.slice
root@host01:...pod.slice# cat crio-$CCL_ID.scope/cpu.cfs_quota_us
10000

CRI-O created a new cgroup parent pod.slice for our container, created a
cgroup within it specific to the container, and configured its CPU quota
without us having to lift a finger.

We don’t need this container any longer, so let’s remove it:

root@host01:/sys/fs/cgroupcpu/pod.slice# cd
root@host01:~# crictl stop $CCL_ID
...
root@host01:~# crictl rm $CCL_ID
...
root@host01:~# crictl stopp $PCL_ID
Stopped sandbox ...
root@host01:~# crictl rmp $PCL_ID
Removed sandbox ...

With these commands we stop and then delete first the container, then the
Pod.

Memory Limits
Memory is another important resource for a process. If a system doesn’t have
sufficient memory to meet a request, the allocation of memory will fail. This
usually causes the process to behave badly or to fail entirely. Of course, most

Linux systems use swap space to write memory contents to disk temporarily,
which allows the system memory to appear larger than it is but also reduces
system performance. It’s a big enough concern that the Kubernetes team
discourages having swap enabled in a cluster.

Also, even if we could use swap, we don’t want one process grabbing all
the resident memory and making other processes very slow. As a result, we
need to limit the memory usage of our processes so that they cooperate with
one another. We also need to have a clear maximum for memory usage so
that Kubernetes can reliably ensure that a host has enough available memory
before scheduling a new container onto a host.

Linux systems, like other variants of Unix, have traditionally had to deal
with multiple users who are sharing scarce resources. For this reason, the
kernel supports limits on system resources, including CPU, memory, number
of child processes, and number of open files. We can set these limits from the
command line using the ulimit command. For example, one type of limit is a
limit on “virtual memory.” This includes not only the amount of RAM a
process has in resident memory but also any swap space it is using. Here’s an
example of a ulimit command limiting virtual memory:

root@host01:~# ulimit -v 262144

The -v switch specifies a limit on virtual memory. The parameter is in
bytes, so 262144 places a virtual memory limit of 256MiB on each additional
process we start from this shell session. Setting a virtual memory limit is a
total limit; it allows us to ensure that a process can’t use swap to get around
the limit. We can verify the limit was applied by pulling some data into
memory:

root@host01:~# cat /dev/zero | head -c 500m | tail
tail: memory exhausted

This command reads from /dev/zero and tries to keep the first 500MiB of
zeros it finds in memory. However, at some point, when the tail command
tries to allocate more space to hold the zeros it is getting from head, it fails
because of the limit.

Thus, Unix limits give us the ability to control memory usage for our
processes, but they won’t provide everything we need for containers, for a
couple of reasons. First, Unix limits can be applied only to individual

processes or to an entire user. Neither of those provide what we need, as a
container is really a group of processes. A container’s initial process might
create many child processes, and all processes in a container need to live
within the same limit. At the same time, applying limits to an entire user
doesn’t really help us in a container orchestration environment like
Kubernetes, because from the perspective of the operating system, all of the
containers belong to the same user. Second, when it comes to CPU limits, the
only thing that regular Unix limits can do is limit the maximum CPU time
our process gets before it is terminated. That isn’t the kind of limit we need
for sharing the CPU between long-running processes.

Instead of using traditional Unix limits, we’ll use cgroups again, this time
to limit the memory available to a process. We’ll use the same stress container
image, this time with a child process that tries to allocate lots of memory.

If we were to try to apply a memory limit to this stress container after
starting it, we would find that the kernel won’t let us, because it will have
already grabbed too much memory. So instead we’ll apply it immediately in
the YAML configuration. As before, we need a Pod:
po-mlim.yaml

metadata:
 name: stress2
 namespace: crio
linux:
 cgroup_parent: pod.slice
 security_context:
 namespace_options:
 network: 2

This is identical to the Pod we used for CPU limit, but the name is
different to avoid a collision. As we did earlier, we are asking CRI-O to put
the cgroup into pod.slice so that we can find it easily.

We also need a container definition:
co-mlim.yaml

 metadata:
 name: stress2
 image:
 image: docker.io/bookofkubernetes/stress:stable

 args:
 - "--vm"
 - "1"
 - "--vm-bytes"
➊ - "512M"
 - "-v"
 linux:
 resources:
 ➋ memory_limit_in_bytes: 268435456
 cpu_period: 100000
 ➌ cpu_quota: 10000

The new resource limit is memory_limit_in_bytes, which we set to 256MiB ➋.
We keep the CPU quota in there ➌ because continuously trying to allocate
memory is going to use a lot of CPU. Finally, in the args section, we tell stress
to try to allocate 512MB of memory ➊.

We can run this using similar crictl commands to what we’ve previously
used:

root@host01:~# cd /opt
root@host01:/opt# PML_ID=$(crictl runp po-mlim.yaml)
root@host01:/opt# CML_ID=$(crictl create $PML_ID co-mlim.yaml po-mlim.yaml)
root@host01:/opt# crictl start $CML_ID
...

If we tell crictl to list containers, everything seems okay:

root@host01:/opt# crictl ps
CONTAINER IMAGE ... STATE ...
31025f098a6c9 docker.io/bookofkubernetes/stress:stable ... Running ...

This reports that the container is in a Running state. However, behind the
scenes, stress is struggling to allocate memory. We can see this if we print out
the log messages coming from the stress container:

root@host01:/opt# crictl logs $CML_ID
...
stress-ng: info: [6] dispatching hogs: 1 vm
...
stress-ng: debug: [11] stress-ng-vm: started [11] (instance 0)
stress-ng: debug: [11] stress-ng-vm using method 'all'
stress-ng: debug: [11] stress-ng-vm: child died: signal 9 'SIGKILL' (instance 0)
stress-ng: debug: [11] stress-ng-vm: assuming killed by OOM killer, restarting again...
stress-ng: debug: [11] stress-ng-vm: child died: signal 9 'SIGKILL' (instance 0)
stress-ng: debug: [11] stress-ng-vm: assuming killed by OOM killer, restarting again...

Stress is reporting that its memory allocation process is being
continuously killed by the “out of memory.”

And we can see the kernel reporting that the oom_reaper is indeed the reason
that the processes are being killed:

root@host01:/opt# dmesg | grep -i oom_reaper | tail -n 1
[696.651056] oom_reaper: reaped process 8756 (stress-ng-vm)...

The OOM killer is the same feature Linux uses when the whole system is
low on memory and it needs to kill one or more processes to protect the
system. In this case, it is sending SIGKILL to the process to keep the cgroup
under its memory limit. SIGKILL is a message to the process that it should
immediately terminate without any cleanup.

WHY USE THE OOM KILLER?
When we used regular limits to control memory, an attempt to exceed
our limits caused the memory allocation to fail, but the kernel didn’t use
the OOM killer to kill our process. Why the difference? The answer is
that this is the nature of containers. As we look at architecting reliable
systems using containerized microservices, we’ll see that a container is
supposed to be quick to start and quick to scale. This means that each
individual container in our application is intentionally just not very
important. This further means that the idea that one of our containers
could be killed unexpectedly is not really a concern. Add to that the fact
that not checking for memory allocation errors is one of the most
common bugs, so it’s considered safer simply to kill the process.

That said, it’s worth noting that it is possible to turn off the OOM killer
for a cgroup. However, rather than having the memory allocation fail,
the effect is to just pause the process until other processes in the group
free up memory. That’s actually worse, as now we have a process that
isn’t officially killed but isn’t doing anything useful either.

Before we move on, let’s put this continuously failing stress container out
of its misery:

root@host01:/opt# crictl stop $CML_ID
...
root@host01:/opt# crictl rm $CML_ID
...
root@host01:/opt# crictl stopp $PML_ID
Stopped sandbox ...
root@host01:/opt# crictl rmp $PML_ID
Removed sandbox ...
root@host01:/opt# cd

Stopping and removing the container and Pod prevents the stress container
from wasting CPU by continually trying to restart the memory allocation
process.

Network Bandwidth Limits
In this chapter, we’ve moved from resources that are easy to limit to
resources that are more difficult to limit. We started with CPU, where the
kernel is wholly in charge of which process gets CPU time and how much
time it gets before being preempted. Then we looked at memory, where the
kernel doesn’t have the ability to force a process to give up memory, but at
least the kernel can control whether a memory allocation is successful, or it
can kill a process that requests too much memory.

Now we’re moving on to network bandwidth, for which control is even
more difficult to exert for two important reasons. First, network devices don’t
really “sum up” like CPU or memory, so we’ll need to limit usage at the level
of each individual network device. Second, our system can’t really control
what is sent to it across the network; we can only completely control egress
bandwidth, the traffic that is sent on a given network device.

PROPER NETWORK MANAGEMENT
To have a completely reliable cluster, merely controlling egress traffic
is clearly insufficient. A process that downloads a large file is going to
saturate the available bandwidth just as much as one that uploads lots of
data. However, we really can’t control what comes into our host via a
given network interface, at least not at the host level. If we really want

to manage network bandwidth, we need to handle that kind of thing at a
switch or a router. For example, it is very common to divide up the
physical network into virtual local area networks (VLANs). One VLAN
might be an administration network used for auditing, logging, and for
administrators to ensure that they can log in. We might also reserve
another VLAN for important container traffic, or use traffic shaping to
ensure that important packets get through. As long as we perform this
kind of configuration at the switch, we can typically allow the
remaining bandwidth to be “best effort.”

Although Linux does provide some cgroup capability for network
interfaces, these would only help us prioritize and classify network traffic.
For this reason, rather than using cgroups to control egress traffic, we’re
going to directly configure the Linux kernel’s traffic control capabilities.
We’ll test network performance using iperf3, apply a limit to outgoing traffic,
and then test again. In this chapter’s examples, host02 with IP address
192.168.61.12 was set up automatically with an iperf3 server running so that we
can send data to it from host01.

Let’s begin by seeing the egress bandwidth we can get on an unlimited
interface:

root@host01:~# iperf3 -c 192.168.61.12
Connecting to host 192.168.61.12, port 5201
[5] local 192.168.61.11 port 49044 connected to 192.168.61.12 port 5201
...
[ID] Interval Transfer Bitrate Retr
[5] 0.00-10.00 sec 2.18 GBytes 1.87 Gbits/sec 13184 sender
[5] 0.00-10.00 sec 2.18 GBytes 1.87 Gbits/sec receiver
...

This example shows gigabit network speeds. Depending on how you’re
running the examples, you might see lower or higher figures. Now that we
have a baseline, we can use tc to set a quota going out. You’ll want to choose
a quota that makes sense given your bandwidth; most likely enforcing a
100Mb cap will work:

root@host01:~# IFACE=$(ip -o addr | grep 192.168.61.11 | awk '{print $2}')
root@host01:~# tc qdisc add dev $IFACE root tbf rate 100mbit \
 burst 256kbit latency 400ms

The name of the network interface may be different on different systems,
so we use ip addr to identify which interface we want to control. Then, we use
tc to actually apply the limit. The token tbf in the command stands for token
bucket filter. With a token bucket filter, every packet consumes tokens. The
bucket refills with tokens over time, but if at any point the bucket is empty,
packets are queued until tokens are available. By controlling the size of the
bucket and the rate at which it refills, it is very easy for the kernel to place a
bandwidth limit.

Now that we’ve applied a limit to this interface, let’s see it in action by
running the exact same iperf3 command again:

root@host01:~# iperf3 -c 192.168.61.12
Connecting to host 192.168.61.12, port 5201
[5] local 192.168.61.11 port 49048 connected to 192.168.61.12 port 5201
...
[ID] Interval Transfer Bitrate Retr
[5] 0.00-10.00 sec 114 MBytes 95.7 Mbits/sec 0 sender
[5] 0.00-10.01 sec 113 MBytes 94.5 Mbits/sec receiver
...

As expected, we are now limited to 100Mbps on this interface.
Of course, in this case, we limited the bandwidth available on this network

interface for everyone on the system. To use this ability properly to control
bandwidth usage, we need to target the limits more precisely. However, in
order to do that, we need to isolate a process to its own set of network
interfaces, which is the subject of the next chapter.

Final Thoughts
Ensuring that a process doesn’t cause problems for other processes on the
system includes making sure that it fairly shares system resources such as
CPU, memory, and network bandwidth. In this chapter, we looked at how
Linux provides control groups (cgroups) that manage CPU and memory
limits and traffic control capabilities that manage network interfaces. As we
create a Kubernetes cluster and deploy containers to it, we’ll see how
Kubernetes uses these underlying Linux kernel features to ensure that
containers are scheduled on hosts with sufficient resources and that
containers are well behaved on those hosts.

We’ve now moved through some of the most important elements of
process isolation provided by a container runtime, but there are two types of
isolation that we haven’t explored yet: network isolation and storage
isolation. In the next chapter, we’ll look at how Linux network namespaces
are used to make each container appear to have its own set of network
interfaces, complete with separate IP addresses and ports. We’ll also look at
how traffic from those separate container interfaces flows through our system
so that containers can talk to one another and to the rest of the network.

4
NETWORK NAMESPACES

Understanding container networking is the biggest challenge in building
modern applications based on containerized microservices. First, networking
is complicated even without introducing containers. Multiple levels of
abstraction are involved just in sending a simple ping from one physical server
to another. Second, containers introduce additional complexity because each
has its own set of virtual network devices to make it look like a separate
machine. Not only that, but a container orchestration framework like
Kubernetes then adds another layer of complexity by adding an “overlay”
network through which containers can communicate even when they are
running on different hosts.

In this chapter, we will look in detail at how container networking
operates. We will look at a container’s virtual network devices, including
how each network device is assigned a separate IP address that can reach the
host. We’ll see how containers on the same host are connected to one another
through a bridge device and how container devices are configured to route
traffic. Finally, we’ll examine how address translation is used to enable
containers to connect to other hosts without exposing container networking
internals on the host’s network.

Network Isolation

In Chapter 2, we discussed how isolation is important to system reliability
because processes generally can’t affect something they cannot see. This is
one important reason for network isolation in containers. Another reason is
ease of configuration. To run a process that acts as a server, such as a web
server, we need to choose one or more network interfaces on which that
server will listen, and we need to choose a port number on which it will
listen. We can’t have two processes listening on the same port on the same
interface.

As a result, it’s common for a process that acts as a server to provide a
way to configure which port it should use to listen for connections. However,
that still requires us to know what other servers are out there and what ports
they are using so that we can ensure there are no conflicts. That would be
impossible with a container orchestration framework like Kubernetes because
new processes can show up at any time, from different users, with a need to
listen on any port number.

The way to get around this is to provide separate virtual network
interfaces for each container. That way, a process in a container can choose
any port it wants—it will be listening on a different network interface from a
process in a different container. Let’s see a quick example.

NOTE
The example repository for this book is at https://github.com/book-of-
kubernetes/examples. See “Running Examples” on page xx for details on
getting set up.

We’ll run two instances of an NGINX web server; each instance will
listen on port 80. As before, we’ll use CRI-O and crictl, but we’ll use a script
to cut down on the typing:

root@host01:~# cd /opt
root@host01:/opt# source nginx.sh
...

The source before nginx.sh is important; it ensures that the script is run in a
way that makes the environment variables it sets available in our shell for
future commands. Inside nginx.sh are the usual crictl runp, crictl create, and crictl
start commands we’ve used in previous chapters. The YAML files are also

https://github.com/book-of-kubernetes/examples

very similar to examples we’ve seen before; the only difference is that we use
a container image that has NGINX installed.

Let’s verify that we have two NGINX servers running:

root@host01:/opt# crictl ps
CONTAINER IMAGE ... NAME ...
ae341010886ae .../nginx:latest ... nginx2 ...
6a95800b16f15 .../nginx:latest ... nginx1 ...

We can also verify that both NGINX servers are listening on port 80, the
standard port for web servers:

root@host01:/opt# crictl exec $N1C_ID cat /proc/net/tcp
 sl local_address ...
 0: 00000000:0050 ...
root@host01:/opt# crictl exec $N2C_ID cat /proc/net/tcp
 sl local_address ...
 0: 00000000:0050 ...

We look at the open port by printing /proc/net/tcp because we need to run
this command inside the NGINX container, where we don’t have standard
Linux commands like netstat or ss. As we saw in Chapter 2, in a container we
have a separate mnt namespace providing a separate filesystem for each
container, so only the executables available in that separate filesystem can be
run in that namespace.

The port shown in both cases is 0050 in hexadecimal, which is port 80 in
decimal. If these two processes were running together on the same system
without network isolation, they wouldn’t both be able to listen on port 80, but
in this case, the two NGINX instances have separate network interfaces. To
explore this further, let’s start up a new BusyBox container:

root@host01:/opt# source busybox.sh
...

BusyBox is now running in addition to our two NGINX containers:

root@host01:/opt# crictl ps
CONTAINER IMAGE ... NAME ...
189dd26766d26 .../busybox:latest ... busybox ...
ae341010886ae .../nginx:latest ... nginx2 ...
6a95800b16f15 .../nginx:latest ... nginx1 ...

Let’s start a shell inside the container:

root@host01:/opt# crictl exec -ti $B1C_ID /bin/sh
/ #

Listing 4-1 shows the container’s network devices and addresses.

/ # ip addr
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue ...
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
 inet 127.0.0.1/8 scope host lo
 valid_lft forever preferred_lft forever
 inet6 ::1/128 scope host
 valid_lft forever preferred_lft forever
3: eth0@if7: <BROADCAST,MULTICAST,UP,LOWER_UP,M-DOWN> mtu 1500 qdisc noqueue
 link/ether 9a:7c:73:2f:f7:1a brd ff:ff:ff:ff:ff:ff
 inet 10.85.0.4/16 brd 10.85.255.255 scope global eth0
 valid_lft forever preferred_lft forever
 inet6 fe80::987c:73ff:fe2f:f71a/64 scope link
 valid_lft forever preferred_lft forever

Listing 4-1: BusyBox network

Ignoring the standard loopback device, we see a network device with
10.85.0.4 for an IP address. This does not correspond at all with the IP address
of the host, which is 192.168.61.11; it is on a different network entirely. Because
our container is on a separate network, we might not expect to be able to ping
the underlying host system from inside the container, but it works, as Listing
4-2 demonstrates.

/ # ping -c 1 192.168.61.11
PING 192.168.61.11 (192.168.61.11): 56 data bytes
64 bytes from 192.168.61.11: seq=0 ttl=64 time=7.471 ms

--- 192.168.61.11 ping statistics ---
1 packets transmitted, 1 packets received, 0% packet loss
round-trip min/avg/max = 7.471/7.471/7.471 ms

Listing 4-2: BusyBox ping test

For traffic to get from our container to the host network, there must be an
entry in the routing table to make that happen. As Listing 4-3 illustrates, we
can verify this by using the ip command.

/ # ip route

default via 10.85.0.1 dev eth0
10.85.0.0/16 dev eth0 scope link src 10.85.0.4

Listing 4-3: BusyBox routes

As expected, there is a default route. When we sent the ping, our BusyBox
container reached out to 10.85.0.1, which then had the ability to send the ping
onward until it reached 192.168.61.11.

We’ll leave all three containers running to explore them further, but let’s
exit our BusyBox shell to get back to the host:

/ # exit

The view of the network from inside the container shows why our two
NGINX servers are both able to listen on port 80. As mentioned earlier, only
one process can listen on a port for a particular interface, but of course, if
each NGINX server has a separate network interface, there is no conflict.

Network Namespaces
CRI-O is using Linux network namespaces to create this isolation. We
explored network namespaces briefly in Chapter 2; in this chapter, we’ll look
at them in more detail.

First, let’s use the lsns command to list the network namespaces that CRI-
O has created for our containers:

root@host01:/opt# lsns -t net
 NS TYPE NPROCS PID USER NETNSID NSFS COMMAND
4026531992 net 114 1 root unassigned /sbin/init
4026532196 net 4 5801 root 0 /run/netns/ab8be6e6... /pause
4026532272 net 4 5937 root 1 /run/netns/8ffe0394... /pause
4026532334 net 2 6122 root 2 /run/netns/686d71d9... /pause

In addition to the root network namespace that is used for all the processes
that aren’t in a container, we see three network namespaces, one for each Pod
we’ve created.

When we use CRI-O with crictl, the network namespace actually belongs to
the Pod. The pause process that is listed here exists so that the namespaces can
continue to exist even as containers come and go inside the Pod.

In the previous example, there are four network namespaces. The first one
is the root namespace that was created when our host booted. The other three
were created for each of the containers we have started so far: two NGINX
containers and one BusyBox container.

Inspecting Network Namespaces
To learn about how network namespaces work and manipulate them, we’ll
use the ip netns command to list network namespaces:

root@host01:/opt# ip netns list
7c185da0-04e2-4321-b2eb-da18ceb5fcf6 (id: 2)
d26ca6c6-d524-4ae2-b9b7-5489c3db92ce (id: 1)
38bbb724-3420-46f0-bb50-9a150a9f0889 (id: 0)

This command looks in a different configuration location to find network
namespaces, so only the three container namespaces are listed.

We want to capture the network namespace for our BusyBox container.
It’s one of the three listed, and we can guess that it is the one labeled (id: 2)
because we created it last, but we can also use crictl and jq to extract the
information we need:

root@host01:/opt# NETNS_PATH=$(crictl inspectp $B1P_ID |
 jq -r '.info.runtimeSpec.linux.namespaces[]|select(.type=="network").path')
root@host01:/opt# echo $NETNS_PATH
/var/run/netns/7c185da0-04e2-4321-b2eb-da18ceb5fcf6
root@host01:/opt# NETNS=$(basename $NETNS_PATH)
root@host01:/opt# echo $NETNS
7c185da0-04e2-4321-b2eb-da18ceb5fcf6

If you run crictl inspectp $B1P_ID by itself, you’ll see a wealth of information
about the BusyBox Pod. Out of all that information, we want only the
information about the network namespace, so we use jq to extract that
information in three steps. First, it reaches down into the JSON data to pull
out all of the namespaces associated with this Pod. It then selects only the
namespace that has a type field of network. Finally, it extracts the path field for
that namespace and stores it in the environment variable NETNS_PATH.

The value that crictl returns is the full path to the network namespace under
/var/run. For our upcoming commands, we want only the value of the
namespace, so we use basename to strip off the path. Also, because this
information will be a lot more usable if we assign it to an environment

variable, we do that, and then we use echo to print the value so that we can
confirm it all worked.

Of course, for interactive debugging, you can often just scroll through the
entire contents of crictl inspectp (for Pods) and crictl inspect (for containers) and
pick out the values you want. But this approach of extracting data with jq is
very useful in scripting or in reducing the amount of output to scan through
manually.

Now that we’ve extracted the network namespace for BusyBox from crictl,
let’s see what processes are assigned to that namespace:

root@host01:/opt# ps --pid $(ip netns pids $NETNS)
PID TTY STAT TIME COMMAND
5800 ? Ss 0:00 /pause
5839 ? Ss 0:00 /bin/sleep 36000

If we just ran ip netns pids $NETNS, we would get a list of the process IDs
(PIDs), but no extra information. We take that output and send it to ps --pid,
which makes it possible for us to see the name of the commands. As
expected, we see a pause process and the sleep process that we specified when
we ran the BusyBox container.

In the previous section, we used crictl exec to run a shell inside the
container, which enabled us to see what network interfaces were available in
that network namespace. Now that we know the ID of the network
namespace, we can use ip netns exec to run commands individually from within
a network namespace. Running ip netns exec is very powerful in that it is not
limited to just networking commands, but could be any process such as a web
server. However, note that this is not the same as fully running inside the
container, because we are not entering any of the container’s other
namespaces (for example, the pid namespace used for process isolation).

Next, let’s try the ip addr command from within the BusyBox network
namespace:

root@host01:/opt# ip netns exec $NETNS ip addr
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue ...
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
 inet 127.0.0.1/8 scope host lo
 valid_lft forever preferred_lft forever
 inet6 ::1/128 scope host
 valid_lft forever preferred_lft forever
3: eth0@if7: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue ...

 link/ether 9a:7c:73:2f:f7:1a brd ff:ff:ff:ff:ff:ff link-netnsid 0
 inet 10.85.0.4/16 brd 10.85.255.255 scope global eth0
 valid_lft forever preferred_lft forever
 inet6 fe80::987c:73ff:fe2f:f71a/64 scope link
 valid_lft forever preferred_lft forever

The list of network devices and IP addresses that we see here matches
what we saw when we ran commands inside our BusyBox container in
Listing 4-1. CRI-O is creating these network devices and placing them in the
network namespace. (We will see how CRI-O was configured to perform
container networking when we look at Kubernetes networking in Chapter 8.)
For now, let’s look at how we can create our own devices and namespaces for
network isolation. This will also show us how to debug container networking
when something isn’t working correctly.

Creating Network Namespaces
We can create a network namespace with a single command:

root@host01:/opt# ip netns add myns

This new namespace immediately shows up in the list:

root@host01:/opt# ip netns list
myns
7c185da0-04e2-4321-b2eb-da18ceb5fcf6 (id: 2)
d26ca6c6-d524-4ae2-b9b7-5489c3db92ce (id: 1)
38bbb724-3420-46f0-bb50-9a150a9f0889 (id: 0)

This namespace isn’t very useful yet; it has a loopback interface but
nothing else:

root@host01:/opt# ip netns exec myns ip addr
1: lo: <LOOPBACK> mtu 65536 qdisc noop state DOWN group default qlen 1000
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

In addition, even the loopback interface is down, so it couldn’t be used.
Let’s quickly fix that:

root@host01:/opt# ip netns exec myns ip link set dev lo up
root@host01:/opt# ip netns exec myns ip addr
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue ...
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

 inet 127.0.0.1/8 scope host lo
 valid_lft forever preferred_lft forever
 inet6 ::1/128 scope host
 valid_lft forever preferred_lft forever

The loopback interface is now up, and it has the typical IP address of
127.0.0.1. A basic loopback ping will now work in this network namespace:

root@host01:/opt# ip netns exec myns ping -c 1 127.0.0.1
PING 127.0.0.1 (127.0.0.1) 56(84) bytes of data.
64 bytes from 127.0.0.1: icmp_seq=1 ttl=64 time=0.035 ms

--- 127.0.0.1 ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 0.035/0.035/0.035/0.000 ms

The ability to ping the loopback network interface is a useful first test for
any networking stack, as it shows the ability to send and receive packets. So,
we now have a basic working network stack in our new network namespace,
but it still isn’t terribly useful because a loopback interface by itself can’t talk
to anything else on our system. We need to add another network device in
this network namespace in order to establish connectivity to the host and the
rest of the network.

To do this, we’ll create a virtual Ethernet (veth) device. You can think of
a veth as a virtual network cable. Like a network cable, it has two ends, and
whatever goes in one end comes out the other end. For this reason, the term
veth pair is often used.

We start with a command that creates the veth pair:

root@host01:/opt# ip link add myveth-host type veth \
 peer myveth-myns netns myns

This command does three things:

1. Creates a veth device called myveth-host

2. Creates a veth device called myveth-myns

3. Places the device myveth-myns in the network namespace myns

The host side of the veth pair appears in the regular list of network devices
on the host:

root@host01:/opt# ip addr
...
8: myveth-host@if2: <BROADCAST,MULTICAST> mtu 1500 ... state DOWN ...
 link/ether fe:7a:5d:86:00:d9 brd ff:ff:ff:ff:ff:ff link-netns myns

This output shows myveth-host and also that it is connected to a device in the
network namespace myns.

If you run this command for yourself and look at the complete list of host
network devices, you will notice additional veth devices connected to each of
the container network namespaces. These were created by CRI-O when we
deployed NGINX and BusyBox.

Similarly, we can see that our myns network namespace has a new network
interface:

root@host01:/opt# ip netns exec myns ip addr
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue ...
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
 inet 127.0.0.1/8 scope host lo
 valid_lft forever preferred_lft forever
 inet6 ::1/128 scope host
 valid_lft forever preferred_lft forever
2: myveth-myns@if8: <BROADCAST,MULTICAST> mtu 1500 ... state DOWN ...
 link/ether 26:0f:64:a8:37:1f brd ff:ff:ff:ff:ff:ff link-netnsid 0

As before, this interface is currently down. We need to bring up both sides
of the veth pair before we can start communicating. We also need to assign
an IP address to the myveth-myns side to enable it to communicate:

root@host01:/opt# ip netns exec myns ip addr add 10.85.0.254/16 \
 dev myveth-myns
root@host01:/opt# ip netns exec myns ip link set dev myveth-myns up
root@host01:/opt# ip link set dev myveth-host up

A quick check confirms that we’ve successfully configured an IP address
and brought up the network:

root@host01:/opt# ip netns exec myns ip addr
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue ...
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
 inet 127.0.0.1/8 scope host lo
 valid_lft forever preferred_lft forever
 inet6 ::1/128 scope host
 valid_lft forever preferred_lft forever
2: myveth-myns@if8: <BROADCAST,MULTICAST,UP,LOWER_UP> ... state UP ...

 link/ether 26:0f:64:a8:37:1f brd ff:ff:ff:ff:ff:ff link-netnsid 0
 inet 10.85.0.254/16 scope global myveth-myns
 valid_lft forever preferred_lft forever
 inet6 fe80::240f:64ff:fea8:371f/64 scope link
 valid_lft forever preferred_lft forever

In addition to the loopback interface, we now see an additional interface
with the IP address 10.85.0.254. What happens if we try to ping this new IP
address? It turns out we can indeed ping it, but only from within the network
namespace:

 root@host01:/opt# ip netns exec myns ping -c 1 10.85.0.254
 PING 10.85.0.254 (10.85.0.254) 56(84) bytes of data.
 64 bytes from 10.85.0.254: icmp_seq=1 ttl=64 time=0.030 ms

 --- 10.85.0.254 ping statistics ---
➊ 1 packets transmitted, 1 received, 0% packet loss, time 0ms
 rtt min/avg/max/mdev = 0.030/0.030/0.030/0.000 ms
 root@host01:/opt# ping -c 1 10.85.0.254
 PING 10.85.0.254 (10.85.0.254) 56(84) bytes of data.
 From 10.85.0.1 icmp_seq=1 Destination Host Unreachable

 --- 10.85.0.254 ping statistics ---
➋ 1 packets transmitted, 0 received, +1 errors, 100% packet loss, time 0ms

The first ping command, run using ip netns exec so that it runs within the
network namespace, shows a successful response ➊. However, the second
ping command, run without ip netns exec, shows that no packets were received
➋. The problem is that we have successfully created a network interface
inside our network namespace, and we have the other end of the veth pair on
our host network, but we haven’t connected up a corresponding network
device on the host, so there’s no host network interface that can talk to the
interface in the network namespace.

At the same time, when we ran a ping test from our BusyBox container in
Listing 4-2, we were able to ping the host with no trouble. Clearly, there must
be more configuration that CRI-O did for us when it created our containers.
Let’s explore that in the next section.

Bridge Interfaces
The host side of the veth pair currently isn’t connected to anything, so it isn’t

surprising that our network namespace can’t talk to the outside world yet. To
fix that, let’s look at one of the veth pairs that CRI-O created:

root@host01:/opt# ip addr
...
7: veth062abfa6@if3: <BROADCAST,MULTICAST,UP,LOWER_UP> ... master cni0 ...
 link/ether fe:6b:21:9b:d0:d2 brd ff:ff:ff:ff:ff:ff link-netns ...
 inet6 fe80::fc6b:21ff:fe9b:d0d2/64 scope link
 valid_lft forever preferred_lft forever
...

Unlike the interface we created, this interface specifies master cni0, which
shows that it belongs to a network bridge. A network bridge exists to connect
multiple interfaces together. You can think of it as an Ethernet switch
because it routes traffic from one network interface to another based on the
media access control (MAC) address of the interfaces.

We can see the bridge cni0 in the list of network devices on the host:

root@host01:/opt# ip addr
...
4: cni0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue ...
 link/ether 8e:0c:1c:7d:94:75 brd ff:ff:ff:ff:ff:ff
 inet 10.85.0.1/16 brd 10.85.255.255 scope global cni0
 valid_lft forever preferred_lft forever
 inet6 fe80::8c0c:1cff:fe7d:9475/64 scope link
 valid_lft forever preferred_lft forever
...

The bridge is a little smarter than a typical Ethernet switch in that it
provides some firewall and routing capabilities. It also has an IP address of
10.85.0.1. This IP address is the same as we saw with the default route for our
BusyBox container in Listing 4-3, so we’ve started to solve the mystery of
how our BusyBox container is able to talk to hosts outside of its own
network.

Adding Interfaces to a Bridge
To inspect the bridge and add devices to it, we’ll use the brctl command. Let’s
inspect the bridge first:

root@host01:/opt# brctl show
bridge name bridge id STP enabled interfaces
cni0 8000.8e0c1c7d9475 no veth062abfa6

 veth43ab68cd
 vetha251c619

The bridge cni0 has three interfaces on it, corresponding to the host side of
the veth pair for each of the three containers we have running (two NGINX
and one BusyBox). Let’s take advantage of this existing bridge to set up
network connectivity to the namespace we created:

root@host01:/opt# brctl addif cni0 myveth-host
root@host01:/opt# brctl show
bridge name bridge id STP enabled interfaces
cni0 8000.8e0c1c7d9475 no myveth-host
 veth062abfa6
 veth43ab68cd
 vetha251c619

The host side of our veth pair is now connected to the bridge, which
means that we can now ping into the namespace from the host:

 root@host01:/opt# ping -c 1 10.85.0.254
 PING 10.85.0.254 (10.85.0.254) 56(84) bytes of data.
 64 bytes from 10.85.0.254: icmp_seq=1 ttl=64 time=0.194 ms

 --- 10.85.0.254 ping statistics ---
➊ 1 packets transmitted, 1 received, 0% packet loss, time 0ms
 rtt min/avg/max/mdev = 0.194/0.194/0.194/0.000 ms

The fact that a packet was received ➊ shows that we set up a working
connection. We should be pleased that it worked, but if we want to really
understand this, we can’t be satisfied with saying that we can ping this
interface “from the host.” We need to be more specific as to exactly how
traffic is flowing.

Tracing Traffic
Let’s actually trace this traffic to see what’s happening when we run the ping
command. We will use tcpdump to print out the traffic. First, let’s start a ping
command in the background to create some traffic to trace:

root@host01:/opt# ping 10.85.0.254 >/dev/null 2>&1 &
...

We send the output to /dev/null so that it doesn’t clutter up our session.

Now, let’s use tcpdump to see the traffic:

root@host01:/opt# timeout 1s tcpdump -i any -n icmp
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on any, link-type LINUX_SLL (Linux cooked v1), ...
17:37:33.204863 IP 10.85.0.1 > 10.85.0.254: ICMP echo request, ...
17:37:33.204894 IP 10.85.0.1 > 10.85.0.254: ICMP echo request, ...
17:37:33.204936 IP 10.85.0.254 > 10.85.0.1: ICMP echo reply, ...
17:37:33.204936 IP 10.85.0.254 > 10.85.0.1: ICMP echo reply, ...

4 packets captured
4 packets received by filter
0 packets dropped by kernel
root@host01:/opt# killall ping

We use timeout to prevent tcpdump from running indefinitely, and we also use
killall afterward to stop the ping command and discontinue it running in the
background.

The output shows that the ping is originating from the bridge interface,
which has IP address 10.85.0.1. This is because of the host’s routing table:

root@host01:/opt# ip route
...
10.85.0.0/16 dev cni0 proto kernel scope link src 10.85.0.1
192.168.61.0/24 dev enp0s8 proto kernel scope link src 192.168.61.11

When CRI-O created the bridge and configured its IP address, it also set
up a route so that all traffic destined for the 10.85.0.0/16 network (that is, all
traffic from 10.85.0.0 through 10.85.255.255) would use cni0. This is enough
information for the ping command to know where to send its packet, and the
bridge handles the rest.

The fact that the ping is coming from the bridge interface of 10.85.0.1 rather
than the host interface of 192.168.61.11 actually makes a big difference, as we
can see if we try to run the ping the other way around. Let’s try to ping from
within the namespace to the host network:

root@host01:/opt# ip netns exec myns ping -c 1 192.168.61.11
ping: connect: Network is unreachable

The issue here is that the interface in our network namespace doesn’t
know how to reach the host network. The bridge is available and willing to
route traffic onto the host network, but we haven’t configured the necessary

route to use it. Let’s do that now:

root@host01:/opt# ip netns exec myns ip route add default via 10.85.0.1

And now the ping works:

root@host01:/opt# ip netns exec myns ping -c 1 192.168.61.11
PING 192.168.61.11 (192.168.61.11) 56(84) bytes of data.
64 bytes from 192.168.61.11: icmp_seq=1 ttl=64 time=0.097 ms

--- 192.168.61.11 ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 0.097/0.097/0.097/0.000 ms

This illustrates an important rule to remember when debugging network
problems: it’s very easy to jump to conclusions about what network traffic is
really being sent and received. There is often no substitute for using tracing
to see what the traffic really looks like.

IP ADDRESSES ON THE HOST
This approach is not the only one that results in connectivity from the
host into the network namespace. We also could have assigned an IP
address directly to the host side of the veth pair. However, even though
that would have enabled communication from the host into our network
namespace, it wouldn’t provide a way for multiple network namespaces
to communicate with one another. Using a bridge interface, as CRI-O
does, enables the interconnection of all of the containers on a host,
making them all appear to be on the same network.

This also explains why we didn’t assign an IP address to the host side of
the veth pair. When working with bridges, only the bridge interface gets
an IP address. Interfaces added to the bridge do not.

With that last change, it would seem like we’ve matched the network
configuration of our containers, but we are still missing the ability to
communicate with the broader network outside of host01. We can demonstrate
this by trying to ping from our network namespace to host02, which is on the

same internal network as host01 and has the IP address 192.168.61.12. If we try a
ping from our BusyBox container, it works:

root@host01:/opt# crictl exec $B1C_ID ping -c 1 192.168.61.12
PING 192.168.61.12 (192.168.61.12): 56 data bytes
64 bytes from 192.168.61.12: seq=0 ttl=63 time=0.816 ms

--- 192.168.61.12 ping statistics ---
1 packets transmitted, 1 packets received, 0% packet loss
round-trip min/avg/max = 0.816/0.816/0.816 ms

The ping output reports that a packet was received. However, if we try the
same command using the network namespace we created, it doesn’t work:

root@host01:/opt# ip netns exec myns ping -c 1 192.168.61.12
PING 192.168.61.12 (192.168.61.12) 56(84) bytes of data.

--- 192.168.61.12 ping statistics ---
1 packets transmitted, 0 received, 100% packet loss, time 0ms

This command reports that no packets were received.
Really, we ought to be surprised that the ping from our BusyBox container

worked. After all, host02 doesn’t know anything about the BusyBox container,
or the cni0 bridge interface, or the 10.85.0.0/16 network that the containers are in.
How is it possible for host02 to exchange a ping with our BusyBox container?
To understand that, we need to look at network masquerade.

Masquerade
Masquerade, also known as Network Address Translation (NAT), is used
every day in networking. For example, most home connections to the internet
are provided with only a single IP address that is addressable from the
internet, but many devices within the home network need an internet
connection. It is the job of a router to make it appear that all traffic from that
network is originating from a single IP address. It does this by rewriting the
source IP address of outgoing traffic while tracking all outgoing connections
so that it can rewrite the destination IP address of any replies.

NOTE

The kind of NAT that we are talking about here is technically known as
Source NAT (SNAT). Don’t get hung up on the name, though; for it to
work correctly, any reply packets must have their destination rewritten.
The term Source in this case just means that the source address is what’s
rewritten when a new connection is initiated.

Masquerading sounds like just what we need to connect our containers
running in the 10.85.0.0/16 network to the host network, 192.168.61.0/24, and in
fact it is exactly how it worked. When we sent a ping from our BusyBox
container, the source IP address was rewritten such that the ping appeared to
come from the host01 IP 192.168.61.11. When host02 responded, it sent its reply to
192.168.61.11, but the destination was rewritten so that it was actually sent to the
BusyBox container.

Let’s trace the ping traffic all the way through to demonstrate:

root@host01:/opt# crictl exec $B1C_ID ping 192.168.61.12 >/dev/null 2>&1 &
[1] 6335
root@host01:/opt# timeout 1s tcpdump -i any -n icmp
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on any, link-type LINUX_SLL (Linux cooked v1)...
18:53:44.310789 IP 10.85.0.4 ➊ > 192.168.61.12: ICMP echo request, id 12, seq 17...
18:53:44.310789 IP 10.85.0.4 > 192.168.61.12: ICMP echo request, id 12, seq 17...
18:53:44.310876 IP 192.168.61.11 ➋ > 192.168.61.12: ICMP echo request, id 12, seq 17...
18:53:44.311619 IP 192.168.61.12 > 192.168.61.11: ICMP echo reply, ➌ id 12, seq 17...
18:53:44.311648 IP 192.168.61.12 > 10.85.0.4: ➍ ICMP echo reply, id 12, seq 17...
18:53:44.311656 IP 192.168.61.12 > 10.85.0.4: ICMP echo reply, id 12, seq 17...

6 packets captured
6 packets received by filter
0 packets dropped by kernel
root@host01:/opt# killall ping

When the ping originates from within our BusyBox container, it has a
source IP address of 10.85.0.4 ➊. This address is rewritten, making the ping
appear to be coming from the host IP 192.168.61.11 ➋. Of course, host02 knows
how to respond to a ping coming from that address, so the ping is answered ➌.
At this point, the other half of the masquerade takes effect, and the
destination is rewritten to 10.85.0.4 ➍. The result is that the BusyBox container
is able to send a packet to a separate host and get a reply.

To complete the setup for our network namespace, we need a similar rule
to masquerade traffic coming from 10.85.0.254. We can start by using iptables to

look at the rules that CRI-O created when it configured the containers:

root@host01:/opt# iptables -t nat -n -L
...
Chain POSTROUTING (policy ACCEPT)
target prot opt source destination ...
CNI-f82910b3a7e28baf6aedc0d3 all -- 10.85.0.2 anywhere ...
CNI-7f8aa3d8a4f621b186149f43 all -- 10.85.0.3 anywhere ...
CNI-48ad69d30fe932fda9ea71d2 all -- 10.85.0.4 anywhere ...

Chain CNI-48ad69d30fe932fda9ea71d2 (1 references)
target prot opt source destination
ACCEPT all -- anywhere 10.85.0.0/16 ...
MASQUERADE all -- anywhere !224.0.0.0/4 ...
...

Masquerading starts when the connection is initiated; in this case, when
traffic has a source address in the 10.85.0.0/16 network. For this reason, the
POSTROUTING chain is used, because it sees all outgoing traffic. There is a rule
in the POSTROUTING chain for each container; each rule invokes a CNI chain for
that container.

For brevity, only one of the three CNI chains is shown. The other two are
identical. The CNI chain first does an ACCEPT for all traffic that is local to the
container network, so this traffic won’t be masqueraded. It then sets up
masquerade for all traffic (except 224.0.0.0/4, which is multicast traffic that
cannot be masqueraded because there is no way to properly route replies).

What’s missing from this configuration is a matching setup for traffic
from 10.85.0.254, the IP address we assigned to the interface in our network
namespace. Let’s add that. First, create a new chain in the nat table:

root@host01:/opt# iptables -t nat -N chain-myns

Next, add a rule to accept all traffic for the local network:

root@host01:/opt# iptables -t nat -A chain-myns -d 10.85.0.0/16 -j ACCEPT

Now all remaining traffic (except multicast) should be masqueraded:

root@host01:/opt# iptables -t nat -A chain-myns \
 ! -d 224.0.0.0/4 -j MASQUERADE

And finally, tell iptables to use this chain for any traffic coming from

10.85.0.254:

root@host01:/opt# iptables -t nat -A POSTROUTING -s 10.85.0.254 -j chain-myns

We can verify that we did all that correctly by listing the rules again:

root@host01:/opt# iptables -t nat -n -L
...
Chain POSTROUTING (policy ACCEPT)
target prot opt source destination
chain-myns all -- 10.85.0.254 anywhere
...
Chain chain-myns (1 references)
target prot opt source destination
ACCEPT all -- anywhere 10.85.0.0/16
MASQUERADE all -- anywhere !224.0.0.0/4

It looks like we have the configuration we need, as this configuration
matches the way the virtual network devices were configured for the
BusyBox container. To make sure, let’s try a ping to host02 again:

root@host01:/opt# ip netns exec myns ping -c 1 192.168.61.12
PING 192.168.61.12 (192.168.61.12) 56(84) bytes of data.
64 bytes from 192.168.61.12: icmp_seq=1 ttl=63 time=0.843 ms

--- 192.168.61.12 ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 0.843/0.843/0.843/0.000 ms

Success! We’ve fully replicated the network isolation and connectivity
that CRI-O is providing our containers.

Final Thoughts
Container networking looks deceptively simple when running containers.
Each container is provided with its own set of network devices, avoiding the
need to worry about port conflicts and reducing the effect that one container
can have on another. However, as we’ve seen in this chapter, this “simple”
network isolation requires some complex configuration to enable not just
isolation, but also connectivity to other containers and other networks. In Part
II, after we properly introduce Kubernetes, we’ll return to container
networking and show how the complexity only increases when we need to

connect containers running on different hosts and load balance traffic across
multiple container instances.

For now, we have one more key topic to address with containers before
we can move on to Kubernetes. We need to understand how container storage
works, including the container image that is used as the base filesystem when
a new container is started as well as the temporary storage that a running
container uses. In the next chapter, we’ll investigate how container storage
makes application deployment easier and how a layered filesystem is used to
save on storage and improve efficiency.

5
CONTAINER IMAGES AND RUNTIME LAYERS

To run a process, we need storage. One of the great advantages of
containerized software is the ability to bundle an application for delivery
together with its dependencies. As a result, we need to store the executable
for the program and any shared libraries it uses. We also need to store
configuration files, logs, and any data managed by the program. All of this
storage must be isolated so that a container can’t interfere with the host
system or with other containers. Altogether, this represents a large need for
storage, and it means container engines must provide some unique features to
be efficient in the use of disk space and bandwidth. In this chapter, we’ll
explore how the use of a layered filesystem makes container images efficient
to download and containers efficient to start.

Filesystem Isolation
In Chapter 2, we saw how we could use a chroot environment to create a
separate, isolated part of the filesystem that contained only the binaries and
libraries we needed to run a process. Even to run a simple ls command, we
needed the binary and several libraries. A more fully featured container, such
as one running the NGINX web server, needs quite a bit more—a complete
set of files for a Linux distribution.

In the chroot example, we built the isolated filesystem from the host

system when we were ready to use it. That approach would be impractical for
containers. Instead, the isolated filesystem is packaged in a container image,
which is a ready-to-use bundle that includes all files and metadata, such as
environment variables and the default executable.

Container Image Contents
Let’s take a quick look inside an NGINX container image. For this chapter,
we’ll be running commands using Docker because it’s still the most common
tool for building container images.

NOTE
The example repository for this book is at https://github.com/book-of-
kubernetes/examples. See “Running Examples” on page xx for details on
getting set up.

Run the following command on host01 from this chapter’s examples to
download the image:

root@host01:~# docker pull nginx
Using default tag: latest
latest: Pulling from library/nginx
...
Status: Downloaded newer image for nginx:latest
docker.io/library/nginx:latest

The docker pull command downloads an image from an image registry. An
image registry is a web server that implements an API for downloading and
publishing container images. We can see the image we’ve downloaded by
listing images with docker images:

root@host01:~# docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
nginx latest f0b8a9a54136 7 days ago 133MB

This image is 133MB and has a unique identifier of f0b8a9a54136. (Your
identifier will be different, as new NGINX container images are built every
day.) This image includes not only the NGINX executables and required
libraries but also a Linux distribution based on Debian. We saw this briefly in

https://github.com/book-of-kubernetes/examples

Chapter 1 when we demonstrated a Rocky Linux container on an Ubuntu host
and kernel, but let’s look at it in a little more detail. Start by running an
NGINX container:

root@host01:~# docker run --name nginx -d nginx
516d13e912a55cfc6f73f0dd473661d6b7d3b868d5a07a2bc7253971015b6799

The --name flag gives the container a friendly name that we can use for
future commands, whereas the -d flag sends it to the background.

Now, let’s explore the filesystem of our running container:

root@host01:~# docker exec -ti nginx /bin/bash
root@516d13e912a5:/#

From here, we can see the various libraries needed for NGINX to work:

root@516d13e912a5:/# ldd $(which nginx)
 linux-vdso.so.1 (0x00007ffe2a1fa000)
...
 libc.so.6 => /lib/x86_64-linux-gnu/libc.so.6 (0x00007fe0d6531000)
 /lib64/ld-linux-x86-64.so.2 (0x00007fe0d6ed4000)

All of these libraries are part of the container image we downloaded, so
our NGINX container does not need (and cannot see) any files from the host
system.

Not only do we have a healthy number of libraries present, but we have
typical configuration files in /etc that we would expect for a Debian system:

root@516d13e912a5:/# ls -1 /etc
...
debian_version
deluser.conf
dpkg
...
systemd/
...

This listing shows that the filesystem even includes directories that aren’t
really needed for a container, like the /etc/systemd directory. (Remember, a
container is just a set of related processes run under isolation, so a container
almost never runs a system service manager like systemd.) This full
filesystem is included for a couple reasons. First, many processes were

written to expect the usual set of files to be present. Second, it’s just easier to
build container images starting from a typical Linux distribution.

The separate filesystem for our container is writable as well. While we
have this shell open, let’s send some random data to a file in the container so
that we can inspect that storage from the host. We can then exit the shell:

root@516d13e912a5:/# dd if=/dev/urandom of=/tmp/data bs=1M count=10
...
10485760 bytes (10 MB, 10 MiB) copied, 0.0913977 s, 115 MB/s
root@516d13e912a5:/# exit

The dd command wrote a 10MB file into the /tmp directory. Even though
we exited the shell, the container is still running, so we can use docker inspect to
see the amount of disk space this container is using:

root@host01:~# docker inspect -s nginx | jq '.[0].SizeRw'
10487109

The -s flag tells docker inspect to report the size of the container. Because
docker inspect produces a huge JSON output, we use the JSON query tool jq to
choose the field we want.

The reported size is just about 10MB, suggesting that the container is
consuming only the amount of read-write storage required for the file we
wrote, plus any files written by NGINX. We’ll explore this in more detail as
we continue in this chapter.

Image Versions and Layers
The ability to quickly download a prepackaged filesystem to run a process is
only one of the advantages of container images. Another is the ability to tag
different versions of an image to allow for rapid upgrading. Let’s explore this
by pulling and running two different versions of Redis, the popular in-
memory key–value database:

 root@host01:~# docker pull redis:6.0.13-alpine
 6.0.13-alpine: Pulling from library/redis
➊ 540db60ca938: Pull complete
 29712d301e8c: Pull complete
 8173c12df40f: Pull complete
 ...
 docker.io/library/redis:6.0.13-alpine

 root@host01:~# docker pull redis:6.2.3-alpine
 6.2.3-alpine: Pulling from library/redis
➋ 540db60ca938: Already exists
 29712d301e8c: Already exists
 8173c12df40f: Already exists
 ...
 docker.io/library/redis:6.2.3-alpine

The data after the colon is the image tag and acts as a version identifier.
Previously, when we left this off, Docker defaulted to latest, which is a tag
like any other, but it is used by convention to refer to the latest published
image. By specifying the version, we can ensure that even as newer versions
of Redis are released, we will continue to run the same version until we are
ready to upgrade. The tag can contain any characters, and it is common to
add extra information after a hyphen. In this case, the -alpine at the end of the
tag indicates that this image is based on Alpine Linux, a lightweight Linux
distribution that is popular for making container images because of its small
size.

One other interesting item of note is the fact that when we downloaded the
second version of Redis, some of the content ➋ was flagged as Already exists.
Looking at the first Redis download, we see the same unique identifiers are
present there ➊. This is because a container image is made up of layers, and
these identifiers uniquely describe a layer. If a layer we’ve already
downloaded is used by another image, we don’t need to download it again,
saving download time. Additionally, each layer needs to be stored only once
on disk, saving disk space.

We now have two different versions of Redis downloaded:

root@host01:~# docker images | grep redis
redis 6.0.13-alpine a556c77d3dce 2 weeks ago 31.3MB
redis 6.2.3-alpine efb4fa30f1cf 2 weeks ago 32.3MB

Although Docker is reporting that each image has a size of about 30MB,
that is the total size of all the layers and doesn’t account for the storage
savings that come from shared layers. The actual storage on disk is less, as
we can see by examining Docker’s use of disk space:

root@host01:~# docker system df -v
Images space usage:

REPOSITORY TAG ... SIZE SHARED SIZE UNIQUE SIZE ...

redis 6.0.13-alpine ... 31.33MB 6.905MB 24.42MB ...
redis 6.2.3-alpine ... 32.31MB 6.905MB 25.4MB ...

The two Redis images are sharing almost 7MB of base layers.
These two versions of Redis can be run separately:

root@host01:~# docker run -d --name redis1 redis:6.0.13-alpine
66dbf56ec0e8db24ca78afc07c68b7d0699d68b4749e0c03310857cfce926366
root@host01:~# docker run -d --name redis2 redis:6.2.3-alpine
9dd3f86a1284171e5ca60f7f8a6a13dc517237826a92b3cb256f5ac64a5f5c31

Now that both images are running, we can confirm that our containers
have exactly the version of Redis we want, independent of what version
might be the latest release and independent of the versions available for our
host server:

root@host01:~# docker logs redis1 | grep version
1:C 21 May 2021 14:18:24.952 # Redis version=6.0.13, ...
root@host01:~# docker logs redis2 | grep version
1:C 21 May 2021 14:18:36.387 # Redis version=6.2.3, ...

This is a big advantage for building reliable systems. We can test our
application thoroughly with one version of the software and be sure that
version will continue to be used until we choose to upgrade. We can also
easily test our software against a new version without having to upgrade a
host system.

Building Container Images
In the preceding example, we saw how we could reduce the download and
disk requirements for container images by sharing layers. This layer sharing
can be used with any container image, not just two different versions of the
same software.

The layers in a container image come from the way it is built. A container
image build starts with a base image. For example, both of our two Redis
versions started with the same exact Alpine Linux base image, which is why
those layers were shared in that image. Starting from the base image, each
step in the build process can produce a new layer. This new layer contains
only the changes to the filesystem that came from that build step.

A base image must also come from somewhere, and, ultimately, there
must be an initial layer, which is typically a minimal Linux filesystem created
from some Linux distribution, transferred into an empty container image, and
then expanded to become an initial layer.

Using a Dockerfile
There are many different ways to build container images, but the most
popular is to create a file known as a Dockerfile or Containerfile that
specifies the commands and configuration for the image. Here’s a simple
Dockerfile that adds web content to an NGINX image:
Dockerfile

FROM nginx

Add index.html
RUN echo "<html><body><h1>Hello World!</h1></body></html>" \
 >/usr/share/nginx/html/index.html

Each line in a Dockerfile starts with a command that is followed by
parameters. Blank lines and content after a # are ignored, and a backslash at
the end of a line continues that command onto the next line. There are many
possible commands; here are the most common:

FROM Specify the base image for this build.

RUN Run a command inside the container.

COPY Copy files into the container.

ENV Specify an environment variable.

ENTRYPOINT Configure the initial process for the container.

CMD Set default parameters for the initial process.

Docker provides the docker build command to build an image from a
Dockerfile. The docker build command creates a new image by running each
command in the Dockerfile, one at a time. Listing 5-1 illustrates how to run
docker build.

 root@host01:~# cd /opt/hello

 root@host01:/opt/hello# docker build -t hello .
➊ Sending build context to Docker daemon 2.048kB
 Step 1/2 : FROM nginx
 ➋ ---> f0b8a9a54136
 Step 2/2 : RUN echo "<html><body><h1>Hello World!</h1></body></html>" ...
 ➌ ---> Running in 77ba9163d0a5
 Removing intermediate container 77ba9163d0a5
 ---> e9ca31d590f9
 Successfully built e9ca31d590f9
➍ Successfully tagged hello:latest

Listing 5-1: Docker build

The -t switch tells docker build to store the image from the build process
under the name hello.

Examining the steps in this build process will help clarify how container
images are made. First, Docker sends the build context to the Docker daemon
➊. The build context is a directory and all of its files and subdirectories. In
this case, we specified the build context as the current directory when we
added . to the end of the docker build command. The actual container image
build happens inside the daemon, so the only files that would be available for
a COPY command are those that are in the build context.

Second, Docker identifies our base image, in this case nginx. The unique
identifier it displays ➋ matches the one displayed earlier for our NGINX
image when we ran docker images. Third, Docker executes the command we
specified in the RUN step. This command is actually run inside a container
based on our NGINX base image ➌, which means that only the commands
installed in the container image are available to run. If we need other
commands to be available, we might need to create a RUN step that installs
them before we can use them.

After all of the build steps are complete, Docker “tags” the new container
image with the name we provided using the -t flag. As before, we didn’t
specify a version, so latest is used as a default. We now can see this image in
the list of available images:

root@host01:/opt/hello# docker images | grep hello
hello latest e9ca31d590f9 9 minutes ago 133MB

The unique identifier for this image matches the output from the end of
Listing 5-1. This image is shown as 133MB because it has all of the layers
from the NGINX image in addition to the new small HTML file we added.

As before, the shared layers are stored only once, so the extra storage
required to build this image was very small.

NOTE
When you try this example yourself, the unique identifier displayed for
your “hello” image will be different, even though the Dockerfile has the
same content for the HTML file. The identifier for each layer is based not
only on the layer’s file content but also on the identifier for the layer
above it. As a result, if two images have the same identifier, we can be
confident that the contents are exactly the same, even if they were built
separately.

We can run a container based on this new image just as we would any
other image:

root@host01:/opt/hello# docker run -d -p 8080:80 hello
83a23cf2921bb37474bfcefb0da45f9953940febfefd01ebadf35405d88c4396
root@host01:/opt/hello# curl http://localhost:8080/
<html><body><h1>Hello World!</h1></body></html>

As described in Chapter 1, the -p flag forwards a host port into the
container, enabling us to access the NGINX server from the host even though
it is running in a separate network namespace. We then can use curl to see that
our container has the content we provided.

Tagging and Publishing Images
The image is ready to run locally, but we’re not ready yet to publish it to a
registry. To publish to a registry, we need to give it a name that includes the
full host and path for the registry location to ensure that when we refer to an
image, we are getting exactly what we expect.

To demonstrate, let’s pull multiple BusyBox images from different
registries. We’ll start with a BusyBox image from quay.io, an alternative
container image registry:

root@host01:/opt/hello# docker pull quay.io/quay/busybox
...
quay.io/quay/busybox:latest

This image name specifies both the host quay.io and the location of the
image within that host, quay/busybox. As before, because we didn’t specify a
version, latest is used as a default. We are able to pull a version called latest
because someone has explicitly published a latest version of the image to this
registry.

The BusyBox image we get using this command is different from the one
we get if we just pull busybox:

root@host01:/opt/hello# docker pull busybox
...
docker.io/library/busybox:latest
root@host01:/opt/hello# docker images | grep busybox
busybox latest d3cd072556c2 3 days ago 1.24MB
quay.io/quay/busybox latest e3121c769e39 8 months ago 1.22MB

When we use the plain name busybox, Docker defaults to pulling the image
from docker.io/library. This registry is known as Docker Hub, which you can
browse at https://hub.docker.com.

Similarly, when we used the plain name hello to build our image, Docker
sees it as belonging to docker.io/library. That path is for official Docker images,
and, of course, we don’t have the right to publish images there.

The automated setup for this chapter includes running a local container
registry, which means that we can publish this image to that local registry if
we name it correctly:

root@host01:/opt/hello# docker tag hello registry.local/hello
root@host01:/opt/hello# docker images | grep hello
hello latest e9ca31d590f9 52 minutes ago 133MB
registry.local/hello latest e9ca31d590f9 52 minutes ago 133MB

The same image now exists under two different names, providing an extra
advantage of the way images are stored by layer. It’s cheap to add an extra
name for an image. Of course, we could also have used the full name in the
first place when we ran docker build, but it is convenient to use shorter names
when building and using images locally.

Now that we have named the image correctly, we can publish it using
docker push:

root@host01:/opt/hello# docker push registry.local/hello
Using default tag: latest

https://hub.docker.com

The push refers to repository [registry.local/hello]
...

Our local registry starts out empty, so this command uploads all of the
layers, but if we push any future images that include some of the same layers,
they won’t be uploaded again. Similarly, if we were to delete an image tag
from the registry, that would not remove the layer data.

This ability to publish images is not limited to images that we build
ourselves. We can tag and push the BusyBox image we just downloaded from
Docker Hub:

root@host01:/opt/hello# docker tag busybox registry.local/busybox
root@host01:/opt/hello# docker push registry.local/busybox
Using default tag: latest
The push refers to repository [registry.local/busybox]
...
root@host01:/opt/hello# cd

Retagging an image so that we can upload it to a private registry is a
common practice that can help an application start faster and avoid being
dependent on an internet registry.

The last command (cd) takes us back to our home directory, given that
we’re finished in /opt/hello.

Image and Container Storage
As mentioned previously, using individual layers to build up a container
image has multiple advantages, including reduced download size, reduced
disk space, and the ability to re-tag an image with a new name without using
any additional space. The additional disk space needed by a running
container is limited to just the files that we write while the container is
running. Finally, all of the examples have shown how fast a new container
starts up. All of these features together demonstrate why layers must be
shared, not only for images but also for new containers. To make the best use
of this layered approach in building efficient images, it helps to understand
how this layered filesystem works.

Overlay Filesystems

When we run a container, we are presented with what looks like a single
filesystem, with all the layers merged together and with the ability to make
changes to any file. If we run multiple containers from the same image, we
see an independent filesystem in each one, so that changes in one do not
affect the other. How does this work without having to copy the entire
filesystem every time we start a container? The answer is an overlay
filesystem.

An overlay filesystem has three main parts. The lower directory is where
the “base” layer exists. (There may be multiple lower directories.) The upper
directory has the “overlay” layer, and the mount directory is where the
unified filesystem is made available for use. A directory listing in the mount
directory reflects all of the files from all of the layers, in priority order. Any
changes made to the mount directory are really written to the upper directory
by copying the changed file to the upper directory from a lower one, and then
updating it—a process known as copy on write. Deletions are also written to
the upper directory as metadata, so the lower directory can remain
unmodified. This means that multiple users can share the lower directory
without conflict because it is only read from, never written to.

An overlay filesystem is useful for more than just container images and
containers. It is also useful for embedded systems, such as a network router,
for which a read-only filesystem is written in firmware, making it possible for
the device to be safely rebooted to a known state every time. It is also useful
for virtual machines, enabling multiple virtual machines to be started from
the same image.

Overlay filesystems are provided by a Linux kernel module, enabling very
high performance. We can easily create an overlay filesystem. The first step
is to create the necessary directories:

root@host01:~# mkdir /tmp/{lower,upper,work,mount}

The mkdir command creates four separate directories in /tmp. We’ve
already discussed the lower directory, upper directory, and mount directory.
The work directory is an extra empty directory that the overlay filesystem
uses as temporary space to ensure that changes in the mount directory appear
atomic—that is, to ensure that they appear all at once.

Let’s put some content into the lower and upper directories:

root@host01:~# echo "hello1" > /tmp/lower/hello1
root@host01:~# echo "hello2" > /tmp/upper/hello2

Next, we just mount the overlay filesystem:

root@host01:~# mount -t overlay \
 -o rw,lowerdir=/tmp/lower,upperdir=/tmp/upper,workdir=/tmp/work \
 overlay /tmp/mount

The /tmp/mount directory now contains the merged content of both the
upper and lower directories:

root@host01:~# ls -l /tmp/mount
total 8
-rw-r--r-- 1 root root 7 May 24 23:05 hello1
-rw-r--r-- 1 root root 7 May 24 23:05 hello2
root@host01:/opt/hello# cat /tmp/mount/hello1
hello1
root@host01:/opt/hello# cat /tmp/mount/hello2
hello2

Any changes that we make are shown in the mount location but are
actually made in the upper directory:

root@host01:~# echo "hello3" > /tmp/mount/hello3
root@host01:~# ls -l /tmp/mount
total 8
-rw-r--r-- 1 root root 7 May 24 23:05 hello1
-rw-r--r-- 1 root root 7 May 24 23:10 hello2
-rw-r--r-- 1 root root 7 May 24 23:09 hello3
root@host01:~# ls -l /tmp/lower
total 4
-rw-r--r-- 1 root root 7 May 24 23:05 hello1
root@host01:~# ls -l /tmp/upper
total 8
-rw-r--r-- 1 root root 7 May 24 23:10 hello2
-rw-r--r-- 1 root root 7 May 24 23:09 hello3

Additionally, even deleting files does not affect the lower directory:

 root@host01:~# rm /tmp/mount/hello1
 root@host01:~# ls -l /tmp/mount
 total 8
 -rw-r--r-- 1 root root 7 May 24 23:10 hello2
 -rw-r--r-- 1 root root 7 May 24 23:09 hello3
 root@host01:~# ls -l /tmp/lower

 total 4
 -rw-r--r-- 1 root root 7 May 24 23:05 hello1
 root@host01:~# ls -l /tmp/upper
 total 8
➊ c--------- 1 root root 0, 0 May 24 23:11 hello1
 -rw-r--r-- 1 root root 7 May 24 23:10 hello2
 -rw-r--r-- 1 root root 7 May 24 23:09 hello3

The c next to the listing for hello1 in the upper directory ➊ indicates that
this is a character special file. Its purpose is to indicate that this file was
deleted in the upper directory. As a result, it does not show up in the mounted
filesystem, even though it still exists in the lower directory.

Thanks to this approach, we can reuse the lower directory with an
independent overlay, similar to how we can run multiple independent
containers from the same image:

root@host01:~# mkdir /tmp/{upper2,work2,mount2}
root@host01:~# mount -t overlay \
 -o rw,lowerdir=/tmp/lower,upperdir=/tmp/upper2,workdir=/tmp/work2 \
 overlay /tmp/mount2
root@host01:~# ls -l /tmp/mount2
total 4
-rw-r--r-- 1 root root 7 May 24 23:05 hello1

Not only does the “deleted” file from the lower directory appear, but none
of the content from the first upper directory shows up because it’s not part of
this new overlay.

Understanding Container Layers
Armed with this information about overlay filesystems, we can explore the
filesystem of our running NGINX container:

root@host01:~# ROOT=$(docker inspect nginx \
 | jq -r '.[0].GraphDriver.Data.MergedDir')
root@host01:~# echo $ROOT
/var/lib/docker/overlay2/433751e2378f9b11.../merged

As before, we use jq to choose just the field we want; in this case, it’s the
path to the merged directory for the container’s filesystem. This merged
directory is the mount point for an overlay filesystem:

root@host01:~# mount | grep $ROOT | tr [:,] '\n'

overlay on /var/lib/docker/overlay2/433751e2378f9b11.../merged ...
lowerdir=/var/lib/docker/overlay2/l/ERVEI5TCULK4PCNO2HSWB4MFDB
/var/lib/docker/overlay2/l/RQDO2PYQ3OKMKDY3DAYPAJTZHF
/var/lib/docker/overlay2/l/LFSBVPYPODQJXDL5WQTI7ISYNC
/var/lib/docker/overlay2/l/TLZUYV2BFQNPFGU3AZFUHOH27V
/var/lib/docker/overlay2/l/4M66FKSHDBNUWE7UAF2REQHSB2
/var/lib/docker/overlay2/l/LCTKPRHP6LG7KC7JQHETKIL6TZ
/var/lib/docker/overlay2/l/JOECSCSAQ5CPNHGEURVRT4JRQQ
upperdir=/var/lib/docker/overlay2/433751e2378f9b11.../diff
workdir=/var/lib/docker/overlay2/433751e2378f9b11.../work,xino=off)

The tr command transforms colons and commas to newlines to make the
output more readable.

The mount command shows seven separate entries for lowerdir, one for each
of the layers in the NGINX container image. All seven of these directories,
plus the upperdir, are merged together in the overlay filesystem.

We can see the 10MB data file we created earlier in both the mount
directory and the upper directory:

root@host01:~# ls -l $ROOT/tmp/data
-rw-r--r-- 1 root root 10485760 May 25 00:27 /var/lib/.../merged/tmp/data
root@host01:~# ls -l $ROOT/../diff/tmp/data
-rw-r--r-- 1 root root 10485760 May 25 00:27 /var/lib/.../diff/tmp/data

The actual file is stored in the upper directory diff, whereas the mount
directory merged is just a view generated by the overlay filesystem.

Usually, we don’t need to delve into the container filesystem from the
host, because we can just run commands from within the container to explore
its files. However, this technique can be useful for pulling files from a
container for cases in which the container engine is not behaving correctly.

Practical Image Building Advice
Some important practical implications result from the way that overlay
filesystems are used with container images. First, because an overlay
filesystem can have multiple lower directories, and merging is performant,
breaking our container image into multiple layers causes very little
performance penalty. It allows us to be very modular when building container
images, enabling reuse of layers. For example, we might start with a base
image and then build an image on top that installs some common
dependencies, and then another image that adds specialized dependencies for

some of our application components, and finally yet another image that adds
a specific application. Assembling application container images using a
layered approach can result in very efficient image transfer and storage, as
the base layers are shared between components where possible.

Second, because a deletion in an upper layer does not actually remove the
file from a lower layer, we need to be careful with how we handle large
temporary files and also in how we store secrets while building images. In
both cases, if we finish a layer while the file is still present, it will be there
forever, causing us to waste bandwidth and space, or worse, leak secret
information to anyone who downloads the image. In general, you should
assume that every line of a Dockerfile makes a new layer, and you should
also make the assumption that all of the information associated with each
command is stored in the image metadata. As a result:

Perform multiple steps in a single RUN line, and make sure every RUN
command cleans up after itself.
Don’t use COPY to transfer large files or secrets into the image, even if
you clean them up in a later RUN step.
Don’t use ENV to store secrets, because the resulting values become part
of the image metadata.

Open Container Initiative
A container image is more than just the set of layers that make up the overlay
filesystem. It also includes important metadata, such as the initial command
for the container and any environment variables for that command. The Open
Container Initiative (OCI) provides a standard format for storing image
information. It ensures that container images built by one tool can be used by
any other tool and provides a standard way to transfer images layer by layer
or in a complete package.

To demonstrate the OCI format, let’s extract a BusyBox container image
from Docker and store it in OCI format using Skopeo, a program designed to
move container images around between repositories and formats. The first
step is to extract the image:

root@host01:~# skopeo copy docker-daemon:busybox:latest oci:busybox:latest

...

This command tells Skopeo to fetch the image from the Docker engine’s
storage and write it out in OCI format. We now have a busybox directory that
contains the image:

root@host01:~# ls -l busybox
total 12
drwxr-xr-x 3 root root 4096 May 24 23:59 blobs
-rw-r--r-- 1 root root 247 May 24 23:59 index.json
-rw-r--r-- 1 root root 31 May 24 23:59 oci-layout

The oci-layout file specifies the OCI version used for this image:

root@host01:~# jq . busybox/oci-layout
{
 "imageLayoutVersion": "1.0.0"
}

The index.json file tells us about the image:

root@host01:~# jq . busybox/index.json
{
 "schemaVersion": 2,
 "manifests": [
 {
 "mediaType": "application/vnd.oci.image.manifest.v1+json",
 "digest": "sha256:9c3c5aeeaa7e1629871808339...",
 "size": 347,
 "annotations": {
 "org.opencontainers.image.ref.name": "latest"
 }
 }
]
}

The manifests property is an array that allows us to store multiple images in
a single OCI directory or package. The actual filesystem content is stored by
layer in the blobs directory, with each layer as a separate .tar file, so any
shared layers are stored only once.

This BusyBox image has only a single layer. To look at its contents, we’ll
need to work through the index.json and image manifest to find the path to its
.tar file:

root@host01:~# MANIFEST=$(jq -r \
 .manifests[0].digest busybox/index.json | sed -e 's/sha256://')
root@host01:~# LAYER=$(jq -r \
 .layers[0].digest busybox/blobs/sha256/$MANIFEST | sed -e 's/sha256://')
root@host01:~# echo $LAYER
197dfd3345530fd558a64f2a550e8af75a9cb812df5623daf0392aa39e0ce767

The files in the blobs directory are named using the SHA-256 digest
calculated from the file contents. We start by using jq to get the digest for the
BusyBox image’s manifest, stripping off the sha256: part at the front to get the
name of the manifest file. We then read the manifest to find the first (and
only) layer. We now can see the content of this layer:

root@host01:~# tar tvf busybox/blobs/sha256/$LAYER
drwxr-xr-x 0/0 0 2021-05-17 19:07 bin/
-rwxr-xr-x 0/0 1149184 2021-05-17 19:07 bin/[
hrwxr-xr-x 0/0 0 2021-05-17 19:07 bin/[[link to bin/[
...
drwxr-xr-x 0/0 0 2021-05-17 19:07 dev/
drwxr-xr-x 0/0 0 2021-05-17 19:07 etc/
...

Passing tvf to the tar command tells it to list a table of contents from the file
we specify, which is the BusyBox image layer in this case. This layer
contains a complete Linux filesystem, with BusyBox acting as the single
executable for most of the standard Linux commands.

Using this busybox directory, we can also package up the container image,
move it to a separate system, and then pull it into another container engine.

Final Thoughts
When we run a container, we get what appears to be a separate, isolated
filesystem that we can modify as desired. Underneath, the container engine is
using the overlay filesystem to merge together multiple container image
layers and a writeable directory that stores all the changes we make. Not only
does the use of an overlay filesystem make a new container fast to start, but it
also means that we can run multiple containers from the same image without
waiting for file copy to complete, and we can reduce the required disk space
by sharing image layers.

Now that we’ve looked at process isolation, resource limits, network

isolation, and container storage, we’ve covered the main features of
containers that make them so valuable for packaging, distributing, updating,
and running application components. It’s time to move on to the critical
features that we can get only from a container orchestration environment like
Kubernetes. We’ll do that in Part II.

PART II
CONTAINERS IN KUBERNETES

Computers have finite processing, storage, and memory, and are built of parts
that fail, especially at the wrong time. To build a scalable, reliable
application, we can’t be limited by the resources of a single host or dependent
on a single point of failure. At the same time, we don’t want to give up the
modularity and flexibility that containers provide. In Part II, we’ll see how
Kubernetes meets the essential requirements to run containers across a cluster
of machines, with cross-host container networking, scalability, automated
failover, and distributed storage.

6
WHY KUBERNETES MATTERS

Containers enable us to transform the way we package and deploy application
components, but orchestration of containers in a cluster enables the real
advantage of a containerized microservice architecture. As described in
Chapter 1, the main benefits of modern application architecture are
scalability, reliability, and resiliency, and all three of those benefits require a
container orchestration environment like Kubernetes in order to run many
instances of containerized application components across many different
servers and networks.

In this chapter, we’ll begin by looking at some cross-cutting concerns that
exist when running containers across multiple servers in a cluster. We’ll then
describe the core Kubernetes concepts designed to address those concerns.
With that introduction complete, we’ll spend the bulk of the chapter actually
installing a Kubernetes cluster, including important add-on components like
networking and storage.

Running Containers in a Cluster
The need to distribute our application components across multiple servers is
not new to modern application architecture. To build a scalable and reliable
application, we have always needed to take advantage of multiple servers to
handle the application’s load and preclude a single point of failure. The fact

that we are now running these components in containers does not change the
need for multiple servers; we are still ultimately using CPUs and we are still
ultimately dependent on hardware.

At the same time, a container orchestration environment brings challenges
that may not have existed with other kinds of application infrastructure.
When the container is the smallest individual module around which we build
our system, we end up with application components that are much more self-
contained and “opaque” from the perspective of our infrastructure. This
means that instead of having a static application architecture through which
we choose in advance what application components are assigned to specific
servers, with Kubernetes, we try to make it possible for any container to run
anywhere.

Cross-Cutting Concerns
The ability to run any container anywhere maximizes our flexibility, but it
adds complexity to Kubernetes itself. Kubernetes does not know in advance
what containers it will be asked to run, and the container workload is
continuously changing as new applications are deployed or applications
experience changes in load. To rise to this challenge, Kubernetes needs to
account for the following design parameters that apply to all container
orchestration software, no matter what containers are running:

Dynamic scheduling New containers must be allocated to a server, and
allocations can change due to configuration changes or failures.

Distributed state The entire cluster must keep information about what
containers are running and where, even during hardware or network failures.

Multitenancy It should be possible to run multiple applications in a single
cluster, with isolation for security and reliability.

Hardware isolation Clusters must run in cloud environments and on regular
servers of various types, isolating containers from the differences in these
environments.

The best term to use to refer to these design parameters is cross-cutting
concern, because they apply to any kind of containerized software that we
might need to deploy, and even to the Kubernetes infrastructure itself. These
parameters work together with the container orchestration requirements we

saw in Chapter 1 and ultimately drive the Kubernetes architecture and key
design decisions.

Kubernetes Concepts
To address these cross-cutting concerns, the Kubernetes architecture allows
anything to come and go at any time. This includes not only the containerized
applications deployed to Kubernetes, but also the fundamental software
components of Kubernetes itself, and even the underlying hardware such as
servers, network connections, and storage.

Separate Control Plane
Obviously, for Kubernetes to be a container orchestration environment, it
requires the ability to run containers. This ability is provided by a set of
worker machines called nodes. Each node runs a kubelet service that
interfaces with the underlying container runtime to start and monitor
containers.

Kubernetes also has a set of core software components that manage the
worker nodes and their containers, but these software components are
deployed separately from the worker nodes. These core Kubernetes software
components are together referred to as the control plane. Because the control
plane is separate from the worker nodes, the worker nodes can run the control
plane, gaining the benefits of containerization for the Kubernetes core
software components. A separate control plane also means that Kubernetes
itself has a microservice architecture, which allows customization of each
Kubernetes cluster. For example, one control plane component, the cloud
controller manager, is used only when deploying Kubernetes to a cloud
provider, and it’s customized based on the cloud provider used. This design
provides hardware isolation for application containers and the rest of the
Kubernetes control plane, while still allowing us to take advantage of the
specific features of each cloud provider.

Declarative API
One critical component of the Kubernetes control plane is the API server.
The API server provides an interface for cluster control and monitoring that
other cluster users and control plane components use. In defining the API,

Kubernetes could have chosen an imperative style, in which each API
endpoint is a command such as “run a container” or “allocate storage.”
Instead, the API is declarative, providing endpoints such as create, patch,
get, and delete. The effect of these commands is to create, read, update, and
delete resources from the cluster configuration—the specific configuration of
each resource tells Kubernetes what we want the cluster to do.

This declarative API is essential to meet the cross-cutting concerns of
dynamic scheduling and distributed state. Because a declarative API simply
reports or updates cluster configuration, reacting to server or network failures
that might cause a command to be missed is very easy. Consider an example
in which the API server connection is lost just after an apply command is
issued to change the cluster configuration. When the connection is restored,
the client can simply query the cluster configuration and determine whether
the command was received successfully. Or, even easier, the client can just
issue the same apply command again, knowing that as long as the cluster
configuration ends up as desired, Kubernetes will be trying to do the “right
thing” to the actual cluster. This core principle is known as idempotence,
meaning it is safe to issue the same command multiple times because it will
be applied at most once.

Self-Healing
Building on the declarative API, Kubernetes is designed to be self-healing.
This means that the control plane components continually monitor both the
cluster configuration and the actual cluster state and try to bring them into
alignment. Every resource in the cluster configuration has an associated
status and event log reflecting how the configuration has actually caused a
change in the cluster state.

The separation of configuration and state makes Kubernetes very resilient.
For example, a resource representing containers may be in a Running state if
the containers have been scheduled and are actually running. If the
Kubernetes control plane loses connection to the server on which the
containers are running, it can immediately set the status to Unknown and then
work to either reestablish connection or treat the node as failed and
reschedule the containers.

At the same time, using a declarative API and self-healing approach has
important implications. Because the Kubernetes API is declarative, a

“success” response to a command means only that the cluster configuration
was updated. It does not mean that the actual state of the cluster was updated,
as it might take time to achieve the requested state, or there might be issues
that prevent the cluster from achieving that state. As a result, we cannot
assume that just because we created the appropriate resources, the cluster is
running the containers we expect. Instead, we must watch the status of the
resources and explore the event log to diagnose any issues that the
Kubernetes control plane had in making the actual cluster state match the
configuration we specified.

Cluster Deployment
With some core Kubernetes concepts under our belts, we’ll use the kubeadm
Kubernetes administration tool to deploy a highly available Kubernetes
cluster across multiple virtual machines.

CHOOSING A KUBERNETES
DISTRIBUTION

Rather than using a particular Kubernetes distribution as we did in
Chapter 1, we’ll deploy a “vanilla” Kubernetes cluster using the generic
upstream repository. This approach gives us the best opportunity to
follow along with the cluster deployment and will make it easier to
explore the cluster in-depth in the next several chapters. However, when
you’re ready to deploy a Kubernetes cluster of your own, especially for
production work, consider using a prebuilt Kubernetes distribution for
ease of management and built-in security. The Cloud Native Computing
Foundation (CNCF) publishes a set of conformance tests that you can
use to ensure that the Kubernetes distribution you choose is conformant
to the Kubernetes specification.

Our Kubernetes cluster will be split across four virtual machines, labeled
host01 through host04. Three of these, host01 through host03, will run control plane
components, whereas the fourth will act solely as a worker node. We’ll have

three control plane nodes because that is the smallest number required to run
a highly available cluster. Kubernetes uses a voting scheme to provide
failover, and at least three control plane nodes are required; this allows the
cluster to detect which side should keep running in the event of a network
failure. Also, to keep the cluster as small as possible for our examples, we’ll
configure Kubernetes to run regular containers on the control plane nodes
even though we would avoid doing that for a production cluster.

NOTE
The example repository for this book is at https://github.com/book-of-
kubernetes/examples. See “Running Examples” on page xx for details on
getting set up.

Start by following the instructions for this chapter to get all four virtual
machines up and running, either in Vagrant or AWS. The automated
provisioning will set up all four machines with containerd and crictl, so we don’t
need to do it manually. The automated provisioning script will also set up
either kube-vip or an AWS network load balancer to provide required high-
availability functionality, as discussed below.

NOTE
You can install Kubernetes automatically using the extra provisioning
script provided with this chapter’s examples. See the README file for
this chapter for instructions.

You’ll need to run commands on each of the four virtual machines, so you
might want to open terminal tabs for each one. However, the first series of
commands needs to be run on all of the hosts, so the automation sets up a
command called k8s-all to do that from host01. You can explore the content of
this script in /usr/local/bin/k8s-all or by looking at the k8s Ansible role in the
setup directory of the examples.

Prerequisite Packages
The first step is to make sure the br_netfilter kernel module is enabled and set to
load on boot. Kubernetes uses advanced features of the Linux firewall to

https://github.com/book-of-kubernetes/examples

handle networking across the cluster, so we need this module. Run these two
commands:

root@host01:~# k8s-all modprobe br_netfilter
...
root@host01:~# k8s-all "echo 'br_netfilter' > /etc/modules-load.d/k8s.conf"

The first command ensures that the module is installed for the currently
running kernel, and the second command adds it to the list of modules to run
on boot. The slightly odd quoting in the second command ensures that the
shell redirection happens on the remote hosts.

Next, in Listing 6-1, we’ll set some Linux kernel parameters to enable
advanced network features that are also needed for networking across the
cluster by using the sysctl command:

root@host01:~# k8s-all sysctl -w net.ipv4.ip_forward=1 \
 net.bridge.bridge-nf-call-ip6tables=1 \
 net.bridge.bridge-nf-call-iptables=1

Listing 6-1: Kernel settings

This command enables the following Linux kernel network features:

net.ipv4.ip_forward Transfer packets from one network interface to another (for
example, from an interface inside a container’s network namespace to a host
network).

net.bridge.bridge-nf-call-ip6tables Run IPv6 bridge traffic through the iptables
firewall.

net.bridge.bridge-nf-call-iptables Run IPv4 bridge traffic through the iptables firewall.

The need for the last two items will become clear in Chapter 9 when we
discuss how Kubernetes provides networking for Services.

These sysctl changes in Listing 6-1 do not persist after a reboot. The
automated scripts do handle making the changes persistent, so if you reboot
your virtual machines, either run the extra provisioning script, or run these
commands again.

We’ve now finished configuring the Linux kernel to support our
Kubernetes deployment and are almost ready for the actual install. First we
need to install some prerequisite packages:

root@host01:~# k8s-all apt install -y apt-transport-https \
 open-iscsi nfs-common

The apt-transport-https package ensures that apt can support connecting to
repositories via secure HTTP. The other two packages are needed for one of
the cluster add-ons that we’ll install after our cluster is up and running.

Kubernetes Packages
We can now add the Kubernetes repository to install the kubeadm tool that will
set up our cluster. First, add the GPG key used to check the package
signatures:

root@host01:~# k8s-all "curl -fsSL \
 https://packages.cloud.google.com/apt/doc/apt-key.gpg | \
 gpg --dearmor -o /usr/share/keyrings/google-cloud-keyring.gpg"

This command uses curl to download the GPG key. It then uses gpg to
reformat it, and then it writes the result to /usr/share/keyrings. The command
line flags fsSL put curl in a mode that behaves better for chained commands,
including avoiding unnecessary output, following server redirects, and
terminating with an error if there is a problem.

Next, we add the repository configuration:

root@host01:~# k8s-all "echo 'deb [arch=amd64' \
 'signed-by=/usr/share/keyrings/google-cloud-keyring.gpg]' \
 'https://apt.kubernetes.io/ kubernetes-xenial main' > \
 /etc/apt/sources.list.d/kubernetes.list"

As before, the quoting is essential to ensure that the command is passed
correctly via SSH to all the other hosts in the cluster. The command
configures kubernetes-xenial as the distribution; this distribution is used for any
version of Ubuntu, starting with the older Ubuntu Xenial.

After we have created this new repository, we then need to run apt update on
all hosts to download the list of packages:

root@host01:~# k8s-all apt update
...

Now we can install the packages we need using apt:

root@host01:~# source /opt/k8sver
root@host01:~# k8s-all apt install -y kubelet=$K8SV kubeadm=$K8SV kubectl=$K8SV

The source command loads a file with a variable to install a specific
Kubernetes version. This file is created by the automated scripts and ensures
that we use a consistent Kubernetes version for all chapters. You can update
the automated scripts to choose which Kubernetes version to install.

The apt command installs the following three packages along with some
dependencies:

kubelet Service for all worker nodes that interfaces with the container engine
to run containers as scheduled by the control plane

kubeadm Administration tool that we’ll use to install Kubernetes and maintain
our cluster

kubectl Command line client that we’ll use to inspect our Kubernetes cluster
and to create and delete resources

The kubelet package starts its service immediately, but because we haven’t
installed the control plane yet, the service will be in a failed state at first:

root@host01:~# systemctl status kubelet
 kubelet.service - kubelet: The Kubernetes Node Agent
...
 Main PID: 75368 (code=exited, status=1/FAILURE)

We need to control the version of the packages we just installed because
we want to upgrade all of the components of our cluster together. To protect
ourselves from accidentally updating these packages, we’ll hold them at their
current version:

root@host01:~# k8s-all apt-mark hold kubelet kubeadm kubectl

This command prevents the standard apt full-upgrade command from
updating these packages. Instead, if we upgrade our cluster, we’ll need to
specify the exact version that we want by using apt install.

Cluster Initialization
The next command, kubeadm init, initializes the control plane and provides the

kubelet worker node service configuration for all the nodes. We’ll run kubeadm
init on one node in our cluster and then use kubeadm join on each of the other
nodes so that they join the existing cluster.

To run kubeadm init, we first create a YAML configuration file. This
approach has a few advantages. It greatly shortens the number of command
line flags that we need to remember, and it lets us keep the cluster
configuration in a repository, giving us configuration control over the cluster.
We then can update the YAML file and rerun kubeadm to make cluster
configuration changes.

The automation scripts for this chapter have populated a YAML
configuration file in /etc/kubernetes, so it’s ready to use. The following
shows the contents of that file:
kubeadm-init.yaml

apiVersion: kubeadm.k8s.io/v1beta3
kind: InitConfiguration
bootstrapTokens:
- groups:
 - system:bootstrappers:kubeadm:default-node-token
 token: 1d8fb1.2875d52d62a3282d
 ttl: 2h0m0s
 usages:
 - signing
 - authentication
nodeRegistration:
 kubeletExtraArgs:
 node-ip: 192.168.61.11
 taints: []
localAPIEndpoint:
 advertiseAddress: 192.168.61.11
certificateKey: "5a7e07816958efb97635e9a66256adb1"

apiVersion: kubeadm.k8s.io/v1beta3
kind: ClusterConfiguration
kubernetesVersion: 1.21.4
apiServer:
 extraArgs:
 service-node-port-range: 80-32767
networking:
 podSubnet: "172.31.0.0/16"
controlPlaneEndpoint: "192.168.61.10:6443"

apiVersion: kubelet.config.k8s.io/v1beta1
kind: KubeletConfiguration

serverTLSBootstrap: true

This YAML file has three documents, separated by dashes (---). The first
document is specific to initializing the cluster, the second has more generic
configuration, and the third is used to provide settings for kubelet across all the
nodes. Let’s look at the purpose of each of these configuration items:

apiVersion / kind Tells Kubernetes about the purpose of each YAML document,
so it can validate the contents.

bootstrapTokens Configures a secret that other nodes can use to join the cluster.
The token should be kept secret in a production cluster. It is set to expire
automatically after two hours, so if we want to join more nodes later, we’ll
need to make another one.

nodeRegistration Configuration to pass to the kubelet service running on host01.
The node-ip field ensures that kubelet registers the correct IP address with the
API server so that the API server can communicate with it. The taints field
ensures that regular containers can be scheduled onto control plane nodes.

localAPIEndpoint The local IP address that the API server should use. Our
virtual machine has multiple IP addresses, and we want the API server
listening on the correct network.

certificateKey Configures a secret that other nodes will use to gain access to the
certificates for the API server. It’s needed so that all of the API server
instances in our highly available cluster can use the same certificate. Keep it
secret in a production cluster.

networking All containers in the cluster will get an IP address from the podSubnet,
no matter what host they run on. Later, we’ll install a network driver that will
ensure that every container on all hosts in the cluster can communicate.

controlPlaneEndpoint The API server’s external address. For a highly available
cluster, this IP address needs to reach any API server instance, not just the
first one.

serverTLSBootstrap Instructs kubelet to use the controller manager’s certificate
authority to request server certificates.

The apiVersion and kind fields will appear in every Kubernetes YAML file.
The apiVersion field defines a group of related Kubernetes resources, including

a version number. The kind field then selects the specific resource type within
that group. This not only allows the Kubernetes project and other vendors to
add new groups of resources over time, but it also allows updates to existing
resource specifications while maintaining backward compatibility.

HIGHLY AVAILABLE CLUSTERS
The controlPlaneEndpoint field is used to configure the most important
requirement for a highly available cluster: an IP address that reaches all
of the API servers. We need to establish this IP address immediately
when we initialize the cluster because it is used to generate certificates
with which clients will verify the API server’s identity. The best way to
provide a cluster-wide IP address depends on where the cluster is
running; for example, in a cloud environment, using the provider’s
built-in capability, such as an Elastic Load Balancer (ELB) in Amazon
Web Services or an Azure Load Balancer, is best.

Because of the nature of the two different environments, the examples
for this book use kube-vip when running with Vagrant, and ELB when
running in Amazon Web Services. The top-level README.md file in
the example documentation has more details. The installation and
configuration is done automatically so there’s nothing more to
configure. We can just use 192.168.61.10:6443 and expect traffic to get to
any of the API server instances running on host01 through host03.

Because we have the cluster configuration ready to go in a YAML file, the
kubeadm init command to initialize the cluster is simple. We run this command
solely on host01:

root@host01:~# /usr/bin/kubeadm init \
 --config /etc/kubernetes/kubeadm-init.yaml --upload-certs

The --config option points to the YAML configuration file (kubeadm-
init.yaml) that we looked at earlier, and the --upload-certs option tells kubeadm that
it should upload the API server’s certificates to the cluster’s distributed
storage. The other control plane nodes then can download those certificates

when they join the cluster, allowing all API server instances to use the same
certificates so that clients will trust them. The certificates are encrypted using
the certificateKey we provided, which means that the other nodes will need this
key to decrypt them.

The kubeadm init command initializes the control plane’s components on
host01. These components are run in containers and managed by the kubelet
service, which makes them easy to upgrade. Several container images will be
downloaded, so the command might take a while, depending on the speed of
your virtual machines and your internet connection.

Joining Nodes to the Cluster
The kubeadm init command prints out a kubeadm join command that we can use to
join other nodes to the cluster. However, the automation scripts have already
prestaged a configuration file to each of the other nodes to ensure that they
join as the correct type of node. The servers host02 and host03 will join as
additional control plane nodes, whereas host04 will join solely as a worker
node.

Here’s the YAML configuration file for host02 with its specific settings:
kubeadm-join.yaml (host02)

apiVersion: kubeadm.k8s.io/v1beta3
kind: JoinConfiguration
discovery:
 bootstrapToken:
 apiServerEndpoint: 192.168.61.10:6443
 token: 1d8fb1.2875d52d62a3282d
 unsafeSkipCAVerification: true
 timeout: 5m0s
nodeRegistration:
 kubeletExtraArgs:
 cgroup-driver: containerd
 node-ip: 192.168.61.12
 taints: []
 ignorePreflightErrors:
 - DirAvailable--etc-kubernetes-manifests
controlPlane:
 localAPIEndpoint:
 advertiseAddress: 192.168.61.12
 certificateKey: "5a7e07816958efb97635e9a66256adb1"

This resource has a type of JoinConfiguration, but most of the fields are the

same as the InitConfiguration in the kubeadm-init.yaml file. Most important, the
token and certificateKey match the secret we set up earlier, so this node will be
able to validate itself with the cluster and decrypt the API server certificates.

One difference is the addition of ignorePreflightErrors. This section appears
only when we are installing kube-vip, as in that case we need to prestage the
configuration file for kube-vip to the /etc/kubernetes/manifests directory, and
we need to tell kubeadm that it is okay for that directory to already exist.

Because we have this YAML configuration file, the kubeadm join command
is simple. Run it on host02:

root@host02:~# /usr/bin/kubeadm join --config /etc/kubernetes/kubeadm-join.yaml

As before, this command runs the control plane components as containers
using the kubelet service on this node, so it will take some time to download
the container images and start the containers.

When it finishes, run the exact same command on host03:

root@host03:~# /usr/bin/kubeadm join --config /etc/kubernetes/kubeadm-join.yaml

The automation script set up the YAML file with the correct IP address
for each host, so the differences in configuration between each of the hosts is
already accounted for.

When this command completes, we’ll have created a highly available
Kubernetes cluster, with the control plane components running on three
separate hosts. However, we do not yet have any regular worker nodes. Let’s
fix that issue.

We’ll begin by joining host04 as a regular worker node and running exactly
the same kubeadm join command on host04, but the YAML configuration file will
be a little different. Here’s that file:
kubeadm-join.yaml (host04)

apiVersion: kubeadm.k8s.io/v1beta3
kind: JoinConfiguration
discovery:
 bootstrapToken:
 apiServerEndpoint: 192.168.61.10:6443
 token: 1d8fb1.2875d52d62a3282d
 unsafeSkipCAVerification: true
 timeout: 5m0s

nodeRegistration:
 kubeletExtraArgs:
 cgroup-driver: containerd
 node-ip: 192.168.61.14
 taints: []

This YAML file is missing the controlPlane field, so kubeadm configures it as a
regular worker node rather than a control plane node.

Now let’s join host04 to the cluster:

root@host04:~# /usr/bin/kubeadm join --config /etc/kubernetes/kubeadm-join.yaml

This command completes a little faster because it doesn’t need to
download the control plane container images and run them. We now have
four nodes in the cluster, which we can verify by running kubectl back on
host01:

root@host01:~# export KUBECONFIG=/etc/kubernetes/admin.conf
root@host01:~# kubectl get nodes
NAME STATUS ROLES ...
host01 NotReady control-plane...
host02 NotReady control-plane...
host03 NotReady control-plane...
host04 NotReady <none> ...

The first command sets an environment variable to tell kubectl what
configuration file to use. The /etc/kubernetes/admin.conf file was created
automatically by kubeadm when it initialized host01 as a control plane node. That
file tells kubectl what address to use for the API server, what certificate to use
to verify the secure connection, and how to authenticate.

The four nodes currently should be reporting a status of NotReady. Let’s run
the kubectl describe command to get the node details:

root@host01:~# kubectl describe node host04
Name: host04
...
Conditions:
 Type Status ... Message
 ---- ------ ... -------
 Ready False ... container runtime network not ready...
...

We haven’t yet installed a network driver for our Kubernetes cluster, and

as a result, all of the nodes are reporting a status of NotReady, which means that
they won’t accept regular application workloads. Kubernetes communicates
this by placing a taint in the node’s configuration. A taint restricts what can
be scheduled on a node. We can list the taints on the nodes using kubectl:

root@host01:~# kubectl get node -o json | \
 jq '.items[]|.metadata.name,.spec.taints[]'
"host01"
{
 "effect": "NoSchedule",
 "key": "node.kubernetes.io/not-ready"
}
"host02"
{
 "effect": "NoSchedule",
 "key": "node.kubernetes.io/not-ready"
}
"host03"
{
 "effect": "NoSchedule",
 "key": "node.kubernetes.io/not-ready"
}
"host04"
{
 "effect": "NoSchedule",
 "key": "node.kubernetes.io/not-ready"
}

We select an output format of json so that we can use jq to print just the
information we need. Because all the nodes have a status of NotReady, they
have a not-ready taint set to NoSchedule, which prevents the Kubernetes scheduler
from scheduling containers onto them.

By specifying taints as an empty array in the kubeadm configuration, we
prevented the three control plane nodes from having an additional control
plane taint. In a production cluster, this taint keeps application containers
separate from the control plane containers for security reasons, so we would
leave it in place. For our example cluster, though, it would mean that we need
multiple extra virtual machines to act as worker nodes, which we don’t want.

The command kubectl taint would allow us to remove the not-ready taint
manually, but the correct approach is to install a network driver as a cluster
add-on so that the nodes will properly report Ready, enabling us to run
containers on them.

Installing Cluster Add-ons
We’ve installed kubelet on four separate nodes and installed the control plane
on three of those nodes and joined them to our cluster. For the rest, we’ll use
the control plane to install cluster add-ons. These add-ons are similar to
regular applications that we would deploy. They consist of Kubernetes
resources and run in containers, but they provide essential services to the
cluster that our applications will use.

To get a basic cluster up and running, we need to install three types of
add-ons: a network driver, a storage driver, and an ingress controller. We
will also install a fourth optional add-on, a metrics server.

Network Driver
Kubernetes networking is based on the Container Network Interface (CNI)
standard. Anyone can build a new network driver for Kubernetes by
implementing this standard, and as a result, several choices are available for
Kubernetes network drivers. We’ll demonstrate different network plug-ins in
Chapter 8, but most of the clusters in this book use the Calico network driver
because it is the default choice for many Kubernetes platforms.

First, download the primary YAML configuration file for Calico:

root@host01:~# cd /etc/kubernetes/components
root@host01:/etc/kubernetes/components# curl -L -O $calico_url
...

The -L option tells curl to follow any HTTP redirects, whereas the -O option
tells curl to save the content in a file using the same filename as in the URL.
The value of the calico_url environment variable is set in the k8s-ver script that
also specified the Kubernetes version. This is essential, as Calico is sensitive
to the specific version of Kubernetes we’re running, so it’s important to
choose values that are compatible.

The primary YAML configuration is written to the local file tigera-
operator.yaml. This refers to the fact that the initial installation is a
Kubernetes Operator, which then creates all of the other cluster resources to
install Calico. We’ll explore operators in Chapter 17.

In addition to this primary YAML configuration, the automated scripts for
this chapter have added a file called custom-resources.yaml that provides

necessary configuration for our example cluster. We now can tell the
Kubernetes API server to apply all the resources in these files to the cluster:

root@host01:/etc/kubernetes/components# kubectl apply -f tigera-operator.yaml
...
root@host01:/etc/kubernetes/components# kubectl apply -f custom-resources.yaml

Kubernetes takes a few minutes to download container images and start
containers, and then Calico will be running in our cluster and our nodes
should report a status of Ready:

root@host01:/etc/kubernetes/components# kubectl get nodes
NAME STATUS ROLES ...
host01 Ready control-plane,master ...
host02 Ready control-plane,master ...
host03 Ready control-plane,master ...
host04 Ready <none> ...

Calico works by installing a DaemonSet, a Kubernetes resource that tells
the cluster to run a specific container or set of containers on every node. The
Calico containers then provide network services for any containers running
on that node. However, that raises an important question. When we installed
Calico in our cluster, all of our nodes had a taint that told Kubernetes not to
schedule containers on them. How was Calico able to run its containers on all
the nodes? The answer is tolerations.

A toleration is a configuration setting applied to a resource that instructs
Kubernetes it can be scheduled on a node despite a taint possibly being
present. Calico specifies a toleration when it adds its DaemonSet to the
cluster, as we can see with kubectl:

root@host01:/etc/kubernetes/components# kubectl -n calico-system \
 get daemonsets -o json | \
 jq '.items[].spec.template.spec.tolerations[]'
{
 "key": "CriticalAddonsOnly",
 "operator": "Exists"
}
{
 "effect": "NoSchedule",
 "operator": "Exists"
}
{
 "effect": "NoExecute",

 "operator": "Exists"
}

The -n option selects the calico-system Namespace. Namespaces are a way to
keep Kubernetes resources separate from one another on a cluster, for
security reasons as well as to avoid naming collisions. Also, as before, we
request JSON output and use jq to select only the field we’re interested in. If
you want to see the entire configuration for the resource, use -o=json without jq
or use -o=yaml.

This DaemonSet has three tolerations, and the second one provides the
behavior we need. It tells the Kubernetes scheduler to go ahead and schedule
it even on nodes that have a NoSchedule taint. Calico then can get itself started
before the node is ready, and once it’s running, the node changes its status to
Ready so that normal application containers can be scheduled. The control
plane components needed a similar toleration in order to run on nodes before
they show Ready.

Installing Storage
The cluster nodes are ready, so if we deployed a regular application, its
containers would run. However, applications that require persistent storage
would fail to start because the cluster doesn’t yet have a storage driver. Like
network drivers, several storage drivers are available for Kubernetes. The
Container Storage Interface (CSI) provides the standard that storage drivers
need to meet to work with Kubernetes. We’ll use Longhorn, a storage driver
from Rancher; it’s easy to install and doesn’t require any underlying
hardware like extra block devices or access to cloud-based storage.

Longhorn makes use of the iSCSI and NFS software we installed earlier.
It expects all of our nodes to have the iscsid service enabled and running, so
let’s make sure that’s true on all our nodes:

root@host01:/etc/kubernetes/components# k8s-all systemctl enable --now iscsid

We now can install Longhorn on the cluster. The process for installing
Longhorn looks a lot like Calico. Start by downloading the Longhorn YAML
configuration:

root@host01:/etc/kubernetes/components# curl -LO $longhorn_url

The longhorn_url environment variable is also set by the k8s-ver script, which
allows us to ensure compatibility.

Install Longhorn using kubectl:

root@host01:/etc/kubernetes/components# kubectl apply -f longhorn.yaml

As before, kubectl apply ensures that the resources in the YAML file are
applied to the cluster, creating or updating them as necessary. The kubectl apply
command supports URLs as the source of the resource it applies to the
cluster, but for these three installs, we run a separate curl command because
it’s convenient to have a local copy of what was applied to the cluster.

Longhorn is now installed on the cluster, which we’ll verify as we explore
the cluster in the rest of this chapter.

Ingress Controller
We now have networking and storage, but the networking allows access to
containers only from within our cluster. We need another service that exposes
our containerized applications outside the cluster. The easiest way to do that
is to use an ingress controller. As we’ll describe in Chapter 9, an ingress
controller watches the Kubernetes cluster for Ingress resources and routes
network traffic.

We begin by downloading the ingress controller YAML configuration:

root@host01:/etc/kubernetes/components# curl -Lo ingress-controller.yaml
 $ingress_url

As in our earlier example, the ingress_url environment variable is set by the
k8s-ver script so that we can ensure compatibility. In this case, the URL ends in
the generic path of deploy.yaml, so we use -o to provide a filename to curl to
make clear the purpose of the downloaded YAML file.

Install the ingress controller using kubectl:

root@host01:/etc/kubernetes/components# kubectl apply -f ingress-controller.yaml

This creates a lot of resources, but there are two main parts: an NGINX
web server that actually performs routing of HTTP traffic, and a component
that watches for changes in Ingress resources in the cluster and configures
NGINX accordingly.

There’s one more step we need. As installed, the ingress controller tries to
request an external IP address to allow traffic to reach it from outside the
cluster. Because we’re running a sample cluster with no access to external IP
addresses, this won’t work. Instead, we’ll be accessing our ingress controller
using port forwarding from our cluster hosts. At the moment, our ingress
controller is set up for this port forwarding, but it’s using a random port. We
would like to select the port to be sure that we know where to find the ingress
controller. At the same time, we’ll also add an annotation so that this ingress
controller will be the default for this cluster.

To apply the port changes, we’re going to provide our Kubernetes cluster
an with extra YAML configuration with just the changes we need. Here’s that
YAML:
ingress-patch.yaml

apiVersion: v1
kind: Service
metadata:
 name: ingress-nginx-controller
 namespace: ingress-nginx
spec:
 ports:
 - port: 80
 nodePort: 80
 - port: 443
 nodePort: 443

This file specifies the name and Namespace of the Service to ensure that
Kubernetes knows where to apply these changes. It also specifies the port
configuration we’re updating, along with the nodePort, which is the port on our
cluster nodes that will be used for port forwarding. We’ll look at NodePort
service types and port forwarding in more detail in Chapter 9.

To patch the service, we use the kubectl patch command:

root@host01:/etc/kubernetes/components# kubectl patch -n ingress-nginx \
 service/ingress-nginx-controller --patch-file ingress-patch.yaml
service/ingress-nginx-controller patched

To apply the annotation, use the kubectl annotate command:

root@host01:/etc/kubernetes/components# kubectl annotate -n ingress-nginx \
 ingressclass/nginx ingressclass.kubernetes.io/is-default-class="true"

ingressclass.networking.k8s.io/nginx annotated

Kubernetes reports the change to each resource as we make it, so we know
that our changes have been applied.

Metrics Server
Our final add-on is a metrics server that collects utilization metrics from our
nodes, enabling the use of autoscaling. To do this, it needs to connect to the
kubelet instances in our cluster. For security, it needs to verify the HTTP/S
certificate when it connects to a kubelet. This is why we configured kubelet to
request a certificate signed by the controller manager rather than allowing the
kubelet to generate self-signed certificates.

During setup, kubelet created a certificate request on each node, but the
requests were not automatically approved. Let’s find these requests:

root@host01:/etc/kubernetes/components# kubectl get csr
NAME ... SIGNERNAME ... CONDITION
csr-sgrwz ... kubernetes.io/kubelet-serving ... Pending
csr-agwb6 ... kubernetes.io/kube-apiserver-client-kubelet ... Approved,Issued
csr-2kwwk ... kubernetes.io/kubelet-serving ... Pending
csr-5496d ... kubernetes.io/kube-apiserver-client-kubelet ... Approved,Issued
csr-hm6lj ... kubernetes.io/kube-apiserver-client-kubelet ... Approved,Issued
csr-jbfmx ... kubernetes.io/kubelet-serving ... Pending
csr-njjr7 ... kubernetes.io/kube-apiserver-client-kubelet ... Approved,Issued
csr-v7tcs ... kubernetes.io/kubelet-serving ... Pending
csr-vr27n ... kubernetes.io/kubelet-serving ... Pending

Each kubelet has a client certificate that it uses to authenticate to the API
server; these were automatically approved during bootstrap. The requests we
need to approve are for kubelet-serving certificates, which are used when clients
such as our metrics server connect to kubelet. As soon as the request is
approved, the controller manager signs the certificate. The kubelet then collects
the certificate and starts using it.

We can approve all of these requests at once by querying for the name of
all of the kubelet-serving requests and then passing those names to kubectl certificate
approve:

root@host01:/etc/kubernetes/components# kubectl certificate approve \$(kubectl
 get csr --field-selector spec.signerName=kubernetes.io/kubelet-serving -o name)
certificatesigningrequest.certificates.k8s.io/csr-sgrwz approved
...

We now can install our metrics server by downloading and applying its
YAML configuration:

root@host01:/etc/kubernetes/components# curl -Lo metrics-server.yaml \$metrics_url
root@host01:/etc/kubernetes/components# kubectl apply -f metrics-server.yaml
...
root@host01:/etc/kubernetes/components# cd
root@host01:~#

This component is the last one we need to install, so we can leave this
directory. With these cluster add-ons, we now have a complete, highly
available Kubernetes cluster.

Exploring a Cluster
Before deploying our first application onto this brand-new Kubernetes
cluster, let’s explore what’s running on it. The commands we use here will
come in handy later as we debug our own applications and a cluster that isn’t
working correctly.

We’ll use crictl, the same command we used to explore running containers
in Part I, to see what containers are running on host01:

root@host01:~# crictl ps
CONTAINER ... STATE NAME ...
25c63f29c1442 ... Running longhorn-csi-plugin ...
2ffdd044a81d8 ... Running node-driver-registrar ...
94468050de89c ... Running csi-provisioner ...
119fbf417f1db ... Running csi-attacher ...
e74c1a2a0c422 ... Running kube-scheduler ...
d1ad93cdbc686 ... Running kube-controller-manager ...
76266a522cc3d ... Running engine-image-ei-611d1496 ...
fc3cd1679e33e ... Running replica-manager ...
48e792a973105 ... Running engine-manager ...
e658baebbc295 ... Running longhorn-manager ...
eb51d9ec0f2fc ... Running calico-kube-controllers ...
53e7e3e4a3148 ... Running calico-node ...
772ac45ceb94e ... Running calico-typha ...
4005370021f5f ... Running kube-proxy ...
26929cde3a264 ... Running kube-apiserver ...
9ea4c2f5af794 ... Running etcd ...

The control plane node is very busy, as this list includes Kubernetes
control plane components, Calico components, and Longhorn components.

Running this command on all the nodes and sorting out what containers are
running where and for what purpose would be confusing. Fortunately, kubectl
provides a clearer picture, although knowing that we can get down to these
lower-level details and see exactly what containers are running on a given
node is nice.

To explore the cluster with kubectl, we need to know how the cluster
resources are organized into Namespaces. As mentioned previously,
Kubernetes Namespaces provide security and avoid name collisions. To
ensure idempotence, Kubernetes needs each resource to have a unique name.
By dividing resources into Namespaces, we allow multiple resources to have
the same name while still enabling the API server to know exactly which
resource we mean, which also supports multitenancy, one of our cross-cutting
concerns.

Even though we just set up the cluster, it’s already populated with several
Namespaces:

root@host01:~# kubectl get namespaces
NAME STATUS AGE
calico-system Active 50m
default Active 150m
kube-node-lease Active 150m
kube-public Active 150m
kube-system Active 150m
longhorn-system Active 16m
tigera-operator Active 50m

As we run kubectl commands, they will apply to the default Namespace
unless we use the -n option to specify a different Namespace.

To see what containers are running, we ask kubectl to get the list of Pods.
We look at Kubernetes Pods in much more detail in Chapter 7. For now, just
know that a Pod is a group of one or more containers, much like the Pods that
we created with crictl in Part I.

If we try to list Pods in the default Namespace, we can see that there aren’t
any yet:

root@host01:~# kubectl get pods
No resources found in default namespace.

So far, as we installed cluster infrastructure components, they’ve been
created in other Namespaces. That way, when we configure normal user

accounts, we can prevent those users from viewing or editing the cluster
infrastructure. The Kubernetes infrastructure components were all installed
into the kube-system Namespace:

root@host01:~# kubectl -n kube-system get pods
NAME READY STATUS ...
coredns-558bd4d5db-7krwr 1/1 Running ...
...
kube-apiserver-host01 1/1 Running ...
...

We cover the control plane components in Chapter 11. For now, let’s
explore just one of the control plane Pods, the API server running on host01.
We can get all of the details for this Pod using kubectl describe:

root@host01:~# kubectl -n kube-system describe pod kube-apiserver-host01
Name: kube-apiserver-host01
Namespace: kube-system
...
Node: host01/192.168.61.11
...
Status: Running
Containers:
 kube-apiserver:
 Container ID: containerd://26929cde3a264e...
...

The Namespace and name together uniquely identify this Pod. We also
see the node on which the Pod is scheduled, its status, and details about the
actual containers, including a container ID that we can use with crictl to find
the container in the underlying containerd runtime.

Let’s also verify that Calico deployed into our cluster as expected:

root@host01:~# kubectl -n calico-system get pods
NAME READY STATUS ...
calico-kube-controllers-7f58dbcbbd-ch7zt 1/1 Running ...
calico-node-cp88k 1/1 Running ...
calico-node-dn4rj 1/1 Running ...
calico-node-xnkmg 1/1 Running ...
calico-node-zfscp 1/1 Running ...
calico-typha-68b99cd4bf-7lwss 1/1 Running ...
calico-typha-68b99cd4bf-jjdts 1/1 Running ...
calico-typha-68b99cd4bf-pjr6q 1/1 Running ...

Earlier we saw that Calico installed a DaemonSet resource. Kubernetes

has used the configuration in this DaemonSet to automatically create a calico-
node Pod for each node. Like Kubernetes itself, Calico also uses a separate
control plane to handle overall configuration of the network, and the other
Pods provide that control plane.

Finally, we’ll see the containers that are running for Longhorn:

root@host01:~# kubectl -n longhorn-system get pods
NAME READY STATUS RESTARTS AGE
engine-image-ei-611d1496-8q58f 1/1 Running 0 31m
...
longhorn-csi-plugin-8vkr6 2/2 Running 0 31m
...
longhorn-manager-dl9sb 1/1 Running 1 32m
...

Like Calico, Longhorn uses DaemonSets so that it can run containers on
every node. These containers provide storage services to the other containers
on the node. Longhorn also includes a number of other containers that serve
as a control plane, including providing the CSI implementation that
Kubernetes uses to tell Longhorn to create storage when needed.

We put a lot of effort into setting up this cluster, so it would be a shame to
end this chapter without running at least one application on it. In the next
chapter, we will look at many different ways to run containers, but let’s
quickly run a simple NGINX web server in our Kubernetes cluster:

root@host01:~# kubectl run nginx --image=nginx
pod/nginx created

That may look like an imperative command, but under the hood, kubectl is
creating a Pod resource using the name and container image we specified,
and then it’s applying that resource on the cluster. Let’s inspect the default
Namespace again:

root@host01:~# kubectl get pods -o wide
NAME READY STATUS ... IP NODE ...
nginx 1/1 Running ... 172.31.89.203 host02 ...

We used -o wide to see extra information about the Pod, including its IP
address and where it was scheduled, which can be different each time the Pod
is created. In this case, the Pod was scheduled to host02, showing that we were
successful in allowing regular application containers to be deployed to our

control plane nodes. The IP address comes from the Pod CIDR we
configured, and Calico automatically assigns it.

Calico also handles routing traffic so that we can reach the Pod from any
container in the cluster as well as from the host network. Let’s verify that,
starting with a regular ping:

root@host01:~# ping -c 1 172.31.89.203
PING 172.31.89.203 (172.31.89.203) 56(84) bytes of data.
64 bytes from 172.31.89.203: icmp_seq=1 ttl=63 time=0.848 ms

--- 172.31.89.203 ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 0.848/0.848/0.848/0.000 ms

Use your Pod’s IP address in the place of the one shown here.
We can also use curl to verify that the NGINX web server is working:

root@host01:~# curl http://172.31.89.203
...
<title>Welcome to nginx!</title>
...

The Kubernetes cluster is working and ready for us to deploy applications.
Kubernetes will take advantage of all of the nodes in the cluster to load
balance our applications and provide resiliency in the event of any failures.

Final Thoughts
In this chapter, we’ve explored how Kubernetes is architected with the
flexibility to allow cluster components to come and go at any time. This
applies not only to containerized applications but also to the cluster
components, including control plane microservices and the underlying
servers and networks the cluster uses. We were able to bootstrap a cluster and
then dynamically add nodes to it, configure those nodes to accept certain
types of containers, and then dynamically add networking and storage drivers
using the Kubernetes cluster itself to run and monitor them. Finally, we
deployed our first container to a Kubernetes cluster, allowing it to
automatically schedule the container onto an available node, using our
network driver to access the container from the host network.

Now that we have a highly available cluster, we can look at how to deploy
an application to Kubernetes. We’ll explore some key Kubernetes resources
that we need to create a scalable, reliable application. This process will
provide a foundation for exploring Kubernetes in detail, including
understanding what happens when our applications don’t run as expected and
how to debug issues with our application or the Kubernetes cluster.

7
DEPLOYING CONTAINERS TO KUBERNETES

We’re now ready to begin running containers on our working Kubernetes
cluster. Because Kubernetes has a declarative API, we’ll create various kinds
of resources to run them, and we’ll monitor the cluster to see what
Kubernetes does for each type of resource.

Different containers have different use cases. Some might require multiple
identical instances with autoscaling to perform well under load. Other
containers might exist solely to run a one-time command. Still others may
require a fixed ordering to enable selecting a single primary instance and
providing controlled failover to a secondary instance. Kubernetes provides
different controller resource types for each of those use cases. We’ll look at
each in turn, but we’ll begin with the most fundamental of them, the Pod,
which is utilized by all of those use cases.

Pods
A Pod is the most basic resource in Kubernetes and is how we run containers.
Each Pod can have one or more containers within it. The Pod is used to
provide the process isolation we saw in Chapter 2. Linux kernel namespaces
are used at the Pod and the container level:

mnt Mount points: each container has its own root filesystem; other mounts

are available to all containers in the Pod.

uts Unix time sharing: isolated at the Pod level.

ipc Interprocess communication: isolated at the Pod level.

pid Process identifiers: isolated at the container level.

net Network: isolated at the Pod level.

The biggest advantage of this approach is that multiple containers can act
like processes on the same virtual host, using the localhost address to
communicate, while still being based on separate container images.

Deploying a Pod
To get started, let’s create a Pod directly. Unlike the previous chapter, in
which we used kubectl run to have the Pod specification created for us, we’ll
specify it directly using YAML so that we have complete control over the
Pod and to prepare us for using controllers to create Pods, providing
scalability and failover.

NOTE
The example repository for this book is at https://github.com/book-of-
kubernetes/examples. See “Running Examples” on page xx for details on
getting set up.

The automation script for this chapter does a full cluster install with three
nodes that run the control plane and regular applications, providing the
smallest possible highly available cluster for testing. The automation also
creates some YAML files for Kubernetes resources. Here’s a basic YAML
resource to create a Pod running NGINX:
nginx-pod.yaml

apiVersion: v1
kind: Pod
metadata:
 name: nginx
spec:
 containers:

https://github.com/book-of-kubernetes/examples

 - name: nginx
 image: nginx

Pods are part of the core Kubernetes API, so we just specify a version
number of v1 for the apiVersion. Specifying Pod as the kind tells Kubernetes
exactly what resource we’re creating in the API group. We will see these
fields in all of our Kubernetes resources.

The metadata field has many uses. For the Pod, we just need to provide the
one required field of name. We don’t specify the namespace in the metadata, so
by default this Pod will end up in the default Namespace.

The remaining field, spec, tells Kubernetes everything it needs to know to
run this Pod. For now we are providing the minimal information, which is a
list of containers to run, but many other options are available. In this case, we
have only one container, so we provide just the name and container image
Kubernetes should use.

Let’s add this Pod to the cluster. The automation added files to /opt, so we
can do it from host01 as follows:

root@host01:~# kubectl apply -f /opt/nginx-pod.yaml
pod/nginx created

In Listing 7-1, we can check the Pod’s status.

root@host01:~# kubectl get pods -o wide
NAME READY STATUS RESTARTS AGE IP NODE ...
nginx 1/1 Running 0 2m26s 172.31.25.202 host03 ...

Listing 7-1: Status of NGINX

It can take some time before the Pod shows Running, especially if you just
set up your Kubernetes cluster and it’s still busy deploying core components.
Keep trying this kubectl command to check the status.

Instead of typing the kubectl command multiple times, you can also use
watch. The watch command is a great way to observe changes in your cluster
over time. Just add watch in front of your command, and it will be run for you
every two seconds.

We added -o wide to the command to see the IP address and node
assignment for this Pod. Kubernetes manages that for us. In this case, the Pod
was scheduled on host03, so we need to go there to see the running container:

root@host03:~# crictl pods --name nginx
POD ID CREATED STATE NAME NAMESPACE ...
9f1d6e0207d7e 19 minutes ago Ready nginx default ...

Run this command on whatever host your NGINX Pod is on.
If we collect the Pod ID, we can see the container as well:

root@host03:~# POD_ID=$(crictl pods -q --name nginx)
root@host03:~# crictl ps --pod $POD_ID
CONTAINER IMAGE CREATED STATE NAME ...
9da09b3671418 4cdc5dd7eaadf 20 minutes ago Running nginx ...

This output looks very similar to the output from kubectl get in Listing 7-1,
which is not surprising given that our cluster gets that information from the
kubelet service running on this node, which in turn uses the same Container
Runtime Interface (CRI) API that crictl is also using to talk to the container
engine.

Pod Details and Logging
The ability to use crictl with the underlying container engine to explore a
container running in the cluster is valuable, but it does require us to connect
to the specific host running the container. Much of the time, we can avoid
that by using kubectl commands to inspect Pods from anywhere by connecting
to our cluster’s API server. Let’s move back to host01 and explore the NGINX
Pod further.

In Chapter 6, we saw how we could use kubectl describe to see the status and
event log for a cluster node. We can use the same command to see the status
and configuration details of other Kubernetes resources. Here’s the event log
for our NGINX Pod:

 root@host01:~# kubectl describe pod nginx
 Name: nginx
 Namespace: ➊ default
 ...
 Containers:
 nginx:
 Container ID: containerd://9da09b3671418...
 ...
➋ Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal Scheduled 22m default-scheduler Successfully assigned ...

 Normal Pulling 22m kubelet Pulling image "nginx"
 Normal Pulled 21m kubelet Successfully pulled image ...
 Normal Created 21m kubelet Created container nginx
 Normal Started 21m kubelet Started container nginx

We can use kubectl describe with many different Kubernetes resources, so we
first tell kubectl that we are interested in a Pod and provide the name. Because
we didn’t specify a Namespace, Kubernetes will look for this Pod in the default
Namespace ➊.

NOTE
We use the default Namespace for most of the examples in this book to save
typing, but it’s a good practice to use multiple Namespaces to keep
applications separate, both to avoid naming conflicts and to manage
access control. We look at Namespaces in more detail in Chapter 11.

The kubectl describe command output provides an event log ➋, which is the
first place to look for issues when we have problems starting a container.

Kubernetes takes a few steps when deploying a container. First, it needs to
schedule it onto a node, which requires that node to be available with
sufficient resources. Then, control passes to kubelet on that node, which has to
interact with the container engine to pull the image, create a container, and
start it.

After the container is started, kubelet collects the standard out and standard
error. We can view this output by using the kubectl logs command:

root@host01:~# kubectl logs nginx
...
2021/07/13 22:37:03 [notice] 1#1: start worker processes
2021/07/13 22:37:03 [notice] 1#1: start worker process 33
2021/07/13 22:37:03 [notice] 1#1: start worker process 34

The kubectl logs command always refers to a Pod because Pods are the basic
resource used to run containers, and our Pod has only one container, so we
can just specify the name of the Pod as a single parameter to kubectl logs. As
before, Kubernetes will look in the default Namespace because we didn’t
specify the Namespace.

The container output is available even if the container has exited, so the

kubectl logs command is the place to look if a container is pulled and started
successfully but then crashes. Of course, we have to hope that the container
printed a log message explaining why it crashed. In Chapter 10, we look at
what to do if we can’t get a container going and don’t have any log messages.

We’re done with the NGINX Pod, so let’s clean it up:

root@host01:~# kubectl delete -f /opt/nginx-pod.yaml
pod "nginx" deleted

We can use the same YAML configuration file to delete the Pod, which is
convenient when we have multiple Kubernetes resources defined in a single
file, as a single command will delete all of them. The kubectl command uses
the name of each resource defined in the file to perform the delete.

Deployments
To run a container, we need a Pod, but that doesn’t mean we generally want
to create the Pod directly. When we create a Pod directly, we don’t get all of
the scalability and failover that Kubernetes offers, because Kubernetes will
run only one instance of the Pod. This Pod will be allocated to a node only on
creation, with no re-allocation even if the node fails.

To get scalability and failover, we instead need to create a controller to
manage the Pod for us. We’ll look at multiple controllers that can run Pods,
but let’s start with the most common: the Deployment.

Creating a Deployment
A Deployment manages one or more identical Kubernetes Pods. When we
create a Deployment, we provide a Pod template. The Deployment then
creates Pods matching that template with the help of a ReplicaSet.

DEPLOYMENTS AND REPLICASETS
Kubernetes has evolved its controller resources over time. The first type
of controller, the ReplicationController, provided only basic
functionality. It was replaced by the ReplicaSet, which has

improvements in how it identifies which Pods to manage.

Part of the reason to replace ReplicationControllers with ReplicaSets is
that ReplicationControllers were becoming more and more complicated,
making the code difficult to maintain. The new approach splits up
controller responsibility between ReplicaSets and Deployments.
ReplicaSets are responsible for basic Pod management, including
monitoring Pod status and performing failover. Deployments are
responsible for tracking changes to the Pod template caused by
configuration changes or container image updates. Deployments and
ReplicaSets work together, but the Deployment creates its own
ReplicaSet, so we usually need to interact only with Deployments. For
this reason, I use the term Deployment generically to refer to features
provided by the ReplicaSet, such as monitoring Pods to provide the
requested number of replicas.

Here’s the YAML file we’ll use to create an NGINX Deployment:
nginx-deploy.yaml

 kind: Deployment
 apiVersion: apps/v1
 metadata:
➊ name: nginx
 spec:
 replicas: 3
 selector:
 matchLabels:
 app: nginx
 template:
 metadata:
 ➋ labels:
 app: nginx
 ➌ spec:
 containers:
 - name: nginx
 image: nginx
 ➍ resources:
 requests:
 cpu: "100m"

Deployments are in the apps API group, so we specify apps/v1 for apiVersion.

Like every Kubernetes resource, we need to provide a unique name ➊ to
keep this Deployment separate from any others we might create.

The Deployment specification has a few important fields, so let’s look at
them in detail. The replicas field tells Kubernetes how many identical instances
of the Pod we want. Kubernetes will work to keep this many Pods running.
The next field, selector, is used to enable the Deployment to find its Pods. The
content of matchLabels must exactly match the content in the template.metadata.labels
field ➋, or Kubernetes will reject the Deployment.

Finally, the content of template.spec ➌ will be used as the spec for any Pods
created by this Deployment. The fields here can include any configuration we
can provide for a Pod. This configuration matches nginx-pod.yaml that we
looked at earlier except that we add a CPU resource request ➍ so that we can
configure autoscaling later on.

Let’s create our Deployment from this YAML resource file:

root@host01:~# kubectl apply -f /opt/nginx-deploy.yaml
deployment.apps/nginx created

We can track the status of the Deployment with kubectl get:

root@host01:~# kubectl get deployment nginx
NAME READY UP-TO-DATE AVAILABLE AGE
nginx 3/3 3 3 4s

When the Deployment is fully up, it will report that it has three replicas
ready and available, which means that we now have three separate NGINX
Pods managed by this Deployment:

root@host01:~# kubectl get pods
NAME READY STATUS RESTARTS AGE
nginx-6799fc88d8-6vn44 1/1 Running 0 18s
nginx-6799fc88d8-dcwx5 1/1 Running 0 18s
nginx-6799fc88d8-sh8qs 1/1 Running 0 18s

The name of each Pod begins with the name of the Deployment.
Kubernetes adds some random characters to build the name of the
ReplicaSet, followed by more random characters so that each Pod has a
unique name. We don’t need to create or manage the ReplicaSet directly, but
we can use kubectl get to see it:

root@host01:~# kubectl get replicasets
NAME DESIRED CURRENT READY AGE
nginx-6799fc88d8 3 3 3 30s

Although we generally interact only with Deployments, it is important to
know about the ReplicaSet, as some specific errors encountered when
creating Pods are only reported in the ReplicaSet event log.

The nginx prefix on the ReplicaSet and Pod names are purely for
convenience. The Deployment does not use names to match itself to Pods.
Instead, it uses its selector to match the labels on the Pod. We can see these
labels if we run kubectl describe on one of the three Pods:

root@host01:~# kubectl describe pod nginx-6799fc88d8-6vn44
Name: nginx-6799fc88d8-6vn44
Namespace: default
...
Labels: app=nginx
...

This matches the Deployment’s selector:

root@host01:~# kubectl describe deployment nginx
Name: nginx
Namespace: default
...
Selector: app=nginx
...

The Deployment queries the API server to identify Pods matching its
selector. Whereas the Deployment uses the programmatic API, the kubectl get
command in the following example generates a similar API server query,
giving us an opportunity to see how that works:

root@host01:~# kubectl get all -l app=nginx
NAME READY STATUS RESTARTS AGE
nginx-6799fc88d8-6vn44 1/1 Running 0 69s
nginx-6799fc88d8-dcwx5 1/1 Running 0 69s
nginx-6799fc88d8-sh8qs 1/1 Running 0 69s

NAME DESIRED CURRENT READY AGE
replicaset.apps/nginx-6799fc88d8 3 3 3 69s

Using kubectl get all in this case allows us to list multiple different kinds of

resources as long as they match the selector. As a result, we see not only the
three Pods but also the ReplicaSet that was created by the Deployment to
manage those Pods.

It may seem strange that the Deployment uses a selector rather than just
tracking the Pods it created. However, this design makes it easier for
Kubernetes to be self-healing. At any time, a Kubernetes node might go
offline, or we might have a network split, during which some control nodes
lose their connection to the cluster. If a node comes back online, or the
cluster needs to recombine after a network split, Kubernetes must be able to
look at the current state of all of the running Pods and figure out what
changes are required to achieve the desired state. This might mean that a
Deployment that started an additional Pod as the result of a node
disconnection would need to shut down a Pod when that node reconnects so
that the cluster can maintain the appropriate number of replicas. Using a
selector avoids the need for the Deployment to remember all the Pods it has
ever created, even Pods on failed nodes.

Monitoring and Scaling
Because the Deployment is monitoring its Pods to make sure we have the
correct number of replicas, we can delete a Pod, and it will be automatically
re-created:

root@host01:~# kubectl delete pod nginx-6799fc88d8-6vn44
pod "nginx-6799fc88d8-6vn44" deleted
root@host01:~# kubectl get pods
NAME READY STATUS RESTARTS AGE
nginx-6799fc88d8-dcwx5 1/1 Running 0 3m52s
nginx-6799fc88d8-dtddk 1/1 Running 0 ➊ 14s
nginx-6799fc88d8-sh8qs 1/1 Running 0 3m52s

As soon as the old Pod is deleted, the Deployment created a new Pod ➊.
Similarly, if we change the number of replicas for the Deployment, Pods are
automatically updated. Let’s add another replica:

root@host01:~# kubectl scale --replicas=4 deployment nginx
deployment.apps/nginx scaled
root@host01:~# kubectl get pods
NAME READY STATUS RESTARTS AGE
nginx-6799fc88d8-dcwx5 1/1 Running 0 8m22s
nginx-6799fc88d8-dtddk 1/1 Running 0 4m44s

nginx-6799fc88d8-kk7r6 1/1 Running 0 ➊ 5s
nginx-6799fc88d8-sh8qs 1/1 Running 0 8m22s

The first command sets the number of replicas to four. As a result,
Kubernetes needs to start a new identical Pod to meet the number we
requested ➊. We can scale the Deployment by updating the YAML file and
re-running kubectl apply, or we can use the kubectl scale command to edit the
Deployment directly. Either way, this is a declarative approach; we are
updating the Deployment’s resource declaration; Kubernetes then updates the
actual state of the cluster to match.

Similarly, scaling the Deployment down causes Pods to be automatically
deleted:

root@host01:~# kubectl scale --replicas=2 deployment nginx
deployment.apps/nginx scaled
root@host01:~# kubectl get pods
NAME READY STATUS RESTARTS AGE
nginx-6799fc88d8-dcwx5 1/1 Running 0 10m
nginx-6799fc88d8-sh8qs 1/1 Running 0 10m

When we scale down, Kubernetes selects two Pods to terminate. These
Pods take a moment to finish shutting down, at which point we have only two
NGINX Pods running.

Autoscaling
For an application that is receiving real requests from users, we would choose
the number of replicas necessary to provide a quality application, while
scaling down when possible to reduce the amount of resources used by our
application. Of course, the load on our application is constantly changing,
and it would be tedious to monitor each component of our application
continually to scale it independently. Instead, we can have the cluster perform
the monitoring and scaling for us using a HorizontalPodAutoscaler. The term
horizontal in this case just refers to the fact that the autoscaler can update the
number of replicas of the same Pod managed by a controller.

To configure autoscaling, we create a new resource with a reference to our
Deployment. The cluster then monitors resources used by the Pods and
reconfigures the Deployment as needed. We could add a
HorizontalPodAutoscaler to our Deployment using the kubectl autoscale
command, but using a YAML resource file so that we can keep the autoscale

configuration under version control is better. Here’s the YAML file:
nginx-scaler.yaml

➊ apiVersion: autoscaling/v2
 kind: HorizontalPodAutoscaler
 metadata:
 name: nginx
 labels:
 app: nginx
 spec:
 ➋ scaleTargetRef:
 apiVersion: apps/v1
 kind: Deployment
 name: nginx
 ➌ minReplicas: 1
 maxReplicas: 10
 metrics:
 - type: Resource
 resource:
 name: cpu
 target:
 type: Utilization
 averageUtilization: ➍ 50

In the metadata field, we add the label app: nginx. This does not change the
behavior of the resource; its only purpose is to ensure that this resource
shows up if we use an app=nginx label selector in a kubectl get command. This
style of tagging the components of an application with consistent metadata is
a good practice to help others understand what resources go together and to
make debugging easier.

This YAML configuration uses version 2 of the autoscaler configuration
➊. Providing new versions of API resource groups is how Kubernetes
accommodates future capability without losing any of its backward
compatibility. Generally, alpha and beta versions are released for new
resource groups before the final configuration is released, and there is at least
one version of overlap between the beta version and the final release to
enable seamless upgrades.

Version 2 of the autoscaler supports multiple resources. Each resource is
used to calculate a vote on the desired number of Pods, and the largest
number wins. Adding support for multiple resources requires a change in the
YAML layout, which is a common reason for the Kubernetes maintainers to

create a new resource version.
We specify our NGINX Deployment ➋ as the target for the autoscaler

using its API resource group, kind, and name, which is enough to uniquely
identify any resource in a Kubernetes cluster. We then tell the autoscaler to
monitor the CPU utilization of the Pods that belong to the Deployment ➍.
The autoscaler will work to keep average CPU utilization by the Pods close
to 50 percent over the long run, scaling up or down as necessary. However,
the number of replicas will never go beyond the range we specify ➌.

Let’s create our autoscaler using this configuration:

root@host01:~# kubectl apply -f /opt/nginx-scaler.yaml
horizontalpodautoscaler.autoscaling/nginx created

We can query the cluster to see that it was created:

root@host01:~# kubectl get hpa
NAME REFERENCE TARGETS MINPODS MAXPODS REPLICAS AGE
nginx Deployment/nginx 0%/50% 1 10 3 96s

The output shows the autoscaler’s target reference, the current and desired
resource utilization, and the maximum, minimum, and current number of
replicas.

We use hpa as an abbreviation for horizontalpodautoscaler. Kubernetes allows us
to use either singular or plural names and provides abbreviations for most of
its resources to save typing. For example, we can type deploy for deployment and
even po for pods. Every extra keystroke counts!

The autoscaler uses CPU utilization data that the kubelet is already
collecting from the container engine. This data is centralized by the metrics
server we installed as a cluster add-on. Without that cluster add-on, there
would be no utilization data, and the autoscaler would not make any changes
to the Deployment. In this case, because we’re not really using our NGINX
server instances, they aren’t consuming any CPU, and the Deployment is
scaled down to a single Pod, the minimum we specified:

root@host01:~# kubectl get pods
NAME READY STATUS RESTARTS AGE
nginx-6799fc88d8-dcwx5 1/1 Running 0 15m

The autoscaler has calculated that only one Pod is needed and has scaled

the Deployment to match. The Deployment then selected a Pod to terminate
to reach the desired scale.

For accuracy, the autoscaler will not use CPU data from the Pod if it
recently started running, and it has logic to prevent it from scaling up or
down too often, so if you ran through these examples very quickly you might
need to wait a few minutes before you see it scale.

We explore Kubernetes resource utilization metrics in more detail when
we look at limiting resource usage in Chapter 14.

Other Controllers
Deployments are the most generic and commonly used controller, but
Kubernetes has some other useful options. In this section, we explore Jobs
and CronJobs, StatefulSets, and DaemonSets.

Jobs and CronJobs
Deployments are great for application components because we usually want
one or more instances to stay running indefinitely. However, for cases for
which we need to run a command, either once or on a schedule, we can use a
Job. The primary difference is a Deployment ensures that any container that
stops running is restarted, whereas a Job can check the exit code of the main
process and restart only if the exit code is non-zero, indicating failure.

A Job definition looks very similar to a Deployment:
sleep-job.yaml

apiVersion: batch/v1
kind: Job
metadata:
 name: sleep
spec:
 template:
 spec:
 containers:
 - name: sleep
 image: busybox
 command:
 - "/bin/sleep"
 - "30"

 restartPolicy: OnFailure

The restartPolicy can be set to OnFailure, in which case the container will be
restarted for a non-zero exit code, or to Never, in which case the Job will be
completed when the container exits regardless of the exit code.

We can create and view the Job and the Pod it has created:

root@host01:~# kubectl apply -f /opt/sleep-job.yaml
job.batch/sleep created
root@host01:~# kubectl get job
NAME COMPLETIONS DURATION AGE
sleep 0/1 3s 3s
root@host01:~# kubectl get pods
NAME READY STATUS RESTARTS AGE
...
sleep-fgcnz 1/1 Running 0 10s

The Job has created a Pod per the specification provided in the YAML
file. The Job reflects 0/1 completions because it is waiting for its Pod to exit
successfully.

When the Pod has been running for 30 seconds, it exits with a code of
zero, indicating success, and the Job and Pod status are updated accordingly:

root@host01:~# kubectl get jobs
NAME COMPLETIONS DURATION AGE
sleep 1/1 31s 40s
root@host01:~# kubectl get pods
NAME READY STATUS RESTARTS AGE
nginx-65db7cf9c9-2wcng 1/1 Running 0 31m
sleep-fgcnz 0/1 Completed 0 43s

The Pod is still available, which means that we could review its logs if
desired, but it shows a status of Completed, so Kubernetes will not try to restart
the exited container.

A CronJob is a controller that creates Jobs on a schedule. For example, we
could set up our sleep Job to run once per day:
sleep-cronjob.yaml

 apiVersion: batch/v1
 kind: CronJob
 metadata:
 name: sleep

 spec:
➊ schedule: "0 3 * * *"
➋ jobTemplate:
 spec:
 template:
 spec:
 containers:
 - name: sleep
 image: busybox
 command:
 - "/bin/sleep"
 - "30"
 restartPolicy: OnFailure

The entire contents of the Job specification are embedded inside the
jobTemplate field ➋. To this, we add a schedule ➊ that follows the standard
format for the Unix cron command. In this case, 0 3 * * * indicates that a Job
should be created at 3:00 AM every day.

One of Kubernetes’ design principles is that anything could go down at
any time. For a CronJob, if the cluster has an issue during the time the Job
would be scheduled, the Job might not be scheduled, or it might be scheduled
twice, this means that you should take care to write Jobs in an idempotent
way so that they can handle missing or duplicated scheduling.

If we create this CronJob

root@host01:~# kubectl apply -f /opt/sleep-cronjob.yaml
cronjob.batch/sleep created

it now exists in the cluster, but it does not immediately create a Job or a Pod:

root@host01:~# kubectl get jobs
NAME COMPLETIONS DURATION AGE
sleep 1/1 31s 2m32s
root@host01:~# kubectl get pods
NAME READY STATUS RESTARTS AGE
nginx-65db7cf9c9-2wcng 1/1 Running 0 33m
sleep-fgcnz 0/1 Completed 0 2m23s

Instead, the CronJob will create a new Job each time its schedule is
triggered.

StatefulSets
So far, we’ve been looking at controllers that create identical Pods. With both

Deployments and Jobs, we don’t really care which Pod is which, or where it
is deployed, as long as we run enough instances at the right time. However,
that doesn’t always match the behavior we want. For example, even though a
Deployment can create Pods with persistent storage, the storage must either
be brand new for each new Pod, or the same storage must be shared across all
Pods. That doesn’t align well with a “primary and secondary” architecture
such as a database. For those cases, we want specific storage to be attached to
specific Pods.

At the same time, because Pods can come and go due to hardware failures
or upgrades, we need a way to manage the replacement of a Pod so that each
Pod is attached to the right storage. This is the purpose of a StatefulSet. A
StatefulSet identifies each Pod with a number, starting at zero, and each Pod
receives matching persistent storage. When a Pod must be replaced, the new
Pod is assigned the same numeric identifier and is attached to the same
storage. Pods can look at their hostname to determine their identifier, so a
StatefulSet is useful both for cases with a fixed primary instance as well as
cases for which a primary instance is dynamically chosen.

We’ll explore a lot more details related to Kubernetes StatefulSets in the
next several chapters, including persistent storage and Services. For this
chapter, we’ll look at a basic example of a StatefulSet and then build on it as
we introduce other important concepts.

For this simple example, let’s create two Pods and show how they each
get unique storage that stays in place even if the Pod is replaced. We’ll use
this YAML resource:
sleep-set.yaml

 apiVersion: apps/v1
 kind: StatefulSet
 metadata:
 name: sleep
 spec:
➊ serviceName: sleep
 replicas: 2
 selector:
 matchLabels:
 app: sleep
 template:
 metadata:
 labels:
 app: sleep

 spec:
 containers:
 - name: sleep
 image: busybox
 command:
 - "/bin/sleep"
 - "3600"
 ➋ volumeMounts:
 - name: sleep-volume
 mountPath: /storagedir
➌ volumeClaimTemplates:
 - metadata:
 name: sleep-volume
 spec:
 storageClassName: longhorn
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 10Mi

There are a few important differences here compared to a Deployment or
a Job. First, we must declare a serviceName to tie this StatefulSet to a
Kubernetes Service ➊. This connection is used to create a Domain Name
Service (DNS) entry for each Pod. We must also provide a template for the
StatefulSet to use to request persistent storage ➌ and then tell Kubernetes
where to mount that storage in our container ➋.

The actual sleep-set.yaml file that the automation scripts install includes
the sleep Service definition. We cover Services in detail in Chapter 9.

Let’s create the sleep StatefulSet:

root@host01:~# kubectl apply -f /opt/sleep-set.yaml

The StatefulSet creates two Pods:

root@host01:~# kubectl get statefulsets
NAME READY AGE
sleep 2/2 1m14s
root@host01:~# kubectl get pods
NAME READY STATUS RESTARTS AGE
...
sleep-0 1/1 Running 0 57s
sleep-1 1/1 Running 0 32s

The persistent storage for each Pod is brand new, so it starts empty. Let’s

create some content. The easiest way to do that is from within the container
itself, using kubectl exec, which allows us to run commands inside a container,
similar to crictl. The kubectl exec command works no matter what host the
container is on, even if we’re connecting to our Kubernetes API server from
outside the cluster.

Let’s write each container’s hostname to a file and print it out so that we
can verify it worked:

root@host01:~# kubectl exec sleep-0 -- /bin/sh -c \
 'hostname > /storagedir/myhost'
root@host01:~# kubectl exec sleep-0 -- /bin/cat /storagedir/myhost
sleep-0
root@host01:~# kubectl exec sleep-1 -- /bin/sh -c \
 'hostname > /storagedir/myhost'
root@host01:~# kubectl exec sleep-1 -- /bin/cat /storagedir/myhost
sleep-1

Each of our Pods now has unique content in its persistent storage. Let’s
delete one of the Pods and verify that its replacement inherits its
predecessor’s storage:

root@host01:~# kubectl delete pod sleep-0
pod "sleep-0" deleted
root@host01:~# kubectl get pods
NAME READY STATUS RESTARTS AGE
...
sleep-0 1/1 Running 0 28s
sleep-1 1/1 Running 0 8m18s
root@host01:~# kubectl exec sleep-0 -- /bin/cat /storagedir/myhost
sleep-0

After deleting sleep-0, we see a new Pod created with the same name, which
is different from the Deployment for which a random name was generated for
every new Pod. Additionally, for this new Pod, the file we created previously
is still present because the StatefulSet attached the same persistent storage to
the new Pod it created when the old one was deleted.

Daemon Sets
The DaemonSet controller is like a StatefulSet in that the DaemonSet also
runs a specific number of Pods, each with a unique identity. However, the
DaemonSet runs exactly one Pod per node, which is useful primarily for

control plane and add-on components for a cluster, such as a network or
storage plug-in.

Our cluster already has multiple DaemonSets installed, so let’s look at the
calico-node DaemonSet that’s already running, which runs on each node to
provide network configuration for all containers on that node.

The calico-node DaemonSet is in the calico-system Namespace, so we’ll specify
that Namespace to request information about the DaemonSet:

root@host01:~# kubectl -n calico-system get daemonsets
NAME DESIRED CURRENT READY UP-TO-DATE AVAILABLE ...
calico-node 3 3 3 3 3 ...

Our cluster has three nodes, so the calico-node DaemonSet has created three
instances. Here’s the configuration of this DaemonSet in YAML format:

root@host01:~# kubectl -n calico-system get daemonset calico-node -o yaml
apiVersion: apps/v1
kind: DaemonSet
metadata:
...
 name: calico-node
 namespace: calico-system
...
spec:
...
 selector:
 matchLabels:
 k8s-app: calico-node
...

The -o yaml parameter to kubectl get prints out the configuration and status of
one or more resources in YAML format, allowing us to inspect Kubernetes
resources in detail.

The selector for this DaemonSet expects a label called k8s-app to be set to
calico-node. We can use this to show just the Pods that this DaemonSet creates:

root@host01:~# kubectl -n calico-system get pods \
 -l k8s-app=calico-node -o wide
NAME READY STATUS ... NODE ...
calico-node-h9kjh 1/1 Running ... host01 ...
calico-node-rcfk7 1/1 Running ... host03 ...
calico-node-wj876 1/1 Running ... host02 ...

The DaemonSet has created three Pods, each of which is assigned to one
of the nodes in our cluster. If we add additional nodes to our cluster, the
DaemonSet will schedule a Pod on the new nodes as well.

Final Thoughts
This chapter explored Kubernetes from the perspective of a regular cluster
user, creating controllers that in turn create Pods with containers. Having this
core knowledge of controller resource types is essential for building our
applications. At the same time, it’s important to remember that Kubernetes is
using the container technology we explored in Part I.

One key aspect of container technology is the ability to isolate containers
in separate network namespaces. Running containers in a Kubernetes cluster
adds additional requirements for networking because we now need to connect
containers running on different cluster nodes. In the next chapter, we consider
multiple approaches to make this work as we look at overlay networks.

8
OVERLAY NETWORKS

Container networking is complex enough when all of the containers are on a
single host, as we saw in Chapter 4. When we scale up to a cluster of nodes,
all of which run containers, the complexity increases substantially. Not only
must we provide each container with its own virtual network devices and
manage IP addresses, dynamically creating new network namespaces and
devices when containers are created, but we also need to ensure that
containers on one node can communicate with containers on all the other
nodes.

In this chapter, we’ll describe how overlay networks are used to provide
the appearance of a single container network across all nodes in a Kubernetes
cluster. We’ll consider two different approaches for routing container traffic
across a host network, examining the network configuration and traffic flows
for each. Finally, we’ll explore how Kubernetes uses the Container Network
Interface (CNI) standard to configure networking as a separate plug-in,
making it easy to shift to new technology as it becomes available and
allowing for custom solutions where needed.

Cluster Networking
The fundamental goal of a Kubernetes cluster is to treat a set of hosts
(physical or virtual machines) as a single computing resource that can be

allocated as needed to run containers. From a networking standpoint, this
means Kubernetes should be able to schedule a Pod onto any node without
worrying about connectivity to Pods on other nodes. It also means that
Kubernetes should have a way to dynamically allocate IP addresses to Pods
in a way that supports that cluster-wide network connectivity.

As we’ll see in this chapter, Kubernetes uses a plug-in design to allow any
compatible network software to allocate IP addresses and provide cross-node
network connectivity. All plug-ins must follow a couple of important rules.
First, Pod IP addresses should come from a single pool of IP addresses,
although this pool can be subdivided by node. This means that we can treat
all Pods as part of a single flat network, no matter where the Pods run.
Second, traffic should be routable such that all Pods can see all other Pods
and the control plane.

CNI Plug-ins
Plug-ins communicate with the Kubernetes cluster, specifically with kubelet,
using the CNI standard. CNI specifies how kubelet finds and invokes CNI
plug-ins. When a new Pod is created, kubelet first allocates the network
namespace. It then invokes the CNI plug-in, providing it a reference to the
network namespace. The CNI plug-in adds network devices to the
namespace, assigns an IP address, and passes that IP address back to kubelet.

Let’s see that process in action. To do so, our examples for this chapter
include two different environments with two different CNI plug-ins: Calico
and WeaveNet. Both of these plug-ins provide networking for Pods but with
different cross-node networking. We’ll begin with the Calico environment.

NOTE
The example repository for this book is at https://github.com/book-of-
kubernetes/examples. See “Running Examples” on page xx for details on
getting set up.

By default, CNI plug-in information is kept in /etc/cni/net.d. We can see
the Calico configuration in that directory:

root@host01:~# ls /etc/cni/net.d
10-calico.conflist calico-kubeconfig

https://github.com/book-of-kubernetes/examples

The file 10-calico.conflist contains the actual Calico configuration. The
file calico-kubeconfig is used by Calico components to authenticate with the
control plane; it was created based on a service account created during Calico
installation. The configuration filename has the 10- prefix because kubelet sorts
any configuration files it finds and uses the first one.

Listing 8-1 shows the configuration file, which is in JSON format and
identifies the network plug-ins to use.

root@host01:~# cat /etc/cni/net.d/10-calico.conflist
{
 "name": "k8s-pod-network",
 "cniVersion": "0.3.1",
 "plugins": [
 {
 "type": "calico",
...
 },
 {
 "type": "bandwidth",
 "capabilities": {"bandwidth": true}
 },
 {"type": "portmap", "snat": true, "capabilities": {"portMappings": true}}
]
}

Listing 8-1: Calico configuration

The most important field is type; it specifies which plug-in to run. In this
case, we’re running three plug-ins: calico, which handles Pod networking;
bandwidth, which we can use to configure network limits; and portmap, which is
used to expose container ports to the host network. These two plug-ins inform
kubelet of their purposes using the capabilities field; as a result, when kubelet
invokes them, it passes in the relevant bandwidth and port mapping
configuration so that the plug-in can make the necessary network
configuration changes.

To run these plug-ins, kubelet needs to know where they are located. The
default location for the actual plug-in executables is /opt/cni/bin, and the
name of the plug-in matches the type field:

root@host01:~# ls /opt/cni/bin
bandwidth calico-ipam flannel install macvlan sbr vlan
bridge dhcp host-device ipvlan portmap static
calico firewall host-local loopback ptp tuning

Here, we see a common set of network plug-ins that were installed by
kubeadm along with our Kubernetes cluster. We also see calico, which was
added to this directory by the Calico DaemonSet we installed after cluster
initialization.

Pod Networking
Let’s look at an example Pod to get a glimpse of how the CNI plug-ins
configure the Pod’s network namespace. The behavior is very similar to the
work we did in Chapter 4, adding virtual network devices into network
namespaces to enable communication between containers and with the host
network.

Let’s create a basic Pod:
pod.yaml

apiVersion: v1
kind: Pod
metadata:
 name: pod
spec:
 containers:
 - name: pod
 image: busybox
 command:
 - "sleep"
 - "infinity"
 nodeName: host01

We’ve added the extra field nodeName to force this Pod to run on host01,
which will make it easier to find and examine how its networking is
configured.

We start the Pod via the usual command:

root@host01:~# kubectl apply -f /opt/pod.yaml
pod/pod created

Next, check to see that it’s running:

root@host01:~# kubectl get pods
NAME READY STATUS RESTARTS AGE
pod 1/1 Running 0 2m32s

After it’s running, we can use crictl to capture its unique ID:

root@host01:~# POD_ID=$(crictl pods --name pod -q)
root@host01:~# echo $POD_ID
b7d2391320e07f97add7ccad2ad1a664393348f1dcb6f803f701318999ed0295

At this point, using the Pod ID, we can find its network namespace. In
Listing 8-2, we use jq to extract only the data we want, just as we did in
Chapter 4. We’ll then assign it to a variable.

root@host01:~# NETNS_PATH=$(crictl inspectp $POD_ID |
 jq -r '.info.runtimeSpec.linux.namespaces[]|select(.type=="network").path')
root@host01:~# echo $NETNS_PATH
/var/run/netns/cni-7cffed61-fb56-9be1-0548-4813d4a8f996
root@host01:~# NETNS=$(basename $NETNS_PATH)
root@host01:~# echo $NETNS
cni-7cffed61-fb56-9be1-0548-4813d4a8f996

Listing 8-2: Network namespace

We now can explore the network namespace to see how Calico set up the
IP address and network routing for this Pod. First, as expected, this network
namespace is being used for our Pod:

root@host01:~# ps $(ip netns pids $NETNS)
 PID TTY STAT TIME COMMAND
 35574 ? Ss 0:00 /pause
 35638 ? Ss 0:00 sleep infinity

We see the two processes that we should expect. The first is a pause
container that is always created whenever we create a Pod. This is a
permanent container to hold the network namespace. The second is our
BusyBox container running sleep, as we configured in the Pod YAML file.

Now, let’s see the configured network interfaces:

root@host03:~# ip netns exec $NETNS ip addr
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN ...
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
 inet 127.0.0.1/8 scope host lo
 valid_lft forever preferred_lft forever
 inet6 ::1/128 scope host
 valid_lft forever preferred_lft forever
3: ➊ eth0@if16: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1450 ... state UP ...
 link/ether 7a:9e:6c:e2:30:47 brd ff:ff:ff:ff:ff:ff link-netnsid 0
 inet ➋ 172.31.239.205/32 brd 172.31.25.202 scope global eth0

 valid_lft forever preferred_lft forever
 inet6 fe80::789e:6cff:fee2:3047/64 scope link
 valid_lft forever preferred_lft forever

Calico has created the network device eth0@if16 in the network namespace
➊ and given it an IP address of 172.31.239.205 ➋. Note that the network length
for that IP address is /32, which indicates that any traffic must go through a
configured router. This is different from how our bridged container
networking worked in Chapter 4. It is necessary so that Calico can provide
firewall capabilities via network policies.

The choice of IP address for this Pod was ultimately up to Calico. Calico
is configured with 172.31.0.0/16 for use as the IP address space for Pods. Calico
decides how to divide this address space up between nodes and then allocates
IP addresses to each Pod from the range allocated to the node. Calico then
passes this IP address back to kubelet so that it can update the Pod’s status:

root@host01:~# kubectl get pods -o wide
NAME READY STATUS RESTARTS AGE IP NODE ...
pod 1/1 Running 0 16m 172.31.239.205 host01 ...

When Calico created the network interface in the Pod, it created it as part
of a virtual Ethernet (veth) pair. The veth pair acts as a virtual network wire
that creates a connection to a network interface in the root namespace,
allowing connections outside the Pod. Listing 8-3 lets us have a look at both
halves of the veth pair.

root@host01:~# ip netns exec $NETNS ip link
...
3: eth0@if13: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1450 qdisc noqueue ...
 link/ether 6e:4c:3a:41:d0:54 brd ff:ff:ff:ff:ff:ff link-netnsid 0
root@host01:~# ip link | grep -B 1 $NETNS
13: cali9381c30abed@if3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1450 ...
 link/ether ee:ee:ee:ee:ee:ee ... link-netns cni-7cffed61-fb56-9be1-0548-4813d4a8f996

Listing 8-3: Calico veth pair

The first command prints the network interfaces inside the namespace,
whereas the second prints the interfaces on the host. Each contains the field
link-netns pointing to the corresponding network namespace of the other
interface, showing that these two interfaces create a link between our Pod’s
namespace and the root namespace.

Cross-Node Networking
So far, the configuration of the virtual network devices in the container looks
very similar to the container networking in Chapter 4, where there was no
Kubernetes cluster installed. The difference in this case is that the network
plug-in is configured not just to connect containers on a single node, but to
connect containers running anywhere in the cluster.

WHY NOT NAT?
Regular container networking does, of course, provide connectivity to
the host network. However, as we’ve discussed, it accomplishes this
using Network Address Translation (NAT). This is fine for containers
running individual client applications, as connection tracking enables
Linux to route server responses all the way into the originating
container. It does not work for containers that need to act as servers,
which is a key use case for a Kubernetes cluster.

For most private networks that use NAT to connect to a broader
network, port forwarding is used to expose specific services from within
the private network. That isn’t a good solution for every container in
every Pod, as we would quickly run out of ports to allocate. The
network plug-ins do end up using NAT, but only to connect containers
acting as clients to make connections to networks outside the cluster. In
addition, we will see port forwarding behavior in Chapter 9, where it
will be one possible way to expose Services outside the cluster.

The challenge in cross-node networking is that the Pod network has a
different range of IP addresses from the host network, so the host network
does not know how to route this traffic. There are a couple of different ways
that network plug-ins work around this. We’ll begin by continuing with our
cluster running Calico. Then, we’ll show a different cross-node networking
technology using WeaveNet.

Calico Networking

Calico performs cross-node networking using Layer 3 routing. This means
that it routes based on IP addresses, configuring IP routing tables on each
host and in the Pod to ensure that traffic is sent to the correct host and then to
the correct Pod. Thus, at the host level, we see the Pod IP addresses as the
source and destination. Because Calico relies on the built-in routing
capabilities of Linux, we don’t need to configure our host network switch to
route the traffic, but we do need to configure any security controls on the host
network switch to allow Pod IP addresses to travel across the network.

To explore Calico cross-node networking, it helps to have two Pods: one
on host01 and the other on host02. We’ll use this resource file:
two-pods.yaml

apiVersion: v1
kind: Pod
metadata:
 name: pod1
spec:
 containers:
 - name: pod1
 image: busybox
 command:
 - "sleep"
 - "infinity"
 nodeName: host01

apiVersion: v1
kind: Pod
metadata:
 name: pod2
spec:
 containers:
 - name: pod2
 image: busybox
 command:
 - "sleep"
 - "infinity"
 nodeName: host02

As always, these files have been loaded into the /opt directory by the
automated scripts for this chapter.

The --- separator allows us to put two different Kubernetes resources in the
same file so that we can manage them together. The only difference in
configuration with these two Pods is that they each have a nodeName field to

ensure that they are assigned to the correct node.
Let’s delete our existing Pod and replace it with the two that we need:

root@host01:~# kubectl delete -f /opt/pod.yaml
pod "pod" deleted
root@host01:~# kubectl apply -f /opt/two-pods.yaml
pod/pod1 created
pod/pod2 created

After these Pods are running, we’ll need to collect their IP addresses:

root@host01:~# IP1=$(kubectl get po pod1 -o json | jq -r '.status.podIP')
root@host01:~# IP2=$(kubectl get po pod2 -o json | jq -r '.status.podIP')
root@host01:~# echo $IP1
172.31.239.216
root@host01:~# echo $IP2
172.31.89.197

We’re able to extract the Pod IP using a simple jq filter because our kubectl
get command is guaranteed to return only one item. If we were running kubectl
get without a filter, or with a filter that might match multiple Pods, the JSON
output would be a list and we would need to change the jq filter accordingly.

Let’s quickly verify that we have connectivity between these two Pods:

root@host01:~# kubectl exec -ti pod1 -- ping -c 3 $IP2
PING 172.31.89.197 (172.31.89.197): 56 data bytes
64 bytes from 172.31.89.197: seq=0 ttl=62 time=2.867 ms
64 bytes from 172.31.89.197: seq=1 ttl=62 time=0.916 ms
64 bytes from 172.31.89.197: seq=2 ttl=62 time=1.463 ms

--- 172.31.89.197 ping statistics ---
3 packets transmitted, 3 packets received, 0% packet loss
round-trip min/avg/max = 0.916/1.748/2.867 ms

The ping command shows that all three packets arrived successfully, so we
know the Pods can communicate across nodes.

As in our earlier example, each of these Pods has a network interface with
a network length of /32, meaning that all traffic must go through a router. For
example, here is the IP configuration and route table for pod1:

root@host01:~# kubectl exec -ti pod1 -- ip addr
...
3: eth0@if17: <BROADCAST,MULTICAST,UP,LOWER_UP,M-DOWN> mtu 1450 qdisc noqueue
 link/ether f2:ed:e8:04:00:cc brd ff:ff:ff:ff:ff:ff

 inet 172.31.239.216/32 brd 172.31.239.216 scope global eth0
...
root@host01:~# kubectl exec -ti pod1 -- ip route
default via 169.254.1.1 dev eth0
169.254.1.1 dev eth0 scope link

Based on this configuration, when we run our ping command, the
networking stack recognizes that the destination IP is not local to any
interface. It therefore looks up 169.254.1.1 in its Address Resolution Protocol
(ARP) table to determine where to send the “next hop.” If we try to find an
interface either in the container or on the host that has the address 169.254.1.1,
we won’t be successful. Rather than actually assign that address to an
interface, Calico just configures “proxy ARP” so that the packet will be sent
through the eth0 end of the veth pair. As a result, there is an entry for 169.254.1.1
in the ARP table inside the container:

root@host01:~# kubectl exec -ti pod1 -- arp -n
? (169.254.1.1) at ee:ee:ee:ee:ee:ee [ether] on eth0
...

As shown in Listing 8-3, the hardware address ee:ee:ee:ee:ee:ee belongs to the
host side of the veth pair, so this is sufficient to get the packet out of the
container and into the root network namespace. From there, IP routing takes
over.

Calico has already configured the routing table to send packets to other
cluster nodes based on the destination IP address range for that node and to
send packets to local containers based on their individual IP addresses. We
can see the result of this in the IP routing table on the host:

root@host01:~# ip route
...
172.31.25.192/26 via 192.168.61.13 dev enp0s8 proto 80 onlink
172.31.89.192/26 via 192.168.61.12 dev enp0s8 proto 80 onlink
172.31.239.216 dev calice0906292e2 scope link
...

Because the destination address for the ping is within the 172.31.89.192/26
network, the packet now is routed to 192.168.61.12, which is host02.

Let’s look at the routing table on host02 so that we can follow along with
the next step:

root@host02:~# ip route
...
172.31.239.192/26 via 192.168.61.11 dev enp0s8 proto 80 onlink
172.31.25.192/26 via 192.168.61.13 dev enp0s8 proto 80 onlink
172.31.89.197 dev calibd2348b4f67 scope link
...

If you want to run this command for yourself, make sure you run it from
host02. When our packet arrives at host02, it has a route for the specific IP
address that is the destination of the ping. This route sends the packet into the
veth pair that is attached to the pod2 network namespace.

Now that the ping has arrived, the network stack inside pod2 sends back a
reply. The reply goes through the same process to reach the root network
namespace of host02. Based on the host02 routing table, it is sent to host01, where
a routing table entry for 172.31.239.216 is used to send it to the appropriate
container.

Because Calico is using Layer 3 routing, the host network sees the actual
container IP addresses. We can confirm that using tcpdump. We’ll switch back
to host01 for this.

First, let’s kick off tcpdump in the background:

root@host01:~# tcpdump -n -w pings.pcap -i any icmp &
[1] 70949
tcpdump: listening on any ...

The -n flag tells tcpdump to avoid trying to lookup hostnames in DNS for
any IP addresses; this saves time. The -w pings.pcap flag tells tcpdump to write its
data to the file pings.pcap; the -i any flag tells it to listen on all network
interfaces; the icmp filter tells it to listen only to ICMP traffic; and finally, & at
the end puts it in the background.

The pcap filename extension is important because our Ubuntu host system
will only allow tcpdump to read files with that extension.

Now, let’s run ping again:

root@host01:~# kubectl exec -ti pod1 -- ping -c 3 $IP2
...
3 packets transmitted, 3 packets received, 0% packet loss
round-trip min/avg/max = 0.928/0.991/1.115 ms

The ICMP requests and replies have been collected, but they are being

buffered in memory.
To get them dumped to the file, we’ll shut down tcpdump:

root@host01:~# killall tcpdump
12 packets captured
12 packets received by filter
0 packets dropped by kernel

There were three pings, and each ping consists of a request and a reply.
Thus, we might have expected six packets, but in fact we captured 12. To see
why, let’s print the details of the packets that tcpdump collected:

root@host01:~# tcpdump -enr pings.pcap
reading from file pings.pcap, link-type LINUX_SLL (Linux cooked v1)
00:16:23... In f2:ed:e8:04:00:cc ➊ ... 172.31.239.216 > 172.31.89.197: ICMP echo request ...
00:16:23... Out 08:00:27:b7:ef:ef ➋ ... 172.31.239.216 > 172.31.89.197: ICMP echo request ...
00:16:23... In 08:00:27:fc:d2:36 ➌ ... 172.31.89.197 > 172.31.239.216: ICMP echo reply ...
00:16:23... Out ee:ee:ee:ee:ee:ee ➍ ... 172.31.89.197 > 172.31.239.216: ICMP echo reply ...
...

The -e flag to tcpdump prints the hardware addresses; otherwise, we
wouldn’t be able to tell some of the packets apart. The first hardware address
➊ is the hardware address of eth0 inside the Pod. Next is the same packet
again, but this time the hardware address is the host interface ➋. We then see
the reply, first arriving at the host interface and labeled with the hardware
address for host02 ➌. Finally, the packet is routed into the Calico network
interface corresponding to our Pod ➍, and our ping has made its round trip.

We’re now done with these two Pods, so let’s delete them:

root@host01:~# kubectl delete -f /opt/two-pods.yaml
pod "pod1" deleted
pod "pod2" deleted

Using Layer 3 routing is an elegant solution to cross-node networking for
a Kubernetes cluster, as it takes advantage of the routing and traffic
forwarding capabilities that are native to Linux. However, it does mean that
the host network sees the Pods’ IP addresses, which may require security rule
changes. For example, the automated scripts that set up virtual machines in
Amazon Web Services (AWS) for use with this book not only configure a
security group to allow all traffic in the Pod IP address space, but they also
turn off the “source/destination check” for the virtual machine instances.

Otherwise, the underlying AWS network infrastructure would refuse to pass
traffic with unexpected IP addresses to our cluster’s nodes.

WeaveNet
Layer 3 routing is not the only solution for cross-node networking. Another
option is to “encapsulate” the container packets into a packet that is sent
explicitly host to host. This is the approach taken by popular network plug-
ins such as Flannel and WeaveNet. We’ll look at a WeaveNet example, but
the traffic using Flannel looks very similar.

NOTE
Larger clusters based on Calico also use encapsulation for some traffic
between networks. For example, a cluster that spans multiple regions, or
Availability Zones, in AWS would likely need to configure Calico to use
encapsulation, given that it may not be possible or practical to configure
all of the routers between the regions or Availability Zones with the
necessary Pod IP routes for the cluster.

Because everything you might want to do in networking has some defined
standard, it’s not surprising that there is a standard for encapsulation: Virtual
Extensible LAN (VXLAN). In VXLAN, each packet is wrapped in a UDP
datagram and sent to the destination.

We’ll use the same two-pods.yaml configuration file to create two Pods in
our Kubernetes cluster, this time using a cluster built from the weavenet
directory from this chapter’s examples. As before, we end up with one Pod
on host01 and the other on host02:

root@host01:~# kubectl apply -f /opt/two-pods.yaml
pod/pod1 created
pod/pod2 created

Let’s check that these Pods are running and allocated correctly to their
different hosts:

root@host01:~# kubectl get po -o wide
NAME READY STATUS ... IP NODE ...
pod1 1/1 Running ... 10.46.0.8 host01 ...
pod2 1/1 Running ... 10.40.0.21 host02 ...

After these Pods are running, we can collect their IP addresses using the
same commands shown earlier:

root@host01:~# IP1=$(kubectl get po pod1 -o json | jq -r '.status.podIP')
root@host01:~# IP2=$(kubectl get po pod2 -o json | jq -r '.status.podIP')
root@host01:~# echo $IP1
10.46.0.8
root@host01:~# echo $IP2
10.40.0.21

Note that the IP addresses assigned look nothing like the Calico example.
Further exploration shows that the address and routing configuration is also
different, as demonstrated in Listing 8-4.

root@host01:~# kubectl exec -ti pod1 -- ip addr
...
25: eth0@if26: <BROADCAST,MULTICAST,UP,LOWER_UP,M-DOWN> mtu 1376 qdisc noqueue
 link/ether e6:78:69:44:3d:a4 brd ff:ff:ff:ff:ff:ff
 inet 10.46.0.8/12 brd 10.47.255.255 scope global eth0
 valid_lft forever preferred_lft forever
...
root@host01:~# kubectl exec -ti pod1 -- ip route
default via 10.46.0.0 dev eth0
10.32.0.0/12 dev eth0 scope link src 10.46.0.8

Listing 8-4: WeaveNet networking

This time, our Pods are getting IP addresses in a massive /12 network,
corresponding to more than one million possible addresses on a single
network. In this case, our Pod’s networking stack is going to expect to be
able to use ARP to directly identify the hardware address of any other Pod on
the network rather than routing traffic to a gateway as we saw with Calico.

As before, we do have connectivity between these two Pods:

root@host01:~# kubectl exec -ti pod1 -- ping -c 3 $IP2
PING 10.40.0.21 (10.40.0.21): 56 data bytes
64 bytes from 10.40.0.21: seq=0 ttl=64 time=0.981 ms
64 bytes from 10.40.0.21: seq=1 ttl=64 time=0.963 ms
64 bytes from 10.40.0.21: seq=2 ttl=64 time=0.871 ms
--- 10.40.0.21 ping statistics ---
3 packets transmitted, 3 packets received, 0% packet loss
round-trip min/avg/max = 0.871/0.938/0.981 ms

And now that we’ve run this ping command, we should expect that the

ARP table in the pod1 networking stack is populated with the hardware
address of the pod2 network interface:

root@host01:~# kubectl exec -ti pod1 -- arp -n
? (10.40.0.21) at ba:75:e6:db:7c:c6 [ether] on eth0
? (10.46.0.0) at 1a:72:78:64:36:c6 [ether] on eth0

As expected, pod1 has an ARP table entry for pod2’s IP address,
corresponding to the virtual network interface inside pod2:

root@host01:~# kubectl exec -ti pod2 -- ip addr
...
53: eth0@if54: <BROADCAST,MULTICAST,UP,LOWER_UP,M-DOWN> mtu 1376 qdisc noqueue
 link/ether ➊ ba:75:e6:db:7c:c6 brd ff:ff:ff:ff:ff:ff
 inet 10.40.0.21/12 brd 10.47.255.255 scope global eth0
 valid_lft forever preferred_lft forever
...

The hardware address in the pod1 ARP table matches the hardware address
of the virtual network device in pod2 ➊. To make this happen, WeaveNet is
routing the ARP request over the network so that the network stack in pod2
can respond.

Let’s look at how the cross-node routing of ARP and ICMP traffic is
happening. First, although the IP address management may be different, one
important similarity between Calico and WeaveNet is that both are using veth
pairs to connect containers to the host. If you want to explore that, use the
commands shown in Listing 8-2 and Listing 8-3 to determine the network
namespace for pod1, and then use ip addr on host01 to verify that there is a veth
device with a link-netns field that corresponds to that network namespace.

For our purposes, because we’ve seen that before, we’ll take it as a given
that the traffic goes through the virtual network wire created by the veth pair
and gets to the host. Let’s start there and trace the ICMP traffic between the
two Pods.

If we use the same tcpdump capture as we did with Calico, we’ll be able to
capture the ICMP traffic, but that will get us only so far. Let’s go ahead and
look at that:

root@host01:~# tcpdump -w pings.pcap -i any icmp &
[1] 55999
tcpdump: listening on any, link-type LINUX_SLL (Linux cooked v1) ...
root@host01:~# kubectl exec -ti pod1 -- ping -c 3 $IP2

...
3 packets transmitted, 3 packets received, 0% packet loss
round-trip min/avg/max = 0.824/1.691/3.053 ms
root@host01:~# killall tcpdump
24 packets captured
24 packets received by filter
0 packets dropped by kernel

As before, we ran tcpdump in the background to capture ICMP on all
network interfaces, ran our ping, and then stopped tcpdump so that it would
write out the packets it captured. This time we have 24 packets to look at, but
they still don’t tell the whole story:

root@host01:~# tcpdump -enr pings.pcap
reading from file pings.pcap, link-type LINUX_SLL (Linux cooked v1)
16:22:08.211499 P e6:78:69:44:3d:a4 ... 10.46.0.8 > 10.40.0.21: ICMP echo request ...
16:22:08.211551 Out e6:78:69:44:3d:a4 ... 10.46.0.8 > 10.40.0.21: ICMP echo request ...
16:22:08.211553 P e6:78:69:44:3d:a4 ... 10.46.0.8 > 10.40.0.21: ICMP echo request ...
16:22:08.211745 Out e6:78:69:44:3d:a4 ... 10.46.0.8 > 10.40.0.21: ICMP echo request ...
16:22:08.212917 P ba:75:e6:db:7c:c6 ... 10.40.0.21 > 10.46.0.8: ICMP echo reply ...
16:22:08.213704 Out ba:75:e6:db:7c:c6 ... 10.40.0.21 > 10.46.0.8: ICMP echo reply ...
16:22:08.213708 P ba:75:e6:db:7c:c6 ... 10.40.0.21 > 10.46.0.8: ICMP echo reply ...
16:22:08.213724 Out ba:75:e6:db:7c:c6 ... 10.40.0.21 > 10.46.0.8: ICMP echo reply ...
...

These lines show four packets for a single ping request and reply, but the
hardware addresses aren’t changing. What’s happening is that these ICMP
packets are being handed between network interfaces unmodified. However,
we’re still not seeing the actual traffic that’s going between host01 and host02,
because we never see any hardware addresses that correspond to host
interfaces.

To see the host-level traffic, we need to tell tcpdump to capture UDP and
then treat it as VXLAN, which enables tcpdump to identify the fact that an
ICMP packet is inside.

Let’s start the capture again, this time looking for UDP traffic:

root@host01:~# tcpdump -w vxlan.pcap -i any udp &
...
root@host01:~# kubectl exec -ti pod1 -- ping -c 3 $IP2
...
3 packets transmitted, 3 packets received, 0% packet loss
round-trip min/avg/max = 1.139/1.364/1.545 ms
root@host01:~# killall tcpdump
22 packets captured

24 packets received by filter
0 packets dropped by kernel

This time we saved the packet data in vxlan.pcap. In this example, tcpdump
captured 22 packets. Because there is lots of cross-Pod traffic in our cluster,
not just ICMP traffic, you might see a different number.

The packets we captured cover all of the UDP traffic on host01, not just our
ICMP, so in printing out the packets shown in Listing 8-5, we’ll need to be
selective.

root@host01:~# tcpdump -enr vxlan.pcap -T vxlan | grep -B 1 ICMP
reading from file vxlan.pcap, link-type LINUX_SLL (Linux cooked v1)
16:45:47.307949 Out 08:00:27:32:a0:28 ...
 length 150: 192.168.61.11.50200 > 192.168.61.12.6784: VXLAN ...
e6:78:69:44:3d:a4 > ba:75:e6:db:7c:c6 ...
 length 98: 10.46.0.8 > 10.40.0.21: ICMP echo request ...
16:45:47.308699 In 08:00:27:67:b9:da ...
 length 150: 192.168.61.12.43489 > 192.168.61.11.6784: VXLAN ...
ba:75:e6:db:7c:c6 > e6:78:69:44:3d:a4 ...
 length 98: 10.40.0.21 > 10.46.0.8: ICMP echo reply ...
16:45:48.308240 Out 08:00:27:32:a0:28 ...
 length 150: 192.168.61.11.50200 > 192.168.61.12.6784: VXLAN ...
...

Listing 8-5: VXLAN capture

The -T vxlan flag tells tcpdump to treat the packet data it sees as VXLAN
data. This causes tcpdump to look inside and pull out data from the
encapsulated packets, enabling it to identify ICMP packets when those are
hidden inside. We then use grep with a -B 1 flag to find those ICMP packets
and also print the line immediately previous so that we can see the VXLAN
wrapper.

This capture shows the host’s hardware address, which informs us that
we’ve managed to capture the traffic moving between hosts. Each ICMP
packet is wrapped in a UDP datagram and sent across the host network. The
IP source and destination for these datagrams are the host network IP
addresses 192.168.61.11 and 192.168.61.12, so the host network never sees the Pod
IP addresses. However, that information is still there, in the encapsulated
ICMP packet, thus when the datagram arrives at its destination, WeaveNet
can send the ICMP packet to the correct destination.

The advantage of encapsulation is that all of our cross-node traffic looks

like ordinary UDP datagrams between hosts. Typically, we don’t need to do
any additional network configuration to allow this traffic. However, we do
pay a price. As you can see in Listing 8-5, each ICMP packet is 98 bytes, but
the encapsulated packet is 150 bytes. The wrapper needed for encapsulation
creates network overhead that we have to pay with each packet we send.

Look back at Listing 8-4 for another consequence. The virtual network
interface inside the Pod has a maximum transmission unit (MTU) of 1,376.
This represents the largest packet that can be sent; anything bigger must to be
fragmented into multiple packets and reassembled at the destination. This
MTU of 1,376 is considerably smaller than the standard MTU of 1,500 on
our host network. The smaller MTU on the Pod interface ensures that the
Pod’s network stack will do any required fragmenting. This way, we can
guarantee that we don’t exceed 1,500 at the host layer, even after the wrapper
is added. For this reason, if you are using a network plug-in that uses
encapsulation, it might be worth exploring how to configure jumbo frames to
enable an MTU larger than 1,500 on the host network.

Choosing a Network Plug-in
Network plug-ins can use different approaches to cross-node networking. As
is universal in engineering, though, there are trade-offs with each approach.
Layer 3 routing uses native capabilities of Linux and is efficient in its use of
the network bandwidth, but it may require customization of the underlying
host network. Encapsulation with VXLAN works in any network where we
can send UDP datagrams between hosts, but it adds overhead with each
packet.

Either way, however, our Pods are getting what they need, which is the
ability to communicate with other Pods, wherever in the cluster they may be.
And in practice, the configuration effort and performance difference tends to
be small. For this reason, the best way to choose a network plug-in is to start
with the plug-in that is recommended for or installed by default with your
particular Kubernetes distribution. If you find specific use cases for which the
performance doesn’t meet your requirements, you’ll then be able to test an
alternative plug-in based on real network traffic rather than guesswork.

Network Customization

Some scenarios may require cluster networking that is more complex than a
single Pod network connected across all cluster nodes. For example, some
regulated industries require certain data, such as security audit logs, to travel
across a separated network. Other systems may have specialized hardware so
that application components that interface with that hardware must be placed
on a specific network or virtual LAN (VLAN).

One of the advantages of a plug-in architecture for networking is that a
Kubernetes cluster can accommodate these specialized networking scenarios.
As long as Pods have an interface that can reach (and is reachable from) the
rest of the cluster, Pods can have additional network interfaces that provide
specialized connectivity.

Let’s look at an example. We’ll configure two Pods on the same node so
they have a local host-only network they can use for intercommunication.
Being a host-only network, it doesn’t provide connectivity to the rest of the
cluster, so we’ll also use Calico to provide cluster networking for Pods.

Because of the need to configure both Calico and our host-only network,
we’ll be invoking two separate CNI plug-ins that will create virtual network
interfaces in our Pods’ network namespaces. As we saw in Listing 8-1, it’s
possible to configure multiple CNI plug-ins in a single configuration file.
However, kubelet expects only one of these CNI plug-ins to actually assign a
network interface and IP address. To work around this, we’ll use Multus, a
CNI plug-in that is designed to invoke multiple plug-ins but will treat one as
primary for purposes of reporting IP address information back to kubelet.
Multus also allows us to be selective as to what CNI plug-ins are applied to
each Pod.

We’ll begin by installing Multus into the calico example cluster for this
chapter:

root@host01:~# kubectl apply -f /opt/multus-daemonset.yaml
customresourcedefinition.../network-attachment-definitions... created
clusterrole.rbac.authorization.k8s.io/multus created
clusterrolebinding.rbac.authorization.k8s.io/multus created
serviceaccount/multus created
configmap/multus-cni-config created
daemonset.apps/kube-multus-ds created

As the filename implies, the primary resource in this YAML file is a
DaemonSet that runs a Multus container on every host. However, this file

installs several other resources, including a CustomResourceDefinition. This
CustomResourceDefinition will allow us to configure network attachment
resources to tell Multus what CNI plug-ins to use for a given Pod.

We’ll look at CustomResourceDefinitions in detail in Chapter 17. For
now, in Listing 8-6 we’ll just see the NetworkAttachmentDefinition that
we’ll use to configure Multus.
netattach.yaml

apiVersion: k8s.cni.cncf.io/v1
kind: NetworkAttachmentDefinition
metadata:
 name: macvlan-conf
spec:
 config: '{
 "cniVersion": "0.3.0",
 "type": "macvlan",
 "mode": "bridge",
 "ipam": {
 "type": "host-local",
 "subnet": "10.244.0.0/24",
 "rangeStart": "10.244.0.1",
 "rangeEnd": "10.244.0.254"
 }
 }'

Listing 8-6: Network attachment

The config field in the spec looks a lot like a CNI configuration file, which
isn’t surprising, as Multus needs to use this information to invoke the macvlan
CNI plug-in when we ask for it to be added to a Pod.

We need to add this NetworkAttachmentDefinition to the cluster:

root@host01:~# kubectl apply -f /opt/netattach.yaml
networkattachmentdefinition.k8s.cni.cncf.io/macvlan-conf created

This definition doesn’t immediately affect any of our Pods; it just provides
a Multus configuration for future use.

Of course, to use this configuration, Multus must be invoked. How does
that happen when we’ve already installed Calico into this cluster? The answer
is in the /etc/cni/net.d directory, which the Multus DaemonSet modified on
all of our cluster nodes as part of its initialization:

root@host01:~# ls /etc/cni/net.d
00-multus.conf 10-calico.conflist calico-kubeconfig multus.d

Multus left the existing Calico configuration files in place, but added its
own 00-multus.conf configuration file and a multus.d directory. Because the
00-multus.conf file is ahead of 10-calico.conflist in an alphabetic sort, kubelet
will start to use it the next time it creates a new Pod.

Here’s 00-multus.conf:
00-multus.conf

{
 "cniVersion": "0.3.1",
 "name": "multus-cni-network",
 "type": "multus",
 "capabilities": {
 "portMappings": true,
 "bandwidth": true
 },
 "kubeconfig": "/etc/cni/net.d/multus.d/multus.kubeconfig",
 "delegates": [
 {
 "name": "k8s-pod-network",
 "cniVersion": "0.3.1",
 "plugins": [
 {
 "type": "calico",
...
 }
 },
 {
 "type": "bandwidth",
...
 },
 {
 "type": "portmap",
...
 }
]
 }
]
}

The delegates field is pulled from the Calico configuration that Multus
found. This field is used to determine the default CNI plug-ins that Multus
always uses when it is invoked. The top-level capabilities field is needed to

ensure that Multus will get all the correct configuration data from kubelet to be
able to invoke the portmap and bandwidth plug-ins.

Now that Multus is fully set up, let’s use it to add a host-only network to
two Pods. The Pods are defined as follows:
local-pods.yaml

apiVersion: v1
kind: Pod
metadata:
 name: pod1
 annotations:
 k8s.v1.cni.cncf.io/networks: macvlan-conf
spec:
 containers:
 - name: pod1
 image: busybox
 command:
 - "sleep"
 - "infinity"
 nodeName: host01

apiVersion: v1
kind: Pod
metadata:
 name: pod2
 annotations:
 k8s.v1.cni.cncf.io/networks: macvlan-conf
spec:
 containers:
 - name: pod2
 image: busybox
 command:
 - "sleep"
 - "infinity"
 nodeName: host01

This time we need both Pods to wind up on host01 so that the host-only
networking functions. In addition, we add the k8s.v1.cni.cncf.io/networks
annotation to each Pod. Multus uses this annotation to identify what
additional CNI plug-ins it should run. The name macvlan-conf matches the name
we provided in the NetworkAttachmentDefinition in Listing 8-6.

Let’s create these two Pods:

root@host01:~# kubectl apply -f /opt/local-pods.yaml

pod/pod1 created
pod/pod2 created

After these Pods are running, we can check that they each have an extra
network interface:

root@host01:~# kubectl exec -ti pod1 -- ip addr
...
3: eth0@if12: <BROADCAST,MULTICAST,UP,LOWER_UP,M-DOWN> mtu 1450 qdisc noqueue
 link/ether 9a:a1:db:ec:c7:91 brd ff:ff:ff:ff:ff:ff
 inet 172.31.239.198/32 brd 172.31.239.198 scope global eth0
 valid_lft forever preferred_lft forever
...
4: net1@if2: <BROADCAST,MULTICAST,UP,LOWER_UP,M-DOWN> mtu 1500 qdisc noqueue
 link/ether 9e:4f:c4:47:40:07 brd ff:ff:ff:ff:ff:ff
 inet 10.244.0.2/24 brd 10.244.0.255 scope global net1
 valid_lft forever preferred_lft forever
...
root@host01:~# kubectl exec -ti pod2 -- ip addr
...
3: eth0@if13: <BROADCAST,MULTICAST,UP,LOWER_UP,M-DOWN> mtu 1450 qdisc noqueue
 link/ether 52:08:99:a7:d2:bc brd ff:ff:ff:ff:ff:ff
 inet 172.31.239.199/32 brd 172.31.239.199 scope global eth0
 valid_lft forever preferred_lft forever
...
4: net1@if2: <BROADCAST,MULTICAST,UP,LOWER_UP,M-DOWN> mtu 1500 qdisc noqueue
 link/ether a6:e5:01:82:81:82 brd ff:ff:ff:ff:ff:ff
 inet 10.244.0.3/24 brd 10.244.0.255 scope global net1
 valid_lft forever preferred_lft forever
...

The macvlan CNI plug-in has added the additional net1 network interface,
using the IP address management configuration we provided in the
NetworkAttachmentDefinition.

These two Pods are now able to communicate with each other using these
interfaces:

root@host01:~# kubectl exec -ti pod1 -- ping -c 3 10.244.0.3
PING 10.244.0.3 (10.244.0.3): 56 data bytes
64 bytes from 10.244.0.3: seq=0 ttl=64 time=3.125 ms
64 bytes from 10.244.0.3: seq=1 ttl=64 time=0.192 ms
64 bytes from 10.244.0.3: seq=2 ttl=64 time=0.085 ms

--- 10.244.0.3 ping statistics ---
3 packets transmitted, 3 packets received, 0% packet loss
round-trip min/avg/max = 0.085/1.134/3.125 ms

This communication goes over the bridge created by the macvlan CNI plug-
in, as opposed to travelling via Calico.

Keep in mind that our purpose here is solely to demonstrate custom
networking without requiring any particular VLAN or complex setup outside
our cluster hosts. For a real cluster, this kind of host-only network is of
limited value because it constrains where Pods can be deployed. In this kind
of situation, it might be preferable to place the two containers into the same
Pod so that they will always be scheduled together and can use localhost to
communicate.

Final Thoughts
We’ve looked at a lot of network interfaces and traffic flows in this chapter.
Most of the time, it’s enough to know that every Pod in the cluster is
allocated an IP address from a Pod network, and also that any Pod in the
cluster can reach and is reachable from any other Pod. Any of the Kubernetes
network plug-ins provide this capability, whether they use Layer 3 routing or
VXLAN encapsulation, or possibly both.

At the same time, networking issues do occur in a cluster, and it’s
essential for cluster administrators and cluster users to understand how the
traffic is flowing between hosts and what that traffic looks like to the host
network in order to debug issues with switch and host configuration, or
simply to build applications that make best use of the cluster.

We’re not yet done with the networking layers that are needed to have a
fully functioning Kubernetes cluster. In the next chapter, we’ll look at how
Kubernetes provides a Service layer on top of Pod networking to provide
load balancing and automated failover, and then uses the Service networking
layer together with Ingress networking to make container services accessible
outside the cluster.

9
SERVICE AND INGRESS NETWORKS

A decent amount of complexity was involved in creating a cluster-wide
network so that all of our Pods could communicate with one another. At the
same time, we still don’t have all of the networking functionality we need to
build scalable, resilient applications. We need networking that supports load
balancing our application components across multiple instances and provides
the ability to send traffic to new Pod instances as existing instances fail or
need to be upgraded. Additionally, the Pod network is designed to be private,
meaning that it is directly reachable only from within the cluster. We need
additional traffic routing so that external users can reach our application
components running in containers.

In this chapter, we’ll look at Service and Ingress networking. Kubernetes
Service networking provides an entire additional networking layer on top of
Pod networking, including dynamic discovery and load balancing. We’ll see
how this networking layer works and how we can use it to expose our
application components to the rest of the cluster as scalable, resilient services.
We’ll then look at how Ingress configuration provides traffic routing for
these Services to expose them to external users.

Services
Putting together Deployments and overlay networking, we have the ability to

create multiple identical container instances with a unique IP address for
each. Let’s create an NGINX Deployment to illustrate:
nginx-deploy.yaml

kind: Deployment
apiVersion: apps/v1
metadata:
 name: nginx
spec:
 replicas: 5
 selector:
 matchLabels:
 app: nginx
 template:
 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - name: nginx
 image: nginx

This is similar to Deployments we’ve seen previously. In this case we’re
asking Kubernetes to maintain five Pods for us, each running an NGINX web
server.

NOTE
The example repository for this book is at https://github.com/book-of-
kubernetes/examples. See “Running Examples” on page xx for details on
getting set up.

The automated scripts have already placed this file in /opt, so we can
apply it to the cluster:

root@host01:~# kubectl apply -f /opt/nginx-deploy.yaml
deployment.apps/nginx created

After these Pods are running, we can check that they’ve been distributed
across the cluster and each one has an IP address:

root@host01:~# kubectl get pods -o wide

https://github.com/book-of-kubernetes/examples

NAME READY STATUS ... IP NODE ...
nginx-6799fc88d8-2wqc7 1/1 Running ... 172.31.239.231 host01 ...
nginx-6799fc88d8-78bwx 1/1 Running ... 172.31.239.229 host01 ...
nginx-6799fc88d8-dtx7s 1/1 Running ... 172.31.89.240 host02 ...
nginx-6799fc88d8-wh479 1/1 Running ... 172.31.239.230 host01 ...
nginx-6799fc88d8-zwx27 1/1 Running ... 172.31.239.228 host01 ...

If these containers were merely clients of some server, that might be all
we need to do. For example, if our application architecture was driven by
sending and receiving messages, as long as these containers could connect to
the messaging server, they’d be able to function as required. However,
because these containers act as servers, clients need to be able to find them
and connect.

As it is, our separate NGINX instances aren’t very practical for clients to
use. Sure, it’s possible to connect to any one of these NGINX server Pods
directly. For example, we can communicate with the first one in the list using
its IP address:

root@host01:~# curl -v http://172.31.239.231
* Trying 172.31.239.231:80...
* Connected to 172.31.239.231 (172.31.239.231) port 80 (#0)
> GET / HTTP/1.1
...
< HTTP/1.1 200 OK
< Server: nginx/1.21.3
...

Unfortunately, just choosing one instance is not going to provide load
balancing or failover. Additionally, we don’t have any way of knowing ahead
of time what the Pod IP address is going to be, and every time we make any
changes to the Deployment, the Pods will be re-created and get new IP
addresses.

The solution to this situation needs to have two main features. First, we
need to have a well-known name that clients can use to find a server. Second,
we need a consistent IP address so that when a client has identified a server,
it can continue to use the same address for connections even as Pod instances
come and go. This is exactly what Kubernetes provides with a Service.

Creating a Service
Let’s create a Service for our NGINX Deployment and see what that gets us.

Listing 9-1 presents the resource YAML file.
nginx-service.yaml

kind: Service
apiVersion: v1
metadata:
 name: nginx
spec:
 selector:
 app: nginx
 ports:
 - protocol: TCP
 port: 80
 targetPort: 80

Listing 9-1: NGINX Service

First, a Service has a selector much like a Deployment. This selector is used
in the same way: to identify the Pods that will be associated with the Service.
However, unlike a Deployment, a Service does not manage its Pods in any
way; it simply routes traffic to them.

The traffic routing is based on the ports we identify in the ports field.
Because the NGINX server is listening on port 80, we need to specify that as
the targetPort. We can use any port we want, but it’s simplest to keep it the same,
especially as 80 is the default port for HTTP.

Let’s apply this Service to the cluster:

root@host01:~# kubectl apply -f /opt/nginx-service.yaml
service/nginx created

We can now see that the Service was created:

root@host01:~# kubectl get services
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
kubernetes ClusterIP 10.96.0.1 <none> 443/TCP 14d
nginx ClusterIP 10.100.221.220 <none> 80/TCP 25s

This nginx Service has the default type of ClusterIP. Kubernetes has
automatically assigned a cluster IP address for this Service. The IP address is
in an entirely different address space from that of our Pods.

Using the selector, this Service will identify our NGINX server Pods and

automatically start load balancing traffic to them. As Pods matching the
selector come and go, the Service will automatically update its load balancing
accordingly. As long as the Service exists, it will keep the same IP address,
so clients have a consistent way of finding our NGINX server instances.

Let’s verify that we can reach an NGINX server through the Service:

root@host01:~# curl -v http://10.100.221.220
* Trying 10.100.221.220:80...
* Connected to 10.100.221.220 (10.100.221.220) port 80 (#0)
> GET / HTTP/1.1
...
< HTTP/1.1 200 OK
< Server: nginx/1.21.3
...

We can see that the Service has correctly identified all five NGINX Pods:

root@host01:~# kubectl describe service nginx
Name: nginx
Namespace: default
...
Selector: app=nginx
...
Endpoints: 172.31.239.228:80,172.31.239.229:80,172.31.239.230:80
+ 2 more...
...

The Endpoints field shows that the Service is currently routing traffic to all
five NGINX Pods. As a client, we don’t need to know which Pod was used to
handle our request. We interact solely with the Service IP address and allow
the Service to choose an instance for us.

Of course, for this example, we had to look up the IP address of the
Service. To make it easier on clients, we still should provide a well-known
name.

Service DNS
Kubernetes provides a well-known name for each Service through a DNS
(Domain Name System) server that is dynamically updated with the name
and IP address of every Service in the cluster. Each Pod is configured with
this DNS server such that a Pod can use the name of the Service to connect to
an instance.

Let’s create a Pod that we can use to try this out:
pod.yaml

apiVersion: v1
kind: Pod
metadata:
 name: pod
spec:
 containers:
 - name: pod
 image: alpine
 command:
 - "sleep"
 - "infinity"

We’re using alpine rather than busybox as the image for this Pod because
we’ll want to use some DNS commands that require us to install a more full-
featured DNS client.

NOTE
BusyBox makes a great debug image for Kubernetes clusters because it’s
tiny and has many useful commands. However, in the interest of keeping
BusyBox tiny, it’s typical for the commands to include only the most
popular options. Alpine makes a great alternative for debugging. The
default Alpine image uses BusyBox to provide many of its initial
commands, but it’s possible to replace them with a full-featured
alternative by just installing the appropriate package.

Next, create the Pod:

root@host01:~# kubectl apply -f /opt/pod.yaml
pod/pod created

After it’s running, let’s use it to connect to our NGINX Service, as
demonstrated in Listing 9-2.

root@host01:~# kubectl exec -ti pod -- wget -O - http://nginx
Connecting to nginx (10.100.221.220:80)
...
<title>Welcome to nginx!</title>
...

Listing 9-2: Connect to NGINX Service

We were able to use the name of the Service, nginx, and that name resolved
to the Service IP address. This worked because our Pod is configured to talk
to the DNS server that’s built in to the cluster:

root@host01:~# kubectl exec -ti pod -- cat /etc/resolv.conf
search default.svc.cluster.local svc.cluster.local cluster.local
nameserver 10.96.0.10
options ndots:5

We print out the file /etc/resolv.conf inside the container because this is
the file that is used to configure DNS.

The name server 10.96.0.10 referenced is itself a Kubernetes Service, but it’s
in the kube-system Namespace, so we need to look there for it:

root@host01:~# kubectl -n kube-system get services
NAME TYPE CLUSTER-IP ... PORT(S) AGE
kube-dns ClusterIP 10.96.0.10 ... 53/UDP,53/TCP,9153/TCP 14d
metrics-server ClusterIP 10.105.140.176 ... 443/TCP 14d

The kube-dns Service connects to a DNS server Deployment called
CoreDNS that listens for changes to Services in the Kubernetes cluster.
CoreDNS updates the DNS server configuration as required to stay up to date
with the current cluster configuration.

Name Resolution and Namespaces
DNS names in a Kubernetes cluster are based on the Namespace as well as
the cluster domain. Because our Pod is in the default Namespace, it has been
configured with a search path of default.svc.cluster.local as the first entry in the list,
so it will search the default Namespace first when looking for Services. This is
why we were able to use the bare Service name nginx to find the nginx Service
—that Service is also in the default Namespace.

We could have also found the same Service using the fully qualified
name:

root@host01:~# kubectl exec -ti pod -- wget -O - http://nginx.default.svc
Connecting to nginx.default.svc (10.100.221.220:80)
...
<title>Welcome to nginx!</title>

...

Understanding this interaction between Namespaces and Service lookup is
important. One common deployment pattern for a Kubernetes cluster is to
deploy the same application multiple times to different Namespaces and use
simple hostnames for application components to communicate with one
another. This pattern is often used to deploy a “development” and
“production” version of an application to the same cluster. If we’re planning
to use this pattern, we need to be sure that we stick to bare hostnames when
our application components try to find one another; otherwise, we could end
up communicating with the wrong version of our application.

Another important configuration item in /etc/resolv.conf is the ndots entry.
The ndots entry tells the hostname resolver that when it sees a hostname with
four or fewer dots, it should try appending the various search domains prior
to performing an absolute search without any domain appended. This is
critical to make sure that we try to find services inside the cluster before
reaching outside the cluster.

As a result, when we used the name nginx in Listing 9-2, the DNS resolver
within our container immediately tried nginx.default.svc.cluster.local and found the
correct Service.

To make sure this is clear, let’s try one more example: looking up a
Service in another Namespace. The kube-system Namespace has a metrics-server
Service. To find it, let’s use the standard host lookup dig command in our Pod.

Our Pod is using Alpine Linux, so we need to install the bind-tools package
to get access to dig:

root@host01:~# kubectl exec -ti pod -- apk add bind-tools
...
OK: 13 MiB in 27 packages

Now, let’s try looking up metrics-server using the bare name first:

root@host01:~# kubectl exec -ti pod -- dig +search metrics-server
...
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: SERVFAIL, id: 38423
...

We add the +search flag onto the command to tell dig to use the search path

information from /etc/resolv.conf. However, even with that flag, we don’t
find the Service, because our Pod is in the default Namespace, so the search
path doesn’t lead dig to look in the kube-system Namespace.

Let’s try again, this time specifying the correct Namespace:

root@host01:~# kubectl exec -ti pod -- dig +search metrics-server.kube-system
...
;; ANSWER SECTION:
metrics-server.kube-system.svc.cluster.local. 30 IN A 10.105.140.176
...

This lookup works, and we are able to get the IP address for the metrics-
server Service. It works because the search path includes svc.cluster.local as its
second entry. After initially trying metrics-server.kube-system.default.svc.cluster.local,
which doesn’t work, dig then tries metrics-server.kube-system.svc.cluster.local, which
does.

Traffic Routing
We’ve seen how to create and use Services, but we haven’t yet looked at how
the actual traffic routing works. It turns out that Service network traffic works
in a way that’s completely different from the overlay networks we saw in
Chapter 8, which can lead to some confusion.

For example, because we can use wget to reach an NGINX server instance
using the nginx Service name, we might expect to be able to use ping, as well,
but that doesn’t work:

root@host01:~# kubectl exec -ti pod -- ping -c 3 nginx
PING nginx (10.100.221.220): 56 data bytes

--- nginx ping statistics ---
3 packets transmitted, 0 packets received, 100% packet loss
command terminated with exit code 1

Name resolution worked as expected, so ping knew what destination IP
address to use for its ICMP packets. But there was no reply from that IP
address. We could look at every host and container network interface in our
cluster and never find an interface that carries the Service IP address of
10.100.221.220. So how is our HTTP traffic getting through to an NGINX
Service instance?

On every node in our cluster, there is a component called kube-proxy that
configures traffic routing for Services. kube-proxy is run as a DaemonSet in the
kube-system Namespace. Each kube-proxy instance watches for changes to
Services in the cluster and configures the Linux firewall to route traffic.

We can use iptables commands to look at the firewall configuration to see
how kube-proxy has configured traffic routing for our nginx Service:

 root@host01:~# iptables-save | grep 'default/nginx cluster IP'
➊ -A KUBE-SERVICES ! -s 172.31.0.0/16 -d 10.100.221.220/32 -p tcp -m comment
 --comment "default/nginx cluster IP" -m tcp --dport 80 -j KUBE-MARK-MASQ
➋ -A KUBE-SERVICES -d 10.100.221.220/32 -p tcp -m comment --comment
 "default/nginx cluster IP" -m tcp --dport 80 -j KUBE-SVC-2CMXP7HKUVJN7L6M

The iptables-save command backs up all of the current Linux firewall rules,
so it’s useful for printing out all rules. The grep command searches for the
comment string that kube-proxy applies to the Service rules it creates. In this
example, kube-proxy has created two rules for the Service as a whole. The first
rule ➊ looks for traffic destined for our Service that is not coming from the
Pod network. This traffic must be marked for Network Address Translation
(NAT) masquerade so that the source of any reply traffic will be rewritten to
be the Service IP address rather than the actual Pod that handles the request.
The second rule ➋ sends all traffic destined for the Service to a separate rule
chain that will send it to a Pod instance. Note that in both cases, the rules
only match for TCP traffic that is destined for port 80.

We can examine this separate rule chain to see how the actual routing to
individual Pods works. Be sure to replace the name of the rule chain in this
command with the one shown in the previous output:

root@host01:~# iptables-save | grep KUBE-SVC-2CMXP7HKUVJN7L6M
...
-A KUBE-SVC-2CMXP7HKUVJN7L6M ... -m statistic --mode random
 --probability 0.20000000019 -j KUBE-SEP-PIVU7ZHMCSOWIZ2Z
-A KUBE-SVC-2CMXP7HKUVJN7L6M ... -m statistic --mode random
 --probability 0.25000000000 -j KUBE-SEP-CFQXKE74QEHFB7VJ
-A KUBE-SVC-2CMXP7HKUVJN7L6M ... -m statistic --mode random
 --probability 0.33333333349 -j KUBE-SEP-DHDWEJZ7MGGIR5XF
-A KUBE-SVC-2CMXP7HKUVJN7L6M ... -m statistic --mode random
 --probability 0.50000000000 -j KUBE-SEP-3S3S2VJCXSAISE2Z
-A KUBE-SVC-2CMXP7HKUVJN7L6M ... -j KUBE-SEP-AQWD2Y25T24EHSNI

The output shows five rules, corresponding to each of the five NGINX

Pod instances the Service’s selector matched. The five rules together provide
random load balancing across all the instances so that each one has an equal
chance of being selected for new connections.

It may seem strange that the probability figure increases for each rule. This is
necessary because the rules are evaluated sequentially. For the first rule, we
want a 20 percent chance of choosing the first instance. However, if we don’t
select the first instance, only four instances are left, so we want a 25 percent
chance of choosing the second one. The same logic applies until we get to the
last instance, which we always want to choose if we’ve skipped all the others.

Let’s quickly verify that these rules go to the expected destination (again,
be sure to replace the name of the rule chain in this command):

root@host01:~# iptables-save | grep KUBE-SEP-PIVU7ZHMCSOWIZ2Z
...
-A KUBE-SEP-PIVU7ZHMC ... -s 172.31.239.235/32 ... --comment "default/nginx" -j KUBE-MARK-
MASQ
-A KUBE-SEP-PIVU7ZHMCSOWIZ2Z -p tcp ... -m tcp -j DNAT --to-destination 172.31.239.235:80

This output shows two rules. The first is the other half of the NAT
masquerade configuration, as we mark all packets that leave our Pod instance
so that they can have their source address rewritten to appear to come from
the Service. The second rule is the one that actually routes Service traffic to a
specific Pod as it performs a rewrite of the destination address so that a
packet originally destined for the Service IP is now destined for a Pod. From
there, the overlay networking takes over to actually send the packet to the
correct container.

With this understanding of how Service traffic is actually routed, it makes
sense that our ICMP packets didn’t make it through. The firewall rule that
kube-proxy created applies only to TCP traffic destined for port 80. As a result,
there was no firewall rule to rewrite our ICMP packets and therefore no way
for them to make it to a networking stack that could reply to them. Similarly,
if we have a container that’s listening on multiple ports, we will be able to
connect to any of those ports by directly using the Pod IP address, but the
Service IP address will route traffic only if we explicitly declare that port in
the Service specification. It can be a significant source of confusion when
deploying an application where the Pod starts up as expected and listens for
traffic, but a misconfiguration of the Service means that the traffic is not
being routed to all of the correct destination ports.

External Networking
We now have enough layers of networking to meet all of our internal cluster
communication needs. Each Pod has its own IP address and has connectivity
to other Pods as well as the control plane, and with Service networking we
have automatic load balancing and failover based on running multiple Pod
instances with a Service. However, we’re still missing the ability for external
users to access services running in our cluster.

To provide access for external users, we can no longer rely solely on the
cluster-specific IP address ranges that we use for Pods and Services, given
that external networks don’t recognize those address ranges. Instead, we’ll
need a way to allocate externally routable IP addresses to our Services, either
by explicitly associating an IP address with a Service or by using an ingress
controller that listens to external traffic and routes it to Services.

External Services
The nginx Service we created earlier was a ClusterIP Service, the default Service
type. Kubernetes supports multiple Service types, including Service types
that are made for Services that need to be exposed externally:

None Also known as a headless Service, it’s used to enable tracking of
selected Pods but without an IP address or any network routing behavior.

ClusterIP The default Service type that provides tracking of selected Pods, a
cluster IP address that is routed internally, and a well-known name in the
cluster DNS.

NodePort Extends ClusterIP and also provides a port on all nodes in the cluster
that is routed to the Service.

LoadBalancer Extends NodePort and also uses an underlying cloud provider to
obtain an IP address that is externally reachable.

ExternalName Aliases a well-known Service name in the cluster DNS to some
external DNS name. Used to make external resources appear to be in-cluster
Services.

Of these Service types, the NodePort and LoadBalancer types are most useful
for exposing Services outside the cluster. The LoadBalancer type seems the most

straightforward, as it simply adds an external IP to the Service. However, it
requires integration with an underlying cloud environment to create the
external IP address when the Service is created, to route traffic from that IP
address to the cluster’s nodes, and to create a DNS entry outside the cluster
that enables external users to find the Service as a host on some pre-
registered domain that we already own, rather than a cluster.local domain that
works only within the cluster.

For this reason, a LoadBalancer Service is most useful for cases in which we
know what cloud environment we’re using and we’re creating Services that
will live for a long time. For HTTP traffic, we can get most of the benefit of a
LoadBalancer Service by using a NodePort Service together with an ingress
controller, with the added feature of better support for dynamically deploying
new applications with new Services.

Before moving on to an ingress controller, let’s turn our existing nginx
Service into a NodePort Service so that we can look at the effect. We can do
this using a patch file:
nginx-nodeport.yaml

spec:
 type: NodePort

A patch file allows us to update only the specific fields we care about. In
this case, we are updating only the type of the Service. For this to work, we
just need to specify that one changed field in its correct position in the
hierarchy, which allows Kubernetes to know what field to modify. We don’t
need to change the selector or ports for our Service, only the type, so the
patch is very simple.

Let’s use the patch:

root@host01:~# kubectl patch svc nginx --patch-file /opt/nginx-nodeport.yaml
service/nginx patched

For this command, we must specify the resource to be patched and a patch
file to be used. The result is identical to if we had edited the YAML resource
file for the Service and then used kubectl apply again.

The Service now looks a little different:

root@host01:~# kubectl get service nginx
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
nginx NodePort 10.100.221.220 <none> 80:31326/TCP 2h

A NodePort Service provides all the behavior of a ClusterIP Service, so we
still have a cluster IP associated with our nginx Service. The Service even kept
the same cluster IP. The only change is the PORT field now shows that the
Service port 80 is attached to node port 31326.

The kube-proxy Service on every cluster node is listening on this port (be
sure to use the correct node port for your Service):

root@host01:~# ss -nlp | grep 31326
tcp LISTEN 0 4096 .0.0.0:31326 ... users:(("kube-proxy",pid=3339,fd=15))

As a result, we can still use the nginx Service name inside our Pod, but we
can also use the NodePort from the host:

root@host01:~# kubectl exec -ti pod -- wget -O - http://nginx
Connecting to nginx (10.100.221.220:80)
...
<title>Welcome to nginx!</title>
...
root@host01:~# wget -O - http://host01:31326
...
Connecting to host01 (host01)|127.0.2.1|:31326... connected.
...
<h1>Welcome to nginx!</h1>
...

Because kube-proxy is listening on all network interfaces, we’ve successfully
exposed this Service to external users.

Ingress Services
Although we’ve successfully exposed our NGINX Service outside the
cluster, we still don’t provide a great user experience for external users. To
use the NodePort Service, external users will need to know the IP address of at
least one of our cluster nodes, and they’ll need to know the exact port on
which each Service is listening. That port could change if the Service is
deleted and re-created. We could partially address this by telling Kubernetes
which port to use for the NodePort, but we don’t want to do this with any
arbitrary Service because multiple Services may choose the same port.

What we really need is a single external entry point to our cluster that
keeps track of multiple services that are available and uses rules to route
traffic to them. This way, we can do all of our routing configuration inside
the cluster so that Services can come and go dynamically. At the same time,
we can have a single well-known entry point for our cluster that all external
users can use.

For HTTP traffic, Kubernetes provides exactly this capability, calling it an
Ingress. To configure our cluster to route external HTTP traffic to Services,
we need to define the set of Ingress resources that specify the routing and to
deploy the ingress controller that receives and routes the traffic. We already
installed our ingress controller when we set up our cluster:

root@host01:~# kubectl -n ingress-nginx get deploy
NAME READY UP-TO-DATE AVAILABLE AGE
ingress-nginx-controller 1/1 1 1 15d
root@host01:~# kubectl -n ingress-nginx get svc
NAME TYPE ... PORT(S) ...
ingress-nginx-controller NodePort ... 80:80/TCP,443:443/TCP ...
...

Our ingress controller includes a Deployment and a Service. As the
Service is of type NodePort, we know that kube-proxy is listening to ports 80 and
443 on all of our cluster’s nodes, ready to route traffic to the associated Pod.

As the name implies, our ingress controller is actually an instance of an
NGINX web server; however, in this case NGINX is solely acting as an
HTTP reverse proxy rather than serving any web content of its own. The
ingress controller listens for changes to Ingress resources in the cluster and
reconfigures NGINX to connect to backend servers based on the rules that
are defined. These rules use host or path information from the HTTP request
to select a Service for the request.

Let’s create an Ingress resource to route traffic to the nginx Service we
defined in Listing 9-1. Here’s the resource we’ll create:
nginx-ingress.yaml

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
 name: web01
spec:

 rules:
 - host: web01
 http:
 paths:
 - path: /
 pathType: Prefix
 backend:
 service:
 name: nginx
 port:
 number: 80

This resource instructs the ingress controller to look at the HTTP Host
header. If it sees web01 as the Host header, it then tries to match against a path
in the paths we specified. In this case, all paths will match the path / prefix, so
all traffic will be routed to the nginx Service.

Before we apply this to the cluster, let’s confirm what happens if we try to
use a hostname that the ingress controller doesn’t recognize. We’ll use the
high-availability IP address that’s associated with our cluster, as the cluster’s
load balancer will forward that to one of the instances:

root@host01:~# curl -vH "Host:web01" http://192.168.61.10
...
> Host:web01
...
<head><title>404 Not Found</title></head>
...

The -H "Host:web01" flag in the curl command tells curl to use the value host01
as the Host header in the HTTP request. This is necessary given that we don’t
have a DNS server in our example cluster that can turn web01 into our
cluster’s IP address.

As we can see, the NGINX server that’s acting as the ingress controller is
configured to reply with a 404 Not Found error message whenever it gets a
request that doesn’t match any configured Ingress resource. In this case,
because we haven’t created any Ingress resources yet, any request will get
this response.

Let’s apply the web01 Ingress resource to the cluster:

root@host01:~# kubectl apply -f /opt/nginx-ingress.yaml
ingress.networking.k8s.io/web01 created

Now that the Ingress resource exists, as Listing 9-3 illustrates, HTTP port
80 requests on both the cluster high-availability IP and individual hosts are
routed to the nginx Service:

root@host01:~# curl -vH "Host:web01" http://host01
...
> Host:web01
...
<title>Welcome to nginx!</title>
...
root@host01:~# curl -vH "Host:web01" http://192.168.61.10
...
> Host:web01
...
<title>Welcome to nginx!</title>
...

Listing 9-3: NGINX via Ingress

The output in both cases is the same, showing that traffic is being routed
to the nginx Service.

In the web01-ingress resource, we were able to use the bare name of the nginx
Service. The Service name lookup is based on where the Ingress resource is
located. Because we created the Ingress resource in the default Namespace,
that is where it looks first for Services.

Putting this all together, we now have a high-availability solution to route
traffic from external users to HTTP servers in our cluster. This combines our
cluster’s high-availability IP address 192.168.61.10 with an ingress controller
exposed as a NodePort Service on port 80 of all our cluster’s nodes. The ingress
controller can be dynamically configured to expose additional Services by
creating new Ingress resources.

Ingress in Production
The curl command in Listing 9-3 still looks a little strange, as we’re required
to override the HTTP Host header manually. We need to perform a few
additional steps to use Ingress resources to expose services in a production
cluster.

First, we need our cluster to have an externally routable IP address
together with a well-known name that is registered in DNS. The best way to
do that is with a wildcard DNS scheme so that all hosts in a given domain are

all routed to the cluster’s external IP. For example, if we own the domain
cluster.example.com, we could create a DNS entry so that *.cluster.example.com routes
to the cluster’s external IP address.

This approach still works with larger clusters that span multiple networks.
We just need to have multiple IP addresses associated with the DNS entry,
possibly using location-aware DNS servers that route clients to the closest
service.

Next, we need to create an SSL certificate for our ingress controller that
includes our wildcard DNS as a Subject Alternative Name (SAN). This will
allow our ingress controller to provide a secure HTTP connection for external
users no matter what specific service hostname they are using.

Finally, when we define our Services, we need to specify the fully
qualified domain name for the host field. For the preceding example, we
would specify web01.cluster.example.com rather than just web01.

After we’ve performed these additional steps, any external user would be
able to connect via HTTPS to the fully qualified hostname of our Service,
such as https://web01.cluster.example.com. This hostname would resolve to our
cluster’s external IP address, and the load balancer would route it to one of
the cluster’s nodes. At that point, our ingress controller, listening on the
standard port of 443, would offer its wildcard certificate, which would match
what the client expects. As soon as the secure connection is established, the
ingress controller would inspect the HTTP Host header and proxy a
connection to the correct Service, sending back the HTTP response to the
client.

The advantage of this approach is that after we have it set up, we can
deploy a new Ingress resource at any time to expose a Service externally, and
as long as we choose a unique hostname, it won’t collide with any other
exposed Service. After the initial setup, all of the configuration is maintained
within the cluster itself, and we still have a highly available configuration for
all of our Services.

Final Thoughts
Routing network traffic in a Kubernetes cluster might involve a great deal of
complexity, but the end result is straightforward: we can deploy our

application components to a cluster, with automatic scaling and failover, and
external users can access our application using a well-known name without
having to know how the application is deployed or how many container
instances we’re using to meet demand. If we build our application to be
resilient, our application containers can upgrade to new versions or restart in
response to failure without users even being aware of the change.

Of course, if we’re going to build application components that are
resilient, it’s important to know what can go wrong in deploying containers.
In the next chapter, we’ll look at some common issues with deploying
containers to a Kubernetes cluster and how to debug them.

10
WHEN THINGS GO WRONG

So far our installation and configuration of Kubernetes has gone as planned,
and our controllers have had no problem creating Pods and starting
containers. Of course, in the real world, it’s rarely that easy. Although
showing everything that might go wrong with a complex application
deployment isn’t possible, we can look at some of the most common
problems. Most important, we can explore debugging tools that will help us
diagnose any issue.

In this chapter, we’ll look at how to diagnose problems with application
containers that we deploy on top of Kubernetes. We’ll work our way through
the life cycle for scheduling and running containers, examining potential
problems at each step as well as how to diagnose and fix them.

Scheduling
Scheduling is the first activity Kubernetes performs on a Pod and its
containers. When a Pod is first created, the Kubernetes scheduler assigns it to
a node. Normally, this happens quickly and automatically, but some issues
can prevent scheduling from happening successfully.

No Available Nodes
One possibility is that the scheduler simply doesn’t have any nodes available.

This situation might occur because our cluster doesn’t have any nodes
configured for regular application containers or because all nodes have failed.

To illustrate the case in which no nodes are available for assignment, let’s
create a Pod with a node selector. A node selector specifies one or more node
labels that are required for a Pod to be scheduled on that node. Node selectors
are useful when some nodes in our cluster are different from others (for
example, when some nodes have newer CPUs with support for more
advanced instruction sets needed by some of our containers).

NOTE
The example repository for this book is at https://github.com/book-of-
kubernetes/examples. See “Running Examples” on page xx for details on
getting set up.

We’ll begin with a Pod definition that has a node selector that doesn’t
match any of our nodes:
nginx-selector.yaml

apiVersion: v1
kind: Pod
metadata:
 name: nginx
spec:
 containers:
 - name: nginx
 image: nginx
 nodeSelector:
 ➊ purpose: special

The node selector ➊ tells Kubernetes to assign this Pod only to a node
with a label called purpose whose value is equal to special. Even though none of
our nodes currently match, we can still create this Pod:

root@host01:~# kubectl apply -f /opt/nginx-selector.yaml
pod/nginx created

However, Kubernetes is stuck trying to schedule the Pod, because it can’t
find a matching node:

https://github.com/book-of-kubernetes/examples

root@host01:~# kubectl get pods -o wide
NAME READY STATUS RESTARTS AGE IP NODE ...
nginx 0/1 Pending 0 113s <none> <none> ...

We see a status of Pending and a node assignment of <none>. This is because
Kubernetes has not yet scheduled this Pod onto a node.

The kubectl get command is typically the first command we should run to
see whether there are issues with a resource we’ve deployed to our cluster. If
we have an issue, as we do in this case, the next step is to view the detailed
status and event log using kubectl describe:

root@host01:~# kubectl describe pod nginx
Name: nginx
Namespace: default
...
Status: Pending
...
Node-Selectors: purpose=special

Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Warning FailedScheduling 4m36s default-scheduler 0/3 nodes are
 available: 3 node(s) didn't match Pod's node affinity/selector.
 Warning FailedScheduling 3m16s default-scheduler 0/3 nodes are
 available: 3 node(s) didn't match Pod's node affinity/selector.

The event log informs us as to exactly what the issue is: the Pod can’t be
scheduled because none of the nodes matched the selector.

Let’s add the necessary label to one of our nodes:

root@host01:~# kubectl get nodes
NAME STATUS ROLES ...
host01 Ready control-plane...
host02 Ready control-plane...
host03 Ready control-plane...
root@host01:~# kubectl label nodes host02 purpose=special
node/host02 labeled

We first list the three nodes we have available and then apply the
necessary label to one of them. As soon as we apply this label, Kubernetes
can now schedule the Pod:

root@host01:~# kubectl get pods -o wide

NAME READY STATUS RESTARTS AGE IP NODE ...
nginx 1/1 Running 0 10m 172.31.89.196 host02 ...
root@host01:~# kubectl describe pod nginx
Name: nginx
Namespace: default
...
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Warning FailedScheduling 10m default-scheduler 0/3 nodes are
 available: 3 node(s) didn't match Pod's node affinity/selector.
 Warning FailedScheduling 9m17s default-scheduler 0/3 nodes are
 available: 3 node(s) didn't match Pod's node affinity/selector.
 Normal Scheduled 2m22s default-scheduler Successfully assigned
 default/nginx to host02
...

As expected, the Pod was scheduled onto the node where we applied the
label.

This example, like the others we’ll see in this chapter, illustrates
debugging in Kubernetes. After we’ve created the resources that we need, we
query the cluster state to make sure the actual deployment of those resources
was successful. When we find issues, we can correct those issues and our
resources will be started as desired without having to reinstall our application
components.

Let’s clean up this NGINX Pod:

root@host01:~# kubectl delete -f /opt/nginx-selector.yaml
pod "nginx" deleted

Let’s also remove the label from the node. We remove the label by
appending a minus sign to it to identify it:

root@host01:~# kubectl label nodes host02 purpose-
node/host02 unlabeled

We’ve covered one issue with the scheduler, but there’s still another we
need to look at.

Insufficient Resources
When choosing a node to host a Pod, the scheduler also considers the
resources that are available on each node and the resources the Pod requires.

We explore resource limits in detail in Chapter 14; for now it’s enough to
know that each container in a Pod can request the resources it needs, and the
scheduler will ensure that it is scheduled onto a node that has those resources
available. Of course, if there aren’t any nodes with enough room, the
scheduler won’t be able to schedule the Pod. Instead the Pod will wait in a
Pending state.

Let’s look at an example Pod definition to illustrate this:
sleep-multiple.yaml

apiVersion: v1
kind: Pod
metadata:
 name: sleep
spec:
 containers:
 - name: sleep
 image: busybox
 command:
 - "/bin/sleep"
 - "3600"
 resources:
 requests:
 cpu: "2"
 - name: sleep2
 image: busybox
 command:
 - "/bin/sleep"
 - "3600"
 resources:
 requests:
 cpu: "2"

In this YAML definition, we create two containers in the same Pod. Each
container requests two CPUs. Because all of the containers in a Pod must be
on the same host in order to share some Linux namespace types (especially
the network namespace so that they can use localhost for communication), the
scheduler needs to find a single node with four CPUs available. In our small
cluster, that can’t happen, as we can see if we try to deploy the Pod:

root@host01:~# kubectl apply -f /opt/sleep-multiple.yaml
pod/sleep created
root@host01:~# kubectl get pods -o wide
NAME READY STATUS RESTARTS AGE IP NODE ...

sleep 0/2 Pending 0 7s <none> <none> ...

As before, kubectl describe gives us the event log that reveals the issue:

root@host01:~# kubectl describe pod sleep
Name: sleep
Namespace: default
...
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Warning FailedScheduling 71s default-scheduler 0/3 nodes are
 available: 3 Insufficient cpu.

Notice that it doesn’t matter how heavily loaded our nodes actually are:

root@host01:~# kubectl top node
NAME CPU(cores) CPU% MEMORY(bytes) MEMORY%
host01 429m 21% 1307Mi 69%
host02 396m 19% 1252Mi 66%
host03 458m 22% 1277Mi 67%

Nor does it matter how much CPU our containers will actually use. The
scheduler allocates Pods purely based on what it requested; this way, we
don’t suddenly overwhelm a CPU when load increases.

We can’t magically provide our nodes with more CPUs, so to get this Pod
scheduled, we’re going to need to specify a lower CPU usage for our two
containers. Let’s use a more sensible figure of 0.1 CPU:
sleep-sensible.yaml

apiVersion: v1
kind: Pod
metadata:
 name: sleep
spec:
 containers:
 - name: sleep
 image: busybox
 command:
 - "/bin/sleep"
 - "3600"
 resources:
 requests:
 ➊ cpu: "100m"
 - name: sleep2

 image: busybox
 command:
 - "/bin/sleep"
 - "3600"
 resources:
 requests:
 cpu: "100m"

The value 100m ➊ equates to “one hundred millicpu” or one-tenth (0.1) of
a CPU.

Even though this is a separate file, it declares the same resource, so
Kubernetes will treat it as an update. However, if we try to apply this as a
change to the existing Pod, it will fail:

root@host01:~# kubectl apply -f /opt/sleep-sensible.yaml
The Pod "sleep" is invalid: spec: Forbidden: pod updates may not change
 fields other than ...

We are not allowed to change the resource request of an existing Pod,
which makes sense given that a Pod is allocated to a node only once on
creation, and a resource usage change might cause the node to be overly full.

If we were using a controller such as a Deployment, the controller could
handle replacing the Pods for us. Because we created a Pod directly, we need
to manually delete and then re-create it:

root@host01:~# kubectl delete pod sleep
pod "sleep" deleted
root@host01:~# kubectl apply -f /opt/sleep-sensible.yaml
pod/sleep created

Our new Pod has no trouble with node allocation:

root@host01:~# kubectl get pods -o wide
NAME READY STATUS RESTARTS AGE IP NODE ...
sleep 2/2 Running 0 51s 172.31.89.199 host02 ...

And if we run kubectl describe on the node, we can see how our new Pod has
been allocated some of the node’s CPU:

root@host01:~# kubectl describe node host02
Name: host02
...
Capacity:

 cpu: 2
...
Non-terminated Pods: (10 in total)
 Namespace Name CPU Requests CPU Limits ...
 --------- ---- ------------ ---------- ...
...
 default sleep ➊ 200m (10%) 0 (0%) ...
...

Be sure to use the correct node name for the node where your Pod was
deployed. Because our Pod has two containers, each requesting 100m, its total
request is 200m ➊.

Let’s finish by cleaning up this Pod:

root@host01:~# kubectl delete pod sleep
pod "sleep" deleted

Other errors can prevent a Pod from being scheduled, but these are the
most common. Most important, the commands we used here apply in all
cases. First, use kubectl get to determine the Pod’s current status, followed by
kubectl describe to view the event log. These two commands are always a good
first step when something doesn’t seem to be working properly.

Pulling Images
After a Pod is scheduled onto a node, the local kubelet service interacts with
the underlying container runtime to create an isolated environment and start
containers. However, there’s still one application misconfiguration that can
cause our Pod to become stuck in the Pending phase: inability to pull the
container image.

Three main issues can prevent the container runtime from pulling an
image:

Failure to connect to the container image registry
Authorization issue with the requested image
Image is missing from the registry

As we described in Chapter 5, an image registry is a web server. Often,
the image registry is outside the cluster, and the nodes need to be able to

connect to an external network or the internet to reach the registry.
Additionally, most registries support publishing private images that require
authentication and authorization to access. And, of course, if there is no
image published under the name we specify, the container runtime is not
going to be able to pull it from the registry.

All of these errors behave the same way in our Kubernetes cluster, with
differences only in the message in the event log, so we’ll need to explore only
one of them. We’ll look at what is probably the most common issue: a
missing image caused by a typo in the image name.

Let’s try to create a Pod using this YAML file:
nginx-typo.yaml

apiVersion: v1
kind: Pod
metadata:
 name: nginx
spec:
 containers:
 - name: nginx
 image: nginz

Because there is no image in Docker Hub called nginz, it won’t be possible
to pull this image. Let’s explore what happens when we add this resource to
the cluster:

root@host01:~# kubectl apply -f /opt/nginx-typo.yaml
pod/nginx created
root@host01:~# kubectl get pods
NAME READY STATUS RESTARTS AGE
nginx 0/1 ImagePullBackOff 0 20s

Our Pod has status ImagePullBackOff, which immediately signals two things.
First, this Pod is not yet getting to the point at which the containers are
running, because it has not yet pulled the container images. Second, as with
all errors, Kubernetes will continue attempting the action, but it will use a
back-off algorithm to avoid overwhelming our cluster’s resources. Pulling an
image involves reaching out over the network to communicate with the image
registry, and it would be rude and a waste of network bandwidth to flood the
registry with many requests in a short amount of time. Moreover, the cause of
the failure may be transient, so the cluster will keep trying in hopes that the

problem will be resolved.
The fact that Kubernetes uses a back-off algorithm for retrying errors is

important for debugging. In this case, we obviously are not going to publish
an nginz image to Docker Hub to fix the problem. But for cases in which we
do fix the issue by publishing an image, or by changing the permissions for
the image, it’s important to know that Kubernetes will not pick up that
change immediately, because the amount of delay between tries increases
with each failure.

Let’s explore the event log so that we can see this back-off in action:

root@host01:~# kubectl describe pod nginx
Name: nginx
Namespace: default
...
Status: ➊ Pending
...
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal Scheduled 114s default-scheduler Successfully
 assigned default/nginx to host03
...
 Warning Failed 25s (x4 over 112s) kubelet Failed to pull
 image "nginz": ... ➋ pull access denied, repository does not exist or may
 require authorization ...
...
 Normal BackOff 1s ➌ (x7 over 111s) kubelet ...

As before, our Pod is stuck in a Pending status ➊. In this case, however, the
Pod has gotten past the scheduling activity and has moved on to pulling the
image. For security reasons, the registry does not distinguish between a
private image for which we don’t have permission to access and a missing
image, so Kubernetes can tell us only that the issue is one or the other ➋.
Finally, we can see that Kubernetes has tried to pull the image seven times
during the two minutes since we created this Pod ➌, and it last tried to pull
the image one second ago.

If we wait a few minutes and then run the same kubectl describe command
again, focusing on the back-off behavior, we can see that a long amount of
time elapses between tries:

root@host01:~# kubectl describe pod nginx
Name: nginx

Namespace: default
...
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
...
 Normal BackOff 4m38s (x65 over 19m) kubelet ...

Kubernetes has now tried to pull the image 65 times over the course of 19
minutes. However, the amount of delay has grown over time and has reached
the maximum of five minutes between each attempt. This means that as we
debug this issue, we will need to wait up to five minutes each time to see
whether the problem has been resolved.

Let’s go ahead and fix the issue so that we can see this in action. We could
fix the YAML file and run kubectl apply again, but we can also fix it using kubectl
set:

root@host01:~# kubectl set image pod nginx nginx=nginx
pod/nginx image updated
root@host01:~# kubectl get pods
NAME READY STATUS RESTARTS AGE
nginx 0/1 ImagePullBackOff 0 28m

The kubectl set command requires us to specify the resource type and name;
in this case pod nginx. We then specify nginx=nginx to provide the name of the
container to modify (because a Pod can have multiple containers) along with
the new image.

We fixed the image name, but the Pod is still showing ImagePullBackOff
because we must wait for the five-minute timer to elapse before Kubernetes
tries again. Upon the next try, the pull is successful and the Pod starts
running:

root@host01:~# kubectl get pods
NAME READY STATUS RESTARTS AGE
nginx 1/1 Running 0 32m

Let’s clean up the Pod before moving on:

root@host01:~# kubectl delete pod nginx
pod "nginx" deleted

Again, we were able to solve this using kubectl get and kubectl describe.

However, when we get to the point that the container is running, that won’t
be sufficient.

Running Containers
After instructing the container runtime to pull any images needed, kubelet then
tells the runtime to start the containers. For the rest of the examples in this
chapter, we’ll assume that the container runtime is working as expected. At
this point, then, the main problem we’ll run into is the case in which the
container does not start as expected. Let’s begin with a simpler example of
debugging a container that fails to run, and then we’ll look at a more complex
example.

Debugging Using Logs
For our simple example, we first need a Pod definition with a container that
fails on startup. Here’s a Pod definition for PostgreSQL that will do what we
want:
postgres-misconfig.yaml

apiVersion: v1
kind: Pod
metadata:
 name: postgres
spec:
 containers:
 - name: postgres
 image: postgres

It might not seem like there are any issues with this definition, but
PostgreSQL has some required configuration when running in a container.

We can create the Pod using kubectl apply:

root@host01:~# kubectl apply -f /opt/postgres-misconfig.yaml
pod/postgres created

After a minute or so to allow time to pull the image, we can check the
status with kubectl get, and we’ll notice a status we haven’t seen before:

root@host01:~# kubectl get pods
NAME READY STATUS RESTARTS AGE
postgres 0/1 CrashLoopBackOff 1 (8s ago) 25s

The CrashLoopBackOff status indicates that a container in the Pod has exited.
As this is not a Kubernetes Job, it doesn’t expect the container to exit, so it’s
considered a crash.

If you catch the Pod at the right time, you might see an Error status rather
than CrashLoopBackOff. This is temporary: the Pod transitions through that status
immediately after crashing.

Like the ImagePullBackOff status, a CrashLoopBackOff uses an algorithm to retry
the failure, increasing the time between retries with every failure, to avoid
overwhelming the cluster. We can see this back-off if we wait a few minutes
and then print the status again:

root@host01:~# kubectl get pods
NAME READY STATUS RESTARTS AGE
postgres 0/1 CrashLoopBackOff 5 (117s ago) 5m3s

After five restarts, we’re already up to more than a minute of wait time
between retries. The wait time will continue to increase until we reach five
minutes, and then Kubernetes will continue to retry every five minutes
thereafter indefinitely.

Let’s use kubectl describe, as usual, to try to get more information about this
failure:

root@host01:~# kubectl describe pod postgres
Name: postgres
Namespace: default
...
Containers:
 postgres:
...
 State: Waiting
 Reason: CrashLoopBackOff
 Last State: Terminated
 Reason: Error
 Exit Code: 1
...
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
...

 Warning BackOff 3m13s (x24 over 8m1s) kubelet Back-off
 restarting failed container

The kubectl describe command does give us one piece of useful information:
the exit code for the container. However, that really just tells us there was an
error of some kind; it isn’t enough to fully debug the failure. To establish
why the container is failing, we’ll look at the container logs using the kubectl
logs command:

root@host01:~# kubectl logs postgres
Error: Database is uninitialized and superuser password is not specified.
 You must specify POSTGRES_PASSWORD to a non-empty value for the
 superuser. For example, "-e POSTGRES_PASSWORD=password" on "docker run".
...

We can see the logs even though the container has already stopped,
because the container runtime has captured them.

This message comes directly from PostgreSQL itself. Fortunately, it tells
us exactly what the issue is: we are missing a required environment variable.
We can quickly fix this with an update to the YAML resource file:
postgres-fixed.yaml

apiVersion: v1
kind: Pod
metadata:
 name: postgres
spec:
 containers:
 - name: postgres
 image: postgres
 ➊ env:
 - name: POSTGRES_PASSWORD
 value: "supersecret"

The env field ➊ adds a configuration to pass in the required environment
variable. Of course, in a real system we would not put this directly in a
YAML file in plaintext. We look at how to secure this kind of information in
Chapter 16.

To apply this change, we first need to delete the Pod definition and then
apply the new resource configuration to the cluster:

root@host01:~# kubectl delete pod postgres

pod "postgres" deleted
root@host01:~# kubectl apply -f /opt/postgres-fixed.yaml
pod/postgres created

As before, if we were using a controller such as a Deployment, we could
just update the Deployment, and it would handle deleting the old Pod and
creating a new one for us.

Now that we’ve fixed the configuration, our PostgreSQL container starts
as expected:

root@host01:~# kubectl get pods
NAME READY STATUS RESTARTS AGE
postgres 1/1 Running 0 77s

Let’s clean up this Pod before we continue to our next example:

root@host01:~# kubectl delete pod postgres
pod "postgres" deleted

Most well-written applications will print log messages before terminating,
but we need to be prepared for more difficult cases. Let’s look at one more
example that includes two new debugging approaches.

Debugging Using Exec
For this example, we’ll need an application that behaves badly. We’ll use a C
program that does some very naughty memory access. This program is
packaged into an Alpine Linux container so that we can run it as a container
in Kubernetes. Here’s the C source code:
crasher.c

int main() {
 char *s = "12";
 s[2] = '3';
 return 0;
}

The first line of code creates a pointer to a string that is two characters
long; the second line then tries to write to the non-existent third character,
causing the program to terminate immediately.

This C program can be compiled on any system by using gcc to create a

crasher executable. If you build it on a host Linux system, use this gcc
command:

$ gcc -g -static -o crasher crasher.c

The -g argument ensures that debugging symbols are available. We’ll use
those in a moment. The -static argument is the most important; we want to
package this as a standalone application inside an Alpine container image. If
we are building on a different Linux distribution, such as Ubuntu, the
standard libraries are based on a different toolchain, and dynamic linking will
fail. For this reason, we want our executable to have all of its dependencies
statically linked. Finally, we use -o to specify the output executable name and
then provide the name of our C source file.

Alternatively, you can just use the container image that’s already been
built and published to Docker Hub under the name bookofkubernetes/crasher: stable.
This image is built and published automatically using GitHub Actions based
on the code in the repository https://github.com/book-of-kubernetes/crasher.
Here’s the Dockerfile from that repository:
Dockerfile

FROM alpine AS builder
COPY ./crasher.c /
RUN apk --update add gcc musl-dev && \
 gcc -g -o crasher crasher.c

FROM alpine
COPY --from=builder /crasher /crasher
CMD ["/crasher"]

This Dockerfile takes advantage of Docker’s multistage builds capability
to reduce the final image size. To compile inside an Alpine container, we
need gcc and the core C include files and libraries. However, these have the
effect of making the container image significantly larger. We only need them
at compile time, so we want to avoid having that extra content in the final
image.

When we run this build using the docker build command that we saw in
Chapter 5, Docker will create one container based on Alpine Linux, copy our
source code into it, install the developer tools, and compile the application.
Docker will then start over with a fresh Alpine Linux container and will copy

https://github.com/book-of-kubernetes/crasher

the resulting executable from the first container. The final container image is
captured from this second container, so we avoid adding the developer tools
to the final image.

Let’s run this image in our Kubernetes cluster. We’ll use a Deployment
resource this time so that we can illustrate editing it to work around the
crashing container:
crasher-deploy.yaml

kind: Deployment
apiVersion: apps/v1
metadata:
 name: crasher
spec:
 replicas: 1
 selector:
 matchLabels:
 app: crasher
 template:
 metadata:
 labels:
 app: crasher
 spec:
 containers:
 - name: crasher
 image: bookofkubernetes/crasher:stable

This basic Deployment is very similar to what we saw when we
introduced Deployments in Chapter 7. We specify the image field to match the
location where the image is published.

We can add this Deployment to the cluster in the usual way:

root@host01:~# kubectl apply -f /opt/crasher-deploy.yaml
deployment.apps/crasher created

As soon as Kubernetes has had a chance to schedule the Pod and pull the
image, it starts crashing, as expected:

root@host01:~# kubectl get pods
NAME READY STATUS RESTARTS AGE
crasher-76cdd9f769-5blbn 0/1 CrashLoopBackOff 3 (24s ago) 73s

As before, using kubectl describe tells us only the exit code of the container.

There’s another way to get this exit code; we can use the JSON output format
of kubectl get and the jq tool to capture just the exit code:

root@host01:~# kubectl get pod crasher-7978d9bcfb-wvx6q -o json | \
 jq '.status.containerStatuses[].lastState.terminated.exitCode'
139

Be sure to use the correct name for your Pod based on the output of kubectl
get pods. The path to the specific field we need is based on how Kubernetes
tracks this resource internally; with some practice it becomes easier to craft a
path to jq to capture a specific field, which is a very handy trick in scripting.

The exit code of 139 tells us that the container terminated with a
segmentation fault. However, the logs are unhelpful in diagnosing the
problem, because our program didn’t print anything before it crashed:

root@host01:~# kubectl logs crasher-76cdd9f769-5blbn
[no output]

We have quite a problem. The logs aren’t helpful, so the next step would
be to use kubectl exec to get inside the container. However, the container stops
immediately when our application crashes and is not around long enough for
us to do any debugging work.

To fix this, we need a way to start this container without running the
crashing program. We can do that by overriding the default command to have
our container remain running. Because we built on an Alpine Linux image,
the sleep command is available to us for this purpose.

We could edit our YAML file and update the Deployment that way, but
we can also edit the Deployment directly using kubectl edit, which will bring up
the current definition in an editor, and any changes we make will be saved to
the cluster:

root@host01:~# kubectl edit deployment crasher

This will bring up vi in an editor window with the Deployment resource in
YAML format. The resource will include a lot more fields than we provided
when we created it because Kubernetes will show us the status of the
resource as well as some fields with default values.

If you don’t like vi, you can preface the kubectl edit command with
KUBE_EDITOR=nano to use the Nano editor, instead.

Within the file, find these lines:

 spec:
 containers:
 - image: bookofkubernetes/crasher:stable
 imagePullPolicy: IfNotPresent

You will see the imagePullPolicy line even though it wasn’t in the YAML
resource, as Kubernetes has added the default policy to the resource
automatically. Add a new line between image and imagePullPolicy so that the
result looks like this:

 spec:
 containers:
 - image: bookofkubernetes/crasher:stable
 args: ["/bin/sleep", "infinity"]
 imagePullPolicy: IfNotPresent

This added line overrides the default command for the container so that it
runs sleep instead of running our crashing program. Save and exit the editor,
and kubectl will pick up the new definition:

deployment.apps/crasher edited

After kubectl applies this change to the cluster, the Deployment must delete
the old Pod and create a new one. This is done automatically, so the only
difference we’ll notice is the automatically generated part of the Pod name.
Of course, we’ll also see the Pod running:

root@host01:~# kubectl get pods
NAME READY STATUS RESTARTS AGE
crasher-58d56fc5df-vghbt 1/1 Running 0 3m29s

Our Pod is now running, but it’s only running sleep. We still need to debug
our actual application. To do that, we can now get a shell prompt inside our
container:

root@host01:~# kubectl exec -ti crasher-58d56fc5df-vghbt -- /bin/sh
/ #

The Deployment replaced the Pod when we changed the definition, so the
name has changed. As before, use the correct name for your Pod. At this

point we can try out our crashing program manually:

/ # /crasher
Segmentation fault (core dumped)

In many cases, the ability to run a program this way, playing with
different environment variables and command line options, may be enough to
find and fix the problem. Alternatively, we could try running the program
with strace, which would tell us what system calls the program is trying to
make and what files it is trying to open prior to crashing. In this case, we
know that the program is crashing with a segmentation fault, meaning that the
problem is likely a programming error, so our best approach is to connect a
debugging tool to the application using port forwarding.

Debugging Using Port Forwarding
We’ll illustrate port forwarding using the text-based debugger gdb, but any
debugger that can connect via a network port will work. First, we need to get
our application created inside the container using a debugger that will listen
on a network port and wait before it runs the code. To do that, we’ll need to
install gdb inside our container. Because this is an Alpine container, we’ll use
apk:

/ # apk add gdb
...
(13/13) Installing gdb (10.1-r0)
Executing busybox-1.32.1-r3.trigger
OK: 63 MiB in 27 packages

The version of gdb we installed includes gdbserver, which enables us to start
a networked debug session.

Because gdb is a text-based debugger, we could obviously just start it
directly to debug our application, but it is often nicer to use a debugger with a
GUI, making it easier for us to step through source, set breakpoints, and
watch variables. For this reason, I’m showing the process for connecting a
debugger over the network.

Let’s start gdbserver and set it up to listen on port 2345:

/ # gdbserver localhost:2345 /crasher
Process /crasher created; pid = 25

Listening on port 2345

Note that we told gdbserver to listen to the localhost interface. We’ll still be
able to connect to the debugger because we’ll have Kubernetes provide us
with port forwarding with the kubectl port-forward command. This command
causes kubectl to connect to the API server and request it to forward traffic to a
specific port on a specific Pod. The advantage is that we can use this port
forwarding capability from anywhere we can connect to the API server, even
outside the cluster.

Using port forwarding specifically to run a remote debugger may not be
an everyday occurrence for either a Kubernetes cluster administrator or the
developer of a containerized application, but it’s a valuable skill to have
when there’s no other way to find the bug. It’s also a great way to illustrate
the power of port forwarding to reach a Pod.

Because we have our debugger running in our first terminal, we’ll need
another terminal tab or window for the port forwarding, which can be done
from any of the hosts in our cluster. Let’s use host01:

root@host01:~# kubectl port-forward pods/crasher-58d56fc5df-vghbt 2345:2345
Forwarding from 127.0.0.1:2345 -> 2345
Forwarding from [::1]:2345 -> 2345

This kubectl command starts listening on port 2345 and forwards all traffic
through the API server to the Pod we specified. Because this command keeps
running, we need yet another terminal window or tab for our final step, which
is to run the debugger we’ll use to connect to our debug server running in the
container. This must be done from the same host as our kubectl port-forward
command because that program is listening only on local interfaces.

At this point, we could run any debugger that knows how to talk to the
debug server. For simplicity, we’ll use gdb again. We’ll begin by changing to
the /opt directory because our C source file is there:

root@host01:~# cd /opt

Now we can kick off gdb and use it to connect to the debug server:

root@host01:/opt# gdb -q
(gdb) target remote localhost:2345
Remote debugging using localhost:2345
...

Reading /crasher from remote target...
Reading symbols from target:/crasher...
0x0000000000401bc0 in _start ()

Our debug session connects successfully and is waiting for us to start the
program, which we’ll do by using the continue command:

(gdb) continue
Continuing.

Program received signal SIGSEGV, Segmentation fault.
main () at crasher.c:3
3 s[2] = '3';

With the debugger, we’re able to see exactly which line of our source
code is causing the segmentation fault, and now we can figure out how to fix
it.

Final Thoughts
When we move our application components into container images and run
them in a Kubernetes cluster, we gain substantial benefits in scalability and
automated failover, but we introduce a number of new possibilities that can
go wrong when getting our application running, and we introduce new
challenges in debugging those problems. In this chapter, we’ve looked at how
to use Kubernetes commands to systematically track our application startup
and operation to determine what is preventing it from working correctly.
With these commands, we can debug any kind of issue happening at the
application level, even if an application component won’t start correctly in its
containerized environment.

Now that we have a clear picture of running containers using Kubernetes,
we can begin to look in depth into the capabilities of the cluster itself. As we
do this, we’ll be sure to explore how each component works so as to have the
tools needed to diagnose problems. We’ll start in the next chapter by looking
in detail at the Kubernetes control plane.

11
CONTROL PLANE AND ACCESS CONTROL

The control plane manages the Kubernetes cluster, storing the desired state of
applications, monitoring the current state to detect and recover from any
issues, scheduling new containers, and configuring network routing. In this
chapter, we’ll look closely at the API server, the primary interface for the
control plane and the entry point for any status retrieval and changes made to
the entire cluster.

Although we will focus on the API server, the control plane includes
multiple other services, each with a role to play. The other control plane
services act as clients to the API server, watching cluster changes and taking
appropriate action to update the state of the cluster. The following list
describes the other control plane components:

Scheduler Assigns each new Pod to a node.

Controller manager Has multiple responsibilities, including creating Pods
for Deployments, monitoring nodes, and reacting to outages.

Cloud controller manager This optional component interfaces with an
underlying cloud provider to check on nodes and configure network traffic
routing.

As we demonstrate the workings of the API server, we’ll also see how
Kubernetes manages security to ensure that only authorized users and
services can query the cluster and make changes. The purpose of a container

orchestration environment like Kubernetes is to provide a platform for any
kind of containerized application we might need to run, so this security is
critically important to ensure that the cluster is used only as intended.

API Server
Despite its centrality to the Kubernetes architecture, the API server’s purpose
is simple. It exposes an interface using HTTP and representational state
transfer (REST) to perform basic creation, retrieval, update, and deletion of
resources in the cluster. It performs authentication to identify clients,
authorization to ensure that clients have permission for the specific request,
and validation to ensure that any created or updated resources match the
corresponding specification. It also reads from and writes to a data store
based on the commands it receives from clients.

However, the API server is not responsible for actually updating the
current state of the cluster to match the desired state. That is the responsibility
of other control plane and node components. For example, if a client creates a
new Kubernetes Deployment, the API server’s job is solely to update the data
store with the resource information. It is then the job of the scheduler to
decide where the Pods will run, and the job of the kubelet service on the
assigned nodes to create and monitor the containers and to configure
networking to route traffic to the containers.

For this chapter, we have a three-node Kubernetes cluster configured by
our automation scripts. Each of the three nodes acts as a control plane node,
so three copies of the API server are running. We can communicate with any
of these three because they all share the same backend database. The API
server is listening for secure HTTP connections on port 6443, the default
port.

NOTE
The example repository for this book is at https://github.com/book-of-
kubernetes/examples. See “Running Examples” on page xx for details on
getting set up.

We’ve been using kubectl to communicate with the API server to create and

https://github.com/book-of-kubernetes/examples

delete resources and retrieve status, and kubectl has been using secure HTTP
on port 6443 to talk to the cluster. It knows to do this because of a
Kubernetes configuration file that was installed into /etc/kubernetes by
kubeadm when the cluster was initialized. This configuration file also contains
authentication information that gives us permission to read cluster status and
make changes.

Because the API server is expecting secure HTTP, we can use curl to
communicate directly with the Kubernetes API. This will give us a better feel
for how the communication actually works. Let’s begin with a simple curl
command:

root@host01:~# curl https://192.168.61.11:6443/
curl: (60) SSL certificate problem: unable to get local issuer certificate
More details here: https://curl.se/docs/sslcerts.html
...

This error message shows that curl does not trust the certificate that the
API server is offering. We can use curl to see this certificate:

root@host01:~# curl -kv https://192.168.61.11:6443/
...
* Server certificate:
* subject: CN=kube-apiserver
...
* issuer: CN=kubernetes
...

The -k option tells curl to ignore any certificate issues, whereas -v tells curl
to provide us with extra logging information about the connection.

For curl to trust this certificate, it will need to trust the issuer, as the issuer is
the signer of the certificate. Let’s fetch the certificate from our Kubernetes
installation so that we can point curl to it:

root@host01:~# cp /etc/kubernetes/pki/ca.crt .

Be sure to add the . at the end to copy this file to the current directory.
We’re doing this solely to make the following commands easier to type.

Let’s examine this certificate before we use it:

root@host01:~# openssl x509 -in ca.crt -text
Certificate:

...
 Issuer: CN = kubernetes
...
 Subject: CN = kubernetes

The Issuer and the Subject are the same, so this is a self-signed certificate. It
was created by kubeadm when we initialized this cluster. Using a generated
certificate allows kubeadm to adapt to our particular cluster networking
configuration and allows our cluster to have a unique certificate and key
without requiring an external certificate authority (CA). However, it does
mean that we need to configure kubectl to trust this certificate on any system
for which we need to communicate with this API server.

We can now tell curl to use this certificate to verify the API server:

root@host01:~# curl --cacert ca.crt https://192.168.61.11:6443/
{
...
 "status": "Failure",
 "message": "forbidden: User \"system:anonymous\" cannot get path \"/\"",
...
 "code": 403
}

Now that we’re providing curl with the correct root certificate, curl can
validate the API server certificate and we can successfully connect to the API
server. However, the API server responds with a 403 error, indicating that we
are not authorized. This is because at the moment we are not providing any
authentication information for curl to pass to the API server, so the API server
sees us as an anonymous user.

One final note: for this curl command to work, we need to be selective in
the hostname or IP address we use. The API server is listening on all network
interfaces, so we could connect to it using localhost or 127.0.0.1. However, those
are not listed in the kube-apiserver certificate and cannot be used for secure
HTTP because curl will not trust the connection.

API Server Authentication
We need to provide authentication information before the API server will
accept our requests, so let’s understand the API server’s process for

authentication. Authentication is handled through a set of plug-ins, each of
which looks at the request to determine whether it can identify the client. The
first plug-in that successfully identifies the client provides identity
information to the API server. This identity is then used with authorization to
determine what the client is allowed to do.

Because authentication is based on plug-ins, it’s possible to have as many
different ways of authenticating clients as needed. It’s even possible to add a
proxy in front of the API server that performs custom authentication logic
and passes the user’s identity to the API server in an HTTP header.

For our purposes, we’ll focus on three authentication primary plug-ins that
are used within the cluster itself or as part of the cluster setup process: client
certificates, bootstrap tokens, and service accounts.

Client Certificates
As mentioned previously, an HTTP client like curl validates the server’s
identity by comparing the server’s hostname to its certificate and also by
checking the certificate’s signature against a list of trusted CAs. In addition to
checking the server identity, secure HTTP also allows a client to submit a
certificate to the server. The server checks the signature against its list of
trusted authorities and then uses the subject of the certificate as the client’s
identity.

Kubernetes uses HTTP client certificate authentication extensively to
enable cluster services to authenticate with the API server. This includes
control plane components as well as the kubelet service running on each node.
We can use kubeadm to list the certificates used by the control plane:

root@host01:~# kubeadm certs check-expiration
...
CERTIFICATE ... RESIDUAL TIME CERTIFICATE AUTHORITY ...
admin.conf ... 363d ...
apiserver ... 363d ca ...
apiserver-etcd-client ... 363d etcd-ca ...
apiserver-kubelet-client ... 363d ca ...
controller-manager.conf ... 363d ...
etcd-healthcheck-client ... 363d etcd-ca ...
etcd-peer ... 363d etcd-ca ...
etcd-server ... 363d etcd-ca ...
front-proxy-client ... 363d front-proxy-ca ...
scheduler.conf ... 363d ...
...

The RESIDUAL TIME column shows how much time is left before these
certificates expire; by default, they expire after one year. Use kubeadm certs renew
to renew them, passing the name of the certificate as a parameter.

The first item in the list, admin.conf, is how we’ve been authenticating
ourselves to the cluster in the past few chapters. During initialization, kubeadm
created this certificate and stored its information in the
/etc/kubernetes/admin.conf file. Every kubectl command we’ve run has been
using this file because our automation scripts are setting the KUBECONFIG
environment variable:

root@host01:~# echo $KUBECONFIG
/etc/kubernetes/admin.conf

If we had not set KUBECONFIG, kubectl would be using the default, which is a
file called .kube/config in the user’s home directory.

The admin.conf credentials are designed to provide emergency access to
the cluster, bypassing authorization. In a production cluster, we would avoid
using these credentials directly for everyday operations. Instead, the best
practice for a production cluster is to integrate a separate identity manager for
administrators and normal users. For our example, because we don’t have a
separate identity manager, we’ll instead create an additional certificate for a
regular user. This kind of certificate may be useful for an automated process
that runs outside the cluster, but it can’t integrate with the identity manager.

We can create a new client certificate using kubeadm:

root@host01:~# kubeadm kubeconfig user --client-name=me \
 --config /etc/kubernetes/kubeadm-init.yaml > kubeconfig

The kubeadm kubeconfig user command asks the API server to generate a new
client certificate. Because this certificate is signed by the cluster’s CA, it is
valid for authentication. The certificate is saved into the kubeconfig file along
with the necessary configuration to connect to the API server:

root@host01:~# cat kubeconfig
apiVersion: v1
clusters:
- cluster:
 certificate-authority-data: ...
 server: https://192.168.61.10:6443

 name: kubernetes
contexts:
- context:
 cluster: kubernetes
 user: me
 name: me@kubernetes
current-context: me@kubernetes
kind: Config
preferences: {}
users:
- name: me
 user:
 client-certificate-data: ...
 client-key-data: ...

The clusters section defines the information needed to connect to the API
server, including the load-balanced address shared by all three API servers in
our highly available configuration. The users section defines the new user we
created along with its client certificate.

Thus far, we’ve successfully created a new user, but we haven’t given that
user any permissions yet, so we won’t be very successful using these
credentials:

root@host01:~# KUBECONFIG=kubeconfig kubectl get pods
Error from server (Forbidden): pods is forbidden: User "me" cannot list
 resource "pods" in API group "" in the namespace "default"

Later in the chapter, we’ll see how to give permissions to this user.

Bootstrap Tokens
Initializing a distributed system like a Kubernetes cluster is challenging. The
kubelet service running on each node must be added to the cluster. To do this,
kubelet must connect to the API server and obtain a client certificate signed by
the cluster’s CA. The kubelet service then uses this client certificate to
authenticate to the cluster.

This certificate generation must be done securely so that we eliminate the
possibility of adding rogue nodes to the cluster and eliminate the possibility
of a rogue process being able to impersonate a real node. For this reason, the
API server cannot provide a certificate for just any node that asks to be added
to the cluster. Instead, the node must generate its own private key, submit a
certificate signing request (CSR) to the API server, and receive a signed

certificate.
To keep this process secure, we need to ensure that a node is authorized to

submit a certificate signing request. But this submission must happen before
the node has the client certificate that it uses for more permanent
authentication—we have a chicken-or-egg problem! Kubernetes solves this
via time-limited tokens, known as Bootstrap Tokens. The bootstrap token
becomes a preshared secret that is known to the API server and the new
nodes. Making this token time limited reduces the risk to the cluster if it is
exposed. The Kubernetes controller manager has the task of automatically
cleaning up bootstrap tokens when they expire.

When we initialized our cluster, kubeadm created a bootstrap token, but it
was configured to expire after two hours. If we need to join additional nodes
to the cluster after that, we can use kubeadm to generate a new bootstrap token:

root@host01:~# TOKEN=$(kubeadm token create)
root@host01:~# echo $TOKEN
pqcnd6.4wawyqgkfaet06zm

This token is added as a Kubernetes Secret in the kube-system Namespace.
We look at secrets in more detail in Chapter 16. For now, let’s just verify that
it exists:

root@host01:~# kubectl -n kube-system get secret
NAME TYPE DATA AGE
...
bootstrap-token-pqcnd6 bootstrap.kubernetes.io/token 6 64s
...

We can use this token to make requests of the API server by using HTTP
Bearer authentication. This means that we provide the token in an HTTP
header called Authorization, prefaced with the word Bearer. When the bootstrap
token authentication plug-in sees that header and matches the provided token
against the corresponding secret, it authenticates us to the API server and
allows us access to the API.

For security reasons, bootstrap tokens have access only to the certificate
signing request functionality of the API server, so that’s all our token will be
allowed to do.

Let’s use our bootstrap token to list all of the certificate signing requests:

root@host01:~# curl --cacert ca.crt \
 -H "Authorization: Bearer $TOKEN" \
 https://192.168.61.11:6443/apis/certificates.k8s.io/v1/certificatesigningrequests
{
 "kind": "CertificateSigningRequestList",
 "apiVersion": "certificates.k8s.io/v1",
 "metadata": {
 "resourceVersion": "21241"
 },
 "items": [
...
]
}

It’s important to know how bootstrap tokens work, given that they’re
essential to adding nodes to the cluster. However, as the name implies, that’s
really the only purpose for a bootstrap token; it’s not typical to use them for
normal API server access. For normal API server access, especially from
inside the cluster, we need a ServiceAccount.

Service Accounts
Containers running in the Kubernetes cluster often need to communicate with
the API server. For example, all of the various components we deployed on
top of our cluster in Chapter 6, including the Calico network plug-in, the
Longhorn storage driver, and the metrics server, communicate with the API
server to watch and modify the cluster state. To support this, Kubernetes
automatically injects credentials into every running container.

Of course, for security reasons, giving each container only the API server
permissions it requires is important, so we should create a separate
ServiceAccount for each application or cluster component to do that. The
information for these ServiceAccounts is then added to the Deployment or
other controller so that Kubernetes will inject the correct credentials. In some
cases, we may use multiple ServiceAccount with a single application,
restricting each application component to only the access it needs.

In addition to using a separate ServiceAccount per application or
component, it’s also good practice to use a separate Namespace per
application. As we’ll see in a moment, permissions can be limited to a single
Namespace. Let’s start by creating the Namespace:

root@host01:~# kubectl create namespace sample

namespace/sample created

A ServiceAccount uses a bearer token, which is stored in a secret
automatically generated by Kubernetes when the ServiceAccount is created.
Let’s make a ServiceAccount for a Deployment that we’ll create in this
chapter:
read-pods-sa.yaml

apiVersion: v1
kind: ServiceAccount
metadata:
 name: read-pods
 namespace: sample

Note that we use the metadata to place this ServiceAccount in the sample
Namespace we just created. We could also use the -n flag with kubectl to
specify the Namespace. We’ll use the usual kubectl apply to create this
ServiceAccount:

root@host01:~# kubectl apply -f /opt/read-pods-sa.yaml
serviceaccount/read-pods created

When the ServiceAccount is created, the controller manager detects this
and automatically creates a Secret with the credentials:

root@host01:~# kubectl -n sample get serviceaccounts
NAME SECRETS AGE
default 1 27s
read-pods 1 8s
root@host01:~# kubectl -n sample get secrets
NAME TYPE DATA AGE
default-token-mzwpt kubernetes.io/service-account-token 3 43s
read-pods-token-m4scq kubernetes.io/service-account-token 3 25s

Note that in addition to the read-pods ServiceAccount we just created, there
is already a default ServiceAccount. This account was created automatically
when the Namespace was created; it will be used if we don’t specify to
Kubernetes which ServiceAccount to use for a Pod.

The newly created ServiceAccount does not have any permissions yet. To
start adding permissions, we need to take a look at role-based access control
(RBAC).

Role-Based Access Controls
After the API server has found an authentication plug-in that can identify the
client, it uses the identity to determine whether the client has permissions to
perform the desired action, which is done by assembling a list of roles that
belong to the user. Roles can be associated directly with a user or with a
group in which the user is a member. Group membership is part of the
identity. For example, client certificates can specify a user’s groups by
including organization fields as part of the certificate’s subject.

Roles and Cluster Roles
Each role has a set of permissions. A permission allows a client to perform
one or more actions on one or more types of resources.

As an example, let’s define a role that will give a client permission to read
Pod status. We have two choices: we can create a Role or a ClusterRole. A
Role is visible and usable within a single Namespace, whereas a ClusterRole
is visible and usable across all Namespaces. This difference allows
administrators to define common roles across the cluster that are immediately
available when new Namespaces are created, while also allowing the
delegation of access control for a specific Namespace.

Here’s an example definition of a ClusterRole. This role only has the
ability to read data about Pods; it cannot change Pods or access any other
cluster information:
pod-reader.yaml

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
 name: pod-reader
rules:
- apiGroups: [""]
 resources: ["pods"]
 verbs: ["get", "watch", "list"]

Because this is a cluster-wide role, it doesn’t make sense to assign it to a
Namespace, so we don’t specify one.

The critical part of this definition is the list of rules. Each ClusterRole or
Role can have as many rules as necessary. Each rule has a list of verbs that

define what actions are allowed. In this case, we identified get, watch, and list as
the verbs, with the effect that the role allows reading Pods but not any actions
that would modify them.

Each rule applies to one or more resource types, based on the combination
of apiGroups and resources identified. Each rule gives permissions for the actions
listed as verbs. In this case, the empty string "" is used to refer to the default
API group, which is where Pods are located. If we wanted to also include
Deployments and StatefulSets, we would need to define our rule as follows:

- apiGroups: ["", "apps"]
 resources: ["pods", "deployments", "statefulsets"]
 verbs: ["get", "watch", "list"]

We need to add "apps" to the apiGroups field because Deployment and
StatefulSet are part of that group (as identified in the apiVersion when we
declare the resource). When we declare a Role or ClusterRole, the API server
will accept any strings in the apiGroups and resources fields, regardless of whether
the combination actually identifies any resource types, so it’s important to
pay attention to which group a resource is in.

Let’s define our pod-reader ClusterRole:

root@host01:~# kubectl apply -f /opt/pod-reader.yaml
clusterrole.rbac.authorization.k8s.io/pod-reader created

Now that the ClusterRole exists, we can apply it. To do that, we need to
create a role binding.

Role Bindings and Cluster Role Bindings
Let’s apply this pod-reader ClusterRole to the read-pods ServiceAccount we
created earlier. We have two options: we can create a RoleBinding, which
will assign the permissions in a specific Namespace, or a
ClusterRoleBinding, which will assign the permissions across all
Namespaces. This feature is beneficial because it means we can create a
ClusterRole such as pod-reader once and have it visible across the cluster, but
create the binding in an individual Namespace so that users and
ServiceAccount are restricted to only the Namespaces they should be allowed
to access. This helps us apply the pattern we saw earlier of having a
Namespace per application, while at the same time it keeps non-

administrators away from key infrastructure components such as the
components running in the kube-system Namespace.

In keeping with this practice, we’ll create a RoleBinding so that our
ServiceAccount has permissions to read Pods only in the sample Namespace:
read-pods-bind.yaml

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
 name: read-pods
 namespace: sample
subjects:
- kind: ServiceAccount
 name: read-pods
 namespace: sample
roleRef:
 kind: ClusterRole
 name: pod-reader
 apiGroup: rbac.authorization.k8s.io

Not surprisingly, a RoleBinding ties together a Role or a ClusterRole and
a subject. The RoleBinding can contain multiple subjects, so we can bind the
same role to multiple users or groups with a single binding.

We define a Namespace in both the metadata and where we identify the
subject. In this case, these are both sample, as we want to grant the
ServiceAccount the ability to read Pod status in its own Namespace.
However, these could be different to allow a ServiceAccount in one
Namespace to have specific permissions in another Namespace. And of
course we could also use a ClusterRoleBinding to give out permissions across
all Namespaces.

We can now create the RoleBinding:

root@host01:~# kubectl apply -f /opt/read-pods-bind.yaml
rolebinding.rbac.authorization.k8s.io/read-pods created

We’ve now given permission for the read-pods ServiceAccount to read Pods
in the sample Namespace. To demonstrate how it works, we need to create a
Pod that is assigned to the read-pods ServiceAccount.

Assigning a Service Account to Pods

To assign a ServiceAccount to a Pod, just add the serviceAccountName field to the
Pod spec:
read-pods-deploy.yaml

kind: Deployment
apiVersion: apps/v1
metadata:
 name: read-pods
 namespace: sample
spec:
 replicas: 1
 selector:
 matchLabels:
 app: read-pods
 template:
 metadata:
 labels:
 app: read-pods
 spec:
 containers:
 - name: read-pods
 image: alpine
 command: ["/bin/sleep", "infinity"]
 serviceAccountName: read-pods

The ServiceAccount identified must exist in the Namespace that the Pod is
created in. Kubernetes will inject the Pod’s containers with the Service-
Account token so that the containers can authenticate to the API server.

Let’s walk through an example to show how this works and how the
authorization is applied. Start by creating this Deployment:

root@host01:~# kubectl apply -f /opt/read-pods-deploy.yaml
deployment.apps/read-pods created

This creates an Alpine container running sleep that we can use as a base for
shell commands.

To get to a shell prompt, we’ll first get the generated name of the Pod and
then use kubectl exec to create the shell:

root@host01:~# kubectl -n sample get pods
NAME READY STATUS RESTARTS AGE
read-pods-9d5565548-fbwjb 1/1 Running 0 6s
root@host01:~# kubectl -n sample exec -ti read-pods-9d5565548-fbwjb -- /bin/sh
/ #

The ServiceAccount token is mounted in the directory
/run/secrets/kubernetes.io/serviceaccount, so change to that directory and list
its contents:

/ # cd /run/secrets/kubernetes.io/serviceaccount
/run/secrets/kubernetes.io/serviceaccount # ls -l
total 0
lrwxrwxrwx 1 root root ... ca.crt -> ..data/ca.crt
lrwxrwxrwx 1 root root ... namespace -> ..data/namespace
lrwxrwxrwx 1 root root ... token -> ..data/token

These files show up as odd looking symbolic links, but the contents are
there as expected. The ca.crt file is the root certificate for the cluster, which
is needed to trust the connection to the API server.

Let’s save the token in a variable so that we can use it:

/run/secrets/kubernetes.io/serviceaccount # TOKEN=$(cat token)

We can now use this token with curl to connect to the API server. First,
though, we need to install curl into our Alpine container:

default/run/secrets/kubernetes.io/serviceaccount # apk add curl
...
OK: 8 MiB in 19 packages

Our ServiceAccount is allowed to perform get, list, and watch operations on
Pods. Let’s list all Pods in the sample Namespace:

/run/secrets/kubernetes.io/serviceaccount # curl --cacert ca.crt \
 -H "Authorization: Bearer $TOKEN" \
 https://kubernetes.default.svc/api/v1/namespaces/sample/pods
 "kind": "PodList",
 "apiVersion": "v1",
 "metadata": {
 "resourceVersion": "566610"
 },
 "items": [
 {
 "metadata": {
 "name": "read-pods-9d5565548-fbwjb",
...
]
}

As with the bootstrap token, we use HTTP Bearer authentication to pass
the ServiceAccount token to the API server. Because we’re operating from
inside a container, we can use the standard address kubernetes.default.svc to find
the API server. This works because a Kubernetes cluster always has a service
in the default Namespace that routes traffic to API server instances using the
Service networking we saw in Chapter 9.

The curl command is successful because our ServiceAccount is bound to
the pod-reader Role we created. However, the RoleBinding is limited to the
sample Namespace, and as a result, we aren’t allowed to list Pods in a different
Namespace:

/run/secrets/kubernetes.io/serviceaccount # curl --cacert ca.crt \
 -H "Authorization: Bearer $TOKEN" \
 https://kubernetes.default.svc/api/v1/namespaces/kube-system/pods
{
 "kind": "Status",
 "apiVersion": "v1",
 "metadata": {
 },
 "status": "Failure",
 "message": "pods is forbidden: User
 \"system:serviceaccount:default:read-pods\" cannot list resource
 \"pods\" in API group \"\" in the namespace \"kube-system\"",
 "reason": "Forbidden",
 "details": {
 "kind": "pods"
 },
 "code": 403
}

We can use the error message to be certain that our ServiceAccount
assignment and authentication worked as expected because the API server
recognizes us as the read-pods ServiceAccount. However, we don’t have a
RoleBinding with the right permissions to read Pods in the kube-system
Namespace, so the request is rejected.

Similarly, because we have permission only for Pods, we can’t list our
Deployment, even though it is also in the sample Namespace:

/run/secrets/kubernetes.io/serviceaccount # curl --cacert ca.crt \
 -H "Authorization: Bearer $TOKEN" \
 https://kubernetes.default.svc/apis/apps/v1/namespaces/sample/deploy
ments
{

 "kind": "Status",
 "apiVersion": "v1",
 "metadata": {
 },
 "status": "Failure",
 "message": "deploy.apps is forbidden: User
 \"system:serviceaccount:default:read-pods\" cannot list resource
 \"deploy\" in API group \"apps\" in the namespace \"sample\"",
 "reason": "Forbidden",
 "details": {
 "group": "apps",
 "kind": "deploy"
 },
 "code": 403
}

The slightly different path scheme for the URL, starting with
/apis/apps/v1 instead of /api/v1, is needed because Deployments are in the
apps API group rather than the default group. This command fails in a similar
way because we don’t have the necessary permissions to list Deployments.

We’re finished with this shell session, so let’s exit it:

/run/secrets/kubernetes.io/serviceaccount # exit

Before we leave the RBAC topic, though, let’s illustrate an easy way to
grant normal user permissions for a Namespace without allowing any
administrator functions.

Binding Roles to Users
To grant normal user permissions, we’ll leverage an existing ClusterRole
called edit that’s already set up to grant view and edit permissions for most of
the resource types users need.

Let’s take a quick look at the edit ClusterRole to see what permissions it
has:

root@host01:~# kubectl get clusterrole edit -o yaml
...
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
...
rules:
...
- apiGroups:

 - ""
 resources:
 - pods
 - pods/attach
 - pods/exec
 - pods/portforward
 - pods/proxy
 verbs:
 - create
 - delete
 - deletecollection
 - patch
 - update
...

The full list has a large number of different rules, each with its own set of
permissions. The subset in this example shows just one rule, used to provide
edit permission for Pods.

Some commands related to Pods, such as exec, are listed separately to
allow for more granular control. For example, for a production system, it can
be useful to allow some individuals the ability to create and delete Pods and
see logs, but not provide the ability to use exec, because that might be used to
access sensitive production data.

Previously, we created a user called me and saved the client certificate to a
file called kubeconfig. However, we didn’t bind any roles to that user yet, so
the user has only the very limited permissions that come with automatic
membership in the system:authenticated group.

As a result, as we saw earlier, our normal user can’t even list Pods in the
default Namespace. Let’s bind this user to the edit role. As before, we’ll use a
regular RoleBinding, scoped to the sample Namespace, so this user won’t be
able to access our cluster infrastructure components in the kube-system
Namespace.

Listing 11-1 presents the RoleBinding we need.
edit-bind.yaml

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
 name: editor
 namespace: sample
subjects:

- kind: User
 name: me
 apiGroup: rbac.authorization.k8s.io
roleRef:
 kind: ClusterRole
 name: edit
 apiGroup: rbac.authorization.k8s.io

Listing 11-1: Bind the edit role to a user

Now we apply this RoleBinding to add permissions to our user:

root@host01:~# kubectl apply -f /opt/edit-bind.yaml
rolebinding.rbac.authorization.k8s.io/editor created

We’re now able to use this user to view and modify Pods, Deployments,
and many other resources:

root@host01:~# KUBECONFIG=kubeconfig kubectl -n sample get pods
NAME READY STATUS RESTARTS AGE
read-pods-9d5565548-fbwjb 1/1 Running 0 54m
root@host01:~# KUBECONFIG=kubeconfig kubectl delete -f /opt/read-pods-deploy.yaml
deployment.apps "read-pods" deleted

However, because we used a RoleBinding and not a ClusterRoleBinding,
this user has no visibility into other Namespaces:

root@host01:~# KUBECONFIG=kubeconfig kubectl get -n kube-system pods
Error from server (Forbidden): pods is forbidden: User "me" cannot list
 resource "pods" in API group "" in the namespace "kube-system"

The error message displayed by kubectl is identical in form to the message
field that is part of the API server’s JSON response. This is not a
coincidence; kubectl is a friendly command line interface in front of the API
server’s REST API.

Final Thoughts
The API server is an essential component in the Kubernetes control plane.
Every other service in the cluster is continuously connected to the API server,
watching the cluster for changes, so it can take appropriate action. Users also
use the API server to deploy and configure applications and to monitor state.

In this chapter, we saw the underlying REST API that the API server
provides to create, retrieve, update, and delete resources. We also saw the
extensive authentication and authorization capabilities built in to the API
server to ensure that only authorized users and services can access and
modify the cluster state.

In the next chapter, we’ll examine the other side of our cluster’s
infrastructure: the node components. We’ll see how the kubelet Service hides
any differences between container engines and how it uses the container
capabilities we saw in Part I to create, start, and configure containers in the
cluster.

12
CONTAINER RUNTIME

In the previous chapter, we saw how the control plane manages and monitors
the state of the cluster. However, it is the container runtime, especially the
kubelet service, that creates, starts, stops, and deletes containers to actually
bring the cluster to the desired state. In this chapter, we’ll explore how kubelet
is configured in our cluster and how it operates.

As part of this exploration, we’ll address how kubelet manages to host the
control plane while also being dependent on it. Finally, we’ll look at node
maintenance in a Kubernetes cluster, including how to shut down a node for
maintenance, issues that can prevent a node from working correctly, how the
cluster behaves if a node suddenly becomes unavailable, and how the node
behaves when it loses its cluster connection.

Node Service
The primary service that turns a regular host into a Kubernetes node is kubelet.
Because of its criticality to a Kubernetes cluster, we’ll look in detail at how it
is configured and how it behaves.

CONTAINERD AND CRI-O

The examples for this chapter provide automated scripts to launch a
cluster using either of two container runtimes: containerd and CRI-O.
We’ll primarily use the containerd installation, though we’ll briefly look at
the configuration difference. The CRI-O cluster is there to allow you to
experiment with a separate container runtime. It also illustrates the fact
that kubelet hides this difference from the rest of the cluster, as the rest of
the cluster configuration is unaffected by a container runtime change.

We installed kubelet as a package on all of our nodes when we set up our
cluster in Chapter 6, and the automation has been setting it up similarly for
each chapter thereafter.

NOTE
The example repository for this book is at https://github.com/book-of-
kubernetes/examples. See “Running Examples” on page xx for details on
getting set up.

The kubelet package also includes a system service. Our operating system is
using systemd to run services, so we can get service information using systemctl:

root@host01:~# systemctl status kubelet
 kubelet.service - kubelet: The Kubernetes Node Agent
 Loaded: loaded (/lib/systemd/system/kubelet.service; enabled; ...
 Drop-In: /etc/systemd/system/kubelet.service.d
 10-kubeadm.conf
 Active: active (running) since ...

The first time kubelet started, it didn’t have the configuration needed to join
the cluster. When we ran kubeadm, it created the file 10-kubeadm.conf shown
in the preceding output. This file configures the kubelet service for the cluster
by setting command line parameters.

Listing 12-1 gives us a look at the command line parameters that are
passed to the kubelet service.

root@host01:~# strings /proc/$(pgrep kubelet)/cmdline
/usr/bin/kubelet
--bootstrap-kubeconfig=/etc/kubernetes/bootstrap-kubelet.conf
--kubeconfig=/etc/kubernetes/kubelet.conf

https://github.com/book-of-kubernetes/examples

--config=/var/lib/kubelet/config.yaml
--container-runtime=remote
--container-runtime-endpoint=/run/containerd/containerd.sock
--node-ip=192.168.61.11
--pod-infra-container-image=k8s.gcr.io/pause:3.4.1

Listing 12-1: Kubelet command line

The pgrep kubelet embedded command outputs the process ID of the kubelet
service. We then use this to print the command line of the process using the
/proc Linux virtual filesystem. We use strings to print this file rather than cat
because each separate command line parameter is null-terminated and strings
turns this into a nice multiline display.

The kubelet service needs three main groups of configuration options:
cluster configuration, container runtime configuration, and network
configuration.

Kubelet Cluster Configuration
The cluster configuration options tell kubelet how to communicate with the
cluster and how to authenticate. When kubelet starts for the first time, it uses
the bootstrap-kubeconfig shown in Listing 12-1 to find the cluster, verify the
server certificate, and authenticate using the bootstrap token we discussed in
Chapter 11. This bootstrap token is used to submit a Certificate Signing
Request (CSR) for this new node. The kubelet then downloads the signed client
certificate from the API server and stores it in /etc/kubernetes/kubelet.conf,
the location specified by the kubeconfig option. This kubelet.conf file follows
the same format that is used to configure kubectl to talk to the API server, as
we saw in Chapter 11. After kubelet.conf has been written, the bootstrap file
is deleted.

The /var/lib/kubelet/config.yaml file specified in Listing 12-1 also
contains important configuration information. To pull metrics from kubelet, we
need to set it up with its own server certificate, not just a client certificate,
and we need to configure how it authenticates its own clients. Here is the
relevant content from the configuration file, created by kubeadm:

root@host01:~# cat /var/lib/kubelet/config.yaml
...
authentication:
 anonymous:
 enabled: false

 webhook:
 cacheTTL: 0s
 enabled: true
 x509:
 clientCAFile: /etc/kubernetes/pki/ca.crt
...

The authentication section tells kubelet not to allow anonymous requests, but to
allow both webhook bearer tokens as well as any client certificates signed by
the cluster certificate authority. The YAML resource file we installed for the
metrics server includes a ServiceAccount that is used in its Deployment, so it
is automatically injected with credentials that it can use to authenticate to
kubelet instances, as we saw in Chapter 11.

Kubelet Container Runtime Configuration
The container runtime configuration options tell kubelet how to connect to the
container runtime so that kubelet can manage containers on the local machine.
Because kubelet expects the runtime to support the Container Runtime
Interface (CRI) standard, only a couple of settings are needed, as shown in
Listing 12-1.

The first key setting is container-runtime, which can be set to either remote or
docker. Kubernetes predates the separation of the Docker engine from the
containerd runtime, so it had legacy support for Docker that used a shim to
emulate the standard CRI interface. Because we are using containerd directly
and not via the Docker shim or Docker engine, we set this to remote.

Next, we specify the path to the container runtime using the container-runtime-
endpoint setting. The value in this case is /run/containerd/containerd.sock. The
kubelet connects to this Unix socket to send CRI requests and receive status.

The container-runtime-endpoint command line setting is the only difference
needed to switch the cluster between containerd and CRI-O. Additionally, it is
automatically detected by kubeadm when the node is initialized, so the only
difference in the automated scripts is to install CRI-O rather than containerd
prior to installing Kubernetes. If we look at the command line for kubelet in
our CRI-O cluster, we see only one change in the command line options:

root@host01:~# strings /proc/$(pgrep kubelet)/cmdline
...
--container-runtime-endpoint=/var/run/crio/crio.sock
...

The rest of the command line options are identical to our containerd cluster.
Finally, we have one more setting that is relevant to the container runtime:

pod-infra-container-image. This specifies the Pod infrastructure image. We saw this
image in Chapter 2 in the form of a pause process that was the owner of Linux
namespaces created for our containers. In this case, this pause process will
come from the container image k8s.gcr.io/pause:3.4.1.

It’s highly convenient to have a separate container to own the namespaces
that are shared between the containers in a Pod. Because the pause process
doesn’t really do anything, it is very reliable and isn’t likely to crash, so it can
continue to own these shared namespaces even if the other containers in the
Pod terminate unexpectedly.

The pause image clocks in at around 300kb, as we can see by running crictl
on one of our nodes:

root@host01:~# crictl images
IMAGE TAG IMAGE ID SIZE
,,,
k8s.gcr.io/pause 3.4.1 0f8457a4c2eca 301kB
...

Additionally, the pause process uses practically no CPU, so the effect on
our nodes of having an extra process for every Pod is minimal.

Kubelet Network Configuration
Network configuration helps kubelet integrate itself into the cluster and to
integrate Pods into the overall cluster network. As we saw in Chapter 8, the
actual Pod network setup is performed by a network plug-in, but the kubelet
has a couple of important roles as well.

Our kubelet command line includes one option relevant to the network
configuration: node-ip. It’s an optional flag, and if it is not present, kubelet will
try to determine the IP address it should use to communicate with the API
server. However, specifying the flag directly is useful because it guarantees
that our cluster works in cases for which nodes have multiple network
interfaces (such as the Vagrant configuration in this book’s examples, where
a separate internal network is used for cluster communication).

In addition to this one command line option, kubeadm places two important
network settings in /var/lib/kubelet/config.yaml:

root@host01:~# cat /var/lib/kubelet/config.yaml
...
clusterDNS:
- 10.96.0.10
clusterDomain: cluster.local
...

These settings are used to provide the /etc/resolv.conf file to all containers.
The clusterDNS entry provides the IP address of this DNS server, whereas the
clusterDomain entry provides a default domain for searches so that we can
distinguish between hostnames inside the cluster and hostnames on external
networks.

Let’s take a quick look at how these values are provided to the Pod. We’ll
begin by creating a Pod:

root@host01:~# kubectl apply -f /opt/pod.yaml
pod/debug created

After a few seconds, when the Pod is running, we can get a shell:

root@host01:~# kubectl exec -ti debug -- /bin/sh
/ #

Notice that /etc/resolv.conf is a separately mounted file in our container:

/ # mount | grep resolv
/dev/sda1 on /etc/resolv.conf type ext4 ...

Its contents reflect the kubelet configuration:

/ # cat /etc/resolv.conf
search default.svc.cluster.local svc.cluster.local cluster.local
nameserver 10.96.0.10
options ndots:5

This DNS configuration points to the DNS server that is part of the
Kubernetes cluster core components, enabling the Service lookup we saw in
Chapter 9. Depending on the DNS configuration in your network, you might
see other items in the search list beyond what is shown here.

While we’re here, note also that /run/secrets/kubernetes.io/serviceaccount
is also a separately mounted directory in our container. This directory
contains the ServiceAccount information we saw in Chapter 11 to enable

authentication with the API server from within a container:

/ # mount | grep run
tmpfs on /run/secrets/kubernetes.io/serviceaccount type tmpfs (ro,relatime)

In this case, the mounted directory is of type tmpfs because kubelet has
created an in-memory filesystem to hold the authentication information.

Let’s finish by exiting the shell session and deleting the Pod (we no longer
need it):

/ # exit
root@host01:~# kubectl delete pod debug

This cleanup will make upcoming Pod listings clearer as we look at how
the cluster reacts when a node stops working. Before we do that, we have one
more key mystery to solve: how kubelet can host the control plane and also
depend on it.

Static Pods
We have something of a chicken-or-egg problem with creating our cluster.
We want kubelet to manage the control plane components as Pods because that
makes it easier to monitor, maintain, and update the control plane
components. However, kubelet is dependent on the control plane to determine
what containers to run. The solution is for kubelet to support static Pod
definitions that it pulls from the filesystem and runs automatically prior to
having its control plane connection.

This static Pod configuration is handled in /var/lib/kubelet/config.yaml:

root@host01:~# cat /var/lib/kubelet/config.yaml
...
staticPodPath: /etc/kubernetes/manifests
...

If we look in /etc/kubernetes/manifests, we see a number of YAML files.
These files were placed by kubeadm and define the Pods necessary to run the
control plane components for this node:

root@host01:~# ls -1 /etc/kubernetes/manifests

etcd.yaml
kube-apiserver.yaml
kube-controller-manager.yaml
kube-scheduler.yaml

As expected, we see a YAML file for each of the three essential control
plane services we discussed in Chapter 11. We also see a Pod definition for
etcd, the component that stores the cluster’s state and helps elect a leader for
our highly available cluster. We’ll look at etcd in more detail in Chapter 16.

Each of these files contains a Pod definition just like the ones we’ve
already seen:

root@host01:~# cat /etc/kubernetes/manifests/kube-apiserver.yaml
apiVersion: v1
kind: Pod
metadata:
...
 name: kube-apiserver
 namespace: kube-system
spec:
 containers:
 - command:
 - kube-apiserver
...

The kubelet service continually monitors this directory for any changes, and
updates the corresponding static Pod accordingly, which makes it possible for
kubeadm to upgrade the cluster’s control plane on a rolling basis without any
downtime.

Cluster add-ons like Calico and Longhorn could also be run using this
directory, but they instead use a DaemonSet to have the cluster run a Pod on
each node. This makes sense, as a DaemonSet can be managed once for the
whole cluster, guaranteeing a consistent configuration across all nodes.

This static Pod directory is different on our three control plane nodes,
host01 through host03, compared to our “normal” node, host04. To make
host04 a normal node, kubeadm omits the control plane static Pod files from
/etc/kubernetes/manifests:

root@host04:~# ls -1 /etc/kubernetes/manifests
root@host04:~#

Note that this command is run from host04, our sole normal node in this

cluster.

Node Maintenance
The controller manager component of the control plane continuously
monitors nodes to ensure that they are still connected and healthy. The kubelet
service has the responsibility of reporting node information, including node
memory consumption, disk consumption, and connection to the underlying
container runtime. If a node becomes unhealthy, the control plane will shift
Pods to other nodes to maintain the requested scale for Deployments, and will
not schedule any new Pods to the node until it is healthy again.

Node Draining and Cordoning
If we know that we need to perform maintenance on a node, such as a reboot,
we can tell the cluster to transfer Pods off of the node and mark the node as
unscheduleable. We do this using the kubectl drain command.

To see an example, let’s create a Deployment with eight Pods, making it
likely that each of our nodes will get a Pod:

root@host01:~# kubectl apply -f /opt/deploy.yaml
deployment.apps/debug created

If we allow enough time for startup, we can see that the Pods are
distributed across the nodes:

root@host01:~# kubectl get pods -o wide
NAME READY STATUS ... NODE ...
debug-8677494fdd-7znxn 1/1 Running ... host02 ...
debug-8677494fdd-9dgvd 1/1 Running ... host03 ...
debug-8677494fdd-hv6mt 1/1 Running ... host04 ...
debug-8677494fdd-ntqjp 1/1 Running ... host02 ...
debug-8677494fdd-pfw5n 1/1 Running ... host03 ...
debug-8677494fdd-qbhmn 1/1 Running ... host02 ...
debug-8677494fdd-qp9zv 1/1 Running ... host03 ...
debug-8677494fdd-xt8dm 1/1 Running ... host03 ...

To minimize the size of our test cluster, our normal node host04 is small in
terms of resources, so in this example it gets only one of the Pods. But that’s
sufficient to see what happens when we shut down the node. This process is

somewhat random, so if you don’t see any Pods allocated to host04, you can
delete the Deployment and try again or scale it down and then back up, as we
do in the next example.

To shut down the node, we use the kubectl drain command:

root@host01:~# kubectl drain --ignore-daemonsets host04
node/host04 cordoned
WARNING: ignoring DaemonSet-managed Pods: ...
...
pod/debug-8677494fdd-hv6mt evicted
node/host04 evicted

We need to provide the --ignore-daemonsets option because all of our nodes
have Calico and Longhorn DaemonSets, and of course, those Pods cannot be
transferred to another node.

The eviction will take a little time. When it’s complete, we can see that
the Deployment has created a Pod on another node, which keeps our Pod
count at eight:

root@host01:~# kubectl get pods -o wide
NAME READY STATUS ... NODE ...
debug-8677494fdd-7znxn 1/1 Running ... host02 ...
debug-8677494fdd-9dgvd 1/1 Running ... host03 ...
debug-8677494fdd-ntqjp 1/1 Running ... host02 ...
debug-8677494fdd-pfw5n 1/1 Running ... host03 ...
debug-8677494fdd-qbhmn 1/1 Running ... host02 ...
debug-8677494fdd-qfnml 1/1 Running ... host01 ...
debug-8677494fdd-qp9zv 1/1 Running ... host03 ...
debug-8677494fdd-xt8dm 1/1 Running ... host03 ...

Additionally, the node has been cordoned, thus no more Pods will be
scheduled on it:

root@host01:~# kubectl get nodes
NAME STATUS ROLES ...
host01 Ready control-plane...
host02 Ready control-plane...
host03 Ready control-plane...
host04 Ready,SchedulingDisabled <none> ...

At this point, it is safe to stop kubelet or the container runtime, to reboot the
node, or even to delete it from Kubernetes entirely:

root@host01:~# kubectl delete node host04
node "host04" deleted

This deletion removes the node information from the cluster’s storage, but
because the node still has a valid client certificate and all its configuration, a
simple restart of the kubelet service on host04 will add it back to the cluster. First
let’s restart kubelet:

root@host04:~# systemctl restart kubelet

Be sure to do this on host04. Next, back on host01, if we wait for kubelet on
host04 to finish cleaning up from its previous run and to reinitialize, we can see
it return in the list of nodes:

root@host01:~# kubectl get nodes
NAME STATUS ROLES ...
host01 Ready control-plane...
host02 Ready control-plane...
host03 Ready control-plane...
host04 Ready <none> ...

Note that the cordon has been removed and host04 no longer shows a status
that includes SchedulingDisabled. This is one way to remove the cordon. The
other is to do it directly using kubectl uncordon.

Unhealthy Nodes
Kubernetes will also shift Pods on a node automatically if the node becomes
unhealthy as a result of resource constraints such as insufficient memory or
disk space. Let’s simulate a low-memory condition on host04 so that we can
see this in action.

First, we’ll need to reset the scale of our debug Deployment to ensure that
new Pods are allocated onto host04:

root@host01:~# kubectl scale deployment debug --replicas=1
deployment.apps/debug scaled
root@host01:~# kubectl scale deployment debug --replicas=12
deployment.apps/debug scaled

We first scale the Deployment all the way down, and then we scale it back
up. This way, we get more chances to schedule at least one Pod on host04. As

soon as the Pods have had a chance to settle, we see Pods on host04 again:

root@host01:~# kubectl get pods -o wide
NAME READY STATUS ... NODE ...
...
debug-8677494fdd-j7cth 1/1 Running ... host04 ...
debug-8677494fdd-jlj4v 1/1 Running ... host04 ...
...

We can check the current statistics for our nodes using kubectl top:

root@host01:~# kubectl top nodes
NAME CPU(cores) CPU% MEMORY(bytes) MEMORY%
host01 503m 25% 1239Mi 65%
host02 518m 25% 1346Mi 71%
host03 534m 26% 1382Mi 73%
host04 288m 14% 542Mi 29%

We have 2GB total on host04, and currently we’re using more than
500MiB. By default, kubelet will evict Pods when there is less than 100MiB of
memory remaining. We could try to use up memory on the node to get below
that default threshold, but it’s chancy because using up so much memory
could make our node behave badly. Instead, let’s update the eviction limit. To
do this, we’ll add lines to /var/lib/kubelet/config.yaml and then restart kubelet.

Here’s the additional configuration we’ll add to our kubelet config file:
node-evict.yaml

evictionHard:
 memory.available: "1900Mi"

This tells kubelet to start evicting Pods if it has less than 1,900MiB
available. For nodes in our example cluster, that will happen right away.
Let’s apply this change:

root@host04:~# cat /opt/node-evict.yaml >> /var/lib/kubelet/config.yaml
root@host04:~# systemctl restart kubelet

Be sure to run these commands on host04. The first command adds
additional lines to the kubelet config file. The second command restarts kubelet
so that it picks up the change.

If we check on the node status for host04, it will appear to still be ready:

root@host01:~# kubectl get nodes
NAME STATUS ROLES ...
host01 Ready control-plane...
host02 Ready control-plane...
host03 Ready control-plane...
host04 Ready <none> ...

However, the node’s event log makes clear what is happening:

root@host01:~# kubectl describe node host04
Name: host04
...
 Normal NodeHasInsufficientMemory 6m31s ...
 Warning EvictionThresholdMet 7s (x14 over 6m39s) ...

The node starts evicting Pods, and the cluster automatically creates new
Pods on other nodes as needed to stay at the desired scale:

root@host01:~# kubectl get pods -o wide
NAME READY STATUS ... NODE ...
debug-8677494fdd-4274k 1/1 Running ... host01 ...
debug-8677494fdd-4pnzb 1/1 Running ... host01 ...
debug-8677494fdd-5nw6n 1/1 Running ... host01 ...
debug-8677494fdd-7kbp8 1/1 Running ... host03 ...
debug-8677494fdd-dsnp5 1/1 Running ... host03 ...
debug-8677494fdd-hgdbc 1/1 Running ... host01 ...
debug-8677494fdd-j7cth 1/1 Running ... host04 ...
debug-8677494fdd-jlj4v 0/1 OutOfmemory ... host04 ...
debug-8677494fdd-lft7h 1/1 Running ... host01 ...
debug-8677494fdd-mnk6r 1/1 Running ... host01 ...
debug-8677494fdd-pc8q8 1/1 Running ... host01 ...
debug-8677494fdd-sr2kw 0/1 OutOfmemory ... host04 ...
debug-8677494fdd-tgpb2 1/1 Running ... host03 ...
debug-8677494fdd-vnjks 0/1 OutOfmemory ... host04 ...
debug-8677494fdd-xn8t8 1/1 Running ... host02 ...

Pods allocated to host04 show OutOfMemory, and they have been replaced
with Pods on other nodes. The Pods are stopped on the node, but unlike the
previous case for which we drained the node, the Pods are not automatically
terminated. Even if the node recovers from its low-memory situation, the
Pods will continue to show up in the list of Pods, stuck in the OutOfMemory
state, until kubelet is restarted.

Node Unreachable

We have one more case to look at. In our previous two examples, kubelet could
communicate with the control plane to update its status, allowing the control
plane to act accordingly. But what happens if there is a network issue or
sudden power failure and the node loses its connection to the cluster without
being able to report that it is shutting down? In that case, the cluster will
record the node status as unknown, and after a timeout, it will start shifting
Pods onto other nodes.

Let’s simulate this. We’ll begin by restoring host04 to its proper working
order:

root@host04:~# sed -i '/^evictionHard/,+2d' /var/lib/kubelet/config.yaml
root@host04:~# systemctl restart kubelet

Be sure to run these commands on host04. The first command removes the
two lines we added to the kubelet config, whereas the second restarts kubelet to
pick up the change. We now can rescale our Deployment again so that it is
redistributed:

root@host01:~# kubectl scale deployment debug --replicas=1
root@host01:~# kubectl scale deployment debug --replicas=12

As before, after you’ve run these commands, allow a few minutes for the
Pods to settle. Then, use kubectl get pods -o wide to verify that at least one Pod
was allocated to host04.

We’re now ready to forcibly disconnect host04 from the cluster. We’ll do
this by adding a firewall rule:

root@host04:~# iptables -I INPUT -s 192.168.61.10 -j DROP
root@host04:~# iptables -I OUTPUT -d 192.168.61.10 -j DROP

Be sure to run this on host04. The first command tells the firewall to drop
all traffic coming from the IP address 192.168.61.10, which is the highly
available IP that is shared by all three control plane nodes. The second
command tells the firewall to drop all traffic going to that same IP address.

After a minute or so, host04 will show a state of NotReady:

root@host01:~# kubectl get nodes
NAME STATUS ROLES ...
host01 Ready control-plane...
host02 Ready control-plane...

host03 Ready control-plane...
host04 NotReady <none> ...

And if we wait a few minutes, the Pods on host04 will be shown as
Terminating because the cluster gives up on those Pods and shifts them to other
nodes:

root@host01:~# kubectl get pods -o wide
NAME READY STATUS ... NODE ...
debug-8677494fdd-2wrn2 1/1 Running ... host01 ...
debug-8677494fdd-4lz48 1/1 Running ... host02 ...
debug-8677494fdd-78874 1/1 Running ... host01 ...
debug-8677494fdd-7f8fw 1/1 Running ... host01 ...
debug-8677494fdd-9vb5m 1/1 Running ... host03 ...
debug-8677494fdd-b7vj6 1/1 Running ... host03 ...
debug-8677494fdd-c2c4v 1/1 Terminating ... host04 ...
debug-8677494fdd-c8tzv 1/1 Running ... host03 ...
debug-8677494fdd-d2r6b 1/1 Terminating ... host04 ...
debug-8677494fdd-d5t6b 1/1 Running ... host01 ...
debug-8677494fdd-j7cth 1/1 Terminating ... host04 ...
debug-8677494fdd-jjfsl 1/1 Terminating ... host04 ...
debug-8677494fdd-nqb8z 1/1 Running ... host03 ...
debug-8677494fdd-sskd5 1/1 Running ... host02 ...
debug-8677494fdd-wz6c6 1/1 Terminating ... host04 ...
debug-8677494fdd-x5b4w 1/1 Running ... host02 ...
debug-8677494fdd-zfbml 1/1 Running ... host01 ...

However, because kubelet on host04 can’t connect to the control plane, it is
unaware that it should be shutting down its Pods. If we check to see what
containers are running on host04, we still see multiple containers:

root@host04:~# crictl ps
CONTAINER IMAGE ... STATE NAME ...
2129a1cb00607 16ea53ea7c652 ... Running debug ...
cfd7fd6142321 16ea53ea7c652 ... Running debug ...
0289ffa5c816d 16ea53ea7c652 ... Running debug ...
fb2d297d11efb 16ea53ea7c652 ... Running debug ...
...

Not only are the Pods still running, but because of the way we cut off the
connection, they are still able to communicate with the rest of the cluster.
This is very important. Kubernetes will do its best to run the number of
instances requested and to respond to errors, but it can only do that based on
the information it has available. In this case, because kubelet on host04 can’t talk
to the control plane, Kubernetes has no way of knowing that the Pods are still

running. When building applications for a distributed system like a
Kubernetes cluster, you should recognize that some types of errors can have
surprising results, like partial network connectivity or a different number of
instances compared to what is specified. In more advanced application
architectures that include rolling updates, this can even lead to cases in which
old versions of application components are still running unexpectedly. Be
sure to build applications that are resilient in the face of these kinds of
surprising behaviors.

Final Thoughts
Ultimately, to have a Kubernetes cluster, we need nodes that can run
containers, and that means instances of kubelet connected to the control plane
and a container runtime. In this chapter, we’ve inspected how to configure
kubelet and how the cluster behaves when nodes leave or enter the cluster,
either intentionally or through an outage.

One of the key themes of this chapter is the way that Kubernetes acts to
keep the specified number of Pods running, even in the face of node issues.
In the next chapter, we’ll see how that monitoring extends inside the
container to its processes, ensuring that the processes run as expected. We’ll
see how to specify probes that allow Kubernetes to monitor containers, and
how the cluster responds when a container is unhealthy.

13
HEALTH PROBES

Having a reliable application is about more than just keeping application
components running. Application components also need to be able to respond
to requests in a timely way and get data from and make requests of
dependencies. This means that the definition of a “healthy” application
component is different for each individual component.

At the same time, Kubernetes needs to know when a Pod and its
containers are healthy so that it can route traffic to only healthy containers
and replace failed ones. For this reason, Kubernetes allows configuration of
custom health checks for containers and integrates those health checks into
management of workload resources such as Deployment.

In this chapter, we’ll look at how to define health probes for our
applications. We’ll look at both network-based health probes and probes that
are internal to a container. We’ll see how Kubernetes runs these health probes
and how it responds when a container becomes unhealthy.

About Probes
Kubernetes supports three different types of probes:

Exec Run a command or script to check on a container.

TCP Determine whether a socket is open.

HTTP Verify that an HTTP GET succeeds.

In addition, we can use any of these three types of probes for any of three
different purposes:

Liveness Detect and restart failed containers.

Startup Give extra time before starting liveness probes.

Readiness Avoid sending traffic to containers when they are not prepared for
it.

Of these three purposes, the most important is the liveness probe because
it runs during the primary life cycle of the container and can result in
container restarts. We’ll look closely at liveness probes and use that
knowledge to understand how to use startup and readiness probes.

Liveness Probes
A liveness probe runs continuously as soon as the container has started
running. Liveness probes are created as part of the container definition, and a
container that fails its liveness probe will be restarted automatically.

Exec Probes
Let’s begin with a simple liveness probe that runs a command inside the
container. Kubernetes expects the command to finish before a timeout and
return zero to indicate success, or a non-zero code to indicate a problem.

NOTE
The example repository for this book is at https://github.com/book-of-
kubernetes/examples. See “Running Examples” on page xx for details on
getting set up.

Let’s illustrate this with an NGINX web server container. We’ll use this
Deployment definition:
nginx-exec.yaml

https://github.com/book-of-kubernetes/examples

kind: Deployment
apiVersion: apps/v1
metadata:
 name: nginx
spec:
 replicas: 1
 selector:
 matchLabels:
 app: nginx
 template:
 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - name: nginx
 image: nginx
 livenessProbe:
 exec:
 command: ["/usr/bin/curl", "-fq", "http://localhost"]
 initialDelaySeconds: 10
 periodSeconds: 5

The exec section of the livenessProbe tells Kubernetes to run a command
inside the container. In this case, curl is used with a -q flag so that it doesn’t
print the page contents but just returns a zero exit code on success.
Additionally, the -f flag causes curl to return a non-zero exit code for any
HTTP error response (that is, any response code of 300 or above).

The curl command runs every 5 seconds based on the periodSeconds; it starts
10 seconds after the container is started, based on initialDelaySeconds.

The automated scripts for this chapter add the nginx-exec.yaml file to /opt.
Create this Deployment as usual:

root@host01:~# kubectl apply -f /opt/nginx-exec.yaml
deployment.apps/nginx created

The resulting Pod status doesn’t look any different from a Pod without a
liveness probe:

root@host01:~# kubectl get pods
NAME READY STATUS RESTARTS AGE
nginx-68dc5f984f-jq5xl 1/1 Running 0 25s

However, in addition to the regular NGINX server process, curl is being
run inside the container every 5 seconds, verifying that it is possible to
connect to the server. The detailed output from kubectl describe shows this
configuration:

root@host01:~# kubectl describe deployment nginx
Name: nginx
Namespace: default
...
Pod Template:
 Labels: app=nginx
 Containers:
 nginx:
...
 Liveness: exec [/usr/bin/curl -q http://localhost] delay=10s
 timeout=1s period=5s #success=1 #failure=3
...

Because a liveness probe is defined, the fact that the Pod continues to
show a Running status and no restarts indicates that the check is successful. The
#success field shows that one successful run is sufficient for the container to be
considered live, whereas the #failure value shows that three consecutive
failures will cause the Pod to be restarted.

We used -q to discard the logs from curl, but even without that flag, any
logs from a successful liveness probe are discarded. If we want to save the
ongoing log information from a probe, we need to send it to a file or use a
logging library to ship it across the network.

Before moving on to another type of probe, let’s see what happens if a
liveness probe fails. We’ll patch the curl command to try to retrieve a
nonexistent path on the server, which will cause curl to return a non-zero exit
code, so our probe will fail.

We used a patch file in Chapter 9 when we edited a Service type. Let’s do
that again here to make the change:
nginx-404.yaml

spec:
 template:
 spec:
 containers:
 ➊ - name: nginx
 livenessProbe:

 exec:
 command: ["/usr/bin/curl", "-fq", "http://localhost/missing"]

Although a patch file allows us to update only the specific fields we care
about, in this case the patch file has several lines because we need to specify
the full hierarchy, and we also must specify the name of the container we
want to modify ➊, so Kubernetes will merge this content into the existing
definition for that container.

To patch the Deployment, use the kubectl patch command:

root@host01:~# kubectl patch deploy nginx --patch-file /opt/nginx-404.yaml
deployment.apps/nginx patched

Because we changed the Pod specification within the Deployment,
Kubernetes needs to terminate the old Pod and create a new one:

root@host01:~# kubectl get pods
NAME READY STATUS RESTARTS AGE
nginx-679f866f5b-7lzsb 1/1 Terminating 0 2m28s
nginx-6cb4b995cd-6jpd7 1/1 Running 0 3s

Initially, the new Pod shows a Running status. However, if we check back
again in about 30 seconds, we get an indication that the Pod has an issue:

root@host01:~# kubectl get pods
NAME READY STATUS RESTARTS AGE
nginx-6cb4b995cd-6jpd7 1/1 Running 1 28s

We didn’t change the initial delay or the period for our liveness probe, so
the first probe started after 10 seconds and the probe runs every 5 seconds. It
takes three failures to trigger a restart, so it’s not surprising that we see one
restart after 25 seconds have elapsed.

The Pod’s event log indicates the reason for the restart:

root@host01:~# kubectl describe pod
Name: nginx-6cb4b995cd-6jpd7
...
Containers:
 nginx:
...
 Last State: Terminated
...
Events:

 Type Reason Age From Message
 ---- ------ ---- ---- -------
...
 Warning Unhealthy 20s (x9 over 80s) kubelet Liveness probe failed: ...
curl: (22) The requested URL returned error: 404 Not Found
...

The event log helpfully provides the output from curl telling us the reason
for the failed liveness probe. Kubernetes will continue to restart the container
every 25 seconds as each new container starts running and then fails three
consecutive liveness probes.

HTTP Probes
The ability to run a command within a container to check health allows us to
perform custom probes. However, for a web server like this one, we can take
advantage of the HTTP probe capability within Kubernetes, avoiding the
need for curl inside our container image and also verifying connectivity from
outside the Pod.

Let’s replace our NGINX Deployment with a new configuration that uses
an HTTP probe:
nginx-http.yaml

kind: Deployment
apiVersion: apps/v1
metadata:
 name: nginx
spec:
 replicas: 1
 selector:
 matchLabels:
 app: nginx
 template:
 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - name: nginx
 image: nginx
 livenessProbe:
 httpGet:
 path: /
 port: 80

With this configuration, we tell Kubernetes to connect to port 80 of our
Pod and do an HTTP GET at the root path of /. Because our NGINX server is
listening on port 80 and will serve a welcome file for the root path, we can
expect this to work.

We’ve specified the entire Deployment rather than using a patch, so we’ll
use kubectl apply to update the Deployment:

root@host01:~# kubectl apply -f /opt/nginx-http.yaml
deployment.apps/nginx configured

We could use a patch to make this change as well, but it would be more
complex this time, because a patch file is merged into the existing
configuration. As a result, we would require two commands: one to remove
the existing liveness probe and one to add the new HTTP liveness probe.
Better to just replace the resource entirely.

NOTE
The kubectl patch command is a valuable command for debugging, but
production applications should have YAML resource files under version
control to allow for change tracking and peer review, and the entire file
should always be applied every time to ensure that the cluster reflects the
current content of the repository.

Now that we’ve applied the new Deployment configuration, Kubernetes
will make a new Pod:

root@host01:~# kubectl get pods
NAME READY STATUS RESTARTS AGE
nginx-d75d4d675-wvhxl 1/1 Running 0 2m38s

For an HTTP probe, kubelet has the responsibility of running an HTTP GET
request on the appropriate schedule and confirming the result. By default, any
HTTP return code in the 200 or 300 series is considered a successful
response.

The NGINX server is logging all of its requests, so we can use the
container logs to see the probes taking place:

root@host01:~# kubectl logs nginx-d75d4d675-wvhxl

...

... 22:23:31 ... "GET / HTTP/1.1" 200 615 "-" "kube-probe/1.21" "-"

... 22:23:41 ... "GET / HTTP/1.1" 200 615 "-" "kube-probe/1.21" "-"

... 22:23:51 ... "GET / HTTP/1.1" 200 615 "-" "kube-probe/1.21" "-"

We didn’t specify periodSeconds this time, so kubelet is probing the server at
the default rate of once every 10 seconds.

Let’s clean up the NGINX Deployment before moving on:

root@host01:~# kubectl delete deployment nginx
deployment.apps "nginx" deleted

We’ve looked at two of the three types of probes; let’s finish by looking at
TCP.

TCP Probes
A database server such as PostgreSQL listens for network connections, but it
does not use HTTP for communication. We can still create a probe for these
kinds of containers using a TCP probe. It won’t provide the configuration
flexibility of an HTTP or exec probe, but it will verify that a container in the
Pod is listening for connections on the specified port.

Here’s a PostgreSQL Deployment with a TCP probe:
postgres-tcp.yaml

kind: Deployment
apiVersion: apps/v1
metadata:
 name: postgres
spec:
 replicas: 1
 selector:
 matchLabels:
 app: postgres
 template:
 metadata:
 labels:
 app: postgres
 spec:
 containers:
 - name: postgres
 image: postgres
 env:

 - name: POSTGRES_PASSWORD
 value: "supersecret"
 livenessProbe:
 tcpSocket:
 port: 5432

We saw the requirement for the POSTGRES_PASSWORD environment variable
in Chapter 10. The only configuration that’s changed for this example is the
livenessProbe. We specify a TCP socket of 5432, as this is the standard port for
PostgreSQL.

As usual, we can create this Deployment and, after a while, observe that
it’s running:

root@host01:~# kubectl apply -f /opt/postgres-tcp.yaml
deployment.apps/postgres created
...
root@host01:~# kubectl get pods
NAME READY STATUS RESTARTS AGE
postgres-5566ff748-jqp5d 1/1 Running 0 29s

Again, it is the job of kubelet to perform the probe. It does this solely by
making a TCP connection to the port and then disconnecting. PostgreSQL
doesn’t emit any logging when this happens, so the only way we know that
the probe is working is to check that the container continues to run and
doesn’t show any restarts:

root@host01:~# kubectl get pods
NAME READY STATUS RESTARTS AGE
postgres-5566ff748-jqp5d 1/1 Running 0 2m7s

Before we move on, let’s clean up the Deployment:

root@host01:~# kubectl delete deploy postgres
deployment.apps "postgres" deleted

We’ve now looked at all three types of probes. And although we used
these three types to create liveness probes, the same three types will work
with both startup and readiness probes as well. The only difference is the
change in the behavior of our cluster when a probe fails.

Startup Probes

Unhealthy containers can create all kinds of difficulties for an application,
including lack of responsiveness, errors responding to requests, or bad data,
so we want Kubernetes to respond quickly when a container becomes
unhealthy. However, when a container is first started, it can take time before
it is fully initialized. During that time, it might not be able to respond to
liveness probes.

Because of that delay, we’re left with a need to have a long timeout before
a container fails a probe, so we can give our container enough time for
initialization. However, at the same time, we need to have a short timeout in
order to detect a failed container quickly and restart it. The solution is to
configure a separate startup probe. Kubernetes will use the startup probe
configuration until the probe is successful; then it will switch over to the
liveness probe.

For example, we might configure our NGINX server Deployment as
follows:

...
spec:
...
 template:
...
 spec:
 containers:
 - name: nginx
 image: nginx
 livenessProbe:
 httpGet:
 path: /
 port: 80
 startupProbe:
 httpGet:
 path: /
 port: 80
 periodSeconds:
 initialDelaySeconds: 30
 periodSeconds: 10
 failureThreshold: 60

Given this configuration, Kubernetes would start checking the container
30 seconds after startup. It would continue checking every 10 seconds until
the probe is successful or until there are 60 failed attempts. The effect is that
the container has 10 minutes to finish initialization and respond to a probe

successfully. If the container does not have a successful probe in that time, it
will be restarted.

As soon as the container has one successful probe, Kubernetes will switch
to the configuration for livenessProbe. Because we didn’t override any timing
parameters, this will transition to a probe every 10 seconds, with three
consecutive failed probes leading to a restart. We give the container 10
minutes to be live initially, but after that we will allow no more than 30
seconds before restarting it.

The fact that the startupProbe is defined completely separately means that it
is possible to create a different check for startup from the one used for
liveness. Of course, it’s important to choose wisely so that the container
doesn’t pass its startup probe before the liveness probe would also pass,
because that would result in inappropriate restarts.

Readiness Probes
The third probe purpose is to check the readiness of the Pod. The term
readiness might seem redundant with the startup probe. However, even
though completing initialization is an important part of readiness for a piece
of software, an application component might not be ready to do work for
many reasons, especially in a highly available microservice architecture
where components can come and go at any time.

Rather than being used for initialization, readiness probes should be used
for any case in which the container cannot perform any work because of a
failure outside its control. It may be a temporary situation, as retry logic
somewhere else could fix the failure. For example, an API that relies on an
external database might fail its readiness probe if the database is unreachable,
but that database might return to service at any time.

This also creates a valuable contrast with startup and liveness probes. As
we examined earlier, Kubernetes will restart a container if it fails the
configured number of startup or liveness probes. But it makes no sense to do
that if the issue is a failed or missing external dependency, given that
restarting the container won’t fix whatever is wrong externally.

At the same time, if a container is missing a required external dependency,
it can’t do work, so we don’t want to send any work to it. In that situation, the

best thing to do is to leave the container running and give it an opportunity to
reestablish the connections it needs, but avoid sending any requests to it. In
the meantime, we can hope that somewhere in the cluster another Pod for the
same Deployment is working as expected, making our application as a whole
resilient to a localized failure.

This is exactly how readiness probes work in Kubernetes. As we saw in
Chapter 9, a Kubernetes Service continually watches for Pods that match its
selector and configures load balancing for its cluster IP that routes traffic to
those Pods. If a Pod reports itself as not ready, the Service will stop routing
traffic to it, but kubelet will not trigger any other action such as a container
restart.

Let’s illustrate this situation. We want to have individual control over Pod
readiness, so we’ll use a somewhat contrived example rather than a real
external dependency to determine readiness. We’ll deploy a set of NGINX
Pods, this time with a corresponding Service:
nginx-ready.yaml

kind: Deployment
apiVersion: apps/v1
metadata:
 name: nginx
spec:
 replicas: 3
 selector:
 matchLabels:
 app: nginx
 template:
 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - name: nginx
 image: nginx
 livenessProbe:
 httpGet:
 path: /
 port: 80
 readinessProbe:
 httpGet:
 path: /ready
 port: 80

kind: Service
apiVersion: v1
metadata:
 name: nginx
spec:
 selector:
 app: nginx
 ports:
 - protocol: TCP
 port: 80
 targetPort: 80

This Deployment keeps its livenessProbe as an indicator that NGINX is
working correctly and adds a readinessProbe. The Service definition is identical
to what we saw in Chapter 9 and will route traffic to our NGINX Pods.

This file has already been written to /opt, so we can apply it to the cluster:

root@host01:~# kubectl apply -f /opt/nginx-ready.yaml
deployment.apps/nginx created
service/nginx created

After these Pods are up and running, they stay running because the
liveness probe is successful:

root@host01:~# kubectl get pods
NAME READY STATUS RESTARTS AGE
nginx-67fb6485f5-2k2nz 0/1 Running 0 38s
nginx-67fb6485f5-vph44 0/1 Running 0 38s
nginx-67fb6485f5-xzmj5 0/1 Running 0 38s

In addition, the Service we created has been allocated a cluster IP:

root@host01:~# kubectl get services
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
...
nginx ClusterIP 10.101.98.80 <none> 80/TCP 3m1s

However, we aren’t able to use that IP address to reach any Pods:

root@host01:~# curl http://10.101.98.80
curl: (7) Failed to connect to 10.101.98.80 port 80: Connection refused

This is because, at the moment, there is nothing for NGINX to serve on
the /ready path, so it’s returning 404, and the readiness probe is failing. A

detailed inspection of the Pod shows that it is not ready:

root@host01:~# kubectl describe pod
Name: nginx-67fb6485f5-2k2nz
...
Containers:
 nginx:
...
 Ready: False
...

As a result, the Service does not have any Endpoints to which to route
traffic:

root@host01:~# kubectl describe service nginx
Name: nginx
...
Endpoints:
...

Because the Service has no Endpoints, it has configured iptables to reject all
traffic:

root@host01:~# iptables-save | grep default/nginx
-A KUBE-SERVICES -d 10.101.98.80/32 -p tcp -m comment --comment "default/nginx has no
endpoints"
 -m tcp --dport 80 -j REJECT --reject-with icmp-port-unreachable

To fix this, we’ll need at least one Pod to become ready to ensure that
NGINX has something to serve on the /ready path. We’ll use the container’s
hostname to keep track of which Pod is serving our request.

To make one of our Pods ready, let’s first get the list of Pods again, just to
have the Pod names handy:

root@host01:~# kubectl get pods
NAME READY STATUS RESTARTS AGE
nginx-67fb6485f5-2k2nz 0/1 Running 0 10m
nginx-67fb6485f5-vph44 0/1 Running 0 10m
nginx-67fb6485f5-xzmj5 0/1 Running 0 10m

Now, we’ll choose one and make it report that it is ready:

root@host01:~# kubectl exec -ti nginx-67fb6485f5-2k2nz -- \
 cp -v /etc/hostname /usr/share/nginx/html/ready

'/etc/hostname' -> '/usr/share/nginx/html/ready'

Our Service will start to show a valid Endpoint:

root@host01:~# kubectl describe svc nginx
Name: nginx
...
Endpoints: 172.31.239.199:80
...

Even better, we can now reach an NGINX instance via the cluster IP, and
the content corresponds to the hostname:

root@host01:~# curl http://10.101.98.80/ready
nginx-67fb6485f5-2k2nz

Note the /ready at the end of the URL so the response is the hostname. If we
run this command many times, we’ll see that the hostname is the same every
time. This is because the one Pod that is passing its readiness probe is
handling all of the Service traffic.

Let’s make the other two Pods ready as well:

root@host01:~# kubectl exec -ti nginx-67fb6485f5-vph44 -- \
 cp -v /etc/hostname /usr/share/nginx/html/ready
'/etc/hostname' -> '/usr/share/nginx/html/ready'
root@host01:~# kubectl exec -ti nginx-67fb6485f5-xzmj5 -- \
 cp -v /etc/hostname /usr/share/nginx/html/ready
'/etc/hostname' -> '/usr/share/nginx/html/ready'

Our Service now shows all three Endpoints:

root@host01:~# kubectl describe service nginx
Name: nginx
...
Endpoints: 172.31.239.199:80,172.31.239.200:80,172.31.89.210:80
...

Running the curl command multiple times shows that the traffic is now
being distributed across multiple Pods:

root@host01:~# for i in $(seq 1 5); do curl http://10.101.98.80/ready; done
nginx-67fb6485f5-xzmj5
nginx-67fb6485f5-2k2nz
nginx-67fb6485f5-xzmj5

nginx-67fb6485f5-vph44
nginx-67fb6485f5-vph44

The embedded command $(seq 1 5) returns the numbers one through five,
causing the for loop to run curl five times. If you run this same for loop several
times, you will see a different distribution of hostnames. As described in
Chapter 9, load balancing is based on a random uniform distribution wherein
each endpoint has an equal chance of being selected for each new connection.

A good practice is to offer an HTTP readiness endpoint for each
application that checks the current state of the application and its
dependencies and returns an HTTP success code (such as 200) if the
component is healthy, and an HTTP error code (such as 500) if not. Some
application frameworks such as Spring Boot provide application state
management that automatically exposes liveness and readiness endpoints.

Final Thoughts
Kubernetes offers the ability to check on our containers and make sure they
are working as expected, not just that the process is running. These probes
can include any arbitrary command run inside the container, verifying that a
port is open for TCP connections, or that the container responds correctly to
an HTTP request. To build resilient applications, we should define both a
liveness probe and a readiness probe for each application component. The
liveness probe is used to restart an unhealthy container; the readiness probe
determines whether the Pod can handle Service traffic. Additionally, if a
component needs extra time for initialization, we should also define a startup
probe to make sure that give it the required initialization time while
responding quickly to failure as soon as initialization is complete.

Of course, for our containers to run as expected, other containers in the
cluster must also be well behaved, not using too many of the cluster’s
resources. In the next chapter, we’ll look at how we can limit our containers
in their use of CPU, memory, disk space, and network bandwidth, as well as
how we can control the maximum amount of total resources available to a
user. This ability to specify limits and quotas is important to ensure that our
cluster can support multiple applications with reliable performance.

14
LIMITS AND QUOTAS

For our cluster to provide a predictable environment for applications, we
need some control over what resources each individual application
component uses. If an application component can use all of the CPU or
memory on a given node, the Kubernetes scheduler will not be able to
allocate a new Pod to a node confidently, as it won’t know how much
available space each node has.

In this chapter, we’ll explore how to specify requested resources and
limits to ensure that containers get the resources they need without impacting
other containers. We’ll inspect individual containers at the runtime level so
that we can see how Kubernetes configures the container technology we saw
in Part I to adequately meet the resource requirements of a container without
allowing the container to exceed its limits.

Finally, we’ll look at how role-based access control is used to manage
quotas, limiting the amount of resources a given user or application can
demand, which will help us understand how to administer a cluster in a
manner that allows it to reliably support multiple separate applications or
development teams.

Requests and Limits
Kubernetes supports many different types of resources, including processing,

memory, storage, network bandwidth, and use of special devices such as
graphics processing units (GPUs). We’ll look at network limits later in this
chapter, but let’s start with the most commonly specified resource types:
processing and memory.

Processing and Memory Limits
The specifications for processing and memory resources serve two purposes:
scheduling and preventing conflicts. Kubernetes provides a different kind of
resource specification for each purpose. The Pod’s containers consume
processing and memory resources in Kubernetes, so that’s where resource
specifications are applied.

When scheduling Pods, Kubernetes uses the requests field in the container
specification, summing this field across all containers in the Pod and finding
a node with sufficient margin in both processing and memory. Generally, the
requests field is set to the expected average resource requirements for each
container in the Pod.

The second purpose of resource specification is preventing denial-of-
service issues in which one container takes all of a node’s resources,
negatively affecting other containers. This requires runtime enforcement of
container resources. Kubernetes uses the limits field of the container
specification for this purpose, thus we need to be sure to set the limits field
high enough that a container is able to run correctly without reaching the
limit.

TUNING FOR PERFORMANCE
The idea that requests should match the expected average resource
requirements is based on an assumption that any load spikes in the
various containers in the cluster are unpredictable and uncorrelated, and
load spikes can therefore be assumed to happen at different times. Even
with that assumption, there is a risk that simultaneous load spikes in
multiple containers on a node will result in that node being overloaded.
And if the load spikes between different Pods are correlated, this risk of
overload increases. At the same time, if we configure requests for the
worst case scenario, we can end up with a very large cluster that is idle

most of the time. In Chapter 19, we explore the different Quality of
Service (QoS) classes that Kubernetes offers for Pods and discuss how
to find a balance between performance guarantees and cluster
efficiency.

Listing 14-1 kicks off our examination with an example of using requests
and limits with a Deployment.
nginx-limit.yaml

kind: Deployment
apiVersion: apps/v1
metadata:
 name: nginx
spec:
 replicas: 1
 selector:
 matchLabels:
 app: nginx
 template:
 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - name: nginx
 image: nginx
 resources:
 requests:
 memory: "64Mi"
 cpu: "250m"
 limits:
 memory: "128Mi"
 cpu: "500m"
 nodeName: host01

Listing 14-1: Deployment with limits

We’ll use this Deployment to explore how limits are configured at the
level of the container runtime, so we use the nodeName field to make sure the
container ends up on host01. This constrains where the scheduler can place
the Pod, but the scheduler still uses the requests field to ensure that there are
sufficient resources. If host01 becomes too busy, the scheduler will just
refuse to schedule the Pod, similar to what we saw in Chapter 10.

The resources field is defined at the level of the individual container,
allowing us to specify separate resource requirements for each container in a
Pod. For this container, we specify a memory request of 64Mi and a memory
limit of 128Mi. The suffix Mi means that we are using the power-of-2 unit
mebibytes, which is 2 to the 20th power, rather than the power-of-10 unit
megabytes, which would be the slightly smaller value of 10 to the 6th power.

Meanwhile, the processing request and limit specified using the cpu fields
is not based on any absolute unit of processing. Rather, it is based on a
synthetic cpu unit for our cluster. Each cpu unit roughly corresponds to one
virtual CPU or core. The m suffix specifies a millicpu so that our requests value
of 250m equates to one quarter of a core, whereas the limit of 500m equates to
half of a core.

NOTE
The example repository for this book is at https://github.com/book-of-
kubernetes/examples. See “Running Examples” on page xx for details on
getting set up.

Let’s create this Deployment:

root@host01:~# kubectl apply -f /opt/nginx-limit.yaml
deployment.apps/nginx created

The Pod will be allocated to host01 and started:

root@host01:~# kubectl get pods
NAME READY STATUS RESTARTS AGE
nginx-56dbd744d9-vg5rj 1/1 Running 0 22m

And host01 will show that resources have been allocated for the Pod:

root@host01:~# kubectl describe node host01
Name: host01
...
Non-terminated Pods: (15 in total)
 Namespace Name CPU Requests CPU Limits Memory Requests Memory Limits Age
 --------- ---- ------------ ---------- --------------- ------------- ---
...
 default nginx-56dbd744d9-vg5rj 250m (12%) 500m (25%) 64M (3%) 128M (6%) 61s
...

https://github.com/book-of-kubernetes/examples

This is true even though our NGINX web server is idle and is not using a
lot of processing or memory resources:

root@host01:~# kubectl top pods
...
NAME CPU(cores) MEMORY(bytes)
nginx-56dbd744d9-vg5rj 0m 5Mi

Similar to what we saw in Chapter 12, this command queries the metrics
add-on that is collecting data from kubelet running on each cluster node.

Cgroup Enforcement
The processing and memory limits we specified are enforced using the Linux
control group (cgroup) functionality we described in Chapter 3. Kubernetes
manages its own space within each hierarchy inside the /sys/fs/cgroup
filesystem. For example, memory limits are configured in the memory
cgroup:

root@host01:~# ls -1F /sys/fs/cgroup/memory
...
kubepods.slice/
...

Each Pod on a given host has a directory within the kubepods.slice tree.
However, finding the specific directory for a given Pod takes some work
because Kubernetes divides Pods into different classes of service, and
because the name of the cgroup directory does not match the ID of the Pod or
its containers.

To save us from searching around inside /sys/fs/cgroup, we’ll use a script
installed by this chapter’s automated scripts: /opt/cgroup-info. This script
uses crictl to query the container runtime for the cgroup path and then collects
CPU and memory limit data from that path. The most important part of the
script is this section that collects the path:
cgroup-info

#!/bin/bash
...
POD_ID=$(crictl pods --name ${POD} -q)
...
cgp_field='.info.config.linux.cgroup_parent'
CGP=$(crictl inspectp $POD_ID | jq -r "$cgp_field")

CPU=/sys/fs/cgroup/cpu/$CGP
MEM=/sys/fs/cgroup/memory/$CGP
...

The crictl pods command collects the Pod’s ID, which is then used with crictl
inspectp and jq to collect one specific field, called cgroup_parent. This field is the
cgroup subdirectory created for that pod within each resource type.

Let’s run this script with our NGINX web server to see how the CPU and
memory limits have been configured:

root@host01:~# kubectl get pods
NAME READY STATUS RESTARTS AGE
nginx-56dbd744d9-vg5rj 1/1 Running 0 59m
root@host01:~# /opt/cgroup-info nginx-56dbd744d9-vg5rj

Container Runtime

Pod ID: 54602befbd141a74316323b010fb38dae0c2b433cdbe12b5c4d626e6465c7315
Cgroup path: /kubepods.slice/...9f8f3dcf_6cca_49b8_a3df_d696ece01f59.slice

CPU Settings

CPU Shares: 256
CPU Quota (us): 50000 per 100000

Memory Settings

Limit (bytes): 134217728

We first collect the name of the Pod and then use it to collect cgroup
information. Note that this works only because the Pod is running on host01;
the script will work for any Pod, but it must be run from the host on which
that Pod is running.

There are two key pieces of data for the CPU configuration. The quota is
the hard limit; it means that in any given 100,000 microsecond period, this
Pod can use only 50,000 microseconds of processor time. This value
corresponds to the 500m CPU limit specified in Listing 14-1 (recall that the
500m limit equates to half a core).

In addition to this hard limit, the CPU request field we specified in Listing
14-1 has been used to configure the CPU shares. As we saw in Chapter 3, this
field configures the CPU usage on a relative basis. Because it is relative to
the values in neighboring directories, it is unitless, so Kubernetes computes

the CPU share on the basis of one core equaling 1,024. We specified a CPU
request of 250m, so this equates to 256.

The CPU share does not set any kind of limit on CPU usage, so if the
system is idle, a Pod can use processing up to its hard limit. However, as the
system becomes busy, the CPU share determines how much processing each
Pod is allotted relative to others in the same class of service. This helps to
ensure that if the system becomes overloaded, all Pods will be degraded fairly
based on their CPU request.

Finally, for memory, there is a single relevant value. We specified a
memory limit of 128Mi, which equates to 128MiB. As we saw in Chapter 3, if
our container tries to exceed this limit, it will be terminated. For this reason,
it is critical to either configure the application such that it does not exceed
this value, or to understand how the application acts under load to choose the
optimum limit.

The amount of memory actually used by a process is ultimately up to that
process, meaning that the memory request value has no purpose beyond its
initial use in ensuring sufficient memory to schedule the Pod. For this reason,
we don’t see the memory request value of 64Mi being used anywhere in the
cgroup configuration.

The way that resource allocations are reflected in cgroups shows us
something important about cluster performance. Because requests is used for
scheduling and limits is used for runtime enforcement, it is possible for a node
to overcommit processing and memory. For the case in which containers
have higher limit than requests, and containers consistently operate above their
requests, this can cause performance issues with the containers on a node.
We’ll discuss this in more detail in Chapter 19.

We’re finished with our NGINX Deployment, so let’s delete it:

root@host01:~# kubectl delete -f /opt/nginx-limit.yaml
deployment.apps "nginx" deleted

So far, the container runtime can enforce the limits we’ve seen. However,
the cluster must enforce other types of limits, such as networking.

Network Limits
Ideally, our application will be architected so that required bandwidth for

intercommunication is moderate, and our cluster will have sufficient
bandwidth to meet the demand of all the containers. However, if we do have
a container that tries to take more than its share of the network bandwidth, we
need a way to limit it.

Because the network devices are configured by plug-ins, we need a plug-
in to manage bandwidth. Fortunately, the bandwidth plug-in is part of the
standard set of CNI plug-ins installed with our Kubernetes cluster.
Additionally, as we saw in Chapter 8, the default CNI configuration enables
the bandwidth plug-in:

root@host01:~# cat /etc/cni/net.d/10-calico.conflist
{
 "name": "k8s-pod-network",
 "cniVersion": "0.3.1",
 "plugins": [
...
 {
 "type": "bandwidth",
 "capabilities": {"bandwidth": true}
 },
...
]

As a result, kubelet is already calling the bandwidth plug-in every time a new
Pod is created. If a Pod is configured with bandwidth limits, the plug-in uses
the Linux kernel’s traffic control capabilities that we saw in Chapter 3 to
ensure the Pod’s virtual network devices don’t exceed the specified limit.

Let’s look at an example. First, let’s deploy an iperf3 server that will listen
for client connections:
iperf-server.yaml

kind: Deployment
apiVersion: apps/v1
metadata:
 name: iperf-server
spec:
 replicas: 1
 selector:
 matchLabels:
 app: iperf-server
 template:
 metadata:
 labels:

 app: iperf-server
 spec:
 containers:
 - name: iperf
 image: bookofkubernetes/iperf3:stable
 env:
 - name: IPERF_SERVER
 value: "1"
 resources: ...

kind: Service
apiVersion: v1
metadata:
 name: iperf-server
spec:
 selector:
 app: iperf-server
 ports:
 - protocol: TCP
 port: 5201
 targetPort: 5201

In addition to a Deployment, we also create a Service. This way, our iperf3
clients can find the server under its well-known name of iperf-server. We
specify port 5201, which is the default port for iperf3.

Let’s deploy this server:

root@host01:~# kubectl apply -f /opt/iperf-server.yaml
deployment.apps/iperf-server created
service/iperf-server created

Let’s run an iperf3 client without applying any bandwidth limits. This will
give us a picture of how fast our cluster’s network is without any traffic
control. Here’s the client definition:
iperf.yaml

kind: Pod
apiVersion: v1
metadata:
 name: iperf
spec:
 containers:
 - name: iperf
 image: bookofkubernetes/iperf3:stable
 resources: ...

Normally, iperf3 in client mode would run once and then terminate. This
image has a script that runs iperf3 repeatedly, sleeping for one minute between
each run. Let’s start a client Pod:

root@host01:~# kubectl apply -f /opt/iperf.yaml
pod/iperf created

It will take a few seconds for the Pod to start running, after which it will
take 10 seconds for the initial run. After 30 seconds or so, the Pod log will
show the results:

root@host01:~# kubectl logs iperf
Connecting to host iperf-server, port 5201
[5] local 172.31.89.200 port 54346 connected to 10.96.0.192 port 5201
[ID] Interval Transfer Bitrate Retr Cwnd
[5] 0.00-1.00 sec 152 MBytes 1.28 Gbits/sec 225 281 KBytes
[5] 1.00-2.00 sec 154 MBytes 1.29 Gbits/sec 153 268 KBytes
[5] 2.00-3.00 sec 163 MBytes 1.37 Gbits/sec 230 325 KBytes
[5] 3.00-4.00 sec 171 MBytes 1.44 Gbits/sec 254 243 KBytes
[5] 4.00-5.00 sec 171 MBytes 1.44 Gbits/sec 191 319 KBytes
[5] 5.00-6.00 sec 174 MBytes 1.46 Gbits/sec 230 302 KBytes
[5] 6.00-7.00 sec 180 MBytes 1.51 Gbits/sec 199 221 KBytes
[5] 7.00-8.01 sec 151 MBytes 1.26 Gbits/sec 159 270 KBytes
[5] 8.01-9.00 sec 160 MBytes 1.36 Gbits/sec 145 298 KBytes
[5] 9.00-10.00 sec 147 MBytes 1.23 Gbits/sec 230 276 KBytes
- -
[ID] Interval Transfer Bitrate Retr
[5] 0.00-10.00 sec 1.59 GBytes 1.36 Gbits/sec 2016 sender
[5] 0.00-10.00 sec 1.59 GBytes 1.36 Gbits/sec receiver

iperf Done.

In this case, we see a transfer rate of 1.36 GBits/sec between our client and
server. Your results will be different depending on how your cluster is
deployed and whether the client and server end up on the same host.

Before moving on, we’ll shut down the existing client to prevent it from
interfering with our next test:

root@host01:~# kubectl delete pod iperf
pod "iperf" deleted

Obviously, while it’s running, iperf3 is trying to use as much network
bandwidth as possible. That’s fine for a test application, but it isn’t polite
behavior for an application component in a Kubernetes cluster. To limit its

bandwidth, we’ll add an annotation to the Pod definition:
iperf-limit.yaml

 kind: Pod
 apiVersion: v1
 metadata:
 name: iperf-limit
➊ annotations:
 kubernetes.io/ingress-bandwidth: 1M
 kubernetes.io/egress-bandwidth: 1M
 spec:
 containers:
 - name: iperf
 image: bookofkubernetes/iperf3:stable
 resources: ...
 nodeName: host01

We’ll want to inspect how the limits are being applied to the network
devices, which will be easier if this Pod ends up on host01, so we set nodeName
accordingly. Otherwise, the only change in this Pod definition is the annotations
section in the Pod metadata ➊. We set a value of 1M for ingress and egress,
corresponding to a 1Mb bandwidth limit on the Pod. When this Pod is
scheduled, kubelet will pick up these annotations and send the specified
bandwidth limits to the bandwidth plug-in so that it can configure Linux
traffic shaping accordingly.

Let’s create this Pod and get a look at this in action:

root@host01:~# kubectl apply -f /opt/iperf-limit.yaml
pod/iperf-limit created

As before, we wait long enough for the client to complete one test with the
server and then print the logs:

root@host01:~# kubectl logs iperf-limit
Connecting to host iperf-server, port 5201
[5] local 172.31.239.224 port 45680 connected to 10.96.0.192 port 5201
[ID] Interval Transfer Bitrate Retr Cwnd
[5] 0.00-1.01 sec 22.7 MBytes 190 Mbits/sec 0 1.37 KBytes
[5] 1.01-2.01 sec 0.00 Bytes 0.00 bits/sec 0 633 KBytes
[5] 2.01-3.00 sec 0.00 Bytes 0.00 bits/sec 0 639 KBytes
[5] 3.00-4.00 sec 0.00 Bytes 0.00 bits/sec 0 646 KBytes
[5] 4.00-5.00 sec 0.00 Bytes 0.00 bits/sec 0 653 KBytes
[5] 5.00-6.00 sec 1.25 MBytes 10.5 Mbits/sec 0 658 KBytes

[5] 6.00-7.00 sec 0.00 Bytes 0.00 bits/sec 0 658 KBytes
[5] 7.00-8.00 sec 0.00 Bytes 0.00 bits/sec 0 658 KBytes
[5] 8.00-9.00 sec 0.00 Bytes 0.00 bits/sec 0 658 KBytes
[5] 9.00-10.00 sec 0.00 Bytes 0.00 bits/sec 0 658 KBytes
- -
[ID] Interval Transfer Bitrate Retr
[5] 0.00-10.00 sec 24.0 MBytes 20.1 Mbits/sec 0 sender
[5] 0.00-10.10 sec 20.7 MBytes 17.2 Mbits/sec receiver

iperf Done.

The change is significant, as the Pod is limited to a fraction of the speed
we saw with an unlimited client. However, because the traffic shaping is
based on a token bucket filter, the traffic control is inexact over shorter
intervals, so we see a bitrate of around 20Mb rather than 1Mb. To see why,
let’s look at the actual traffic shaping configuration.

The bandwidth plug-in is applying this token bucket filter to the host side of
the virtual Ethernet (veth) pair that was created for the Pod, so we can see it
by showing traffic control configuration for the host interfaces:

root@host01:~# tc qdisc show
...
qdisc tbf 1: dev calid43b03f2e06 ... rate 1Mbit burst 21474835b lat 4123.2s
...

The combination of rate and burst shows why our Pod was able to achieve
20Mb over the 10-second test run. Because of the burst value, the Pod was
able to send a large quantity of data immediately, at the cost of spending
several seconds without any ability to send or receive. Over a much longer
interval, we would see an average of 1Mbps, but we would still see this
bursting behavior.

Before moving on, let’s clean up our client and server:

root@host01:~# kubectl delete -f /opt/iperf-server.yaml
deployment.apps "iperf-server" deleted
service "iperf-server" deleted
root@host01:~# kubectl delete -f /opt/iperf-limit.yaml
pod "iperf-limit" deleted

Managing the bandwidth of a Pod can be useful, but as we’ve seen, the
bandwidth limit can behave like an intermittent connection from the Pod’s
perspective. For that reason, this kind of traffic shaping should be considered

a last resort for containers that cannot be configured to moderate their own
bandwidth usage.

Quotas
Limits allow our Kubernetes cluster to ensure that each node has sufficient
resources for its assigned Pods. However, if we want our cluster to host
multiple applications reliably, we need a way to control the amount of
resources that any one application can request.

To do this, we’ll use quotas. Quotas are allocated based on Namespaces;
they specify the maximum amount of resources that can be allocated within
that Namespace. This includes not only the primary resources of CPU and
memory but also specialized cluster resources such as GPUs. We can even
use quotas to specify the maximum number of a specific object type, such as
a Deployment, Service, or CronJob, that can be created within a given
Namespace.

Because quotas are allocated based on Namespaces, they need to be used
in conjunction with the access controls we described in Chapter 11 to ensure
that a given user is bound by the quotas we create. This means that creating
Namespaces and applying quotas is typically handled by the cluster
administrator.

Let’s create a sample Namespace for our Deployment:

root@host01:~# kubectl create namespace sample
namespace/sample created

Now, let’s create a ResourceQuota resource type to apply a quota to the
Namespace:
quota.yaml

apiVersion: v1
kind: ResourceQuota
metadata:
 name: sample-quota
 namespace: sample
spec:
 hard:
 requests.cpu: "1"

 requests.memory: 256Mi
 limits.cpu: "2"
 limits.memory: 512Mi

This resource defines a quota for CPU and memory for both requests and
limits. The units are the same as those used for limits in the Deployment
specification in Listing 14-1.

Let’s apply this quota to the sample Namespace:

root@host01:~# kubectl apply -f /opt/quota.yaml
resourcequota/sample-quota created

We can see that this quota has been applied successfully:

root@host01:~# kubectl describe namespace sample
Name: sample
Labels: kubernetes.io/metadata.name=sample
Annotations: <none>
Status: Active

Resource Quotas
 Name: sample-quota
 Resource Used Hard
 -------- --- ---
 limits.cpu 0 2
 limits.memory 0 512Mi
 requests.cpu 0 1
 requests.memory 0 256Mi
...

Even though this quota will apply to all users that try to create Pods in the
Namespace, even cluster administrators, it’s more realistic to use a normal
user, given that an administrator can always create new Namespaces to get
around a quota. Thus, we’ll also create a user:

root@host01:~# kubeadm kubeconfig user --client-name=me \
 --config /etc/kubernetes/kubeadm-init.yaml > kubeconfig

As we did in Chapter 11, we’ll bind the edit role to this user to provide the
right to create and edit resources in the sample Namespace. We’ll use the same
RoleBinding that we saw in Listing 11-1:

root@host01:~# kubectl apply -f /opt/edit-bind.yaml
rolebinding.rbac.authorization.k8s.io/editor created

Now that our user is set up, let’s set the KUBECONFIG environment variable
so that future kubectl commands will operate as our normal user:

root@host01:~# export KUBECONFIG=kubeconfig

First, we can verify that the edit role possessed by our normal user does not
enable making changes to quotas in a Namespace, which makes sense—
quotas are an administrator function:

root@host01:~# kubectl delete -n sample resourcequota sample-quota
Error from server (Forbidden): resourcequotas "sample-quota" is forbidden:
User "me" cannot delete resource "resourcequotas" in API group "" in the
namespace "sample"

We can now create some Pods in the sample Namespace to test the quota.
First, let’s try to create a Pod with no limits:

root@host01:~# kubectl run -n sample nginx --image=nginx
Error from server (Forbidden): pods "nginx" is forbidden: failed quota:
sample-quota: must specify limits.cpu,limits.memory...

Because our Namespace has a quota, we are no longer allowed to create
Pods without specifying limits.

In Listing 14-2, we try it again, this time using a Deployment that
specifies resource limits for the Pods it creates.
sleep.yaml

kind: Deployment
apiVersion: apps/v1
metadata:
 name: sleep
 namespace: sample
spec:
 replicas: 1
 selector:
 matchLabels:
 app: sleep
 template:
 metadata:
 labels:
 app: sleep
 spec:
 containers:

 - name: sleep
 image: busybox
 command:
 - "/bin/sleep"
 - "3600"
 resources:
 requests:
 memory: "64Mi"
 cpu: "250m"
 limits:
 memory: "128Mi"
 cpu: "512m"

Listing 14-2: Deployment with Limit

Now we can apply this to the cluster:

root@host01:~# kubectl apply -n sample -f /opt/sleep.yaml
deployment.apps/sleep created

This is successful because we specified the necessary request and limit
fields and we didn’t exceed our quota. Additionally, a Pod is started with the
limits we specified:

root@host01:~# kubectl get -n sample pods
NAME READY STATUS RESTARTS AGE
sleep-688dc46d95-wtppg 1/1 Running 0 72s

However, we can see that we’re now using resources out of our quota:

root@host01:~# kubectl describe namespace sample
Name: sample
Labels: kubernetes.io/metadata.name=sample
Annotations: <none>
Status: Active

Resource Quotas
 Name: sample-quota
 Resource Used Hard
 -------- --- ---
 limits.cpu 512m 2
 limits.memory 128Mi 512Mi
 requests.cpu 250m 1
 requests.memory 64Mi 256Mi
...

This will limit our ability to scale this Deployment. Let’s illustrate:

root@host01:~# kubectl scale -n sample deployment sleep --replicas=12
deployment.apps/sleep scaled
root@host01:~# kubectl get -n sample pods
NAME READY STATUS RESTARTS AGE
sleep-688dc46d95-trnbl 1/1 Running 0 6s
sleep-688dc46d95-vzfsx 1/1 Running 0 6s
sleep-688dc46d95-wtppg 1/1 Running 0 3m13s

We’ve asked for 12 replicas, but we see only three running. If we describe
the Deployment we can see an issue:

root@host01:~# kubectl describe -n sample deployment sleep
Name: sleep
Namespace: sample
...
Replicas: 12 desired | 3 updated | 3 total | 3 available | 9 unavailable
...
Conditions:
 Type Status Reason
 ---- ------ ------
 Progressing True NewReplicaSetAvailable
 Available False MinimumReplicasUnavailable
 ReplicaFailure True FailedCreate
OldReplicaSets: <none>
NewReplicaSet: sleep-688dc46d95 (3/12 replicas created)
...

And the Namespace now reports that we have used up enough of our
quota that there is no room to allocate the resources needed for another Pod:

root@host01:~# kubectl describe namespace sample
Name: sample
...
Resource Quotas
 Name: sample-quota
 Resource Used Hard
 -------- --- ---
 limits.cpu 1536m 2
 limits.memory 384Mi 512Mi
 requests.cpu 750m 1
 requests.memory 192Mi 256Mi
...

Our Pods are running sleep, so we know they’re barely using any CPU or
memory. However, Kubernetes bases the quota utilization on what we
specified, not what the Pod is actually using. This is critical because

processes may use more CPU or allocate more memory as they get busy, and
Kubernetes needs to make sure it leaves enough resources for the rest of the
cluster to operate correctly.

Final Thoughts
For our containerized applications to be reliable, we need to know that one
application component can’t take too many resources and effectively starve
the other containers running in a cluster. Kubernetes is able to use the
resource limit functionality of the underlying container runtime and the Linux
kernel to limit each container to only the resources it has been allocated. This
practice ensures more reliable scheduling of containers onto nodes in the
cluster and ensures that the available cluster resources are shared in a fair
way even as the cluster becomes heavily loaded.

In this chapter, we’ve seen how to specify resource requirements for our
Deployments and how to apply quotas to Namespaces, effectively enabling
us to treat all of the nodes in our cluster as one large pool of available
resources. In the next chapter, we’ll examine how that same principle extends
to storage as we look at dynamically allocating storage to Pods, no matter
where they are scheduled.

15
PERSISTENT STORAGE

Scalability and rapid failover are big advantages of containerized
applications, and it’s a lot easier to scale, update, and replace stateless
containers that don’t have any persistent storage. As a result, we’ve mostly
used Deployments to create one or more instances of Pods with only
temporary storage.

However, even if we have an application architecture in which most of the
components are stateless, we still need some amount of persistent storage for
our application. At the same time, we don’t want to lose the ability to deploy
a Pod to any node in the cluster, and we don’t want to lose the contents of our
persistent storage if a container or a node fails.

In this chapter, we’ll see how Kubernetes offers persistent storage on
demand to Pods by using a plug-in architecture that allows any supported
distributed storage engine to act as the backing store.

Storage Classes
The Kubernetes storage plug-in architecture is highly flexible; it recognizes
that some clusters may not need storage at all, whereas others need multiple
storage plug-ins to handle large amounts of data or low-latency storage. For
this reason, kubeadm doesn’t set up storage immediately during cluster
installation; it’s configured afterward by adding StorageClass resources to

the cluster.
Each StorageClass identifies a particular storage plug-in that will provide

the actual storage along with any additional required parameters. We can use
multiple storage classes to define different plug-ins or parameters, or even
multiple storage classes with the same plug-in but different parameters,
allowing for separate classes of service for different purposes. For example, a
cluster may provide in-memory, solid-state, and traditional spinning-disk
media to give applications the opportunity to select the storage type that is
most applicable for a given purpose. The cluster may offer smaller quotas for
more expensive and lower-latency storage, while offering large quotas for
slower storage that is more suitable for infrequently accessed data.

Kubernetes has a set of internal storage provisioners built in. This includes
storage drivers for popular cloud providers such as Amazon Web Services,
Microsoft Azure, and Google Container Engine. However, using any storage
plug-in is easy as long as it has support for the Container Storage Interface
(CSI), a published standard for interfacing with a storage provider.

Of course, to be compatible with CSI, the storage provider must include a
minimum set of features that are essential for storage in a Kubernetes cluster.
The most important of these are dynamic storage management (provisioning
and deprovisioning) and dynamic storage attachment (mounting storage on
any node in the cluster). Together, these two key features allow the cluster to
allocate storage for any Pod that requests it, schedule that Pod on any node,
and start a new Pod with the same storage on any node if the existing node
fails or the Pod is replaced.

Storage Class Definition
Our Kubernetes cluster deployment in Chapter 6 included the Longhorn
storage plug-in (see “Installing Storage” on page 102). The automation
scripts have installed it in the cluster for each following chapter. Part of this
installation created a DaemonSet so that Longhorn components exist on
every node. That DaemonSet kicked off a number of Longhorn components
and then created a StorageClass resource to tell Kubernetes how to use
Longhorn to provision storage for a Pod.

NOTE
The example repository for this book is at https://github.com/book-of-

https://github.com/book-of-kubernetes/examples

kubernetes/examples. See “Running Examples” on page xx for details on
getting set up.

Listing 15-1 shows the StorageClass that Longhorn created.

root@host01:~# kubectl get storageclass
NAME PROVISIONER RECLAIMPOLICY VOLUMEBINDINGMODE
ALLOWVOLUMEEXPANSION ...
longhorn driver.longhorn.io Delete Immediate true ...

Listing 15-1: Longhorn StorageClass

The two most important fields show the name of the StorageClass and the
provisioner. The name is used in resource specifications to identify that the
Longhorn StorageClass should be used to provision the requested volume,
whereas the provisioner is used internally by kubelet to communicate with the
Longhorn CSI plug-in.

CSI Plug-in Internals
Let’s look quickly at how kubelet finds and communicates with the Longhorn
CSI plug-in before moving on to provisioning volumes and attaching them to
Pods. Note that kubelet runs as a service directly on the cluster nodes; on the
other hand, all of the Longhorn components are containerized. This means
that the two need a little help to communicate in the form of a Unix socket
that is created on the host filesystem and then mounted into the filesystem of
the Longhorn containers. A Unix socket allows two processes to
communicate by streaming data, similar to a network connection but without
the network overhead.

To explore how this communication works, first we’ll list the Longhorn
containers that are running on host01:

root@host01:~# crictl ps --name 'longhorn.*|csi.*'
CONTAINER ... STATE NAME ...
c8347a513f71e ... Running csi-provisioner ...
47f950a3e8dbf ... Running csi-provisioner ...
3aad0fef7454e ... Running longhorn-csi-plugin ...
9bfb61f786afa ... Running csi-snapshotter ...
24a2994a264a1 ... Running csi-snapshotter ...
7ee4c748b4c02 ... Running csi-snapshotter ...
8d92886fdacda ... Running csi-resizer ...
9868014407fe0 ... Running csi-resizer ...

408d16181af51 ... Running csi-attacher ...
0c6c341debb0c ... Running longhorn-driver-deployer ...
ba328a9d0aaf2 ... Running longhorn-manager ...
c39e5c4fee3bb ... Running longhorn-ui ...

Longhorn creates containers with names that start with either longhorn or csi,
so we use a regular expression with crictl to show only those containers.

Let’s capture the container ID of the csi-attacher container and then inspect it
to see what volume mounts it has:

root@host01:~# CID=$(crictl ps -q --name csi-attacher)
root@host01:~# crictl inspect $CID
{
...
 "mounts": [
 {
 "containerPath": "/csi/",
 ➊ "hostPath": "/var/lib/kubelet/plugins/driver.longhorn.io",
 "propagation": "PROPAGATION_PRIVATE",
 "readonly": false,
 "selinuxRelabel": false
 }
...
 "envs": [
 {
 "key": "ADDRESS",
 ➋ "value": "/csi/csi.sock"
 },
...
}

The crictl inspect command returns a lot of data from the container, but we
show only the relevant data in this example. We can see that this Longhorn
component is instructed to connect to /csi/csi.sock ➋, which is the mount
point inside the container for the Unix socket that kubelet uses to communicate
with the storage driver. We can also see that /csi inside the container is
/var/lib/kubelet/plugins/driver.longhorn.io ➊. The location
/var/lib/kubelet/plugins is a standard location for kubelet to look for storage
plug-ins, and of course, driver.longhorn.io is the value of the provisioner field,
as defined in the Longhorn StorageClass in Listing 15-1.

If we look on the host, we can confirm that this Unix socket exists:

root@host01:~# ls -l /var/lib/kubelet/plugins/driver.longhorn.io
total 0

srwxr-xr-x 1 root root 0 Feb 18 20:17 csi.sock

The s as the first character indicates that this is a Unix socket.

Persistent Volumes
Now that we’ve seen how kubelet communicates with an external storage
driver, let’s look at how to request allocation of storage and then attach that
storage to a Pod.

Stateful Sets
The easiest way to get storage in a Pod is to use a StatefulSet (a resource
described in Chapter 7). Like a Deployment, a StatefulSet creates multiple
Pods, which can be allocated to any node. However, a StatefulSet also creates
persistent storage as well as a mapping between each Pod and its storage. If a
Pod needs to be replaced, it is replaced with a new Pod with the same
identifier and the same persistent storage.

Listing 15-2 presents an example StatefulSet that creates two PostgreSQL
Pods with persistent storage.
pgsql-set.yaml

apiVersion: apps/v1
kind: StatefulSet
metadata:
 name: postgres
spec:
 serviceName: postgres
 replicas: 2
 selector:
 matchLabels:
 app: postgres
 template:
 metadata:
 labels:
 app: postgres
 spec:
 containers:
 - name: postgres
 image: postgres
 env:
 - name: POSTGRES_PASSWORD

 ➊ value: "supersecret"
 - name: PGDATA
 ➋ value: /data/pgdata
 volumeMounts:
 - name: postgres-volume
 ➌ mountPath: /data
 volumeClaimTemplates:
 - metadata:
 name: postgres-volume
 spec:
 storageClassName: longhorn
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 1Gi

Listing 15-2: PostgreSQL StatefulSet

In addition to setting the password using an environment variable ➊, we
also set PGDATA to /data/pgdata ➋, which tells PostgreSQL where to store
the files for the database. It aligns with the volume mount we also declare as
part of the StatefulSet, as that persistent volume will be mounted at /data ➌.
The PostgreSQL container image documentation recommends configuring
the database files to reside in a subdirectory beneath the mount point to avoid
a potential issue with ownership of the data directory.

Separate from the configuration for the PostgreSQL Pods, we supply the
StatefulSet with the volumeClaimTemplates field. This field tells the StatefulSet
how we want the persistent storage to be configured. It includes the name of
the StorageClass and the requested size, and it also includes an accessMode of
ReadWriteOnce, which we’ll explore later. The StatefulSet will use this
specification to allocate independent storage for each Pod.

As mentioned in Chapter 7, this StatefulSet references a Service using the
serviceName field, and this Service is used to create the domain name for the
Pods. The Service is defined in the same file as follows:
pgsql-set.yaml

apiVersion: v1
kind: Service
metadata:
 name: postgres
spec:

 clusterIP: None
 selector:
 app: postgres

Setting the clusterIP field to None makes this a Headless Service, which
means that no IP address is allocated from the service IP range and none of
the load balancing described in Chapter 9 is configured for this Service. This
approach is typical for a StatefulSet. With a StatefulSet, each Pod has its own
unique identity and unique storage. Because service load balancing just
randomly chooses a destination, it is typically not useful with a StatefulSet.
Instead, clients explicitly select a Pod instance as a destination.

Let’s create the Service and StatefulSet:

root@host01:~# kubectl apply -f /opt/pgsql-set.yaml
service/postgres created
statefulset.apps/postgres created

It will take some time to get the Pods up and running because they are
created sequentially, one at a time. After they are running, we can see how
they’ve been named:

root@host01:~# kubectl get pods
NAME READY STATUS RESTARTS AGE
postgres-0 1/1 Running 0 97s
postgres-1 1/1 Running 0 51s

Let’s examine the persistent storage from within the container:

root@host01:~# kubectl exec -ti postgres-0 -- /bin/sh
findmnt /data
TARGET SOURCE FSTYPE OPTIONS
/data /dev/longhorn/pvc-83becdac-... ext4 rw,relatime
exit

As requested, we see a Longhorn device that has been mounted at /data.
Kubernetes will keep this persistent storage even if the node fails or the Pod
is upgraded.

This StatefulSet has two more important resources to explore. First is the
headless Service that we created:

root@host01:~# kubectl get svc
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE

kubernetes ClusterIP 10.96.0.1 <none> 443/TCP 54m
postgres ClusterIP None <none> <none> 19m

The postgres Service exists, but no cluster IP address is shown because we
created it as a headless Service. However, it has created DNS entries for the
associated Pods, so we can use it to connect to specific PostgreSQL Pods
without knowing the Pod IP address.

We need to use the cluster DNS to do the lookup. The easiest way to do
that is from within a container:

root@host01:~# kubectl run -ti --image=alpine --restart=Never alpine
If you don't see a command prompt, try pressing enter.
/ #

This form of the run command stays in the foreground and gives us an
interactive terminal. It also tells Kubernetes not to try to restart the container
when we exit the shell.

From inside this container, we can refer to either of our PostgreSQL Pods
by a well-known name:

/ # ping -c 1 postgres-0.postgres.default.svc
PING postgres-0.postgres.default.svc (172.31.239.198): 56 data bytes
64 bytes from 172.31.239.198: seq=0 ttl=63 time=0.093 ms
...
/# ping -c 1 postgres-1.postgres.default.svc
PING postgres-1.postgres.default.svc (172.31.239.199): 56 data bytes
64 bytes from 172.31.239.199: seq=0 ttl=63 time=0.300 ms
...
exit

The naming convention is identical to what we saw for Services in
Chapter 9, but with an extra hostname prefix for the name of the Pod; in this
case, either postgres-0 or postgres-1.

The other important resource is the PersistentVolumeClaim that the
StatefulSet created automatically. The PersistentVolumeClaim is what
actually allocates storage using the Longhorn StorageClass:

root@host01:~# kubectl get pvc
NAME STATUS VOLUME ... CAPACITY ...
postgres-volume-postgres-0 Bound pvc-83becdac... 1Gi ...
postgres-volume-postgres-1 Bound pvc-0d850889... 1Gi ...

We use the abbreviation pvc in lieu of its full name, persistentvolumeclaim.
The StatefulSet used the data in the volumeClaimTemplates field in Listing 15-2

to create these two PersistentVolumeClaims. However, if we delete the
StatefulSet, the PersistentVolumeClaims continue to exist:

root@host01:~# kubectl delete -f /opt/pgsql-set.yaml
service "postgres" deleted
statefulset.apps "postgres" deleted
root@host01:~# kubectl get pvc
NAME STATUS VOLUME ... CAPACITY ...
postgres-volume-postgres-0 Bound pvc-83becdac... 1Gi ...
postgres-volume-postgres-1 Bound pvc-0d850889... 1Gi ...

This protects us from accidentally deleting our persistent storage. If we
create the StatefulSet again and keep the same name in the volume claim
template, our new Pods will get the same storage back.

HIGHLY AVAILABLE POSTGRESQL
We’ve deployed two separate instances of PostgreSQL, each with its
own independent persistent storage. However, that’s only the first step
in deploying a highly available database. We would also need to
configure one instance as primary and the other as backup, configure
replication from the primary to the backup, and configure failover. We
would also need to configure clients to talk to the primary and switch to
a new primary when there’s a failure. Fortunately, we don’t need to do
this configuration ourselves. In Chapter 17, we’ll see how to take
advantage of the power of custom resources to deploy a Kubernetes
Operator for PostgreSQL that automatically will handle all of this.

The StatefulSet is the best way to handle the case in which we need
multiple instances of a container, each with its own independent storage.
However, we can also use persistent volumes more directly, which gives us
more control over how they’re mounted into our Pods.

Volumes and Claims

Kubernetes has both a PersistentVolume and a PersistentVolumeClaim
resource type. The PersistentVolumeClaim represents a request for allocated
storage, whereas the PersistentVolume holds information on the allocated
storage. For the most part, this distinction doesn’t matter, and we can just
focus on the PersistentVolumeClaim. However, the difference is important in
two cases:

Administrators can create a PersistentVolume manually, and this
PersistentVolume can be directly mounted into a Pod.
If there is an issue allocating storage as specified in the
PersistentVolumeClaim, the PersistentVolume will not be created.

To illustrate, first we’ll start with a PersistentVolumeClaim that
automatically allocates storage:
pvc.yaml

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: nginx-storage
spec:
 storageClassName: longhorn
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 100Mi

We named this PersistentVolumeClaim nginx-storage because that’s how
we’ll use it in a moment. The PersistentVolumeClaim requests 100MiB of
storage from the longhorn StorageClass. When we apply this
PersistentVolumeClaim to the cluster, Kubernetes invokes the Longhorn
storage driver and allocates the storage, creating a PersistentVolume in the
process:

root@host01:~# kubectl apply -f /opt/pvc.yaml
persistentvolumeclaim/nginx-storage created
root@host01:~# kubectl get pv
NAME ... CAPACITY ... STATUS CLAIM STORAGECLASS ...
pvc-0b50e5b4-... 1Gi ... Bound default/postgres-volume-postgres-1 longhorn ...
pvc-ad092ba9-... 1Gi ... Bound default/postgres-volume-postgres-0 longhorn ...

pvc-cb671684-... 100Mi ... Bound default/nginx-storage longhorn ...

The abbreviation pv is short for persistentvolumes.
Even though no Pod is using the storage, it still shows a status of Bound

because there is an active PersistentVolumeClaim for the storage.
If we try to create a PersistentVolumeClaim without a matching storage

class, the cluster won’t be able to create the corresponding PersistentVolume:
pvc-man.yaml

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: manual
spec:
 storageClassName: manual
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 100Mi

Because there is no StorageClass called manual, Kubernetes can’t create
this storage automatically:

root@host01:~# kubectl apply -f /opt/pvc-man.yaml
persistentvolumeclaim/manual created
root@host01:~# kubectl get pvc
NAME STATUS ... STORAGECLASS AGE
manual Pending ... manual 6s
...
root@host01:~# kubectl get pv
NAME ...
pvc-0b50e5b4-9889-4c8d-a651-df78fa2bc764 ...
pvc-ad092ba9-cf30-4b7d-af01-ff02a5924db7 ...
pvc-cb671684-1719-4c33-9dd8-bcbbf24523b4 ...

Our PersistentVolumeClaim has a status of Pending and there is no
corresponding PersistentVolume. However, as a cluster administrator, we can
create this PersistentVolume manually:
pv.yaml

apiVersion: v1

kind: PersistentVolume
metadata:
 name: manual
spec:
 claimRef:
 name: manual
 namespace: default
 accessModes:
 - ReadWriteOnce
 capacity:
 storage: 100Mi
 csi:
 driver: driver.longhorn.io
 volumeHandle: manual

When creating a PersistentVolume in this way, we need to specify the
type of volume we want. In this case, by including the csi field, we identify
this as a volume created by a CSI plug-in. We then specify the driver to use
and provide a unique value for volumeHandle. After the PersistentVolume is
created, Kubernetes directly invokes the Longhorn storage driver to allocate
storage.

We create the PersistentVolume with the following:

root@host01:~# kubectl apply -f /opt/pv.yaml
persistentvolume/manual created

Because we specified a claimRef for this PersistentVolume, it will
automatically move into the Bound state:

root@host01:~# kubectl get pv manual
NAME CAPACITY ACCESS MODES RECLAIM POLICY STATUS ...
manual 100Mi RWO Retain Bound ...

It will take a few seconds, so the PersistentVolume may show up as
Available briefly.

The PersistentVolumeClaim also moves into the Bound state:

root@host01:~# kubectl get pvc manual
NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS AGE
manual Bound manual 100Mi RWO manual 2m20s

It is useful for an administrator to create a PersistentVolume manually for
those rare cases when specialized storage is needed for an application.

However, for most persistent storage, it is much better to automate storage
allocation through a StorageClass and either a PersistentVolumeClaim or a
StatefulSet.

Deployments
Now that we’ve directly created a PersistentVolumeClaim and we have the
associated volume, we can use it in a Deployment. To demonstrate this, we’ll
show how we can use persistent storage to hold HTML files served by an
NGINX web server:
nginx.yaml

apiVersion: apps/v1
kind: Deployment
metadata:
 name: nginx
spec:
 replicas: 1
 selector:
 matchLabels:
 app: nginx
 template:
 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - name: nginx
 image: nginx
 volumeMounts:
 ➊ - name: html
 mountPath: /usr/share/nginx/html
 volumes:
 ➋ - name: html
 persistentVolumeClaim:
 claimName: nginx-storage

It takes two steps to get the persistent storage mounted into our container.
First, we declare a volume named html ➋ that references the
PersistentVolumeClaim we created. This makes the storage available in the
Pod. Next, we declare a volumeMount ➊ to specify where in the container’s
filesystem this particular volume should appear. The advantage of having
these two separate steps is that we can mount the same volume in multiple

containers within the same Pod, which enables us to share data between
processes using files even for cases in which the processes come from
separate container images.

This capability allows for some interesting use cases. For example,
suppose that we’re building a web application that includes some static
content. We might deploy an NGINX web server to serve that content, as
we’re doing here. At the same time, we also need a way to update the
content. We might do that by having an additional container in the Pod that
periodically checks for new content and updates a persistent volume that is
shared with the NGINX container.

Let’s create the NGINX Deployment so that we can demonstrate that
HTML files can be served from the persistent storage. The persistent storage
will start empty, so at first there won’t be any web content to serve. Let’s see
how NGINX behaves in that case:

root@host01:~# kubectl apply -f /opt/nginx.yaml
deployment.apps/nginx created

As soon as the NGINX server is up and running, we need to grab its IP
address so that we can make an HTTP request using curl:

root@host01:~# IP=$(kubectl get po -l app=nginx -o jsonpath='{..podIP}')
root@host01:~# curl -v http://$IP
...
* Connected to 172.31.25.200 (172.31.25.200) port 80 (#0)
> GET / HTTP/1.1
...
< HTTP/1.1 403 Forbidden

To grab the IP address in this case, we use the jsonpath output format for
kubectl rather than use jq to filter JSON output; jsonpath has a very useful syntax
for searching into a JSON object and pulling out a single uniquely named
field (in this example, podIP). We could use a jq filter similar to what we did in
Chapter 8, but the jq syntax for recursion is more complex.

After we have the IP, we use curl to contact NGINX. As expected, we
don’t see an HTML response, because our persistent storage is empty.
However, we know that our volume mounted correctly because in this case
we don’t even see the default NGINX welcome page.

Let’s copy in an index.html file to give our NGINX server something to

serve:

root@host01:~# POD=$(kubectl get po -l app=nginx -o jsonpath='{..metadata.name}')
root@host01:~# kubectl cp /opt/index.html $POD:/usr/share/nginx/html

First, we capture the name of the Pod as randomly generated by the
Deployment and then we use kubectl cp to copy in an HTML file. If we try
running curl again, we’ll see a much better response:

root@host01:~# curl -v http://$IP
...
* Connected to 172.31.239.210 (172.31.239.210) port 80 (#0)
> GET / HTTP/1.1
...
< HTTP/1.1 200 OK
...
<html>
 <head>
 <title>Hello, World</title>
 </head>
 <body>
 <h1>Hello, World!</h1>
 </body>
</html>
...

Because this is persistent storage, this HTML content will remain
available even if we delete the Deployment and create it again.

However, we still have one significant problem to overcome. One of the
primary reasons to have a Deployment is to be able to scale to multiple Pod
instances. Scaling this Deployment makes a lot of sense, as we could have
multiple Pod instances serving the same HTML content. Unfortunately,
scaling won’t currently work:

root@host01:~# kubectl scale --replicas=3 deployment/nginx
deployment.apps/nginx scaled

The Deployment appears to scale, but if we look at the Pods, we will see
that we don’t really have multiple running instances:

root@host01:~# kubectl get pods
NAME READY STATUS RESTARTS AGE
...
nginx-db4f4d5d9-7q7rd 0/1 ContainerCreating 0 46s

nginx-db4f4d5d9-gbqxm 0/1 ContainerCreating 0 46s
nginx-db4f4d5d9-vrzr4 1/1 Running 0 10m

The two new instances are stuck in ContainerCreating. Let’s examine one of
those two Pods to see why:

root@host01:~# kubectl describe pod/nginx-db4f4d5d9-7q7rd
Name: nginx-db4f4d5d9-7q7rd
...
Status: Pending
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
...
 Warning FailedAttachVolume 110s attachdetach-controller Multi-Attach
 error for volume "pvc-cb671684-1719-4c33-9dd8-bcbbf24523b4" Volume is
 already used by pod(s) nginx-db4f4d5d9-vrzr4

The first Pod we created has claimed the volume, and no other Pods can
attach to it, so they are stuck in a Pending state. Even worse, this doesn’t just
prevent scaling, it also prevents upgrading or making other configuration
changes to the Deployment. If we update the Deployment configuration,
Kubernetes will try to start a Pod using the new configuration before shutting
down any old Pods. The new Pods can’t attach to the volume and therefore
can’t start, so the old Pod will never be cleaned up and the configuration
change will never take place.

We could force a Pod update in a couple ways. First, we could manually
delete and re-create the Deployment anytime we made changes. Second, we
could configure Kubernetes to delete the old Pod first by using a Recreate
update strategy. We explore update strategy options in greater detail in
Chapter 20. For now, it’s worth noting that this still would not allow us to
scale the Deployment.

If we want to fix this so that we can scale the Deployment, we’ll need to
allow multiple Pods to attach to the volume at the same time. We can do this
by changing the access mode for the persistent volume.

Access Modes
Kubernetes is refusing to attach multiple Pods to the same persistent volume
because we configured the PersistentVolumeClaim with an access mode of
ReadWriteOnce. An alternate access mode, ReadWriteMany, will allow all of the

NGINX server Pods to mount the storage simultaneously. Only some storage
drivers support the ReadWriteMany access mode, because it requires the ability
to manage simultaneous changes to files, including communicating changes
dynamically to all of the nodes in the cluster.

Longhorn does support ReadWriteMany, so creating a PersistentVolumeClaim
with ReadWriteMany access mode is an easy change:
pvc-rwx.yaml

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: storage
spec:
 storageClassName: longhorn
 accessModes:
 - ReadWriteMany
 resources:
 requests:
 storage: 100Mi

Unfortunately, we can’t modify our existing PersistentVolumeClaim to
change the access mode. And we can’t delete the PersistentVolumeClaim
while the storage is in use by our Deployment. So we need to clean up
everything and then deploy again:

root@host01:~# kubectl delete deploy/nginx pvc/storage
deployment.apps "nginx" deleted
persistentvolumeclaim "storage" deleted
root@host01:~# kubectl apply -f /opt/pvc-rwx.yaml
persistentvolumeclaim/storage created
root@host01:~# kubectl apply -f /opt/nginx.yaml
deployment.apps/nginx created

We specify deploy/nginx and pvc/storage as the resources to delete. This style of
identifying the resources allows us to operate on two resources in the same
command.

After a minute or so, the new NGINX Pod will be running:

root@host01:~# kubectl get pods
NAME READY STATUS RESTARTS AGE
...
nginx-db4f4d5d9-6thzs 1/1 Running 0 44s

At this point, we need to copy our HTML content over again because
deleting the PersistentVolumeClaim deleted the previous storage:

root@host01:~# POD=$(kubectl get po -l app=nginx -o jsonpath='{..metadata.name}')
root@host01:~# kubectl cp /opt/index.html $POD:/usr/share/nginx/html
... no output ...

This time, when we scale our NGINX Deployment, the additional two
Pods are able to mount the storage and start running:

root@host01:~# kubectl scale --replicas=3 deploy nginx
deployment.apps/nginx scaled
root@host01:~# kubectl get po
NAME READY STATUS RESTARTS AGE
...
nginx-db4f4d5d9-2j629 1/1 Running 0 23s
nginx-db4f4d5d9-6thzs 1/1 Running 0 5m19s
nginx-db4f4d5d9-7r5qj 1/1 Running 0 23s

All three NGINX Pods are serving the same content, as we can see if we
fetch the IP address for one of the new Pods and connect to it:

root@host01:~# IP=$(kubectl get po nginx-db4f4d5d9-2j629 -o jsonpath='{..podIP}')
root@host01:~# curl http://$IP
<html>
 <head>
 <title>Hello, World</title>
 </head>
 <body>
 <h1>Hello, World!</h1>
 </body>
</html>

At this point, we could use any NGINX Pod to update the HTML content
and all Pods would serve the new content. We could even use a separate
CronJob with an application component that updates the content dynamically,
and NGINX would happily serve whatever files are in place.

Final Thoughts
Persistent storage is an essential requirement for building a fully functioning
application. After a cluster administrator has configured one or more storage

classes, it’s easy for application developers to dynamically request persistent
storage as part of their application deployment. In most cases, the best way to
do this is with a StatefulSet, as Kubernetes will automatically handle
allocating independent storage for each Pod and will maintain a one-to-one
relationship between Pod and storage during failover and upgrades.

At the same time, there are other storage use cases, such as having
multiple Pods access the same storage. We can easily handle those use cases
by directly creating a PersistentVolumeClaim resource and then declaring it
as a volume in a controller such as a Deployment or Job.

Although persistent storage is an effective way to make file content
available to containers, Kubernetes has other powerful resource types that can
store configuration data and pass it to containers as either environment
variables or file content. In the next chapter, we’ll explore how to manage
application configuration and secrets.

16
CONFIGURATION AND SECRETS

Any high-quality application is designed so that key configuration items can
be injected at runtime rather than being embedded in the source code. When
we move our application components to containers, we need a way to tell the
container runtime what configuration information to inject to ensure that our
application components behave the way they should.

Kubernetes provides two primary resource types for injecting this
configuration information: ConfigMap and Secret. These two resources are
very similar in capability but have slightly different use cases.

Injecting Configuration
When we looked at container runtimes in Part I, we saw that we could pass
environment variables to our containers. Of course, as Kubernetes manages
the container runtime for us, we’ll first need to pass that information to
Kubernetes, which will then pass it to the container runtime for us.

NOTE
The example repository for this book is at https://github.com/book-of-
kubernetes/examples. See “Running Examples” on page xx for details on
getting set up.

https://github.com/book-of-kubernetes/examples

For simple configuration injection, we can provide environment variables
directly from the Pod specification. We saw an example of this in Pod form
when we created a PostgreSQL server in Chapter 10. Here’s a PostgreSQL
Deployment with a similar configuration in its embedded Pod specification:
pgsql.yaml

kind: Deployment
apiVersion: apps/v1
metadata:
 name: postgres
spec:
 replicas: 1
 selector:
 matchLabels:
 app: postgres
 template:
 metadata:
 labels:
 app: postgres
 spec:
 containers:
 - name: postgres
 image: postgres
 env:
 - name: POSTGRES_PASSWORD
 value: "supersecret"

When we provide environment variables directly in the Deployment, those
environment variables are stored directly in the YAML file and in the
cluster’s configuration for that Deployment. There are two important
problems with embedding environment variables in this manner. First, we’re
reducing flexibility because we can’t specify a new value for the environment
variable without changing the Deployment YAML file. Second, the password
is visible in plaintext directly in the Deployment YAML file. YAML files are
often checked in to source control, so we’re going to have a hard time
adequately protecting the password.

GITOPS
The reason that the YAML files that define Kubernetes resources are
often checked in to source control is that this is by far the best way to

manage an application deployment. GitOps is a best practice by which
all configuration is kept in a Git repository. This includes the cluster
configuration, additional infrastructure components including load
balancers, ingress controller, and storage plug-ins, as well as all of the
information to build, assemble, and deploy applications. GitOps
provides a log of changes to the cluster configuration, avoids
configuration drift that can occur over time, and ensures consistency
between development, test, and production environments. Not only that,
but GitOps tools like FluxCD and ArgoCD can be used to watch
changes to a Git repository and automatically pull the latest
configuration to update a cluster.

Let’s first look at moving the configuration out of the Deployment; then
we’ll consider how best to protect the password.

Externalizing Configuration
Embedding configuration in the Deployment makes the resource definition
less reusable. If, for example, we wanted to deploy a PostgreSQL server for
both test and production versions of our application, it would be useful to
reuse the same Deployment to avoid duplication and to avoid configuration
drift between the two versions. However, for security, we would not want to
use the same password in both environments.

It’s better if we externalize the configuration by storing it in a separate
resource and referring to it from the Deployment. To enable this, Kubernetes
offers the ConfigMap resource. A ConfigMap specifies a set of key–value
pairs that can be referenced when specifying a Pod. For example, we can
define our PostgreSQL configuration this way:
pgsql-cm.yaml

kind: ConfigMap
apiVersion: v1
metadata:
 name: pgsql
data:
 POSTGRES_PASSWORD: "supersecret"

By storing this configuration information in a ConfigMap, it is no longer

directly part of the Deployment YAML file or the cluster configuration for
the Deployment.

After we’ve defined our ConfigMap, we can reference it in our
Deployment, as demonstrated in Listing 16-1.
pgsql-ext-cfg.yaml

kind: Deployment
apiVersion: apps/v1
metadata:
 name: postgres
spec:
 replicas: 1
 selector:
 matchLabels:
 app: postgres
 template:
 metadata:
 labels:
 app: postgres
 spec:
 containers:
 - name: postgres
 image: postgres
 envFrom:
 - configMapRef:
 name: pgsql

Listing 16-1: PostgreSQL with ConfigMap

In place of the env field, we have an envFrom field that specifies one or more
ConfigMaps to serve as environment variables for the container. All of the
key–value pairs in the ConfigMap will become environment variables.

This has the same effect as specifying one or more environment variables
directly in the Deployment, but our Deployment specification is now
reusable. The Deployment will look for the identified ConfigMap in its own
Namespace, so we can have multiple Deployments from the same
specification in separate Namespaces, and each can be configured differently.

This use of Namespace isolation to prevent naming conflicts, together
with the Namespace-scoped security controls we saw in Chapter 11 and the
Namespace-scoped quotas we saw in Chapter 14, allows a single cluster to be
used for many different purposes, by many different groups, a concept known
as multitenancy.

Let’s create this Deployment and see how Kubernetes injects the
configuration. First, let’s create the actual Deployment:

root@host01:~# kubectl apply -f /opt/pgsql-ext-cfg.yaml
deployment.apps/postgres created

This command completes successfully because the Deployment has been
created in the cluster, but Kubernetes will not be able to start any Pods
because the ConfigMap is missing:

root@host01:~# kubectl get pods
NAME READY STATUS RESTARTS AGE
postgres-6bf595fcbc-s8dqz 0/1 CreateContainerConfigError 0 53s

If we now create the ConfigMap, we see that the Pod is then created:

root@host01:~# kubectl apply -f /opt/pgsql-cm.yaml
configmap/pgsql created
root@host01:~# kubectl get pods
NAME READY STATUS RESTARTS AGE
postgres-6bf595fcbc-s8dqz 1/1 Running 0 2m41s

It can take a minute or so for Kubernetes to determine that the ConfigMap
is available and start the Pod. As soon as the Pod is running, we can verify
that the environment variables were injected based on the data in the
ConfigMap:

root@host01:~# kubectl exec -ti postgres-6bf595fcbc-s8dqz -- /bin/sh -c env
...
POSTGRES_PASSWORD=supersecret
...

The command env prints out all of the environment variables associated
with a process. Because Kubernetes provides the same environment variables
to our /bin/sh process as it provided to our main PostgreSQL process, we know
that the environment variable was set as expected. It’s important to note,
however, that even though we can change the ConfigMap at any time, doing
so will not cause the Deployment to update its Pods; the application will not
automatically pick up any environment variable changes. Instead, we need to
apply some configuration change to the Deployment to cause it to create new
Pods.

Although the configuration has been externalized, we still are not
protecting it. Let’s do that next.

Protecting Secrets
When protecting secrets, thinking through the nature of the protection that
makes sense is important. For example, we might need to protect
authentication information that our application uses to connect to a database.
However, given that the application itself needs that information to make the
connection, anyone who can inspect the inner details of the application is
going to be able to extract those credentials.

As we saw in Chapter 11, Kubernetes provides fine-grained access control
over each individual resource type in a given Namespace. To enable
protection of secrets, Kubernetes provides a separate resource type, Secret.
This way, access to secrets can be limited to only those users who require
access, a principle known as least privilege.

One more advantage to the Secret resource type is that it uses base64
encoding for all of its data, with automatic decoding when the data is
provided to the Pod, which simplifies the storage of binary data.

ENCRYPTING SECRET DATA
By default, data stored in a Secret is base64 encoded but is not
encrypted. It is possible to encrypt secret data, and doing so is good
practice for a production cluster, but remember that the data must be
decrypted so that it can be provided to the Pod. For this reason, anyone
who can control what Pods exist in a namespace can access secret data,
as can any cluster administrators who can access the underlying
container runtime. This is true even if the secret data is encrypted when
stored. Proper access controls are essential to keep a cluster secure.

A Secret definition looks almost identical to a ConfigMap definition:
pgsql-secret.yaml

kind: Secret

apiVersion: v1
metadata:
 name: pgsql
stringData:
 POSTGRES_PASSWORD: "supersecret"

The one obvious difference is the resource type of Secret rather than
ConfigMap. However, there is a subtle difference as well. When we define
this Secret, we place the key–value pairs in a field called stringData rather than
just data. This tells Kubernetes that we are providing unencoded strings. When
it creates the Secret, Kubernetes will encode the strings for us:

root@host01:~# kubectl apply -f /opt/pgsql-secret.yaml
secret/pgsql created
root@host01:~# kubectl get secret pgsql -o json | jq .data
{
 "POSTGRES_PASSWORD": "c3VwZXJzZWNyZXQ="
}

Even though we specified the data using the field stringData and an
unencoded string, the actual Secret uses the field data and stores the value
using base64 encoding. We can also do the base64 encoding ourselves. In
that case, we place the value directly into the data field:
pgsql-secret-2.yaml

kind: Secret
apiVersion: v1
metadata:
 name: pgsql
data:
 POSTGRES_PASSWORD: c3VwZXJzZWNyZXQ=

This approach is necessary to define binary content for the Secret in order
for us to be able to supply that binary content as part of a YAML resource
definition.

We use a Secret in a Deployment definition in exactly the same way we
use a ConfigMap:
pgsql-ext-sec.yaml

kind: Deployment
apiVersion: apps/v1

metadata:
 name: postgres
spec:
 replicas: 1
 selector:
 matchLabels:
 app: postgres
 template:
 metadata:
 labels:
 app: postgres
 spec:
 containers:
 - name: postgres
 image: postgres
 envFrom:
 - secretRef:
 name: pgsql

The only change is the use of secretRef in place of configMapRef.
To test this, let’s apply this new Deployment configuration:

root@host01:~# kubectl apply -f /opt/pgsql-ext-sec.yaml
deployment.apps/postgres configured

From the perspective of our Pod, the behavior is exactly the same.
Kubernetes handles the base64 decoding, making the decoded value visible to
our Pod:

root@host01:~# kubectl get pods
NAME READY STATUS RESTARTS AGE
postgres-6bf595fcbc-s8dqz 1/1 Terminating 0 12m
postgres-794ff85bbf-xzz49 1/1 Running 0 26s
root@host01:~# kubectl exec -ti postgres-794ff85bbf-xzz49 -- /bin/sh -c env
...
POSTGRES_PASSWORD=supersecret
...

As before, we use the env command to show that the POSTGRES_PASSWORD
environment variable was set as expected. The Pod sees the same behavior
whether we specify the environment variable directly or use a ConfigMap or
Secret.

Before we move on, let’s delete this Deployment:

root@host01:~# kubectl delete deploy postgres

deployment.apps "postgres" deleted

Using ConfigMaps and Secrets, we have the ability to externalize
environment variable configuration for our application so that our
Deployment specification can be reusable and to facilitate fine-grained access
control over secret data.

Injecting Files
Of course, environment variables are not the only way we commonly
configure applications. We also need a way to provide configuration files.
We can do that using the same ConfigMap and Secret resources we’ve seen
already.

Any files we inject in this way override files that exist in the container
image, which means that we can supply the container image with a sensible
default configuration and then override that configuration with each container
we run. This makes it much easier to reuse container images.

The ability to specify file content in a ConfigMap and then mount it in a
container is immediately useful for configuration files, but we can also use it
to update the NGINX web server example we showed in Chapter 15. As
we’ll see, with this version we can declare our HTML content solely using
Kubernetes resource YAML files, with no need for console commands to
copy content into a PersistentVolume.

The first step is to define a ConfigMap with the HTML content we want
to serve:
nginx-cm.yaml

kind: ConfigMap
apiVersion: v1
metadata:
 name: nginx
data:
 index.html: |
 <html>
 <head>
 <title>Hello, World</title>
 </head>
 <body>
 <h1>Hello, World from a ConfigMap!</h1>

 </body>
 </html>

The key part of the key–value pair is used to specify the desired filename,
in this case index.html. For ease of reading, we use a pipe character (|) to start
a YAML multiline string. This string continues as long as the following lines
are indented, or until the end of the YAML file. We can define multiple files
in this way by just adding more keys to the ConfigMap.

In the Deployment we saw in Listing 16-1, we specified the ConfigMap as
the source of environment variables. Here, we specify it as the source of a
volume mount:
nginx-deploy.yaml

kind: Deployment
apiVersion: apps/v1
metadata:
 name: nginx
spec:
 replicas: 1
 selector:
 matchLabels:
 app: nginx
 template:
 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - name: nginx
 image: nginx
 volumeMounts:
 - name: nginx-files
 mountPath: /usr/share/nginx/html
 volumes:
 - name: nginx-files
 configMap:
 name: nginx

This volume definition looks similar to the one we saw in Chapter 15. As
before, the volume specification comes in two parts. The volume field specifies
where the volume comes from, in this case the ConfigMap. The volumeMounts
allows us to specify the path in the container where the files should be made
available. In addition to making it possible to use the same volume in

multiple containers in a Pod, this also means that we can share the same
syntax when mounting persistent volumes and when mounting the
configuration as files in the container filesystem.

Let’s create the ConfigMap and then get this Deployment started:

root@host01:~# kubectl apply -f /opt/nginx-cm.yaml
configmap/nginx created
root@host01:~# kubectl apply -f /opt/nginx-deploy.yaml
deployment.apps/nginx created

After the Pod is running, we can see that the file content is as expected,
and NGINX is serving our HTML file:

root@host01:~# IP=$(kubectl get po -l app=nginx -o jsonpath='{..podIP}')
root@host01:~# curl http://$IP
<html>
 <head>
 <title>Hello, World</title>
 </head>
 <body>
 <h1>Hello, World from a ConfigMap!</h1>
 </body>
</html>

The output looks similar to what we saw in Chapter 15 when we provided
the HTML content as a PersistentVolume, but we were able to avoid the
effort of attaching the PersistentVolume and then copying content into it. In
practice, both approaches have value, as maintaining a ConfigMap with a
large amount of data would be unwieldy.

To make the contents of the ConfigMap appear as files in a directory,
Kubernetes is writing out the contents of the ConfigMap to the host
filesystem and then mounting the directory from the host into the container.
This means that the specific directory shows up as part of the output for the
mount command inside the container:

root@host01:~# kubectl exec -ti nginx-58bc54b5cd-4lbkq -- /bin/mount
...
/dev/sda1 on /usr/share/nginx/html type ext4 (ro,relatime)
...

The mount command reports that the directory /usr/share/nginx/html is a
separately mounted path coming from the host’s primary disk /dev/sda1.

We’re finished with the NGINX Deployment, so go ahead and delete it:

root@host01:~# kubectl delete deploy nginx
deployment.apps "nginx" deleted

Next, let’s look at how ConfigMap and Secret information is stored in a
typical Kubernetes cluster so that we can see where kubelet is getting this
content.

Cluster Configuration Repository
Although it’s possible to run a Kubernetes cluster with different choices of
configuration repository, most Kubernetes clusters use etcd as the backing
store for all cluster configuration data. This includes not only the ConfigMap
and Secret storage but also all of the other cluster resources and the current
cluster state. Kubernetes also uses etcd to elect a leader when running in a
highly available configuration with multiple API servers.

Although etcd is generally stable and reliable, node failures can lead to
cases in which the etcd cluster can’t reestablish itself and elect a leader. Our
purpose in demonstrating etcd is not just to see how configuration data is
stored, but also to provide some valuable background into an essential cluster
component that an administrator might need to debug.

For all of our example clusters, etcd is installed on the same nodes as the
API server, which is common in smaller clusters. In large clusters, running
etcd on separate nodes to allow it to scale separately from the Kubernetes
control plane is common.

To explore the contents of the etcd backing store, we’ll use etcdctl, a
command line client designed for controlling and troubleshooting etcd.

Using etcdctl
We need to tell etcdctl where our etcd server instance is located and how to
authenticate to it. For authentication, we’ll use the same client certificate that
the API server uses.

For convenience, we can set environment variables that etcdctl will read, so
we don’t need to pass in those values via the command line with every
command.

Here are the environment variables we need:
etcd-env

export ETCDCTL_API=3
export ETCDCTL_CACERT=/etc/kubernetes/pki/etcd/ca.crt
export ETCDCTL_CERT=/etc/kubernetes/pki/apiserver-etcd-client.crt
export ETCDCTL_KEY=/etc/kubernetes/pki/apiserver-etcd-client.key
export ETCDCTL_ENDPOINTS=https://192.168.61.11:2379

These variables configure etcdctl as follows:

ETCDCTL_API Use version 3 of the etcd API. With recent versions of etcd, only
version 3 is supported.

ETCDCTL_CACERT Verify the etcd host using the provided certificate authority.

ETCDCTL_CERT Authenticate to etcd using this certificate.

ETCDCTL_KEY Authenticate to etcd using this private key.

ETCDCTL_ENDPOINTS Connect to etcd at this URL. While etcd is running on all
three nodes, we only need one node to talk to it.

In our example, these environment variables are conveniently stored in a
script in /opt so that we can load them for use with upcoming commands:

root@host01:~# source /opt/etcd-env

We can now use etcdctl commands to inspect the cluster and the
configuration data it’s storing. Let’s begin by listing only the cluster
members:

root@host01:~# etcdctl member list
45a2b6125030fdde, started, host02, https://192.168.61.12:2380, https://192.168.61.12:2379
91007aab9448ce27, started, host03, https://192.168.61.13:2380, https://192.168.61.13:2379
bf7b9991d532ba78, started, host01, https://192.168.61.11:2380, https://192.168.61.11:2379

As expected, each of the control plane nodes has an instance of etcd. For a
highly available configuration, we need to run at least three instances, and we
need a majority of those instances to be running for the cluster to be healthy.
This etcdctl command is a good first step to determine whether the cluster has
any failed nodes.

As long as the cluster is healthy, we can store and retrieve data. Within

etcd, information is stored in key–value pairs. Keys are specified as paths in a
hierarchy. We can list the paths that have content:

root@host01:~# etcdctl get / --prefix --keys-only
...
/registry/configmaps/default/nginx
/registry/configmaps/default/pgsql
...
/registry/secrets/default/pgsql
...

The --prefix flag tells etcdctl to get all keys that start with /, whereas --keys-only
ensures that we print only the keys to prevent being overwhelmed with data.
Still, a lot of information is returned, including all of the various Kubernetes
resource types that we’ve described in this book. Also included are the
ConfigMaps and Secrets we just created.

Deciphering Data in etcd
We can generally rely on Kubernetes to store the correct configuration data in
etcd, and we can rely on kubectl to see the current cluster configuration.
However, it is useful to know how the underlying data store works in case we
need to inspect the configuration when the cluster is down or in an anomalous
state.

To save storage space and bandwidth, both etcd and Kubernetes use the
protobuf library, a language-neutral binary data format. Because we’re using
etcdctl to retrieve data from etcd, we can ask it to return data in JSON format,
instead; however, that JSON data will include an embedded protobuf structure
with the data from Kubernetes, so we’ll need to decode that as well.

Let’s begin by examining the JSON format for a Kubernetes Secret in etcd.
We’ll send the output through jq for formatting:

root@host01:~# etcdctl -w json get /registry/secrets/default/pgsql | jq
{
 "header": {
...
 },
 "kvs": [
 {
 "key": "L3JlZ2lzdHJ5L3NlY3JldHMvZGVmYXVsdC9wZ3NxbA==",
 "create_revision": 14585,
 "mod_revision": 14585,

 "version": 1,
 "value": "azhzAAoMCgJ2MRIGU2..."
 }
],
 "count": 1
}

The kvs field has the key–value pair that Kubernetes stored for this Secret.
The value for the key is a simple base64-encoded string:

root@host01:~# echo $(etcdctl -w json get /registry/secrets/default/pgsql \
| jq -r '.kvs[0].key' | base64 -d)
/registry/secrets/default/pgsql

We use jq to extract just the key’s value and return it in raw format
(without quotes), and then we use base64 to decode the string.

Of course, the interesting part of this key–value pair is the value because it
contains the actual Kubernetes Secret. Although the value is also base64
encoded, we need to do a bit more detangling to access its information.

After we decode the base 64 value, we’ll have a protobuf message.
However, it has a magic prefix that Kubernetes uses to allow for future
changes in the storage format. We can see that prefix if we look at the first
few bytes of the decoded value:

root@host01:~# etcdctl -w json get /registry/secrets/default/pgsql \
| jq -r '.kvs[0].value' | base64 -d | head --bytes=10 | xxd
00000000: 6b38 7300 0a0c 0a02 7631 k8s.....v1

We use head to retrieve the first 10 bytes of the decoded value and then use
xxd to see a hex dump. The first few bytes are k8s followed by an ASCII null
character. The rest of the data, starting with byte 5, is the actual protobuf
message.

Let’s run one more command to actually decode the protobuf message using
the protoc tool:

root@host01:~# etcdctl -w json get /registry/secrets/default/pgsql \
| jq -r '.kvs[0].value' | base64 -d | tail --bytes=+5 | protoc --decode_raw
1 {
 1: "v1"
 2: "Secret"
}
2 {

 1 {
 1: "pgsql"
 2: ""
 3: "default"
 4: ""
...
 }
 2 {
 1: "POSTGRES_PASSWORD"
 2: "supersecret"
 }
 3: "Opaque"
}
...

The protoc tool is mostly used for generating source code to read and write
protobuf messages, but it’s also handy for message decoding. As we can see,
within the protobuf message is all of the data Kubernetes stores for this Secret,
including the resource version and type, the resource name and namespace,
and the data. This illustrates, as mentioned earlier, that access to the hosts on
which Kubernetes runs provides access to all of the secret data in the cluster.
Even if we configured Kubernetes to encrypt data before storing it in etcd, the
encryption keys themselves need to be stored unencrypted in etcd so that the
API server can use them.

Final Thoughts
With the ability to provide either environment variables or files to Pods,
ConfigMaps and Secrets allow us to externalize the configuration of our
containers, which makes it possible to reuse both Kubernetes resource
definitions such as Deployments and container images in a variety of
applications.

At the same time, we need to be aware of how Kubernetes stores this
configuration data and how it provides it to containers. Anyone with the right
role can access configuration data using kubectl; anyone with access to the host
running the container can access it from the container runtime; and anyone
with the right authentication information can access it directly from etcd. For a
production cluster, it’s critical that all of these mechanisms are correctly
secured.

So far, we’ve seen how Kubernetes stores built-in cluster resource data in

etcd, but Kubernetes can also store any kind of custom resource data we might
choose to declare. In the next chapter, we’ll explore how custom resource
definitions enable us to add new behavior to a Kubernetes cluster in the form
of operators.

17
CUSTOM RESOURCES AND OPERATORS

We’ve seen many different resource types used in a Kubernetes cluster to run
container workloads, scale them, configure them, route network traffic to
them, and provide storage for them. One of the most powerful features of a
Kubernetes cluster, however, is the ability to define custom resource types
and integrate these into the cluster alongside all of the built-in resource types
we’ve already seen.

Custom resource definitions enable us to define any new resource type
and have the cluster track corresponding resources. We can use this
capability to add complex new behavior to our cluster, such as automating the
deployment of a highly available database engine, while taking advantage of
all of the existing capabilities of the built-in resource types and the resource
and status management of the cluster’s control plane.

In this chapter, we’ll see how custom resource definitions work and how
we can use them to deploy Kubernetes operators, extending our cluster to
take on any additional behavior we desire.

Custom Resources
In Chapter 6, we discussed how the Kubernetes API server provides a
declarative API, where the primary actions are to create, read, update, and
delete resources in the cluster. A declarative API has advantages for

resiliency, as the cluster can track the desired state of resources and work to
ensure that the cluster stays in that desired state. However, a declarative API
also has a significant advantage in extensibility. The actions provided by the
API server are generic enough that extending them to any kind of resource is
easy.

We’ve already seen how Kubernetes takes advantage of this extensibility
to update its API over time. Not only can Kubernetes support new versions of
a resource over time, but brand-new resources with new capabilities can be
added to the cluster while backward compatibility is maintained through the
old resources. We saw this in Chapter 7 in our discussion on the new
capabilities of version 2 of the HorizontalPodAutoscaler as well as the way
that the Deployment replaced the ReplicationController.

We really see the power of this extensibility in the use of
CustomResourceDefinitions. A CustomResourceDefinition, or CRD, allows
us to add any new resource type to a cluster dynamically. We simply provide
the API server with the name of the new resource type and a specification
that’s used for validation, and immediately the API server will allow us to
create, read, update, and delete resources of that new type.

CRDs are extremely useful and in widespread use. For example, the
infrastructure components that are already deployed to our cluster include
CRDs.

NOTE
The example repository for this book is at https://github.com/book-of-
kubernetes/examples. See “Running Examples” on page xx for details
on/linebreak getting set up.

Let’s see the CRDs that are already registered with our cluster:

root@host01:~# kubectl get crds
NAME CREATED AT
...
clusterinformations.crd.projectcalico.org ...
...
installations.operator.tigera.io ...
...
volumes.longhorn.io ...

https://github.com/book-of-kubernetes/examples

To avoid naming conflicts, the CRD name must include a group, which is
commonly based on a domain name to ensure uniqueness. This group is also
used to establish the path to that resource for the REST API provided by the
API server. In this example, we see CRDs in the crd.projectcalico.org group and
the operator.tigera.io group, both of which are used by Calico. We also see a
CRD in the longhorn.io group, used by Longhorn.

These CRDs allow Calico and Longhorn to use the Kubernetes API to
record configuration and status information in etcd. CRDs also simplify
custom configuration. For example, as part of deploying Calico to the cluster,
the automation created an Installation resource that corresponds to the
installations.operator.tigera.io CRD:
custom-resources.yaml

apiVersion: operator.tigera.io/v1
kind: Installation
metadata:
 name: default
spec:
 calicoNetwork:
 ipPools:
 - blockSize: 26
 cidr: 172.31.0.0/16
...

This configuration is the reason why we see Pods getting IP addresses in
the 172.31.0.0/16 network block. This YAML file was automatically placed in
/etc/kubernetes/components and automatically applied to the cluster as part of
Calico installation. On deployment, Calico queries the API server for
instances of this Installation resource and configures networking accordingly.

Creating CRDs
Let’s explore CRDs further by creating our own. We’ll use the definition
provided in Listing 17-1.
crd.yaml

 apiVersion: apiextensions.k8s.io/v1
 kind: CustomResourceDefinition
 metadata:
➊ name: samples.bookofkubernetes.com

 spec:
➋ group: bookofkubernetes.com
 versions:
 ➌ - name: v1
 served: true
 storage: true
 schema:
 openAPIV3Schema:
 type: object
 properties:
 spec:
 type: object
 properties:
 value:
 type: integer
➍ scope: Namespaced
 names:
➎ plural: samples
➏ singular: sample
➐ kind: Sample
 shortNames:
 ➑ - sam

Listing 17-1: Sample CRD

There are multiple important parts to this definition. First, several types of
names are defined. The metadata name field ➊ must combine the plural name
of the resource ➎ and the group ➋. These naming components will also be
critical for access via the API.

Naming also includes the kind ➐, which is used in YAML files. This
means that when we create specific resources based on this CRD, we will
identify them with kind: Sample. Finally, we need to define how to refer to
instances of this CRD on the command line. This includes the full name of
the resource, specified in the singular ➏ field, as well as any shortNames ➑ that
we want the command line to recognize.

Now that we’ve provided Kubernetes with all of the necessary names for
instances based on this CRD, we can move on to how the CRD is tracked and
what data it contains. The scope ➍ field tells Kubernetes whether this resource
should be tracked at the Namespace level or whether resources are cluster
wide. Namespaced resources receive an API path that includes the
Namespace they’re in, and authorization to access and modify Namespaced
resources can be controlled on a Namespace-by-Namespace basis using Roles
and RoleBindings, as we saw in Chapter 11.

Third, the versions section allows us to define the actual content that is valid
when we create resources based on this CRD. To enable updates over time,
there can be multiple versions. Each version has a schema that declares what
fields are valid. In this case, we define a spec field that contains one field
called value, and we declare this one field to be an integer.

There was a lot of required configuration here, so let’s review the result.
This CRD enables us to tell the Kubernetes cluster to track a brand new kind
of resource for us, a Sample. Each instance of this resource (each Sample)
will belong to a Namespace and will contain an integer in a value field.

Let’s create this CRD in our cluster:

root@host01:~# kubectl apply -f /opt/crd.yaml
customresourcedefinition...k8s.io/samples.bookofkubernetes.com created

We can now create objects of this type and retrieve them from our cluster.
Here’s an example YAML definition to create a new Sample using the CRD
we defined:
sample.yaml

apiVersion: bookofkubernetes.com/v1
kind: Sample
metadata:
 namespace: default
 name: somedata
spec:
 value: 123

We match the apiVersion and kind to our CRD and ensure that the spec is in
alignment with the schema. This means that we’re required to supply a field
called value with an integer value.

We can now create this resource in the cluster just like any other resource:

root@host01:~# kubectl apply -f /opt/somedata.yaml
sample.bookofkubernetes.com/somedata created

There is now a Sample called somedata that is part of the default Namespace.
When we defined the CRD in Listing 17-1, we specified a plural, singular,

and short name for Sample resources. We can use any of these names to
retrieve the new resource:

root@host01:~# kubectl get samples
NAME AGE
somedata 56s
root@host01:~# kubectl get sample
NAME AGE
somedata 59s
root@host01:~# kubectl get sam
NAME AGE
somedata 62s

Just by declaring our CRD, we’ve extended the behavior of our
Kubernetes cluster so that it understands what samples are, and we can use that
not only in the API but also in the command line tools.

This means that kubectl describe also works for Samples. We can see that
Kubernetes tracks other data related to our new resource, beyond just the data
we specified:

root@host01:~# kubectl describe sample somedata
Name: somedata
Namespace: default
...
API Version: bookofkubernetes.com/v1
Kind: Sample
Metadata:
 Creation Timestamp: ...
...
 Resource Version: 9386
 UID: 37cc58db-179f-40e6-a9bf-fbf6540aa689
Spec:
 Value: 123
Events: <none>

This additional data, including timestamps and resource versioning, is
essential if we want to use the data from our CRD. To use our new resource
effectively, we’re going to need a software component that continually
monitors for new or updated instances of our resource and takes action
accordingly. We’ll run this component using a regular Kubernetes
Deployment that interacts with the Kubernetes API server.

Watching CRDs
With core Kubernetes resources, the control plane components communicate
with the API server to take the correct action when a resource is created,

updated, or deleted. For example, the controller manager includes a
component that watches for changes to Services and Pods, enabling it to
update the list of endpoints for each Service. The kube-proxy instance on each
node then makes the necessary network routing changes to send traffic to
Pods based on those endpoints.

With CRDs, the API server merely tracks the resources as they are
created, updated, and deleted. It is the responsibility of some other software
to monitor instances of the resource and take the correct action. To make it
easy to monitor resources, the API server offers a watch action, using long
polling to keep a connection open and continually feed events as they occur.
Because a long-polling connection could be cut off at any time, the
timestamp and resource version data that Kubernetes tracks for us will enable
us to detect what cluster changes we’ve already processed when we
reconnect.

We could use the API server’s watch capability directly from a curl
command or directly in an HTTP client, but it’s much easier to use a
Kubernetes client library. For this example, we’ll use the Python client
library to illustrate how to watch our custom resource. Here’s the Python
script we’ll use:
watch.py

 #!/usr/bin/env python3
 from kubernetes import client, config, watch
 import json, os, sys

 try:
 ➊ config.load_incluster_config()
 except:
 print("In cluster config failed, falling back to file", file=sys.stderr)
 ➋ config.load_kube_config()

➌ group = os.environ.get('WATCH_GROUP', 'bookofkubernetes.com')
 version = os.environ.get('WATCH_VERSION', 'v1')
 namespace = os.environ.get('WATCH_NAMESPACE', 'default')
 resource = os.environ.get('WATCH_RESOURCE', 'samples')
 api = client.CustomObjectsApi()

 w = watch.Watch()
➍ for event in w.stream(api.list_namespaced_custom_object,
 group=group, version=version, namespace=namespace, plural=resource):
➎ json.dump(event, sys.stdout, indent=2)
 sys.stdout.flush()

To connect to the API server, we need to load cluster configuration. This
includes the location of the API server as well as the authentication
information we saw in Chapter 11. If we’re running in a container within a
Kubernetes Pod, we’ll automatically have that information available to us, so
we first try to load an in-cluster config ➊. However, if we’re outside a
Kubernetes cluster, the convention is to use a Kubernetes config file, so we
try that as a secondary option ➋.

After we’ve established how to talk to the API server, we use the custom
objects API and a watch object to stream events related to our custom
resource ➍. The stream() method takes the name of a function and the
associated parameters, which we’ve loaded from the environment or from
default values ➌. We use the list_namespaced_custom_object function because
we’re interested in our custom resource. All of the various list_* methods in
the Python library are designed to work with watch to return a stream of add,
update, and remove events rather than simply retrieving the current list of
objects. As events occur, we then print them to the console in an easy-to-read
format ➎.

We’ll use this Python script within a Kubernetes Deployment. I’ve built
and published a container image to run it, so this is an easy task. Here’s the
Deployment definition:
watch.yaml

kind: Deployment
apiVersion: apps/v1
metadata:
 name: watch
spec:
 replicas: 1
 selector:
 matchLabels:
 app: watch
 template:
 metadata:
 labels:
 app: watch
 spec:
 containers:
 - name: watch
 image: bookofkubernetes/crdwatcher:stable
 serviceAccountName: watcher

This Deployment will run the Python script that watches for events on
instances of the Sample CRD. However, before we can create this
Deployment, we need to ensure that our watcher script will have permissions
to read our custom resource. The default ServiceAccount has minimal
permissions, so we need to create a ServiceAccount for this Deployment and
ensure that it has the rights to see our Sample custom resources.

We could bind a custom Role to our ServiceAccount to do this, but it’s
more convenient to take advantage of role aggregation to add our Sample
custom resource to the view ClusterRole that already exists. This way, any
user in the cluster with the view ClusterRole will acquire rights to our Sample
custom resource.

We start by defining a new ClusterRole for our custom resource:
sample-reader.yaml

 apiVersion: rbac.authorization.k8s.io/v1
 kind: ClusterRole
 metadata:
 name: sample-reader
 labels:
 ➊ rbac.authorization.k8s.io/aggregate-to-view: "true"
 rules:
➋ - apiGroups: ["bookofkubernetes.com"]
 resources: ["samples"]
 verbs: ["get", "watch", "list"]

This ClusterRole gives permission to get, watch, and list our Sample custom
resources ➋. We also add a label to the metadata ➊ to signal the cluster that
we want these permissions to be aggregated into the view ClusterRole. Thus,
rather than bind our ServiceAccount into the sample-reader ClusterRole we’re
defining here, we can bind our ServiceAccount into the generic view
ClusterRole, giving it read-only access to all kinds of resources.

We also need to declare the ServiceAccount and bind it to the view
ClusterRole:
sa.yaml

apiVersion: v1
kind: ServiceAccount
metadata:
 name: watcher

 namespace: default

kind: RoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
 name: viewer
 namespace: default
subjects:
- kind: ServiceAccount
 name: watcher
 namespace: default
roleRef:
 kind: ClusterRole
 name: view
 apiGroup: rbac.authorization.k8s.io

We use a RoleBinding to limit this ServiceAccount to read-only access
solely within the default Namespace. The RoleBinding binds the watcher
ServiceAccount to the generic view ClusterRole. This ClusterRole will have
access to our Sample custom resources thanks to the role aggregation we
specified.

We’re now ready to apply all of these resources, including our
Deployment:

root@host01:~# kubectl apply -f /opt/sample-reader.yaml
clusterrole.rbac.authorization.k8s.io/sample-reader created
root@host01:~# kubectl apply -f /opt/sa.yaml
serviceaccount/watcher created
rolebinding.rbac.authorization.k8s.io/viewer created
root@host01:~# kubectl apply -f /opt/watch.yaml
deployment.apps/watch created

After a little while, our watcher Pod will be running:

root@host01:~# kubectl get pods
NAME READY STATUS RESTARTS AGE
watch-69876b586b-jp25m 1/1 Running 0 47s

We can print the watcher’s logs to see the events it has received from the
API server:

root@host01:~# kubectl logs watch-69876b586b-jp25m
{
 "type": "ADDED",
 "object": {

 "apiVersion": "bookofkubernetes.com/v1",
 "kind": "Sample",
 "metadata": {
...
 "creationTimestamp": "...",
...
 "name": "somedata",
 "namespace": "default",
 "resourceVersion": "9386",
 "uid": "37cc58db-179f-40e6-a9bf-fbf6540aa689"
 },
 "spec": {
 "value": 123
 }
 },
...

Note that the watcher Pod receives an ADDED event for the somedata Sample
we created, even though we created that Sample before we deployed our
watcher. The API server is able to determine that our watcher has not yet
retrieved this object, so it sends us an event immediately on connection as if
the object were newly created, which avoids a race condition that we would
otherwise be forced to handle. However, note that if the client is restarted, it
will appear as a new client to the API server and will see the same ADDED
event again for the same Sample. For this reason, when we implement the
logic to handle our custom resources, it’s essential to make the logic
idempotent so that we can handle processing the same event multiple times.

Operators
What kinds of actions would we take in response to the creation, update, or
deletion of custom resources, other than just logging the events to the
console? As we saw when we examined the way that custom resources are
used to configure Calico networking in our cluster, one use for custom
resources is to configure for cluster infrastructure components such as
networking and storage. But another pattern that really makes the best use of
custom resources is the Kubernetes Operator.

The Kubernetes Operator pattern extends the behavior of the cluster to
make it easier to deploy and manage specific application components. Rather
than using the standard set of Kubernetes resources such as Deployments and

Services directly, we simply create custom resources that are specific to the
application component, and the operator manages the underlying Kubernetes
resources for us.

Let’s look at an example to illustrate the power of the Kubernetes
Operator pattern. We’ll add a Postgres Operator to our cluster that will enable
us to deploy a highly available PostgreSQL database to our cluster by just
adding a single custom resource.

Our automation has staged the files that we need into
/etc/kubernetes/components and has performed some initial setup, so the only
step remaining is to add the operator. The operator is a normal Deployment
that will run in whatever Namespace we choose. It then will watch for custom
postgresql resources and will create PostgreSQL instances accordingly.

Let’s deploy the operator:

root@host01:~# kubectl apply -f /etc/kubernetes/components/postgres-operator.yaml
deployment.apps/postgres-operator created

This creates a Deployment for the operator itself, which creates a single
Pod:

root@host01:~# kubectl get pods
NAME READY STATUS RESTARTS AGE
postgres-operator-5cdbff85d6-cclxf 1/1 Running 0 27s
...

The Pod communicates with the API server to create the CRD needed to
define a PostgreSQL database:

root@host01:~# kubectl get crd postgresqls.acid.zalan.do
NAME CREATED AT
postgresqls.acid.zalan.do ...

No instances of PostgreSQL are running in the cluster yet, but we can
easily deploy PostgreSQL by creating a custom resource based on that CRD:
pgsql.yaml

apiVersion: "acid.zalan.do/v1"
kind: postgresql
metadata:
 name: pgsql-cluster

 namespace: default
spec:
 teamId: "pgsql"
 volume:
 size: 1Gi
 storageClass: longhorn
 numberOfInstances: 3
 users:
 dbuser:
 - superuser
 - createdb
 databases:
 defaultdb: dbuser
 postgresql:
 version: "14"

This custom resource tells the Postgres Operator to spawn a PostgreSQL
database using server version 14, with three instances (a primary and two
backups). Each instance will have persistent storage. The primary instance
will be configured with the specified user and database.

The real value of the Kubernetes Operator pattern is that the YAML
resource file we declare is short, simple, and clearly relates to the
PostgreSQL configuration we want to see. The operator’s job is to convert
this information into a StatefulSet, Services, and other cluster resources as
needed to operate this database.

We apply this custom resource to the cluster like any other resource:

root@host01:~# kubectl apply -f /opt/pgsql.yaml
postgresql.acid.zalan.do/pgsql-cluster created

After we apply it, the Postgres Operator will receive the add event and
will create the necessary cluster resources for PostgreSQL:

root@host01:~# kubectl logs postgres-operator-5cdbff85d6-cclxf
... level=info msg="Spilo operator..."
...
... level=info msg="ADD event has been queued"
 cluster-name=default/pgsql-cluster pkg=controller worker=0
... level=info msg="creating a new Postgres cluster"
 cluster-name=default/pgsql-cluster pkg=controller worker=0
...
... level=info msg="statefulset
 \"default/pgsql-cluster\" has been successfully created"
 cluster-name=default/pgsql-cluster pkg=cluster worker=0
...

Ultimately, there will be a StatefulSet and three Pods running (in addition
to the Pod for the operator itself, which is still running):

root@host01:~# kubectl get sts
NAME READY AGE
pgsql-cluster 3/3 2m39s
root@host01:~# kubectl get po
NAME READY STATUS RESTARTS AGE
pgsql-cluster-0 1/1 Running 0 2m40s
pgsql-cluster-1 1/1 Running 0 2m18s
pgsql-cluster-2 1/1 Running 0 111s
postgres-operator-5cdbff85d6-cclxf 1/1 Running 0 4m6s
...

It can take several minutes for all of these resources to be fully running on
the cluster.

Unlike the PostgreSQL StatefulSet we created in Chapter 15, all instances
in this StatefulSet are configured for high availability, as we can demonstrate
by inspecting the logs for each Pod:

root@host01:~# kubectl logs pgsql-cluster-0
...
... INFO: Lock owner: None; I am pgsql-cluster-0
... INFO: trying to bootstrap a new cluster
...
... INFO: initialized a new cluster
...
... INFO: no action. I am (pgsql-cluster-0) the leader with the lock
root@host01:~# kubectl logs pgsql-cluster-1
...
... INFO: Lock owner: None; I am pgsql-cluster-1
... INFO: waiting for leader to bootstrap
... INFO: Lock owner: pgsql-cluster-0; I am pgsql-cluster-1
...
... INFO: no action. I am a secondary (pgsql-cluster-1) and following
 a leader (pgsql-cluster-0)

As we can see, the first instance, pgsql-cluster-0, has identified itself as the
leader, whereas pgsql-cluster-1 has configured itself as a follower that will
replicate any updates to the leader’s databases.

To manage the PostgreSQL leaders and followers and enable database
clients to reach the leader, the operator has created multiple Services:

root@host01:~# kubectl get svc

NAME TYPE CLUSTER-IP ... PORT(S) AGE
...
pgsql-cluster ClusterIP 10.101.80.163 ... 5432/TCP 6m52s
pgsql-cluster-config ClusterIP None ... <none> 6m21s
pgsql-cluster-repl ClusterIP 10.96.13.186 ... 5432/TCP 6m52s

The pgsql-cluster Service routes traffic to the primary only; the other
Services are used to manage replication to the backup instances. The operator
handles the task of updating the Service if the primary instance changes due
to failover.

To remove the PostgreSQL database, we need to remove only the custom
resource, and the Postgres Operator handles the rest:

root@host01:~# kubectl delete -f /opt/pgsql.yaml
postgresql.acid.zalan.do "pgsql-cluster" deleted

The operator detects the removal and cleans up the associated Kubernetes
cluster resources:

root@host01:~# kubectl logs postgres-operator-5cdbff85d6-cclxf
...
... level=info msg="deletion of the cluster started"
 cluster-name=default/pgsql-cluster pkg=controller worker=0
... level=info msg="DELETE event has been queued"
 cluster-name=default/pgsql-cluster pkg=controller worker=0
...
... level=info msg="cluster has been deleted"
 cluster-name=default/pgsql-cluster pkg=controller worker=0

The Postgres Operator has now removed the StatefulSet, persistent
storage, and other resources associated with this database cluster.

The ease with which we were able to deploy and remove a PostgreSQL
database server, including multiple instances automatically configured in a
highly available configuration, demonstrates the power of the Kubernetes
Operator pattern. By defining a CRD, a regular Deployment can act to extend
the behavior of our Kubernetes cluster. The result is a seamless addition of
new cluster capability that is fully integrated with the built-in features of the
Kubernetes cluster.

Final Thoughts

CustomResourceDefinitions and Kubernetes Operators bring advanced
features to a cluster, but they do so by building on the basic Kubernetes
cluster functionality we’ve seen throughout this book. The Kubernetes API
server has the extensibility to handle storage and retrieval of any type of
cluster resource. As a result, we’re able to define new resource types
dynamically and have the cluster manage them for us.

We’ve seen this pattern across many of the features we’ve examined in
Part II of this book. Kubernetes itself is built on the fundamental features of
containers that we saw in Part I, and it is built so that its more advanced
features are implemented by bringing together its more basic features. By
understanding how those basic features work, we’re better able to understand
the more advanced features, even if the behavior looks a bit magical at first.

We’ve now worked our way through the key capabilities of Kubernetes
that we need to understand to build high-quality, performant applications.
Next, we’ll turn our attention to ways to improve the performance and
resiliency of our applications when running them in a Kubernetes cluster.

PART III
PERFORMANT KUBERNETES

Even though containers are designed to hide some of the complexity of the
individual hosts in a cluster and their underlying hardware, real-world
applications need tuning to get the most out of the available computing
power. This tuning must be done in a way that works with the scalability and
resiliency of our Kubernetes cluster so that we don’t lose the advantages of
dynamic scheduling and horizontal scaling. In other words, we need to
provide hints to a cluster to help it schedule containers in the most efficient
way.

18
AFFINITY AND DEVICES

The ideal application exhibits complete simplicity. It is simple to design. It is
simple to develop. It is simple to deploy. Its individual components are
stateless, so it’s easy to scale to serve as many users as needed. The
individual service endpoints act as pure functions where the output is
determined solely by the input. The application operates on a reasonable
amount of data, with modest CPU and memory requirements, and requests
and responses easily fit into a JSON structure that is at most a couple of
kilobytes.

Of course, outside of tutorials, ideal applications don’t exist. Real-world
applications store state, both in long-term persistent storage and in caches
that can be accessed quickly. Real-world applications have data security and
authorization concerns, so they need to authenticate users, remember who
those users are, and limit access accordingly. And many real-world
applications need to access specialized hardware rather than just using
idealized CPU, memory, storage, and network resources.

We want to deploy real-world applications on our Kubernetes cluster, not
just idealized applications. This means that we need to make smart decisions
about how to deploy the application components that move us away from an
ideal world in which the cluster decides how many container instances to run
and where to schedule them. However, we don’t want to create an application
architecture that is so rigid that we lose our cluster’s scalability and
resiliency. Instead, we want to work within the cluster to give it hints about

how to deploy our application components while still maintaining as much
flexibility as possible. In this chapter, we’ll explore how our application
components can enforce a little bit of coupling to other components or to
specialized hardware without losing the benefits of Kubernetes.

Affinity and Anti-affinity
We’ll begin by looking at the case in which we want to manage the
scheduling of Pods so that we can prefer or avoid co-locating multiple
containers on the same node. For example, if we have two containers that
consume significant network bandwidth communicating with each other, we
might want those two containers to run together on a node to reduce latency
and avoid slowing down the rest of the cluster. Or, if we want to ensure that a
highly available component can survive the loss of a node in the cluster, we
may want to split Pod instances so they run on as many different cluster
nodes as possible.

One way to co-locate containers is to combine multiple separate
containers into a single Pod specification. That is a great solution for cases in
which two processes are completely dependent on each other. However, it
removes the ability to scale the instances separately. For example, in a web
application backed by distributed storage, we might need many more
instances of the web server process than we would need of the storage
process. We need to place those application components in different Pods to
be able to scale them separately.

In Chapter 8, when we wanted to guarantee that a Pod ran on a specified
node, we added the nodeName field to the Pod specification to override the
scheduler. That was fine for an example, but for a real application it would
eliminate the scaling and failover that are essential for performance and
reliability. Instead, we’ll use the Kubernetes concept of affinity to give the
scheduler hints about how to allocate Pods without forcing any Pod to run on
a specific node.

Affinity allows us to restrict where a Pod should be scheduled based on
the presence of other Pods. Let’s look at an example using the iperf3 network
testing application.

CLUSTER ZONES
Pod affinity is most valuable for large clusters that span multiple
networks. For example, we might deploy a Kubernetes cluster to
multiple different data centers to eliminate single points of failure. In
those cases, we would configure affinity based on a zone, which might
contain many nodes. Here, we have only a small example cluster, so
we’ll treat each node in our cluster as a separate zone.

Anti-affinity
Let’s start with the opposite of affinity: anti-affinity. Anti-affinity causes the
Kubernetes scheduler to avoid co-locating Pods. In this case, we’ll create a
Deployment with three separate iperf3 server Pods, but we’ll use anti-affinity
to distribute those three Pods across our nodes so that each node gets a Pod.

NOTE
The example repository for this book is at https://github.com/book-of-
kubernetes/examples. See “Running Examples” on page xx for details on
getting set up.

Here’s the YAML definition we need:
ipf-server.yaml

kind: Deployment
apiVersion: apps/v1
metadata:
 name: iperf-server
spec:
 replicas: 3
 selector:
 matchLabels:
 app: iperf-server
 template:
 metadata:
 labels:
 app: iperf-server

https://github.com/book-of-kubernetes/examples

 spec:
 ➊ affinity:
 podAntiAffinity:
 ➋ requiredDuringSchedulingIgnoredDuringExecution:
 - labelSelector:
 matchExpressions:
 - key: app
 operator: In
 values:
 - iperf-server
 ➌ topologyKey: "kubernetes.io/hostname"
 containers:
 - name: iperf
 image: bookofkubernetes/iperf3:stable
 env:
 - name: IPERF_SERVER
 value: "1"

This Deployment resource is typical except for the new affinity section ➊.
We specify an anti-affinity rule that is based on the same label that the
Deployment uses to manage its Pods. With this rule, we specify that we don’t
want a Pod to be scheduled into a zone that already has a Pod with the
app=iperf-server label.

The topologyKey ➌ specifies the size of the zone. In this case, each node in
the cluster has a different hostname label, so each node is considered to be a
different zone. The anti-affinity rule therefore prevents kube-scheduler from
placing a second Pod onto a node after the first Pod has already been
scheduled there.

Finally, because we specified the rule using requiredDuringScheduling ➋, it’s a
hard anti-affinity rule, which means that the scheduler won’t schedule the
Pod unless it can satisfy the rule. It is also possible to use
preferredDuringScheduling and assign a weight to give the scheduler a hint without
preventing Pod scheduling if the rule can’t be satisfied.

NOTE
The topologyKey can be based on any label that’s applied on the node.
Cloud-based Kubernetes distributions typically automatically apply
labels to each node based on the availability zone for that node, making it
easy to use anti-affinity to spread Pods across availability zones for
redundancy.

Let’s apply this Deployment and see the result:

root@host01:~# kubectl apply -f /opt/ipf-server.yaml
deployment.apps/iperf-server created

As soon as our Pods are running, we see that a Pod has been allocated to
each node in the cluster:

root@host01:~# kubectl get po -o wide
NAME READY STATUS ... NODE ...
iperf-server-7666fb76d8-7rz8j 1/1 Running ... host01 ...
iperf-server-7666fb76d8-cljkh 1/1 Running ... host02 ...
iperf-server-7666fb76d8-ktk92 1/1 Running ... host03 ...

Because we have three nodes and three instances, it’s essentially identical
to using a DaemonSet, but this approach is more flexible because it doesn’t
require an instance on every node. In a large cluster, we still might need only
a few Pod instances to meet demand for this service. Using anti-affinity with
zones based on hostnames allows us to specify the correct scale for our
Deployment while still distributing each Pod to a distinct node for higher
availability. And anti-affinity can be used to distribute Pods across other
types of zones as well.

Before we continue, let’s create a Service with which our iperf3 clients will
be able to find a server instance. Here’s the YAML:
ipf-svc.yaml

kind: Service
apiVersion: v1
metadata:
 name: iperf-server
spec:
 selector:
 app: iperf-server
 ports:
 - protocol: TCP
 port: 5201
 targetPort: 5201

Let’s apply this to the cluster:

root@host01:~# kubectl apply -f /opt/ipf-svc.yaml
service/iperf-server created

The Service picks up all three Pods:

root@host01:~# kubectl get ep iperf-server
NAME ENDPOINTS ...
iperf-server 172.31.239.207:5201,172.31.25.214:5201,172.31.89.206:5201 ...

The ep is short for endpoints. Each Service has an associated Endpoint object
that records the current Pods that are receiving traffic for the Service.

Affinity
We’re now ready to deploy our iperf3 client to use these server instances. We
would like to distribute the clients to each node in the same way, but we want
to make sure that each client is deployed to a node that has a server instance.
To do this, we’ll use both an affinity and an anti-affinity rule:
ipf-client.yaml

kind: Deployment
apiVersion: apps/v1
metadata:
 name: iperf
spec:
 replicas: 3
 selector:
 matchLabels:
 app: iperf
 template:
 metadata:
 labels:
 app: iperf
 spec:
 affinity:
 podAntiAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 - labelSelector:
 matchExpressions:
 - key: app
 operator: In
 values:
 - iperf
 topologyKey: "kubernetes.io/hostname"
 ➊ podAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 - labelSelector:
 matchExpressions:

 - key: app
 operator: In
 values:
 - iperf-server
 topologyKey: "kubernetes.io/hostname"
 containers:
 - name: iperf
 image: bookofkubernetes/iperf3:stable

The additional podAffinity rule ➊ ensures that each client instance is
deployed to a node only if a server instance is already present. The fields in
an affinity rule work the same way as an anti-affinity rule.

Let’s deploy the client instances:

root@host01:~# kubectl apply -f /opt/ipf-client.yaml
deployment.apps/iperf created

After these Pods are running, we can see that they have also been
distributed across all three nodes in the cluster:

root@host01:~# kubectl get po -o wide
NAME READY STATUS ... NODE ...
iperf-c8d4566f-btppf 1/1 Running ... host02 ...
iperf-c8d4566f-s6rpn 1/1 Running ... host03 ...
iperf-c8d4566f-v9v8m 1/1 Running ... host01 ...
...

It may seem like we’ve deployed our iperf3 client and server in a way that
enables each client to talk to its local server instance, maximizing the
bandwidth between client and server. However, that’s not actually the case.
Because the iperf-server Service is configured with all three Pods, each client
Pod is connecting to a random server. As a result, our clients may not behave
correctly. You might see logs indicating that a client is able to connect to a
server, but you might also see client Pods in the Error or CrashLoopBackOff state,
with log output like this:

root@host01:~# kubectl logs iperf-c8d4566f-v9v8m
iperf3: error - the server is busy running a test. try again later
iperf3 error - exiting

This indicates that a client is connecting to a server that already has a
client connected, which means that we must have at least two clients using
the same server.

Service Traffic Routing
We would like to configure our client Pods with the ability to access the local
server Pod we deployed rather than a server Pod on a different node. Let’s
start by confirming that traffic is being routed randomly across all three
server Pods. We can examine the iptables rules created by kube-proxy for this
Service:

root@host01:~# iptables-save | grep iperf-server
...
-A KUBE-SVC-KN2SIRYEH2IFQNHK -m comment --comment "default/iperf-server"
 -m statistic --mode random --probability 0.33333333349 -j KUBE-SEP-IGBNNG5F5VCPRRWI
-A KUBE-SVC-KN2SIRYEH2IFQNHK -m comment --comment "default/iperf-server"
 -m statistic --mode random --probability 0.50000000000 -j KUBE-SEP-FDPADR4LUNHDJSPL
-A KUBE-SVC-KN2SIRYEH2IFQNHK -m comment --comment "default/iperf-server"
 -j KUBE-SEP-TZDPKVKUEZYBFM3V

We’re running this command on host01, and we see that there are three
separate iptables rules, with a random selection of the destination. This means
that the iperf3 client on host01 could potentially be routed to any server Pod.

To fix that, we need to change the internal traffic policy configuration of
our Service. By default, the policy is Cluster, indicating that all Pods in the
cluster are valid destinations. We can change the policy to Local, which
restricts the Service to route only to Pods on the same node.

Let’s patch the Service to change this policy:

root@host01:~# kubectl patch svc iperf-server -p '{"spec":{"internalTrafficPolicy":"Local"}}'
service/iperf-server patched

The change takes effect immediately, as we can see by looking at the
iptables rules again:

root@host01:~# iptables-save | grep iperf-server
...
-A KUBE-SVC-KN2SIRYEH2IFQNHK -m comment --comment "default/iperf-server" \
 -j KUBE-SEP-IGBNNG5F5VCPRRWI

This time, only one possible destination is configured on host01, as there
is only one local Pod instance for this Service.

After a few minutes, the iperf3 clients now show the kind of output we
expect to see:

root@host01:~# kubectl logs iperf-c8d4566f-btppf
Connecting to host iperf-server, port 5201
...
[ID] Interval Transfer Bitrate Retr
[5] 0.00-10.00 sec 8.67 GBytes 7.45 Gbits/sec 1250 sender
[5] 0.00-10.00 sec 8.67 GBytes 7.45 Gbits/sec receiver
...

Not only are all of the clients able to connect to a unique server, but the
performance is consistently high as the network connection is local to each
node.

Before we go further, let’s clean up these resources:

root@host01:~# kubectl delete svc/iperf-server deploy/iperf deploy/iperf-server
service "iperf-server" deleted
deployment.apps "iperf" deleted
deployment.apps "iperf-server" deleted

Although the Local internal traffic policy is useful for maximizing
bandwidth between client and server, it has a major limitation. If a node does
not contain a healthy Pod instance, clients on that node will not be able to
access the Service at all, even if there are healthy instances on other nodes. It
is critical when using this design pattern to also configure a readiness probe,
as described in Chapter 13, that checks not only the Pod itself but also its
Service dependencies. This way, if a Service is inaccessible on a particular
node, the client on that node will also report itself to be unhealthy so that no
traffic will be routed to it.

The affinity and anti-affinity capabilities we’ve seen allows us to give
hints to the scheduler without losing the scalability and resilience we want for
our application components. However, even though it might be tempting to
use these features whenever we have closely connected components in our
application architecture, it’s probably best to allow the scheduler to work
unhindered and add affinity only for cases in which real performance testing
shows that it makes a significant difference.

Service routing for improved performance is an active area of
development in Kubernetes. For clusters running across multiple zones, a
new feature called Topology Aware Hints can enable Kubernetes to route
connections to Services to the closest instances wherever possible, improving
network performance while still allowing cross-zone traffic where necessary.

Hardware Resources
Affinity and anti-affinity allow us to control where Pods are scheduled but
should be used only if necessary. But what about cases for which a Pod needs
access to some specialized hardware that is available only on some nodes?
For example, we might have processing that would benefit from a graphics
processing unit (GPU), but we might limit the number of GPU nodes in the
cluster to reduce cost. In that case, it is absolutely necessary to ensure that the
Pod is scheduled in the right place.

As before, we could tie our Pod directly to a node using nodeName. But we
might have many nodes in our cluster with the right hardware, so what we
really want is to be able to tell Kubernetes about the requirement and then let
the scheduler decide how to satisfy it.

Kubernetes provides two related methods to address this need: device
plug-ins and extended resources. A device plug-in provides the most
complete functionality, but the plug-in itself must exist for the hardware
device. Meanwhile, extended resources can be used for any hardware device,
but the Kubernetes cluster only tracks allocation of the resource; it doesn’t
actually manage its availability in the container.

Implementing a device plug-in requires close collaboration with kubelet.
Similar to the storage plug-in architecture we saw in Chapter 15, a device
plug-in registers itself with the kubelet instance running on a node, identifying
any devices it manages. Pods identify any devices they require, and the
device manager tells kubelet how to make the device available inside the
container (typically by mounting the device from the host into the container’s
filesystem).

Because we’re operating in a virtualized example cluster, we don’t have
any specialized hardware to demonstrate a device plug-in, but an extended
resource works identically from an allocation standpoint, so we can still get a
feel for the overall approach.

Let’s begin by updating the cluster to indicate that one of the nodes has an
example extended resource. We do this by patching the status for the node.
Ideally, we could do this with kubectl patch, but unfortunately it’s not possible to
update the status of a resource with that command, so we’re reduced to using
curl to call the Kubernetes API directly. The /opt directory has a script to
make this easy. Listing 18-1 presents the relevant part.

add-hw.sh

#!/bin/bash
...
patch='
[
 {
 "op": "add",
 "path": "/status/capacity/bookofkubernetes.com~1special-hw",
 "value": "3"
 }
]
'
curl --cacert $ca --cert $cert --key $key \
 -H "Content-Type: application/json-patch+json" \
 -X PATCH -d "$patch" \
 https://192.168.61.10:6443/api/v1/nodes/host02/status
...

Listing 18-1: Special hardware script

This curl command sends a JSON patch object to update the status field for
the node, adding an entry called bookofkubernetes.com/special-hw under capacity. The
~1 acts as a slash character.

Run the script to update the node:

root@host01:~# /opt/add-hw.sh
...

The response from the API server includes the entire Node resource. Let’s
double-check just the field we care about to make sure it applied:

root@host01:~# kubectl get node host02 -o json | jq .status.capacity
{
 "bookofkubernetes.com/special-hw": "3",
 "cpu": "2",
 "ephemeral-storage": "40593612Ki",
 "hugepages-2Mi": "0",
 "memory": "2035228Ki",
 "pods": "110"
}

The extended resource shows up alongside the standard resources for the
node. We can now request this resource similar to how we request standard
resources, as we saw in Chapter 14.

Here’s a Pod that requests the special hardware:
hw.yaml

apiVersion: v1
kind: Pod
metadata:
 name: sleep
spec:
 containers:
 - name: sleep
 image: busybox
 command: ["/bin/sleep", "infinity"]
 resources:
 limits:
 bookofkubernetes.com/special-hw: 1

We specify the requirement for the special hardware using the resources
field. The resource is either allocated or not allocated; thus, there’s no
distinction between requests and limits, so Kubernetes expects us to specify it
using limits. When we apply this to the cluster, the Kubernetes scheduler will
ensure that this Pod runs on a node that can meet this requirement:

root@host01:~# kubectl apply -f /opt/hw.yaml
pod/sleep created

As a result, the Pod ends up on host02:

root@host01:~# kubectl get po -o wide
NAME READY STATUS ... NODE ...
sleep 1/1 Running ... host02 ...

Additionally, the node status now reflects an allocation for this extended
resource:

root@host01:~# kubectl describe node host02
Name: host02
...
Allocated resources:
...
 Resource Requests Limits
 -------- -------- ------
...
 bookofkubernetes.com/special-hw 1 1
...

Both the available quantity of three special-hw that we specified when we
added the extended resource in Listing 18-1 and the allocation of that
resource to our Pod are arbitrary. The extended resource acts like a
semaphore in preventing too many users from using the same resource, but
we would need to add additional processing to deconflict multiple users if we
really had three separate special hardware devices on the same node.

If we do try to over-allocate based on what we specified is available, the
Pod won’t be scheduled. We can confirm this if we try to add another Pod
that needs all three of our special hardware devices:
hw3.yaml

apiVersion: v1
kind: Pod
metadata:
 name: sleep3
spec:
 containers:
 - name: sleep
 image: busybox
 command: ["/bin/sleep", "infinity"]
 resources:
 limits:
 bookofkubernetes.com/special-hw: 3

Let’s try to add this Pod to the cluster:

root@host01:~# kubectl apply -f /opt/hw3.yaml
pod/sleep created

Because there aren’t enough special hardware devices available, this Pod
stays in the Pending state:

root@host01:~# kubectl get po -o wide
NAME READY STATUS ... NODE ...
sleep 1/1 Running ... host02 ...
sleep3 0/1 Pending ... <none> ...

The Pod will wait for the hardware to be available. Let’s delete our
original Pod to free up room:

root@host01:~# kubectl delete pod sleep
pod/sleep deleted

Our new Pod will now start running:

root@host01:~# kubectl get po -o wide
NAME READY STATUS ... NODE ...
sleep3 1/1 Running ... host02 ...

As before, the Pod was scheduled onto host02 because of the special
hardware requirement.

Device drivers work identically from an allocation standpoint. In both
cases, we use the limits field to identify our hardware requirements. The only
difference is that we don’t need to patch the node manually to record the
resource, because kubelet updates the node’s status automatically when the
device driver registers. Additionally, kubelet invokes the device driver to
perform any necessary allocation and configuration of the hardware when a
container is created.

Final Thoughts
Unlike ideal applications, in the real world we often must deal with closely
coupled application components and the need for specialized hardware. It’s
critical that we account for those application requirements without losing the
flexibility and resiliency that we gain from deploying our application to a
Kubernetes cluster. In this chapter, we’ve seen how affinity and device
drivers allow us to provide hints and resource requirements to the scheduler
while still allowing it the flexibility to manage the application at scale
dynamically.

Scheduling is not the only concern we might have as we consider how to
obtain the desired behavior and performance from real-world applications. In
the next chapter, we’ll see how we can shape the processing and memory
allocation for our Pods through the use of quality-of-service classes.

19
TUNING QUALITY OF SERVICE

Ideally, our applications would use minimal or highly predictable processing,
memory, storage, and network resources. In the real world, though,
applications are “bursty,” with changes in load driven by user demand, large
amounts of data, or complex processing. In a Kubernetes cluster, where
application components are deployed dynamically to various nodes in the
cluster, uneven distribution of load across those nodes can cause performance
bottlenecks.

From an application architecture standpoint, the more we can make the
application components small and scalable, the more we can evenly distribute
load across the cluster. Unfortunately, it’s not always possible to solve
performance issues with horizontal scaling. In this chapter, we’ll look at how
we can use resource specifications to provide hints to the cluster about how to
schedule our Pods, with the goal of making application performance more
predictable.

Achieving Predictability
In normal, everyday language, the term real time has the sense of something
that happens quickly and continuously. But in computer science, we make a
distinction between real time and real fast to such a degree that they are
thought of as opposites. This is due to the importance of predictability.

Real-time processing is simply processing that needs to keep up with
some activity that is happening in the real world. It could be anything from
airplane cockpit software that needs to keep up with sensor data input and
maintain up-to-date electronic flight displays, to a video streaming
application that needs to receive and decode each frame of video in time to
display it. In real-time systems, it is critical that we can guarantee that
processing will be “fast enough” to keep up with the real-world requirement.

Fast enough is all we need. It’s not necessary for the processing to go any
faster than the real world, as there isn’t anything else for the application to
do. But even a single time interval when the processing is slower than the real
world means we fall behind our inputs or outputs, leading to annoyed movie
watchers—or even to crashed airplanes.

For this reason, the main goal in real-time systems is predictability.
Resources are allocated based on the worst-case scenario the system will
encounter, and we’re willing to provide significantly more processing than
necessary to have plenty of margin on that worst case. Indeed, it’s common to
require these types of systems to stay under 50 percent utilization of the
available processing and memory, even at maximum expected load.

But whereas responsiveness is always important, most applications don’t
operate in a real-time environment, and this additional resource margin is
expensive. For that reason, most systems try to find a balance between
predictability and efficiency, which means that we are often willing to
tolerate a bit of slower performance from our application components as long
as it is temporary.

Quality of Service Classes
To help us balance predictability and efficiency for the containers in a cluster,
Kubernetes allocates Pods to one of three different Quality of Service classes:
BestEffort, Burstable, and Guaranteed. In a way, we can think of these as descriptive.
BestEffort is used when we don’t provide Kubernetes with any resource
requirements, and it can only do its best to provide enough resources for the
Pod. Burstable is used when a Pod might exceed its resource request. Guaranteed
is used when we provide consistent resource requirements and our Pod is
expected to stay within them. Because these classes are descriptive and are
based solely on how the containers in the Pod specify their resource

requirements, there is no way to specify the QoS for a Pod manually.
The QoS class is used in two ways. First, Pods in a QoS class are grouped

together for Linux control groups (cgroups) configuration. As we saw in
Chapter 3, cgroups are used to control resource utilization, especially
processing and memory, for a group of processes, so a Pod’s cgroup affects
its priority in use of processing time when the system load is high. Second, if
the node needs to start evicting Pods due to lack of memory resources, the
QoS class affects which Pods are evicted first.

BestEffort
The simplest case is one in which we declare a Pod with no limits. In that case,
the Pod is assigned to the BestEffort class. Let’s create an example Pod to
explore what that means.

NOTE
The example repository for this book is at https://github.com/book-of-
kubernetes/examples. See “Running Examples” on page xx for details on
getting set up.

Here’s the Pod definition:
best-effort.yaml

apiVersion: v1
kind: Pod
metadata:
 name: best-effort
spec:
 containers:
 - name: best-effort
 image: busybox
 command: ["/bin/sleep", "infinity"]
 nodeName: host01

This definition includes no resources field at all, but the QoS class would be
the same if we included a resources field with requests but no limits.

We use nodeName to force this Pod onto host01 so that we can observe how
its resource use is configured. Let’s apply it to to the cluster:

https://github.com/book-of-kubernetes/examples

root@host01:~# kubectl apply -f /opt/best-effort.yaml
pod/best-effort created

After the Pod is running, we can look at its details to see that it has been
allocated to the BestEffort QoS class:

root@host01:~# kubectl get po best-effort -o json | jq .status.qosClass
"BestEffort"

We can use the cgroup-info script we saw in Chapter 14 to see how the QoS
class affects the cgroup configuration for containers in the Pod:

root@host01:~# /opt/cgroup-info best-effort

Container Runtime

Pod ID: 205...

Cgroup path: /kubepods.slice/kubepods-besteffort.slice/kubepods-...

CPU Settings

CPU Shares: 2
CPU Quota (us): -1 per 100000

Memory Settings

Limit (bytes): 9223372036854771712

The Pod is effectively unlimited in CPU and memory usage. However, the
Pod’s cgroup is under the kubepods-besteffort.slice path, reflecting its
allocation to the BestEffort QoS class. This allocation has an immediate effect
on its CPU priority, as we can see when we compare the cpu.shares allocated to
the BestEffort class compared to the Burstable class:

root@host01:~# cat /sys/fs/cgroup/cpu/kubepods.slice/kubepods-besteffort.slice/cpu.shares
2
root@host01:~# cat /sys/fs/cgroup/cpu/kubepods.slice/kubepods-burstable.slice/cpu.shares
1157

As we saw in Chapter 14, these values are relative, so this configuration
means that when our system’s processing load is high, containers in Burstable
Pods are going to be allocated more than 500 times the processor share that
containers in BestEffort Pods receive. This value is based on the number of

Pods that are already in the BestEffort and Burstable QoS classes, including the
various cluster infrastructure components already running on host01, thus
you might see a slightly different value.

The kubepods.slice cgroup sits at the same level as cgroups for user and
system processes, so when the system is loaded it gets an approximately
equal share of processing time as those other cgroups. Based on the
cpu.shares identified within the kubepods.slice cgroup, BestEffort Pods are
receiving less than 1 percent of the total share of processing compared to
Burstable Pods, even without considering any processor time allocated to
Guaranteed Pods. This means that BestEffort Pods receive almost no processor
time when the system is loaded, so they should be used only for background
processing that can run when the cluster is idle. In addition, because Pods are
placed in the BestEffort class only if they have no limits specified, they cannot be
created in a Namespace with limit quotas. So most of our application Pods
will be in one of the other two QoS classes.

Burstable
Pods are placed in the Burstable class if they specify both requests and limits and if
those two specifications are different. As we saw in Chapter 14, the requests
specification is used for scheduling purposes, whereas the limits specification
is used for runtime enforcement. In other words, Pods in this situation can
have “bursts” of resource utilization above their requests level, but they cannot
exceed their limits.

Let’s look at an example:
burstable.yaml

apiVersion: v1
kind: Pod
metadata:
 name: burstable
spec:
 containers:
 - name: burstable
 image: busybox
 command: ["/bin/sleep", "infinity"]
 resources:
 requests:
 memory: "64Mi"
 cpu: "50m"

 limits:
 memory: "128Mi"
 cpu: "100m"
 nodeName: host01

This Pod definition supplies both requests and limits resource requirements,
and they are different, so we should expect this Pod to be placed in the
Burstable class.

Let’s apply this Pod to the cluster:

root@host01:~# kubectl apply -f /opt/burstable.yaml
pod/burstable created

Next, let’s verify that it was assigned to the Burstable QoS class:

root@host01:~# kubectl get po burstable -o json | jq .status.qosClass
"Burstable"

Indeed, the cgroup configuration follows the QoS class and the limits we
specified:

root@host01:~# /opt/cgroup-info burstable

Container Runtime

Pod ID: 8d0...
Cgroup path: /kubepods.slice/kubepods-burstable.slice/kubepods-...

CPU Settings

CPU Shares: 51
CPU Quota (us): 10000 per 100000

Memory Settings

Limit (bytes): 134217728

The limits specified for this Pod were used to set both a CPU limit and a
memory limit. Also, as we expect, this Pod’s cgroup is placed within
kubepods-burstable.slice.

Adding another Pod to the Burstable QoS class has caused Kubernetes to
rebalance the allocation of processor time:

root@host01:~# cat /sys/fs/cgroup/cpu/kubepods.slice/kubepods-besteffort.slice/cpu.shares

2
root@host01:~# cat /sys/fs/cgroup/cpu/kubepods.slice/kubepods-burstable.slice/cpu.shares
1413

The result is that Pods in the Burstable QoS class now show a value of 1413
for cpu.shares, whereas Pods in the BestEffort class still show 2. This means
that the relative processor share under load is now 700 to 1 in favor of Pods
in the Burstable class. Again, you may see slightly different values based on
how many infrastructure Pods Kubernetes has allocated to host01.

Because Burstable Pods are scheduled based on requests but cgroup runtime
enforcement is based on limits, a node’s processor and memory resources can
be overcommitted. It works fine as long as the Pods on a node balance out
one another so that the average utilization matches the requests. It becomes a
problem if the average utilization exceeds the requests. In that case, Pods will
see their CPU throttled and may even be evicted if memory becomes scarce,
as we saw in Chapter 10.

Guaranteed
If we want to increase predictability for the processing and memory available
to a Pod, we can place it in the Guaranteed QoS class by giving the requests and
limits equal settings. Here’s an example:
guaranteed.yaml

apiVersion: v1
kind: Pod
metadata:
 name: guaranteed
spec:
 containers:
 - name: guaranteed
 image: busybox
 command: ["/bin/sleep", "infinity"]
 resources:
 limits:
 memory: "64Mi"
 cpu: "50m"
 nodeName: host01

In this example, only limits is specified given that Kubernetes automatically
sets the requests to match the limits if requests is missing.

Let’s apply this to the cluster:

root@host01:~# kubectl apply -f /opt/guaranteed.yaml
pod/guaranteed created

After the Pod is running, verify the QoS class:

root@host01:~# kubectl get po guaranteed -o json | jq .status.qosClass
"Guaranteed"

The cgroups configuration looks a little different:

root@host01:~# /opt/cgroup-info guaranteed

Container Runtime

Pod ID: 146...
Cgroup path: /kubepods.slice/kubepods-...

CPU Settings

CPU Shares: 51
CPU Quota (us): 5000 per 100000

Memory Settings

Limit (bytes): 67108864

Rather than place these containers into a separate directory, containers in
the Guaranteed QoS class are placed directly in kubepods.slice. Putting them in
this location has the effect of privileging containers in Guaranteed Pods when
the system is loaded because those containers receive their CPU shares
individually rather than as a class.

QoS Class Eviction
The privileged treatment of Pods in the Guaranteed QoS class extends to Pod
eviction as well. As described in Chapter 3, cgroup enforcement of memory
limits is handled by the OOM killer. The OOM killer also runs when a node
is completely out of memory. To help the OOM killer choose which
containers to terminate, Kubernetes sets the oom_score_adj parameter based on
the QoS class of the Pod. This parameter can have a value from –1000 to
1000. The higher the number, the more likely the OOM killer will choose a

process to be killed.
The oom_score_adj value is recorded in /proc for each process. The

automation has added a script called oom-info to retrieve it for a given Pod.
Let’s check the values for the Pods in each QoS class:

root@host01:~# /opt/oom-info best-effort
OOM Score Adjustment: 1000
root@host01:~# /opt/oom-info burstable
OOM Score Adjustment: 968
root@host01:~# /opt/oom-info guaranteed
OOM Score Adjustment: -997

Pods in the BestEffort QoS class have the maximum adjustment of 1000, so
they would be targeted first by the OOM killer. Pods in the Burstable QoS class
have a score calculated based on the amount of memory specified in the
requests field, as a percentage of the node’s total memory capacity. This value
will therefore be different for every Pod but will always be between 2 and
999. Thus, Pods in the Burstable QoS class will always be second in priority for
the OOM killer. Meanwhile, Pods in the Guaranteed QoS class are set close to
the minimum value, in this case –997, so they are protected from the OOM
killer as much as possible.

Of course, as mentioned in Chapter 3, the OOM killer terminates a
process immediately, so it is an extreme measure. When memory on a node is
low but not yet exhausted, Kubernetes attempts to evict Pods to reclaim
memory. This eviction is also prioritized based on the QoS class. Pods in the
BestEffort class and Pods in the Burstable class that are using more than their
requests value (high-use Burstable) are the first to be evicted, followed by Pods in
the Burstable class that are using less than their requests value (low-use Burstable)
and Pods in the Guaranteed class.

Before moving on, let’s do some cleanup:

root@host01:~# kubectl delete po/best-effort po/burstable po/guaranteed
pod "best-effort" deleted
pod "burstable" deleted
pod "guaranteed" deleted

Now we can have a fresh start when we look at Pod priorities later in this
chapter.

Choosing a QoS Class
Given this prioritization in processing time and eviction priority, it might be
tempting to place all Pods in the Guaranteed QoS class. And there are
application components for which this is a viable strategy. As described in
Chapter 7, we can configure a HorizontalPodAutoscaler to make new Pod
instances automatically if the existing instances are consuming a significant
percentage of their allocated resources. This means that we can request a
reasonable limits value for Pods in a Deployment and allow the cluster to
automatically scale the Deployment if we’re getting too close to the limit
across those Pods. If the cluster is running in a cloud environment, we can
even extend autoscaling to the node level, dynamically creating new cluster
nodes when load is high and reducing the number of nodes when the cluster
is idle.

Using only Guaranteed Pods together with autoscaling sounds great, but it
assumes that our application components are easily scalable. It also only
works well when our application load consists of many small requests, so that
an increase in load primarily means we are handing similar-sized requests
from more users. If we have application components that periodically handle
large or complex requests, we must set the limits for those components to
accommodate the worst-case scenario. Given that Pods in the Guaranteed QoS
class have requests equal to limits, our cluster will need enough resources to
handle this worst-case scenario, or we won’t even be able to schedule our
Pods. This results in a cluster that is largely idle unless the system is under its
maximum load. Similarly, if we have scalability limitations such as
dependency on specialized hardware, we might have a natural limit on the
number of Pods we can create for a component, forcing each Pod to have
more resources to handle its share of the overall load.

For this reason, it makes sense to balance the use of the Guaranteed and
Burstable QoS classes for our Pods. Any Pods that have consistent load, or that
can feasibly be scaled horizontally to meet additional demand, should be in
the Guaranteed class. Pods that are harder to scale, or need to handle a mix of
large and small workloads, should be in the Burstable class. These Pods should
specify their requests based on their average utilization, and specify limits based
on their worst-case scenario. Specifying resource requirements in this way
will ensure that the cluster’s expected performance margin can be monitored
by simply comparing the allocated resources to the cluster capacity. Finally,

if a large request causes multiple application components to run at their
worst-case utilization simultaneously, it may be worth running performance
tests and exploring anti-affinity, as described in Chapter 18, to avoid
overloading a single node.

Pod Priority
In addition to using hints to help the Kubernetes cluster understand how to
manage Pods when the system is highly loaded, it is possible to tell the
cluster directly to give some Pods a higher priority than others. This higher
priority applies during Pod eviction, as Pods will be evicted in priority order
within their QoS class. It also applies during scheduling because the
Kubernetes scheduler will evict Pods if necessary to be able to schedule a
higher-priority Pod.

Pod priority is a simple numeric field; higher numbers are higher priority.
Numbers greater than one billion are reserved for critical system Pods. To
assign a priority to a Pod, we must create a PriorityClass resource first.
Here’s an example:
essential.yaml

apiVersion: scheduling.k8s.io/v1
kind: PriorityClass
metadata:
 name: essential
value: 999999

Let’s apply this to the cluster:

root@host01:~# kubectl apply -f /opt/essential.yaml
priorityclass.scheduling.k8s.io/essential created

Now that this PriorityClass has been defined, we can apply it to Pods.
However, let’s first create a large number of low-priority Pods through which
we can see Pods being preempted. We’ll use this Deployment:

kind: Deployment
apiVersion: apps/v1
metadata:

 name: lots
spec:
 replicas: 1000
 selector:
 matchLabels:
 app: lots
 template:
 metadata:
 labels:
 app: lots
 spec:
 containers:
 - name: sleep
 image: busybox
 command: ["/bin/sleep", "infinity"]
 resources:
 limits:
 memory: "64Mi"
 cpu: "250m"

This is a basic Deployment that runs sleep and doesn’t request very much
memory or CPU, but it does set replicas to 1000, so we’re asking our Kubernetes
cluster to create 1,000 Pods. The example cluster isn’t large enough to deploy
1,000 Pods, both because we don’t have sufficient resources to meet the
specification and because a node is limited to 110 Pods by default. Still, let’s
apply it to the cluster, as shown in Listing 19-1, and the scheduler will create
as many Pods as it can:

root@host01:~# kubectl apply -f /opt/lots.yaml
deployment.apps/lots created

Listing 19-1: Deploy lots of Pods

Let’s describe the Deployment to see how things are going:

root@host01:~# kubectl describe deploy lots
Name: lots
Namespace: default
...
Replicas: 1000 desired ... | 7 available | 993 unavailable
...

We managed to get only seven Pods in our example cluster, given the
number of Pods already running for cluster infrastructure components.
Unfortunately, that’s all the Pods we’ll get:

root@host01:~# kubectl describe node host01
Name: host01
 (Total limits may be over 100 percent, i.e., overcommitted.)
Allocated resources:
...
 Resource Requests Limits
 -------- -------- ------
 cpu ➊ 1898m (94%) 768m (38%)
 memory 292Mi (15%) 192Mi (10%)
 ephemeral-storage 0 (0%) 0 (0%)
 hugepages-2Mi 0 (0%) 0 (0%)
...

The data for host01 shows that we’ve allocated 94 percent of the available
CPU ➊. But each of our Pods is requesting 250 millicores, so there isn’t
enough capacity remaining to schedule another Pod on this node. The other
two nodes are in a similar situation, with insufficient CPU room to schedule
any more Pods. Still, the cluster is performing just fine. We’ve theoretically
allocated all of the processing power, but those containers are just running
sleep, and as such, they aren’t actually using much CPU.

Also, it’s important to remember that the requests field is used for
scheduling, so even though we have a number of infrastructure BestEffort Pods
that specify requests but no limits and we have plenty of Limits capacity on this
node, we still don’t have any room for scheduling new Pods. Only Limits can
be overcommitted, not Requests.

Because we have no more CPU to allocate to Pods, the rest of the Pods in
our Deployment are stuck in a Pending state:

root@host01:~# kubectl get po | grep -c Pending
993

All 993 of these Pods have the default pod priority of 0. As a result, when
we create a new Pod using the essential PriorityClass, it will jump to the front
of the scheduling queue. Not only that, but the cluster will evict Pods as
necessary to enable it to be scheduled.

Here’s the Pod definition:
needed.yaml

apiVersion: v1
kind: Pod

metadata:
 name: needed
spec:
 containers:
 - name: needed
 image: busybox
 command: ["/bin/sleep", "infinity"]
 resources:
 limits:
 memory: "64Mi"
 cpu: "250m"
 priorityClassName: essential

The key difference here is the specification of the priorityClassName,
matching the PriorityClass we created. Let’s apply this to the cluster:

root@host01:~# kubectl apply -f /opt/needed.yaml
pod/needed created

It will take the cluster a little time to evict another Pod so that this one can
be scheduled, but after a minute or so it will start running:

root@host01:~# kubectl get po needed
NAME READY STATUS RESTARTS AGE
needed 1/1 Running 0 36s

To allow this to happen, one of the Pods from the lots Deployment we
created in Listing 19-1 had to be evicted:

root@host01:~# kubectl describe deploy lots
Name: lots
Namespace: default
CreationTimestamp: Fri, 01 Apr 2022 19:20:52 +0000
Labels: <none>
Annotations: deployment.kubernetes.io/revision: 1
Selector: app=lots
Replicas: 1000 desired ... | ➊ 6 available | 994 unavailable

We’re now down to only six Pods available in the Deployment ➊, as one
Pod was evicted. It’s worth noting that being in the Guaranteed QoS class did
not prevent this Pod from being evicted. The Guaranteed QoS class gets priority
for evictions caused by node resource usage, but not for eviction caused by
the scheduler finding room for a higher-priority Pod.

Of course, the ability to specify a higher priority for a Pod, resulting in the

eviction of other Pods, is powerful and should be used sparingly. Normal
users do not have the ability to create a new PriorityClass, and administrators
can apply a quota to limit the use of a PriorityClass in a given Namespace,
effectively limiting normal users from creating high-priority Pods.

Final Thoughts
Deploying an application to Kubernetes so that it is performant and reliable
requires an understanding of the application architecture and of the normal
and worst-case load for each component. Kubernetes QoS classes allow us to
shape the way that Pods are deployed to nodes to achieve a balance of
predictability and efficiency in the use of resources. Additionally, both QoS
classes and Pod priorities allow us to provide hints to the Kubernetes cluster
so the deployed applications degrade gracefully as the load on the cluster
becomes too high.

In the next chapter, we’ll bring together the ideas we’ve seen on how to
best use the features of a Kubernetes cluster to deploy performant, resilient
applications. We’ll also explore how we can monitor those applications and
respond automatically to changes in behavior.

20
APPLICATION RESILIENCY

Over the course of this book, we’ve seen how containers and Kubernetes
enable scalable, resilient applications. Using containers, we can encapsulate
application components so that processes are isolated from one another, have
separate virtualized network stacks, and a separate filesystem. Each container
can then be rapidly deployed without interfering with other containers. When
we add Kubernetes as a container orchestration layer on top of the container
runtime, we are able to include many separate hosts into a single cluster,
dynamically scheduling containers across available cluster nodes with
automatic scaling and failover, distributed networking, traffic routing,
storage, and configuration.

All of the container and Kubernetes features we’ve seen in this book work
together to provide the necessary infrastructure to deploy scalable, resilient
applications, but it’s up to us to configure our applications correctly to take
advantage of what the infrastructure provides. In this chapter, we’ll take
another look at the todo application we deployed in Chapter 1. This time,
however, we’ll deploy it across multiple nodes in a Kubernetes cluster,
eliminating single points of failure and taking advantage of the key features
that Kubernetes has to offer. We’ll also explore how to monitor the
performance of our Kubernetes cluster and our deployed application so that
we can identify performance issues before they lead to downtime for our
users.

Example Application Stack
In Chapter 1, we deployed todo onto a Kubernetes cluster running k3s from
Rancher. We already had some amount of scalability and failover available.
The web layer was based on a Deployment, so we were able to scale the
number of server instances with a single command. Our Kubernetes cluster
was monitoring those instances so failed instances could be replaced.
However, we still had some single points of failure. We had not yet
introduced the idea of a highly available Kubernetes control plane, so we
chose to run k3s only in a single-node configuration. Additionally, even
though we used a Deployment for our PostgreSQL database, it was lacking in
any of the necessary configuration for high availability. In this chapter, we’ll
see the details necessary to correct those limitations, and we’ll also take
advantage of the many other Kubernetes features we’ve learned.

Database
Let’s begin by deploying a highly available PostgreSQL database. Chapter 17
demonstrated how the Kubernetes Operator design pattern uses
CustomResourceDefinitions to extend the behavior of a cluster, making it
easy to package and deploy advanced functionality. We’ll use the Postgres
Operator we introduced in that chapter to deploy our database.

NOTE
The example repository for this book is at https://github.com/book-of-
kubernetes/examples. See “Running Examples” on page xx for details on
getting set up. This chapter uses a larger six-node cluster to provide room
for the application and all the monitoring components that we’ll be
deploying. See the README.md file for this chapter for more
information.

The automation for this chapter has already deployed the Postgres
Operator together with its configuration. You can inspect the Postgres
Operator and its configuration by looking at the files in
/etc/kubernetes/components. The operator is running in the todo Namespace,
where the todo application is also deployed. Many operators prefer to run in
their own Namespace and operate across the cluster, but the Postgres

https://github.com/book-of-kubernetes/examples

Operator is designed to be deployed directly into the Namespace where the
database will reside.

Because we’re using the Postgres Operator, we can create a highly
available PostgreSQL database by applying a custom resource to the cluster:
database.yaml

 apiVersion: "acid.zalan.do/v1"
 kind: postgresql
 metadata:
➊ name: todo-db
 spec:
 teamId: todo
 volume:
 size: 1Gi
 storageClass: longhorn
➋ numberOfInstances: 3
 users:
 ➌ todo:
 - superuser
 - createdb
 databases:
 ➍ todo: todo
 postgresql:
 version: "14"

All of the files shown in this walkthrough have been staged to the
/etc/kubernetes/todo directory so that you can explore them and experiment
with changes. The todo application is automatically deployed, but it can take
several minutes for all the components to reach a healthy state.

The Postgres Operator has the job of creating the Secrets, StatefulSets,
Services, and other core Kubernetes resources needed to deploy PostgreSQL.
We’re only required to supply the configuration it should use. We start by
identifying the name for this database, todo-db ➊, which will be used as the
name of the primary Service that we’ll use to connect to the primary database
instance, so we’ll see this name again in the application configuration.

We want a highly available database, so let’s specify three instances ➋.
We also ask the Postgres Operator to create a todo user ➌ and to create a todo
database with the todo user as the owner ➍. This way, our database is already
set up and we only need to populate the tables to store the application data.

We can verify that the database is running in the cluster:

root@host01:~# kubectl -n todo get sts
NAME READY AGE
todo-db 3/3 6m1s

The todo-db StatefulSet has three Pods, all of which are ready.
Because the Postgres Operator is using a StatefulSet, as we saw in Chapter

15, a PersistentVolumeClaim is allocated for the database instances as they
are created:

root@host01:~# kubectl -n todo get pvc
NAME STATUS ... CAPACITY ACCESS MODES STORAGECLASS AGE
pgdata-todo-db-0 Bound ... 1Gi RWO longhorn 10m
pgdata-todo-db-1 Bound ... 1Gi RWO longhorn 8m44s
pgdata-todo-db-2 Bound ... 1Gi RWO longhorn 7m23s

These PersistentVolumeClaims will be reused if one of the database
instance Pods fails and must be re-created, and the Longhorn storage engine
is distributing its storage across our entire cluster, so the database will retain
the application data even if we have a node failure.

Note that when we requested the Postgres Operator to create a todo user,
we didn’t specify a password. For security, the Postgres Operator
automatically generates a password. This password is placed into a Secret
based on the name of the user and the name of the database. We can see the
Secret created for the todo user:

root@host01:~# kubectl -n todo get secret
NAME TYPE DATA AGE
...
todo.todo-db.credentials.postgresql.acid.zalan.do Opaque 2 8m30s

We’ll need to use this information to configure the application so that it
can authenticate to the database.

Before we look at the application configuration, let’s inspect the Service
that the Postgres Operator created:

root@host01:~# kubectl -n todo get svc todo-db
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
todo-db ClusterIP 10.110.227.34 <none> 5432/TCP 59m

This is a ClusterIP Service, meaning that it is reachable from anywhere
inside the cluster but is not externally exposed. That matches perfectly with

what we want for our application, as our web service component is the only
user-facing component and thus the only one that will be exposed outside the
cluster.

Application Deployment
All of our application’s data is in the PostgreSQL database, so the web server
layer is stateless. For this stateless component, we’ll use a Deployment and
set up automatic scaling.

The Deployment has a lot of information, so let’s look at it step by step.
To see the entire Deployment configuration and get a sense of how it all fits
together, you can look at the file /etc/kubernetes/todo/application.yaml on
any of the cluster nodes.

The first section tells Kubernetes that we’re creating a Deployment:

kind: Deployment
apiVersion: apps/v1
metadata:
 name: todo
 labels:
 app: todo

This part is simple because we’re only specifying the metadata for the
Deployment. Note that we don’t include the namespace in the metadata. Instead,
we provide it to Kubernetes directly when we apply this Deployment to the
cluster. This way, we can reuse the same Deployment YAML for
development, test, and production versions of this application, keeping each
in a separate Namespace to avoid conflict.

The label field is purely informational, though it also provides a way for us
to query the cluster for all of the resources associated with this application by
matching on the label.

The next part of the Deployment YAML specifies how the cluster should
handle updates:

spec:
 replicas: 3
 strategy:
 type: RollingUpdate
 rollingUpdate:
 maxUnavailable: 30%

 maxSurge: 50%

The replicas field tells Kubernetes how many instances to create initially.
The autoscaling configuration will automatically adjust this.

The strategy field allows us to configure this Deployment for updates
without any application downtime. We can choose either RollingUpdate or
Recreate as a strategy. With Recreate, when the Deployment changes, all of the
existing Pods are terminated, and then the new Pods are created. With
RollingUpdate, new Pods are immediately created, and old Pods are kept running
to ensure that this application component can continue functioning while it is
updated.

We can control how the rolling update operates using the maxUnavailable and
maxSurge fields, which we can specify either as integer numbers or as a
percentage of the current number of replicas. In this case, we specified 30
percent for maxUnavailable, so the Deployment will throttle the rolling update
process to prevent us from falling below 70 percent of the current number of
replicas. Additionally, because we set maxSurge at 50 percent, the Deployment
will immediately start new Pods until the number of Pods that are running or
in the creation process reaches 150 percent of the current number of replicas.

The RollingUpdate strategy is the default, and by default, both maxSurge and
maxUnavailable are 25 percent. Most Deployments should use the RollingUpdate
strategy unless it is absolutely necessary to use Recreate.

The next part of the Deployment YAML links the Deployment to its Pods:

 selector:
 matchLabels:
 app: todo
 template:
 metadata:
 labels:
 app: todo

The selector and the labels in the Pod metadata must match. As we saw in
Chapter 7, the Deployment uses the selector to track its Pods.

With this part, we’ve now begun defining the template for the Pods this
Deployment creates. The rest of the Deployment YAML completes the Pod
template, which consists entirely of configuration for the single container this
Pod runs:

 spec:
 containers:
 - name: todo
 image: bookofkubernetes/todo:stable

The container name is mostly informational, though it is essential for Pods
with multiple containers so that we can choose a container when we need to
retrieve logs and use exec to run commands. The image tells Kubernetes what
container image to retrieve in order to run this container.

The next section of the Pod template specifies the environment variables
for this container:

 env:
 - name: NODE_ENV
 value: production
 - name: PREFIX
 value: /
 - name: PGHOST
 value: todo-db
 - name: PGDATABASE
 value: todo
 - name: PGUSER
 valueFrom:
 secretKeyRef:
 name: todo.todo-db.credentials.postgresql.acid.zalan.do
 key: username
 optional: false
 - name: PGPASSWORD
 valueFrom:
 secretKeyRef:
 name: todo.todo-db.credentials.postgresql.acid.zalan.do
 key: password
 optional: false

Some of the environment variables have static values; they’re expected to
remain the same for all uses of this Deployment. The PGHOST environment
variable matches the name of the PostgreSQL database. The Postgres
Operator has created a Service with the name todo-db in the todo Namespace
where these Pods will run, so the Pods are able to resolve this hostname to
the Service IP address. Traffic destined for the Service IP address is then
routed to the primary PostgreSQL instance using the iptables configuration we
saw in Chapter 9.

The final two variables provide the credentials for the application to

authenticate to the database. We’re using the ability to fetch configuration
from a Secret and provide it as an environment variable to a container, similar
to what we saw in Chapter 16. However, in this case, we need the
environment variable to have a different name from the key name in the
Secret, so we use a slightly different syntax that allows us to specify each
variable name separately.

Finally, we declare the resource requirements of this container and the
port it exposes:

 resources:
 requests:
 memory: "128Mi"
 cpu: "50m"
 limits:
 memory: "128Mi"
 cpu: "50m"
 ports:
 - name: web
 containerPort: 5000

The ports field in a Pod is purely informational; the actual traffic routing
will be configured in the Service.

Within the resources field, we set the requests and limits to be the same for this
container. As we saw in Chapter 19, this means that Pod will be placed in the
Guaranteed Quality of Service class. The web service component is stateless and
easy to scale, so it makes sense to use a relatively low CPU limit, in this case,
50 millicores, or 5 percent of a core, and rely on the autoscaling to create new
instances if the load becomes high.

Pod Autoscaling
To automatically scale the Deployment to match the current load, we use a
HorizontalPodAutoscaler, as we saw in Chapter 7. Here’s the configuration
for the autoscaler:
scaler.yaml

apiVersion: autoscaling/v2
kind: HorizontalPodAutoscaler
metadata:
 name: todo
 labels:

 app: todo
spec:
 scaleTargetRef:
 apiVersion: apps/v1
 kind: Deployment
 name: todo
 minReplicas: 3
 maxReplicas: 10
 metrics:
 - type: Resource
 resource:
 name: cpu
 target:
 type: Utilization
 averageUtilization: 50

As we did in our earlier example, we apply a label to this resource purely
for informational purposes. Three key configuration items are necessary for
this autoscaler. First, the scaleTargetRef specifies that we want to scale the todo
Deployment. Because this autoscaler is deployed to the todo Namespace, it
finds the correct Deployment to scale.

Second, we specify a range for minReplicas and maxReplicas. We choose 3 as
the minimum number of replicas, as we want to make sure the application is
resilient even if we have a Pod failure. For simplicity, we didn’t apply the
anti-affinity configuration we saw in Chapter 18, but this may also be a good
practice to avoid having all of the instances on a single node. We choose a
maximum number of replicas based on the size of our cluster; for a
production application, we would measure our application load and choose
based on the highest load we expect to handle.

Third, we need to specify the metric that the autoscaler will use to decide
how many replicas are needed. We base this autoscaler on CPU utilization. If
the average utilization across the Pods is greater than 50 percent of the Pod’s
requests, the Deployment will be scaled up. We set the requests at 50 millicores,
so this means that an average utilization greater than 25 millicores will cause
the autoscaler to increase the number of replicas.

To retrieve the average CPU utilization, the autoscaler relies on a cluster
infrastructure component that retrieves metrics data from the kubelet service
running on each node and exposes that metrics data via an API. For this
chapter, we have some extra cluster monitoring functionality to demonstrate,
so the automation has skipped the regular metrics server component we
described in Chapter 6. We’ll deploy an alternative later in this chapter.

Application Service
The final cluster resource for our application is the Service. Listing 20-1
presents the definition we’re using for this chapter.
service.yaml

kind: Service
apiVersion: v1
metadata:
 name: todo
 labels:
 app: todo
spec:
 type: NodePort
 selector:
 app: todo
 ports:
 - name: web
 protocol: TCP
 port: 5000
 nodePort: 5000

Listing 20-1: Todo Service

We use the same selector that we saw in the Deployment to find the Pods
that will receive traffic sent to this Service. As we saw in Chapter 9, the ports
field of a Service is essential because iptables traffic routing rules are
configured only for the ports we identify. In this case, we declare the port to
be 5000 and don’t declare a targetPort, so this Service will send to port 5000 on
the Pods, which matches the port on which our web server is listening. We
also configure a name on this port, which will be important later when we
configure monitoring.

For this chapter, we’re exposing our application Service using NodePort,
which means that all of our cluster’s nodes will be configured to route traffic
to the Service that is sent to the nodePort for any host interface. Thus, we can
access port 5000 on any of our cluster’s nodes and we’ll be routed to our
application:

root@host01:~# curl -v http://host01:5000/
...
< HTTP/1.1 200 OK
< X-Powered-By: Express
...

<html lang="en" data-framework="backbonejs">
 <head>
 <meta charset="utf-8">
 <title>Todo-Backend client</title>
 <link rel="stylesheet" href="css/vendor/todomvc-common.css">
 <link rel="stylesheet" href="css/chooser.css">
 </head>
...
</html>

This Service traffic routing works on any host interface, so the todo
application can be accessed from outside the cluster as well. The URL is
different depending on whether you’re using the Vagrant or Amazon Web
Services configuration, so the automation for this chapter includes a message
with the URL to use.

NODEPORT, NOT INGRESS
When we deployed todo in Chapter 1, we exposed the Service using an
Ingress. The Ingress, as we saw in Chapter 9, consolidates multiple
Services such that they can all be exposed outside the cluster without
requiring each Service to have a separate externally routable IP address.
We’ll expose a monitoring service later in this chapter, so we have
multiple Services to expose outside the cluster. However, because we’re
working with an example cluster on a private network, we don’t have
the underlying network infrastructure available to use an Ingress to its
full potential. By using a NodePort instead, we’re able to expose multiple
Services outside the cluster in a way that works well with both the
Vagrant and Amazon Web Services configurations.

We’ve now looked all of the components in the todo application, using
what we’ve learned in this book to eliminate single points of failure and
maximize scalability.

You can also explore the source code for the todo application at
https://github.com/book-of-kubernetes/todo, including the Dockerfile that’s
used to build the application’s container image and the GitHub Actions that
automatically build it and publish it to Docker Hub whenever the code

https://github.com/book-of-kubernetes/todo

changes.
However, although our Kubernetes cluster will now do its best to keep this

application running and performing well, we can do more to monitor both the
todo application and the Kubernetes cluster.

Application and Cluster Monitoring
Proper application and cluster monitoring is essential for applications, for
multiple reasons. First, our Kubernetes cluster will try to keep the
applications running, but any hardware or cluster failures could leave an
application in a non-working or degraded state. Without monitoring, we
would be dependent on our users to tell us when the application is down or
behaving badly, which is poor user experience. Second, if we do see failures
or performance issues with our application, we’re going to need data to
diagnose them or to try to identify a pattern in order to find a root cause. It’s
a lot easier to build in monitoring ahead of time than to try to apply it after
we’re already seeing problems. Finally, we may have problems with our
cluster or application that occurs below the level at which users notice, but
that indicates potential performance or stability issues. Integrating proper
monitoring allows us to detect those kinds of issues before they become a
bigger headache. It also allows us to measure an application over time to
make sure that added features aren’t degrading its performance.

Fortunately, although we do need to think about monitoring at the level of
each of our application components, we don’t need to build a monitoring
framework ourselves. Many mature monitoring tools are already designed to
work in a Kubernetes cluster, so we can get up and running quickly. In this
chapter, we’ll look at kube-prometheus, a complete stack of tools that we can
deploy to our cluster and use to monitor both the cluster and the todo
application.

Prometheus Monitoring
The core component of kube-prometheus is, as the name implies, the open source
Prometheus monitoring software. Prometheus deploys as a server that
periodically queries various metrics sources and accumulates the data it
receives. It supports a query language that is optimized for “time series” data,

which makes it easy to collect individual data points showing a system’s
performance at a moment in time. It then aggregates those data points to get a
picture of the system’s load, resource utilization, and responsiveness.

For each component that exposes metrics, Prometheus expects to reach
out to a URL and receive data in return in a standard format. It’s common to
use the path /metrics to expose metrics to Prometheus. Following this
convention, the Kubernetes control plane components already expose metrics
in the format that Prometheus is expecting.

To illustrate, we can use curl to visit the /metrics path on the API server to
see the metrics that it provides. To do this, we’ll need to authenticate to the
API server, so let’s use a script that collects a client certificate for
authentication:
api-metrics.sh

#!/bin/bash
conf=/etc/kubernetes/admin.conf
...
curl --cacert $ca --cert $cert --key $key https://192.168.61.10:6443/metrics
...

Running this script returns a wealth of API server metrics:

root@host01:~# /opt/api-server-metrics.sh
...
TYPE rest_client_requests_total counter
rest_client_requests_total{code="200",host="[::1]:6443",method="GET"} 9051
rest_client_requests_total{code="200",host="[::1]:6443",method="PATCH"} 25
rest_client_requests_total{code="200",host="[::1]:6443",method="PUT"} 21
rest_client_requests_total{code="201",host="[::1]:6443",method="POST"} 179
rest_client_requests_total{code="404",host="[::1]:6443",method="GET"} 155
rest_client_requests_total{code="404",host="[::1]:6443",method="PUT"} 1
rest_client_requests_total{code="409",host="[::1]:6443",method="POST"} 5
rest_client_requests_total{code="409",host="[::1]:6443",method="PUT"} 62
rest_client_requests_total{code="500",host="[::1]:6443",method="GET"} 18
rest_client_requests_total{code="500",host="[::1]:6443",method="PUT"} 1
...

This example illustrates only a few of the hundreds of metrics that are
collected and exposed. Each line of this response provides one data point to
Prometheus. We can include additional parameters for the metric in curly
braces, allowing for more complex queries. For example, the API server data
in the preceding example can be used to determine not only the total number

of client requests served by the API server but also the raw number and
percentage of requests that resulted in an error. Most systems are resilient to a
few HTTP error responses, but a sudden increase in error responses is often a
good indication of a more serious issue, so this is valuable in configuring a
reporting threshold.

In addition to all of the data that the Kubernetes cluster is already
providing to Prometheus, we can also configure our application to expose
metrics. Our application is based on Node.js, so we do this using the prom-client
library. As demonstrated in Listing 20-2, our todo application is exposing
metrics at /metrics, like the API server.

root@host01:~# curl http://host01:5000/metrics/
HELP api_success Successful responses
TYPE api_success counter
api_success{app="todo"} 0

HELP api_failure Failed responses
TYPE api_failure counter
api_failure{app="todo"} 0
...
HELP process_cpu_seconds_total Total user and system CPU time ...
TYPE process_cpu_seconds_total counter
process_cpu_seconds_total{app="todo"} 0.106392
...

Listing 20-2: Todo metrics

The response includes some default metrics that are relevant to all
applications. It also includes some counters that are specific to the todo
application and track API usage and responses over time.

Deploying kube-prometheus
At this point, our Kubernetes cluster and our application are ready to provide
these metrics on demand, but we don’t yet have a Prometheus server running
in the cluster to collect them. To fix this, we’ll deploy the complete kube-
prometheus stack. This includes not only a Prometheus Operator that makes it
easy to deploy and configure Prometheus but also other useful tools, such as
Alertmanager, which can trigger notifications in response to cluster and
application alerts, and Grafana, a dashboard tool that we’ll use to see the
metrics we’re collecting.

To deploy kube-prometheus, we’ll use a script that’s been installed in /opt.
This script downloads a current kube-prometheus release from GitHub and
applies the manifests.

Run the script as follows:

root@host01:~# /opt/install-kube-prometheus.sh
...

These manifests also include a Prometheus Adapter. The Prometheus
Adapter implements the same Kubernetes metrics API as the metrics-server we
deployed to the clusters throughout Part II, so it exposes CPU and memory
data obtained from kubelet, enabling our HorizontalPodAutoscaler to track
CPU utilization of our todo application. However, it also exposes that
utilization data to Prometheus so that we can observe it in Grafana
dashboards. For this reason, we use the Prometheus Adapter in this chapter in
place of the regular metrics-server.

We can see the Prometheus Adapter and the other components by listing
Pods in the monitoring Namespace:

root@host01:~# kubectl -n monitoring get pods
NAME READY STATUS RESTARTS AGE
alertmanager-main-0 2/2 Running 0 14m
alertmanager-main-1 2/2 Running 0 14m
alertmanager-main-2 2/2 Running 0 14m
blackbox-exporter-6b79c4588b-pgp5r 3/3 Running 0 15m
grafana-7fd69887fb-swjpl 1/1 Running 0 15m
kube-state-metrics-55f67795cd-mkxqv 3/3 Running 0 15m
node-exporter-4bhhp 2/2 Running 0 15m
node-exporter-8mc5l 2/2 Running 0 15m
node-exporter-ncfd2 2/2 Running 0 15m
node-exporter-qp7mg 2/2 Running 0 15m
node-exporter-rtn2t 2/2 Running 0 15m
node-exporter-tpg97 2/2 Running 0 15m
prometheus-adapter-85664b6b74-mglp4 1/1 Running 0 15m
prometheus-adapter-85664b6b74-nj7hp 1/1 Running 0 15m
prometheus-k8s-0 2/2 Running 0 14m
prometheus-k8s-1 2/2 Running 0 14m
prometheus-operator-6dc9f66cb7-jtrqd 2/2 Running 0 15m

In addition to the Prometheus Adapter, we see Pods for Alertmanager,
Grafana, and various exporter Pods, which collect metrics from the cluster
infrastructure and expose it to Prometheus. We also see Pods for Prometheus
itself and for the Prometheus Operator. The Prometheus Operator

automatically updates Prometheus whenever we change the custom resources
that the Prometheus Operator is monitoring. The most important of those
custom resources is the Prometheus resource shown in Listing 20-3.

root@host01:~# kubectl -n monitoring describe prometheus
Name: k8s
Namespace: monitoring
...
API Version: monitoring.coreos.com/v1
Kind: Prometheus
...
Spec:
...
 Image: quay.io/prometheus/prometheus:v2.32.1
...
 Service Account Name: prometheus-k8s
 Service Monitor Namespace Selector:
 Service Monitor Selector:
...

Listing 20-3: Prometheus configuration

The Prometheus custom resource allows us to configure which
Namespaces will be watched for Services to monitor. The default
configuration presented in Listing 20-3 does not specify a value for the
Service Monitor Namespace Selector or the Service Monitor Selector. For
this reason, by default the Prometheus Operator will be looking for
monitoring configuration in all Namespaces, with any metadata label.

To identify specific Services to monitor, the Prometheus Operator keeps
an eye out for another custom resource, ServiceMonitor, as demonstrated in
Listing 20-4.

root@host01:~# kubectl -n monitoring get servicemonitor
NAME AGE
alertmanager-main 20m
blackbox-exporter 20m
coredns 20m
grafana 20m
kube-apiserver 20m
kube-controller-manager 20m
kube-scheduler 20m
kube-state-metrics 20m
kubelet 20m
node-exporter 20m
prometheus-adapter 20m

prometheus-k8s 20m
prometheus-operator 20m

Listing 20-4: Default ServiceMonitors

When we installed kube-prometheus, it configured multiple ServiceMonitor
resources. As a result, our Prometheus instance is already watching the
Kubernetes control plane components and the kubelet services running on our
cluster nodes. Let’s see the targets from which Prometheus is scraping
metrics and see how those metrics are used to populate dashboards in
Grafana.

Cluster Metrics
The installation script patched the Grafana and Prometheus Services in the
monitoring Namespace to expose them as NodePort Services. The automation
scripts print the URL you can use to access Prometheus. The initial page
looks like Figure 20-1.

Figure 20-1: Prometheus initial page

Click the Targets item underneath the Status menu on the top menu bar
to see which components in the cluster Prometheus is currently scraping.
Click Collapse All to get a consolidated list, as shown in Figure 20-2.

Figure 20-2: Prometheus targets

This list matches the list of ServiceMonitors we saw in Listing 20-4,
showing us that Prometheus is scraping Services as configured by the
Prometheus Operator.

We can use the Prometheus web interface to query data directly, but
Grafana has already been configured with some useful dashboards, so we can
more easily see the data there. The automation scripts print the URL you can
use to access Grafana. Log in using the default admin as the username and
admin as the password. You will be prompted to change the password; you can
just click Skip. At this point you should see the Grafana initial page, as shown
in Figure 20-3.

Figure 20-3: Grafana initial page

From this page, choose the Browse item under Dashboards in the menu.
There are many dashboards in the Default folder. For example, by selecting
Default and then selecting Kubernetes ▸ Compute Resources ▸ Pod, you
can see a dashboard, depicted in Figure 20-4, that shows CPU and memory
usage over time for any Pod in the cluster.

Figure 20-4: Pod compute resources

All of the todo database and application Pods are selectable in this
dashboard by first selecting the todo Namespace, so we can already get
valuable information about our application by using nothing more than the
default monitoring configuration. This is possible because the Prometheus
Adapter is pulling data from the kubelet services, which includes resource
utilization for each of the running Pods. The Prometheus Adapter is then
exposing a /metrics endpoint for Prometheus to scrape and store, and Grafana
is querying Prometheus to build the chart showing usage over time.

There are numerous other Grafana dashboards to explore in the default
installation of kube-prometheus. Choose the Browse menu item again to select
other dashboards and see what data is available.

Adding Monitoring for Services
Although we are already getting useful metrics for our todo application,
Prometheus is not yet scraping our application Pods to pull in the Node.js
metrics we saw in Listing 20-2. To configure Prometheus to scrape our todo
metrics, we’ll need to provide a new ServiceMonitor resource to the
Prometheus Operator, informing it about our todo Service.

In a production cluster, the team deploying an application like our todo
application wouldn’t have the permissions to create or update resources in the
monitoring Namespace. However, the Prometheus Operator looks for

ServiceMonitor resources in all Namespaces by default, so we can create a
ServiceMonitor in the todo Namespace instead.

First, though, we need to give Prometheus permission to see the Pods and
Services we’ve created in the todo Namespace. As this access control
configuration needs to apply only in a single Namespace, we’ll do this by
creating a Role and a RoleBinding. Here’s the Role configuration we’ll use:
rbac.yaml

apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
...
 name: prometheus-k8s
rules:
 - apiGroups:
 - ""
 resources:
 - services
 - endpoints
 - pods
 verbs:
 - get
 - list
 - watch
...

We need to make sure we allow access to Services, Pods, and Endpoints,
so we confirm that these are listed in the resources field. The Endpoint resource
records the current Pods that are receiving traffic for a Service, which will be
critical for Prometheus to identify all of the Pods it scrapes. Because
Prometheus needs only read-only access, we specify only the get, list, and watch
verbs.

After we have this Role, we need to bind it to the ServiceAccount that
Prometheus is using. We do that with this RoleBinding:
rbac.yaml

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
...
 name: prometheus-k8s

roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: Role
 name: prometheus-k8s
subjects:
 - kind: ServiceAccount
 name: prometheus-k8s
 namespace: monitoring

The roleRef matches the Role we just declared in the preceding example,
whereas the subjects field lists the ServiceAccount Prometheus is using, based
on the information we saw in Listing 20-3.

Both of these YAML resources are in the same file, so we can apply them
both to the cluster at once. We need to make sure we apply them to the todo
Namespace, as that’s the Namespace where we want to enable access by
Prometheus:

root@host01:~# kubectl -n todo apply -f /opt/rbac.yaml
role.rbac.authorization.k8s.io/prometheus-k8s created
rolebinding.rbac.authorization.k8s.io/prometheus-k8s created

Now that we’ve granted permission to Prometheus to see our Pods and
Services, we can create the ServiceMonitor. Here’s that definition:
svc-mon.yaml

apiVersion: monitoring.coreos.com/v1
kind: ServiceMonitor
metadata:
 name: todo
spec:
 selector:
 matchLabels:
 app: todo
 endpoints:
 - port: web

A ServiceMonitor uses a selector, similar to a Service or a Deployment.
We previously applied the app: todo label to the Service, so the matchLabels field
will cause Prometheus to pick up the Service. The endpoints field matches the
name of the port we declared in the Service in Listing 20-1. Prometheus
requires us to name the port in order to match it.

Let’s apply this ServiceMonitor to the cluster:

root@host01:~# kubectl -n todo apply -f /opt/svc-mon.yaml
servicemonitor.monitoring.coreos.com/todo created

As before, we need to make sure we deploy this to the todo Namespace
because Prometheus will be configured to look for Services with the
appropriate label in the same Namespace as the ServiceMonitor.

Because the Prometheus Operator is watching for new ServiceMonitor
resources, using the API we saw in Chapter 17, it picks up this new resource
and immediately reconfigures Prometheus to start scraping the Service.
Prometheus then takes a few minutes to register the new targets and start
scraping them. If we go back to the Prometheus Targets page after this is
complete, the new Service shows up, as illustrated in Figure 20-5.

Figure 20-5: Prometheus monitoring todo

If we click the show more button next to the todo Service, we see its three
Endpoints, shown in Figure 20-6.

Figure 20-6: Todo Endpoints

It may be surprising that we created a ServiceMonitor, specifying the todo
Service as the target, and yet Prometheus is scraping Pods. However, it’s
essential that Prometheus works this way. Because Prometheus is using a
regular HTTP request to scrape metrics, and because Service traffic routing
chooses a random Pod for every new connection, Prometheus would get
metrics from a random Pod each time it did scraping. By reaching behind the
Service to identify the Endpoints, Prometheus is able to scrape metrics from
all the Service’s Pods, enabling aggregation of metrics for the entire
application.

We’ve successfully incorporated the Node.js and custom metrics for the
todo application into Prometheus, in addition to the default resource utilization
metrics already collected. Before we finish our look at application
monitoring, let’s run a Prometheus query to demonstrate that the data is being
pulled in. First, you should interact with the todo application using the URL
printed out by the automation scripts. This will ensure that there are metrics
to display and that enough time has passed for Prometheus to scrape that
data. Next, open the Prometheus web interface again, or click Prometheus at
the top of any Prometheus web page to go back to the main page. Then, type

api_success into the query box and press ENTER. Custom todo metrics
should appear, as illustrated in Figure 20-7.

Figure 20-7: Todo metric query

We’re now able to monitor both the Kubernetes cluster and the todo
application.

Final Thoughts
In this chapter, we’ve explored how the various features of containers and
Kubernetes come together to enable us to deploy a scalable, resilient
application. We’ve used everything we learned about containers—
Deployments, Services, networking, persistent storage, Kubernetes
Operators, and role-based access control—to not only deploy the todo
application but also configure Prometheus monitoring of our cluster and our
application.

Kubernetes is a complex platform with many different capabilities, and
new capabilities are being added all the time. The purpose of this book is not
only to show you the most important features you need to run an application
on Kubernetes, but also to give you the tools to explore a Kubernetes cluster
for troubleshooting and performance monitoring. As a result, you should be

equipped to explore new features as they are added to Kubernetes and to
conquer the challenges of deploying complex applications and getting them
to perform well.

INDEX

A
abstraction, xix, 4, 51
access control, 8, 107, 114, 174, 188, 195, 201, 233, 268–270, 272, 295, 339,

343
access mode, 262

ReadWriteMany, 262
ReadWriteOnce, 262

Address Resolution Protocol, 137, 140, 141
proxy ARP, 137

affinity, 296, 297, 299, 300, 302, 303, 306
air-gapped systems, 20
Alertmanager, 334, 335
Alpine Linux, 12, 72, 74, 155–157, 179, 180, 183, 198, 199
Amazon Web Services, xxi, 16, 91, 96, 139, 250, 332
Ansible, xx, xxi
anti-affinity, 297–300, 302, 303, 317, 330
API server. See Kubernetes: API server
API, Kubernetes. See Kubernetes: REST API
apk, 157, 183
application server, 5
apt, 27, 92–94
architecture, 1, 3–7, 17, 87–89, 124, 144, 153, 188, 218, 228, 249, 296, 302,

303, 309, 321
ArgoCD, 267
ARP. See Address Resolution Protocol
authentication, 99, 105, 130, 188, 190–192, 195, 200, 203, 207, 210, 269,

275, 278, 285, 326, 329, 333
authorization, 188, 190, 191, 193, 203, 295

availability zones, 139, 297, 298, 302
AWS. See Amazon Web Services

B
background processing, 312
base64 encoding, 277
bind-tools, 157
breakpoints, 184
br_netfilter, 91
Brooks, Fred, 5
Buildah, 26
bursty, 309
BusyBox, 24, 28, 29, 35, 53–58, 60, 61, 63–66, 76, 82, 83, 133, 155, 156

C
C, 179, 180
caching, 295
Calico, 100–102, 106–109, 127, 128, 130, 131, 133–135, 137, 139–141, 144,

146, 147, 149, 194, 211, 213, 280, 281, 288
Installation, 281

cat, 207
cgroups, 313. See also Linux: cgroups
change tracking, 224, 267
character special file, 80
chroot, 22, 70
cloud native, 4, 6, 7, 17, 88, 89, 298, 316
Cloud Native Computing Foundation, 91
ClusterRole, 195–197, 201, 286, 287
ClusterRoleBinding, 197, 202
CNI. See Container Network Interface
cohesion, 4

co-location, 296, 297
ConfigMap, 265, 267–274, 276, 278
configuration, 8, 264–267, 274, 279, 280, 285, 323, 324, 330

drift, 267
externalized, 267, 269, 272, 278, 329
files, 272, 273, 278, 281
repository, 274–276

containerd, 23, 25–27, 29, 32, 91, 107, 206, 208
container engine, 23, 83, 203
container image, 8, 9, 13, 23, 24, 35, 52, 69–72, 74, 75, 77, 81–83, 98, 101,

112–114, 116, 155, 173, 180, 181, 185, 208, 260, 272, 278, 285, 328
Container Network Interface, 28, 100, 129, 130, 145, 147, 148, 239
container orchestration, 3, 9, 14, 17, 37, 51, 84, 87, 88, 188, 323
container platform, 9, 23
container runtime, 9, 19, 23, 24, 27, 30, 32, 173, 174, 176, 178, 205, 206,

208, 212, 213, 218, 233, 235, 237, 238, 248, 265, 270, 278, 323
Container Runtime Interface, 27, 113, 208
containers, 3, 7, 8, 12, 17, 22, 32, 107, 108, 111, 128, 167, 219, 233, 249,

279, 292, 310, 323, 343
environment variables, 12, 70, 74, 82, 178, 179, 183, 253, 264–266, 268,

269, 272, 273, 278, 328, 329
exit code, 122, 178, 181, 221
filesystems, 11, 21, 22, 32, 53, 67, 70–72, 74, 78, 80, 81, 83, 84, 112, 323
image building, 75, 180
image layers, 73–78, 81
limits, 33, 49, 122, 170, 214, 232–235, 238, 244–246, 248, 310–317, 319,

329
logs, 179, 182
networking, 11, 13, 22, 26, 28, 32, 49, 51, 67, 112, 128, 129, 131, 134,

138, 160, 343
non-root user, xxi
overhead, 8, 14, 46, 67, 77, 78, 84, 209
packaging, 8, 17, 23, 69, 84
port forwarding, 13, 76, 103, 131, 134, 183, 184

private image, 174, 175
registry, 70, 76, 77, 174, 175
storage, 67, 72, 81
versioning, 8, 10, 72, 74–76
volume mount, 12, 26, 30, 112, 125, 251–253, 260, 272–274, 303

Container Storage Interface, 102, 108, 250, 251, 258
Control groups. See Linux: cgroups
copy on write, 78
CoreDNS, 156
coupling, 4, 296, 306
CPU instruction sets, 168
CRD. See CustomResourceDefinition
CRI (Container Runtime Interface), 27, 113, 208
crictl, 27, 28, 35, 36, 41, 45, 52, 55, 56, 91, 105, 107, 113, 114, 126, 132, 208,

217, 237, 251, 252
CRI-O, 26–29, 32, 36, 39, 41, 43, 45, 52, 55, 57, 58, 60, 62, 63, 65, 66, 206,

208
cron, 124
CronJob, 122–124, 243, 264
cross-cutting concerns, 87–89, 106
CSI. See Container Storage Interface
curl, 76, 93, 101, 103, 109, 154, 165, 189, 190, 199, 221–223, 231, 232, 260,

261, 284, 303, 304, 333
customization, 89, 279, 280, 285, 288, 292
CustomResourceDefinition, 145, 280–284, 286, 288, 289, 291, 292, 324

Postgresql, 288–290
Sample, 282, 283, 286–288

D
DaemonSet, 101, 108, 122, 127, 128, 131, 145, 146, 158, 211, 213, 250, 298
data centers, 297
dd, 72

Debian, 70, 71
declarative configuration, 14, 89, 90, 111, 119, 280
denial-of-service, 234
Deployment, 15, 115–122, 124, 125, 127, 152–154, 156, 163, 172, 179, 181–

183, 188, 194, 196, 198, 200–202, 207, 212–214, 216, 219–222,
224–229, 234–236, 238, 240, 243, 244, 248, 249, 252, 259–264,
266–269, 271–274, 278, 280, 284–289, 292, 297, 298, 316, 318–320,
324, 326–328, 330, 341, 343

autoscaling, 326, 327, 329, 330. See also HorizontalPodAutoscaler;
Kubernetes: autoscaling

replicas, 116–121, 247, 327, 330
scaling, 16, 119, 122, 212, 215, 247, 261, 263, 316, 318, 324

device plug-in, 303, 306
dig, 157, 158
discovery, 8, 152
distributed application, 6, 8, 88, 218, 296, 301, 309
distributed storage, 249, 250, 296, 326
DNS. See Domain Name System
Docker, 9, 10, 16, 23, 24, 70, 72, 73, 75, 77, 82, 208

docker build, 75
docker run, 10, 12

Dockerfile, 74, 75, 81, 180
Docker Hub, 77, 174, 175, 180
Docker multistage build, 180
Domain Name System, 125, 138, 155–157, 161, 164, 165, 209, 210, 255
downtime, 211, 324, 327

E
encryption, 270, 278
Endpoint, 17, 155, 230, 231, 284, 299, 339, 341, 342
environment variables, 12, 70, 74, 82, 178, 179, 183, 253, 264–266, 268, 269,

272, 273, 275, 278, 328, 329

etcd, 211, 274–276, 278, 280
etcdctl, 275, 276
extended resource, 303–305
extensibility, 280, 292, 324

F
failover, 7, 111, 112, 115, 116, 124, 149, 151, 153, 160, 166, 185, 249, 256,

264, 291, 296, 323, 324, 326, 330, 332
Flannel, 139
flexibility, 296
FluxCD, 267

G
gcc, 180
gdb, 183–185
gdbserver, 184
Git, 267
GitHub, 334
GitHub Actions, 180
GitOps, 267
Google Container Engine, 250
GPG, 92
graceful degradation, 1, 321, 324, 332
Grafana, 334–337, 339
Graphics Processing Unit (GPU), 234, 243, 303
grep, 159

H
head, 277
high availability, 15, 91, 96, 98, 105, 109, 112, 164–166, 192, 216, 228, 256,

275, 276, 279, 288–291, 296, 298, 324, 325

HorizontalPodAutoscaler, 120, 121, 280, 316, 329, 335
horizontal scaling, 309, 317
HTTP Bearer authentication, 193, 199, 207
HTTP header, 164–166
HTTP path, 164
HTTP return code, 221, 224, 232, 334
HTTP reverse proxy, 163, 166, 190

I
ICMP, 138, 141–143, 158, 160
idempotence, 90, 124, 224, 288
identity management, 191
Ingress, 103, 149, 151, 152, 162–166, 332
ingress controller, 100, 103, 160, 161, 163–165, 267
interdependency, 5
iperf3, 47, 48, 239–241, 296, 297, 299–302
iptables, 65, 66, 92, 158–160, 216, 230, 301, 329, 331
iSCSI, 102
isolation, 8, 10, 17, 19–23, 27, 31, 32, 48, 52, 56, 71, 84, 173, 323

J
Java Enterprise, 5
Job, 122–125, 177, 264
jq, 30, 55, 56, 72, 80, 82, 83, 100, 102, 132, 136, 181, 182, 237, 260, 276,

277, 304
JSONPath, 260

K
K3s, 14
k3s, 324

kubeadm, 90, 92–94, 96–100, 131, 188, 189, 191, 193, 206, 208–211, 250
kubectl, 14, 93, 98, 99, 101, 103, 104, 106, 108, 113, 114, 117, 126, 183, 184,

188, 189, 191, 203, 207, 260, 263, 276, 278, 282
annotate, 104
apply, 101, 103, 113, 119, 162, 176, 177, 195, 224, 283, 290
certificate, 105
cp, 261
delete, 119, 126, 213
describe, 99, 107, 114, 117, 169, 171, 173, 175, 176, 178, 181, 221, 236,

262, 283
drain, 212
edit, 182
exec, 126, 136, 182, 183, 198, 255, 269, 271, 274, 328
get, 98, 108, 113, 118, 127, 136, 169, 173, 176, 177, 181, 183, 280
label, 169, 170
logs, 115, 178, 182, 224, 301
patch, 162, 301, 303
port-forward, 184
run, 108, 255
scale, 119, 216
set, 176
top, 171, 214, 236
uncordon, 214

kube-dns, 156
kubelet, 89, 93–96, 98, 100, 104, 105, 113, 114, 121, 130, 131, 133, 144, 146,

173, 176, 188, 191, 192, 203, 205–218, 224–226, 228, 239, 242, 251,
252, 274, 303, 306, 330, 335, 336, 339

kube-prometheus, 333, 334, 336, 339
kube-proxy, 158–160, 162, 163, 284, 301
kube-vip, 91, 96, 97
KUBECONFIG, 99, 191, 202, 245
Kubernetes, xix, xxi, 4, 9, 14, 16, 17, 27, 37, 43, 44, 49, 51, 52, 67, 84, 85,

87, 101, 105, 111, 128, 134, 135, 152, 156, 157, 167, 176, 177, 179,
185, 187, 194, 199, 205, 214, 218, 219, 233, 250, 264, 265, 269, 280,

292, 296, 302, 303, 309, 310, 315, 323, 334, 343
annotations, 104, 242
API server, 14, 89, 96, 97, 99, 101, 105–107, 118, 126, 184, 187–196,

198–200, 203, 207, 209, 210, 275, 280, 281, 284, 285, 287–289, 292,
304, 333, 334

autoscaling, 14, 104, 111, 117, 120–122, 317
back-off algorithm, 174–177
backward compatibility, 121
bootstrap, 95, 96, 105, 190, 193, 194, 199, 207
certificates, 95–97, 99, 104, 105, 189–193, 195, 199, 202, 207, 213, 275,

333
client API, 284

custom object, 285
events, 284–288
stream, 285
watch object, 285

cloud controller, 89, 161, 188
cluster state, 88, 89, 279, 280
conformance, 91
controller manager, 96, 104, 105, 187, 193, 195, 212, 284
control plane, 89–91, 96–98, 100, 106–109, 112, 118, 127, 130, 160, 185,

187, 188, 191, 205, 210–212, 216–218, 275, 276, 279, 284, 324, 333,
336

cordon, 213, 214
debugging, 114, 115, 117, 120, 149, 156, 160, 166, 167, 169, 170, 173,

175–179, 182–185, 224, 275, 343
distributions, 14, 15, 90, 144, 298
environment variables, 178, 179, 183, 253, 264–266, 268, 269, 272, 273,

278, 328, 329
event log, 90, 114, 117, 169, 171, 173–175, 215, 223
group, 195, 197
ingress controller, 100, 103, 160, 161, 163–165, 267
IP address management, 108, 113, 130, 133, 134, 137, 140, 141, 144, 148,

149, 152–154, 158, 160, 209, 254, 281, 332
labels, 117, 118, 120, 168–170, 286, 298, 327, 328, 330, 336, 341

large clusters, 297
limits, 122, 170, 214, 232–235, 238, 244–246, 248, 305, 310–317, 319,

329
logs, 115, 123, 178, 182, 202, 222, 224, 287, 290, 301, 328
metrics server, 104, 105, 121, 157, 158, 194, 207, 236, 330, 335
networking, 51, 57, 67, 87, 91, 95, 99, 100, 103, 108, 109, 127–133, 144,

149, 151, 152, 158, 160, 166, 209, 343
customized, 144, 148, 149

nodes, 89–91, 97–102, 109, 112, 118, 128–130, 133, 139, 162, 165, 168,
169, 188, 192, 194, 203, 205, 211, 213–216, 218, 233, 249, 251, 255,
275, 276, 296, 298, 299, 303, 305, 309, 317–321, 323, 324, 330, 331,
336

operators, 101, 256, 278, 288–292, 324–326, 343
resource naming, 121, 196, 201, 256, 257, 263, 280, 282, 283, 327
resource patching, 104, 161, 162, 222, 224, 301, 303, 306
resource schema, 282
resource updates, 172, 176, 182, 183, 262, 264, 327
resource versioning, 95, 96, 112, 116, 121, 196, 280, 282, 284
resource watch, 284, 285
resources. See names of individual resources
REST API, 188, 203, 280, 303
roles, 195
scheduler, 49, 88, 89, 102, 109, 113–115, 128, 135, 167–170, 172, 173,

187, 188, 233, 235, 296–299, 302, 303, 305, 307, 309, 314, 317–320,
323

security, 188, 193, 243, 266–269, 278
selectors, 117, 118, 120, 128, 154, 162, 168, 169, 228, 328, 331, 341
service account, 130, 190
static Pods, 210, 211
storage, 87, 100, 102, 108, 109, 124, 126, 127, 248–250, 267, 323, 343
traffic routing, 109, 129, 130, 133, 134, 136, 137, 139–142, 149, 151, 152,

154, 155, 158, 160, 163, 165, 166, 184, 187, 188, 199, 219, 228, 279,
284, 300–302, 323, 329, 331, 342

update strategy, 262
volume access mode, 262

volume mount, 112, 125, 251–253, 260, 272–274
Kubic, 27

L
least privilege, 269
limits, 33, 49, 122, 170, 214, 232–235, 238, 244–246, 248, 305, 310–317,

319, 329
CPU, 34, 38–45, 47, 173, 235, 237, 314, 329
memory, 43–45, 47, 235–239, 314
network, 47, 48, 131, 234, 238, 240–243

Linux, 180
cgroups, 37–41, 43, 44, 46, 47, 49, 236–238, 310–312, 314, 315
chroot, 22
Completely Fair Scheduler, 34
distribution, 10, 74
kernel, 10–12, 22, 27, 31, 32, 34, 78, 91, 92, 248
namespaces, 19, 25, 29–32, 49, 51, 55–65, 76, 129–134, 137, 171, 208
OOM killer, 46
permissions, 21, 22, 32
PID, 25, 30, 31, 36, 39, 56, 112
scheduler, 34
signal, 31, 32, 46
swap, 43
traffic control, 47–49, 239, 240, 242, 243
users, xxi, 21, 44

load balancing, 7, 9, 14, 17, 67, 88, 96, 109, 149, 151–154, 159, 160, 164,
165, 192, 228, 232, 254, 267, 309, 314, 317, 321, 330

Longhorn, 102, 103, 106, 108, 194, 211, 213, 250–252, 255, 257, 258, 280,
326

long polling, 284
lsns, 25, 30, 31, 55

M

macvlan, 149
masquerade. See Network Address Translation
memory access error, 179
message-driven architecture, 153
metrics server, 104, 105, 121, 157, 158, 194, 207, 236
microservice, 5–7, 17, 51, 87, 89, 109, 228
Microsoft Azure, 96, 250
modularity, 4
monitoring, 8, 9, 14, 16, 17, 116, 119–121, 187, 188, 205, 218, 321, 324,

330–333, 336, 339, 342, 343
mount, 79, 80, 209, 210
multitasking, 20
multitenancy, 37, 38, 88, 106, 233, 268
Multus, 144–147
Mythical Man-Month, The, 5

N
Namespace, 102, 104, 106–108, 114, 127, 156–158, 194–198, 200–202, 243–

245, 247, 248, 268, 269, 282, 288, 312, 321, 324, 327, 336, 339–341
calico-system, 102, 107, 127
default, 107, 108, 113–115, 156, 158, 165, 197, 199, 202, 287
kube-system, 107, 156–158, 193, 197, 200, 202
longhorn-system, 108
monitoring, 335, 337, 339
sample, 194, 195, 197, 199, 200, 202, 244, 245
todo, 324, 328, 330, 338–341

namespaces, Linux. See Linux: namespaces
Nano, 182
NAT. See Network Address Translation
ndots, 157
network

bandwidth, 6, 296, 300, 302

bridge, 25, 51, 60–64, 92, 133
burst, 243
egress, 47, 48, 242
firewall, 26, 61, 91, 92, 133, 135, 139, 158–160, 216
fragmentation, 143
ingress, 242
jumbo frames, 144
latency, 296
MAC, 60, 137, 138, 140–143
maximum transmission unit, 143
MTU, 143
namespaces. See Linux: namespaces
port conflicts, 52–54, 67, 134, 163
routing, 52, 54, 60, 61, 64, 65, 92, 134–137, 139, 141, 142, 144, 149
token bucket filter, 48, 242, 243
tracing, 62, 63
traffic control, 47–49
virtual device, 51, 52, 54, 58, 60, 66, 129–131, 133, 134, 141, 239, 323
virtual Ethernet (veth) pair, 58–61, 63, 133, 134, 137, 141, 243
VLAN, 47, 144, 149

Network Address Translation, 25, 52, 64–66, 134, 159, 160
NetworkAttachmentDefinition, 145, 148
NFS, 102
NGINX, 13, 14, 23, 52–55, 58, 61, 70–72, 75, 76, 80, 81, 103, 108, 109,

112–117, 119, 121, 152–156, 158, 159, 161–165, 170, 220, 221, 224,
225, 227–231, 236–238, 259, 260, 263, 264, 272, 274

Node, 304
Node.js, 15, 334, 339, 342

O
OOM killer, 46, 315, 316
oom_score_adj, 315, 316
Open Container Initiative (OCI), 82, 83

OpenShift, 26
OpenSUSE, 27
optimization, 5
overcommitment, 238, 314, 319
overlay filesystem, 78, 80, 81, 84
overlay network, 128–130, 134–137, 142–144, 149, 151, 152, 158, 160, 209

P
pause process, 29, 55, 56, 133, 208
peer review, 224
performance, 6, 234, 238, 292, 296, 302, 307, 309, 310, 314, 317, 321, 324,

330, 332, 343
performance margin, 310, 317
PersistentVolume, 256–259, 272, 274
PersistentVolumeClaim, 255–260, 262–264, 325, 326
pgrep, 207, 208
ping, 54, 58–64, 66, 109, 136–139, 141, 142, 158
Pod, 15, 16, 28, 35, 44, 56, 107–109, 112–115, 117–119, 121–128, 130–136,

138–141, 143–149, 151–160, 162, 163, 167–173, 176, 177, 179, 181,
183, 184, 188, 196–202, 208–214, 217–219, 221–225, 228, 230,
233–240, 242–245, 249, 250, 252, 254, 256, 257, 260–264, 266–271,
274, 278, 281, 284, 285, 287–290, 296–303, 305–307, 309–321,
327–329, 331, 335, 339, 340, 342

eviction, 213–215, 311, 314–317, 319–321
logs, 115, 123, 178, 182, 202, 222, 224, 287, 290, 301, 328
multiple containers, 296
priority, 316, 317, 319, 321
restartPolicy, 122
status

ContainerCreating, 262
CrashLoopBackOff, 177, 301
CreateContainerConfigError, 268
Error, 177, 301

ImagePullBackOff, 174, 176, 177
OutOfMemory, 216
Pending, 168, 170, 173, 175, 262, 306, 319
Running, 113, 222
Terminating, 217, 222

Podman, 26
Postgres Operator, 288–291, 324–326, 328
PostgreSQL, 15, 177–179, 225, 226, 252–256, 266, 267, 269, 288–291, 324–

326, 328, 329
predictability, 309, 310, 314, 321
PriorityClass, 317–321
privilege escalation, 21
probes, 218–220, 223, 232, 302

exec, 220, 221, 223, 225
HTTP, 223–225
liveness, 220–224, 226–229, 232
readiness, 220, 226, 228–232
startup, 220, 226–228, 232
TCP, 225, 226

process, 11–14, 17, 19, 20, 33, 46
isolation, 8, 10, 17, 19–23, 27, 31, 32, 48, 52, 56, 71, 84, 173, 323
nice level, 35, 37
policy, 34

FIFO, 35
round-robin, 35
time-sharing, 35

priority, 34–37, 311, 312
real-time, 34, 35, 38, 310
zombie, 31

prom-client, 334
Prometheus, 333–337, 339–343

scraping, 336, 337, 339–342
Prometheus Adapter, 335, 339

Prometheus Operator, 334, 335, 337, 339, 341
Prometheus query, 342
protobuf, 276–278
protoc, 277, 278
Python, 284–286

Q
Quality of Service (QoS), 234, 236, 238, 307, 310–313, 315–317, 321

classes
BestEffort, 310–312, 314, 316, 319
Burstable, 310, 312–314, 316, 317
Guaranteed, 310, 312, 314–317, 320, 329

quay.io, 76
quotas, 232, 233, 243–248, 250, 268, 312, 321

CPU, 243, 244
memory, 243, 244

R
Rancher, 14, 102, 324
RBAC. See access control
real-time processing, 34, 35, 38, 310
Redis, 72–74
reliability, 6, 7, 17, 73, 87, 88, 109, 219, 233, 248, 296, 302, 321
renew, 191
ReplicaSet, 115–118
replication, 291
ReplicationController, 116, 280
requests, 117, 170, 233–235, 244, 246, 248, 304–306, 310–317, 319, 329,

330
CPU, 171, 172, 235, 238
memory, 235, 238

resilience, 7, 9, 14, 87, 90, 109, 151, 152, 166, 218, 280, 292, 296, 302, 306,

321, 323, 330, 343
ResourceQuota, 244
responsiveness, 226, 310, 333, 334
restartPolicy, 122
Rocky Linux, 10, 71
Role, 195–197, 282, 286, 339, 340
role aggregation, 286, 287
role-based access control. See access control
RoleBinding, 197, 202, 245, 282, 287, 339, 340
root cause, 332
rsyslogd, 21

S
SAN (Subject Alternative Name), 165
scalability, 4, 6, 16, 17, 87, 88, 109, 112, 115, 151, 152, 166, 185, 249, 279,

295, 296, 302, 306, 309, 317, 323, 324, 332, 343
scheduler, 171, 317
screen, xxi
Secret, 193, 195, 265, 269–272, 274, 276–278, 325, 326, 329

base64 encoding, 270, 271
binary content, 271

security, 20, 295
sed, 216
segmentation fault, 182, 183, 185
self-healing, 90, 118
semaphore, 305
seq, 232
Service, 17, 92, 104, 124–126, 134, 149, 151–166, 210, 222, 228–231, 240,

243, 254, 255, 284, 288, 289, 291, 299–302, 325, 326, 328–332, 336,
337, 339–343

ClusterIP, 154, 161, 162, 230, 326
endpoints, 17, 155, 230, 231, 284, 299, 339, 341, 342

ExternalName, 161
headless, 161, 254, 255
LoadBalancer, 161
NodePort, 104, 161–163, 165, 331, 332, 337
traffic policy, 301

Cluster, 301
Local, 301, 302

ServiceAccount, 194, 195, 197–200, 207, 210, 286, 287, 340
ServiceMonitor, 336, 337, 339–342
SHA-256, 83
Skopeo, 26, 82
socket, 5, 28, 208, 251, 252
specialized hardware, 295, 296, 303, 306, 317
Spring Boot, 232
ss, 162
SSL certificate, 165
stability, 332
stateful components, 295
StatefulSet, 122, 124, 126, 127, 196, 252–256, 259, 264, 289–291, 325
stateless component, 15, 249, 295, 326, 329
StorageClass, 250–252, 255, 257–259
strace, 183
stress, 35, 36, 39, 40, 42, 44–46
strings, 207
Subject Alternative Name, 165
sysctl, 92
systemctl, 206, 215, 216
systemd, 206

T
taints, 95, 99–102
tar, 83

tc. See Linux: traffic control
TCP, 159, 160
tcpdump, 62, 64, 138, 141–143
throttling, 314
time–series data, 333
tmpfs, 210
tmux, xxi
todo application, 15, 324, 325, 330–335, 339, 342, 343
tolerations, 101, 102
top, 36, 41, 42
Topology Aware Hints, 302
traffic policy. See Service: traffic policy

U
Ubuntu, 10, 23, 71, 93, 138, 180
UDP, 139, 142–144
ulimit, 43
unshare, 31
update strategy

Recreate, 327
RollingUpdate, 327

user experience, 332
utilization, 38, 104, 121, 122, 247, 310, 313, 314, 317, 330, 333, 335, 338,

339, 342

V
Vagrant, xxi, 16, 91, 96, 209, 331, 332
vi, 182
VirtualBox, xxi
Virtual Extensible LAN, 139, 142–144, 149
virtual machines, xx, 11–13, 20, 32, 78, 90, 91, 130, 139, 303

volume mount, 12, 26, 30, 112, 125, 251–253, 260, 272–274, 303
VXLAN, 139, 142–144, 149

W
watch, 113
WeaveNet, 130, 139, 141, 143
well-known name, 153, 155–157, 161, 163, 165, 166, 240, 255
wget, 158
Windows Subsystem for Linux, xx
WSL, xx

X
xxd, 277

Y
YAML multiline string, 273
yum, 11

The fonts used in The Book of Kubernetes are New Baskerville, Futura, The
Sans Mono Condensed, and Dogma. The book was typeset with LATEX 2ε
package nostarch by Boris Veytsman (2008/06/06 v1.3 Typesetting books for
No Starch Press).

	Title Page
	Copyright Page
	Dedication
	About the Author
	About the Technical Reviewer
	BRIEF CONTENTS
	CONTENTS IN DETAIL
	ACKNOWLEDGMENTS
	INTRODUCTION
	The Approach
	Running Examples

	PART I MAKING AND USING CONTAINERS
	1 WHY CONTAINERS MATTER
	Modern Application Architecture
	Why Containers
	Running Containers
	Deploying Containers to Kubernetes
	Final Thoughts

	2 PROCESS ISOLATION
	Understanding Isolation
	Container Platforms and Container Runtimes
	Running Processes in Namespaces Directly
	Final Thoughts

	3 RESOURCE LIMITING
	CPU Priorities
	Linux Control Groups
	Memory Limits
	Network Bandwidth Limits
	Final Thoughts

	4 NETWORK NAMESPACES
	Network Isolation
	Network Namespaces
	Bridge Interfaces
	Masquerade
	Final Thoughts

	5 CONTAINER IMAGES AND RUNTIME LAYERS
	Filesystem Isolation
	Building Container Images
	Image and Container Storage
	Open Container Initiative
	Final Thoughts

	PART II CONTAINERS IN KUBERNETES
	6 WHY KUBERNETES MATTERS
	Running Containers in a Cluster
	Cluster Deployment
	Installing Cluster Add-ons
	Exploring a Cluster
	Final Thoughts

	7 DEPLOYING CONTAINERS TO KUBERNETES
	Pods
	Deployments
	Other Controllers
	Final Thoughts

	8 OVERLAY NETWORKS
	Cluster Networking
	Cross-Node Networking
	Network Customization
	Final Thoughts

	9 SERVICE AND INGRESS NETWORKS
	Services
	External Networking
	Final Thoughts

	10 WHEN THINGS GO WRONG
	Scheduling
	Pulling Images
	Running Containers
	Final Thoughts

	11 CONTROL PLANE AND ACCESS CONTROL
	API Server
	API Server Authentication
	Role-Based Access Controls
	Final Thoughts

	12 CONTAINER RUNTIME
	Node Service
	Static Pods
	Node Maintenance
	Final Thoughts

	13 HEALTH PROBES
	About Probes
	Liveness Probes
	Startup Probes
	Readiness Probes
	Final Thoughts

	14 LIMITS AND QUOTAS
	Requests and Limits
	Quotas
	Final Thoughts

	15 PERSISTENT STORAGE
	Storage Classes
	Persistent Volumes
	Final Thoughts

	16 CONFIGURATION AND SECRETS
	Injecting Configuration
	Injecting Files
	Cluster Configuration Repository
	Final Thoughts

	17 CUSTOM RESOURCES AND OPERATORS
	Custom Resources
	Operators
	Final Thoughts

	PART III PERFORMANT KUBERNETES
	18 AFFINITY AND DEVICES
	Affinity and Anti-affinity
	Service Traffic Routing
	Hardware Resources
	Final Thoughts

	19 TUNING QUALITY OF SERVICE
	Achieving Predictability
	Quality of Service Classes
	Pod Priority
	Final Thoughts

	20 APPLICATION RESILIENCY
	Example Application Stack
	Application and Cluster Monitoring
	Final Thoughts

	INDEX

