




THE RECURSIVE BOOK OF RECURSION





San Francisco

by Al Sweigar t

T H E  R E C U R S I V E 
B O O K  O F 

R E C U R S I O N

A c e  t h e  C o d i n g  I n t e r v i e w  w i t h 
Py t h o n  a n d  J a v a S c r i p t



THE RECURSIVE BOOK OF RECURSION. Copyright © 2022 by Al Sweigart.

Some rights reserved. This work is licensed under the Creative Commons Attribution-NonCommercial-
ShareAlike 3.0 United States License. To view a copy of this license, visit http://creativecommons.org/licenses/
by-nc-sa/3.0/us or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

First printing

26 25 24 23 22     1 2 3 4 5

ISBN-13: 978-1-71850-202-4 (print)
ISBN-13: 978-1-71850-203-1 (ebook)

Publisher: William Pollock
Production Manager: Rachel Monaghan
Production Editor: Miles Bond
Developmental Editor: Frances Saux
Cover Illustrator: James L. Barry
Interior Design: Octopod Studios
Technical Reviewer: Sarah Kuchinsky
Copyeditor: Sharon Wilkey
Compositor: Maureen Forys, Happenstance Type-O-Rama
Proofreader: Audrey Doyle

For information on distribution, bulk sales, corporate sales, or translations, please contact No Starch 
Press, Inc. directly at info@nostarch.com or:

No Starch Press, Inc.
245 8th Street, San Francisco, CA 94103
phone: 1.415.863.9900
www.nostarch.com

Library of Congress Cataloging-in-Publication Data

Library of Congress Control Number: 2022932456

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Other 
product and company names mentioned herein may be the trademarks of their respective owners. Rather 
than use a trademark symbol with every occurrence of a trademarked name, we are using the names only 
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of 
the trademark.

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution 
has been taken in the preparation of this work, neither the author nor No Starch Press, Inc. shall have any 
liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly 
or indirectly by the information contained in it.

http://creativecommons.org/licenses/by-nc-sa/3.0/us
http://creativecommons.org/licenses/by-nc-sa/3.0/us


To Jack, who held up a mirror  
in front of my mirror



About the Author
Al Sweigart is a software developer, fellow of the Python Software 
Foundation, and author of several programming books with No Starch 
Press, including the worldwide bestseller Automate the Boring Stuff with 
Python. His Creative Commons licensed works are available at https://www 
.inventwithpython.com.

About the Technical Reviewer
Sarah Kuchinsky, MS, is a corporate trainer and consultant. She uses 
Python for a variety of applications, including health systems modeling, 
game development, and task automation. Sarah is a co-founder of the 
North Bay Python conference, tutorials chair for PyCon US, and lead orga-
nizer for PyLadies Silicon Valley. She holds degrees in management science 
as well as in engineering and mathematics.

https://www.inventwithpython.com
https://www.inventwithpython.com


B R I E F  C O N T E N T S

Foreword .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . xv

Acknowledgments .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  xvii

Introduction  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . xix

PART I: UNDERSTANDING RECURSION . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  1

Chapter 1: What Is Recursion? .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 3

Chapter 2: Recursion vs. Iteration .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 21

Chapter 3: Classic Recursion Algorithms .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 45

Chapter 4: Backtracking and Tree Traversal Algorithms .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 71

Chapter 5: Divide-and-Conquer Algorithms  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 93

Chapter 6: Permutations and Combinations .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 123

Chapter 7: Memoization and Dynamic Programming  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 151

Chapter 8: Tail Call Optimization .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 163

Chapter 9: Drawing Fractals  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 175

PART II: PROJECTS  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  201

Chapter 10: File Finder  . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 203

Chapter 11: Maze Generator  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 215

Chapter 12: Sliding-Tile Solver .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 231

Chapter 13: Fractal Art Maker .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 259

Chapter 14: Droste Maker .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 283

Index . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 297





C O N T E N T S  I N  D E T A I L

FOREWORD	 xv

ACKNOWLEDGMENTS	 xvii

INTRODUCTION	 xix
Who Is This Book For? .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . xxi
About This Book .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . xxi
Hands-On, Experimental Computer Science .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  xxii

Installing Python .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  xxiii
Running IDLE and the Python Code Examples  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  xxiii
Running the JavaScript Code Examples in the Browser .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  xxiv

PART I: UNDERSTANDING RECURSION	 1

1 
WHAT IS RECURSION?	 3
The Definition of Recursion .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 4
What Are Functions? .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 5
What Are Stacks? .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 7
What Is the Call Stack? .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 9
What Are Recursive Functions and Stack Overflows? . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 12
Base Cases and Recursive Cases  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 14
Code Before and After the Recursive Call . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 15
Summary .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 18
Further Reading  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 18
Practice Questions . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 19

2 
RECURSION VS. ITERATION	 21
Calculating Factorials  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 22

The Iterative Factorial Algorithm . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 22
The Recursive Factorial Algorithm . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 23
Why the Recursive Factorial Algorithm Is Terrible .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 24

Calculating the Fibonacci Sequence  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 25
The Iterative Fibonacci Algorithm .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 26
The Recursive Fibonacci Algorithm .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 27
Why the Recursive Fibonacci Algorithm Is Terrible .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 29

Converting a Recursive Algorithm into an Iterative Algorithm  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 29
Converting an Iterative Algorithm into a Recursive Algorithm  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 31



x   Contents in Detail

Case Study: Calculating Exponents .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 34
Creating a Recursive Exponents Function . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Creating an Iterative Exponents Function Based on Recursive Insights .  .  .  .  .  .  .  . 37

When Do You Need to Use Recursion?  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 39
Coming Up with Recursive Algorithms .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 41
Summary .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 42
Further Reading  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 42
Practice Questions . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 42
Practice Projects .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 43

3 
CLASSIC RECURSION ALGORITHMS	 45
Summing Numbers in an Array . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 46
Reversing a String .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 49
Detecting Palindromes .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 52
Solving the Tower of Hanoi  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 54
Using Flood Fill .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 60
Using the Ackermann Function .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 65
Summary .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 67
Further Reading  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 67
 Practice Questions .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 68
Practice Projects .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 69

4 
BACKTRACKING AND TREE TRAVERSAL ALGORITHMS	 71
Using Tree Traversal  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 72

A Tree Data Structure in Python and JavaScript  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 73
Traversing the Tree .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 74
Preorder Tree Traversal .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 75
Postorder Tree Traversal  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 76
Inorder Tree Traversal .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 77

Finding Eight-Letter Names in a Tree .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 78
Getting the Maximum Tree Depth  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 81
Solving Mazes .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 83
Summary .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 91
Further Reading  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 91
Practice Questions . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 92
Practice Projects .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 92

5 
DIVIDE-AND-CONQUER ALGORITHMS	 93
Binary Search: Finding a Book in an Alphabetized Bookshelf .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 94
Quicksort: Splitting an Unsorted Pile of Books into Sorted Piles .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 97
Merge Sort: Merging Small Piles of Playing Cards into Larger Sorted Piles .  .  .  .  .  .  .  .  .  . 104
Summing an Array of Integers  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 111
Karatsuba Multiplication  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 113
The Algebra Behind the Karatsuba Algorithm .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 119
Summary .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 119
Further Reading  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 120
Practice Questions . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 121
Practice Projects .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 122



Contents in Detail   xi

6 
PERMUTATIONS AND COMBINATIONS	 123
The Terminology of Set Theory  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 124
Finding All Permutations Without Repetition: A Wedding Seating Chart .  .  .  .  .  .  .  .  .  .  .  . 126
Getting Permutations with Nested Loops: A Less-Than-Ideal Approach .  .  .  .  .  .  .  .  .  .  .  .  . 130
Permutations with Repetition: A Password Cracker  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 131
Getting K-Combinations with Recursion .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 134
Get All Combinations of Balanced Parentheses .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 139
Power Set: Finding All Subsets of a Set  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 143
Summary .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 147
Further Reading  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 148
Practice Questions . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 148
Practice Projects .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 149

7 
MEMOIZATION AND DYNAMIC PROGRAMMING	 151
Memoization  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 152

Top-Down Dynamic Programming . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 152
Memoization in Functional Programming  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 153
Memoizing the Recursive Fibonacci Algorithm .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 154

Python’s functools Module  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 158
What Happens When You Memoize Impure Functions? .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 159
Summary .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 160
Further Reading  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 161
Practice Questions . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 161

8 
TAIL CALL OPTIMIZATION	 163
How Tail Recursion and Tail Call Optimization Work .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 164
Accumulators in Tail Recursion  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 165
Limitations of Tail Recursion  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 166
Tail Recursion Case Studies  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 167

Tail Recursive Reverse String  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 168
Tail Recursive Find Substring .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 169
Tail Recursive Exponents .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 169
Tail Recursive Odd-Even  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 170

Summary .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 172
Further Reading  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 172
Practice Questions . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 173

9 
DRAWING FRACTALS	 175
Turtle Graphics .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 176
Basic Turtle Functions . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 177
The Sierpiński Triangle . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 179
The Sierpiński Carpet  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 183
Fractal Trees .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 187
How Long Is the Coast of Great Britain? The Koch Curve and Snowflake .  .  .  .  .  .  .  .  .  .  . 190
The Hilbert Curve .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 194
Summary .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 197



xii   Contents in Detail

Further Reading  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 197
Practice Questions . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 197
Practice Projects .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 198

PART II: PROJECTS	 201

10 
FILE FINDER 	 203
The Complete File-Search Program  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 204
The Match Functions .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 205

Finding the Files with an Even Number of Bytes .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 206
Finding the Filenames That Contain Every Vowel .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 206

The Recursive walk() Function .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 207
Calling the walk() Function .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 208
Useful Python Standard Library Functions for Working with Files .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 209

Finding Information About the File’s Name  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 209
Finding Information About the File’s Timestamps . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 210
Modifying Your Files . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 212

Summary .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 213
Further Reading  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 213

11 
MAZE GENERATOR 	 215
The Complete Maze-Generator Program  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 216
Setting Up the Maze Generator’s Constants .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 221
Creating the Maze Data Structure .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 222
Printing the Maze Data Structure . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 223
Using the Recursive Backtracker Algorithm .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 225
Starting the Chain of Recursive Calls .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 228
Summary .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 229
Further Reading  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 229

12 
SLIDING-TILE SOLVER	 231
Solving 15-Puzzles Recursively .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 232
The Complete Sliding-Tile Solver Program . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 234
Setting Up the Program’s Constants .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 243
Representing the Sliding-Tile Puzzle as Data .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 243

Displaying the Board  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 244
Creating a New Board Data Structure  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 245
Finding the Coordinates of the Blank Space  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 245
Making a Move .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 246
Undoing a Move .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 247

Setting Up a New Puzzle .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 248
Recursively Solving the Sliding-Tile Puzzle  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 251

The solve() Function  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 251
The attemptMove() Function .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 253



Contents in Detail   xiii

Starting the Solver . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 255
Summary .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 256
Further Reading  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 257

13 
FRACTAL ART MAKER	 259
The Built-in Fractals .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 260
The Fractal Art Maker Algorithm .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 261
The Complete Fractal Art Maker Program . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 263
Setting Up Constants and the Turtle Configuration .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 267
Working with the Shape-Drawing Functions .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 267

The drawFilledSquare() Function  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 268
The drawTriangleOutline() Function  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 270

Using the Fractal Drawing Function .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 271
Setting Up the Function .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 272
Using the Specifications Dictionary . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 272
Applying the Specifications  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 275

Creating the Example Fractals  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 277
Four Corners .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 277
Spiral Squares .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 277
Double Spiral Squares  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 278
Triangle Spiral .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 278
Conway’s Game of Life Glider . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 278
Sierpiński Triangle .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 279
Wave .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 279
Horn . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 279
Snowflake .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 280
Producing a Single Square or Triangle .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 280

Creating Your Own Fractals .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 281
Summary .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 282
Further Reading  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 282

14 
DROSTE MAKER	 283
Installing the Pillow Python Library . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 284
Painting Your Image  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 285
The Complete Droste Maker Program  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 286
Setting Up .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 288
Finding the Magenta Area .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 289
Resizing the Base Image  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 291
Recursively Placing the Image Within the Image .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 294
Summary .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 295
Further Reading  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 296

INDEX	 297





F O R E W O R D

When I was approached by Al to write the foreword to this book, I was 
pretty excited about the prospect. A book on recursion! Now, that’s some-
thing you just don’t see every day. Considered by many to be one of the 
more mysterious topics in programming, recursion is often discouraged. 
Oddly, this stands in stark contrast to its storied use in weird job interview 
questions. 

However, there are all sorts of practical reasons to learn about recursion. 
Recursive thinking is very much a mindset about problem-solving. At its core, 
larger problems get broken into smaller problems. And sometimes along the 
way, hard problems are rewritten into equivalent but easier-to-solve simple 
problems. This sort of thinking can be a useful tool when applied to software 
design—even when recursion is not being used. Thus, it’s a worthy topic of 
study for programmers of all skill levels. 

In my unbridled excitement to say more about recursion, I originally 
wrote this foreword in the form of a few short stories involving friends who’d 
applied recursive thinking in different ways but achieved a similar result. First 
there was the story of Ben, who learned about recursion, took it too far, and 
somehow managed to disappear off the face of the earth under mysterious 
circumstances after committing the following Python code into production: 

result = [(lambda r: lambda n: 1 if n < 2 else r(r)(n-1) + r(r)(n-2))(
          (lambda r: lambda n: 1 if n < 2 else r(r)(n-1) + r(r)(n-2)))(n)
          for n in range(37)]



xvi   Foreword

Then there was the story of Chelsea, who became so effective at real-
world problem-solving that she was promptly fired! Oh, you wouldn’t believe 
how much all the fine editors at No Starch (bless their hearts) hated these 
stories. “You can’t start a book by telling people stories like that. It’s just 
going to scare everyone away!” To be fair, they probably have a point. In 
fact, they even made me move a more reassuring paragraph about recursion 
from later in this foreword up to the second paragraph just so you wouldn’t 
first read about the stories of Ben and Chelsea and run away in a screaming 
horror to read a book about design patterns instead. 

Clearly, writing the foreword to a book is serious business. So, regret-
tably, I’ll have to share the true stories of Ben and Chelsea with you another 
time. But, getting back to the book, it’s true that recursion is not a tech-
nique that gets applied to the vast majority of problems in day-to-day pro-
gramming. As such, it often carries an aura of magic about it. This book 
hopes to dispel much of that. This is a good thing.

Finally, as you set off on your recursion journey, be prepared to have 
your brain bent in new directions. Not to worry—this is normal! However, 
it’s also important to stress that recursion is supposed to be a bit of fun. 
Well, at least a little bit. So, enjoy the ride!

—David Beazley
Author of Python Cookbook and Python Distilled

Teacher of aspiring problem solvers
https://www.dabeaz.com

https://www.dabeaz.com


A C K N O W L E D G M E N T S

It’s misleading to have only my name on the cover. I’d like to thank my 
publisher, Bill Pollock; my editor, Frances Saux; my technical reviewer, 
Sarah Kuchinsky; my production editor, Miles Bond; the production man-
ager, Rachel Monaghan; and the rest of the staff at No Starch Press for 
their invaluable help. 

Finally, I would like to thank my family, friends, and readers for all 
their suggestions and support.





I N T R O D U C T I O N

The programming technique of recursion 
can produce elegant code solutions. More 

often, however, it produces confused pro-
grammers. This doesn’t mean programmers 

can (or should) ignore recursion. Despite its reputa-
tion for being challenging, recursion is an important 
computer science topic and can yield keen insights 
into programming itself. At the very least, knowing 
recursion can help you nail a coding job interview.

If you’re a student with an interest in computer science, recursion is a 
necessary hurdle you’ll have to overcome to understand many popular algo-
rithms. If you’re a programming bootcamp graduate or self-taught program-
mer who managed to bypass the more theoretical computer science topics, 
recursion problems are still sure to come up during whiteboard coding 
interviews. And if you’re an experienced software engineer who has never 

T H E R E C U R S I V E 

B O O K O F 

R E C U R S I O N

A C E T H E C O D I N G I N T E R V I E W
W I T H 

P Y T H O N A N D J A V A S C R I P T

T H E
R E C U R S I V E 

B O O K
O F 

R E C U R S I O N

A C E T H E C O D I N G I N T E R V I E W
W I T H

P Y T H O N A N D J A V A S C R I P T

THE RECURSIVE

BOOKOF 

RECURSION

ACETHE
CODING

INTERVI
EWWIT

H

PYTHON
ANDJAV

ASCRIP
T



xx   Introduction

touched a recursive algorithm before, you might find recursion to be an 
embarrassing gap in your knowledge.

There’s no need to worry. Recursion isn’t as hard to understand as it 
is to teach. As I’ll explain in Chapter 1, I attribute the widespread misun-
derstanding of recursion to poor instruction rather than any inherent dif-
ficulty. And since recursive functions aren’t commonly used in day-to-day 
programming, many folks get along just fine without them. 

But a certain conceptual beauty lies behind recursive algorithms that 
can aid your understanding of programming even if you don’t often apply 
them. Recursion has a visual beauty as well. The technique is behind the 
amazing mathematical art of fractals, the self-similar shapes shown in 
Figure 1.

Figure 1: These examples of fractals include a Sierpiński triangle (left), a Hilbert curve (center), and a Koch 
snowflake (right).

However, this book is not entirely in praise of recursion. I include some 
sharp criticisms of this technique. Recursion is overused in cases where a 
simpler solution exists. Recursive algorithms can be hard to understand, 
have worse performance, and are susceptible to crash-causing stack over-
flow errors. And a certain kind of programmer may use recursion not 
because it’s the right technique for a given problem, but simply because 
they feel smarter when they write code that other programmers struggle 
to understand. Computer scientist Dr. John Wilander once said, “When 
you finish a PhD in computer science, they take you to a special room and 
explain that you must never use recursion in real life. Its only purpose is to 
make programming hard for undergrads.”

So, whether you want to get an edge in coding interviews, you want to 
create beautiful mathematical art, or you stubbornly seek to finally under-
stand the intriguing properties of this concept, this book will be your guide 
down the rabbit hole that is recursion (and the rabbit holes within that 
rabbit hole). Recursion is one of the computer science topics that separates 
the professionals from the beginners. By reading this book, you’ll master a 
great skill and learn its dark secret: recursion isn’t as complicated as people 
think it is.



Introduction   xxi

Who Is This Book For?
This book is for those who are intimidated or intrigued by recursive algo-
rithms. Recursion is one of those topics that seems like black magic to 
beginner programmers or freshman computer science students. Most recur-
sion lessons are hard to follow and make the subject seem frustrating, even 
fearsome. For these readers, I hope this book’s direct explanations and 
ample examples can help make the topic finally click.

The only prerequisite for this book is basic programming experience 
with either the Python or JavaScript programming languages, which the 
chapters’ code examples use. The book’s programs have been stripped 
down to their essences; if you know how to call and create functions and 
the difference between global and local variables, you know enough to work 
through the programming examples.

About This Book
This book has 14 chapters:

Part I: Understanding Recursion

Chapter 1: What Is Recursion?    Explains recursion and how it is the 
natural result of the way programming languages implement functions 
and function calls. This chapter also argues that recursion isn’t nearly 
the elegant, mystical concept many claim it is.

Chapter 2: Recursion vs. Iteration    Dives into the differences (and 
many similarities) between recursive and iterative techniques.

Chapter 3: Classic Recursion Algorithms    Covers famous recursive 
programs such as the Tower of Hanoi, the flood fill algorithm, and 
others.

Chapter 4: Backtracking and Tree Traversal Algorithms    Discusses a 
problem for which recursion is particularly suited: traversing tree data 
structures, such as when solving mazes and navigating a directory.

Chapter 5: Divide-and-Conquer Algorithms    Discusses how recursion 
is useful for splitting large problems into smaller subproblems and cov-
ers several common divide-and-conquer algorithms.

Chapter 6: Permutations and Combinations    Covers recursive algo-
rithms involving ordering and matching, as well as the common pro-
gramming problems to which these techniques are applied.

Chapter 7: Memoization and Dynamic Programming    Explains some 
simple tricks to improve code efficiency when applying recursion in the 
real world.

Chapter 8: Tail Call Optimization    Covers tail call optimization, a 
common technique used to improve the performance of recursive algo-
rithms, and how it works.



xxii   Introduction

Chapter 9: Drawing Fractals    Tours the intriguing art that can be pro-
grammatically produced by recursive algorithms. This chapter makes 
use of turtle graphics for generating its images.

Part II: Projects

Chapter 10: File Finder    Covers a project that searches through the files 
on your computer according to custom search parameters you provide.

Chapter 11: Maze Generator    Covers a project that automatically gen-
erates mazes of any size using the recursive backtracker algorithm.

Chapter 12: Sliding-Tile Solver    Covers a project that solves sliding-tile 
puzzles, also called 15-puzzles.

Chapter 13: Fractal Art Maker    Explores a project that can produce 
custom fractal art of your own design.

Chapter 14: Droste Maker    Explores a project that produces recursive, 
picture-in-picture images using the Pillow image-manipulation module.

Hands-On, Experimental Computer Science
Reading about recursion won’t teach you how to implement it on its own. 
This book includes many recursive code examples in both the Python and 
JavaScript programming languages for you to experiment with. If you’re 
new to programming, you can read my book Automate the Boring Stuff with 
Python, 2nd edition (No Starch Press, 2019), or Python Crash Course, 2nd edi-
tion, by Eric Matthes (No Starch Press, 2019) for an introduction to both 
programming and the Python programming language.

I recommend stepping through these programs with a debugger. 
A debugger lets you execute programs one line at a time and inspect the 
state of the program along the way, allowing you to pinpoint where bugs 
occur. Chapter 11 of Automate the Boring Stuff with Python, 2nd edition, 
covers how to use the Python debugger and is free to read online at 
https://automatetheboringstuff.com/2e/chapter11. 

The chapters in this book display the Python and JavaScript code exam-
ples together. The Python code is saved in a .py file, and the JavaScript code 
in an .html file (not a .js file). For example, take the following hello.py file:

print('Hello, world!')

And the following hello.html file:

<script type="text/javascript">
document.write("Hello, world!<br />");
</script>

The two code listings act as a Rosetta stone, describing programs that 
produce the same results in two different languages. 

https://automatetheboringstuff.com/2e/chapter11


Introduction   xxiii

N O T E 	 The <br /> HTML tag in hello.html is a break return, also called a newline, 
which prevents all the output from appearing on a single line. Python’s print() 
function automatically adds break returns to the end of the text, while JavaScript’s 
document.write() function doesn’t.

I encourage you to manually copy these programs by using your key-
board, rather than simply copying and pasting their source code into a new 
file. This helps your “muscle memory” of the programs and forces you to 
consider each line as you type it.

The .html files are technically not valid because they’re missing several 
necessary HTML tags, such as <html> and <body>, but your browser will still 
be able to display the output. These tags have been left out on purpose. The 
programs in this book are written for simplicity and readability, not to dem-
onstrate web development best practices.

Installing Python
While every computer has a web browser that can view the .html files in 
this book, you must install Python separately if you wish to run the book’s 
Python code. You can download Python for Microsoft Windows, Apple 
macOS, and Ubuntu Linux for free from https://python.org/downloads. Be 
sure to download a version of Python 3 (such as 3.10) and not Python 2. 
Python 3 made a few backward-incompatible changes to the language, and 
the programs in this book may not run correctly, if at all, on Python 2.

Running IDLE and the Python Code Examples
You can use the IDLE editor that comes with Python to write your Python 
code or install a free editor, such as the Mu Editor from https://codewith.mu, 
PyCharm Community Edition from https://www.jetbrains.com/pycharm/download, 
or Microsoft Visual Studio Code from https://code.visualstudio.com/Download.

To open IDLE on Windows, open the Start menu in the lower-left corner 
of your screen, enter IDLE in the search box, and select IDLE (Python 3.10 
64-bit).

On macOS, open the Finder window and click Applications4Python 3.10,  
and then the IDLE icon.

On Ubuntu, select ApplicationsAccessories4Terminal and then 
enter IDLE 3. You may also be able to click Applications at the top of the 
screen, select Programming, and then click IDLE 3.

IDLE has two types of windows. The interactive shell window has the 
>>> prompt and is used for running Python instructions one at a time. This 
is useful when you want to experiment with bits of Python code. The file 
editor window is where you can enter full Python programs and save them 
as .py files. This is how you’ll enter the source code for the Python programs 
in this book. To open a new file editor window, click FileNew File. You 
can run the programs by clicking RunRun Module or pressing F5.

https://python.org/downloads
https://codewith.mu
https://www.jetbrains.com/pycharm/download
https://code.visualstudio.com/Download


xxiv   Introduction

Running the JavaScript Code Examples in the Browser
Your computer’s web browser can run the JavaScript programs and display 
their output, but to write JavaScript code, you’ll need a text editor. A simple 
program like Notepad or TextMate will do, but you can also install text edi-
tors specifically for writing code, such as IDLE or Sublime Text from https://
www.sublimetext.com.

After typing the code for your JavaScript programs, save the files as 
.html files, not .js files. Open them in a web browser to view the results. Any 
modern web browser works for this purpose.

https://www.sublimetext.com
https://www.sublimetext.com


PART I
U N D E R S T A N D I N G  R E C U R S I O N





1
W H A T  I S  R E C U R S I O N ?

Recursion has an intimidating reputation. 
It’s considered hard to understand, but 

at its core, it depends on only two things: 
function calls and stack data structures. 

Most new programmers trace through what a program does by follow-
ing the execution. It’s an easy way to read code: you just put your finger 
on the line of code at the top of the program and move down. Sometimes 
your finger will loop back; other times, it will jump into a function and later 
return. This makes it easy to visualize what a program does and in what 
order.

But to understand recursion, you need to become familiar with a less 
obvious data structure, called the call stack, that controls the program’s 
flow of execution. Most programming beginners don’t know about stacks, 
because programming tutorials often don’t even mention them when dis-
cussing function calls. Furthermore, the call stack that automatically man-
ages function calls doesn’t appear anywhere in the source code. 

T H E R E C U R S I V E 

B O O K O F 

R E C U R S I O N

A C E T H E C O D I N G I N T E R V I E W
W I T H 

P Y T H O N A N D J A V A S C R I P T

T H E
R E C U R S I V E 

B O O K
O F 

R E C U R S I O N

A C E T H E C O D I N G I N T E R V I E W
W I T H

P Y T H O N A N D J A V A S C R I P T

THE RECURSIVE

BOOKOF 

RECURSION

ACETHE
CODING

INTERVI
EWWIT

H

PYTHON
ANDJAV

ASCRIP
T



4   Chapter 1

It’s hard to understand something when you can’t see it and don’t know 
it exists! In this chapter, we’ll pull back the curtain to dispel the overblown 
notion that recursion is hard, and you’ll be able to appreciate the elegance 
underneath.

The Definition of Recursion
Before we begin, let’s get the clichéd recursion jokes out of the way, starting 
with this: “To understand recursion, you must first understand recursion.”

During the months I’ve spent writing this book, I can assure you that 
this joke gets funnier the more you hear it. 

Another joke is that if you search Google for recursion, the results page 
asks if you mean recursion. Following the link, as shown in Figure 1-1, takes 
you to . . . the search results for recursion.

Figure 1-1: The Google search results for recursion link to the Google search results  
for recursion.

Figure 1-2 shows a recursion joke from the webcomic xkcd.

Figure 1-2: I’m So Meta, Even This  
Acronym (I.S. M.E.T.A.) (xkcd.com/917  
by Randall Munroe)

Most jokes about the 2010 science fiction action movie Inception are 
recursion jokes. The film features characters having dreams within dreams 
within dreams.

And finally, what computer scientist could forget that monster from 
Greek mythology, the recursive centaur? As you can see in Figure 1-3, it is 
half horse, half recursive centaur.

https://xkcd.com/917


What Is Recursion?   5

Figure 1-3: The recursive centaur. Image by Joseph Parker.

Based on these jokes, you might conclude that recursion is a sort of meta, 
self-referencing, dream-within-a-dream, infinite mirror-into-mirror sort of 
thing. Let’s establish a concrete definition: a recursive thing is something 
whose definition includes itself. That is, it has a self-referential definition. 

The Sierpiński triangle in Figure 1-4 is defined as an equilateral tri-
angle with an upside-down triangle in the middle that forms three new 
equilateral triangles, each of which contains a Sierpiński triangle. The defi-
nition of Sierpiński triangles includes Sierpiński triangles.

Figure 1-4: Sierpiński triangles are fractals (recursive shapes) that include Sierpiński 
triangles.

In a programming context, a recursive function is a function that calls 
itself. Before we explore recursive functions, let’s take a step back and under-
stand how regular functions work. Programmers tend to take function calls 
for granted, but even experienced programmers will find it worthwhile to 
review functions in the next section.

What Are Functions?
Functions can be described as mini-programs inside your program. They’re a 
feature of nearly every programming language. If you need to run identical 



6   Chapter 1

instructions at three different places in a program, instead of copying and 
pasting the source code three times you can write the code in a function 
once and call the function three times. The beneficial result is a shorter and 
more readable program. The program is also easier to change: if you need 
to fix a bug or add features, you need to change your program in only one 
place instead of three.

All programming languages implement four features in their functions:

	 1.	 Functions have code that is run when the function is called.

	 2.	 Arguments (that is, values) are passed to the function when it’s called. 
This is the input to the function, and functions can have zero or more 
arguments.

	 3.	 Functions return a return value. This is the output of the function, 
though some programming languages allow functions not to return 
anything or to return null values like undefined or None.

	 4.	 The program remembers which line of code called the function and 
returns to it when the function finishes its execution.

Different programming languages might have additional features, or 
different options for how to call functions, but they all have these four gen-
eral elements. You can visually see the first three of these elements because 
you write them in the source code, but how does a program keep track of 
where the execution should return to when the function returns? 

To get a better sense of the problem, create a functionCalls.py program 
that has three functions: a(), which calls b(), which calls c():

Python def a():
    print('a() was called.')
    b()
    print('a() is returning.')

def b():
    print('b() was called.')
    c()
    print('b() is returning.')

def c():
    print('c() was called.')
    print('c() is returning.')

a()

This code is equivalent to the following functionCalls.html program:

JavaScript <script type="text/javascript">
function a() {
    document.write("a() was called.<br />");
    b();
    document.write("a() is returning.<br />");
}



What Is Recursion?   7

function b() {
    document.write("b() was called.<br />");
    c();
    document.write("b() is returning.<br />");
}

function c() {
    document.write("c() was called.<br />");
    document.write("c() is returning.<br />");
}

a();
</script>

When you run this code, the output looks like this:

a() was called.
b() was called.
c() was called.
c() is returning.
b() is returning.
a() is returning.

The output shows the start of functions a(), b(), and c(). Then, when the 
functions return, the output appears in reverse order: c(), b(), and then a(). 
Notice the pattern to the text output: each time a function returns, it remem-
bers which line of code originally called it. When the c() function call ends, 
the program returns to the b() function and displays b() is returning. Then 
the b() function call ends, and the program returns to the a() function and 
displays a() is returning. Finally, the program returns to the original a() 
function call at the end of the program. In other words, function calls don’t 
send the execution of the program on a one-way trip. 

But how does the program remember if it was a() or b() that called c()? 
This detail is handled by the program implicitly with a call stack. To under-
stand how call stacks remember where the execution returns at the end of a 
function call, we need to first understand what a stack is.

What Are Stacks?
Earlier I mentioned the clichéd wisecrack, “To understand recursion, you 
must first understand recursion.” But this is actually wrong: to really under-
stand recursion, you must first understand stacks. 

A stack is one of the simplest data structures in computer science. 
It stores multiple values like a list does—but unlike lists, it limits you to 
adding to or removing values from the “top” of the stack only. For stacks 
implemented with lists or arrays, the “top” is the last item, at the right end 
of the list or array. Adding values is called pushing values onto the stack, 
while removing values is called popping values off the stack.

Imagine that you’re engaged in a meandering conversation with some-
one. You’re talking about your friend Alice, which then reminds you of a 



8   Chapter 1

story about your co-worker Bob, but for that story to make sense, you first 
have to explain something about your cousin Carol. You finish your story 
about Carol and go back to talking about Bob, and when you finish your 
story about Bob, you go back to talking about Alice. Then you are reminded 
about your brother David, so you tell a story about him. Eventually, you get 
around to finishing your original story about Alice. 

Your conversation follows a stack-like structure, as in Figure 1-5. The 
conversation is stack-like because the current topic is always at the top of 
the stack.

Alice Alice Alice Alice Alice Alice
Bob Bob Bob David

Carol

Alice

Figure 1-5: Your meandering conversation stack

In our conversation stack, the new topics are added to the top of the 
stack and taken off as they are completed. The previous topics are “remem-
bered” underneath the current topic in the stack.

We can use Python lists as stacks if, to amend the list’s contents, we 
limit ourselves to the append() and pop() methods to perform pushing and 
popping. JavaScript arrays can also be used as stacks through their push() 
and pop() methods.

N O T E 	 Python uses the terms list and item, while JavaScript uses the terms array and ele-
ment, but they are respectively identical for our purposes. In this book, I use the terms 
list and item for both languages.

For example, consider this cardStack.py program, which pushes and 
pops string values of playing cards to the end of a list named cardStack:

Python cardStack = 1 []
2 cardStack.append('5 of diamonds')
print(','.join(cardStack))
cardStack.append('3 of clubs')
print(','.join(cardStack))
cardStack.append('ace of hearts')
print(','.join(cardStack))
3 cardStack.pop()
print(','.join(cardStack))

The following cardStack.html program contains the equivalent code in 
JavaScript:

JavaScript <script type="text/javascript">
let cardStack = 1 [];
2 cardStack.push("5 of diamonds");
document.write(cardStack + "<br />");
cardStack.push("3 of clubs");
document.write(cardStack + "<br />");



What Is Recursion?   9

cardStack.push("ace of hearts");
document.write(cardStack + "<br />");
3 cardStack.pop()
document.write(cardStack + "<br />");
</script>

When you run this code, the output looks like this:

5 of diamonds
5 of diamonds,3 of clubs
5 of diamonds,3 of clubs,ace of hearts
5 of diamonds,3 of clubs

The stack starts off as empty 1. Three strings representing cards are 
pushed onto the stack 2. Then the stack is popped 3, which removes the 
ace of hearts and leaves the three of clubs at the top of the stack again. The 
state of the cardStack stack is tracked in Figure 1-6, going from left to right.

Empty

Figure 1-6: The stack starts empty. Cards are then pushed onto and popped off the stack.

You can see only the topmost card in the card stack, or, in our pro-
gram’s stacks, the topmost value. In the simplest stack implementations, 
you can’t see how many cards (or values) are in the stack. You can see only 
whether the stack is empty or not. 

Stacks are a LIFO data structure, which stands for last in, first out, since 
the last value pushed onto the stack is the first value popped out of it. This 
behavior is similar to your web browser’s Back button. Your browser tab’s 
history functions like a stack that contains all the pages you’ve visited in the 
order that you visited them. The browser is always displaying the web page 
at the “top” of the history’s “stack.” Clicking a link pushes a new web page 
onto the history stack, while clicking the Back button pops the top web 
page off and reveals the one “underneath.”

What Is the Call Stack?
Programs use stacks too. The program’s call stack, also simply called the 
stack, is a stack of frame objects. Frame objects, also simply called frames, con-
tain information about a single function call, including which line of code 
called the function, so the execution can move back there when the func-
tion returns. 



10   Chapter 1

Frame objects are created and pushed onto the stack when a function 
is called. When the function returns, that frame object is popped off the 
stack. If we call a function that calls a function that calls a function, the call 
stack will have three frame objects on the stack. When all these functions 
return, the call stack will have zero frame objects on the stack.

Programmers don’t have to write code dealing with frame objects, since 
the programming language handles them automatically. Different pro-
gramming languages have different ways of implementing frame objects, 
but in general they contain the following:

•	 The return address, or the spot in the program where the execution 
should move when the function returns

•	 The arguments passed to the function call

•	 A set of local variables created during the function call

For example, take a look at the following localVariables.py program, 
which has three functions, just as our previous functionCalls.py and  
functionCalls.html programs did:

Python def a():
  1 spam = 'Ant'
  2 print('spam is ' + spam)
  3 b()
    print('spam is ' + spam)

def b():
  4 spam = 'Bobcat'
    print('spam is ' + spam)
  5 c()
    print('spam is ' + spam)

def c():
  6 spam = 'Coyote'
    print('spam is ' + spam)

7 a()

This localVariables.html is the equivalent JavaScript program:

JavaScript <script type="text/javascript">
function a() {
  1 let spam = "Ant";
  2 document.write("spam is " + spam + "<br />");
  3 b();
    document.write("spam is " + spam + "<br />");
}

function b() {
  4 let spam = "Bobcat";
    document.write("spam is " + spam + "<br />");
  5 c();



What Is Recursion?   11

    document.write("spam is " + spam + "<br />");
}

function c() {
  6 let spam = "Coyote";
    document.write("spam is " + spam + "<br />");
}

7 a();
</script>

When you run this code, the output looks like this:

spam is Ant
spam is Bobcat
spam is Coyote
spam is Bobcat
spam is Ant

When the program calls function a() 7, a frame object is created and 
placed on the top of the call stack. This frame stores any arguments passed 
to a() (in this case, there are none), along with the local variable spam 1 
and the place where the execution should go when the a() function returns.

When a() is called, it displays the contents of its local spam variable, 
which is Ant 2. When the code in a() calls function b() 3, a new frame 
object is created and placed on the call stack above the frame object for a(). 
The b() function has its own local spam variable 4, and calls c() 5. A new 
frame object for the c() call is created and placed on the call stack, and it 
contains c()’s local spam variable 6. As these functions return, the frame 
objects pop off the call stack. The program execution knows where to return 
to, because that return information is stored in the frame object. When the 
execution has returned from all function calls, the call stack is empty.

Figure 1-7 shows the state of the call stack as each function is called and 
returns. Notice that all the local variables have the same name: spam. I did 
this to highlight the fact that local variables are always separate variables 
with distinct values, even if they have the same name as local variables in 
other functions.

Empty

c()

spam =
'Coyote′

b()

spam =
'Bobcat′

a()

spam =
'Ant′

Empty

a()

spam =
'Ant′

b()

spam =
'Bobcat′

Figure 1-7: The state of the call stack as the localVariables program runs



12   Chapter 1

As you can see, programming languages can have separate local vari-
ables with the same name (spam) because they are kept in separate frame 
objects. When a local variable is used in the source code, the variable with 
that name in the topmost frame object is used.

Every running program has a call stack, and multithreaded programs 
have one call stack for each thread. But when you look at the source code 
for a program, you can’t see the call stack in the code. The call stack isn’t 
stored in a variable as other data structures are; it’s automatically handled 
in the background. 

The fact that the call stack doesn’t exist in source code is the main 
reason recursion is so confusing to beginners: recursion relies on some-
thing the programmer can’t even see! Revealing how stack data structures 
and the call stack work removes much of the mystery behind recursion. 
Functions and stacks are both simple concepts, and we can use them 
together to understand how recursion works.

What Are Recursive Functions and Stack Overflows?
A recursive function is a function that calls itself. This shortest.py program is 
the shortest possible example of a recursive function:

Python def shortest():
    shortest()

shortest()

The preceding program is equivalent to this shortest.html program:

JavaScript <script type="text/javascript">
function shortest() {
    shortest();
}

shortest();
</script>

The shortest() function does nothing but call the shortest() function. 
When this happens, it calls the shortest() function again, and that will call 
shortest(), and so on, seemingly forever. It is similar to the mythological 
idea that the crust of the Earth rests on the back of a giant space turtle, 
which rests on the back of another turtle. Beneath that turtle: another 
turtle. And so on, forever.

But this “turtles all the way down” theory doesn’t do a good job of 
explaining cosmology, nor recursive functions. Since the call stack uses the 
computer’s finite memory, this program cannot continue forever, the way 
an infinite loop does. The only thing this program does is crash and display 
an error message.

N O T E 	 To view the JavaScript error, you must open the browser developer tools. On most 
browsers, this is done by pressing F12 and then selecting the Console tab.



What Is Recursion?   13

The Python output of shortest.py looks like this:

Traceback (most recent call last):
  File "shortest.py", line 4, in <module>
    shortest()
  File "shortest.py", line 2, in shortest
    shortest()
  File "shortest.py", line 2, in shortest
    shortest()
  File "shortest.py", line 2, in shortest
    shortest()
  [Previous line repeated 996 more times]
RecursionError: maximum recursion depth exceeded

The JavaScript output of shortest.html looks like this in the Google 
Chrome web browser (other browsers will have similar error messages):

Uncaught RangeError: Maximum call stack size exceeded
    at shortest (shortest.html:2)
    at shortest (shortest.html:3)
    at shortest (shortest.html:3)
    at shortest (shortest.html:3)
    at shortest (shortest.html:3)
    at shortest (shortest.html:3)
    at shortest (shortest.html:3)
    at shortest (shortest.html:3)
    at shortest (shortest.html:3)
    at shortest (shortest.html:3)

This kind of bug is called a stack overflow. (This is where the popular web-
site https://stackoverflow.com got its name.) The constant function calls with 
no returns grow the call stack until all the computer’s memory allocated 
for the call stack is used up. To prevent this, the Python and JavaScript 
interpreters crash the program after a certain limit of function calls that 
don’t return a value. 

This limit is called the maximum recursion depth or maximum call stack size. 
For Python, this is set to 1,000 function calls. For JavaScript, the maximum call 
stack size depends on the browser running the code but is generally at least 
10,000 or so. Think of a stack overflow as happening when the call stack gets 
“too high” (that is, consumes too much computer memory), as in Figure 1-8.

STACK TOO HIGH

!

b()

spam 
=

'Bobc
at′

c()

spam =
'Coyote′

Figure 1-8: A stack overflow happens when 
the call stack becomes too high, with too many 
frame objects taking up the computer’s memory.

https://stackoverflow.com


14   Chapter 1

Stack overflows don’t damage the computer. The computer just detects 
that the limit of function calls without returns has been reached and termi-
nates the program. At worst, you’ll lose any unsaved work the program had. 
Stack overflows can be prevented by having something called a base case, 
which is explained next.

Base Cases and Recursive Cases
The stack overflow example has a shortest() function that calls shortest() 
but never returns. To avoid a crash, there needs to be a case, or set of cir-
cumstances, where the function stops calling itself and instead just returns. 
This is called a base case. By contrast, a case where the function recursively 
calls itself is called a recursive case. 

All recursive functions require at least one base case and at least one 
recursive case. If there is no base case, the function never stops making 
recursive calls and eventually causes a stack overflow. If there is no recursive 
case, the function never calls itself and is an ordinary function, not a recur-
sive one. When you start writing your own recursive functions, a good first 
step is to figure out what the base case and recursive case should be.

Take a look at this shortestWithBaseCase.py program, which defines the 
shortest recursive function that won’t crash from a stack overflow:

Python def shortestWithBaseCase(makeRecursiveCall):
    print('shortestWithBaseCase(%s) called.' % makeRecursiveCall)
    if not makeRecursiveCall:
        # BASE CASE
        print('Returning from base case.')
      1 return
    else:
        # RECURSIVE CASE
      2 shortestWithBaseCase(False)
        print('Returning from recursive case.')
        return

print('Calling shortestWithBaseCase(False):')
3 shortestWithBaseCase(False)
print()
print('Calling shortestWithBaseCase(True):')
4 shortestWithBaseCase(True)

This code is equivalent to the following shortestWithBaseCase.html 
program:

JavaScript <script type="text/javascript">
function shortestWithBaseCase(makeRecursiveCall) {
    document.write("shortestWithBaseCase(" + makeRecursiveCall + 
     ") called.<br />");
    if  (makeRecursiveCall === false) {
        // BASE CASE
        document.write("Returning from base case.<br />");
      1 return;



What Is Recursion?   15

    } else {
        // RECURSIVE CASE
      2 shortestWithBaseCase(false);
        document.write("Returning from recursive case.<br />");
        return;
    }
}

document.write("Calling shortestWithBaseCase(false):<br />");
3 shortestWithBaseCase(false);
document.write("<br />");
document.write("Calling shortestWithBaseCase(true):<br />");
4 shortestWithBaseCase(true);
</script>

When you run this code, the output looks like this:

Calling shortestWithBaseCase(False):
shortestWithBaseCase(False) called.
Returning from base case.

Calling shortestWithBaseCase(True):
shortestWithBaseCase(True) called.
shortestWithBaseCase(False) called.
Returning from base case.
Returning from recursive case.

This function doesn’t do anything useful except provide a short exam-
ple of recursion (and it could be made shorter by removing the text output, 
but the text is useful for our explanation). When shortestWithBaseCase(False) 
is called 3, the base case is executed and the function merely returns 1. 
However, when shortestWithBaseCase(True) is called 4, the recursive case is 
executed and shortestWithBaseCase(False) is called 2.

It’s important to note that when shortestWithBaseCase(False) is recursively 
called from 2 and then returns, the execution doesn’t immediately move 
back to the original function call at 4. The rest of the code in the recursive 
case after the recursive call still runs, which is why Returning from recursive 
case. appears in the output. Returning from the base case doesn’t immedi-
ately return from all the recursive calls that happened before it. This will be 
important to keep in mind in the countDownAndUp() example in the next section.

Code Before and After the Recursive Call
The code in a recursive case can be split into two parts: the code before the 
recursive call and the code after the recursive call. (If there are two recur-
sive calls in the recursive case, such as with the Fibonacci sequence example 
in Chapter 2, there will be a before, a between, and an after. But let’s keep it 
simple for now.)

The important thing to know is that reaching the base case doesn’t nec-
essarily mean reaching the end of the recursive algorithm. It only means 
the base case won’t continue to make recursive calls.



16   Chapter 1

For example, consider this countDownAndUp.py program whose recur-
sive function counts from any number down to zero, and then back up to 
the number:

Python def countDownAndUp(number):
  1 print(number)
    if number == 0:
        # BASE CASE
      2 print('Reached the base case.')
        return
    else:
        # RECURSIVE CASE
      3 countDownAndUp(number - 1)
      4 print(number, 'returning')
        return

5 countDownAndUp(3)

Here is the equivalent countDownAndUp.html program:

JavaScript <script type="text/javascript">
function countDownAndUp(number) {
  1 document.write(number + "<br />");
    if (number === 0) {
        // BASE CASE
      2 document.write("Reached the base case.<br />");
        return;
    } else {
        // RECURSIVE CASE
      3 countDownAndUp(number - 1);
      4 document.write(number + " returning<br />");
        return;
    }
}

5 countDownAndUp(3);
</script>

When you run this code, the output looks like this:

3
2
1
0
Reached the base case.
1 returning
2 returning
3 returning

Remember that every time a function is called, a new frame is cre-
ated and pushed onto the call stack. This frame is where all the local vari-
ables and parameters (such as number) are stored. So, there is a separate 



What Is Recursion?   17

number variable for each frame on the call stack. This is another often con-
fusing point about recursion: even though, from the source code, it looks 
like there is only one number variable, remember that because it is a local 
variable, there is actually a different number variable for each function call.

When countDownAndUp(3) is called 5, a frame is created, and that frame’s 
local number variable is set to 3. The function prints the number variable to the 
screen 1. As long as number isn’t 0, countDownAndUp() is recursively called with 
number - 1 3. When it calls countDownAndUp(2), a new frame is pushed onto 
the stack, and that frame’s local number variable is set to 2. Again, the recur-
sive case is reached and calls countDownAndUp(1), which again reaches the 
recursive case and calls countDownAndUp(0).

This pattern of making consecutive recursive function calls and then 
returning from the recursive function calls is what causes the countdown 
of numbers to appear. Once countDownAndUp(0) is called, the base case is 
reached 2, and no more recursive calls are made. However, this isn’t the 
end of our program! When the base case is reached, the local number vari-
able is 0. But when that base case returns, and the frame is popped off 
the call stack, the frame under it has its own local number variable, with the 
same 1 value it’s always had. As the execution returns back to the previous 
frames in the call stack, the code after the recursive call is executed 4. 
This is what causes the count up of numbers to appear. Figure 1-9 shows 
the state of the call stack as countDownAndUp() is recursively called and then 
returns.

Empty

countDownAndUp()

number = 1

countDownAndUp()

number = 2

countDownAndUp()

number = 3

countDownAndUp()

number = 2

countDownAndUp()

number = 1

countDownAndUp()

number = 0

Empty

countDownAndUp()

number = 3

Figure 1-9: The call stack keeping track of the values in the number local variable for each function call



18   Chapter 1

The fact that the code doesn’t stop immediately when the base case is 
reached will be important to keep in mind for the factorial calculation in 
the next chapter. Remember, any code after the recursive case will still have 
to run.

At this point, you might be thinking that the recursive countDownAndUp() 
function is overengineered and difficult to follow. Why not, instead, use 
an iterative solution to print numbers? An iterative approach, which uses 
loops to repeat a task until it’s done, is usually thought of as the opposite of 
recursion. 

Whenever you find yourself asking, “Wouldn’t using a loop be easier?” 
the answer is almost certainly “Yes,” and you should avoid the recursive solu-
tion. Recursion can be tricky for both beginner and experienced program-
mers, and recursive code isn’t automatically “better” or “more elegant” than 
iterative code. Readable, easy-to-understand code is more important than 
any supposed elegance that recursion provides. However, on some occa-
sions an algorithm cleanly maps to a recursive approach. Algorithms that 
involve tree-like data structures and require backtracking are especially 
suited for recursion. These ideas are further explored in Chapters 2 and 4. 

Summary
Recursion often confuses new programmers, but it is built on the simple 
idea that a function can call itself. Every time a function call is made, a 
new frame object with information related to the call (such as local vari-
ables and a return address for the execution to move to when the function 
returns) is added to the call stack. The call stack, being a stack data struc-
ture, can be altered only by having data added to or removed from its “top.” 
This is called pushing to and popping from the stack, respectively.

The call stack is handled by the program implicitly, so there is no call 
stack variable. Calling a function pushes a frame object to the call stack, 
and returning from a function pops a frame object from the call stack.

Recursive functions have recursive cases, those in which a recursive call 
is made, and base cases, those where the function simply returns. If there 
is no base case or a bug prevents a base case from being run, the execution 
causes a stack overflow that crashes the program.

Recursion is a useful technique, but recursion doesn’t automatically 
make code “better” or more “elegant.” This idea is explored more in the 
next chapter.

Further Reading
You can find other introductions to recursion in my 2018 North Bay Python 
conference talk, “Recursion for Beginners: A Beginner’s Guide to Recursion,” 
at https://youtu.be/AfBqVVKg4GE. The YouTube channel Computerphile also 
introduces recursion in its video “What on Earth is Recursion?” at https://
youtu.be/Mv9NEXX1VHc. Finally, V. Anton Spraul talks about recursion in 
his book Think Like a Programmer (No Starch Press, 2012) and in his video 

https://youtu.be/AfBqVVKg4GE
https://youtu.be/Mv9NEXX1VHc
https://youtu.be/Mv9NEXX1VHc


What Is Recursion?   19

“Recursion (Think Like a Programmer)” at https://youtu.be/oKndim5-G94. 
Wikipedia’s article on recursion goes into great detail at https://en.wikipedia 
.org/wiki/Recursion.

You can install the ShowCallStack module for Python. This module adds 
a showcallstack() function that you can place anywhere in your code to see 
the state of the call stack at that particular point in your program. You can 
download the module and find instructions for it at https://pypi.org/project/
ShowCallStack.

Practice Questions
Test your comprehension by answering the following questions:

	 1.	 In general, what is a recursive thing?

	 2.	 In programming, what is a recursive function?

	 3.	 What four features do functions have?

	 4.	 What is a stack?

	 5.	 What are the terms for adding and removing values to and from the top 
of a stack?

	 6.	 Say you push the letter J to a stack, then push the letter Q , then pop the 
stack, then push the letter K, then pop the stack again. What does the 
stack look like?

	 7.	 What is pushed and popped onto the call stack?

	 8.	 What causes a stack overflow to happen?

	 9.	 What is a base case?

	10.	 What is a recursive case?

	11.	 How many base cases and recursive cases do recursive functions have?

	12.	 What happens if a recursive function has zero base cases?

	13.	 What happens if a recursive function has zero recursive cases?

https://youtu.be/oKndim5-G94
https://en.wikipedia.org/wiki/Recursion
https://en.wikipedia.org/wiki/Recursion
https://pypi.org/project/ShowCallStack
https://pypi.org/project/ShowCallStack




2
R E C U R S I O N  V S .  I T E R A T I O N

Neither recursion nor iteration is a superior 
technique in general. In fact, any recursive 

code can be written as iterative code with a 
loop and a stack. Recursion doesn’t have some 

special power enabling it to perform calculations that 
an iterative algorithm cannot. And any iterative loop 
can be rewritten as a recursive function. 

This chapter compares and contrasts recursion and iteration. We’ll 
look at the classic Fibonacci and factorial functions and see why their 
recursive algorithms have critical weaknesses. We’ll also explore the 
insights a recursive approach can yield by considering an exponent algo-
rithm. Altogether this chapter shines light on the supposed elegance of 
recursive algorithms and shows when a recursive solution is useful and 
when it is not.

T H E R E C U R S I V E 

B O O K O F 

R E C U R S I O N

A C E T H E C O D I N G I N T E R V I E W
W I T H 

P Y T H O N A N D J A V A S C R I P T

T H E
R E C U R S I V E 

B O O K
O F 

R E C U R S I O N

A C E T H E C O D I N G I N T E R V I E W
W I T H

P Y T H O N A N D J A V A S C R I P T

THE RECURSIVE

BOOKOF 

RECURSION

ACETHE
CODING

INTERVI
EWWIT

H

PYTHON
ANDJAV

ASCRIP
T



22   Chapter 2

Calculating Factorials
Many computer science courses use factorial calculation as a classic example 
of a recursive function. The factorial of an integer (let’s call it n) is the prod-
uct of all integers from 1 to n. For example, the factorial of 4 is 4 × 3 × 2 × 1,  
or 24. An exclamation mark is the math notation for factorials, as in 4!, which 
means the factorial of 4. Table 2-1 shows the first few factorials.

Table 2-1: Factorials of the First Few Integers

n! Expanded form Product

1! = 1 = 1

2! = 1 × 2 = 2

3! = 1 × 2 × 3 = 6

4! = 1 × 2 × 3 × 4 = 24

5! = 1 × 2 × 3 × 4 × 5 = 120

6! = 1 × 2 × 3 × 4 × 5 × 6 = 720

7! = 1 × 2 × 3 × 4 × 5 × 6 × 7 = 5,040

8! = 1 × 2 × 3 × 4 × 5 × 6 × 7 × 8 = 40,320

Factorials are used in all sorts of calculations—for example, finding the 
number of permutations for something. If you want to know the number 
of ways that exist to order four people—Alice, Bob, Carol, and David—in 
a line, the answer is the factorial of 4. Four possible people can be first in 
line (4); then for each of those four options, three remaining people can be 
second in line (4 × 3); then two people can be third in line (4 × 3 × 2); and 
the last person left will be fourth in line (4 × 3 × 2 × 1). The number of ways 
people can be ordered in line—that is, the number of permutations—is the 
factorial of the number of people.

Now let’s examine both an iterative and a recursive approach to calculat-
ing factorials.

The Iterative Factorial Algorithm
Calculating factorials iteratively is fairly straightforward: multiply the inte-
gers 1 up to and including n in a loop. Iterative algorithms always use a loop. 
A factorialByIteration.py program looks like this:

Python def factorial(number):
    product = 1
    for i in range(1, number + 1):
        product = product * i
    return product
print(factorial(5))



Recursion vs. Iteration   23

And a factorialByIteration.html program looks like this:

JavaScript <script type="text/javascript">
function factorial(number) {
    let product = 1;
    for (let i = 1; i <= number; i++) {
        product = product * i;
    }
    return product;
}
document.write(factorial(5));
</script>

When you run this code, the output displays the calculation for 5!  
like this:

120

There’s nothing wrong with the iterative solution for calculating facto-
rials; it’s straightforward and gets the job done. But let’s also take a look at 
the recursive algorithm for insights into the nature of factorials and recur-
sion itself.

The Recursive Factorial Algorithm
Notice that the factorial of 4 is 4 × 3 × 2 × 1, and the factorial of 5 is 5 × 4 × 
3 × 2 × 1. So you could say that 5! = 5 × 4!. This is recursive because the defi-
nition of the factorial of 5 (or any number n) includes the definition of the 
factorial of 4 (the number n – 1). In turn, 4! = 4 × 3!, and so on, until you 
must calculate 1!, the base case, which is simply 1.

The factorialByRecursion.py Python program uses a recursive factorial 
algorithm:

Python def factorial(number):
    if number == 1:
        # BASE CASE
        return 1
    else:
        # RECURSIVE CASE
      1 return number * factorial(number - 1)
print(factorial(5))

And the factorialByRecursion.html JavaScript program with equivalent 
code looks like this:

JavaScript <script type="text/javascript">
function factorial(number) {
    if (number == 1) {
        // BASE CASE
        return 1;



24   Chapter 2

    } else {
        // RECURSIVE CASE
      1 return number * factorial(number - 1);
    }
}
document.write(factorial(5));
</script>

When you run this code to calculate 5! recursively, the output matches 
the iterative program’s output:

120

To many programmers, this recursive code looks strange. You know 
that factorial(5) must compute 5 × 4 × 3 × 2 × 1, but it’s hard to point to the 
line of code where this multiplication is taking place.

The confusion arises because the recursive case has one line 1, half 
of which is executed before the recursive call and half of which takes place 
after the recursive call returns. We aren’t used to the idea of only half of a 
line of code executing at a time. 

The first half is factorial(number - 1). This involves calculating number - 1  
and making a recursive function, causing a new frame object to be pushed 
to the call stack. This happens before the recursive call is made.

The next time the code runs with the old frame object is after factorial 
(number - 1) has returned. When factorial(5) is called, factorial(number - 1) 
will be factorial(4), which returns 24. This is when the second half of the line 
runs. The return number * factorial(number - 1) now looks like return 5 * 24, 
which is why factorial(5) returns 120.

Figure 2-1 tracks the state of the call stack as frame objects are pushed 
(which happens as recursive function calls are made) and frame objects are 
popped (as recursive function calls return). Notice that the multiplication 
happens after the recursive calls are made, not before.

When the original function call to factorial() returns, it returns the 
calculated factorial.

Why the Recursive Factorial Algorithm Is Terrible
The recursive implementation for calculating factorials has a critical weak-
ness. Calculating the factorial of 5 requires five recursive function calls. 
This means five frame objects are placed on the call stack before the base 
case is reached. This doesn’t scale. 

If you want to calculate the factorial of 1,001, the recursive factorial() 
function must make 1,001 recursive function calls. However, your program 
is likely to cause a stack overflow before it can finish, because making so 
many function calls without returning would exceed the maximum call 
stack size of the interpreter. This is terrible; you would never want to use a 
recursive factorial function in real-world code. 



Recursion vs. Iteration   25

Empty

factorial()

number = 3

Returns:
3 * factorial(2)

factorial()

number = 2

Returns:
2 * factorial(1)

factorial()

number = 1

Returns:
1

factorial()

number = 4

Returns:
4 * factorial(3)

factorial()

number = 5

Returns:
5 * factorial(4)

factorial()

number = 4

Returns:
4 * 6

factorial()

number = 5

Returns:
5 * 24

factorial()

number = 3

Returns:
3 * 2

factorial()

number = 2

Returns:
2 * 1

Figure 2-1: The state of the call stack as the recursive calls to factorial() are called and then return

The iterative factorial algorithm, on the other hand, will complete 
the calculation quickly and efficiently. The stack overflow can be avoided 
using a technique available in some programming languages called tail call 
optimization. Chapter 8 covers this topic. However, this technique further 
complicates the implementation of the recursive function. For calculating 
factorials, the iterative approach is the simplest and most direct.

Calculating the Fibonacci Sequence
The Fibonacci sequence is another classic example for introducing recursion. 
Mathematically, the Fibonacci sequence of integers begins with the num-
bers 1 and 1 (or sometimes, 0 and 1). The next number in the sequence is 



26   Chapter 2

the sum of the previous two numbers. This creates the sequence 1, 1, 2, 3, 5, 
8, 13, 21, 34, 55, 89, 144, and so on, forever.

If we call the latest two numbers in the sequence a and b, you can see in 
Figure 2-2 how the sequence grows.

1 1   2  
a b a + b

1 1   3  
a

2
b a + b

1 1 32
a b

  5  
a + b

1 1 32
a

5
b

  8  
a + b

1 1 32 5
a

8
b

 13 
a + b

1 1 32 5 8
a

13
b

 21 
a + b

Figure 2-2: Each number  
of the Fibonacci sequence  
is the sum of the previous  
two numbers.

Let’s explore some code examples of both the iterative and recursive 
solutions for generating Fibonacci numbers.

The Iterative Fibonacci Algorithm
The iterative Fibonacci example is straightforward, consisting of a simple 
for loop and two variables, a and b. This fibonacciByIteration.py Python pro-
gram implements the iterative Fibonacci algorithm:

Python def fibonacci(nthNumber):
  1 a, b = 1, 1
    print('a = %s, b = %s' % (a, b))
    for i in range(1, nthNumber):
      2 a, b = b, a + b # Get the next Fibonacci number.
        print('a = %s, b = %s' % (a, b))
    return a

print(fibonacci(10))

This fibonacciByIteration.html program has the equivalent JavaScript code:

JavaScript <script type="text/javascript">
function fibonacci(nthNumber) {
  1 let a = 1, b = 1;
    let nextNum;
    document.write('a = ' + a + ', b = ' + b + '<br />');
    for (let i = 1; i < nthNumber; i++) {
      2 nextNum = a + b; // Get the next Fibonacci number.
        a = b;
        b = nextNum;



Recursion vs. Iteration   27

        document.write('a = ' + a + ', b = ' + b + '<br />');
    }
    return a;
};

document.write(fibonacci(10));
</script>

When you run this code to calculate the 10th Fibonacci number, the 
output looks like this:

a = 1, b = 1
a = 1, b = 2
a = 2, b = 3
--snip--
a = 34, b = 55
55

The program needs to track only the latest two numbers of the sequence 
at a time. Since the first two numbers in the Fibonacci sequence are defined 
as 1, we store 1 in variables a and b 1. Inside the for loop, the next number 
in the sequence is calculated by adding a and b 2, which becomes the next 
value of b, while a obtains the previous value of b. By the time the loop is fin-
ished, b contains the nth Fibonacci number, so it is returned.

The Recursive Fibonacci Algorithm
Calculating Fibonacci numbers involves a recursive property. For example, 
if you want to calculate the 10th Fibonacci number, you add the ninth and 
eighth Fibonacci numbers together. To calculate those Fibonacci numbers, 
you add the eighth and seventh, then the seventh and sixth Fibonacci num-
bers. A lot of repeat calculations occur: notice that adding the ninth and 
eighth Fibonacci numbers involves calculating the eighth Fibonacci number 
again. You continue this recursion until you reach the base case of the first 
or second Fibonacci number, which is always 1.

The recursive Fibonacci function is in this fibonacciByRecursion.py 
Python program:

def fibonacci(nthNumber):
    print('fibonacci(%s) called.' % (nthNumber))
    if nthNumber == 1 or nthNumber == 2: 1
        # BASE CASE
        print('Call to fibonacci(%s) returning 1.' % (nthNumber))
        return 1
    else:
        # RECURSIVE CASE
        print('Calling fibonacci(%s) and fibonacci(%s).' % (nthNumber - 1, nthNumber - 2))
        result = fibonacci(nthNumber - 1) + fibonacci(nthNumber - 2)
        print('Call to fibonacci(%s) returning %s.' % (nthNumber, result))
        return result

print(fibonacci(10))



28   Chapter 2

This fibonacciByRecursion.html file has the equivalent JavaScript program:

<script type="text/javascript">
function fibonacci(nthNumber) {
    document.write('fibonacci(' + nthNumber + ') called.<br />');
    if (nthNumber === 1 || nthNumber === 2) { 1
        // BASE CASE
        document.write('Call to fibonacci(' + nthNumber + ') returning 1.<br />');
        return 1;
    }
    else {
        // RECURSIVE CASE
        document.write('Calling fibonacci(' + (nthNumber - 1) + ') and fibonacci(' + (nthNumber 
- 2) + ').<br />');
        let result = fibonacci(nthNumber - 1) + fibonacci(nthNumber - 2);
        document.write('Call to fibonacci(' + nthNumber + ') returning ' + result + '.<br />');
        return result;
    }
}

document.write(fibonacci(10) + '<br />');
</script>

When you run this code to calculate the 10th Fibonacci number, the 
output looks like this:

fibonacci(10) called.
Calling fibonacci(9) and fibonacci(8).
fibonacci(9) called.
Calling fibonacci(8) and fibonacci(7).
fibonacci(8) called.
Calling fibonacci(7) and fibonacci(6).
fibonacci(7) called.
--snip--
Call to fibonacci(6) returning 8.
Call to fibonacci(8) returning 21.
Call to fibonacci(10) returning 55.
55

Much of the code is for displaying this output, but the fibonacci() func-
tion itself is simple. The base case—the circumstances where recursive calls 
are no longer made—occurs when nthNumber is 1 or 2 1. In this case, the 
function returns 1 since the first and second Fibonacci numbers are always 1. 
Any other case is a recursive case, so the value that is returned is the sum of 
fibonacci(nthNumber ‑ 1) and fibonacci(nthNumber ‑ 2). As long as the original 
nthNumber argument is an integer greater than 0, these recursive calls will even-
tually reach the base case and stop making more recursive calls.

Remember how the recursive factorial example had a “before the recur-
sive call” and “after the recursive call” part? Because the recursive Fibonacci 
algorithm makes two recursive calls in its recursive case, you should keep in 
mind that it has three parts: “before the first recursive call,” “after the first 



Recursion vs. Iteration   29

recursive call but before the second recursive call,” and “after the second 
recursive call.” But the same principles apply. And don’t think that because a 
base case is reached, no more code remains to run after either recursive call. 
The recursive algorithm is finished only after the original function call has 
returned.

You might ask, “Isn’t the iterative Fibonacci solution simpler than the 
recursive Fibonacci solution?” The answer is “Yes.” Even worse, the recursive 
solution has a critical inefficiency that is explained in the next section.

Why the Recursive Fibonacci Algorithm Is Terrible
Like the recursive factorial algorithm, the recursive Fibonacci algorithm 
also suffers from a critical weakness: it repeats the same calculations over 
and over. Figure 2-3 shows how calling fibonacci(6), marked in the tree dia-
gram as fib(6) for brevity, calls fibonacci(5) and fibonacci(4).

fib(5)

fib(4) fib(3)

fib(6)

fib(3) fib(2)

fib(2) fib(1) 1

1 1

fib(4)

fib(3) fib(2)

fib(2) fib(1) 1

1 11 1

fib(2) fib(1)

Figure 2-3: A tree diagram of the recursive function calls made  
starting with fibonacci(6). The redundant function calls are in gray.

This causes a cascade of other function calls until they reach the 
base cases of fibonacci(2) and fibonacci(1), which return 1. But notice 
that fibonacci(4) is called twice, and fibonacci(3) is called three times, 
and so on. This slows the overall algorithm with unnecessarily repeated 
calculations. This inefficiency gets worse as the Fibonacci number you 
want to calculate gets larger. While the iterative Fibonacci algorithm can 
complete fibonacci(100) in less than a second, the recursive algorithm 
would take over a million years to complete.

Converting a Recursive Algorithm into an Iterative Algorithm
Converting a recursive algorithm into an iterative algorithm is always pos-
sible. While recursive functions repeat a calculation by calling themselves, 
this repetition can be performed instead by a loop. Recursive functions 
also make use of the call stack; however, an iterative algorithm can replace 
this with a stack data structure. Thus, any recursive algorithm can be per-
formed iteratively by using a loop and a stack.



30   Chapter 2

To demonstrate this, here is factorialEmulateRecursion.py, a Python 
program that implements an iterative algorithm to emulate a recursive 
algorithm: 

callStack = [] # The explicit call stack, which holds "frame objects". 1
callStack.append({'returnAddr': 'start', 'number': 5}) # "Call" the "factorial() function". 2
returnValue = None

while len(callStack) > 0:
    # The body of the "factorial() function":

    number = callStack[-1]['number'] # Set number parameter.
    returnAddr = callStack[-1]['returnAddr']

    if returnAddr == 'start':
        if number == 1:
            # BASE CASE
            returnValue = 1
            callStack.pop() # "Return" from "function call". 3
            continue
        else:
            # RECURSIVE CASE
            callStack[-1]['returnAddr'] = 'after recursive call'
            # "Call" the "factorial() function":
            callStack.append({'returnAddr': 'start', 'number': number - 1}) 4
            continue
    elif returnAddr == 'after recursive call':
        returnValue = number * returnValue
        callStack.pop() # "Return from function call". 5
        continue

print(returnValue)

The factorialEmulateRecursion.html program holds the equivalent 
JavaScript:

<script type="text/javascript">
let callStack = []; // The explicit call stack, which holds "frame objects". 1
callStack.push({"returnAddr": "start", "number": 5}); // "Call" the "factorial() function". 2
let returnValue;

while (callStack.length > 0) {
// The body of the "factorial() function":
    let number = callStack[callStack.length ‑ 1]["number"]; // Set number parameter.
    let returnAddr = callStack[callStack.length ‑ 1]["returnAddr"];

    if (returnAddr == "start") {
        if (number === 1) {
            // BASE CASE
            returnValue = 1;
            callStack.pop(); // "Return" from "function call". 3
            continue;
        } else {
            // RECURSIVE CASE



Recursion vs. Iteration   31

            callStack[callStack.length ‑ 1]["returnAddr"] = "after recursive call";
            // "Call" the "factorial() function":
            callStack.push({"returnAddr": "start", "number": number - 1}); 4
            continue;
        }
    } else if (returnAddr == "after recursive call") {
        returnValue = number * returnValue;
        callStack.pop(); // "Return from function call". 5
        continue;
    }
}

document.write(returnValue + "<br />");
</script> 

Notice that this program doesn’t have a recursive function; it doesn’t 
have any functions at all! The program emulates recursive function calls by 
using a list as a stack data structure (stored in the callStack variable 1) to 
mimic the call stack. A dictionary storing the return address information 
and nthNumber local variable emulates a frame object 2. The program emu-
lates function calls by pushing these frame objects onto the call stack 4, 
and it emulates returning from a function call by popping frame objects off 
the call stack 35.

Any recursive function can be written iteratively this way. Although this 
code is incredibly difficult to understand and you’d never write a real-world 
factorial algorithm this way, it does demonstrate that recursion has no 
innate capability that iterative code does not have.

Converting an Iterative Algorithm into a Recursive Algorithm
Likewise, converting an iterative algorithm into a recursive algorithm is always 
possible. An iterative algorithm is simply code that uses a loop. The code that 
is repeatedly executed (the loop’s body) can be placed in a recursive function’s 
body. And just as the code in the loop’s body is executed repeatedly, we need 
to repeatedly call the function to execute its code. We can do this by calling 
the function from the function itself, creating a recursive function.

The Python code in hello.py demonstrates printing Hello, world! five 
times by using a loop and then also using a recursive function:

Python print('Code in a loop:')
i = 0
while i < 5:
    print(i, 'Hello, world!')
    i = i + 1

print('Code in a function:')
def hello(i=0):
    print(i, 'Hello, world!')
    i = i + 1
    if i < 5:
        hello(i) # RECURSIVE CASE



32   Chapter 2

    else:
        return # BASE CASE
hello()

The equivalent JavaScript code is in hello.html:

JavaScript <script type="text/javascript">
document.write("Code in a loop:<br />");
let i = 0;
while (i < 5) {
    document.write(i + " Hello, world!<br />");
    i = i + 1;
}

document.write("Code in a function:<br />");
function hello(i) {
    if (i === undefined) {
        i = 0; // i defaults to 0 if unspecified.
    }

    document.write(i + " Hello, world!<br />");
    i = i + 1;
    if (i < 5) {
        hello(i); // RECURSIVE CASE
    }
    else {
        return; // BASE CASE
    }
}
hello();
</script>

The output of these programs looks like this:

Code in a loop:
0 Hello, world!
1 Hello, world!
2 Hello, world!
3 Hello, world!
4 Hello, world!
Code in a function:
0 Hello, world!
1 Hello, world!
2 Hello, world!
3 Hello, world!
4 Hello, world!

The while loop has a condition, i < 5, that determines whether the pro-
gram keeps looping. Similarly, the recursive function uses this condition for 
its recursive case, which causes the function to call itself and execute the 
Hello, world! to display its code again.

For a more real-world example, the following are iterative and recur-
sive functions that return the index of a substring, needle, in a string, 



Recursion vs. Iteration   33

haystack. The functions return -1 if the substring isn’t found. This is 
similar to Python’s find() string method and JavaScript’s indexOf() string 
method. This findSubstring.py program has a Python version:

Python def findSubstringIterative(needle, haystack):
    i = 0
    while i < len(haystack):
        if haystack[i:i + len(needle)] == needle:
            return i # Needle found.
        i = i + 1
    return -1 # Needle not found.

def findSubstringRecursive(needle, haystack, i=0):
    if i >= len(haystack):
        return -1 # BASE CASE (Needle not found.)

    if haystack[i:i + len(needle)] == needle:
        return i # BASE CASE (Needle found.)
    else:
        # RECURSIVE CASE
        return findSubstringRecursive(needle, haystack, i + 1)

print(findSubstringIterative('cat', 'My cat Zophie'))
print(findSubstringRecursive('cat', 'My cat Zophie'))

This findSubstring.html program has the equivalent JavaScript version:

JavaScript <script type="text/javascript">
function findSubstringIterative(needle, haystack) {
    let i = 0;
    while (i < haystack.length) {
        if (haystack.substring(i, i + needle.length) == needle) {
            return i; // Needle found.
        }
        i = i + 1
    }
    return -1; // Needle not found.
}

function findSubstringRecursive(needle, haystack, i) {
    if (i === undefined) {
        i = 0;
    }

    if (i >= haystack.length) {
        return -1; // # BASE CASE (Needle not found.)
    }

    if (haystack.substring(i, i + needle.length) == needle) {
        return i; // # BASE CASE (Needle found.)
    } else {
        // RECURSIVE CASE
        return findSubstringRecursive(needle, haystack, i + 1);
    }



34   Chapter 2

}

document.write(findSubstringIterative("cat", "My cat Zophie") + "<br />");
document.write(findSubstringRecursive("cat", "My cat Zophie") + "<br />");
</script>

These programs make a call to findSubstringIterative() and findSubstring 
Recursive(), which return 3 because that is the index where cat is found in My 
cat Zophie:

3
3

The programs in this section demonstrate that it is always possible to 
turn any loop into an equivalent recursive function. While replacing a loop 
with recursion is possible, I advise against it. This is doing recursion for 
recursion’s sake, and since recursion is often harder to understand than 
iterative code, code readability deteriorates.

Case Study: Calculating Exponents
Although recursion doesn’t necessarily produce better code, taking a recur-
sive approach can give you new insights into your programming problem. 
As a case study, let’s examine how to calculate exponents.

Exponents are calculated by multiplying a number by itself. For example, 
the exponent “three raised to the sixth power,” or 36, is equal to multiply-
ing 3 by itself six times: 3 × 3 × 3 × 3 × 3 × 3 = 729. This is such a common 
operation that Python has the ** operator and JavaScript has the built-in 
Math.pow() function to perform exponentiation. We can calculate 36 with the 
Python code 3 ** 6 and with the JavaScript code Math.pow(3, 6). 

But let’s write our own exponent-calculating code. The solution is 
straightforward: create a loop that repeatedly multiplies a number by itself 
and returns the final product. Here is an iterative exponentByIteration.py 
Python program:

Python def exponentByIteration(a, n):
    result = 1
    for i in range(n):
        result *= a
    return result

print(exponentByIteration(3, 6))
print(exponentByIteration(10, 3))
print(exponentByIteration(17, 10))

And here is an equivalent JavaScript exponentByIteration.html program:

JavaScript <script type="text/javascript">
function exponentByIteration(a, n) {
    let result = 1;
    for (let i = 0; i < n; i++) {



Recursion vs. Iteration   35

        result *= a;
    }
    return result;
}

document.write(exponentByIteration(3, 6) + "<br />");
document.write(exponentByIteration(10, 3) + "<br />");
document.write(exponentByIteration(17, 10) + "<br />");
</script>

When you run these programs, the output looks like this:

729
1000
2015993900449

This is a straightforward calculation that we can easily write with a loop. 
The downside to using a loop is that the function slows as the exponents 
get larger: calculating 312 takes twice as long as 36, and 3600 takes one hun-
dred times as long as 36. In the next section, we address this by thinking 
recursively.

Creating a Recursive Exponents Function
Let’s think of what a recursive solution for the exponentiation of, say, 36 
would be. Because of the associative property of multiplication, 3 × 3 ×  
3 × 3 × 3 × 3 is the same as (3 × 3 × 3) × (3 × 3 × 3), which is the same as  
(3 × 3 × 3)2. And since (3 × 3 × 3) is the same as 33, we can determine that 36 
is the same as (33)2. This is an example of what mathematics calls the power 
rule: (am)n = amn. Mathematics also gives us the product rule: an × am = an + m, 
including an × a = an + 1.

We can use these mathematical rules to make an exponentByRecursion() 
function. If exponentByRecursion(3, 6) is called, it’s the same as exponentBy 
Recursion(3, 3) * exponentByRecursion(3, 3). Of course, we don’t actually have 
to make both exponentByRecursion(3, 3) calls: we could just save the return 
value to a variable and multiply it by itself.

That works for even-numbered exponents, but what about for odd-
numbered exponents? If we had to calculate 37, or 3 × 3 × 3 × 3 × 3 × 3 × 3, 
this is the same as (3 × 3 × 3 × 3 × 3 × 3) × 3, or (36) × 3. Then we can make 
the same recursive call to calculate 36. 

N O T E 	 A simple programming trick for determining whether an integer is odd or even uses 
the modulus operator (%). Any even integer mod 2 results in 0, and any odd integer 
mod 2 results in 1.

Those are the recursive cases, but what are the base cases? Mathemati
cally speaking, any number to the zeroth power is defined as 1, while any 
number to the first power is the number itself. So for any function call 
exponentByRecursion(a, n), if n is 0 or 1, we can simply return 1 or a, respec-
tively, because a0 is always 1 and a1 is always a.



36   Chapter 2

Using all this information, we can write code for the exponentBy 
Recursion() function. Here is an exponentByRecursion.py file with the 
Python code:

Python def exponentByRecursion(a, n):
    if n == 1:
        # BASE CASE
        return a
    elif n % 2 == 0:
        # RECURSIVE CASE (When n is even.)
        result = exponentByRecursion(a, n // 2)
        return result * result
    elif n % 2 == 1:
        # RECURSIVE CASE (When n is odd.)
        result = exponentByRecursion(a, n // 2)
        return result * result * a

print(exponentByRecursion(3, 6))
print(exponentByRecursion(10, 3))
print(exponentByRecursion(17, 10))

And here is the equivalent JavaScript code in exponentByRecursion.html:

JavaScript <script type="text/javascript">
function exponentByRecursion(a, n) {
    if (n === 1) {
        // BASE CASE
        return a;
    } else if (n % 2 === 0) {
        // RECURSIVE CASE (When n is even.)
        result = exponentByRecursion(a, n / 2);
        return result * result;
    } else if (n % 2 === 1) {
        // RECURSIVE CASE (When n is odd.)
        result = exponentByRecursion(a, Math.floor(n / 2));
        return result * result * a;
    }
}

document.write(exponentByRecursion(3, 6));
document.write(exponentByRecursion(10, 3));
document.write(exponentByRecursion(17, 10));
</script>

When you run this code, the output is identical to the iterative version:

729
1000
2015993900449

Each recursive call effectively cuts the problem size in half. This is what 
makes our recursive exponent algorithm faster than the iterative version; 
calculating 31000 iteratively entails 1,000 multiplication operations, while 



Recursion vs. Iteration   37

doing it recursively requires only 23 multiplications and divisions. When 
running the Python code under a performance profiler, calculating 31000 
iteratively 100,000 times takes 10.633 seconds, but the recursive calculation 
takes only 0.406 seconds. That is a huge improvement!

Creating an Iterative Exponents Function Based on Recursive Insights
Our original iterative exponents function took a straightforward approach: 
loop the same number of times as the exponent power. However, this 
doesn’t scale well for larger powers. Our recursive implementation forced 
us to think about how to break this problem into smaller subproblems. This 
approach turns out to be much more efficient.

Because every recursive algorithm has an equivalent iterative algo-
rithm, we could make a new iterative exponents function based on the 
power rule that the recursive algorithm uses. The following exponentWith 
PowerRule.py program has such a function:

Python def exponentWithPowerRule(a, n):
    # Step 1: Determine the operations to be performed.
    opStack = []
    while n > 1:
        if n % 2 == 0:
            # n is even.
            opStack.append('square')
            n = n // 2
        elif n % 2 == 1:
            # n is odd.
            n -= 1
            opStack.append('multiply')

    # Step 2: Perform the operations in reverse order.
    result = a # Start result at `a`.
    while opStack:
        op = opStack.pop()

        if op == 'multiply':
            result *= a
        elif op == 'square':
            result *= result

    return result

print(exponentWithPowerRule(3, 6))
print(exponentWithPowerRule(10, 3))
print(exponentWithPowerRule(17, 10))

Here is the equivalent JavaScript program in exponentWithPowerRule.html:

JavaScript <script type="text/javascript">
function exponentWithPowerRule(a, n) {
    // Step 1: Determine the operations to be performed.
    let opStack = [];
    while (n > 1) {



38   Chapter 2

        if (n % 2 === 0) {
            // n is even.
            opStack.push("square");
            n = Math.floor(n / 2);
        } else if (n % 2 === 1) {
            // n is odd.
            n -= 1;
            opStack.push("multiply");
        }
    }

    // Step 2: Perform the operations in reverse order.
    let result = a; // Start result at `a`.
    while (opStack.length > 0) {
        let op = opStack.pop();

        if (op === "multiply") {
            result = result * a;
        } else if (op === "square") {
            result = result * result;
        }
    }

    return result;
}

document.write(exponentWithPowerRule(3, 6) + "<br />");
document.write(exponentWithPowerRule(10, 3) + "<br />");
document.write(exponentWithPowerRule(17, 10) + "<br />");
</script>

Our algorithm keeps reducing n by dividing it in half (if it’s even) or 
subtracting 1 (if it’s odd) until it is 1. This gives us the squaring or multiply-
by-a operations we have to perform. After finishing this step, we perform 
these operations in reverse order. A generic stack data structure (separate 
from the call stack) is useful for reversing the order of these operations 
since it’s a first-in, last-out data structure. The first step pushes squaring 
or multiply-by-a operations to a stack in the opStack variable. In the second 
step, it performs these operations as it pops them off the stack.

For example, calling exponentWithPowerRule(6, 5) to calculate 65 sets a as 6 
and n as 5. The function notes that n is odd. This means we should subtract 
1 from n to get 4 and push a multiply-by-a operation to opStack. Now that n is 
4 (even), we divide it by 2 to get 2 and push a squaring operation to opStack. 
Since n is now 2 and even again, we divide it by 2 to get 1 and push another 
squaring operation to opStack. Now that n is 1, we are finished with this 
first step.

To perform the second step, we start the result as a (which is 6). We 
pop the opStack stack to get a squaring operation, telling the program to set 
result to result * result (that is, result2) or 36. We pop the next operation 
off opStack, and it is another squaring operation, so the program changes 
the 36 in result to 36 * 36, or 1296. We pop the last operation off opStack, and 
it is a multiply-by-a operation, so we multiply the 1296 in result by a (which 



Recursion vs. Iteration   39

is 6) to get 7776. There are no more operations on opStack, so the function 
is now finished. When we double-check our math, we find that 65 is indeed 
7,776.

The stack in opStack looks like Figure 2-4 as the function call exponent 
WithPowerRule(6, 5) executes.

Multiply

Push

Multiply Multiply Multiply Multiply Pop
Square

First step Second step

Square Square Pop
Pop

MultiplySquare

Square

Square

Push
Push

Figure 2-4: The stack in opStack during the exponentWithPowerRule(6, 5) function call

When you run this code, the output is identical to the other exponent 
programs:

729
1000
2015993900449

The iterative exponents function that uses the power rule has the 
improved performance of the recursive algorithm, while not suffering 
from the risk of a stack overflow. We might not have thought of this new, 
improved iterative algorithm without the insights of recursive thinking.

When Do You Need to Use Recursion?
You never need to use recursion. No programming problem requires recur-
sion. This chapter has shown that recursion has no magical power to do 
things that iterative code in a loop with a stack data structure cannot do. 
In fact, a recursive function might be an overcomplicated solution for what 
you’re trying to achieve.

However, as the exponent functions we created in the previous section 
show, recursion can provide new insights into how to think about our pro-
gramming problem. Three features of a programming problem, when pres-
ent, make it especially suitable to a recursive approach:

•	 It involves a tree-like structure.

•	 It involves backtracking.

•	 It isn’t so deeply recursive as to potentially cause a stack overflow.

A tree has a self-similar structure: the branching points look similar to 
the root of a smaller subtree. Recursion often deals with self-similarity and 
problems that can be divided into smaller, similar subproblems. The root of 



40   Chapter 2

the tree is analogous to the first call to a recursive function, the branching 
points are analogous to recursive cases, and the leaves are analogous to the 
base cases where no more recursive calls are made.

A maze is also a good example of a problem that has a tree-like struc-
ture and requires backtracking. In a maze, the branching points occur 
wherever you must pick one of many paths to follow. If you reach a dead 
end, you’ve encountered the base case. You must then backtrack to a previ-
ous branching point to select a different path to follow. 

Figure 2-5 shows a maze’s path visually morphed to look like a biologi-
cal tree. Despite the visual difference between the maze paths and the tree-
shaped paths, their branching points are related to each other in the same 
way. Mathematically, these graphs are equivalent. 

End

Start

End

Start

Figure 2-5: A maze (left) along with its interior paths (center) morphed to match a biologi-
cal tree’s shape (right)

Many programming problems have this tree-like structure at their core. 
For example, a filesystem has a tree-like structure; the subfolders look like 
the root folders of a smaller filesystem. Figure 2-6 compares a filesystem to 
a tree.

Root

Branching
point

Leaves

Leaves

C:\

bacon

fizz

spam.txt

spam.txt

eggs

spam.txt

spam.txt

Branching
point

Branching
point

Branching
point

Root

Figure 2-6: A filesystem is similar to a tree structure.



Recursion vs. Iteration   41

Searching for a specific filename in a folder is a recursive problem: you 
search the folder and then recursively search the folder’s subfolders. Folders 
with no subfolders are the base cases that cause the recursive searching to 
stop. If your recursive algorithm doesn’t find the filename it’s looking for, it 
backtracks to a previous parent folder and continues searching from there.

The third point is a matter of practicality. If your tree structure has so 
many levels of branches that a recursive function would cause a stack over-
flow before it can reach the leaves, then recursion isn’t a suitable solution.

On the other hand, recursion is the best approach for creating pro-
gramming language compilers. Compiler design is its own expansive sub-
ject and beyond the scope of this book. But programming languages have 
a set of grammar rules that can break source code into a tree structure 
similar to the way grammar rules can break English sentences into a tree 
diagram. Recursion is an ideal technique to apply to compilers.

We’ll identify many recursive algorithms in this book, and they often 
have the tree-like structure or backtracking features that lend themselves to 
recursion well.

Coming Up with Recursive Algorithms
Hopefully, this chapter has given you a firm idea of how recursive functions 
compare to the iterative algorithms you’re likely more familiar with. The 
rest of this book dives into the details of various recursive algorithms. But 
how should you go about writing your own recursive functions?

The first step is always to identify the recursive case and the base case. 
You can take a top-down approach by breaking the problem into subprob-
lems that are similar to the original problem but smaller; this is your recur-
sive case. Then consider when the subproblems are small enough to have a 
trivial answer; this is your base case. Your recursive function may have more 
than one recursive case or base case, but all recursive functions will always 
have at least one recursive case and at least one base case.

The recursive Fibonacci algorithm is an example. A Fibonacci num-
ber is the sum of the previous two Fibonacci numbers. We can break the 
problem of finding a Fibonacci number into the subproblems of finding 
two smaller Fibonacci numbers. We know the first two Fibonacci numbers 
are both 1, so that provides the base case answer once the subproblems are 
small enough.

Sometimes it helps to take a bottom-up approach and consider the base 
case first, and then see how larger and larger problems are constructed 
and solved from there. The recursive factorial problem is an example. The 
factorial of 1! is 1. This forms the base case. The next factorial is 2!, and 
you create it by multiplying 1! by 2. The factorial after that, 3!, is created by 
multiplying 2! by 3, and so on. From this general pattern, we can figure out 
what the recursive case for our algorithm will be.



42   Chapter 2

Summary
In this chapter, we covered calculating factorials and the Fibonacci sequence, 
two classic recursive programming problems. This chapter featured both 
iterative and recursive implementations for these algorithms. Despite being 
classic examples of recursion, their recursive algorithms suffer from critical 
flaws. The recursive factorial function can cause stack overflows, while the 
recursive Fibonacci function performs so many redundant calculations that 
it’s far too slow to be effective in the real world.

We explored how to create recursive algorithms from iterative algo-
rithms and how to create iterative algorithms from recursive algorithms. 
Iterative algorithms use a loop, and any recursive algorithm can be per-
formed iteratively by using a loop and a stack data structure. Recursion 
is often an overly complicated solution, but programming problems that 
involve a tree-like structure and backtracking are particularly suitable for 
recursive implementations.

Writing recursive functions is a skill that improves with practice and 
experience. The rest of this book covers several well-known recursion exam-
ples and explores their strengths and limitations.

Further Reading
You can find more information about comparing iteration and recursion 
in the Computerphile YouTube channel’s video “Programming Loops vs. 
Recursion” at https://youtu.be/HXNhEYqFo0o. If you want to compare the per-
formance of iterative and recursive functions, you need to learn how to use 
a profiler. Python profilers are explained in Chapter 13 of my book Beyond 
the Basic Stuff with Python (No Starch Press, 2020), which can be read at 
https://inventwithpython.com/beyond/chapter13.html. The official Python docu-
mentation also covers profilers at https://docs.python.org/3/library/profile.html.  
The Firefox profiler for JavaScript is explained on Mozilla’s website at 
https://developer.mozilla.org/en-US/docs/Tools/Performance. Other browsers  
have profilers similar to Firefox’s.

Practice Questions
Test your comprehension by answering the following questions:

	 1.	 What is 4! (that is, the factorial of 4)?

	 2.	 How can you use the factorial of (n – 1) to calculate the factorial of n?

	 3.	 What is the critical weakness of the recursive factorial function?

	 4.	 What are the first five numbers of the Fibonacci sequence?

	 5.	 What two numbers do you add to get the nth Fibonacci number?

	 6.	 What is the critical weakness of the recursive Fibonacci function?

	 7.	 What does an iterative algorithm always use?

	 8.	 Is it always possible to convert an iterative algorithm into a recursive one?

https://youtu.be/HXNhEYqFo0o
https://inventwithpython.com/beyond/chapter13.html
https://docs.python.org/3/library/profile.html
https://developer.mozilla.org/en-US/docs/Tools/Performance


Recursion vs. Iteration   43

	 9.	 Is it always possible to convert a recursive algorithm into an iterative one?

	10.	 Any recursive algorithm can be performed iteratively by using what two 
things? 

	11.	 What three features do programming problems that are suitable to 
recursive solutions have?

	12.	 When is recursion required to solve a programming problem?

Practice Projects
For practice, write a function for each of the following tasks:

	 1.	 Iteratively calculate the sum of the integer series from 1 to n. This is sim-
ilar to the factorial() function, except it performs addition instead of 
multiplication. For example, sumSeries(1) returns 1, sumSeries(2) returns 
3 (that is, 1 + 2), sumSeries(3) returns 6 (that is, 1 + 2 + 3), and so on. 
This function should use a loop instead of recursion. Take a look at the 
factorialByIteration.py program in this chapter for guidance.

	 2.	 Write the recursive form of sumSeries(). This function should use recur-
sive function calls instead of a loop. Look at the factorialByRecursion.py 
program in this chapter for guidance.

	 3.	 Iteratively calculate the sum of the first n powers of 2 in a function 
named sumPowersOf2(). The powers of 2 are 2, 4, 8, 16, 32, and so on. 
In Python, these are calculated with 2 ** 1, 2 ** 2, 2 ** 3, 2 ** 4, 2 
** 5, and so on, respectively. In JavaScript, these are calculated with 
Math.pow(2, 1), Math.pow(2, 2), and so on. For example, sumPowersOf2(1) 
returns 2, sumPowersOf2(2) returns 6 (that is, 2 + 4), sumPowersOf2(3) 
returns 14 (that is, 2 + 4 + 8), and so on.

	 4.	 Write the recursive form of sumPowersOf2(). This function should use 
recursive function calls instead of a loop.





3
C L A S S I C  R E C U R S I O N 

A L G O R I T H M S

If you take a computer science course, 
the unit on recursion is sure to cover some 

of the classic algorithms presented in this 
chapter. Coding interviews (which, for lack of 

suitable ways to evaluate candidates, often crib notes 
from freshman computer science curricula) can touch 
upon them too. This chapter covers six classic prob-
lems in recursion, along with their solutions.

We begin with three simple algorithms: summing the numbers in an 
array, reversing a text string, and detecting whether a string is a palindrome. 
Then we explore an algorithm for solving the Tower of Hanoi puzzle, 
implement the flood fill drawing algorithm, and tackle the absurdly 
recursive Ackermann function.

In the process, you’ll learn about the head-tail technique for splitting 
up the data in the recursive function arguments. We’ll also ask ourselves 
three questions when trying to come up with recursive solutions: What is 
the base case? What argument is passed to the recursive function call? And 

T H E R E C U R S I V E 

B O O K O F 

R E C U R S I O N

A C E T H E C O D I N G I N T E R V I E W
W I T H 

P Y T H O N A N D J A V A S C R I P T

T H E
R E C U R S I V E 

B O O K
O F 

R E C U R S I O N

A C E T H E C O D I N G I N T E R V I E W
W I T H

P Y T H O N A N D J A V A S C R I P T

THE RECURSIVE

BOOKOF 

RECURSION

ACETHE
CODING

INTERVI
EWWIT

H

PYTHON
ANDJAV

ASCRIP
T



46   Chapter 3

how do the arguments passed to the recursive function calls become closer 
to the base case? As you gain more experience, answering these questions 
should come more naturally.

Summing Numbers in an Array
Our first example is simple: given a list (in Python) or an array (in JavaScript) 
of integers, return the total sum of all the integers. For example, a call such 
as sum([5, 2, 4, 8]) should return 19.

This is easy to solve with a loop, but solving it with recursion requires 
more thought. After reading Chapter 2, you might also notice that this 
algorithm doesn’t map well enough to recursion’s capabilities to justify 
recursion’s added complexity. Still, summing numbers in an array (or some 
other calculation based on processing data in a linear data structure) is a 
common enough recursion problem in coding interviews that it deserves 
our attention. 

To solve this problem, let’s examine the head-tail technique for imple-
menting recursive functions. This technique splits the recursive function’s 
array argument into two parts: the head (the first element of the array) and 
the tail (a new array including everything after the first element). We define 
the recursive sum() function to find the sum of the array argument’s inte-
gers by adding the head to the sum of the tail array. To find out the sum of 
the tail array, we recursively pass it as the array argument to sum().

Because the tail array is one element smaller than the original array 
argument, we’ll eventually end up calling the recursive function and pass-
ing it an empty array. An empty array argument is trivial to sum and doesn’t 
require more recursive calls; it is merely 0. From these facts, our answers to 
the three questions are as follows:

What is the base case?    An empty array, which has the sum of 0.

What argument is passed to the recursive function call?    The tail of 
the original number array, which has one less number than the original 
array argument.

How does this argument become closer to the base case?    The 
array argument shrinks by one element for each recursive call until it 
becomes a zero-length, or empty, array.

Here is sumHeadTail.py, a Python program to sum a list of numbers:

Python def sum(numbers):
    if len(numbers) == 0: # BASE CASE
      1 return 0
    else: # RECURSIVE CASE
      2 head = numbers[0]
      3 tail = numbers[1:]
      4 return head + sum(tail)

nums = [1, 2, 3, 4, 5]
print('The sum of', nums, 'is', sum(nums))
nums = [5, 2, 4, 8]



Classic Recursion Algorithms   47

print('The sum of', nums, 'is', sum(nums))
nums = [1, 10, 100, 1000]
print('The sum of', nums, 'is', sum(nums))

And here is the equivalent JavaScript program, sumHeadTail.html:

JavaScript <script type="text/javascript">
function sum(numbers) {
    if (numbers.length === 0) { // BASE CASE
      1 return 0;
    } else { // RECURSIVE CASE
      2 let head = numbers[0];
      3 let tail = numbers.slice(1, numbers.length);
      4 return head + sum(tail);
    }
}

let nums = [1, 2, 3, 4, 5];
document.write('The sum of ' + nums + ' is ' + sum(nums) + "<br />");
nums = [5, 2, 4, 8];
document.write('The sum of ' + nums + ' is ' + sum(nums) + "<br />");
nums = [1, 10, 100, 1000];
document.write('The sum of ' + nums + ' is ' + sum(nums) + "<br />");
</script>

The output of these programs is shown here:

The sum of [1, 2, 3, 4, 5] is 15
The sum of [5, 2, 4, 8] is 19
The sum of [1, 10, 100, 1000] is 1111

When called with an empty array argument, the base case of our func-
tion simply returns 0 1. In the recursive case, we form the head 2 and the 
tail 3 from the original numbers argument. Keep in mind that the data type 
of tail is an array of numbers, just like the numbers argument. But the data 
type of head is just a single number value, and not an array with one num-
ber value. The return value of the sum() function is also a single number 
value and not an array of numbers; this is why we can add head and sum(tail) 
together in the recursive case 4. 

Each recursive call passes a smaller and smaller array to sum(), bringing 
it closer to the base case of an empty array. For example, Figure 3-1 shows 
the state of the call stack for sum([5, 2, 4, 8]).

In this figure, each card in the stack represents a function call. At the 
top of each card is the function name with the argument it was passed 
when called. Beneath that are the local variables: the numbers parameter, 
and the head and tail local variables created during the call. At the bottom 
of the card is the head + sum(tail) expression that the function call returns. 
When a new recursive function is made, a new card is pushed to the stack. 
When the function call returns, the top card is popped from the stack.



48   Chapter 3

Empty

sum([4, 8])

numbers = [4, 8]
head = 4
tail = [8]

Returns:
4 + sum([8])

sum([8])

numbers = [8]
head = 8
tail = [ ]

Returns:
8 + sum([ ])

sum([ ])

numbers = [ ]

Returns:
0

sum([2, 4, 8])

numbers = [2, 4,
8]
head = 2
tail = [4, 8]

Returns:
2 + sum([4, 8])

sum([5, 2, 4, 8])

numbers = [5, 2,
4, 8]
head = 5
tail = [2, 4, 8]

Returns:
5 + sum([2, 4,
8])

sum([2, 4, 8])

numbers = [2, 4,
8]
head = 2
tail = [4, 8]

Returns:
2 + 12

sum([5, 2, 4, 8])

numbers = [5, 2,
4, 8]
head = 5
tail = [2, 4, 8]

Returns:
5 + 14

sum([4, 8])

numbers = [4, 8]
head = 4
tail = [8]

Returns:
4 + 8

sum([8])

numbers = [8]
head = 8
tail = [ ]

Returns:
8 + 0

Figure 3-1: The state of the call stack when sum([5, 2, 4, 8]) runs

We can use the sum() function as a template for applying the head-tail 
technique to other recursive functions. For example, you can change the 
sum() function from one that sums an array of numbers to a concat() func-
tion that concatenates an array of strings together. The base case would 
return an empty string for an empty array argument, while the recursive 
case would return the head string joined with the return value of the recur-
sive call that is passed the tail.

Recall from Chapter 2 that recursion is especially suited for problems 
that involve a tree-like structure and backtracking. An array, string, or 
other linear data structure can be considered a tree-like structure, albeit a 
tree that has only one branch at each node, as in Figure 3-2.



Classic Recursion Algorithms   49

8

4

2

5

Figure 3-2: A [5, 2, 4, 8] array (right) is  
like a tree data structure (left) with only  
one branch at each node.

The key “tell” that our recursive function is unnecessary is that it never 
does any backtracking over the data it processes. It makes a single pass over 
each element in the array from beginning to end, which is something a basic 
loop can accomplish. Additionally, the Python recursive summation func-
tion is about 100 times slower than a straightforward iterative algorithm. 
Even if performance weren’t an issue, the recursive sum() function would 
cause a stack overflow if passed a list with tens of thousands of numbers 
to sum. Recursion is an advanced technique, but it isn’t always the best 
approach.

In Chapter 5, we’ll examine a recursive summation function that uses a 
divide-and-conquer strategy, and in Chapter 8 we’ll examine one that uses 
tail call optimization. These alternate recursive approaches work around 
some of the problems in the summation function in this chapter.

Reversing a String
Like summing the numbers in an array, reversing a string is another fre-
quently cited recursive algorithm even though the iterative solution is 
straightforward. Because a string is essentially an array of single charac-
ters, we’ll employ the head and tail approach for our rev() function just  
as we did for the summation algorithm.

Let’s start with the smallest strings possible. A blank string and a single-
character string are already the reverse of themselves. These naturally form 
our base cases: if the string argument is a string such as '' or ′A′, our func-
tion should simply return the string argument.

For larger strings, let’s try splitting the string into a head (just the first 
character) and tail (all characters after the first). For a two-character string 
like ′XY′, ′X′ is the head and ′Y′ is the tail. To reverse the string, we need to 
place the head behind the tail: ′YX′.

Does this algorithm hold for longer strings? To reverse a string like 
′CAT′, we would break it into the head ′C′ and the tail ′AT′. But placing the 
head behind the tail alone doesn’t reverse the string; it gives us ′ATC′. What 
we actually want to do is put the head behind the reverse of the tail. In other 



50   Chapter 3

words, ′AT′ would reverse to ′TA′, and then adding the head to the end of 
that would produce the reversed string, ′TAC′.

How can we reverse the tail? Well, we can recursively call rev() and pass 
it the tail. Forget about the implementation of our function for a moment 
and focus on its input and output: rev() takes one string argument and 
returns a string with the argument’s characters reversed. 

Thinking about how to implement a recursive function like rev() can 
be difficult because it involves a chicken-and-egg problem. In order to write 
rev()’s recursive case, we need to call a function that reverses a string—that 
is, rev(). As long as we have a solid understanding of what our recursive 
function’s arguments and return value will be, we can use the leap-of-faith 
technique to get around this chicken-and-egg problem by writing our recur-
sive case assuming the rev() function call returns the correct value even 
though we haven’t finished writing it yet.

Taking a leap of faith in recursion is not a magical technique that guar-
antees your code works bug free. It is merely a perspective to hold to break 
past the mental programmer’s block you can have when thinking about how 
to implement your recursive function. The leap of faith requires you to have 
a firm understanding of your recursive function’s arguments and return 
value.

Note that the leap-of-faith technique only helps you write the recursive 
case. You must pass to the recursive call an argument that is closer to the 
base case. You can’t simply pass the same argument that the recursive func-
tion received, like this:

def rev(theString):
    return rev(theString) # This won't magically work.

To continue our ′CAT′ example, when we pass the tail ′AT′ to rev(), the 
head is ′A′ and the tail is ′T′ in that function call. We already know that 
the reverse of a single-character string like ′T′ is simply ′T′; that’s our base 
case. So this second call to rev() will reverse ′AT′ to ′TA′, which is precisely 
what the previous call to rev() needs. Figure 3-3 shows the state of the call 
stack during all the recursive calls to rev().

Let’s ask our three recursive algorithm questions about the rev() 
function:

What is the base case?     A zero- or one-character string.

What argument is passed to the recursive function call?     The tail 
of the original string argument, which has one less character than the 
original string argument.

How does this argument become closer to the base case?     The array 
argument shrinks by one element for each recursive call until it becomes 
a one- or zero-length array.



Classic Recursion Algorithms   51

Empty

rev('T′)

theString = 'T′

Returns:
'T′

rev('AT′)

theString = 'AT′
head = 'A′
tail = 'T′

Returns:
'T′ + 'A′

rev('AT′)

theString = 'AT′
head = 'A′
tail = 'T′

Returns:
rev('T′) + 'A′

rev('CAT′)

theString = 'CAT′
head = 'C′
tail = 'AT′

Returns:
rev('AT′) + 'C′

rev('CAT′)

theString = 'CAT′
head = 'C′
tail = 'AT′

Returns:
'TA′ + 'C′

Figure 3-3: The state of the call stack as the rev() function reverses the CAT string

Here is reverseString.py, a Python program to reverse a string:

Python def rev(theString):
  1 if len(theString) == 0 or len(theString) == 1:
        # BASE CASE
        return theString
    else:
        # RECURSIVE CASE
      2 head = theString[0]
      3 tail = theString[1:]
      4 return rev(tail) + head

print(rev('abcdef'))
print(rev('Hello, world!'))
print(rev(''))
print(rev('X'))

And here is the equivalent JavaScript code in reverseString.html:

JavaScript <script type="text/javascript">
function rev(theString) {
  1 if (theString.length === 0 || theString.length === 1) {
        // BASE CASE
        return theString;
    } else {
        // RECURSIVE CASE
      2 var head = theString[0];
      3 var tail = theString.substring(1, theString.length);



52   Chapter 3

      4 return rev(tail) + head;
    }
}

document.write(rev("abcdef") + "<br />");
document.write(rev("Hello, world!") + "<br />");
document.write(rev("") + "<br />");
document.write(rev("X") + "<br />");
</script>

Here is the output of these programs:

fedcba
!dlrow ,olleH

X

Our recursive function rev() returns the string that is the reverse of the 
argument, theString. Let’s consider the simplest strings to reverse: the empty 
string and a single-character string would “reverse” to themselves. These 
are the two base cases with which we’ll start (though we combine them with 
an or or || Boolean operator 1). For the recursive case, we form head from 
the first character in theString 2, and tail from every character after the 
first 3. The recursive case then returns the reverse of tail followed by the 
head character 4.

Detecting Palindromes
A palindrome is a word or phrase that is spelled the same when written for-
ward and backward. Level, race car, taco cat, and a man, a plan, a canal . . . 
Panama are all examples of palindromes. If you would like to detect whether 
a string is a palindrome, you can write a recursive isPalindrome() function. 

The base case is a zero- or one-character string, which by its nature is 
always the same, whether forward or backward. We’ll use an approach simi-
lar to the head-tail technique, except that we’ll split the string argument 
into head, middle, and last strings instead. If the head and last characters 
are the same and the middle characters also form a palindrome, the string 
is a palindrome. The recursion comes from passing the middle string to 
isPalindrome().

Let’s ask the three recursive algorithm questions about the isPalindrome() 
function:

What is the base case?    A zero- or one-character string, which returns 
True because it is always a palindrome.

What argument is passed to the recursive function call?    The middle 
characters of the string argument.

How does this argument become closer to the base case?    The string 
argument shrinks by two characters for each recursive call until it 
becomes a zero- or one-character string.



Classic Recursion Algorithms   53

Here is palindrome.py, a Python program to detect palindromes:

Python def isPalindrome(theString):
    if len(theString) == 0 or len(theString) == 1:
        # BASE CASE
        return True
    else:
        # RECURSIVE CASE
      1 head = theString[0]
      2 middle = theString[1:-1]
      3 last = theString[-1]
      4 return head == last and isPalindrome(middle)

text = 'racecar'
print(text + ' is a palindrome: ' + str(isPalindrome(text)))
text = 'amanaplanacanalpanama'
print(text + ' is a palindrome: ' + str(isPalindrome(text)))
text = 'tacocat'
print(text + ' is a palindrome: ' + str(isPalindrome(text)))
text = 'zophie'
print(text + ' is a palindrome: ' + str(isPalindrome(text)))

Here is the equivalent JavaScript code in palindrome.html:

JavaScript <script type="text/javascript">
function isPalindrome(theString) {
    if (theString.length === 0 || theString.length === 1) {
        // BASE CASE
        return true;
    } else {
        // RECURSIVE CASE
      1 var head = theString[0];
      2 var middle = theString.substring(1, theString.length -1);
      3 var last = theString[theString.length - 1];
      4 return head === last && isPalindrome(middle);
    }
}

text = "racecar";
document.write(text + " is a palindrome: " + isPalindrome(text) + "<br />");
text = "amanaplanacanalpanama";
document.write(text + " is a palindrome: " + isPalindrome(text) + "<br />");
text = "tacocat";
document.write(text + " is a palindrome: " + isPalindrome(text) + "<br />");
text = "zophie";
document.write(text + " is a palindrome: " + isPalindrome(text) + "<br />");
</script>

Here is the output of these programs:

racecar is a palindrome: True
amanaplanacanalpanama is a palindrome: True
tacocat is a palindrome: True
zophie is a palindrome: False



54   Chapter 3

The base case returns True because a zero- or one-character string is 
always a palindrome. Otherwise, the string argument is broken into three 
pieces: the first character 1, the last character 3, and the middle charac-
ters between them 2.

The return statement in the recursive case 4 makes use of Boolean 
short-circuiting, a feature of almost every programming language. In an 
expression joined with the and or && Boolean operators, if the left-side 
expression is False, it doesn’t matter if the right-side expression is True or 
False because the entire expression will be False. Boolean short-circuiting 
is an optimization that skips the evaluation of the right-side expression of 
an and operator if the left side is False. So, in the expression head == last and 
isPalindrome(middle), if head == last is False, the recursive call to isPalindrome() 
is skipped. This means that as soon as the head and last strings don’t match, 
the recursion stops and simply returns False.

This recursive algorithm is still sequential, like the summation and 
reverse-string functions in the previous sections, except that instead of 
going from the start of the data to the end, it goes from both ends of the 
data toward the middle. The iterative version of this algorithm that uses a 
simple loop is more straightforward. We cover the recursive version in this 
book because it’s a common coding interview problem.

Solving the Tower of Hanoi
The Tower of Hanoi is a puzzle involving a tower of stacked disks. The puzzle 
begins with the largest disk on the bottom, and the disk sizes decrease 
going up. Each disk has a hole in its center so that the disks can be stacked 
on top of one another on a pole. Figure 3-4 shows a wooden Tower of Hanoi 
puzzle.

Figure 3-4: A wooden Tower of Hanoi puzzle set



Classic Recursion Algorithms   55

To solve the puzzle, the player must move the stack of disks from one 
pole to another while following three rules:

•	 The player can move only one disk at a time.

•	 The player can move disks only to and from the top of a tower.

•	 The player can never place a larger disk on top of a smaller disk.

Python’s built-in turtledemo module has a Tower of Hanoi demonstra-
tion that you can see by running python -m turtledemo on Windows or python3 
-m turtledemo on macOS/Linux, and then selecting minimum_hanoi from 
the Examples menu. Tower of Hanoi animations are readily found through 
an internet search as well.

The recursive algorithm for solving the Tower of Hanoi puzzle is not 
intuitive. Let’s start with the smallest case: a Tower of Hanoi with one disk. 
The solution is trivial: move the disk to another pole and you’re finished. 
Solving for two disks is slightly more complicated: move the smaller disk 
to one pole (we’ll call it the temporary pole) and the larger disk to the other 
pole (we’ll call it the end pole), and then finally move the smaller disk from 
the temporary pole to the end pole. Both disks are now on the end pole in 
the correct order. 

Once you solve the three-disk tower, you’ll notice that a pattern emerges. 
To solve a tower of n disks from the start pole to the end pole, you must do 
the following:

	 1.	 Solve the n – 1 disks puzzle by moving those disks from the start pole to 
the temporary pole.

	 2.	 Move the nth disk from the start pole to the end pole.

	 3.	 Solve the n – 1 disks puzzle by moving those disks from the temporary 
pole to the end pole.

Like the Fibonacci algorithm, the recursive case for the Tower of Hanoi 
algorithm makes two recursive calls instead of just one. If we draw a tree 
diagram of the operations for solving a four-disk Tower of Hanoi, it looks 
like Figure 3-6. Solving the four-disk puzzle requires the same steps as solv-
ing the three-disk puzzle, as well as moving the fourth disk and performing 
the steps of solving the three-disk puzzle again. Likewise, solving the three-
disk puzzle requires the same steps as the two-disk puzzle plus moving the 
third disk, and so on. Solving the one-disk puzzle is the trivial base case: it 
involves only moving the disk. 

The tree-like structure in Figure 3-5 hints that a recursive approach 
is ideal for solving the Tower of Hanoi puzzle. In this tree, the execution 
moves from top to bottom and from left to right.

While a three-disk or four-disk Tower of Hanoi is easy for a human 
to solve, increasing numbers of disks require an exponentially increasing 
number of operations to complete. For n disks, it takes a minimum of 2n – 1 
moves to solve. This means a 31-disk tower requires over a billion moves to 
complete!



56   Chapter 3

Solve 4

Move 4th Solve 3

Move 3rdSolve 2 Solve 2

Move 2nd

Solve 1

Solve 1

Move 2nd

Solve 1

Solve 1

Move 2nd

Solve 1

Solve 1

Move 2nd

Solve 1

Solve 1

Move 3rd Solve 2Solve 2

Solve 3

Figure 3-5: The series of operations for solving a four-disk Tower of Hanoi

Let’s ask ourselves the three questions for creating a recursive solution:

What is the base case?     Solving a tower of one disk.

What argument is passed to the recursive function call?     Solving a 
tower of size one less than the current size.

How does this argument become closer to the base case?     The size of 
the tower to solve decreases by one disk for each recursive call until it is 
a one-disk tower.

The following towerOfHanoiSolver.py program solves the Tower of Hanoi 
puzzle and displays a visualization of each step:

import sys

# Set up towers A, B, and C. The end of the list is the top of the tower.
  TOTAL_DISKS = 6 1

# Populate Tower A:
  TOWERS = {'A': list(reversed(range(1, TOTAL_DISKS + 1))), 2
          'B': [],
          'C': []}

def printDisk(diskNum):
    # Print a single disk of width diskNum.
    emptySpace = ' ' * (TOTAL_DISKS - diskNum)
    if diskNum == 0:
        # Just draw the pole.
        sys.stdout.write(emptySpace + '||' + emptySpace)
    else:
        # Draw the disk.
        diskSpace = '@' * diskNum
        diskNumLabel = str(diskNum).rjust(2, '_')
        sys.stdout.write(emptySpace + diskSpace + diskNumLabel + diskSpace + emptySpace)

def printTowers():
    # Print all three towers.



Classic Recursion Algorithms   57

    for level in range(TOTAL_DISKS, -1, -1):
        for tower in (TOWERS['A'], TOWERS['B'], TOWERS['C']):
            if level >= len(tower):
                printDisk(0)
            else:
                printDisk(tower[level])
        sys.stdout.write('\n')
    # Print the tower labels A, B, and C.
    emptySpace = ' ' * (TOTAL_DISKS)
    print('%s A%s%s B%s%s C\n' % (emptySpace, emptySpace, emptySpace, emptySpace, emptySpace))

def moveOneDisk(startTower, endTower):
    # Move the top disk from startTower to endTower.
    disk = TOWERS[startTower].pop()
    TOWERS[endTower].append(disk)

def solve(numberOfDisks, startTower, endTower, tempTower):
    # Move the top numberOfDisks disks from startTower to endTower.
    if numberOfDisks == 1:
        # BASE CASE
        moveOneDisk(startTower, endTower) 3
        printTowers()
        return
    else:
        # RECURSIVE CASE
        solve(numberOfDisks - 1, startTower, tempTower, endTower) 4
        moveOneDisk(startTower, endTower) 5
        printTowers()
        solve(numberOfDisks - 1, tempTower, endTower, startTower) 6
        return

# Solve:
printTowers()
solve(TOTAL_DISKS, 'A', 'B', 'C')

# Uncomment to enable interactive mode:
#while True:
#    printTowers()
#    print('Enter letter of start tower and the end tower. (A, B, C) Or Q to quit.')
#    move = input().upper()
#    if move == 'Q':
#        sys.exit()
#    elif move[0] in 'ABC' and move[1] in 'ABC' and move[0] != move[1]:
#        moveOneDisk(move[0], move[1])

This towerOfHanoiSolver.html program contains the equivalent JavaScript 
code:

<script type="text/javascript">
// Set up towers A, B, and C. The end of the array is the top of the tower.
  var TOTAL_DISKS = 6; 1
  var TOWERS = {"A": [], 2
              "B": [],
              "C": []};



58   Chapter 3

// Populate Tower A:
for (var i = TOTAL_DISKS; i > 0; i--) {
    TOWERS["A"].push(i);
}

function printDisk(diskNum) {
    // Print a single disk of width diskNum.
    var emptySpace = " ".repeat(TOTAL_DISKS - diskNum);
    if (diskNum === 0) {
        // Just draw the pole.
        document.write(emptySpace + "||" + emptySpace);
    } else {
        // Draw the disk.
        var diskSpace = "@".repeat(diskNum);
        var diskNumLabel = String("___" + diskNum).slice(-2);
        document.write(emptySpace + diskSpace + diskNumLabel + diskSpace + emptySpace);
    }
}

function printTowers() {
    // Print all three towers.
    var towerLetters = "ABC";
    for (var level = TOTAL_DISKS; level >= 0; level--) {
        for (var towerLetterIndex = 0; towerLetterIndex < 3; towerLetterIndex++) {
            var tower = TOWERS[towerLetters[towerLetterIndex]];
            if (level >= tower.length) {
                printDisk(0);
            } else {
                printDisk(tower[level]);
            }
        }
        document.write("<br />");
    }
    // Print the tower labels A, B, and C.
    var emptySpace = " ".repeat(TOTAL_DISKS);
    document.write(emptySpace + " A" + emptySpace + emptySpace +
" B" + emptySpace + emptySpace + " C<br /><br />");
}

function moveOneDisk(startTower, endTower) {
    // Move the top disk from startTower to endTower.
    var disk = TOWERS[startTower].pop();
    TOWERS[endTower].push(disk);
}

function solve(numberOfDisks, startTower, endTower, tempTower) {
    // Move the top numberOfDisks disks from startTower to endTower.
    if (numberOfDisks == 1) {
        // BASE CASE
        moveOneDisk(startTower, endTower); 3
        printTowers();
        return;
    } else {
        // RECURSIVE CASE
        solve(numberOfDisks - 1, startTower, tempTower, endTower); 4



Classic Recursion Algorithms   59

        moveOneDisk(startTower, endTower); 5
        printTowers();
        solve(numberOfDisks - 1, tempTower, endTower, startTower); 6
        return;
    }
}

// Solve:
document.write("<pre>");
printTowers();
solve(TOTAL_DISKS, "A", "B", "C");
document.write("</pre>");
</script>

When you run this code, the output shows each move of the disks until 
the entire tower has moved from Tower A to Tower B:

      ||            ||            ||      
     @_1@           ||            ||      
    @@_2@@          ||            ||      
   @@@_3@@@         ||            ||      
  @@@@_4@@@@        ||            ||      
 @@@@@_5@@@@@       ||            ||      
@@@@@@_6@@@@@@      ||            ||      
       A             B             C

      ||            ||            ||      
      ||            ||            ||      
    @@_2@@          ||            ||      
   @@@_3@@@         ||            ||      
  @@@@_4@@@@        ||            ||      
 @@@@@_5@@@@@       ||            ||      
@@@@@@_6@@@@@@      ||           @_1@     
       A             B             C
--snip--
      ||            ||            ||      
      ||            ||            ||      
      ||            ||            ||      
      ||            ||            ||      
      ||          @@_2@@          ||      
     @_1@        @@@_3@@@         ||      
@@@@@@_6@@@@@@  @@@@_4@@@@   @@@@@_5@@@@@ 
--snip--
       A             B             C
      ||            ||            ||      
      ||           @_1@           ||      
      ||          @@_2@@          ||      
      ||         @@@_3@@@         ||      
      ||        @@@@_4@@@@        ||      
      ||       @@@@@_5@@@@@       ||      
      ||      @@@@@@_6@@@@@@      ||      
       A             B             C



60   Chapter 3

The Python version has an interactive mode too, where you can solve 
the puzzle yourself. Uncomment the lines of code at the end of towerOf 
HanoiSolver.py to play the interactive version.

You can start by running the program with the smaller cases by set-
ting the TOTAL_DISKS constant 1 at the top of the program to 1 or 2. In our 
program, a list of integers in Python and an array of integers in JavaScript 
represent a pole. The integer represents a disk, with larger integers repre-
senting larger disks. The integer at the start of the list or array is at the bot-
tom of the pole, and the integer at the end is at the pole’s top. For example, 
[6, 5, 4, 3, 2, 1] represents the starting pole with six disks with the largest 
on the bottom, while [] represents a pole with no disks. The TOWERS variable 
contains three of these lists 2.

The base case merely moves the smallest disk from the start pole to the 
end pole 3. The recursive case for a tower of n disks carries out three steps: 
solving the n – 1 case 4, moving the nth disk 5, and then solving the n – 1 
case again 6.

Using Flood Fill
Graphics programs commonly use the flood fill algorithm to fill an arbitrarily 
shaped area of the same color with another color. Figure 3-6 shows one 
such shape at the top left. The subsequent panels show three different 
sections of the shape flood-filled with a gray color. The flood fill begins 
on a white pixel and spreads until it meets a non-white pixel, filling the 
enclosed space.

The flood fill algorithm is recursive: it begins by changing a single 
pixel to a new color. The recursive function is then called on any neighbors 
of the pixel with its same old color. It then moves on to the neighbors of 
the neighbors, and so on, converting each pixel to the new color until the 
enclosed space is filled in. 

The base case is a pixel whose color is the edge of the image or is 
not the old color. Since reaching the base case is the only way to stop the 
“spread” of recursive calls for every pixel in the image, this algorithm has 
the emergent behavior of changing all the contiguous pixels from the old 
color to the new color.

Let’s ask the three recursive algorithm questions about our floodFill() 
function:

What is the base case?    When the x- and y-coordinates are for a pixel 
that is not the old color, or are at the edge of the image.

What arguments are passed to the recursive function call?    The x- 
and y-coordinates of the four neighboring pixels of the current pixel 
are the arguments to four recursive calls.

How do these arguments become closer to the base case?    The neigh-
boring pixels run up to a different color than the old color or the edge 
of the image. Either way, eventually the algorithm runs out of pixels to 
check.



Classic Recursion Algorithms   61

Figure 3-6: The original shape in a graphics editor (top left) and the same shape with three different areas 
flood-filled with a light gray color

Instead of an image for our sample program, we’ll use a list of single-
character strings to form a 2D grid of text characters to represent an “image.” 
Each string represents a “pixel,” and the specific character represents the 
“color.” The floodfill.py Python program implements the flood fill algorithm, 
the image data, and a function to print the image on the screen:

Python import sys

# Create the image (make sure it's rectangular!)
1 im = [list('..########################...........'),
      list('..#......................#...#####...'),
      list('..#..........########....#####...#...'),
      list('..#..........#......#............#...'),
      list('..#..........########.........####...'),
      list('..######......................#......'),
      list('.......#..#####.....###########......'),
      list('.......####...#######................')]

HEIGHT = len(im)



62   Chapter 3

WIDTH = len(im[0])

def floodFill(image, x, y, newChar, oldChar=None):
    if oldChar == None:
        # oldChar defaults to the character at x, y.
      2 oldChar = image[y][x]
    if oldChar == newChar or image[y][x] != oldChar:
        # BASE CASE
        return

    image[y][x] = newChar # Change the character.

    # Uncomment to view each step:
    #printImage(image)

    # Change the neighboring characters.
    if y + 1 < HEIGHT and image[y + 1][x] == oldChar:
        # RECURSIVE CASE
      3 floodFill(image, x, y + 1, newChar, oldChar)
    if y - 1 >= 0 and image[y - 1][x] == oldChar:
        # RECURSIVE CASE
      4 floodFill(image, x, y - 1, newChar, oldChar)
    if x + 1 < WIDTH and image[y][x + 1] == oldChar:
        # RECURSIVE CASE
      5 floodFill(image, x + 1, y, newChar, oldChar)
    if x - 1 >= 0 and image[y][x - 1] == oldChar:
        # RECURSIVE CASE
      6 floodFill(image, x - 1, y, newChar, oldChar)
  7 return # BASE CASE

def printImage(image):
    for y in range(HEIGHT):
        # Print each row.
        for x in range(WIDTH):
            # Print each column.
            sys.stdout.write(image[y][x])
        sys.stdout.write('\n')
    sys.stdout.write('\n')

printImage(im)
floodFill(im, 3, 3, 'o')
printImage(im)

The floodfill.html program contains the equivalent JavaScript code:

JavaScript <script type="text/javascript">
// Create the image (make sure it's rectangular!)
1 var im = ["..########################...........".split(""),
          "..#......................#...#####...".split(""),
          "..#..........########....#####...#...".split(""),
          "..#..........#......#............#...".split(""),
          "..#..........########.........####...".split(""),
          "..######......................#......".split(""),
          ".......#..#####.....###########......".split(""),
          ".......####...#######................".split("")];



Classic Recursion Algorithms   63

var HEIGHT = im.length;
var WIDTH = im[0].length;

function floodFill(image, x, y, newChar, oldChar) {
    if (oldChar === undefined) {
        // oldChar defaults to the character at x, y.
      2 oldChar = image[y][x];
    }
    if ((oldChar == newChar) || (image[y][x] != oldChar)) {
        // BASE CASE
        return;
    }

    image[y][x] = newChar; // Change the character.

    // Uncomment to view each step:
    //printImage(image);

    // Change the neighboring characters.
    if ((y + 1 < HEIGHT) && (image[y + 1][x] == oldChar)) {
        // RECURSIVE CASE
      3 floodFill(image, x, y + 1, newChar, oldChar);
    }
    if ((y - 1 >= 0) && (image[y - 1][x] == oldChar)) {
        // RECURSIVE CASE
      4 floodFill(image, x, y - 1, newChar, oldChar);
    }
    if ((x + 1 < WIDTH) && (image[y][x + 1] == oldChar)) {
        // RECURSIVE CASE
      5 floodFill(image, x + 1, y, newChar, oldChar);
    }
    if ((x - 1 >= 0) && (image[y][x - 1] == oldChar)) {
        // RECURSIVE CASE
      6 floodFill(image, x - 1, y, newChar, oldChar);
    }
  7 return; // BASE CASE
}

function printImage(image) {
    document.write("<pre>");
    for (var y = 0; y < HEIGHT; y++) {
        // Print each row.
        for (var x = 0; x < WIDTH; x++) {
            // Print each column.
            document.write(image[y][x]);
        }
        document.write("\n");
    }
    document.write("\n</ pre>");
}

printImage(im);
floodFill(im, 3, 3, "o");
printImage(im);
</script>



64   Chapter 3

When you run this code, the program fills the interior of the shape drawn 
by the # characters starting at coordinates 3, 3. It replaces all the period 
characters (.) with o characters. The following output shows the before and 
after images:

..########################...........

..#......................#...#####...

..#..........########....#####...#...

..#..........#......#............#...

..#..........########.........####...

..######......................#......

.......#..#####.....###########......

.......####...#######................

..########################...........

..#oooooooooooooooooooooo#...#####...

..#oooooooooo########oooo#####ooo#...

..#oooooooooo#......#oooooooooooo#...

..#oooooooooo########ooooooooo####...

..######oooooooooooooooooooooo#......

.......#oo#####ooooo###########......

.......####...#######................

If you want to see every step of the flood fill algorithm as it fills in the 
new character, uncomment the printImage(image) line 1 in the floodFill() 
function and run the program again.

The image is represented by a 2D array of string characters. We can pass 
this image data structure, an x coordinate and a y coordinate, and a new 
character to the floodFill() function. The function notes the character cur-
rently at the x and y coordinates and saves it to the oldChar variable 2.

If the current characters at coordinates x and y in image are not the same 
as oldChar, this is our base case, and the function simply returns. Otherwise, 
the function continues on to its four recursive cases: passing the x- and 
y-coordinates of the bottom 3, top 4, right 5, and left 6 neighbors of the 
current coordinates. After these four potential recursive calls are made, the 
end of the function is an implicit base case, made explicit in our program 
with a return statement 7.

The flood fill algorithm doesn’t have to be recursive. For large images, 
a recursive function could cause stack overflows. If we were to implement 
flood fill with a loop and a stack instead, the stack would begin with the x- 
and y-coordinates of the starting pixel. The code in the loop would pop the 
coordinates off the top of the stack, and if that coordinate’s pixel matches 
oldChar, it would push the coordinates of the four neighboring pixels. When 
the stack is empty because the base case is no longer pushing neighbors to 
the stack, the loop is finished.

However, the flood fill algorithm doesn’t necessarily have to use a 
stack. The pushing and popping of a first-in, last-out stack is effective for 
backtracking behavior, but the order that the pixels are processed in the 
flood fill algorithm can be arbitrary. This means we could equally effec-
tively use a set data structure that removes elements randomly. You can 



Classic Recursion Algorithms   65

find these iterative flood fill algorithms implemented in floodFillIterative.py 
and floodFillIterative.html in the downloadable resources at https://nostarch 
.com/recursive-book-recursion.

Using the Ackermann Function
The Ackermann function is named after its discoverer, Wilhelm Ackermann. 
A student of mathematician David Hilbert (whose Hilbert curve fractal 
we discuss in Chapter 9), Ackermann published his function in 1928. 
Mathematicians Rózsa Péter and Raphael Robinson later developed the 
version of the function featured in this section. 

While the Ackermann function has some application in advanced 
mathematics, it is mostly known for being an example of a highly recursive 
function. Even slight increases to its two integer arguments cause a large 
increase in the number of recursive calls it makes.

The Ackermann function takes two arguments, m and n, and has a base 
case of returning n + 1 when m is 0. There are two recursive cases: when n 
is 0, the function returns ackermann(m ‑ 1, 1), and when n is greater than 
0, the function returns ackermann(m ‑ 1, ackermann(m, n ‑ 1)). These cases 
likely aren’t meaningful to you, but suffice it to say, the number of recursive 
calls the Ackermann function makes grows quickly. Calling ackermann(1, 1) 
results in three recursive function calls. Calling ackermann(2, 3) results in 43 
recursive function calls. Calling ackermann(3, 5) results in 42,437 recursive 
function calls. And calling ackermann(5, 7) results in . . . well, actually I don’t 
know how many recursive function calls, because it would take several times 
the age of the universe to calculate.

Let’s answer the three questions we ask when constructing recursive 
algorithms:

What is the base case?    When m is 0.

What arguments are passed to the recursive function call?    Either m 
or m ‑ 1 is passed for the next m parameter; and 1, n ‑ 1, or the return 
value of ackermann(m, n ‑ 1) is passed for the next n parameter.

How do these arguments become closer to the base case?    The m 
argument is always either decreasing or staying the same size, so it will 
eventually reach 0.

Here is an ackermann.py Python program:

def ackermann(m, n, indentation=None):
    if indentation is None:
        indentation = 0
    print('%sackermann(%s, %s)' % (' ' * indentation, m, n))

    if m == 0:
        # BASE CASE
        return n + 1
    elif m > 0 and n == 0:
        # RECURSIVE CASE

https://nostarch.com/recursive-book-recursion
https://nostarch.com/recursive-book-recursion


66   Chapter 3

        return ackermann(m - 1, 1, indentation + 1)
    elif m > 0 and n > 0:
        # RECURSIVE CASE
        return ackermann(m - 1, ackermann(m, n - 1, indentation + 1), indentation + 1)

print('Starting with m = 1, n = 1:')
print(ackermann(1, 1))
print('Starting with m = 2, n = 3:')
print(ackermann(2, 3))

And here is the equivalent ackermann.html JavaScript program:

<script type="text/javascript">
function ackermann(m, n, indentation) {
    if (indentation === undefined) {
        indentation = 0;
    }
    document.write(" ".repeat(indentation) + "ackermann(" + m + ", " + n + ")\n");

    if (m === 0) {
        // BASE CASE
        return n + 1;
    } else if ((m > 0) && (n === 0)) {
        // RECURSIVE CASE
        return ackermann(m - 1, 1, indentation + 1);
    } else if ((m > 0) && (n > 0)) {
        // RECURSIVE CASE
        return ackermann(m - 1, ackermann(m, n - 1, indentation + 1), indentation + 1);
    }
}

document.write("<pre>");
document.write("Starting with m = 1, n = 1:<br />");
document.write(ackermann(1, 1) + "<br />");
document.write("Starting with m = 2, n = 3:<br />");
document.write(ackermann(2, 3) + "<br />");
document.write("</pre>");
</script>

When you run this code, the output’s indentation (set by the indentation 
argument) tells you how deep on the call stack the given recursive function 
call is:

Starting with m = 1, n = 1:
ackermann(1, 1)
 ackermann(1, 0)
  ackermann(0, 1)
 ackermann(0, 2)
3
Starting with m = 2, n = 3:
ackermann(2, 3)
 ackermann(2, 2)
  ackermann(2, 1)
   ackermann(2, 0)



Classic Recursion Algorithms   67

--snip--
    ackermann(0, 6)
   ackermann(0, 7)
  ackermann(0, 8)
9

You can also try ackermann(3, 3), but anything with larger arguments 
will probably take far too long to calculate. To speed up the calculation, try 
commenting out all print() and document.write() calls except the ones that 
print the final return value of ackermann().

Remember, even a recursive algorithm like the Ackermann function 
can be implemented as an iterative function. The iterative Ackermann algo-
rithms are implemented in ackermannIterative.py and ackermannIterative.html 
in the downloadable resources at https://nostarch.com/recursive-book-recursion.

Summary
This chapter covered some classic recursive algorithms. For each, we asked 
the three important questions you should always ask when designing your 
own recursive functions: What is the base case? What arguments are passed 
to the recursive function call? How do these arguments become closer to 
the base case? If they don’t, your function will continue to recurse until it 
causes a stack overflow.

The summation, string reversing, and palindrome detection recursive 
functions could have easily been implemented with a simple loop. The key 
giveaway is that they all make a single pass through the data given to them 
with no backtracking. As explained in Chapter 2, recursive algorithms are 
especially suited to problems that involve a tree-like structure and require 
backtracking. 

The tree-like structures for solving the Tower of Hanoi puzzle suggest 
that it involves backtracking, as the program execution runs from top to 
bottom, left to right, in the tree. This makes it a prime candidate for recur-
sion, especially since the solution requires two recursive calls of smaller 
towers.

The flood fill algorithm is directly applicable to graphics and drawing 
programs, as well as other algorithms to detect the shape of contiguous 
areas. If you’ve used the paint-bucket tool in a graphics program, you’ve 
likely used a version of the flood fill algorithm.

The Ackermann function is an excellent example of how quickly a recur-
sive function can grow as its inputs increase. While it doesn’t have many prac-
tical applications in day-to-day programming, no discussion about recursion 
would be complete without it. But as recursive as it is, like all recursive func-
tions it can be implemented iteratively with a loop and a stack.

Further Reading
Wikipedia has more information on the Tower of Hanoi problem at 
https://en.wikipedia.org/wiki/Tower_of_Hanoi, and the Computerphile video 

https://nostarch.com/recursive-book-recursion
https://en.wikipedia.org/wiki/Tower_of_Hanoi


68   Chapter 3

“Recursion ‘Super Power’ (in Python)” covers solving the Tower of Hanoi in 
Python at https://youtu.be/8lhxIOAfDss. The 3Blue1Brown two-part video series, 
“Binary, Hanoi, and Sierpiński,” goes into even more detail by exploring the 
relationships among the Tower of Hanoi, binary numbers, and the Sierpiński 
Triangle fractal starting at https://youtu.be/2SUvWfNJSsM.

Wikipedia has an animation of the flood fill algorithm working on a 
small image at https://en.wikipedia.org/wiki/Flood_fill.

The Computerphile video “The Most Difficult Program to Compute?” 
discusses the Ackermann function at https://youtu.be/i7sm9dzFtEI. If you’d 
like to learn more about the Ackermann function’s place in computabil-
ity theory, the Hackers in Cambridge channel has a five-part video series 
on primitive recursive and partial recursive functions at https://youtu.be/
yaDQrOUK-KY. The series requires a lot of mathematical thinking on the 
part of the viewer, but you don’t need a lot of prior mathematical knowledge.

 Practice Questions
Test your comprehension by answering the following questions:

	 1.	 What is the head of an array or string?

	 2.	 What is the tail of an array or string?

	 3.	 What are the three questions this chapter presents for each recursive 
algorithm?

	 4.	 What is the leap of faith in recursion?

	 5.	 What do you need to understand about the recursive function you are 
writing before you can take a leap of faith?

	 6.	 How does a linear data structure such as an array or string resemble a 
tree-like structure?

	 7.	 Does the recursive sum() function involve any backtracking over the data 
it works on?

	 8.	 In the flood fill program, try changing the im variable’s strings to create 
a C shape that is not fully enclosed. What happens when you attempt to 
flood-fill the image from the middle of the C?

	 9.	 Answer the three questions about recursive solutions for each of the 
recursive algorithms presented in this chapter: 

a.	 What is the base case? 

b.	 What argument is passed to the recursive function call? 

c.	 How does this argument become closer to the base case? 

Then re-create the recursive algorithms from this chapter without look-
ing at the original code.

https://youtu.be/8lhxIOAfDss
https://youtu.be/2SUvWfNJSsM
https://en.wikipedia.org/wiki/Flood_fill
https://youtu.be/i7sm9dzFtEI
https://youtu.be/yaDQrOUK-KY
https://youtu.be/yaDQrOUK-KY


Classic Recursion Algorithms   69

Practice Projects
For practice, write a function for each of the following tasks:

	 1.	 Using the head-tail technique, create a recursive concat() function that 
is passed an array of strings and returns these strings concatenated 
together into a single string. For example, concat(['Hello', 'World']) 
should return HelloWorld.

	 2.	 Using the head-tail technique, create a recursive product() function that 
is passed an array of integers and returns the total multiplied product 
of them. This code will be almost identical to the sum() function in this 
chapter. However, note that the base case of an array with just one inte-
ger returns the integer, and the base case of an empty array returns 1.

	 3.	 Using the flood fill algorithm, count the number of “rooms,” or 
enclosed spaces, in a 2D grid. You can do this by creating nested for 
loops that call the flood fill function on each character in the grid if 
it is a period, in order to change the periods into hash characters. For 
example, the following data would result in the program finding six 
places in the grid with periods, meaning there are five rooms (and the 
space outside all the rooms).

...##########....................................

...#........#....####..................##########

...#........#....#..#...############...#........#

...##########....#..#...#..........#...##.......#

.......#....#....####...#..........#....##......#

.......#....#....#......############.....##.....#

.......######....#........................##....#

.................####........####..........######





4
B A C K T R A C K I N G  A N D  T R E E 
T R A V E R S A L  A L G O R I T H M S

In previous chapters, you learned that 
recursion is especially suited for problems 

that involve a tree-like structure and back-
tracking, such as maze-solving algorithms. To 

see why, consider that a tree’s trunk splits off into 
multiple branches. Those branches themselves split 
off into other branches. In other words, a tree has a 
recursive, self-similar shape. 

A maze can be represented by a tree data structure, since mazes branch 
off into different paths, which in turn branch off into more paths. When 
you reach a dead end in a maze, you must backtrack to an earlier branching 
point. 

The task of traversing tree graphs is tightly linked with many recursive 
algorithms, such as the maze-solving algorithm in this chapter and the 
maze-generation program in Chapter 11. We’ll take a look at tree traversal 
algorithms and employ them to find certain names in a tree data structure. 
We’ll also use tree traversal for an algorithm to obtain the deepest node in 

T H E R E C U R S I V E 

B O O K O F 

R E C U R S I O N

A C E T H E C O D I N G I N T E R V I E W
W I T H 

P Y T H O N A N D J A V A S C R I P T

T H E
R E C U R S I V E 

B O O K
O F 

R E C U R S I O N

A C E T H E C O D I N G I N T E R V I E W
W I T H

P Y T H O N A N D J A V A S C R I P T

THE RECURSIVE

BOOKOF 

RECURSION

ACETHE
CODING

INTERVI
EWWIT

H

PYTHON
ANDJAV

ASCRIP
T



72   Chapter 4

a tree. Finally, we’ll see how mazes can be represented as a tree data struc-
ture, and employ tree traversal and backtracking to find a path from the 
start of the maze to the exit.

Using Tree Traversal
If you program in Python and JavaScript, you’re used to working with list, 
array, and dictionary data structures. You’ll encounter tree data structures 
only if you are dealing with low-level details of certain computer science 
algorithms such as abstract syntax trees, priority queues, Adelson-Velsky-
Landis (AVL) trees, and other concepts beyond the scope of this book. 
However, trees themselves are simple enough concepts.

A tree data structure is a data structure composed of nodes that are con-
nected to other nodes by edges. The nodes contain data, while the edges rep-
resent a relationship with another node. Nodes are also called vertices. The 
starting node of a tree is called the root, and the nodes at the end are called 
leaves. Trees always have exactly one root.

Parent nodes at the top have edges to zero or more child nodes beneath 
them. Therefore, leaves are the nodes that do not have children, parent 
nodes are the non-leaf nodes, and child nodes are all the non-root nodes. 
Nodes in a tree can have edges to multiple child nodes. The parent nodes 
that connect a child node to the root node are also called the child node’s 
ancestors. The child nodes between a parent node and a leaf node are called 
the parent node’s descendants. Parent nodes in a tree can have multiple child 
nodes. But every child node has exactly one parent, except for the root 
node, which has zero parents. In trees, only one path can exist between any 
two nodes.

Figure 4-1 shows an example of a tree and three examples of structures 
that are not trees.

B C

Tree

G H

FD E

A

B

D

C

Not a tree
(child node loops back
to an ancestor node)

G H

FE

A

B

DD

H

C

E F

G

B

Not a tree
(child node has
multiple parents)

A

D E

G H

B C

E FD

Not a tree
(multiple root

nodes)

AZ

Figure 4-1: A tree (left) and three examples of non-trees

As you can see, child nodes must have one parent and not have an edge 
that creates a loop, or else the structure is no longer considered a tree. 
The recursive algorithms we cover in this chapter apply only to tree data 
structures.



Backtracking and Tree Traversal Algorithms   73

A Tree Data Structure in Python and JavaScript
Tree data structures are often drawn growing downward, with the root at 
the top. Figure 4-2 shows a tree created with the following Python code (it’s 
also valid JavaScript code):

root  = {'data': 'A', 'children': []}
node2 = {'data': 'B', 'children': []}
node3 = {'data': 'C', 'children': []}
node4 = {'data': 'D', 'children': []}
node5 = {'data': 'E', 'children': []}
node6 = {'data': 'F', 'children': []}
node7 = {'data': 'G', 'children': []}
node8 = {'data': 'H', 'children': []}
root['children'] = [node2, node3]
node2['children'] = [node4]
node3['children'] = [node5, node6]
node5['children'] = [node7, node8]

Preorder:
A  B  D  C  E  G  H  F

Postorder:
D  B  G  H  E  F  C  A

Inorder:
D  B  A  G  E  H  C  F

Root node and
parent node

B

Parent node and
child node

Child node and
leaf node

C

G H

FD E

A

Figure 4-2: A tree with root A and leaves D, G, H, and F, along with its  
traversal orders

Each node in the tree contains a piece of data (a string of a letter from 
A to H) and a list of its child nodes. The preorder, postorder, and inorder 
information in Figure 4-2 is explained in subsequent sections.

In the code for this tree, each node is represented by a Python diction-
ary (or JavaScript object) with a key data that stores the node’s data, and a 
key children that has a list of other nodes. I use the root and node2 to node8 
variables to store each node and make the code more readable, but they 
aren’t required. The following Python/JavaScript code is equivalent to the 
previous code listing, though harder for humans to read:

root = {'data': 'A', 'children': [{'data': 'B', 'children': 
[{'data': 'D', 'children': []}]}, {'data': 'C', 'children': 
[{'data': 'E', 'children': [{'data': 'G', 'children': []}, 
{'data': 'H', 'children': []}]}, {'data': 'F', 'children': []}]}]}

The tree in Figure 4-2 is a specific kind of data structure called a 
directed acyclic graph (DAG). In mathematics and computer science, a graph is 
a collection of nodes and edges, and a tree is a kind of graph. The graph 



74   Chapter 4

is directed because its edges have one direction: from parent to child node. 
Edges in a DAG are not undirected—that is, bidirectional. (Trees in gen-
eral do not have this restriction and can have edges in both directions, 
including from a child node back to its parent node.) The graph is acyclic 
because there are no loops, or cycles, from child nodes to their own ancestor 
nodes; the “branches” of the tree must keep growing in the same direction. 

You can think of lists, arrays, and strings as linear trees; the root is the 
first element, and the nodes have only one child node. This linear tree ter-
minates at its one leaf node. These linear trees are called linked lists, as each 
node has only one “next” node until the end of the list. Figure 4-3 shows a 
linked list that stores the characters in the word HELLO.

“H” “E” “L” “L” “O”

Figure 4-3: A linked list data structure storing HELLO. Linked lists  
can be considered a kind of tree data structure.

We’ll use the code for the tree in Figure 4-2 for this chapter’s examples. 
A tree traversal algorithm will visit each of the nodes in a tree by following 
the edges, starting from a root node.

Traversing the Tree
We can write code to access data in any node by starting from the root 
node in root. For example, after entering the tree code into the Python or 
JavaScript interactive shell, run the following:

>>> root['children'][1]['data']
'C'
>>> root['children'][1]['children'][0]['data']
'E'

Our tree traversal code can be written as a recursive function because 
tree data structures have a self-similar structure: a parent node has child 
nodes, and each child node is the parent node of its own children. Tree tra-
versal algorithms ensure that your programs can access or modify the data 
in every node in the tree no matter its shape or size.

Let’s ask the three questions about recursive algorithms for our tree 
traversal code:

What is the base case?     A leaf node, which has no more children and 
requires no more recursive calls, causing the algorithm to backtrack to 
a previous parent node.

What argument is passed to the recursive function call?     The node 
to traverse to, whose child nodes will be the next nodes to traverse.

How does this argument become closer to the base case?    There are 
no cycles in a DAG, so following the descendant nodes will always even-
tually reach a leaf node.



Backtracking and Tree Traversal Algorithms   75

Keep in mind that tree data structures that are especially deep will 
cause a stack overflow as the algorithm traverses the deeper nodes. This 
happens because each level deeper into the tree requires yet another func-
tion call, and too many function calls without returning cause stack over-
flows. However, it’s unlikely for broad, well-balanced trees to be that deep. If 
every node in a 1,000 level deep tree has two children, the tree would have 
about 21000 nodes. That’s more atoms than there are in the universe, and it’s 
unlikely your tree data structure is that big.

Trees have three kinds of tree traversal algorithms: preorder, postorder, 
and inorder. We’ll discuss each of these in the next three sections.

Preorder Tree Traversal
Preorder tree traversal algorithms access a node’s data before traversing its 
child nodes. Use a preorder traversal if your algorithm needs to access the 
data in parent nodes before the data in their child nodes. For example, 
preorder traversals are used when you are creating a copy of the tree data 
structure, as you need to create the parent nodes before child nodes in the 
duplicate tree.

The following preorderTraversal.py program has a preorderTraverse() func-
tion that traverses each child node first, before accessing the node’s data to 
print it to the screen:

Python root = {'data': 'A', 'children': [{'data': 'B', 'children': 
[{'data': 'D', 'children': []}]}, {'data': 'C', 'children': 
[{'data': 'E', 'children': [{'data': 'G', 'children': []}, 
{'data': 'H', 'children': []}]}, {'data': 'F', 'children': []}]}]}

def preorderTraverse(node):
    print(node['data'], end=' ') # Access this node's data.
  1 if len(node['children']) > 0:
        # RECURSIVE CASE
        for child in node['children']:
            preorderTraverse(child) # Traverse child nodes.
    # BASE CASE
  2 return

preorderTraverse(root)

The equivalent JavaScript program is in preorderTraversal.html:

JavaScript <script type="text/javascript">
root = {"data": "A", "children": [{"data": "B", "children": 
[{"data": "D", "children": []}]}, {"data": "C", "children": 
[{"data": "E", "children": [{"data": "G", "children": []}, 
{"data": "H", "children": []}]}, {"data": "F", "children": []}]}]};

function preorderTraverse(node) {
    document.write(node["data"] + " "); // Access this node's data.
  1 if (node["children"].length > 0) {
        // RECURSIVE CASE
        for (let i = 0; i < node["children"].length; i++) {



76   Chapter 4

            preorderTraverse(node["children"][i]); // Traverse child nodes.
        }
    }
    // BASE CASE
  2 return;
}

preorderTraverse(root);
</script>

The output of these programs is the node data in preorder order:

A B D C E G H F

When you look at the tree in Figure 4-1, notice that preorder traversal 
order displays the data in left nodes before right nodes, and bottom nodes 
before top nodes.

All tree traversals begin by passing the root node to the recursive func-
tion. The function makes a recursive call and passes each of the root node’s 
children as the argument. Since these child nodes have children of their 
own, the traversal continues until a leaf node with no children is reached. 
At this point, the function call simply returns.

The recursive case occurs if the node has any child nodes 1, in which 
case a recursive call is made with each of the children as the node argu-
ment. Whether or not the node has children, the base case always happens 
at the end of the function when it returns 2.

Postorder Tree Traversal
Postorder tree traversal traverses a node’s child nodes before accessing the 
node’s data. For example, this traversal is used when deleting a tree and 
ensuring that no child nodes are “orphaned” by deleting their parent nodes 
first, leaving the child node inaccessible to the root node. The code in the 
following postorderTraversal.py program is similar to the preorder traversal 
code in the previous section, except the recursive function call comes 
before the print() call:

Python root = {'data': 'A', 'children': [{'data': 'B', 'children': 
[{'data': 'D', 'children': []}]}, {'data': 'C', 'children': 
[{'data': 'E', 'children': [{'data': 'G', 'children': []}, 
{'data': 'H', 'children': []}]}, {'data': 'F', 'children': []}]}]}

def postorderTraverse(node):
    for child in node['children']:
        # RECURSIVE CASE
        postorderTraverse(child) # Traverse child nodes.
    print(node['data'], end=' ') # Access this node's data.
    # BASE CASE
    return

postorderTraverse(root)



Backtracking and Tree Traversal Algorithms   77

The postorderTraversal.html program has the equivalent JavaScript code:

JavaScript <script type="text/javascript">
root = {"data": "A", "children": [{"data": "B", "children": 
[{"data": "D", "children": []}]}, {"data": "C", "children": 
[{"data": "E", "children": [{"data": "G", "children": []}, 
{"data": "H", "children": []}]}, {"data": "F", "children": []}]}]};

function postorderTraverse(node) {
    for (let i = 0; i < node["children"].length; i++) {
        // RECURSIVE CASE
        postorderTraverse(node["children"][i]); // Traverse child nodes.
    }
    document.write(node["data"] + " "); // Access this node's data.
    // BASE CASE
    return;
}

postorderTraverse(root);
</script>

The output of these programs is the node data in postorder order:

D B G H E F C A

The postorder traversal order of the nodes displays the data in left 
nodes before right nodes, and in bottom nodes before top nodes. When 
we compare the postorderTraverse() and preorderTraverse() functions, we 
find that the names are a bit of a misnomer: pre and post don’t refer to the 
order in which nodes are visited. The nodes are always traversed in the 
same order; we go down the child nodes first (called a depth-first search) as 
opposed to visiting the nodes in each level before going deeper (called a 
breadth-first search). The pre and post refer to when the node’s data is accessed: 
either before or after traversing the node’s children.

Inorder Tree Traversal
Binary trees are tree data structures with at most two child nodes, often 
called the left child and right child. An inorder tree traversal traverses the left 
child node, then accesses the node’s data, and then traverses the right child 
node. This traversal is used in algorithms that deal with binary search trees 
(which are beyond the scope of this book). The inorderTraversal.py program 
contains Python code that performs this kind of traversal:

Python root = {'data': 'A', 'children': [{'data': 'B', 'children': 
[{'data': 'D', 'children': []}]}, {'data': 'C', 'children': 
[{'data': 'E', 'children': [{'data': 'G', 'children': []}, 
{'data': 'H', 'children': []}]}, {'data': 'F', 'children': []}]}]}

def inorderTraverse(node):
    if len(node['children']) >= 1:
        # RECURSIVE CASE



78   Chapter 4

        inorderTraverse(node['children'][0]) # Traverse the left child.
    print(node['data'], end=' ') # Access this node's data.
    if len(node['children']) >= 2:
        # RECURSIVE CASE
        inorderTraverse(node['children'][1]) # Traverse the right child.
    # BASE CASE
    return

inorderTraverse(root)

The inorderTraversal.html program contains the equivalent JavaScript code:

JavaScript <script type="text/javascript">
root = {"data": "A", "children": [{"data": "B", "children": 
[{"data": "D", "children": []}]}, {"data": "C", "children": 
[{"data": "E", "children": [{"data": "G", "children": []}, 
{"data": "H", "children": []}]}, {"data": "F", "children": []}]}]};

function inorderTraverse(node) {
    if (node["children"].length >= 1) {
        // RECURSIVE CASE
        inorderTraverse(node["children"][0]); // Traverse the left child.
    }
    document.write(node["data"] + " "); // Access this node's data.
    if (node["children"].length >= 2) {
        // RECURSIVE CASE
        inorderTraverse(node["children"][1]); // Traverse the right child.
    }
    // BASE CASE
    return;
}

inorderTraverse(root);
</script>

The output of these programs looks like this:

D B A G E H C F

Inorder traversal typically refers to the traversal of binary trees, although 
processing a node’s data after traversing the first node and before traversing 
the last node would count as inorder traversal for trees of any size.

Finding Eight-Letter Names in a Tree
Instead of printing out the data in each node as we traverse them, we can 
use a depth-first search to find specific data in a tree data structure. We’ll 
write an algorithm that searches the tree in Figure 4-4 for names that are 
exactly eight letters long. This is a rather contrived example, but it shows 
how an algorithm can use tree traversal to retrieve data out of a tree data 
structure.



Backtracking and Tree Traversal Algorithms   79

'Bob′ 'Caroline′

'Gonzalo′ 'Hadassah′

'Fred′'Darya′ 'Eve′

'Alice′

Figure 4-4: The tree that stores names in our  
depthFirstSearch.py and depthFirstSearch.html  
programs

Let’s ask the three questions about recursive algorithms for our tree tra-
versal code. Their answers are similar to the answers for the tree traversal 
algorithms:

What is the base case?    Either a leaf node causing the algorithm to 
backtrack, or a node containing an eight-letter name.

What argument is passed to the recursive function call?    The node to 
traverse to, whose child nodes will be the next nodes to traverse.

How does this argument become closer to the base case?    There are 
no cycles in a DAG, so following the descendant nodes will always even-
tually reach a leaf node.

The depthFirstSearch.py program contains Python code that performs a 
depth-first search with a preorder traversal:

Python root = {'name': 'Alice', 'children': [{'name': 'Bob', 'children': 
[{'name': 'Darya', 'children': []}]}, {'name': 'Caroline', 
'children': [{'name': 'Eve', 'children': [{'name': 'Gonzalo', 
'children': []}, {'name': 'Hadassah', 'children': []}]}, {'name': 'Fred', 
'children': []}]}]}

def find8LetterName(node):
    print(' Visiting node ' + node['name'] + '...')

    # Preorder depth-first search:
    print('Checking if ' + node['name'] + ' is 8 letters...')
  1 if len(node['name']) == 8: return node['name'] # BASE CASE

    if len(node['children']) > 0:
        # RECURSIVE CASE
        for child in node['children']:
            returnValue = find8LetterName(child)
            if returnValue != None:
                return returnValue



80   Chapter 4

    # Postorder depth-first search:
    #print('Checking if ' + node['name'] + ' is 8 letters...')
  2 #if len(node['name']) == 8: return node['name'] # BASE CASE

    # Value was not found or there are no children.
    return None # BASE CASE

print('Found an 8-letter name: ' + str(find8LetterName(root)))

The depthFirstSearch.html program contains the equivalent JavaScript 
program:

JavaScript <script type="text/javascript">
root = {'name': 'Alice', 'children': [{'name': 'Bob', 'children': 
[{'name': 'Darya', 'children': []}]}, {'name': 'Caroline', 
'children': [{'name': 'Eve', 'children': [{'name': 'Gonzalo', 
'children': []}, {'name': 'Hadassah', 'children': []}]}, {'name': 'Fred', 
'children': []}]}]};

function find8LetterName(node, value) {
    document.write("Visiting node " + node.name + "...<br />");

    // Preorder depth-first search:
    document.write("Checking if " + node.name + " is 8 letters...<br />");
  1 if (node.name.length === 8) return node.name; // BASE CASE

    if (node.children.length > 0) {
        // RECURSIVE CASE
        for (let child of node.children) {
            let returnValue = find8LetterName(child);
            if (returnValue != null) {
                return returnValue;
            }
        }
    }

    // Postorder depth-first search:
    document.write("Checking if " + node.name + " is 8 letters...<br />");
  2 //if (node.name.length === 8) return node.name; // BASE CASE

    // Value was not found or there are no children.
    return null; // BASE CASE
}

document.write("Found an 8-letter name: " + find8LetterName(root));
</script>

The output of these programs looks like this:

Visiting node Alice...
Checking if Alice is 8 letters...
Visiting node Bob...
Checking if Bob is 8 letters...
Visiting node Darya...



Backtracking and Tree Traversal Algorithms   81

Checking if Darya is 8 letters...
Visiting node Caroline...
Checking if Caroline is 8 letters...
Found an 8-letter name: Caroline

The find8LetterName() function operates in the same way as our previ-
ous tree traversal functions, except instead of printing the node’s data, the 
function checks the name stored in the node and returns the first eight-
letter name it finds. You can change the preorder traversal to a postorder 
traversal by commenting out the earlier name length comparison and the 
Checking if line 1 and uncommenting the later name length comparison 
and the Checking if line 2. When you make this change, the first eight-letter 
name the function finds is Hadassah:

Visiting node Alice...
Visiting node Bob...
Visiting node Darya...
Checking if Darya is 8 letters...
Checking if Bob is 8 letters...
Visiting node Caroline...
Visiting node Eve...
Visiting node Gonzalo...
Checking if Gonzalo is 8 letters...
Visiting node Hadassah...
Checking if Hadassah is 8 letters...
Found an 8-letter name: Hadassah

While both traversal orders correctly find an eight-letter name, chang-
ing the order of a tree traversal can alter the behavior of your program. 

Getting the Maximum Tree Depth
An algorithm can determine the deepest branch in a tree by recursively ask-
ing its child nodes how deep they are. The depth of a node is the number of 
edges between it and the root node. The root node itself has a depth of 0, 
the immediate child of the root node has a depth of 1, and so on. You may 
need this information as part of a larger algorithm or to gather informa-
tion about the general size of the tree data structure. 

We can have a function named getDepth() take a node for an argument 
and return the depth of its deepest child node. A leaf node (the base case) 
simply returns 0.

For example, given the root node of the tree in Figure 4-1, we could 
call getDepth() and pass it the root node (the A node). This would return the 
depth of its children, the B and C nodes, plus one. The function must make a 
recursive call to getDepth() to find out this information. Eventually, the A node 
would call getDepth() on C, which would call it on E. When E calls getDepth() 
with its two children, G and H, they both return 0, so getDepth() called on 
E returns 1, making getDepth() called on C return 2, and making getDepth() 
called on A (the root node) return 3. Our tree’s greatest depth is three levels.



82   Chapter 4

Let’s ask our three recursive algorithm questions for the getDepth() 
function:

What is the base case?     A leaf node with no children, which by its 
nature has a depth of one level.

What argument is passed to the recursive function call?     The node 
whose greatest depth we want to find.

How does this argument become closer to the base case?     A DAG  
has no cycles, so following the descendant nodes will eventually reach  
a leaf node.

The following getDepth.py program contains a recursive getDepth() function 
that returns the number of levels contained in the deepest node in the tree:

Python root = {'data': 'A', 'children': [{'data': 'B', 'children': 
[{'data': 'D', 'children': []}]}, {'data': 'C', 'children': 
[{'data': 'E', 'children': [{'data': 'G', 'children': []}, 
{'data': 'H', 'children': []}]}, {'data': 'F', 'children': []}]}]}

def getDepth(node):
    if len(node['children']) == 0:
        # BASE CASE
        return 0
    else:
        # RECURSIVE CASE
        maxChildDepth = 0
        for child in node['children']:
            # Find the depth of each child node:
            childDepth = getDepth(child)
            if childDepth > maxChildDepth:
                # This child is deepest child node found so far:
                maxChildDepth = childDepth
        return maxChildDepth + 1

print('Depth of tree is ' + str(getDepth(root)))

The getDepth.html program contains the JavaScript equivalent:

JavaScript <script type="text/javascript">
root = {"data": "A", "children": [{"data": "B", "children": 
[{"data": "D", "children": []}]}, {"data": "C", "children": 
[{"data": "E", "children": [{"data": "G", "children": []}, 
{"data": "H", "children": []}]}, {"data": "F", "children": []}]}]};

function getDepth(node) {
    if (node.children.length === 0) {
        // BASE CASE
        return 0;
    } else {
        // RECURSIVE CASE
        let maxChildDepth = 0;
        for (let child of node.children) {
            // Find the depth of each child node:



Backtracking and Tree Traversal Algorithms   83

            let childDepth = getDepth(child);
            if (childDepth > maxChildDepth) {
                // This child is deepest child node found so far:
                maxChildDepth = childDepth;
            }
        }
        return maxChildDepth + 1;
    }
}

document.write("Depth of tree is " + getDepth(root) + "<br />");
</script>

The output of these programs is as follows:

Depth of tree is 3

This matches what we see in Figure 4-2: the number of levels from the 
root node A down to the lowest nodes G and H is three levels.

Solving Mazes
While mazes come in all shapes and sizes, simply connected mazes, also called 
perfect mazes, contain no loops. A perfect maze has exactly one path between 
any two points, such as the start and exit. These mazes can be represented 
by a DAG. 

For example, Figure 4-5 shows the maze that our maze program solves, 
and Figure 4-6 shows the DAG form of it. The capital S marks the start of 
the maze, and the capital E marks the exit. A few of the intersections that 
have been marked with lowercase letters in the maze correspond to nodes 
in the DAG.

S

E

d b a c

f

e
g

p

o

h

m

l
k

n

Figure 4-5: The maze solved by our maze program in this chapter. Some intersections 
have lowercase letters that correspond to nodes in Figure 4-6.



84   Chapter 4

W

EN

S EW

W E

W E

W E

W E

W E

W E

W N

WE

Exit
NW

E S

N S

N S

E

W E

S EN

W N

N S

N W

N S

W E

W S

N E

N W

W

EW

W E EW

W E W S SN

W

a

b c

d f e

g

h

i

o

k

p

m n

Start

W ES W

Figure 4-6: In this DAG representation of the maze, nodes represent intersections, and 
edges represent the north, south, east, or west path from the intersection. Some nodes 
have lowercase letters to correspond to intersections in Figure 4-5.



Backtracking and Tree Traversal Algorithms   85

Because of this similarity in structure, we can use a tree traversal algo-
rithm to solve the maze. The nodes in this tree graph represent intersec-
tions where the maze solver could choose one of the north, south, east, or 
west paths to follow to the next intersection. The root node is the start of 
the maze, and the leaf nodes represent dead ends. 

The recursive case occurs when the tree traversal algorithm moves from 
one node to the next. If the tree traversal reaches a leaf node (a dead end 
in the maze), the algorithm has reached a base case and must backtrack to 
an earlier node and follow a different path. Once the algorithm reaches the 
exit node, the path it took from the root node represents the maze solution. 
Let’s ask our three recursive algorithm questions about the maze-solving 
algorithm:

What is the base case?    Reaching a dead end or the exit of the maze.

What argument is passed to the recursive function call?    The x, y 
coordinates, along with the maze data and list of already visited x, y 
coordinates.

How does this argument become closer to the base case?    Like the 
flood fill algorithm, the x, y coordinates keep moving to neighboring 
coordinates until they eventually reach dead ends or the final exit.

This mazeSolver.py program contains the Python code for solving the 
maze stored in the MAZE variable:

Python # Create the maze data structure:
# You can copy-paste this from inventwithpython.com/examplemaze.txt
MAZE = """
#######################################################################
#S#                 #       # #   #     #         #     #   #         #
# ##### ######### # ### ### # # # # ### # # ##### # ### # # ##### # ###
# #   #     #     #     #   # # #   # #   # #       # # # #     # #   #
# # # ##### # ########### ### # ##### ##### ######### # # ##### ### # #
#   #     # # #     #   #   #   #         #       #   #   #   #   # # #
######### # # # ##### # ### # ########### ####### # # ##### ##### ### #
#       # # # #     # #     # #   #   #   #     # # #   #         #   #
# # ##### # # ### # # ####### # # # # # # # ##### ### ### ######### # #
# # #   # # #   # # #     #     #   #   #   #   #   #     #         # #
### # # # # ### # # ##### ####### ########### # ### # ##### ##### ### #
#   # #   # #   # #     #   #     #       #   #     # #     #     #   #
# ### ####### ##### ### ### ####### ##### # ######### ### ### ##### ###
#   #         #     #     #       #   # #   # #     #   # #   # #   # #
### ########### # ####### ####### ### # ##### # # ##### # # ### # ### #
#   #   #       # #     #   #   #     #       # # #     # # #   # #   #
# ### # # ####### # ### ##### # ####### ### ### # # ####### # # # ### #
#     #         #     #       #           #     #           # #      E#
#######################################################################
""".split('\n')

# Constants used in this program:
EMPTY = ' '
START = 'S'
EXIT = 'E'



86   Chapter 4

PATH = '.'

# Get the height and width of the maze:
HEIGHT = len(MAZE)
WIDTH = 0
for row in MAZE: # Set WIDTH to the widest row's width.
    if len(row) > WIDTH:
        WIDTH = len(row)
# Make each row in the maze a list as wide as the WIDTH:
for i in range(len(MAZE)):
    MAZE[i] = list(MAZE[i])
    if len(MAZE[i]) != WIDTH:
        MAZE[i] = [EMPTY] * WIDTH # Make this a blank row.

def printMaze(maze):
    for y in range(HEIGHT):
        # Print each row.
        for x in range(WIDTH):
            # Print each column in this row.
            print(maze[y][x], end='')
        print() # Print a newline at the end of the row.
    print()

def findStart(maze):
    for x in range(WIDTH):
        for y in range(HEIGHT):
            if maze[y][x] == START:
                return (x, y) # Return the starting coordinates.

def solveMaze(maze, x=None, y=None, visited=None):
    if x == None or y == None:
        x, y = findStart(maze)
        maze[y][x] = EMPTY # Get rid of the 'S' from the maze.
    if visited == None:
      1 visited = [] # Create a new list of visited points. 

    if maze[y][x] == EXIT:
         return True # Found the exit, return True.

    maze[y][x] = PATH # Mark the path in the maze.
  2 visited.append(str(x) + ',' + str(y)) 
  3 #printMaze(maze) # Uncomment to view each forward step.

    # Explore the north neighboring point:
    if y + 1 < HEIGHT and maze[y + 1][x] in (EMPTY, EXIT) and \
    str(x) + ',' + str(y + 1) not in visited:
        # RECURSIVE CASE
        if solveMaze(maze, x, y + 1, visited):
            return True # BASE CASE
    # Explore the south neighboring point:
    if y - 1 >= 0 and maze[y - 1][x] in (EMPTY, EXIT) and \
    str(x) + ',' + str(y - 1) not in visited:
        # RECURSIVE CASE
        if solveMaze(maze, x, y - 1, visited):
            return True # BASE CASE



Backtracking and Tree Traversal Algorithms   87

    # Explore the east neighboring point:
    if x + 1 < WIDTH and maze[y][x + 1] in (EMPTY, EXIT) and \
    str(x + 1) + ',' + str(y) not in visited:
        # RECURSIVE CASE
        if solveMaze(maze, x + 1, y, visited):
            return True # BASE CASE
    # Explore the west neighboring point:
    if x - 1 >= 0 and maze[y][x - 1] in (EMPTY, EXIT) and \
    str(x - 1) + ',' + str(y) not in visited:
        # RECURSIVE CASE
        if solveMaze(maze, x - 1, y, visited):
            return True # BASE CASE

    maze[y][x] = EMPTY # Reset the empty space.
  4 #printMaze(maze) # Uncomment to view each backtrack step.

    return False # BASE CASE

printMaze(MAZE)
solveMaze(MAZE)
printMaze(MAZE)

The mazeSolver.html program contains the JavaScript equivalent:

JavaScript <script type="text/javascript">
// Create the maze data structure:
// You can copy-paste this from inventwithpython.com/examplemaze.txt
let MAZE = `
#######################################################################
#S#                 #       # #   #     #         #     #   #         #
# ##### ######### # ### ### # # # # ### # # ##### # ### # # ##### # ###
# #   #     #     #     #   # # #   # #   # #       # # # #     # #   #
# # # ##### # ########### ### # ##### ##### ######### # # ##### ### # #
#   #     # # #     #   #   #   #         #       #   #   #   #   # # #
######### # # # ##### # ### # ########### ####### # # ##### ##### ### #
#       # # # #     # #     # #   #   #   #     # # #   #         #   #
# # ##### # # ### # # ####### # # # # # # # ##### ### ### ######### # #
# # #   # # #   # # #     #     #   #   #   #   #   #     #         # #
### # # # # ### # # ##### ####### ########### # ### # ##### ##### ### #
#   # #   # #   # #     #   #     #       #   #     # #     #     #   #
# ### ####### ##### ### ### ####### ##### # ######### ### ### ##### ###
#   #         #     #     #       #   # #   # #     #   # #   # #   # #
### ########### # ####### ####### ### # ##### # # ##### # # ### # ### #
#   #   #       # #     #   #   #     #       # # #     # # #   # #   #
# ### # # ####### # ### ##### # ####### ### ### # # ####### # # # ### #
#     #         #     #       #           #     #           # #      E#
#######################################################################
`.split("\n");

// Constants used in this program:
const EMPTY = " ";
const START = "S";
const EXIT = "E";
const PATH = ".";



88   Chapter 4

// Get the height and width of the maze:
const HEIGHT = MAZE.length;
let maxWidthSoFar = MAZE[0].length;
for (let row of MAZE) { // Set WIDTH to the widest row's width.
    if (row.length > maxWidthSoFar) {
        maxWidthSoFar = row.length;
    }
}
const WIDTH = maxWidthSoFar;
// Make each row in the maze a list as wide as the WIDTH:
for (let i = 0; i < MAZE.length; i++) {
    MAZE[i] = MAZE[i].split("");
    if (MAZE[i].length !== WIDTH) {
        MAZE[i] = EMPTY.repeat(WIDTH).split(""); // Make this a blank row.
    }
}

function printMaze(maze) {
    document.write("<pre>");
    for (let y = 0; y < HEIGHT; y++) {
        // Print each row.
        for (let x = 0; x < WIDTH; x++) {
            // Print each column in this row.
            document.write(maze[y][x]);
        }
        document.write("\n"); // Print a newline at the end of the row.
    }
    document.write("\n</ pre>");
}

function findStart(maze) {
    for (let x = 0; x < WIDTH; x++) {
        for (let y = 0; y < HEIGHT; y++) {
            if (maze[y][x] === START) {
                return [x, y]; // Return the starting coordinates.
            }
        }
    }
}

function solveMaze(maze, x, y, visited) {
    if (x === undefined || y === undefined) {
        [x, y] = findStart(maze);
        maze[y][x] = EMPTY; // Get rid of the 'S' from the maze.
    }
    if (visited === undefined) {
      1 visited = []; // Create a new list of visited points.
    }

    if (maze[y][x] == EXIT) {
         return true; // Found the exit, return true.
    }

    maze[y][x] = PATH; // Mark the path in the maze.
  2 visited.push(String(x) + "," + String(y)); 



Backtracking and Tree Traversal Algorithms   89

  3 //printMaze(maze) // Uncomment to view each forward step.

    // Explore the north neighboring point:
    if ((y + 1 < HEIGHT) && ((maze[y + 1][x] == EMPTY) || 
    (maze[y + 1][x] == EXIT)) && 
    (visited.indexOf(String(x) + "," + String(y + 1)) === -1)) {
        // RECURSIVE CASE
        if (solveMaze(maze, x, y + 1, visited)) {
            return true; // BASE CASE
        }
    }
    // Explore the south neighboring point:
    if ((y - 1 >= 0) && ((maze[y - 1][x] == EMPTY) || 
    (maze[y - 1][x] == EXIT)) && 
    (visited.indexOf(String(x) + "," + String(y - 1)) === -1)) {
        // RECURSIVE CASE
        if (solveMaze(maze, x, y - 1, visited)) {
            return true; // BASE CASE
        }
    }
    // Explore the east neighboring point:
    if ((x + 1 < WIDTH) && ((maze[y][x + 1] == EMPTY) || 
    (maze[y][x + 1] == EXIT)) && 
    (visited.indexOf(String(x + 1) + "," + String(y)) === -1)) {
        // RECURSIVE CASE
        if (solveMaze(maze, x + 1, y, visited)) {
            return true; // BASE CASE
        }
    }
    // Explore the west neighboring point:
    if ((x - 1 >= 0) && ((maze[y][x - 1] == EMPTY) || 
    (maze[y][x - 1] == EXIT)) && 
    (visited.indexOf(String(x - 1) + "," + String(y)) === -1)) {
        // RECURSIVE CASE
        if (solveMaze(maze, x - 1, y, visited)) {
            return true; // BASE CASE
        }
    }

    maze[y][x] = EMPTY; // Reset the empty space.
  4 //printMaze(maze); // Uncomment to view each backtrack step.
    return false; // BASE CASE
}

printMaze(MAZE);
solveMaze(MAZE);
printMaze(MAZE);
</script>

A lot of this code is not directly related to the recursive maze-solving 
algorithm. The MAZE variable stores the maze data as a multiline string with 
hashtags to represent walls, an S for the starting point, and an E for the exit. 
This string is converted into a list that contains lists of strings, with each 



90   Chapter 4

string representing a single character in the maze. This allows us to access 
MAZE[y][x] (note that y comes first) to get the character at the x, y coordi-
nate in the original MAZE string. The printMaze() function can accept this list-
of-list data structure and display the maze on the screen. The findStart() 
function accepts this data structure and returns the x, y coordinates of 
the S starting point. Feel free to edit the maze string yourself—although 
remember that, in order for the solving algorithm to work, the maze cannot 
have any loops.

The recursive algorithm is in the solveMaze() function. The arguments to 
this function are the maze data structure, the current x- and y-coordinates, 
and a visited list (which is created if none was supplied) 1. The visited list 
contains all the coordinates that have previously been visited so that when 
the algorithm backtracks from a dead end to an earlier intersection, it knows 
which paths it has tried before and can try a different one. The path from 
the start to the exit is marked by replacing the spaces (matching the EMPTY 
constant) in the maze data structure with periods (from the PATH constant).

The maze-solving algorithm is similar to our flood fill program in 
Chapter 3 in that it “spreads” to neighboring coordinates, though when it 
reaches a dead end, it backtracks to an earlier intersection. The solveMaze() 
function receives the x, y coordinates indicating the algorithm’s current 
location in the maze. If this is the exit, the function returns True, causing 
all the recursive calls to also return True. The maze data structure remains 
marked with the solution path.

Otherwise, the algorithm marks the current x, y coordinates in the 
maze data structure with a period and adds the coordinates to the visited 
list 2. Then it looks to the x, y coordinates north of the current coordinates 
to see if that point is not off the edge of the map, is either the empty or exit 
space, and has not been visited before. If these conditions are met, the algo-
rithm makes a recursive call to solveMaze() with the northern coordinates. If 
these conditions aren’t met or the recursive call to solveMaze() returns False, 
the algorithm continues on to check the south, east, and west coordinates. 
Like the flood fill algorithm, recursive calls are made with the neighboring 
coordinates.

MODIF Y ING A L IS T OR A R R AY IN PL ACE

Python doesn’t pass a copy of lists, and JavaScript doesn’t pass a copy of 
arrays, to function calls. Rather, they pass a reference to the list. Therefore, any 
changes made to a list or array (such as the ones in maze and visited) remain 
even after the function returns. This is called modifying the list in place. For 
recursive functions, you can think of the maze data structure and collection of 
visited coordinates as a single copy shared among all the recursive function 
calls, unlike the x and y arguments. This is why the data structure in MAZE is still 
modified after the first call to solveMaze() returns.



Backtracking and Tree Traversal Algorithms   91

To get a better idea of how this algorithm works, uncomment the two 
printMaze(MAZE) calls 3 4 inside the solveMaze() function. These will display 
the maze data structure as it attempts new paths, reaches dead ends, back-
tracks, and tries different paths.

Summary
This chapter explored several algorithms that make use of tree data struc-
tures and backtracking, which are features of a problem that is suitable for 
solving with recursive algorithms. We covered tree data structures, which 
are composed of nodes that contain data and edges that relate nodes 
together in parent–child relationships. In particular, we examined a spe-
cific kind of tree called a directed acyclic graph (DAG) that is often used 
in recursive algorithms. A recursive function call is analogous to traversing 
to a child node in a tree, while returning from a recursive function call is 
analogous to backtracking to a previous parent node.

While recursion is overused for simple programming problems, it is 
well matched for problems that involve tree-like structures and backtrack-
ing. Using these ideas of tree-like structures, we wrote several algorithms 
for traversing, searching, and determining the depth of tree structures. We 
also showed that a simply connected maze has a tree-like structure, and 
employed recursion and backtracking to solve a maze.

Further Reading
There is far more to trees and tree traversal than the brief description 
of DAGs presented in this chapter. The Wikipedia articles at https://
en.wikipedia.org/wiki/Tree_(data_structure) and https://en.wikipedia.org/wiki/
Tree_traversal provide additional context for these concepts, which are 
often used in computer science.

The Computerphile YouTube channel also has a video titled “Maze 
Solving” at https://youtu.be/rop0W4QDOUI that discusses these concepts.  
V. Anton Spraul, author of Think Like a Programmer (No Starch Press, 2012), 
also has a video on maze solving titled “Backtracking” at https://youtu.be/
gBC_Fd8EE8A. The freeCodeCamp organization (https://freeCodeCamp 
.org) has a video series on backtracking algorithms at https://youtu.be/
A80YzvNwqXA.

In addition to maze solving, the recursive backtracker algorithm 
uses recursion to generate mazes. You can find out more about this 
and other maze-generating algorithms at https://en.wikipedia.org/wiki/
Maze_generation_algorithm#Recursive_backtracker.

https://en.wikipedia.org/wiki/Tree_(data_structure)
https://en.wikipedia.org/wiki/Tree_(data_structure)
https://en.wikipedia.org/wiki/Tree_traversal
https://en.wikipedia.org/wiki/Tree_traversal
https://youtu.be/rop0W4QDOUI
https://youtu.be/gBC_Fd8EE8A
https://youtu.be/gBC_Fd8EE8A
https://freeCodeCamp.org
https://freeCodeCamp.org
https://youtu.be/A80YzvNwqXA
https://youtu.be/A80YzvNwqXA
https://en.wikipedia.org/wiki/Maze_generation_algorithm#Recursive_backtracker
https://en.wikipedia.org/wiki/Maze_generation_algorithm#Recursive_backtracker


92   Chapter 4

Practice Questions
Test your comprehension by answering the following questions:

	 1.	 What are nodes and edges?

	 2.	 What are root and leaf nodes?

	 3.	 What are the three tree traversal orders?

	 4.	 What does DAG stand for?

	 5.	 What is a cycle, and do DAGs have cycles?

	 6.	 What is a binary tree?

	 7.	 What are the child nodes in a binary tree called?

	 8.	 If a parent node has an edge to a child node, and the child node has an 
edge back to the parent node, is this graph considered a DAG?

	 9.	 What is backtracking in a tree traversal algorithm?

For the following tree traversal problems, you can use the Python/
JavaScript code in “A Tree Data Structure in Python and JavaScript” in 
Chapter 4 for your tree and the multiline MAZE string from the mazeSolver.py 
and mazeSolver.html programs for the maze data.

	10.	 Answer the three questions about recursive solutions for each of the 
recursive algorithms presented in this chapter: 

a.	 What is the base case? 

b.	 What argument is passed to the recursive function call? 

c.	 How does this argument become closer to the base case? 

Then re-create the recursive algorithms from this chapter without look-
ing at the original code.

Practice Projects
For practice, write a function for each of the following tasks:

	 1.	 Create a reverse-inorder search, one that performs an inorder traversal 
but traverses the right child node before the left child node.

	 2.	 Create a function that, given a root node as an argument, proceeds to 
make the tree one level deeper by adding one child node to each leaf 
node in the original tree. This function will need to perform a tree 
traversal, detect when it has reached a leaf node, and then add one and 
only one child node to the leaf node. Be sure not to go on and add a 
child node to this new leaf node, as that will eventually cause a stack 
overflow.



5
D I V I D E - A N D - C O N Q U E R 

A L G O R I T H M S

Divide-and-conquer algorithms are those that 
split large problems into smaller subprob-

lems, then divide those subproblems into 
ones that are smaller yet, until they become 

trivial to conquer. This approach makes recursion an 
ideal technique to use: the recursive case divides the 
problem into self-similar subproblems, and the base 
case occurs when the subproblem has been reduced 
to a trivial size. One benefit of this approach is that  
these problems can be worked on in parallel, allowing multiple central 
processing unit (CPU) cores or computers to work on them.

In this chapter, we’ll look at some common algorithms that use recur-
sion to divide and conquer, such as binary search, quicksort, and merge 
sort. We’ll also reexamine summing an array of integers, this time with a 
divide-and-conquer approach. Finally, we’ll take a look at the more esoteric 

T H E R E C U R S I V E 

B O O K O F 

R E C U R S I O N

A C E T H E C O D I N G I N T E R V I E W
W I T H 

P Y T H O N A N D J A V A S C R I P T

T H E
R E C U R S I V E 

B O O K
O F 

R E C U R S I O N

A C E T H E C O D I N G I N T E R V I E W
W I T H

P Y T H O N A N D J A V A S C R I P T

THE RECURSIVE

BOOKOF 

RECURSION

ACETHE
CODING

INTERVI
EWWIT

H

PYTHON
ANDJAV

ASCRIP
T



94   Chapter 5

Karatsuba multiplication algorithm, developed in 1960, that laid the basis 
for computer hardware’s fast integer multiplication.

Binary Search: Finding a Book in an Alphabetized Bookshelf
Let’s say you have a bookshelf of 100 books. You can’t remember which 
books you have or their exact locations on the shelf, but you do know that 
they are sorted alphabetically by title. To find your book Zebras: The Complete 
Guide, you wouldn’t start at the beginning of the bookshelf, where Aaron 
Burr Biography is, but rather toward the end of the bookshelf. Your zebra 
book wouldn’t be the very last book on the shelf if you also had books on 
zephyrs, zoos, and zygotes, but it would be close. Thus, you can use the facts 
that the books are in alphabetical order and that Z is the last letter of the 
alphabet as heuristics, or approximate clues, to look toward the end of the 
shelf rather than the beginning.

Binary search is a technique for locating a target item in a sorted list 
by repeatedly determining which half of the list the item is in. The most 
impartial way to search the bookshelf is to start with a book in the middle, 
and then ascertain if the target book you’re looking for is in the left half or 
the right half.

You can then repeat this process, as shown in Figure 5-1: look at the 
book in the middle of your chosen half and then determine whether your 
target book is in the left-side quarter or the right-side quarter. You can do 
this until you either find the book, or find the place where the book should 
be but isn’t and declare that the book doesn’t exist on the shelf.

A ZZ

A Z

A Z

Figure 5-1: A binary search repeatedly determines  
which half of a range contains your target item  
in a sorted array of items.



Divide-and-Conquer Algorithms   95

This process scales efficiently; doubling the number of books to search 
adds only one step to the search process. A linear search of a shelf with 
50 books takes 50 steps, and a linear search of a shelf with 100 books takes 
100 steps. But a binary search of a shelf with 50 books takes only 6 steps, 
and a shelf with 100 books takes only 7 steps. 

Let’s ask the three recursion questions about our binary search 
implementation:

What is the base case?    Searching a range of items that is only one 
item in length.

What argument is passed to the recursive function call?    The indices 
of the left and right ends of the range in the list we are searching.

How does this argument become closer to the base case?    The 
range halves in size for each recursive call, so it eventually becomes 
one item long.

Examine the following binarySearch() function in our binarySearch.py 
program, which locates a value, needle, in a sorted list of values, haystack:

Python def binarySearch(needle, haystack, left=None, right=None):
    # By default, `left` and `right` are all of `haystack`:
    if left is None:
        left = 0 # `left` defaults to the 0 index.
    if right is None:
        right = len(haystack) - 1 # `right` defaults to the last index.

    print('Searching:', haystack[left:right + 1])

    if left > right: # BASE CASE
         return None # The `needle` is not in `haystack`.

    mid = (left + right) // 2
    if needle == haystack[mid]: # BASE CASE
         return mid # The `needle` has been found in `haystack`
    elif needle < haystack[mid]: # RECURSIVE CASE
         return binarySearch(needle, haystack, left, mid - 1)
    elif needle > haystack[mid]: # RECURSIVE CASE
         return binarySearch(needle, haystack, mid + 1, right)

print(binarySearch(13, [1, 4, 8, 11, 13, 16, 19, 19]))

The binarySearch.html program has this JavaScript equivalent:

JavaScript <script type="text/javascript">
function binarySearch(needle, haystack, left, right) {
    // By default, `left` and `right` are all of `haystack`:
    if (left === undefined) {
        left = 0; // `left` defaults to the 0 index.
    }
    if (right === undefined) {
        right = haystack.length - 1; // `right` defaults to the last index.
    }



96   Chapter 5

    document.write("Searching: [" + 
    haystack.slice(left, right + 1).join(", ") + "]<br />");

    if (left > right) { // BASE CASE
         return null; // The `needle` is not in `haystack`.
    }

    let mid = Math.floor((left + right) / 2);
    if (needle == haystack[mid]) { // BASE CASE
         return mid; // The `needle` has been found in `haystack`.
    } else if (needle < haystack[mid]) { // RECURSIVE CASE
         return binarySearch(needle, haystack, left, mid - 1);
    } else if (needle > haystack[mid]) { // RECURSIVE CASE
         return binarySearch(needle, haystack, mid + 1, right);
    }
}

document.write(binarySearch(13, [1, 4, 8, 11, 13, 16, 19, 19]));
</script>

When you run these programs, the list [1, 4, 8, 11, 13, 16, 19, 19] is 
searched for 13, and the output looks like this:

Searching: [1, 4, 8, 11, 13, 16, 19, 19]
Searching: [13, 16, 19, 19]
Searching: [13]
4

The target value 13 is indeed at index 4 in that list.
The code calculates the middle index (stored in mid) of the range 

defined by the left and right indices. At first, this range is the entire 
length of the items list. If the value at the mid index is the same as needle, 
then mid is returned. Otherwise, we need to figure out whether our tar-
get value is in the left half of the range (in which case, the new range to 
search is left to mid - 1) or in the right half (in which case, the new range 
to search is mid + 1 to end).

We already have a function that can search this new range: binarySearch() 
itself! A recursive call is made on the new range. If we ever get to the point 
where the right end of the search range comes before the left, we know that 
our search range has shrunk down to zero and our target value isn’t to be 
found.

Notice that the code performs no actions after the recursive call 
returns; it immediately returns the return value of the recursive function 
call. This feature means that we could implement tail call optimization 
for this recursive algorithm, a practice we explain in Chapter 8. But also, 
it means that binary search can easily be implemented as an iterative algo-
rithm that doesn’t use recursive function calls. This book’s downloadable 
resources at https://nostarch.com/recursive-book-recursion include the source 
code for an iterative binary search for you to compare with the recursive 
binary search.

https://nostarch.com/recursive-book-recursion


Divide-and-Conquer Algorithms   97

BIG O A LGOR IT HM A N A LYSIS

If your data is already in sorted order, performing a binary search is much 
faster than a linear search, which starts from one end of an array and checks 
each value in a brute-force manner. We can compare the efficiency of these 
two algorithms with big O algorithm analysis. “Further Reading” at the end of 
this chapter has links to more information on this topic.

If your data isn’t in sorted order, sorting it first (using an algorithm such as 
quicksort or merge sort) and then performing a binary search would be slower 
than just performing a linear search. However, if you need to perform repeat 
searches on the data, the performance gain of binary search pays for the sort-
ing. It’s like spending an hour to sharpen an axe before cutting down trees; the 
increased speed of chopping with a sharp axe makes up for the hour spent 
sharpening it.

Quicksort: Splitting an Unsorted Pile of Books into 
Sorted Piles

Remember that binarySearch()’s speed advantage comes from the fact that 
the values in items are sorted. If the values are out of order, the algorithm 
won’t work. Enter quicksort, a recursive sorting algorithm developed by com-
puter scientist Tony Hoare in 1959.

Quicksort uses a divide-and-conquer technique called partitioning. 
Think of partitioning this way: imagine you have a large pile of unalphabet-
ized books. Grabbing one book and placing it in the right spot on the shelf 
means you’ll spend a lot of time rearranging the bookshelf as it gets full. It 
would help if you first turned the pile of books into two piles: an A to M pile 
and an N to Z pile. (In this example, M would be our pivot.)

You haven’t sorted the pile, but you have partitioned it. And partition-
ing is easy: the book doesn’t have to go into the correct place in one of 
the two piles, it just has to go into the correct pile. Then you can further 
partition these two piles into four piles: A to G, H to M, N to T, and U to Z. 
This is shown in Figure 5-2. If you keep partitioning, you end up with piles 
that contain one book each (the base case), and the piles are now in sorted 
order. This means the books are now in sorted order as well. This repeated 
partitioning is how quicksort works. 

For the first partitioning of A to Z, we select M as the pivot value because 
it’s the middle letter between A and Z. However, if our collection of books 
consisted of one book about Aaron Burr and 99 books about zebras, zeph-
yrs, zoos, zygotes, and other Z topics, our two partitioned piles would be 
heavily unbalanced. We would have the single Aaron Burr book in the A 
to M pile and every other book in the M to Z pile. The quicksort algorithm 
works fastest when the partitions are evenly balanced, so selecting a good 
pivot value at each partition step is important.



98   Chapter 5

A – Z
N – ZA – M

A – G H – M N – T U – Z

Figure 5-2: Quicksort works by repeatedly  
partitioning items into two sets.

However, if you don’t know anything about the data you’re sorting, it’s 
impossible to select an ideal pivot. This is why the generic quicksort algo-
rithm simply uses the last value in the range for the pivot value.

In our implementation, each call to quicksort() is given an array of 
items to sort. It is also given left and right arguments specifying the range 
of indices in that array to sort, similar to binarySearch()’s left and right argu-
ments. The algorithm selects a pivot value to compare with the other values 
in the range, then places the values to either the left side of the range (if 
they’re less than the pivot value) or the right side (if they’re greater than 
the pivot value). This is the partition step. Next, the quicksort() function 
is recursively called on these two, smaller ranges until a range has been 
reduced to zero. The list becomes more and more sorted as the recursive 
calls are made, until finally the entire list is in the correct order.

Note that the algorithm modifies the array in place. See “Modifying 
a List or Array in Place” in Chapter 4 for details. Thus, the quicksort() 
function doesn’t return a sorted array. The base case merely returns to stop 
producing more recursive calls.

Let’s ask the three recursion questions about our binary search 
implementation:

What is the base case?    Being given a range to sort that contains zero 
or one item and that is already in sorted order.

What argument is passed to the recursive function call?    The indices 
of the left and right ends of the range in the list we are sorting.

How does this argument become closer to the base case?    The range 
halves in size for each recursive call, so it eventually becomes empty.

The following quicksort() function in the quicksort.py Python program 
sorts the values in the items list into ascending order:

def quicksort(items, left=None, right=None):
    # By default, `left` and `right` span the entire range of `items`:
    if left is None:
        left = 0 # `left` defaults to the 0 index.
    if right is None:
        right = len(items) - 1 # `right` defaults to the last index.



Divide-and-Conquer Algorithms   99

    print('\nquicksort() called on this range:', items[left:right + 1])
    print('................The full list is:', items)

    if right <= left: 1
        # With only zero or one item, `items` is already sorted.
        return  # BASE CASE

    # START OF THE PARTITIONING
    i = left # i starts at the left end of the range. 2
    pivotValue = items[right] # Select the last value for the pivot.

    print('....................The pivot is:', pivotValue)

    # Iterate up to, but not including, the pivot:
    for j in range(left, right):
        # If a value is less than the pivot, swap it so that it's on the
        # left side of `items`:
        if items[j] <= pivotValue:
            # Swap these two values:
            items[i], items[j] = items[j], items[i] 3
            i += 1

    # Put the pivot on the left side of `items`:
    items[i], items[right] = items[right], items[i]
    # END OF THE PARTITIONING

    print('....After swapping, the range is:', items[left:right + 1])
    print('Recursively calling quicksort on:', items[left:i], 'and', items[i + 1:right + 1])

    # Call quicksort() on the two partitions:
    quicksort(items, left, i - 1)   # RECURSIVE CASE
    quicksort(items, i + 1, right)  # RECURSIVE CASE

myList = [0, 7, 6, 3, 1, 2, 5, 4]
quicksort(myList)
print(myList)

The quicksort.html program contains the JavaScript equivalent:

<script type="text/javascript">
function quicksort(items, left, right) {
    // By default, `left` and `right` span the entire range of `items`:
    if (left === undefined) {
        left = 0; // `left` defaults to the 0 index.
    }
    if (right === undefined) {
        right = items.length - 1; // `right` defaults to the last index.
    }

    document.write("<br /><pre>quicksort() called on this range: [" + 
    items.slice(left, right + 1).join(", ") + "]</pre>");
    document.write("<pre>................The full list is: [" + items.join(", ") + "]</pre>");

    if (right <= left) { 1
        // With only zero or one item, `items` is already sorted.



100   Chapter 5

        return; // BASE CASE
    }

    // START OF THE PARTITIONING
    let i = left; 2 // i starts at the left end of the range.
    let pivotValue = items[right]; // Select the last value for the pivot.

    document.write("<pre>....................The pivot is: " + pivotValue.toString() + 
"</pre>");

    // Iterate up to, but not including, the pivot:
    for (let j = left; j < right; j++) {
        // If a value is less than the pivot, swap it so that it's on the
        // left side of `items`:
        if (items[j] <= pivotValue) {
            // Swap these two values:
            [items[i], items[j]] = [items[j], items[i]]; 3
            i++;
        }
    }

    // Put the pivot on the left side of `items`:
    [items[i], items[right]] = [items[right], items[i]];
    // END OF THE PARTITIONING

    document.write("<pre>....After swapping, the range is: [" + items.slice(left, right + 
1).join(", ") + "]</pre>");
    document.write("<pre>Recursively calling quicksort on: [" + items.slice(left, i).join(", ") 
+ "] and [" + items.slice(i + 1, right + 1).join(", ") + "]</pre>");

    // Call quicksort() on the two partitions:
    quicksort(items, left, i - 1); // RECURSIVE CASE
    quicksort(items, i + 1, right); // RECURSIVE CASE
}

let myList = [0, 7, 6, 3, 1, 2, 5, 4];
quicksort(myList);
document.write("<pre>[" + myList.join(", ") + "]</pre>");
</script>

This code is similar to the code in the binary search algorithm. As 
defaults, we set the left and right ends of the range within the items array 
to the beginning and end of the entire array. If the algorithm reaches the 
base case of the right end at or before the left end (a range of one or zero 
items), the sorting is finished 1. 

In each call to quicksort(), we partition the items in the current range 
(defined by the indices in left and right), and then swap them around so 
that the items less than the pivot value end up on the left side of the range 
and the items greater than the pivot value end up on the right side of the 
range. For example, if 42 is the pivot value in the array [81, 48, 94, 87, 83, 
14, 6, 42], a partitioned array would be [14, 6, 42, 81, 48, 94, 87, 83].  



Divide-and-Conquer Algorithms   101

Note that a partitioned array is not the same thing as a sorted one: although 
the two items to the left of 42 are less than 42, and the five items to the right 
of 42 are greater than 42, the items are not in sorted order.

The bulk of the quicksort() function is the partitioning step. To get an 
idea of how partitioning works, imagine an index j that begins at the left 
end of the range and moves to the right end 2. We compare the item at 
index j with the pivot value and then move right to compare the next item. 
The pivot value can be arbitrarily chosen from any value in the range, but 
we’ll always use the value at the right end of the range.

Imagine a second index i that also begins at the left end. If the item 
at index j is less than or equal to the pivot, the items at indices i and j are 
swapped 3 and i is increased to the next index. So while j always increases 
(that is, moves right) after each comparison with the pivot value, i increases 
only if the item at index j is less than or equal to the pivot.

The names i and j are commonly used for variables that hold array 
indices. Someone else’s quicksort() implementation may instead use j and i, 
or even completely different variables. The important thing to remember is 
that two variables store indices and behave as shown here.

As an example, let’s work through the first partitioning of the array 
[0, 7, 6, 3, 1, 2, 5, 4], and the range defined by left of 0 and right of 7 to 
cover the full size of the array. The pivot will be the value at the right end, 
4. The i and j index begin at index 0, the left end of the range. At each step, 
index j always moves to the right. Index i moves only if the value at index j 
is less than or equal to the pivot value. The items array, the i index, and the 
j index begin as follows:

items:   [0, 7, 6, 3, 1, 2, 5, 4]
indices:  0  1  2  3  4  5  6  7
          ^
i = 0     i
j = 0     j

The value at index j (which is 0) is less than or equal to the pivot value 
(which is 4), so swap the values at i and j. This results in no actual change 
since i and j are the same index. Also, increase i so that it moves to the 
right. The j index increases for every comparison with the pivot value. The 
state of the variables now looks like this:

items:   [0, 7, 6, 3, 1, 2, 5, 4]
indices:  0  1  2  3  4  5  6  7
             ^
i = 1        i
j = 1        j



102   Chapter 5

The value at index j (which is 7) is not less than or equal to the pivot 
value (which is 4), so don’t swap the values. Remember, j always increases, 
but i increases only after a swap is performed—so i is always either at or to 
the left of j. The state of the variables now looks like this:

items:   [0, 7, 6, 3, 1, 2, 5, 4]
indices:  0  1  2  3  4  5  6  7
             ^
i = 1        i  ^
j = 2           j

The value at index j (which is 6) is not less than or equal to the pivot 
value (which is 4), so don’t swap the values. The state of the variables now 
looks like this:

items:   [0, 7, 6, 3, 1, 2, 5, 4]
indices:  0  1  2  3  4  5  6  7
             ^
i = 1        i     ^
j = 3              j

The value at index j (which is 3) is less than or equal to the pivot value 
(which is 4), so swap the values at i and j. The 7 and 3 swap positions. Also, 
increase i so that it moves to the right. The state of the variables now looks 
like this:

items:   [0, 3, 6, 7, 1, 2, 5, 4]
indices:  0  1  2  3  4  5  6  7
                ^
i = 2           i     ^
j = 4                 j

The value at index j (which is 1) is less than or equal to the pivot value 
(which is 4), so swap the values at i and j. The 6 and 1 swap positions. Also, 
increase i so that it moves to the right. The state of the variables now looks 
like this:

items:   [0, 3, 1, 7, 6, 2, 5, 4]
indices:  0  1  2  3  4  5  6  7
                   ^
i = 3              i     ^
j = 5                    j

The value at index j (which is 2) is less than or equal to the pivot value 
(which is 4), so swap the values at i and j. The 7 and 2 swap positions. Also, 
increase i so that it moves to the right. The state of the variables now looks 
like this:



Divide-and-Conquer Algorithms   103

items:   [0, 3, 1, 2, 6, 7, 5, 4]
indices:  0  1  2  3  4  5  6  7
                      ^
i = 4                 i     ^
j = 6                       j

The value at index j (which is 6) is not less than or equal to the pivot 
value (which is 4), so don’t swap the values. The state of the variables now 
looks like this:

items:   [0, 3, 1, 2, 6, 7, 5, 4]
indices:  0  1  2  3  4  5  6  7
                      ^
i = 4                 i        ^
j = 7                          j

We’ve reached the end of the partitioning. The index j is at the pivot 
value (which is always the rightmost value in the range), so let’s swap i and j 
one last time to make sure the pivot is not on the right half of the partition. 
The 6 and 4 swap positions. The state of the variables now looks like this:

items:   [0, 3, 1, 2, 4, 7, 5, 6]
indices:  0  1  2  3  4  5  6  7
                      ^
i = 4                 i        ^
j = 7                          j

Notice what is happening with the i index: this index will always receive 
the values smaller than the pivot value as a result of swapping; then the 
i index moves right to receive future smaller-than-the-pivot values. As a 
result, everything to the left of the i index is smaller than or equal to the 
pivot, and everything to the right of the i index is greater than the pivot.

The entire process repeats as we recursively call quicksort() on the left 
and right partitions. When we partition these two halves (and then parti-
tion the four halves of these two halves with more recursive quicksort() 
calls, and so on), the entire array ends up sorted.

When we run these programs, the output shows the process of sorting 
the [0, 7, 6, 3, 1, 2, 5, 4] list. The rows of periods are meant to help you 
line up the output when writing the code:

quicksort() called on this range: [0, 7, 6, 3, 1, 2, 5, 4]
................The full list is: [0, 7, 6, 3, 1, 2, 5, 4]
....................The pivot is: 4
....After swapping, the range is: [0, 3, 1, 2, 4, 7, 5, 6]
Recursively calling quicksort on: [0, 3, 1, 2] and [7, 5, 6]

quicksort() called on this range: [0, 3, 1, 2]
................The full list is: [0, 3, 1, 2, 4, 7, 5, 6]
....................The pivot is: 2
....After swapping, the range is: [0, 1, 2, 3]
Recursively calling quicksort on: [0, 1] and [3]



104   Chapter 5

quicksort() called on this range: [0, 1]
................The full list is: [0, 1, 2, 3, 4, 7, 5, 6]
....................The pivot is: 1
....After swapping, the range is: [0, 1]
Recursively calling quicksort on: [0] and []

quicksort() called on this range: [0]
................The full list is: [0, 1, 2, 3, 4, 7, 5, 6]

quicksort() called on this range: []
................The full list is: [0, 1, 2, 3, 4, 7, 5, 6]

quicksort() called on this range: [3]
................The full list is: [0, 1, 2, 3, 4, 7, 5, 6]

quicksort() called on this range: [7, 5, 6]
................The full list is: [0, 1, 2, 3, 4, 7, 5, 6]
....................The pivot is: 6
....After swapping, the range is: [5, 6, 7]
Recursively calling quicksort on: [5] and [7]

quicksort() called on this range: [5]
................The full list is: [0, 1, 2, 3, 4, 5, 6, 7]

quicksort() called on this range: [7]
................The full list is: [0, 1, 2, 3, 4, 5, 6, 7]

Sorted: [0, 1, 2, 3, 4, 5, 6, 7]

Quicksort is a commonly used sorting algorithm because it is straight-
forward to implement and, well, quick. The other commonly used sorting 
algorithm, merge sort, is also fast and uses recursion. We cover it next.

Merge Sort: Merging Small Piles of Playing Cards into 
Larger Sorted Piles

Computer scientist John von Neumann developed merge sort in 1945. It 
uses a divide-merge approach: each recursive call to mergeSort() divides 
the unsorted list into halves until they’ve been whittled down into lists of 
lengths of zero or one. Then, as the recursive calls return, these smaller 
lists are merged together into sorted order. When the last recursive call 
has returned, the entire list will have been sorted.

For example, the divide step takes a list, such as [2, 9, 8, 5, 3, 4,  
7, 6], and splits it into two lists, like [2, 9, 8, 5] and [3, 4, 7, 6], to pass 
to two recursive function calls. At the base case, the lists have been divided 
into lists of zero or one item. A list with nothing or one item is naturally 
sorted. After the recursive calls return, the code merges these small, sorted 
lists together into larger sorted lists until finally the entire list is sorted. 
Figure 5-3 shows an example using merge sort on playing cards.



Divide-and-Conquer Algorithms   105

D
iv

id
e 

in
to

 h
al

f-p
ile

s 
ph

as
e

mergeSort([2,9,8,5,3,4,7,6])
called...

mergeSort([2,9,8,5,3,4,7,6])
returns [2,3,4,5,6,7,8,9]

mergeSort([2,9,8,5])
called...

mergeSort([3,4,7,6])
called...

mergeSort([2,9])
called...

mergeSort([8,5])
called...

mergeSort([3,4])
called...

mergeSort([7,6])
called...

mergeSort([2])
called...

mergeSort([8])
called...

mergeSort([3])
called...

mergeSort([7])
called...

mergeSort([9])
called...

mergeSort([5])
called...

mergeSort([4])
called...

mergeSort([6])
called...

mergeSort([2])
returns [2]

mergeSort([8])
returns [8]

mergeSort([3])
returns [3]

mergeSort([7])
returns [7]

mergeSort([2,9])
returns [2,9]

mergeSort([8,5])
returns [5,8]

mergeSort([3,4])
returns [3,4]

mergeSort([2,9,8,5])
returns [2,5,8,9]

mergeSort([3,4,7,6])
returns [3,4,6,7]

mergeSort([7,6])
returns [6,7]

mergeSort([9])
returns [9]

mergeSort([5])
returns [5]

mergeSort([4])
returns [4]

mergeSort([6])
returns [6]

M
er

ge
 in

to
 s

or
te

d-
pi

le
s 

ph
as

e

Figure 5-3: The divide and merge phases of merge sort



106   Chapter 5

For example, at the end of the division phase, we have eight separate 
lists of single numbers: [2], [9], [8], [5], [3], [4], [7], [6]. A list of just one 
number is naturally in sorted order. Merging two sorted lists into a larger 
sorted list involves looking at the start of both smaller lists and appending 
the smaller value to the larger list. Figure 5-4 shows an example of merging 
[2, 9] and [5, 8]. This is repeatedly done in the merge phase until the end 
result is that the original mergeSort() call returns the full list in sorted order.

2 < 5

5 < 9

8 < 9

9

1

2

3

4

Figure 5-4: The merge step compares the two values at the  
start of the smaller sorted lists and moves them to the larger  
sorted list. Merging four cards requires only four steps.

Let’s ask our three recursive algorithm questions about the merge sort 
algorithm:

What is the base case?    Being given a list to sort that has zero or one 
item in it, which is already in sorted order.

What argument is passed to the recursive function call?    Lists made 
from the left and right halves of the original list to sort.

How does this argument become closer to the base case?    The lists 
passed to the recursive call are half the size of the original list, so they 
eventually become a list of zero or one item.



Divide-and-Conquer Algorithms   107

The following mergeSort() function in the mergeSort.py Python program 
sorts the values in the items list into ascending order:

import math

def mergeSort(items):
    print('.....mergeSort() called on:', items)

    # BASE CASE - Zero or one item is naturally sorted:
    if len(items) == 0 or len(items) == 1:
        return items 1

    # RECURSIVE CASE - Pass the left and right halves to mergeSort():
    # Round down if items doesn't divide in half evenly:
    iMiddle = math.floor(len(items) / 2) 2

    print('................Split into:', items[:iMiddle], 'and', items[iMiddle:])

    left = mergeSort(items[:iMiddle]) 3
    right = mergeSort(items[iMiddle:])

    # BASE CASE - Returned merged, sorted data:
    # At this point, left should be sorted and right should be
    # sorted. We can merge them into a single sorted list.
    sortedResult = []
    iLeft = 0
    iRight = 0
    while (len(sortedResult) < len(items)):
        # Append the smaller value to sortedResult.
        if left[iLeft] < right[iRight]: 4
            sortedResult.append(left[iLeft])
            iLeft += 1
        else:
            sortedResult.append(right[iRight])
            iRight += 1

        # If one of the pointers has reached the end of its list,
        # put the rest of the other list into sortedResult.
        if iLeft == len(left):
            sortedResult.extend(right[iRight:])
            break
        elif iRight == len(right):
            sortedResult.extend(left[iLeft:])
            break

    print('The two halves merged into:', sortedResult)

    return sortedResult # Returns a sorted version of items.

myList = [2, 9, 8, 5, 3, 4, 7, 6]
myList = mergeSort(myList)
print(myList)



108   Chapter 5

The mergeSort.html program contains the equivalent JavaScript program:

<script type="text/javascript">
function mergeSort(items) {
    document.write("<pre>" + ".....mergeSort() called on: [" + 
    items.join(", ") + "]</pre>");

    // BASE CASE - Zero or one item is naturally sorted:
    if (items.length === 0 || items.length === 1) { // BASE CASE
        return items; 1
    }

    // RECURSIVE CASE - Pass the left and right halves to mergeSort():
    // Round down if items doesn't divide in half evenly:
    let iMiddle = Math.floor(items.length / 2); 2

    document.write("<pre>................Split into: [" + items.slice(0, iMiddle).join(", ") + 
    "] and [" + items.slice(iMiddle).join(", ") + "]</pre>");

    let left = mergeSort(items.slice(0, iMiddle)); 3
    let right = mergeSort(items.slice(iMiddle));

    // BASE CASE - Returned merged, sorted data:
    // At this point, left should be sorted and right should be
    // sorted. We can merge them into a single sorted list.
    let sortedResult = [];
    let iLeft = 0;
    let iRight = 0;
    while (sortedResult.length < items.length) {
        // Append the smaller value to sortedResult.
        if (left[iLeft] < right[iRight]) { 4
            sortedResult.push(left[iLeft]);
            iLeft++;
        } else {
            sortedResult.push(right[iRight]);
            iRight++;
        }

        // If one of the pointers has reached the end of its list,
        // put the rest of the other list into sortedResult.
        if (iLeft == left.length) {
            Array.prototype.push.apply(sortedResult, right.slice(iRight));
            break;
        } else if (iRight == right.length) {
            Array.prototype.push.apply(sortedResult, left.slice(iLeft));
            break;
        }
    }

    document.write("<pre>The two halves merged into: [" + sortedResult.join(", ") + 
    "]</pre>");

    return sortedResult; // Returns a sorted version of items.
}



Divide-and-Conquer Algorithms   109

let myList = [2, 9, 8, 5, 3, 4, 7, 6];
myList = mergeSort(myList);
document.write("<pre>[" + myList.join(", ") + "]</pre>");
</script>

The mergeSort() function (and all the recursive calls to the mergeSort() 
function) takes an unsorted list and returns a sorted list. The first step in 
this function is to check for the base case of a list containing only zero or 
one item 1. This list is already sorted, so the function returns the list as is.

Otherwise, the function determines the middle index of the list 2 so 
that we know where to split it into the left- and right-half lists to pass to two 
recursive function calls 3. The recursive function calls return sorted lists, 
which we store in the left and right variables.

The next step is to merge these two sorted half lists into one sorted full 
list named sortedResult. We’ll maintain two indices for the left and right 
lists named iLeft and iRight. Inside a loop, the smaller of the two values 4 
is appended to sortedResult, and its respective index variable (either iLeft or 
iRight) is incremented. If either iLeft or iRight reaches the end of its list, the 
remaining items in the other half’s list are appended to sortedResult.

Let’s follow an example of the merging step if the recursive calls have 
returned [2, 9] for left and [5, 8] for right. Since these lists were returned 
from mergeSort() calls, we can always assume they are sorted. We must merge 
them into a single sorted list in sortedResult for the current mergeSort() call to 
return to its caller.

The iLeft and iRight indices begin at 0. We compare the value at left 
[iLeft] (which is 2) and right[iRight] (which is 5) to find the smaller one:

sortedResult = []
      left: [2, 9]    right: [5, 8]
   indices:  0  1             0  1
 iLeft = 0   ^
iRight = 0                    ^

Since left[iLeft]’s value, 2, is the smaller of the values, we append it to 
sortedResult and increase iLeft from 0 to 1. The state of the variables is now 
as follows:

sortedResult = [2]
      left: [2, 9]    right: [5, 8]
   indices:  0  1             0  1
 iLeft = 1      ^
iRight = 0                    ^

Comparing left[iLeft] and right[iRight] again, we find that of 9 and 
5, right[iRight]’s 5 is smaller. The code appends the 5 to sortedResult and 
increases iRight from 0 to 1. The state of the variables is now the following:

sortedResult = [2, 5]
      left: [2, 9]    right: [5, 8]



110   Chapter 5

   indices:  0  1             0  1
 iLeft = 1      ^
iRight = 1                       ^

Comparing left[iLeft] and right[iRight] again, we find that, of 9 and 
8, right[iRight]’s 8 is smaller. The code appends the 8 to sortedResult and 
increases iRight from 0 to 1. Here’s the state of the variables now:

sortedResult = [2, 5, 8]
      left: [2, 9]    right: [5, 8]
   indices:  0  1             0  1
 iLeft = 1      ^
iRight = 2                         ^

Because iRight is now 2 and equal to the length of the right list, the 
remaining items in left from the iLeft index to the end are appended to 
sortedResult, as no more items remain in right to compare them to. This 
leaves sortedResult as [2, 5, 8, 9], the sorted list it needs to return. This 
merging step is performed for every call to mergeSort() to produce the final 
sorted list.

When we run the mergeSort.py and mergeSort.html programs, the output 
shows the process of sorting the [2, 9, 8, 5, 3, 4, 7, 6] list:

.....mergeSort() called on: [2, 9, 8, 5, 3, 4, 7, 6]

................Split into: [2, 9, 8, 5] and [3, 4, 7, 6]

.....mergeSort() called on: [2, 9, 8, 5]

................Split into: [2, 9] and [8, 5]

.....mergeSort() called on: [2, 9]

................Split into: [2] and [9]

.....mergeSort() called on: [2]

.....mergeSort() called on: [9]
The two halves merged into: [2, 9]
.....mergeSort() called on: [8, 5]
................Split into: [8] and [5]
.....mergeSort() called on: [8]
.....mergeSort() called on: [5]
The two halves merged into: [5, 8]
The two halves merged into: [2, 5, 8, 9]
.....mergeSort() called on: [3, 4, 7, 6]
................Split into: [3, 4] and [7, 6]
.....mergeSort() called on: [3, 4]
................Split into: [3] and [4]
.....mergeSort() called on: [3]
.....mergeSort() called on: [4]
The two halves merged into: [3, 4]
.....mergeSort() called on: [7, 6]
................Split into: [7] and [6]
.....mergeSort() called on: [7]
.....mergeSort() called on: [6]
The two halves merged into: [6, 7]
The two halves merged into: [3, 4, 6, 7]
The two halves merged into: [2, 3, 4, 5, 6, 7, 8, 9]
[2, 3, 4, 5, 6, 7, 8, 9]



Divide-and-Conquer Algorithms   111

As you can see from the output, the function divides the [2, 9, 8, 5, 
3, 4, 7, 6] list into [2, 9, 8, 5] and [3, 4, 7, 6] and passes these to recursive 
mergeSort() calls. The first list is further split into [2, 9] and [8, 5]. That [2, 9] 
list is split into [2] and [9]. These single-value lists cannot be divided any-
more, so we have reached our base case. These lists are merged back into 
sorted order as [2, 9]. The function divides the [8, 5] list into [8] and [5], 
reaches the base case, and then merges back into [5, 8].

The [2, 9] and [5, 8] lists are individually in sorted order. Remember, 
mergeSort() doesn’t simply concatenate the lists into [2, 9, 5, 8], which would 
not be in sorted order. Rather, the function merges them into the sorted list 
[2, 5, 8, 9]. By the time the original mergeSort() call returns, the full list it 
returns is completely sorted.

Summing an Array of Integers
We already covered summing an array of integers in Chapter 3 with the 
head-tail technique. In this chapter, we’ll use a divide-and-conquer strategy. 
Since the associative property of addition means that adding 1 + 2 + 3 + 4 is 
the same as adding the sums of 1 + 2 and 3 + 4, we can divide a large array 
of numbers to sum into two smaller arrays of numbers to sum. 

The benefit is that for larger sets of data to process, we could farm out 
the subproblems to different computers and have them all work together in 
parallel. There’s no need to wait for the first half of the array to be summed 
before another computer can start summing the second half. This is a large 
advantage of the divide-and-conquer technique, as CPUs aren’t getting 
much faster but we can have multiple CPUs work simultaneously.

Let’s ask the three questions about recursive algorithms for our summa-
tion function:

What is the base case?    Either an array containing zero numbers 
(where we return 0) or an array containing one number (where we 
return the number).

What argument is passed to the recursive function call?    Either the 
left half or the right half of the array of numbers.

How does this argument become closer to the base case?    The size of 
the array of numbers is halved each time, eventually becoming an array 
containing zero or one number.

The sumDivConq.py Python program implements the divide-and-conquer 
strategy for adding numbers in the sumDivConq() function:

Python def sumDivConq(numbers):
    if len(numbers) == 0: # BASE CASE
      1 return 0
    elif len(numbers) == 1: # BASE CASE
      2 return numbers[0]
    else: # RECURSIVE CASE
      3 mid = len(numbers) // 2
        leftHalfSum = sumDivConq(numbers[0:mid])



112   Chapter 5

        rightHalfSum = sumDivConq(numbers[mid:len(numbers) + 1])
      4 return leftHalfSum + rightHalfSum

nums = [1, 2, 3, 4, 5]
print('The sum of', nums, 'is', sumDivConq(nums))
nums = [5, 2, 4, 8]
print('The sum of', nums, 'is', sumDivConq(nums))
nums = [1, 10, 100, 1000]
print('The sum of', nums, 'is', sumDivConq(nums))

The sumDivConq.html program contains the JavaScript equivalent:

JavaScript <script type="text/javascript">
function sumDivConq(numbers) {
    if (numbers.length === 0) { // BASE CASE
      1 return 0;
    } else if (numbers.length === 1) { // BASE CASE
      2 return numbers[0];
    } else { // RECURSIVE CASE
      3 let mid = Math.floor(numbers.length / 2);
        let leftHalfSum = sumDivConq(numbers.slice(0, mid));
        let rightHalfSum = sumDivConq(numbers.slice(mid, numbers.length + 1));
      4 return leftHalfSum + rightHalfSum;
    }
}

let nums = [1, 2, 3, 4, 5];
document.write('The sum of ' + nums + ' is ' + sumDivConq(nums) + "<br />");
nums = [5, 2, 4, 8];
document.write('The sum of ' + nums + ' is ' + sumDivConq(nums) + "<br />");
nums = [1, 10, 100, 1000];
document.write('The sum of ' + nums + ' is ' + sumDivConq(nums) + "<br />");
</script>

The output of this program is:

The sum of [1, 2, 3, 4, 5] is 15
The sum of [5, 2, 4, 8] is 19
The sum of [1, 10, 100, 1000] is 1111

The sumDivConq() function first checks the numbers array for having either 
zero or one number in it. These trivial base cases are easy to sum since they 
require no addition: return either 0 1 or the lone number in the array 2. 
Everything else is a recursive case; the middle index of the array is calcu-
lated 3 so that separate recursive calls with the left half and right half of 
the numbers array are made. The sum of these two return values becomes 
the return value for the current sumDivConq() call 4.

Because of the associative nature of addition, there’s no reason an array 
of numbers must be added sequentially by a single computer. Our program 
carries out all operations on the same computer, but for large arrays or calcu-
lations more complicated than addition, our program could send the halves 
to other computers to complete. The problem can be divided into similar 
subproblems, which is a huge hint that a recursive approach can be taken.



Divide-and-Conquer Algorithms   113

Karatsuba Multiplication
The * operator makes multiplication easy to do in high-level programming 
languages such as Python and JavaScript. But low-level hardware needs a 
way to perform multiplication using more primitive operations. We could 
multiply two integers using only addition with a loop, such as in the follow-
ing Python code to multiply 5678 * 1234:

>>> x = 5678
>>> y = 1234
>>> product = 0
>>> for i in range(x):
...     product += y
...
>>> product
7006652

However, this code doesn’t scale efficiently for large integers. Karatsuba 
multiplication is a fast, recursive algorithm discovered in 1960 by Anatoly 
Karatsuba that can multiply integers using addition, subtraction, and a pre-
computed multiplication table of all products from single-digit numbers. 
This multiplication table, shown in Figure 5-5, is called a lookup table. 

Our algorithm won’t need to multiply single-digit numbers because it 
can just look them up in the table. By using memory to store precomputed 
values, we increase memory usage to decrease CPU runtime.

0

0
1
2
3
4
5
6
7
8
9

0
1
2
3
4
5
6
7
8
9

0
2
4
6
8

10
12
14
16
18

0
3
6
9

12
15
18
21
24
27

0
4
8

12
16
20
24
28
32
36

0
5

10
15
20
25
30
35
40
45

0
6

12
18
24
30
36
42
48
54

0
7

14
21
28
35
42
49
56
63

0
8

16
24
32
40
48
56
64
72

0
9

18
27
36
45
54
63
72
81

0
0
0
0
0
0
0
0
0
0

1 2 3 4 5 6 7 8 9

Figure 5-5: A lookup table, such as this table of products  
of all single-digit numbers, saves our program from repeat  
calculations as the computer stores the precomputed values  
in memory for later retrieval.

We’ll implement Karatsuba multiplication in a high-level language like 
Python or JavaScript as though the * operator didn’t already exist. Our 
karatsuba() function accepts two integer arguments, x and y, to multiply. 
The Karatsuba algorithm has five steps, and the first three involve making 
recursive calls to karatsuba() with arguments that are smaller, broken-down 



114   Chapter 5

integers derived from x and y. The base case occurs when the x and y argu-
ments are both single-digit numbers, in which case the product can be 
found in the precomputed lookup table.

We also define four more variables: a and b are each half of the digits 
of x, and c and d are each half of the digits of y, as shown in Figure 5-6. For 
example, if x and y are 5678 and 1234, respectively, then a is 56, b is 78, c is 12, 
and d is 34.

x = 5678

a = 56 b = 78

y = 1234

c = 12 d = 34

Figure 5-6: The integers to multiply, x and y,  
are divided into halves a, b, c, and d.

Here are the five steps of the Karatsuba algorithm:

	 1.	 Multiply a and c either from the multiplication lookup table or from a 
recursive call to karatsuba().

	 2.	 Multiply b and d either from the multiplication lookup table or from a 
recursive call to karatsuba().

	 3.	 Multiply a + c and b + d either from the multiplication lookup table or 
from a recursive call to karatsuba().

	 4.	 Calculate step 3 – step 2 – step 1.

	 5.	 Pad the step 1 and step 4 results with zeros; then add them to step 2.

The result of step 5 is the product of x and y. The specifics of how to pad 
the step 1 and step 4 results with zeros are explained later in this section.

Let’s ask our three recursive algorithm questions about the karatsuba() 
function:

What is the base case?    Multiplying single-digit numbers, which can 
be done with a precomputed lookup table.

What argument is passed to the recursive function call?    The a, b, c, 
and d values derived from the x and y arguments.

How does this argument become closer to the base case?    Since a, b, 
c, and d are each half of the digits of x and y and themselves are used 
for the next recursive call’s x and y arguments, the recursive call’s argu-
ments become closer and closer to the single-digit numbers the base 
case requires.

Our Python implementation for Karatsuba multiplication is in the 
karatsubaMultiplication.py program:

import math

# Create a lookup table of all single-digit multiplication products:
MULT_TABLE = {} 1
for i in range(10):
    for j in range(10):



Divide-and-Conquer Algorithms   115

        MULT_TABLE[(i, j)] = i * j

def padZeros(numberString, numZeros, insertSide):
    """Return a string padded with zeros on the left or right side."""
    if insertSide == 'left':
        return '0' * numZeros + numberString
    elif insertSide == 'right':
        return numberString + '0' * numZeros

def karatsuba(x, y):
    """Multiply two integers with the Karatsuba algorithm. Note that
    the * operator isn't used anywhere in this function."""
    assert isinstance(x, int), 'x must be an integer'
    assert isinstance(y, int), 'y must be an integer'
    x = str(x)
    y = str(y)

    # At single digits, look up the products in the multiplication table:
    if len(x) == 1 and len(y) == 1: # BASE CASE
        print('Lookup', x, '*', y, '=', MULT_TABLE[(int(x), int(y))])
        return MULT_TABLE[(int(x), int(y))]

    # RECURSIVE CASE
    print('Multiplying', x, '*', y)

    # Pad with prepended zeros so that x and y are the same length:
    if len(x) < len(y): 2
        # If x is shorter than y, pad x with zeros:
        x = padZeros(x, len(y) - len(x), 'left')
    elif len(y) < len(x):
        # If y is shorter than x, pad y with zeros:
        y = padZeros(y, len(x) - len(y), 'left')
    # At this point, x and y have the same length.

    halfOfDigits = math.floor(len(x) / 2) 3

    # Split x into halves a & b, split y into halves c & d:
    a = int(x[:halfOfDigits])
    b = int(x[halfOfDigits:])
    c = int(y[:halfOfDigits])
    d = int(y[halfOfDigits:])

    # Make the recursive calls with these halves:
    step1Result = karatsuba(a, c) 4 # Step 1: Multiply a & c.
    step2Result = karatsuba(b, d) # Step 2: Multiply b & d.
    step3Result = karatsuba(a + b, c + d) # Step 3: Multiply a + b & c + d.

    # Step 4: Calculate Step 3 - Step 2 - Step 1:
    step4Result = step3Result - step2Result - step1Result 5

    # Step 5: Pad these numbers, then add them for the return value:
    step1Padding = (len(x) - halfOfDigits) + (len(x) - halfOfDigits)
    step1PaddedNum = int(padZeros(str(step1Result), step1Padding, 'right'))

    step4Padding = (len(x) - halfOfDigits)



116   Chapter 5

    step4PaddedNum = int(padZeros(str(step4Result), step4Padding, 'right'))

    print('Solved', x, 'x', y, '=', step1PaddedNum + step2Result + step4PaddedNum)

    return step1PaddedNum + step2Result + step4PaddedNum 6

# Example: 1357 x 2468 = 3349076
print('1357 * 2468 =', karatsuba(1357, 2468))

The JavaScript equivalent is in karatsubaMultiplication.html:

<script type="text/javascript">

// Create a lookup table of all single-digit multiplication products:
let MULT_TABLE = {}; 1
for (let i = 0; i < 10; i++) {
    for (let j = 0; j < 10; j++) {
        MULT_TABLE[[i, j]] = i * j;
    }
}

function padZeros(numberString, numZeros, insertSide) {
    // Return a string padded with zeros on the left or right side.
    if (insertSide === "left") {
        return "0".repeat(numZeros) + numberString;
    } else if (insertSide === "right") {
        return numberString + "0".repeat(numZeros);
    }
}

function karatsuba(x, y) {
    // Multiply two integers with the Karatsuba algorithm. Note that
    // the * operator isn't used anywhere in this function.
    console.assert(Number.isInteger(x), "x must be an integer");
    console.assert(Number.isInteger(y), "y must be an integer");
    x = x.toString();
    y = y.toString();

    // At single digits, look up the products in the multiplication table:  
    if ((x.length === 1) && (y.length === 1)) { // BASE CASE
        document.write("Lookup " + x.toString() + " * " + y.toString() + " = " + 
        MULT_TABLE[[parseInt(x), parseInt(y)]] + "<br />");
        return MULT_TABLE[[parseInt(x), parseInt(y)]];
    }

    // RECURSIVE CASE
    document.write("Multiplying " + x.toString() + " * " + y.toString() + 
    "<br />");

    // Pad with prepended zeros so that x and y are the same length:
    if (x.length < y.length) { 2
        // If x is shorter than y, pad x with zeros:
        x = padZeros(x, y.length - x.length, "left");
    } else if (y.length < x.length) {
        // If y is shorter than x, pad y with zeros:



Divide-and-Conquer Algorithms   117

        y = padZeros(y, x.length - y.length, "left");
    }
    // At this point, x and y have the same length.

    let halfOfDigits = Math.floor(x.length / 2); 3

    // Split x into halves a & b, split y into halves c & d:
    let a = parseInt(x.substring(0, halfOfDigits));
    let b = parseInt(x.substring(halfOfDigits));
    let c = parseInt(y.substring(0, halfOfDigits));
    let d = parseInt(y.substring(halfOfDigits));

    // Make the recursive calls with these halves:
    let step1Result = karatsuba(a, c); 4 // Step 1: Multiply a & c.
    let step2Result = karatsuba(b, d); // Step 2: Multiply b & d.
    let step3Result = karatsuba(a + b, c + d); // Step 3: Multiply a + b & c + d.

    // Step 4: Calculate Step 3 - Step 2 - Step 1:
    let step4Result = step3Result - step2Result - step1Result; 5

    // Step 5: Pad these numbers, then add them for the return value:
    let step1Padding = (x.length - halfOfDigits) + (x.length - halfOfDigits);
    let step1PaddedNum = parseInt(padZeros(step1Result.toString(), step1Padding, "right"));

    let step4Padding = (x.length - halfOfDigits);
    let step4PaddedNum = parseInt(padZeros((step4Result).toString(), step4Padding, "right"));

    document.write("Solved " + x + " x " + y + " = " + 
    (step1PaddedNum + step2Result + step4PaddedNum).toString() + "<br />");

    return step1PaddedNum + step2Result + step4PaddedNum; 6
}

// Example: 1357 x 2468 = 3349076
document.write("1357 * 2468 = " + karatsuba(1357, 2468).toString() + "<br />");
</script>

When you run this code, the output looks like this:

Multiplying 1357 * 2468
Multiplying 13 * 24
Lookup 1 * 2 = 2
Lookup 3 * 4 = 12
Lookup 4 * 6 = 24
Solved 13 * 24 = 312
Multiplying 57 * 68
Lookup 5 * 6 = 30
Lookup 7 * 8 = 56
Multiplying 12 * 14
Lookup 1 * 1 = 1
Lookup 2 * 4 = 8
Lookup 3 * 5 = 15
Solved 12 * 14 = 168
Solved 57 * 68 = 3876
Multiplying 70 * 92



118   Chapter 5

Lookup 7 * 9 = 63
Lookup 0 * 2 = 0
Multiplying 7 * 11
Lookup 0 * 1 = 0
Lookup 7 * 1 = 7
Lookup 7 * 2 = 14
Solved 07 * 11 = 77
Solved 70 * 92 = 6440
Solved 1357 * 2468 = 3349076
1357 * 2468 = 3349076

The first part of this program happens before karatsuba() is called. Our 
program needs to create the multiplication lookup table in the MULT_TABLE 
variable 1. Normally, lookup tables are hardcoded directly in the source 
code, from MULT_TABLE[[0, 0]] = 0 to MULT_TABLE[[9, 9]] = 81. But to reduce 
the amount of typing, we’ll use nested for loops to generate each product. 
Accessing MULT_TABLE[[m, n]] gives us the product of integers m and n.

Our karatsuba() function also relies on a helper function named pad 
Zeros(), which pads a string of digits with additional zeros on the left 
or right side of the string. This padding is done in the fifth step of the 
Karatsuba algorithm. For example, padZeros("42", 3, "left") returns the 
string 00042, while padZeros("99", 1, "right") returns the string 990.

The karatsuba() function itself first checks for the base case, where x and 
y are single-digit numbers. These can be multiplied using the lookup table, 
and their product is immediately returned. Everything else is a recursive case.

We need to convert the x and y integers into strings and adjust them 
so that they contain the same number of digits. If one of these numbers is 
shorter than the other, zeros are padded to the left side. For example, if x is 
13 and y is 2468, our function calls padZeros() so that x can be replaced with 
0013. This is required because we then create the a, b, c, and d variables to 
each contain one-half of the digits of x and y 2. The a and c variables must 
have the same number of digits for the Karatsuba algorithm to work, as do 
the b and d variables.

Note that we use division and rounding down to calculate how much is 
half of the digits of x 3. These mathematical operations are as complicated 
as multiplication and might not be available to the low-level hardware we 
are programming the Karatsuba algorithm for. In a real implementation, 
we could use another lookup table for these values: HALF_TABLE = [0, 0, 1, 1, 
2, 2, 3, 3...], and so on. Looking up HALF_TABLE[n] would evaluate to half 
of n, rounded down. An array of a mere 100 items would be sufficient for 
all but the most astronomical numbers and save our program from division 
and rounding. But our programs are for demonstration, so we’ll just use the 
/ operator and built-in rounding functions.

Once these variables are set up correctly, we can begin making the 
recursive function calls 4. The first three steps involve recursive calls with 
arguments a and b, c and d, and finally a + b and c + d. The fourth step sub-
tracts the results of the first three steps from each other 5. The fifth step 
pads the results of the first and fourth steps with zeros on the right side, 
then adds them to the results of the second step 6.



Divide-and-Conquer Algorithms   119

The Algebra Behind the Karatsuba Algorithm
These steps may seem like magic, so let’s dive into the algebra that shows 
why they work. Let’s use 1,357 for x and 2,468 for y as the integers we want 
to multiply. Let’s also consider a new variable, n, for the number of digits 
in x or y. Since a is 13 and b is 57, we can calculate the original x as 10n/2 × a 
+ b, which is 102 × 13 + 57 or 1,300 + 57, or 1,357. Similarly, y is the same as 
10n/2 × c + d.

This means that the product of x × y = (10n/2 × a + b) × (10n/2 × c + d). 
Doing a bit of algebra, we can rewrite this equation as x × y = 10n × ac + 10n/2 
× (ad + bc) + bd. With our example numbers, this means 1,357 × 2,468 = 
10,000 × (13 × 24) + 100 × (13 × 68 + 57 × 24) + (57 × 68). Both sides of this 
equation evaluate to 3,349,076.

We’ve broken the multiplication of xy into the multiplications of ac, 
ad, bc, and bd. This forms the basis of our recursive function: we’ve defined 
the multiplication of x and y by using multiplication of smaller numbers 
(remember, a, b, c, and d are half the digits of x or y) that approach the base 
case of multiplying single-digit numbers. And we can perform single-digit 
multiplication with a lookup table rather than multiplying.

So we need to recursively compute ac (the first step of the Karatsuba 
algorithm) and bd (the second step). We also need to calculate (a + b)(c + d) 
for the third step, which we can rewrite as ac + ad + bc + bd. We already have 
ac and bd from the first two steps, so subtracting those gives us ad + bc. This 
means we need only one multiplication (and one recursive call) to calculate 
(a + b)(c + d) instead of two to calculate ad + bc. And ad + bc is needed for 
the 10n/2 × (ad + bc) part of our original equation.

Multiplying by the 10n and 10n/2 powers of 10 can be done by padding 
zero digits: for example, 10,000 × 123 is 1,230,000. So, there’s no need to 
make recursive calls for those multiplications. In the end, multiplying x × y 
can be broken into multiplying three smaller products with three recursive 
calls: karatsuba(a, c), karatsuba(b, d), and karatsuba((a + b), (c + d)).

With some careful study of this section, you can understand the algebra 
behind the Karatsuba algorithm. What I can’t understand is how Anatoly 
Karatsuba was clever enough to devise this algorithm in less than a week as 
a 23-year-old student in the first place.

Summary
Dividing problems into smaller, self-similar problems is at the heart of 
recursion, making these divide-and-conquer algorithms especially suited 
for recursive techniques. In this chapter, we created a divide-and-conquer 
version of Chapter 3’s program for summing numbers in an array. One ben-
efit of this version is that upon dividing a problem into multiple subprob-
lems, the subproblems can be farmed out to other computers to work on in 
parallel.

A binary search algorithm searches a sorted array by repeatedly narrow-
ing the range to search in half. While a linear search starts searching at the 



120   Chapter 5

beginning and searches the entire array, a binary search takes advantage 
of the array’s sorted order to home in on the item it is looking for. The 
performance improvement is so great that it may be worthwhile to sort an 
unsorted array in order to enable a binary search on its items.

We covered two popular sorting algorithms in this chapter: quicksort 
and merge sort. Quicksort divides an array into two partitions based on a 
pivot value. The algorithm then recursively partitions these two partitions, 
repeating the process until the partitions are the size of a single item. At 
this point, the partitions, and the items in them, are in sorted order. Merge 
sort takes an opposite approach. The algorithm splits the array into smaller 
arrays first, and then merges the smaller arrays into sorted order afterward.

Finally, we covered Karatsuba multiplication, a recursive algorithm 
for performing integer multiplication when the * multiplication opera-
tor isn’t available. This comes up in low-level hardware programming that 
doesn’t offer a built-in multiplication instruction. The Karatsuba algorithm 
breaks down multiplying two integers into three multiplications of smaller 
integers. To multiply single-digit numbers for the base case, the algorithm 
stores every product from 0 × 0 to 9 × 9 in a lookup table.

The algorithms in this chapter are part of many data structure and 
algorithm courses that freshman computer science students take. In the 
next chapter, we’ll continue to look at other algorithms at the heart of com-
puting with algorithms that calculate permutations and combinations.

Further Reading
The Computerphile channel on YouTube has videos on quicksort at https://
youtu.be/XE4VP_8Y0BU and merge sort at https://youtu.be/kgBjXUE_Nwc. If 
you want a more comprehensive tutorial, the free “Algorithmic Toolbox” 
online course covers many of the same topics that a freshman data struc-
tures and algorithms course would cover, including binary search, quick-
sort, and merge sort. You can sign up for this Coursera course at https://
www.coursera.org/learn/algorithmic-toolbox.

Sorting algorithms are often compared to each other in lessons on big 
O algorithm analysis, which you can read about in Chapter 13 of my book 
Beyond the Basic Stuff with Python (No Starch Press, 2020). You can read this 
chapter online at https://inventwithpython.com/beyond. Python developer Ned 
Batchelder describes big O and “how code slows as your data grows” in his 
2018 PyCon talk of the same name at https://youtu.be/duvZ-2UK0fc.

Divide-and-conquer algorithms are useful because they often can 
be run on multiple computers in parallel. Guy Steele Jr. gives a Google 
TechTalk titled “Four Solutions to a Trivial Problem” on this topic at  
https://youtu.be/ftcIcn8AmSY.

https://youtu.be/XE4VP_8Y0BU
https://youtu.be/XE4VP_8Y0BU
https://youtu.be/kgBjXUE_Nwc
https://www.coursera.org/learn/algorithmic-toolbox
https://www.coursera.org/learn/algorithmic-toolbox
https://inventwithpython.com/beyond
https://youtu.be/duvZ-2UK0fc
https://youtu.be/ftcIcn8AmSY


Divide-and-Conquer Algorithms   121

Professor Tim Roughgarden produced a video lecture for Stanford 
University on Karatsuba multiplication at https://youtu.be/JCbZayFr9RE.

To help your understanding of quicksort and merge sort, obtain a 
pack of playing cards or simply write numbers on index cards and practice 
sorting them by hand according to the rules of these two algorithms. This 
offline approach can help you remember the pivot-and-partition of quick-
sort and the divide-merge of merge sort.

Practice Questions
Test your comprehension by answering the following questions:

	 1.	 What is a benefit of the divide-and-conquer summing algorithm in this 
chapter compared to the head-tail summing algorithm in Chapter 3?

	 2.	 If a binary search of 50 books on a shelf takes six steps, how many steps 
would it take to search twice as many books?

	 3.	 Can a binary search algorithm search an unsorted array?

	 4.	 Is partitioning the same thing as sorting?

	 5.	 What happens in quicksort’s partition step?

	 6.	 What is the pivot value in quicksort?

	 7.	 What is the base case of quicksort?

	 8.	 How many recursive calls does the quicksort() function have?

	 9.	 How is the array [0, 3, 1, 2, 5, 4, 7, 6] not properly partitioned with a 
pivot value of 4?

	10.	 What is the base case of merge sort?

	11.	 How many recursive calls does the mergeSort() function have?

	12.	 What is the resultant array when the merge sort algorithm sorts the 
arrays [12, 37, 38, 41, 99] and [2, 4, 14, 42]?

	13.	 What is a lookup table?

	14.	 In the Karatsuba algorithm that multiplies integers x and y, what do the 
a, b, c, and d variables store?

	15.	 Answer the three questions about recursive solutions for each of the 
recursive algorithms presented in this chapter: 

a.	 What is the base case? 

b.	 What argument is passed to the recursive function call? 

c.	 How does this argument become closer to the base case? 

Then re-create the recursive algorithms from this chapter without look-
ing at the original code.

https://youtu.be/JCbZayFr9RE


122   Chapter 5

Practice Projects
For practice, write a function for each of the following tasks:

	 1.	 Create a version of the karatsuba() function that has a multiplication 
lookup table of products from 0 × 0 to 999 × 999 rather than 0 × 0 to 9 × 9. 
Get a rough estimate of how long it takes to calculate karatsuba(12345678, 
87654321) 10,000 times in a loop with this larger lookup table compared to 
the original lookup table. If this still runs too quickly to measure, increase 
the number of iterations to 100,000 or 1,000,000 or more. (Hint: you 
should delete or comment out the print() and document.write() calls 
inside the karatsuba() function for this timing test.) 

	 2.	 Create a function that performs a linear search on a large array of inte-
gers 10,000 times. Get a rough estimate of how long this takes, increas-
ing the number of iterations to 100,000 or 1,000,000 if the program 
executes too quickly. Compare this with how long a second function 
takes to sort the array once before performing the same number of 
binary searches.



6
P E R M U T A T I O N S  A N D 

C O M B I N A T I O N S

Problems involving permutations and com-
binations are especially suited to recursion. 

These are common in set theory, a branch of 
mathematical logic that deals with the selection, 

arrangement, and manipulation of collections of objects. 
Dealing with small sets in our short-term memory is simple. We can eas-

ily come up with every possible order (that is, permutation) or combination 
of a set of three or four objects. Ordering and combining items in a larger 
set requires the same process but quickly turns into an impossible task for 
our human brains. At that point, it becomes practical to bring in computers 
to handle the combinatorial explosion that occurs as we add more objects 
to a set. 

At its heart, calculating permutations and combinations of large groups 
involves calculating permutations and combinations of smaller groups. This 
makes these calculations suitable for recursion. In this chapter, we’ll look at 
recursive algorithms for generating all possible permutations and combina-
tions of characters in a string. We’ll expand on this to generate all possible 
combinations of balanced parentheses (orderings of open parentheses 

T H E R E C U R S I V E 

B O O K O F 

R E C U R S I O N

A C E T H E C O D I N G I N T E R V I E W
W I T H 

P Y T H O N A N D J A V A S C R I P T

T H E
R E C U R S I V E 

B O O K
O F 

R E C U R S I O N

A C E T H E C O D I N G I N T E R V I E W
W I T H

P Y T H O N A N D J A V A S C R I P T

THE RECURSIVE

BOOKOF 

RECURSION

ACETHE
CODING

INTERVI
EWWIT

H

PYTHON
ANDJAV

ASCRIP
T



124   Chapter 6

correctly matched to closing parentheses). And finally, we will calculate the 
power set of a set—that is, the set of all possible subsets of a set.

Many of the recursive functions in this chapter have an argument named 
indent. This isn’t used by the actual recursive algorithms; rather, it is used 
by their debugging output so that you can see which level of recursion pro-
duced the output. The indentation is increased by one space for each recur-
sive call and rendered in the debugging output as periods so that it’s easy to 
count the level of indentation.

The Terminology of Set Theory
This chapter doesn’t cover set theory as completely as a math or computer 
science textbook would. But it covers enough to justify starting with an 
explanation of the discipline’s basic terminology, as doing so will make 
the rest of this chapter easier to understand. A set is a collection of unique 
objects, called elements, or members. For example, the letters A, B, and C form 
a set of three letters. In mathematics (and in Python code syntax), sets are 
written inside curly braces, with the objects separated by commas: {A, B, C}. 

Order doesn’t matter for a set; the set {A, B, C} is the same set as {C, B, A}. 
Sets have distinct elements, meaning there are no duplicates: {A, C, A, B} 
has repeat As and so is not a set.

A set is a subset of another set if it has only members of the other set. 
For example, {A, C} and {B, C} are both subsets of {A, B, C}, but {A, C, D} is 
not a subset of it. Conversely, {A, B, C} is a superset to {A, C} and also to {B, C} 
because it contains all their elements. The empty set { } is a set that contains 
no members at all. Empty sets are considered subsets of every possible set.

A subset can also include all the elements of the other set. For example, 
{A, B, C} is a subset of {A, B, C}. But a proper subset, or strict subset, is a subset 
that does not have all the set’s elements. No set is a proper subset of itself: 
so {A, B, C} is a subset but not a proper subset of {A, B, C}. All other subsets 
are proper subsets. Figure 6-1 shows a graphical representation of the set 
{A, B, C} and some of its subsets.

B
C

A

Figure 6-1: The set {A, B, C} within the 
dashed lines and some of its subsets 
{A, B, C}, {A, C}, and { } within the 
solid lines. The circles represent sets, 
and the letters represent elements.

A permutation of a set is a specific ordering of all elements in the set. 
For example, the set {A, B, C} has six permutations: ABC, ACB, BAC, BCA, 
CAB, and CBA. We call these permutations without repetition, or permutations 



Permutations and Combinations   125

without replacement, because each element doesn’t appear in the permutation 
more than once. 

A combination is a selection of elements of a set. More formally, a k- 
combination is a subset of k elements from a set. Unlike permutations, combi-
nations don’t have an ordering. For example, the 2-combinations of the set 
{A, B, C} are {A, B}, {A, C}, and {B, C}. The 3-combination of the set {A, B, C} 
is {A, B, C}.

The term n choose k refers to the number of possible combinations 
(without repetition) of k elements that can be selected from a set of n ele-
ments. (Some mathematicians use the term n choose r.) This concept has 
nothing to do with the elements themselves, just the number of them. For 
example, 4 choose 2 is 6, because there are six ways to choose two elements 
from a set of four elements like {A, B, C, D}: {A, B}, {A, C}, {A, D}, {B, C}, {B, D}, 
and {C, D}. Meanwhile, 3 choose 3 is 1, because there’s only one 3-combination 
from a set of three elements like {A, B, C}; that is, {A, B, C} itself. The for-
mula for calculating n choose k is (n!) / (k! × (n – k)!). Recall that n! is the 
notation for factorials: 5! is 5 × 4 × 3 × 2 × 1.

The term n multichoose k refers to the number of possible combinations 
with repetition of k elements that can be selected from a set of n elements. 
Because k-combinations are sets and sets do not have duplicate elements, a 
k-combination does not have repetition. When we use k-combinations with 
duplicate elements, we specifically call them k-combinations with repetition. 

Keep in mind that, both with and without repetition, you can think 
of permutation as a certain arrangement of all elements in a set, while 
a combination is an orderless selection of certain elements from a set. 
Permutations have an ordering and use all the elements from a set, while 
combinations don’t have an ordering and use any number of elements from 
a set. To get a better idea of these terms, Table 6-1 shows the difference 
between permutations and combinations, with and without repetition, of 
the set {A, B, C}.

Table 6-1: All Possible Permutations and Combinations, with and without Repetition, 
of the Set {A, B, C}

Permutations Combinations

Without repetition ABC, ACB, BAC, BCA, CAB (None), A, B, C, AB, AC, BC, 
ABC

With repetition AAA, AAB, AAC, ABA, ABB, 
ABC, ACA, ACB, ACC, BAA, 
BAB, BAC, BBA, BBB, BBC, 
BCA, BCB, BCC, CAA, CAB, 
CAC, CBA, CBB, CBC, CCA, 
CCB, CCC

(None), A, B, C, AA, AB, AC, 
BB, BC, CC, AAA, AAB, AAC, 
ABB, ABC, ACC, BBB, BBC, 
BCC, CCC

It’s surprising how quickly the number of permutations and combina-
tions grows as we add elements to a set. This combinatorial explosion is cap-
tured by the formulas in Table 6-2. For example, a set of 10 elements has 
10!, or 3,628,800, possible permutations, but a set of twice as many elements 
has 20!, or 2,432,902,008,176,640,000, permutations.



126   Chapter 6

Table 6-2: Calculating the Number of Possible Permutations and  
Combinations, with and without Repetition, of a Set of n Elements

Permutations Combinations

Without repetition n! 2n

With repetition nn 2n choose n, or
(2n)! / (n!)2

Note that permutations without repetition are always the same size as the 
set. For example, the permutations of {A, B, C} are always three letters long: 
ABC, ACB, BAC, and so forth. However, permutations with repetition can be of 
any length. Table 6-1 shows the three-letter permutations of {A, B, C} ranging 
from AAA to CCC, but you could also, for example, have five-letter permuta-
tions with repetition ranging from AAAAA to CCCCC. The number of per-
mutations with repetition of n elements that are k elements long is nk. Table 6-2 
lists it as nn for permutations with repetition that are also n elements long.

Ordering matters for permutations, but not for combinations. While 
AAB, ABA, and BAA are considered the same combination with repetition, 
they are considered three separate permutations with repetition.

Finding All Permutations Without Repetition:  
A Wedding Seating Chart

Imagine you must arrange the seating chart for a wedding reception with 
delicate social requirements. Some of the guests hate each other, while 
others demand to sit near an influential guest. The seats at the rectangu-
lar table form one long, straight row, rather than a circle. It’d be helpful 
for your planning to see every possible ordering of guests—that is, every 
permutation without repetition of the set of guests. No repetition occurs, 
because each guest appears in the seating chart only once. 

Let’s use a simple example of Alice, Bob, and Carol, or {A, B, C}. 
Figure 6-2 shows all six possible permutations of these three wedding guests.

One way we can determine the number of permutations without repeti-
tion is with a head-tail recursive strategy. We select one element from the 
set as the head. We then get every permutation of the rest of the elements 
(which constitute the tail), and for each permutation we place the head in 
every possible location in the permutation. 

In our ABC example, we’ll start with Alice (A) as the head and Bob and 
Carol (BC) as the tail. The permutations of {B, C} are BC and CB. (How we 
got BC and CB is explained in the next paragraph, so just put that question 
aside for now.) We’ll put A in every possible location in BC. That is, we put 
Alice before Bob (ABC), in between Bob and Carol (BAC), and after Carol 
(BCA). This creates the permutations ABC, BAC, and BCA. We also put A 
in every possible position in CB, creating ACB, CAB, and CBA. This creates 
all six permutations of Alice, Bob, and Carol sitting at the reception table. 
Now we can pick the arrangement that results in the fewest fights (or the 
most fights, if you want a memorable wedding reception).



Permutations and Combinations   127

Figure 6-2: All six possible permutations of three wedding guests at a table

Of course, to get every permutation of {B, C}, we’d recursively repeat 
the process with B as the head and C as the tail. The permutation of a 
single character is the character itself; this is our base case. By putting the 
head B in every possible location in C, we get the BC and CB permutations 
we used in the previous paragraph. Remember that, while order doesn’t 
matter with sets (as {B, C} is the same as {C, B}), it does matter with permuta-
tions (BC is not a duplicate of CB).

Our recursive permutation function accepts as an argument a string 
of characters and returns an array of strings of every possible permutation 
of those characters. Let’s ask the three questions about our recursive algo-
rithms for this function:

What is the base case?    An argument of a single character string or 
empty string, which returns an array of just that string.

What argument is passed to the recursive function call?    The string 
argument missing one character. A separate recursive call is made for 
each character missing.

How does this argument become closer to the base case?    The size of 
the string shrinks and eventually becomes a single-character string.

The recursive permutations algorithm is implemented in permutations.py:

def getPerms(chars, indent=0):
    print('.' * indent + 'Start of getPerms("' + chars + '")')
    if len(chars) == 1: 1
        # BASE CASE
        print('.' * indent + 'When chars = "' + chars + '" base case returns', chars)
        return [chars]

    # RECURSIVE CASE
    permutations = []
    head = chars[0] 2
    tail = chars[1:]



128   Chapter 6

    tailPermutations = getPerms(tail, indent + 1)
    for tailPerm in tailPermutations: 3
        print('.' * indent + 'When chars =', chars, 'putting head', head, 'in all places in', 
tailPerm)
        for i in range(len(tailPerm) + 1): 4
            newPerm = tailPerm[0:i] + head + tailPerm[i:]
            print('.' * indent + 'New permutation:', newPerm)
            permutations.append(newPerm)
    print('.' * indent + 'When chars =', chars, 'results are', permutations)
    return permutations

print('Permutations of "ABCD":')
print('Results:', ','.join(getPerms('ABCD')))

The equivalent JavaScript program is in permutations.html:

<script type="text/javascript">
function getPerms(chars, indent) {
    if (indent === undefined) {
        indent = 0;
    }
    document.write('.'.repeat(indent) + 'Start of getPerms("' + chars + '")<br />');
    if (chars.length === 1) { 1
        // BASE CASE
        document.write('.'.repeat(indent) + "When chars = \"" + chars + 
        "\" base case returns " + chars + "<br />");
        return [chars];
    }
    // RECURSIVE CASE
    let permutations = [];
    let head = chars[0]; 2
    let tail = chars.substring(1);
    let tailPermutations = getPerms(tail, indent + 1);
    for (tailPerm of tailPermutations) { 3
        document.write('.'.repeat(indent) + "When chars = " + chars + 
        " putting head " + head + " in all places in " + tailPerm + "<br />");
        for (let i = 0; i < tailPerm.length + 1; i++) { 4
            let newPerm = tailPerm.slice(0, i) + head + tailPerm.slice(i);
            document.write('.'.repeat(indent) + "New permutation: " + newPerm + "<br />");
            permutations.push(newPerm);
        }
    }
    document.write('.'.repeat(indent) + "When chars = " + chars + 
    " results are " + permutations + "<br />");
    return permutations;
}

document.write("<pre>Permutations of \"ABCD\":<br />");
document.write("Results: " + getPerms("ABCD") + "</pre>");
</script>



Permutations and Combinations   129

The output of these programs is the following:

Permutations of "ABCD":
Start of getPerms("ABCD")
.Start of getPerms("BCD")
..Start of getPerms("CD")
...Start of getPerms("D")
...When chars = "D" base case returns D
..When chars = CD putting head C in all places in D
..New permutation: CD
..New permutation: DC
..When chars = CD results are ['CD', 'DC']
.When chars = BCD putting head B in all places in CD
.New permutation: BCD
.New permutation: CBD
.New permutation: CDB
.When chars = BCD putting head B in all places in DC
.New permutation: BDC
.New permutation: DBC
.New permutation: DCB
.When chars = BCD results are ['BCD', 'CBD', 'CDB', 'BDC', 'DBC', 'DCB']
--snip--
When chars = ABCD putting head A in all places in DCB
New permutation: ADCB
New permutation: DACB
New permutation: DCAB
New permutation: DCBA
When chars = ABCD results are ['ABCD', 'BACD', 'BCAD', 'BCDA', 'ACBD', 'CABD', 
'CBAD', 'CBDA', 'ACDB','CADB', 'CDAB', 'CDBA', 'ABDC', 'BADC', 'BDAC', 'BDCA', 
'ADBC', 'DABC', 'DBAC', 'DBCA', 'ADCB', 'DACB', 'DCAB', 'DCBA']
Results: ABCD,BACD,BCAD,BCDA,ACBD,CABD,CBAD,CBDA,ACDB,CADB,CDAB,CDBA,ABDC,
BADC,BDAC,BDCA,ADBC,DABC,DBAC,DBCA,ADCB,DACB,DCAB,DCBA

When getPerms() is called, it first checks for the base case 1. If the chars 
string is only one character long, it can have only one permutation: the 
chars string itself. The function returns this string in an array.

Otherwise, in the recursive case, the function splits the chars argument’s 
first character into the head variable and the rest into the tail variable 2. The 
function makes a recursive call to getPerms() to get all the permutations of the 
string in tail. A first for loop 3 iterates over each of these permutations, and 
a second for loop 4 creates a new permutation by placing the head character 
in every possible place in the string.

For example, if getPerms() is called with ABCD for the chars argument, 
head is A and tail is BCD. The getPerms('BCD') call returns an array of the 
tail permutations, ['BCD', 'CBD', 'CDB', 'BDC', 'DBC', 'DCB']. The first for 
loop starts with the BCD permutation, and the second for loop places the A 
string in head in each possible place, producing ABCD, BACD, BCAD, BCDA. This is 
repeated with the remaining tail permutations, and the entire list is then 
returned by the getPerms() function.



130   Chapter 6

Getting Permutations with Nested Loops:  
A Less-Than-Ideal Approach

Let’s say we have a simple bicycle lock, as in Figure 6-3, with a four-digit 
combination. The combination has 10,000 possible permutations of digits 
(0000 to 9999), but only one will unlock it. (They are called combination 
locks; however, in this context it’d be more accurate to call them permuta-
tions with repetition locks, since the order matters.) 

Now let’s say we have a much simpler lock with only the five letters A to 
E. We can calculate the number of possible combinations as 54, or 5 × 5 × 
5 × 5, or 625. A combination lock of k characters, each character selected 
from a set of n possibilities, is nk. But getting a list of the combinations 
themselves is a bit more involved.

Figure 6-3: A four-digit combination bicycle lock has 104, or 10,000, possible permuta-
tions with repetition (photo courtesy of Shaun Fisher, CC BY 2.0 license).

One way to get permutations with repetition is with nested loops—that is, 
a loop within another loop. The inner loop goes through every element in 
a set, whereas the outer loop does the same while repeating the inner loop. 
Creating all possible k-character permutations, each character selected 
from a set of n possibilities, requires k nested loops.

For example, nestedLoopPermutations.py contains code that generates all 
3-combinations of {A, B, C, D, E}:

Python for a in ['A', 'B', 'C', 'D', 'E']:
    for b in ['A', 'B', 'C', 'D', 'E']:
        for c in ['A', 'B', 'C', 'D', 'E']:
            for d in ['A', 'B', 'C', 'D', 'E']:
                print(a, b, c, d)



Permutations and Combinations   131

And nestedLoopPermutations.html contains the equivalent JavaScript 
program:

JavaScript <script>
for (a of ['A', 'B', 'C', 'D', 'E']) {
    for (b of ['A', 'B', 'C', 'D', 'E']) {
        for (c of ['A', 'B', 'C', 'D', 'E']) {
            for (d of ['A', 'B', 'C', 'D', 'E']) {
                document.write(a + b + c + d + "<br />")
            }
        }
    }
}
</script>

The output of these programs looks like this:

A A A A
A A A B
A A A C
A A A D
A A A E
A A B A
A A B B
--snip--
E E E C
E E E D
E E E E

The problem with generating permutations with four nested loops is 
that it works only for permutations that are exactly four characters. Nested 
loops cannot generate permutations for arbitrary lengths. Instead, we can 
use a recursive function, as described in the next section.

You can remember the difference between permutations with and 
without repetition with the examples in this chapter. Permutations without 
repetition go through all possible orderings of the elements in a set, like 
our wedding guest seating chart example. Permutations with repetition go 
through all the possible combinations of a combination lock; the order mat-
ters, and the same element can appear more than once.

Permutations with Repetition: A Password Cracker
Imagine you have received a sensitive encrypted file from a recently deceased 
journalist. In their final message, the journalist told you the file contains 
records of tax evasion by a nefarious trillionaire. They didn’t have the pass-
word to decrypt the file, but they did know that it is exactly four characters 
long; also, the possible characters are the numbers 2, 4, and 8 and the letters 
J, P, and B. These characters can appear more than once. For example, pos-
sible passwords are JPB2, JJJJ, and 2442. 

To generate a list of all possible four-character passwords based on this 
information, you want to obtain all possible four-element permutations 



132   Chapter 6

with repetition of the set { J, P, B, 2, 4, 8}. Each of the four characters in the 
password can be one of the six possible characters, making 6 × 6 × 6 × 6, or 
64, or 1,296 possible permutations. We want to generate the permutations 
of { J, P, B, 2, 4, 8}, and not the combinations, because the ordering matters; 
JPB2 is a different password from B2JP.

Let’s ask the three recursive algorithm questions about our permuta-
tions function. Instead of k, we’ll use the more descriptive name permLength:

What is the base case?    A permLength argument of 0, meaning a per-
mutation zero characters long, signals that the prefix argument now 
contains the complete permutation and so prefix should be returned in 
an array.

What argument is passed to the recursive function call?    The chars 
string of the characters to get permutations of, a permLength argument 
that begins as the length of chars, and a prefix argument that begins 
as the blank string. Recursive calls decrement the permLength argument 
while appending a character from chars to the prefix argument.

How does this argument become closer to the base case?    Eventually, 
the permLength argument decrements to 0.

The algorithm for recursive permutations with repetition is imple-
mented in permutationsWithRepetition.py:

def getPermsWithRep(chars, permLength=None, prefix=''):
    indent = '.' * len(prefix)
    print(indent + 'Start, args=("' + chars + '", ' + str(permLength) + ', "' + prefix + '")')
    if permLength is None:
        permLength = len(chars)

    # BASE CASE
    if (permLength == 0): 1
        print(indent + 'Base case reached, returning', [prefix])
        return [prefix]

    # RECURSIVE CASE
    # Create a new prefix by adding each character to the current prefix.
    results = []
    print(indent + 'Adding each char to prefix "' + prefix + '".')
    for char in chars:
        newPrefix = prefix + char 2

        # Decrease permLength by one because we added one character to the prefix.
        results.extend(getPermsWithRep (chars, permLength - 1, newPrefix)) 3
    print(indent + 'Returning', results)
    return results

print('All permutations with repetition of JPB123:')
print(getPermsWithRep('JPB123', 4))



Permutations and Combinations   133

The equivalent JavaScript program is in permutationsWithRepetition.html:

<script type="text/javascript">
function getPermsWithRep(chars, permLength, prefix) {
    if (permLength === undefined) {
        permLength = chars.length;
    }
    if (prefix === undefined) {
        prefix = "";
    }
    let indent = ".".repeat(prefix.length);
    document.write(indent + "Start, args=(\"" + chars + "\", " + permLength + 
    ", \"" + prefix + "\")<br />");

    // BASE CASE
    if (permLength === 0) { 1
        document.write(indent + "Base case reached, returning " + [prefix] + "<br />");
        return [prefix];
    }

    // RECURSIVE CASE
    // Create a new prefix by adding each character to the current prefix.
    let results = [];
    document.write(indent + "Adding each char to prefix \"" + prefix + "\".<br />");
    for (char of chars) {
        let newPrefix = prefix + char; 2

        // Decrease permLength by one because we added one character to the prefix.
        results = results.concat(getPermsWithRep(chars, permLength - 1, newPrefix)); 3
    }
    document.write(indent + "Returning " + results + "<br />");
    return results;
}

document.write("<pre>All permutations with repetition of JPB123:<br />");
document.write(getPermsWithRep('JPB123', 4) + "</pre>");
</script>

The output of these programs is shown here:

All permutations with repetition of JPB123:
Start, args=("JPB123", 4, "")
Adding each char to prefix "".
.Start, args=("JPB123", 3, "J")
.Adding each char to prefix "J".
..Start, args=("JPB123", 2, "JJ")
..Adding each char to prefix "JJ".
...Start, args=("JPB123", 1, "JJJ")
...Adding each char to prefix "JJJ".
....Start, args=("JPB123", 0, "JJJJ")
....Base case reached, returning ['JJJJ']
....Start, args=("JPB123", 0, "JJJP")
....Base case reached, returning ['JJJP']



134   Chapter 6

--snip--
Returning ['JJJJ', 'JJJP', 'JJJB', 'JJJ1', 'JJJ2', 'JJJ3', 
'JJPJ', 'JJPP', 'JJPB', 'JJP1', 'JJP2', 'JJP3', 'JJBJ', 'JJBP', 
'JJBB', 'JJB1', 'JJB2', 'JJB3', 'JJ1J', 'JJ1P', 'JJ1B', 'JJ11', 
'JJ12', 'JJ13', 'JJ2J', 'JJ2P', 'JJ2B', 'JJ21', 'JJ22', 'JJ23', 
'JJ3J', 'JJ3P', 'JJ3B', 'JJ31', 'JJ32', 'JJ33', 'JPJJ', 
--snip--

The getPermsWithRep() function has a prefix string argument that begins 
as a blank string by default. When the function is called, it first checks for 
the base case 1. If permLength, the length of the permutations, is 0, an array 
with prefix is returned.

Otherwise, in the recursive case, for each character in the chars argu-
ment the function creates a new prefix 2 to pass to the recursive getPerms 
WithRep() call. This recursive call passes permLength - 1 for the permLength 
argument.

The permLength argument starts at the length of the permutations and 
decreases by one for each recursive call 3. And the prefix argument starts 
as the blank string and increases by one character for each recursive call. 
So by the time the base case of k == 0 is reached, the prefix string is the full 
permutation length of k.

For example, let’s consider the case of calling getPermsWithRep('ABC', 2). 
The prefix argument defaults to the blank string. The function makes a 
recursive call with each character of ABC concatenated to the blank prefix 
string as the new prefix. Calling getPermsWithRep('ABC', 2) makes these three 
recursive calls:

•	 getPermsWithRep('ABC', 1, 'A')

•	 getPermsWithRep('ABC', 1, 'B')

•	 getPermsWithRep('ABC', 1, 'C')

Each of these three calls will make its own three recursive calls, but will 
pass 0 for permLength instead of 1. The base case occurs when permLength == 0, 
so these return their prefixes. This is how all nine of the permutations are 
generated. The getPermsWithRep() function generates permutations of larger 
sets the same way.

Getting K-Combinations with Recursion
Recall that order is not significant for combinations in the way it is for per-
mutations. Yet generating all k-combinations of a set is a bit tricky because 
you don’t want your algorithm to generate duplicates: if you create the 
AB 2-combination from the set {A, B, C}, you don’t want to also create BA, 
because it’s the same 2-combination as AB.

To figure out how we can write recursive code to solve this problem, 
let’s see how a tree can visually describe generating all the k-combinations 
of a set. Figure 6-4 shows a tree with all the combinations from the set 
{A, B, C, D}.



Permutations and Combinations   135

C D D

C D D D

D

0-combinations

1-combinations

2-combinations

3-combinations

4-combinations

B

CB D

A C D

''''

Figure 6-4: Tree showing every possible k-combination (from 0 to 4) from the  
set {A, B, C, D}

To gather, for example, 3-combinations from this tree, start at the root 
node at the top and do a depth-first tree traversal to the 3-combinations 
level, while memorizing each node’s letter on the way to the bottom. 
(Depth-first searches are discussed in Chapter 4.) Our first 3-combination 
would be going from the root to A in the 1-combination level, then down 
to B in the 2-combination level, then to C in the 3-combination level, where 
we stop with our complete 3-combination: ABC. For the next combination, 
we traverse from the root to A to B to D, giving us the combination ABD. 
We continue doing this for ACD and BCD. Our tree has four nodes in the 
3-combination level, and four 3-combinations from {A, B, C, D}: ABC, ABD, 
ACD, and BCD.

Notice that we create the tree in Figure 6-4 by starting with a blank 
string for the root node. This is the 0-combination level, and it applies to all 
combinations of zero selections from the set; it’s simply an empty string. The 
child nodes of the root are all elements from the set. In our case, that is all 
four elements from {A, B, C, D}. While sets don’t have an order, we need to be 
consistent in using the ABCD order of the set while generating this tree. This 
is because every node’s children consist of the letters after it in the ABCD 
string: all A nodes have children B, C, and D; all B nodes have children C and 
D; all C nodes have one D child; and all D nodes have no child nodes.

While it’s not directly related to the recursive combination function, 
also notice the pattern in the number of k-combinations at each level:

•	 The 0-combination and 4-combination levels both have one combina-
tion: the empty string and ABCD, respectively. 

•	 The 1-combination and 3-combination levels both have four combina-
tions: A, B, C, D and ABC, ABD, ACD, BCD, respectively. 

•	 The 2-combination level in the middle has the most combinations at 
six: AB, AC, AD, BC, BD, and CD. 



136   Chapter 6

The reason the number of combinations increases, peaks in the middle, 
and then decreases is that the k-combinations are mirrors of each other. 
For example, the 1-combinations are made from the elements not selected 
for the 3-combinations: 

•	 The 1-combination A is the mirror of the 3-combination BCD.

•	 The 1-combination B is the mirror of the 3-combination ACD.

•	 The 1-combination C is the mirror of the 3-combination ABD.

•	 The 1-combination D is the mirror of the 3-combination ABC.

We’ll create a function called getCombos() that takes two arguments: a 
chars string with the letters to get combinations from, and the size of the 
combinations k. The return value is an array of strings of combinations 
from the string chars, each of length k.

We’ll use a head-tail technique with the chars argument. For example, 
say we call getCombos('ABC', 2) to get all the 2-combinations from {A, B, C}. 
The function will set A as the head and BC as the tail. Figure 6-5 shows the 
tree for selecting 2-combinations from {A, B, C}.

B C C

C

0-combinations

1-combinations

2-combinations

3-combinations

BA C

''''

Figure 6-5: Tree showing every possible 2-combination  
from the set {A, B, C}

Let’s ask our three recursive algorithm questions:

What is the base case?    The first base case is a k argument of 0, mean-
ing that a 0-combination is requested, which is always an array of the 
blank string no matter what chars is. The second case occurs if chars is 
the blank string, which is an empty array since no possible combina-
tions can be made from a blank string.

What argument is passed to the recursive function call?    For the 
first recursive call, the tail of chars and k ‑ 1 are passed. For the second 
recursive call, the tail of chars and k are passed.

How does this argument become closer to the base case?    Since the 
recursive calls decrement k and remove the heads from the chars argu-
ments, eventually the k argument decrements to 0 or the chars argu-
ment becomes the blank string.



Permutations and Combinations   137

The Python code for generating combinations is in combinations.py:

Python def getCombos(chars, k, indent=0):
    debugMsg = '.' * indent + "In getCombos('" + chars + "', " + str(k) + ")"
    print(debugMsg + ', start.')
    if k == 0:
        # BASE CASE
        print(debugMsg + " base case returns ['']")
        # If k asks for 0-combinations, return '' as the selection of
        # zero letters from chars.
        return ['']
    elif chars == '':
        # BASE CASE
        print(debugMsg + ' base case returns []')
        return [] # A blank chars has no combinations, no matter what k is.

    # RECURSIVE CASE
    combinations = []
  1 # First part, get the combos that include the head:
    head = chars[:1]
    tail = chars[1:]
    print(debugMsg + " part 1, get combos with head '" + head + "'")
  2 tailCombos = getCombos(tail, k - 1, indent + 1)
    print('.' * indent + "Adding head '" + head + "' to tail combos:")
    for tailCombo in tailCombos:
        print('.' * indent + 'New combination', head + tailCombo)
        combinations.append(head + tailCombo)

  3 # Second part, get the combos that don't include the head:
    print(debugMsg + " part 2, get combos without head '" + head + "')")
  4 combinations.extend(getCombos(tail, k, indent + 1))

    print(debugMsg + ' results are', combinations)
    return combinations

print('2-combinations of "ABC":')
print('Results:', getCombos('ABC', 2))

The equivalent JavaScript program is in combinations.html:

<script type="text/javascript">
function getCombos(chars, k, indent) {
    if (indent === undefined) {
        indent = 0;
    }
    let debugMsg = ".".repeat(indent) + "In getCombos('" + chars + "', " + k + ")";
    document.write(debugMsg + ", start.<br />");
    if (k == 0) {
        // BASE CASE
        document.write(debugMsg + " base case returns ['']<br />");
        // If k asks for 0-combinations, return '' as the selection of zero letters from chars.
        return [""];
    } else if (chars == "") {
        // BASE CASE
        document.write(debugMsg + " base case returns []<br />");



138   Chapter 6

        return []; // A blank chars has no combinations, no matter what k is.
    }

    // RECURSIVE CASE
    let combinations = [];
    // First part, get the combos that include the head: 1
    let head = chars.slice(0, 1);
    let tail = chars.slice(1, chars.length);
    document.write(debugMsg + " part 1, get combos with head '" + head + "'<br />");
    let tailCombos = getCombos(tail, k - 1, indent + 1); 2
    document.write(".".repeat(indent) + "Adding head '" + head + "' to tail combos:<br />");
    for (tailCombo of tailCombos) {
        document.write(".".repeat(indent) + "New combination " + head + tailCombo + "<br />");
        combinations.push(head + tailCombo);
    }
    // Second part, get the combos that don't include the head: 3
    document.write(debugMsg + " part 2, get combos without head '" + head + "')<br />");
    combinations = combinations.concat(getCombos(tail, k, indent + 1)); 4

    document.write(debugMsg + " results are " + combinations + "<br />");
    return combinations;
}

document.write('<pre>2-combinations of "ABC":<br />');
document.write("Results: " + getCombos("ABC", 2) + "<br /></pre>");
</script>

The output of these programs is the following:

2-combinations of "ABC":
In getCombos('ABC', 2), start.
In getCombos('ABC', 2) part 1, get combos with head 'A'
.In getCombos('BC', 1), start.
.In getCombos('BC', 1) part 1, get combos with head 'B'
..In getCombos('C', 0), start.
..In getCombos('C', 0) base case returns ['']
.Adding head 'B' to tail combos:
.New combination B
.In getCombos('BC', 1) part 2, get combos without head 'B')
..In getCombos('C', 1), start.
..In getCombos('C', 1) part 1, get combos with head 'C'
...In getCombos('', 0), start.
...In getCombos('', 0) base case returns ['']
..Adding head 'C' to tail combos:
..New combination C
..In getCombos('C', 1) part 2, get combos without head 'C')
...In getCombos('', 1), start.
...In getCombos('', 1) base case returns []
..In getCombos('C', 1) results are ['C']
.In getCombos('BC', 1) results are ['B', 'C']
Adding head 'A' to tail combos:
New combination AB
New combination AC
In getCombos('ABC', 2) part 2, get combos without head 'A')
.In getCombos('BC', 2), start.



Permutations and Combinations   139

.In getCombos('BC', 2) part 1, get combos with head 'B'

..In getCombos('C', 1), start.

..In getCombos('C', 1) part 1, get combos with head 'C'

...In getCombos('', 0), start.

...In getCombos('', 0) base case returns ['']

..Adding head 'C' to tail combos:

..New combination C

..In getCombos('C', 1) part 2, get combos without head 'C')

...In getCombos('', 1), start.

...In getCombos('', 1) base case returns []

..In getCombos('C', 1) results are ['C']

.Adding head 'B' to tail combos:

.New combination BC

.In getCombos('BC', 2) part 2, get combos without head 'B')

..In getCombos('C', 2), start.

..In getCombos('C', 2) part 1, get combos with head 'C'

...In getCombos('', 1), start.

...In getCombos('', 1) base case returns []

..Adding head 'C' to tail combos:

..In getCombos('C', 2) part 2, get combos without head 'C')

...In getCombos('', 2), start.

...In getCombos('', 2) base case returns []

..In getCombos('C', 2) results are []

.In getCombos('BC', 2) results are ['BC']
In getCombos('ABC', 2) results are ['AB', 'AC', 'BC']
Results: ['AB', 'AC', 'BC']

Every getCombos() function call has two recursive calls for the two parts 
of the algorithm. For our getCombos('ABC', 2) example, the first part 1 is to 
get all the combinations that include the head A. In the tree, this generates 
all the combinations under the A node in the 1-combination level.

We can do this by passing the tail and k - 1 to the first recursive function 
call: getCombos('BC', 1) 2. We add A to each combination that this recursive 
function call returns. Let’s use the leap-of-faith principle and just assume our 
getCombos() correctly returns a list of k-combinations, ['B', 'C'], even though 
we haven’t finished writing it yet. We now have all the k-combinations that 
include the head A in an array to hold our results: ['AB', 'AC'].

The second part 3 gets all the combinations that don’t include the 
head A. In the tree, this generates all the combinations to the right of the A 
node in the 1-combination level. We can do this by passing the tail and k to 
the second recursive function call: getCombos('BC', 2). This returns ['BC'], 
since BC is the only 2-combination of BC.

The results from getCombos('ABC', 2)’s two recursive calls, ['AB', 'AC'] 
and ['BC'], are concatenated together and returned: ['AB', 'AC', 'BC'] 4. 
The getCombos() function generates combinations of larger sets the same way.

Get All Combinations of Balanced Parentheses
A string has balanced parentheses if every opening parenthesis is followed by 
exactly one closing parenthesis. For example, ′()()′ and ′(())′ are strings of 



140   Chapter 6

two balanced parentheses pairs, but ′)(()′ and ′(()′ are not balanced. These 
strings are also called Dyck words, after mathematician Walther von Dyck.

A common coding interview question is to write a recursive function 
that, given the number of pairs of parentheses, produces all possible com-
binations of balanced parentheses. For example, a getBalancedParens(3) call 
should return ['((()))', '(()())', '(())()', '()(())', '()()()']. Note that 
calling getBalancedParens(n) returns strings that are 2n characters in length, 
since each string consists of n pairs of parentheses.

We could try to solve this problem by finding all permutations of the 
pairs of parenthesis characters, but that would result in both balanced and 
unbalanced parentheses strings. Even if we filtered out the invalid strings 
later, 2n! permutations exist for n pairs of parentheses. That algorithm is 
far too slow to be practical.

Instead, we can implement a recursive function to generate all strings 
of balanced parentheses. Our getBalancedParens() function takes an inte-
ger of the number of pairs of parentheses and returns a list of balanced 
parentheses strings. The function builds these strings by adding either 
an opening or closing parenthesis. An opening parenthesis can be added 
only if opening parentheses remain to be used. A closing parenthesis can 
be added only if more opening parentheses have been added than closing 
parentheses so far. 

We’ll track the number of opening and closing parentheses remaining to 
be used with function parameters named openRem and closeRem. The string cur-
rently being built is another function parameter named current, which serves 
a similar purpose as the prefix parameter in the permutationsWithRepetition 
program. The first base case occurs when openRem and closeRem are both 0 and 
no more parentheses remain to be added to the current string. The second 
base case happens after the two recursive cases have received the lists of bal-
anced parentheses strings after adding an opening and/or closing parenthe-
sis (if possible).

Let’s ask the three recursive algorithm questions about the getBalanced 
Parens() function:

What is the base case?    When the number of opening and clos-
ing parentheses remaining to be added to the string being built has 
reached 0. A second base case always occurs after the recursive cases 
have finished.

What argument is passed to the recursive function call?    The total 
number of pairs of parentheses (pairs), the remaining number of open-
ing and closing parentheses to add (openRem and closeRem), and the string 
currently being built (current).

How does this argument become closer to the base case?    As we add 
more opening and closing parentheses to current, we decrement the 
openRem and closeRem arguments until they become 0.



Permutations and Combinations   141

The balancedParentheses.py file contains the Python code for our bal-
anced parentheses recursive function:

def getBalancedParens(pairs, openRem=None, closeRem=None, current='', indent=0):
    if openRem is None: 1
        openRem = pairs
    if closeRem is None:
        closeRem = pairs

    print('.' * indent, end='')
    print('Start of pairs=' + str(pairs) + ', openRem=' + 
    str(openRem) + ', closeRem=' + str(closeRem) + ', current="' + current + '"')
    if openRem == 0 and closeRem == 0: 2
        # BASE CASE
        print('.' * indent, end='')
        print('1st base case. Returning ' + str([current]))
        return [current] 3

    # RECURSIVE CASE
    results = []
    if openRem > 0: 4
        print('.' * indent, end='')
        print('Adding open parenthesis.')
        results.extend(getBalancedParens(pairs, openRem - 1, closeRem, 
        current + '(', indent + 1))
    if closeRem > openRem: 5
        print('.' * indent, end='')
        print('Adding close parenthesis.')
        results.extend(getBalancedParens(pairs, openRem, closeRem - 1, 
        current + ')', indent + 1))

    # BASE CASE
    print('.' * indent, end='')
    print('2nd base case. Returning ' + str(results))
    return results 6

print('All combinations of 2 balanced parentheses:')
print('Results:', getBalancedParens(2))

The balancedParentheses.html file contains the JavaScript equivalent of 
this program:

<script type="text/javascript">
function getBalancedParens(pairs, openRem, closeRem, current, indent) {
    if (openRem === undefined) { 1
        openRem = pairs;
    }
    if (closeRem === undefined) {
        closeRem = pairs;
    }
    if (current === undefined) {
        current = "";
    }



142   Chapter 6

    if (indent === undefined) {
        indent = 0;
    }

    document.write(".".repeat(indent) + "Start of pairs=" + 
    pairs + ", openRem=" + openRem + ", closeRem=" + 
    closeRem + ", current=\"" + current + "\"<br />");
    if (openRem === 0 && closeRem === 0) { 2
        // BASE CASE
        document.write(".".repeat(indent) + 
        "1st base case. Returning " + [current] + "<br />");
        return [current]; 3
    }

    // RECURSIVE CASE
    let results = [];
    if (openRem > 0) { 4
        document.write(".".repeat(indent) + "Adding open parenthesis.<br />");
        Array.prototype.push.apply(results, getBalancedParens(
        pairs, openRem - 1, closeRem, current + '(', indent + 1));
    }
    if (closeRem > openRem) { 5
        document.write(".".repeat(indent) + "Adding close parenthesis.<br />");
        results = results.concat(getBalancedParens(
        pairs, openRem, closeRem - 1, current + ')', indent + 1));
    }

    // BASE CASE
    document.write(".".repeat(indent) + "2nd base case. Returning " + results + "<br />");
    return results; 6
}

document.write(<pre>"All combinations of 2 balanced parentheses:<br />");
document.write("Results: ", getBalancedParens(2), "</pre>");
</script>

The output of these programs looks like this:

All combinations of 2 balanced parentheses:
Start of pairs=2, openRem=2, closeRem=2, current=""
Adding open parenthesis.
.Start of pairs=2, openRem=1, closeRem=2, current="("
.Adding open parenthesis.
..Start of pairs=2, openRem=0, closeRem=2, current="(("
..Adding close parenthesis.
...Start of pairs=2, openRem=0, closeRem=1, current="(()"
...Adding close parenthesis.
....Start of pairs=2, openRem=0, closeRem=0, current="(())"
....1st base case. Returning ['(())']
...2nd base case. Returning ['(())']
..2nd base case. Returning ['(())']
.Adding close parenthesis.
..Start of pairs=2, openRem=1, closeRem=1, current="()"
..Adding open parenthesis.
...Start of pairs=2, openRem=0, closeRem=1, current="()("



Permutations and Combinations   143

...Adding close parenthesis.

....Start of pairs=2, openRem=0, closeRem=0, current="()()"

....1st base case. Returning ['()()']

...2nd base case. Returning ['()()']

..2nd base case. Returning ['()()']

.2nd base case. Returning ['(())', '()()']
2nd base case. Returning ['(())', '()()']
Results: ['(())', '()()']

The getBalancedParens() function 1 requires one argument, the num-
ber of pairs of parentheses, when called by the user. However, it needs to 
pass additional information in the arguments to its recursive calls. These 
include the number of opening parentheses that remain to be added 
(openRem), the number of closing parentheses that remain to be added 
(closeRem), and the current balanced parentheses string being built  
(current). Both openRem and closeRem start as the same value as the pairs  
argument, and current starts as the blank string. An indent argument is 
used only for the debugging output to show the program’s level of recursive 
function call.

The function first checks the number of opening and closing paren-
theses remaining to be added 2. If both are 0, we’ve reached the first base 
case, and the string in current is finished. Since the getBalancedParens() func-
tion returns a list of strings, we put current in a list and return it 3.

Otherwise, the function continues on to the recursive case. If possible 
opening parentheses remain 4, the function calls getBalancedParens() with 
an opening parenthesis added to the current argument. If more closing 
parentheses are remaining than opening parentheses 5, the function calls 
getBalancedParens() with a closing parenthesis added to the current argu-
ment. This check ensures that an unmatched closing parenthesis won’t be 
added, as this would make the string unbalanced, such as the second clos-
ing parenthesis in ()).

After these recursive cases is an unconditional base case that returns  
all the strings returned from the two recursive function calls (and, of 
course, the recursive function calls made by these recursive function calls, 
and so on) 6.

Power Set: Finding All Subsets of a Set
The power set of a set is the set of every possible subset of that set. For  
example, the power set of {A, B, C} is {{ }, {A}, {B}, {C}, {A, B}, {A, C}, {B, C},  
{A, B, C}}. This is equivalent to the set of every possible k-combination of 
a set. After all, the power set of {A, B, C} contains all its 0-combinations, 
1-combinations, 2-combinations, and 3-combinations. 

If you’re looking for a real-world example in which you would need 
to generate the power set of a set, imagine a job interviewer asked you to 
generate the power set of a set. It is astronomically unlikely you’ll need 
to generate the power set of a set for any other reason, including the job 
you are interviewing for.



144   Chapter 6

To find every power set of a set, we could reuse our existing getCombos()  
function, calling it repeatedly with each possible k argument. This approach 
is taken by the powerSetCombinations.py and powerSetCombinations.html 
programs in the downloadable resources file from https://nostarch.com/
recursive-book-recursion.

However, we can use a more efficient way to generate power sets. Let’s 
consider the power set of {A, B}, which is {{A, B}, {A}, {B}, { }}. Now say we 
add one more element, C, to the set and want to generate the power set 
of {A, B, C}. We have the four sets in the power set of {A, B} we already gen-
erated; in addition, we have these same four sets but with the element C 
added to them: {{A, B, C}, {A, C}, {B, C}, {C}}. Table 6-3 shows the pattern of 
how adding more elements to a set adds more sets to its power set.

Table 6-3: How Power Sets Grow as New Elements (in Bold) Are Added to the Set

Set with new element
New sets to the  
power set Complete power set

{ } { } {{ }}

{A} {A} {{ }, {A}}

{A, B} {B}, {A, B} {{ }, {A}, {B}, {A, B}}

{A, B, C} {C}, {A, C}, {B, C},  
{A, B, C}

{{ }, {A}, {B}, {C}, {A, B}, {A, C}, 
{B, C}, {A, B, C}}

{A, B, C, D} {D}, {A, D}, {B, D}, {C, D}, 
{A, B, D}, {A, C, D},  
{B, C, D}, {A, B, C, D}

{{ }, {A}, {B}, {C}, {D}, {A, B},  
{A, C}, {A, D}, {B, C}, {B, D},  
{C, D}, {A, B, C}, {A, B, D},  
{A, C, D}, {B, C, D}, {A, B, C, D}}

The power sets of larger sets are similar to the power sets of smaller 
sets, hinting that we can create a recursive function to generate them. The 
base case is an empty set, and its power set is a set of just the empty set. 
We can use a head-tail technique for this recursive function. For each new 
element we add, we want to get the power set of the tail to add to our full 
power set. We also add the head element to each set in the tail power set. 
Together, these form the full power set for the chars argument.

Let’s ask the three recursive algorithm questions about our power set 
algorithm:

What is the base case?    If chars is the blank string (the empty set), the 
function returns an array with just a blank string, since the empty set is 
the only subset of the empty set.

What argument is passed to the recursive function call?    The tail of 
chars is passed. 

How does this argument become closer to the base case?    Since the 
recursive calls remove the heads from the chars arguments, eventually 
the chars argument becomes the blank string.

https://nostarch.com/recursive-book-recursion
https://nostarch.com/recursive-book-recursion


Permutations and Combinations   145

The getPowerSet() recursive function is implemented in powerSet.py:

Python def getPowerSet(chars, indent=0):
    debugMsg = '.' * indent + 'In getPowerSet("' + chars + '")'
    print(debugMsg + ', start.')

  1 if chars == '':
        # BASE CASE
        print(debugMsg + " base case returns ['']")
        return ['']

    # RECURSIVE CASE
    powerSet = []
    head = chars[0]
    tail = chars[1:]

    # First part, get the sets that don't include the head:
    print(debugMsg, "part 1, get sets without head '" + head + "'")
  2 tailPowerSet = getPowerSet(tail, indent + 1)

    # Second part, get the sets that include the head:
    print(debugMsg, "part 2, get sets with head '" + head + "'")
    for tailSet in tailPowerSet:
        print(debugMsg, 'New set', head + tailSet)
      3 powerSet.append(head + tailSet)

    powerSet = powerSet + tailPowerSet
    print(debugMsg, 'returning', powerSet)
  4 return powerSet

print('The power set of ABC:')
print(getPowerSet('ABC'))

The equivalent JavaScript code is in powerSet.html:

<script type="text/javascript">
function getPowerSet(chars, indent) {
    if (indent === undefined) {
        indent = 0;
    }
    let debugMsg = ".".repeat(indent) + 'In getPowerSet("' + chars + '")';
    document.write(debugMsg + ", start.<br />");

    if (chars == "") { 1
        // BASE CASE
        document.write(debugMsg + " base case returns ['']<br />");
        return [''];
    }

    // RECURSIVE CASE
    let powerSet = [];
    let head = chars[0];
    let tail = chars.slice(1, chars.length);



146   Chapter 6

    // First part, get the sets that don't include the head:
    document.write(debugMsg + 
    " part 1, get sets without head '" + head + "'<br />");
    let tailPowerSet = getPowerSet(tail, indent + 1); 2

    // Second part, get the sets that include the head:
    document.write(debugMsg + 
    " part 2, get sets with head '" + head + "'<br />");
    for (tailSet of tailPowerSet) {
        document.write(debugMsg + " New set " + head + tailSet + "<br />");
        powerSet.push(head + tailSet); 3
    }

    powerSet = powerSet.concat(tailPowerSet);
    document.write(debugMsg + " returning " + powerSet + "<br />");
    return powerSet; 4
}

document.write("<pre>The power set of ABC:<br />")
document.write(getPowerSet("ABC") + "<br /></pre>");
</script>

The programs output the following:

The power set of ABC:
In getPowerSet("ABC"), start.
In getPowerSet("ABC") part 1, get sets without head 'A'
.In getPowerSet("BC"), start.
.In getPowerSet("BC") part 1, get sets without head 'B'
..In getPowerSet("C"), start.
..In getPowerSet("C") part 1, get sets without head 'C'
...In getPowerSet(""), start.
...In getPowerSet("") base case returns ['']
..In getPowerSet("C") part 2, get sets with head 'C'
..In getPowerSet("C") New set C
..In getPowerSet("C") returning ['C', '']
.In getPowerSet("BC") part 2, get sets with head 'B'
.In getPowerSet("BC") New set BC
.In getPowerSet("BC") New set B
.In getPowerSet("BC") returning ['BC', 'B', 'C', '']
In getPowerSet("ABC") part 2, get sets with head 'A'
In getPowerSet("ABC") New set ABC
In getPowerSet("ABC") New set AB
In getPowerSet("ABC") New set AC
In getPowerSet("ABC") New set A
In getPowerSet("ABC") returning ['ABC', 'AB', 'AC', 'A', 'BC', 'B', 'C', '']
['ABC', 'AB', 'AC', 'A', 'BC', 'B', 'C', '']



Permutations and Combinations   147

The getPowerSet() function accepts a single argument: the string chars, 
which contains the characters of the original set. The base case occurs 
when chars is the blank string 1, representing an empty set. Recall that the 
power set is the set of all subsets of the original set. Thus, the power set of 
the empty set is simply a set containing the empty set, since the empty set is 
the only subset of the empty set. This is why the base case returns [''].

The recursive case is split into two parts. The first part is acquiring the 
power set of the tail of chars. We’ll use the leap-of-faith principle and just 
assume the call to getPowerSet() returns the power set of the tail correctly 2, 
even though at this point we’d still be in the process of writing the code for 
getPowerSet().

To form the complete power set of chars, the second part of the recur-
sive case forms new sets by adding the head to each of the tail power sets 3. 
Together with the sets from the first part, this forms the power set of chars 
to return at the end of the function 4.

Summary
Permutations and combinations are two problem domains that many pro-
grammers don’t know how to even begin to approach. While recursion is 
often an overly complicated solution for common programming problems, 
it’s well suited for the complexity of the tasks in this chapter.

The chapter began with a brief introduction to set theory. This lays the 
basis for the data structures that our recursive algorithms operate on. A set 
is a collection of distinct elements. A subset consists of none, some, or all the 
elements of a set. While sets have no ordering for their elements, a permuta-
tion is a specific ordering of the elements in a set. And a combination, which 
has no ordering, is a specific selection of none, some, or all the elements in a 
set. A k-combination of a set is a subset of k elements selected from the set.

Permutations and combinations can include an element once or can 
repeat elements. We call these permutations or combinations without rep-
etition and with repetition, respectively. These are implemented by differ-
ent algorithms.

This chapter also tackled the balanced parentheses problem that is 
commonly used in coding interviews. Our algorithm builds the strings of 
balanced parentheses by starting with a blank string and adding opening 
and closing parentheses. This approach involves backtracking to earlier 
strings, making recursion an ideal technique.

Finally, this chapter featured a recursive function for generating power 
sets—that is, sets of all possible k-combinations of the elements of a set. The 
recursive function we create to do this is much more efficient than repeat-
edly calling our combinations function for each possible size of subset.



148   Chapter 6

Further Reading
Generating permutations and combinations only scratches the surface of 
what you can do with permutations and combinations, as well as the field 
of mathematical logic known as set theory. The following Wikipedia articles 
provide plenty of further details on these topics, as do the Wikipedia arti-
cles that each links to:

•	 https://en.wikipedia.org/wiki/Set_theory

•	 https://en.wikipedia.org/wiki/Combination

•	 https://en.wikipedia.org/wiki/Permutation

The Python standard library comes with implementations of permuta-
tion, combination, and other algorithms in its itertools module. This mod-
ule is documented at https://docs.python.org/3/library/itertools.html.

Permutations and combinations are also covered in statistics and prob-
ability math courses. Khan Academy’s unit on counting, permutations, and 
combinations can be found online at https://www.khanacademy.org/math/
statistics-probability/counting-permutations-and-combinations.

Practice Questions
Test your comprehension by answering the following questions:

	 1.	 Do sets have a specific order for their elements? Do permutations? Do 
combinations?

	 2.	 How many permutations (without repetition) are there of a set of  
n elements?

	 3.	 How many combinations (without repetition) are there of a set of  
n elements?

	 4.	 Is {A, B, C} a subset of {A, B, C}?

	 5.	 What is the formula for calculating n choose k, the number of possible 
combinations of k elements selected from a set of n elements?

	 6.	 Identify which of the following are permutations or combinations, with 
or without repetition:

a.	 AAA, AAB, AAC, ABA, ABB, ABC, ACA, ACB, ACC, BAA, BAB, 
BAC, BBA, BBB, BBC, BCA, BCB, BCC, CAA, CAB, CAC, CBA, 
CBB, CBC, CCA, CCB, CCC

b.	 ABC, ACB, BAC, BCA, CAB

c.	 (None), A, B, C, AB, AC, BC, ABC

d.	 (None), A, B, C, AA, AB, AC, BB, BC, CC, AAA, AAB, AAC, ABB, 
ABC, ACC, BBB, BBC, BCC, CCC

https://en.wikipedia.org/wiki/Set_theory
https://en.wikipedia.org/wiki/Combination
https://en.wikipedia.org/wiki/Permutation
https://docs.python.org/3/library/itertools.html
https://www.khanacademy.org/math/statistics-probability/counting-permutations-and-combinations
https://www.khanacademy.org/math/statistics-probability/counting-permutations-and-combinations


Permutations and Combinations   149

	 7.	 Draw a tree graph that can be used to generate all possible combina-
tions of the set {A, B, C, D}.

	 8.	 Answer the three questions about recursive solutions for each of the 
recursive algorithms presented in this chapter: 

a.	 What is the base case?

b.	 What argument is passed to the recursive function call? 

c.	 How does this argument become closer to the base case? 

Then re-create the recursive algorithms from this chapter without look-
ing at the original code.

Practice Projects
For practice, write a function for the following task:

	 1.	 The permutation function in this chapter operates on characters in 
a string value. Modify it so that the sets are represented by lists (in 
Python) or arrays (in JavaScript) and the elements can be values of any 
data type. For example, your new function should be able to generate 
permutations of integer values, rather than strings.

	 2.	 The combination function in this chapter operates on characters in 
a string value. Modify it so that the sets are represented by lists (in 
Python) or arrays (in JavaScript) and the elements can be values of any 
data type. For example, your new function should be able to generate 
combinations of integer values, rather than strings.





7
M E M O I Z A T I O N  A N D  D Y N A M I C 

P R O G R A M M I N G

In this chapter, we’ll explore memoiza-
tion, a technique for making recursive 

algorithms run faster. We’ll discuss what 
memoization is, how it should be applied, and 

its usefulness in the areas of functional programming 
and dynamic programming. We’ll use the Fibonacci 
algorithm from Chapter 2 to demonstrate memoizing 
code we write and the memoization features we can 
find in the Python standard library. We’ll also learn 
why memoization can’t be applied to every recursive 
function.

T H E R E C U R S I V E 

B O O K O F 

R E C U R S I O N

A C E T H E C O D I N G I N T E R V I E W
W I T H 

P Y T H O N A N D J A V A S C R I P T

T H E
R E C U R S I V E 

B O O K
O F 

R E C U R S I O N

A C E T H E C O D I N G I N T E R V I E W
W I T H

P Y T H O N A N D J A V A S C R I P T

THE RECURSIVE

BOOKOF 

RECURSION

ACETHE
CODING

INTERVI
EWWIT

H

PYTHON
ANDJAV

ASCRIP
T



152   Chapter 7

Memoization
Memoization is the technique of remembering the return values from a func-
tion for the specific arguments supplied to it. For example, if someone asked 
me to find the square root of 720, which is the number that when multiplied 
by itself results in 720, I’d have to sit down with pencil and paper for a few 
minutes (or call Math.sqrt(720) in JavaScript or math.sqrt(720) in Python) 
to figure it out: 26.832815729997478. If they asked me again a few seconds 
later, I wouldn’t have to repeat my calculation because I’d already have 
the answer at hand. By caching previously calculated results, memoization 
makes a trade-off to save on execution time by increasing memory usage.

Confusing memoization with memorization is a modern mistake made by 
many. (Feel free to make a memo to remind yourself of the difference.)

Top-Down Dynamic Programming
Memoization is a common strategy in dynamic programming, a computer pro-
gramming technique that involves breaking a large problem into overlap-
ping subproblems. This might sound a lot like the ordinary recursion we’ve 
already seen. The key difference is that dynamic programming uses recur-
sion with repeated recursive cases; these are the overlapping subproblems.

For example, let’s consider the recursive Fibonacci algorithm from 
Chapter 2. Making a recursive fibonacci(6) function call will in turn call 
fibonacci(5) and fibonacci(4). Next, fibonacci(5) will call fibonacci(4) and 
fibonacci(3). The subproblems of the Fibonacci algorithm overlap, because 
the fibonacci(4) call, and many others, are repeated. This makes generating 
Fibonacci numbers a dynamic programming problem.

An inefficiency exists here: performing those same calculations multiple 
times is unnecessary, because fibonacci(4) will always return the same thing, 
the integer 3. Instead, our program could just remember that if the argument 
to our recursive function is 4, the function should immediately return 3.

Figure 7-1 shows a tree diagram of all the recursive calls, including 
the redundant function calls that memoization can optimize. Meanwhile, 
quicksort and merge sort are recursive divide-and-conquer algorithms, but 
their subproblems do not overlap; they are unique. Dynamic programming 
techniques aren’t applied to these sorting algorithms.

fib(5)

fib(4) fib(3)

fib(6)

fib(3) fib(2)

fib(2) fib(1) 1

1 1

fib(4)

fib(3) fib(2)

fib(2) fib(1) 1

1 11 1

fib(2) fib(1)

Figure 7-1: A tree diagram of the recursive function calls made  
starting with fibonacci(6). The redundant function calls are in gray.



Memoization and Dynamic Programming   153

One approach in dynamic programming is to memoize the recursive 
function so that previous calculations are remembered for future function 
calls. Overlapping subproblems become trivial if we can reuse previous 
return values.

Using recursion with memoization is called top-down dynamic program-
ming. This process takes a large problem and divides it into smaller overlap-
ping subproblems. A contrasting technique, bottom-up dynamic programming, 
starts with the smaller subproblems (often related to the base case) and 
“builds up” to the solution of the original, large problem. The iterative 
Fibonacci algorithm, which begins with the base cases of the first and 
second Fibonacci numbers, is an example of bottom-up dynamic program-
ming. Bottom-up approaches don’t use recursive functions.

Note that there is no such thing as top-down recursion or bottom-up 
recursion. These are commonly used but incorrect terms. All recursion is 
already top-down, so top-down recursion is redundant. And no bottom-up 
approach uses recursion, so there’s no such thing as bottom-up recursion. 

Memoization in Functional Programming
Not all functions can be memoized. To see why, we must discuss functional 
programming, a programming paradigm that emphasizes writing functions 
that don’t modify global variables or any external state (such as files on the 
hard drive, internet connections, or database contents). Some program-
ming languages, such as Erlang, Lisp, and Haskell, are heavily designed 
around functional programming concepts. But you can apply functional 
programming features to almost any programming language, including 
Python and JavaScript. 

Functional programming includes the concepts of deterministic and 
nondeterministic functions, side effects, and pure functions. The sqrt() 
function mentioned in the introduction is a deterministic function because 
it always returns the same value when passed the same argument. However, 
Python’s random.randint() function, which returns a random integer, is non-
deterministic because even when passed the same arguments, it can return 
different values. The time.time() function, which returns the current time, 
is also nondeterministic because time is constantly moving forward.

Side effects are any changes a function makes to anything outside of its 
own code and local variables. To illustrate this, let’s create a subtract() func-
tion that implements Python’s subtraction operator (-):

Python >>> def subtract(number1, number2):
...     return number1 - number2
...
>>> subtract(123, 987)
-864

This subtract() function has no side effects; calling this function doesn’t 
affect anything in the program outside of its code. There’s no way to tell 
from the program’s or the computer’s state whether the subtract() function 



154   Chapter 7

has been called once, twice, or a million times before. A function might 
modify local variables inside the function, but these changes are local to 
the function and remain isolated from the rest of the program.

Now consider an addToTotal() function, which adds the numeric argu-
ment to a global variable named TOTAL:

Python >>> TOTAL = 0
>>> def addToTotal(amount):
...     global TOTAL
...     TOTAL += amount
...     return TOTAL
...
>>> addToTotal(10)
10
>>> addToTotal(10)
20
>>> TOTAL
20

The addToTotal() function does have a side effect, because it modifies an 
element that exists outside of the function: the TOTAL global variable. 

Side effects can be more than mere changes to global variables. They 
include updating or deleting files, printing text onscreen, opening a data-
base connection, authenticating to a server, or any other manipulation of 
data outside of the function. Any trace that a function call leaves behind 
after returning is a side effect.

If a function is deterministic and has no side effects, it’s known as a pure 
function. Only pure functions should be memoized. You’ll see why in the 
next sections when we memoize the recursive Fibonacci function and the 
impure functions of the doNotMemoize program.

Memoizing the Recursive Fibonacci Algorithm
Let’s memoize our recursive Fibonacci function from Chapter 2. Remember 
that this function is extraordinarily inefficient: on my computer, the recur-
sive fibonacci(40) call takes 57.8 seconds to compute. Meanwhile, an iterative 
version of fibonacci(40) is literally too fast for my code profiler to measure: 
0.000 seconds. 

Memoization can greatly speed up the recursive version of the func-
tion. For example, Figure 7-2 shows the number of function calls the origi-
nal and memoized fibonacci() functions make for the first 20 Fibonacci 
numbers. The original, non-memoized function is doing an extraordinary 
amount of unnecessary computation.

The number of function calls sharply increases for the original fibonacci() 
function (top) but only slowly grows for the memoized fibonacci() function 
(bottom).



Memoization and Dynamic Programming   155

nth Fibonacci number to calculate

N
um

be
r o

f f
un

ct
io

n 
ca

lls
16,000

14,000

12,000

10,000

8,000

6,000

4,000

2,000

0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

nth Fibonacci number to calculate

N
um

be
r o

f f
un

ct
io

n 
ca

lls

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

25

20

15

10

5

0

Figure 7-2: The number of function calls sharply increases for the original fibonacci() function (top)  
but grows only slowly for the memoized fibonacci() function (bottom).

The Python version of the memoized Fibonacci algorithm is in fibonacci 
ByRecursionMemoized.py. The additions to the original fibonacciByRecursion 
.html program from Chapter 2 have been marked in bold:

fibonacciCache = {} 1 # Create the global cache.

def fibonacci(nthNumber, indent=0):
    global fibonacciCache
    indentation = '.' * indent
    print(indentation + 'fibonacci(%s) called.' % (nthNumber))



156   Chapter 7

    if nthNumber in fibonacciCache:
        # If the value was already cached, return it.
        print(indentation + 'Returning memoized result: %s' % (fibonacciCache[nthNumber]))
        return fibonacciCache[nthNumber] 2

    if nthNumber == 1 or nthNumber == 2:
        # BASE CASE
        print(indentation + 'Base case fibonacci(%s) returning 1.' % (nthNumber))
        fibonacciCache[nthNumber] = 1 3 # Update the cache.
        return 1
    else:
        # RECURSIVE CASE
        print(indentation + 'Calling fibonacci(%s) (nthNumber - 1).' % (nthNumber - 1))
        result = fibonacci(nthNumber - 1, indent + 1)

        print(indentation + 'Calling fibonacci(%s) (nthNumber - 2).' % (nthNumber - 2))
        result = result + fibonacci(nthNumber - 2, indent + 1)

        print('Call to fibonacci(%s) returning %s.' % (nthNumber, result))
        fibonacciCache[nthNumber] = result 4 # Update the cache.
        return result

print(fibonacci(10))
print(fibonacci(10)) 5

The JavaScript version of the memoized Fibonacci algorithm is in fibonacci 
ByRecursionMemoized.html. The additions to the original fibonacciByRecursion 
.html program from Chapter 2 have been marked in bold:

JavaScript <script type="text/javascript">

1 let fibonacciCache = {}; // Create the global cache.

function fibonacci(nthNumber, indent) {
    if (indent === undefined) {
        indent = 0;
    }
    let indentation = '.'.repeat(indent);
    document.write(indentation + "fibonacci(" + nthNumber + ") called.
<br />");

    if (nthNumber in fibonacciCache) {
        // If the value was already cached, return it.
        document.write(indentation + 
        "Returning memoized result: " + fibonacciCache[nthNumber] + "<br />");
      2 return fibonacciCache[nthNumber];
    }

    if (nthNumber === 1 || nthNumber === 2) {
        // BASE CASE
        document.write(indentation + 
        "Base case fibonacci(" + nthNumber + ") returning 1.<br />");
      3 fibonacciCache[nthNumber] = 1; // Update the cache.
        return 1;



Memoization and Dynamic Programming   157

    } else {
        // RECURSIVE CASE
        document.write(indentation + 
        "Calling fibonacci(" + (nthNumber - 1) + ") (nthNumber - 1).<br />");
        let result = fibonacci(nthNumber - 1, indent + 1);

        document.write(indentation + 
        "Calling fibonacci(" + (nthNumber - 2) + ") (nthNumber - 2).<br />");
        result = result + fibonacci(nthNumber - 2, indent + 1);

        document.write(indentation + "Returning " + result + ".<br />");
      4 fibonacciCache[nthNumber] = result; // Update the cache.
        return result;
    }
}

document.write("<pre>");
document.write(fibonacci(10) + "<br />");
5 document.write(fibonacci(10) + "<br />");
document.write("</pre>");
</script>

If you compare the output of this program to the original recursive 
Fibonacci program in Chapter 2, you’ll find it’s much shorter. This reflects 
the massive reduction of computation needed to achieve the same results:

fibonacci(10) called.
Calling fibonacci(9) (nthNumber - 1).
.fibonacci(9) called.
.Calling fibonacci(8) (nthNumber - 1).
..fibonacci(8) called.
..Calling fibonacci(7) (nthNumber - 1).
--snip--
.......Calling fibonacci(2) (nthNumber - 1).
........fibonacci(2) called.
........Base case fibonacci(2) returning 1.
.......Calling fibonacci(1) (nthNumber - 2).
........fibonacci(1) called.
........Base case fibonacci(1) returning 1.
Call to fibonacci(3) returning 2.
......Calling fibonacci(2) (nthNumber - 2).
.......fibonacci(2) called.
.......Returning memoized result: 1
--snip--
Calling fibonacci(8) (nthNumber - 2).
.fibonacci(8) called.
.Returning memoized result: 21
Call to fibonacci(10) returning 55.
55
fibonacci(10) called.
Returning memoized result: 55
55



158   Chapter 7

To memoize this function, we’ll create a dictionary (in Python) or 
object (in JavaScript) in a global variable named fibonacciCache 1. Its keys 
are the arguments passed for the nthNumber parameter, and its values are the 
integers returned by the fibonacci() function given that argument. Every 
function call first checks if its nthNumber argument is already in the cache. If 
so, the cached return value is returned 2. Otherwise, the function runs as 
normal (though it also adds the result to the cache just before the function 
returns 3 4).

The memoized function is effectively expanding the number of base 
cases in the Fibonacci algorithm. The original base cases are only for 
the first and second Fibonacci numbers: they immediately return 1. But 
every time a recursive case returns an integer, it becomes a base case for 
all future fibonacci() calls with that argument. The result is already in 
fibonacciCache and can be immediately returned. If you’ve already called 
fibonacci(99) once before, it becomes a base case just like fibonacci(1) and 
fibonacci(2). In other words, memoization improves the performance of 
recursive functions with overlapping subproblems by increasing the number 
of base cases. Notice that the second time our program tries to find the 
10th Fibonacci number 5, it immediately returns the memoized result: 55.

Keep in mind that while memoization can reduce the number of 
redundant function calls a recursive algorithm makes, it doesn’t necessar-
ily reduce the growth of frame objects on the call stack. Memoization won’t 
prevent stack overflow errors. Once again, you may be better off forgoing a 
recursive algorithm for a more straightforward iterative one.

Python’s functools Module
Implementing a cache by adding a global variable and code to manage it 
for every function you’d like to memoize can be quite a chore. Python’s 
standard library has a functools module with a function decorator named 
@lru_cache() that automatically memoizes the function it decorates. In 
Python syntax, this means adding @lru_cache() to the line preceding the 
function’s def statement.

The cache can have a memory size limit set. The lru in the decorator 
name stands for the least recently used cache replacement policy, mean-
ing that the least recently used entry is replaced with new entries when 
the cache limit is reached. The LRU algorithm is simple and fast, though 
other cache replacement policies are available for different software 
requirements.

The fibonacciFunctools.py program demonstrates the use of the @lru 
_cache() decorator. The additions to the original fibonacciByRecursion.py 
program from Chapter 2 have been marked in bold:

Python import functools

@functools.lru_cache()
def fibonacci(nthNumber):
    print('fibonacci(%s) called.' % (nthNumber))



Memoization and Dynamic Programming   159

    if nthNumber == 1 or nthNumber == 2:
        # BASE CASE
        print('Call to fibonacci(%s) returning 1.' % (nthNumber))
        return 1
    else:
        # RECURSIVE CASE
        print('Calling fibonacci(%s) (nthNumber - 1).' % (nthNumber - 1))
        result = fibonacci(nthNumber - 1)

        print('Calling fibonacci(%s) (nthNumber - 2).' % (nthNumber - 2))
        result = result + fibonacci(nthNumber - 2)

        print('Call to fibonacci(%s) returning %s.' % (nthNumber, result))
        return result

print(fibonacci(99))

Compared to the additions required to implement our own cache in 
fibonacciByRecursionMemoized.py, using Python’s @lru_cache() decorator is 
much simpler. Normally, calculating fibonacci(99) with the recursive algo-
rithm would take a few centuries. With memoization, our program displays 
the 218922995834555169026 result in a few milliseconds.

Memoization is a useful technique for recursive functions with overlap-
ping subproblems, but it can be applied to any pure function to speed up 
runtime at the expense of computer memory.

What Happens When You Memoize Impure Functions?
You should not add the @lru_cache to functions that are not pure, mean-
ing they are nondeterministic or have side effects. Memoization saves time 
by skipping the code in the function and returning the previously cached 
return value. This is fine for pure functions but can cause various bugs for 
impure functions. 

In nondeterministic functions, such as a function that returns the cur-
rent time, memoization causes the function to return incorrect results. For 
functions with side effects, such as printing text to the screen, memoization 
causes the function to skip the intended side effect. The doNotMemoize.py 
program demonstrates what happens when the @lru_cache function decora-
tor (described in the previous section) memoizes these impure functions:

Python import functools, time, datetime

@functools.lru_cache()
def getCurrentTime():
    # This nondeterministic function returns different values each time
    # it's called.
    return datetime.datetime.now()

@functools.lru_cache()
def printMessage():
    # This function displays a message on the screen as a side effect.



160   Chapter 7

    print('Hello, world!')

print('Getting the current time twice:')
print(getCurrentTime())
print('Waiting two seconds...')
time.sleep(2)
print(getCurrentTime())

print()

print('Displaying a message twice:')
printMessage()
printMessage()

When you run this program, the output looks like this:

Getting the current time twice:
2022-07-30 16:25:52.136999
Waiting two seconds...
2022-07-30 16:25:52.136999

Displaying a message twice:
Hello, world!

Notice that the second call to getCurrentTime() returns the same result as 
the first call despite being called two seconds later. And of the two calls to 
printMessage(), only the first call results in displaying the Hello, world! mes-
sage on the screen.

These bugs are subtle because they don’t cause an obvious crash, 
but rather cause the functions to behave incorrectly. No matter how you 
memoize your functions, be sure to thoroughly test them.

Summary
Memoization (not memorization) is an optimization technique that can 
speed up recursive algorithms that have overlapping subproblems by 
remembering the previous results of identical calculations. Memoization 
is a common technique in the field of dynamic programming. By trading 
computer memory usage for improved runtime, memoization makes some 
otherwise intractable recursive functions possible. 

However, memoization won’t prevent stack overflow errors. Keep in 
mind that memoization is not a replacement for using a simple iterative 
solution. Code that uses recursion for the sake of recursion is not automati-
cally more elegant than non-recursive code.

Memoized functions must be pure—that is, they must be determinis-
tic (returning the same values given the same arguments each time) and 
not have side effects (affecting anything about the computer or program 
outside of the function). Pure functions are often used in functional pro-
gramming, which is a programming paradigm that makes heavy use of 
recursion.



Memoization and Dynamic Programming   161

Memoization is implemented by creating a data structure called a 
cache for each function to memoize. You can write this code yourself, but 
Python has a built-in @functools.lru_cache() decorator that can automatically 
memoize the function it decorates.

Further Reading
There’s more to dynamic programming algorithms than simply memoiz-
ing functions. These algorithms are often used in both coding inter-
views and programming competitions. Coursera offers a free “Dynamic 
Programming, Greedy Algorithms” course at https://www.coursera.org/learn/
dynamic-programming-greedy-algorithms. The freeCodeCamp organization also 
has a series on dynamic programming at https://www.freecodecamp.org/news/
learn-dynamic-programing-to-solve-coding-challenges.

If you’d like to learn more about the LRU cache and other cache-
related functions, the official Python documentation for the functools 
module is at https://docs.python.org/3/library/functools.html. More informa-
tion about other kinds of cache replacement algorithms is mentioned on 
Wikipedia at https://en.wikipedia.org/wiki/Cache_replacement_policies.

Practice Questions
Test your comprehension by answering the following questions:

	 1.	 What is memoization?

	 2.	 How do dynamic programming problems differ from regular recursion 
problems?

	 3.	 What does functional programming emphasize?

	 4.	 What two characteristics must a function have in order to be a pure 
function?

	 5.	 Is a function that returns the current date and time a deterministic 
function?

	 6.	 How does memoization improve the performance of recursive functions 
with overlapping subproblems?

	 7.	 Would adding the @lru_cache() function decorator to a merge sort func-
tion improve its performance? Why or why not?

	 8.	 Is changing the value in a function’s local variable an example of a side 
effect?

	 9.	 Does memoization prevent stack overflows?

https://www.coursera.org/learn/dynamic-programming-greedy-algorithms
https://www.coursera.org/learn/dynamic-programming-greedy-algorithms
https://www.freecodecamp.org/news/learn-dynamic-programing-to-solve-coding-challenges
https://www.freecodecamp.org/news/learn-dynamic-programing-to-solve-coding-challenges
https://docs.python.org/3/library/functools.html
https://en.wikipedia.org/wiki/Cache_replacement_policies




8
T A I L  C A L L  O P T I M I Z A T I O N

In the previous chapter, we covered using 
memoization to optimize recursive func-

tions. This chapter explores a technique 
called tail call optimization, which is a feature 

provided by a compiler or interpreter to avoid stack 
overflows. Tail call optimization is also called tail call 
elimination, or tail recursion elimination.

This chapter is meant to explain tail call optimization, not to endorse 
it. I would go so far as to recommend never using tail call optimization. As 
you’ll see, rearranging your function’s code to use tail call optimization 
often makes it far less understandable. You should consider tail call optimi-
zation to be more of a hack or workaround to make recursion work when 
you shouldn’t be using a recursive algorithm in the first place. Remember, a 
complex recursive solution is not automatically an elegant solution; simple 
coding problems should be solved with simple non-recursive methods.

Many implementations of popular programming languages don’t even 
offer tail call optimization as a feature. These include interpreters and 

T H E R E C U R S I V E 

B O O K O F 

R E C U R S I O N

A C E T H E C O D I N G I N T E R V I E W
W I T H 

P Y T H O N A N D J A V A S C R I P T

T H E
R E C U R S I V E 

B O O K
O F 

R E C U R S I O N

A C E T H E C O D I N G I N T E R V I E W
W I T H

P Y T H O N A N D J A V A S C R I P T

THE RECURSIVE

BOOKOF 

RECURSION

ACETHE
CODING

INTERVI
EWWIT

H

PYTHON
ANDJAV

ASCRIP
T



164   Chapter 8

compilers for Python, JavaScript, and Java. However, tail call optimization is 
a technique you should become familiar with in case you come across it in 
the code projects you work on.

How Tail Recursion and Tail Call Optimization Work
To make use of tail call optimization, a function must use tail recursion. In 
tail recursion, the recursive function call is the last action of a recursive 
function. In code, this looks like a return statement returning the results of 
a recursive call. 

To see this in action, recall the factorialByRecursion.py and factorialBy 
Recursion.html programs in Chapter 2. These programs calculated the facto-
rial of an integer; for instance, 5! is equivalent to 5 × 4 × 3 × 2 × 1, or 120. 
These calculations can be performed recursively because factorial(n) is 
equivalent to n * factorial(n ‑ 1), with the base case of n == 1 returning 1. 

Let’s rewrite these programs to use tail recursion. The following factorial 
TailCall.py program has a factorial() function that uses tail recursion:

Python def factorial(number, accum=1):
    if number == 1:
        # BASE CASE
        return accum
    else:
        # RECURSIVE CASE
        return factorial(number - 1, accum * number)

print(factorial(5))

The factorialTailCall.html program has the equivalent JavaScript code:

JavaScript <script type="text/javascript">
function factorial(number, accum=1) {
    if (number === 1) {
        // BASE CASE
        return accum;
    } else {
        // RECURSIVE CASE
        return factorial(number - 1, accum * number);
    }
}

document.write(factorial(5));
</script>

Notice that the factorial() function’s recursive case ends with a return 
statement returning the results of a recursive call to factorial(). To allow the 
interpreter or compiler to implement tail call optimization, the last action a 
recursive function makes must be to return the results of the recursive call. 
No instructions can occur between making the recursive call and the return 
statement. The base case returns the accum parameter. This is the accumula-
tor, explained in the next section.



Tail Call Optimization   165

To understand how tail call optimization works, remember from 
Chapter 1 what happens when a function is called. First, a frame object is 
created and stored on the call stack. If the function call calls another func-
tion, another frame object is created and placed on top of the first frame 
object on the call stack. When a function returns, your program automati-
cally deletes the frame object from the top of the stack.

A stack overflow happens when too many function calls are made with-
out returning, causing the number of frame objects to exceed the capac-
ity of the call stack. This capacity is 1,000 function calls for Python and 
about 10,000 for JavaScript programs. While these amounts are more than 
enough for typical programs, recursive algorithms could exceed this limit 
and cause a stack overflow that crashes your program.

Recall from Chapter 2 that a frame object stores the local variables in 
the function call as well as the return address of the instruction to return to 
when the function finishes. However, if the last action in the recursive case 
of a function is to return the results of a recursive function call, there’s no 
need to retain the local variables. The function does nothing involving the 
local variables after the recursive call, so the current frame object can be 
deleted immediately. The next frame object’s return address information 
can be the same as the old deleted frame object’s return address.

Since the current frame object is deleted instead of retained on the 
call stack, the call stack never grows in size and can never cause a stack 
overflow!

Recall from Chapter 1 that all recursive algorithms can be imple-
mented with a stack and a loop. Since tail call optimization removes the 
need for a call stack, we are effectively using recursion to simulate a loop’s 
iterative code. However, earlier in this book I stated that the problems suit-
able for recursive solutions involve a tree-like data structure and backtrack-
ing. Without a call stack, no tail recursive function could possibly do any 
backtracking work. In my view, every algorithm that can be implemented 
with tail recursion would be easier and more readable to implement with 
a loop instead. There’s nothing automatically more elegant about using 
recursion for recursion’s sake.

Accumulators in Tail Recursion
The disadvantage of tail recursion is that it requires rearranging your 
recursive function so that the last action is returning the recursive call’s 
return value. This can make our recursive code even more unreadable. 
Indeed, the factorial() function in this chapter’s factorialTailCall.py and  
factorialTailCall.html programs is a bit harder to comprehend than the 
version in Chapter 2’s factorialByRecursion.py and factorialByRecursion.html 
programs.

In the case of our tail call factorial() function, a new parameter named 
accum follows the calculated product as recursive function calls are made. 
This is known as an accumulator parameter, and it keeps track of a partial 
result of a calculation that would otherwise have been stored in a local 



166   Chapter 8

variable. Not all tail recursive functions use accumulators, but they act as a 
workaround for tail recursion’s inability to use local variables after the final 
recursive call. Notice that in factorialByRecursion.py’s factorial() function, 
the recursive case was return number * factorial(number - 1). The multiplica-
tion happens after the factorial(number - 1) recursive call. The accum accu-
mulator takes the place of the number local variable.

Also notice that the base case for factorial() no longer returns 1; rather, 
it returns the accum accumulator. By the time factorial() is called with number 
== 1 and the base case is reached, accum stores the final result to return. 
Adjusting your code to use tail call optimization often involves changing 
the base case to return the accumulator’s value.

You can think of the factorial(5) function call as transforming into the 
following return, as shown in Figure 8-1.

factorial(5)

return factorial(5 - 1, 1 * 5)

return factorial(4 - 1, 5 * 4)

return factorial(3 - 1, 20 * 3)

return factorial(2 - 1, 60 * 2)

return 120

Figure 8-1: The process of trans-
formations that factorial(5) 
makes to the integer 120

Rearranging your recursive calls as the last action in the function and 
adding accumulators can make your code even harder to understand than 
typical recursive code. But that’s not the only downside of tail recursion, as 
we’ll see in the next section.

Limitations of Tail Recursion
Tail recursive functions require rearranging their code to make them suit-
able for the tail call optimization feature of the compiler or interpreter. 
However, not all compilers and interpreters offer tail call optimization as a 
feature. Notably, CPython (the Python interpreter downloaded from https://
python.org) does not implement tail call optimization. Even if you write your 
recursive functions with the recursive call as the last action, it will still cause 
stack overflows after enough function calls are made.

Not only that, but CPython will likely never have tail call optimization 
as a feature. Guido van Rossum, the creator of the Python programming 

https://python.org
https://python.org


Tail Call Optimization   167

language, has explained that tail call optimization can make programs 
harder to debug. Tail call optimization removes frame objects from the call 
stack, which in turn removes the debugging information that frame objects 
can provide. He also points out that once tail call optimization is imple-
mented, Python programmers will begin to write code that depends on the 
feature, and their code won’t run on non-CPython interpreters that don’t 
implement tail call optimization. 

Finally, and I concur, van Rossum disagrees with the idea that recursion 
is a fundamentally important part of day-to-day programming. Computer 
scientists and mathematicians tend to place recursion on a pedestal. But tail 
call optimization is simply a workaround hack to make some recursive algo-
rithms actually workable, rather than simply crashing with a stack overflow.

While CPython doesn’t feature tail call optimization, this doesn’t 
mean another compiler or interpreter that implements the Python lan-
guage couldn’t have tail call optimization. Unless tail call optimization 
is explicitly a part of a programming language specification, it is not a 
feature of a programming language, but rather of individual compilers 
or interpreters of a programming language.

The lack of tail call optimization is not unique to Python. The Java 
compiler since version 8 also doesn’t support tail call optimization. Tail call 
optimization is a part of the ECMAScript 6 version of JavaScript; however, 
as of 2022, only the Safari web browser’s implementation of JavaScript 
actually supports it. One way to determine whether your programming 
language’s compiler or interpreter implements this feature is to write a tail 
recursive factorial function and try to calculate the factorial of 100,000. If 
the program crashes, tail call optimization is not implemented.

Personally, I take the stance that the tail recursion technique should 
never be used. As stated in Chapter 2, any recursive algorithm can be 
implemented with a loop and a stack. Tail call optimization prevents stack 
overflows by effectively removing the use of the call stack. Therefore, all tail 
recursive algorithms can be implemented with a loop alone. Since the code 
for loops is much simpler than a recursive function, a loop should be used 
wherever tail call optimization could be employed.

Additionally, potential problems exist even if tail call optimization is 
implemented. Since tail recursion is possible only when the last action of a 
function is returning the recursive call’s return value, it’s impossible to do 
tail recursion for algorithms that require two or more recursive calls. For 
example, take the Fibonacci sequence algorithm calls fibonacci(n ‑ 1) and 
fibonacci(n ‑ 2). While tail call optimization can be performed for the lat-
ter recursive call, the first recursive call will cause a stack overflow for large-
enough arguments.

Tail Recursion Case Studies
Let’s examine some of the recursive functions demonstrated earlier in this 
book to see if they are good candidates for tail recursion. Keep in mind 



168   Chapter 8

that because Python and JavaScript do not actually implement tail call opti-
mization, these tail recursive functions will still result in a stack overflow 
error. These case studies are for demonstration purposes only.

Tail Recursive Reverse String
The first example is the program to reverse a string that we made in 
Chapter 3. The Python code for this tail recursive function is in reverse 
StringTailCall.py:

Python 1 def rev(theString, accum=''):
    if len(theString) == 0:
        # BASE CASE
      2 return accum
    else:
        # RECURSIVE CASE
        head = theString[0]
        tail = theString[1:]
      3 return rev(tail, head + accum)

text = 'abcdef'
print('The reverse of ' + text + ' is ' + rev(text))

The JavaScript equivalent is in reverseStringTailCall.html:

JavaScript <script type="text/javascript">
1 function rev(theString, accum='') {
    if (theString.length === 0) {
        // BASE CASE
      2 return accum;
    } else {
        // RECURSIVE CASE
        let head = theString[0];
        let tail = theString.substring(1, theString.length);
      3 return rev(tail, head + accum);
    }
}

let text = "abcdef";
document.write("The reverse of " + text + " is " + rev(text) + "<br />");
</script>

The conversion of the original recursive functions in reverseString.py 
and reverseString.html involves adding an accumulator parameter. The 
accumulator, named accum, is set to the blank string by default if no argu-
ment is passed for it 1. We also change the base case from return '' to 
return accum 2, and the recursive case from return rev(tail) + head (which 
performs a string concatenation after the recursive call returns) to return 
rev(tail, head + accum) 3. You can think of the rev('abcdef') function call 
as transforming into the following return, as shown in Figure 8-2.

By effectively using the accumulator as a local variable shared across 
function calls, we can make the rev() function tail recursive.



Tail Call Optimization   169

rev('abcdef′)

return rev('bcdef′, 'a′ + '′)

return rev('cdef′, 'b′ + 'a′)

return rev('def′, 'c′ + 'ba′)

return rev('ef′, 'd′ + 'cba′)

return rev('f′, 'e′ + 'dcba′)

return rev('′, 'f′ + 'edcba′)

return 'fedcba′

Figure 8-2: The process of trans-
formations that rev('abcdef') 
makes to the string fedcba

Tail Recursive Find Substring
Some recursive functions naturally end up using the tail recursion pattern. 
If you look at the findSubstringRecursive() function in the findSubstring.py and 
findSubstring.html programs in Chapter 2, you’ll notice that the last action 
for the recursive case is to return the value of the recursive function call. 
No adjustments are needed to make this function tail recursive.

Tail Recursive Exponents
The exponentByRecursion.py and exponentByRecursion.html programs, also 
from Chapter 2, are not good candidates for tail recursion. These pro-
grams have two recursive cases for when the n parameter is even or odd. 
This is fine: as long as all the recursive cases return the return value of the 
recursive function call as their last action, the function can use tail call 
optimization.

However, notice the Python code for the n is even recursive case:

Python --snip--
    elif n % 2 == 0:
        # RECURSIVE CASE (when n is even)
        result = exponentByRecursion(a, n / 2)
        return result * result
--snip--



170   Chapter 8

And notice the equivalent JavaScript recursive case:

JavaScript --snip--  
  } else if (n % 2 === 0) {
        // RECURSIVE CASE (when n is even)
        result = exponentByRecursion(a, n / 2);
        return result * result; 
--snip--

This recursive case does not have the recursive call as its last action. We 
could get rid of the result local variable, and instead call the recursive func-
tion twice. This would reduce the recursive case to the following:

--snip--
return exponentByRecursion(a, n / 2) * exponentByRecursion(a, n / 2)
--snip--

However, now we have two recursive calls to exponentByRecursion(). Not 
only does this needlessly double the amount of computation the algorithm 
performs, but the last action performed by the function is to multiply the 
two return values. This is the same problem the recursive Fibonacci algo-
rithm has: if the recursive function has multiple recursive calls, at least one 
of those recursive calls can’t be the last action of the function.

Tail Recursive Odd-Even
To determine whether an integer is odd or even, you can use the % modulus 
operator. The expression number % 2 == 0 will be True if number is even, and 
False if number is odd. However, if you’d prefer to overengineer a more “ele-
gant” recursive algorithm, you can implement the following isOdd() func-
tion in isOdd.py (the rest of isOdd.py is presented later in this section):

Python def isOdd(number):
    if number == 0:
        # BASE CASE
        return False
    else:
        # RECURSIVE CASE
        return not isOdd(number - 1)
print(isOdd(42))
print(isOdd(99))
--snip--

The JavaScript equivalent is in isOdd.html:

JavaScript <script type="text/javascript">

function isOdd(number) {
    if (number === 0) {
        // BASE CASE
        return false;



Tail Call Optimization   171

    } else {
        // RECURSIVE CASE
        return !isOdd(number - 1);
    }
}
document.write(isOdd(42) + "<br />");
document.write(isOdd(99) + "<br />");
--snip--

We have two base cases for isOdd(). When the number argument is 0, the 
function returns False to indicate even. For simplicity, our implementation 
of isOdd() works for only positive integers. The recursive case returns the 
opposite of isOdd(number ‑ 1). 

You can see why this works with an example: when isOdd(42) is called, the 
function can’t determine if 42 is even or odd but does know that the answer 
is the opposite of whether 41 is odd or even. The function will return not 
isOdd(41). This function call, in turn, returns the opposite Boolean value of 
isOdd(40), and so on, until isOdd(0) returns False. The number of recursive 
function calls determines the number of not operators that act on return val-
ues before the final return value is returned.

However, this recursive function results in stack overflows for large-
number arguments. Calling isOdd(100000) results in 100,001 function calls 
without returning—which far exceeds the capacity of any call stack. We can 
rearrange the code in the function so that the last action of the recursive 
case is returning the results of the recursive function call, making the func-
tion tail recursive. We do this in isOddTailCall() in isOdd.py. Here is the rest 
of the isOdd.py program:

Python --snip--
def isOddTailCall(number, inversionAccum=False):
    if number == 0:
        # BASE CASE
        return inversionAccum
    else:
        # RECURSIVE CASE
        return isOddTailCall(number - 1, not inversionAccum)

print(isOddTailCall(42))
print(isOddTailCall(99))

The JavaScript equivalent is in the rest of isOdd.html:

JavaScript --snip--
function isOddTailCall(number, inversionAccum) {
    if (inversionAccum === undefined) {
        inversionAccum = false;
    }

    if (number === 0) {
        // BASE CASE
        return inversionAccum;
    } else {



172   Chapter 8

        // RECURSIVE CASE
        return isOddTailCall(number - 1, !inversionAccum);
    }
}

document.write(isOdd(42) + "<br />");
document.write(isOdd(99) + "<br />");
</script>

If this Python and JavaScript code is run by an interpreter that supports 
tail call optimization, calling isOddTailCall(100000) won’t result in a stack 
overflow. However, tail call optimization is still much slower than simply 
using the % modulus operator to determine oddness or evenness.

If you think recursion, with or without tail recursion, is an incred-
ibly inefficient way to determine whether a positive integer is odd, you are 
absolutely correct. Unlike iterative solutions, recursion can fail from stack 
overflows. Adding tail call optimization to prevent stack overflows doesn’t 
fix the efficiency flaws of using recursion inappropriately. As a technique, 
recursion is not automatically better or more sophisticated than iterative 
solutions. And tail recursion is never a better approach than a loop or other 
simple solution.

Summary
Tail call optimization is a feature of a programming language’s compiler or 
interpreter that can be employed on recursive functions specifically written 
to be tail recursive. Tail recursive functions return the return value of the 
recursive function call as the last action in the recursive case. This allows 
the function to delete the current frame object and prevent the call stack 
from growing as new recursive function calls are made. If the call stack 
doesn’t grow, the recursive function can’t possibly cause a stack overflow.

Tail recursion is a workaround that allows some recursive algorithms 
to work with large arguments without crashing. However, this approach 
requires rearranging your code and possibly adding an accumulator param-
eter. This could make your code harder to understand. You may likely find 
that sacrificing code readability is not worth using a recursive algorithm 
over an iterative one.

Further Reading
Stack Overflow (the website, not the programming error) has a detailed 
discussion about the basics of tail recursion at https://stackoverflow.com/
questions/33923/what-is-tail-recursion.

Van Rossum wrote about his decision not to use tail recursion in two blog 
posts at https://neopythonic.blogspot.com.au/2009/04/tail-recursion-elimination.html 
and https://neopythonic.blogspot.com.au/2009/04/final-words-on-tail-calls.html.

https://stackoverflow.com/questions/33923/what-is-tail-recursion
https://stackoverflow.com/questions/33923/what-is-tail-recursion
https://neopythonic.blogspot.com.au/2009/04/tail-recursion-elimination.html
https://neopythonic.blogspot.com.au/2009/04/final-words-on-tail-calls.html


Tail Call Optimization   173

Python’s standard library includes a module called inspect that allows 
you to view the frame objects on the call stack as a Python program is run-
ning. The official documentation for the inspect module is at https://docs 
.python.org/3/library/inspect.html, and a tutorial on Doug Hellmann’s Python 
3 Module of the Week blog is at https://pymotw.com/3/inspect.

Practice Questions
Test your comprehension by answering the following questions:

	 1.	 What does tail call optimization prevent?

	 2.	 What does the last action of a recursive function have to do so that the 
function can be tail recursive?

	 3.	 Do all compilers and interpreters implement tail call optimization?

	 4.	 What is an accumulator?

	 5.	 What is the disadvantage of tail recursion?

	 6.	 Can the quicksort algorithm (covered in Chapter 5) be rewritten to use 
tail call optimization?

https://docs.python.org/3/library/inspect.html
https://docs.python.org/3/library/inspect.html
https://pymotw.com/3/inspect




9
D R A W I N G  F R A C T A L S

Certainly, the most fun application of 
recursion is drawing fractals. Fractals are 

shapes that repeat themselves, sometimes 
chaotically, at different scales. The term was 

coined by the founder of fractal geometry, Benoit B. 
Mandelbrot, in 1975 and is derived from the Latin 
frāctus, meaning broken or fractured, like shattered  
glass. Fractals include many natural and artificial shapes. In nature, you 
might see them in the shapes of trees, fern leaves, mountain ranges, light-
ning bolts, coastlines, river networks, and snowflakes. Mathematicians, 
programmers, and artists can create elaborate geometric shapes based on 
a few recursive rules.

Recursion can produce elaborate fractal art using surprisingly few 
lines of code. This chapter covers Python’s built-in turtle module for gen-
erating several common fractals with code. To create turtle graphics with 
JavaScript, you can use Greg Reimer’s jtg library. For simplicity, this chapter 
presents only the Python fractal drawing programs and not the JavaScript 
equivalents. However, the jtg JavaScript library is covered in this chapter.

T H E R E C U R S I V E 

B O O K O F 

R E C U R S I O N

A C E T H E C O D I N G I N T E R V I E W
W I T H 

P Y T H O N A N D J A V A S C R I P T

T H E
R E C U R S I V E 

B O O K
O F 

R E C U R S I O N

A C E T H E C O D I N G I N T E R V I E W
W I T H

P Y T H O N A N D J A V A S C R I P T

THE RECURSIVE

BOOKOF 

RECURSION

ACETHE
CODING

INTERVI
EWWIT

H

PYTHON
ANDJAV

ASCRIP
T



176   Chapter 9

Turtle Graphics
Turtle graphics were a feature of the Logo programming language designed 
to help kids learn coding concepts. The feature has since been reproduced 
in many languages and platforms. Its central idea is an object called a turtle. 

The turtle acts as a programmable pen that draws lines in a 2D win-
dow. Imagine an actual turtle holding a pen on the ground, drawing a line 
behind it as it moves around. The turtle can adjust the size and color of its 
pen, or “raise the pen” so that it does not draw as it moves. Turtle programs 
can produce intricate geometric drawings such as Figure 9-1.

When you put these instructions inside loops and functions, even small 
programs can create impressive geometric drawings. Consider the following 
spiral.py program:

Python import turtle
turtle.tracer(1, 0) # Makes the turtle draw faster.
for i in range(360):
    turtle.forward(i)
    turtle.left(59)
turtle.exitonclick() # Pause until user clicks in the window.

When you run this program, the turtle window opens. The turtle (rep-
resented by a triangle) will trace the spiral pattern in Figure 9-1. While not 
a fractal, it is a beautiful drawing.

Figure 9-1: The spiral drawn by the program using Python’s turtle module



Drawing Fractals   177

The window in a turtle graphics system uses Cartesian x- and y- 
coordinates. The number for the horizontal x-coordinate increases going 
right and decreases going left, while the number for the vertical y-coordinate 
increases going up and decreases going down. These two coordinates 
together can provide a unique address for any point in the window. By 
default, the origin (the x, y coordinate point at 0, 0) is in the center of the 
window. 

The turtle also has a heading, or direction, that is a number from 0 to 
359 (a circle is split into 360 degrees). In Python’s turtle module, a heading 
of 0 faces east (toward the right edge of the screen) and increases clockwise; 
a heading of 90 faces north, a heading of 180 faces west, and a heading of 
270 faces south. In the JavaScript jtg library, this orientation is rotated so 
that 0 degrees faces north and increases counterclockwise. Figure 9-2 dem-
onstrates the headings for the Python turtle module and the JavaScript jtg 
library.

90

180 0

225 315

135 45

270

0

270 90

225 135

315 45

180

Figure 9-2: The headings in Python’s turtle module (left)  
and the JavaScript jtg library (right)

In the JavaScript jtg library at https://inventwithpython.com/jtg, enter the 
following code into the text field at the bottom of the page:

JavaScript for (let i = 0; i < 360; i++) { t.fd(i); t.lt(59) }

This draws the same spiral shown in Figure 9-1 on the main area of the 
web page.

Basic Turtle Functions
The most commonly used functions in turtle graphics cause the turtle to 
change heading and move forward or backward. The turtle.left() and 
turtle.right() functions rotate the turtle a certain number of degrees start-
ing from its current heading, while the turtle.forward() and turtle.backward() 
functions move the turtle based on its current position.

Table 9-1 lists some of the turtle’s functions. The first function (begin-
ning with turtle.) is for Python, and the second (beginning with t.) is for 
JavaScript. The full Python documentation is available at https://docs.python 
.org/3/library/turtle.html. In the JavaScript jtg software, you can press F1 to 
display the help screen.

https://inventwithpython.com/jtg
https://docs.python.org/3/library/turtle.html
https://docs.python.org/3/library/turtle.html


178   Chapter 9

Table 9-1: Turtle Functions in Python’s turtle Module and JavaScript’s jtg Library

Python JavaScript Description

goto(x, y) xy(x, y) Moves the turtle to the x, y coordinates.

setheading(deg) heading(deg) Sets the turtle’s heading. In Python, 0 
degrees is east (right). In JavaScript, 0 
degrees is north (up).

forward(steps) fd(steps) Moves the turtle a number of steps for-
ward in the heading it is facing.

backward(steps) bk(steps) Moves the turtle a number of steps in the 
heading opposite from the one it is facing.

left(deg) lt(deg) Turns the turtle’s heading to the left.

right(deg) rt(deg) Turns the turtle’s heading to the right.

penup() pu() “Raises the pen” so that the turtle stops 
drawing as it moves.

pendown() pd() “Lowers the pen” so that the turtle starts 
drawing as it moves.

pensize(size) thickness(size) Changes the thickness of the lines the 
turtle draws. The default is 1.

pencolor(color) color(color) Changes the color of the lines the turtle 
draws. This can be a string of a common 
color such as red or white. The default is 
black.

xcor() get.x() Returns the turtle’s current x position.

ycor() get.y() Returns the turtle’s current y position.

heading() get.heading() Returns the turtle’s current heading as 
a floating-point number from 0 to 359. 
In Python, 0 degrees is east (right). In 
JavaScript, 0 degrees is north (up).

reset() reset() Clears any drawn lines, and moves the 
turtle back to the original position and 
heading.

clear() clean() Clears any drawn lines but doesn’t move 
the turtle.

The functions listed in Table 9-2 are available only in the Python turtle 
module.

Table 9-2: Python-Only Turtle Functions

Python Description

begin_fill() Begins drawing a filled-in shape. The lines drawn after 
this call will specify the perimeter of the filled-in shape.

end_fill() Draws the filled-in shape that was started with the call to 
turtle.begin_fill().

fillcolor(color) Sets the color used for filled-in shapes.

hideturtle() Hides the triangle that represents the turtle.



Drawing Fractals   179

Python Description

showturtle() Shows the triangle that represents the turtle.

tracer(drawingUpdates, 
delay)

Adjusts the speed of drawing. Pass 0 for delay for a 
delay of 0 milliseconds after each line the turtle draws. 
The larger the number passed for drawingUpdates, the 
faster the turtle draws by increasing the number of draw-
ings before the module updates the screen.

update() Draws any buffered lines (explained later in this section) 
to the screen. Call this after the turtle has completed 
drawing.

setworldcoordinates 
(llx, lly, urx, ury)

Readjusts which part of the coordinate plane the window 
shows. The first two arguments are the x, y coordinates 
for the lower-left corner of the window. The latter two 
arguments are the x, y coordinates for the upper-right 
corner of the window.

exitonclick() Pauses the program and closes the window when the 
user clicks anywhere. Without this at the end of your pro-
gram, the turtle graphics window may close as soon as 
the program ends.

In Python’s turtle module, lines are displayed on the screen immedi-
ately. However, this can slow programs that draw thousands of lines. It’s 
faster to buffer—that is, hold off displaying several lines and then display 
them all at once.

By calling turtle.tracer(1000, 0), you can instruct the turtle module to 
hold off displaying lines until 1,000 lines have been created by your program. 
After your program has finished calling line-drawing functions, make a final 
call to turtle.update() to display any remaining buffered lines to the screen. If 
your program is still taking too long to draw an image, pass a larger integer 
such as 2000 or 10000 as the first argument to turtle.tracer().

The Sierpiński Triangle
The easiest fractal to draw on paper is the Sierpiński triangle, introduced 
in Chapter 1. This fractal was described by Polish mathematician Wacław 
Sierpiński in 1915 (predating even the term fractal). However, the pattern is 
at least hundreds of years older. 

To create a Sierpiński triangle, start by drawing an equilateral triangle—
a triangle with equal-length sides, like the one on the left in Figure 9-3. 
Then draw an upside-down equilateral triangle inside the first triangle, as 
on the right in Figure 9-3. You’ll form a shape that, if you’re familiar with 
the Legend of Zelda video games, looks like the Triforce.



180   Chapter 9

Figure 9-3: An equilateral triangle (left) with an upside-down triangle added to form a 
Sierpiński triangle, with additional triangles recursively added

An interesting thing happens when you draw the inner, upside-down 
triangle. You form three new, right-side-up equilateral triangles. Inside 
each of these three triangles, you can draw another upside-down triangle, 
which will create nine triangles. This recursion can continue forever math-
ematically, though in reality your pen won’t be able to keep drawing tinier 
triangles.

This property, describing a full object that is similar to a part of itself, 
is called self-similarity. Recursive functions can produce these objects, since 
they “call” themselves again and again. Practically, this code must hit a base 
case eventually, but mathematically, these shapes have infinite resolution: 
you could theoretically zoom in on the shape forever.

Let’s write a recursive program to create the Sierpiński triangle. The 
recursive drawTriangle() function will draw an equilateral triangle, and then 
recursively call this function three times to draw the inner equilateral tri-
angles, as in Figure 9-4. The midpoint() function finds the point equidistant 
from two points passed to the function. This will be important as the inner 
triangles use these equidistant points for their vertices.

Figure 9-4:  The three inner triangles, with midpoints shown with large dots 

Note that this program calls turtle.setworldcoordinates(0, 0, 700, 700), 
which makes the 0, 0 origin at the lower-left corner of the window. The 
upper-right corner has the x, y coordinates 700, 700. The source code for 
sierpinskiTriangle.py is as follows:

import turtle
turtle.tracer(100, 0) # Increase the first argument to speed up the drawing.
turtle.setworldcoordinates(0, 0, 700, 700)
turtle.hideturtle()



Drawing Fractals   181

MIN_SIZE = 4 # Try changing this to decrease/increase the amount of recursion.

def midpoint(startx, starty, endx, endy):
    # Return the x, y coordinate in the middle of the four given parameters.
    xDiff = abs(startx - endx)
    yDiff = abs(starty - endy)
    return (min(startx, endx) + (xDiff / 2.0), min(starty, endy) + (yDiff / 2.0))

def isTooSmall(ax, ay, bx, by, cx, cy):
    # Determine if the triangle is too small to draw.
    width = max(ax, bx, cx) - min(ax, bx, cx)
    height = max(ay, by, cy) - min(ay, by, cy)
    return width < MIN_SIZE or height < MIN_SIZE

def drawTriangle(ax, ay, bx, by, cx, cy):
    if isTooSmall(ax, ay, bx, by, cx, cy):
        # BASE CASE
        return
    else:
        # RECURSIVE CASE
        # Draw the triangle.
        turtle.penup()
        turtle.goto(ax, ay)
        turtle.pendown()
        turtle.goto(bx, by)
        turtle.goto(cx, cy)
        turtle.goto(ax, ay)
        turtle.penup()

        # Calculate midpoints between points A, B, and C.
        mid_ab = midpoint(ax, ay, bx, by)
        mid_bc = midpoint(bx, by, cx, cy)
        mid_ca = midpoint(cx, cy, ax, ay)

        # Draw the three inner triangles.
        drawTriangle(ax, ay, mid_ab[0], mid_ab[1], mid_ca[0], mid_ca[1])
        drawTriangle(mid_ab[0], mid_ab[1], bx, by, mid_bc[0], mid_bc[1])
        drawTriangle(mid_ca[0], mid_ca[1], mid_bc[0], mid_bc[1], cx, cy)
        return

# Draw an equilateral Sierpinski triangle.
drawTriangle(50, 50, 350, 650, 650, 50)

# Draw a skewed Sierpinski triangle.
#drawTriangle(30, 250, 680, 600, 500, 80)

turtle.exitonclick()

When you run this code, the output looks like Figure 9-5.



182   Chapter 9

Figure 9-5:  A standard Sierpiński triangle

Sierpiński triangles don’t have to be drawn with equilateral triangles. As 
long as you use the midpoints of the outer triangle to draw the inner trian-
gles, you can use any kind of triangle. Comment out the first drawTriangle() 
call and uncomment the second one (under the # Draw a skewed Sierpinski 
triangle. comment) and run the program again. The output will look like 
Figure 9-6.

Figure 9-6: A skewed Sierpiński triangle



Drawing Fractals   183

The drawTriangle() function takes six arguments corresponding to the 
x, y coordinates of the triangle’s three points. Try experimenting with dif-
ferent values to adjust the shape of the Sierpiński triangle. You can also 
change the MIN_SIZE constant to a larger value to make the program reach 
the base case sooner and reduce the number of triangles drawn.

The Sierpiński Carpet
A fractal shape similar to the Sierpiński triangle can be drawn using rectan-
gles instead. This pattern is known as the Sierpiński carpet. Imagine splitting 
a black rectangle into a 3 × 3 grid, then “cutting out” the center rectangle. 
Repeat this pattern in the surrounding eight rectangles of the grid. When 
this is done recursively, you end up with a pattern like Figure 9-7.

Figure 9-7: The Sierpiński carpet

The Python program that draws the carpet uses the turtle.begin_fill() 
and turtle.end_fill() functions to create solid, filled-in shapes. The lines 
that the turtle draws between these calls are used to draw the shape, as in 
Figure 9-8.

Figure 9-8: Calling turtle.begin_fill(), drawing a path,  
and calling turtle.end_fill() creates a filled-in shape.



184   Chapter 9

The base case is reached when the rectangles of the 3 × 3 become 
smaller than six steps on a side. You can change the MIN_SIZE constant to a 
larger value to make the program reach the base case sooner. The source 
code for sierpinskiCarpet.py is as follows:

import turtle
turtle.tracer(10, 0) # Increase the first argument to speed up the drawing.
turtle.setworldcoordinates(0, 0, 700, 700)
turtle.hideturtle()

MIN_SIZE = 6 # Try changing this to decrease/increase the amount of recursion.
DRAW_SOLID = True

def isTooSmall(width, height):
    # Determine if the rectangle is too small to draw.
    return width < MIN_SIZE or height < MIN_SIZE

def drawCarpet(x, y, width, height):
    # The x and y are the lower-left corner of the carpet.

    # Move the pen into position.
    turtle.penup()
    turtle.goto(x, y)

    # Draw the outer rectangle.
    turtle.pendown()
    if DRAW_SOLID:
        turtle.fillcolor('black')
        turtle.begin_fill()
    turtle.goto(x, y + height)
    turtle.goto(x + width, y + height)
    turtle.goto(x + width, y)
    turtle.goto(x, y)
    if DRAW_SOLID:
        turtle.end_fill()
    turtle.penup()

    # Draw the inner rectangles.
    drawInnerRectangle(x, y, width, height)

def drawInnerRectangle(x, y, width, height):
    if isTooSmall(width, height):
        # BASE CASE
        return
    else:
        # RECURSIVE CASE

        oneThirdWidth = width / 3
        oneThirdHeight = height / 3
        twoThirdsWidth = 2 * (width / 3)
        twoThirdsHeight = 2 * (height / 3)



Drawing Fractals   185

        # Move into position.
        turtle.penup()
        turtle.goto(x + oneThirdWidth, y + oneThirdHeight)

        # Draw the inner rectangle.
        if DRAW_SOLID:
            turtle.fillcolor('white')
            turtle.begin_fill()
        turtle.pendown()
        turtle.goto(x + oneThirdWidth, y + twoThirdsHeight)
        turtle.goto(x + twoThirdsWidth, y + twoThirdsHeight)
        turtle.goto(x + twoThirdsWidth, y + oneThirdHeight)
        turtle.goto(x + oneThirdWidth, y + oneThirdHeight)
        turtle.penup()
        if DRAW_SOLID:
            turtle.end_fill()

        # Draw the inner rectangles across the top.
        drawInnerRectangle(x, y + twoThirdsHeight, oneThirdWidth, oneThirdHeight)
        drawInnerRectangle(x + oneThirdWidth, y + twoThirdsHeight, oneThirdWidth, 
oneThirdHeight)
        drawInnerRectangle(x + twoThirdsWidth, y + twoThirdsHeight, oneThirdWidth, 
oneThirdHeight)

        # Draw the inner rectangles across the middle.
        drawInnerRectangle(x, y + oneThirdHeight, oneThirdWidth, 
        oneThirdHeight)
        drawInnerRectangle(x + twoThirdsWidth, y + oneThirdHeight, oneThirdWidth, 
        oneThirdHeight)

        # Draw the inner rectangles across the bottom.
        drawInnerRectangle(x, y, oneThirdWidth, oneThirdHeight)
        drawInnerRectangle(x + oneThirdWidth, y, oneThirdWidth, oneThirdHeight)
        drawInnerRectangle(x + twoThirdsWidth, y, oneThirdWidth, 
        oneThirdHeight)

drawCarpet(50, 50, 600, 600)
turtle.exitonclick()

You can also set the DRAW_SOLID constant to False and run the program. 
This will skip the calls to turtle.begin_fill() and turtle.end_fill() so that 
only the outlines of the rectangles are drawn, as in Figure 9-9.

Try passing different arguments to drawCarpet(). The first two argu-
ments are the x, y coordinates of the lower-left corner of the carpet, while 
the latter two arguments are the width and height. You can also change the 
MIN_SIZE constant to a larger value to make the program reach the base case 
sooner and reduce the number of rectangles drawn.



186   Chapter 9

Figure 9-9: The Sierpiński carpet, with only the outlines of the  
rectangles drawn

Another 3D Sierpiński carpet uses cubes instead of squares. In this 
form, it is called a Sierpiński cube, or Menger sponge. It was first described by 
mathematician Karl Menger in 1926. Figure 9-10 shows a Menger sponge 
created in the video game Minecraft.

Figure 9-10: A 3D Menger sponge fractal



Drawing Fractals   187

Fractal Trees
While the artificial fractals such as the Sierpiński triangle and carpet 
are perfectly self-similar, fractals can include shapes that do not have 
perfect self-similarity. Fractal geometry, as envisioned by mathematician 
Benoit B. Mandelbrot (whose middle initial recursively stands for Benoit 
B. Mandelbrot) included natural shapes such as mountains, coastlines, 
plants, blood vessels, and the clustering of galaxies as fractals. Upon close 
examination, these shapes continued to consist of “rougher” shapes not 
easily contained by the smooth curves and straight lines of simplified 
geometry.

As an example, we can use recursion to reproduce fractal trees, 
whether perfectly or imperfectly self-similar. Generating trees requires 
creating a branch with two child branches that issue from their parent 
at set angles and decrease at set lengths. The Y shape that they produce 
is recursively repeated to create a convincing drawing of a tree, as in 
Figures 9-11 and 9-12.

Figure 9-11: A perfectly self-similar fractal tree generated with the  
left and right branches using consistent angles and lengths

Movies and video games can use such recursive algorithms in procedural 
generation, the automatic (rather than manual) creation of 3D models such 
as trees, ferns, flowers, and other plants. Using algorithms, computers can 
quickly create entire forests consisting of millions of unique trees, saving an 
army of human 3D artists the painstaking effort.



188   Chapter 9

Figure 9-12: A more realistic tree created using random changes  
to branch angle and lengths

Our fractal tree program displays a new, randomly generated tree every 
two seconds. The source code for fractalTree.py is as follows:

Python import random
import time
import turtle
turtle.tracer(1000, 0) # Increase the first argument to speed up the drawing.
turtle.setworldcoordinates(0, 0, 700, 700)
turtle.hideturtle()

def drawBranch(startPosition, direction, branchLength):
    if branchLength < 5:
        # BASE CASE
        return

    # Go to the starting point & direction.
    turtle.penup()
    turtle.goto(startPosition)
    turtle.setheading(direction)

    # Draw the branch (thickness is 1/7 the length).
    turtle.pendown()
    turtle.pensize(max(branchLength / 7.0, 1))
    turtle.forward(branchLength)

    # Record the position of the branch's end.
    endPosition = turtle.position()
    leftDirection = direction + LEFT_ANGLE
    leftBranchLength = branchLength - LEFT_DECREASE
    rightDirection = direction - RIGHT_ANGLE
    rightBranchLength = branchLength - RIGHT_DECREASE



Drawing Fractals   189

    # RECURSIVE CASE
    drawBranch(endPosition, leftDirection, leftBranchLength)
    drawBranch(endPosition, rightDirection, rightBranchLength)

seed = 0
while True:
    # Get pseudorandom numbers for the branch properties.
    random.seed(seed)
    LEFT_ANGLE     = random.randint(10,  30)
    LEFT_DECREASE  = random.randint( 8,  15)
    RIGHT_ANGLE    = random.randint(10,  30)
    RIGHT_DECREASE = random.randint( 8,  15)
    START_LENGTH   = random.randint(80, 120)

    # Write out the seed number.
    turtle.clear()
    turtle.penup()
    turtle.goto(10, 10)
    turtle.write('Seed: %s' % (seed))

    # Draw the tree.
    drawBranch((350, 10), 90, START_LENGTH)
    turtle.update()
    time.sleep(2)

    seed = seed + 1

This program produces perfectly self-similar trees, as the LEFT_ANGLE, 
LEFT_DECREASE, RIGHT_ANGLE, and RIGHT_DECREASE variables are initially randomly 
chosen but stay constant for all the recursive calls. The random.seed() func-
tion sets a seed value for Python’s random functions. The random number 
seed value causes the program to produce random-seeming numbers, but it 
uses the same sequence of random numbers for each branch of the tree. In 
other words, the same seed value reproduces the same tree each time you run 
the program. (I never apologize for my puns.)

To see this in action, enter the following into the Python interactive 
shell:

Python >>> import random
>>> random.seed(42)
>>> [random.randint(0, 9) for i in range(20)]
 [1, 0, 4, 3, 3, 2, 1, 8, 1, 9, 6, 0, 0, 1, 3, 3, 8, 9, 0, 8]
>>> [random.randint(0, 9) for i in range(20)]
 [3, 8, 6, 3, 7, 9, 4, 0, 2, 6, 5, 4, 2, 3, 5, 1, 1, 6, 1, 5]
>>> random.seed(42)
>>> [random.randint(0, 9) for i in range(20)]
 [1, 0, 4, 3, 3, 2, 1, 8, 1, 9, 6, 0, 0, 1, 3, 3, 8, 9, 0, 8]

In this example, we set the random seed to 42. When we generate  
20 random integers, we get 1, 0, 4, 3, and so on. We can generate another  
20 integers and continue to receive random integers. However, if we reset 
the seed to 42 and generate 20 random integers again, they’ll be the same 
“random” integers as before.



190   Chapter 9

If you’d like to create a more natural, less self-similar tree, replace the 
lines after the # Record the position of the branch's end. comment with the 
following lines. This generates new random angles and branch lengths for 
every recursive call, which is closer to the way trees grow in nature:

Python     # Record the position of the branch's end.
    endPosition = turtle.position()
    leftDirection = direction + random.randint(10, 30)
    leftBranchLength = branchLength - random.randint(8, 15)
    rightDirection = direction - random.randint(10, 30)
    rightBranchLength = branchLength - random.randint(8, 15)

You can experiment with different ranges for the random.randint() call, or 
try adding more recursive calls instead of just the two for the two branches.

How Long Is the Coast of Great Britain?  
The Koch Curve and Snowflake

Before I tell you about the Koch curve and snowflake, consider this ques-
tion: how long is the coast of Great Britain? Look at Figure 9-13. The map 
on the left has a rough measure, which puts the coast at about 2,000 miles. 
But the map on the right has a more precise measure, which includes more 
nooks and crannies of the coast and comes to about 2,800 miles.

Figure 9-13: The island of Great Britain, with a rough measure (left) and more precise 
measure (right). Measuring the coast more precisely adds 800 miles to its length.



Drawing Fractals   191

Mandelbrot’s key insight about fractals such as the coastline of Britain 
is that you can continue to look closer and closer, and there will continue to 
be “roughness” at every scale. So, as your measurement gets finer and finer, 
the length of the coastline will get longer and longer. The “coast” will follow 
the Thames upriver, deep into the landmass along one bank and back out 
to the English Channel on the other bank. Thus, the answer to our ques-
tion of Great Britain’s coastline’s length is, “It depends.” 

The Koch curve fractal has a similar property pertaining to the length 
of its coastline, or rather, perimeter. First introduced in 1902 by Swedish 
mathematician Helge von Koch, the Koch curve is one of the earliest frac-
tals to be described mathematically. To construct it, take a line of length b 
and divide it into three equal parts, each of length b / 3. Replace the mid-
dle section with a “bump” whose sides are also of length b / 3. This bump 
causes the Koch curve to be longer than the original line, since we now 
have four line segments of length b / 3. (We’ll exclude the original middle 
part of the line segment.) This bump creation can be repeated on the new 
four line segments. Figure 9-14 shows this construction.

b/3 b/3 b/3 b/3

b/3 b/3

b/3

Figure 9-14: After splitting the line segment into three equal parts (left),  
add a bump to the middle part (right). We now have four segments of  
length b / 3, to which bumps can be added again (bottom).

To create the Koch snowflake, we start with an equilateral triangle and 
construct three Koch curves from its three sides, as in Figure 9-15.

Figure 9-15: Creating three Koch curves on the three  
sides of an equilateral triangle to form a Koch snowflake

Each time you create a new bump, you are increasing the curve’s length 
from three b / 3 lengths to four b / 3 lengths, or 4b / 3. If you continue to 
do this with the three sides of an equilateral triangle, you’ll create the Koch 



192   Chapter 9

snowflake, as in Figure 9-16. (The small dotted patterns are artifacts, because 
slight rounding errors cause the turtle module to be unable to completely 
erase the middle b / 3 segment.) You can continue to create new bumps for-
ever, though our program stops when they get smaller than a few pixels.

Figure 9-16: A Koch snowflake. Some of the interior lines remain  
because of small rounding errors.

The source code for kochSnowflake.py is as follows:

Python import turtle
turtle.tracer(10, 0) # Increase the first argument to speed up the drawing.
turtle.setworldcoordinates(0, 0, 700, 700)
turtle.hideturtle()
turtle.pensize(2)

def drawKochCurve(startPosition, heading, length):
    if length < 1:
        # BASE CASE
        return
    else:
        # RECURSIVE CASE
        # Move to the start position.
        recursiveArgs = []
        turtle.penup()
        turtle.goto(startPosition)
        turtle.setheading(heading)
        recursiveArgs.append({'position':turtle.position(),
                              'heading':turtle.heading()})

        # Erase the middle third.
        turtle.forward(length / 3)
        turtle.pencolor('white')
        turtle.pendown()



Drawing Fractals   193

        turtle.forward(length / 3)

        # Draw the bump.
        turtle.backward(length / 3)
        turtle.left(60)
        recursiveArgs.append({'position':turtle.position(),
                              'heading':turtle.heading()})
        turtle.pencolor('black')
        turtle.forward(length / 3)
        turtle.right(120)
        recursiveArgs.append({'position':turtle.position(),
                              'heading':turtle.heading()})
        turtle.forward(length / 3)
        turtle.left(60)
        recursiveArgs.append({'position':turtle.position(),
                              'heading':turtle.heading()})

        for i in range(4):
            drawKochCurve(recursiveArgs[i]['position'],
                     recursiveArgs[i]['heading'],
                     length / 3)
        return

def drawKochSnowflake(startPosition, heading, length):
    # A Koch snowflake is three Koch curves in a triangle.

    # Move to the starting position.
    turtle.penup()
    turtle.goto(startPosition)
    turtle.setheading(heading)

    for i in range(3):
        # Record the starting position and heading.
        curveStartingPosition = turtle.position()
        curveStartingHeading = turtle.heading()
        drawKochCurve(curveStartingPosition,
                      curveStartingHeading, length)

        # Move back to the start position for this side.
        turtle.penup()
        turtle.goto(curveStartingPosition)
        turtle.setheading(curveStartingHeading)

        # Move to the start position of the next side.
        turtle.forward(length)
        turtle.right(120)

drawKochSnowflake((100, 500), 0, 500)
turtle.exitonclick()

The Koch snowflake is also sometimes called the Koch island. Its coast-
line would be literally infinitely long. While the Koch snowflake fits into the 
finite area of a page of this book, the length of its perimeter is infinite, prov-
ing that, while it seems counterintuitive, the finite can contain the infinite!



194   Chapter 9

The Hilbert Curve
A space-filling curve is a 1D line that curves around until it completely fills 
a 2D space without crossing over itself. German mathematician David 
Hilbert described his space-filling Hilbert curve in 1891. If you split a 2D 
area into a grid, the single, 1D line of the Hilbert curve can run through 
every cell in the grid. 

Figure 9-17 contains the first three recursions of the Hilbert curve. 
The next recursion contains four copies of the previous recursion, and the 
dashed line shows how the four copies connect to one another.

Figure 9-17: The first three recursions of the Hilbert space-filling curve

As the cells become infinitesimal points, the 1D curve can fill the 
entire 2D space the same way a 2D square does. Counterintuitively, this 
creates a 2D shape from a strictly 1D line!

The source code for hilbertCurve.py is as follows:

Python import turtle
turtle.tracer(10, 0) # Increase the first argument to speed up the drawing.
turtle.setworldcoordinates(0, 0, 700, 700)
turtle.hideturtle()

LINE_LENGTH  = 5 # Try changing the line length by a little.
ANGLE = 90 # Try changing the turning angle by a few degrees.
LEVELS = 6 # Try changing the recursive level by a little.
DRAW_SOLID = False
#turtle.setheading(20) # Uncomment this line to draw the curve at an angle.

def hilbertCurveQuadrant(level, angle):
    if level == 0:
        # BASE CASE
        return
    else:
        # RECURSIVE CASE
        turtle.right(angle)
        hilbertCurveQuadrant(level - 1, -angle)
        turtle.forward(LINE_LENGTH)



Drawing Fractals   195

        turtle.left(angle)
        hilbertCurveQuadrant(level - 1, angle)
        turtle.forward(LINE_LENGTH)
        hilbertCurveQuadrant(level - 1, angle)
        turtle.left(angle)
        turtle.forward(LINE_LENGTH)
        hilbertCurveQuadrant(level - 1, -angle)
        turtle.right(angle)
        return

def hilbertCurve(startingPosition):
    # Move to starting position.
    turtle.penup()
    turtle.goto(startingPosition)
    turtle.pendown()
    if DRAW_SOLID:
        turtle.begin_fill()

    hilbertCurveQuadrant(LEVELS, ANGLE) # Draw lower-left quadrant.
    turtle.forward(LINE_LENGTH)

    hilbertCurveQuadrant(LEVELS, ANGLE) # Draw lower-right quadrant.
    turtle.left(ANGLE)
    turtle.forward(LINE_LENGTH)
    turtle.left(ANGLE)

    hilbertCurveQuadrant(LEVELS, ANGLE) # Draw upper-right quadrant.
    turtle.forward(LINE_LENGTH)

    hilbertCurveQuadrant(LEVELS, ANGLE) # Draw upper-left quadrant.

    turtle.left(ANGLE)
    turtle.forward(LINE_LENGTH)
    turtle.left(ANGLE)
    if DRAW_SOLID:
        turtle.end_fill()

hilbertCurve((30, 350))
turtle.exitonclick()

Try experimenting with this code by decreasing LINE_LENGTH to shorten 
the line segments while increasing LEVELS to add more levels of recursion. 
Because this program uses only relative movements for the turtle, you can 
uncomment the turtle.setheading(20) line to draw the Hilbert curve at a 
20-degree angle. Figure 9-18 shows the drawing produced with LINE_LENGTH 
of 10 and LEVELS of 5.



196   Chapter 9

Figure 9-18: Five levels of the Hilbert curve, with line length 10

The Hilbert curve makes 90-degree (right-angle) turns. But try adjust-
ing the ANGLE variable by a few degrees to 89 or 86, and run the program to 
view the changes. You can also set the DRAW_SOLID variable to True to produce 
a filled-in Hilbert curve, as in Figure 9-19.

Figure 9-19: Six levels of the Hilbert curve, filled in, with line length 5



Drawing Fractals   197

Summary
The incredibly wide field of fractals combines all the most interesting 
parts of programming and art, making this chapter the most fun to write. 
Mathematicians and computer scientists talk about the beauty and elegance 
that the advanced topics of their fields produce, but recursive fractals are 
able to turn this conceptual beauty into visual beauty that anyone can 
appreciate.

This chapter covered several fractals and the programs that draw them: 
the Sierpiński triangle, the Sierpiński carpet, procedurally generated fractal 
trees, the Koch curve and snowflake, and the Hilbert curve. All of these 
were drawn with Python’s turtle module and functions that recursively call 
themselves.

Further Reading
To learn more about drawing with Python’s turtle module, I’ve written a 
simple tutorial at https://github.com/asweigart/simple-turtle-tutorial-for-python. 
I also have a personal collection of turtle programs at https://github.com/
asweigart/art-of-turtle-programming.

The question of Great Britain’s coastline’s length came from the title of 
a 1967 paper by Mandelbrot. The idea is summarized nicely on Wikipedia at 
https://en.wikipedia.org/wiki/Coastline_paradox. Khan Academy has more on the 
geometry of the Koch snowflake at https://www.khanacademy.org/math/geometry 
-home/geometry-volume-surface-area/koch-snowflake/v/koch-snowflake-fractal.

The 3Blue1Brown YouTube channel has excellent animations of fractals, 
particularly the “Fractals Are Typically Not Self-Similar” video at https://
youtu.be/gB9n2gHsHN4 and the “Fractal Charm: Space-Filling Curves” 
video at https://youtu.be/RU0wScIj36o.

Other space-filling curves require recursion to draw, such as the Peano 
curve, Gosper curve, and dragon curve, and they’re worth researching on 
the web.

Practice Questions
Test your comprehension by answering the following questions:

	 1.	 What are fractals?

	 2.	 What do the x- and y-coordinates represent in a Cartesian coordinate 
system?

	 3.	 What are the origin coordinates in a Cartesian coordinate system?

	 4.	 What is procedural generation?

	 5.	 What is a seed value?

	 6.	 How long is the perimeter of a Koch snowflake?

	 7.	 What is a space-filling curve?

https://github.com/asweigart/simple-turtle-tutorial-for-python
https://github.com/asweigart/art-of-turtle-programming
https://github.com/asweigart/art-of-turtle-programming
https://en.wikipedia.org/wiki/Coastline_paradox
https://www.khanacademy.org/math/geometry-home/geometry-volume-surface-area/koch-snowflake/v/koch-snowflake-fractal
https://www.khanacademy.org/math/geometry-home/geometry-volume-surface-area/koch-snowflake/v/koch-snowflake-fractal
https://youtu.be/gB9n2gHsHN4
https://youtu.be/gB9n2gHsHN4
https://youtu.be/RU0wScIj36o


198   Chapter 9

Practice Projects
For practice, write a program for each of the following tasks:

	 1.	 Create a turtle program that draws a box fractal as shown in Figure 9-20. 
This program is similar to the Sierpiński carpet program introduced 
in this chapter. Use the turtle.begin_fill() and turtle.end_fill() func-
tions to draw the first large, black square. Then split this square into 
nine equal sections, and draw white squares in the top, left, right, and 
bottom squares. Repeat this process for the four corner squares and the 
center square.

Figure 9-20: A box fractal, drawn to two levels

	 2.	 Create a turtle program that draws a Peano space-filling curve. This is 
similar to the Hilbert curve program in this chapter. Figure 9-21 shows 
the first three iterations of the Peano curve. While each Hilbert curve 
iteration is split across a 2 × 2 section (which is, in turn, split into 2 × 2 
sections), the Peano curve is split across 3 × 3 sections.



Drawing Fractals   199

Figure 9-21: The first three iterations of the Peano curve, from left to right. The bottom row 
includes the 3 × 3 sections that each part of the curve is split across.





PART II
P R O J E C T S





10
F I L E  F I N D E R 

In this chapter, you’ll write your own recur-
sive program to search for files according 

to custom needs. Your computer already 
has some file-searching commands and apps, 

but often they’re limited to retrieving files based on a 
partial filename. What if you need to make esoteric, 
highly specific searches? For example, what if you need 
to find all files that have an even number of bytes, or 
files with names that contain every vowel? 

You likely will never need to do these searches specifically, but you’ll 
probably have odd search criteria someday. You’ll be out of luck if you can’t 
code this search yourself.

As you’ve learned, recursion is especially suited to problems that have a 
tree-like structure. The filesystem on your computer is like a tree, as you saw 
back in Figure 2-6. Each folder branches into subfolders, which in turn can 

T H E R E C U R S I V E 

B O O K O F 

R E C U R S I O N

A C E T H E C O D I N G I N T E R V I E W
W I T H 

P Y T H O N A N D J A V A S C R I P T

T H E
R E C U R S I V E 

B O O K
O F 

R E C U R S I O N

A C E T H E C O D I N G I N T E R V I E W
W I T H

P Y T H O N A N D J A V A S C R I P T

THE RECURSIVE

BOOKOF 

RECURSION

ACETHE
CODING

INTERVI
EWWIT

H

PYTHON
ANDJAV

ASCRIP
T



204   Chapter 10

branch into other subfolders. We’ll write a recursive function to navigate 
this tree.

N O T E 	 Since browser-based JavaScript has no way to access the folders on your computer, the 
program for this chapter’s project is written in Python only. 

The Complete File-Search Program
Let’s begin by taking a look at the complete source code for the recursive 
file-search program. The rest of this chapter explains each section of code 
individually. Copy the source code for the file-search program to a file 
named fileFinder.py: 

import os

def hasEvenByteSize(fullFilePath):
    """Returns True if fullFilePath has an even size in bytes,
    otherwise returns False."""
    fileSize = os.path.getsize(fullFilePath)
    return fileSize % 2 == 0

def hasEveryVowel(fullFilePath):
    """Returns True if the fullFilePath has a, e, i, o, and u,
    otherwise returns False."""
    name = os.path.basename(fullFilePath).lower()
    return ('a' in name) and ('e' in name) and ('i' in name) and ('o' in name) and ('u' in 
name)

def walk(folder, matchFunc):
    """Calls the match function with every file in the folder and its
    subfolders. Returns a list of files that the match function
    returned True for."""
    matchedFiles = [] # This list holds all the matches.
    folder = os.path.abspath(folder) # Use the folder's absolute path.

    # Loop over every file and subfolder in the folder:
    for name in os.listdir(folder):
        filepath = os.path.join(folder, name)
        if os.path.isfile(filepath):
            # Call the match function for each file:
            if matchFunc(filepath):
                matchedFiles.append(filepath)
        elif os.path.isdir(filepath):
            # Recursively call walk for each subfolder, extending
            # the matchedFiles with their matches:
            matchedFiles.extend(walk(filepath, matchFunc))
    return matchedFiles



File Finder    205

print('All files with even byte sizes:')
print(walk('.', hasEvenByteSize))
print('All files with every vowel in their name:')
print(walk('.', hasEveryVowel))

The file-search program’s main function is walk(), which “walks” across 
the entire span of files in a base folder and its subfolders. It calls one of 
two other functions that implement the custom search criteria it’s looking 
for. In the context of this program, we’ll call these match functions. A match 
function call returns True if the file matches the search criteria; otherwise, it 
returns False. 

The job of the walk() function is to call the match function once for 
each file in the folders it walks across. Let’s take a look at the code in 
more detail.

The Match Functions
In Python, you can pass functions themselves as arguments to a function 
call. In the following example, a callTwice() function calls its function argu-
ment twice, whether it’s sayHello() or sayGoodbye():

Python >>> def callTwice(func):
...     func()
...     func()
...
>>> def sayHello():
...     print('Hello!')
...
>>> def sayGoodbye():
...     print('Goodbye!')
...
>>> callTwice(sayHello)
Hello!
Hello!
>>> callTwice(sayGoodbye)
Goodbye!
Goodbye!

The callTwice() function calls whichever function was passed to it as 
the func parameter. Notice that we leave out the parentheses from the func-
tion argument, writing callTwice(sayHello) instead of callTwice(sayHello()). 
This is because we are passing the sayHello() function itself, and not calling 
sayHello() and passing its return value.

The walk() function accepts a match function argument for its search 
criteria. This lets us customize the behavior of the file search without modi-
fying the code of the walk() function itself. We’ll take a look at walk() later. 
First, let’s look at the two sample match functions in the program. 



206   Chapter 10

Finding the Files with an Even Number of Bytes
The first matching function finds files with an even byte size:

Python import os

def hasEvenByteSize(fullFilePath):
    """Returns True if fullFilePath has an even size in bytes,
    otherwise returns False."""
    fileSize = os.path.getsize(fullFilePath)
    return fileSize % 2 == 0

We import the os module, which is used throughout the program to get 
information about the files on your computer through functions such as 
getsize(), basename(), and others. Then we create a match function named 
hasEvenByteSize(). All match functions take a single string argument named 
fullFilePath, and return either True or False to signify a match or miss.

The os.path.getsize() function determines the size of the file in 
fullFilePath in bytes. Then we use the % modulus operator to determine 
whether this number is even. If it’s even, the return statement returns 
True; if it’s odd, it returns False. For example, let’s consider the size of the 
Notepad application that comes with the Windows operating system (on 
macOS or Linux, try running this function on the /bin/ls program):

Python >>> import os
>>> os.path.getsize('C:/Windows/system32/notepad.exe')
211968
>>> 211968 % 2 == 0
True

The hasEvenByteSize() match function can use any Python function to 
find more information about the fullFilePath file. This gives you the power-
ful capability to write code for any search criteria you want. As walk() calls the 
match function for each file in the folder and subfolders it walks across, 
the match function returns True or False for each one. This tells walk() 
whether the file is a match.

Finding the Filenames That Contain Every Vowel
Let’s take a look at the next match function:

def hasEveryVowel(fullFilePath):
    """Returns True if the fullFilePath has a, e, i, o, and u,
    otherwise returns False."""
    name = os.path.basename(fullFilePath).lower()
    return ('a' in name) and ('e' in name) and ('i' in name) and ('o' in name) and ('u' in 
name)

We call os.path.basename() to remove the folder names from the filepath. 
Python does case-sensitive string comparisons, which ensures that hasEvery 
Vowel() doesn’t miss any vowels in the filename because they are uppercase. 
For example, calling os.path.basename('C:/Windows/system32/notepad.exe') 



File Finder    207

returns the string notepad.exe. This string’s lower() method call returns a low-
ercase form of the string so that we have to check for only lowercase vowels 
in it. “Useful Python Standard Library Functions for Working with Files” 
later in this chapter explores some more functions for finding out informa-
tion about files.

We use a return statement with a lengthy expression that evaluates to 
True if name contains a, e, i, o, or u, indicating the file matches the search cri-
teria. Otherwise, the return statement returns False.

The Recursive walk() Function
While the match functions check whether a file matches the search criteria, 
the walk() function finds all the files to check. The recursive walk() function 
is passed the name of a base folder to search along with a match function to 
call for each file in the folder. 

The walk() function also recursively calls itself for each subfolder in the 
base folder it’s searching. These subfolders become the base folder in the 
recursive call. Let’s ask the three questions about this recursive function:

What is the base case?    When the function has finished processing 
each file and subfolder in its given base folder.

What argument is passed to the recursive function call?    The base 
folder to search and the match function to use for finding matched 
files. For each subfolder in this folder, a recursive call is made with the 
subfolder as the new folder argument.

How does this argument become closer to the base case?    Eventually, 
the function either recursively calls itself on all the subfolders or encoun-
ters base folders that don’t have any subfolders.

Figure 10-1 shows an example filesystem along with the recursive calls 
to walk(), which it makes with a base folder of C:\.

bacon

ham

walk('C:\\', hasEvenByteSize)
walk('C:\\spam', hasEvenByteSize)
walk('C:\\spam\\eggs', hasEvenByteSize)
walk('C:\\spam\\eggs\\bacon', hasEvenByteSize)
walk('C:\\spam\\ham', hasEvenByteSize)

C:\

spam

eggs

Figure 10-1: An example filesystem and the recursive walk() function calls over it

Let’s take a look at the walk() function’s code:

def walk(folder, matchFunc):
    """Calls the match function with every file in the folder and its
    subfolders. Returns a list of files that the match function
    returned True for."""
    matchedFiles = [] # This list holds all the matches.
    folder = os.path.abspath(folder) # Use the folder's absolute path.



208   Chapter 10

The walk() function has two parameters: folder is a string of the base 
folder to search (we can pass '.' to refer to the current folder the Python 
program is run from), and matchFunc is a Python function that is passed 
a filename and returns True if the function says it is a search match. 
Otherwise, the function returns False.

The next part of the function examines the contents of folder:

Python     # Loop over every file and subfolder in the folder:
    for name in os.listdir(folder):
        filepath = os.path.join(folder, name)
        if os.path.isfile(filepath):

The for loop calls os.listdir() to return a list of the contents of the 
folder folder. This list includes all files and subfolders. For each file, we cre-
ate the full, absolute path by joining the folder with the name of the file or 
folder. If the name refers to a file, the os.path.isfile() function call returns 
True, and we’ll check to see if the file is a search match:

Python             # Call the match function for each file:
            if matchFunc(filepath):
                matchedFiles.append(filepath)

We call the match function, passing it the full absolute filepath of the 
for loop’s current file. Note that matchFunc is the name of one of walk()’s 
parameters. If hasEvenByteSize(), hasEveryVowel(), or another function is 
passed as the argument for the matchFunc parameter, then that is the func-
tion walk() calls. If filepath contains a file that is a match according to the 
matching algorithm, it’s added to the matches list:

Python         elif os.path.isdir(filepath):
            # Recursively call walk for each subfolder, extending
            # the matchedFiles with their matches:
            matchedFiles.extend(walk(filepath, matchFunc))

Otherwise, if the for loop’s file is a subfolder, the os.path.isdir() func-
tion call returns True. We then pass the subfolder to a recursive function 
call. The recursive call returns a list of all matching files in the subfolder 
(and its subfolders), which are then added to the matches list:

    return matchedFiles

After the for loop finishes, the matches list contains all the matching 
files in this folder (and in all its subfolders). This list becomes the return 
value for the walk() function.

Calling the walk() Function
Now that we’ve implemented the walk() function and some match functions, 
we can run our custom file search. We pass the '.' string, a special directory 



File Finder    209

name meaning the current directory, for the first argument to walk() so that it 
uses the folder the program was run from as the base folder to search:

Python print('All files with even byte sizes:')
print(walk('.', hasEvenByteSize))
print('All files with every vowel in their name:')
print(walk('.', hasEveryVowel))

The output of this program depends on what files are on your com-
puter, but this demonstrates how you can write code for any search criteria 
you have. For example, the output could look like the following:

Python All files with even byte sizes:
['C:\\Path\\accesschk.exe', 'C:\\Path\\accesschk64.exe', 
'C:\\Path\\AccessEnum.exe', 'C:\\Path\\ADExplorer.exe', 
'C:\\Path\\Bginfo.exe', 'C:\\Path\\Bginfo64.exe', 
'C:\\Path\\diskext.exe', 'C:\\Path\\diskext64.exe', 
'C:\\Path\\Diskmon.exe', 'C:\\Path\\DiskView.exe', 
'C:\\Path\\hex2dec64.exe', 'C:\\Path\\jpegtran.exe', 
'C:\\Path\\Tcpview.exe', 'C:\\Path\\Testlimit.exe', 
'C:\\Path\\wget.exe', 'C:\\Path\\whois.exe']
All files with every vowel in their name:
['C:\\Path\\recursionbook.bat']

Useful Python Standard Library Functions for  
Working with Files

Let’s take a look at some functions that could help you as you write your 
own match functions. The standard library of modules that comes with 
Python features several useful functions for getting information about files. 
Many of these are in the os and shutil modules, so your program must run 
import os or import shutil before it can call these functions.

Finding Information About the File’s Name
The full filepath passed to the match functions can be broken into the base 
name and directory name with the os.path.basename() and os.path.dirname() 
functions. You can also call os.path.split() to obtain these names as a tuple. 
Enter the following into Python’s interactive shell. On macOS or Linux, try 
using /bin/ls as the filename:

Python >>> import os
>>> filename = 'C:/Windows/system32/notepad.exe'
>>> os.path.basename(filename)
'notepad.exe'
>>> os.path.dirname(filename)
'C:/Windows/system32'
>>> os.path.split(filename)
('C:/Windows/system32', 'notepad.exe')
>>> folder, file = os.path.split(filename)



210   Chapter 10

>>> folder
'C:/Windows/system32'
>>> file
'notepad.exe'

You can use any of Python’s string methods on these string values to 
help evaluate the file against your search criteria, such as lower() in the 
hasEveryVowel() match function.

Finding Information About the File’s Timestamps
Files have timestamps indicating when they were created, last modified,  
and last accessed. Python’s os.path.getctime(), os.path.getmtime(), and os 
.path.getatime(), respectively, return these timestamps as floating-point 
values indicating the number of seconds since the Unix epoch, midnight 
on January 1, 1970, in the Coordinated Universal Time (UTC) time zone. 
Enter the following into the interactive shell:

Python > import os
> filename = 'C:/Windows/system32/notepad.exe'
> os.path.getctime(filename)
1625705942.1165037
> os.path.getmtime(filename)
1625705942.1205275
> os.path.getatime(filename)
1631217101.8869188

These float values are easy for programs to use since they’re just single 
numbers, but you’ll need functions from Python’s time module to make 
them simpler for humans to read. The time.localtime() function converts 
a Unix epoch timestamp into a struct_time object in the computer’s time 
zone. A struct_time object has several attributes whose names begin with tm_ 
for obtaining date and time information. Enter the following into the inter-
active shell:

Python >>> import os
>>> filename = 'C:/Windows/system32/notepad.exe'
>>> ctimestamp = os.path.getctime(filename)
>>> import time
>>> time.localtime(ctimestamp)
time.struct_time(tm_year=2021, tm_mon=7, tm_mday=7, tm_hour=19, 
tm_min=59, tm_sec=2, tm_wday=2, tm_yday=188, tm_isdst=1)
>>> st = time.localtime(ctimestamp)
>>> st.tm_year
2021
>>> st.tm_mon
7
>>> st.tm_mday
7
>>> st.tm_wday
2
>>> st.tm_hour



File Finder    211

19
>>> st.tm_min
59
>>> st.tm_sec
2

Note that the tm_mday attribute is the day of the month, ranging from 1 
to 31. The tm_wday attribute is the day of the week, starting at 0 for Monday, 1 
for Tuesday, and so on, up to 6 for Sunday.

If you need a brief, human-readable string of the time_struct object, 
pass it to the time.asctime() function:

Python >>> import os
>>> filename = 'C:/Windows/system32/notepad.exe'
>>> ctimestamp = os.path.getctime(filename)
>>> import time
>>> st = time.localtime(ctimestamp)
>>> time.asctime(st)
'Wed Jul  7 19:59:02 2021'

While the time.localtime() function returns a struct_time object in the 
local time zone, the time.gmtime() function returns a struct_time object in 
the UTC or Greenwich Mean time zone. Enter the following into the inter-
active shell:

Python >>> import os
>>> filename = 'C:/Windows/system32/notepad.exe'
>>> ctimestamp = os.path.getctime(filename)
>>> import time
>>> ctimestamp = os.path.getctime(filename)
>>> time.localtime(ctimestamp)
time.struct_time(tm_year=2021, tm_mon=7, tm_mday=7, tm_hour=19, 
tm_min=59, tm_sec=2, tm_wday=2, tm_yday=188, tm_isdst=1)
>>> time.gmtime(ctimestamp)
time.struct_time(tm_year=2021, tm_mon=7, tm_mday=8, tm_hour=0, 
tm_min=59, tm_sec=2, tm_wday=3, tm_yday=189, tm_isdst=0)

The interaction between these os.path functions (which return Unix 
epoch timestamps) and time functions (which return struct_time objects) 
can be confusing. Figure 10-2 shows the chain of code starting from the 
filename string and ending with obtaining the individual parts of the 
timestamp.

filename

os.path.getctime()

os.path.getmtime()
time.localtime()

time.asctime()

.tm_year

.tm_mon

.tm_mday

.tm_wday

.tm_hour

.tm_min

.tm_sec

time.gmtime()
os.path.getatime()

Figure 10-2: Going from the filename to the individual attributes of a timestamp



212   Chapter 10

Finally, the time.time() function returns the number of seconds since 
the Unix epoch to the current time.

Modifying Your Files
After the walk() function returns a list of files matching your search criteria, 
you may want to rename, delete, or perform another operation on them. The 
shutil and os modules in the Python standard library have functions to do 
this. Further, the send2trash third-party module can also send files to your 
operating system’s Recycle Bin, rather than permanently deleting them.

To move a file, call the shutil.move() function with two arguments. The 
first argument is the file to move, and the second is the folder to move it to. 
For example, you could call the following:

Python >>> import shutil
>>> shutil.move('spam.txt', 'someFolder')
'someFolder\\spam.txt'

The shutil.move() function returns the string of the new filepath of 
the file. You can also specify a filename to move and rename the file at the 
same time:

Python >>> import shutil
>>> shutil.move('spam.txt', 'someFolder\\newName.txt')
'someFolder\\newName.txt'

If the second argument lacks a folder, you can just specify a new name 
for the file to rename it in its current folder:

Python >>> import shutil
>>> shutil.move('spam.txt', 'newName.txt')
'newName.txt'

Note that the shutil.move() function both moves and renames files, simi-
lar to the way the Unix and macOS mv command both moves and renames 
files. There is no separate shutil.rename() function.

To copy a file, call the shutil.copy() function with two arguments. The 
first argument is the filename of the file to copy, and the second argument 
is the new name of the copy. For example, you could call the following:

Python >>> import shutil
>>> shutil.copy('spam.txt', 'spam-copy.txt')
'spam-copy.txt'

The shutil.copy() function returns the name of the copy. To delete a 
file, call the os.unlink() function and pass it the name of the file to delete:

Python >>> import os
>>> os.unlink('spam.txt')
>>>



File Finder    213

The name unlink is used instead of delete because of the technical detail 
that it removes the filename linked to the file. But since most files have 
only one linked filename, this unlinking also deletes the file. It’s all right if 
you don’t understand these filesystem concepts; just know that os.unlink() 
deletes a file.

Calling os.unlink() permanently deletes the file, which can be danger-
ous if a bug in your program causes the function to delete the wrong file. 
Instead, you can use the send2trash module’s send2trash() function to put 
the file in your operating system’s Recycle Bin. To install this module, run 
run python -m pip install --user send2trash from the command prompt on 
Windows or run run python3 -m pip install from the terminal on macOS or 
Linux. Once the module is installed, you’ll be able to import it with import 
send2trash.

Enter the following into the interactive shell:

Python >>> open('deleteme.txt', 'w').close() # Create a blank file.
>>> import send2trash
>>> send2trash.send2trash('deleteme.txt')

This example creates a blank file named deleteme.txt. After calling 
send2trash.send2trash() (the module and function share the same name), 
this file is removed to the Recycle Bin.

Summary
This chapter’s file-search project uses recursion to “walk” across the con-
tents of a folder and all its subfolders. The file-finder program’s walk() func-
tion navigates these folders recursively, applying custom search criteria to 
every file in every subfolder. The search criteria are implemented as match 
functions, which are passed to the walk() function. This allows us to change 
the search criteria by writing new functions instead of modifying the code 
in walk().

Our project had two match functions, for finding files with an even byte 
file size or containing every vowel in its name, but you can write your own 
functions to pass to walk(). This is the power behind programming; you can 
create features for your own needs that are not available in commercial apps.

Further Reading
The documentation for Python’s built-in os.walk() function (similar to the 
walk() function in the file-finder project) is at https://docs.python.org/3/library/
os.html#os.walk. You can also learn more about your computer’s filesystem 
and Python’s file functions in Chapter 9 of my book Automate the Boring Stuff 
with Python, 2nd edition (No Starch Press, 2019) at https://automatetheboring 
stuff.com/2e/chapter9.

https://docs.python.org/3/library/os.html#os.walk
https://docs.python.org/3/library/os.html#os.walk
https://automatetheboringstuff.com/2e/chapter9
https://automatetheboringstuff.com/2e/chapter9


The datetime module in the Python standard library also has more ways 
to interact with timestamp data. You can learn more about it in Chapter 17 
of Automate the Boring Stuff with Python, 2nd edition at https://automatetheboring 
stuff.com/2e/chapter17.

https://automatetheboringstuff.com/2e/chapter17
https://automatetheboringstuff.com/2e/chapter17


11
M A Z E  G E N E R A T O R 

Chapter 4 described a recursive algorithm 
that solves mazes, but another recursive 

algorithm generates mazes. In this chapter, 
we’ll generate mazes in the same format as the 

maze-solver program in Chapter 4. So, whether you’re 
a fan of solving mazes or creating them, you’ll now 
have the power to apply programming to the task.

The algorithm works by visiting a starting space in the maze and then 
recursively visiting a neighboring space. The maze’s hallways are “carved 
out” of the maze as the algorithm continues to visit neighbors. If the algo-
rithm reaches a dead end that has no neighboring spaces, it backtracks to 
earlier spaces until it finds an unvisited neighbor and continues visiting 
from there. By the time the algorithm backtracks to the starting space, the 
entire maze has been generated.

The recursive backtracking algorithm we’ll use here produces mazes 
that tend to have long hallways (the maze spaces that connect branching 
intersections) and are fairly simple to solve. However, this algorithm is 

T H E R E C U R S I V E 

B O O K O F 

R E C U R S I O N

A C E T H E C O D I N G I N T E R V I E W
W I T H 

P Y T H O N A N D J A V A S C R I P T

T H E
R E C U R S I V E 

B O O K
O F 

R E C U R S I O N

A C E T H E C O D I N G I N T E R V I E W
W I T H

P Y T H O N A N D J A V A S C R I P T

THE RECURSIVE

BOOKOF 

RECURSION

ACETHE
CODING

INTERVI
EWWIT

H

PYTHON
ANDJAV

ASCRIP
T



216   Chapter 11

easier to implement than many other maze-generation algorithms, such as 
Kruskal’s algorithm or Wilson’s algorithm, so it serves as a good introduc-
tion to the topic.

The Complete Maze-Generator Program
Let’s begin by taking a look at the complete Python and JavaScript source 
code for the program, which uses the recursive backtracking algorithm for 
maze generation. The rest of this chapter explains each section of code 
individually. 

Copy this Python code to a file named mazeGenerator.py:

Python import random

WIDTH = 39 # Width of the maze (must be odd).
HEIGHT = 19 # Height of the maze (must be odd).
assert WIDTH % 2 == 1 and WIDTH >= 3
assert HEIGHT % 2 == 1 and HEIGHT >= 3
SEED = 1
random.seed(SEED)

# Use these characters for displaying the maze:
EMPTY = ' '
MARK = '@'
WALL = chr(9608) # Character 9608 is '█'
NORTH, SOUTH, EAST, WEST = 'n', 's', 'e', 'w'

# Create the filled-in maze data structure to start: 
maze = {}
for x in range(WIDTH):
    for y in range(HEIGHT):
        maze[(x, y)] = WALL # Every space is a wall at first.
 
def printMaze(maze, markX=None, markY=None):
    """Displays the maze data structure in the maze argument. The
    markX and markY arguments are coordinates of the current
    '@' location of the algorithm as it generates the maze."""

    for y in range(HEIGHT):
        for x in range(WIDTH):
            if markX == x and markY == y:
                # Display the '@' mark here:
                print(MARK, end='')
            else:
                # Display the wall or empty space:
                print(maze[(x, y)], end='')
        print() # Print a newline after printing the row.

def visit(x, y):
    """"Carve out" empty spaces in the maze at x, y and then
    recursively move to neighboring unvisited spaces. This
    function backtracks when the mark has reached a dead end."""



Maze Generator    217

    maze[(x, y)] = EMPTY # "Carve out" the space at x, y.
    printMaze(maze, x, y) # Display the maze as we generate it.
    print('\n\n')

    while True:
        # Check which neighboring spaces adjacent to
        # the mark have not been visited already:
        unvisitedNeighbors = []
        if y > 1 and (x, y - 2) not in hasVisited:
            unvisitedNeighbors.append(NORTH)

        if y < HEIGHT - 2 and (x, y + 2) not in hasVisited:
            unvisitedNeighbors.append(SOUTH)

        if x > 1 and (x - 2, y) not in hasVisited:
            unvisitedNeighbors.append(WEST)

        if x < WIDTH - 2 and (x + 2, y) not in hasVisited:
            unvisitedNeighbors.append(EAST)

        if len(unvisitedNeighbors) == 0:
            # BASE CASE
            # All neighboring spaces have been visited, so this is a
            # dead end. Backtrack to an earlier space:
            return
        else:
            # RECURSIVE CASE
            # Randomly pick an unvisited neighbor to visit:
            nextIntersection = random.choice(unvisitedNeighbors)

            # Move the mark to an unvisited neighboring space:

            if nextIntersection == NORTH:
                nextX = x
                nextY = y - 2
                maze[(x, y - 1)] = EMPTY # Connecting hallway.
            elif nextIntersection == SOUTH:
                nextX = x
                nextY = y + 2
                maze[(x, y + 1)] = EMPTY # Connecting hallway.
            elif nextIntersection == WEST:
                nextX = x - 2
                nextY = y
                maze[(x - 1, y)] = EMPTY # Connecting hallway.
            elif nextIntersection == EAST:
                nextX = x + 2
                nextY = y
                maze[(x + 1, y)] = EMPTY # Connecting hallway.
 
            hasVisited.append((nextX, nextY)) # Mark as visited.
            visit(nextX, nextY) # Recursively visit this space.

# Carve out the paths in the maze data structure:
hasVisited = [(1, 1)] # Start by visiting the top-left corner.



218   Chapter 11

visit(1, 1)

# Display the final resulting maze data structure:
printMaze(maze)

Copy this JavaScript code to a file named mazeGenerator.html:

JavaScript <script type="text/javascript">

const WIDTH = 39; // Width of the maze (must be odd).
const HEIGHT = 19; // Height of the maze (must be odd).
console.assert(WIDTH % 2 == 1 && WIDTH >= 2);
console.assert(HEIGHT % 2 == 1 && HEIGHT >= 2);

// Use these characters for displaying the maze:
const EMPTY = "&nbsp;";
const MARK = "@";
const WALL = "&#9608;"; // Character 9608 is ′█′
const [NORTH, SOUTH, EAST, WEST] = ["n", "s", "e", "w"];

// Create the filled-in maze data structure to start:
let maze = {};
for (let x = 0; x < WIDTH; x++) {
    for (let y = 0; y < HEIGHT; y++) {
        maze[[x, y]] = WALL; // Every space is a wall at first.
    }
}

function printMaze(maze, markX, markY) {
    // Displays the maze data structure in the maze argument. The
    // markX and markY arguments are coordinates of the current
    // '@' location of the algorithm as it generates the maze.
    document.write('<code>');
    for (let y = 0; y < HEIGHT; y++) {
        for (let x = 0; x < WIDTH; x++) {
            if (markX === x && markY === y) {
                // Display the ′@′ mark here:
                document.write(MARK);
            } else {
                // Display the wall or empty space:
                document.write(maze[[x, y]]);
            }
        }
        document.write('<br />'); // Print a newline after printing the row.
    }
    document.write('</code>');
}

function visit(x, y) {
    // "Carve out" empty spaces in the maze at x, y and then
    // recursively move to neighboring unvisited spaces. This
    // function backtracks when the mark has reached a dead end.



Maze Generator    219

    maze[[x, y]] = EMPTY; // "Carve out" the space at x, y.
    printMaze(maze, x, y); // Display the maze as we generate it.
    document.write('<br /><br /><br />');

    while (true) {
        // Check which neighboring spaces adjacent to
        // the mark have not been visited already:
        let unvisitedNeighbors = [];
        if (y > 1 && !JSON.stringify(hasVisited).includes(JSON.stringify([x, 
y - 2]))) {
            unvisitedNeighbors.push(NORTH);
        }
        if (y < HEIGHT - 2 && 
        !JSON.stringify(hasVisited).includes(JSON.stringify([x, y + 2]))) {
            unvisitedNeighbors.push(SOUTH);
        }
        if (x > 1 && 
        !JSON.stringify(hasVisited).includes(JSON.stringify([x - 2, y]))) {
            unvisitedNeighbors.push(WEST);
        }
        if (x < WIDTH - 2 && 
        !JSON.stringify(hasVisited).includes(JSON.stringify([x + 2, y]))) {
            unvisitedNeighbors.push(EAST);
        }

        if (unvisitedNeighbors.length === 0) {
            // BASE CASE
            // All neighboring spaces have been visited, so this is a
            // dead end. Backtrack to an earlier space:
            return;
        } else {
            // RECURSIVE CASE
            // Randomly pick an unvisited neighbor to visit:
            let nextIntersection = unvisitedNeighbors[
            Math.floor(Math.random() * unvisitedNeighbors.length)];

            // Move the mark to an unvisited neighboring space:
            let nextX, nextY;
            if (nextIntersection === NORTH) {
                nextX = x;
                nextY = y - 2;
                maze[[x, y - 1]] = EMPTY; // Connecting hallway.
            } else if (nextIntersection === SOUTH) {
                nextX = x;
                nextY = y + 2;
                maze[[x, y + 1]] = EMPTY; // Connecting hallway.
            } else if (nextIntersection === WEST) {
                nextX = x - 2;
                nextY = y;
                maze[[x - 1, y]] = EMPTY; // Connecting hallway.
            } else if (nextIntersection === EAST) {
                nextX = x + 2;
                nextY = y;
                maze[[x + 1, y]] = EMPTY; // Connecting hallway.
            }



220   Chapter 11

            hasVisited.push([nextX, nextY]); // Mark space as visited.
            visit(nextX, nextY); // Recursively visit this space.
        }
    }
}

// Carve out the paths in the maze data structure:
let hasVisited = [[1, 1]]; // Start by visiting the top-left corner.
visit(1, 1);

// Display the final resulting maze data structure:
printMaze(maze);
</script>

When you run this program, it produces a large amount of text that will 
fill the terminal window or browser with each step of the maze’s construc-
tion. You’ll have to scroll back up to the top to view the entire output.

The maze data structure begins as a completely filled-in 2D space. 
The recursive backtracker algorithm is given a starting point in this maze 
and then visits a previously unvisited neighboring space, “carving out” any 
hallway space in the process. Then it recursively calls itself on a neighbor-
ing space it hasn’t visited before. If all the neighboring spaces have already 
been visited, the algorithm is at a dead end and backtracks to an earlier 
visited space to visit its unvisited neighbors. The program ends when the 
algorithm backtracks to its starting location.

You can see this algorithm in action by running the maze-generator 
program. As the maze is carved out, it displays the current x, y coordinates 
by using the @ character. The process looks like Figure 11-1. Notice that 
the fifth image in the top-right corner has backtracked to an earlier space 
after reaching a dead end to explore a new neighboring direction from that 
space.

Figure 11-1: The maze as it gets “carved out” by the recursive backtracking algorithm

Let’s take a look at the code in more detail.



Maze Generator    221

Setting Up the Maze Generator’s Constants
The maze generator uses several constants, which we can change before 
running the program to alter the size and appearance of the maze. The 
Python code for these constants is as follows:

Python import random

WIDTH = 39 # Width of the maze (must be odd).
HEIGHT = 19 # Height of the maze (must be odd).
assert WIDTH % 2 == 1 and WIDTH >= 3
assert HEIGHT % 2 == 1 and HEIGHT >= 3
SEED = 1
random.seed(SEED)

The JavaScript code is as follows:

JavaScript <script type="text/javascript">

const WIDTH = 39; // Width of the maze (must be odd).
const HEIGHT = 19; // Height of the maze (must be odd).
console.assert(WIDTH % 2 == 1 && WIDTH >= 3);
console.assert(HEIGHT % 2 == 1 && HEIGHT >= 3);

The constants WIDTH and HEIGHT dictate the size of the maze. They must 
be odd numbers, because our maze data structure requires walls between 
the visited spaces of the maze, leaving us with odd-numbered dimensions. 
To make sure the WIDTH and HEIGHT constants are set correctly, we use asser-
tions to stop the program if the constants aren’t odd or are too small.

The program relies on a random seed value to reproduce the same maze, 
given the same seed value. The Python version of this program lets us set 
this value by calling the random.seed() function. Unfortunately, JavaScript 
doesn’t have a way to set the seed value explicitly and will generate different 
mazes each time we run the program.

N O T E 	 The “random” numbers the Python program generates are actually predictable, 
because they’re based on a starting seed value; the program generates the same “ran-
dom” maze given the same seed. This can be useful when trying to debug the program 
by having it reproduce the same maze as when we first noticed the bug. 

The Python code continues by setting a few more constants:

Python # Use these characters for displaying the maze:
EMPTY = ' '
MARK = '@'
WALL = chr(9608) # Character 9608 is '█'
NORTH, SOUTH, EAST, WEST = 'n', 's', 'e', 'w'



222   Chapter 11

The JavaScript code for these constants is as follows:

JavaScript // Use these characters for displaying the maze:
const EMPTY = "&nbsp;";
const MARK = "@";
const WALL = "&#9608;"; // Character 9608 is ′█′
const [NORTH, SOUTH, EAST, WEST] = ["n", "s", "e", "w"];

The EMPTY and WALL constants affect how the maze is displayed on the 
screen. The MARK constant is used to point out the position of the algorithm 
in the maze as it runs. The NORTH, SOUTH, EAST, and WEST constants represent 
the directions that the mark can move through the maze and are used to 
make the code more readable.

Creating the Maze Data Structure
The maze data structure is a Python dictionary or JavaScript object that has 
keys of Python tuples or JavaScript arrays of the x, y coordinates of every 
space in the maze. The value for these keys is a string in the WALL or EMPTY 
constant. This string notes whether this space is a blocking wall or a pass-
able empty space in the maze.

For example, the maze in Figure 11-2 is represented by the following 
data structure:

{(0, 0): '█', (0, 1): '█', (0, 2): '█', (0, 3): '█', (0, 4): '█', 
(0, 5): '█', (0, 6): '█', (1, 0): '█', (1, 1): ' ', (1, 2): ' ', 
(1, 3): ' ', (1, 4): ' ', (1, 5): ' ', (1, 6): '█', (2, 0): '█', 
(2, 1): '█', (2, 2): '█', (2, 3): '█', (2, 4): '█', (2, 5): ' ', 
(2, 6): '█', (3, 0): '█', (3, 1): ' ', (3, 2): '█', (3, 3): ' ', 
(3, 4): ' ', (3, 5): ' ', (3, 6): '█', (4, 0): '█', (4, 1): ' ', 
(4, 2): '█', (4, 3): ' ', (4, 4): '█', (4, 5): '█', (4, 6): '█', 
(5, 0): '█', (5, 1): ' ', (5, 2): ' ', (5, 3): ' ', (5, 4): ' ', 
(5, 5): ' ', (5, 6): '█', (6, 0): '█', (6, 1): '█', (6, 2): '█', 
(6, 3): '█', (6, 4): '█', (6, 5): '█', (6, 6): '█'}

0
0

1
2
3
4
5
6

1 2 3 4 5 6

Figure 11-2: An example 
maze that can be repre-
sented by a data structure



Maze Generator    223

The program must start with every space set to WALL. The recursive visit() 
function then carves out the hallways and intersections of the maze by setting 
spaces to EMPTY:

Python # Create the filled-in maze data structure to start:
maze = {}
for x in range(WIDTH):
    for y in range(HEIGHT):
        maze[(x, y)] = WALL # Every space is a wall at first.

The corresponding JavaScript code is as follows:

JavaScript // Create the filled-in maze data structure to start:
let maze = {};
for (let x = 0; x < WIDTH; x++) {
    for (let y = 0; y < HEIGHT; y++) {
        maze[[x, y]] = WALL; // Every space is a wall at first.
    }
}

We create the blank dictionary (in Python) or object (in JavaScript) in 
the maze global variable. The for loops loop over every possible x, y coordi-
nate, setting each to WALL to create a completely filled-in maze. The call to 
visit() will carve out the hallways of the maze from this data structure by 
setting the spaces in it to EMPTY.

Printing the Maze Data Structure
To represent the maze as a data structure, the Python program uses a dic-
tionary, and the JavaScript program uses an object. Within this structure, 
the keys are lists or arrays of two integers for the x- and y-coordinates, while 
the value is either the WALL or EMPTY single-character strings. Thus, we can 
access the wall or empty hallway space at the coordinates x, y in the maze as 
maze[(x, y)] in Python code and as maze[[x, y]] in JavaScript code.

The Python code for printMaze() starts as follows:

Python def printMaze(maze, markX=None, markY=None):
    """Displays the maze data structure in the maze argument. The
    markX and markY arguments are coordinates of the current
    '@' location of the algorithm as it generates the maze."""

    for y in range(HEIGHT):
        for x in range(WIDTH):

The JavaScript code for printMaze() starts as follows:

JavaScript function printMaze(maze, markX, markY) {
    // Displays the maze data structure in the maze argument. The
    // markX and markY arguments are coordinates of the current
    // '@' location of the algorithm as it generates the maze.
    document.write('<code>');



224   Chapter 11

    for (let y = 0; y < HEIGHT; y++) {
        for (let x = 0; x < WIDTH; x++) {

The printMaze() function prints the maze data structure it’s passed as 
the maze parameter on the screen. Optionally, if markX and markY integer 
arguments are passed, the MARK constant (which we set to @) appears at these 
x, y coordinates in the printed maze. To make sure the maze is printed in a 
monospace font, the JavaScript version writes the HTML tag <code> before 
printing the maze itself. Without this HTML tag, the maze will appear dis-
torted in the browser.

Within the function, nested for loops loop over every space in the maze 
data structure. These for loops iterate over each y-coordinate from 0 up 
to, but not including, HEIGHT, and each x-coordinate from 0 up to, but not 
including, WIDTH.

Inside the inner for loop, if the current x, y coordinates match the posi-
tion of the mark (the location where the algorithm is currently carving), 
the program displays the @ in the MARK constant. The Python code does this 
as follows:

Python             if markX == x and markY == y:
                # Display the '@' mark here:
                print(MARK, end='')
            else:
                # Display the wall or empty space:
                print(maze[(x, y)], end='')

        print() # Print a newline after printing the row.

The JavaScript code is as follows:

JavaScript             if (markX === x && markY === y) {
                // Display the ′@′ mark here:
                document.write(MARK);
            } else {
                // Display the wall or empty space:
                document.write(maze[[x, y]]);
            }
        }
        document.write('<br />'); // Print a newline after printing the row.
    }
    document.write('</code>');
}

Otherwise, the program displays either the WALL or EMPTY constant’s char-
acter at this x, y coordinate in the maze data structure by printing maze[(x, y)] 
in Python and maze[[x, y]] in JavaScript. After the inner for loop is done 
looping over the x-coordinates, we print a newline at the end of the row in 
preparation for the next row.



Maze Generator    225

Using the Recursive Backtracker Algorithm
The visit() function implements the recursive backtracker algorithm. The 
function has a list (in Python) or array (in JavaScript) that keeps track of 
the x, y coordinates that have already been visited by previous visit() func-
tion calls. It also in-place modifies the global maze variable that stores the 
maze data structure. The Python code for visit() begins as follows:

Python def visit(x, y):
    """"Carve out" empty spaces in the maze at x, y and then
    recursively move to neighboring unvisited spaces. This
    function backtracks when the mark has reached a dead end."""
    maze[(x, y)] = EMPTY # "Carve out" the space at x, y.
    printMaze(maze, x, y) # Display the maze as we generate it.
    print('\n\n')

The JavaScript code for visit() begins as follows:

JavaScript function visit(x, y) {
    // "Carve out" empty spaces in the maze at x, y and then
    // recursively move to neighboring unvisited spaces. This
    // function backtracks when the mark has reached a dead end.

    maze[[x, y]] = EMPTY; // "Carve out" the space at x, y.
    printMaze(maze, x, y); // Display the maze as we generate it.
    document.write('<br /><br /><br />');

The visit() function accepts x, y coordinates as arguments for the place 
in the maze the algorithm is visiting. Then the function changes the data 
structure in maze at this location to an empty space. To let the user see the 
progression of the maze generation, it calls printMaze(), passing the x and y 
arguments as the current position of the mark.

Next, the recursive backtracker calls visit() with the coordinates of 
a previously unvisited neighboring space. The Python code continues as 
follows:

Python     while True:
        # Check which neighboring spaces adjacent to
        # the mark have not been visited already:
        unvisitedNeighbors = []
        if y > 1 and (x, y - 2) not in hasVisited:
            unvisitedNeighbors.append(NORTH)

        if y < HEIGHT - 2 and (x, y + 2) not in hasVisited:
            unvisitedNeighbors.append(SOUTH)

        if x > 1 and (x - 2, y) not in hasVisited:
            unvisitedNeighbors.append(WEST)

        if x < WIDTH - 2 and (x + 2, y) not in hasVisited:
            unvisitedNeighbors.append(EAST)



226   Chapter 11

The JavaScript code continues as follows:

    while (true) {
        // Check which neighboring spaces adjacent to
        // the mark have not been visited already:
        let unvisitedNeighbors = [];
        if (y > 1 && !JSON.stringify(hasVisited).includes(JSON.stringify([x, y - 2]))) {
            unvisitedNeighbors.push(NORTH);
        }
        if (y < HEIGHT - 2 && !JSON.stringify(hasVisited).includes(JSON.stringify([x, y + 2]))) 
{
            unvisitedNeighbors.push(SOUTH);
        }
        if (x > 1 && !JSON.stringify(hasVisited).includes(JSON.stringify([x - 2, y]))) {
            unvisitedNeighbors.push(WEST);
        }
        if (x < WIDTH - 2 && !JSON.stringify(hasVisited).includes(JSON.stringify([x + 2, y]))) 
{
            unvisitedNeighbors.push(EAST);
        }

The while loop continues to loop as long as unvisited neighbors remain 
for this location in the maze. We create a list or array of unvisited neighbor-
ing spaces in the unvisitedNeighbors variables. Four if statements check that 
the current x, y position is not on the border of the maze (so that we still 
have a neighboring space to check) and whether the neighboring space’s x, y 
coordinates don’t appear in the hasVisited list or array already.

If all the neighbors have been visited, the function returns so that it can 
backtrack to an earlier space. The Python code continues on to check for 
the base case:

Python         if len(unvisitedNeighbors) == 0:
            # BASE CASE
            # All neighboring spaces have been visited, so this is a
            # dead end. Backtrack to an earlier space:
            return

The JavaScript code does so as follows:

JavaScript         if (unvisitedNeighbors.length === 0) {
            // BASE CASE
            // All neighboring spaces have been visited, so this is a
            // dead end. Backtrack to an earlier space:
            return;

The base case for the recursive backtracking algorithm occurs when no 
unvisited neighbors remain to visit next. In this case, the function simply 
returns. The visit() function itself has no return value. Rather, the recur-
sive function calls visit() to modify the maze data structure in the global 
maze variable as a side effect. When the original function call to maze() 
returns, the maze global variable contains the completely generated maze.



Maze Generator    227

The Python code continues on to the recursive case like this:

Python         else:
            # RECURSIVE CASE
            # Randomly pick an unvisited neighbor to visit:
            nextIntersection = random.choice(unvisitedNeighbors)

            # Move the mark to an unvisited neighboring space:

            if nextIntersection == NORTH:
                nextX = x
                nextY = y - 2
                maze[(x, y - 1)] = EMPTY # Connecting hallway.
            elif nextIntersection == SOUTH:
                nextX = x
                nextY = y + 2
                maze[(x, y + 1)] = EMPTY # Connecting hallway.
            elif nextIntersection == WEST:
                nextX = x - 2
                nextY = y
                maze[(x - 1, y)] = EMPTY # Connecting hallway.
            elif nextIntersection == EAST:
                nextX = x + 2
                nextY = y
                maze[(x + 1, y)] = EMPTY # Connecting hallway.

            hasVisited.append((nextX, nextY)) # Mark space as visited.
            visit(nextX, nextY) # Recursively visit this space.

The JavaScript code continues as follows:

JavaScript         } else {
            // RECURSIVE CASE
            // Randomly pick an unvisited neighbor to visit:
            let nextIntersection = unvisitedNeighbors[
            Math.floor(Math.random() * unvisitedNeighbors.length)];

            // Move the mark to an unvisited neighboring space:
            let nextX, nextY;
            if (nextIntersection === NORTH) {
                nextX = x;
                nextY = y - 2;
                maze[[x, y - 1]] = EMPTY; // Connecting hallway.
            } else if (nextIntersection === SOUTH) {
                nextX = x;
                nextY = y + 2;
                maze[[x, y + 1]] = EMPTY; // Connecting hallway.
            } else if (nextIntersection === WEST) {
                nextX = x - 2;
                nextY = y;
                maze[[x - 1, y]] = EMPTY; // Connecting hallway.
            } else if (nextIntersection === EAST) {
                nextX = x + 2;
                nextY = y;



228   Chapter 11

                maze[[x + 1, y]] = EMPTY;    // Connecting hallway.
            }
            hasVisited.push([nextX, nextY]); // Mark space as visited.
            visit(nextX, nextY);             // Recursively visit this space.
        }
    }
}

The unvisitedNeighbors list or array contains one or more of the NORTH, 
SOUTH, WEST, and EAST constants. We choose one of these directions for the 
next recursive call to visit(), and then set the nextX and nextY variables with 
the coordinates of the neighboring space in this direction.

After this, we add the x, y coordinates of nextX and nextY to the hasVisited 
list or array before making the recursive call for this neighboring space. 
In this way, the visit() function continues to visit neighboring spaces, 
carving out the maze hallways by setting locations in maze to EMPTY. The 
connecting hallway between the current space and neighboring space is 
also set to EMPTY.

When no neighbors exist, the base case simply returns to an earlier 
location. In the visit() function, the execution jumps back to the start of 
the while loop. The code in the while loop again checks which neighbor-
ing spaces haven’t been visited and makes a recursive visit() call on one of 
them, or returns if all neighboring spaces have already been visited.

As the maze fills up with hallways and each space has been visited, the 
recursive calls will continue to return until the original visit() function 
call returns. At this point, the maze variable contains the completely gener-
ated maze.

Starting the Chain of Recursive Calls
The recursive visit() uses two global variables, maze and hasVisited. The 
hasVisited variable is a list or array containing the x, y coordinates of every 
space the algorithm has visited and begins with (1, 1) since that is the maze 
starting point. The Python code for this is as follows:

Python # Carve out the paths in the maze data structure:
hasVisited = [(1, 1)] # Start by visiting the top-left corner.
visit(1, 1)

# Display the final resulting maze data structure:
printMaze(maze)

The JavaScript code for this is as follows:

JavaScript // Carve out the paths in the maze data structure:
let hasVisited = [[1, 1]]; // Start by visiting the top-left corner.
visit(1, 1);

// Display the final resulting maze data structure:
printMaze(maze);



Maze Generator    229

After setting up hasVisited to include the x, y coordinates of 1, 1 (the 
top-left corner of the maze), we call visit() with these coordinates. This 
function call will result in all the recursive function calls that generate the 
hallways of the maze. By the time this function call returns, hasVisited will 
contain every x, y coordinate of the maze, and maze will contain the com-
pletely generated maze.

Summary
As you just learned, we can use recursion to not only solve mazes (by tra-
versing them as tree data structures) but also generate them using the 
recursive backtracker algorithm. The algorithm “carves out” hallways in the 
maze, backtracking to earlier points when it encounters a dead end. Once 
the algorithm is forced to backtrack to the starting point, the maze is com-
pletely generated.

We can represent a well-connected maze with no loops as a DAG—that 
is, a tree data structure. The recursive backtracker algorithm makes use 
of the idea that recursive algorithms are well suited to problems involving 
tree-like data structures and backtracking. 

Further Reading
Wikipedia has an entry on maze generation in general, with a section on 
the recursive backtracker algorithm, at https://en.wikipedia.org/wiki/Maze 
_generation_algorithm#Recursive_backtracker. I’ve created a browser-based ani-
mation of the recursive backtracker algorithm that shows the “carving” of 
hallways in action at https://scratch.mit.edu/projects/17358777.

If maze generation interests you, you should read Mazes for Programmers: 
Code Your Own Twisty Little Passages by Jamis Buck (Pragmatic Bookshelf, 2015).

https://en.wikipedia.org/wiki/Maze_generation_algorithm#Recursive_backtracker
https://en.wikipedia.org/wiki/Maze_generation_algorithm#Recursive_backtracker
https://scratch.mit.edu/projects/17358777




12
S L I D I N G - T I L E  S O L V E R

A sliding-tile puzzle, or 15-puzzle, is a small 
puzzle game implemented as a set of 15 

numbered sliding tiles on a 4 × 4 board. One 
tile is missing, allowing adjacent tiles to slide 

into the empty space on the board. The player’s goal is 
to move the tiles into numeric order, as in Figure 12-1. 
Some versions of this game have fragments of a pic-
ture on the tiles that create a whole image when the 
puzzle is complete.

T H E R E C U R S I V E 

B O O K O F 

R E C U R S I O N

A C E T H E C O D I N G I N T E R V I E W
W I T H 

P Y T H O N A N D J A V A S C R I P T

T H E
R E C U R S I V E 

B O O K
O F 

R E C U R S I O N

A C E T H E C O D I N G I N T E R V I E W
W I T H

P Y T H O N A N D J A V A S C R I P T

THE RECURSIVE

BOOKOF 

RECURSION

ACETHE
CODING

INTERVI
EWWIT

H

PYTHON
ANDJAV

ASCRIP
T



232   Chapter 12

15 2 1 12
8 5 6 11
4 9 10 7
3 14 13

1 2 3 4
5 6 7 8
9 10 11 12

13 14 15

Figure 12-1: Solving a numeric  
sliding-tile puzzle from its  
scrambled state (left) to its  
solved, ordered state (right)

Incidentally, mathematicians have proven that even the hardest 15-puzzle 
can be solved in 80 moves. 

Solving 15-Puzzles Recursively
The algorithm that solves 15-puzzles is similar to the maze-solving algo-
rithm. Each state of the board (that is, one arrangement of tiles) can be 
thought of as a maze intersection with four hallways to go down. In the case 
of 15-puzzles, sliding a tile in one of the four directions is like picking a 
hallway to follow to the next intersection.

Just as you can turn a maze into a DAG, you can convert a 15-puzzle 
into a tree graph, as in Figure 12-2. The board states are nodes with up to 
four edges (representing a direction to slide a tile) to other nodes (rep-
resenting the resultant state). The root node is the starting state of the 
15-puzzle. The solved-state node is the one in which the tiles are ordered 
correctly. The path from the root node to the solved state details the slides 
needed to solve the puzzle.

15 2 1 12
8 5 6 11
4 9 10 7
3 14 13

15 2 1 12
8 5 6 11
4 9 10 7
3 14 13

15 2 1 12
8 5 6 11
4 9 7
3 14 10 13

15 2 1 12
8 5 6 11
4 9 10
3 14 13 7

15 2 1 12
8 5 6
4 9 10 11
3 14 13 7

15 2 1 12
8 5 6 11
4 9 10 7
3 14 13

15 2 1 12
8 5 6 11
4 9 10
3 14 13 7

Figure 12-2: The task of solving a 15-puzzle can be represented as a graph  
with tile states as nodes and slides as edges.



Sliding-Tile Solver   233

Clever algorithms are available for solving 15-puzzles, but we could also 
just recursively explore the entire tree graph until we find a path from the 
root node to the solution node. This puzzle’s tree can be searched with a 
depth-first search (DFS) algorithm. However, unlike a well-connected maze, 
the 15-puzzle’s tree graph is not a DAG. Rather, the graph’s nodes are undi-
rected, because you can traverse both directions of an edge by undoing the 
previous slide you made. 

Figure 12-3 shows an example of the undirected edges between two 
nodes. Because it is possible to go back and forth between these two nodes 
forever, our 15-puzzle algorithm could encounter a stack overflow before it 
finds a solution.

15 2 1 12
8 5 6 11
4 9 10 7
3 14 13

15 2 1 12
8 5 6 11
4 9 10

73 14 13

Figure 12-3: The 15-puzzle has  
undirected edges (drawn without  
an arrowhead) between its nodes  
because slides can be undone by  
performing the opposite slide.

To optimize our algorithm, we’ll avoid slides that undo the previous 
slide. However, this optimization alone won’t save the algorithm from a 
stack overflow. While it makes the edges in the tree graph directed, it doesn’t 
turn the puzzle-solver algorithm into a DAG, because it has cycles, or loops, 
from lower nodes to higher ones. These loops happen if you slide the tiles 
in a circular pattern, as in Figure 12-4.

15 2 1 12
8 5 6 11
4 9 10 7
3 14 13

15 2 1 12
8 5 6 11
4 9 10
3 14 13 7

15 2 1 12
8 5 6 11
4 9 10
3 14 13 7

15 2 1 12
8 5 6 11
4 9 13 10
3 14 7

15 2 1 12
8 5 6 11
4 9 13 10
3 14 7

15 2 1 12
8 5 6 11
4 9 13
3 14 7 10

15 2 1 12
8 5 6 11
4 9 10 7
3 14 13

15 2 1 12
8 5 6 11
4 9 7
3 14 10 13

15 2 1 12
8 5 6 11
4 9 7
3 14 10 13

15 2 1 12
8 5 6 11
4 9 7 13
3 14 10

15 2 1 12
8 5 6 11
4 9 7 13
3 14 10

15 2 1 12
8 5 6 11
4 9 13
3 14 7 10

Figure 12-4: An example of a loop in the 15-puzzle’s graph

Cycles in the graph mean that the later nodes at the bottom could loop 
back to a node at the top. Our solving algorithm could get “stuck” following 
this loop and never explore the branch that has the actual solution. In prac-
tice, this infinite loop would result in a stack overflow.

We can still use recursion to solve a 15-puzzle. We just need to add 
our own base case for the maximum number of moves in order to avoid 



234   Chapter 12

causing a stack overflow. Then, when the maximum number of slide moves 
is reached, the algorithm will begin backtracking to earlier nodes. If the 
15-puzzle solver project can’t find a solution in every possible combination 
of 10 slides, it will try again using a maximum of 11 slides. If the puzzle 
can’t be solved in 11 moves, the project tries 12 moves, and so on. This pre-
vents the algorithm from getting stuck exploring the moves of an infinite 
loop instead of exploring possible solutions of fewer moves.

The Complete Sliding-Tile Solver Program
Let’s begin by taking a look at the complete source code for the sliding-tile 
puzzle solver program. The rest of this chapter explains each section of 
code individually. 

Copy the Python version of the code to a file named slidingTileSolver.py:

Python import random, time

DIFFICULTY = 40 # How many random slides a puzzle starts with.
SIZE = 4 # The board is SIZE x SIZE spaces.
random.seed(1) # Select which puzzle to solve.

BLANK = 0
UP = 'up'
DOWN = 'down'
LEFT = 'left'
RIGHT = 'right'

def displayBoard(board):
    """Display the tiles stored in `board` on the screen."""
    for y in range(SIZE): # Iterate over each row.
        for x in range(SIZE): # Iterate over each column.
            if board[y * SIZE + x] == BLANK:
                print('__ ', end='') # Display blank tile.
            else:
                print(str(board[y * SIZE + x]).rjust(2) + ' ', end='')
        print() # Print a newline at the end of the row.

def getNewBoard():
    """Return a list that represents a new tile puzzle."""
    board = []
    for i in range(1, SIZE * SIZE):
        board.append(i)
    board.append(BLANK)
    return board

def findBlankSpace(board):
    """Return an [x, y] list of the blank space's location."""
    for x in range(SIZE):



Sliding-Tile Solver   235

        for y in range(SIZE):
            if board[y * SIZE + x] == BLANK:
                return [x, y]

def makeMove(board, move):
    """Modify `board` in place to carry out the slide in `move`."""
    bx, by = findBlankSpace(board)
    blankIndex = by * SIZE + bx

    if move == UP:
        tileIndex = (by + 1) * SIZE + bx
    elif move == LEFT:
        tileIndex = by * SIZE + (bx + 1)
    elif move == DOWN:
        tileIndex = (by - 1) * SIZE + bx
    elif move == RIGHT:
        tileIndex = by * SIZE + (bx - 1)

    # Swap the tiles at blankIndex and tileIndex:
    board[blankIndex], board[tileIndex] = board[tileIndex], board[blankIndex]

def undoMove(board, move):
    """Do the opposite move of `move` to undo it on `board`."""
    if move == UP:
        makeMove(board, DOWN)
    elif move == DOWN:
        makeMove(board, UP)
    elif move == LEFT:
        makeMove(board, RIGHT)
    elif move == RIGHT:
        makeMove(board, LEFT)

def getValidMoves(board, prevMove=None):
    """Returns a list of the valid moves to make on this board. If
    prevMove is provided, do not include the move that would undo it."""

    blankx, blanky = findBlankSpace(board)

    validMoves = []
    if blanky != SIZE - 1 and prevMove != DOWN:
        # Blank space is not on the bottom row.
        validMoves.append(UP)

    if blankx != SIZE - 1 and prevMove != RIGHT:
        # Blank space is not on the right column.
        validMoves.append(LEFT)

    if blanky != 0 and prevMove != UP:
        # Blank space is not on the top row.
        validMoves.append(DOWN)



236   Chapter 12

    if blankx != 0 and prevMove != LEFT:
        # Blank space is not on the left column.
        validMoves.append(RIGHT)

    return validMoves

def getNewPuzzle():
    """Get a new puzzle by making random slides from the solved state."""
    board = getNewBoard()
    for i in range(DIFFICULTY):
        validMoves = getValidMoves(board)
        makeMove(board, random.choice(validMoves))
    return board

def solve(board, maxMoves):
    """Attempt to solve the puzzle in `board` in at most `maxMoves`
    moves. Returns True if solved, otherwise False."""
    print('Attempting to solve in at most', maxMoves, 'moves...')
    solutionMoves = [] # A list of UP, DOWN, LEFT, RIGHT values.
    solved = attemptMove(board, solutionMoves, maxMoves, None)

    if solved:
        displayBoard(board)
        for move in solutionMoves:
            print('Move', move)
            makeMove(board, move)
            print() # Print a newline.
            displayBoard(board)
            print() # Print a newline.

        print('Solved in', len(solutionMoves), 'moves:')
        print(', '.join(solutionMoves))
        return True # Puzzle was solved.
    else:
        return False # Unable to solve in maxMoves moves.

def attemptMove(board, movesMade, movesRemaining, prevMove):
    """A recursive function that attempts all possible moves on `board`
    until it finds a solution or reaches the `maxMoves` limit.
    Returns True if a solution was found, in which case `movesMade`
    contains the series of moves to solve the puzzle. Returns False
    if `movesRemaining` is less than 0."""

    if movesRemaining < 0:
        # BASE CASE - Ran out of moves.
        return False

    if board == SOLVED_BOARD:
        # BASE CASE - Solved the puzzle.
        return True

    # RECURSIVE CASE - Attempt each of the valid moves:



Sliding-Tile Solver   237

    for move in getValidMoves(board, prevMove):
        # Make the move:
        makeMove(board, move)
        movesMade.append(move)

        if attemptMove(board, movesMade, movesRemaining - 1, move):
            # If the puzzle is solved, return True:
            undoMove(board, move) # Reset to the original puzzle.
            return True

        # Undo the move to set up for the next move:
        undoMove(board, move)
        movesMade.pop() # Remove the last move since it was undone.
    return False # BASE CASE - Unable to find a solution.

# Start the program:
SOLVED_BOARD = getNewBoard()
puzzleBoard = getNewPuzzle()
displayBoard(puzzleBoard)
startTime = time.time()

maxMoves = 10
while True:
    if solve(puzzleBoard, maxMoves):
        break # Break out of the loop when a solution is found.
    maxMoves += 1
print('Run in', round(time.time() - startTime, 3), 'seconds.')

Copy the JavaScript version of the code to a file named slidingTile 
Solver.html:

<script type="text/javascript">
const DIFFICULTY = 40; // How many random slides a puzzle starts with.
const SIZE = 4; // The board is SIZE x SIZE spaces.

const BLANK = 0;
const UP = "up";
const DOWN = "down";
const LEFT = "left";
const RIGHT = "right";

function displayBoard(board) {
    // Display the tiles stored in `board` on the screen.
    document.write("<pre>");
    for (let y = 0; y < SIZE; y++) { // Iterate over each row.
        for (let x = 0; x < SIZE; x++) { // Iterate over each column.
            if (board[y * SIZE + x] == BLANK) {
                document.write('__ '); // Display blank tile.
            } else {
                document.write(board[y * SIZE + x].toString().padStart(2) + " ");
            }
        }



238   Chapter 12

        document.write("<br />"); // Print a newline at the end of the row.
    }
    document.write("</pre>");
}

function getNewBoard() {
    // Return a list that represents a new tile puzzle.
    let board = [];
    for (let i = 1; i < SIZE * SIZE; i++) {
        board.push(i);
    }
    board.push(BLANK);
    return board;
}

function findBlankSpace(board) {
    // Return an [x, y] array of the blank space's location.
    for (let x = 0; x < SIZE; x++) {
        for (let y = 0; y < SIZE; y++) {
            if (board[y * SIZE + x] === BLANK) {
                return [x, y];
            }
        }
    }
}

function makeMove(board, move) {
    // Modify `board` in place to carry out the slide in `move`.
    let bx, by;
    [bx, by] = findBlankSpace(board);
    let blankIndex = by * SIZE + bx;

    let tileIndex;
    if (move === UP) {
        tileIndex = (by + 1) * SIZE + bx;
    } else if (move === LEFT) {
        tileIndex = by * SIZE + (bx + 1);
    } else if (move === DOWN) {
        tileIndex = (by - 1) * SIZE + bx;
    } else if (move === RIGHT) {
        tileIndex = by * SIZE + (bx - 1);
    }

    // Swap the tiles at blankIndex and tileIndex:
    [board[blankIndex], board[tileIndex]] = [board[tileIndex], board[blankIndex]];
}

function undoMove(board, move) {
    // Do the opposite move of `move` to undo it on `board`.



Sliding-Tile Solver   239

    if (move === UP) {
        makeMove(board, DOWN);
    } else if (move === DOWN) {
        makeMove(board, UP);
    } else if (move === LEFT) {
        makeMove(board, RIGHT);
    } else if (move === RIGHT) {
        makeMove(board, LEFT);
    }
}

function getValidMoves(board, prevMove) {
    // Returns a list of the valid moves to make on this board. If
    // prevMove is provided, do not include the move that would undo it.

    let blankx, blanky;
    [blankx, blanky] = findBlankSpace(board);

    let validMoves = [];
    if (blanky != SIZE - 1 && prevMove != DOWN) {
        // Blank space is not on the bottom row.
        validMoves.push(UP);
    }
    if (blankx != SIZE - 1 && prevMove != RIGHT) {
        // Blank space is not on the right column.
        validMoves.push(LEFT);
    }
    if (blanky != 0 && prevMove != UP) {
        // Blank space is not on the top row.
        validMoves.push(DOWN);
    }
    if (blankx != 0 && prevMove != LEFT) {
        // Blank space is not on the left column.
        validMoves.push(RIGHT);
    }
    return validMoves;
}

function getNewPuzzle() {
    // Get a new puzzle by making random slides from the solved state.
    let board = getNewBoard();
    for (let i = 0; i < DIFFICULTY; i++) {
        let validMoves = getValidMoves(board);
        makeMove(board, validMoves[Math.floor(Math.random() * validMoves.length)]);
    }
    return board;
}

function solve(board, maxMoves) {
    // Attempt to solve the puzzle in `board` in at most `maxMoves`
    // moves. Returns true if solved, otherwise false.
    document.write("Attempting to solve in at most " + maxMoves + " moves...<br />");
    let solutionMoves = []; // A list of UP, DOWN, LEFT, RIGHT values.



240   Chapter 12

    let solved = attemptMove(board, solutionMoves, maxMoves, null);

    if (solved) {
        displayBoard(board);
        for (let move of solutionMoves) {
            document.write("Move " + move + "<br />");
            makeMove(board, move);
            document.write("<br />"); // Print a newline.
            displayBoard(board);
            document.write("<br />"); // Print a newline.
        }
        document.write("Solved in " + solutionMoves.length + " moves:<br />");
        document.write(solutionMoves.join(", ") + "<br />");
        return true; // Puzzle was solved.
    } else {
        return false; // Unable to solve in maxMoves moves.
    }
}

function attemptMove(board, movesMade, movesRemaining, prevMove) {
    // A recursive function that attempts all possible moves on `board`
    // until it finds a solution or reaches the `maxMoves` limit.
    // Returns true if a solution was found, in which case `movesMade`
    // contains the series of moves to solve the puzzle. Returns false
    // if `movesRemaining` is less than 0.

    if (movesRemaining < 0) {
        // BASE CASE - Ran out of moves.
        return false;
    }

    if (JSON.stringify(board) == SOLVED_BOARD) {
        // BASE CASE - Solved the puzzle.
        return true;
    }

    // RECURSIVE CASE - Attempt each of the valid moves:
    for (let move of getValidMoves(board, prevMove)) {
        // Make the move:
        makeMove(board, move);
        movesMade.push(move);

        if (attemptMove(board, movesMade, movesRemaining - 1, move)) {
            // If the puzzle is solved, return true:
            undoMove(board, move); // Reset to the original puzzle.
            return true;
        }

        // Undo the move to set up for the next move:
        undoMove(board, move);
        movesMade.pop(); // Remove the last move since it was undone.
    }
    return false; // BASE CASE - Unable to find a solution.
}



Sliding-Tile Solver   241

// Start the program:
const SOLVED_BOARD = JSON.stringify(getNewBoard());
let puzzleBoard = getNewPuzzle();
displayBoard(puzzleBoard);
let startTime = Date.now();

let maxMoves = 10;
while (true) {
    if (solve(puzzleBoard, maxMoves)) {
        break; // Break out of the loop when a solution is found.
    }
    maxMoves += 1;
}
document.write("Run in " + Math.round((Date.now() - startTime) / 100) / 10 + " seconds.<br 
/>");
</script>

The program’s output looks like the following:

 7  1  3  4
 2  5 10  8
__  6  9 11
13 14 15 12
Attempting to solve in at most 10 moves...
Attempting to solve in at most 11 moves...
Attempting to solve in at most 12 moves...
--snip--
 1  2  3  4
 5  6  7  8
 9 10 11 __
13 14 15 12

Move up

 1  2  3  4
 5  6  7  8
 9 10 11 12
13 14 15 __

Solved in 18 moves:
left, down, right, down, left, up, right, up, left, left, down, 
right, right, up, left, left, left, up
Run in 39.519 seconds.

Note that when JavaScript runs in a browser, the code must complete 
before it displays any output. Until then, it may appear to have frozen, and 
your browser might ask if you’d like to prematurely stop it. You can ignore 
this warning and let the program keep working until it has solved the 
puzzle.



242   Chapter 12

The program’s recursive attemptMove() function solves sliding-tile puz-
zles by trying every possible combination of slides. The function is given a 
move to try. If this solves the puzzle, the function returns a Boolean True 
value. Otherwise, it calls attemptMove() with all the other possible moves it 
can make and returns a Boolean False value if none of them find a solution 
before exceeding the maximum number of moves. We’ll explore this func-
tion in more detail later.

The data structure we use to represent a sliding-tile board is a list 
(in Python) or array (in JavaScript) of integers, with 0 representing the 
blank space. In our program, this data structure is often stored in a vari-
able named board. The values at board[y * SIZE + x] match the tile at the 
x, y coordinates on the board, as depicted in Figure 12-5. For example, if 
the SIZE constant is 4, the value at the x, y coordinates 3, 1 can be found at 
board[1 * 4 + 3]. 

This small calculation enables us to use a 1D array or list to store the 
values of a 2D tile board. This programming technique is useful not just in 
our project but for any 2D data structure that must be stored in an array or 
list, such as a 2D image stored as a stream of bytes.

0,0 1,0 2,0 3,0

0,1 1,1 2,1 3,1

0,2 1,2 2,2 3,2

0,3 1,3 2,3

0 1 2 3

4 5 6 7

8 9 10 11

12 13 143,3 15

Figure 12-5: The x, y coordinates for  
each space on the board (left) and the  
corresponding data structure index (right)

Let’s look at some example data structures. The board with mixed-up 
tiles shown previously on the left side of Figure 12-1 would be represented 
by the following: 

[15, 2, 1, 12, 8, 5, 6, 11, 4, 9, 10, 7, 3, 14, 13, 0] 

The solved, ordered puzzle on the right side of Figure 12-1 would be 
represented by this:

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 0]

All the functions in our program will expect board data structures that 
follow this format.

Unfortunately, the 4 × 4 version of the sliding-tile puzzle has so many 
possible moves that it would take a normal laptop weeks to solve. You can 
change the SIZE constant from 4 to 3 to solve a simpler 3 × 3 version of the 
puzzle. The finished, ordered 3 × 3 puzzle’s data structure would look 
like this: 

[1, 2, 3, 4, 5, 6, 7, 8, 0].



Sliding-Tile Solver   243

Setting Up the Program’s Constants
At the beginning of the source code, the program uses a few constants to 
make the code more readable. The Python code is as follows:

Python import random, time

DIFFICULTY = 40 # How many random slides a puzzle starts with.
SIZE = 4 # The board is SIZE x SIZE spaces.
random.seed(1) # Select which puzzle to solve.

BLANK = 0
UP = 'up'
DOWN = 'down'
LEFT = 'left'
RIGHT = 'right'

The JavaScript code is as follows:

JavaScript <script type="text/javascript">
const DIFFICULTY = 40; // How many random slides a puzzle starts with.
const SIZE = 4; // The board is SIZE x SIZE spaces.

const BLANK = 0;
const UP = "up";
const DOWN = "down";
const LEFT = "left";
const RIGHT = "right";

To have reproducible random numbers, the Python program sets the 
random number seed to 1. The same seed value will always reproduce the 
same random puzzle, which is useful for debugging. You can change the 
seed value to any other integer to create different puzzles. JavaScript has 
no way to set its random seed value, and slidingtilesolver.html doesn’t have an 
equivalent feature.

The SIZE constant sets the size of the square board. You can change this 
size to anything, but 4 × 4 boards are standard, while 3 × 3 boards are use-
ful for testing, because the program is quick to solve them. The BLANK con-
stant is used in the puzzle data structure to represent the blank space and 
must be kept at 0. The UP, DOWN, LEFT, and RIGHT constants are used to make 
the code readable, similar to the NORTH, SOUTH, WEST, and EAST constants in the 
maze-generator project in Chapter 11.

Representing the Sliding-Tile Puzzle as Data
The sliding-tile board’s data structure is just a list or array of integers. What 
makes it representative of an actual puzzle board is the way it’s used by the 
functions in the program. The displayBoard(), getNewBoard(), findBlankSpace(), 
and other functions in this program all deal with this data structure. 



244   Chapter 12

Displaying the Board
The first function, displayBoard(), prints the board data structure on the 
screen. The Python code for the displayBoard() function is as follows:

Python def displayBoard(board):
    """Display the tiles stored in `board` on the screen."""
    for y in range(SIZE): # Iterate over each row.
        for x in range(SIZE): # Iterate over each column.
            if board[y * SIZE + x] == BLANK:
                print('__ ', end='') # Display blank tile.
            else:
                print(str(board[y * SIZE + x]).rjust(2) + ' ', end='')
        print() # Print a newline at the end of the row.

The JavaScript code for the displayBoard() function is as follows:

function displayBoard(board) {
    // Display the tiles stored in `board` on the screen.
    document.write("<pre>");
    for (let y = 0; y < SIZE; y++) { // Iterate over each row.
        for (let x = 0; x < SIZE; x++) { // Iterate over each column.
            if (board[y * SIZE + x] == BLANK) {
                document.write('__ '); // Display blank tile.
            } else {
                document.write(board[y * SIZE + x].toString().padStart(2) + " ");
            }
        }
        document.write("<br />");
    }
    document.write("</pre>");
}

The pair of nested for loops iterate over every row and column on the 
board. The first for loop loops over the y-coordinates, and the second for 
loop loops over the x-coordinates. This is because the program needs to 
print all the columns of a single row before printing a newline character to 
move on to the next row.

The if statement checks whether the tile at the current x, y coordinates 
is the blank tile. If it is, the program prints two underscores with a trailing 
space. Otherwise, the code in the else block prints the tile number with a 
trailing space. The trailing space is what separates the tile numbers from 
one another on the screen. If the tile number is a single digit, the rjust() 
or padStart() method will insert an extra space so that the tile number is 
aligned with the two-digit numbers on the screen.

For example, say the scrambled puzzle on the left side of Figure 12-1 is 
represented by this data structure: 

[15, 2, 1, 12, 8, 5, 6, 11, 4, 9, 10, 7, 3, 14, 13, 0] 



Sliding-Tile Solver   245

When the data structure is passed to displayBoard(), it prints the follow-
ing text:

15  2  1 12 
 8  5  6 11 
 4  9 10  7 
 3 14 13 __

Creating a New Board Data Structure
Next, the getNewBoard() function returns a new board data structure with the 
tiles in their ordered, solved places. The Python code for the getNewBoard() 
function is as follows:

Python def getNewBoard():
    """Return a list that represents a new tile puzzle."""
    board = []
    for i in range(1, SIZE * SIZE):
        board.append(i)
    board.append(BLANK)
    return board

The JavaScript code for the getNewBoard() function is as follows:

JavaScript function getNewBoard() {
    // Return a list that represents a new tile puzzle.
    let board = [];
    for (let i = 1; i < SIZE * SIZE; i++) {
        board.push(i);
    }
    board.push(BLANK);
    return board;
}

The getNewBoard() function returns a board data structure appropriate 
to the integer in the SIZE constant (either 3 × 3 or 4 × 4). The for loop gener-
ates this list or array with the integers from 1 up to, but not including, SIZE 
squared, with a 0 (the value stored in the BLANK constant) at the end to repre-
sent the blank space in the lower-right corner.

Finding the Coordinates of the Blank Space
Our program uses the findBlankSpace() function to find the x, y coordinates 
of the blank space on the board. The Python code is as follows:

Python def findBlankSpace(board):
    """Return an [x, y] list of the blank space's location."""
    for x in range(SIZE):
        for y in range(SIZE):
            if board[y * SIZE + x] == BLANK:
                return [x, y]



246   Chapter 12

The JavaScript code is as follows:

JavaScript function findBlankSpace(board) {
    // Return an [x, y] array of the blank space's location.
    for (let x = 0; x < SIZE; x++) {
        for (let y = 0; y < SIZE; y++) {
            if (board[y * SIZE + x] === BLANK) {
                return [x, y];
            }
        }
    }
}

Like the displayBoard() function, the findBlankSpace() function has a 
pair of nested for loops. These for loops will loop over every position in the 
board data structure. When the board[y * SIZE + x] code finds the blank 
space, it returns the x- and y-coordinates as two integers in a Python list or 
JavaScript array.

Making a Move
Next, the makeMove() function accepts two arguments: a board data structure 
and an UP, DOWN, LEFT, or RIGHT direction to slide a tile on that board. This 
code is fairly repetitive, so the short variable names bx and by are used to 
represent the x- and y-coordinates of the blank space.

To make a move, the board data structure swaps the value of the moved 
tile with the 0 of the blank tile. The Python code for the makeMove() function 
is as follows:

Python def makeMove(board, move):
    """Modify `board` in place to carry out the slide in `move`."""
    bx, by = findBlankSpace(board)
    blankIndex = by * SIZE + bx

    if move == UP:
        tileIndex = (by + 1) * SIZE + bx
    elif move == LEFT:
        tileIndex = by * SIZE + (bx + 1)
    elif move == DOWN:
        tileIndex = (by - 1) * SIZE + bx
    elif move == RIGHT:
        tileIndex = by * SIZE + (bx - 1)

    # Swap the tiles at blankIndex and tileIndex:
    board[blankIndex], board[tileIndex] = board[tileIndex], board[blankIndex]

The JavaScript code for the makeMove() function is as follows:

function makeMove(board, move) {
    // Modify `board` in place to carry out the slide in `move`.
    let bx, by;
    [bx, by] = findBlankSpace(board);
    let blankIndex = by * SIZE + bx;



Sliding-Tile Solver   247

    let tileIndex;
    if (move === UP) {
        tileIndex = (by + 1) * SIZE + bx;
    } else if (move === LEFT) {
        tileIndex = by * SIZE + (bx + 1);
    } else if (move === DOWN) {
        tileIndex = (by - 1) * SIZE + bx;
    } else if (move === RIGHT) {
        tileIndex = by * SIZE + (bx - 1);
    }

    // Swap the tiles at blankIndex and tileIndex:
    [board[blankIndex], board[tileIndex]] = [board[tileIndex], board[blankIndex]];
}

The if statements determine the index of the tile to move based on the 
move parameter. The function then “slides” a tile by swapping the BLANK value 
at board[blankindex] with the numbered tile at board[tileIndex]. The makeMove() 
function doesn’t return anything. Instead, it modifies the board data struc-
ture in place.

Python has the a, b = b, a syntax to swap the value of two variables. For 
JavaScript, we need to envelop them in an array, such as [a, b] = [b, a] to 
perform the swap. We use this syntax at the end of the function to swap the 
values in board[blankIndex] and board[tileIndex] with each other.

Undoing a Move
Next, as part of the backtracking in the recursive algorithm, our program 
needs to undo moves. This is as simple as making a move in the opposite 
direction as the initial move. The Python code for the undoMove() function is 
as follows:

Python def undoMove(board, move):
    """Do the opposite move of `move` to undo it on `board`."""
    if move == UP:
        makeMove(board, DOWN)
    elif move == DOWN:
        makeMove(board, UP)
    elif move == LEFT:
        makeMove(board, RIGHT)
    elif move == RIGHT:
        makeMove(board, LEFT)

The JavaScript code for the undoMove() function is as follows:

JavaScript function undoMove(board, move) {
    // Do the opposite move of `move` to undo it on `board`.
    if (move === UP) {
        makeMove(board, DOWN);
    } else if (move === DOWN) {
        makeMove(board, UP);
    } else if (move === LEFT) {
        makeMove(board, RIGHT);



248   Chapter 12

    } else if (move === RIGHT) {
        makeMove(board, LEFT);
    }
}

We’ve already programmed the swapping logic into the makeMove() func-
tion, so undoMove() can just call that function for the direction opposite of 
the move argument. This way, a hypothetical someMove move made on a hypo-
thetical someBoard data structure by the makeMove(someBoard, someMove) func-
tion call can be undone by calling undoMove(someBoard, someMove).

Setting Up a New Puzzle
To create a new, scrambled puzzle, we cannot simply put the tiles in ran-
dom places, because some configurations of tiles produce invalid, unsolv-
able puzzles. Instead, we need to start from a solved puzzle and make many 
random moves. Solving the puzzle becomes a matter of figuring out which 
slides will undo these random slides to get back to the original, ordered 
configuration.

But it’s not always possible to make moves in each of the four direc-
tions. For example, if the blank space is in the bottom-right corner, as in 
Figure 12-6, tiles can slide only down or right because no tiles can slide left 
or up. Furthermore, if sliding the 7 tile in Figure 12-6 up was the previ-
ous move, then sliding it down is removed as a valid move because it would 
undo the previous move.

15 2 1 12

8 5 6 11

4 9 10 7

3 14 13

Figure 12-6: If the  
blank space is in  
the bottom-right  
corner, down and  
right are the only  
valid slide directions.

To help us, we need a getValidMoves() function that can tell us which 
slide directions are possible on a given board data structure:

Python def getValidMoves(board, prevMove=None):
    """Returns a list of the valid moves to make on this board. If
    prevMove is provided, do not include the move that would undo it."""

    blankx, blanky = findBlankSpace(board)

    validMoves = []



Sliding-Tile Solver   249

    if blanky != SIZE - 1 and prevMove != DOWN:
        # Blank space is not on the bottom row.
        validMoves.append(UP)

    if blankx != SIZE - 1 and prevMove != RIGHT:
        # Blank space is not on the right column.
        validMoves.append(LEFT)

    if blanky != 0 and prevMove != UP:
        # Blank space is not on the top row.
        validMoves.append(DOWN)

    if blankx != 0 and prevMove != LEFT:
        # Blank space is not on the left column.
        validMoves.append(RIGHT)

    return validMoves

The JavaScript code for this function is as follows:

JavaScript function getValidMoves(board, prevMove) {
    // Returns a list of the valid moves to make on this board. If
    // prevMove is provided, do not include the move that would undo it.

    let blankx, blanky;
    [blankx, blanky] = findBlankSpace(board);

    let validMoves = [];
    if (blanky != SIZE - 1 && prevMove != DOWN) {
        // Blank space is not on the bottom row.
        validMoves.push(UP);
    }
    if (blankx != SIZE - 1 && prevMove != RIGHT) {
        // Blank space is not on the right column.
        validMoves.push(LEFT);
    }
    if (blanky != 0 && prevMove != UP) {
        // Blank space is not on the top row.
        validMoves.push(DOWN);
    }
    if (blankx != 0 && prevMove != LEFT) {
        // Blank space is not on the left column.
        validMoves.push(RIGHT);
    }
    return validMoves;
}

The first thing the getValidMoves() function does is call findBlankSpace() 
and store the x, y coordinates of the blank space in the variables blankx 
and blanky. Next, the function sets up the validMoves variable with an empty 
Python list or empty JavaScript array to hold all the valid directions for a 
slide.



250   Chapter 12

Looking back at Figure 12-5, a y-coordinate of 0 represents the top edge 
of the board. If blanky, the blank space’s y-coordinate, is not 0, then we know 
the blank space is not on the top edge. If the previous move was also not 
DOWN, then up is a valid move, and the code adds UP to validMoves.

Similarly, the left edge has an x-coordinate of 0, the bottom edge has a 
y-coordinate of SIZE - 1, and the right edge has an x-coordinate of SIZE - 1.  
Using the expression SIZE - 1 ensures that this code works no matter whether 
the board is 3 × 3, 4 × 4, or any other size. The getValidMoves() function does 
these checks for all four directions and then returns validMoves.

Next, the getNewPuzzle() function returns the data structure of a scram-
bled board for the program to solve. Tiles can’t simply be randomly placed 
on the board, because some configurations of tiles produce puzzles that are 
impossible to solve. To avoid this, the getNewPuzzle() function starts with an 
ordered, solved board and then applies a large number of random slides to 
it. Solving this puzzle is, in effect, figuring out the moves that undo these 
slides. The Python code for the getNewPuzzle() function is as follows:

Python def getNewPuzzle():
    """Get a new puzzle by making random slides from the solved state."""
    board = getNewBoard()
    for i in range(DIFFICULTY):
        validMoves = getValidMoves(board)
        makeMove(board, random.choice(validMoves))
    return board

The JavaScript code is as follows:

function getNewPuzzle() {
    // Get a new puzzle by making random slides from the solved state.
    let board = getNewBoard();
    for (let i = 0; i < DIFFICULTY; i++) {
        let validMoves = getValidMoves(board);
        makeMove(board, validMoves[Math.floor(Math.random() * validMoves.length)]);
    }
    return board;
}

The call to getNewBoard() obtains a board data structure in the ordered, 
solved state. The for loop calls getValidMoves() to obtain a list of valid moves, 
given the current state of the board, and then calls makeMove() with a ran-
domly selected move from the list. The random.choice() function in Python 
and the Math.floor() and Math.random() functions in JavaScript will handle 
the random selection from the validMoves list or array, no matter what com-
bination of UP, DOWN, LEFT, and RIGHT values it contains. 

The DIFFICULTY constant determines how many random slides from make 
Move() the for loop applies. The higher the integer in DIFFICULTY, the more 
scrambled the puzzle becomes. Even though this results in some moves 
that undo earlier moves by pure chance, such as sliding left and then 



Sliding-Tile Solver   251

immediately sliding right, with enough slides the function produces a 
thoroughly scrambled board. For testing purposes, DIFFICULTY is set to 40, 
allowing the program to produce a solution in about a minute. For a more 
realistic 15-puzzle, you should change DIFFICULTY to 200.

After the board data structure in board is created and scrambled, the 
getNewPuzzle() function returns it.

Recursively Solving the Sliding-Tile Puzzle
Now that we have the functions for creating and manipulating the puzzle 
data structure, let’s create the functions that solve the puzzle by recursively 
sliding the tiles in each possible direction and checking whether this pro-
duces a finished, ordered board.

The attemptMove() function performs a single slide on a board data 
structure, then recursively calls itself once for each of the valid moves the 
board can make. Multiple base cases exist. If the board data structure is in 
a solved state, the function returns a Boolean True value; if the maximum 
number of moves has been reached, it returns a Boolean False value. Also, if 
a recursive call has returned True, then attemptMove() should return True, and 
if recursive calls for all the valid moves have returned False, then attempt 
Move() should return False.

The solve() Function
The solve() function takes a board data structure and maximum number of 
moves the algorithm should attempt before backtracking. Then it performs 
the first call to attemptMove(). If this first call to attemptMove() returns True, 
the code in solve() displays the series of steps that solves the puzzle. If it 
returns False, the code in solve() tells the user no solution was found with 
this maximum number of moves.

The Python code for solve() begins as follows:

Python def solve(board, maxMoves):
    """Attempt to solve the puzzle in `board` in at most `maxMoves`
    moves. Returns True if solved, otherwise False."""
    print('Attempting to solve in at most', maxMoves, 'moves...')
    solutionMoves = [] # A list of UP, DOWN, LEFT, RIGHT values.
    solved = attemptMove(board, solutionMoves, maxMoves, None)

The JavaScript code for solve() begins as follows:

function solve(board, maxMoves) {
    // Attempt to solve the puzzle in `board` in at most `maxMoves`
    // moves. Returns true if solved, otherwise false.
    document.write("Attempting to solve in at most " + maxMoves + " moves...<br />");
    let solutionMoves = []; // A list of UP, DOWN, LEFT, RIGHT values.
    let solved = attemptMove(board, solutionMoves, maxMoves, null);



252   Chapter 12

The solve() function has two parameters: board contains the data struc-
ture of the puzzle to solve, and maxMoves is the maximum number of moves 
the function should make to try to solve the puzzle. The solutionMoves list or 
array contains the sequence of UP, DOWN, LEFT, and RIGHT values that produce 
the solved state. The attemptMove() function modifies this list or array in 
place as it makes recursive calls. If the initial attemptMove() function finds a 
solution and returns True, solutionMoves contains the sequence of moves for 
the solution.

The solve() function then makes the initial call to attemptMove(), and 
stores the True or False it returns in the solved variable. The rest of the 
solve() function handles these two cases:

Python     if solved:
        displayBoard(board)
        for move in solutionMoves:
            print('Move', move)
            makeMove(board, move)
            print() # Print a newline.
            displayBoard(board)
            print() # Print a newline.

        print('Solved in', len(solutionMoves), 'moves:')
        print(', '.join(solutionMoves))
        return True # Puzzle was solved.
    else:
        return False # Unable to solve in maxMoves moves.

The JavaScript code is as follows:

JavaScript     if (solved) {
        displayBoard(board);
        for (let move of solutionMoves) {
            document.write("Move " + move + "<br />");
            makeMove(board, move);
            document.write("<br />"); // Print a newline.
            displayBoard(board);
            document.write("<br />"); // Print a newline.
        }
        document.write("Solved in " + solutionMoves.length + " moves:<br />");
        document.write(solutionMoves.join(", ") + "<br />");
        return true; // Puzzle was solved.
    } else {
        return false; // Unable to solve in maxMoves moves.
    }
}

If attemptMove() finds a solution, the program runs through all the moves 
gathered in the solutionMoves list or array and displays the board after each 
slide. This proves to the user that the moves collected by attemptMove() are the 
real solution to the puzzle. Finally, the solve() function itself returns True. If 
attemptMove() is unable to find a solution, the solve() function simply returns 
False.



Sliding-Tile Solver   253

The attemptMove() Function
Let’s take a look at attemptMove(), the core recursive function behind our 
tile-solving algorithm. Remember the tree graph that a sliding-tile puzzle 
produces; calling attemptMove() for a certain direction is like traveling down 
that edge of this graph to the next node. A recursive attemptMove() call 
moves further down the tree. When this recursive attemptMove() call returns, 
it backtracks to a previous node. When attemptMove() has backtracked all the 
way to the root node, the program execution has returned to the solve() 
function.

The Python code for attemptMove() begins as follows:

Python def attemptMove(board, movesMade, movesRemaining, prevMove):
    """A recursive function that attempts all possible moves on `board`
    until it finds a solution or reaches the `maxMoves` limit.
    Returns True if a solution was found, in which case `movesMade`
    contains the series of moves to solve the puzzle. Returns False
    if `movesRemaining` is less than 0."""

    if movesRemaining < 0:
        # BASE CASE - Ran out of moves.
        return False

    if board == SOLVED_BOARD:
        # BASE CASE - Solved the puzzle.
        return True

The JavaScript code for attemptMove() begins as follows:

JavaScript function attemptMove(board, movesMade, movesRemaining, prevMove) {
    // A recursive function that attempts all possible moves on `board`
    // until it finds a solution or reaches the `maxMoves` limit.
    // Returns true if a solution was found, in which case `movesMade`
    // contains the series of moves to solve the puzzle. Returns false
    // if `movesRemaining` is less than 0.

    if (movesRemaining < 0) {
        // BASE CASE - Ran out of moves.
        return false;
    }

    if (JSON.stringify(board) == SOLVED_BOARD) {
        // BASE CASE - Solved the puzzle.
        return true;
    }

The attemptMove() function has four parameters. The board parameter 
contains a tile puzzle board data structure to solve. The movesMade param-
eter contains a list or array that attemptMove() modifies in place, adding the 
UP, DOWN, LEFT, and RIGHT values that the recursive algorithm has made. If 
attemptMove() solves the puzzle, movesMade will contain the moves that led to 
the solution. This list or array is also what the solutionMoves variable in the 
solve() function refers to.



254   Chapter 12

The solve() function uses its maxMoves variable as the movesRemaining 
parameter in the initial call to attemptMove(). Each recursive call passes max 
Moves - 1 for the next value of maxMoves, causing it to decrease as more recur-
sive calls are made. When it becomes less than 0, the attemptMove() function 
stops making additional recursive calls and returns False.

Finally, the prevMove parameter contains the UP, DOWN, LEFT, or RIGHT value 
that the previous call to attemptMove() made so that it doesn’t undo that move. 
For the initial call to attemptMove(), the solve() function passes Python’s None 
or JavaScript’s null value for this parameter, since no previous move exists.

The beginning of the attemptMove() code checks for two base cases, 
returning False if movesRemaining has become less than 0, and returning True 
if board is in the solved state. The SOLVED_BOARD constant contains a board in 
the solved state that we can compare to the data structure in board.

The next part of attemptMove() performs each of the valid moves it can 
do on this board. The Python code is as follows:

Python     # RECURSIVE CASE - Attempt each of the valid moves:
    for move in getValidMoves(board, prevMove):
        # Make the move:
        makeMove(board, move)
        movesMade.append(move)

        if attemptMove(board, movesMade, movesRemaining - 1, move):
            # If the puzzle is solved, return True:
            undoMove(board, move) # Reset to the original puzzle.
            return True

The JavaScript code is as follows:

JavaScript     // RECURSIVE CASE - Attempt each of the valid moves:
    for (let move of getValidMoves(board, prevMove)) {
        // Make the move:
        makeMove(board, move);
        movesMade.push(move);

        if (attemptMove(board, movesMade, movesRemaining - 1, move)) {
            // If the puzzle is solved, return True:
            undoMove(board, move); // Reset to the original puzzle.
            return true;
        }

The for loop sets the move variable to each of the directions returned 
by getValidMoves(). For each move, we call makeMove() to modify the board 
data structure with the move and to add the move to the list or array in 
movesMade. 

Next, the code recursively calls attemptMove() to explore the range of 
all possible future moves within the depth set by movesRemaining. The board 
and movesMade variables are forwarded to this recursive call. The code sets 
the recursive call’s movesRemaining parameter to movesRemaining - 1 so that it 
decreases by one. It also sets the prevMode parameter to move so that it doesn’t 
immediately undo the move just made.



Sliding-Tile Solver   255

If the recursive call returns True, a solution exists and is recorded in 
the movesMade list or array. We call the undoMove() function so that board will 
contain the original puzzle after the execution returns to solve() and then 
return True to indicate a solution has been found.

The Python code for attemptMove() continues as follows:

Python         # Undo the move to set up for the next move:
        undoMove(board, move)
        movesMade.pop() # Remove the last move since it was undone.
    return False # BASE CASE - Unable to find a solution.

The JavaScript code is as follows:

JavaScript         // Undo the move to set up for the next move:
        undoMove(board, move);
        movesMade.pop(); // Remove the last move since it was undone.
    }
    return false; // BASE CASE - Unable to find a solution.
}

If attemptMove() returns False, no solution is found. In that case, we call 
undoMove() and remove the latest move from the movesMade list or array.

All of this is done for each of the valid directions. If none of the calls to 
attemptMove() for these directions finds a solution before reaching the maxi-
mum number of moves, the attemptMove() function returns False.

Starting the Solver
The solve() function is useful for kicking off the initial call to attemptMove(), 
but the program still needs to do some setup. The Python code for this is as 
follows:

Python # Start the program:
SOLVED_BOARD = getNewBoard()
puzzleBoard = getNewPuzzle()
displayBoard(puzzleBoard)
startTime = time.time()

The JavaScript code for this setup is as follows:

JavaScript // Start the program:
const SOLVED_BOARD = JSON.stringify(getNewBoard());
let puzzleBoard = getNewPuzzle();
displayBoard(puzzleBoard);
let startTime = Date.now();

First, the SOLVED_BOARD constant is set to an ordered, solved board as 
returned by getNewBoard(). This constant isn’t set at the top of the source 
code because the getNewBoard() function needs to be defined before it can 
be called.



256   Chapter 12

Next, a random puzzle is returned from getNewPuzzle() and stored in 
the puzzleBoard variable. This variable contains the puzzle board data struc-
ture that will be solved. If you want to solve a specific 15-puzzle instead of 
a random one, you can replace the call to getNewPuzzle() with a list or array 
containing the puzzle you do want to solve.

The board in puzzleBoard is displayed to the user, and the current time 
is stored in startTime so that the program can calculate the runtime of the 
algorithm. The Python code continues as follows:

Python maxMoves = 10
while True:
    if solve(puzzleBoard, maxMoves):
        break # Break out of the loop when a solution is found.
    maxMoves += 1
print('Run in', round(time.time() - startTime, 3), 'seconds.')

The JavaScript code is as follows:

let maxMoves = 10;
while (true) {
    if (solve(puzzleBoard, maxMoves)) {
        break; // Break out of the loop when a solution is found.
    }
    maxMoves += 1;
}
document.write("Run in " + Math.round((Date.now() - startTime) / 100) / 10 + " seconds.<br 
/>");
</script>

The program begins trying to solve the puzzle in puzzleBoard in a 
maximum of 10 moves. The infinite while loop calls solve(). If a solution is 
found, solve() prints the solution on the screen and returns True. In that 
case, the code here can break out of the infinite while loop and print the 
total runtime of the algorithm. 

Otherwise, if solve() returns False, maxMoves is incremented by 1 and the 
loop calls solve() again. This lets the program try progressively longer com-
binations of moves to solve the puzzle. This pattern continues until solve() 
finally returns True.

Summary
A 15-puzzle is a good example of adapting the principles of recursion to a 
real-world problem. Recursion can perform a depth-first search on the tree 
graph of states that a 15-puzzle produces to find the path to a solution state. 
However, a purely recursive algorithm won’t work, which was why we had to 
make certain adjustments.

The problem arises because a 15-puzzle has a massive number of possi-
ble states and doesn’t form a DAG. The edges in this graph are undirected, 
and the graph contains loops, or cycles. Our solving algorithm needs to 
ensure that it doesn’t make moves that immediately undo the previous 



Sliding-Tile Solver   257

move, so that it traverses the graph in one direction. It also needs to have 
a maximum number of moves the algorithm is willing to make before it 
begins to backtrack; otherwise, the loops guarantee that the algorithm will 
eventually recurse too much and cause a stack overflow.

Recursion isn’t necessarily the best approach for solving sliding-tile 
puzzles. All but the easiest puzzles simply have too many combinations for a 
typical laptop to solve within a reasonable amount of time. However, I like 
the 15-puzzle as an exercise in recursion because it connects the theoretical 
ideas of DAGs and DFS into a real-world problem. While 15-puzzles were 
invented over a century ago, the advent of computers provides a rich tool 
for exploring techniques to solve these amusing toys.

Further Reading
The Wikipedia entry for 15-puzzles at https://en.wikipedia.org/wiki/15_puzzle 
details their history and mathematical background.

You can find the Python source code for a playable version of the 
sliding-tile puzzle game in my book The Big Book of Small Python Projects (No 
Starch Press, 2021) and online at https://inventwithpython.com/bigbookpython/
project68.html.

https://en.wikipedia.org/wiki/15_puzzle
https://inventwithpython.com/bigbookpython/project68.html
https://inventwithpython.com/bigbookpython/project68.html




13
F R A C T A L  A R T  M A K E R

Chapter 9 introduced you to programs 
that draw many well-known fractals with 

the turtle Python module, but you can also 
make your own fractal art with the project in 

this chapter. The Fractal Art Maker program uses 
Python’s turtle module to turn simple shapes into 
complex designs with minimal additional code. 

The project in this chapter comes with nine example fractals, although 
you can also write new functions to create fractals of your design. Modify 
the example fractals to produce radically different artwork or write code 
from scratch to implement your own creative vision.

N O T E 	 For a thorough explanation of the functions in the turtle module, return to Chapter 9.

T H E R E C U R S I V E 

B O O K O F 

R E C U R S I O N

A C E T H E C O D I N G I N T E R V I E W
W I T H 

P Y T H O N A N D J A V A S C R I P T

T H E
R E C U R S I V E 

B O O K
O F 

R E C U R S I O N

A C E T H E C O D I N G I N T E R V I E W
W I T H

P Y T H O N A N D J A V A S C R I P T

THE RECURSIVE

BOOKOF 

RECURSION

ACETHE
CODING

INTERVI
EWWIT

H

PYTHON
ANDJAV

ASCRIP
T



260   Chapter 13

The Built-in Fractals
You can direct your computer to create an unlimited number of fractals. 
Figure 13-1 shows the nine fractals that come with the Fractal Art Maker 
program that we’ll use in this chapter. These are produced from functions 
that draw a simple square or equilateral triangle as the base shape, then 
introduce slight differences in their recursive configuration to produce 
completely different images.

Four Corners Spiral Squares Double Spiral Squares

Triangle Spiral Conway’s Game of Life Glider Sierpiński Triangle

Wave Horn Snowflake

Figure 13-1: The nine example fractals that come with the Fractal Art Maker program

You can produce all of these fractals by setting the DRAW_FRACTAL constant 
at the top of the program to an integer from 1 to 9 and then running the 
Fractal Art Maker program. You can also set DRAW_FRACTAL to 10 or 11 to draw 
the basic square and triangle shapes, respectively, that compose these frac-
tals, as shown in Figure 13-2.



Fractal Art Maker   261

Figure 13-2: The results of calling drawFilledSquare() (left) and drawTriangleOutline() (right) on their own

These shapes are fairly simple: a square filled with either white or gray, 
and a simple outline of a triangle. The drawFractal() function uses these 
basic shapes to create amazing fractals.

The Fractal Art Maker Algorithm
The Fractal Art Maker’s algorithm has two major components: a shape-
drawing function and the recursive drawFractal() function. 

The shape-drawing function draws a basic shape. The Fractal Art Maker 
program comes with the two shape-drawing functions shown previously in 
Figure 13-2, drawFilledSquare() and drawTriangleOutline(), but you can also 
create your own. We pass a shape-drawing function to the drawFractal() func-
tion as an argument, just as we passed the match functions to the file finder’s 
walk() function in Chapter 10.

The drawFractal() function also has a parameter indicating changes 
to the size, position, and angle of the shapes between recursive calls to 
drawFractal(). We’ll cover these specific details later in this chapter, but 
let’s look at one example: fractal 7, which draws a wave-like image. 

The program produces the Wave fractal by calling the drawTriangle 
Outline() shape-drawing function, which creates a single triangle. The 
additional arguments to drawFractal() tell it to make three recursive calls to 
drawFractal(). Figure 13-3 shows the triangle produced by the original call 
to drawFractal() and the triangles produced by the three recursive calls.



262   Chapter 13

Figure 13-3: The triangle produced by the first call to drawFractal() (left) and the first set of three recursive 
calls (right)

The first recursive call tells drawFractal() to call drawTriangleOutline() but 
with a triangle that is half the size and positioned to the top left of the pre-
vious triangle. The second recursive call produces a triangle to the top right 
of the previous triangle that is 30 percent of its size. The third recursive 
call produces a triangle below the previous triangle that is half its size and 
rotated 15 degrees compared to it. 

Each of these three recursive calls to drawFractal() makes three more 
recursive calls to drawFractal(), producing nine new triangles. The new tri-
angles have the same changes to their size, position, and angle relative to 
their previous triangle. The top-left triangle is always half the size of the 
previous triangle, while the bottom triangle is always rotated 15 degrees 
more. Figure 13-4 shows the triangles produced by the first and second lev-
els of recursion.

Figure 13-4: The first level of recursive calls to drawFractal() (left) and the nine new triangles of the second 
level of recursive calls (right)



Fractal Art Maker   263

The nine calls to drawFractal() that produce these nine new triangles 
each make three recursive calls to drawFractal(), producing 27 new triangles 
at the next level of recursion. As this pattern of recursion continues, even-
tually the triangles become so small that drawFractal() stops making new 
recursive calls. This is one of the base cases for the recursive drawFractal() 
function. The other occurs when the recursive depth reaches a specified 
level. Either way, these recursive calls produce the final Wave fractal in 
Figure 13-5.

Figure 13-5: The final Wave fractal after each triangle recursively generates  
three more triangles

The nine example fractals in Figure 13-1 that come with the Fractal Art 
Maker are made with just two shape-drawing functions and a few changes 
to the arguments to drawFractal(). Let’s take a look at the Fractal Art 
Maker’s code to see how it accomplishes this.

The Complete Fractal Art Maker Program
Enter the following code into a new file and save it as fractalArtMaker.py. 
This program relies on Python’s built-in turtle module, so no JavaScript 
code is used for this chapter’s project:

Python import turtle, math

DRAW_FRACTAL = 1 # Set to 1 through 11 and run the program.

fractalArtMaker.py


264   Chapter 13

turtle.tracer(5000, 0) # Increase the first argument to speed up the drawing.
turtle.hideturtle()

def drawFilledSquare(size, depth):
    size = int(size)

    # Move to the top-right corner before drawing:
    turtle.penup()
    turtle.forward(size // 2)
    turtle.left(90)
    turtle.forward(size // 2)
    turtle.left(180)
    turtle.pendown()

    # Alternate between white and gray (with black border):
    if depth % 2 == 0:
        turtle.pencolor('black')
        turtle.fillcolor('white')
    else:
        turtle.pencolor('black')
        turtle.fillcolor('gray')

    # Draw a square:
    turtle.begin_fill()
    for i in range(4): # Draw four lines.
        turtle.forward(size)
        turtle.right(90)
    turtle.end_fill()

def drawTriangleOutline(size, depth):
    size = int(size)

    # Move the turtle to the top of the equilateral triangle:
    height = size * math.sqrt(3) / 2
    turtle.penup()
    turtle.left(90) # Turn to face upward.
    turtle.forward(height * (2/3)) # Move to the top corner.
    turtle.right(150) # Turn to face the bottom-right corner.
    turtle.pendown()

    # Draw the three sides of the triangle:
    for i in range(3):
        turtle.forward(size)
        turtle.right(120)

def drawFractal(shapeDrawFunction, size, specs, maxDepth=8, depth=0):
    if depth > maxDepth or size < 1:
        return # BASE CASE

    # Save the position and heading at the start of this function call:
    initialX = turtle.xcor()
    initialY = turtle.ycor()
    initialHeading = turtle.heading()



Fractal Art Maker   265

    # Call the draw function to draw the shape:
    turtle.pendown()
    shapeDrawFunction(size, depth)
    turtle.penup()

    # RECURSIVE CASE
    for spec in specs:
        # Each dictionary in specs has keys 'sizeChange', 'xChange',
        # 'yChange', and 'angleChange'. The size, x, and y changes
        # are multiplied by the size parameter. The x change and y
        # change are added to the turtle's current position. The angle
        # change is added to the turtle's current heading.
        sizeCh = spec.get('sizeChange', 1.0)
        xCh = spec.get('xChange', 0.0)
        yCh = spec.get('yChange', 0.0)
        angleCh = spec.get('angleChange', 0.0)

        # Reset the turtle to the shape's starting point:
        turtle.goto(initialX, initialY)
        turtle.setheading(initialHeading + angleCh)
        turtle.forward(size * xCh)
        turtle.left(90)
        turtle.forward(size * yCh)
        turtle.right(90)

        # Make the recursive call:
        drawFractal(shapeDrawFunction, size * sizeCh, specs, maxDepth, 
        depth + 1)

if DRAW_FRACTAL == 1:
    # Four Corners:
    drawFractal(drawFilledSquare, 350,
        [{'sizeChange': 0.5, 'xChange': -0.5, 'yChange': 0.5},
         {'sizeChange': 0.5, 'xChange': 0.5, 'yChange': 0.5},
         {'sizeChange': 0.5, 'xChange': -0.5, 'yChange': -0.5},
         {'sizeChange': 0.5, 'xChange': 0.5, 'yChange': -0.5}], 5)
elif DRAW_FRACTAL == 2:
    # Spiral Squares:
    drawFractal(drawFilledSquare, 600, [{'sizeChange': 0.95,
        'angleChange': 7}], 50)
elif DRAW_FRACTAL == 3:
    # Double Spiral Squares:
    drawFractal(drawFilledSquare, 600,
        [{'sizeChange': 0.8, 'yChange': 0.1, 'angleChange': -10},
         {'sizeChange': 0.8, 'yChange': -0.1, 'angleChange': 10}])
elif DRAW_FRACTAL == 4:
    # Triangle Spiral:
    drawFractal(drawTriangleOutline, 20,
        [{'sizeChange': 1.05, 'angleChange': 7}], 80)
elif DRAW_FRACTAL == 5:
    # Conway's Game of Life Glider:
    third = 1 / 3
    drawFractal(drawFilledSquare, 600,
        [{'sizeChange': third, 'yChange': third},



266   Chapter 13

         {'sizeChange': third, 'xChange': third},
         {'sizeChange': third, 'xChange': third, 'yChange': -third},
         {'sizeChange': third, 'yChange': -third},
         {'sizeChange': third, 'xChange': -third, 'yChange': -third}])
elif DRAW_FRACTAL == 6:
    # Sierpiński Triangle:
    toMid = math.sqrt(3) / 6
    drawFractal(drawTriangleOutline, 600,
        [{'sizeChange': 0.5, 'yChange': toMid, 'angleChange': 0},
         {'sizeChange': 0.5, 'yChange': toMid, 'angleChange': 120},
         {'sizeChange': 0.5, 'yChange': toMid, 'angleChange': 240}])
elif DRAW_FRACTAL == 7:
    # Wave:
    drawFractal(drawTriangleOutline, 280,
        [{'sizeChange': 0.5, 'xChange': -0.5, 'yChange': 0.5},
         {'sizeChange': 0.3, 'xChange': 0.5, 'yChange': 0.5},
         {'sizeChange': 0.5, 'yChange': -0.7, 'angleChange': 15}])
elif DRAW_FRACTAL == 8:
    # Horn:
    drawFractal(drawFilledSquare, 100,
        [{'sizeChange': 0.96, 'yChange': 0.5, 'angleChange': 11}], 100)
elif DRAW_FRACTAL == 9:
    # Snowflake:
    drawFractal(drawFilledSquare, 200,
        [{'xChange': math.cos(0 * math.pi / 180),
          'yChange': math.sin(0 * math.pi / 180), 'sizeChange': 0.4},
         {'xChange': math.cos(72 * math.pi / 180),
          'yChange': math.sin(72 * math.pi / 180), 'sizeChange': 0.4},
         {'xChange': math.cos(144 * math.pi / 180),
          'yChange': math.sin(144 * math.pi / 180), 'sizeChange': 0.4},
         {'xChange': math.cos(216 * math.pi / 180),
          'yChange': math.sin(216 * math.pi / 180), 'sizeChange': 0.4},
         {'xChange': math.cos(288 * math.pi / 180),
          'yChange': math.sin(288 * math.pi / 180), 'sizeChange': 0.4}])
elif DRAW_FRACTAL == 10:
    # The filled square shape:
    turtle.tracer(1, 0)
    drawFilledSquare(400, 0)
elif DRAW_FRACTAL == 11:
    # The triangle outline shape:
    turtle.tracer(1, 0)
    drawTriangleOutline(400, 0)
else:
    assert False, 'Set DRAW_FRACTAL to a number from 1 to 11.'

turtle.exitonclick() # Click the window to exit.

When you run this program, it will show the first of nine fractal images 
from Figure 13-1. You can change the DRAW_FRACTAL constant at the beginning 
of the source code to any integer from 1 to 9 and run the program again to 
see a new fractal. After learning how the program works, you’ll also be able 
to create your own shape-drawing functions and call drawFractal() to pro-
duce fractals of your own design.



Fractal Art Maker   267

Setting Up Constants and the Turtle Configuration
The first lines of the program cover basic setup steps for our turtle-based 
program:

Python import turtle, math

DRAW_FRACTAL = 1 # Set to 1 through 11 and run the program.

turtle.tracer(5000, 0) # Increase the first argument to speed up the drawing.
turtle.hideturtle()

The program imports the turtle module for drawing. It also imports 
the math module for the math.sqrt() function, which the Sierpiński Triangle 
fractal will use, and the math.cos() and math.sin() functions, for the Snow
flake fractal. 

The DRAW_FRACTAL constant can be set to any integer from 1 to 9 to draw 
one of the nine built-in fractals the program produces. You can also set it 
to 10 or 11 to show the output of the square or triangle shape-drawing func-
tion, respectively.

We also call some turtle functions to prepare for drawing. The turtle 
.tracer(5000, 0) call speeds up the drawing of the fractal. The 5000 argu-
ment tells the turtle module to wait until 5,000 turtle drawing instructions 
have been processed before rendering the drawing on the screen, and the 0 
argument tells it to pause for 0 milliseconds after each drawing instruction. 
Otherwise, the turtle module would render the image after each drawing 
instruction, which significantly slows the program if we want only the final 
image. 

You can change this call to turtle.tracer(1, 10) if you want to slow the 
drawing and watch the lines as they’re produced. This can be useful when 
making your own fractals to debug any problems with the drawing.

The turtle.hideturtle() call hides the triangle shape on the screen that 
represents the turtle’s current position and heading. (Heading is another 
term for direction.) We call this function so that the marker doesn’t appear 
in the final image.

Working with the Shape-Drawing Functions
The drawFractal() function uses a shape-drawing function passed to it to 
draw the individual parts of the fractal. This is usually a simple shape, such 
as a square or triangle. The beautiful complexity of the fractals emerges 
from drawFractal() recursively calling this function for each individual com-
ponent of the whole fractal.

The shape-drawing functions for the Fractal Art Maker have two 
parameters: size and depth. The size parameter is the length of the sides 
of the square or triangle it draws. The shape-drawing functions should 
always use arguments to turtle.forward() that are based on size so that the 
lengths will be proportionate to size at each level of recursion. Avoid code 
like turtle.forward(100) or turtle.forward(200); instead, use code that is based 



268   Chapter 13

on the size parameter, like turtle.forward(size) or turtle.forward(size * 2). 
In Python’s turtle module, turtle.forward(1) moves the turtle by one unit, 
which is not necessarily the same as one pixel.

The shape-drawing functions’ second parameter is the recursive depth 
of drawFractal(). The original call to drawFractal() has the depth parameter 
set to 0. Recursive calls to drawFractal() use depth + 1 as the depth param-
eter. In the Wave fractal, the first triangle in the center of the window has 
a depth argument of 0. The three triangles created next have a depth of 
1. The nine triangles around those three triangles have a depth of 2, and 
so on.

Your shape-drawing function can ignore this argument, but using 
it can cause interesting variations to the basic shape. For example, the 
drawFilledSquare() shape-drawing function uses depth to alternate between 
drawing white squares and gray squares. Keep this in mind if you’d like to 
create your own shape-drawing functions for the Fractal Art Maker pro-
gram, as they must accept a size and depth argument. 

The drawFilledSquare() Function
The drawFilledSquare() function draws a filled-in square with sides of length 
size. To color the square, we use the turtle module’s turtle.begin_fill() and 
turtle.end_fill() functions to make the square either white or gray, with 
a black border, depending on whether the depth argument is even or odd. 
Because these squares are filled in, any squares drawn on top of them later 
will cover them.

Like all shape-drawing functions for the Fractal Art Maker program, 
drawFilledSquare() accepts a size and depth parameter:

def drawFilledSquare(size, depth):
    size = int(size)

The size argument could be a floating-point number with a fractional 
part, which sometimes causes the turtle module to make slightly asym-
metrical and uneven drawings. To prevent this, the first line of the function 
rounds size down to an integer.

When the function draws the square, it assumes the turtle is in the cen-
ter of the square. Thus, the turtle must first move to the top-right corner of 
the square, relative to its initial heading:

Python     # Move to the top-right corner before drawing:
    turtle.penup()
    turtle.forward(size // 2)
    turtle.left(90)
    turtle.forward(size // 2)
    turtle.left(180)
    turtle.pendown()

The drawFractal() function always has the pen down and ready to draw 
when the shape-drawing function is called, so drawFilledSquare() must call 



Fractal Art Maker   269

turtle.penup() to avoid drawing a line as it moves to the starting position. 
To find the starting position relative to the middle of the square, the turtle 
must first move half of the square’s length (that is, size // 2) forward, to the 
future right edge of the square. Next the turtle turns 90 degrees to face up 
and then moves size // 2 units forward to the top-right corner. The turtle 
is now facing the wrong way, so it turns around 180 degrees and places the 
pen down so that it can begin drawing.

Note that top-right and up are relative to the direction the turtle is origi-
nally facing. This code works just as well if the turtle begins facing to the 
right at 0 degrees or has a heading of 90, 42, or any other number of degrees. 
When you create your own shape-drawing functions, stick to the relative tur-
tle movement functions like turtle.forward(), turtle.left(), and turtle.right() 
instead of absolute turtle movement functions like turtle.goto().

Next, the depth argument tells the function whether it should draw a 
white square or a gray one:

Python     # Alternate between white and gray (with black border):
    if depth % 2 == 0:
        turtle.pencolor('black')
        turtle.fillcolor('white')
    else:
        turtle.pencolor('black')
        turtle.fillcolor('gray')

If depth is even, the depth % 2 == 0 condition is True, and the square’s fill 
color is white. Otherwise, the code sets the fill color to gray. Either way, the 
border of the square, determined by the pen color, is set to black. To change 
either of these colors, use strings of common color names, like red or yellow, 
or an HTML color code comprising a hash mark and six hexadecimal dig-
its, like #24FF24 for lime green or #AD7100 for brown. 

The website https://html-color.codes has charts for many HTML color codes. 
The fractals in this black-and-white book lack color, but your computer can 
render your own fractals in a bright range of colors!

With the colors set, we can finally draw the four lines of the actual 
square:

Python     # Draw a square:
    turtle.begin_fill()
    for i in range(4): # Draw four lines.
        turtle.forward(size)
        turtle.right(90)
    turtle.end_fill()

To tell the turtle module that we intend to draw a filled-in shape and 
not just the outline, we call the turtle.begin_fill() function. Next is a for 
loop that draws a line of length size and turns the turtle 90 degrees to 
the right. The for loop repeats this four times to create the square. When 
the function finally calls turtle.end_fill(), the filled-in square appears on 
the screen. 

https://html-color.codes


270   Chapter 13

The drawTriangleOutline() Function
The second shape-drawing function draws the outline of an equilateral tri-
angle whose sides have a length of size. The function draws the triangle ori-
ented with one corner at the top and two corners at the bottom. Figure 13-6 
illustrates the various dimensions of an equilateral triangle.

60°

60°60°

size
2/3 * height

height = size * math.sqrt(3) / 2

1/3 * height

Figure 13-6: The measurements of an equilateral triangle with sides  
the length of size

Before we begin drawing, we must determine the triangle’s height based 
on the length of its sides. Geometry tells us that, for equilateral triangles 
with sides of length L, the height h of the triangle is L times the square root 
of 3 divided by 2. In our function, L corresponds to the size parameter, so 
our code sets the height variable as follows:

height = size * math.sqrt(3) / 2

Geometry also tells us that the center of the triangle is one-third of 
the height from the bottom side and two-thirds of the height from the top 
point. This gives us the information we need to move the turtle to its start-
ing position:

Python def drawTriangleOutline(size, depth):
    size = int(size)

    # Move the turtle to the top of the equilateral triangle:
    height = size * math.sqrt(3) / 2
    turtle.penup()
    turtle.left(90) # Turn to face upward.
    turtle.forward(height * (2/3)) # Move to the top corner.
    turtle.right(150) # Turn to face the bottom-right corner.
    turtle.pendown()

To reach the top corner, we turn the turtle 90 degrees left to face up 
(relative to the turtle’s original heading right at 0 degrees) and then move 
forward a number of units equal to height * (2/3). The turtle is still fac-
ing up, so to begin drawing the line on the right side, the turtle must turn 
90 degrees right to face rightward, then an additional 60 degrees to face 
the bottom-right corner of the triangle. This is why we call turtle.right(150).



Fractal Art Maker   271

At this point, the turtle is ready to start drawing the triangle, so we 
lower the pen by calling turtle.pendown(). A for loop will handle drawing the 
three sides:

Python     # Draw the three sides of the triangle:
    for i in range(3):
        turtle.forward(size)
        turtle.right(120)

Drawing the actual triangle is a matter of moving forward by size units, 
and then turning 120 degrees to the right, three separate times. The third 
and final 120-degree turn leaves the turtle facing its original direction. You 
can see these movements and turns in Figure 13-7.

120°

120°

120°

Figure 13-7: Drawing an equilateral triangle involves three forward movements and three 
120-degree turns.

The drawTriangleOutline() function draws only the outline and not a 
filled-in shape, so it doesn’t call turtle.begin_fill() and turtle.end_fill() as 
drawFilledSquare() does. 

Using the Fractal Drawing Function
Now that we have two sample drawing functions to work with, let’s examine 
the main function in the Fractal Art Maker project, drawFractal(). This func-
tion has three required parameters and one optional one: shapeDrawFunction, 
size, specs, and maxDepth.

The shapeDrawFunction parameter expects a function, like drawFilledSquare() 
or drawTriangleOutline(). The size parameter expects the starting size passed 
to the drawing function. Often, a value between 100 and 500 is a good starting 
size, though this depends on the code in your shape-drawing function, and 
finding the right value may require experimentation. 

The specs parameter expects a list of dictionaries that specify how the 
recursive shapes should change their size, position, and angle as drawFractal() 
recursively calls itself. These specifications are described later in this section.

To prevent drawFractal() from recursing until it causes a stack overflow, 
the maxDepth parameter holds the number of times drawFractal() should 
recursively call itself. By default, maxDepth has a value of 8, but you can pro-
vide a different value if you want more or fewer recursive shapes. 

A fifth parameter, depth, is handled by drawFractal()’s recursive call to itself 
and defaults to 0. You don’t need to specify it when you call drawFractal().



272   Chapter 13

Setting Up the Function
The first thing the drawFractal() function does is check for its two base 
cases:

Python def drawFractal(shapeDrawFunction, size, specs, maxDepth=8, depth=0):
    if depth > maxDepth or size < 1:
        return # BASE CASE

If depth is greater than maxDepth, the function will stop the recursion and 
return. The other base case occurs if size is less than 1, at which point the 
shapes being drawn would be too small to be seen on the screen and so the 
function should simply return.

We keep track of the turtle’s original position and heading in three 
variables: initialX, initialY, and initialHeading. This way, no matter where 
the shape-drawing function leaves the turtle positioned or what direction 
it is headed, drawFractal() can revert the turtle back to the original position 
and heading for the next recursive call:

Python     # Save the position and heading at the start of this function call:
    initialX = turtle.xcor()
    initialY = turtle.ycor()
    initialHeading = turtle.heading()

The turtle.xcor() and turtle.ycor() functions return the absolute 
x- and y-coordinates of the turtle on the screen. The turtle.heading() func-
tion returns the direction in which the turtle is pointed in degrees.

The next few lines call the shape-drawing function passed to the 
shapeDrawFunction parameter:

Python     # Call the draw function to draw the shape:
    turtle.pendown()
    shapeDrawFunction(size, depth)
    turtle.penup()

Because the value passed as the argument for the shapeDrawFunction 
parameter is a function, the code shapeDrawFunction(size, depth) calls this 
function with the values in size and depth. The pen is lowered before and 
raised after the shapeDrawFunction() call to ensure that the shape-drawing 
function can consistently expect the pen to be down when the drawing 
begins.

Using the Specifications Dictionary
After the call to shapeDrawFunction(), the rest of drawFractal()’s code is devoted 
to making recursive calls to drawFractal() based on the specification in the 
specs list’s dictionaries. For each dictionary, drawFractal() makes one recur-
sive call to drawFractal(). If specs is a list with one dictionary, every call to 



Fractal Art Maker   273

drawFractal() results in only one recursive call to drawFractal(). If specs is a 
list with three dictionaries, every call to drawFractal() results in three recur-
sive calls to drawFractal().

The dictionaries in the specs parameter provide specifications for each 
recursive call. Each of these dictionaries has the keys sizeChange, xChange, 
yChange, and angleChange. These dictate how the size of the fractal, the posi-
tion of the turtle, and the heading of the turtle change for a recursive 
drawFractal() call. Table 13-1 describes the four keys in a specification.

Table 13-1: Keys in the Specification Dictionaries

Key Default value Description

sizeChange 1.0 The next recursive shape’s size value is the current 
size multiplied by this value.

xChange 0.0 The next recursive shape’s x-coordinate is the current 
x-coordinate plus the current size multiplied by this 
value.

yChange 0.0 The next recursive shape’s y-coordinate is the current 
y-coordinate plus the current size multiplied by this 
value.

angleChange 0.0 The next recursive shape’s starting angle is the current 
starting angle plus this value.

Let’s take a look at the specification dictionary for the Four Corners 
fractal, which produces the top-left image shown previously in Figure 13-1. 
The call to drawFractal() for the Four Corners fractal passes the following 
list of dictionaries for the specs parameter:

Python [{'sizeChange': 0.5, 'xChange': -0.5, 'yChange': 0.5},
 {'sizeChange': 0.5, 'xChange': 0.5, 'yChange': 0.5},
 {'sizeChange': 0.5, 'xChange': -0.5, 'yChange': -0.5},
 {'sizeChange': 0.5, 'xChange': 0.5, 'yChange': -0.5}]

The specs list has four dictionaries, so each call to drawFractal() that 
draws a square will, in turn, recursively call drawFractal() four more times 
to draw four more squares. Figure 13-8 shows this progression of squares 
(which alternate between white and gray).

To determine the size of the next square to be drawn, the value for the 
sizeChange key is multiplied by the current size parameter. The first diction-
ary in the specs list has a sizeChange value of 0.5, which makes the next recur-
sive call have a size argument of 350 * 0.5, or 175 units. This makes the next 
square half the size of the previous square. A sizeChange value of 2.0 would, 
for example, double the size of the next square. If the dictionary has no 
sizeChange key, the value defaults to 1.0 for no change to the size.



274   Chapter 13

Figure 13-8: Each step of the Four Corners example from left to right, top to bottom. Each square recursively 
produces four more squares at its corners, with colors alternating between white and gray.

To determine the x-coordinate of the next square, the first dictionary’s 
xChange value, -0.5 in this case, is multiplied by the size. When size is 350, 
this means the next square has an x-coordinate of -175 units relative to the 
turtle’s current position. This xChange value and the yChange key’s value of 
0.5 places the next square’s position a distance of 50 percent of the current 
square’s size, to the left and above the current square’s position. This hap-
pens to center it on the top-left corner of the current square.

If you look at the three other dictionaries in the specs list, you’ll notice 
they all have a sizeChange value of 0.5. The difference between them is that 
their xChange and yChange values place them in the other three corners of the 
current square. As a result, the next four squares are drawn centered on the 
four corners of the current square.

The dictionaries in the specs list for this example don’t have an angleChange 
value, so this value defaults to 0.0 degrees. A positive angleChange value indi-
cates a counterclockwise rotation, while a negative value indicates a clock-
wise rotation.

Each dictionary represents a separate square to be drawn each time the 
recursive function is called. If we were to remove the first dictionary from 
the specs list, each drawFractal() call would produce only three squares, as in 
Figure 13-9.



Fractal Art Maker   275

Figure 13-9: The Four Corners fractal with the first dictionary removed from the specs list

Applying the Specifications 
Let’s look at how the code in drawFractal() actually does everything we’ve 
described:

Python     # RECURSIVE CASE
    for spec in specs:
        # Each dictionary in specs has keys 'sizeChange', 'xChange',
        # 'yChange', and 'angleChange'. The size, x, and y changes
        # are multiplied by the size parameter. The x change and y
        # change are added to the turtle's current position. The angle
        # change is added to the turtle's current heading.
        sizeCh = spec.get('sizeChange', 1.0)
        xCh = spec.get('xChange', 0.0)
        yCh = spec.get('yChange', 0.0)
        angleCh = spec.get('angleChange', 0.0)

The for loop assigns an individual specification dictionary in the specs 
list to the loop variable spec on each iteration of the loop. The get() dic-
tionary method calls pull the values for the sizeChange, xChange, yChange, and 
angleChange keys from this dictionary and assign them to the shorter-named 
sizeCh, xCh, yCh, and angleCh variables. The get() method substitutes a default 
value if the key doesn’t exist in the dictionary.

Next, the turtle’s position and heading are reset to the values indicated 
when drawFractal() was first called. This ensures that the recursive calls 



276   Chapter 13

from previous loop iterations don’t leave the turtle in some other place. 
Then the heading and position are changed according to the angleCh, xCh, 
and yCh variables:

Python         # Reset the turtle to the shape's starting point:
        turtle.goto(initialX, initialY)
        turtle.setheading(initialHeading + angleCh)

        turtle.forward(size * xCh)
        turtle.left(90)
        turtle.forward(size * yCh)
        turtle.right(90)

The x-change and y-change positions are expressed relative to the tur-
tle’s current heading. If the turtle’s heading is 0, the turtle’s relative x-axis 
is the same as the actual x-axis on the screen. However, if the turtle’s head-
ing is, say, 45, the turtle’s relative x-axis is at a 45-degree tilt. Moving “right” 
along the turtle’s relative x-axis would then move at an up-right angle. 

This is why moving forward by size * xCh moves the turtle along its rela-
tive x-axis. If xCh is negative, turtle.forward() moves left along the turtle’s 
relative x-axis. The turtle.left(90) call points the turtle along the turtle’s 
relative y-axis, and turtle.forward(size * yCh) moves the turtle to the next 
shape’s starting position. However, the turtle.left(90) call changed the 
turtle’s heading, so turtle.right(90) is called to reset it back to its original 
direction.

Figure 13-10 shows how these four lines of code move the turtle to the 
right along its relative x-axis and up along its relative y-axis and leave it in 
the correct heading, no matter what its initial heading was.

Figure 13-10: In each of these four images, the turtle always moves 100 units “right” and “up” along the rela-
tive x-axis and y-axis of its initial heading.

Finally, with the turtle in the correct position and heading for the next 
shape, we make the recursive call to drawFractal():

Python         # Make the recursive call:
        drawFractal(shapeDrawFunction, size * sizeCh, specs, maxDepth, 
        depth + 1)



Fractal Art Maker   277

The shapeDrawFunction, specs, and maxDepth arguments are passed to the 
recursive drawFractal() call unchanged. However, size * sizeCh is passed for 
the next size parameter to reflect the change in the size of the recursive 
shape, and depth + 1 is passed for the depth parameter to increment it for the 
next shape-drawing function call.

Creating the Example Fractals
Now that we’ve covered how the shape-drawing functions and recursive draw 
Fractal() function work, let’s look at the nine example fractals that come 
with the Fractal Art Maker. You can see these examples in Figure 13-1.

Four Corners
The first fractal is Four Corners, which begins as a large square. As the func-
tion calls itself, the fractal’s specifications cause four smaller squares to be 
drawn in the four corners of the square:

Python if DRAW_FRACTAL == 1:
    # Four Corners:
    drawFractal(drawFilledSquare, 350,
        [{'sizeChange': 0.5, 'xChange': -0.5, 'yChange': 0.5},
         {'sizeChange': 0.5, 'xChange': 0.5, 'yChange': 0.5},
         {'sizeChange': 0.5, 'xChange': -0.5, 'yChange': -0.5},
         {'sizeChange': 0.5, 'xChange': 0.5, 'yChange': -0.5}], 5)

The call to drawFractal() here limits the maximum depth to 5, as any 
more tends to make the fractal so dense that the fine detail becomes hard 
to see. This fractal appears in Figure 13-8.

Spiral Squares
The Spiral Squares fractal also starts as a large square, but it creates just one 
new square on each recursive call:

Python elif DRAW_FRACTAL == 2:
    # Spiral Squares:
    drawFractal(drawFilledSquare, 600, [{'sizeChange': 0.95,
        'angleChange': 7}], 50)

This square is slightly smaller and rotated by 7 degrees. The centers of 
all the squares are unchanged, so there’s no need to add xChange and yChange 
keys to the specification. The default maximum depth of 8 is too small to 
get an interesting fractal, so we increase it to 50 to produce a hypnotic spiral 
pattern.



278   Chapter 13

Double Spiral Squares
The Double Spiral Squares fractal is similar to Spiral Squares, except each 
square creates two smaller squares. This creates an interesting fan effect, 
as the second square is drawn later and tends to cover up previously drawn 
squares:

Python elif DRAW_FRACTAL == 3:
    # Double Spiral Squares:
    drawFractal(drawFilledSquare, 600,
        [{'sizeChange': 0.8, 'yChange': 0.1, 'angleChange': -10},
         {'sizeChange': 0.8, 'yChange': -0.1, 'angleChange': 10}])

The squares are created slightly higher or lower than their previous 
square and rotated either 10 or -10 degrees. 

Triangle Spiral
The Triangle Spiral fractal, another variation of Spiral Squares, uses the draw-
TriangleOutline() shape-drawing function instead of drawFilledSquare():

Python elif DRAW_FRACTAL == 4:
    # Triangle Spiral:
    drawFractal(drawTriangleOutline, 20,
        [{'sizeChange': 1.05, 'angleChange': 7}], 80)

Unlike the Spiral Squares fractal, the Triangle Spiral fractal begins at the 
small size of 20 units and slightly increases in size for each level of recursion. 
The sizeChange key is greater than 1.0, so the shapes are always increasing in 
size. This means the base case occurs when the recursion reaches a depth of 
80, because the base case of size becoming less than 1 is never reached.

Conway’s Game of Life Glider
Conway’s Game of Life is a famous example of cellular automata. The game’s 
simple rules cause interesting and wildly chaotic patterns to emerge on a 
2D grid. One such pattern is a Glider consisting of five cells in a 3 × 3 space:

Python elif DRAW_FRACTAL == 5:
    # Conway's Game of Life Glider:
    third = 1 / 3
    drawFractal(drawFilledSquare, 600,
        [{'sizeChange': third, 'yChange': third},
         {'sizeChange': third, 'xChange': third},
         {'sizeChange': third, 'xChange': third, 'yChange': -third},
         {'sizeChange': third, 'yChange': -third},
         {'sizeChange': third, 'xChange': -third, 'yChange': -third}])

The Glider fractal here has additional Gliders drawn inside each of its 
five cells. The third variable helps precisely set the position of the recursive 
shapes in the 3 × 3 space.



Fractal Art Maker   279

You can find a Python implementation of Conway’s Game of Life in my 
book The Big Book of Small Python Projects (No Starch Press, 2021) and online 
at https://inventwithpython.com/bigbookpython/project13.html. Tragically, John 
Conway, the mathematician and professor who developed Conway’s Game 
of Life, passed away of complications from COVID-19 in April 2020.

Sierpiński Triangle
We created the Sierpiński Triangle fractal in Chapter 9, but our Fractal Art 
Maker can re-create it as well by using the drawTriangleOutline() shape func-
tion. After all, a Sierpiński triangle is an equilateral triangle with three 
smaller equilateral triangles drawn in its interior:

Python elif DRAW_FRACTAL == 6:
    # Sierpiński Triangle:
    toMid = math.sqrt(3) / 6
    drawFractal(drawTriangleOutline, 600,
        [{'sizeChange': 0.5, 'yChange': toMid, 'angleChange': 0},
         {'sizeChange': 0.5, 'yChange': toMid, 'angleChange': 120},
         {'sizeChange': 0.5, 'yChange': toMid, 'angleChange': 240}])

The center of these smaller triangles is size * math.sqrt(3) / 6 units 
from the center of the previous triangle. The three calls adjust the heading 
of the turtle to 0, 120, and 240 degrees before moving up on the turtle’s rela-
tive y-axis.

Wave
We discussed the Wave fractal at the start of this chapter, and you can see it 
in Figure 13-5. This relatively simple fractal creates three smaller and dis-
tinct recursive triangles:

Python elif DRAW_FRACTAL == 7:
    # Wave:
    drawFractal(drawTriangleOutline, 280,
        [{'sizeChange': 0.5, 'xChange': -0.5, 'yChange': 0.5},
         {'sizeChange': 0.3, 'xChange': 0.5, 'yChange': 0.5},
         {'sizeChange': 0.5, 'yChange': -0.7, 'angleChange': 15}])

Horn
The Horn fractal resembles a ram’s horn:

Python elif DRAW_FRACTAL == 8:
    # Horn:
    drawFractal(drawFilledSquare, 100,
        [{'sizeChange': 0.96, 'yChange': 0.5, 'angleChange': 11}], 100)

This simple fractal is made up of squares, each of which is slightly smaller, 
moved up, and rotated 11 degrees from the previous square. We increase the 
maximum recursion depth to 100 to extend the horn into a tight spiral.

https://inventwithpython.com/bigbookpython/project13.html


280   Chapter 13

Snowflake
The final fractal, Snowflake, is composed of squares laid out in a pentagon 
pattern. This is similar to the Four Corners fractal, but it uses five evenly 
spaced recursive squares instead of four:

Python elif DRAW_FRACTAL == 9:
    # Snowflake:
    drawFractal(drawFilledSquare, 200,
        [{'xChange': math.cos(0 * math.pi / 180),
          'yChange': math.sin(0 * math.pi / 180), 'sizeChange': 0.4},
         {'xChange': math.cos(72 * math.pi / 180),
          'yChange': math.sin(72 * math.pi / 180), 'sizeChange': 0.4},
         {'xChange': math.cos(144 * math.pi / 180),
          'yChange': math.sin(144 * math.pi / 180), 'sizeChange': 0.4},
         {'xChange': math.cos(216 * math.pi / 180),
          'yChange': math.sin(216 * math.pi / 180), 'sizeChange': 0.4},
         {'xChange': math.cos(288 * math.pi / 180),
          'yChange': math.sin(288 * math.pi / 180), 'sizeChange': 0.4}])

This fractal uses the cosine and sine functions from trigonometry, imple-
mented in Python’s math.cos() and math.sin() functions, to determine how to 
shift the squares along the x-axis and y-axis. A full circle has 360 degrees, so 
to evenly space out the five recursive squares in this circle, we place them at 
intervals of 0, 72, 144, 216, and 288 degrees. The math.cos() and math.sin() 
functions expect the angle argument to be in radians instead of degrees, so 
we must multiply these numbers by math.pi / 180.

The end result is that each square is surrounded by five other squares, 
which are surrounded by five other squares, and so on, to form a crystal-like 
fractal that resembles a snowflake.

Producing a Single Square or Triangle
For completion, you can also set DRAW_FRACTAL to 10 or 11 to view what a single 
call to drawFilledSquare() and drawTriangleOutline() produce in the turtle win-
dow. These shapes are drawn with a size of 600:

Python elif DRAW_FRACTAL == 10:
    # The filled square shape:
    turtle.tracer(1, 0)
    drawFilledSquare(400, 0)
elif DRAW_FRACTAL == 11:
    # The triangle outline shape:
    turtle.tracer(1, 0)
    drawTriangleOutline(400, 0)
turtle.exitonclick() # Click the window to exit.

After drawing the fractal or shape based on the value in DRAW_FRACTAL, 
the program calls turtle.exitonclick() so that the turtle window stays open 
until the user clicks it. Then the program terminates.



Fractal Art Maker   281

Creating Your Own Fractals
You can create your own fractals by changing the specification passed to 
the drawFractal() function. Start by thinking about how many recursive calls 
you’d like each call to drawFractal() to generate, and how the size, position, 
and heading of the shapes should change. You can use the existing shape-
drawing functions or create your own. 

For example, Figure 13-11 shows the nine built-in fractals, except the 
square and triangle functions have been swapped. Some of these produce 
bland shapes, but others can result in unexpected beauty.

Figure 13-11: The nine fractals that come with Fractal Art Maker, with the shape-drawing functions swapped



Summary
The Fractal Art Maker projects demonstrate the endless possibilities of 
recursion. A simple recursive drawFractal() function, paired with a shape-
drawing function, can create a large variety of detailed geometric art.

At the core of Fractal Art Maker is the recursive drawFractal() function, 
which accepts another function as an argument. This second function draws 
a basic shape repeatedly by using the size, position, and heading given in the 
list of specification dictionaries. 

You can test an unlimited number of shape-drawing functions and 
specification settings. Let your creativity drive your fractal projects as you 
experiment with the code in this program.

Further Reading
There are websites that allow you to create fractals. Interactive Fractal 
Tree at https://www.visnos.com/demos/fractal has sliders to change a binary 
tree fractal’s angle and size parameters. Procedural Snowflake at https://
procedural-snowflake.glitch.me generates new snowflakes in your browser. 
Nico’s Fractal Machine at https://sciencevsmagic.net/fractal creates animated 
drawings of fractals. You can find others by searching the web for fractal 
maker or fractal generator online.

https://www.visnos.com/demos/fractal
https://procedural-snowflake.glitch.me
https://procedural-snowflake.glitch.me
https://sciencevsmagic.net/fractal


14
D R O S T E  M A K E R

The Droste effect is a recursive art tech-
nique named after a 1904 illustration on 

a tin of Droste’s Cacao, a Dutch brand of 
cocoa. Shown in Figure 14-1, the tin features 

an image of a nurse holding a meal tray contain-
ing a tin of Droste cocoa, which itself bears the 
illustration. 

In this chapter we’ll create a Droste Maker program that can gener-
ate similar recursive images from any photograph or drawing you have, 
whether it be a museum patron looking at an exhibit of themself, a cat in 
front of a computer monitor of a cat in front of a computer monitor, or 
something else entirely.

T H E R E C U R S I V E 

B O O K O F 

R E C U R S I O N

A C E T H E C O D I N G I N T E R V I E W
W I T H 

P Y T H O N A N D J A V A S C R I P T

T H E
R E C U R S I V E 

B O O K
O F 

R E C U R S I O N

A C E T H E C O D I N G I N T E R V I E W
W I T H

P Y T H O N A N D J A V A S C R I P T

THE RECURSIVE

BOOKOF 

RECURSION

ACETHE
CODING

INTERVI
EWWIT

H

PYTHON
ANDJAV

ASCRIP
T



284   Chapter 14

Figure 14-1: The recursive illustration on a tin  
of Droste’s Cacao

Using a graphics program such as Microsoft Paint or Adobe Photoshop, 
you’ll prepare the image by covering an area of it with a pure magenta 
color, indicating where to place the recursive image. The Python program 
uses the Pillow image library to read this image data and produce a recur-
sive image.

First, we’ll cover how to install the Pillow library and how the Droste 
Maker algorithm works. Next, we’ll present the Python source code for the 
program with accompanying explanation of the code.

Installing the Pillow Python Library
This chapter’s project requires the Pillow image library. This library allows 
your Python programs to create and modify image files including PNGs, 
JPEGs, and GIFs. It has several functions to perform resizing, copying, crop-
ping, and other common actions on images.

To install this library on Windows, open a command prompt window 
and run py -m pip install --user pillow. To install this library on macOS 



Droste Maker   285

or Linux, open a Terminal window and run python3 -m pip install --user 
pillow. This command makes Python use the pip installer program to down-
load the module from the official Python Package Index at https://pypi.org.

To verify that the installation worked, open a Python terminal and run 
from PIL import Image. (While the library’s name is Pillow, the Python mod-
ule installed is named PIL, in capital letters.) If no error appears, the library 
was installed correctly.

The official documentation for Pillow can be found at https://pillow 
.readthedocs.io. 

Painting Your Image
The next step is to prepare an image by setting a portion of it to the RGB 
(red, green, blue) color value (255, 0, 255). Computer graphics often use 
magenta to mark which pixels of an image should be rendered as transpar-
ent. Our program will treat these magenta pixels like a green screen in 
video production, replacing them with a resized version of the initial image. 
Of course, this resized image will have its own smaller magenta area, which 
the program will replace with another resized image. The base case occurs 
when the final image has no more magenta pixels, at which point the algo-
rithm is done.

Figure 14-2 shows the progression of images created as the resized image 
is recursively applied to the magenta pixels. In this example, a model stands 
in front of an art museum exhibit that has been replaced with magenta pix-
els, turning the photograph itself into the exhibit. You can download this 
base image from https://inventwithpython.com/museum.png.

Be sure you use only the pure (255, 0, 255) magenta color for painting 
the magenta area in your image. Some tools may have a fading effect that 
produces a more natural look. For example, Photoshop’s Brush tool will 
produce faded magenta pixels on the outline of the painted area, so you 
will need to use the Pencil tool instead, which paints using only the precise 
pure magenta color you’ve selected. If your graphics program doesn’t allow 
you to specify the precise RGB color for drawing, you can copy and paste 
the colors from the PNG image at https://inventwithpython.com/magenta.png.

The magenta area in the image can be of any size or shape; it does not 
have to be an exact, contiguous rectangle. You can see that in Figure 14-2, 
the museum visitor cuts into the magenta rectangle, placing them in front 
of the recursive image.

If you make your own images with Droste Maker, you should use the 
PNG image file format instead of JPEG. JPEG images use lossy compression 
techniques to keep the file size small that introduce slight imperfections. 
These are usually imperceptible to the human eye and don’t affect overall 
image quality. However, this lossy compression will replace the pure (255, 
0, 255) magenta pixels with slightly different shades of magenta. The lossless 
image compression of PNG images ensures this won’t happen.

https://pypi.org
https://pillow.readthedocs.io
https://pillow.readthedocs.io
https://inventwithpython.com/museum.png
https://inventwithpython.com/magenta.png


286   Chapter 14

Figure 14-2: Recursive applications of the image to the magenta pixels. If you are viewing 
the black-and-white image printed in this book, the magenta area is the rectangle in front 
of the museum visitor.

The Complete Droste Maker Program
The following is the source code for drostemaker.py; because this program 
relies on the Python-only Pillow library, there is no JavaScript equivalent for 
this project in this book:



Droste Maker   287

from PIL import Image
  
  
def makeDroste(baseImage, stopAfter=10):
    # If baseImage is a string of an image filename, load that image:
    if isinstance(baseImage, str):
        baseImage = Image.open(baseImage)

    if stopAfter == 0:
        # BASE CASE
        return baseImage
    # The magenta color has max red/blue/alpha, zero green:
    if baseImage.mode == 'RGBA':
        magentaColor = (255, 0, 255, 255)
    elif baseImage.mode == 'RGB':
        magentaColor = (255, 0, 255)

    # Find the dimensions of the base image and its magenta area:
    baseImageWidth, baseImageHeight = baseImage.size
    magentaLeft = None
    magentaRight = None
    magentaTop = None
    magentaBottom = None

    for x in range(baseImageWidth):
        for y in range(baseImageHeight):
            if baseImage.getpixel((x, y)) == magentaColor:
                if magentaLeft is None or x < magentaLeft:
                    magentaLeft = x
                if magentaRight is None or x > magentaRight:
                    magentaRight = x
                if magentaTop is None or y < magentaTop:
                    magentaTop = y
                if magentaBottom is None or y > magentaBottom:
                    magentaBottom = y

    if magentaLeft is None:
        # BASE CASE - No magenta pixels are in the image.
        return baseImage

    # Get a resized version of the base image:
    magentaWidth = magentaRight - magentaLeft + 1
    magentaHeight = magentaBottom - magentaTop + 1
    baseImageAspectRatio = baseImageWidth / baseImageHeight
    magentaAspectRatio = magentaWidth / magentaHeight

    if baseImageAspectRatio < magentaAspectRatio:
        # Make the resized width match the width of the magenta area:
        widthRatio = magentaWidth / baseImageWidth
        resizedImage = baseImage.resize((magentaWidth, 
        int(baseImageHeight * widthRatio) + 1), Image.NEAREST)
    else:
        # Make the resized height match the height of the magenta area:
        heightRatio =  magentaHeight / baseImageHeight



288   Chapter 14

        resizedImage = baseImage.resize((int(baseImageWidth * 
        heightRatio) + 1, magentaHeight), Image.NEAREST)

    # Replace the magenta pixels with the smaller, resized image:
    for x in range(magentaLeft, magentaRight + 1):
        for y in range(magentaTop, magentaBottom + 1):
            if baseImage.getpixel((x, y)) == magentaColor:
                pix = resizedImage.getpixel((x - magentaLeft, y - magentaTop))
                baseImage.putpixel((x, y), pix)

    # RECURSIVE CASE:
    return makeDroste(baseImage, stopAfter=stopAfter - 1)

recursiveImage = makeDroste('museum.png')
recursiveImage.save('museum-recursive.png')
recursiveImage.show()

Before you run this program, place your image file in the same folder 
as drostemaker.py. The program will save the recursive image as museum-
recursive.png and then open an image viewer to display it. If you want to 
run the program on your own image that you’ve added a magenta area to, 
replace makeDroste('museum.png') at the end of the source code with the name 
of your image file and save('museum-recursive.png') with the name you’d like 
to use to save the recursive image.

Setting Up
The Droste Maker program has only one function, makeDroste(), which 
accepts a Pillow Image object or a string of an image’s filename. The func-
tion returns a Pillow Image object with any magenta pixels recursively 
replaced by a version of the same image:

Python from PIL import Image

def makeDroste(baseImage, stopAfter=10):
    # If baseImage is a string of an image filename, load that image:
    if isinstance(baseImage, str):
        baseImage = Image.open(baseImage)

The program begins by importing the Image class from the Pillow 
library (named PIL as a Python module). Within the makeDroste() function, 
we check whether the baseImage parameter is a string, and if so, we replace 
it with a Pillow Image object loaded from the corresponding image file. 

Next, we check whether the stopAfter parameter is 0. If it is, we’ve 
reached one of the algorithm’s base cases and the function returns the 
Pillow Image object of the base image:



Droste Maker   289

Python     if stopAfter == 0:
        # BASE CASE
        return baseImage

The stopAfter parameter is 10 by default if the function call doesn’t 
provide one. The recursive call to makeDroste() later in this function passes 
stopAfter - 1 as the argument for this parameter so that it decreases with 
each recursive call and approaches the base case of 0.

For example, passing 0 for stopAfter results in the function immedi-
ately returning a recursive image identical to the base image. Passing 1 for 
stopAfter replaces the magenta area with a recursive image once, makes one 
recursive call, reaches the base case, and immediately returns. Passing 2 for 
stopAfter causes two recursive calls, and so on.

This parameter prevents the function from recursing until it causes 
a stack overflow in cases when the magenta area is particularly large. It 
also lets us pass a smaller argument than 10 to limit the number of recur-
sive images placed in the base image. For example, the four images in 
Figure 14-2 were created by passing 0, 1, 2, and 3 for the stopAfter parameter.

Next, we check the color mode of the base image. This can be either 
RGB for an image with red-green-blue pixels or RGBA for an image that has an 
alpha channel for its pixels. The alpha value tells a pixel’s level of transpar-
ency. Here’s the code:

Python     # The magenta color has max red/blue/alpha, zero green:
    if baseImage.mode == 'RGBA':
        magentaColor = (255, 0, 255, 255)
    elif baseImage.mode == 'RGB':
        magentaColor = (255, 0, 255)

The Droste Maker needs to know the color mode so that it can find 
magenta pixels. The values for each channel range from 0 to 255, and 
magenta pixels have a maximum amount of red and blue but no green. 
Further, if an alpha channel exists, it would be set to 255 for a completely 
opaque color and 0 for a completely transparent one. The magentaColor vari-
able is set to the correct tuple value for a magenta pixel depending on the 
image’s color mode given in baseImage.mode.

Finding the Magenta Area
Before the program can recursively insert the image into the magenta area, 
it must find the boundaries of the magenta area in the image. This involves 
finding the leftmost, rightmost, topmost, and bottommost magenta pixels 
in the image.



290   Chapter 14

While the magenta area itself doesn’t need to be a perfect rectangle, 
the program needs to know the rectangular boundaries of the magenta in 
order to properly resize the image for insertion. For example, Figure 14-3 
shows a base image of the Mona Lisa with the magenta area outlined in 
white. The magenta pixels are replaced to produce the recursive image.

Figure 14-3: The base image with a magenta area outlined in white (left) and the recur-
sive image it produces (right)

To calculate the resizing and placement of the resized image, the pro-
gram retrieves the width and height of the base image from the size attri-
bute of the Pillow Image object in baseImage. The following lines initialize 
four variables for the four edges of the magenta area—magentaLeft, magenta 
Right, magentaTop, and magentaBottom—to the None value:

Python     # Find the dimensions of the base image and its magenta area:
    baseImageWidth, baseImageHeight = baseImage.size
    magentaLeft = None
    magentaRight = None
    magentaTop = None
    magentaBottom = None



Droste Maker   291

These edge variable values are replaced by integer x and y coordinates 
in the code that comes next:

Python     for x in range(baseImageWidth):
        for y in range(baseImageHeight):
            if baseImage.getpixel((x, y)) == magentaColor:
                if magentaLeft is None or x < magentaLeft:
                    magentaLeft = x
                if magentaRight is None or x > magentaRight:
                    magentaRight = x
                if magentaTop is None or y < magentaTop:
                    magentaTop = y
                if magentaBottom is None or y > magentaBottom:
                    magentaBottom = y

These nested for loops iterate the x and y variables over every possible 
x, y coordinate in the base image. We check whether the pixel at each 
coordinate is the pure magenta color stored in magentaColor, then update 
the magentaLeft variable if the coordinates of the magenta pixel are further 
left than currently recorded in magentaLeft, and so on for the other three 
directions.

By the time the nested for loops are finished, magentaLeft, magentaRight, 
magentaTop, and magentaBottom will describe the boundaries of the magenta 
pixels in the base image. If the image has no magenta pixels, these variables 
will remain set to their initial None value:

Python     if magentaLeft is None:
        # BASE CASE - No magenta pixels are in the image.
        return baseImage

If magentaLeft (or really, any of the four variables) is still set to None after 
the nested for loops complete, no magenta pixels are in the image. This is 
a base case for our recursive algorithm because the magenta area becomes 
smaller and smaller with each recursive call to makeDroste(). At this point, 
the function returns the Pillow Image object in baseImage.

Resizing the Base Image
We need to resize the base image to cover the entire magenta area and no 
more. Figure 14-4 shows the complete resized image overlayed transpar-
ently on the original base image. This resized image is cropped so that only 
the parts over magenta pixels are copied over to the final image.



292   Chapter 14

Figure 14-4: The base image with the magenta area in  
the monitor (top), the resized image over the base image  
(middle), and the final recursive image that replaces only  
the magenta pixels (bottom)

We cannot simply resize the base image to the dimensions of the 
magenta area because it’s unlikely the two share the same aspect ratio, or 
proportion of the width divided by the height. Doing so results in a recur-
sive image that looks stretched or squished, like Figure 14-5.

Instead, we must make the resized image large enough to completely 
cover the magenta area but still retain the image’s original aspect ratio. 
This means either setting the width of the resized image to the width of the 
magenta area such that the height of the resized image is equal to or larger 
than the height of the magenta area, or setting the height of the resized 
image to the height of the magenta area such that the width of the resized 
image is equal to or larger than the width of the magenta area.



Droste Maker   293

Figure 14-5: Resizing the image to the dimensions of the magenta area can result in a 
different aspect ratio, causing it to look stretched or squished.

To calculate the correct resizing dimensions, the program needs to 
determine the aspect ratio of both the base image and the magenta area:

Python     # Get a resized version of the base image:
    magentaWidth = magentaRight - magentaLeft + 1
    magentaHeight = magentaBottom - magentaTop + 1
    baseImageAspectRatio = baseImageWidth / baseImageHeight
    magentaAspectRatio = magentaWidth / magentaHeight

From magentaRight and magentaLeft, we can calculate the width of the 
magenta area. The + 1 accounts for a small, necessary adjustment: if the 
right side of the magenta area was the x-coordinate of 11 and the left 
side was 10, the width would be two pixels. This is correctly calculated by 
(magentaRight - magentaLeft + 1), not (magentaRight - magentaLeft).

Because the aspect ratio is the width divided by the height, images with 
large aspect ratios are taller than they are wide, and those with small aspect 
ratios are wider than they are tall. An aspect ratio of 1.0 describes a perfect 
square. The next lines set the dimensions of the resized image after com-
paring the aspect ratios of the base image and the magenta area:

    if baseImageAspectRatio < magentaAspectRatio:
        # Make the resized width match the width of the magenta area:
        widthRatio = magentaWidth / baseImageWidth
        resizedImage = baseImage.resize((magentaWidth, 
        int(baseImageHeight * widthRatio) + 1), Image.NEAREST)



294   Chapter 14

    else:
        # Make the resized height match the height of the magenta area:
        heightRatio =  magentaHeight / baseImageHeight
        resizedImage = baseImage.resize((int(baseImageWidth * 
        heightRatio) + 1, magentaHeight), Image.NEAREST)

If the base image’s aspect ratio is less than the magenta area’s aspect 
ratio, the resized image’s width should match the width of the magenta 
area. If the base image’s aspect ratio is greater, the resized image’s height 
should match the height of the magenta area. We then determine the other 
dimension by multiplying the base image’s height by the width ratio, or the 
base image’s width by the height ratio. This ensures that the resized image 
both completely covers the magenta area and remains proportional to its 
original aspect ratio.

We call the resize() method once to produce a new Pillow Image object 
resized to match either the width of the base image or the height of the 
base image. The first argument is a (width, height) tuple for the new 
image’s size. The second argument is the Image.NEAREST constant from the 
Pillow library that tells the resize() method to use the nearest neighbor 
algorithm when resizing the image. This prevents the resize() method from 
blending the colors of the pixels to produce a smooth image.

We don’t want this, because it could blur the magenta pixels with neigh-
boring non-magenta pixels in the resized image. Our makeDroste() function 
relies on detecting magenta pixels with the exact RGB color of (255, 0, 255) 
and would ignore these slightly off magenta pixels. The end result would 
be a pinkish outline around the magenta areas that would ruin our image. 
The nearest neighbor algorithm doesn’t do this blurring, leaving our 
magenta pixels exactly at the (255, 0, 255) magenta color.

Recursively Placing the Image Within the Image
Once the base image has been resized, we can place the resized image over 
the base image. But the pixels from the resized image should be placed over 
only magenta pixels in the base image. The resized image will be placed 
such that the top-left corner of the resized image is at the top-left corner of 
the magenta area:

Python     # Replace the magenta pixels with the smaller, resized image:
    for x in range(magentaLeft, magentaRight + 1):
        for y in range(magentaTop, magentaBottom + 1):
            if baseImage.getpixel((x, y)) == magentaColor:
                pix = resizedImage.getpixel((x - magentaLeft, y - magentaTop))
                baseImage.putpixel((x, y), pix)

Two nested for loops iterate over every pixel in the magenta area. 
Remember that the magenta area does not have to be a perfect rectangle, 
so we check whether the pixel at the current coordinates is magenta. If so, 
we get the pixel color from the corresponding coordinates in the resized 



Droste Maker   295

image and place it on the base image. After the two nested for loops have 
finished looping, the magenta pixels in the base image will have been 
replaced by pixels from the resized image. 

However, the resized image itself could have magenta pixels, and if so, 
these will now become part of the base image, as in the top-right image 
of Figure 14-2. We’ll need to pass the modified base image to a recursive 
makeDroste() call:

Python     # RECURSIVE CASE:
    return makeDroste(baseImage, stopAfter - 1)

This line is the recursive call in our recursive algorithm, and it’s the last 
line of code in the makeDroste() function. This recursion handles the new 
magenta area copied from the resized image. Note that the value passed for 
the stopAfter parameter is stopAfter - 1, ensuring that it comes closer to the 
base case of 0.

Finally, the Droste Maker program begins by passing ′museum.png′ to 
makeDroste() to get the Pillow Image object of the recursive image. We save 
this as a new image file named museum-recursive.png and display the recur-
sive image in a new window for the user to view:

Python recursiveImage = makeDroste('museum.png')
recursiveImage.save('museum-recursive.png')
recursiveImage.show()

You can change these filenames to whichever image on your computer 
you’d like to use with the program.

Does the makeDroste() function need to be implemented with recursion? 
Simply put, no. Notice that no tree-like structure is involved in the problem, 
and the algorithm does no backtracking, which is a sign that recursion may 
be an overengineered approach to this code. 

Summary
This chapter’s project was a program that produces recursive Droste effect 
images, just like the illustration on old tins of Droste’s Cacao. The program 
works by using pure magenta pixels with RGB values of (255, 0, 255) to 
mark the parts of the image that should be replaced by a smaller version. 
Since this smaller version will also have its own smaller magenta area, the 
replacements will repeat until the magenta area is gone to produce a recur-
sive image.

The base case for our recursive algorithm occurs when no more 
magenta pixels remain in the image to place the smaller recursive image 
in, or when the stopAfter counter reaches 0. Otherwise, the recursive case 
passes the image to the makeDroste() function to continue to replace the 
magenta area with even smaller recursive images.

You can modify your own photos to add magenta pixels and then run 
them through the Droste Maker. The museum patron looking at an exhibit 



296   Chapter 14

of themself, the cat in front of a computer monitor of the cat in front of a 
computer monitor, and the faceless Mona Lisa images are just a few exam-
ples of the surreal possibilities you can create with this recursive program.

Further Reading
The Wikipedia article for the Droste effect at https://en.wikipedia.org/wiki/
Droste_effect has examples of products other than Droste’s Cacao that use 
the Droste effect. Dutch artist M.C. Escher’s Print Gallery is a famous exam-
ple of a scene that also contains itself, and you can learn more about it at 
https://en.wikipedia.org/wiki/Print_Gallery_(M._C._Escher).

In a video titled “The Neverending Story (and Droste Effect)” on the 
Numberphile YouTube channel, Dr. Clifford Stoll discusses recursion and 
the Droste’s Cacao box art at https://youtu.be/EeuLDnOupCI.

Chapter 19 of my book Automate the Boring Stuff with Python, 2nd edi-
tion (No Starch Press, 2019) provides a basic tutorial of the Pillow library at 
https://automatetheboringstuff.com/2e/chapter19.

https://en.wikipedia.org/wiki/Droste_effect
https://en.wikipedia.org/wiki/Droste_effect
https://en.wikipedia.org/wiki/Print_Gallery_(M._C._Escher)
https://youtu.be/EeuLDnOupCI
https://automatetheboringstuff.com/2e/chapter19


I N D E X

Numbers and Symbols
15-puzzle, 231
255, 0, 255 color value, 289
3Blue1Brown, 197
&& Boolean operator, 54
% modulus operator, 170

A
accumulators, 165, 168
Ackermann function, 65
ackermann.html program, 66
ackermannIterative.html program, 67
ackermannIterative.py program, 67
ackermann.py program, 65
Ackermann, Wilhelm, 65
acyclic, 74
algebra, 119
alpha value, 289
ancestor nodes, 72
and Boolean operator, 54
append() Python method, 8
arguments, 6
array, 8
aspect ratio, 292

B
backtracking, 40, 48, 165, 220, 295
backward() turtle function, 178
balanced parentheses, 139
balancedParentheses.html program, 141
balancedParentheses.py program, 141
base case, 14, 41, 180
Batchelder, Ned, 120
begin_fill() turtle function, 178
big O algorithm analysis, 97
binary search, 94
binarySearch.html program, 95
binarySearch.py program, 95
binary trees, 77

bk() jtg function, 178
Boolean short-circuiting, 54
bottom-up dynamic programming, 153
bottom-up recursion, 153
branches, 74
browser developer tools, 12
Brush tool, 285

C
call stack, 9, 165, 167
cardStack.html program, 8
cardStack.py program, 8
Cartesian coordinates, 177, 222
central processing unit (CPU), 93
child nodes, 72, 76
clean() jtg function, 178
clear() turtle function, 178
coast of Great Britain, 190
color() jtg function, 178
combinations, 125

k-combinations, 125
with repetition, 125

combinations.html program, 137
combinations.py program, 137
combinatorial explosion, 125
compilers, 41, 163
compression

lossless, 285
lossy, 285

Computerphile, 42, 67, 91, 120
converting iterative algorithms to 

recursive, 31
countDownAndUp.html program, 16
countDownAndUp.py program, 16
Coursera, 120, 161
CPU (central processing unit), 93
CPython, 166
current directory, 209
cycles, 74



298   Index

D
DAG (directed acyclic graph), 73
depth, 81
depth-first search, 78
depthFirstSearch.html program, 80
depthFirstSearch.py program, 79
descendant nodes, 72
deterministic function, 153
directed, 74
directed acyclic graph (DAG), 73

15-puzzle, 232
divide-and-conquer algorithms, 93
doNotMemoize.py program, 159
dragon curve, 197
Droste effect, 283
Droste Maker, 283
drostemaker.py program, 287
Droste’s Cacao, 283
Dyck, Walther von, 140
Dyck words, 140
dynamic programming, 152

E
edges, 72, 81, 233
elements, 8, 124
empty set, 124
end_fill() turtle function, 178
English, 41
exitonclick() turtle function, 179
exponentByIteration.html program, 34
exponentByIteration.py program, 34
exponentByRecursion.html program,  

36, 169
exponentByRecursion.py program, 36, 169
exponents, 34

iterative algorithm, 37
recursive algorithm , 35

exponentWithPowerRule.html program, 37
exponentWithPowerRule.py program, 37
external state, 153

F
factorial, 22, 165

iterative algorithm, 22
recursive algorithm, 23
terrible, 24

factorialByIteration.html program, 23

factorialByIteration.py program, 22
factorialByRecursion.html program, 23
factorialByRecursion.py program, 23
factorialEmulateRecursion.html  

program, 30
factorialEmulateRecursion.py  

program, 30
factorialTailCall.html program, 164
factorialTailCall.py program, 164
fd() jtg function, 178
Fibonacci

iterative algorithm, 26
memoized, 154
recursive algorithm, 27
sequence, 25, 167
terrible, 29

fibonacciByIteration.html program, 26
fibonacciByIteration.py program, 26
fibonacciByRecursion.html program, 28
fibonacciByRecursionMemoized.html 

program, 156
fibonacciByRecursionMemoized.py  

project, 155
fibonacciByRecursion.py program, 27
fibonacciFunctools.py program, 158
Fibonacci sequence, 41
fileFinder.py program, 204
filesystem, 40, 203
fillcolor() turtle function, 178
findSubstring.html program, 33
findSubstring.py program, 33
Firefox profiler, 42
flood fill algorithm, 60
floodfill.html program, 62
floodFillIterative.html program, 66
floodFillIterative.py program, 65
floodfill.py program, 61
forward() turtle function, 178
fractals, xx, 5, 175, 260
fractalTree.py program, 188
fractal trees, 187
frame objects, 9, 165
freeCodeCamp, 91, 161
functional programming, 153
functionCalls.html program, 6
functionCalls.py program, 6
functions, 5–7
functools module, 158



Index   299

G
getDepth.html program, 82
getDepth.py program, 82
get.heading() jtg function, 178
get.x() jtg function, 178
get.y() jtg function, 178
GIF images, 284
Gosper curve, 197
goto() turtle function, 178
graph, 73

H
Hackers in Cambridge, 68
head, 46, 49, 52
heading, 177
heading() jtg function, 178
heading() turtle function, 178
head-tail technique, 46, 126, 136
Hellmann, Doug, 173
hello.html program, 32
hello.py program, 31
hideturtle() turtle function, 178
Hilbert curve, 65, 194, 196
hilbertCurve.py program, 194
Hilbert, David, 65, 194
Hoare, Tony, 97

I
Image.NEAREST constant, 294
Image objects, 288
Inception movie, 4
inorderTraversal.html program, 78
inorderTraversal.py program, 77
inorder tree traversal, 73, 77
in-place modification, 90, 225
item, 8
iteration, 18, 21, 23, 26, 34, 37

J
JPEG images, 284, 285
jtg functions, 178
jtg library, 175

K
Karatsuba, Anatoly, 113
Karatsuba multiplication, 113, 119
karatsubaMultiplication.html program, 116

karatsubaMultiplication.py program, 114
k-combinations, 125, 134, 139
Khan Academy, 148
Koch curve, 191
Koch, Helge von, 191
Koch island, 193
Koch snowflake, 191
kochSnowflake.py program, 192
Kruskal’s maze algorithm, 216

L
Last In, First Out (LIFO), 9
leaf nodes, 72
leap-of-faith technique, 50, 139, 147
left child node, 77
left() turtle function, 178
LIFO (Last In, First Out), 9
linear search, 97
list, 8
local variables, 10, 17
localVariables.html program, 10
localVariables.py program, 10
LOGO (programming language), 176
lookup table, 113
lossless compression, 285
lossy compression, 285
lt() jtg function, 178

M
magenta, 285
Mandelbrot, Benoit B., 175, 191
Math.pow() function, 34
maximum call stack size, 13
maximum recursion depth, 13
mazeGenerator.html program, 218
mazeGenerator.py program, 216
mazes, 40, 215

recursive backtracking  
algorithm, 215

represented as DAG, 83
mazeSolver.html program, 87
mazeSolver.py program, 85
members, 124
memoization, 152, 159
Menger, Karl, 186
Menger sponge, 186
merge sort, 104



300   Index

mergeSort.html program, 108
mergeSort.py program, 107
Minecraft, 186
modulus operator, 35, 170
Mona Lisa, 290
museum.png, 285
museum-recursive.png, 288, 295

N
n choose k, 125
n choose r, 125
nestedLoopPermutations.html  

program, 131
nestedLoopPermutations.py  

program, 130
nested loops, 130
Neumann, John von, 104
n multichoose k, 125
nodes, 72

ancestor, 72
child, 72, 76
descendant, 72
leaf, 72
parent, 72
root, 72, 76, 81

nondeterministic functions, 153, 159

O
origin, 177
os module, 206
os.path.basename() function, 206, 209
os.path.dirname() function, 209
os.path.getatime() function, 210
os.path.getctime() function, 210
os.path.getmtime() function, 210
os.path.getsize() function, 206
os.path.isfile() function, 208
os.path.split() function, 209
os.unlink() function, 212
overlapping subproblems, 152

P
palindrome, 52
palindrome.html program, 53
palindrome.py program, 53
parallelization, 111
parent nodes, 72
partitioning, 97

pd() jtg function, 178
Peano curve, 197
pencolor() turtle function, 178
pendown() turtle function, 178
pensize() turtle function, 178
penup() turtle function, 178
perfect mazes, 83
permutations, 123–124

without repetition, 124, 126, 131
without replacement, 125
with repetition, 126, 130

permutations.html program, 128
permutations.py program, 127
permutationsWithRepetition.html 

program, 133
permutationsWithRepetition.py  

program, 132
Péter, Rózsa, 65
Pillow library, 284
PIL module, 285
pivot, in quicksort, 97
pixel, 61
PNG images, 284, 285
pop() JavaScript method, 8
popping, 7, 9, 47
pop() Python method, 8
postorderTraversal.html program, 77
postorderTraversal.py program, 76
postorder tree traversal, 73, 76
power rule, 35
power set, 143
powerSet.html program, 145
powerSet.py program, 145
preorder tree traversal, 73, 75
preorderTraversal.html program, 75
preorderTraversal.py program, 75
procedural generation, 187
product rule, 35
program

ackermann.html, 66
ackermann.py, 65
balancedParentheses.html, 141
balancedParentheses.py, 141
binarySearch.html, 95
binarySearch.py, 95
combinations.html, 137
combinations.py, 137
depthFirstSearch.html, 80



Index   301

depthFirstSearch.py, 79
doNotMemoize.py, 159
drostemaker.py, 286
exponentByIteration.html, 34
exponentByIteration.py, 34
exponentByRecursion.html, 36, 169
exponentByRecursion.py, 36, 169
exponentWithPowerRule.html, 37
exponentWithPowerRule.py, 37
factorialByIteration.html, 23
factorialByIteration.py, 22
factorialByRecursion.html, 23
factorialByRecursion.py, 23
factorialEmulateRecursion.html, 30
factorialEmulateRecursion.py, 30
factorialTailCall.html, 164
factorialTailCall.py, 164
fibonacciByIteration.html, 26
fibonacciByIteration.py, 26
fibonacciByRecursion.html, 28
fibonacciByRecursionMemoized.html, 

156
fibonacciByRecursionMemoized.py, 155
fibonacciByRecursion.py, 27
fibonacciFunctools.py, 158
fileFinder.py, 204
findSubstring.html, 33
findSubstring.py, 33
floodfill.html, 62
floodfill.py, 61
fractalTree.py, 188
getDepth.html, 82
getDepth.py, 82
hello.html, 32
hello.py , 31
hilbertCurve.py, 194
inorderTraversal.html, 78
inorderTraversal.py, 77
karatsubaMultiplication.html, 116
karatsubaMultiplication.py, 114
kochSnowflake.py, 192
mazeGenerator.html, 218
mazeGenerator.py, 216
mazeSolver.html, 87
mazeSolver.py, 85
mergeSort.html, 108
mergeSort.py, 107
nestedLoopPermutations.html, 131

nestedLoopPermutations.py, 130
palindrome.html, 53
palindrome.py, 53
permutations.html, 128
permutations.py, 127
permutationsWithRepetition.html, 133
permutationsWithRepetition.py, 132
postorderTraversal.html, 77
postorderTraversal.py, 76
powerSet.html, 145
powerSet.py, 145
preorderTraversal.html, 75
preorderTraversal.py, 75
reverseString.html, 51
reverseString.py, 51
reverseStringTailCall.html, 168
reverseStringTailCall.py, 168
sierpinskiCarpet.py, 184
sierpinskiTriangle.py, 180
spiral.py, 176
sumHeadTail.html, 47
sumHeadTail.py, 46
towerOfHanoiSolver.html, 57
towerOfHanoiSolver.py, 56

proper subset, 124
pu() jtg function, 178
pure functions, 154, 159
pushing, 7, 9, 47
push() JavaScript method, 8

Q
quicksort, 97
quicksort.html program, 99
quicksort.py program, 98

R
random number seed, 243
random.seed() function, 221
readability, 34, 73
recursion

definition, 5
jokes, 4

recursive backtracking maze  
algorithm, 215

recursive case, 14, 41
recursive function, 5, 12
red-green-blue color (RGB), 285
reset() jtg function, 178



302   Index

reset() turtle function, 178
return value, 6
reverseString.html program, 51
reverseString.py program, 51
reverseStringTailCall.html  

program, 168
reverseStringTailCall.py program, 168
reversing strings, 49
RGB (red-green-blue color), 285
right child node, 77
right() turtle function, 178
Robinson, Raphael, 65
root nodes, 72, 76, 81
Rossum, Guido van, 166, 172
rt() jtg function, 178

S
seed value, random number, 189
self-similarity, 39, 180
send2trash module, 212
send2trash.send2trash() function, 213
set, 124
setheading() turtle function, 178
set theory, 123
setworldcoordinates() turtle  

function, 179
short-circuiting, 54
shortest.html program, 12
shortest.py program, 12
shortestWithBaseCase.html  

program, 14
shortestWithBaseCase.py program, 14
showturtle() turtle function, 179
shutil.move() function, 212
shutil.rename() function, 212
side effects, 153, 159
Sierpiński carpet, 183
sierpinskiCarpet.py program, 184
Sierpiński cube, 186
Sierpiński triangle, 5, 179
sierpinskiTriangle.py program, 180
Sierpiński, Wacław, 179
simply connected mazes, 83
sliding-tile puzzle, 231
sorting

merge sort, 104
quicksort, 97

spiral.py program, 176
stack overflow, 13, 75, 165
stacks, 7, 9, 31, 38
strict subset, 124
struct_time object, 210
subset, 124
sumHeadTail.html program, 47
sumHeadTail.py program, 46
summing, 46
superset, 124

T
tail, 46, 49
tail call elimination, 163
tail call optimization (TCO), 25, 163
tail recursion, 164

elimination, 163
limitations, 166

thickness() jtg function, 178
time.gmtime() function, 211
time.localtime() function, 210
time module, 210
tool, 285

Brush tool, 285
Pencil tool, 285

top-down dynamic programming, 153
top-down recursion, 153
Tower of Hanoi, 54
towerOfHanoiSolver.html program, 57
towerOfHanoiSolver.py program, 56
tracer() turtle function, 179
trees, 39, 48, 55, 72, 165, 203, 295

binary, 77
fractal, 187
traversal, 74, 85

Triforce, 180
turtle, 176
turtledemo module, 55
turtle functions, 178
turtle graphics, 176
turtle module, 175
turtles all the way down, 12

U
undirected (graphs), 233
Unix epoch, 210
update() turtle function, 179



Index   303

V
vertices, 72

W
wedding seating chart, 126
Wilander, John, xx
Wilson’s maze algorithm, 216

X
xcor() turtle function, 178
xkcd comic, 4
xy() jtg function, 178

Y
ycor() turtle function, 178



NO STARCH PRESS

phone:
800.420.7240 or
415.863.9900

email:
sales@nostarch.com
web:
www.nostarch.com

DIVE INTO ALGORITHMS
A Pythonic Adventure for the  
Intrepid Beginner
by bradford tuckfield
248 pp., $39.95
isbn 978-1-71850-068-6

PRACTICAL DEEP LEARNING
A Python-Based Introduction 
by ronald t. kneusel
464 pp., $59.95
isbn 978-1-71850-074-7

PYTHON ONE-LINERS
Write Concise, Eloquent Python  
Like a Professional
by christian mayer
216 pp., $39.95
isbn 978-1-71850-050-1

REAL WORLD PYTHON
A Hacker’s Guide to Solving  
Problems with Code
by lee vaughan
360 pp., $34.95
isbn 978-1-71850-062-4

OBJECT-ORIENTED PYTHON
Master OOP by Building  
Games and GUIs
by irv kalb
416 pp., $44.99
isbn 978-1-71850-206-2

BEYOND THE BASIC STUFF  
WITH PYTHON
Best Practices for Writing Clean Code
by al sweigart
384 pp., $34.99
isbn 978-1-59327-966-0

More no-nonsense books from

RESOURCES
Visit https://nostarch.com/recursive-book-recursion for errata and more information.

mailto:sales@nostarch.com
http://www.nostarch.com
https://nostarch.com/recursive-book-recursion



	Brief Contents
	Contents in Detail
	Foreword
	Acknowledgments
	Introduction
	Who Is This Book For?
	About This Book
	Hands-On, Experimental Computer Science
	Installing Python
	Running IDLE and the Python Code Examples
	Running the JavaScript Code Examples in the Browser


	Part I: Understanding Recursion
	Chapter 1: What Is Recursion?
	The Definition of Recursion
	What Are Functions?
	What Are Stacks?
	What Is the Call Stack?
	What Are Recursive Functions and Stack Overflows?
	Base Cases and Recursive Cases
	Code Before and After the Recursive Call
	Summary
	Further Reading
	Practice Questions

	Chapter 2: Recursion vs. Iteration
	Calculating Factorials
	The Iterative Factorial Algorithm
	The Recursive Factorial Algorithm
	Why the Recursive Factorial Algorithm Is Terrible

	Calculating the Fibonacci Sequence
	The Iterative Fibonacci Algorithm
	The Recursive Fibonacci Algorithm
	Why the Recursive Fibonacci Algorithm Is Terrible

	Converting a Recursive Algorithm into an Iterative Algorithm
	Converting an Iterative Algorithm into a Recursive Algorithm
	Case Study: Calculating Exponents
	Creating a Recursive Exponents Function
	Creating an Iterative Exponents Function Based on Recursive Insights

	When Do You Need to Use Recursion?
	Coming Up with Recursive Algorithms
	Summary
	Further Reading
	Practice Questions
	Practice Projects

	Chapter 3: Classic Recursion Algorithms
	Summing Numbers in an Array
	Reversing a String
	Detecting Palindromes
	Solving the Tower of Hanoi
	Using Flood Fill
	Using the Ackermann Function
	Summary
	Further Reading
	Practice Questions
	Practice Projects

	Chapter 4: Backtracking and Tree Traversal Algorithms
	Using Tree Traversal
	A Tree Data Structure in Python and JavaScript
	Traversing the Tree
	Preorder Tree Traversal
	Postorder Tree Traversal
	Inorder Tree Traversal

	Finding Eight-Letter Names in a Tree
	Getting the Maximum Tree Depth
	Solving Mazes
	Summary
	Further Reading
	Practice Questions
	Practice Projects

	Chapter 5: Divide-and-Conquer Algorithms
	Binary Search: Finding a Book in an Alphabetized Bookshelf
	Quicksort: Splitting an Unsorted Pile of Books into Sorted Piles
	Merge Sort: Merging Small Piles of Playing Cards into Larger Sorted Piles
	Summing an Array of Integers
	Karatsuba Multiplication
	The Algebra Behind the Karatsuba Algorithm
	Summary
	Further Reading
	Practice Questions
	Practice Projects

	Chapter 6: Permutations and Combinations
	The Terminology of Set Theory
	Finding All Permutations Without Repetition: A Wedding Seating Chart
	Getting Permutations with Nested Loops: A Less-Than-Ideal Approach
	Permutations with Repetition: A Password Cracker
	Getting K-Combinations with Recursion
	Get All Combinations of Balanced Parentheses
	Power Set: Finding All Subsets of a Set
	Summary
	Further Reading
	Practice Questions
	Practice Projects

	Chapter 7: Memoization and Dynamic Programming
	Memoization
	Top-Down Dynamic Programming
	Memoization in Functional Programming
	Memoizing the Recursive Fibonacci Algorithm

	Python’s functools Module
	What Happens When You Memoize Impure Functions?
	Summary
	Further Reading
	Practice Questions

	Chapter 8: Tail Call Optimization
	How Tail Recursion and Tail Call Optimization Work
	Accumulators in Tail Recursion
	Limitations of Tail Recursion
	Tail Recursion Case Studies
	Tail Recursive Reverse String
	Tail Recursive Find Substring
	Tail Recursive Exponents
	Tail Recursive Odd-Even

	Summary
	Further Reading
	Practice Questions

	Chapter 9: Drawing Fractals
	Turtle Graphics
	Basic Turtle Functions
	The Sierpiński Triangle
	The Sierpiński Carpet
	Fractal Trees
	How Long Is the Coast of Great Britain? The Koch Curve and Snowflake
	The Hilbert Curve
	Summary
	Further Reading
	Practice Questions
	Practice Projects


	Part II: Projects
	Chapter 10: File Finder 
	The Complete File-Search Program
	The Match Functions
	Finding the Files with an Even Number of Bytes
	Finding the Filenames That Contain Every Vowel

	The Recursive walk() Function
	Calling the walk() Function
	Useful Python Standard Library Functions for Working with Files
	Finding Information About the File’s Name
	Finding Information About the File’s Timestamps
	Modifying Your Files

	Summary
	Further Reading

	Chapter 11: Maze Generator 
	The Complete Maze-Generator Program
	Setting Up the Maze Generator’s Constants
	Creating the Maze Data Structure
	Printing the Maze Data Structure
	Using the Recursive Backtracker Algorithm
	Starting the Chain of Recursive Calls
	Summary
	Further Reading

	Chapter 12: Sliding-Tile Solver
	Solving 15-Puzzles Recursively
	The Complete Sliding-Tile Solver Program
	Setting Up the Program’s Constants
	Representing the Sliding-Tile Puzzle as Data
	Displaying the Board
	Creating a New Board Data Structure
	Finding the Coordinates of the Blank Space
	Making a Move
	Undoing a Move

	Setting Up a New Puzzle
	Recursively Solving the Sliding-Tile Puzzle
	The solve() Function
	The attemptMove() Function

	Starting the Solver
	Summary
	Further Reading

	Chapter 13: Fractal Art Maker
	The Built-in Fractals
	The Fractal Art Maker Algorithm
	The Complete Fractal Art Maker Program
	Setting Up Constants and the Turtle Configuration
	Working with the Shape-Drawing Functions
	The drawFilledSquare() Function
	The drawTriangleOutline() Function

	Using the Fractal Drawing Function
	Setting Up the Function
	Using the Specifications Dictionary
	Applying the Specifications 

	Creating the Example Fractals
	Four Corners
	Spiral Squares
	Double Spiral Squares
	Triangle Spiral
	Conway’s Game of Life Glider
	Sierpiński Triangle
	Wave
	Horn
	Snowflake
	Producing a Single Square or Triangle

	Creating Your Own Fractals
	Summary
	Further Reading

	Chapter 14: Droste Maker
	Installing the Pillow Python Library
	Painting Your Image
	The Complete Droste Maker Program
	Setting Up
	Finding the Magenta Area
	Resizing the Base Image
	Recursively Placing the Image Within the Image
	Summary
	Further Reading


	Index



