
ptg39201256

ptg39201256

Special Offers
Save 70% on Complete Video Course
To enhance your preparation, Cisco Press also sells Complete
Video Courses for both streaming and download. Complete
Video Courses provide you with hours of expert-level
instruction mapped directly to exam objectives.

Save 80% on Premium Edition eBook
and Practice Test
The Cisco Certified DevNet Professional DEVCOR 350-901
Official Cert Guide Premium Edition eBook and Practice Test
provides three eBook files (PDF, EPUB, and MOBI/Kindle) to
read on your preferred device and an enhanced edition of the
Pearson Test Prep practice test software. You also receive
two additional practice exams with links for every question
mapped to the PDF eBook.

See the card insert in the back of the book for your Pearson
Test Prep activation code and special offers.

ptg39201256

Cisco Press

Cisco
Certified
DevNet
Professional
DEVCOR 350-901
Official Cert Guide

JASON DAVIS,

HAZIM DAHIR,

STUART CLARK,

QUINN SNYDER

BOOK.indb 1 19/05/22 5:49 PM

ptg39201256

ii Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Cisco Certified DevNet Professional
DEVCOR 350-901 Official Cert Guide
Jason Davis

Hazim Dahir

Stuart Clark

Quinn Snyder

Copyright© 2023 Cisco Systems, Inc.

Published by:
Cisco Press

All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage and retrieval
system, without written permission from the publisher, except for the inclusion of brief quotations in a
review.

ScoutAutomatedPrintCode

Library of Congress Control Number: 2022933631

ISBN-13: 978-0-13-737044-3

ISBN-10: 0-13-737044-X

Warning and Disclaimer
This book is designed to provide information about the Cisco DevNet Professional DEVCOR 350-901
exam. Every effort has been made to make this book as complete and as accurate as possible, but no
warranty or fitness is implied.

The information is provided on an “as is” basis. The authors, Cisco Press, and Cisco Systems, Inc. shall
have neither liability nor responsibility to any person or entity with respect to any loss or damages arising
from the information contained in this book or from the use of the discs or programs that may
accompany it.

The opinions expressed in this book belong to the author and are not necessarily those of Cisco Systems, Inc.

Trademark Acknowledgments
All terms mentioned in this book that are known to be trademarks or service marks have been
appropriately capitalized. Cisco Press or Cisco Systems, Inc., cannot attest to the accuracy of this infor-
mation. Use of a term in this book should not be regarded as affecting the validity of any trademark or
service mark.

Special Sales
For information about buying this title in bulk quantities, or for special sales opportunities (which may
include electronic versions; custom cover designs; and content particular to your business, training goals,
marketing focus, or branding interests), please contact our corporate sales department at corpsales@
pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

BOOK.indb 2 19/05/22 5:49 PM

mailto:corpsales@pearsoned.com
mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com

ptg39201256

 iii

Feedback Information
At Cisco Press, our goal is to create in-depth technical books of the highest quality and value. Each book
is crafted with care and precision, undergoing rigorous development that involves the unique expertise of
members from the professional technical community.

Readers’ feedback is a natural continuation of this process. If you have any comments regarding how we
could improve the quality of this book, or otherwise alter it to better suit your needs, you can contact us
through email at feedback@ciscopress.com. Please make sure to include the book title and ISBN in your
message.

We greatly appreciate your assistance.

Editor-in-Chief: Mark Taub Technical Editors: Bryan Byrne, Joe Clark

Alliances Manager, Cisco Press: Arezou Gol Editorial Assistant: Cindy Teeters

Director, ITP Product Management: Brett Bartow Cover Designer: Chuti Prasertsith

Executive Editor: Nancy Davis Composition: Codemantra

Managing Editor: Sandra Schroeder Indexer: Cheryl Lenser

Development Editor: Ellie Bru Proofreader: Donna E. Mulder

Senior Project Editor: Tonya Simpson

Copy Editor: CAH Editing

BOOK.indb 3 19/05/22 5:49 PM

mailto:feedback@ciscopress.com

ptg39201256

iv Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Pearson’s Commitment to Diversity, Equity,
and Inclusion

Pearson is dedicated to creating bias-free content that reflects the diversity of all learn-
ers. We embrace the many dimensions of diversity, including but not limited to race,
ethnicity, gender, socioeconomic status, ability, age, sexual orientation, and religious or
political beliefs.

Education is a powerful force for equity and change in our world. It has the potential to
deliver opportunities that improve lives and enable economic mobility. As we work with
authors to create content for every product and service, we acknowledge our responsibil-
ity to demonstrate inclusivity and incorporate diverse scholarship so that everyone can
achieve their potential through learning. As the world’s leading learning company, we have
a duty to help drive change and live up to our purpose to help more people create a bet-
ter life for themselves and to create a better world.

Our ambition is to purposefully contribute to a world where

■ Everyone has an equitable and lifelong opportunity to succeed through learning

■ Our educational products and services are inclusive and represent the rich diversity
of learners

■ Our educational content accurately reflects the histories and experiences of the
learners we serve

■ Our educational content prompts deeper discussions with learners and motivates
them to expand their own learning (and worldview)

While we work hard to present unbiased content, we want to hear from you about any
concerns or needs with this Pearson product so that we can investigate and address them.

Please contact us with concerns about any potential bias at https://www.pearson.com/
report-bias.html.

BOOK.indb 4 19/05/22 5:49 PM

https://www.pearson.com/report-bias.html
https://www.pearson.com/report-bias.html

ptg39201256

 v

About the Authors
Jason Davis is a distinguished engineer for the DevNet program in the Developer Rela-
tions organization at Cisco. His role is technical strategy lead for the DevRel organization
as he collaborates with various Cisco business unit leaders, partners, customers, and other
industry influencers. Jason is focused on automation, orchestration, cloud-native technol-
ogies, and network management/operations technologies. He has a tenured career work-
ing with hundreds of customers, worldwide, in some of the largest network automation
and management projects and is sought out for consulting and innovative leadership. His
former experience as a U.S. Army Signal Corps officer has provided insights to defense,
government, and public-sector projects, while his extensive work in professional services
at Cisco has spanned commercial, large-enterprise, and service provider segments. Most
of his customer engagements have been in automotive, manufacturing, large retail, large
event venues, and health care. Jason has achieved Cisco Live Distinguished Speaker Hall
of Fame status and is an automation/monitoring lead for the network operations center
(NOC) at Cisco Live events in the U.S. and Europe. He resides in Apex, North Carolina,
and enjoys IoT projects, home automation, and audio/video technologies in houses of
worship. Jason and his wife, Amy, have four children whom they homeschool and cherish
daily. Jason is found on social media @SNMPguy.

Hazim Dahir, CCIE No. 5536, is a distinguished engineer at the Cisco office of the
CTO. He is working to define and influence next-generation digital transformation
architectures across multiple technologies and verticals. Hazim started his Cisco tenure
in 1996 as a software engineer and subsequently moved into the services organization
focusing on large-scale network designs. He’s currently focusing on developing architec-
tures utilizing security, collaboration, Edge computing, and IoT technologies addressing
the future of work and hybrid cloud requirements for large enterprises. Through his pas-
sion for engineering and sustainability, Hazim is currently working on advanced software
solutions for electric and autonomous vehicles with global automotive manufacturers.
Hazim is a Distinguished Speaker at Cisco Live and is a frequent presenter at multiple
global conferences and standards bodies. He has multiple issued and pending patents and
a number of innovation and R&D publications.

Stuart Clark, DevNet Expert #2022005, started his career as a hairdresser in 1990,
and in 2008 he changed careers to become a network engineer. After cutting his teeth
in network operations, he moved to network projects and programs. Stuart joined Cisco
in 2012 as a network engineer, rebuilding one of Cisco’s global networks and designing
and building Cisco’s IXP peering program. After many years as a network engineer, Stu-
art became obsessed with network automation and joined Cisco DevNet as a developer
advocate for network automation. Stuart contributed to the DevNet exams and was part
of one of the SME teams that created, designed, and built the Cisco Certified DevNet
Expert. Stuart has presented at more than 50 external conferences and is a multitime
Cisco Live Distinguished Speaker, covering topics on network automation and method-
ologies. Stuart lives in Lincoln, England, with his wife, Natalie, and their son, Maddox.
He plays guitar and rocks an impressive two-foot beard while drinking coffee. Stuart can
be found on social media
@bigevilbeard.

BOOK.indb 5 19/05/22 5:49 PM

ptg39201256

vi Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Quinn Snyder is a developer advocate within the Developer Relations organization inside
Cisco, focusing on datacenter technologies, both on-premises and cloud-native. In this
role, he aligns his passion for education and learning with his enthusiasm for helping the
infrastructure automation community grow and harness the powers of APIs, structured
data, and programmability tooling. Prior to his work as a DA, Quinn spent 15 years in a
variety of design, engineering, and implementation roles across datacenter, utility, and
service provider customers for both Cisco and the partner community. Quinn is a proud
graduate of Arizona State University (go Sun Devils!) and a Cisco Network Academy
alumnus. He is the technical co-chair of the SkillsUSA–Arizona Internetworking contest
and is involved with programmability education at the state and regional level for the
Cisco Networking Academy. Quinn resides in the suburbs of Phoenix, Arizona, with his
wife, Amanda, and his two kids. In his free time, you can find him behind a grill, behind
a camera lens, or on the soccer field coaching his daughter’s soccer teams. Quinn can be
found on social media @qsnyder, usually posting a mixture of technical content and his
culinary creations.

About the Technical Reviewers

Bryan Byrne, CCIE No. 25607 (R&S), is a technical solutions architect in Cisco’s Global
Enterprise segment. With more than 20 years of data networking experience, his current
focus is helping his customers transition from traditional LAN/WAN deployments toward
Cisco’s next-generation software-defined network solutions. Prior to joining Cisco, Bryan
spent the first 13 years of his career in an operations role with a global service provider
supporting large-scale IP DMVPN and MPLS networks. Bryan is a multitime Cisco Live
Distinguished Speaker, covering topics on NETCONF, RESTCONF, and YANG. He is a
proud graduate of The Ohio State University and currently lives outside Columbus, Ohio,
with his wife, Lindsey, and their two children, Evan and Kaitlin.

Joe Clarke, CCIE No. 5384, is a Cisco Distinguished Customer Experience engineer. Joe
has contributed to the development and adoption of many of Cisco’s network operations
and automation products and technologies. Joe evangelizes these programmability and
automation skills in order to build the next generation of network engineers. Joe is a Dis-
tinguished Speaker at CiscoLive!, and is certified as a CCIE and a Cisco Certified DevNet
Specialist (and a member of the elite DevNet 500). Joe provides network consulting and
design support for the CiscoLive! and Internet Engineering Task Force (IETF) conference
network infrastructure deployments. He also serves as co-chair of the Ops Area Work-
ing Group at the IETF. He is a coauthor of Network Programmability with YANG: The
Structure of Network Automation with YANG, NETCONF, RESTCONF, and gNMI as
well as a chapter coauthor in the Springer publication Network-Embedded Management
and Applications: Understanding Programmable Networking Infrastructure. He is an
alumnus of the University of Miami and holds a bachelor of science degree in computer
science. Outside of Cisco, Joe is a commercial pilot, and he and his wife, Julia, enjoy fly-
ing around the east coast of the United States.

BOOK.indb 6 19/05/22 5:49 PM

ptg39201256

 vii

Dedications
Jason Davis:

When you set off to write a book, how do you quantify the time needed to study, write,
and refine? You need time to obtain and configure the lab equipment for examples. There
are still family, career, personal health, and welfare activities that demand attention. How
can you plan when your job and a global health crisis demand the utmost in flexibility
and focus? To all the family and supporters of writers, thank you; there should be a spe-
cial place in heaven for you. I am indebted to my wife, Amy, and my children, Alyssa,
Ryan, Micaela, and Maleah. You provided me with the time and space to do this, espe-
cially through the hardships of 2021. Finally, I am thankful that my God has provided
opportunities and skills to impact technology in some small part and in a positive way;
because He has shown His love for me in innumerable ways, I am motivated to share the
same with others.

Hazim Dahir:

To my father, my favorite librarian: I wish this book could have made it to your shelf. I
think of you every day. To my mother, with heartfelt gratitude for all your love, prayers,
and guidance. I am a better person, husband, father, brother, and engineer because of
you two.

To my amazing wife, Angela: no words or pages can grasp how indebted I am to you for
your encouragement, patience, and wisdom.

To my children, Hala, Leila, and Zayd. I love watching you grow. Thank you for being
such a joy. Never give up on your dreams.

To my sisters, Hana and Dina, and brother Gary. My team.

To Bill, Sylvia, and Karen Moseley. We can do this!

Stuart Clark:

This book is dedicated to my amazing Natalie (Mouse) and our son, Maddox, and our
beloved dog, Bailey, who sadly passed while I was authoring this book. Without their
love, support, and countless cups of coffee, this book would have never been possible. I
would like to thank my father, George, and mother, Wendy Clark, for providing me with
the work ethic I have today; and Natalie’s father and mother, Frank and Barbara Thomas,
for giving me my very first networking book and helping me transition into a new
career. A big thank you to my mentors Mandy Whaley, Denise Fishburne, Joe Clarke,
and my metaldevops brother Jason Gooley, who have helped and guided me for many
years at Cisco.

BOOK.indb 7 19/05/22 5:49 PM

ptg39201256

viii Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Quinn Snyder:

Writing a book is an unknown unknown to a first-time author. You have read the prod-
ucts from others, but you don’t know what you don’t know when you set out to write
your own. The only known you have is the support of the people behind you, who make
it possible to think, to work, to create, and to inspire you. They are there for your late
nights, the constant tapping of the keys, listening to you ramble on about what you’ve
just put to paper. This book would not have been possible without the support of
those behind me, propping me up, cheering me along, and believing in me. To my wife,
Amanda, you are my rock—my biggest fan and supporter—and the one who has always
believed in me, and I wouldn’t have been able to do this without you. To my children,
Nicolas and Madelyn, you have given me the space to create and do, and have inspired
me to show you that anything is possible. To my mother, Cynthia, you have inspired a
never-quit work ethic that sticks with me to this day. I thank you all for giving me those
gifts, and I dedicate this book to you.

BOOK.indb 8 19/05/22 5:49 PM

ptg39201256

 ix

Acknowledgments
Jason Davis:
Most who know me understand that I appreciate telling stories, especially with humor.
While that humor may not be recognized, it is mine nonetheless, so thank you to those
who have endured it for years. I am thankful for the opportunity to pivot from writ-
ing blogs, whitepapers, and presentations to writing this book. It has been an exercise
in patience and personal growth. The support team at Cisco Press—Nancy, Ellie, and
Tonya—you’ve been great, valuable partners in this endeavor.

I am thankful to a cadre of supportive managers at Cisco over the years who helped me
grow technically and professionally; Mike, Dave, Rich, and Ghaida, you have been awe-
some! Hazim, Stuart, and Quinn, thank you for joining me on this journey. Besides being
wonderful coworkers, our collaboration, though separated by states and countries, has
turned into friendship that has made a mark.

Hazim Dahir:
This book would not have been possible without two SUPER teams. The A Team: Jason,
Stuart, and Quinn. Thank you for an amazing journey and expert work. “Technically,” you
complete me! And, the Cisco Press team: Nancy Davis, Ellie Bru, Tonya Simpson, and
their teams. Thank you for all your help, guidance, and most importantly, your patience.

Special thanks go to Kaouther Abrougui for her contributions to the Security chapter,
Mithun Baphana for his Webex contributions, and to David Wang for his Git contribu-
tions. Kaouther, Mithun, and David are experts in their fields, and we’re lucky to have
them join us.

Many thanks go to Firas Ahmed, for his encouragement, technical reviews, and support.

A great deal of gratitude goes to Hana Dahir, an engineer at heart, who reviewed various
content for me.

I am very thankful to the following Cisco colleagues and leaders: Yenu Gobena, Saad
Hasan, Carlos Pignataro, Jeff Apcar, Vijay Raghavendran, Ammar Rayes, Nancy
Cam-Winget, and many others who supported me throughout my career and encouraged
me to break barriers.

Stuart Clark:
Being a first-time author was such a daunting task, but the great people at Cisco Press,
Nancy and Ellie; my coauthors, Hazim, Jason, and the BBQ Pit Master Quinn; technical
reviewers, Joe Clarke and Bryan Byrne, kept me in check and supporting every chapter. A
huge thank you to my leadership at DevNet—Matt Denapoli, Eric Thiel, and Grace Fran-
cisco—for always supporting my goals and ambitions. Janel Kratky, Kareem Iskander, and
Hank Preston for their vast support and encouragement since joining the DevNet team
in 2017. My dearest friends, Patrick Rockholz and Du’An Lightfoot, whose faith in me is
always unfaltering.

BOOK.indb 9 19/05/22 5:49 PM

ptg39201256

x Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Quinn Snyder:
I’d like to thank the crew at Cisco Press for wading through my incoherent ramblings
and turning them into something worth reading. To Ellie and Nancy, thank you for the
patience and dealing with my inane questions. To Joe Clarke, thank you for your techni-
cal expertise in the review process.

Thank you to my DevNet leaders—Grace, Eric, Matt, and Jeff—for bringing me into this
amazing team and supporting my growth and development to make this work possible.

A special thanks to the guy who taught me “how to DA,” John McDonough. You set me
on a path for success and showed me the ropes, and for that I am grateful. To Kareem
Iskander, thanks for just being there. You always have listened to me, picked me up, and
pushed me forward. To my partners in crime (both with and without beards)—Jason,
Hazim, and Stuart—you guys believed that I could and gave me a shot. I have appreciated
our meetings, our late-night messaging sessions, and the friendship that has developed.

Finally, a special thank you to the man who guided me so many years ago, Barry Wil-
liams. Without your Cisco classes, your instruction, your belief, and never accepting “just
good enough,” I wouldn’t have had the foundation that I do today. You helped a kid from
rural Arizona see the big world and what was possible if I stuck with it, and because of
that, I am where I am today.

BOOK.indb 10 19/05/22 5:49 PM

ptg39201256

 xi

Contents at a Glance

Introduction xxviii

Part I Software Development and Design

Chapter 1 Software Development Essentials 2

Chapter 2 Software Quality Attributes 26

Chapter 3 Architectural Considerations and Performance Management 56

Chapter 4 Version Control and Release Management with Git 86

Part II APIs

Chapter 5 Network APIs 130

Chapter 6 API Development 162

Part III Application Development, Deployment, and Security

Chapter 7 Application Deployment 192

Chapter 8 Security in Application Design 246

Part IV Infrastructure and Automation

Chapter 9 Infrastructure 286

Chapter 10 Automation 310

Chapter 11 NETCONF and RESTCONF 346

Chapter 12 Model-Driven Telemetry 386

Chapter 13 Open-Source Solutions 444

Chapter 14 Software Configuration Management 508

Chapter 15 Hosting an Application on a Network Device 524

Part V Platforms

Chapter 16 Cisco Platforms 568

Chapter 17 Final Preparation 648

BOOK.indb 11 19/05/22 5:49 PM

ptg39201256

xii Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Appendix A Answers to the “Do I Know This Already?” Questions 654

Appendix B Cisco DevNet Professional DEVCOR 350-901 Exam Updates 672

Glossary 675

Index 684

Online Elements

Appendix C Memory Tables

Appendix D Memory Tables Answer Key

Appendix E Dashboard Basics

Glossary

BOOK.indb 12 19/05/22 5:49 PM

ptg39201256

 xiii

Reader Services

Other Features
Register your copy at www.ciscopress.com/title/9780137370443 for convenient access
to downloads, updates, and corrections as they become available. To start the registration
process, go to www.ciscopress.com/register and log in or create an account.* Enter the
product ISBN 9780137370443 and click Submit. When the process is complete, you
will find any available bonus content under Registered Products.

*Be sure to check the box that you would like to hear from us to receive exclusive
discounts on future editions of this product.

BOOK.indb 13 19/05/22 5:49 PM

http://www.ciscopress.com/title/9780137370443
http://www.ciscopress.com/register

ptg39201256

xiv Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Contents

Introduction xxviii

Part I Software Development and Design

Chapter 1 Software Development Essentials 2

“Do I Know This Already?” Quiz 2

Foundation Topics 4

A Brief History of the Future 4

The Evolution 5

Automation, Orchestration, and DevOps 6

Software Architecture and Design 9

Architecture Requirements 10

Functional Requirements 13

Nonfunctional Requirements 13

Architectural Patterns 14

Software Development Lifecycle (SDLC) Approach 15

Software Development Models 17

Waterfall 17

Agile Software Development 18

Scrum 19

Extreme Programming 19

Kanban 19

Lean 19

Which Model? 20

Architecture and Code Reviews 21

Software Testing 22

Exam Preparation Tasks 23

Review All Key Topics 24

Complete Tables and Lists from Memory 24

Define Key Terms 24

References 24

Chapter 2 Software Quality Attributes 26

“Do I Know This Already?” Quiz 26

Foundation Topics 29

Quality Attributes and Nonfunctional Requirements 29

Brief Overview of the Most Common Quality Attributes 29

Measuring Quality Attributes 35

BOOK.indb 14 19/05/22 5:49 PM

ptg39201256

Contents xv

Modularity in Application Design 36

Benefits of Modularity 36

Modularity Coding Best Practices 37

Microservices and Modular Design 40

Scalability in Application Design 41

Horizontal Scalability 41

Vertical Scalability 42

Practical Scalability in Application Design 43

High Availability and Resiliency in Application Design 44

Failure or Fault Detection 46

Recovery: High Availability in Practice 47

Prevention 50

High Availability Planning and the Responsibilities of the Developer 50

High Availability Deployment Models 51

Exam Preparation Tasks 53

Review All Key Topics 53

Complete Tables and Lists from Memory 53

Define Key Terms 53

References 54

Chapter 3 Architectural Considerations and Performance Management 56

“Do I Know This Already?” Quiz 57

Foundation Topics 59

Maintainable Design and Implementation 59

Maintaining a SOLID Design 60

Single Responsibility Principle (SRP) 61

Open-Closed Principle (OCP) 62

Liskov’s Substitution Principle (LSP) 63

Interface Segregation Principle (ISP) 64

Dependency Inversion Principle (DIP) 65

Latency and Rate Limiting in Application Design and Performance 66

Designing for Application Low Latency and High Performance 69

Architecture Trade-offs 69

Improving Performance 69

Design and Implementation for Observability 73

Logging 74

Metrics 76

BOOK.indb 15 19/05/22 5:49 PM

ptg39201256

xvi Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Tracing 77

Good Documentation Practices: An Observability Reminder 78

Database Selection Criteria 79

Database Requirements Gathering 80

Data Volume 81

Data Velocity 82

Data Variety 82

Exam Preparation Tasks 83

Review All Key Topics 83

Complete Tables and Lists from Memory 83

Define Key Terms 84

References 84

Chapter 4 Version Control and Release Management with Git 86

“Do I Know This Already?” Quiz 86

Foundation Topics 88

Version Control and Git 88

Git Workflow 88

Branch and Pull Workflow 89

Pros 89

Cons 89

Sample Setup 90

Sample Branch and Pull Workflow 90

Fork and Pull Workflow 104

Pros 105

Cons 105

Sample Setup 105

Sample Fork and Pull Workflow 106

Git Branching Strategy 121

What Is a Branching Strategy? 121

The Most Important Factor When Selecting a Git Branching Strategy 122

Popular Git Branching Strategies 122

When to Use GitHub Flow 122

When to Use Git Flow 123

When to Use GitLab Flow 123

Recommended GitHub Settings 125

Configuring the PR Merge Button 125

Configuring a Branch Protection Rule to Require Code Reviews 125

BOOK.indb 16 19/05/22 5:49 PM

ptg39201256

Exam Preparation Tasks 127

Review All Key Topics 128

Complete Tables and Lists from Memory 128

Define Key Terms 128

References 128

Part II APIs

Chapter 5 Network APIs 130

“Do I Know This Already?” Quiz 130

Foundation Topics 132

What Are APIs? 132

Methods 133

Objects 134

Formats 134

APIs vs. No API 135

Web Scraping 135

Jeff Bezos’s API Mandate: How the AWS API-Driven Cloud Was
Born 136

Calling an API 138

What Is API Development? 144

API Architectural Styles 146

Selecting an API Style 147

HTTP/JSON 149

REST/JSON 150

Cache-Control 151

REST vs. RPC 152

gRPC 154

OpenAPI/Swagger 155

Network API Styles 157

NETCONF APIs 158

Exam Preparation Tasks 160

Review All Key Topics 160

Complete Tables and Lists from Memory 160

Define Key Terms 160

References 161

Contents xvii

BOOK.indb 17 19/05/22 5:49 PM

ptg39201256

xviii Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Chapter 6 API Development 162

“Do I Know This Already?” Quiz 163

Foundation Topics 165

Creating API Clients 165

Code Generation Client API Libraries for IMDb 165

Adding CLI Wrapper Code 174

Making Calls to IMDb Using a CLI Program 174

API Design Considerations 177

API Authentication Models 179

Flow Control (Pagination vs. Streaming) 181

Error Handling, Timeouts, and Rate Limiting 184

Caching 188

Exam Preparation Tasks 189

Review All Key Topics 189

Complete Tables and Lists from Memory 189

Define Key Terms 189

References 189

Part III Application Development, Deployment, and Security

Chapter 7 Application Deployment 192

“Do I Know This Already?” Quiz 193

Foundation Topics 194

The Evolution of Application Responsibilities 194

The Hybridization of Development and Operations 194

The Journey to DevOps 195

A Cultural Shift 196

The Emergence of the Site Reliability Engineer(ing) 196

SRE Responsibilities and Tenets 197

SRE vs. DevOps 198

Continuous Integration/Continuous Delivery (Deployment) 198

Continuous Integration (CI) 199

Continuous Delivery: One of the CDs 200

Continuous Deployment: The Other CD 200

CI/CD Pipeline Implementation 201

Pipeline Components 203

Build 204

Test 205

Release/Deliver 205

BOOK.indb 18 19/05/22 5:49 PM

ptg39201256

Deploy 205

Adding Deployment to Integration 207

Deploying to Infrastructure (Terraform + Atlantis) 207

Deploying Applications (Flux + Kubernetes) 213

Application Deployment Methods over Time 218

The 2000s: Sysadmins, Terminals, and SSH 218

The 2010s: Automated Configuration Management 220

The 2020s: The Clouds Never Looked So Bright 224

Managed Kubernetes (e.g., GKE) 224

Containers on Serverless Clouds (e.g., AWS ECS on Fargate) 227

Serverless Functions (e.g., AWS Lambda) 234

Software Practices for Operability: The 12-Factor App 238

Factor 1: Codebase 239

Factor 2: Dependencies 239

Factor 3: Config 239

Factor 4: Backing Services 240

Factor 5: Build, Release, Run 240

Factor 6: Processes 240

Factor 7: Port Binding 241

Factor 8: Concurrency 241

Factor 9: Disposability 241

Factor 10: Dev/Prod Parity 241

Factor 11: Logs 242

Factor 12: Admin Processes 242

Summary 243

Exam Preparation Tasks 243

Review All Key Topics 243

Complete Tables and Lists from Memory 244

Define Key Terms 244

References 244

Chapter 8 Security in Application Design 246

“Do I Know This Already?” Quiz 247

Foundation Topics 248

Protecting Privacy 250

Personally Identifiable Information 250

Data States 250

Laws, Regulations, and Standards for Protecting Privacy 251

Contents xix

BOOK.indb 19 19/05/22 5:49 PM

ptg39201256

xx Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Storing IT Secrets 252

Public Key Infrastructure (PKI) 254

Certificate Revocation 256

Hierarchical Multiple CA Infrastructure 257

TLS, PKI, and Web Applications Security 257

Browser Security Issues 261

Securing Web and Mobile Applications 262

Injection Attacks 263

Cross-Site Scripting 264

OAuth Authorization Framework 266

How Does OAuth Work? 266

OAuth 2.0 Two-Legged Authorization 268

OAuth 2.0 Three-Legged Authorization 269

Additional OAuth Authorization Code Grant Types 271

OAuth 2.0 Client Credentials 271

Resource Owner Password Credential Flow 272

OAuth 2.0 Implicit Flow 275

OAuth 2.0 Authorization Code Flow 276

OAuth 2.0 PKCE Flow 278

Refresh Token Flow 280

OAuth 2.0 Device Code Flow 281

Exam Preparation Tasks 283

Review All Key Topics 283

Complete Tables and Lists from Memory 284

Define Key Terms 284

References 284

Part IV Infrastructure and Automation

Chapter 9 Infrastructure 286

“Do I Know This Already?” Quiz 286

Foundation Topics 288

Network Management 288

Methods of Network Provisioning 290

CLI/Console 291

SNMP 294

File Transfer Methods 297

Element Management Systems 297

Embedded Management 299

BOOK.indb 20 19/05/22 5:49 PM

ptg39201256

Zero-Touch Provisioning (ZTP) 300

Atomic or SDN-Like/Controller-Based Networking 303

Advanced Concepts—Intent-Based Networking 305

Summary 307

Exam Preparation Tasks 307

Review All Key Topics 307

Complete Tables and Lists from Memory 307

Define Key Terms 307

References 308

Chapter 10 Automation 310

“Do I Know This Already?” Quiz 311

Foundation Topics 313

Challenges Being Addressed 313

Differences of Equipment and Functionality 314

Proximity of Management Tools and Support Staff 316

Speed of Service Provisioning 317

Accuracy of Service Provisioning 319

Scale 323

Doing More with Less 329

Software-Defined Networking (SDN) 329

What Is SDN and Network Programmability? 329

Approach 330

Nontraditional Entities 331

Industry Impact 331

New Methods 331

Normalization 332

Enabling Operations 332

Enabling Career Options 332

Use Cases and Problems Solved with SDN 332

Overview of Network Controllers 334

The Cisco Solutions 335

Application Programming Interfaces (APIs) 335

REST APIs 336

API Methods 337

API Authentication 337

API Pagination 337

Contents xxi

BOOK.indb 21 19/05/22 5:49 PM

ptg39201256

xxii Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Payload Data Formats JSON XML 338

XML 338

JSON 340

Cross-Domain, Technology-Agnostic Orchestration (CDTAO) 342

Impact to IT Service Management and Security 343

Exam Preparation Tasks 344

Review All Key Topics 344

Complete Tables and Lists from Memory 345

Define Key Terms 345

References 345

Chapter 11 NETCONF and RESTCONF 346

“Do I Know This Already?” Quiz 346

Foundation Topics 348

Catalyst for NETCONF 348

Content 349

Operations 350

Messages 350

Transport 351

Atomic and Model-Driven Configuration Management 351

How to Implement NETCONF 354

Enabling NETCONF on IOS XE 355

Enabling NETCONF on IOS XR 356

Enabling NETCONF on NX-OS 357

Basic Manual Use of NETCONF 358

YANG Models 365

The Evolution with RESTCONF 371

The RESTCONF Protocol Stack 372

RESTCONF Operations 372

RESTCONF and Authentication 373

RESTCONF URIs 373

Performing a RESTCONF GET Operation with cURL 375

Performing RESTCONF GET Operations with the Postman Utility 377

Management Solutions Using NETCONF and RESTCONF 382

Exam Preparation Tasks 383

Review All Key Topics 383

Complete Tables and Lists from Memory 383

Define Key Terms 383

References 384

BOOK.indb 22 19/05/22 5:49 PM

ptg39201256

Chapter 12 Model-Driven Telemetry 386

“Do I Know This Already?” Quiz 387

Foundation Topics 389

Transformation of Inventory, Status, Performance, and Fault Monitoring 389

Scaling with the Push Model 391

How to Implement Model-Driven Telemetry 393

Dial-In and Dial-Out Mode 395

Encoding (Serialization) 395

Protocols 396

Configuring MDT in IOS-XR 398

Configuring Dial-Out Mode 398

Step 1: Create a Destination Group 398

Step 2: Create a Sensor Group 400

Step 3: Create a Subscription 400

Step 4: Verify the Dial-Out Configuration 401

Configuring Dial-In Mode 402

Step 1: Enable gRPC 402

Step 2: Create a Sensor Group 404

Step 3: Create a Subscription 405

Step 4: Validate the Configuration 405

Picking Sensor Paths and Metrics 407

Researching Public Documentation 407

Extracting Model Support from the Device—NETCONF Manually 408

Extracting Model Support from the Device—Python and NETCONF 410

Digging into the YANG Models 414

Installing Docker to the Linux VM 414

Installing the YANG Suite Docker Image to the Linux VM 415

Practical Application of Streaming Telemetry 423

Using Telegraph, InfluxDB, and Grafana 426

Installing InfluxDB 426

Installing Telegraf 428

Beyond MDT—Event-Driven Telemetry 434

Other Considerations—Disk Usage 440

Frequency of Telemetry Push 441

Exam Preparation Tasks 441

Review All Key Topics 441

Contents xxiii

BOOK.indb 23 19/05/22 5:49 PM

ptg39201256

xxiv Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Complete Tables and Lists from Memory 442

Define Key Terms 442

References 442

Chapter 13 Open-Source Solutions 444

“Do I Know This Already?” Quiz 445

Foundation Topics 447

Infrastructure-as-Code (IaC) Concepts 447

Imperative and Declarative Models 448

Provisioning or Configuration Management 449

Differences Between Agent and Agentless Solutions 450

Agent-Based Solutions—Puppet and Chef 450

Agentless Solutions—Ansible and Terraform 474

Installing Ansible from the Package Manager 474

Installing the Latest Ansible from a Virtual Python Environment
with pip 476

Configuring Ansible Inventory 481

Creating a Project-Level Inventory File 482

Creating an Ansible Playbook to Obtain show Command Results 483

Filtering, Templating, and Jinja2 487

Using Ansible to Modify Device Configurations 488

Terraform Overview 493

Installing Terraform 494

Using Terraform 496

Cisco Solutions Enabled for IaC 501

Exam Preparation Tasks 502

Review All Key Topics 502

Complete Tables and Lists from Memory 503

Define Key Terms 503

References 503

Chapter 14 Software Configuration Management 508

“Do I Know This Already?” Quiz 508

Foundation Topics 510

Software Configuration Management (SCM) 510

SCM Definitions and Standards 510

Why Do You Need SCM? 511

Which SCM Process Is Best for You? 512

Ansible 512

BOOK.indb 24 19/05/22 5:49 PM

ptg39201256

Terraform 515

Terraform or Ansible: A High-Level Comparison 518

Business and Technical Requirements 519

Architectural Decisions 519

Technical Debt 520

Exam Preparation Tasks 521

Review All Key Topics 521

Complete Tables and Lists from Memory 522

Define Key Terms 522

References 522

Chapter 15 Hosting an Application on a Network Device 524

“Do I Know This Already?” Quiz 524

Foundation Topics 527

Benefits of Edge Computing 527

Virtualization Technologies 527

Type-1 Hypervisors 528

Type-2 Hypervisors 528

Linux Containers (LXC) 529

Docker Containers 530

Application Container Ideas 532

Platforms Supporting Application Containers 533

How to Implement Application Containers 534

Validating Prerequisites 534

Enabling Application Hosting Framework 536

Using Cisco DNA Center for App Hosting 538

Using Cisco IOx Local Manager for App Hosting 547

Using the Command-Line Interface for App Hosting 553

Interacting with App Hosted iPerf3 556

Best Practices for Managing Application Containers 563

Exam Preparation Tasks 565

Review All Key Topics 565

Complete Tables and Lists from Memory 565

Define Key Terms 565

References 566

Contents xxv

BOOK.indb 25 19/05/22 5:49 PM

ptg39201256

xxvi Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Part V Platforms

Chapter 16 Cisco Platforms 568

“Do I Know This Already?” Quiz 568

Foundation Topics 571

Webex 571

Enabling the Webex REST API/SDK Access 572

Webex API Documentation 573

API Examples 575

SDK Examples 577

Firepower 582

Enabling API/SDK Access to Firepower 582

Firepower API Documentation 583

Meraki 592

Enabling API/SDK Access to Meraki 592

Meraki API Documentation 593

Meraki SDK Documentation 594

Meraki Authorization 596

Intersight 601

Enabling API Access to Intersight 601

Intersight API Documentation 603

Intersight SDK Documentation 605

Intersight Authorization 606

UCS Manager 611

Enabling API Access to UCS Manager 611

UCS Manager API Documentation 611

Python SDK Documentation 617

PowerShell SDK Documentation 622

Additional UCS Manager Programmability Resources 628

DNA Center 628

Enabling API/SDK Access to DNA Center 630

DNA Center API Documentation 631

DNA Center SDK Documentation 635

SDK Authorization 637

AppDynamics 639

Exam Preparation Tasks 646

References 646

BOOK.indb 26 19/05/22 5:49 PM

ptg39201256

Chapter 17 Final Preparation 648

Getting Ready 648

Tools for Final Preparation 649

Pearson Cert Practice Test Engine and Questions on the Website 649

Accessing the Pearson Test Prep Software Online 649

Accessing the Pearson Test Prep Software Offline 649

Customizing Your Exams 650

Updating Your Exams 651

Premium Edition 651

Chapter-Ending Review Tools 652

Suggested Plan for Final Review/Study 652

Summary 652

Appendix A Answers to the “Do I Know This Already?” Questions 654

Appendix B Cisco DevNet Professional DEVCOR 350-901 Exam Updates 672

Glossary 675

Index 684

Online Elements

Appendix C Memory Tables

Appendix D Memory Tables Answer Key

Appendix E Dashboard Basics

Glossary

Contents xxvii

BOOK.indb 27 19/05/22 5:49 PM

ptg39201256

xxviii Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Command Syntax Conventions
The conventions used to present command syntax in this book are the same conventions
used in the IOS Command Reference. The Command Reference describes these conven-
tions as follows:

■ Boldface indicates commands and keywords that are entered literally as shown. In
actual configuration examples and output (not general command syntax), boldface
indicates commands that are manually input by the user (such as a show command).

■ Italic indicates arguments for which you supply actual values.

■ Vertical bars (|) separate alternative, mutually exclusive elements.

■ Square brackets ([]) indicate an optional element.

■ Braces ({ }) indicate a required choice.

■ Braces within brackets ([{ }]) indicate a required choice within an optional element.

BOOK.indb 28 19/05/22 5:49 PM

ptg39201256

Introduction
This book was written to help candidates improve their network programmability and
automation skills—not only for preparing to take the DevNet Professional DEVCOR
350-901 exam but also for real-world skills in any production environment.

You can expect that the blueprint for the DevNet Professional DEVCOR 350-901 exam
tightly aligns with the topics contained in this book. This was by design. You can follow
along with the examples in this book by utilizing the tools and resources found on the
DevNet website and other free utilities such as Postman and Python.

We are targeting any and all learners who are learning these topics for the first time
as well as those who wish to enhance their network programmability and automation
skillset.

Be sure to visit www.cisco.com to find the latest information on DevNet Professional
DEVCOR 350-901 exam requirements and to keep up to date on any new exams that are
announced.

Goals and Methods
The most important and somewhat obvious goal of this book is to help you pass the
DevNet Professional DEVCOR 350-901 exam. In fact, if the primary objective of this
book were different, then the book’s title would be misleading; however, the methods
used in this book to help you pass the DevNet Professional exam are designed to also
make you much more knowledgeable about how to do your job. Although this book and
the companion website together have more than enough questions to help you prepare
for the actual exam, the method in which they are used is not to simply make you memo-
rize as many questions and answers as you possibly can.

One key methodology used in this book is to help you discover the exam topics that you
need to review in more depth, to help you fully understand and remember those details,
and to help you prove to yourself that you have retained your knowledge of those topics.
So, this book does not try to help you pass by memorization but helps you truly learn
and understand the topics. The DevNet Professional exam is just one of the foundation
exams in the DevNet certification suite, and the knowledge contained within is vitally
important to consider yourself a truly skilled network developer. This book would do
you a disservice if it didn’t attempt to help you learn the material. To that end, the book
will help you pass the DevNet Professional exam by using the following methods:

■ Helping you discover which test topics you have not mastered

■ Providing explanations and information to fill in your knowledge gaps

■ Supplying exercises and scenarios that enhance your ability to recall and deduce the
answers to test questions

Introduction xxix

BOOK.indb 29 19/05/22 5:49 PM

http://www.cisco.com

ptg39201256

xxx Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Who Should Read This Book?
This book is intended to help candidates prepare for the DevNet Professional DEVCOR
350-901 exam. Not only can this book help you pass the exam, but it can also help you
learn the necessary topics to provide value to your organization as a network developer.

Passing the DevNet Professional DEVCOR 350-901 exam is a milestone toward becom-
ing a better network developer, which, in turn, can help with becoming more confident
with these technologies.

Strategies for Exam Preparation
The strategy you use for the DevNet Professional exam might be slightly different than
strategies used by other readers, mainly based on the skills, knowledge, and experience
you already have obtained.

Regardless of the strategy you use or the background you have, the book is designed
to help you get to the point where you can pass the exam with the least amount of time
required. However, many people like to make sure that they truly know a topic and thus
read over material that they already know. Several book features will help you gain the
confidence that you need to be convinced that you know some material already and to
also help you know what topics you need to study more.

The Companion Website for Online Content Review

All the electronic review elements, as well as other electronic components of the book,
exist on this book’s companion website.

How to Access the Companion Website

To access the companion website, which gives you access to the electronic content with
this book, start by establishing a login at www.ciscopress.com and registering your book.
To do so, simply go to www.ciscopress.com/register and enter the ISBN of the print
book: 9780137370443. After you have registered your book, go to your account page
and click the Registered Products tab. From there, click the Access Bonus Content link
to get access to the book’s companion website.

Note that if you buy the Premium Edition eBook and Practice Test version of this book
from Cisco Press, your book will automatically be registered on your account page. Sim-
ply go to your account page, click the Registered Products tab, and select Access Bonus
Content to access the book’s companion website.

BOOK.indb 30 19/05/22 5:49 PM

http://www.ciscopress.com
http://www.ciscopress.com/register

ptg39201256

How to Access the Pearson Test Prep (PTP) App
You have two options for installing and using the Pearson Test Prep application: a web
app and a desktop app. To use the Pearson Test Prep application, start by finding the
registration code that comes with the book. You can find the code in these ways:

■ Print book: Look in the cardboard sleeve in the back of the book for a piece of
paper with your book’s unique PTP code.

■ Premium Edition: If you purchase the Premium Edition eBook and Practice Test
directly from the Cisco Press website, the code will be populated on your account
page after purchase. Just log in at www.ciscopress.com, click Account to see details
of your account, and click the Digital Purchases tab.

■ Amazon Kindle: For those who purchase a Kindle edition from Amazon, the access
code will be supplied directly from Amazon.

■ Other Bookseller eBooks: Note that if you purchase an eBook version from any
other source, the practice test is not included because other vendors to date have not
chosen to vend the required unique access code.

NOTE Do not lose the activation code because it is the only means with which you can
access the QA content with the book.

When you have the access code, to find instructions about both the PTP web app and
the desktop app, follow these steps:

Step 1. Open this book’s companion website, as shown earlier in this Introduction
under the heading “How to Access the Companion Website.”

Step 2. Click the Practice Exams button.
Step 3. Follow the instructions listed there both for installing the desktop app and for

using the web app.

Note that if you want to use the web app only at this point, just navigate to
www.pearsontestprep.com, establish a free login if you do not already have one, and
register this book’s practice tests using the registration code you just found. The process
should take only a couple of minutes.

NOTE Amazon eBook (Kindle) customers: It is easy to miss Amazon’s email that lists
your PTP access code. Soon after you purchase the Kindle eBook, Amazon should send
an email. However, the email uses very generic text and makes no specific mention of
PTP or practice exams. To find your code, read every email from Amazon after you pur-
chase the book. Also do the usual checks for ensuring your email arrives, like checking
your spam folder.

Introduction xxxi

BOOK.indb 31 19/05/22 5:49 PM

http://www.ciscopress.com
http://www.pearsontestprep.com

ptg39201256

xxxii Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

NOTE Other eBook customers: As of the time of publication, only the publisher and
Amazon supply PTP access codes when you purchase their eBook editions of this book.

How to Use This Book
Although this book could be read cover-to-cover, it is designed to be flexible and allow
you to easily move between chapters and sections of chapters to cover just the material
that you need more work with. This book was written to include not only reference mate-
rials and study guides for the exam but also rich reference material for your day-to-day
technical requirements.

The core chapters, Chapters 1 through 17, cover the following topics:

■ Chapter 1, “Software Development Essentials”: This chapter introduces software
architecture, architecture requirements, and software development models.

■ Chapter 2, “Software Quality Attributes”: This chapter discusses in detail quality
attributes or nonfunctional requirements and discusses in detail modularity, scalabil-
ity, and high availability in application design.

■ Chapter 3, “Architectural Considerations and Performance Management”: This
chapter continues to discuss another set of nonfunctional requirements and how
they relate to design trade-offs. It discusses performance, observability, and database
selection criteria.

■ Chapter 4, “Version Control and Release Management with Git”: This chapter dis-
cusses the basics of version control, Git’s way of managing version controls and col-
laboration, and then covers in detail branching strategies and why they’re important
for the success of any project.

■ Chapter 5, “Network APIs”: This chapter covers how software developers can use
application programming interfaces (APIs) to communicate with and configure net-
works and how APIs are used to communicate with applications and other software.

■ Chapter 6, “API Development”: This chapter focuses on application programming
interface development and covers both API design and API architecture.

■ Chapter 7, “Application Deployment”: This chapter covers the code-to-production
process, including organizational structures, responsibilities, and tooling required.
Historical as well as current deployment models are discussed, as well as design fac-
tors to enable portable applications between hosting locations.

■ Chapter 8, “Security in Application Design”: This chapter discusses security
practices for application development. It starts by defining privacy and personally
identifiable information and how to protect them. Then it covers the public key
infrastructure (PKI), how to secure web applications, and the OAuth Authorization
framework.

BOOK.indb 32 19/05/22 5:49 PM

ptg39201256

■ Chapter 9, “Infrastructure”: This chapter covers aspects of network infrastructure
management and automation. Some historical context is provided, but exam prepa-
ration is focused on newer programmability features that enable automation and
orchestration.

■ Chapter 10, “Automation”: This chapter covers topics such as SDN, APIs, and
orchestration. Additional helpful context is provided around the impact to IT service
management.

■ Chapter 11, “NETCONF and RESTCONF”: This chapter covers the NETCONF,
YANG, and RESTCONF technologies with examples that will be helpful in your
preparation and professional use.

■ Chapter 12, “Model-Driven Telemetry”: This chapter is focused on model-driven
telemetry, its purpose, and how it is implemented. In support of your learning, exam
preparation, and professional use, there are also examples for using MDT.

■ Chapter 13, “Open-Source Solutions”: This chapter covers several open-source
solutions that are helpful in many environments. Examples for deployment and usage
provide insight and help inform your implementation decisions.

■ Chapter 14, “Software Configuration Management”: This chapter discusses soft-
ware configuration management: what is it, why is it important, and how do you
decide which system is best for your project? We also discuss Ansible and Terraform
and their strengths and weaknesses.

■ Chapter 15, “Hosting an Application on a Network Device”: This chapter provides
insights on how to run containerized workloads on a network device. Some best
practices are also shared to encourage your best uses.

■ Chapter 16, “Cisco Platforms”: Finally, this chapter contains a mix of practical API
and SDK usage examples across several platforms, such as Webex, Meraki, Intersight,
DNA Center, and AppDynamics. If you have some of these solutions, the examples
should reveal methods to integrate with them programmatically. If you don’t use the
platforms, this chapter should reveal the “art of the possible.”

■ Chapter 17, “Final Preparation”: This chapter details a set of tools and a study plan
to help you complete your preparation for the DEVCOR 350-901 exam.

Certification Exam Topics and This Book
The questions for each certification exam are a closely guarded secret. However, we do
know which topics you must know to successfully complete this exam. Cisco publishes
them as an exam blueprint for the DevNet Professional DEVCOR 350-901 exam.
Table I-1 lists each exam topic listed in the blueprint along with a reference to the book
chapter that covers the topic. These are the same topics you should be proficient in when
working with network programmability and automation in the real world.

Introduction xxxiii

BOOK.indb 33 19/05/22 5:49 PM

ptg39201256

xxxiv Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Table I-1 DEVCOR 350-901 Exam Topics and Chapter References

DEVCOR 350-901 Exam Topic Chapter(s) in Which Topic Is
Covered

1.0 Software Development and Design Chapter 1
1.1 Describe distributed applications related to the
concepts of front-end, back-end, and load balancing

Chapter 2

1.2 Evaluate an application design considering scalability
and modularity

Chapter 2

1.3 Evaluate an application design considering
high availability and resiliency (including on-premises,
hybrid, and cloud)

Chapter 2

1.4 Evaluate an application design considering latency and
rate limiting

Chapter 3

1.5 Evaluate an application design and implementation
considering maintainability

Chapter 3

1.6 Evaluate an application design and implementation
considering observability

Chapter 3

1.7 Diagnose problems with an application given logs
related to an event

Chapter 3

1.8 Evaluate choice of database types with respect to
application requirements (such as relational, document,
graph, columnar, and time series)

Chapter 3

1.9 Explain architectural patterns (monolithic, services
oriented, microservices, and event driven)

Chapter 2

1.10 Utilize advanced version control operations with Git
1.10.a Merge a branch
1.10.b Resolve conflicts
1.10.c git reset
1.10.d git checkout
1.10.e git revert

Chapter 4

1.11 Explain the concepts of release packaging and
dependency management

Chapter 4

1.12 Construct a sequence diagram that includes API calls Chapter 5
2.0 Using APIs Chapter 5
2.1 Implement robust REST API error handling for
timeouts and rate limits

Chapter 6

2.2 Implement control flow of consumer code for
unrecoverable REST API errors

Chapter 6

2.3 Identify ways to optimize API usage through HTTP
cache controls

Chapter 6

2.4 Construct an application that consumes a REST API
that supports pagination

Chapter 6

2.5 Describe the steps in the OAuth2 three-legged
authorization code grant flow

Chapter 8

BOOK.indb 34 19/05/22 5:49 PM

ptg39201256

DEVCOR 350-901 Exam Topic Chapter(s) in Which Topic Is
Covered

3.0 Cisco Platforms Chapter 16
3.1 Construct API requests to implement ChatOps with
Webex Teams API

Chapter 16

3.2 Construct API requests to create and delete objects
using Firepower device management (FDM)

Chapter 16

3.3 Construct API requests using the Meraki platform to
accomplish these tasks
3.3.a Use Meraki Dashboard APIs to enable an SSID
3.3.b Use Meraki location APIs to retrieve location data

Chapter 16

3.4 Construct API calls to retrieve data from Intersight Chapter 16
3.5 Construct a Python script using the UCS APIs to
provision a new UCS server given a template

Chapter 16

3.6 Construct a Python script using the Cisco DNA
Center APIs to retrieve and display wireless health
information

Chapter 16

3.7 Describe the capabilities of AppDynamics when
instrumenting an application

Chapter 16

3.8 Describe steps to build a custom dashboard to present
data collected from Cisco APIs

Chapter 16

4.0 Application Deployment and Security Chapter 8
4.1 Diagnose a CI/CD pipeline failure (such as missing
dependency, incompatible versions of components, and
failed tests)

Chapter 7

4.2 Integrate an application into a prebuilt CD
environment leveraging Docker and Kubernetes

Chapter 7

4.3 Describe the benefits of continuous testing and static
code analysis in a CI pipeline

Chapter 7

4.4 Utilize Docker to containerize an application Chapter 15
4.5 Describe the tenets of the “12-factor app” Chapter 7
4.6 Describe an effective logging strategy for an
application

Chapter 7

4.7 Explain data privacy concerns related to storage and
transmission of data

Chapter 8

4.8 Identify the secret storage approach relevant to a given
scenario

Chapter 8

4.9 Configure application specific SSL certificates Chapter 8
4.10 Implement mitigation strategies for OWASP threats
(such as XSS, CSRF, and SQL injection)

Chapter 8

4.11 Describe how end-to-end encryption principles apply
to APIs

Chapter 8

Introduction xxxv

BOOK.indb 35 19/05/22 5:49 PM

ptg39201256

xxxvi Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

DEVCOR 350-901 Exam Topic Chapter(s) in Which Topic Is
Covered

5.0 Infrastructure and Automation Chapters 9 and 10
5.1 Explain considerations of model-driven telemetry
(including data consumption and data storage)

Chapter 12

5.2 Utilize RESTCONF to configure a network device
including interfaces, static routes, and VLANs (IOS XE only)

Chapter 11

5.3 Construct a workflow to configure network
parameters with:
5.3.a Ansible playbook
5.3.b Puppet manifest

Chapter 13

5.4 Identify a configuration management solution to
achieve technical and business requirements

Chapter 14

5.5 Describe how to host an application on a network
device (including Catalyst 9000 and Cisco IOx-enabled
devices)

Chapter 15

Each version of the exam can have topics that emphasize different functions or features,
and some topics can be rather broad and generalized. The goal of this book is to provide
the most comprehensive coverage to ensure that you are well prepared for the exam.
Although some chapters might not address specific exam topics, they provide a founda-
tion that is necessary for a clear understanding of important topics. Your short-term goal
might be to pass this exam, but your long-term goal should be to become a qualified net-
work developer.

It is also important to understand that this book is a “static” reference, whereas the
exam topics are dynamic. Cisco can and does change the topics covered on certification
exams often.

This exam guide should not be your only reference when preparing for the certification
exam. You can find a wealth of information available at Cisco.com that covers each topic
in great detail. If you think that you need more detailed information on a specific topic,
read the Cisco documentation that focuses on that topic.

Note that as automation technologies continue to develop, Cisco reserves the right to
change the exam topics without notice. Although you can refer to the list of exam topics
in Table I-1, always check Cisco.com to verify the actual list of topics to ensure that you
are prepared before taking the exam. You can view the current exam topics on any current
Cisco certification exam by visiting the Cisco.com website, choosing Menu, and Training &
Events, then selecting from the Certifications list. Note also that, if needed, Cisco Press
might post additional preparatory content on the web page associated with this book at
http://www.ciscopress.com/title/9780137370443. It’s a good idea to check the website a
couple of weeks before taking your exam to be sure that you have up-to-date content.

BOOK.indb 36 19/05/22 5:49 PM

http://Cisco.com
http://Cisco.com
http://Cisco.com
http://www.ciscopress.com/title/9780137370443

ptg39201256

Credits
Figure 4-1 through Figure 4-29, Figure 4-32 through Figure 4-34, Figure 6-8, Figure 6-9,
Figure 11-10, Figure 11-11, Figure 12-6, Figure 12-27, Figure 12-28: GitHub, Inc

Figure 5-3 through Figure 5-6, Figure 6-10, Figure 6-11, Figure 6-13: IMDb-API

Figure 5-8, Figure 11-14 through Figure 11-19, Figure 16-16 through Figure 16-19,
Figure 16-31, Figure 16-41 through Figure 16-43: Postman, Inc

Figure 6-1 through Figure 6-7: SmartBear Software

Figure 7-3 through Figure 7-5: HootSuite Media Inc

Figure 7-7, Figure 7-8: Weaveworks, Inc

Figure 7-10, Figure 7-11: Jupyter

Figure 7-9, Figure 7-12 through Figure 7-16: Amazon Web Services, Inc

Figure 8-7 through Figure 8-10: DigiCert, Inc

Figure 9-3: Coleman Yuen/Pearson Education Asia Limited

Figure 9-5: vystekimages/Shutterstock

Figure 9-7: faithie/123RF

Figures 9-13 and 9-14, arm icons: De-V/Shutterstock

Figure 10-2: Twitter, Inc

Figure 10-3: Natata/Shutterstock

Figure 10-4: Rawpixel.com/Shutterstock

Figure 10-5: Andrey_Popov/Shutterstock

Figure 10-7 icons: Sergii Korolko/Shutterstock, Vitaly Korovin/Shutterstock,
Gazlast/Shutterstock, dodi31/Shutterstock, Stokkete/Shutterstock, Pavel Ignatov/
Shutterstock

Figure 10-12: Tribalium/Shutterstock, KJBevan/Shutterstock

Figure 12-21 through Figure 12-25, Figure E-1, Figure E-2: Grafana Labs

Logo in Figure 13-3: Puppet

Figure 13-5: Puppet

Figure 13-6, Figure 14-6 through Figure 14-8: HashiCorp

Figure 16-44, Figure 16-45: AppDynamics

Table 2-2: Permission to reproduce extracts from British Standards is granted by BSI
Standards Limited (BSI). No other use of this material is permitted. British Standards can
be obtained in PDF or hard copy formats from the BSI online shop: https://shop.
bsigroup.com/.

 xxxvii

A01_Davis_FM_pi-pxxxvii.indd 37 20/05/22 9:55 PM

http://Rawpixel.com/Shutterstock
https://shop.bsigroup.com/
https://shop.bsigroup.com/

ptg39201256

CHAPTER 1

Software Development Essentials

This chapter covers the following topics:

■ A Brief History of the Future: This section covers network management evolution
from basic monitoring to automation and orchestration of complex infrastructures and
applications.

■ Software Architecture and Design: This section covers the basics of software archi-
tecture definitions and terminologies.

■ Architecture Requirements: This section covers functional and nonfunctional require-
ments and how they affect the overall design.

■ Architectural Patterns: This section covers common application architectural patterns
and their advantages and usage criteria.

■ Software Development Lifecycle (SDLC) Approach: This section covers SDLC and
the basics of the software design, development, testing, and deployment lifecycle.

■ Software Development Models: This section describes various models like Agile and
Waterfall.

■ Architecture and Code Reviews: This section describes several types of code review,
including peer and stakeholder reviews.

■ Software Testing: This section covers the various types of software testing.

As you start your journey toward DEVCOR certification, it is important to understand that
you will be building software for the purpose of automating operational functions that
consume several human hours. What you build and automate will be used to reduce human
hours and errors while providing a consistent way of conducting various tasks.

In this chapter, we first discuss software development and design in the context of IT opera-
tional functions, and then attempt to briefly describe how we got here and why. In addition,
we want you to understand the software development concepts from a network domain
expertise perspective. We also focus on the architecture design and delivery lifecycle of
software products. The keyword here, after design, is delivery, which encompasses all
aspects of building, testing, and releasing software products. This chapter sets the stage with
a brief description of the lifecycle and various processes that most organizations follow to
develop, test, and maintain software.

“Do I Know This Already?” Quiz
The “Do I Know This Already?” quiz allows you to assess whether you should read this
entire chapter thoroughly or jump to the “Exam Preparation Tasks” section. If you are in
doubt about your answers to these questions or your own assessment of your knowledge
of the topics, read the entire chapter. Table 1-1 lists the major headings in this chapter and

BOOK.indb 2 19/05/22 5:50 PM

ptg39201256

their corresponding “Do I Know This Already?” quiz questions. You can find the answers in
Appendix A, “Answers to the ‘Do I Know This Already?’ Quizzes.”

Table 1-1 “Do I Know This Already?” Section-to-Question Mapping

Foundation Topics Section Questions

A Brief History of the Future 7
Software Architecture and Design 1
Architecture Requirements 3
Architectural Patterns 10
Software Development Lifecycle (SDLC) Approach 2
Software Development Models 4–6
Architecture and Code Reviews 9
Software Testing 8

1. What is software architecture?
a. A set of structures explaining the software
b. The components or building blocks and their relations
c. The single source of truth for all business requirements related to the software

being developed
d. All of these answers are correct.

2. What is SDLC?
a. Synchronous data link control
b. Software development lifecycle
c. Social data language controller
d. None of these answers are correct.

3. Why do you need functional requirements?
a. To understand the functionality and business requirements of the application

you’re building
b. To specify high availability requirements
c. To specify development methodology
d. All of these answers are correct.

4. Which of the following is a type of nonfunctional requirement?
a. Scalability
b. Modularity
c. High availability
d. All of these answers are correct.

5. How is the Agile software development model different from the waterfall model?
a. It has individual stages.
b. It has a higher degree of flexibility and speed.
c. It has possibly multiple teams working independently with limited collaboration.
d. All of these answers are correct.

BOOK.indb 3 19/05/22 5:50 PM

ptg39201256

4 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

6. Which of the following principles is not associated with the Lean software develop-
ment model?
a. Fast and frequent value delivery
b. Continuous learning and innovation
c. Team empowerment
d. Holistic, upfront planning

7. Which of the following metrics does DevOps use to assess performance?
a. Deployment frequency
b. Lead time
c. Change volume
d. All of these answers are correct.

8. Unit testing is considered a type of
a. Black-box testing conducted with no knowledge of the system
b. Gray-box testing conducted with some knowledge of the system
c. White-box testing conducted with full knowledge of the system
d. None of these answers are correct.

9. An important aspect of software quality assurance is peer code review, which may be
looking at
a. Functionality
b. Complexity of code
c. Naming conventions
d. All of these answers are correct.

10. Why do you need architectural patterns?
a. Architectural patterns introduce complexity and give the impression of sophisti-

cated programming skills.
b. Architectural patterns ensure consistency of the code because it is a reusable

solution to a commonly occurring problem within a given context.
c. There so many patterns, and you have to choose one.
d. All of these answers are correct.

Foundation Topics

A Brief History of the Future
Some of us started programming out of necessity, some out of the desire to simplify routine
tasks, some saw an opportunity to improve life around them, and some wanted that job.
No matter how you got here, you’re now an application developer looking to automate the
configuration and orchestration of simple and complex tasks. Over the last few years, a great
deal of change has affected the software development world—not necessarily related to
software programming as much as it relates to the why, how, and where. The logic, we like to
believe, stayed intact. In addition, recent advances in processes in hardware, CPU, and mem-
ory and the significant reduction in price point brought an abundance of processing power

BOOK.indb 4 19/05/22 5:50 PM

ptg39201256

Chapter 1: Software Development Essentials 5

1
to a large number of people globally. In return, these changes broke down many barriers and
introduced the world to millions of new software developers and a great deal of innovation
that accompanied them.

We also like to differentiate between a software engineer and a software developer. Sim-
ply put, we’re differentiating between design and execution, respectively. We think of the
software engineer as the person who takes a problem, breaks it down, proposes a solution
based on requirements and quality trade-offs, builds an architecture that solves the problem,
and then executes a strategy for making that solution happen. The software developer, on
the other hand, is a team member of the execution team. Don’t get us wrong; there is a lot of
creativity in execution, and the differentiation between an engineer and a developer is not
meant to show preference or hierarchy.

The Evolution
Many books have been written about the evolution of software development and the many
revolutions that have affected various aspects of humanity: engineering, business, health
care, and so on. The evolution we want to discuss here is the one that relates to the network
and the various tasks for building and managing one. It is also about running a business. How
can you bring flexibility to a network, application, and processes to help run your business?

As we discuss the relationship between software development and managing a business, we
want to discuss the ever-continuing evolution that has got us here. Without putting timelines
and designating specific years as the beginning or end of something, we go through a quick
and yet necessary journey of the past to justify (and prepare for) the future.

In the beginning, networks and systems were limited to the four walls of the enterprise. The
majority of management tasks were limited to the capabilities provided by the vendor, and
some of those were even proprietary. That paradigm was bad for interoperability and sim-
plicity of operations.

Those capabilities mainly were for status and simple configuration and customization func-
tions. Then Simple Network Management Protocol (SNMP) adoption increased, and there
was a standard model where an “agent” running on the “managed” system used a standard
protocol to communicate with a “manager” or “management server.” The adoption of SNMP
and network management systems (NMS) provided increased efficiency in network opera-
tions and, subsequently, provided some relief for the system administrator who used to con-
figure and maintain various systems individually.

Shortly after, the International Organization for Standardization (ISO) introduced the FCAPS
model, which stands for Fault, Configuration, Accounting, Performance, and Security. The
FCAPS model provided a standard way for defining and assessing the functions of network
management. Security in the form of privilege assignment and information masking was an
essential addition as organizations grew in size and grew the adoption of technology, not to
forget the staff (internal and external) that manages the growth.

As we discuss the network management evolution that brought software development to the
network, we cannot ignore the network’s evolution. The network experienced new develop-
ments and pressures to expand into remote campuses or branches and to support higher
bandwidths reliably for voice and video integration. In addition, as we deployed additional
management and visibility systems, we were quick to see clear inefficiencies in the design
and utilization of the network.

BOOK.indb 5 19/05/22 5:50 PM

ptg39201256

6 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

For example, we saw that 70+ percent of our servers were running at 25 percent utilization
of CPU and memory—hence, the birth of “virtualization” and the introduction of another
management layer. With virtualization, we were able to improve efficiency at the server level,
and we saw that it was good for performance and also for business. Then we moved back to
the network and also virtualized it and its main functions, such as routers, switches, firewalls,
and load balancers, and we’re still doing it.

Having virtualized the majority of the enterprise IT functions, we started observing “owner-
ship” issues: who owns what and who’s responsible for where? Why? As the control (or own-
ership) boundaries were quickly dissolving, it was clear that traditional network management
capabilities (and the traditional network manager) were not fully equipped or fast enough to
match the speed of business.

The traditional network operations center (NOC) that kept an eye on the network and busi-
ness applications needed to evolve as well. It needed to utilize software development tech-
niques and technologies to detect network issues better, alert the right people, and possibly
take action.

Eventually, we moved up the stack and started looking at business processes and workflows,
and through virtualization and APIs, we were able to automate the full enterprise stack and
merge (consolidate) the various functions of the enterprise business process management
into a single team. The business application developers wanted flexibility deploying their
code as frequently as the business desired; the network and systems managers wanted to
ensure a higher degree of availability and stability.

Automation, Orchestration, and DevOps
Having the tools to virtualize and multiply resources (e.g., one to many) created the need and
the opportunity to empower traditional management tools with new and advanced capabili-
ties. We moved beyond monitoring and alerts into automation of provisioning and eventually
into the area of automation of provisioning and orchestration.

Figure 1-1 summarizes the past and gives a simple idea about the evolution of automation
and orchestration. This diagram might not fully represent the journey; however, it does
describe the various components taking us from monitoring and “reacting” to proactive net-
work improvement, all the way to automation and orchestration. The evolution was simple
and fueled by the need for the network operations to be super-efficient and to be able to
keep up with the speed of the business. The journey started with simple monitoring of vari-
ous functions using continuous polling of elements, or “objects,” and displaying them in
red or green on a management screen. Based on this, we went into the “reactive” mode to
investigate the issue and subsequently scheduling a change window to fix the issue. Shortly
after that, we attempted to model the network and specific behaviors using the correlation
of configuration files from network devices. This type of modeling served its purpose by
allowing us to detect gaps in the configuration and architecture before deployment. Under-
standably, this modeling type also had gaps in modeling interactions beyond the ISO Layer 2
and 3 parameters.

BOOK.indb 6 19/05/22 5:50 PM

ptg39201256

Chapter 1: Software Development Essentials 7

1Incident
Response

Modeling

Capacity
Planning

Orchestration Adoption

Automation

Efficiency and Agility

Telemetry

R
eactive

Proactive

Monitoring

Change
Management

Policy

Figure 1-1 From Monitoring to Automated Orchestration

With recent advancements in telemetry and programmability, it is much easier to model,
predict, and orchestrate the adoption of features and configurations adhering to business
functions and operational policies.

The more we represented network functions in software, the easier it became to manage and
control them. The better the control, the easier it was to rapidly adapt to situations. The term
situations here refers to a variety of conditions affecting the proper operation of the net-
work. This could easily mean network outages, security events, hardware/software upgrades,
expansions, decommissioning of devices, acquisitions, mergers—anything that affects the
business.

It is also worth mentioning that advances in the networking operating systems facilitated a
lot of this transition or transformation. Advancements in software-defined networking (SDN)
concepts and the separation of the control and data planes allowed us to create and delete
networks on the fly, and based on immediate demand, choose optimum paths, create secu-
rity boundaries, enhance application performance, all with the click of a button.

But wait, aren’t we forgetting something? What about the culture?

All enterprises liked the idea of automation for the efficiency and agility it brought to the
business, and they wanted that “standardized” approach to managing their IT operations, but
what about the cultural paradigm shift and the new processes? This is where the concept of
DevOps, which creates and manages the network automation mindset, evolved from.

Without going into too much detail about DevOps and its own evolution, we can safely
say that now when the network has become “software functions” or “software-driven,”
DevOps concepts highlight and manage the relationships among the following functions and
personas:

■ Application developers

■ Network services architects or developers

■ Network operations engineers

■ Customer or business requirements

BOOK.indb 7 19/05/22 5:50 PM

ptg39201256

8 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

The key DevOps practices include the following:

■ Continuous integration/continuous delivery (CI/CD):

■ Continuous integration and continuous delivery reduce the time required to update
or deliver software while improving quality.

■ Continuous integration improves efficiency by allowing team members to work on
modules independently before integrating components in a common build area.

■ Continuous delivery (continuous deployment) ensures quality by testing builds in a
production environment.

■ Automating processes:

■ Reduce human error and improve the responsiveness of the development environ-
ment.

■ Standardize processes for easy replication.

■ Reduce costs on maintenance, upgrades, or capital expenditures.

■ Shorten lifecycle of software development by reducing implementation time.

■ Improve reliability and reusability of components.

■ Establishing a DevOps culture:

■ Creates a cultural shift by combining development and IT operations.

■ Facilitates communication among teams.

■ Introduces smaller projects with increased collaboration.

■ Promotes DevOps talent (DevOps engineering team).

■ Utilizes common tools for shared data.

■ Measuring DevOps teams and efforts using the following sample metrics:

■ Deployment frequency.

■ Change failure rate.

■ Lead time.

■ Change volume.

■ Trouble tickets and service requests.

■ Mean time to recovery (MTTR).

DevOps includes multiple concepts that we cover in the following chapters with clear
guidance and examples. The next few sections introduce how to go about building software
satisfying your operations.

BOOK.indb 8 19/05/22 5:50 PM

ptg39201256

Chapter 1: Software Development Essentials 9

1Software Architecture and Design
Architecture is not unique to software, engineering, or even technology as a whole. It is an
essential practice for building anything. It provides the roadmap or blueprint for all elements,
and it helps justify various decisions taken through the journey. While building any software
or any system, you will find yourself making individual decisions or shortcuts, and you must
make sure that those decisions adhere to a set of principles and do not affect the overall goal
of the system. In the following few sections, we give you a primer of software architecture
and all related design pieces that must come together.

Architecture is one of the most critical aspects of building almost anything. Without it, you
cannot transform an idea into a product or align a product with a business problem. Archi-
tecture, especially a well-documented one, allows you to understand the question, how it
relates to the business, and envision a solution that satisfies business requirements.

Of course, various architectures and factors influence and possibly govern software archi-
tecture in a business or enterprise environment. For example, the software you’re about to
design here will be used to perform a task within a system, and that system is built using
a collection of software programs that represent a business function within the enterprise.
Figure 1-2 is for illustration purposes only, and to make a specific point about software
architecture and how it may differ from a system architecture or enterprise architecture.

Data

Data

Data Data Data

Data

Data Data Data

SW SW

Data Data

SW SW

Data Data

SW SW

Enterprise Architecture

Business Process (and Architecture) Business

System SystemSystem Architecture System

SW SW

Figure 1-2 Sample Representation of High-Level Architecture

I’ve always liked the simplicity of the software architecture definition given by Carnegie
Mellon Software Engineering Institute (SEI) shown in Software Architecture in Practice, 4th
Edition by Bass et al.:

The software architecture of a system is the set of structures needed to reason about the
system, which comprise software elements, relations among them, and properties of both.

For example, the purpose of Figure 1-2 is to illustrate that the software you’re trying to
architect has clear relationships (and dependency) on other software as well as on data
sources and targets (storage or databases). The relationships can be localized to the system
or cross boundaries to other systems or business processes within the enterprise. The rela-
tionships among the various components may require different data formats, connectors, and
other types of translations that allow heterogeneous systems to communicate or exchange
data. You can find more details in Chapter 2, “Software Quality Attributes.”

M01_Davis_C01_p002-p025.indd 9 20/05/22 9:19 PM

ptg39201256

10 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

In general, architecture defines the organization of the system, all components, their relation-
ships, interactions, dependencies, and the requirements and principles governing the design.
It is also a source of truth when it comes to agreed-upon requirements and design principles,
especially as exceptions are made or changes are requested. It also serves as a communica-
tion vehicle among stakeholders.

In the next few sections, we look at a few concept frameworks regarding how software is
conceptualized, developed, tested, reviewed, and maintained. We follow the general founda-
tional direction by looking at

■ Software requirements

■ Development lifecycle

■ Code review

■ Testing

■ Version control

The remainder of the book handles these topics with examples and specific use cases.

Architecture Requirements
There is no architecture without requirements. Every architecture has a list of requirements
it strives to fulfill. The requirements are discussed, documented, and agreed upon by all
stakeholders.

When you’re designing software, it is often tough to evaluate how the application should
be built and which design pattern should be used. While your experience as a developer
and acceptable practices come in handy, it is often better to start objectively by collecting
requirements. There are two main categories for capturing requirements: functional and
nonfunctional.

It is not uncommon to see an organization use a third category of requirements called
constraints or limitations. Constraints refer to design or architecture decisions that are
somehow beyond your control, or unnegotiable. Some of those design decisions have been
previously made and you, as a developer, have to comply with them. Examples may include
the use of a specific programming language, the use of another software system (external to
your organization), interoperability with a specific system, or possibly, workload movement
with a specific cloud provider. We focus on the main two categories.

Functional requirements specify “what” the software in question should do. They
describe the functionalities of a system, such as

■ Business process

■ Data manipulation

■ User interaction

■ Media processing

■ Calculation or computation of data

■ Administrative functions

BOOK.indb 10 19/05/22 5:50 PM

ptg39201256

Chapter 1: Software Development Essentials 11

1
■ Audits, reports, and tracking

■ Historical data handling, retention, storage, and retrieval

■ Compliance or certifications (if any)

■ Or any other action that the system can or should perform

Functional requirements can be measured in “yes” or “no” terms and usually include the
words shall or can. For example, some functional requirements for a document editing web
application would be

■ Users can access documents through a web GUI.

■ Users can create, edit, and delete documents.

■ Users can save documents to a local drive.

■ Users can restore documents to a previous version.

■ The administrator can create and delete users.

■ Documents can be sent via a GUI to other users.

In addition, there is the concept of nonfunctional requirements. The nonfunctional
requirements tell you how a system should perform those actions or functions. They
describe how fast the system should be or how scalable it must be. Nonfunctional require-
ments are mainly concerned with

■ Performance

■ Scalability

■ High availability

■ Modularity

■ Interoperability

■ Serviceability

■ Testability

■ Security

■ And many more

As you can see from the list, these values are also thought of as the quality attributes of the
system. They are often expressed in words like must and should and are commonly mea-
sured over an interval or a range.

NOTE There is always some kind of a trade-off among nonfunctional requirements when
considering the final design. Nonfunctional requirements must be considered as a group
because they will, most certainly, affect each other. For example, increasing scalability may
negatively affect performance.

BOOK.indb 11 19/05/22 5:50 PM

ptg39201256

12 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

A few examples of nonfunctional requirements are

■ The system should be able to handle 10,000 new sessions concurrently.

■ The system should be available at least 99.999 percent of the time.

■ The web GUI should take less than two seconds to load.

■ Users are required to register before they can use the system.

■ Passwords must not show anywhere in the logs or the GUI.

■ The GUI system can be translated into all other languages.

When writing the nonfunctional requirements of your system, avoid using nonspecific
words. Instead of writing that “the request must be fast,” write “the request must be com-
pleted in under 300 milliseconds (300 ms).” Instead of “the GUI must be user-friendly,” say
something like “the GUI must respond in under 500 ms, and the user shall be able to access
all main functionalities from the home screen.”

Functional and nonfunctional requirements are closely related, and it certainly does not
matter where you start the requirement capturing process. In our experience, it is a case-by-
case situation. For example, if we were starting a new innovative type of project, we always
started at the functional requirement level. However, in other projects where we were rein-
venting the wheel, and the essence of the project was to build software that superseded or
replaced existing software, we tended to start by looking at nonfunctional requirements first.
Any way you look at it, at the end of the day, both types of requirements need to be cap-
tured in a single document. We just cannot think of any normal situation where a developer
is concerned with only one set of requirements. Table 1-2 gives a few examples of differences
between the two types.

Table 1-2 Simple Comparison Between Functional and Nonfunctional Requirements

Functional Nonfunctional

Use case or business process specific System quality attribute specific
Mandatory Not mandatory/affected by trade-offs
Functionality specific Performance or quality specific
User requirements User experience
Test for functionality Test for performance, security, etc.
Describe as can or shall Describe as must or should

Another interesting way to look at it is that we would argue that businesses are measured by
the revenue they generate, which can be attributed to their success in their business area. In
this case, business requirements (that fall under functional requirements) are prioritized.

But what about business requirements that verge on the edge of nonfunctional
requirements—for example, scalability and security for a cloud service provider?

As with most things, it is crucial to evaluate requirements to see which ones should be pri-
oritized and which ones impact your application the most. Product owners may focus purely
on functional requirements, and it may be up to the development team to take ownership of
nonfunctional requirements.

BOOK.indb 12 19/05/22 5:50 PM

ptg39201256

Chapter 1: Software Development Essentials 13

1
To consider the impact that a requirement has on application quality, assess the requirement
by identifying the requirement and creating user stories (for example, users need to have a
good experience while browsing), then determining the measurable criteria (for example,
round-trip time should be under 500 ms), and finally, identifying the impact (for example,
users will not visit your site if it is too slow).

Functional Requirements
Functional requirements are designed to be read by a general, not necessarily technical, audi-
ence. Therefore, they are often derived from user stories. User stories are short descriptions
of functionalities, as seen from the end-user perspective. They focus more on how users
interact with the system and what they expect the goal of the interaction to be, rather than
what the system does, but because the software is often very domain-specific, they help you
to understand the system better as a developer. You will see how significant the user stories
are when we discuss the Agile development approach.

Another concept used in the formulation of functional requirements is the use case. In
contrast to user stories, use cases focus less on a user’s interaction and more on the cause
and effect of actions. If a user story stated, “A user can save documents by clicking Save,”
the related use case would state, “When the Save button is clicked, the current document is
saved to the server’s NoSQL database and to the client’s local cache.”

Functional requirements should

■ Be very concise and to the point. Don’t use vague language.

■ Be testable.

■ Clearly define who is allowed to perform certain actions or access data.

■ Fully cover every scenario, including what the system should not do.

■ Include complete information about data flow in and out of the system.

■ Contain only a single functionality per requirement

When you’re gathering requirements, consider the business, administrative, user, and system
requirements. Business requirements are high-level requirements from a business perspec-
tive, such as the users being able to log in with credentials from an existing application.
Administrative requirements take care of routine actions, such as logging every change made
to a document. User requirements contain the desired outcome of certain actions, like the
creation of a new document. System requirements describe software and hardware specifica-
tions, like a specific error code being returned when an unauthorized user tries to access a
document that is not theirs.

Nonfunctional Requirements
Nonfunctional requirements specify the quality attributes or technical requirements of
the system. They are more related to the system’s architecture than its functionalities and
are often constraints on the technical properties of a system. Nonfunctional requirements
are often very technical and less thought about than functional requirements. Although
functional requirements are commonly defined with the project’s stakeholders’ help and are
more specific, nonfunctional requirements are more implicit and sometimes just assumed.
An example of an assumed but not commonly listed nonfunctional requirement is a short
loading time for a web page (for example, less than two seconds). Another example of an

BOOK.indb 13 19/05/22 5:50 PM

ptg39201256

14 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

assumed nonfunctional requirement is a sudden change of underlying technology due to
lower licensing costs. If modularity is not included as a nonfunctional requirement from the
beginning, this change can cause big delays.

For those reasons, compiling a list of nonfunctional requirements often does not fall on you
and your team as software designers or architects. In contrast to functional requirements,
which are often isolated features that a single developer can work on, nonfunctional require-
ments can span the entire application or system and must be considered by all the developers
working on the project.

Not all nonfunctional requirements can be implemented and tested at the same time. For
example, although a requirement for portability can be considered at the beginning of the
implementation, full performance efficiency tests cannot be satisfied until the code is running
in an actual production environment. Not all nonfunctional requirements should be taken into
consideration when developing because it is easy to go overboard. For example, a web page
probably does not need to have 99.999 percent availability and use enterprise-grade security.

Because many different nonfunctional requirements exist, the choice of which nonfunctional
requirements to emphasize can have a major impact on further development. Too many non-
functional requirements can make application development an incredibly long and compli-
cated process, and too few nonfunctional requirements can create an application that does
what it is supposed to do but is very slow, insecure, and costly to maintain. In Chapter 2, we
cover nonfunctional requirements and quality attributes in greater detail.

Architectural Patterns
Sometimes, the topic of architectural patterns is a philosophical discussion because different
patterns have different strengths and usage contexts. Some allow for easier integration; some
allow for easier usability. One easy definition we once saw on Wikipedia goes like this:

An architectural pattern is a general, reusable solution to a commonly occurring problem
in software architecture within a given context.

We like this simple definition. The context, or the paradigm, is the key word here. It relates
to the organization’s enterprise architecture and defines the software design schema to be
followed. Having a defined pattern allows for collaboration and onboarding of new project
participants without jeopardizing efficiency or productivity of the project. In this section we
briefly cover a few common patterns in software architecture:

Microservices pattern: It’s an architectural approach for breaking an application (a mono-
lithic application) into smaller, independent, and possibly distributed components. Through
deterministic interfaces, they interact together to deliver the intended functionality of a
monolithic system but with higher flexibility, performance, and scalability. Microservices are
discussed in Chapter 2.

Service-oriented architecture (SOA): Distributed applications or components that provide and
consume services. The service provider and service consumer don’t have to use the same lan-
guages or be hosted on the same platforms. They are developed and deployed independently.
Every component has interfaces that define the services it provides or the services it requests.
In addition to the provider and consumer, there are few important components of this pattern:

■ The service registry assists the service provider with offering the services and how
they should be offered and with what type of availability, security, or metering (bill-
ing), to name a few.

BOOK.indb 14 19/05/22 5:50 PM

ptg39201256

Chapter 1: Software Development Essentials 15

1
■ The service broker provides details about the services to service consumers.

SOA allows for faster deployment, lower cost, and higher scalability. At the same time,
because service providers and consumers are built independently and possibly by different
organizations, this may introduce limitations in flexibility and scalability when a high level
of customization is required.

Event-driven: This model is very common for customer engagement applications where an
event (a change in state) is generated, captured, and processed in real time (or near-real time).
It is like SOA in the sense that there is an event producer and an event consumer (which
listens for the event). When the event is generated, the event producer detects the event and
sends it in the form of a message. The producer sends the message not knowing or caring
about the consumer and what the consumer may or may not do with it. The event-driven
architecture has two different models:

■ Publisher/subscriber (pub/sub) model: When an event is detected, it is published and
sent to subscribers for further analysis (or correlation).

■ Event streaming: Multiple events or continuous streams of events are detected and
logged to a database where consumers or subscribers can read from the database in a
customized fashion (e.g., a timestamp or a duration of time).

Event-driven architecture patterns saw a rise with the Internet of Things (IoT) sensors,
devices, and applications, especially as streams of data (and events) are analyzed for pattern
detection or predictive analysis of events in areas like health care or manufacturing.

Model-view-controller (MVC): This model relies on three components of an application:
model, view, and controller:

■ Model: This component contains core data and all functionality.

■ View: This component provides a customizable view of the outcome seen by the user.
Multiple views can be developed and based on the user interaction (e.g., web page or
text message).

■ Controller: This component receives user input from the view and sends it to the
model for processing (or storage).

MVC provides a great deal of simplicity and flexibility because each of the three compo-
nents can be developed independently by a different group of developers.

Software Development Lifecycle (SDLC) Approach
We’ve discussed architecture and architecture requirements; now we briefly cover the
approach to software development. To keep individual developers and development teams
on the same page and to ensure discipline, various lifecycle approaches have been developed
and tried. The different approaches we discuss here fit into what is called the software
development lifecycle (SDLC).

In general, the SDLC has six distinct phases, as illustrated in Figure 1-3:

■ Planning: Developing the concept or context; the creation and capture of use cases or
user stories.

BOOK.indb 15 19/05/22 5:50 PM

ptg39201256

16 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

The narrative: You want to build an application that does this to solve that business
problem, and you need to define all stakeholders and define the final product.…

Planning

Deployment

Testing

Building

Designing

Defining

SDLC

Figure 1-3 Software Development Lifecycle

■ Defining: Defining requirements capture and analysis; building the system specifica-
tions.

The narrative: The app must do ABC using this system or while adhering to this busi-
ness process enabled by this type of data performing a transaction in no more than
500 ms.

■ Designing: Converting the high-level conceptual design into technical software speci-
fications.

The narrative: This step makes sure that all stakeholders are on the same page and are
in full agreement on the next steps.

The outcome of this stage is the “go-to” reference from this moment on.

■ Building/implementing: Using technical specifications to build the software.

The narrative: Let’s build this thing.

Often project managers organize milestones and timelines.

NOTE The development models (described in the next section) highlight how this part of
SDLC is managed.

BOOK.indb 16 19/05/22 5:50 PM

ptg39201256

Chapter 1: Software Development Essentials 17

1
■ Testing: Validating that the software functions as intended. Depending on the organi-

zation or the intended use of the system, there may be various phases or certifications
of the software. Examples include functional, stress, system, alpha, and beta testing.

The narrative: The software is almost ready for production deployment, but let’s exer-
cise the system and observe how it reacts to certain normal or stressful scenarios.

■ Deployment: Possibly done in multiple phases or stages—possibly limited rollout or
pilot before full-scale production. During the limited deployment phases, you’re most
likely observing the behavior of the system as well as how it interacts with other soft-
ware and other business processes.

Some SDLC representations may add a maintenance stage.

Software Development Models
This section could be described in a few paragraphs or in three chapters. Each of the models
and methodologies has been previously described in a book on its own, but we give you a
summary so that you can understand the topics and be prepared for all related questions on
the DEVCOR exam.

The software development process usually is a complex undertaking involving multiple stake-
holders, developers, and business owners. Therefore, a model that manages the execution
of SDLC is necessary. Over the years, many models have been developed to meet a variety
of environmental or process needs; some stood the test of time and evolution, some have
become limited in use, others are rarely used. For the DEVCOR exam, it is important to be
familiar with the main ones that fulfill the development process of current software environ-
ments. The most common models are

■ Waterfall

■ Iterative

■ Agile

■ Spiral

■ V Model

For the purpose of DEVCOR, two models stand out and are required knowledge: Waterfall
and Agile. Agile has several variations that are also understood to stand on their own (Lean,
Scrum, Extreme Programming, and so on). For example, the Lean model is considered a
variation of Agile, but it is not uncommon to view it as an independent model. In the follow-
ing sections, we quickly cover a few models and examples.

Waterfall
The waterfall model is considered the simplest and most straightforward model. As the
name indicates, this mode is sequential. As shown in Figure 1-4, each stage depends on the
one before it. A stage must finish and get the proper signoffs/approvals before the next one
can start.

BOOK.indb 17 19/05/22 5:50 PM

ptg39201256

18 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Requirement
Analysis

Design

Implementation

Testing

Deployment

Maintenance

Figure 1-4 Waterfall Development Model

In a waterfall model, the flow is sometimes unidirectional (downward or toward the next
step). This could be viewed as an advantage because all gates or checks are done at the indi-
vidual stage before exiting it and starting the next one. It can also be viewed as a disadvan-
tage, or a con, of the system because changes and faults discovered at the following stage are
hard to integrate into the system unless the full process is repeated.

Agile Software Development
Agile has been gaining ground as a model, not just for software development only, but also
as a project management tool or methodology for a variety of architectures or business prob-
lems. It addresses many of the waterfall shortcomings and introduces a high degree of flex-
ibility and speed to the development process. Agile represents a number of methodologies
like Scrum, Extreme Programming, or Lean. As seen in Figure 1-5, Agile has the concept of
“sprints,” which represents short development lifecycles (typically one to four weeks) where
small manageable chunks of the software are delivered.

Build Build Build

Define Define DefineRelease Release Release
Working

Subsystem
Working

Subsystem

Figure 1-5 Agile Software Development

A few years ago, a group of software development experts got together and developed what
they called the Agile Manifesto (https://agilemanifesto.org/), which is based on the following
principles:

1. Our highest priority is to satisfy the customer through early and continuous delivery
of valuable software.

2. Welcome changing requirements, even late in development. Agile processes harness
change for the customer’s competitive advantage.

3. Deliver working software frequently, from a couple of weeks to a couple of months,
with a preference for the shorter timescale.

4. Businesspeople and developers must work together daily throughout the project.

BOOK.indb 18 19/05/22 5:50 PM

https://agilemanifesto.org/

ptg39201256

Chapter 1: Software Development Essentials 19

1
5. Build projects around motivated individuals. Give them the environment and support

they need and trust them to get the job done.

6. The most efficient and effective method of conveying information to and within a
development team is face-to-face conversation.

7. Working software is the primary measure of progress.

8. Agile processes promote sustainable development. The sponsors, developers, and users
should be able to maintain a constant pace indefinitely.

9. Continuous attention to technical excellence and good design enhances agility.

10. Simplicity—the art of maximizing the amount of work not done—is essential.

11. The best architectures, requirements, and designs emerge from self-organizing teams.

12. At regular intervals, the team reflects on how to become more effective, then tunes
and adjusts its behavior accordingly.

It’s obvious from the list that Agile development emphasizes teamwork, collaboration,
and flexibility. As mentioned earlier, Agile represents a variety of methodologies. It is not
uncommon to find references or publications internal or external to your organization that
deal with the following Agile methodologies as independent models.

Scrum
Scrum uses sprints (short and repeatable development cycles) and multiple teams to achieve
success. It is a preferred model where frequent changes or design decisions are made. It
requires clear communication of requirements, but teams are empowered to decide on the
best ways to fulfill them.

Extreme Programming
Extreme Programming offers high-quality software, frequently and continuously with a
typical iteration duration of one to four weeks. It allows for frequent changes, which is con-
sidered a plus, but in a poorly managed environment, this could easily degrade the quality of
your deliverable.

Kanban
Kanban provides continuous delivery while reducing individual developer burden. In some
cases, it focuses on day-long sprints. There is no defined process for introducing changes.

Lean
Lean focuses on “valuable features” and prioritization. Lean is sometimes considered as the
origin of Agile or, more like, Agile took the best of Lean and improved upon it. Lean focuses
on the following principles:

■ Deliver value fast and often.

■ Provide continuous learning and innovation.

■ Build high-performing and empowered teams.

■ Think quality at the design phase.

■ Make just-in-time decisions: Always have options but finalize decisions at the right time.

■ Eliminate waste and optimize delivery.

BOOK.indb 19 19/05/22 5:50 PM

ptg39201256

20 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

In the following section, we provide a brief comparative analysis of the various models. The
Agile development model is closely aligned with the DevOps model. DevOps focuses on
integration and collaboration among development teams to shorten development and deploy-
ment cycles. Agile focuses on frequent and incremental updating and development of sys-
tems and subsystems that contribute to the evolution of the final product. We can safely say
that both models strive to reduce the time to develop, test, and deploy software.

Which Model?
Agile has been gaining ground as a model, not just for software development only but also
as a project management tool for a variety of architectures or business problems. Table 1-3
compares the various development models to help you decide which to use for your proj-
ect. With the exception of the waterfall model, you will probably observe many similarities
among the other models because they’re all Agile in nature. The table lists the pros and cons
of each. Note that you must make a number of trade-offs between quality, cost, and speed
(among other things relevant to your organization).

Table 1-3 Comparative Analysis of the Various Development Models

Model Pros Cons

Waterfall ■ Provides simple, easy-to-
understand deliverables and
stakeholders

■ Rigid
■ Suitable where strict control is

needed
■ Good for small or shorter-term

projects

■ Possibly higher cost than other
models, especially if changes are
needed in later stages

■ Not change request friendly
■ Not the best option for large or

longer-term projects

Agile ■ Emphasizes frequent and direct
communication

■ Friendly to change requests or
design improvements

■ Normally yields high-quality
iterative development and
frequent fixes

■ Good for larger projects where
work is distributed over smaller
teams

■ Documentation is not
emphasized

■ It’s easy to lose the big picture if
individual teams are controlled
with clear milestones or
outcomes

Lean ■ Provides for rapid development
and eliminates waste

■ Team empowerment
■ Continuous learning
■ Continuous development

with functioning systems or
subsystems early in the lifecycle

■ Easy to lose focus and the full-
system impact

■ Documentation is not
emphasized or produced during
early development phases

BOOK.indb 20 19/05/22 5:50 PM

ptg39201256

Chapter 1: Software Development Essentials 21

1Model Pros Cons

Scrum ■ Provides for team empowerment
■ Clear documentation of

requirements (especially
functional or business ones) is
significant

■ Rapid development using a team
of experienced developers

■ Easy to lose the big picture
■ Small to medium projects
■ It may be costly (depends on the

size and skills of teams)

Extreme
Programming (XP)

■ Involves all stakeholders
■ Typically produces high-quality

software
■ Dependent on skilled and

dedicated developers for high-
quality outcomes

■ Short sprints
■ Allows for changes frequently

■ Highly skilled resources add to
cost

■ Frequent meetings and
checkpoints

■ Visibility into small subsystems
and not the big picture or the
final outcomes

■ Quality may suffer if the
number of changes introduced
is high

Architecture and Code Reviews
We won’t spend a lot of time on architecture review, although we feel it is very important.
Many decisions that the architectures (or architects for that matter) deliver to the developers
need to be reviewed or defended. It is also critical that developers understand how coding
and implementation errors have performance, security, or quality implications. For all those
reasons, code review is an essential step in the development lifecycle.

Three common review types fit in various stages of the lifecycle:

■ Peer review

■ Customer review (internal stakeholders)

■ External or independent review

The unfortunate part is that architecture is hardly ever reviewed or updated after the devel-
opment lifecycle starts. Code review, on the other hand, cannot be handled that way.

As a software developer, you will typically find yourself very focused on code reviews.
Code review, in light of the current requirements and future roadmaps, is extremely
essential.

Different organizations have different practices, but reviewers generally look at some com-
mon practices. The following is a partial list of examples of what gets checked or verified
during a code review:

■ Adhering to the architecture

■ Following predefined code patterns

BOOK.indb 21 19/05/22 5:50 PM

ptg39201256

22 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

■ Ensuring nonfunctional requirements are represented:

■ Scalability

■ Efficiency

■ High availability

■ Testability

■ Modifiability/maintainability

■ Security

■ Usability

■ And more

■ Using predefined technologies, systems, and subsystems

■ Following coding best practices

■ Formatting

■ Naming conventions

■ Documentation

Code review requires collaboration, patience, and documentation of findings. Code review
meetings are also a great opportunity for all involved persons or parties to connect and learn
from each other.

Software Testing
We could easily dedicate a full chapter to testing, but for the purpose of DEVCOR, we limit
the discussion to few paragraphs. Testing can happen at every stage of the development
lifecycle, but nothing is more important than the prerelease times. Releases are systemwide
releases or subsystem releases as you’ve seen with the Agile development model.

Your application is as good as your testing process or methodology. You most commonly
hear about alpha and beta type testing, but that type of testing is conducted by customers
or other stakeholders outside the development teams. This type of testing is called accep-
tance testing.

The type and frequency of testing is specific to your organization. Figure 1-6 presents a
number of testing terminologies; however, the majority of development teams are concerned
with four main types of testing:

■ Unit testing: We like to call this testing at the atomic level (the smallest testable unit),
meaning that you conduct this type of testing at the function or class level within a
subsystem. Unit testing is conducted mostly by the developers who have full knowl-
edge of the unit under test. It’s often advantageous to automate unit testing.

■ Integration testing: This type tests for integration or interaction among the compo-
nents of the overall system. Components interact through interfaces, and that’s what
you’re validating here.

BOOK.indb 22 19/05/22 5:50 PM

ptg39201256

Chapter 1: Software Development Essentials 23

1
■ System testing: Here, you verify that the full system functionality is as intended or

specified in the requirements. It is not uncommon to call this type of testing func-
tional testing.

■ Acceptance testing: Depending on your organization, this category of testing may
be customized to whatever functional or nonfunctional requirement you want to test.
It is possible to have multiple teams conducting different types of testing under one
umbrella testing effort called acceptance testing. For example, performance testing,
stress testing, or usability testing may be considered types of acceptance testing, or
they could stand on their own as individual types of testing.

Regression
Testing

Integration
Testing

Unit
Testing

Functional
Testing

Performance
Testing

Software Testing

Stress
Testing

Usability
Testing

Regression
Testing

Acceptance
Testing

Component or Subsystem
Level

(White-Box Testing)

System or Subsystem
Level

(Black-Box Testing)

Figure 1-6 Various Types of Testing Used by Software Developers and Their Customers

NOTE The terms white-box testing and black-box testing are mostly seen nowadays in
relation to cybersecurity, but they actually originated with software testing. White-box test-
ing indicates that the tester has full knowledge of the subcomponents or inner workings of
the system, and it is usually conducted by developers or development test teams. Black-box
testing indicates that the testing team has little to no knowledge of the inner workings of the
system while testing it. It’s worth mentioning that, depending on your organization, the terms
white-box testing and black-box testing might not be widely used in software development.

Testing efforts are normally executed from organized test plans and generate a list of issues
to be acted upon in the form of bugs, defects, failures, or errors. The issues are also ranked
in severity and priority. It is not unusual to ship the code with bugs or issues included and
documented in the “release notes.”

Test automation has become a discipline on its own, especially with Agile practices
where you’re dealing with large systems with small subsystems, continuous updating, and
integration.

Exam Preparation Tasks
As mentioned in the section “How to Use This Book” in the Introduction, you have a couple
of choices for exam preparation: the exercises here, Chapter 17, “Final Preparation,” and the
exam simulation questions on the companion website.

BOOK.indb 23 19/05/22 5:50 PM

ptg39201256

24 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Review All Key Topics
Review the most important topics in this chapter, noted with the Key Topic icon in the outer
margin of the page. Table 1-4 lists a reference of these key topics and the page numbers on
which each is found.

Table 1-4 Key Topics for Chapter 1

Key Topic
Element

Description Page
Number

List The key DevOps practices 8
List Functional requirements 10
List Nonfunctional requirements 11
Paragraph Architectural patterns: MVC and microservices 14
List SDLC distinct phases 15
Table 1-3 Comparative Analysis of the Various Development Models 20

Complete Tables and Lists from Memory
Print a copy of Appendix C, “Memory Tables” (found on the companion website), or at least
the section for this chapter, and complete the tables and lists from memory. Appendix D,
“Memory Tables Answer Key,” also on the companion website, includes completed tables
and lists to check your work.

Define Key Terms
Define the following key terms from this chapter and check your answers in the glossary:

continuous integration/continuous deployment (CI/CD), software development lifecycle
(SDLC), functional requirements, nonfunctional requirements, software architecture

References
URL QR Code

Continuous Architecture in Practice: Software Architecture in the Age of
Agility and DevOps
https://www.informit.com/store/
continuous-architecture-in-practice-software-architecture-9780136523567

Software Architecture in Practice, 4th Edition
https://www.informit.com/store/software-architecture-in-practice-
9780136886099

Manifesto for Agile Software Development
https://agilemanifesto.org/

BOOK.indb 24 19/05/22 5:50 PM

https://www.informit.com/store/continuous-architecture-in-practice-software-architecture-9780136523567
https://www.informit.com/store/continuous-architecture-in-practice-software-architecture-9780136523567
https://www.informit.com/store/software-architecture-in-practice-9780136886099
https://www.informit.com/store/software-architecture-in-practice-9780136886099
https://agilemanifesto.org/

ptg39201256

This page intentionally left blank

ptg39201256

CHAPTER 2

Software Quality Attributes

This chapter covers the following topics:

■ Quality Attributes and Nonfunctional Requirements: This section discusses func-
tional and nonfunctional requirements as an essential part of the software development
process. Functional requirements describe the business functions and what the soft-
ware should do, whereas nonfunctional requirements describe how the software should
perform these functions.

■ Modularity in Application Design: This section describes why and how the software
should be composed of discrete components such that a change to one component has
minimal impact on other components. Cohesive functions with specific functions are
the essence of modularity.

■ Scalability in Application Design: This section covers one of the most important
nonfunctional requirements of how to scale your system up and out to meet various
growth requirements.

■ High Availability and Resiliency in Application Design: This section focuses on vari-
ous strategies for improving the availability and resiliency of the system with various
software implementation technologies that affect the availability of the software and
hardware alike.

This chapter maps to the first part of the Developing Applications Using Cisco Core Plat-
forms and APIs v1.0 (350-901) Exam Blueprint Section 1.0, “Software Development and
Design.”

In the first chapter, we covered the relationship between functional and nonfunctional
requirements. We also determined that writing code that delivers functional or business
requirements is the easy part. The part that requires extra attention and careful discussion
is the nonfunctional requirements that make your application efficient, scalable, highly
available, and modifiable, among other attributes. Our goal is to help you write an applica-
tion that requires the least amount of work when changes are required. It’s not efficient if
you have to rewrite an application or some of its main components every time you want to
enhance a characteristic or feature. Therefore, the quality of the application and its devel-
opment practices are determined by your ability to enhance it or modify it with the least
amount of effort. In this chapter, we focus on the various nonfunctional requirements that
describe the quality of the design.

“Do I Know This Already?” Quiz
The “Do I Know This Already?” quiz allows you to assess whether you should read this
entire chapter thoroughly or jump to the “Exam Preparation Tasks” section. If you are in
doubt about your answers to these questions or your own assessment of your knowledge

BOOK.indb 26 19/05/22 5:50 PM

ptg39201256

of the topics, read the entire chapter. Table 2-1 lists the major headings in this chapter and
their corresponding “Do I Know This Already?” quiz questions. You can find the answers in
Appendix A, “Answers to the ‘Do I Know This Already?’ Quizzes.”

Table 2-1 ”Do I Know This Already?” Section-to-Question Mapping

Foundation Topics Section Questions

Quality Attributes and Nonfunctional Requirements 1–6
Modularity in Application Design 7–9
Scalability in Application Design 10
High Availability and Resiliency in Application Design 11, 12

1. When is a design considered to be of high quality?
a. It processes data at high speed.
b. It is bug free.
c. It is secure.
d. Nonfunctional requirements are clearly defined and are measurable.

2. Functional and nonfunctional requirements are
a. Independent of each other because they are measured separately.
b. Considered in sequence functional then nonfunctional.
c. Considered in sequence nonfunctional then functional.
d. Considered hand in hand because you cannot measure nonfunctional require-

ments without understanding the functional or business requirements.
3. The terms nonfunctional requirements and quality attributes are used interchange-

ably most of the time.
a. True
b. False

4. Which of the following is a type of quality attribute?
a. Modifiability
b. Modularity
c. High availability
d. All of these answers are correct.

5. Availability can be expressed as
a. The number of hours when a system was reachable before it crashed.
b. The degree to which a system, product, or component is operational and acces-

sible when required for use.
c. When a system was operational but not needed.
d. All of these answers are correct.

BOOK.indb 27 19/05/22 5:50 PM

ptg39201256

28 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

6. Which of the following attributes are considered part of maintainability according to
ISO/IEC 25010?
a. Modularity
b. Modifiability
c. Testability
d. All of these answers are correct.

7. What do you strive to do with modularity?
a. Break the architecture into equal-size chunks.
b. Break the architecture into smaller chunks.
c. Break the architecture into smaller building blocks with clear functions and

interactions.
d. None of these answers are correct.

8. What is coupling in a modular design?
a. A degree of independence between modules.
b. A measure of strength of the relationship among modules.
c. A degree of independence or dependence among modules.
d. All of these answers are correct.

9. In modularity, it is considered a best practice when you do which of the following?
a. Reduce coupling and increase cohesion.
b. Increase coupling and reduce cohesion.
c. Reduce coupling and improve comprehension.
d. None of these answers are correct.

10. What is horizontal scalability?
a. Scaling out.
b. Adding additional servers to handle additional load.
c. Similar to server load balancing.
d. All of these answers are correct.

11. To improve availability in a design, what type of redundancy should you use?
a. Hot standby
b. Warm standby
c. Cold standby
d. Any of these answers are correct based on requirements and capabilities.

12. Heartbeats or “hello packets” are usually exchanged between redundant systems
a. To help detect a failure.
b. To alert the standby system that the active system is no longer available.
c. And may require special processing and prioritization.
d. All of these answers are correct.

BOOK.indb 28 19/05/22 5:50 PM

ptg39201256

Chapter 2: Software Quality Attributes 29

2

Foundation Topics

Quality Attributes and Nonfunctional Requirements
What defines the quality of a design?

Processing of input data is high speed?

It is bug free?

It applies security checks or tasks?

It can scale up to 100,000 concurrent connections when only 10,000 are required?

All these qualities are great, but do they really indicate that the system is of high quality?
Maybe. Regardless of what system you’re working with, when discussing quality, you must
be specific about the quality attribute being investigated or discussed. Quality attributes or
nonfunctional requirements must be measurable and testable. The best or easiest example
is security. You can never say that a system is “secure,” but you can say that the system is
secure under a set of conditions, inputs, or stimuli. The same applies to availability. You must
specify the failure type before you can judge the system to be available.

The message we want to deliver here is that quality attributes and functional requirements
are connected. You cannot consider one without the other. You cannot assess performance
or availability if you’re not observing them against the system performing a functional or
business requirement task. In other words, you cannot measure nonfunctional quality attri-
butes without considering the functions the system is performing.

Another message that shines in the preceding paragraph is measure. For the most part, qual-
ity attributes should be measurable and testable. As mentioned, you can quickly define qual-
ity attributes as measurable indicators of how well a system responds to certain stimuli or
how it performs functional requirements. Quality attributes need to be precise and specific.
When discussing performance, you have to use specific parameters such as time or CPU
cycles or time-out values.

In addition, you have to keep in mind that trade-offs exist among the various attributes.
A high-level example would be the inverse relationship between performance and scalability.
As scalability or capacity requirements increase, there is a high probability that performance
would suffer.

Brief Overview of the Most Common Quality Attributes
If you have not noticed yet, we’ve been using the terms nonfunctional requirements and
quality attributes interchangeably.

NOTE Remember that, as specified in Chapter 1, “Software Development Essentials,” the
terms quality attributes and nonfunctional requirements are used interchangeably.

BOOK.indb 29 19/05/22 5:50 PM

ptg39201256

30 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

The following are quality attributes by which you can judge the quality of a given system:

■ Performance: This attribute is mostly measured by time. Transactions per second is a
good indicator of performance. However, the same description can be used to discuss
the reliability of the system, such as how much load it can handle per second before
the intended performance begins to degrade.

■ Security: This attribute is possibly the simplest or hardest quality attribute to fulfill. It
can be summarized as the capability of the system (and its subcomponents) to protect
data from unauthorized access.

■ Availability: This attribute is the system’s capability to recover from subcomponent
failure and continue to be operational.

■ Resiliency: This attribute is often combined or confused with availability. A system
is resilient if it continues to provide the same level of operation after a failure event.
With high availability, the system recovers from a failure; with resilience, the system
recovers fast enough to maintain the services it was offering.

■ Modifiability: Simply put, this attribute addresses how the system handles change.
There are many types of change. Change can come as an enhancement, a fix, or the
inclusion of a new technology or business process. Can you integrate the new changes
without having to rewrite the system or subsystems?

■ Reliability: This attribute asks how long a system can perform specific functions under
specific load or stress. For example, a system designed to handle 10,000 new connec-
tions per second is hit with a failure scenario that causes the 12,000 existing users to
connect at once. How does the system handle this unforeseen load and for how long?

■ Usability: This attribute determines the ease or difficulty with which a system’s user
can accomplish a task and how much support (help) is available. One organization we
worked with called this attribute serviceability. Both terms are concerned with the
same outcome.

■ Testability: This attribute determines how a system handles normal or erroneous input
at execution time. The system is testable when it can handle various inputs and condi-
tions representing a variety of test cases. For example, the system asks users to input
a birthdate in the form mm/dd/yyyy. How does that system react when a user enters
March 10, 2021? That test case can be tried to test how the system handles abnormal
input patterns.

■ Interoperability: This attribute addresses how the system interacts with other systems.
How does a system exchange information and using what interfaces? Interoperability
relies on understanding the system interface, sending a request to it, and seeing how
the request is handled.

■ Serviceability: This attribute addresses the ability of users to install, configure, and
monitor the software. Serviceability is also referred to as supportability, where users
(or test teams) can identify and debug exceptions and faults.

BOOK.indb 30 19/05/22 5:50 PM

ptg39201256

Chapter 2: Software Quality Attributes 31

2

NOTE The ISO/IEC 25010 standard publication presents a more generic, or standard, defi-
nition of a more comprehensive list of quality attributes. Notice how it creates subcategories
of quality attributes. The ISO/IEC 25010 is good to know if you’re helping your organiza-
tion build a standard list of attributes for internal software projects. See System and software
engineering—System and software Quality Requirements and Evaluation (SQuaRE)—System
and software quality models.

The standard document explains the various quality characteristics.

Table 2-2 shows how ISO/IEC 25010 describes each of the quality characteristics or attri-
butes. The highlighted categories are essential to DEVCOR development and are handled in
some detail.

Table 2-2 Quality Attributes Described by ISO/IEC 25010

Quality
Attribute

Subcategory Definition

Functional
Suitability

Functional completeness The degree to which the set of functions covers
all the specified tasks and user objectives

Functional correctness The degree to which a product or system
provides the correct results with the needed
degree of precision

Functional
appropriateness

The degree to which the functions facilitate the
accomplishment of specified tasks and objectives

Performance
Efficiency

Time behavior The degree to which the response and processing
times and throughput rates of a product or
system, when performing its functions, meet
requirements

Resource utilization The degree to which the amounts and types of
resources used by a product or system, when
performing its functions, meet requirements

Capacity The degree to which the maximum limits of a
product or system parameter meet requirements

Compatibility Co-existence The degree to which a product can perform its
required functions efficiently while sharing a
common environment and resources with other
products, without detrimental impact on any
other product

Interoperability The degree to which two or more systems,
products, or components can exchange
information and use the information that has
been exchanged

BOOK.indb 31 19/05/22 5:50 PM

ptg39201256

32 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Quality
Attribute

Subcategory Definition

Usability Appropriateness
recognizability

The degree to which users can recognize whether
a product or system is appropriate for their needs

Learnability The degree to which a product or system can
be used by specified users to achieve specified
goals of learning to use the product or system
with effectiveness, efficiency, freedom from risk,
and satisfaction in a specified context of use

Operability The degree to which a product or system has
attributes that make it easy to operate and
control

User error protection The degree to which a system protects users
against making errors

User interface aesthetics The degree to which a user interface enables
pleasing and satisfying interaction for the user

Accessibility The degree to which a product or system can
be used by people with the widest range of
characteristics and capabilities to achieve a
specified goal in a specified context of use

Reliability Maturity The degree to which a system, product, or
component meets needs for reliability under
normal operation

Availability The degree to which a system, product, or
component is operational and accessible when
required for use

Fault tolerance The degree to which a system, product, or
component operates as intended despite the
presence of hardware or software faults

Recoverability The degree to which, in the event of an
interruption or a failure, a product or system can
recover the data directly affected and re-establish
the desired state of the system

Security Confidentiality The degree to which a product or system ensures
that data are accessible only to those authorized
to have access

Integrity The degree to which a system, product, or
component prevents unauthorized access to, or
modification of, computer programs or data

Nonrepudiation The degree to which actions or events can be
proven to have taken place so that the events or
actions cannot be repudiated later

Accountability The degree to which the actions of an entity can
be traced uniquely to the entity

Authenticity The degree to which the identity of a subject or
resource can be proved to be the one claimed

BOOK.indb 32 19/05/22 5:50 PM

ptg39201256

Chapter 2: Software Quality Attributes 33

2

Quality
Attribute

Subcategory Definition

Maintainability Modularity The degree to which a system or computer
program is composed of discrete components
such that a change to one component has
minimal impact on other components

Reusability The degree to which an asset can be used in
more than one system, or in building other assets

Analyzability The degree of effectiveness and efficiency with
which it is possible to assess the impact on a
product or system of an intended change to one
or more of its parts, or to diagnose a product for
deficiencies or causes of failures, or to identify
parts to be modified

Modifiability The degree to which a product or system can
be effectively and efficiently modified without
introducing defects or degrading existing
product quality

Testability The degree of effectiveness and efficiency
with which test criteria can be established for a
system, product, or component and tests can be
performed to determine whether those criteria
have been met

Portability Adaptability The degree to which a product or system
can effectively and efficiently be adapted for
different or evolving hardware, software, or other
operational or usage environments

Installability The degree of effectiveness and efficiency with
which a product or system can be successfully
installed and/or uninstalled in a specified
environment

Replaceability The degree to which a product can replace
another specified software product for the same
purpose in the same environment

NOTE The highlighted quality attributes are necessary for the DEVCOR exam and are
given detailed attention. We consider them independently and not necessarily as main or
subcategories as shown in the table. For example, modularity and modifiability are dis-
cussed in independent sections and not under the main header “Maintainability.” Similarly
for availability and reliability.

It’s clear from Table 2-2 how important it is to have a clearly defined list of nonfunctional
or quality attributes. For example, as a developer, what more do you need than to have your

BOOK.indb 33 19/05/22 5:50 PM

ptg39201256

34 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

code highly available, modular, and secure? Therefore, it becomes clear that a focus on these
attributes achieves what every developer is looking to deliver on the code they’re working
on:

■ Quality: Good and standardized coding practices create easy-to-understand and well-
documented code.

■ High performance: Deploying modularity alongside efficient coding practices allows
for high-speed processing of information at various load levels.

■ Security: Security cannot be an afterthought, and it cannot be assumed. Use defense-
in-depth or multilayer security practices and technologies.

■ Low errors: A clear understanding of both functional nonfunctional requirements such
as testability, availability, and usability can reduce the number of bugs and errors in an
application.

■ Unplanned outages: Availability and resiliency at the component level can increase
uptime of the overall system even when failure occurs at the component level.

■ Low maintenance: Modularity and modifiability lower maintenance costs and future-
proof your system.

■ Customer satisfaction: User experience is a make-or-break for anything, let alone
software applications. Users often expect usability and responsiveness, and these attri-
butes should be prioritized.

As you build software applications, it is important to have the end goal in mind. There are
several important points that, as a developer, you need to consider every time:

■ Change is constant. It will always happen.

■ Functional or business requirements will always change or grow.

■ Software support is expensive.

■ Your name is on it. Guard your reputation.

■ Document your work. You will save yourself and others valuable time.

■ Try to understand the full system architecture, not just your component.

■ Collaborate and learn from others.

■ Reinvent yourself. Evolve your development practices if you can.

■ Learn new tools and technologies.

■ Keep it simple.

■ Ask questions. If requirements are not clear, don’t make assumptions that may affect
the whole system or affect those who are on the receiving end from you.

BOOK.indb 34 19/05/22 5:50 PM

ptg39201256

Chapter 2: Software Quality Attributes 35

2

Measuring Quality Attributes
As seen from the definition of quality attributes, to be able to measure them, you almost
always have an “event” and a “response.” Some software architecture publications go further
into qualifying them into multiple stages:

1. Source of the event (How is the event generated?)

2. Stimulus or condition that affects the system

3. System, subsystem, or function affected by the condition

4. Environment or condition when the stimulus arrived

5. Response or activity invoked or resulted
6. Measure of the response (e.g., time)

These six stages are very important, especially when you look at network events. Consider
Figure 2-1, which shows availability with a switch-failover scenario. This example demon-
strates the concept using a scenario familiar to network engineers. We expand into software
high availability functions later in this chapter.

Figure 2-1 A High Availability Scenario Used to Demonstrate Quality Attributes Stages

We use the devices in Figure 2-1 to demonstrate the stages described. For these two redun-
dant switches, one is Active (StackWise-A), and the other is Standby (StackWise-S). The
StackWise Virtual Link (SVL) is used to synchronize state between the Active and Standby
and for transmitting the heartbeat informing both switches of the state of each switch.
Let’s assume that the failure event here is loss of power at Chassis-1 (meaning StackWise-A);
then the processor is no longer available and no longer transmitting heartbeats to Chassis-2.
Then Chassis-2 becomes the Active switch within 50 ms. Table 2-3 demonstrates each of the
stages and the event associated with it.

Table 2-3 Measuring Attributes (and Example for Measuring Availability)

Stage Value or Description Associated with the Stage

Source Power connectivity of a Cisco Catalyst Switch is lost.
Stimulus Keep-alive packets are lost between the Master and Backup StackWise virtual

pair.

BOOK.indb 35 19/05/22 5:50 PM

ptg39201256

36 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Stage Value or Description Associated with the Stage

System StackWise Virtual subsystem experiences a fail-over event.
Environment Active switch is affected by loss of power.
Response The StackWise virtual invokes the stateful switch over (SSO).
Measure Chassis-2 becomes Active in 50 ms.

More advanced high availability concepts are discussed later in the chapter.

Modularity in Application Design
One of your first tasks as an architect is to break your architecture into smaller building
blocks with clear functions and interactions. This way, it is easier to understand, explain, and
build. This is what modularity is all about: building small functional modules (subsystems)
that can come together to build a full or larger-scale system. Modularity and reusability are
also similar in the way that the individual modules are functions that are reusable to improve
efficiency and readability of code.

As applications grow in size and functionality, modularity becomes a must-have practice, not
just a nice-to-have good-coding practice. The ability to build modular code demonstrates the
difference between a software developer and a software engineer. Writing reusable modules
with clear and specific interfaces is necessary in large-scale projects and is also an essential
object-oriented skill. Figure 2-2 gives a simple example of Module 2 fulfilling a requirement
for both System A and System B.

System A

Module
1

Module
2

Module
3

Module
4

System B

Module
10

Module
2

Module
30

Module
40

Figure 2-2 Modularity and Reusability

Benefits of Modularity
The most important benefits of modularity are as follows:

■ Maintaining and modifying the individual modules and the overall system are easier.
Updating or enhancing functionality of the system may easily be done through simple
modification to one or multiple modules without having to touch the entire code base.

BOOK.indb 36 19/05/22 5:50 PM

ptg39201256

Chapter 2: Software Quality Attributes 37

2

■ Reading, understanding, and following the code logic are easier. Modularity also
makes code review and debugging easier.

■ Team collaboration, especially within an Agile model, is improved. Individual modules
can easily be developed by multiple teams.

■ Modularity enables scalability. An example would be to deploy or reuse modules for
additional processing of additional data concurrently, allowing for scalability of the
system.

■ Security is improved. It’s easier to focus on secure coding practices when you’re deal-
ing with smaller chunks.

Modularity Coding Best Practices
A good software design uses these leading modularity practices:

■ Reduce coupling and increase cohesion: Individual independent modules of specific
functionality can be easily changed, modified, exploded (separated into two or more
modules), or even imploded (combining multiples into one) without affecting the
overall structure of the system or code. High cohesion means that the elements of a
specific module are functionally well related, whereas coupling is a measure of the
strength of the relationship among modules. Low coupling states that the modules are
largely independent from one another (that’s a positive thing). Interactions between
modules should be kept to a minimum but should be plentiful inside a module, as
shown in Figure 2-3.

System A

Module 1

Module 2

Module 3

Module 4

Figure 2-3 Coupling and Cohesion

In contrast, modules with low cohesion often make function calls to other modules,
while rarely using the module’s internal functions and classes, as displayed in
Figure 2-4.

BOOK.indb 37 19/05/22 5:50 PM

ptg39201256

38 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

System A

Module 1

Module 2

Module 3

Module 4

Figure 2-4 Low Cohesion

■ Control the scope (dependencies outside the scope of the module): Almost always,
try to keep the scope of control of a module to those modules that are directly related
to it and are considered subordinate to it in sequence (you can call this sequential
cohesion, if you like). It’s not uncommon to see dependencies among modules; how-
ever, a module cannot be dependent on data from another module that has no direct
interaction or adjacency. To illustrate this point, Figure 2-5 shows that Module 2 can-
not generate data that affects Module 10. Module 10 is outside the span of control or
effect of Module 2.

Module 1

Module 2

Module 3 Module 4

Module 5

Module 6

Module 7

Module 9Module 8

Module 10

System A

Figure 2-5 Scope of Effect or Control

BOOK.indb 38 19/05/22 5:50 PM

ptg39201256

Chapter 2: Software Quality Attributes 39

2

■ Think black-box design: Modules should have predictable or clear functions with
consistent outputs. Modules that maintain local data (through memory) and that do
not reset variables will have inconsistent outputs. With black-box design, you expect to
have the same output generated for the same input introduced, as shown in Figure 2-6.

Input OutputModule

Figure 2-6 Input and Output Are Consistent in a Module; No Data Executed by a Module
Should Impact Subsequent Ones

NOTE Try to make your application components as stateless as you can, especially for
modules of generic functions being used multiple times within your application.

■ Pay attention to interfaces: Typically, every module has a function and an interface.
The function is easy to understand because it is the body or purpose of why the mod-
ule exists and how it is implemented. The interface, on the other hand, is what data,
properties, or executable actions, specific to the module, you’re willing to share with
anyone or anything that interacts with the module.

As you look at the leading practices for building efficient modules, you also have to
pay close attention to best practices for building and assigning interfaces. Refer to
Table 2-4 for a list of best practices and how to use them.

Table 2-4 Modular Design Best Practices

Modular Design Best
Practice

Benefits

Reduce coupling and increase
cohesion

Maintain clear, functional relationships and the strength of
interaction

Monitor scope or span of
control

Watch for interdependencies and how data generated by one
module affects other modules downstream or upstream from
it in sequence

Address consistency Provide consistency in execution. Don’t maintain data or
“memory” within a module that is not properly being reset.
The same input must always generate the same output.

Interface design is vital Simple (avoid complexity)
Small interfaces (limit information exchange between
modules)
Avoid redundant interfaces (the smaller, the better)
Overall architecture alignment

Align to overall architecture Avoid “lost-in-translation” scenarios where modules
significantly deviate from design principles of the overall
system

M02_Davis_C02_p026-p055.indd 39 20/05/22 10:59 PM

ptg39201256

40 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Complex and redundant interfaces defeat the purpose of modularity or make it alto-
gether confusing. You need to control and restrict interfaces to the surface or edge
of the module, as shown in Figure 2-7. Reaching into the middle of the module is not
clean and may create issues of coupling. In addition, reducing the number of interfaces
is key to consistency and reduction of coupling.

YES Module 2Module 1

NO

Figure 2-7 Control the Number of Interfaces and Where They’re Provided

Microservices and Modular Design
A microservice is an architectural approach for breaking an application (a monolithic appli-
cation) into smaller and independent components. Through deterministic interfaces, they
interact together to deliver the intended functionality of a monolithic system but with higher
flexibility, performance, and scalability. Modularity is at the code, subsystem, or system
level. The way microservices are implemented today exemplifies what modularity at the
system level looks like.

A microservice at the end of the day is a service that you tap into for a particular outcome
or context. That service can be used to perform the same task for multiple systems and does
not necessarily belong solely to that system (we’re generalizing here).

To illustrate the point, consider the simple representation of an e-commerce or shopping
application in Figure 2-8. This application is composed of a number of microservices, or
modules, that are autonomous (loosely coupled), independently developed and maintained,
have a specific interface, and have a specific context or outcomes.

API

Customer Data
Microservice

API

Product Catalog
Microservice

API

Shopping Cart
Microservice

Customer User
Interface

Figure 2-8 Microservices

BOOK.indb 40 19/05/22 5:50 PM

ptg39201256

Chapter 2: Software Quality Attributes 41

2

The following points demonstrate how microservices contribute to modularity in application
design:

■ Microservices are loosely coupled.

■ Each microservice has a unique purpose within the context of the overall system.

■ Each microservice has a specific interface.

■ Microservices are reusable across multiple systems delivering the same outcomes
across various systems.

■ Microservices can interact through the interfaces to deliver a higher level of meaning-
ful outcome.

■ Microservices are mainly agnostic to underlying hardware architecture, making them
reusable across a variety of platforms.

■ You can easily develop and maintain microservices independently of other microser-
vices. In return, you can support DevOps processes with rapid and frequent deploy-
ments.

Scalability in Application Design
A close relative of modularity and one of its biggest beneficiaries is scalability. As you scale
a system horizontally or vertically, you discover that modularity (when utilized) plays a great
role in allowing you to achieve scalability goals with the least amount of change in the sys-
tem. Scalability is about utilizing or deploying additional resources to handle additional load.
Additional load could be in the form of any sizing up of the application’s requirements as
described in the following examples:

■ Functionality: Adapt to newer requirements without disrupting existing services.

■ Geographical reach: Reach customers or users across wider geographies. Of course,
this requirement brings a number of challenges for your application, especially if you
have to worry about data sovereignty, caching, and storage across international bound-
aries.

■ Load: Increase load on individual components and/or the overall system.

■ Administrative or user capacity: Support more users or tenants locally or at the cloud
level.

■ Future-proofing or multi-generations: Be able to adapt to future components, fea-
tures, or releases of dependencies outside of your control (e.g., legacy systems).

■ Multivendor support: Be able to adapt to different vendors with various requirements.
Your application’s adaptability to other vendors with different interfacing or interoper-
ability requirements may also influence scalability.

Horizontal Scalability
Horizontal scaling (a.k.a. scaling out) is concerned with adding resources or processing power
to an application or logical/virtual system. For example, this might mean adding additional

BOOK.indb 41 19/05/22 5:50 PM

ptg39201256

42 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

servers to handle additional load to a single system or application. An even simpler definition
is that multiple physical servers in a cluster support a single application. Adding additional
servers or machines to a single application should also lead to load distribution. For example,
if a single machine is running at 80 percent capacity, after scaling out, you should end up
with two machines running as close as possible to 40 percent each (ideally but not always the
case). The most common tool for distributing the load over multiple servers is called load
balancing or server load balancing or clustering (some exceptions may apply).

The left side of Figure 2-9 clearly demonstrates that a single server is handling the entire load
and is a single point of failure. With load balancing, the right side of the figure clearly dem-
onstrates that the load balancer creates a virtual server that responds to client requests and
passes them to one of the physical servers representing the virtual server.

Load
Balancer

Servers

Virtual
Server

Server

Distribute the Load and Eliminate
Single Point of Failure

Clients Clients

Figure 2-9 Horizontal Scaling

Vertical Scalability
In contrast to horizontal scaling, vertical scaling (a.k.a. scaling up) is concerned with add-
ing resources to a single node or physical system. For example, this means adding memory
or storage to a single server to allow it to support an application. A single node is upgraded
with additional power to do more. One of the most common ways to do this in application
development is multithreading. As you scale up the number of available processors (or cores,
as commonly used nowadays), the application automatically utilizes the additional proces-
sors. It is also not uncommon to see multiple single-threaded modules or instances utilizing
the presence of additional number of processors.

In Figure 2-10, the two scalability scenarios of scaling up and scaling out are clearly
demonstrated.

V
er

tic
al

 S
ca

lin
g

Horizontal Scaling

Figure 2-10 Horizontal vs. Vertical Scalability

Some publications refer to hybrid scaling or autoscaling, which means using both
approaches to keep the system or application healthy. This means that the system (through
automation and prediction) scales up or out depending on the need of the application.

BOOK.indb 42 19/05/22 5:50 PM

ptg39201256

Chapter 2: Software Quality Attributes 43

2

It’s worth noting here that the term elasticity, which you commonly hear in relation to
cloud resource management, is also a type of scaling up/down or in/out based on predeter-
mined policies or based on system demands. For example, you might have seen systems add
resources to a web application based on time-of-day policy. More resources can be added
during known or predicted high-demand hours, and subsequently, the resources can be
released outside the high-demand hours.

NOTE Points to keep in mind:

■ For a solution to be considered scalable, it has to allow for scaling (up or out) with little
to no changes to the original architecture.

■ Scalability is easiest if considered at the time the solution is architected. True, you
may not know that you need it, but certain considerations with threading, modularity,
and other attribute trade-offs may help you in the long run. Everything is related to
everything.

■ Horizontal scaling is better suited for environments and applications with varying high-
demand or high-peak periods. It is easier to improve capacity of an application using
additional hardware or virtual machines.

■ Remember, nonfunctional requirements or quality attributes need to be measurable.
Scalability can be measured in multiple ways and depending on where or what func-
tion you’re trying to enhance. They include concurrent sessions, users, throughput, and
resource usage like CPU, memory, disk-space, and link/network bandwidth.

Practical Scalability in Application Design
As mentioned earlier, modularity and scalability are closely related. Successful modularity
techniques forced loose coupling among application components. Components or modules
were designed to be independent with defined input/output and clear interfaces, allowing
interaction among the various application components. Subsequently, the industry moved
toward distributed execution of application modules. Doing this required that no state is
maintained by the various modules and that data shared across the system may be available
to the proper module without strict routing and without paying attention to the span of con-
trol or scope of the module’s data (see the “black-box design” and “span of control” descrip-
tions in the section “Modularity Coding Best Practices”).

Why are we saying all this? Simple, because in practice, scaling an application is very
much dependent on its capability to be modular, with the modules being as independent or
autonomous as possible, as stateless as possible, and with interfaces and APIs for interaction.
Only then can you scale the application in, out, up, or down with the fewest changes to the
underlying architecture. The following examples are practical ways of improving scalability
through modularity:

1. Understand your application’s memory and CPU requirements and enable your system
to utilize the addition of resources effectively. For example, how many bytes or kilo-
bytes of RAM do you need per 100 concurrent users? How many more users can you
handle by increasing memory? It’s most probably not a linear relationship. Scalability

BOOK.indb 43 19/05/22 5:50 PM

ptg39201256

44 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

is measured by how easy or effective it would be to add resources to improve perfor-
mance. One issue to also keep in mind here is the cost. CPUs, GPUs, memory space,
or virtual machines can be costly. Understanding your overall cost per transaction is
essential for working through your design trade-offs.

2. Remember what we said earlier about modularity enabling scalability. The use of
microservices, containers, and virtual machines allows for greater flexibility and elas-
ticity of resources for your application.

3. Optimize data access. Building stateless modules does improve scalability and per-
formance but requires data access from centralized databases and memory. Optimize
your database choice and how data is accessed. For example, indexing or sharding
helps you scale the data set size and the overall system. Sharding in databases is a type
of horizontal partitioning where a dataset is distributed over multiple databases (pos-
sibly even over multiple physical machines), allowing you to scale out your system.

4. As your application grows and covers larger geographies, caching data close to your
user base becomes a great scalability tool. The use of content delivery networks
(CDNs) and edge computing can help you achieve this goal.

5. Server or traffic load balancing distributes the load across multiple machines, allow-
ing for great scalability. We discussed server load balancing earlier. Traffic or network
load balancing is in the form of path optimization with software-defined networks
(SDN) or through equal cost multipath (ECMP) routing supported by the major net-
work routing protocols.

6. As a last resort, when all fails, you may find yourself having to redesign your applica-
tion to allow for greater scalability.

High Availability and Resiliency in Application Design
Countless issues affect the availability of an application or a system. These issues are not
always associated with failures, outages, or errors within the application itself. Sometimes
they are environment-related, host-system-related, cloud-related—you get the point. There
is a lot beyond the control of the developer that can affect the application. However, a few
excellent design and development practices can help increase the availability and resiliency
of your system or application.

The applications we’re talking about in this book are mostly related to programmability and
IT DevOps management and probably have high availability goals and are “always on.” There-
fore, the concept of availability becomes of high importance because it is closely related to
dependability, reliability, and security. Various types of security issues affect the availability
of an application. For example, a distributed denial-of-service (DDOS) attack can drain the
system’s resources and cause it to fail, hence, affecting its availability.

Availability is about maximizing uptime or minimizing downtime of a system through fault
mitigation, self-healing, or repair.

How does an application react to the loss of connectivity to its subsystems or databases?

What happens when host systems fail?

How does a system handle the hardware failure of one of the nodes in a cluster?

BOOK.indb 44 19/05/22 5:50 PM

ptg39201256

Chapter 2: Software Quality Attributes 45

2

You can measure the availability of a system as the time it is fully operational in a given
period. Although the following formula was initially used for hardware systems, it is an
excellent example to illustrate this point:

Availability = MTBF / (MTBF + MTTR)

MTBF refers to the mean time between failures, and MTTR refers to the mean time
to repair (or resolution, or recovery). As a software developer, when you’re thinking about
availability, you should think about what will make your system fail, the likelihood of it hap-
pening, and how much time will be required to repair it.

Every system has an availability goal that includes all planned and unplanned outages, and
we sometimes call this a service-level agreement (SLA). The SLA is a commitment made
by the system architect (owner or operator) that the system will be up for a specified period
(e.g., a billing cycle or a year). For example, an SLA of 99 percent means that the system will
be available 99 percent of the time it is needed. If you use one year as a time of operation,
then the SLA specifies that the system will be available 362 days and 8 hours. Also, 99 per-
cent availability means that there is a 1 percent probability that the system will not be avail-
able when it is needed, and that translates to 3 days and 16 hours.

You commonly see terms like three nines to describe 99.9 percent availability or five nines
to describe 99.999 percent availability. Table 2-5 lists yearly values of availability.

Table 2-5 Availability Requirements

Availability Also Known As Probability of Downtime per Year

99% Two nines 3 days, 15 hours, 36 minutes
99.9% Three nines 8 hours, 46 seconds
99.99% Four nines 52 minutes and 34 seconds
99.999% Five nines 5 minutes and 15 seconds
99.9999% Six nines 32 seconds

NOTE The availability rating of a system is constrained by the lowest availability number
of any of its components. For example, in an application that uses three interdependent
systems where two of them are considered to have 99.999 percent availability and a third has
99.9 percent availability, the system’s availability is 99.9 percent.

Recently, the focus has been shifting to high availability of five or six nines or even higher
(eight nines), especially as some of the software applications discussed in this book are con-
cerned with running enterprise or service provider networks or business services at a global
level. Certain instances of businesses require being as close to “always on” as possible.

There is a great deal that we could discuss about availability, but we limit the discussion to
these main points:

■ Detection

■ Recovery

■ Prevention

BOOK.indb 45 19/05/22 5:50 PM

ptg39201256

46 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Failure or Fault Detection
In practice, the terms failure and fault are used interchangeably. In reality, and especially in
software practices, a failure is caused by the presence of a fault in the software or one of the
system components that alter the behavior of the system or degrade its performance without
actually causing a full-system outage.

NOTE IEEE defines the following terms:

■ Failure: Observable incorrect behavior
■ Fault: Incorrect code (sometimes called a bug)
■ Error: The cause of the fault

Regardless of how you want to look at it, the following are common ways of detecting a
fault and alerting you to a failure that is about to happen or has already happened:

■ Monitoring: Monitoring, sometimes known as continuous monitoring, is essential in
informing you about the current state or health of the system. Monitoring, whether
at the software level or the underlying hardware components, has come a long way.
Alongside monitoring up/down scenarios, monitoring also informs you of the current
state of resources being used by the system and the possibility of certain thresholds
that could lead to system performance degradation or failure. For example, continuous
monitoring and reporting (or trending) of memory utilization can inform you about the
presence of memory leak scenarios where processes are not releasing memory back
after completion.

■ Self-testing or self-monitoring: Individual systems or subsystems perform tests on
themselves or possibly have a testing or monitoring subsystem that tests the overall
system for operational accuracy or health checks. This process is different from moni-
toring in that it is performed internally by the system instead of an external system.

■ Heartbeat or “hello packets”: Cisco loyalists or experts commonly see this process
used in the majority of network operating systems. This is probably one of the most
important components of achieving high availability. A heartbeat is usually exchanged
between two or more redundant system components or between a software/hard-
ware system and a monitoring system. Sending, receiving, and processing heartbeats
requires system resources. There are a few things that you can do to prioritize heart-
beats between components using special tags or quality of service (QoS) marking on
a network link. This way, you can guarantee (to a certain extent) that heartbeat mes-
sages are not dropped or discarded during high system utilization periods. Figure 2-11
demonstrates the concept of heartbeats informing the server load balancer of their
availability:

■ Simple ping or ICMP echo/echo-reply: We use the term simple in describing this
method because it only informs you that the system or subsystem component is up or
down and nothing else about the overall behavior. However, you can read something

BOOK.indb 46 19/05/22 5:50 PM

ptg39201256

Chapter 2: Software Quality Attributes 47

2

into the latency numbers generated by the echo/echo-reply. If the latency (or round-trip
time) is high, then this could tell you something about the state of the network or the
underlying hardware architecture.

Load
Balancer

Servers

Virtual Server

Clients

Figure 2-11 Heartbeats or Hello Packets in a Server Load-Balancing Scenario

■ Sanity checks: These processes check the validity of important output values.
Understanding certain operations with high dependencies and checking the validity of
the operations are very important. For example, if you perform an operation and store the
result in a variable that gets used in a subsequent operation, and all you check is that the
stored value exists without validating the “operation,” then you have a fault that is very
hard to find. Sanity checks are simple and should not stress the system resources.

Recovery: High Availability in Practice
Remember the term mean time to repair (MTTR)? We address a few important concepts
in this section. Dealing with network infrastructure, you’re likely used to the term disaster
recovery, and you use that for various aspects of the network and system failure scenarios.
These concepts are also used in software systems and affect software and hardware recovery
mechanisms. When failures occur, there are a few things that you can do, and as expected,
they’re mostly around redundancy and/or self-healing:

■ Redundancy: Redundancy is the most common way to deal with failure. In essence,
redundancy strives to remove single points of failure and ensure fast recovery from
faults. Having additional resources capable of performing the task of the failing device
is essential. There are various ways to configure redundant resources. The decision of
which one to use depends on the availability requirements of the system or business
process. Redundancy types include the following examples:

■ Active (hot standby): Redundant systems or nodes receive and process input at
the same time; however, only one system replies back to the request. The standby
system maintains the same state (or data) as the active system and will be avail-
able to take over in a very short time. With the recent advancements in processors
and software development practices, you can expect to see failover or switchover
times in the single or low double-digit milliseconds (e.g., 10–90 ms). Consider,

BOOK.indb 47 19/05/22 5:50 PM

ptg39201256

48 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

for example, the high availability feature of the Cisco Catalyst switching platform
called StackWise. Without going into too much detail on how it works, Figure 2-12
demonstrates the hot standby concept mentioned here. The Active switch has both
the control and data planes active, which means that the Active switch will receive
requests (network packets), perform the destination lookup, make a forwarding
decision, and update its lookup tables (databases). The Standby switch, on the other
hand, being in hot standby mode, synchronizes state and lookup tables with the
Active processor but does not perform any lookup or make forwarding decisions
because its control plane is in standby. However, it does forward packets on its
physical ports using decisions made by the Active processor. At failover and after
a number of heartbeats (hello packets) are not received from the Active switch over
the StackWise virtual link, the Standby switch declares itself as Active and contin-
ues the operation using the lookup tables it has already synchronized with the pre-
viously active switch without having to rebuild the lookup tables.

StackWise Virtual Link

StackWise Virtual Domain

Standby

Standby Control Plane
Active Data Plane

Active

Active Control Plane
Active Data Plane

Figure 2-12 Hot Standby

■ Passive (warm standby): In this type of redundancy, there are two or more redun-
dant systems; one of them is fully active (hot) and processing all input, and one or
more are in standby mode. The warm standby system is preconfigured and powered
up but does not have the necessary data to continue the operation. When a failover
event is triggered, the standby system becomes active and starts the learning pro-
cess to create the proper state. Figure 2-13 provides an example of warm standby
and how the Spanning Tree Protocol (STP) provides path redundancy at the Layer
2 level by blocking one path and unblocking it at the time of failure. But after
unblocking the path, the device that has just become the owner of the active path
must go through a learning period before it can build the tree and provide a for-
warding path. The learning period may reach as high as 50 seconds.

HSRP/
VRRP

STP

Access Access

Figure 2-13 Warm Standby Using Spanning Tree Protocol (STP)

BOOK.indb 48 19/05/22 5:50 PM

ptg39201256

Chapter 2: Software Quality Attributes 49

2

■ Spare (cold standby): The spare system may or may not be operational; it possibly
is not even powered up and, in some cases, may require a manual process to
become effective. In Figure 2-14, the Cisco Catalyst 9600 switch supports the
presence of a second supervisor module leading to what’s known as the redundant
supervisor module (RSM). If you deploy two redundant switches with two redun-
dant processors installed in each of the chassis, then you end up with an active
processor in one chassis and a standby in the other chassis. The two remaining ones
(one in each chassis) are called in-chassis standby (ICS). The two supervisor mod-
ules use route processor redundancy (RPR) technology to establish an RPR cold-
standby relationship within each local chassis and stateful switchover (SSO) tech-
nology to establish an active/hot-standby redundancy relationship across the chas-
sis. In the unlikely event that the active supervisor should fail within the chassis, the
standby cold supervisor will transition to the active role. This transition occurs by
fully booting up the ICS supervisor; it remains nonoperational until the SSO redun-
dancy is reestablished with the new StackWise virtual active supervisor across the
chassis. In a way, Figure 2-14 illustrates a good example of cold and warm standby
configurations. The StackWise Virtual Link (SVL) is used to synchronize state
between the active and standby switches and for transmitting the heartbeat inform-
ing both switches of the state of each switch, and the Dual-Active Detection (DAD)
link ensures that you do not end up with two active switches.

Figure 2-14 Cold Standby (Catalyst 9600 Quad-Supervisor Support)

■ Retries: Retries are another type of redundancy. This type of redundancy is in retry-
ing the operation to confirm that it is an actual failure or just high-demand situation
that prevented normal operations at the first try. Like retransmission, retries consume
additional resources and should be handled with care and should have longer intervals
between retries and should also be bound to a finite set. As you’ve already seen in the
majority of networking protocols, we’ve limited retries to three before we declare a
system failure.

■ Timeouts: Timeouts are a close relative to heartbeats and retries. Timeout values are
given to processes that wait for responses from retries or retransmissions. Every time
a retry or a heartbeat is sent, a timer is set and decrements until either a response is
received or it times out. When it times out, then a failure is declared.

■ System upgrade: Using this method, you upgrade the system software during opera-
tions and without significantly affecting the performance of the system. Of course,
there is a reason for the upgrade, and that is a failure. The failure may have occurred

BOOK.indb 49 19/05/22 5:50 PM

ptg39201256

50 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

or may have only been known to affect similar systems, so this is why an in-service
software upgrade (ISSU) or hit-less upgrade is needed. Cisco routers and switches
have been supporting this type of upgrade for quite some time, especially on systems
where multiple processors or supervisor cards exist.

■ Rollback: This method has proven to work well especially after changes in configura-
tion or after upgrades. The system maintains a copy of a previously working state or
dataset and reverts back to it in case the new configuration experiences complications
or does not pass certain checks.

Prevention
A great deal of time and effort has been dedicated to failure prevention, and that effort
seems to be paying off. There is a technology element to prevention, which we discuss here,
but there is also an operational process level that should not be ignored. Following a stan-
dard procedure of maintenance and upgrades is essential to preventing unplanned outages.

■ Isolation: At the detection of a fault and to prevent a potential failure, you can remove
the system from service to allow for further analysis or mitigation. This type of pre-
vention is also used for periodic maintenance cycles.

■ Predictive analytics: A great deal of historical data is available for analysis and to train
statistical models to identify patterns or trends that led to a failure. Using telemetry,
logs, and monitoring, you can understand the system’s normal behavior and also how
it behaved before, during, or after a failure. By observing or learning these events, you
can predict failures before they occur.

■ Automation: Automation not only improves provisioning and configuration but also
improves consistency and eliminates human error.

High Availability Planning and the Responsibilities of the Developer
In high availability design, business continuity planning (BCP) and disaster recovery plan-
ning (DRP) are two important concepts. BCP is a type of strategy or document with three
main areas of focus, each with an implication on applications as well as the underlying IT
infrastructure:

■ High availability planning: These functions and processes harness the power of redun-
dancy at all levels such as servers, databases, storage, replication, routers, and switches.
In a way, this includes everything we’ve discussed in this chapter alongside the busi-
ness processes and the physical infrastructure hosting the business applications. An
example of something that you need to keep in mind as related to SLAs is the storage
and replication requirements.

■ Continuous operations: These operations are a continuation of HA planning because
they focus on maintenance and unplanned outage scheduling and ensuring that the
backup plan continues to operate the business application during an outage.

■ Disaster recovery planning: DRP is concerned with the facilities (i.e., the data center)
and ensuring connectivity between redundant sites and ensuring adequate distance
between the active and standby data centers (a.k.a. disaster recovery data center).

BOOK.indb 50 19/05/22 5:50 PM

ptg39201256

Chapter 2: Software Quality Attributes 51

2

Several standards bodies and government entities specify what are called disaster
zones and subsequently designate disaster radiuses. For example, if your active data
center is an area prone to earthquakes, then your DR site should be outside that zone
or outside the disaster radius.

High Availability Deployment Models
As mentioned before, you need to make a few important decisions before you decide on
your high availability deployment, and they depend on the service-level agreement (SLA) or
other mechanisms that allow you to measure the importance of an application to the success
of your business, customer experience, and the cost of maintaining them. Keeping these
items in mind will help you decide on your deployment models and how much time and
money you’re willing to spend.

As seen from previous discussions, clustering, server load balancing, network load balanc-
ing, and general redundancy practices are part of the overall high availability and continu-
ous operations deployment. In addition, the following are extremely important deployment
practices:

1. Data backup and replication: This is probably the most important high availability
deployment concept. No redundancy or high availability design is complete (or even
useful) without a proper backup, retrieval, and replication system or process. Data
integrity is key.

2. Clustering: We briefly touched on clustering and server load balancing earlier. With clus-
tering, multiple servers share or access data through common storage or memory systems.
The addition or removal of a server (or virtual server) does not affect the cluster.

Figure 2-15 illustrates how the applications represented by the cluster will continue to
operate normally as long as one server is active. Traditionally, clustering does not nec-
essarily require a load balancer to be involved. The load balancer in Figure 2-15 could
easily be substituted by a switch, and clustering would not be affected.

Load
Balancer

Servers

Virtual Server

Clients

Figure 2-15 Clustering Is an Essential Deployment Model for High Availability in Appli-
cation Design

BOOK.indb 51 19/05/22 5:50 PM

ptg39201256

52 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

The storage and servers, as shown in Figure 2-15, exchange heartbeats with the load
balancer or cluster manager in-band or out-of-band (on a dedicated network). With
the recent advancement in network and cloud technologies, clusters started expanding
beyond a single data center into other enterprise data centers or into the cloud.

The Cisco DNA Center, for example, supports a three-node cluster configuration,
which provides both software and hardware high availability. A software failure occurs
when a service on a node fails. Software high availability involves the ability of the ser-
vices on the node or nodes to be restarted. For example, if a service fails on one node
in a three-node cluster, that service is either restarted on the same node or on one of
the other two remaining nodes. A hardware failure occurs when the appliance itself
malfunctions or fails. Hardware high availability is enabled by the presence of multiple
appliances in a cluster, multiple disk drives within each appliance’s redundant disk
drive configuration, and multiple power supplies. As a result, a failure by one of these
components can be tolerated until the faulty component is restored or replaced.

NOTE As you start designing your HA solution, the decision to keep your application
completely on-premises (e.g., served from one or two enterprise data centers), move it to the
cloud, or even use a hybrid of both, highly depends on a choice between latency, perfor-
mance, efficiency, and quality of experience.

Table 2-6 lists a few advantages and disadvantages of the models described previously:

Table 2-6 Availability Deployment Models

Deployment Model Advantages Disadvantages

On-premises Full control of your data
Own and control SLA
Ability to customize

Relatively costly to acquire, ramp
up, and maintain
Not easily scalable

Cloud Elasticity in scale and
performance
Low maintenance
Low cost (few exceptions apply)
Ability to place apps and data as
close as possible to your users or
customers
Mobility and easy access
regardless of location
High availability and disaster
recovery built into the
infrastructure (Make sure your
application is able to utilize the
features)

Functionality is limited by cloud
provider capabilities
Security is still an issue,
especially if access is through the
Internet
Technical support. Of course, it
all depends on your application
and its functionality, but this is an
important aspect to keep in mind.

BOOK.indb 52 19/05/22 5:50 PM

ptg39201256

Chapter 2: Software Quality Attributes 53

2

Deployment Model Advantages Disadvantages

Hybrid Workload mobility between
on-premises and cloud based on
demand or resource utilization
thresholds
Flexibility to utilize both models
based on demand or customer
requirements

Complexity in configuration
Difficult to maintain

Exam Preparation Tasks
As mentioned in the section “How to Use This Book” in the Introduction, you have a couple
of choices for exam preparation: the exercises here, Chapter 17, “Final Preparation,” and the
exam simulation questions on the companion website.

Review All Key Topics
Review the most important topics in this chapter, noted with the Key Topic icon in the outer
margin of the page. Table 2-7 lists a reference of these key topics and the page numbers on
which each is found.

Table 2-7 Key Topics for Chapter 2

Key Topic
Element

Description Page Number

Section Modularity Coding Best Practices 37
Section Microservices and Modular Design 40
Section Horizontal Scalability 41
Section Vertical Scalability 42
Note Points to keep in mind 43
Section High Availability and Resiliency in Application Design 44

Complete Tables and Lists from Memory
Print a copy of Appendix C, “Memory Tables” (found on the companion website), or at least
the section for this chapter, and complete the tables and lists from memory. Appendix D,
“Memory Tables Answer Key,” also on the companion website, includes completed tables
and lists to check your work.

Define Key Terms
Define the following key terms from this chapter and check your answers in the glossary:

cohesion, coupling, cold standby, content delivery networks (CDNs), clustering, load
balancing, mean time to repair or mean time to recovery (MTTR), mean time between
failures (MTBF), software-defined networking (SDN), service-level agreement (SLA)

M02_Davis_C02_p026-p055.indd 53 20/05/22 9:19 PM

ptg39201256

54 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

References

URL QR Code

https://www.cisco.com/c/en/us/products/collateral/switches/
catalyst-9000/nb-06-cat-9k-stack-wp-cte-en.html

https://www.cisco.com/c/en/us/td/docs/cloud-systems-
management/network-automation-and-management/dna-
center/2-1-2/ha_guide/b_cisco_dna_center_ha_guide_2_1_2.
html

Continuous Architecture in Practice: Software Architecture
in the Age of Agility and DevOps
https://www.informit.com/store/continuous-architecture-in-
practice-software-architecture-9780136523567

Software Architecture in Practice, 4th Edition
https://www.informit.com/store/
software-architecture-in-practice-9780136886099

ISO/IEC 25010:2011: Systems and software engineering—
Systems and software Quality Requirements and
Evaluation (SQuaRE)—System and software quality
models

BOOK.indb 54 19/05/22 5:50 PM

https://www.cisco.com/c/en/us/products/collateral/switches/catalyst-9000/nb-06-cat-9k-stack-wp-cte-en.html
https://www.cisco.com/c/en/us/products/collateral/switches/catalyst-9000/nb-06-cat-9k-stack-wp-cte-en.html
https://www.cisco.com/c/en/us/td/docs/cloud-systems-management/network-automation-and-management/dna-center/2-1-2/ha_guide/b_cisco_dna_center_ha_guide_2_1_2.html
https://www.cisco.com/c/en/us/td/docs/cloud-systems-management/network-automation-and-management/dna-center/2-1-2/ha_guide/b_cisco_dna_center_ha_guide_2_1_2.html
https://www.cisco.com/c/en/us/td/docs/cloud-systems-management/network-automation-and-management/dna-center/2-1-2/ha_guide/b_cisco_dna_center_ha_guide_2_1_2.html
https://www.cisco.com/c/en/us/td/docs/cloud-systems-management/network-automation-and-management/dna-center/2-1-2/ha_guide/b_cisco_dna_center_ha_guide_2_1_2.html
https://www.informit.com/store/continuous-architecture-in-practice-software-architecture-9780136523567
https://www.informit.com/store/continuous-architecture-in-practice-software-architecture-9780136523567
https://www.informit.com/store/software-architecture-in-practice-9780136886099
https://www.informit.com/store/software-architecture-in-practice-9780136886099

ptg39201256

This page intentionally left blank

ptg39201256

CHAPTER 3

Architectural Considerations and
Performance Management

This chapter covers the following topics:

■ Maintainable Design and Implementation: This section describes best practices for
building maintainable software using modularity, proper documentation, and object-
oriented design.

■ Latency and Rate Limiting in Application Design and Performance: This section
covers various performance enhancements or degradation parameters and best archi-
tectural practices.

■ Design and Implementation for Observability: This section describes best prac-
tices for application performance monitoring and user experience management using
observability concepts.

■ Database Selection Criteria: This section describes how application performance and
flexibility depend on proper database selection criteria. We also discuss architectural
decisions for database selection.

This chapter maps to the Developing Applications Using Cisco Core Platforms and APIs
v1.0 (350-901) Exam Blueprint Section 1.0, “Application Deployment and Security,” specifi-
cally subsections 1.4, 1.5, 1.6, and 1.8.

In this chapter, we continue to discuss a few other nonfunctional requirements and how they
affect the application’s quality and performance. As you learned in Chapter 2, “Software
Quality Attributes,” quality attributes intersect in many ways, either in a complementary
fashion or as trade-offs. You saw how modularity positively contributes to scalability. In this
chapter, you get exposed to application performance and what trade-offs that may have to
be made to improve it. For example, will increasing system capacity impact the performance
of the system?

This chapter also includes topics related to observability and maintainability of applications
and what software development principles you need to be aware of to improve your vis-
ibility into your overall environments and application-related parameters through full stack
observability.

The concepts discussed throughout Chapter 2 enable you to build scalable and highly avail-
able software. In this chapter, you learn how to optimize for performance and detectability
through visibility.

BOOK.indb 56 19/05/22 5:50 PM

ptg39201256

“Do I Know This Already?” Quiz
The “Do I Know This Already?” quiz allows you to assess whether you should read this
entire chapter thoroughly or jump to the “Exam Preparation Tasks” section. If you are in
doubt about your answers to these questions or your own assessment of your knowledge
of the topics, read the entire chapter. Table 3-1 lists the major headings in this chapter and
their corresponding “Do I Know This Already?” quiz questions. You can find the answers in
Appendix A, “Answers to the ‘Do I Know This Already?’ Quizzes.”

Table 3-1 “Do I Know This Already?” Section-to-Question Mapping

Foundation Topics Section Questions

Maintainable Design and Implementation 1, 2
Latency and Rate Limiting in Application Design and Performance 3–8
Design and Implementation for Observability 9, 10
Database Selection Criteria 11

1. What is it essential to have for software maintainability?
a. A modular design
b. Proper documentation
c. Coding standards
d. All of these answers are correct.

2. Which item is not a characteristic of object-oriented programming?
a. Encapsulation
b. Inheritance
c. Polymorphism
d. Structured programming

3. What is SOLID?
a. Single Object Language ID
b. A type of programming language
c. Software design principles for building maintainable code
d. None of these answers are correct.

4. “Modules should be open for extension but closed for modification” is a definition of
which of the SOLID principles?
a. Single responsibility principle (SRP)
b. Open-closed principle (OCP)
c. Liskov’s substitution principle (LSP)
d. Interface segregation principle (ISP)
e. Dependency inversion principle (DIP)

BOOK.indb 57 19/05/22 5:50 PM

ptg39201256

58 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

5. Which SOLID principle states that higher-level modules should not depend on
lower-level modules?
a. Single responsibility principle (SRP)
b. Open-closed principle (OCP)
c. Liskov’s substitution principle (LSP)
d. Interface segregation principle (ISP)
e. Dependency inversion principle (DIP)

6. Which of the following is used as an indicator of software performance?
a. Latency
b. Round-trip time (RTT)
c. Throughput
d. All of these answers are correct.

7. Network congestion or packet drops are side effects of what network condition?
a. Wireless systems
b. Network overload or oversubscription
c. Slow software
d. All of these answers are correct.

8. Which performance enhancements are commonly used in application design? (Choose
two.)
a. Caching
b. Rate limiting
c. Echo replies
d. Open Shortest Path First

9. What is observability, in simple terms?
a. A way to monitor the performance of a system through its users’ experience
b. A way to detect system issues through the observation of its output
c. A way to manage and monitor distributed applications
d. All of these answers are correct

10. Observability is said to have which three pillars?
a. Logging, balancing, and multiprocessing
b. Tracing, routing, and switching
c. Logging, metrics, and tracing
d. Routing, switching, and multithreading

11. What are the differences between relational and nonrelational databases? (Choose two.)
a. Relational databases can be key-value stores where each key is associated with

one value.
b. Relational databases store data in rows and columns like a spreadsheet.
c. Nonrelational databases are also known as NoSQL, where one type can be a

document-oriented store.
d. There are hardly any differences between the two except that relational databases

are commercial and nonrelational are mostly open source.

BOOK.indb 58 19/05/22 5:50 PM

ptg39201256

Chapter 3: Architectural Considerations and Performance Management 59

3

Foundation Topics

Maintainable Design and Implementation
Change is constant. You’ve surely heard this phrase before, and we’re sure that it holds true
for all software or code. If you’re sure that, indeed, change is constant, then you can prepare
for it and design your applications to be modifiable and maintainable. By doing so, you will
save yourself and your customers a lot of time. Research has repeatedly shown that a larger
part of the cost of an application is incurred after an application is released. That cost is
spent on maintenance, new functionality, and bug fixes, among other things. Designing for
maintainability is the area where you should put your thought process early in the design or
development process. Focus on questions such as “What can possibly change?” “How likely
are these changes?” and “What will these changes impact?” Future-proof your design by
anticipating change.

As we mentioned in Chapter 2, proper modular design allows you to make changes within
a small module or subcomponent without having to redesign or rewrite the entire system.
Modularity is one of the many leading practices that allows for easier and more effective
maintainability of your application. The following factors contribute to that goal:

■ Modular design: Modularity allows for updates, modifications, and fixes without hav-
ing to redesign the application.

■ Proper documentation and proper naming conventions: Maintaining these factors
improves compliance and observability and allows you to integrate additional develop-
ers into the project with the least amount of onboarding time.

■ Common toolset: Closely related to the previous point—and equally as important—is
using a common toolset. Which toolset to use is a decision that needs to be made
early in the process. Having a common toolset significantly improves migration and
integration of various functions among developers.

■ Software configuration management and version control: Tracking changes and
maintaining overall version control are helpful on many fronts, including traceability
of changes and individuals contributing to changes. Managing this issue may be your
best friend when it comes to maintenance and bug fixes.

■ Coding standards: The use of coding standards simplifies both initial development
and subsequent maintenance. It also keeps the developer’s thought processes within a
predefined set of rules and limitations.

■ Object-oriented design (OOD): Object-oriented design is natural and intuitive, and
subsequently makes it easy for others to follow the logic of a piece of code. Therefore,
OOD leads to shorter cycles of development time and a reduction in resources related
to maintaining the code. In Chapter 2, we discussed how independent modules or
classes contribute to this end as well.

BOOK.indb 59 19/05/22 5:50 PM

ptg39201256

60 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Software developers change and subsequently introduce additional cost to the lifecycle of a
project for various reasons or factors:

■ Bug fixes: Whether bugs or errors are detected during a test cycle, code review, or the
production use of an application, at the end of the day, changes have to be introduced
to the code. In some cases, such changes may require a major redesign of modules,
objects, or classes. Modular and well-documented code speeds up this cycle.

■ New features and upgrades: If your code or application is being used and continuous-
ly exercised, it is a matter of time before new features and upgrades are needed so that
you can stay competitive. New features address customer efficiency or performance
requirements that extend the life of your application and subsequently its shelf life. If
the guidelines detailed in the previous section are followed, then introducing new fea-
tures is simple and fast.

■ Code refactoring: Refactoring is a DevOps feature that strives to improve the struc-
ture and quality of code without changing the functionality. It is often performed after
the initial deployment, most often to improve efficiency and maintainability.

■ Performance optimization: There is always room for improvement, and performance
usually get the most attention. Performance improvements can be related to the effi-
ciency of the code or the underlying hardware infrastructure (network, compute, or
storage).

■ Code adaptation to new environments: This is closely related to the previous point,
and it is mostly related to adapting your code to new computing or hosting environ-
ments to improve performance, reduce cost, or gain more market share.

■ Problem prevention or future-proofing: As you optimize your code for new environ-
ments or for performance, you also should lean on lessons learned to future-proof it
for anticipated changes to the runtime environment or the release of new hardware
capabilities.

Maintaining a SOLID Design
Based on the preceding section, one of the best guidelines for composing code that allows
for maintainability is to use the well-known SOLID principles for object-oriented design.
These five principles together combine to give guidelines for composing and maintaining
software code:

■ Single responsibility principle (SRP)

■ Open-closed principle (OCP)

■ Liskov’s substitution principle (LSP)

■ Interface segregation principle (ISP)

■ Dependency inversion principle (DIP)

BOOK.indb 60 19/05/22 5:50 PM

ptg39201256

Chapter 3: Architectural Considerations and Performance Management 61

3

Single Responsibility Principle (SRP)
A class or a module should have only a single responsibility. The single responsibility
principle was originally stated as: “A class should have one, and only one, reason to change.”
This means that it has one job, and it would be easy to modify and maintain a module with
a single job. If a module has multiple jobs or functions, then modifying one function affects
other functions and the overall system they compose. Consider Figure 3-1, where a class has
multiple responsibilities:

Figure 3-1 Not-Easy-to-Maintain Code

In Figure 3-1, you first set the class (labeled “1”) and parameters (model and port_density)
and then deploy the switch (labeled “2”) with deploy_switch. Any change to the deployment
service (deploy_switch) affects the NetworkSwitch class. This is exactly what SRP is trying
to prevent.

A simple fix is to decouple the responsibilities into independent single responsibility classes
(as shown in Figure 3-2). This approach produces efficient and easily maintainable code. The
NetworkSwitch class (labeled “1”) sets the data for the service, and the new class Switch-
DeployerService (labeled “2”) deploys the switches (or service for that matter). Changing or
evolving the one class does not affect the other.

Figure 3-2 Recommended and Easy-to-Maintain/Modify Code

BOOK.indb 61 19/05/22 5:50 PM

ptg39201256

62 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Open-Closed Principle (OCP)
Components (classes, modules, or functions) should be open for extension but closed for
modification. They should be open for different uses or implementations through interfaces
(loose coupling) but also closed for modifications.

Extensibility is an interesting concept in software design in that it allows a system to extend
its capabilities or features without major modifications or rewriting. This is what the open-
closed principle recommends: open for extending capabilities, closed for rewriting or modi-
fications. Subsequently, OCP says that you should not have to rewrite classes, functions, or
interfaces to add new functionality.

To demonstrate the point of OCP, consider the previous SwitchDeployerService example
with a mission to deploy network switches and types in different network segments. In
Example 3-1, the SwitchDeployerService supports the MoR (middle of row) data center
switches.

Example 3-1 Deployment Illustrating the Open-Closed Principle

 class NetworkSwitch:

 def __init__(self, type, model, config):

 self.type = type

 self.model = model

 self.config = config

 class SwitchDeployerService:

def deploy_switch(self, service):

 if service.type == 'MoR' # Middle of Row Switch

 datacenter.deploy(service.config, '192.168.100.0/24')

Let’s say you want to add support for an out-of-band management network. Is that easily
done? Not really! Adding such support requires rewriting or modifying the original code.

However, if you had already written the code using the single responsibility principle, then
you would definitely be able to add support for as many network types as needed by add-
ing additional classes and eventually conforming to OPC as well. A possible solution for this
would be to build a static or common NetworkSwitch and SwitchDeployerService. Then
build additional classes or features into the classes. In Example 3-2 the segment parameter is
added and the if statement is converted into the extended classes, one for the user and one
for management: NetworkSwitchMoR and NetworkSwitchOOB. No if or but.

Example 3-2 Example Illustrating the Open-Closed Principle

class NetworkSwitch:

 def __init__(self, type, model, config):

 self.type = type

 self.model = model

 self.config = config

BOOK.indb 62 19/05/22 5:50 PM

ptg39201256

Chapter 3: Architectural Considerations and Performance Management 63

3

class NetworkSwitchMoR (NetworkSwitch):

 def __init__(self):

 super().__init__(self)

 self.segment = '192.168.100.0/24'

class NetworkSwitchOOB (NetworkSwitch):

 def __init__(self):

 super().__init__(self)

 self.segment = '192.168.200.0/24'

class SwitchDeployerService:

 def deploy_switch(self, service):

 datacenter.deploy(service.config, service.segment)0

If, in the future, another network type requires the deployment of the same services, all you
need to do is create and extend the class. For example, if you have a top-of-rack (ToR) data
center switch, all you have to do is create the class NetworkSwitchToR and specify the seg-
ment (in this case, you use the IP subnet for definition).

NOTE The super() function is used to invoke the __int__ function of the NetworkSwitch,
which can be thought of as the super class. It initializes the inherited instance self._xxx.

Liskov’s Substitution Principle (LSP)
Liskov’s substitution principle requires that objects of subclasses be substitutable for objects
of their super classes and the application or super classes should continue to function prop-
erly. Substitutability is a fact of life in object-oriented programming, and LSP states that if A
is a subclass of B then objects of type B may be replaced by objects of type A without caus-
ing errors.

To demonstrate the point, let’s continue with the previous example using the super class
NetworkSwitch (see Example 3-3).

Example 3-3 LSP Violation and How It Can Be Avoided

class NetworkSwitch:

 def get_model(self):

 return self.model

Then consider the following Subclass NetworkSwitchMoR:

class NetworkSwitchMoR(NetworkSwitch):

 def get_model(self, switch_name):

 model = db.get_switch(switch_name)

 print(model)

 return None

M03_Davis_C03_p056-p085.indd 63 20/05/22 9:21 PM

ptg39201256

64 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

In this example, the subclass NetworkSwitchMoR changes what’s intended by get_model
from the super class, and that is a violation of LSP.

Interface Segregation Principle (ISP)
The name of the interface segregation principle tells the story. ISP requires interfaces to be
independent of (or should not rely on) interfaces they do not use. For example, having a
super class with many interfaces reduces its flexibility and maintainability. It is better to have
many subclasses than to have one large subclass. In other words, clients should not depend
on interfaces they don’t use.

Consider Example 3-4, where unnecessary interfaces are implemented and then flagged with
an error message (e.g., NotAvailableError). Developers call these fat interfaces. This practice
produces complex, hard-to-read, and hard-to-maintain code. Example 3-4 shows the complex
way. Example 3-5 shows the cleanest and ISP-compliant coding practices.

Example 3-4 Inefficient, Unclean, and Unreadable Code That Violates ISP

class NetworkSwitchMoR(NetworkSwitch):

 def get_MoRmodel(self):

 return db.get_MoRmodel(self)

 def get_ToRmodel(self):

 raise NotAvailableError

class NetworkSwitchToR(NetworkSwitch):

 def get_MoRmodel(self):

 raise NotAvailableError

 def get_ToRModel(self):

 return db.get_ToRmodel(self)

Example 3-5 is simpler, easier to read, and easier to maintain and gives the freedom of “on an
as-needed basis.” There’s no need to generate errors without reason; it’s simpler to not use an
unnecessary interface.

Example 3-5 Clean and Efficient Code with ISP

class NetworkSwitch:

 def get_model(self):

 return self.get_model()

class NetworkSwitchMoR(NetworkSwitch):

 def get_model(self):

 return db.get_MoRmodel(self)

class NetworkSwitchToR(NetworkSwitch):

 def get_model(self):

 return db.get_ToRmodel(self)

BOOK.indb 64 19/05/22 5:50 PM

ptg39201256

Chapter 3: Architectural Considerations and Performance Management 65

3

NOTE The interface segregation principle and Liskov substitution principle are closely
related. You can think of ISP as the client’s perspective, where you want the client interaction
to be simple and efficient. LSP is the developer’s perspective, where unnecessary types gen-
erate errors like the one seen previously: NotAvailableError.

Dependency Inversion Principle (DIP)
The dependency inversion principle, in a way, is the essence of modularity, and it states that
higher-level modules should not depend on lower-level modules. Going back to the “cou-
pling” discussion in the previous chapter, DIP encourages loosely coupling lower-level mod-
ules for the purpose of modifying, rewriting, or removing.

In his design paper, “Design Principles and Design Patterns,” Robert C. Martin defines DIP
as follows:

1. High-level modules should not depend on low-level modules. Both should depend on
abstractions.

2. Abstractions should not depend on details. Details should depend on abstractions.

Compliance to DIP produces modular code because it allows for modifying or rewriting
lower-level modules without affecting higher-level modules (loosely coupled).

In Figure 3-3, you can easily see the dependency among the various components of the
system or service. It is hard to maintain this system because any change to any of the
components needs to be considered across the entire system.

Component 1

Component 2

Component 3

System

Figure 3-3 Dependency of Higher-Level Components on Lower-Level Ones

Programming “direct” interaction between modules or components could prove to be prob-
lematic from a maintainability and modifiability perspective. It is highly recommended to
program interaction to interfaces and provide flexibility, as shown in Figure 3-4.

M03_Davis_C03_p056-p085.indd 65 20/05/22 9:33 PM

ptg39201256

66 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Component 1 Component 1
Interface

Component 2 Component 2
Interface

Component 3 Component 3
Interface

System

Figure 3-4 Programming to an Interface, Not to the Implementation of the Component

As a best practice, allow higher-level classes to use an abstraction of lower-level classes.

High-level classes should manage decisions and orchestrate lower-level classes but not do any
system-specific functions. However, lower-level classes should contain little decision-making
but implement the actual interaction functions, such as API calls, database writes, view
updates, and data manipulations.

NOTE To get more in-depth knowledge of the SOLID principles, we highly recom-
mend that you read Robert Martin’s white paper about the subject: “Design Principles
and Design Patterns by Robert C. Martin,” https://www.academia.edu/40543946/
Design_Principles_and_Design_Patterns.

Latency and Rate Limiting in Application Design and
Performance

Performance of a system is highly dependent on its ability to manage resources needed
to meet requirements. The longer you keep resource utilization within the constraints, the
longer the performance is manageable and predictable. Predictable and manageable perfor-
mance leads to good customer experience.

Latency and throughput are the most common ways of measuring performance, but
as systems become more distributed, you can start considering additional factors like
round-trip time (RTT) and bandwidth. It is not uncommon to think of bandwidth as a
factor or a contributor to round-trip time. A simple definition of bandwidth (BW) is the
capacity of the communication path or the maximum rate at which information can be
transferred through that path or medium.

BOOK.indb 66 19/05/22 5:50 PM

https://www.academia.edu/40543946/Design_Principles_and_Design_Patterns
https://www.academia.edu/40543946/Design_Principles_and_Design_Patterns

ptg39201256

Chapter 3: Architectural Considerations and Performance Management 67

3

In computer systems and application design, latency may also be referred to as response
time (RT), but we stick to the term latency to avoid confusing you with the difference
between RTT and RT. This book is mainly concerned with building software that automates
networks, so it is fitting to understand what parameters affect performance for both the
network and the software or computer systems. Table 3-2 provides a simple definition from
both points of view.

Table 3-2 Performance Parameters from Networking and Software Perspectives

Performance
Indicator

Computer Networking or
Communication Design

Software or Application Design

Latency Length of time taken for a packet
to traverse a system. This could
be in/out a single system or the
total time between a sender and
receiver.

Length of time taken for a system
to complete a specified task.

Round-trip time Time taken for a round-trip travel
between two network nodes
(from, to, and back).

Length of time taken to complete a
set of tasks.

Throughput The rate at which packets (or any
unit of information) are being
transferred in a time period (e.g.,
packets per second or bits per
second).

The amount of load (utilization)
a system is capable of handling
during a time period (e.g.,
transaction per second, or, user
requests per second).

Figure 3-5 is a simple attempt to put all of the definitions found in Table 3-2 in one diagram.

Switch
Bandwidth = Capacity of Medium

Latency

Client Server

Round-Trip Time (RTT)

Path
Throughput/Rate

Figure 3-5 Performance Parameters: Latency, Throughput, and RTT

In a communication system, multiple factors affect latency of the system. Of course, one
of the most important factors is the medium used and its capacity. However, even if you’re
using a high-capacity or high-bandwidth medium (e.g., Ethernet), latency is negatively
impacted by other factors related to the overall system and the type of data being transmit-
ted. For example, overhead plays a factor, especially when it comes to processing, encapsula-
tion, encryption/decryption, and other similar factors.

BOOK.indb 67 19/05/22 5:50 PM

ptg39201256

68 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

It’s worth mentioning that the overall system never lacks impurities and imperfections, and
therefore, other factors play a huge role in performance. For the purpose of this discussion,
if you think of the overall system as communication between a client (or an application) and
a server over some communication path that most probably has routers, switches, firewalls,
and an intrusion prevention system (IPS), then you need to consider a few other factors:

■ Network congestion and packet drops: This is a side effect of network overload or
oversubscription.

■ Hardware resource utilization: Hardware interfaces, CPUs, and memory utilization
are all factors in which resource demand and resource availability need to be balanced.

■ Hardware malfunctions: Hardware failures are a fact of life, but when they come, they
don’t always lead to complete failure. Sometimes failure comes intermittently or spo-
radically. That sometimes puts the system in a fuzzy state.

■ Software issues: Software issues can negatively affect performance. Here are a few
examples:

■ Suboptimal software versions

■ Use of outdated libraries

■ Faults and bugs

■ Network device misconfigurations: In a practical sense, this factor is probably the
biggest culprit of performance degradation. Misconfiguration comes in many shapes
and forms:

■ Restricting the use of available resources

■ Suboptimal traffic routing that forces traffic to high latency or congested paths,
causing packet drops and frequent retransmissions

■ Operator error where wrong values for resources are manually and erroneously
entered

■ Wired versus wireless communication: Wireless communication has a lot of limita-
tions, including interference, distortion, and laws of physics that contribute to packet
loss. Wireless does bring flexibility and agility to today’s environments, making packet
loss an acceptable design trade-off. High-performance computing environments remain
highly dependent on wired communication.

■ Geographically distributed users and data centers: For many business, mobility,
and disaster recovery reasons, applications may be geographically disbursed, eventu-
ally creating significant distances between them and their users. Even with the most
advanced fiber-optic networks and with a minimum number of hops, the laws of
physics contribute enough latency that affects performance.

With the deployment of software-defined networking (SDN) and the use of automation
and orchestration, user or operator errors are significantly reduced. Successful SDN deploy-
ments highly depend on programmability and automation of various network functions and
policies.

BOOK.indb 68 19/05/22 5:50 PM

ptg39201256

Chapter 3: Architectural Considerations and Performance Management 69

3

Different types of traffic react differently to latency or packet loss. For example, with TCP
traffic, where traffic acknowledgment is part of the process, packet loss causes lower per-
formance, but all lost traffic is retransmitted. UDP traffic, used for video streaming and IP
telephony, has quality of service or quality of experience consequences. For UDP streams,
dropped packets cause low-resolution videos or choppy voice. The following are side effects
of high-latency, low-throughput systems:

■ Application performance issues; slow response times or slow loading of web pages

■ Longer transaction times for applications

■ Audio and video quality issues; quality of experience impact

■ Frequent retransmission and processing of packets that increase load and resource uti-
lization and possibly starve other processes

■ Unsatisfactory user experiences

Designing for Application Low Latency and High Performance
Architecture decisions play a huge role in how resources are distributed and utilized. The
key to high performance is the balance maintained between supply and demand of resources.

Architecture Trade-offs
As mentioned in Chapter 2, nonfunctional requirements are closely related, and you almost
always have to decide or prioritize one over the other based on the business requirements.
This is also true for performance. Consider the following points:

■ Availability and performance: Improving availability through redundancy of resourc-
es may affect latency and negatively impact performance.

■ Scalability and performance: This point is a clear one. Scaling your system or network
up or out affects resource utilization and may impact performance. As you distribute
resources among multiple servers or networks, you introduce the need for “communi-
cation” among the resources, and that in itself introduces additional latency.

■ Cost: This one is also obvious. Having to use cost-effective networks and resources
may not always provide you with the highest-performance systems.

Improving Performance
As mentioned earlier, low-latency, high-performance systems are highly dependent on con-
figurations that optimize the utilization of resources and create a balance between resource
demands and resource supplies. Various technologies and methodologies for improving
performance can be built into the software or operating systems for prioritizing requests or
increasing available resources. For this discussion, we focus on caching and rate limiting as
possibly the most frequently used ways for improving performance and enhancing the user
experience.

BOOK.indb 69 19/05/22 5:50 PM

ptg39201256

70 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Caching
Caching enables you to store or position frequently accessed data as close as possible
to the user (or server, depending on the performance problem you’re trying to solve). In
Figure 3-6, caching is used to offload the servers by caching responses and replying on
behalf of the server.

Server

Client 1

Response

Query

Client 2

Query

Cached Response Network

Query

3

2

1

4

Response
Cached

Response

6
5

Cache

Figure 3-6 A Cache Device Capturing Responses and Replying on Behalf of the Server to
Subsequent Queries

Immediate benefits of caching are improved response time, user experience, and the poten-
tial saving of network bandwidth and processing power. We’ve commonly used content
delivery networks (CDNs) for caching static content like web pages or various media types
like videos or training material. Using CDNs is an effective way of caching or storing content
close to the user base.

Caching strategies differ depending on the design decision. The following are a few
examples:

■ Caching of paginated results (a.k.a. pagination): This strategy is most commonly
used for requests or API calls that have multiple pages or rows in the response; for
example, a request from a messaging server to view the last 100 text messages of
a conversation of 1000 messages. The response is split into, say, 10 pages of 10
messages each. The user views the first 10, and if they want to see the next 10, then
another request is generated to fetch the next 10.

■ Lazy loading: The name tells the story. The resources or data is cached when neces-
sary or when needed, not at initialization time. This strategy saves on resources and
bandwidth and also reduces loading time. Example 3-6 demonstrates the difference
between loading data when needed using lazy loading and loading the data at initial-
ization time. The latter form is called eager loading or forced loading of resources.

In Example 3-6, resources are loaded when needed for GetRecords, rather than at initializa-
tion, as seen in Example 3-7.

BOOK.indb 70 19/05/22 5:50 PM

ptg39201256

Chapter 3: Architectural Considerations and Performance Management 71

3

Example 3-6 Lazy Loading Is a Type of Caching That Loads Data Only When
Necessary

class LazyLoading() :

 def __init__(self) :

 self.resource = None

 def GetRecords (self, resource)

 self.resource = resource <- Load when needed

 execute (self.resource)

Example 3-7 Eager or Forced Loading Forces the Preloading of Resources at Initializa-
tion Time

class EagerLoading ():

 def __init__ (self, resource) :

 self.resource = resource <- Load at Initialization

 def GetRecords (self) :

 execute (self. resource)

As with any other design decision, trade-offs exist, and the cost-effectiveness of caching
should be analyzed against its benefits, especially if the dynamic retrieval requirements out-
weigh the placement of static content. For example:

1. What’s required for executing the query or operation at the back end? Network utili-
zation limitations? Server resource utilization limitations?

2. What is the cost-effectiveness of the caching system or service?

3. What is the type of data and the effectiveness of caching? What are the hits versus
misses? If the cache misses are a higher percentage and requests are having to pass
through to the back-end server, maybe the system needs further adjustment or maybe
it is not needed altogether.

Rate Limiting
Another frequently used strategy for improving performance by managing the load on the
system is called rate limiting. Figure 3-7 demonstrates how rate limiting enables you to
control the rate at which requests or data is passed to the system (or processor) to avoid
overloading it.

Rate
Limiter

Source Destination

Figure 3-7 Rate Limiting External to the Server That Limits the Number of Requests
Reaching the Server and Possibly Overloading

BOOK.indb 71 19/05/22 5:50 PM

ptg39201256

72 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

The purpose of Figure 3-7 is only to demonstrate a point about how rate limiters work. The
rate limiters are not always external to the system receiving the requests. The network con-
necting the client (the source) to the server (destination) could possibly have rate limiters to
control the rate at which the server is receiving requests. The server itself may also have rate
limiters implemented to control how many of the requests it should process.

Rate limiting can be applied in many places and for various purposes:

■ Number of requests: This can mean requests for an echo/echo reply as in the ICMP
(ping of death) or for requests against an API. API metering or billing systems may pro-
vide this type of rate limiting as an external mechanism to the system (cloud level) or
locally and internally to the system.

■ User actions: The purpose is to limit how many actions a user can take per web
exchange or experience. A user may be allowed to enter their password three times to
avoid overutilizing network or systems resources (but most importantly for security
reasons).

■ Server-bound traffic: This type of rate limiting is similar to the number of requests,
but you can also use other parameters to control traffic directed toward a specific
server, like the geography from which the request is coming or time of day.

■ Concurrent connections: In various scenarios, you want to control how many concur-
rent sessions or connections a system can have. This type of rate limiting is used to
prevent overload of the system where user experience or security may be at stake.

Parallel Processing
Serial or sequential processing systems process data in sequence and mostly one task dur-
ing a time period. With parallel processing, multiple tasks are executed concurrently and in
parallel, reducing latency and improving performance. There are two main types of parallel
processing:

■ Multithreading: You can design your software in a way that allows for dividing your
tasks or requests into threads that can be processed in parallel. Multithreading is com-
plex and must be decided at development time and most of the time adheres to spe-
cific system requirements.

■ Multiprocessing: You can add additional processors to execute the tasks in parallel.
This approach can also be looked at as processing multiple user requests as they arrive
concurrently and processing them independently. This means that every session or
concurrent user is provided independent memory space and processing timeslot.

Exponential Backoff
Backoff techniques rely on system feedback for rate limiting. When requests arrive and are
not processed in a timely manner and retries are executed, they overload the system and may
eventually increase the latency. In Internet of Things (IoT) implementations, for example, if
you have an application monitoring temperature and you’re unable to get readings, instead of
continuing to poll the sensors for data and overload them, you can use exponential backoffs

BOOK.indb 72 19/05/22 5:50 PM

ptg39201256

Chapter 3: Architectural Considerations and Performance Management 73

3

to limit the number of requests sent. This way, you allow the sensor various random time
periods between requests.

Design and Implementation for Observability
Architecture decisions play a huge role in how resources are distributed and utilized. As we
mentioned earlier, the key to high performance is the balance maintained between supply
and demand of resources. Software systems have become large, complex, and continuously
evolving. This creates the need and the opportunity for continuous monitoring of perfor-
mance or the inner workings of the system by how it is experienced by its users (determining
system issues through the observation of its output).

Applications and networks have profoundly changed. Networks are seeing increased adop-
tion of cloud environments and a rise in distributed applications or cloud-based microser-
vices. This, in turn, presents a few issues for the DevOps and engineering teams around
monitoring, troubleshooting, visibility, and development. The traditional logging and moni-
toring may not deliver the full picture. Traditional monitoring may not be able to report on
the application’s proper operation. In addition, development teams may not have full vis-
ibility into what applications are operating where and for what business function, leading to
inefficient environments with duplicating services.

For the reasons provided, an advanced or a comprehensive way for managing distributed
applications is needed. You can think of it as observability for applications. Observability
helps you

■ Eliminate application performance blind spots (in distributed environments)

■ Address application availability and uptime

■ Measure response times

■ Identify memory utilization (or leaks)

■ Monitor database response times

■ Observe the user or client experience

■ Watch mobile application performance

■ Monitor API usage and responses

■ Decrease MTTR by predicting issues before they occur

Observability has three pillars or telemetry types that you, as application developer or
designer, need to take into consideration:

■ Logging: Logging tracks events and their timestamps. Logs and log types are also
important.

■ Metrics or time-series metrics: These metrics can simply be defined as system per-
formance parameters (or application health measures) and are usually measured within
a unit in time. As mentioned in “Latency and Rate Limiting in Application Design and
Performance,” response time, sessions per second, transactions per second—all are
examples of metrics.

BOOK.indb 73 19/05/22 5:50 PM

ptg39201256

74 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

■ Tracing: Tracing is the ability to track multiple events or a series of distributed events
through a system.

When designing and building an application, you need to keep in mind that failures or faults
will happen. The failures may be related to a software bug, a hardware issue, the network,
misuse, or many other reasons. Having the right type of telemetry capabilities and the right
instrumentation to collect is important and must be considered in the design phase. In addi-
tion, planning for telemetry or observability could influence your choice of hardware, oper-
ating system, or even your choice of programming language. Always design with the end
goal in mind and coordinate your workflows to include the three types of telemetry.

Logging
Logging has been deployed for tens of years and has proven, if used correctly, to be one of
the most useful telemetry tools. Logging is easy and straightforward, and it provides a great
deal of information about the application’s (a process) state or health.

Logging could be as simple as using a print() statement in various locations of your code to
display some variable’s value. However, using print() everywhere you want to log an event or
a value may complicate your code and render it as inefficient or “unclean.” For that reason,
you should consider (and understand) logging capabilities of your programming language.
Doing that provides a clean standard for logging with consistent logging levels and message
formats.

Python, for example, provides a Logging module that is enabled like this:

import logging

logging.basicConfig(level=logging.INFO, format='%(asctime)s -
%(levelname)s - %(message)s')

logging.info('Welcome to DEVCOR')

When displayed, it looks like this, with day and timestamps:

2021-10-29 07:08:27,192 – INFO – Welcome to DEVCOR

That is an informational (INFO) example, but Python defines a few other levels like the
following ones:

logging.critical('your favorite CRITICAL message')

logging.error('your favorite ERROR message')

logging.warning('your favorite WARNING message')

logging.debug('your favorite DEBUG message')

Table 3-3 gives a brief explanation of each of the logging levels.

BOOK.indb 74 19/05/22 5:50 PM

http://logging.info(

ptg39201256

Chapter 3: Architectural Considerations and Performance Management 75

3

Table 3-3 Python Logging Levels with Explanation of Severity

Level Used to Indicate Function

CRITICAL High severity or fatal errors that may cause the
application to crash or stop working

logging.critical()

ERROR Server errors that affect a subset of operations
but may not cause a crash

logging.error()

WARNING A warning or a potential issue logging.warning()
INFO Informational messages indicating normal

behavior while displaying status
logging.info()

DEBUG Used to diagnose issues and is the lowest
severity function

logging.debug()

NOTE Logging is just like any other function or process; it requires careful design and
implementation consideration. For example, is it used as a development aid or for exception
logging? Will logging of the various levels and message formats tax the CPU? How granular
do you want your debugging to be?

Having a logging framework (or standard) is important for consistency, efficiency, and docu-
mentation across multiple development teams. On the other hand, if you’ve been working
with Cisco devices and you need to capture system messages, then it is good to familiarize
yourself with Cisco’s System Message Logging, which uses the IETF RFC 5424 (The Syslog
Protocol) definitions shown in Table 3-4.

Table 3-4 Syslog Message Severities as Defined by the IETF RFC 5424

Severity Keyword Level Description Syslog Definition

emergency 0 System unusable LOG_EMERG

alert 1 Immediate action needed LOG_ALERT

critical 2 Critical conditions LOG_CRIT

error 3 Error conditions LOG_ERR

warning 4 Warning conditions LOG_WARNING

notification 5 Normal but significant
condition

LOG_NOTICE

informational 6 Informational messages only LOG_INFO

debugging 7 Debugging messages LOG_DEBUG

As a generic example, the Cisco IOS XR message looks like this:

node-id : timestamp : process-name [pid] : % message category
-group -severity -message -code : message-text

BOOK.indb 75 19/05/22 5:50 PM

http://logging.info(

ptg39201256

76 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

NOTE Logging is an important part of good programming practices that require efficient,
readable, and well-documented code. Be sure to make your messages informative, clear, spe-
cific, and timestamped. You also need to think about where to capture and store the logs and
how long they should be retained.

Metrics
Metrics are system performance parameters (or application health measures) and are usually
measured as a unit in time. Simple and common examples are application response time,
requests per second, sessions per second, and transactions per second.

Defining the right metrics to be measured or monitored for your project should be based on
the goal, function, or problem you’re trying to solve with your application. Whenever you’re
executing software, you must measure CPU usage, memory usage, swap space, and a few
other things related to the environment.

Network and application performance monitoring has seen major improvements and advance-
ments in the last two decades, and it is still improving as computer and network hardware
includes advanced diagnostics and telemetry embedded into the system. But there are a few
limitations that arise as you start looking at distributed and cloud-based environments where
physical and virtual boundaries restrict metric monitoring.

Application-level monitoring has become an extreme necessity, allowing you to monitor all
parameters affecting application performance throughout the path from the client to the
application, wherever it may be. Another important function of observability should be the
ability to correlate events captured across all services, all paths, hardware, and software.
Figure 3-8 shows a small subset of services and components affecting application perfor-
mance and subsequently affecting business performance.

Figure 3-8 AppDynamics Display of Various Dashboards

BOOK.indb 76 19/05/22 5:50 PM

ptg39201256

Chapter 3: Architectural Considerations and Performance Management 77

3

Monitoring various parameters at a granular level has been the focus of a new generation of
tools called application performance monitoring (APM) applications. AppDynamics is
an example of an APM. AppDynamics utilizes agents (plug-ins or extensions) sitting across the
entire application ecosystem that monitor the performance of application code, runtime environ-
ments, and interactions. The agents send real-time data to the controllers for visualization and
further instructions. The data is used for mapping dependencies, business transaction monitoring,
anomaly detection, root cause diagnostics, and analytics. Figure 3-8 shows the TeaStore applica-
tion with AppDynamics monitoring various aspects about the application, including the business
context and therefore allowing the business to prioritize what’s important.

AppDynamics exposes various APIs for customizing and extending the feature set on the
platform side, which are served by the Controller and Events Service, and on the agent side.

Tracing
Traces are an important part of observability because they provide information about the
structure of a transaction and the path or route taken (requests and responses). In the previ-
ous section, we discussed APMs and how they may be able to provide you with applica-
tion dependency mapping. With tracing, you can understand the various services used for
a transaction or a request. In the world of networking, ICMP echo and echo reply as well as
Layer 2 traces enable you to discover the path taken for a trace and what network nodes or
devices are used to deliver the trace. Application tracing is similar.

With cloud or distributed environments, you see the term distributed tracing more often
than just tracing; however, conceptually they are the same. With tracing, you can determine

■ What parts or services of the system are slow

■ What calls are redundant

■ What call patterns can be optimized

■ What routes or paths are affected by failing services (what if type modeling?)

■ Trace queries

■ And more

Figure 3-9 is a generic example of what devices, networks, servers, or services can possibly
be in the path between the users and their applications. Many factors can affect the perfor-
mance of an application and subsequently the user experience.

Branch
Office

Employees
from Home

Content
Delivery

App
Servers

Micro
Services

Databases

External
Services

Field
Employees

Network
Services

Internet

Figure 3-9 Internet and Network Path That Connects Users and User Services

BOOK.indb 77 19/05/22 5:50 PM

ptg39201256

78 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

You will probably not see deep level tracing being emphasized during your DEVCOR stud-
ies, but it is good to practice when developing distributed applications and microservices.

AppDynamics (explained earlier), combined with digital experience monitoring systems like
ThousandEyes, can give you the best view of the application and business parameters with
the least amount of work. Figure 3-10 shows an application analysis display using the Thou-
sandEyes platform of services.

Figure 3-10 Sock-Shop Application Analysis Using ThousandEyes

Figure 3-11 shows a small subset of services and components affecting application perfor-
mance, the digital experience, and subsequently business performance. It is not uncommon
to see the combination of AppDynamics and ThousandEyes referred to as full stack observ-
ability (FSO).

Business Apps

App &
Code

Internet

Application Performance
Monitoring

Server
& Data
Center

DNS/BGP
Path

Visibility
Cloud &

SaaS
API &

Synthetics
Cloud
Native

Digital Experience and Path Analysis

User

Visibility, Correlation, and Business Continuity

Figure 3-11 Full Stack Observability as Serviced by the Cisco Platforms

Good Documentation Practices: An Observability Reminder
We touched on good documentation practices in Chapter 2, and we think it is as relevant to
observability as the “three pillars” discussed earlier. In distributed environments or environ-
ments where workloads are consistently moving between the cloud and on-premises comput-
ing environments, good (or rather, excellent) documentation practices become very essential.

BOOK.indb 78 19/05/22 5:50 PM

ptg39201256

Chapter 3: Architectural Considerations and Performance Management 79

3

NOTE Because modules are a part of the overall system, all modules should describe
how they participate in the overall system and what part or service they provide and how
it relates to other parts. Sound familiar? This sounds like a combination of monitoring and
tracing but in text format.

As documented in “Software Architecture in Practice,” you should emphasize the following
practices for every module or function developed within the overall system. The following
are quick reminders of what every module or component should have:

■ Name

■ Responsibility

■ Interfaces

■ Implementation information

■ Mapping to source code units

■ Test information

■ Management (or monitoring) information

■ Implementation constraints

■ Revision history

The list, of course, is at the module level, but you cannot forget code comments or low-level
documentation.

NOTE Code comments and low-level documentation are as important as all higher-level
documentation, if not the most important. They give you a window into the developers’
thought processes at the time of writing. They also simplify troubleshooting and speed up
modifiability.

Database Selection Criteria
It has been said that the global economy is powered by data more than any other item in the
world. Whether it’s the storage of archival data to be found at a later date, analysis of data
across different sets looking for patterns, or access to lots of data for training of AI/ML
models, without the storage and retrieval of information—everything that occurs within the
world would be based on the subjective nature of people’s memory. Out of these require-
ments, databases were developed to hold all of the information required for a given use case.
Over time, requirements for how and what was stored have evolved, leading to a seemingly
confusing number of database types that need to work all the way to web scale and be able
to interface with one or more applications depending on the user and use case.

While much emphasis is generally placed on the code being written for an application, the
data that the application gathers or generates can be argued to be the reason the application
was generated in the first place, and without proper storage of the data, the application has

BOOK.indb 79 19/05/22 5:50 PM

ptg39201256

80 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

no real purpose. In addition to proper storage, the data needs to be accessed quickly, survive
potential failures, and be robust to grow as the data collected becomes larger and larger.
Looking through these points of consideration, you can easily see that the selection of a
proper database for the application and potential dataset can make or break the success of
an application.

Database Requirements Gathering
While databases are generally lumped into a single category, there are many different classi-
fications of databases, depending on the application and data being stored within them. Each
different type of database is optimized for a certain structure or set of data, maximum data
set size, and response time to queries. For performant applications, a close understanding of
all of them is critical (which is why so many database platforms exist). However, for simple
applications or systems, simply understanding the type of data being ingested by the data-
base is sufficient (scale problems generally arise at the many hundreds of gigabytes of data,
making them less of an issue for hobbyist or small-scale applications).

The first step in gathering database requirements is determining the type of database to use,
based on the data being gathered by the application. While not exhaustive, the following
list outlines some of the common database types and provides a brief description and some
names of databases that fit that type. Also, note that each type of database exists within
all the major cloud providers, allowing customers to benefit from the same levels of abstrac-
tion in databases that exist within application deployment and management (see Chapter 7,
“Application Deployment”).

■ Relational: Relational databases are typically referred to as SQL databases, for their
use of Structured Query Language (SQL) to gather information from the store.
Relational databases are constructed of one or more tables of information, with each
table containing rows of information defined by a key, or unique identifying value. To
gather information from the database, you might be required to join multiple tables
together, based on relational attributes shared between the tables (such as a database
that needs to query the transaction logs for an item [one table] along with the inven-
tory records of that same item [another table] for audit purposes). These types of data-
bases are best used with structured data, due to the way the data must be split to align
within a given table.

Examples: PostgreSQL, MySQL

■ Nonrelational (NoSQL): Nonrelational databases are a broad category of databases in
which the data is not structured or does not easily fit into the format of a traditional
relational database (it helps to visualize a relational database as formatted similarly to
a standard spreadsheet). Each category of NoSQL database is optimized for the stor-
age of different types of data, such as key-value pairs, documents, or big data ware-
housing. These databases also provide an easier framework to scale across clusters of
machines as well as the flexibility to change the database in real time.

Examples: MongoDB, CouchDB

■ Time series: On the surface, time series databases (TSDB) can almost be considered
relational databases because they provide unique keys (driven by the timestamps of

BOOK.indb 80 19/05/22 5:50 PM

ptg39201256

Chapter 3: Architectural Considerations and Performance Management 81

3

the data being ingested into the database) and the data being stored is very uniformly
structured in nature. However, time series databases are unique in that there is rarely
a relational component or specialized linked tables within a TSDB. The uniformity of
the data (composed of a timestamp and some payload of data) allows for specialized
compression and storage algorithms not possible in other databases. TSDBs also gener-
ally hold onto data only for a predetermined time, rather than forever, allowing them
to be deployed in smaller footprints than traditional databases.

Examples: InfluxDB, Prometheus

You might be able to place information in a database to which it was not fully intended and
have everything function as normal during proof of concept, or even at small scale. Issues
may arise only after running the database in production at scale for some time, at which
point, cracks may develop and must be patched, moved around, or just accepted. The option
of moving to another database type isn’t something that can be undertaken lightly, either.
Applications needing to push data to or pull data from the database often rely on SDKs to
map the data to the database location and schema. For applications with tens or hundreds
of different functions or methods that utilize this database, the code migration is no small
undertaking. This is added to the fact that the data that resides in one database (say, a rela-
tional database) will need to undergo some transformation and mutation to ensure that the
fields from each entry are mapped correctly (and align with the new code being developed
in parallel to utilize the new fields). Finally, during a migration event, most databases must
be locked to prevent new records from being written during the migration, requiring a down-
time/outage for the application. It’s easy to see how poor planning or a lack of database
knowledge can bring on a lot of technical debt to be fixed later.

This is not to say that the decision of which database platform to use should create analysis
paralysis and bottleneck an application’s design and creation; at some point, decisions must
be made based on the best information at hand. However, knowing and understanding dif-
ferent types of databases, at least at a high level, are important to your overall knowledge of
software design.

Aside from the characteristics of the different types of databases provided, additional exist-
ing considerations can help narrow the choices for which database platform should be used.
These are generally referred to as the “three Vs” of databases: volume, velocity, and variety.
Some materials reference these considerations specifically in the context of big data, but big
data is a specific set of large data set warehousing, meant to operate at the bounds of scale,
speed, and types of data. However, by planning out the rough requirements in each of the
three following points, the database selection process can be streamlined.

Data Volume
Data volume is self-explanatory on the surface; it’s the amount of data required to be held
within a given database. Certain databases can perform up until a given threshold of size,
at which point they either become unstable (at best) or unusable (at worst). This is due to
the structure in which the data is stored and the ability of the data to be queried after it
resides inside the database. If the data cannot be extracted after it has been placed within
a database, it’s no longer a database, but more like a vault. This can be a factor for the raw
amount of data being stored (especially for NoSQL databases, particularly ones focused on
documents) or the amount of RAM being dedicated to the store (in the case of Redis, which

BOOK.indb 81 19/05/22 5:50 PM

ptg39201256

82 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

is an in-memory database). However, regardless of database, queries will eventually become
slower (if only marginally so) as the size grows due to the bounds on the speed at which
queries can occur.

However, volume isn’t just about the raw amount of data being stored in terms of bytes.
Databases are composed of records, and as the number of records grows, the system’s abil-
ity to query and find the information quickly decreases. While optimized search algorithms
exist, there is a finite bound for which those algorithms can search through hundreds of
millions of records, even if the size of said set of records is only in the tens of gigabytes.
Although it is impossible to predict the size of a long-running application’s database, this
becomes a critical aspect of database selection.

Data Velocity
Much like data volume, data velocity is also self-explanatory, and refers to the speed at
which the database must be able to ingest data from the various sources of the application.
While this seems like a simple metric (faster is always better, right?), velocity isn’t just a
product of how fast records can be processed but must also consider the patterns in which
the data is sent. In some instances, like those that use TSDBs, data is sent at relatively consis-
tent intervals, and performance is scaled through optimizing the database for the data being
ingested and the underlying subsystem supporting the database (CPU, RAM, and disk).

However, if a database is supporting an application with a bursty traffic profile, it may be
impossible to find a database that is performant enough, depending on the overall load
to the system. In this case, some sort of front-end cache system to the database may be
required to ensure that records are not dropped or lost before they are committed to the
database. In other cases, the choice of database may allow for distribution/sharding of the
overall database to ensure scale, with the idea that the database peers will update themselves
or find quorum on the data written at some point in the future (in the case of NoSQL-based
databases that support horizontal scale-out). Anticipating the baseline and peak traffic pro-
files for the database, along with ways to mitigate growth in velocity requirements, will help
ensure that a selected database will have the ability to scale with growth.

Data Variety
While the preceding two considerations are applicable to all databases, variety has a limited
applicability to most databases, outside of those meant for document archival or big data.
Variety refers to how much the incoming data will differ from the previous set. In most
instances, the data received from the application is of a normalized set: time-series data from
an IoT sensor or a standard entry from a webform entry. Although these sets of data may
have varying levels of structure and payload, they are generally considered uniform in the
presentation and can be easily handled within a semi-rigid database structure and be indexed
and queried properly. Because of the separation possible for different input sources to a
database, the normalization must occur only per source—say, adding a new IoT sensor to a
TSDB needing a new bucket within InfluxDB, rather than a new database or complete pre-
filter of the sensor data to have it align with what exists.

In the case of a document database, the types and structures of the inputs could vary dras-
tically. In the cases of some of the largest databases supporting social media platforms,
indexing of images, video, and audio must occur within the same database. With corpo-
rate document databases, the file types could be endless, including PDFs, word processor

BOOK.indb 82 19/05/22 5:50 PM

ptg39201256

Chapter 3: Architectural Considerations and Performance Management 83

3

documents, spreadsheets, presentations, and even archived emails of several different for-
mats. Understanding the potential variety of data (if there needs to be any) can serve as a
very powerful filter for database selection.

Exam Preparation Tasks
As mentioned in the section “How to Use This Book” in the Introduction, you have a couple
of choices for exam preparation: the exercises here, Chapter 17, “Final Preparation,” and the
exam simulation questions on the companion website.

Review All Key Topics
Review the most important topics in this chapter, noted with the Key Topic icon in the outer
margin of the page. Table 3-5 lists a reference of these key topics and the page numbers on
which each is found.

Table 3-5 Key Topics for Chapter 3

Key Topic
Element

Description Page
Number

Section Maintaining a SOLID Design 60

Table 3-2 Performance parameters from networking and software
perspectives

67

Figure 3-5 Performance Parameters: Latency, Throughput, and RTT 67

Section Architecture Trade-offs 69

Section Improving Performance 69

Section Caching 70

Section Rate Limiting 71

Table 3-3 Python Logging Levels with Explanation of Severity 75

Table 3-4 Syslog Message Severities as Defined by the IETF RFC 5424 75

Paragraph Application performance monitoring 77

Section Good Documentation Practices: An Observability Reminder 78

Section Database Requirements Gathering 80

Complete Tables and Lists from Memory
Print a copy of Appendix C, “Memory Tables” (found on the companion website), or at least
the section for this chapter, and complete the tables and lists from memory. Appendix D,
“Memory Tables Answer Key,” also on the companion website, includes completed tables
and lists to check your work.

BOOK.indb 83 19/05/22 5:50 PM

ptg39201256

84 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Define Key Terms
Define the following key terms from this chapter and check your answers in the glossary:

application performance monitoring (APM), caching, latency, logging, metrics, multi-
threading, multiprocessing, observability, rate limiting, round-trip time (RTT), SOLID,
throughput, tracing

References
URL QR Code

“Design Principles and Design Patterns,” Robert C. Martin
https://www.academia.edu/40543946/
Design_Principles_and_Design_Patterns

IETF RFC 5424
https://datatracker.ietf.org/doc/html/rfc5424

Continuous Architecture in Practice: Software Architecture in
the Age of Agility and DevOps
https://www.informit.com/store/continuous-architecture-in-
practice-software-architecture-9780136523567

Software Architecture in Practice, 4th Edition
https://www.informit.com/store/
software-architecture-in-practice-9780136886099

BOOK.indb 84 19/05/22 5:50 PM

https://www.academia.edu/40543946/Design_Principles_and_Design_Patterns
https://www.academia.edu/40543946/Design_Principles_and_Design_Patterns
https://datatracker.ietf.org/doc/html/rfc5424
https://www.informit.com/store/continuous-architecture-in-practice-software-architecture-9780136523567
https://www.informit.com/store/continuous-architecture-in-practice-software-architecture-9780136523567
https://www.informit.com/store/software-architecture-in-practice-9780136886099
https://www.informit.com/store/software-architecture-in-practice-9780136886099

ptg39201256

This page intentionally left blank

ptg39201256

CHAPTER 4

Version Control and Release
Management with Git

This chapter covers the following topics:

■ Version Control and Git: This section briefly discusses version control for managing
code or file changes and how Git is a widely used version control system (VCS). It also
discusses Git basics and advanced features for managing code changes from multiple
concurrent developers.

■ Git Workflow: This section discusses Git basic workflow agreement, how to manage
access to the code, and who contributes and who is trusted to manage the workflow.
Basics of branching and forking are also discussed.

■ Git Branching Strategy: This section discusses a strategy for managing the code devel-
opment and stabilization teams and processes. This is a strategy that all developers
must understand and agree upon.

This chapter maps to the first part of the Developing Applications Using Cisco Core
Platforms and APIs v1.0 (350-901) Exam Blueprint Section 1.0, “Infrastructure and Automa-
tion,” specifically subsections 1.10 and 1.11.

This chapter describes version control, version control systems (VCSs) in general, and then
goes on to describe Git as a version control system. The concept of version control is simple
and used in every aspect of our lives: documents, applications, operating systems, webpages,
standards, frameworks—you get the idea. The code you build for automating and orchestrat-
ing your network is no different. We’re confident that you’re not building the code by your-
self, and we’re confident you’re not building it in one sitting. You’re collaborating with others
and most probably in an agile development process where various releases and sprints are in
order. This chapter teaches you how to keep track of the development process.

“Do I Know This Already?” Quiz
The “Do I Know This Already?” quiz allows you to assess whether you should read this
entire chapter thoroughly or jump to the “Exam Preparation Tasks” section. If you are in
doubt about your answers to these questions or your own assessment of your knowledge
of the topics, read the entire chapter. Table 4-1 lists the major headings in this chapter and
their corresponding “Do I Know This Already?” quiz questions. You can find the answers in
Appendix A, “Answers to the ‘Do I Know This Already?’ Quizzes.”

BOOK.indb 86 19/05/22 5:50 PM

ptg39201256

Table 4-1 “Do I Know This Already?” Section-to-Question Mapping

Foundation Topics Section Questions

Version Control and Git 1
Git Workflow 2, 3
Git Branching Strategy 4, 5

1. What is version control used to track?
a. Code changes
b. Configurations
c. Releases
d. All of these answers are correct.

2. What is the difference between Git and GitHub?
a. There is no difference.
b. GitHub is used for hosting Git projects.
c. GitHub has a hub, and Git does not.
d. GitLab, GitHub, and Git are different names for the same thing.

3. The main benefit of a VCS is your ability to do what?
a. Manage code for multiple development projects.
b. Streamline the development cycle or process.
c. Track and save all changes.
d. All of these answers are correct.

4. Which scenario is more likely to cause a merge conflict?
a. Two developers open the same file.
b. A file gets deleted by one developer while it’s being modified by another

developer.
c. Two merges are performed back-to-back.
d. All these scenarios are easily handled by Git.

5. Which statements are correct about branching? (Choose two.)
a. Branching is important only if you plan to merge changes from two independent

projects.
b. A branching strategy needs to define types of branches and all rules governing

usage by the developers.
c. Every developer must understand the strategy and agree to follow it.
d. Branching strategies must be agreed upon only by development team leads, not all

developers.

BOOK.indb 87 19/05/22 5:50 PM

ptg39201256

88 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Foundation Topics

Version Control and Git
When we discussed maintainability and modifiability in the preceding chapter, we started
with a statement that is super fit to use here: “Change is constant.” Therefore, a system
or methodology for tracking changes to a code, who made them, and for what purpose
becomes a very important component of a project. Version control, or simply version-
ing, can be at all levels of the development process: a module, function, feature, system, or
application.

A number of popular systems are in use today, and most of the time the one you use will
be the one that your company supports and that your development team is currently using.
Git is such a system; it has gained a lot of popularity recently for its ease of use (at least the
latest versions) and simplicity, and because it’s open source. In the next few sections, we
describe Git and look at some of its basic and advanced features.

Git differentiates itself in being fast and efficient, and also by having the following
interesting features:

■ A typical VCS stores deltas, or file changes, over a period of time (delta-based version
control), whereas Git stores snapshots of files and the filesystem.

■ Almost all operations are local to your system or computer. All related history is stored
locally and can be accessed regardless of whether you’re online or offline.

■ Data in Git is verified for integrity through a checksum algorithm. A checksum is pro-
duced before storing a file, and the checksum is used to refer to the file or data.

For more information about Git and how it works, we highly recommend you refer to the
free book written by Scott Chacon and Ben Straub and contributed to by the Git developer
community: Pro Git, Version 2.1.240. It was used as a reference for this book. You can refer
to the book and to online documentation for installing and learning Git.

Git Workflow
When multiple people need to collaborate and contribute to the same Git repository for a
project, there needs to be a working agreement on how that work will be done. A team must
agree on an operating model for coordinating their contributions to a shared, source-of-truth
code repository.

The Git Workflow that a team selects depends on the following:

1. Shared repo access policies

■ Will all contributors have read-write access to the shared repository?

■ Or will some contributors have read-only access to the shared repository?

2. Untrusted contributors

■ Are all contributors known up front and trusted with repository read-write access?

■ Or will some contributors be untrusted or from the public?

BOOK.indb 88 19/05/22 5:50 PM

ptg39201256

Chapter 4: Version Control and Release Management with Git 89

4

3. Novice versus intermediate Git users

■ Will users follow a more complex workflow that is used by the vast majority of
open-source projects?

■ Or will they follow a simpler workflow that novice users of Git may easily under-
stand?

The following sections detail the two primary workflows that teams use: the Branch and Pull
Workflow and the Fork and Pull Workflow.

Branch and Pull Workflow
The Branch and Pull Workflow is the simpler of the two options for Git workflows. It works
best with the following properties:

■ Shared repo access policies: All contributors have read-write access to the shared
repository.

■ Trusted contributors: All contributors are known up front and trusted with repository
read-write access.

■ Novice versus intermediate Git users: The team requires a simpler workflow that nov-
ice users of Git may easily understand.

The Branch and Pull Workflow has the following pros and cons.

Pros

■ This model requires only simple knowledge of Git, only incrementally different from
working solo on a Git repository because only a single Git repo is involved.

■ It does not require a contributor to be aware of the concept of forking.

■ Because there are no forks, the user does not need to understand how to manage
working with distributed Git repos (that is, synchronizing the same source code among
many repos).

Cons

■ This model diverges from the way that the vast majority of open-source software
works (most open-source software uses the Fork and Pull Workflow).

■ All code contributors must have read-write access to the shared, source-of-truth
repository.

■ This workflow is less safe because all team members have read-write access and are
pushing to the same source of truth, allowing the possibility of overwriting each
other’s branches, especially shared branches such as the main or master.

■ This model cannot work for untrusted contributors who do not have write access to
the shared repository.

BOOK.indb 89 19/05/22 5:50 PM

ptg39201256

90 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Sample Setup
Next, let’s look at a sample setup, followed by the actual Branch and Pull example.

1. Assume that you have configured your github.com user profile with an SSH key.

■ This allows you to execute remote Git operations such as clone and push using
SSH-key authentication.

■ Otherwise, Git defaults to using password authentication, which requires you to
frequently type in a username and password.

2. Assume that bluecodemonks is your team name.

■ Thus, your team has already created a GitHub organization named bluecodemonks.

■ See https://github.com/bluecodemonks.

3. Assume that go-hello-world will be a team collaboration project.

■ Thus, your team has already created a shared, source-of-truth repository named
go-hello-world.

■ See https://github.com/bluecodemonks/go-hello-world.

4. Assume that you have already been added as a read-write contributor to the project.
Figure 4-1 shows the go-hello-world project.

Figure 4-1 Branch and Pull: Origin Repository

Sample Branch and Pull Workflow

NOTE You cannot follow along with this exercise using this specific repository because
you don’t have write access to the repo at https://github.com/bluecodemonks/go-hello-
world. This illustrates the limitations of the Branch and Pull Workflow. The counter Fork
and Pull Workflow does not have this limitation, however, as you will see in a subsequent
exercise.

Step 1. Clone the project repository to your local computer:

$ mkdir ~/Dev

$ cd ~/Dev

$ git clone git@github.com:bluecodemonks/go-hello-
 world.git

M04_Davis_C04_p086-p129.indd 90 20/05/22 9:35 PM

http://github.com
https://github.com/bluecodemonks
https://github.com/bluecodemonks/go-hello-world
https://github.com/bluecodemonks/go-hello-world
https://github.com/bluecodemonks/go-hello-world
mailto:git@github.com:bluecodemonks/go-hello-

ptg39201256

Chapter 4: Version Control and Release Management with Git 91

4

Cloning into 'go-hello-world'...

[snipped]

Step 2. You now have a local copy of the project repository on your filesystem, as seen
in Figure 4-2, where the local clone of go-hello-world was created.

Step 3. Look around the newly cloned repository:

$ cd ~/Dev/go-hello-world

$ tree

.

├── LICENSE

├── README.md

├── go.mod

└── main.go

0 directories, 4 files

Figure 4-2 Branch and Pull: Locally Cloned Repo

BOOK.indb 91 19/05/22 5:50 PM

ptg39201256

92 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Step 4. Notice that a Git remote repository configuration has already been set up
because you cloned from a remote repository.

■ This repository is named origin (by default).

■ It refers to the original URI from which this repo was cloned.

■ Your team’s shared, source-of-truth remote repo is now labeled
origin:

$ git remote -v

origin git@github.com:bluecodemonks/go-hello-world.git
(fetch)

origin git@github.com:bluecodemonks/go-hello-world.git
(push)

Step 5. Look at what branch you are currently on and what branches
are available.

■ You are on the main branch, denoted by the asterisk (*) character.

■ Your local main branch is at the same commit as the remote origin/main
branch. It is set to track the origin/main remote upstream by default (see
Figure 4-3). Thus, if you execute commands such as git push without
fully qualifying where to push, it assumes the target is the default ori-
gin/main remote upstream. To push to a specific git remote and spe-
cific branch on that remote, you may fully qualify the target git push
<remote>/<branch>.

$ git branch -avv

* main ad0bbc5 [origin/main] Added install and run
instructions

remotes/origin/HEAD -> origin/main

remotes/origin/main ad0bbc5 Added install and run
instructions

Step 6. Now it’s time to make a contribution. First, create a local branch to store your
local changes. Because you are currently on the main branch, your new branch
will be created from main. Example 4-1 shows the CLI commands, and
Figure 4-4 illustrates the logical results.

BOOK.indb 92 19/05/22 5:50 PM

mailto:origingit@github.com:bluecodemonks/go-hello-world.git
mailto:origingit@github.com:bluecodemonks/go-hello-world.git

ptg39201256

Chapter 4: Version Control and Release Management with Git 93

4

Figure 4-3 Branch and Pull: Main Branch Tracking

Example 4-1 Creating a Branch

Check what branch we are on

$ git branch

* main

Create a new feature-branch from "main" and switch to it

$ git checkout -b update-readme

Switched to a new branch 'update-readme'

View your branch status

$ git branch -avv

main ad0bbc5 [origin/main] Added install and run instructions

* update-readme ad0bbc5 Added install and run instructions

remotes/origin/HEAD -> origin/main

remotes/origin/main ad0bbc5 Added install and run instructions

BOOK.indb 93 19/05/22 5:50 PM

ptg39201256

94 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Figure 4-4 Branch and Pull: Creating a Branch

Step 7. Now, make some edits to the README.md file. You can enhance the
README.md with uninstall instructions:

$ vi README.md

Uninstall

```

$ rm $GOPATH/bin/go-hello-world

```

Step 8. Assess your changes before you stage them.

This step is not required but is extremely good practice to evaluate your
changes before you stage them. The steps are described in Example 4-2.

Example 4-2 Branch and Pull: Reviewing Current Changes

$ git status

On branch update-readme

Changes not staged for commit:

(use "git add <file>..." to update what will be committed)

(use "git restore <file>..." to discard changes in working directory)

modified: README.md

BOOK.indb 94 19/05/22 5:50 PM

ptg39201256

Chapter 4: Version Control and Release Management with Git 95

4

no changes added to commit (use "git add" and/or "git commit -a")

$ git diff

diff --git a/README.md b/README.md

index f272b4d..8e86322 100644

--- a/README.md

+++ b/README.md

@@ -11,4 +11,10 @@ Run

 ```

 $ go-hello-world

 Hello World

-```

\ No newline at end of file

+```

+

+Uninstall

+

+```

+$ rm $GOPATH/bin/go-hello-world

+```

Step   9. Stage your changes:

$ git add README.md

Step 10. Assess your staged changes to double-check your edits.

This step is not required but is extremely good practice to evaluate your 
changes before you commit them. The steps to review changes before commit-
ting are described in Example 4-3.

Example 4-3 Branch and Pull: Reviewing Staged Changes

$ git diff --cached

diff --git a/README.md b/README.md

index f272b4d..8e86322 100644

--- a/README.md

+++ b/README.md

@@ -11,4 +11,10 @@ Run

 ```

 $ go-hello-world

 Hello World

-```

\ No newline at end of file

+```

BOOK.indb 95 19/05/22 5:50 PM

ptg39201256

96 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

+

+Uninstall

+

+```

+$ rm $GOPATH/bin/go-hello-world

+```

Step 11. Commit the changes to the local branch:

$ git commit -m "Update README.md with uninstall
instructions"

[update-readme bb63877] Update README.md with uninstall
instructions

 1 file changed, 7 insertions(+), 1 deletion(-)

Step 12. Push a copy of your local branch update-readme to the shared source-of-truth
repo. The git push command is illustrated in Example 4-4 and logically repre-
sented in Figure 4-5.

■ The source-of-truth repo is named origin in your git remotes:

$ git remote -v

origin git@github.com:bluecodemonks/go-hello-world.git
(fetch)

origin git@github.com:bluecodemonks/go-hello-world.git
(push)

■ Notice that you are currently on the update-readme local branch and that
the origin git remote has no such branch:

$ git branch -avv

main ad0bbc5 [origin/main] Added install and run
instructions

* update-readme 8144024 Update README.md with uninstall
instructions

remotes/origin/HEAD -> origin/main

remotes/origin/main ad0bbc5 Added install and run
instructions

■ Thus, you must push the current branch to the origin remote, specifying a
fully qualified branch name in the format <remote> <branch>.

BOOK.indb 96 19/05/22 5:50 PM

mailto:origingit@github.com:bluecodemonks/go-hello-world.git
mailto:origingit@github.com:bluecodemonks/go-hello-world.git

ptg39201256

Chapter 4: Version Control and Release Management with Git 97

4

Figure 4-5 Branch and Pull: Listing All Branches

Example 4-4 Branch and Pull: Pushing a Branch to the Origin Repo

$ git push origin update-readme

Enumerating objects: 5, done.

Counting objects: 100% (5/5), done.

Delta compression using up to 12 threads

Compressing objects: 100% (1/1), done.

Writing objects: 100% (3/3), 367 bytes | 367.00 KiB/s, done.

Total 3 (delta 2), reused 2 (delta 2), pack-reused 0

remote: Resolving deltas: 100% (2/2), completed with 2 local objects.

Remote:

remote: Create a pull request for 'update-readme' on GitHub by visiting:

remote: https://github.com/bluecodemonks/go-hello-world/pull/new/update-readme

remote:

To github.com:bluecodemonks/go-hello-world.git

 * [new branch] update-readme -> update-readme

BOOK.indb 97 19/05/22 5:50 PM

https://github.com/bluecodemonks/go-hello-world/pull/new/update-readme
http://github.com:bluecodemonks/go-hello-world.git

ptg39201256

98 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

■ Now, verify that the remote origin has a new branch named updated-
readme:

$ git branch -avv

main ad0bbc5 [origin/main] Added install and run
instructions

* update-readme bb63877 Update README.md with uninstall
instructions

remotes/origin/HEAD -> origin/main

remotes/origin/main ad0bbc5 Added install and run
instructions

remotes/origin/update-readme bb63877 Update README.md
with uninstall instructions

Step 13. Initiate a pull request (PR) through the repo on the GitHub UI by clicking the
Compare & Pull Request button shown in Figure 4-6.

Figure 4-6 Branch and Pull: GitHub Origin Repo Page

BOOK.indb 98 19/05/22 5:50 PM

ptg39201256

Chapter 4: Version Control and Release Management with Git 99

4

You are taken to the Open a Pull Request page (as shown in Figure 4-7).

■ Notice that you are asking to merge the update-readme branch into the main
branch.

■ This is your opportunity to provide a name for the pull request, as well as
add additional comments if necessary.

Figure 4-7 Branch and Pull: Opening a Pull Request

Step 14. Scroll down and inspect the proposed code changes. In Figure 4-8, notice the
changes in the lower window, shown as “showing 1 changed file with 7 addi-
tions and 1 deletion.”

BOOK.indb 99 19/05/22 5:50 PM

ptg39201256

100 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Figure 4-8 Branch and Pull: Reviewing Pull Request Changes Before Submitting

■ If the code changes are not what you expected, you may make additional
commits in your local update-readme branch and then push the additional
commits to the origin/update-readme branch, which will then automatically
update the pull request.

Step 15. Click the Create Pull Request button. Figure 4-9 clearly illustrates the pull
request, and Figure 4-10 shows that the pull request is complete and ready for
review.

BOOK.indb 100 19/05/22 5:50 PM

ptg39201256

Chapter 4: Version Control and Release Management with Git 101

4

Figure 4-9 Branch and Pull: Submitting Pull Request

Step 16. Get your PR code reviewed by a friend or colleague:

■ The code reviewer should signal that the pull request is in an acceptable/
mergeable state by providing an approval signal or comment (shown as
thumbs up in Figure 4-11).

■ If the code reviewer requests changes, the reviewer can comment on the
code, and you may fix the identified issues by making additional commits
in your local update-readme branch and then pushing the additional commits
to the origin/update-readme branch, which then automatically updates
the PR.

BOOK.indb 101 19/05/22 5:50 PM

ptg39201256

102 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Figure 4-10 Branch and Pull: Submit Pull Request Complete

Figure 4-11 Branch and Pull: Code Review Approval

BOOK.indb 102 19/05/22 5:50 PM

ptg39201256

Chapter 4: Version Control and Release Management with Git 103

4

Step 17. Now that your pull request has been code reviewed and approved, you may
merge your PR by clicking the Merge Pull Request button. Figure 4-12 shows
the approval.

Figure 4-12 Branch and Pull: Approved for Merge

■ Subsequently, confirm the merge, as shown in Figure 4-13.

Step 18. The PR will be fully merged after the Confirm button is clicked. For the pur-
poses of maintaining this sample repository, do not merge this PR; instead,
leave it in the open state for people to inspect.

Step 19. Because you pushed your branch update-readme to a shared repository, com-
mon courtesy is to delete your branch from the shared repository.

■ Note that this step is unnecessary in the Fork and Pull Workflow.

BOOK.indb 103 19/05/22 5:50 PM

ptg39201256

104 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Figure 4-13 Branch and Pull: Confirm Merge

Fork and Pull Workflow
The Fork and Pull Workflow is the more complex of the two options for Git workflows, but
it works in all use cases. In addition, it is the most popular Git workflow in the open-source
and commercial worlds because it enables contributions from untrusted contributors with-
out read-write access to the shared, source-of-truth repo.

It works when

■ Shared repo access policies: Contributors have a minimal read-only access to the
shared repository.

■ Untrusted contributors: Unknown, untrusted, or public contributors.

■ Novice versus intermediate Git users: The team is capable of following a more com-
plex workflow, especially if they are already familiar with the open-source model.

This Fork and Pull Workflow has the following pros and cons.

BOOK.indb 104 19/05/22 5:50 PM

ptg39201256

Chapter 4: Version Control and Release Management with Git 105

4

Pros

■ This model matches the workflow of the vast majority of open-source software.

■ All code contributors follow the same workflow:

■ Whether a contributor is a complete stranger

■ Whether a contributor has read-only or read-write access to the shared, source-of-
truth repository

■ This workflow is safer because team members with write access by default push
changes to their own forks before PR (instead of to a shared repository).

■ This model can work for untrusted contributors who do not have write access to the
shared repository.

Cons

■ This model requires a higher competence of Git, beyond working in a solo repository.

■ It requires a contributor to be aware of the concept of forking.

Sample Setup
Let’s look at a sample setup, followed immediately by the actual Fork and Pull Workflow.

Step 1. Assume that you have configured your github.com user profile with an SSH
key.

■ This allows you to execute remote Git operations such as clone and push
using SSH-key authentication.

■ Otherwise, Git defaults to using password authentication, which requires
you to frequently type in a username and password.

Step 2. Assume that bluecodemonks is a GitHub organization that has a code reposi-
tory that you would like to contribute to.

■ Assume also that the organization already exists, regardless of whether or
not you are a member.

■ See https://github.com/bluecodemonks.

Step 3. Assume that you would like to contribute to the go-hello-world repository.

■ The community has agreed to use this repository as the shared, source of
truth for the go-hello-world project.

■ See https://github.com/bluecodemonks/go-hello-world.

Step 4. Assume that you have read-only access to this project, which has been enabled
publicly readable by the project maintainers so that anyone on the Internet may
view the source code. Figure 4-14 shows the bluecodemonks organization’s
project called go-hello-world.

■ This organization might not know you, but you are still able to contribute!

BOOK.indb 105 19/05/22 5:50 PM

http://github.com
https://github.com/bluecodemonks
https://github.com/bluecodemonks/go-hello-world

ptg39201256

106 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Figure 4-14 Fork and Pull: Origin Repo

Sample Fork and Pull Workflow
Step 1. From the shared, source-of-truth repo, fork the project repository to your per-

sonal GitHub organization (shown in Figure 4-15).

■ The shared repository is located at https://github.com/bluecodemonks/
go-hello-world.

■ After clicking the Fork button, you might be prompted to specify the target
location for the fork. If this is the case, choose your personal GitHub organi-
zation: https://github.com/<your-gitub-id>.

■ This places the fork at https://github.com/<your-github-id>/go-hello-world.

Figure 4-15 Fork and Pull: GitHub Origin Repository

BOOK.indb 106 19/05/22 5:50 PM

https://github.com/bluecodemonks/go-hello-world
https://github.com/bluecodemonks/go-hello-world
https://github.com/<your-gitub-id>
https://github.com/<your-github-id>/go-hello-world

ptg39201256

Chapter 4: Version Control and Release Management with Git 107

4

Step 2. Go to your forked repository in your personal GitHub organization:

■ It should be found at https://github.com/<your-github-id>/go-hello-world.

■ For the purposes of illustrating the rest of this example, as shown in
Figure 4-16, the repo has been forked to https://github.com/dcwangmit01/
go-hello-world.

Figure 4-16 Fork and Pull: GitHub Forked Personal Repo

Step 3. Your fork is now tracking the shared, source-of-truth team repo.

■ A fork is essentially a clone of the original GitHub repo but is stored in a
different GitHub organization than the original rather than your local disk.
GitHub tracks the parent of the fork, to set defaults such as default targets
for pull request initiation. Notice the difference between the original and the
clone (fork) in the logical representation shown in Figure 4-17.

BOOK.indb 107 19/05/22 5:50 PM

https://github.com/<your-github-id>/go-hello-world
https://github.com/dcwangmit01/go-hello-world
https://github.com/dcwangmit01/go-hello-world

ptg39201256

108 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Figure 4-17 Fork and Pull: Forked Personal Repo

Step 4. Clone the project repository to your local computer:

$ mkdir ~/Dev

$ cd ~/Dev

$ git clone git@github.com:dcwangmit01/go-hello-world.git

Cloning into 'go-hello-world'...

[snipped]

Step 5. You now have a local copy of the project repository on your filesystem. The
local copy is shown in Figure 4-18.

Figure 4-18 Fork and Pull: Locally Cloned from Fork of Origin Repo

Step 6. Look around the newly cloned repository:

$ cd ~/Dev/go-hello-world

$ tree

.

├── LICENSE

├── README.md

├── go.mod

└── main.go

0 directories, 4 files

BOOK.indb 108 19/05/22 5:51 PM

mailto:git@github.com:dcwangmit01/go-hello-world.git

ptg39201256

Chapter 4: Version Control and Release Management with Git 109

4

Step 7. Notice that a Git remote repository configuration has already been set up
because you cloned from a remote repository.

■ This repository is named origin (by default).

■ It refers to the original URI from which this repo was cloned, which is
the personal repository fork, instead of the shared, source-of-truth
bluecodemonks.

$ git remote -v

origin git@github.com:dcwangmit01/go-hello-world.git
(fetch)

origin git@github.com:dcwangmit01/go-hello-world.git
(push)

Step 8. Add an additional Git remote repository configuration for the original shared,
source-of-truth repository.

■ Explicitly name the remote repository upstream, as in the original repo that
has been forked.

$ git remote add upstream git@github.com:bluecodemonks/
go-hello-world.git

$ git remote -v

origin git@github.com:dcwangmit01/go-hello-world.git
(fetch)

origin git@github.com:dcwangmit01/go-hello-world.git
(push)

upstream git@github.com:bluecodemonks/go-hello-world.git
(fetch)

upstream git@github.com:bluecodemonks/go-hello-world.git
(push)

■ Note that you may name these Git remotes however you choose. An alter-
nate configuration may be to name the original shared, source-of-truth
forked repository origin and then name any other remote to be the name of
the GitHub organization. This helps if you need to access the personal forks
of people you are collaborating with. Your configuration might look like
this:

$ git remote -v

origin git@github.com:bluecodemonks/go-hello-world.git
(fetch)

origin git@github.com:bluecodemonks/go-hello-world.git
(push)

jack git@github.com:jack/go-hello-world.git (fetch)

jack git@github.com:jack/go-hello-world.git (push)

jill git@github.com:jill/go-hello-world.git (fetch)

BOOK.indb 109 19/05/22 5:51 PM

mailto:origingit@github.com:dcwangmit01/go-hello-world.git
mailto:origingit@github.com:dcwangmit01/go-hello-world.git
mailto:git@github.com:bluecodemonks/go-hello-world.git
mailto:git@github.com:bluecodemonks/go-hello-world.git
mailto:origingit@github.com:dcwangmit01/go-hello-world.git
mailto:origingit@github.com:dcwangmit01/go-hello-world.git
mailto:upstreamgit@github.com:bluecodemonks/go-hello-world.git
mailto:upstreamgit@github.com:bluecodemonks/go-hello-world.git
mailto:origingit@github.com:bluecodemonks/go-hello-world.git
mailto:origingit@github.com:bluecodemonks/go-hello-world.git
mailto:jackgit@github.com:jack/go-hello-world.git
mailto:jackgit@github.com:jack/go-hello-world.git
mailto:jillgit@github.com:jill/go-hello-world.git

ptg39201256

110 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

jill git@github.com:jill/go-hello-world.git (push)

you git@github.com:you/go-hello-world.git (fetch)

you git@github.com:you/go-hello-world.git (push)

■ The rest of this example assumes the more common naming convention that
the original, shared source-of-truth repository is named upstream.

Step 9. Look at what branch you are currently on and what branches are available.

■ You are on the main branch, denoted by the asterisk (*) character.

■ Your local main branch is at the same commit as the remote origin/main
branch. It is set to track the origin/main remote upstream by default. Thus,
if you execute commands such as git push without fully qualifying where
to push, it assumes the target is the default origin/main remote upstream. To
push to a specific Git remote and specific branch on that remote, you may
fully qualify the target git push <remote>/<branch>. Note the logical rep-
resentation in Figure 4-19.

$ git branch -avv

* main ad0bbc5 [origin/main] Added install and run
instructions

remotes/origin/HEAD -> origin/main

remotes/origin/main ad0bbc5 Added install and run
instructions

remotes/origin/update-readme bb63877 Update README.md
with uninstall instructions

Figure 4-19 Fork and Pull: Main Branch Tracking

BOOK.indb 110 19/05/22 5:51 PM

mailto:jillgit@github.com:jill/go-hello-world.git
mailto:yougit@github.com:you/go-hello-world.git
mailto:yougit@github.com:you/go-hello-world.git

ptg39201256

Chapter 4: Version Control and Release Management with Git 111

4

Step 10. Now it’s time to make a contribution. First, create a local branch to store your
local changes. Because you are currently on the main branch, the new branch is
created from main. The steps are illustrated in Example 4-5 and logically repre-
sented in Figure 4-20.

Example 4-5 Fork and Pull: Creating a Branch

Check what branch we are on

$ git branch

* main

Create a new feature-branch from "main" and switch to it

$ git checkout -b update-readme-2

Switched to a new branch 'update-readme-2'

View your branch status

$ git branch -avv

main ad0bbc5 [origin/main] Added install and run instructions

* update-readme-2 ad0bbc5 Added install and run instructions

remotes/origin/HEAD -> origin/main

remotes/origin/main ad0bbc5 Added install and run instructions

remotes/origin/update-readme bb63877 Update README.md with uninstall instructions

Figure 4-20 Fork and Pull: Creating a Branch

Step 11. Now make some edits to the README.md file. You’re going to enhance the
README.md with details:

$ vi README.md

This is an example repo.

BOOK.indb 111 19/05/22 5:51 PM

ptg39201256

112 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Step 12. Assess your changes before you stage them.

The step represented in Example 4-6 is not required but is extremely good prac-
tice to evaluate your changes before you stage them.

Example 4-6 Fork and Pull: Reviewing Current Changes

$ git status

On branch update-readme-2

Changes not staged for commit:

(use "git add <file>..." to update what will be committed)

(use "git restore <file>..." to discard changes in working directory)

modified: README.md

no changes added to commit (use "git add" and/or "git commit -a")

$ git diff

diff --git a/README.md b/README.md

index f272b4d..567f23b 100644

--- a/README.md

+++ b/README.md

@@ -1,5 +1,7 @@

 # go-hello-world

+This is an example repo.

+

 Install

 ```

Step 13. Stage your changes:

$ git add README.md

Step 14. Assess your staged changes to double-check your edits.

This step, illustrated in Example 4-7, is not required but is extremely good prac-
tice to evaluate your changes before you commit them.

$ git diff --cached

Example 4-7 Fork and Pull: Reviewing Staged Changes

diff --git a/README.md b/README.md

index f272b4d..567f23b 100644

--- a/README.md

+++ b/README.md

@@ -1,5 +1,7 @@

BOOK.indb   112 19/05/22   5:51 PM



ptg39201256

Chapter 4: Version Control and Release Management with Git   113

4

 # go-hello-world

+This is an example repo.

+

 Install

 ```

Step 15. Commit the changes to the local branch:

$ git commit -m "Update README.md with details"

[update-readme-2 de7b443] Update README.md with details

 1 file changed, 2 insertions(+)

Step 16. Push a copy of your local branch update-readme-2 to your personal fork repo
(instead of the shared source-of-truth repo).

■ The personal fork repo is named origin in your Git remotes:

$ git remote -v

origin git@github.com:dcwangmit01/go-hello-world.git
(fetch)

origin git@github.com:dcwangmit01/go-hello-world.git
(push)

upstream git@github.com:bluecodemonks/go-hello-world.git
(fetch)

upstream git@github.com:bluecodemonks/go-hello-world.git
(push)

■ Notice that you are currently on the update-readme-2 local branch and that
the origin Git remote has no such branch:

$ git branch -avv

main ad0bbc5 [origin/main] Added install and run
instructions

* update-readme-2 de7b443 Update README.md with details

remotes/origin/HEAD -> origin/main

remotes/origin/main ad0bbc5 Added install and run
instructions

remotes/origin/update-readme bb63877 Update README.md
with uninstall instructions

■ Thus, you must push the current branch to the origin remote, specifying a
fully qualified branch name in the format <remote> <branch>.

■ The configuration steps are shown in Example 4-8 and illustrated in
Figure 4-21.

BOOK.indb 113 19/05/22 5:51 PM

mailto:origingit@github.com:dcwangmit01/go-hello-world.git
mailto:origingit@github.com:dcwangmit01/go-hello-world.git
mailto:upstreamgit@github.com:bluecodemonks/go-hello-world.git
mailto:upstreamgit@github.com:bluecodemonks/go-hello-world.git

ptg39201256

114 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Example 4-8 Fork and Pull: Pushing a Branch to Forked Repo

$ git push origin update-readme-2

Enumerating objects: 5, done.

Counting objects: 100% (5/5), done.

Delta compression using up to 12 threads

Compressing objects: 100% (3/3), done.

Writing objects: 100% (3/3), 380 bytes | 380.00 KiB/s, done.

Total 3 (delta 1), reused 0 (delta 0), pack-reused 0

remote: Resolving deltas: 100% (1/1), completed with 1 local object.

Remote:

remote: Create a pull request for ‘update-readme-2’ on GitHub by visiting:

remote: https://github.com/dcwangmit01/go-hello-world/pull/new/update-readme-2

remote:

To github.com:dcwangmit01/go-hello-world.git

 * [new branch] update-readme-2 -> update-readme-2

Figure 4-21 Fork and Pull: Listing All Branches

■ Now verify that the remote origin has a new branch named updated-readme:

$ git branch -avv

main ad0bbc5 [origin/main] Added install and run
instructions

* update-readme-2 de7b443 Update README.md with details

remotes/origin/HEAD -> origin/main

remotes/origin/main ad0bbc5 Added install and run
instructions

remotes/origin/update-readme bb63877 Update README.md
with uninstall instructions

remotes/origin/update-readme-2 de7b443 Update README.md
with details

BOOK.indb 114 19/05/22 5:51 PM

https://github.com/dcwangmit01/go-hello-world/pull/new/update-readme-2
http://github.com:dcwangmit01/go-hello-world.git

ptg39201256

Chapter 4: Version Control and Release Management with Git 115

4

Step 17. Now initiate a pull request from your personal fork to the shared, source-of-
truth repo on the GitHub UI by clicking the Compare & Pull Request button.
You may initiate this pull request from either your personal fork or the shared,
source-of-truth repo. In the example, shown here in Figure 4-22, the latter is
chosen.

Figure 4-22 Fork and Pull: GitHub Origin Repo Page

Step 18. You are taken to the Open a Pull Request page.

■ Notice that you are asking to merge the update-readme-2 branch into the
main branch.

■ This is your opportunity to provide a name for the pull request, as well as
add additional comments if necessary.

■ Figure 4-23 shows the Open a Pull Request page and the text box for adding
your comments.

BOOK.indb 115 19/05/22 5:51 PM

ptg39201256

116 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Figure 4-23 Fork and Pull: Opening a Pull Request

Step 19. Scroll down and inspect the proposed code changes. Figure 4-24, which is
a continuation of Figure 4-23, shows the proposed code changes for review
before submitting.

■ If the code changes are not what you expected, you may make additional
commits in your local update-readme branch and then push the additional
commits to the origin/update-readme branch, which then automatically
updates the PR.

Step 20. Click the Create Pull Request button. Figure 4-25 shows the Create pull
request step, and it is immediately followed by Figure 4-26 showing the pull
request complete.

BOOK.indb 116 19/05/22 5:51 PM

ptg39201256

Chapter 4: Version Control and Release Management with Git 117

4

Figure 4-24 Fork and Pull: Reviewing Pull Request Changes Before Submitting

Figure 4-25 Fork and Pull: Submitting Pull Request

BOOK.indb 117 19/05/22 5:51 PM

ptg39201256

118 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Figure 4-26 Fork and Pull: Submit Pull Request Complete

Step 21. Get your PR code reviewed by a friend or colleague.

■ The code reviewer should signal that the pull request is in an acceptable/mer-
geable state by providing an approval signal or comment. See Figure 4-27 for
more details.

■ If the code reviewer requests changes, the reviewer can comment on the
code, and you may fix the identified issues by making additional commits in
your local update-readme branch and then pushing the additional commits
to the origin/update-readme branch, which then automatically updates
the PR.

BOOK.indb 118 19/05/22 5:51 PM

ptg39201256

Chapter 4: Version Control and Release Management with Git 119

4

Figure 4-27 Fork and Pull: Code Review Approval

Step 22. Now that your pull request has been code reviewed and approved, you may
merge your PR by clicking the Merge Pull Request button. Figure 4-28 shows
that the approval has been obtained (for example, 1 approval), and now it is
ready for Merge.

BOOK.indb 119 19/05/22 5:51 PM

ptg39201256

120 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Figure 4-28 Fork and Pull: Approved for Merge

■ Subsequently, confirm the merge, as shown in Figure 4-29.

Step 23. Now the pull request will be fully merged after the Confirm button is clicked.
For the purposes of maintaining this sample repository, do not merge this PR;
instead, leave it in the open state for people to inspect.

BOOK.indb 120 19/05/22 5:51 PM

ptg39201256

Chapter 4: Version Control and Release Management with Git 121

4

Figure 4-29 Fork and Pull: Confirm Merge

Git Branching Strategy
Branching is easy to understand and is a powerful tool when dealing with larger projects
involving multiple developers. However, all powerful tools can be useless if the team does
not agree on a common workflow and a branching strategy. The following sections discuss
the most common branching strategies and how to use them.

What Is a Branching Strategy?
A branching strategy is a team working agreement that enables the management of

■ Developing code: Destabilizes code because development introduces code changes

■ Stabilizing code: Stabilizes code through reducing the rate of code changes

The need for code development for new features versus stabilizing code for release is a con-
stant push and pull. Thus, a team needs a working agreement on managing this process.

BOOK.indb 121 19/05/22 5:51 PM

ptg39201256

122 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

The Most Important Factor When Selecting a Git Branching Strategy
When you’re deciding on a branching strategy, the most important question that influences
the outcome is, Do you trust your automated tests?

If your automated tests are comprehensive enough where a pass result on its own is trusted
evidence that the code is deployable to production, your team is a shining example of mod-
ern software development.

Popular Git Branching Strategies
If you do a web search on Git branching strategies, you’ll find a large collection of docu-
mented strategies. The most popular ones are as follows:

■ GitHub Flow: https://guides.github.com/introduction/flow/

■ Git Flow: https://nvie.com/posts/a-successful-git-branching-model/

■ GitLab Flow: https://docs.gitlab.com/ee/topics/gitlab_flow.html

When to Use GitHub Flow
GitHub Flow is the recommended branch strategy for all software projects that are disci-
plined and adhere to comprehensive automated test coverage. New software projects should
always start with this modern-day approach.

If you answered “yes” to the question “Do you trust your automated tests?” it enables a lot
of good things:

1. You are able to keep a stable main branch because tests can block the PR merge.

2. You are able to release to production several times a day.

3. You can tag versions of your release directly from the main branch.

4. You have no need for release branches to stabilize your product.

5. You have no need for code freezes to stabilize your product.

6. You have no dependencies on manual quality assurance (QA) to stabilize your product.

Here’s a visualization of the GitHub Flow model. Notice that a single, linear main branch
exists with only feature branches and without the existence of release branches. This exam-
ple (shown in Figure 4-30) is the simplest of the Git branching strategies; it keeps a single
main branch stable.

“feature-Y”
branch

“feature-X”
branch

“main” branch Head

Figure 4-30 GitHub Flow Branch Visualization

BOOK.indb 122 19/05/22 5:51 PM

https://guides.github.com/introduction/flow/
https://nvie.com/posts/a-successful-git-branching-model/
https://docs.gitlab.com/ee/topics/gitlab_flow.html

ptg39201256

Chapter 4: Version Control and Release Management with Git 123

4

If you’re not able to trust your automated tests because they are not comprehensive, then
GitHub Flow does not work. Instead, use a different model called Git Flow.

Most of the open-source world uses GitHub Flow.

When to Use Git Flow
Git Flow is the recommended branch strategy for software projects that are not disciplined
with comprehensive automated test coverage. Typically, legacy software development proj-
ects that rely on days, weeks, or months of manual QA testing should follow the Git Flow
branch strategy. Git Flow uses release branches to allow development and quality assurance
teams to stabilize code for a release, while allowing code development to proceed on the
main branch.

Git Flow is not recommended as a first choice for branch strategy, unless your proj-
ect falls into this legacy category. In fact, the original author of Git Flow now rec-
ommends GitHub Flow. You can read the original article at https://nvie.com/
posts/a-successful-git-branching-model/.

If you answered “no” to the question “Do you trust your automated tests?” your project may
have a lot of legacy qualities:

1. You are unable to keep a stable main branch because your automated tests are not
comprehensive enough to block PR merges based on test results.

2. You are unable to release to production several times a day.
3. You cannot tag versions of your release directly from the main branch because main is

not kept stable.

4. You must use release branches to stabilize your product, and you tag your releases off
the release branches.

5. You need code freezes to stabilize your product.

6. You have dependencies on manual QA to stabilize your product.

Figure 4-31 shows a visualization of the Git Flow model.

The Git Flow branching strategy allows teams to stabilize code in release branches that are
code-frozen for bug fixes only. In addition, development may continue to move forward and
allow destabilized code to continue to be merged into the develop branch. The main branch
would only receive merges from stabilized release branches.

When to Use GitLab Flow
GitLab Flow is a Git branching strategy that is centered around a main branch as the base
branch and requires maintaining a separate branch per environment (development, staging,
production). As changes occur in the environment branches, they must be cherry-picked
back into the main branch.

This branching strategy is complicated. We cannot recommend this Git branching strategy,
but it may be good for your use cases. Read more at https://docs.gitlab.com/ee/topics/
gitlab_flow.html.

BOOK.indb 123 19/05/22 5:51 PM

https://nvie.com/posts/a-successful-git-branching-model/
https://nvie.com/posts/a-successful-git-branching-model/
https://docs.gitlab.com/ee/topics/gitlab_flow.html
https://docs.gitlab.com/ee/topics/gitlab_flow.html

ptg39201256

124 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

“m
ai

n”
 b

ra
nc

h

“d
ev

el
op

” b
ra

nc
h

ac
ce

pt
in

g
ch

an
ge

s
fr

om
 fe

at
ur

e
br

an
ch

es
(n

ot
 s

ho
w

n) “r
el

ea
se

 1
.x

” b
ra

nc
h

fo
r

bu
g

fix
es

 o
nl

y
A

no
th

er
“r

el
ea

se
 2

.x
” b

ra
nc

h
fo

r
bu

g
fix

es
 o

nl
y

M
er

ge
M

er
ge

M
er

ge
M

er
ge

Ta
g

1.
0.

0
Ta

g
2.

0.
0

Fi
g

u
re

 4
-3

1
G

it
 F

lo
w

 B
ra

nc
h

V
is

ua
liz

at
io

n

BOOK.indb 124 19/05/22 5:51 PM

ptg39201256

Chapter 4: Version Control and Release Management with Git 125

4

Recommended GitHub Settings
Shared, source-of-truth GitHub repositories should be configured for team access and code
reviews. These settings are available via the repo settings page. In this example, the settings
page, which is found at https://github.com/bluecodemonks/go-hello-world/settings, is acces-
sible only by repository owners.

Configuring the PR Merge Button
Merge button settings are found under Options > Merge Button. To keep a clean Git com-
mit history, we recommend that you rebase merging and thus disable the other options (see
Figure 4-32).

Figure 4-32 GitHub Repo Merge Button Settings

Rebase merging enables a team to keep a clean, linear Git history.

Configuring a Branch Protection Rule to Require Code Reviews
In GitHub, a branch protection rule may be used to disallow contributors to push directly to
a shared branch without certain prerequisites, such as code reviews. Configuration is done at
the page shown in Figure 4-33.

BOOK.indb 125 19/05/22 5:51 PM

https://github.com/bluecodemonks/go-hello-world/settings

ptg39201256

126 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Figure 4-33 GitHub Repo Branch Protection Rules

From the main page shown in the figure, an administrator may add a branch protection rule.
A common practice is to add a branch protection rule for the main branch.

The main shared branch is often a branch that needs protection, affecting important practices
such as

■ Disabling the ability to directly push to a branch without a code review

■ Requiring one or more code review approvals before enabling PR merges

■ Enforcing a linear commit history

The settings are shown in Figure 4-34.

In this chapter we provided you with frequently used commands, techniques, and workflows
for version control. As your projects grow in size and the number of developers and testers,
your version control system also grows in complexity. Depending on your organization,
we highly recommend you take a deeper look at Git through practice and use the Pro Git
book mentioned at the beginning of this chapter.

BOOK.indb 126 19/05/22 5:51 PM

ptg39201256

Chapter 4: Version Control and Release Management with Git 127

4

Figure 4-34 GitHub Repo Branch Protection Rule

Exam Preparation Tasks
As mentioned in the section “How to Use This Book” in the Introduction, you have a couple
of choices for exam preparation: the exercises here, Chapter 17, “Final Preparation,” and the
exam simulation questions on the companion website.

BOOK.indb 127 19/05/22 5:51 PM

ptg39201256

128 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Review All Key Topics
Review the most important topics in this chapter, noted with the Key Topic icon in the outer
margin of the page. Table 4-2 lists a reference of these key topics and the page numbers on
which each is found.

Table 4-2 Key Topics for Chapter 4

Key Topic Element Description Page
Number

Step list Sample branch and pull workflow 90

Section Fork and Pull Workflow 104

List Popular Git branching strategies 122

Section When to Use Git Flow 123

Section Recommended GitHub Settings 125

Complete Tables and Lists from Memory
There are no memory tables or lists in this chapter.

Define Key Terms
Define the following key terms from this chapter and check your answers in the glossary:

version control, version control system

References
URL QR Code

ProGit: Everything You Need to Know
About Git
https://github.com/progit/progit2

github.com

BOOK.indb 128 19/05/22 5:51 PM

https://github.com/progit/progit2
http://github.com

ptg39201256

This page intentionally left blank

ptg39201256

CHAPTER 5

Network APIs

This chapter covers the following topics:

■ What Are APIs?: This section describes what application programming interfaces
(APIs) are and what they are used for.

■ Calling an API: This section covers how to call an API using Cisco platforms or others
by using its Uniform Resource Identifier (URI).

■ Selecting an API Style: This section discusses using either Open API (Swagger) or
JSON (JavaScript Object Notation) when making design decisions and doing so in a
machine-parsable format.

■ Network API Styles: This section covers both REST and YANG styles, addressing web
APIs and network device APIs and the differences in the main abstractions they build on.

This chapter maps to the Developing Applications Using Cisco Core Platforms and APIs
v1.0 (350-901) Exam Blueprint Section 3.0, “Cisco Platforms.”

Software developers use application programming interfaces (APIs) to communicate with
and configure networks. APIs are used to communicate with applications and other soft-
ware. They are also used to communicate with various components of a network through
software. This chapter focuses on what APIs are used for, how to use them, and the differ-
ent API styles including data types and REST/RPCs. You learn how to keep the consumer in
mind when you’re designing an API so that developers who are not familiar with your prod-
uct can easily understand your API. In addition, you see the importance of consuming and
visualizing RESTful web services.

“Do I Know This Already?” Quiz
The “Do I Know This Already?” quiz allows you to assess whether you should read this
entire chapter thoroughly or jump to the “Exam Preparation Tasks” section. If you are in
doubt about your answers to these questions or your own assessment of your knowledge
of the topics, read the entire chapter. Table 5-1 lists the major headings in this chapter and
their corresponding “Do I Know This Already?” quiz questions. You can find the answers in
Appendix A, “Answers to the ‘Do I Know This Already?’ Quizzes.”

Table 5-1 “Do I Know This Already?” Section-to-Question Mapping

Foundation Topics Section Questions

What Are APIs? 1, 2
Calling an API 3, 4
Network API Styles 5–7
Selecting an API Style 8–10

M05_Davis_C05_p130-p161.indd 130 20/05/22 9:37 PM

ptg39201256

1. When you issue an API call using the PATCH method, what does the request method
supported by Hypertext Transfer Protocol (HTTP) do to the current resource?
a. PATCH modifies the current resource.
b. PATCH retrieves the resource details.
c. PATCH cancels the current resource.
d. PATCH removes all the resources.

2. Which of the following statements is correct regarding the HTTP PUT method?
a. The HTTP PUT method is safe and does not impact resources.
b. The HTTP PUT method is idempotent; it is not safe and it impacts resources.
c. The HTTP PUT method is nonidempotent and it impacts resources per changes.
d. PUT removes all the resources and does not replace the data.

3. The Content-Type header attribute specifies the format of data in the request body
so that the receiver can parse it into the appropriate format. When you’re specifying
the content types of the request body and output, what does using the Content-Type
application/x-www-form-urlencoded do?
a. It indicates that the request body is encoded in key-value tuples.
b. It indicates that the request body format is multipart/form-data.
c. It sets the output type to XML.
d. It indicates that the request body format is XML.

4. What is the Swagger UI?
a. The Swagger UI can be used to generate API documentation that can be used

only via Python or Ansible.
b. The Swagger UI can be used to generate isolated API documentation that lets

your users try out the API calls directly in the browser.
c. The Swagger UI can be used to generate interactive API documentation that lets

your users try out the API calls directly in the browser.
d. The Swagger UI can be used to generate API code that lets your users try out the

API calls directly in Postman.
5. What are REST and RESTful? (Choose two.)

a. REST represents Representational State Transfer.
b. REST is an HTTP-based protocol that provides a programmatic interface for

accessing data defined in YANG.
c. RESTful refers to web services written by applying REST architectural concepts;

they are called RESTful services.
d. RESTful refers to web services that perform an RPC by sending an HTTP request

to a server that implements XML-RPC and receives the HTTP response.
6. What are the ACID properties?

a. Atomicity, consistency, isolation, and durability
b. Atomicity, consistency, isometric, and duration
c. Atomicity, consistency, isolation, and duration
d. Atomicity, composite, isolation, and durability

BOOK.indb 131 19/05/22 5:51 PM

ptg39201256

132 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

7. Which statement is most accurate when describing SOAP web services?
a. SOAP is defined as a JSON- and XML-based protocol.
b. SOAP is defined as an XML-based protocol.
c. SOAP has no error handling method.
d. SOAP is defined as an XML-based protocol and is stateless only.

8. Which statement describes NETCONF/YANG?
a. NETCONF/YANG provides a standardized way to programmatically update and

modify the configuration of a network device.
b. NETCONF/YANG provides a nonstandardized way to programmatically update

and modify the configuration of a network device.
c. NETCONF/YANG provides a standardized way to programmatically update and

modify only the startup configuration of a network device.
d. NETCONF/YANG provides an irreplaceable way to programmatically update and

modify the configuration of a network device.
9. What are some architectural styles for creating a Web API? (Choose all that apply.)

a. HTTP for client/server communication
b. XML/JSON as a formatting language
c. Simple URI as the address for the services
d. Stateless communication

10. Which statement describes the advantages of gRPC? (Choose all that apply.)
a. It provides low-latency, highly scalable, distributed systems.
b. gRPC is a framework for implementing RPC APIs via HTTP/2.
c. A newly designed protocol needs to be accurate, efficient, and language

independent.
d. Layered design enables extension; for example, authentication, load balancing,

logging, and monitoring.

Foundation Topics

What Are APIs?
Most of today’s automation workflows and integration use application programming inter-
faces for deployments, validation, and pipelines. All applications expose some sort of API
that governs how an application can be accessed by other applications. An API provides a
set of routines, protocols, tools, and documentation that can be leveraged for programmatic
interaction. The API represents a way in which elements or applications can be programmati-
cally controlled and described. It can also allow external applications to gain access to capa-
bilities and functions within another application.

APIs have the following primary components:

■ Methods

■ Objects

■ Formats

BOOK.indb 132 19/05/22 5:51 PM

ptg39201256

Chapter 5: Network APIs 133

5

Methods
The major or most commonly used Hypertext Transfer Protocol verbs (or methods, as they
are correctly termed) are HTTP methods that indicate the intent of the API call, although
they also can be nouns. A RESTful architecture API can describe the operations available,
such as GET, POST, PUT, PATCH, and DELETE. These operations are described in more
detail here:

■ The GET request enables you to retrieve information only. The GET request does
not modify or update any information. Because the GET request does not update
or change the state of the devices, it is often referred to as a safe method. GET APIs
typically are idempotent. An idempotent operation is one in which a request can be
retransmitted or retried with no additional side effects; this means that making mul-
tiple identical requests must produce the same result every time until another API
(POST or PUT) has changed the state of the device on the server. For example, you
need an application to retrieve all the users who are listed as Admin on a device or
devices. The GET request would return the same data repeatedly until only a new user
or users remain.

■ A POST request enables you or your application to create some added information or
update current information. This would not be on your devices or in your application
or if you are wishing to update this information with newer or correct information. A
POST request is neither safe nor idempotent. This means that if you create a new user
called Bob on your application and send this as a POST request, the new user Bob
would be created. If you run the same code several times after this, you would have
five users all called Bob. Always using POST to create operations is considered best
practice.

■ The PUT request enables you to update a piece of information that is already present
on your device or application. The PUT method is idempotent. If you retry a request
several times, that should be comparable to sending a single request modification.
After you create Bob as a new user, for example, you want to update his address.
Sending a PUT with these details would add his address to his information. If you send
this request again, the PUT replaces Bob’s address in its entirety and overwrites the
current resource.

■ The PATCH request can be used when you require partial resources or need to modify
an existing resource. The PATCH request is neither safe nor idempotent. The main
difference between the PUT and PATCH requests is in the way the server processes
the enclosed entity that will modify the resource, identified by the Request-URI. For
example, Bob bought a new phone, and you need to update just his phone number
records with his new number. In this case, you would use PATCH to request updates
on part of the resource.

■ A DELETE request, to no one’s surprise, is not a safe request, but it is idempotent.
Of all the HTTP requests, the DELETE method is the most self-explanatory. After
you issue a DELETE request, the resource you wish to delete is removed. Further
DELETE requests to the same resources would not yield any different results because
the resource is no longer present. However, it is worth noting that trying to delete a

BOOK.indb 133 19/05/22 5:51 PM

ptg39201256

134 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

resource that is not present would yield a Not Found message because there is noth-
ing to delete. Sadly, you learn that Bob has decided to leave the company and you are
asked to remove all of Bob’s information and details, so you complete the task and go
to lunch. Another member of the team picks up the request while you are at lunch and
runs an API call to delete Bob’s details. That team member is then met with a 404 Not
Found error message.

Table 5-2 summarizes the API methods and whether they are idempotent and considered safe
or not safe.

Table 5-2 A Summary of API Methods, Idempotency, and Safety

HTTP Idempotent Safe

GET Yes Yes
POST No No
PUT Yes No
PATCH No No
DELETE Yes No

Objects
An object is a resource that a user is trying to access. In the RESTful architecture, this
object is often referred to as a noun, and it is typically a Uniform Resource Identifier (URI).

A URI can be described in the same way that an IP address is described. It is unique—just like
your home address or your office address, with a number or name; street; city; and depend-
ing on the country, a state, county, or province. The URI is a digital version of your address or
location. Details can be sent to this address, and the sender knows this is a valid address. Using
the URI is like going to a coffee shop and requesting a coffee, but in the URI’s case, this is a
resource you are asking for and not a steaming hot beverage—that would be a GET request.

Formats
A format is how data is represented, such as JavaScript Object Notation (JSON) or Exten-
sible Markup Language (XML).

Whether you are sending or receiving data, APIs use machine-readable formats such as JSON
or XML. These formats allow APIs to be represented as semistructured data. The main rea-
son for their use is that semistructured data is significantly easier to analyze than unstruc-
tured data. This is the reason that both are known as “self-describing” data structures also.
Unlike JSON, which does not have a data binding contract, XML uses data binding and data
serialization. This distinction can be key because most APIs use structured data, not struc-
tured documents. The biggest majority of APIs today use JSON, but some do use XML.

Figure 5-1 shows the workflow for an API request to a server and the API response.

Client API Request Server/DB API Response

Figure 5-1 Workflow for an API

BOOK.indb 134 19/05/22 5:51 PM

ptg39201256

Chapter 5: Network APIs 135

5

APIs are also used to communicate with various components of a network through software.
In software-defined networking (SDN), northbound and southbound APIs are used to
describe how interfaces operate between the different planes—the data plane, control plane,
and application plane.

The northbound interface can provide such information as network topology and configura-
tion retrieval and provisioning services, and it facilitates the integration with the operations
support system (OSS) for fault management and flow-through provisioning. The southbound
interface defines the way the SDN controller should interact with the data plane (aka for-
warding plane) to modify the network so that it can better adapt to changing requirements.
For example, here are some examples of how the Meraki API can be leveraged to use both
northbound and southbound APIs:

■ Adding new organizations, admins, networks, devices, VLANs, and SSIDs

■ Provisioning new sites with an automation script

■ Automatically onboarding and offboarding new employees’ teleworker devices

■ Building a dashboard for a store manager, field techs, or unique use cases

APIs vs. No API
All the Cisco controller-based platforms, such as Cisco SD-WAN vManage (software-defined
wide-area network), Cisco DNA Center, and Cisco Application Centric Infrastructure (ACI),
have a robust collection of APIs. This allows developer and engineering teams to build code
and integrate Cisco APIs into the workflow, CI/CD pipeline testing, and monitoring.

However, APIs are not just limited to Cisco controllers and devices. Cisco has APIs for gath-
ering data, such as the CCW Catalog API and Cisco PSIRT openVuln API. You can access
them at https://apiconsole.cisco.com/. They allow Cisco partners, customers, and internal
developers who need to access APIs to get Cisco data and services.

APIs can certainly be helpful for developers when they are maintained and supported, but
not every website or service has the ability to do so. Some websites and services do not pro-
vide an API, or some have had an API and have chosen to take down their API services from
their websites. Providers such as Twitter, Facebook, and Google are known to have power-
fully built and well-documented APIs as they see the value for developers, and this way, they
can provide an interface and keep their services secure at the same time. Whereas some pro-
viders get this right, numerous service providers have exposed an API to their services, and
this has led to a data breach and their company details being leaked, along with their custom-
ers’ information too (not good!). But even the big players of the tech world get this wrong too
sometimes; some of the bigger companies have either significantly scaled down their APIs’
functionality or changed their API terms of service. Some companies have even shut down
their APIs altogether when there is serious risk of attack or data leaks, or they are not making
enough profit. But what if the service you want to consume does not provide an API?

Web Scraping
One of the most common gripes about APIs is that they are subject to change (as mentioned
previously for company policy, security, or an update). Such changes can leave developers
frustrated and with nonworking code or integrations. Another case is that there is no API,
the company has no desire to build one, or it just does not have the resources to do so.

BOOK.indb 135 19/05/22 5:51 PM

https://apiconsole.cisco.com/

ptg39201256

136 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

When no API is present or you wish to grab data in a reliable way, web scraping provides a
reliable alternative to assembling data. Here are some of the pros of web scraping:

■ Rate limiting: A well-designed API has rate limiting; web scraping, in contrast,
does not. You can access the data swiftly, and as long as you are not generating vast
amounts of traffic to the website, setting off alarm bells to the provider’s DDOS ser-
vice, you will be fine.

■ Updates and changes: APIs are subject to changes over time. As much as a provider
does not wish to remove an API resource, it does happen. This is one reason that using
an undocumented API resource is not recommended because this capability can be
taken away at any time and without any notice! Web scraping can be done at any given
point and on any website or URL.

■ Data format and reliability: A well-designed and well-built API provides customers
access to the services they need and in a structured data format. However, some APIs
lack investment and might not provide the best format, so you might find yourself
spending more time cleaning up the data than you wished or receiving old data back
because the API has not been updated. In both cases, web scraping can be custom
driven, giving you good data back.

Figure 5-2 shows web scraping, web harvesting, or web data extraction, which is data scrap-
ing used for extracting data from websites.

Client Web Scraping Structured Data

Figure 5-2 Web Scraping Extraction Is Data Scraping Used for Extracting Data from
Websites

Web scraping does require some knowledge of automation and coding. Most web scraping
is done via software tools, but when you have the data, you need to know what do with it.
Web scraping is typically “low code.” A good example might be Selenium IDE, which is pop-
ular because testing can be written in Python, Java, Ruby, and other programming languages.
The alternative to this is “no code.” This method can be highly effective in creating APIs for
any website that might not have one; in most cases, it is as simple as clicking the data you
want to extract. The general flow of web scraping is shown in Figure 5-2. The web scraping
is provided with a URL. The scraper loads the complete HTML code from the web page, and
the scraper extracts all or some of the data (typically defined by the user). The data can be
output in a format to a file such as an Excel or CSV file.

Jeff Bezos’s API Mandate: How the AWS API-Driven Cloud Was Born
Cloud computing and Amazon Web Services (AWS) changed the way that a lot of compa-
nies built their infrastructure. The huge surge in moving to the cloud prompted a change in
businesses and the way they updated their delivery model and their engineering team’s struc-
ture, and with this, the way they deployed, engineered, and designed their solutions.

BOOK.indb 136 19/05/22 5:51 PM

ptg39201256

Chapter 5: Network APIs 137

5

In a cloud-first world, APIs were one of the key attributes at the forefront. In the early
2000s, Jeff Bezos’s API mandate was born. In his API mandate, he outlined the principles
and foundation as to how AWS could be more agile. He did not say what technologies his
team must use but defined only the outcomes of the systems. Here is the mandate he wrote
in the early 2000s.

All teams will henceforth expose their data and functionality through service interfaces.

By providing an external API so that customers can have access to data and connect their
systems, less guiding is needed for the customer and less handholding. This is one of the
foundations for the huge success of Amazon and AWS; it helped build greater collaboration
and was a big money maker for the company.

Teams must communicate with each other through these interfaces.

There will be no other form of inter-process communication allowed: no direct linking, no
direct reads of another team’s data store, no shared-memory model, no backdoors what-
soever. The only communication allowed is via service interface calls over the network.

Imagine that the support and operations team would like customer data from the network
or the infrastructure because a customer has reported slow data loading and service page
timeouts. The customer wants to know the state of the load balancer—for example, how
many devices are in the VIP pool and which servers and VMs are taking the loads. For a lot
of companies, these teams do not have access to such devices (not even read-only access!),
which means they must find the owners or team for the devices and create a support request
ticket for this information. Creating a self-serve format can resolve many of these challenges.

Providing an API is only part of the puzzle; ensuring a standard and keeping to it can be
even harder. The expression “throwing it over the fence” is commonly heard when building
infrastructure; this means that after the team has built it, their work is done. Often, in this
method, getting support or help becomes almost impossible, so you or your customer is
left to figure out the details on your own. When you’re designing APIs, the format and the
schema become your own company’s mandate. Without this, how would you know whether
what you are designing and building works and delivers the correct level of details or when
an error is raised? If your company doesn’t form a standard methodology, the process can
get very complex and fast. When all teams adhere to the same process and take ownership
of documenting, this produces value for all the company.

It doesn’t matter what technology you use.

Technology moves fast. The way the engineering team did things 10 years go might not be
compatible with today’s technology. APIs should change, grow, and be adaptable, just as your
business does. As much as you can learn from other teams within an organization and as
much as you often try to use the same tools to get great consistency, this is often not possi-
ble for several reasons, such as team skill, different platform requirements, and even budgets.

All service interfaces, without exception, must be designed from the ground up to be
externalize-able. That is to say, the team must plan and design to be able to expose the
interface to developers in the outside world. No exceptions.

By reading this far, you likely have gathered that Bezos’s mandate is that of an “API First
World” or that APIs are “first-class citizens.” In an API First World, this assumes the design

BOOK.indb 137 19/05/22 5:51 PM

ptg39201256

138 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

The lessons learned from the mandate are that changes do not always come from the top, but
when they do, they send a very powerful message to an organization that this is the direction
to take. Such lessons greatly help clarify situations and provide clear guardrails for engineer-
ing teams and developers alike. Jeff Bezos was clearly passionate about APIs and saw their
value for Amazon. Building an API-first culture allowed a singular stance and position in
which his API mandate could serve to structure Amazon’s API organizations effectively.

Calling an API
Now that we have established the principles behind APIs and where they are used in today’s
systems and organizations, we can investigate how to call an API and the steps required. In
this example, you can assume that the API call is being made by a user to an external API.

■ User: The person who makes a request. The user makes a call to the API via its URI.

■ Client: The computer that sends the request to the server, giving a request verb, head-
ers, and optionally, a request body in a Python script.

■ Server: The computer that replies to the request. The API gives the data to the initial
requesting program.

To construct an API request, you need to know the following information for the API you
are calling. Good API documentation provides all these steps and details to successfully use
and consume the API resources. One of the key elements of API documentation is the meth-
ods and which methods can be used with the API’s resources.

The URL is the endpoint you are intending to call; the endpoint is the API point of entry in
this most pivotal piece of an API.

This example uses a GET request to send an API call to the Cisco DNA Center. The client’s
health is part of the client’s API. It returns the information by client type: wired and wireless.
The API call being made is ‘/dna/intent/api/v1/network-health’. Response details are parsed
to provide the information.

NETWORK_HEALTH = '/dna/intent/api/v1/network-health'

response = requests.get(BASE_URL + NETWORK_HEALTH,

 headers=headers, verify=False)

network_health = response.json()['response']

print('Good: {0}, Bad: {1}, Health score: {2}'.format(

 network_health[0]['goodCount'],

and development of an API come before the implementation itself, not as an afterthought.
This method is built with developers in mind because the thinking is “How will developers
use this API?” Later, as feedback is provided from the consumers of the API, the functional-
ity of the API can be expanded and grown.

The mandate ended with this message:

“Anyone who doesn’t do this will be fired. Thank you; have a nice day!”

BOOK.indb 138 19/05/22 5:51 PM

ptg39201256

Chapter 5: Network APIs 139

5

 network_health[0]['badCount'], network_health[0]
['healthScore']

))

If authentication is used when you’re making the request, you need to know the type to use;
basic and OAuth are two common types of authentications. This example uses basic authen-
tication. The format of the credentials could be ‘USERNAME:PASSWORD’, and it needs to
be Base64-encoded.

If the API requires any HTTP headers to be sent, the headers represent the metadata associ-
ated with the API request and response. As an example, here are some of the most common
API headers:

■ ACCEPT: Application/XML or Application/JSON indicates to the server what media
type(s) this client is willing to accept.

■ Authorization: “Basic”, plus username and password (per RFC 2617), identifies the
authorized user making this request.

■ Content-Type: Application/XML or Application/JSON describes the representation
and syntax of the request message body.

In this example, basic authentication is used along with a request to retrieve a token from the
API ‘/dna/system/api/v1/auth/token’. The device URL, API call, username, and password are
passed in through a YAML file (not shown). The Content-Type, application/json, indicates
that the request body format is JSON:

BASE_NoteURL = 'https://<IP Address>'

AUTH_URL = '/dna/system/api/v1/auth/token'

USERNAME = '<USERNAME>'

PASSWORD = '<PASSWORD>'

response = requests.post(BASE_URL + AUTH_URL,
auth=HTTPBasicAuth(USERNAME, PASSWORD), verify=False) token =
response.json()['Token']

headers = {'X-Auth-Token': token, 'Content-Type': 'application/
json'}

When you use the POST, PUT, or PATCH method, you might be required to send request
body parameters, which describe the action that will take place. This data might be in the
format of JSON or XML and contain data that is needed to complete the request being sent.

The following example shows a JSON-formatted “object” that is an unordered set of name/
value pairs. When you’re sending JSON data, it is important to ensure the format is correct.
Often a plug-in or software tool can be used to serialize a resource into JSON API-compliant
format.

{

 "templateId": "3f7c91b6-4a17-4544-af59-390e51f1de45",

 "targetInfo": [

BOOK.indb 139 19/05/22 5:51 PM

https://<IP Address>'

ptg39201256

140 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

 {

 "id": "10.10.21.80",

 "type": "MANAGED_DEVICE_IP",

"params": {"description": "Updated today DNAC -mooncat",
"interface":"TenGigabitEthernet1/0/25"}

 }

]

}

Several public APIs (public APIs are also known as open APIs) are available. The HTTP/JSON
API is an application programming interface made publicly available to developers. These APIs
are published on the Internet and often shared for free or with a limited free tier use. Lists and
GitHub repositories provide many links to public APIs; for example, see https://github.com/
public-apis/public-apis. Here, developers can browse and build recommendation systems, clas-
sifiers, and many other machine-learning algorithms and tools on top of these APIs.

The IMDb API has a free tier service that enables developers to query the database of mov-
ies and TV shows. The free tier allows 100 API calls per day (24 hours). Once you reach the
limit, you cannot make further calls unless you upgrade or wait until the next day. The IMDb
API provides access to more than three million data items, including cast and crew informa-
tion, plot summaries, release dates, and ratings. The IMDb provides all IMDb API documen-
tation and online testing; API documentation is also presented in Swagger documentation.

NOTE To use the IMDb API documentation, you need an API key for testing APIs.

Figure 5-3 shows the online documentation and online testing for the IMDb API.

Figure 5-3 IMDb Online Documentation Page for API Testing and Reference

BOOK.indb 140 19/05/22 5:51 PM

https://github.com/public-apis/public-apis
https://github.com/public-apis/public-apis

ptg39201256

Chapter 5: Network APIs 141

5

IMDb also provides Swagger-based testing and documentation of its APIs, as shown in
Figure 5-4.

Figure 5-4 IMDb’s Swagger-Based Testing and API Documentation

To start using the API, you must register and create an account to get an API key; go to
https://imdb-api.com/Identity/Account/Register (see Figure 5-5). The API key is attached to
each request sent as a string and is stored with the user profile.

Figure 5-5 IMDb’s API Registration Page

After the user account is created, you can send API calls through the documentation pages
or code formats such as cURL (client URL), Python, or Postman. The IMDb API uses unique
identifiers for each of the entities referenced in IMDb data. For example, “Name IDs” identi-
fies name entities (people), and “Title IDs” identifies title entities (movies, series, episodes,

BOOK.indb 141 19/05/22 5:51 PM

https://imdb-api.com/Identity/Account/Register

ptg39201256

142 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

and video games). IMDb’s identifiers always take the form of two letters, which signify
the type of entity being identified, followed by a sequence of at least seven numbers that
uniquely identify a specific entity of that type.

In Example 5-1, “tt0075148” is the unique identifier for the movie Rocky, where tt signifies
that it’s a title entity and 0075148 uniquely indicates Rocky.

Example 5-1 Performing an API Call Based on an IMDb Unique Identifier for a Movie Title

{

 "searchType": "Title",

 "expression": "tt0075148",

 "results": [

 {

 "id": "tt0075148",

 "resultType": "Title",

 "image": "https://imdb-
 api.com/images/original/MV5BMTY5MDMzODUyOF5BMl5BanBnXkFtZTcwMTQ3NTMyNA@@._V1_
Ratio0.6762_AL_.jpg",

 "title": "Rocky",

 "description": "1976"

 }

],

 "errorMessage": ""

}

Example 5-2 shows an API call based on an actor’s name.

Example 5-2 Performing an API Call Based on an IMDb Unique Identifier for an Actor

actorList: [

{

 id: "nm0000230",

 image: "https://imdb-
 api.com/images/original/MV5BMTQwMTk3NDU2OV5BMl5BanBnXkFtZTcwNTA3MTI0Mw@@._V1_
Ratio0.7273_AL_.jpg",

 name: "Sylvester Stallone",

 asCharacter: "Rocky"

},

Using Python and the IMDb API, you can access resources with the Python Requests
library. To gather all details on the Top 250 movies of all time, use the URL https://imdb-
api.com/en/API/Top250Movies/{API_KEY}, as shown in Example 5-3. IMDb’s APIs data set
is provided in JSON Lines file format. The files are UTF-8 encoded text files, where each line
in the file is a valid JSON string. Each JSON document, one per line, relates to a single entity,
uniquely identified by an IMDb ID (see Example 5-4).

BOOK.indb 142 19/05/22 5:51 PM

https://imdb-api.com/images/original/MV5BMTY5MDMzODUyOF5BMl5BanBnXkFtZTcwMTQ3NTMyNA@@._V1_Ratio0.6762_AL_.jpg"
https://imdb-api.com/images/original/MV5BMTY5MDMzODUyOF5BMl5BanBnXkFtZTcwMTQ3NTMyNA@@._V1_Ratio0.6762_AL_.jpg"
https://imdb-api.com/images/original/MV5BMTY5MDMzODUyOF5BMl5BanBnXkFtZTcwMTQ3NTMyNA@@._V1_Ratio0.6762_AL_.jpg"
https://imdb-api.com/images/original/MV5BMTQwMTk3NDU2OV5BMl5BanBnXkFtZTcwNTA3MTI0Mw@@._V1_Ratio0.7273_AL_.jpg"
https://imdb-api.com/images/original/MV5BMTQwMTk3NDU2OV5BMl5BanBnXkFtZTcwNTA3MTI0Mw@@._V1_Ratio0.7273_AL_.jpg"
https://imdb-api.com/images/original/MV5BMTQwMTk3NDU2OV5BMl5BanBnXkFtZTcwNTA3MTI0Mw@@._V1_Ratio0.7273_AL_.jpg"
https://imdb-api.com/en/API/Top250Movies/{API_KEY}
https://imdb-api.com/en/API/Top250Movies/{API_KEY}

ptg39201256

Chapter 5: Network APIs 143

5

Example 5-3 Python Code Using the IMDb API Resource to Get the Top 250 Movies

import requests

import json

API_KEY = '[add_user_key]'

URL = "imdb-api.com"

url = f"https://{URL}/en/API/Top250Movies/{API_KEY}"

response = requests.request("GET", url)

pretty json = json.loads(response.text)

print (json.dumps(pretty_json, indent=2))

Example 5-4 Python Output in JSON Format Showing APIs for the Top 250 Movies

{

 "items": [

 {

 "id": "tt0111161",

 "rank": "1",

 "title": "The Shawshank Redemption",

 "fullTitle": "The Shawshank Redemption (1994)",

 "year": "1994",

 "image": "https://m.media-amazon.com/images/M/MV5BMDFkYTc0MGEtZmNhMC00ZDIzLW-
FmNTEtODM1ZmRlYWMwMWFmXkEyXkFqcGdeQXVyMTMxODk2OTU@._V1_UX128_CR0,3,128,176_AL_.jpg",

 "crew": "Frank Darabont (dir.), Tim Robbins, Morgan Freeman",

 "imDbRating": "9.2",

 "imDbRatingCount": "2435338"

 },

 {

 "id": "tt0068646",

 "rank": "2",

 "title": "The Godfather",

 "fullTitle": "The Godfather (1972)",

 "year": "1972",

 "image": "https://m.media-amazon.com/images/M/MV5BM2MyNjYxNmUtYTAwNi00MTYx-
LWJmNWYtYzZlODY3ZTk3OTFlXkEyXkFqcGdeQXVyNzkwMjQ5NzM@._V1_UX128_CR0,1,128,176_AL_.
jpg",

 "crew": "Francis Ford Coppola (dir.), Marlon Brando, Al Pacino",

 "imDbRating": "9.1",

 "imDbRatingCount": "1685910"

 },

[output shortened for brevity]

Because this code is not very easy to read, you can use a Python library called Tabulate to
put the information into a grid format (see Example 5-5 and Figure 5-6). Tabulate can be
installed with PIP.

BOOK.indb 143 19/05/22 5:51 PM

http://"imdb-api.com"
https://m.media-amazon.com/images/M/MV5BMDFkYTc0MGEtZmNhMC00ZDIzLW-FmNTEtODM1ZmRlYWMwMWFmXkEyXkFqcGdeQXVyMTMxODk2OTU@._V1_UX128_CR0,3,128,176_AL_.jpg"
https://m.media-amazon.com/images/M/MV5BMDFkYTc0MGEtZmNhMC00ZDIzLW-FmNTEtODM1ZmRlYWMwMWFmXkEyXkFqcGdeQXVyMTMxODk2OTU@._V1_UX128_CR0,3,128,176_AL_.jpg"
https://m.media-amazon.com/images/M/MV5BM2MyNjYxNmUtYTAwNi00MTYx-LWJmNWYtYzZlODY3ZTk3OTFlXkEyXkFqcGdeQXVyNzkwMjQ5NzM@._V1_UX128_CR0,1,128,176_AL_.jpg"
https://m.media-amazon.com/images/M/MV5BM2MyNjYxNmUtYTAwNi00MTYx-LWJmNWYtYzZlODY3ZTk3OTFlXkEyXkFqcGdeQXVyNzkwMjQ5NzM@._V1_UX128_CR0,1,128,176_AL_.jpg"
https://m.media-amazon.com/images/M/MV5BM2MyNjYxNmUtYTAwNi00MTYx-LWJmNWYtYzZlODY3ZTk3OTFlXkEyXkFqcGdeQXVyNzkwMjQ5NzM@._V1_UX128_CR0,1,128,176_AL_.jpg"
https://{URL}/en/API/Top250Movies/{API_KEY}"

ptg39201256

144 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Example 5-5 Python Code Using the IMDb API Resource to Get the Top 250 Movies
Formatting Output in Table Format

import requests

import json

from tabulate import tabulate

API_KEY = '[add user key]'

URL = "imdb-api.com"

url = f"https://{URL}/en/API/Top250Movies/{API_KEY}"

response = requests.request("GET", url)

response = response.json()

headers = ["ID", "Rank", "Full Title", "Year", "Crew", "IMDb Rating", "Certificate"]

table = list()

for item in response['items']:

 info = [item['id'], item['rank'], item['fullTitle'],

 item['year'], item['crew'], item['imDbRating']]

 table.append(info)

print(tabulate(table, headers, tablefmt="fancy_grid"))

Figure 5-6 The Top 250 Movies Formatting Output in Table Format

What Is API Development?
More and more engineering teams are creating and making both external and internal APIs
available for their services. By doing so, their company, its customers, and other developers
can consume resources, update current services, and create net-new resources. All of these
capabilities help support the growth and success of the company. As per Jeff Bezos’s man-
date “It doesn’t matter what technology you use,” not all teams will design and build their
APIs the same way. Numerous technologies can be used for developing APIs, such as HTTP,
REST, SOAP, OpenAPI, gRPC, GraphQL, and Kafka. Each has its own merits. Which one
your team decides on will depend on what style of API you want to develop and your overall
business goals and constraints.

■ Internal APIs: Internal APIs are closed from external access and not accessible by any-
one outside the organization. These APIs often contain information that the company
would wish to keep secure, such as employee details and internal services. An example
of an internal API might be to provide new services on the company infrastructure
to book meeting rooms or access employee directory information. Internal APIs can
be event-driven APIs (or streaming APIs); they are also referred to as asynchronous

BOOK.indb 144 19/05/22 5:51 PM

http://"imdb-api.com"
https://{URL}/en/API/Top250Movies/{API_KEY}

ptg39201256

Chapter 5: Network APIs 145

5

APIs or reactive APIs. These APIs do not wait for interaction; instead, they use a
“push architecture.” Like the push model in model-driven telemetry, event-driven API
clients subscribe and receive event notifications when an event happens or something
changes.

■ External APIs: External APIs are created for external consumption outside the organi-
zation and use by third-party companies, software teams, and developers. An example
is the Spotify API, which is based on the REST architecture. In it, the API endpoints
can return JSON metadata about music artists, albums, and tracks directly from the
Spotify Data Catalogue. Like Internal APIs, external APIs can be asynchronous APIs
or reactive APIs. One example where you might see event-driven APIs is a stock track-
er displaying price changes in stock chat applications. A lot of social media sites use
event-driven APIs to push out the latest content from companies or people you follow
via their platforms.

■ Partner APIs: Partner APIs are a hybrid of internal and external APIs and are designed
for an organization’s partners. This means that the consumer must have some form of
relationship to the organization. Special permissions and security procedures, such as
onboarding registration, are often required to access partner API resources. Cisco’s
API Console is an easy-to-use resource for Cisco partners, customers, and internal
developers (see https://apiconsole.cisco.com/). External and internal users who are not
signed in can only access publicly available documentation, and partners and regis-
tered users can access Cisco data and services.

■ The Cisco API Console, shown in Figure 5-7, allows Cisco partners and customers to
access and consume Cisco data in the cloud.

Figure 5-7 Cisco API Console, Where Cisco Partners and Customers Can Access and
Consume Cisco Data in the Cloud

BOOK.indb 145 19/05/22 5:51 PM

https://apiconsole.cisco.com/

ptg39201256

146 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

API Architectural Styles
When you’re developing an API, various API styles are considered common designs, and
there are different formats for each style, depending on the use case and purpose of the API
architecture, the developer consumption, and the systems or services that will be connecting
to the API. As covered in the previous sections, the reasons for developing and building an
API should be kept at the forefront when designing an API. The main four are

■ Performance: Providing a library of resources and reusable APIs helps speed up devel-
opment and ongoing production of services.

■ Security: Providing a secure connection and content sharing both inside and outside a
company enables the API to securely expose systems.

■ Engagement: Publishing APIs can lead to software companies and other teams writing
software and services to interact and consume API resources.

■ Monetization: If the company’s API is external facing, the API’s design can be to
make money, either directly or indirectly via subscription or pay-per-service.

Some command tools for building and developing an API include the following:

■ Postman: Postman is a collaboration platform for API development. Postman enables API-
first development, automated testing, and developer onboarding. It enables you to write,
edit, or import schema formats including RAML, WADL, OpenAPI, and GraphQL. Then
you can generate collections directly from the schema. A feature of Postman is mock serv-
ers, which allow you to generate mock APIs from collection servers to simulate your API
endpoints. Postman can also help create documentation for individual requests and col-
lections. Cisco DevNet provides a number of Postman collections, which you can access
through the Postman workspace (see https://www.postman.com/ciscodevnet).

The Cisco DevNet Postman Collection, shown in Figure 5-8, provides a prebuilt
collection of Cisco APIs.

Figure 5-8 Cisco DevNet Postman Collection’s Prebuilt Collection of Cisco APIs

BOOK.indb 146 19/05/22 5:51 PM

https://www.postman.com/ciscodevnet

ptg39201256

Chapter 5: Network APIs 147

5

■ Apigee: Apigee, from Google Cloud, is a cross-cloud API testing tool that enables
you to measure and test API performance and supports, and to build APIs using other
editors like Swagger. Apigee has several features that enable you to design APIs to cre-
ate API proxies and visually configure or code API policies as steps in the API flow.
Security APIs can administer security best practices and governance policies. Other
features, such as Publish APIs, Monitor APIs, and Monetize APIs, are also available.

■ Swagger: Swagger is a set of open-source tools for writing REST-based APIs. It enables
you to describe the structure of your APIs so that machines can read them. In Swagger,
you can build and design your APIs according to specification-based standards. You
also can build stable, reusable code for your APIs in almost any language and help
improve the developer experience with interactive API documentation. Swagger can
also perform simple functional tests on your APIs without overhead and provide gover-
nance settings and enforce API style guidelines across your API architecture.

■ Fiddler: The Fiddler Everywhere client can intercept both insecure traffic over HTTP
and secure traffic over HTTPS (administrative privileges are required to capture secure
traffic). The client acts as a man-in-the-middle to capture traffic and can ensure the
correct cookies, headers, and cache directives are conveyed between the client and
the server. The Fiddler’s Composer allows you to compose requests to APIs. You can
organize, group, and test your APIs, which is very helpful when creating and testing
API requests.

Selecting an API Style
Choosing the API style when preparing to design, deploy, and manage an API is critical.
Here are the most common API styles:

■ Representational state transfer (REST) is an architectural style that specifies con-
straints, such as the uniform interface, from the API provider by using commands that
are built into the underlying networking protocol. HTML is the most recognizable
style of REST; other formats include JSON for Linked Documents (JSON-LD) and
Hypertext Application Language (HAL). REST was defined in 2000 by Roy Fielding
in his dissertation, “Architectural Styles and the Design of Network-Based Software
Architectures,” at https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm.

■ Remote-procedure call (RPC) blocks of code are executed on another server. XML-RPC
uses Extensible Markup Language (XML) to encode commands. In XML-RPC, a client
performs an RPC by sending an HTTP request to a server that implements XML-RPC
and receives the HTTP response. JSON- RPC uses the JSON format to transfer data.
RPCs can be seen in standard API technologies such as SOAP, GraphQL, and gRPC.

■ GraphQL is a query language. To make it easy to recall, remember that this is what the
QL in the name means. GraphQL prioritizes client details to provide the exact data it
needs. This helps to simplify data aggregation, which can be retrieved from multiple
sources, allowing the developer to use one API call to limit the number of requests.
This capability is very useful in mobile applications because it can help save battery
life and CPU cycles being consumed by applications. GraphQL uses a type system
to describe data. The type system defines various data types that can be used in a
GraphQL application.

BOOK.indb 147 19/05/22 5:51 PM

https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

ptg39201256

148 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

NOTE GraphQL was originally created by Facebook in 2012 for internal use and was
made external in 2015. Now GraphQL is an open-source tool with more than 13,000 GitHub
stars and 1,000 GitHub forks. More than 14,500 companies are said to use GraphQL in their
tech stacks to power their mobile apps, websites, and APIs; they include Twitter, Shopify,
Medium, and the New York Times.

■ The Simple Object Access Protocol (SOAP) is a lightweight standards-based web
services access protocol. It is XML-based and uses HTTP/HTTPS for accessing web
services. (SMTP can also be used as a transport.) Although SOAP provides basic struc-
tural elements of the message, you can tailor what you put into the headers and body
as needed. SOAP has three conceptual components: protocol concepts, encapsulation
concepts, and network concepts. SOAP has built-in security and reliability functions
because it supports SSL and supports Web Services Security (WS Security). SOAP is
mostly used when exchanging sensitive information within enterprises such as finan-
cial institutions when security is more critical than performance of the application.

A SOAP interface supports the atomicity, consistency, isolation, and durability (ACID)
properties:

■ Atomicity: A transaction must be completed in its entirety or not at all. If a transac-
tion aborts in the middle, all operations up to that point must be completely invali-
dated. This is called the “all-or-none” approach.

■ Consistency: A transaction must transform a database from one consistent state to
another consistent state. In other words, if something fails, the system is rolled back to
the beginning state.

■ Isolation: Transactions must occur independently of each other.

■ Durability: If there is a system failure, the completed transaction will remain, and com-
mitted transactions must be fully recoverable in all but the most extreme circumstances.

Table 5-3 provides a summary of API specifications/protocols.

Table 5-3 A Summary of API Specifications/Protocols

REST gRPC GraphQL SOAP

Style Architectural
Style

RPC Query
Language

Protocol

Protocol HTTP/1 HTTP/2 HTTP/1 HTTP/1

Format XML, JSON,
HTML, Plaintext

JSON, XML,
Protobuf

JSON XML

Security TLS/ SSL /
HTTPS

TLS / SSL TLS / SSL WS security / SSL

State Stateless Stateless Stateless Stateful/Stateless

ACID
Compliant

No No No Yes

BOOK.indb 148 19/05/22 5:51 PM

ptg39201256

Chapter 5: Network APIs 149

5

HTTP/JSON
Where would we be today without the Internet? A high-performing Internet connection is at
the top of the priority list when someone is looking to purchase a new home or to relocate.
This is with the huge adoption of remote working, hybrid working, social media, online
gaming, and media data streaming, typically all running at the same time in the home. A lot
of this information is driven using HTTP. When you’re making HTTP requests, this format
is used to structure requests and responses for effective communication between a client
to a named host, which is located on a server. The goal is for the client request to access
resources that are located on the server. When requests are sent, clients can use various
methods for this process. The request process is documented in RFC 2616 as part of Hyper-
text Transfer Protocol, or HTTP/1.1.

Figure 5-9 shows an example of an HTTP GET request and the response.

HTTP REQUEST

: method: GET
: path: /codeexchange
: schema: https

accept-language: en-
US,en;q=0.9
cache-control: max-age=0

Figure 5-9 An HTTP GET Request and Response

A request line starts with a method; the method is a one-word command that instructs the
server what it should do with the resource. This could be GET, POST, PUT, PATCH, or
DELETE. The path identifies the resources on the server and then the protocol, scheme, and
version (for example, the HTTP version number).

When you open a web browser to https://developer.cisco.com/codeexchange, Example 5-6
shows that the method is a GET request, the path is /codeexchange, and the schema is
HTTPs.

Example 5-6 Using https://developer.cisco.com/codeexchange

: method: GET

: path: /codeexchange

: schema: https

The HTTP headers allow the client and the server to communicate and in which way they do
so. The headers are not case sensitive, header fields are separated by a colon, and key-value
pairs are in clear-text string format. The HTTP protocol specifications outline the standard
set of HTTP headers and describe how to use them correctly.

The following headers show the accepted language and the amount of time a resource is con-
sidered fresh:

accept-language: en-US,en;q=0.9

cache-control: max-age=0

BOOK.indb 149 19/05/22 5:51 PM

https://developer.cisco.com/codeexchange
https://developer.cisco.com/codeexchange

ptg39201256

150 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

The Accept-Language request HTTP header advertises which languages the client can under-
stand. If none is found, a 406 error could be sent back. The max-age defines, in seconds, the
length of time it takes for a cached copy of this resource to expire. After the copy expires,
the browser must refresh its version of the resource by sending another request.

The message body is also known as the request body. The message body data is transmitted
in an HTTP transaction message immediately following the headers. The body can be made
of JSON or XML formats containing data; it can be sent on the body of the request if it is
needed to complete the request. The message body is optional; depending on the method
being used, they may be appropriate for some request methods and unsuitable for others.

NOTE The acronyms URL, for Uniform Resource Locator, and URI, for Uniform Resource
Identifier, are often interchangeable. However, they do have different meanings:

■ A URL is a type of identifier that informs you how you can access a resource—for
example, https, http, or ftp.

■ A URI is an identifier of a special resource.
■ Simply stated: All URLs can be URIs, but not all URIs can be URLs. You often hear or

read the two terms; in the same way, some people might say jacuzzi when they mean
hot tub.

REST/JSON
REST on its own is not a standard; however, RESTful implementations do make use of stan-
dards. They include HTTP, URI, JSON, and XML. Generally, with REST APIs, JSON is the
most popular programming language used when sending data for request payloads and send-
ing responses. JSON is a data representation format just like XML or YAML, which, as you
may recall, means YAML Ain’t Markup Language. JSON is small and lightweight; it can also
be incorporated into JavaScript because JSON is a superset of JavaScript, and anything writ-
ten in JSON is acceptable JavaScript. JSON also is language agnostic; it is easily readable by
humans and machines. A big bonus with JSON is that it’s easy to parse. Every programming
language has a library that can parse JSON objects or strings in data or classes.

JSON can represent the following types: strings, numbers, Booleans, null (or nothing), arrays,
and objects. When you’re creating APIs, JSON objects are the most-used formats because an
object in JSON uses key-value pairs. The key-value pairs can be any of the other types too,
such as strings and/or numbers. Example 5-7 provides an example of a JSON object.

Example 5-7 JSON Object

{

 "id": "L_62911817269526195",

 "organizationId": "62911817269526195",

 "name": "Site Number 1",

 "productTypes": [

 "appliance",

 "switch",

 "wireless"

BOOK.indb 150 19/05/22 5:51 PM

ptg39201256

Chapter 5: Network APIs 151

5

],

 "timeZone": "America/Los_Angeles",

 "tags": [

 "tag1",

 "tag2"

],

 "enrollmentString": null,

 "url": "https://n22.meraki.com/Site-Number-1-ap/n/_VGdgdw/manage/usage/list",

 "notes": null

}

JSON opens with a curly brace and closes with a curly brace. Within the curly braces are
the key-value pairs that make up the object. For this to be a valid JSON format, the key must
be enclosed by double quotation marks and a colon, followed by the value for that key. In
Example 5-7, there are multiple key-value pairs; they need to be separated by a comma. In
this example, “id” is the key, and “L_575334852396597311” is the value. Because there
is another key-value pair after this, the line ends with a comma. Here, this value is a num-
ber. The “name” key has a string as its value, and “productTypes” has an array as its value.
Finally, you can see this example ends with a key of “notes” and the value is set to null. It’s
the same way with empty objects using opening and closing braces ({}).

Cache-Control
RESTful APIs are very efficient and can perform very quickly because caching was built into the
REST architectural style. As you saw previously, caching is added to the Cache-Control header
in the HTTP response. As such, the data is returned from the local memory cache instead of
having to query the database to get the data every time. Caching helps with REST performance
by reducing the number of calls made to an API endpoint and lowering the latency of requests.

The drawback to this is that the data retrieved could be stale, and debugging stale data often
leads to many problems. Cache constrictions do require that a data response to a request
should be identified as cacheable or noncacheable. Other rules state that lowercase format-
ting is preferred over uppercase or mixed case, and when there is more than one directive,
they should be separated by a comma.

RFC 7234 defines the syntax and semantics of the cache-control standard. However, this
RFC does not cover the extended cache-control attributes.

The following snippet shows some of the standard cache-control directives that are used by
a client in an HTTP request:

Cache-Control: no-cache

Cache-Control: no-store

Cache-Control: no-transform

Cache-Control: max-age=<seconds>

Cache-Control: max-stale[=<seconds>]

Cache-Control: min-fresh=<seconds>

Cache-Control: only-if-cached

BOOK.indb 151 19/05/22 5:51 PM

https://n22.meraki.com/Site-Number-1-ap/n/_VGdgdw/manage/usage/list"

ptg39201256

152 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Cache-response directives, which are used by the server during an HTTP response, include
the following:

Cache-Control: max-age=<seconds>

Cache-Control: s-maxage=<seconds>

Cache-Control: must-revalidate

Cache-Control: no-cache

Cache-Control: no-store

Cache-Control: no-transform

Cache-Control: public

Cache-Control: private

Cache-Control: proxy-revalidate

REST vs. RPC
If you have worked in software or programming for any length of time, you will be accus-
tomed to choosing the right execution. This effort does require weighing the pros and cons
and what the result will look like. REST and RPC designs have their own values and use
cases. It’s critical to choose a design that works best for your given situation. In this section,
we compare HTTP and RPC and the different methodologies you can use for web APIs with
both architectures.

As you learned previously, REST APIs are resource-oriented, whereas RPC APIs are action-
oriented. In REST, the GET, POST, PUT, and DELETE methods are performed via so-called
CRUD (Create, Read, Update, and Delete) operations, whereas RPC uses GET for fetching
information and POST for the rest. For example, in REST you would issue “DELETE
/devcore/2”. However, in RPC, you might use “/deleteDevCore”, with a body of {“id”: 2}.
This approach can make the RPC API much easier to read because the action is part of the
URL itself, making it self-explanatory. Notice that the “id” is wrapped in curly braces in this
example. If you’re thinking that the body is JSON, you would be correct here because RPC
supports JSON-RPC. The example with the “id” has a special meaning depending on the ver-
sion of JSON-RPC. At the time of writing, there are two versions: 1.0 and 2.0. When you use
version 2.0, this must be specified in the payload.

NOTE JSON-RPC 1.0 id is the request ID. It can be of any type. It is used to match the
response with the request that it is replying to.
JSON-RPC 2.0 id is an identifier established by the client that must contain a string, number,
or null value if included. If it is not included, it is assumed to be a notification. The value
should normally not be null, and numbers should not contain fractional parts.

The following example uses a Cisco Nexus 9000 Series device. (The NX-API CLI supports
show commands, configurations, and Linux Bash. It also supports JSON-RPC.)

BOOK.indb 152 19/05/22 5:51 PM

ptg39201256

Chapter 5: Network APIs 153

5

The following code snippet shows the payload in JSON format:

cat show_version.json

[{ "jsonrpc": "2.0", "method": "cli", "params": { "cmd": "show
version", "version": 1 }, "id": 1 }]

The following code snippet shows Cisco Nexus command output in JSON format:

curl -k -v -u admin:Admin_1234! -H "Content-Type: application/
json-rpc" -H "Cache-Control: no-cache" -d @show_version.json POST
https://sandbox-nxos-1.cisco.com/ins

In this example, the payload uses JSON-RPC version 2.0. The method is listed as cli (the
command-line interface) for show or configuration commands. The params specify the cmd
‘show version’ (show commands can also be chained together on NX-OS if they are sepa-
rated with a colon). In this example, the ID is set to 1. In the reply shown in Example 5-8, the
version has been matched and the output formatted in JSON; the last line again shows the ID
of 1. Notice that although you are simply gathering data, in RPC this is a POST request.

Example 5-8 Expected Output When Performing a cURL Request for JSON-RPC

{

 "jsonrpc": "2.0",

 "result": {

 "body": {

 "header_str": "Cisco Nexus Operating System (NX-OS) Software\nTAC support:
http://www.cisco.com/tac\nDocuments: http://www.cisco.com/en/US/products/ps9372/
tsd_products_support_series_home.html\nCopyright (c) 2002-2019, Cisco Systems, Inc.
All rights reserved.\nThe copyrights to certain works contained herein are owned by\
nother third parties and are used and distributed under license.\nSome parts of this
software are covered under the GNU Public\nLicense. A copy of the license is avail-
able at\nhttp://www.gnu.org/licenses/gpl.html.\n\nNexus 9000v is a demo version of
the Nexus Operating System\n",

 "bios_ver_str": "",

 "kickstart_ver_str": "9.3(3)",

 "nxos_ver_str": "9.3(3)",

 "bios_cmpl_time": "",

 "kick_file_name": "bootflash:///nxos.9.3.3.bin",

 "nxos_file_name": "bootflash:///nxos.9.3.3.bin",

 "kick_cmpl_time": "12/22/2019 2:00:00",

 "nxos_cmpl_time": "12/22/2019 2:00:00",

 "kick_tmstmp": "12/22/2019 14:00:37",

 "nxos_tmstmp": "12/22/2019 14:00:37",

 "chassis_id": "Nexus9000 C9300v Chassis",

 "cpu_name": "Intel(R) Xeon(R) CPU E5-4669 v4 @ 2.20GHz",

 "memory": "16409064",

 "mem_type": "kB",

 "proc_board_id": "9N3KD63KWT0",

 "host_name": "N9K_1",

 "bootflash_size": "4287040",

 "kern_uptm_days": "8",

 "kern_uptm_hrs": "2",

BOOK.indb 153 19/05/22 5:51 PM

https://sandbox-nxos-1.cisco.com/ins
http://www.cisco.com/tac\nDocuments:
http://www.cisco.com/en/US/products/ps9372/tsd_products_support_series_home.html\nCopyright
http://www.cisco.com/en/US/products/ps9372/tsd_products_support_series_home.html\nCopyright
http://www.gnu.org/licenses/gpl.html.\n\nNexus

ptg39201256

154 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

 "kern_uptm_mins": "3",

 "kern_uptm_secs": "30",

 "rr_reason": "Unknown",

 "rr_sys_ver": "",

 "rr_service": "",

 "plugins": "Core Plugin, Ethernet Plugin",

 "manufacturer": "Cisco Systems, Inc.",

 "TABLE_package_list": {

 "ROW_package_list": {

 "package_id": "mtx-openconfig-all-1.0.0.0-9.3.3.lib32_n9000"

 }

 }

 }

 },

 "id": 1

}

Like REST, RPC also supports additional formats: they are XML-RPC and Protocol Buffers
(Protobuf). Protobuf is similar to the data serializing protocols JSON and XML. Whereas
JSON and XML are quite friendly to human eyes, Protobufs are not because they are com-
piled in bytes.

gRPC
You are likely familiar with the acronym gRPC if you have used or investigated model-driven
telemetry. Originally designed by Google, today Google Remote Procedure Call is a free
open-source project with an open spec and roadmap. Many Cisco platforms, such as Cisco
Nexus switches, introduced telemetry over gRPC using a Cisco proprietary gRPC agent from
NX-OS Release 7.x.

gRPC can be used as a framework for working with remote-procedure calls. This allows you
to write code as if it was designed to run on your computer, even though what you may have
written will be executed elsewhere.

gRPC is built on HTTP/2 as a transport. The main goals for using HTTP/2 are to improve
performance, enable full request and response, initiate multiple requests in parallel over a
single TCP connection, multiplex, minimize protocol overhead via efficient compression of
HTTP header fields, and add support for request prioritization and server push.

By default, gRPC uses the Protocol Buffer (Protobuf) Interface Definition Language (IDL)
for describing both the service interface and the structure of the payload messages. Protobuf
is an open-source mechanism used to serialize structured data for efficient binary encoding
(or machine readability), which can be used to exchange messages between services and not
over a web browser, unlike REST. By using binary encoding rather than text, the payload is
kept compact and very efficient.

The latest version of Protocol Buffer is proto3, and the advantage of the Protobuf IDL is that
it enables gRPC to be completely language and platform agnostic, supporting code genera-
tion in Java, C++, Python, Java Lite, Ruby, JavaScript, Objective-C, and C#. Example 5-9
provides an example.

BOOK.indb 154 19/05/22 5:51 PM

ptg39201256

Chapter 5: Network APIs 155

5

Example 5-9 Using Protobuf

syntax = "proto3";

message House {

 int32 id = 1;

 string name = 2;

 float cost = 3;

}

message Houses {

 repeated House houses = 1;

}

To start a .proto file, you need to specify which version you are running. In Example 5-9,
version three is defined. The house message definition specifies three fields (name/value
pairs)—one for each piece of data that you want to include in this type of message. Each
field has a name and a type. This example creates a single detail about one house. You
can use this code again if you add an array. If you use the repeated field, this field can be
repeated any number of times (including zero) in a well-formed message.

OpenAPI/Swagger
The OpenAPI Specification (OAS) was originally known as the Swagger Specification.
OpenAPI documents are both machine- and human-readable, which enables you to easily
determine how to consume and visualize RESTful web services. There is, however, a
difference between OpenAPI and Swagger.

The OAS is an API specification defined and maintained by the OpenAPI initiative. The OAS
was donated by Swagger to the Linux Foundation under the OpenAPI Initiative in 2015.
OAS sets a standard, programming-language-agnostic interface description for HTTP APIs.
This allows for both machines and humans to discover and comprehend the capabilities of an
API service without the need to access the source code, any additional documentation, or an
inspection of network traffic (tools such as Fiddler and Developer Tools in Chrome are often
used to do this). One benefit of using OpenAPI is that it helps when you’re designing an API.

OAS can use either JSON or YAML file formats for an API to provide these functions:

■ Defining the API’s endpoints and available operations (GET, POST, PUT, PATCH,
DELETE).

■ Outlining the parameters required for the input and output of each operation.
OpenAPI 3.0 distinguishes between parameter types—path, query, header, and cookie.

■ Describing APIs protected using security schemes such as Basic and Bearer.

Because OpenAPI is language agnostic, you can define an API in generic terms so that feed-
back can be given before anything can be implemented and added to the design. OpenAPI
provides service-side stubs to build the API; this also allows client SDKs to be generated by
client or third-party systems. Several companies use OpenAPI, including Atlassian, Mule-
Soft, Netflix, and PayPal.

Swagger is built by SmartBear Software, the leader in quality software tools for teams. Here’s
a great way to think about Swagger: say you have built an API, but without documentation

BOOK.indb 155 19/05/22 5:51 PM

ptg39201256

156 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

and accessibility your API might not be consumable. One reoccurring piece of feedback
from developers is that API documentation isn’t very good, and this is where Swagger enters
the picture. It helps you build, document, test, and consume RESTful web services. It can
do this from the source code by requesting the API to return a documentation file from its
annotations. In short, Swagger can take the code written for an API and generate the docu-
mentation for you.

Swagger has several services and tools:

■ Swagger Editor: With the Swagger Editor, you can design, describe, and document
new and existing APIs in JSON or YAML formats within a browser and preview your
documentation in real time. The Swagger Editor is open source, and you can contrib-
ute to the project via GitHub.

■ Swagger UI: The user interface can use an existing JSON or YAML document and
make it fully interactive. The tool can arrange the RESTful methods (such as GET,
PUT, POST, and DELETE) categorizing each operation. Each of these methods is
expandable, and once it is expanded, a full list of parameters with their corresponding
examples can be provided.

Figure 5-10 provides an example of the Swagger UI from Cisco SD-WAN.

Figure 5-10 Swagger UI from Cisco SD-WAN

■ Swagger Codegen: You can find this open-source tool on GitHub. Codegen helps with
the build process for both software development kits (SDKs) and APIs. It can do this

BOOK.indb 156 19/05/22 5:51 PM

ptg39201256

Chapter 5: Network APIs 157

5

by generating server stubs (stubs can be used for quick prototyping and mocking). For
example, if you want to provide an SDK along with your API, Swagger Codegen would
be great tool to help implement it.

Network API Styles
The two most-used network APIs today are HTTP-based APIs and NETCONF-based APIs.
To be considered a RESTful API, the API must adhere to six architectural constraints:

■ Client/server

■ Stateless

■ Cacheable

■ Uniform interface

■ Layer system

■ Code on demand (optional)

Here, we look at client/server, stateless, and uniform interfaces.

RESTful APIs can support network programming. This is a type of software development
for applications that can connect and communicate over networks, such as the Internet or
via software-defined controllers, network management software, and network analytics
engines. A network API provides a means to access protocols and reusable software libraries.
The API is able to support web databases, web browsers, and mobile applications. They are
widely supported across many programming languages and operating systems, which can
be leveraged to provide the details or state of devices and make configuration changes. This
architecture is often referred to as a distributed application structure client/server model.
The client communicates over the network, but there are two separate systems. They might
be connected on the same network (LAN) or be physically separate; for example, the client
might be in a remote office and the server in a data center or cloud. The client initiates the
communication, and the server is in a state of waiting for the client to request the informa-
tion. When it does, the server shares its resources with the client.

Figure 5-11 illustrates how RESTful APIs operate in a client/server architecture.

RESPONSE
HTTP/JSON/XML

REQUEST
HTTP/JSON/XML

HTTP/REST/SOAP

Figure 5-11 RESTful APIs Operate in a Client/Server Architecture

BOOK.indb 157 19/05/22 5:51 PM

ptg39201256

158 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

If a RESTful API communication between the client and the server is stateless or nonpersis-
tent, this means that when the client sends the data to the server, all the data should be sent
for the server to process the request. For example, if the required data is not sent or is incor-
rect, the server returns an error to the client. When the session is closed out, the server does
not retain the session or any information about the request that was made to it.

NOTE HTTP can also use a persistent connection, referred to as HTTP keep-alive. Persis-
tent connections improve network performance because a new connection does not have to
be established for each request.

To separate the client and server, RESTful APIs use a uniform interface. The uniform inter-
face provides a mapping to resources. For example, network APIs could be hostnames, rout-
ing information, or interface details/state.

There are four main guidelines for uniform interfaces:

■ Resource-based: Individual resources are identified in requests using URIs as resource
identifiers; these are separate from the responses that are returned to the client.

■ Manipulation of resources through representations: A client has representations of
resources (including any metadata attached), and it contains enough information to
customize, modify, or delete the resource on the server, provided it has the correct
permission to do so.

■ Self-descriptive messages: Every message includes detailed information to describe
how to process the message so that the server can analyze the request. The responses
also clearly indicate their cacheability.

■ Hypermedia as the Engine of Application State (HATEOAS): Clients deliver the state
via the body content, query-string parameters, request headers, and the request URI.
Services deliver state, which also needs to include links for each response so that cli-
ents can discover other resources easily.

NETCONF APIs
For many years, network devices such as routers, switches, and firewalls were configured
using the CLI, but this model did not scale and was subject to human error. The NETCONF
protocol was developed and standardized by the Internet Engineering Task Force (IETF). It
was developed in the NETCONF working group and published in December 2006 as RFC
4741 and later revised in June 2011 and published as RFC 6241. Looking to make network
devices more programmable, NETCONF was created to address configuration management,
gathering configuration and operation details from network devices.

Operational data is read-only. In this use case, NETCONF could be used to gather the same
information that would be gathered from issuing show commands. For example, say an engi-
neer is looking to gather all the information from a number of devices as part of an audit of
the access lists to ensure the network devices meet the security compliance. Configuration
data requires a change to be made on the network devices. Again, to compare this to the

BOOK.indb 158 19/05/22 5:51 PM

ptg39201256

Chapter 5: Network APIs 159

5

CLI, this would be when the engineer uses the configuration terminal to enter configura-
tion commands to make changes to the network devices. For example, after the engineer has
completed the audit of the access lists, several updates and new requirements are needed on
the network devices to prevent a breach in security.

The NETCONF API can use two types of YANG models—open and native. The NETCONF
protocol uses (typically) XML-encoded YANG-modeled data.

■ Open models allow commonality across devices and platforms. An open configuration
promotes a vendor-neutral model for network management that uses YANG, a data
modeling language for data sent over via the NETCONF protocol. Open YANG mod-
els are developed by vendors and standards bodies. Open is further broken down into
open standard and open source.

■ Native models are developed and maintained by each vendor. They are designed to
integrate to features or configuration relevant only to that vendor’s platform.

NETCONF works in a client/server model. A common example of this seen today is via
Python or Ansible being the client and a router being the server. NETCONF supports JSON
and XML as the data encoding methods, but Cisco does not support JSON. A NETCONF
message is based on an RPC-based communication; this allows the XML message to be
transport independent. The most-often-used transport is Secure Shell version 2 (SSHv2).

Table 5-4 shows the main differences between RESTful and NETCONF APIs.

Table 5-4 Differences Between RESTful and NETCONF APIs

RESTful API NETCONF

Transport HTTP SSHv2, TLS

Message HTTP/1.1 RCP, RCP REPLY

Content JSON/XML XML

Operations HTTP GET, HTTP POST, HTTP PUT,
HTTP DELETE

get-config, get, copy-config, lock,
unlock, edit-config, delete-config, kill-
session, close-session

State Stateless Stateful

NETCONF also can use different device datastores: they are running, startup, and candidate.
If you utilize the candidate configuration datastore, you can load device changes into the
candidate datastore without impacting the running or startup configuration/datastore. Only
until the configuration is pushed via a commit will the changes be applied to the devices
and written to the running configuration. This capability can also be very useful to roll back
changes because the device keeps past candidate configurations. (Cisco IOS XE and IOS XR
keep 10 candidate configuration files; this number can be expanded to more if required and
is platform specific.)

Figure 5-12 shows the operational workflows and datastore when using NETCONF.

BOOK.indb 159 19/05/22 5:51 PM

ptg39201256

160 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

<copy>

<commit>

<copy>

:startup:candidate

Candidate Running Startup

<edit-config> <get-config> <get>

Figure 5-12 The Operational Workflows and Datastore When Using NETCONF

Exam Preparation Tasks
As mentioned in the section “How to Use This Book” in the Introduction, you have a couple
of choices for exam preparation: the exercises here, Chapter 17, “Final Preparation,” and the
exam simulation questions in the Pearson Test Prep Software Online.

Review All Key Topics
Review the most important topics in this chapter, noted with the Key Topic icon in the outer
margin of the page. Table 5-5 lists a reference of these key topics and the page numbers on
which each is found.

Table 5-5 Key Topics for Chapter 5

Key Topic Element Description Page
Number

Section Methods 133
Section Formats 134
Section What Is API Development? 144
Section REST vs. RPC 152
Section Network API Styles 157

Complete Tables and Lists from Memory
There are no memory tables or lists in this chapter.

Define Key Terms
Define the following key terms from this chapter and check your answers in the glossary:

method, objects, formats, web scraping

BOOK.indb 160 19/05/22 5:51 PM

ptg39201256

Chapter 5: Network APIs 161

5

References
URL QR Code

https://apiconsole.cisco.com/

https://github.com/public-apis/public-apis

https://imdb-api.com/Identity/Account/Register

https://www.postman.com/ciscodevnet

https://www.ics.uci.edu/~fielding/pubs/dissertation/top.html

BOOK.indb 161 19/05/22 5:51 PM

https://apiconsole.cisco.com/
https://imdb-api.com/Identity/Account/Register
https://www.postman.com/ciscodevnet
https://www.ics.uci.edu/~fielding/pubs/dissertation/top.html
https://github.com/public-apis/public-apis

ptg39201256

CHAPTER 6

API Development

This chapter covers the following topics:

■ Creating API Clients: This section provides guidance around best practices for build-
ing an API client/software development kit. The focus is the value gained by saving
developers time by not having to do all the coding, helping to standardize application
development.

■ API Design Considerations: This section identifies the challenges that need to be
addressed when designing an API and considers what functionality is required by con-
sumers or customers of the API.

This chapter maps to the Developing Applications Using Cisco Core Platforms and APIs
v1.0 (350-901) Exam Blueprint Section 2.0, “Using APIs.”

Application programming interface (API) development covers both API design and API
architecture. Whereas API design focuses on the API itself, API architecture is the entire
solution, which includes the back end or infrastructure that the API provides access to. APIs
are designed for developers; end users do not often see the API itself. When creating an API,
developers should ensure that the API is clean and reusable. Being consistent in both use for
consumption and in documentation ensures that developers will continue to use and con-
sume an API. Providing an API client/software development kit (SDK) assists developers
by speeding up adoption and integration into other applications and services, no matter the
language that the developers have chosen to use.

There are two main methods of building APIs: inside-out and outside-in. Both methods have
advantages and disadvantages. This design selection depends on what stage a company or
team is in its API development. All APIs should be built with security at the forefront of the
design. One of the first steps is API authentication; this process ensures the security of the
company’s API, prevents attacks and data breaches, and safeguards critical services by iden-
tifying and authorizing clients.

There are several API authorization methods, and as part of the API development process,
the first step in securing an API is to accept only queries sent over a secure channel, such
as Transport Layer Security (TLS), the successor to the now-deprecated Secure Sock-
ets Layer (SSL). Security methods on top of this include basic authentication, API keys or
tokens, and OAuth. Some APIs also use rate limiting and error handling. This additional
layer of protection helps by throttling API requests, using algorithmic-based rate limiting,
and preventing an API from distributed denial-of-service (DDoS) attacks and other malicious
abuse. When an API is secure, consumption and performance of the API will keep develop-
ers happy and their connections, applications, and experience better too.

Pagination and caching can help the performance of an API. Pagination can help break
down the data and resources into small chunks. Depending on the API being developed, the

BOOK.indb 162 19/05/22 5:51 PM

ptg39201256

two most popular types of API pagination are cursor-based and offset-based. Cursor-based
pagination is more resource heavy to implement properly and can be slightly slower com-
pared to offset-based pagination, which provides a better experience and API behavior.

API performance can also be enhanced with API caching. Caching an API’s data either from
the client side or API side and storing data frequently can vastly improve API performance
and reduce the number of calls made to the API endpoints.

There are many ways to achieve a good API design and development. A lot is defined by the
company and requirements of the API. Throughout the design and development phase, a lot
of these details are ironed out.

“Do I Know This Already?” Qui z
The “Do I Know This Already?” quiz allows you to assess whether you should read this
entire chapter thoroughly or jump to the “Exam Preparation Tasks” section. If you are in
doubt about your answers to these questions or your own assessment of your knowledge
of the topics, read the entire chapter. Table 6-1 lists the major headings in this chapter and
their corresponding “Do I Know This Already?” quiz questions. You can find the answers in
Appendix A, “Answers to the ‘Do I Know This Already?’ Quizzes.”

Table 6-1 “Do I Know This Already?” Section-to-Question Mapping

Foundation Topics Section Questions

Creating API Clients 1–5
API Design Considerations 6–10

1. What does a software development kit (SDK) help speed up and improve?
a. Asynchronous API performance
b. Adoption and developer experience of an API
c. Adoption and modification of an API
d. Adoption of API documentation

2. What is the OpenAPI Specification (OAS)?
a. OAS defines a standard, programming language–agnostic interface description for

all APIs.
b. OAS defines a standard, programming language–agnostic interface description for

GraphQL.
c. OAS defines a standard, programming language–agnostic interface description for

REST APIs.
d. OAS defines a standard, programming language–agnostic interface description for

REST and RPC API.
3. An API client allows the client to abstract which of the following? (Choose two.)

a. Authentication
b. Resources
c. Headers
d. Parameters

BOOK.indb 163 19/05/22 5:51 PM

ptg39201256

164 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

4. An OAuth2.0 bearer token is an opaque string that is ______________.
a. A multiple string, which acts as the authentication of the API request
b. Intended to have meaning to clients using it
c. A fixed or defined length
d. Not intended to have any meaning to clients using it

5. A WebSocket uses a bidirectional protocol, in which there are no predefined message
patterns such as request/response. The client and the server can send messages to each
other. True or False?
a. True
b. False

6. In an inside-out API design approach, which of the following is correct?
a. The back-end infrastructure already exists within an organization and is used as a

foundation for defining the API.
b. The back-end infrastructure does not exist within an organization.
c. The back-end infrastructure is built in tandem and will be used as a foundation for

defining the API.
d. The back-end infrastructure is a mock server and is used as a foundation for defin-

ing the API.
7. Outside-in API design allows for a lot more elasticity than inside-out API design.

Which of the following are advantages of this approach? (Choose all that apply.)
a. Decrease in API calls
b. Faster adoption rate
c. Reduction in API bandwidth
d. The UI is last to be built

8. HTTP methods should not be included in endpoints. True or False?
a. True
b. False

9. What does page-based pagination allow the developer of the API to do? (Choose
two.)
a. Choose to view the required number of pages
b. Choose to view the required range of pages
c. Use the previous or next feature when requesting pages
d. Return a pointer to a specific item in the dataset

10. Which of the following are API rate-limiter techniques and algorithms for measuring
and limiting rates?
a. Leaky bucket
b. Fixed window
c. Sliding window
d. Token bucket
e. All of these answers are correct.

BOOK.indb 164 19/05/22 5:51 PM

ptg39201256

Chapter 6: API Development 165

6

Foundation Topics

Creating API Clients
An API client or API software development kit (SDK) can help speed up and improve the
adoption and developer experience of an API. (The term devkit is also used when referring
to an API or SDK.) API clients are not limited to being created by API owners or companies.
Consumers who frequently use APIs as part of their daily workflow often create API clients
if there isn’t an official API client library available or the ones that are available do not meet
their requirements. Because most REST APIs use HTTP request methods, using an API client
allows a client to abstract the API methods, such as authentication, resources, and error
handling, from the end developer no matter which programming language is used. The use
of multiple programming languages lowers the requirement for developers to write custom
implementation of an API based on the programming language being used.

When creating an API client, teams should adhere to several best practices. Following best
practices ensures adoption of an API client if it is to be shared with other teams or outside
the team, perhaps to customers. The API client should be automatically generated from an
API definition such as the OpenAPI Specification (OAS). This specification helps define
but is not limited to the API endpoints and authentication processes. It helps any updates to
the API client and removes the burden of updating API endpoints manually. The automation
of this process can also provide a changelog, providing a documentation path when a new
API version is released. An out-of-date API client can lead to frustration, broken pipelines,
and in the worst case, outages or loss of service.

Code Generation Client API Libraries for IMDb
When you want to start building an SDK using OAS, Swagger provides a number of tools
implementing the OpenAPI specification. One of these tools is SwaggerHub. SwaggerHub
provides all the tools to be able to generate client SDKs for APIs in many languages. Once
built, the SDK contains wrapper classes that can used to call the API from code, such as
Python or an application, without having to use HTTP requests and responses.

To start, open a web browser and navigate to https://swagger.io/tools/swaggerhub/. There,
you can create a free 14-day trial account. (You can create a free personal account in Swag-
gerHub using an email address or a GitHub ID, as shown in Figure 6-1.) When creating an
account, enter the required developer name and password account details. You can skip the
organization sections. After you complete this step and set up the account, go to My Hub to
start using SwaggerHub.

BOOK.indb 165 19/05/22 5:51 PM

https://swagger.io/tools/swaggerhub/

ptg39201256

166 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Figure 6-1 Creating a Free Personal Account in SwaggerHub

When you’re in My Hub, you can start to create the API client. To do so, click the Create
API button, as shown in Figure 6-2.

Figure 6-2 Creating an API Client by Clicking the Create API Button

The Import API box then appears (see Figure 6-3). In this box, fill in the fields, starting
with the IMDb-API URL in the Path field; in this case, use https://imdb-api.com/swagger/
IMDb-API/swagger.json. Then enter the owner name (this is your account and should be
prepopulated; if it is not, select your owner name from the list). For this example, you do not
need to publish the API client. Leave the Visibility field set as Private. When these fields are
complete, click the Import button.

BOOK.indb 166 19/05/22 5:51 PM

https://imdb-api.com/swagger/IMDb-API/swagger.json
https://imdb-api.com/swagger/IMDb-API/swagger.json

ptg39201256

Chapter 6: API Development 167

6

Figure 6-3 Inserting the IMDb-API URL to Begin Creating the SDK

SwaggerHub checks the imported URL file to ensure it is a valid JSON file and can be con-
verted into the YAML format. The name and version can be left as the defaults; leaving them
ensures any future versions from the IMDb-API are shown and displayed as separate ver-
sions. Providing a self-describing file such as JSON helps create a CHANGELOG for the API
client, which is easy to parse.

To import the new API, click the Import OpenAPI button, as shown in Figure 6-4.

Figure 6-4 Importing a New API JSON File into OpenAPI

After the JSON file is imported and converted to YAML, the IMDb API is loaded into your
personal SwaggerHub. There are a lot of features, which allow you, as developer, to view the
API, and the API version (this capability is very useful because you can create API content
per version of the API). Features include autogeneration of HTML/HTML2 documentation
and server stub, which allows developers to download and test their API locally before it is
deployed into a production environment. The API can be downloaded in both JSON and
YAML, whether resolved or unresolved. SwaggerHub has many features to build API con-
tent, from clients to documentation (see Figure 6-5).

BOOK.indb 167 19/05/22 5:51 PM

ptg39201256

168 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Figure 6-5 SwaggerHub’s Features for Building API Content

To create an SDK from the newly created IMDb API documentation, select Export, and
from the drop-down, select Client SDK. Here, the IMDb-API can be generated into client
SDKs for APIs in many languages. Select Python as the desired language from the menu (see
Figure 6-6) and download the zipped SDK file.

Figure 6-6 SwaggerHub Features Used to Build API Content into Client SDKs for APIs in
Many Languages

After you open the zipped file, there are several options to use the new IMDb SDK. For the
sample API client, treat this as a published SDK for a test developer to be able to install and
use. Start by creating a new GitHub repository. In this example (see Figure 6-7 and Figure
6-8), a private repository called python-client-generated is created, but feel free to give the
repository a suitable name of your choice.

BOOK.indb 168 19/05/22 5:51 PM

ptg39201256

Chapter 6: API Development 169

6

Figure 6-7 Creating a New Public or Private GitHub Repository for the IMDb SDK CLI

Figure 6-8 Creating a New Public or Private GitHub Repository for the IMDb SDK

No URL or endpoint is defined in the newly built SDK; therefore, the default base URL in
the SDK code needs to be updated to https://imdb.com/en before the SDK will work with
the IMDb API database. Because this SDK has been designed to work with the IMDb API,
you can hard-code the IMDB API URL into the back-end code. Not all SDKs have hard-
coded endpoints; some SDKs allow the use of environment files or the importing of environ-
ment details, so the SDK can be used on different systems. For example, the Cisco DNAC
SDK at https://github.com/CiscoDevNet/DNAC-Python-SDK allows you to specify the
IP/FQDN, username, and password at the command line.

To change the endpoint of the SDK, open the SDK folder that was downloaded. Within the
SDK folder, open the swagger_client folder and navigate to the configuration.py file. Next,
open the configuration.py file in your code editor (such as VSCode/Atom); then update line
49 with the URL https://imdb.com/en. When this is done, save and close this file.

Next, initialize the new repository. Then add, commit, and push the IMDb SDK files as
shown in Example 6-1.

Example 6-1 Initializing the New Repository, and Adding, Committing, and Pushing
the IMDb SDK Files

git init

git add *

git commit -m 'first push'

git remote add origin git@github.com:[username]/python-client-generated.git

git branch -M main

git push -u origin main

BOOK.indb 169 19/05/22 5:51 PM

https://imdb.com/en
https://github.com/CiscoDevNet/DNAC-Python-SDK
https://imdb.com/en
mailto:git@github.com:[username]/python-client-generated.git

ptg39201256

170 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

If you head back to the newly created GitHub repository (see Figure 6-9), you will find a
fully documented guide for using the new IMDb SDK with complete README, Installation,
and Getting Started documentation for API endpoints.

Figure 6-9 A Fully Documented Guide for Using the New IMDb SDK

Now that you’ve cloned the IMDb Python SDK from GitHub to a local machine, you can
test it out within the Python REPL. (REPL stands for Read Evaluate Print Loop, which is the
name given to the interactive MicroPython prompt that is accessible on Pycom devices.)

At this point, you need to install the newly created IMDb SDK. The first step is installing the
requirements.txt file via PIP (see Example 6-2). The requirements.txt file includes the follow-
ing five Python libraries, which are used by the SDK:

■ Certifi provides Mozilla’s carefully curated collection of root certificates for validating
the trustworthiness of SSL certificates while verifying the identity of TLS hosts. (It has
been extracted from the Requests project.)

■ Six is a Python 2 and 3 compatibility library. It provides utility functions for smooth-
ing over the differences between the Python versions with the goal of writing Python
code that is compatible on both Python versions.

■ The dateutil module provides powerful extensions to the standard datetime module,
available in Python.

■ Setuptools is a fully featured, actively maintained, and stable library designed to facili-
tate packaging Python projects.

■ urllib3 is a powerful, user-friendly HTTP client for Python.

BOOK.indb 170 19/05/22 5:51 PM

ptg39201256

Chapter 6: API Development 171

6

Example 6-2 Installing Five Python Libraries in the IMDb SDK

(venv)root/DEVCORE$ cat requirements.txt

certifi >= 14.05.14

six >= 1.10

python_dateutil >= 2.5.3

setuptools >= 21.0.0

urllib3 >= 1.15.1

After you install the requirements file and run setup.py, you can import the swagger client
and run it. The dir() method returns a list of valid attributes of the object, as shown in
Example 6-3.

Example 6-3 Installing the IMDb SDK in a Python Environment

(venv)root/DEVCORE$ pip install -r requirements.txt

(venv)root/DEVCORE$ python setup.py install

(venv)root/DEVCORE$ python

>>> import swagger_client

>>> dir(swagger_client)

['ActorShort', 'ApiClient', 'BoxOfficeAllTimeData', 'BoxOfficeAllTimeDataDetail',
'BoxOfficeShort', 'BoxOfficeWeekendData', 'BoxOfficeWeekendDataDetail', 'CastMovie',
'CastShort', 'CastShortItem', 'CompanyData', 'CompanyShort', 'Configuration', 'Epi-
sodeShortDetail', 'ExternalSiteData', 'ExternalSiteItem', 'FAQData', 'FAQDetail',
'FullCastData', 'IMDbListData', 'IMDbListDataDetail', 'ImageData', 'ImageDataDe-
tail', 'KeyValueItem', 'KeywordData', 'KnownFor', 'LanguageUrl', 'MetacriticRe-
viewData', 'MetacriticReviewDetail', 'MostPopularData', 'MostPopularDataDetail',
'MovieShort', 'MoviesApiApi', 'NameData', 'NewMovieData', 'NewMovieDataDetail',
'PosterData', 'PosterDataItem', 'RatingData', 'ReviewData', 'ReviewDetail', 'Search-
Data', 'SearchResult', 'SeasonEpisodeData', 'SimilarShort', 'StarShort', 'Sub-
titleData', 'SubtitleDataDetail', 'TitleData', 'Top250Data', 'Top250DataDetail',
'TrailerData', 'TvEpisodeInfo', 'TvSeriesInfo', 'UserRatingData', 'UserRatingDataDe-
tail', 'WikipediaData', 'WikipediaDataPlot', 'YouTubeData', 'YouTubeDataItem', 'You-
TubePlaylistData', 'YouTubePlaylistDataItem', 'YouTubeTrailerData', '__builtins__',
'__cached__', '__doc__', '__file__', '__loader__', '__name__', '__package__', '__
path__', '__spec__', 'absolute_import', 'api', 'api_client', 'configuration', 'mod-
els', 'rest']

The SDK also provides examples in Python; they were prebuilt when the SDK was created
within SwaggerHub. You can use the example to test the SDK and provide results from the
IMDb API without having to write a lot of code. This capability is very useful and important
for an SDK; when this SDK is shared, the developer who wishes to use the SDK can look at
the examples and quickly start to build code to consume the API resources.

For example, to test this newly built SDK, in the GitHub README file for the SDK, navigate
to the API a_pi_top250_movies_api_key_get (see Figure 6-10).

BOOK.indb 171 19/05/22 5:51 PM

ptg39201256

172 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Figure 6-10 How to Use the Python IMDb SDK in the IMDb SDK README
Documentation

The README has a complete list of all the API endpoints and how a developer can use this
SDK. By clicking the selected API, you can open and use a code example and use case of the
API endpoint (see Figure 6-11).

Figure 6-11 URL Links to Each API from the IMDb Swagger Documentation

BOOK.indb 172 19/05/22 5:51 PM

ptg39201256

Chapter 6: API Development 173

6

You can copy the code for the API endpoint API/Top250Movies in Example 6-4 into the
Python REPL or into a code editor. The API client documentation shows that a developer
IMDB API key is required in a string format. If the SDK and code are run without an IMDB
API key, an error log is shown:

{'error_message': 'Invalid API Key', 'items': []}

Example 6-4 Python Code Using the IMDb Endpoint API/Top250Movies

from __future__ import print_function

import time

import swagger_client

from swagger_client.rest import ApiException

from pprint import pprint

create an instance of the API class

api_instance = swagger_client.MoviesApiApi()

api_key = '[add user key]' # str |

try:

 api_response = api_instance.a_pi_top250_movies_api_key_get(api_key)

 pprint(api_response)

except ApiException as e:

 print("Exception when calling MoviesApiApi->a_pi_top250_movies_api_key_get: %s\n"
% e)

After the Python script is executed, it retrieves the API endpoint data and prints out the top
250 movies of all time from the IMDb endpoint in JSON format (see Example 6-5). When
the code runs, it checks for any errors being returned from the API. In this example, the
code completed without error. Because the output is quite verbose, you can save the file
locally to review or look for errors. You can do this quickly using output redirection on the
command line. The > symbol creates a new file if one is not present, or it overwrites the file
if one already exists. This file can then be opened in a text file via a code or text file editor.

You can use the redirect feature by providing the following path:

python imdb.sdk.py > ~/Desktop/imdb_sdk.txt

Example 6-5 Python Code Output from IMDb Endpoint Top250Movies

{'error_message': '',

 'items': [{'crew': 'Frank Darabont (dir.), Tim Robbins, Morgan Freeman',

 'full_title': 'The Shawshank Redemption (1994)',

 'id': 'tt0111161',

 'im_db_rating': '9.2',

 'im_db_rating_count': '2465589',

 'image': 'https://m.media-amazon.com/images/M/MV5BMDFkYTc0MGEtZmNhMC00Z-
DIzLWFmNTEtODM1ZmRlYWMwMWFmXkEyXkFqcGdeQXVyMTMxODk2OTU@._V1_UX128_CR0,3,128,176_AL_.
jpg',

 'rank': '1',

 'title': 'The Shawshank Redemption',

 'year': '1994'},

BOOK.indb 173 19/05/22 5:51 PM

https://m.media-amazon.com/images/M/MV5BMDFkYTc0MGEtZmNhMC00Z-DIzLWFmNTEtODM1ZmRlYWMwMWFmXkEyXkFqcGdeQXVyMTMxODk2OTU@._V1_UX128_CR0,3,128,176_AL_.jpg'
https://m.media-amazon.com/images/M/MV5BMDFkYTc0MGEtZmNhMC00Z-DIzLWFmNTEtODM1ZmRlYWMwMWFmXkEyXkFqcGdeQXVyMTMxODk2OTU@._V1_UX128_CR0,3,128,176_AL_.jpg'
https://m.media-amazon.com/images/M/MV5BMDFkYTc0MGEtZmNhMC00Z-DIzLWFmNTEtODM1ZmRlYWMwMWFmXkEyXkFqcGdeQXVyMTMxODk2OTU@._V1_UX128_CR0,3,128,176_AL_.jpg'
https://m.media-amazon.com/images/M/MV5BMDFkYTc0MGEtZmNhMC00Z-DIzLWFmNTEtODM1ZmRlYWMwMWFmXkEyXkFqcGdeQXVyMTMxODk2OTU@._V1_UX128_CR0,3,128,176_AL_.jpg'

ptg39201256

174 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Adding CLI Wrapper Code
Adding a CLI wrapper can take all published functions in an SDK library and make them
available to the developer as a standard command-line tool. A CLI tool can build its own
arguments directly from an SDK. These can be features such as help options, optional
commands, and switches. Building a CLI wrapper from an SDK improves its capabilities
because they exactly match those of the SDK and are updated automatically when or if an
API adds new capabilities and resources.

NOTE Per Wikipedia: “A command-line interface (CLI) processes commands to a com-
puter program in the form of lines of text. The program which handles the interface is called
a command-line interpreter or command-line processor. Operating systems implement a
command-line interface in a shell for interactive access to operating system functions or
services. Such access was primarily provided to developers by computer terminals starting
in the mid-1960s and continued to be used throughout the 1970s and 1980s on VAX/VMS,
Unix systems and personal computer systems including DOS, CP/M and Apple DOS.”
(See https://en.wikipedia.org/wiki/Command-line_interface.)

Two of the most popular Python libraries for creating a CLI wrapper are argparse and Click.
Argparse is part of the standard Python library (from Python 2.7; argparse was the replace-
ment for outparse). Arguments can generate different actions; for example, add_argument()
can be used to create an argument. The default action, though, is to store the argument
value. Additional supported actions of argparse include storing the argument as a single
argument or as part of a list, and storing a constant value when the argument is encountered,
such as handling true/false values for Booleans.

The Python Click module is used to create CLI wrappers also. Click is an alternative to the
standard optparse and argparse modules. Click allows arbitrary nesting of commands and
automatic help page generation; it can also support the loading of subcommands at run-
time. Click uses a slightly different approach than argparse because it uses the notion of
decorators. These commands need to be functions that can be wrapped using decorators.
The creator of the Click library wrote the “why of click” at https://click.palletsprojects.com/
en/8.0.x/why/.

Making Calls to IMDb Using a CLI Program
Adding a CLI program into the SDK Python code can help make the functionality of
developer code simpler and reusable. The same piece of code can be transformed into
multiple-use code, thus removing the need for single pieces of Python code per API call or
request. The CLI can add a helper function to call IMDb endpoints via the SDK library using
command-line parameters, allowing command selection and built-in documents.

To add the Python Click library to the IMDb code, the first steps are installing the library
via PIP and importing the Python library into the code.

Using PIP, install the Python Click library into a local Python environment:

pip install click

BOOK.indb 174 19/05/22 5:51 PM

https://en.wikipedia.org/wiki/Command-line_interface
https://click.palletsprojects.com/en/8.0.x/why/
https://click.palletsprojects.com/en/8.0.x/why/

ptg39201256

Chapter 6: API Development 175

6

In Example 6-6, you can add three IMDb endpoints from the SDK code: top250, box_
office, and in_theaters. Click provides a command-line parameter to call each of these API
endpoints using the IMDb SDK. The beginning of the code is the same as the previous
example for the top250 code. Here, you add the import click statement so that this module
is accessible for the code to run. Next, under the api_key, you create a click.group with the
function of CLI, which ends with pass. The pass statement allows for multiple subcommands
to be attached later in the code for additional functionality.

Example 6-6 Importing the Click Library and Creating a Click Group

from __future__ import print_function

import time

import swagger_client

from swagger_client.rest import ApiException

from pprint import pprint

import click

create an instance of the API class

api_instance = swagger_client.MoviesApiApi()

api_key = '' # str |

@click.group()

def cli():

 pass

Each API call is created as a function and adds the @click.command() decorator to it. In Click,
commands are the basic building blocks of command-line interfaces. Example 6-7 shows how
to create a new command and use the decorated function as a callback. The function, named
get_250, is passed to the command. In most examples of CLI helpers, the command is often
named after the function or API call to help describe the action being performed.

Example 6-7 Creating a New Command for the Function Using Click

@click.command()

def get_250():

 try:

 api_response = api_instance.a_pi_top250_movies_api_key_get(api_key)

 pprint(api_response)

 except ApiException as e:

 print("Exception when calling MoviesApiApi->a_pi_top250_movies_api_key_get:
%s\n" % e)

To make this command callable from the CLI, you attach commands to other commands of
a type group; this process is referred to as arbitrary nesting of scripts. For this example, the
function name get_250 is used:

cli.add_command(get_250)

The great part about Click is being able to add additional API endpoints or functions with-
out refactoring a lot of code. In this case, it is simple to add additional functions and Click

BOOK.indb 175 19/05/22 5:51 PM

ptg39201256

176 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

commands to extend the flexibility of code. To complete this and add additional features,
you add the next two API endpoints: box_office and in_theaters. In any command that has a
hyphen (-) in it, the hyphen is automatically converted to an underscore (_) when referring to
the API endpoints (see Example 6-8).

Example 6-8 Converting Hyphens Automatically to Underscores

def in_theaters():

 """

 Show those movies still in theaters.

 """

in-theaters Show those movies still in theaters

Before running the code, you can look at the optional arguments now built into the code.
Click has a great built-in feature that automatically builds a help function into the commands
(see Example 6-9). This feature provides details to which argument can be run at the com-
mand line. Additional information can also be added for each command as an overview of
what each argument does or the expected results (see Example 6-10).

Example 6-9 Click’s Built-In Help Function

python imdb.sdk.click.py --help

Usage: imdb.sdk.click.py [OPTIONS] COMMAND [ARGS]...

Options:

 --help Show this message and exit.

Commands:

 get-250

 get-box-office

 get-theaters

Example 6-10 Complete Code with Three API Endpoints

from __future__ import print_function

import time

import swagger_client

from swagger_client.rest import ApiException

from pprint import pprint

import click

create an instance of the API class

api_instance = swagger_client.MoviesApiApi()

api_key = ‘ ‘ # str |

@click.group()

def cli():

 pass

@click.command()

def get_250():

BOOK.indb 176 19/05/22 5:51 PM

ptg39201256

Chapter 6: API Development 177

6

 try:

 api_response = api_instance.a_pi_top250_movies_api_key_get(api_key)

 pprint(api_response)

 except ApiException as e:

 print("Exception when calling MoviesApiApi->a_pi_top250_movies_api_key_get:
%s\n" % e)

@click.command()

def get_box_office():

 try:

 api_response = api_instance.a_pi_box_office_api_key_get(api_key)

 pprint(api_response)

 except ApiException as e:

 print("Exception when calling MoviesApiApi->a_pi_box_office_api_key_get:
%s\n" % e)

@click.command()

def get_theaters():

 try:

 api_response = api_instance.a_pi_in_theaters_api_key_get(api_key)

 pprint(api_response)

 except ApiException as e:

 print("Exception when calling MoviesApiApi->a_pi_in_theaters_api_key_get:
%s\n" % e)

cli.add_command(get_250)

cli.add_command(get_box_office)

cli.add_command(get_theaters)

if __name__ == "__main__":

 cli()

When running the complete code, you can pass an argument after the filename from the
command list. Passing no argument shows the help page. Each argument runs only the API
endpoint call linked to the click command.

Adding the get-theaters argument to the command line calls the IMDb API endpoint for
in_theaters and returns the results in JSON format:

python imdb.sdk.click.py get-theaters

API Design Considerations
When designing and building an API, a team or company undertakes a number of steps to
plan and evaluate its architecture. The design of the API will influence how well developers
are able to consume it, integrate it, and even if use it. All API designs should start out with
defining the goals of the API. Typically, APIs are built to help expose a service or data for
customers or partners, who can be either internal or external to a company. If, for exam-
ple, your team provides an API to another team to provision, update a service within the

BOOK.indb 177 19/05/22 5:51 PM

ptg39201256

178 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

infrastructure your team owns, and manage, these are still your API customers. Likewise, if
you build an API for external-use customers, your company is providing an API service that
will create their experience. Often the best API design comes from asking the customers or
consumers what they want from the API, such as workflow integrations, alerting/monitoring,
and what applications will be accessing the API.

A lot of enterprise services are already up and running, and an API is often built on top of
this fully functioning infrastructure. This method is called API inside-out design. This
type of design has number of advantages because it allows the design to be modeled on the
current infrastructure and services. The API resembles normal operations, but many of the
interactions are shifted and then performed via an API. This method allows API developers
to select the most common workflows and request and work on them first. This approach
shows problems such as security flaws or performance factors. Some of the downsides to
this approach are that you do not have access to customer/developer feedback. The down-
sides of this lead to wasted code cycles and trying to over-replicate the functionality of
back-end systems. Often, in an inside-out approach, if the API is designed or built during
an ongoing project, the API is thought of as being bolted on. This results in a bad developer
experience and low standard in API design in most cases. Having a good developer experi-
ence and a high standard is the main reward of using an API-first design, or API outside-in/
user interface (API first approach). This design considers what functionality is required
by the consumers or customers of the API and what they will be asking for. Also, this design
covers what is important to the end developers—for example, which features they need and
how easily the developers or consumers can integrate their applications and workflows. An
outside-in API design allows for a lot more elasticity, covering more use cases in single API
calls, thus leading to fewer API requests and calls being made by consumers and less traffic
on the wire and back-end infrastructure for the provider. Outside-in API design leads to a
more elegant API and one that a developer or consumer can use.

Good API REST architecture and design follow the HTTP methods GET, PUT, PATCH,
POST, and DELETE, as described in Chapter 5, “Network APIs.” Most APIs operate over
HTTP, which allows a solid base for these APIs to be designed over. When you’re naming
resources, either singular or plural is acceptable if resource names are maintained and consis-
tent on all APIs. The same goes for the use of capitalization.

Singular API naming resource:

/data/device

Plural API naming resource:

/data/devices

HTTP methods such as GET and PUT should not be included in endpoints. The endpoint
should contain only nouns because the API call is transferring state, not processing instruc-
tions. For example:

/data/getDevice

For further reading on API design, consider Roy Fielding’s 2000 dissertation, “Architectural
Styles and the Design of Network-based Software Architectures,” which introduced REST
(https://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation_2up.pdf). Also,
see RFC 3986, “Uniform Resource Identifier (URI): Generic Syntax,” by Tim Berners-Lee,
Roy T. Fielding, and L. Masinter (http://www.rfc-editor.org/rfc/rfc3986.txt).

BOOK.indb 178 19/05/22 5:51 PM

https://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation_2up.pdf
http://www.rfc-editor.org/rfc/rfc3986.txt

ptg39201256

Chapter 6: API Development 179

6

API Authentication Models
When you’re designing and building APIs, security should always be your first thought
within the design. Poorly designed authentication models can result in attackers being able
to access or gain control over accounts or personal data. Attackers can even make financial
transactions such as money transfers and credit card fraud. API developer authentication
should be administered individually from standard API endpoints.

The type of authentication depends on the type of API being built and the developer base
that will be consuming the API resources. For example, if the API is designed for internal or
external use or for private, partner, or public use, a different authentication model might be
chosen. When you’re using an API, authentication is sort of like going on holiday to another
country and being asked to show your passport upon entry to that country. Your passport
confirms who you are and is evidence or proof that you are who you say you are. Authen-
tication is different from authorization, however, in that authorization refers to the level of
access. For example, authorization is like the level of security clearance your company allows
your ID badge to have. Your ID badge might allow you in the office, break room, meeting
rooms, and stationery or storeroom, but not the server or data room within the office.

Here, we look at the primary API authentication models. Basic authentication (or basic auth)
requires that the application have a previous developer name (ID) and password set up on the
service or a response back from the server asking for a developer name and password before
access to resources is given. Basic authorization can be set up to allow both authentication
and authorization, because after the developer’s ID has been entered, a level of security and
access can be defined for the service. For example, developer A could have read-only access
(GET method) to an SDN controller, such as a Cisco DNA Center.

Basic authentication is considered the lowest form of authentication. Base64 is easy to
decrypt because it is an encoding algorithm that merely presents data in an alternative for-
mat. It does not in any way attempt to hide data; it merely expresses the same data in an
alternative syntax.

Developer credentials are passed as a Base64-encoded header (as in Example 6-11) or as
parameters in an HTTP client. The header contains the word Basic followed by a space and
the Base64-encoded string developername:password. Base64 converts the developer name
and password into a set of 64 characters to ensure safe transmission. Because this type of
authentication uses the HTTP header, there is no requirement for additional or further com-
plex responses.

Example 6-11 Base64-Encoded Authentication

headers = {

 'Content-Type': 'application/yang-data+json',

 'Accept': 'application/yang-data+json',

 'Authorization': 'Basic YWRtaW46Q2lzY28xMjM='

}

If you were to copy and paste the Base64 details into a decoder tool, you would see that the
developername:password is admin:Cisco123. When you’re using Base64 as the authenti-
cation method, it is highly recommended that you employ additional security mechanisms
such as HTTPS/TLS.

BOOK.indb 179 19/05/22 5:51 PM

ptg39201256

180 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Bearer authentication (token authentication) depends on how the API is defined. For exam-
ple, basic authentication requires the request to send a developer name and password or
identifying credentials to the requester; again, the developer account is set up on the server.
This is often why bearer authentication is considered an extension of basic authentication.
After the initial request is made via the credentials (typically, an HTTP POST request), the
request asks for a token to be returned. Further API calls will leverage the token; there is
no further requirement to send the developer credentials for subsequent API calls, only the
token itself. Hence, the word bearer implies the developer has a ticket (token), and if it is
valid, access is permitted. Tokens can be short-lived and last a few hours, or they can be
long-lived. Some tokens can be refreshed and might last a week, or they can be nonrefresh
and nonexpiring. There is no fixed design when it comes to a token’s lifetime or expiry when
designing an API. Companies choose the option or mixture of options that best meets their
API design requirements.

A bearer token is an opaque string that is generated by the server in response to a developer
login request and not intended to have any meaning to clients using it. The client must send
this token in to the authorization header when making requests to protected resources. The
bearer token can have a lifetime too; for example, Cisco DNA Center’s API uses token-based
authentication and HTTPS basic authentication to generate an authentication cookie and
security token that are used to authorize subsequent requests. By issuing an HTTP POST
request API call, Cisco DNAC returns a token in the response body:

{"Token":"<token>"}

As with the basic authentication method, additional security mechanisms such as HTTPS/
SSL should be employed.

As you saw with the IMDb API example, API keys are another method of API security.
Developers can request an API key. However, the API keys don’t identify developers; they
identify projects.

The key is sent in the query string, in the request header, or as a cookie. Like a password,
the key is meant to be a secret that is known only between the client and server. API keys
are not considered secure; they are accessible to clients, making it easy for someone to steal.
When an API key is stolen, it generally does not expire, making the API key reusable indefi-
nitely, unless the API key is revoked or a new key is regenerated.

Best practice suggests that API keys are least secure when sent in a query string, and it is
strongly suggested that API keys should be used in the authorization header instead of a
query.

API keys should be considered for use in authentication if an API needs to block unidenti-
fied traffic or to limit or rate limit the number of calls made to an API. This method allows
filtering by logging the key to the API. The IMDb API does this, limiting the free account
to 100 calls per day. However, this limit could be as short as per hour or per minute. As with
the basic authentication method, additional security mechanisms such as HTTPS/TLS should
be employed when using API keys.

Cookie authentication uses the HTTP cookies to authenticate the client requests and main-
tain session information on the server over the stateless HTTP protocol. The client sends a
developer name and password, as you saw with basic and bearer authentication. The devel-
oper account is set up on the server to establish a session. When it is successful, the server

BOOK.indb 180 19/05/22 5:51 PM

ptg39201256

Chapter 6: API Development 181

6

response includes the Set-Cookie header that contains the cookie name, value, and expiry
time. With every subsequent client request to the server, the client sends back all previously
stored cookies to the server using the cookie header.

Cookie authentication is vulnerable to cross-site request forgery (CSRF) attacks, so using
CSRF tokens for protection is recommended. This feature adds protection against CSRFs
that occur when using REST APIs. This protection is provided by including a CSRF token
with API requests. You can put requests on an allowed list so that they do not require pro-
tection if needed.

The last authentication method to discuss is OAuth 2.0, which is the industry standard.
OAuth 2.0 provides limited access to a client. The OAuth protocol for getting an access
token or refresh token is called flows (or grant types). The flows allow the resource owner
to share the protected content from the resource server without having to share credentials.
Several popular flows are suitable for different types of API clients when using OAuth2.0:

■ Client: The client is the application requesting access to a protected resource on behalf
of the resource owner. This access must be authorized by the developer, and the
authorization must be validated by the API.

■ Resource owner: Typically, the resource owner is the developer who authorizes an
application to access their account.

■ Resource server: The resource server hosts the protected resources. This is the API
you want to access.

■ Authorization server: The authorization server verifies, identifies, and authenticates
the resource owner and then issues access tokens to the application.

The most-used implementations of OAuth are access tokens or refresh tokens. A designer
might choose to use one or both methods:

■ Access token: The server issues a token to clients, much like an API key, and then it
allows the client to access resources. However, unlike an API key, an access token can
expire. After the token expires, the client has to request a new one.

■ Refresh token: OAuth 2.0 introduced an artifact called a refresh token, which is an
optional part of an OAuth flow. When a new access token is required, an application
can make a POST request back to the token endpoint using the grant type ‘refresh_
token’. This request allows an application to obtain a new access token without having
to prompt the developer.

Flow Control (Pagination vs. Streaming)
Why use pagination in your API? RESTful API pagination is the process of splitting data
sets into discrete pages with a set of paginated endpoints. An API call to a paginated end-
point is called a paginated request. API endpoints paginate their responses to make the result
set easier to handle. Here, we look at two of the most common pagination techniques:

■ Page-based pagination (offset pagination)

■ Cursor pagination

BOOK.indb 181 19/05/22 5:51 PM

ptg39201256

182 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

If a developer is working with smaller subsets of data, pagination improves the API response
time. It enables the developer to not return everything in a single response when returning
data with multiple replies. This also prevents huge volumes of data traveling over a network,
and for this reason, pagination can help conserve bandwidth and memory. Overall, pagina-
tion in API design helps with the end developer experience. When developers are designing
an API to support pagination, the most-often-used method is to have predetermined page
size. Defining the right size of data to be returned per page is normally based on several fac-
tors, such as use, capacity, and end developer experience. By using page size, a developer
can limit how much data or item per page is returned. Default limits are often built in, but
when dealing with unknown limits, the recommendation is to allow developers to set a limit
themselves. If an API response does not contain a link to the next page of results, this would
mean the developer has reached the final page. For example, the default limit request might
return 20 pages, and due to the size, this request is slow and hard to parse. With pagina-
tion, the developer can choose to view the required number of pages and items on the page.
This could be a single page or a preset range of pages—say, pages 5 and 6. An API could
allow the developer to select a starting page—for example, page 10 through page 15; this is
referred to as offset pagination.

The GitHub API supports page-based pagination. By using cURL and the GitHub stargazer
tool, you can list the people who have starred the repository at ciscodevnet/yang explorer
(see Example 6-12). To fetch all the stargazers for ciscodevnet/yang explorer, you would have
to make two requests.

Example 6-12 GitHub Stargazer Tool Listing the People Who Have Starred the Reposi-
tory at ciscodevnet/yang explorer

curl -I https://api.github.com/repos/ciscodevnet/yang-explorer/stargazers

HTTP/2 200

server: GitHub.com

date: Mon, 23 Aug 2021 10:00:51 GMT

content-type: application/json; charset=utf-8

cache-control: public, max-age=60, s-maxage=60

vary: Accept, Accept-Encoding, Accept, X-Requested-With

etag: W/"8e407f3e6d12cb560d3e01b0f42804a29724a5a4894174e4e87301b99ec4532e"

x-github-media-type: github.v3; format=json

link: <https://api.github.com/repositories/42690240/stargazers?page=2>; rel="next",
<https://api.github.com/repositories/42690240/stargazers?page=13>; rel="last"

[output removed for brevity]

When making a REST API call to a Meraki Dashboard API, after you make a GET request
to an endpoint, the results that are returned could contain a huge amount of data. Using
pagination on the results ensures responses are easier to handle because only a subset of the
results is returned in the first response. If you need to get more data, you can execute subse-
quent requests to the endpoint with slightly different parameters to get the rest of the data.

The Meraki Dashboard API allows developers to sort data. The developer also can deter-
mine the data before it is sent back. An example is timestamps. Developers can use the
timestamp values startingAfter and endingBefore if they want to paginate based on time.
Using a timestamp on data can be very effective when using real-time data. However, offset
pagination does not care that the data has been modified; it just gets the same data at the

BOOK.indb 182 19/05/22 5:51 PM

https://api.github.com/repos/ciscodevnet/yang-explorer/stargazers
http://GitHub.com
https://api.github.com/repositories/42690240/stargazers?page=2rel="next"
https://api.github.com/repositories/42690240/stargazers?page=13rel="last"

ptg39201256

Chapter 6: API Development 183

6

offset (in this example, page 5). If real-time pagination is required, cursor-based pagination
should be used. APIs on social media sites such as Facebook and Twitter use cursor-based
pagination. Cursor-based pagination does not use the concept of pages; because the data
changes quickly, results are considered either “previous” or “next.” If there is no concept of
pages, this means developers cannot skip to a certain page, as you saw with offset pagina-
tion; cursor-based pagination works by returning a pointer to an exact item in the dataset.
Some APIs (Facebook being one) do support both methods of pagination. If page selection
is required, offset-based pagination tends to be used. If the API is to provide performance
and real-time data, cursor-based pagination is used.

In both offset-based pagination and cursor-based pagination, developers poll or call the API,
which is the most typical use of APIs where a developer or application is making a request
every 30 seconds—for example, in the client/server architecture. This means that if the client
or application is sending a request every 30 seconds to the server, new data could be avail-
able for 19.9 seconds with the client or application.

Another drawback could be that the API is rate limiting calls per hour or per day. This is
similar to the concept of SNMP polling versus event-based model-driven telemetry, where
most SNMP polling was done every 5 to 10 minutes; this left enough of a gap for customers
to notice their router interfaces were down before their provider (the one they were paying to
monitor) noticed!

Figure 6-12 shows stateless versus stateful connection differences between RESTful APIs and
streaming APIs.

REST Client/Application API

Streaming Client/
Application API

Send Request

Send Response,
Close Connection

Send Request

Continuously Send Response and Updates

Figure 6-12 Stateless versus Stateful Connection Differences Between RESTful APIs and
Streaming APIs

Push/streaming APIs can help solve the problem of experiencing lag or delay and are per-
fect for examining data in real time. For developers looking to get information accurately
and quickly, push/streaming APIs provide the best results. Because push/streaming APIs are
stateful, after they are opened, they are persistent in connection; this is unlike RESTful APIs,
which are stateless.

In the push method the client/application subscribe to some information, and that informa-
tion is initiated from a server to the client. A great example of this is webhooks, which is
often referred to as reverse API or HTTP callback. Webhooks enable the push-model mecha-
nism to send notifications such as alarms or events in real time. When an event happens, the

BOOK.indb 183 19/05/22 5:51 PM

ptg39201256

184 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

API provider (which could be an SDN controller such as Cisco SD-WAN or Webex Teams)
can send an HTTP POST request to an external system in real time after an alarm or event is
received. When you create a webhook for a particular event or alarm, the notification data
is sent as an HTTP POST (often in a JSON format). The streaming method still operates over
the same HTTP methods as RESTful API, but this is still a unidirectional method. Even if the
client sends the initial connection, HTTP and HTTPS are unidirectional protocols where the
client always initiates the request.

The Streaming API methods commonly utilize the WebSocket protocol, which is standardized
by the IETF as RFC 6455 (https://datatracker.ietf.org/doc/html/rfc6455). A WebSocket uses a
bidirectional protocol, and there are no predefined message patterns such as request/response.
The client and the server can send messages to each other. Unlike the request/response method
seen with REST API, using a WebSocket allows the client or server to talk independently of one
another; this is referred to as full-duplex. A WebSocket does not require a new connection to be
set up for each message to be sent between the client and server. As soon as an initial connec-
tion is set up, the messages can be sent and received continuously without any interruption. The
trade-off here is that having a communication open all the time does increase the overhead of
resources because the client and the server communicate over the same TCP connection for the
duration of the WebSocket connection lifetime.

Error Handling, Timeouts, and Rate Limiting
When creating an API, all teams should stick to the mandate of good error handling. No
engineer has ever jumped with joy at the sight of an error, but they might have if the infor-
mation provided in response to the error was helpful and informative. Understanding error
messages can be very helpful when debugging or troubleshooting an issue. Errors can fall
into two categories: there is either an issue with a request, or the server/API could not under-
stand what it was being sent. For example, if the JSON is incorrectly formatted or the API
has an issue itself, the error could be due to the server being overloaded, which is a network
issue (reachability).

Most REST APIs follow the approach of using appropriate HTTP response status codes to indicate
whether a specific HTTP request has been successfully completed or has failed. This response is pro-
vided in two parts: the status code and reason phrase. The status code element is a three-digit integer
result code made in the attempt to understand and satisfy the request, and the reason phrase is a brief
overview to help the user understand the output (also known as status text) and to summarize the
meaning of the code. The first digit in the status code is the class of the response, but the last two
digits do not have a categorized role.

Table 6-2 provides a summary of HTTP status codes and reason phrases.

Table 6-2 HTTP Status Codes and Reason Phrases

Status Code Reason Phrase Additional Information (Not Supplied in the
Response)

1xx Informational The request was received; the process continues.
2xx Success The action was successfully received, understood, and

accepted.
3xx Redirection Further action must be taken to complete the request.
4xx Client Error The request contains bad syntax or cannot be fulfilled.
5xx Server Error The server failed to fulfill an apparently valid request.

BOOK.indb 184 19/05/22 5:51 PM

https://datatracker.ietf.org/doc/html/rfc6455

ptg39201256

Chapter 6: API Development 185

6

Next, we focus on the 4XX and 5XX status codes.

For a simple example of an error code format, let’s look at how Cisco DNA Center responds
to an API HTTP POST request when the wrong developer name is provided in the authen-
tication method. This request should yield the 401 error code because the error has come
from the client side. The sample output for this request is shown in Example 6-13.

Example 6-13 Sample Output of HTTP Error Code 401

HTTP/1.1 401 Unauthorized

Server: nginx/1.13.12

Date: Tue, 17 Aug 2021 10:03:19 GMT

Content-Type: application/json

Content-Length: 72

Connection: keep-alive

Via: api-gateway

Cache-Control: no-store

Pragma: no-cache

Content-Security-Policy: default-src 'self' 'unsafe-inline' 'unsafe-eval' blob:
data:

X-Content-Type-Options: nosniff

X-XSS-Protection: 1

Strict-Transport-Security: max-age=31536000; includeSubDomains

X-Frame-Options: SAMEORIGIN

{"error":"Authentication has failed. Please provide valid credentials."}

From this information, you can see the details. The 401 error code field is an integer coding
the error type. Next to this is a string giving the unauthorized message. Both the code and
message are mandatory. The last line is the description; this is an optional field in the error
response. If it is used in the error format, it can provide detailed information about which
parameter is missing or what the acceptable values are. The Cisco DNA Center API does pro-
vide this information, and from the output, you can see that this is a string. In this case, the
error denotes that the incorrect credentials were provided in the request.

The only other optional information not shown in the example is the infoURL field. When
used in the error response, it would provide a URL linking to documentation.

API timeouts should be handled by the following error codes: 408, 504, and 599. If a 408
error code is returned when consuming, the client or application did not produce a request
within the time that the server was prepared to wait and thus shut down the connection. In
the RESTful client/server architecture, a client consuming an API does not send the complete
HTTP request within three minutes. In this case, the connection is closed straightaway, and the
server should issue a 408 error code within the header field back to the client in the response.
In some cases, the client might have a remaining request that has been delayed on the wire. In
this case, the client could repeat the request but only by creating a new connection.

The following output shows HTTP error code 408 received by the client:

HTTP/1.1 408 REQUEST_TIMEOUT

Content-Length:0

Connection: Close

BOOK.indb 185 19/05/22 5:51 PM

ptg39201256

186 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

The 504 status error is a timeout error. It denotes that a web server attempting to load a page
for you did not get a response within a given timeframe from another server from which
it requested the information. It’s called a 504 error because this is the HTTP status code
that the web server uses to define this type of error. Typically, the error can happen for a
few reasons, but the two most common are that the server is overloaded with requests or is
under some form of attack (DDoS), or some maintenance is being performed at the time the
request was sent. Other possible issues could be DNS or firewall rules. From an API design
side, you should ensure that the API Gateway sends an HTTP response to the client and set a
maximum integration timeout, such as 30 seconds.

Nginx (https://www.nginx.com/) is good choice as an API gateway because it has advanced
HTTP processing capabilities needed for handling API traffic. It also can add higher time-
outs such as connect_timeout, send_timeout, or read_timeout if there are known or
expected network latency issues to the API destination (see Example 6-14).

Example 6-14 A 504 Error Code Generated by an Nginx API Gateway

<html>

<head><title>504 Gateway Time-out</title></head>

<body bgcolor="white">

<center><h1>504 Gateway Time-out</h1></center>

<hr><center>nginx/1.13.12</center>

</body>

</html>

Also like error code 504 is error code 599. This status code is not specified in any RFCs but
is used by some HTTP proxies to signal a network connect timeout behind the proxy to a
client in front of the proxy. This error handling code is issued if a server takes too long to
respond (most people have encountered this typical error when requesting information over
the Internet). The server should generate this error code to prevent the developer or applica-
tion from waiting in an endless state for a reply. The error should be triggered by the server
being overloaded; thus, the response back to the client or application notifies them that the
server is taking too long to respond. When a client makes an API call to a server, the server
only begins the countdown timer when the server receives the request and begins counting
how long it takes to respond. In most cases, this error is caused by network latency.

The common element of error codes 408, 504, and 599 is that they are seen and used in
cases that can be linked to limiting—whether the issue is limited resources on the server, the
network, or timing. Rate limiting in an API is an important design concept because it pre-
vents an API from being overwhelmed by too many requests. Consequently, API rate limiting
is put in place as a method of defense. No matter whether the request is genuine or mali-
cious, rating limiting should be implemented in an API design to ensure service availability
and performance.

As you saw with the IMDb API, rate limiting is applied based on the developer’s account. As
you can see in the example shown in Figure 6-13, even the top tier account does not permit
unlimited use. This method used by IMDb and other API providers is referred to as a devel-
oper rate limiter in which the number of API requests is tied into the developer’s account
or API key. Another type of rate limiter is a concurrent rate limiter. This method tracks or
limits the number of parallel sessions. They could be limited based on developer, IP address,

BOOK.indb 186 19/05/22 5:51 PM

https://www.nginx.com/

ptg39201256

Chapter 6: API Development 187

6

API key, or any other type of identifier—even developer location, such as country. Concur-
rency is used to help prevent intentional attacks such as DDoS attacks.

NOTE When limits are reached, the APIs return a limiting signal or a 429 HTTP response.

Figure 6-13 API Rate Limiting in IMDb Based on Developer Accounts

There are several rate limiting techniques and algorithms for measuring and limiting rates.
Depending on the developer case, each has its own implications and caveats.

Token bucket is like an allowance. Before the API call is allowed to continue, the token
bucket is checked to see whether there are any tokens in it. If there is a token in the bucket,
the request is able to continue. If, however, the token bucket is empty, the request is denied.
Tokens are added in a fixed rate, depending on the agreement and contract, such as per day,
per hour, or even per minute.

Leaky bucket is similar to token bucket: the rate is limited by the amount that can drip or
leak out of the bucket. The leaky bucket algorithm allows a client or application to make
an unlimited number of requests in sporadic bursts of time. This technique helps shape or
smooth out traffic if it is expecting the traffic will burst instead of discarding the request
when a threshold or limit is reached.

There is also the fixed window (also known as simple window). As the term fixed implies,
a fixed rate tracks the number of requests being made with a counter. This rate is then

BOOK.indb 187 19/05/22 5:51 PM

ptg39201256

188 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

administered via a time interval. This permits only the fixed number of requests in the time
allowed. For example, if a client or application is allowed to make 1000 calls per day, they
could make these calls within 30 minutes and saturate the API resources.

Sliding window addresses the issues that can occur with the fixed window algorithm. The
sliding window algorithm, like the leaky bucket, helps smooth out traffic. It can do this
by setting a counter, but it considers the previous window to shape the traffic, estimating
the size of the current request rate for the current window. This creates a rolling window
smoothing out the traffic.

Caching
Caching can improve the performance of an API and lower the number of requests being
sent to the server. API caching achieves this result by using an expiration mechanism. On the
server, caching reduces the need to send a full response back to the client. In both cases, it
reduces network bandwidth requirements.

There are two main types of cache headers: expires and cache-control. The expires header
sets a timer for a date/time in the future, and after it expires, the client needs to send a
new request to the API. Cache-control is a preferred expiration mechanism (or a failsafe for
expiration caching). The cache-control header states how long the cache will be available.
Cache-control has several options, referred to as directives. The directives, described here,
determine whether a response is cacheable and can be set to specifically determine how
cache requests are handled.

■ no-cache: The content can be cached but must be revalidated for every request until
the server provides the content. This directive checks to see if there is an updated ver-
sion. The no-cache directive uses the ETag header (a response header uses a token that
identifies the version or state of a resource if a resource changes, as does the ETag).

■ no-store: This directive is normally used for sensitive data (such as credit card or bank
details). This means the cache cannot be stored.

■ public: This directive means the resource can be stored by any cache and by any inter-
mediate caches.

■ private: Unlike public, this directive can be cached only by a client and not by an
intermediate cache.

■ max-age: This directive indicates the maximum time that a cached response should be
used (seconds). The maximum value is 1 year (31,536,000 seconds).

Figure 6-14 shows the three types of API cache models. The first is a client, or private, cache
model; it lives on a client machine. Typically, this type of cache is used by an individual
developer or application. A proxy cache resides between the client and the API server. Some
content delivery networks/content distribution networks (CDNs) and ISPs (Internet
service providers) use a proxy cache because the API is meant to be used by many develop-
ers or applications. The final example is an API server, or gateway, cache; it is configured on
the API server itself. An API gateway responds to a client or application request by looking
up the endpoint response from the cache instead of making a new request.

BOOK.indb 188 19/05/22 5:51 PM

ptg39201256

Chapter 6: API Development 189

6

REST Client/
Application API

Client Cache

Proxy

Server CacheProxy Cache

Figure 6-14 Three Types of API Cache Models

Exam Preparation Tasks
As mentioned in the section “How to Use This Book” in the Introduction, you have a couple
of choices for exam preparation: the exercises here, Chapter 17, “Final Preparation,” and the
exam simulation questions in the Pearson Test Prep Software Online.

Review All Key Topics
Review the most important topics in this chapter, noted with the Key Topic icon in the outer
margin of the page. Table 6-3 lists a reference of these key topics and the page numbers on
which each is found.

Table 6-3 Key Topics for Chapter 6

Key Topic
Element

Description Page
Number

Paragraph Add a CLI wrapper 174
Section API Design Considerations 177
Section API Authentication Models 179
Section Flow Control (Pagination vs. Streaming) 181
Figure 6-12 Stateless versus Stateful Connection Differences

Between RESTful APIs and Streaming APIs
183

Section Caching 188

Complete Tables and Lists from Memory
There are no memory tables or lists for this chapter.

Define Key Terms
Define the following key terms from this chapter and check your answers in the glossary:

Transport Layer Security (TLS), software development kit (SDK), OpenAPI Specification
(OAS), content delivery network/content distribution network (CDN), SwaggerHub, API
inside-out design, API outside-in/user interface (API first approach), pagination

References
URL QR Code

https://swagger.io/tools/swaggerhub/

BOOK.indb 189 19/05/22 5:52 PM

https://swagger.io/tools/swaggerhub/

ptg39201256

190 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

URL QR Code

https://imdb-api.com/swagger/IMDb-API/swagger.json

https://github.com/CiscoDevNet/DNAC-Python-SDK

https://en.wikipedia.org/wiki/Command-line_interface

https://click.palletsprojects.com/en/8.0.x/why/

http://www.rfc-editor.org/rfc/rfc3986.txt

https://datatracker.ietf.org/doc/html/rfc6455

https://www.nginx.com

BOOK.indb 190 19/05/22 5:52 PM

https://imdb-api.com/swagger/IMDb-API/swagger.json
https://github.com/CiscoDevNet/DNAC-Python-SDK
https://en.wikipedia.org/wiki/Command-line_interface
https://click.palletsprojects.com/en/8.0.x/why/
http://http://www.rfc-editor.org/rfc/rfc3986.txt
https://datatracker.ietf.org/doc/html/rfc6455
https://www.nginx.com

ptg39201256

This page intentionally left blank

ptg39201256

CHAPTER 7

Application Deployment

This chapter covers the following topics:

■ The Evolution of Application Responsibilities: This section covers the background
and the transition from monolithic silos to cross-functional teams.

■ CI/CD Pipeline Implementation: This section helps you understand CI, CD, and GitOps
principles and functionality and how application deployment has changed over time.

■ Application Deployment Methods over Time: This section investigates different
cloud deployments, the steps required, and proper app design for cloud portability.

■ Software Practices for Operability: The 12-Factor App: This section explores key
components that make for scalable, available, and observable applications in both on-
premises and cloud-based data centers.

This chapter maps to the Developing Applications Using Cisco Core Platforms and APIs
v1.0 (350-901) Exam Blueprint Section 4.0, “Application Deployment and Security,” specifi-
cally subsections 4.2, 4.5, and 4.6.

Traditionally, after an application was ideated, created, and developed, the responsibility of
the development team ended, and the resulting work product was given to the operations
teams to deploy and maintain for the end users. However, over the past decade, the demarca-
tion that once existed between the two teams has blurred, especially as software develop-
ment methodologies became iterative and agile, rather than releases at specific points in time
when features obtained critical mass. The resulting change in approach has created not only
many new ways that applications can move from code to production but also changes in the
ongoing maintenance and improvement of the application, as well as where that application
resides in relation to both the application owner and the users.

To this end, several organization structures and philosophies have been borne that enable
organizations to make such a drastic shift, including the hybridization of development and
operations (DevOps) and teams focused on maintaining and ensuring the stability of the
application and its underlying infrastructure using automated processes and enhanced vis-
ibility enabled through new application design approaches. These teams work in tandem,
leveraging automated code test, build, and deployment methodologies for both infrastruc-
ture as well as applications to ensure that applications are delivered reliably and consistently
to everyone, regardless of whether those applications are hosted in a private or public cloud.

This chapter provides context around this foundational shift in application development
and delivery, starting with the early days of developers and system administrators, through
modern-day agile teams delivering microservices-based applications to a cloud provider with
the click of a mouse or a commit to the main branch of code. Although the focus of this
chapter is on applications, methodologies appropriate and required for the underlying infra-
structure of the application are covered also, because this is a foundational requirement for

BOOK.indb 192 19/05/22 5:52 PM

ptg39201256

reliable delivery. Finally, concepts and ideas for designing an application for this new para-
digm are covered and intertwined throughout the discussion as key points for any develop-
ment teams.

“Do I Know This Already?” Quiz
The “Do I Know This Already?” quiz allows you to assess whether you should read this
entire chapter thoroughly or jump to the “Exam Preparation Tasks” section. If you are in
doubt about your answers to these questions or your own assessment of your knowledge
of the topics, read the entire chapter. Table 7-1 lists the major headings in this chapter and
their corresponding “Do I Know This Already?” quiz questions. You can find the answers in
Appendix A, “Answers to the ‘Do I Know This Already?’ Quizzes.”

Table 7-1 “Do I Know This Already?” Section-to-Question Mapping

Foundation Topics Section Questions

The Evolution of Application Responsibilities 1–2
CI/CD Pipeline Implementation 3–5
Application Deployment Methods over Time 6–7
Software Practices for Operability: The 12-Factor App 8

1. What is the core tenet of DevOps?
a. A spreading of work to limit failure domains
b. Training operations teams to write code
c. A cultural shift focused on empathy and understanding
d. Automating infrastructure and application deployments

2. Where do DevOps and SRE principles overlap?
a. They bring in new people to institute process changes.
b. Adoption in changes of process ensures uptime, availability, and understanding of

the many-faceted nature of application deployment.
c. They don’t overlap; they are two conceptually different concepts.
d. Change is enforced from a cultural shift at the top of an organization with no new

personnel.
3. What is the purpose of continuous integration?

a. To integrate new code into production
b. To add new features to an existing application
c. To integrate user feedback into the code development process
d. To build/compile, test, and secure code

4. What data format or language is typically used to build CI/CD pipeline definitions?
a. JSON
b. YAML
c. XML
d. Python

BOOK.indb 193 19/05/22 5:52 PM

ptg39201256

194 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

5. Which of the following is not a valid application CD release strategy?
a. Blue-green
b. Canary
c. Pilot
d. Rolling

6. What does a serverless infrastructure provide to an end user?
a. Code runs without servers.
b. Operations and management of the server platform and its underlying dependen-

cies are removed.
c. Code runs anywhere, automatically.
d. All of these answers are correct.

7. Which statements about cloud abstraction are true? (Choose two.)
a. More abstraction requires less management of the underlying compute for the

application.
b. More abstraction provides more flexibility in how the code is deployed and run.
c. More abstraction requires more management of the underlying compute for the

application.
d. More abstraction provides less flexibility in how the code is deployed and run.

8. What is a 12-factor app?
a. Twelve areas of unit testing that an application undergoes before being moved to

production
b. Twelve aspects of the user experience that every app should adhere to
c. Twelve tests of security and application functionality to be performed during a

CI/CD pipeline build
d. Twelve best-practice recommendations on designing and delivering a web-based

application

Foundation Topics

The Evolution of Application Responsibilities
Application development and delivery have gone through a drastic shift in the past several
decades, creating new roles, methodologies, and processes along the way. Prior to any dis-
cussion of how things have evolved, it is important to set a baseline of terminology and tools
because the evolution of these processes, methodologies, and mindsets has created a bit of
confusion and blurring of lines, even for the most experienced individuals. After the defini-
tions have been established, it becomes much easier to see where tooling, processes, or both
are required to achieve the end result of application deployment.

The Hybridization of Development and Operations
On the surface, development and operations are tasked with different responsibilities
(sometimes in conflict with one another) for the apps and infrastructure that support the
end customers of a business. In the traditional software development lifecycle (SDLC),
developers are responsible for adding new features, bug fixes, or product enhancements for

BOOK.indb 194 19/05/22 5:52 PM

ptg39201256

Chapter 7: Application Deployment 195

7

the applications that directly impact anyone who uses those applications or services. These
developers would work within their defined teams to prioritize the tasks that were to be
accomplished within the window of time in which the work was slated. When the work was
completed and tested, the resulting work product was shipped to the operations team to
deploy and run.

Where development left off, operations picked up. This team (or set of teams, depending
on the application and infrastructure) was responsible for keeping the application or sys-
tem functional and responsive for the end customers. This team was also thought of as the
front-line support for any issues that manifested, either through the deployment or through
operation of the application/system at scale (both in network and in load) that wasn’t feasible
during testing in the development lifecycle.

You can easily see how these two teams could quickly come in conflict with one another:
operations teams blaming developers as being “lazy” in their code by making assumptions or
not testing the full suite of features/options/functionality and developers blaming operations
for being resistant to change and always saying “no” to updates or new deployments to sup-
port the application/system. This conflict, which is very unproductive for cohesive culture
within an organization, also creates problems for end users of the application or system
because features are slow to be rolled out and adopted against the codebase, resulting in a
less than satisfactory experience.

While the root causes for the distrust vary by organization and team, much of the friction is
caused by the seemingly opposing ideas of the two teams: development is supposed to add new
features, whereas operations is tasked with keeping the application or system running at all times.
New features or bug fixes merged into the production codebase could have unintended knock-on
effects that could require operations to troubleshoot an issue beyond their control, while devel-
opment must respond to the needs of the end users to ensure a quality experience, attract new
users, or prevent users from abandoning the service for something else.

You could additionally make an argument that some of the issue stems from trust between the
teams. Neither team believes that the other is operating in good faith and is only focused on the
metrics that they are judged on, rather than working in tandem to ensure that the ultimate metric
is achieved, supporting end users throughout their journey within the application or service.

The Journey to DevOps
In 2009, the term DevOps was first coined by Patrick Debois. The portmanteau of develop-
ment and operations was followed by the term days as the name of the conference that he
arranged in October that year. The use of the term rocketed from there and has been used
in a variety of contexts ever since. However, over the years the term has been conflated to
mean a variety of things, some of which are encompassed in DevOps, some of which are
tangential to, and some that are simply used incorrectly (whether intentional or not).

DevOps is rooted in the principle that while both development and operations have different
roles to fill within the delivery of applications and services to end users, they are both there
to enable a business to perform its end function for those customers and that the conflict
that arises between these two functions creates a friction point that hinders the end goal. To
efficiently create and deliver an application or service, the two teams must ensure a strong
working relationship and have empathy for the critical roles that each plays in enabling the
business; in short, “developers that have operational mindsets and operations teams that
think like developers.”

BOOK.indb 195 19/05/22 5:52 PM

ptg39201256

196 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

In addition to the cross-functional nature of the teams, there are several generally accepted
practices for DevOps teams to implement within their environment.

■ An ability to automate the infrastructure lifecycle process

■ A version control system (VCS) or some other source code management (SCM)
platform

■ An automated build process, including testing and security scanning

■ An automated delivery or deployment process, with an agreed-upon methodology for
deploying the code into production prior to full rollout

■ Observability and instrumentation to provide required metrics back to measure against
key performance indicators

■ A real-time communications system that can link human interactions with feedback
from observability instrumentation

A Cultural Shift
What often gets lost in any discussion of DevOps is that an organization does not simply
“buy DevOps.” It is not the tools, the process, or even a job role at its core; it’s a cultural
change and standard method of operation that needs to be adopted within an organization.
This requires an organization that embraces change and failure, is open and transparent in
communication (and systems, code, and metrics), and most importantly, creates and fos-
ters trust between organizations. Only through embracing this culture can an organization
decide on the actual implementation of how DevOps will look internally, from roles and
responsibilities, tooling, and operational processes. These processes work toward these
goals of embracing a culture of change and agility, ensuring sources of truth for all code that
all have visibility to, providing testing and validation of code prior to release, and enabling
automated infrastructure changes, allowing teams to reduce errors and focus on higher-level
problems associated with enabling the business. However, the tooling, team organizational
and reporting structures, and even the methodologies used to release the software vary dras-
tically from organization to organization (and sometimes between business entities within
an organization). This is the flexibility (and some would say challenge) with implement-
ing DevOps; there’s no single way to perform these functions, and it can take many small
changes or iterations to settle on the exact tooling and procedures for an organization or
entity. As DevOps has roots in agile software development methodology, some would say
this is a feature rather than a bug.

The Emergence of the Site Reliability Engineer(ing)
The concept of site reliability engineering (SRE) predates the creation of the term
DevOps. Originally a concept of the Google engineering teams, the idea of the SRE was to
ensure the reliability and uptime of the systems used within Google. This original team of
SREs was tasked with spending approximately 50 percent of their time on operations tasks,
with the other half of their time focused on product development and management duties.
This approach provided a natural visibility into both the creation and design of the applica-
tions, as well as the view of the requirements of running code on large-scale production
systems.

BOOK.indb 196 19/05/22 5:52 PM

ptg39201256

Chapter 7: Application Deployment 197

7

Modern-day SREs generally have backgrounds in software design and engineering, systems
engineering, system administration, and network design and engineering (or some permuta-
tion of the listed competencies). These individuals act as a conduit, assisting in bridging
the gaps between operations and development, while also providing leadership and vision
beyond the sprint, anticipating and remediating potential issues before they appear to ensure
utmost reliability. In its purest form, SRE can be practiced and performed by anyone; it
needn’t be a specific job title.

The distinction here, while somewhat pedantic, is important when referring to the differ-
ences in organizational concepts and processes. DevOps principles work on breaking down
the walls that exist between development and operations through culture and a blending
of teams and responsibilities (though everyone has their own unique strengths and weak-
nesses), whereas SRE looks to solve the silo problem through adding additional people with
the responsibility of translation to the process. Neither solution is right or wrong, but is a
by-product of the organization and business unit to which these principles are applied, the
current talent of the contributing teams, and the ability to upskill and learn new processes.
To use the common answer within IT, “it depends.”

SRE Responsibilities and Tenets
Much like DevOps, there is no firm consensus on what exactly is in and out of scope for an
SRE. The responsibilities often vary in scale and scope depending on the organization and
the product or service they deliver. Additionally, SREs may be scope-limited based on their
underlying knowledge or the needs of the business, creating specific SREs focused on infra-
structure or networks, observability and monitoring, or focused on a specific product or
service offered by the organization. These classifications and delineations can be mixed and
matched to ensure the most positive outcome to the services and products being delivered to
the business.

Despite there being no written rules about SRE, some generally accepted practices are men-
tioned most often within the definition of SRE:

■ The lifecycle of the infrastructure is automated, especially anything that introduces
“toil” into the build-and-deploy process.

■ A rigid focus is placed on reliability above and beyond what would be considered
acceptable through definition of SLAs/SLOs. This could be achieved through systems,
network, or application design, or a combination of the three to achieve the desired
reliability, latency, or efficiency specs that exceed objectives.

■ Anything implemented as part of the infrastructure lifecycle process should include
instrumentation and observability. This also should follow the same principle as reli-
ability, in that the observability should provide information that isn’t known to be
needed ahead of time (that is, being ahead of the curve).

Out of these practices, you could create principles that SRE should strive for that are tangen-
tial to these tenets. Again, there is no common standard for these principles, but by combing
through SRE requirements docs posted to job boards, you can see the varying responsibili-
ties that these individuals can have, but you can draw a parallel with these responsibilities
against these core tenets. Some SREs specifically focus on things like capacity planning and
infrastructure design, which align with the second and third points, because planning and

BOOK.indb 197 19/05/22 5:52 PM

ptg39201256

198 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

design can’t occur without proper understanding of the current environment’s load, latency,
and growth in usage over time (which requires observability tooling). Other SREs may be
focused on the operational efficiencies gained through creation of CI/CD pipelines, which
focuses on the energy, time, and frustration spent in moving apps from development to pro-
duction in a secure manner (the “toil” mentioned previously) but doing so in a fashion that
ensures reliability and uptime of the application and system. This function touches on all
three principles because automated infrastructure and deployments are beneficial only when
uptime is compromised and any resulting issue with the application/system is identified
through detailed observability at all layers.

SRE vs. DevOps
As you look over the practices and principles of SRE, you can easily see the alignment and
overlap that they have with DevOps and some of the responsibilities that fall out of that cul-
ture. This overlap is not accidental because both ideas came from similar lineage within the
evolutionary path of the SDLC. However, the ways in which they achieve the overall goals
differ in their approach.

Recall that DevOps is a change in culture, breaking down the traditional walls that existed
between development and operations through empathy and cross-functional teams that span
both sides of the application/system experience. The idea is that through cross-pollination
of all members of the team, everyone views all aspects of delivering the outcome to the busi-
ness with a similar lens, leading to better outcomes for all. The tooling and process that fol-
low this organizational shift are ancillary to the overall shift.

SRE, on the other hand, does not require the outright blending of development and opera-
tions. Rather, it achieves this goal through specific individuals or teams that are tasked with
overseeing the integration work needed to achieve (and exceed) the outcomes required by
the business for the service or application. While culture must shift in support and recogni-
tion of the work that SRE is tasked with performing, it may not necessarily be as drastic a
shift as that within DevOps.

Finally, to put a simplistic point on this, Google engineers, in their popular SRE books, state
that “SRE implements DevOps,” further confusing everything and providing the perspective
that everything is made up and nothing really matters (at least in title). The important take-
away is that empathy and understanding between development and operations are critical to
being able to deploy and maintain services at scale while ensuring changes and updates are
added in a timely fashion to the codebase.

Continuous Integration/Continuous Delivery (Deployment)
In this chapter alone, continuous integration/continuous delivery (or deployment), also
known as CI/CD, has been mentioned on several occasions and is a key piece to implement
regardless of whether SRE or DevOps methodology is being followed. While CI and CD are
often used together, CI/CD is a combination of two concepts, driven together to create an
automated outcome for both development and operations teams. The “pipeline,” the process
that software goes through as it is put through the CI/CD process, is also only a function or
sidecar to a larger version control system (VCS). This VCS provides some integration with
the “runner” that will perform the actual integration delivery/deployment process based on
the configuration applied to a specific repository. This process runs whenever an update is
added to the repository (either in the “main” or a feature branch), and the process can be com-
pletely customized to fit the requirements of the repository of code that is being worked on.

BOOK.indb 198 19/05/22 5:52 PM

ptg39201256

Chapter 7: Application Deployment 199

7

The choice of VCS and CI/CD provider is driven mostly by the organization, collaboration
and security requirements, and third-party integrations with other functions (such as secu-
rity and vulnerability scanning). Typical VCS include git, svn, hg, or p4 (though git is most
prevalent), any of which could be hosted on-premises or through an SaaS offering. After
the VCS system is selected, the desired CI/CD platform can be chosen. Some of them, such
as Jenkins, are external applications that require integration into the chosen repositories,
whereas others, such as GitLab-CI, integrate directly with GitLab to provide a single portal
for both source code and pipelines. For the scope of this section, the choice of VCS and CI
provider is largely inconsequential to the overall understanding of the functions they pro-
vide, and this section focuses on those functions.

NOTE Specific implementations of a VCS and technology (such as a git-based implementa-
tion with GitHub, GitLab, or BitBucket) are referred to as a source code manager (SCM).
Although VCS and SCM are sometimes used interchangeably, these two terms refer to two
separate concepts.

As mentioned earlier, the full pipeline provided by a CI/CD system is two discrete functions,
integration and delivery/deployment, which are interrelated but serve two purposes and
divisions in labor. The following sections describe this division and the functions that occur
within the two subsystems in more detail.

Continuous Integration (CI)
Continuous integration is the cornerstone of a pipeline and generally the first item to be
implemented when organizations need to accelerate the speed at which code moves into pro-
duction, because without the integration of code, it cannot be delivered or deployed to the
end systems. As with most concepts addressed so far, what comprises the act of integration
depends on the organization and the level at which different stages can be successfully auto-
mated as part of the pipeline.

The need for CI arises with the nature of distributed development teams working across a
variety of segments of the code concurrently, using the tools within the VCS (such as sup-
port for “git”) to commit, branch, and merge the respective features and fixes into the main-
line codebase. Rather than a single individual writing code and compiling it against “their
machine” (which could have specific dependencies or one-off configurations applied to it
that make the software compile and run as expected), the CI platform creates a single plat-
form against which all code is linted (validated for proper syntax), tested against a variety of
units or other tests (testing within the code itself, rather than at the application/functionality
level), scanned against security vulnerabilities, and published as a complete software package
(also known as an “artifact” of the CI process). These artifacts can be packaged as releases,
ready to be shipped off to a staging or production environment through manual interaction
with the finished package and the end systems on which it will be deployed.

The flexibility of the CI pipeline allows for complete customization of what tests are per-
formed where and to what level. For example, as developers work on adding new features,
they may create a branch within the repository to separate this work from the main branch.
At each commit to the branch, the code could be put through a series of unit tests to ensure
that the code itself works at a functional level based on desired inputs and outputs. These
tests provide feedback at every commit being made and may be sufficient for work within

BOOK.indb 199 19/05/22 5:52 PM

ptg39201256

200 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

a specific feature. However, once the code is merged from the feature branch into the main
code, it may undergo additional testing from vulnerability or security scans to ensure that
the entire package as written does not contain a known vulnerability, which may not have
been tested adequately in performing the same security analysis against the code for a single
feature. This level of customization is entirely possible within the pipeline.

Continuous Delivery: One of the CDs
The latter half of the CI/CD pipeline is the method in which the resulting integration artifact
makes it from the VCS release system out to the end users. Most sources online reference
CD as a monolithic item that is always the same, but subtle differences exist, depending
on whether the resultant pipeline uses continuous delivery or continuous deployment.
Although the two have a similar outcome, the resulting integrated software from the VCS
is deployed to end users; both ideas are covered in this section for completeness. In a real-
world environment, only one method would be used per code repository, though both
methods could be used within a single organization or business unit, depending on release
methodologies in place.

The idea behind continuous delivery is that after the resultant software is tested and built, it
is “shipped,” or placed in a location in which it can be manually placed on the infrastructure,
often in a Q/A or test environment. This allows for some level of human control over the
environment, ensuring that the supporting infrastructure and required set of test users are
ready prior to allowing the application or service to “go live.” This ensures focused testing
across the desired range of users and situations, allowing staggered or segmented release of
the resultant product in a controlled manner, as defined by the organization’s methodolo-
gies or processes. When the testing phase is completed and the key results, metrics, and
performance indicators are reviewed and found to be satisfactory, the code is pushed to the
production environment.

Continuous Deployment: The Other CD
Continuous deployment takes the concept of continuous delivery one step further. Rather
than relying on manual intervention to move the software into test and then to production,
continuous deployment automates the movement into production. While the process doesn’t
move every node/system to the new version of the application/service at once, it assumes
that end users, rather than designated test or Q/A groups, are responsible for testing the
service. As you can imagine, this testing requires an understanding and readiness of the sup-
porting infrastructure, as well as levels of observability and instrumentation to be able to
identify issues with the rollout as they appear (sometimes users are not aware of or are more
tolerant of less than expected performance and may not report issues or be aware of how to
report them). Teams responsible for monitoring the application, infrastructure, and overall
performance must also be aware of how the new version is released into production.

Like both CI and continuous delivery, the way in which the deployment of the committed
code occurs is entirely up to the way the pipeline is constructed. In general terms, only the
“main” code branch is deployed directly to production because it includes all the different
components that make up the full application/service. Feature branches are still worked on
independently and validated through the defined CI process for nonmain branches. When
the code from the feature branch is merged into the main branch, a separate CI process,
followed by the deployment process, is executed, and the new code moves into production.
If code is inadvertently committed to the main branch, the pipeline should be written well
enough to ensure that it catches and prevents broken code from being automatically moved

BOOK.indb 200 19/05/22 5:52 PM

ptg39201256

Chapter 7: Application Deployment 201

7

into production, but it is entirely within the realm of possibility that it may pass the required
tests but not function correctly in production. Because of this, strong adherence to the
branch/merge discipline, a focus on unit and functional testing, and a continuous improve-
ment cycle for the pipeline should all be implemented to adhere to the rigorous uptimes
required by production systems, applications, and services.

CI/CD Pipeline Implementation
Conceptually, continuous integration and continuous deployment create a simple process to
move code from a VCS repository into a deployment environment. However, within the overall
pipeline are several stages to the process, ensuring that the code is verified and tested before
implementing in an environment (with potential user impact). While every pipeline is different
based on the VCS, development language, application, system requirements, and so on, some
general assumptions can be made to apply broadly across most pipelines and are covered in the
following sections. The important point to remember is that the process is flexible and that the
end-state pipeline should reflect the requirements of the code and organization.

Example 7-1 illustrates a sample CI/CD pipeline for network automation using Ansible. This
pipeline has several stages that will validate the syntax of the committed files, deploy to a
given environment (test, prod), and then verify that the changes deployed did not affect the
reachability of services within the network.

Example 7-1 Sample CI/CD Pipeline

stages:

 - validate

 - deploy_to_prod

 - deploy_to_test

 - verify_deploy_to_prod

 - verify_deploy_to_test

 - verify_website_reachability

lint:

 stage: validate

 image: geerlingguy/docker-centos8-ansible:latest

 variables:

 script:

 - ansible-playbook --syntax-check -i inventory/prod.yaml site.yaml

 - ansible-playbook --syntax-check -i inventory/test.yaml site.yaml

deploy_to_prod:

 image: geerlingguy/docker-centos8-ansible:latest

 stage: deploy_to_prod

 script:

 - echo "Deploy to prod env"

 - ansible-playbook -i inventory/prod.yaml site.yaml

 environment:

 name: production

 only:

 - master

BOOK.indb 201 19/05/22 5:52 PM

ptg39201256

202 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

deploy_to_test:

 image: geerlingguy/docker-centos8-ansible:latest

 stage: deploy_to_test

 script:

 - echo "Deploy to test env"

 - ansible-playbook -i inventory/test.yaml site.yaml

 environment:

 name: test

 only:

 - test

verify_test_environment:

 image: ciscotestautomation/pyats:latest-robot

 stage: verify_deploy_to_test

 environment:

 name: test

 script:

 - pwd

 - cd tests

 # important: need to add our current directory to PYTHONPATH

 - export PYTHONPATH=$PYTHONPATH:$(pwd)

 - robot test.robot

 artifacts:

 name: "TEST_${CI_JOB_NAME}_${CI_COMMIT_REF_NAME}"

 when: always

 paths:

 - ./tests/log.html

 - ./tests/report.html

 - ./tests/output.xml

 only:

 - test

verify_prod_environment:

 image: ciscotestautomation/pyats:latest-robot

 stage: verify_deploy_to_prod

 environment:

 name: test

 script:

 - pwd

 - cd tests

 # important: need to add our current directory to PYTHONPATH

 - export PYTHONPATH=$PYTHONPATH:$(pwd)

 - robot prod.robot

BOOK.indb 202 19/05/22 5:52 PM

http:///tests/log.html
http:///tests/report.html

ptg39201256

Chapter 7: Application Deployment 203

7

 artifacts:

 name: "PROD_${CI_JOB_NAME}_${CI_COMMIT_REF_NAME}"

 when: always

 paths:

 - ./tests/log.html

 - ./tests/report.html

 - ./tests/output.xml

 only:

 - master

internet_sites:

 image: ciscotestautomation/pyats:latest-robot

 stage: verify_website_reachability

 environment:

 name: test

 script:

 - pwd

 - cd tests/websites/

 - make test

 only:

 - master

Pipeline Components
A CI/CD pipeline is composed of several stages, each of which has a defined action or set
of actions defined within it. These stages are declared at the top of a CI/CD definition file
(usually written in YAML, but varies based on CI/CD provider) and define the process in
moving the code from source to finished product. Figure 7-1 shows the process for a simple
CI/CD pipeline in which the code progresses serially through each of the defined stages of
the process.

Build Test Deploy

compile

compile_a

compile_b

test

unit_test_a

unit_test_b

deploy

deploy_a

deploy_b

Figure 7-1 Serial CI/CD Pipeline

The flow illustrates that the code moves serially between stages, which can be sufficient
depending on the end requirements, but it is possible to create pipelines that work in parallel,
building different components with independent serial pipelines, as shown in Figure 7-2.

BOOK.indb 203 19/05/22 5:52 PM

http:///tests/log.html
http:///tests/report.html

ptg39201256

204 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Build Test Deploy

compile_a

compile_b

unit_test_a

unit_test_b

deploy_a

deploy_b

Figure 7-2 Directed Acyclic Pipeline

The pipeline is also flexible in how the stages are defined and what is included in each stage.
A well-designed pipeline (especially one deploying the finished product to the infrastruc-
ture) should be created in such a way that adequate testing, both at the code and app level,
prevents catastrophic failure when the app is deployed. This may also include security analy-
sis of code dependencies, or vulnerability scans after the app has been packaged, to ensure
that any application moving into production is safe and secure.

Another flexibility of the pipeline is that the same CI and CD process does not need to be
followed for every branch created within the VCS being used. It is possible to define require-
ments for feature or bugfix pipelines that may include the integration and testing but not
create the full package (or create but not deploy to an environment). This approach ensures
that any new commits are checked at the code level but not fully packaged (or deployed),
eliminating the need to ensure code will run at every commit (and possibly saving resources/
cost if running in a cloud environment). However, when the feature/fix is determined to be
complete and the code is moved to the “main” branch, a more complete or comprehensive
pipeline can be invoked that includes the security and vulnerability scanning, as well as the
delivery and deployment of the application to a running environment.

The final decision (and flexibility) within the pipeline is the choice of execution method
(often called executor). These executors are the method in which the “work” being done by
the pipeline is performed and can be performed through direct shell access, virtual machine
instantiation, or container-based methods like Docker and Kubernetes (often abbreviated
K8s due to there being eight letters between the k and s in the name). Because of their prev-
alence and ease of use, most pipelines call on one or more container images to perform the
desired actions. These containers can provide a sanitized build environment with all required
dependencies included and can be pulled from either a public (such as Docker Hub) or pri-
vate (hosted internally using JFrog Artifactory or similar) container registry. When run, the
CI/CD pipeline passes the repository into the container, performs any linting, compiles (or
equivalent in interpreted languages) the code, performs unit or external testing, passes the
completed artifact to an external location, and then deploys the finalized application to an
environment, whether testing, staging, or production.

Build
The build stage is responsible for moving the code from its source to a verified and final
product. The resultant product differs depending on source code, because languages like C,
C++, Java, Python, and Go create binary files (or bytecode), whereas languages like Ruby do
not. However, the result is that the code has been linted (checked for syntactical errors/
omissions), compiled, and (optionally) built into a Docker container.

BOOK.indb 204 19/05/22 5:52 PM

ptg39201256

Chapter 7: Application Deployment 205

7

Test
After the image is built (regardless of binary file, Docker container, or otherwise), automated
testing helps validate that the code is functional at a base level. This may include performing
unit tests of individual components of the functions of the code, performing load or perfor-
mance testing, or validating interoperability with resources required by the application. By
automating these tests, developers ensure their apps deploy correctly to the environment and
behave as anticipated or expected. Thorough testing and validation are required to ensure
that the application is functional as expected; untested functions or integrations are not
caught in this stage and can be a blind spot for developers. Tools like Codecov exist to pro-
vide an understanding of how much of the written code is covered by tests within the pipe-
line, ensuring that as new features are incorporated into the application, testing and coverage
can evolve to ensure the automation doesn’t provide a false sense of security.

Testing also needn’t be a singular phase within the pipeline. Although things like unit tests
should be done at the front end of the pipeline, integration and interoperability tests may
not occur until the release is deployed within an environment (because there may be no way
to perform this test within the pipeline without a deployment). The idea, however, should
always be to catch any issues, exceptions, or errors as early as possible within the pipeline as
is feasible to prevent those problems from leaking into a production environment.

Release/Deliver
If everything succeeds during the testing phase, the software is moved to the release (or
delivery, if keeping with the continuous delivery convention) phase. In this stage, the
compiled and tested software is moved to an artifact repository so that it is ready to be
deployed, whether in manual or automatic fashion. This artifact repository is kept separate
from the source code repository because they serve different functions, and it is impractical
to include compiled binaries that developers do not need within the main repository.

The artifact repository varies depending on the tooling and privacy required for the finished
application. For internal applications leveraging an on-premises CI/CD pipeline, the artifact
could be internal file storage accessible via HTTP/FTP, JFrog Artifactory, or an internal
Docker registry. If the application is deployed via SaaS applications (such as GitHub), the
registry could simply be the “Releases” section of the repository or a container pushed to
Docker Hub. Regardless of the location of the repository, the CI/CD pipeline supports the
passing of credentials through environment variables or through a secret keystore (such as
Vault) to ensure that the credentials can be changed as needed and to ensure that they are
not exposed within the pipeline definition file (because it is committed as part of the source
code repository). The resulting release can signify the end of the pipeline if the goal is only
to deliver the application (for example, delivering an application within a container to be
consumed by other users within their environments), or if moving the application is required
to be a manual process due to a business process.

Deploy
After the application has been released and stored within the artifact repository, it can then
be deployed to one or more environments. To deploy the resultant application to the infra-
structure, the pipeline must be made aware of the systems on which it is to deploy the appli-
cation. While the deployment methodology varies based on the organization or development
team, it is common practice to use some sort of automated configuration management plat-
form, such as Puppet, Ansible, or SaltStack. If the infrastructure supporting the application

BOOK.indb 205 19/05/22 5:52 PM

ptg39201256

206 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

needs to be reprovisioned, any configuration changes could be provided by Puppet, Ansible,
or SaltStack, but also could be done using Terraform to scaffold in preparation for the app’s
deployment.

Much like testing, deployment can occur at multiple stages of the pipeline. Deploying
directly to production may not be in everyone’s plans, so a deployment stage could be added
when a feature branch is added to a testing branch, which will deploy the code to a test envi-
ronment, wherein a limited set of users or testers will validate the function of the app under
conditions that simulate the real world. When this manual testing is deemed sufficient, a
merge can be performed between the testing and main branch, resulting in a deployment to
production of the tested code.

Deployment also offers several different options in rolling the finished product out to the
desired environment. While the product could be deployed to tests all at once, given the
small subset of users, production deployment is done in such a way that the “blast radius”
or number of users affected during any issue encountered during a rollout is minimized.
Because the deployment phase is aware of the infrastructure, the finished application can be
deployed using one of several common methods:

■ Rolling: The application is updated on all nodes in a serial fashion, resulting in users
potentially hitting different versions of the application, depending on how the ingress
traffic is directed, the number of nodes requiring the new release, and the time
required to move the node to the new release.

■ Blue-green: Parallel segments of production are deployed within an environment,
allowing for a complete update of one side (for example, blue) while users are still
directed to the previous version (for example, green). When the blue nodes are fully
updated, the ingress traffic is flipped to direct users to the “blue” rollout. This method
enables quick rollbacks of a deployment, at the expense of having duplicate sets of
infrastructure to maintain parity.

When the deployment is deemed to be a success, the green side can be updated to
the current version of the code/application and used as the environment for which the
next release is deployed to first.

■ Canary: This release is similar to the rolling release, in that nodes are gradually updat-
ed to the new version of the application. However, thresholds define the stages of the
rollout, limiting the scope of impact in a failure. For example, a rollout may start with
15 percent of the nodes being rolled out initially. When this segment’s rollout is suc-
cessful, the deployment would then deploy to another 35 percent (making 50 percent
of the nodes) and then finally deploy to the remaining 50 percent.

The canary rollout offers a failsafe above the rolling release without the need for paral-
lel infrastructure required for a blue-green deployment. However, ensuring a successful
canary rollout is nontrivial due to the instrumentation and feedback loops required to
determine “successful” rollouts. Some CI/CD providers offer integrations to enable a
canary rollout, but they require both nondefault configuration to be enabled and infra-
structure that supports the required metrics to be returned to determine the success
(such as K8s).

BOOK.indb 206 19/05/22 5:52 PM

ptg39201256

Chapter 7: Application Deployment 207

7

Adding Deployment to Integration
While nontrivial, the process taken to perform the integration to software tends to mimic the
procedures used to compile software locally on a developer’s machine. Although developers
need to worry about the abstraction of the executor of the pipeline (such as a container per-
forming the action), they understand these methods and requirements because the process
of building or compiling software is part of their usual set of tasks. Because developers are
already using VCS tools within their organizations, integration testing generally becomes
the first component of the pipeline. This complexity is only modestly increased when using
security and vulnerability management utilities. These tools, such as Synk, can be integrated
within the pipeline with a few simple commands. Others, such as Dependabot, which ana-
lyzes code within a GitHub repository and automatically “bumps” required dependencies
to secure and updated versions, or GitGuardian, which scans repositories for leaked secrets,
credentials, and API keys, don’t even need to be integrated into a pipeline; these tools are
enabled within a repo and will scan after a commit and over time as dependency modules are
updated.

Moving the integrated result into production is another matter, however. Although DevOps
and SRE have broken down the walls that separate developers and operations, develop-
ers may still not have a full picture of the infrastructure to which the application will be
deployed. Even if the target of the deployment is within public cloud infrastructure, develop-
ers within a single application or service may not have the full perspective of the enterprise’s
cloud.

Integration deployment into a pipeline requires knowledge of state, which is in contrast from
the ephemeral actions that are built into integration pipelines. Ensuring that this state is kept
up to date as the infrastructure or environments change is critical and can be overlooked
if maintainers of the code repository do not adhere to rigor and discipline. Finally, moving
the resulting product to the infrastructure requires tooling perform the actual deployment.
These tools vary depending on whether the pipeline is focused on infrastructure or applica-
tions, but generally leverage products such as Ansible, Terraform, or some other automated
configuration management tool (whether it’s open source or vendor specific).

It is also possible to create delivery pipelines without crafting a full CI/CD pipeline file, but
rather using GitOps tooling and integration with a VCS. These delivery tools use various
methods (webhooks, APIs) to connect to the VCS and allow for nondeveloper-focused teams
to leverage the power of traceability/history, version control, feature branching, source code
review, and centralized management of configuration without the (possibly foreign) require-
ments of full CI/CD integration.

Deploying to Infrastructure (Terraform + Atlantis)
Terraform is a popular tool used for infrastructure provisioning. Terraform uses individually
created providers, which contain the possible endpoint APIs that Terraform can use to either
retrieve information from or apply configuration to one or more targets. The configuration
that Terraform follows or applies is defined in a flat text file using HashiCorp Configuration
Language (HCL), which has a similar look and feel to JSON, though the two are not directly
interchangeable.

Terraform has several key differences in the way that it works when compared to some of
the other utilities in this space, such as Ansible, Salt, and Puppet. The first is that Terraform
captures the current state of the target prior to configuration application and then creates a

BOOK.indb 207 19/05/22 5:52 PM

ptg39201256

208 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

delta between the current and desired state. The previous state is saved such that even after
the configuration is applied, the previous state can be restored through a rollback action.
Second, Terraform functions on the concept of immutable infrastructure, devices, and tar-
gets that are meant to be unchanged, and if any change to the infrastructure is required, it
generally destroys and re-creates with the new configuration (rather than updates in place)
though there are exceptions to this. Finally, Terraform is written in Go and does not include a
mechanism for accessing devices over SSH. The only way that Terraform can interface with a
device, controller, or cloud is via REST API. However, Terraform, using its redundancy graph,
ensures that regardless of how the configuration is written within the HCL file, it is applied
in the correct order against the REST APIs; stepwise or ordered configuration is not required
for Terraform to interact with the target’s APIs.

Because Terraform defines the end state of the infrastructure in a codified fashion
(Infrastructure as Code, IaC), it lends itself to being included as part of a CI/CD pipe-
line to effect change on the devices or cloud on which applications will be deployed. In
an infrastructure pipeline, the HCL configuration files are committed to a branch within a
VCS repository, and the pipeline runs the required init, plan, and apply functions against the
branch’s environment (for example, test). After the configuration is applied, automated test-
ing, such as reachability or verification of the infrastructure control plane, can be performed
to ensure the desired outcome is achieved through the configuration. When these tests are
completed, the branch can be merged into the main branch, kicking off a deployment to the
production infrastructure (and subsequent testing, if desired).

Using Terraform is not without its challenges, however. To assist with this effort, applications
such as Atlantis were created, providing an interactive experience between the VCS and the
application of the HCL configuration. Atlantis works by listening for webhooks from the
VCS, which cause it to perform a Terraform action, such as “plan.” When Atlantis performs
the action, it returns the results of the action to the VCS via API. These results are displayed
within the VCS pull request management menu. A workflow would look like the following:

1. An infrastructure developer creates a Terraform HCL file based on the desired end
state.

2. The HCL file is pushed to VCS with a branch.

3. A pull request is initiated within the VCS.
4. Atlantis is mentioned within the VCS PR comment tool to run a “plan” against the

HCL.

5. Atlantis runs the desired plan against the target infrastructure using Terraform. Results
are then returned to the VCS PR window for review.

6. If all checks out, Atlantis can be invoked again using the apply command to deploy
the change to the infrastructure, and the PR can be merged into the main code branch.

7. If someone else attempts to create a PR within the same directory before the previous
one has been applied, Atlantis prevents the second change from occurring until the
first change is either applied or discarded.

It is possible to test Atlantis using a local machine, a GitHub account, and a port-forwarding
tool such as ngrok. The host running the Atlantis server binary needs access to the VCS and
to the target infrastructure, though if using a developer workstation for testing, the port-
forwarding tool can easily expose a URL for the webhooks to be relayed to the workstation

BOOK.indb 208 19/05/22 5:52 PM

ptg39201256

Chapter 7: Application Deployment 209

7

without worrying about firewalls and NAT. The device can also utilize VPN connections to
the infrastructure, allowing Atlantis to be tested using sandboxes or other infrastructure in
remote locations.

Although the Atlantis documentation walks you through the required setup based on VCS,
the example uses a Terraform “null-resource.” Extending this concept, it is possible to provi-
sion some network infrastructure, assuming a Terraform provider exists for that infrastruc-
ture. In Examples 7-2 and 7-3, a set of Terraform configurations containing a “variable” file,
as well as the desired end state of the fabric, is provided.

Example 7-2 Atlantis variable.tf File

internet_sites:

variable "user" {

 description = "Login information"

 type = map

 default = {

 username = "admin"

 password = "C1sco12345"

 url = "https://10.10.20.14"

 }

Example 7-3 Atlantis main.tf file

terraform {

 required_providers {

 aci = {

 source = "CiscoDevNet/aci"

 }

 }

}

Configure the provider with your Cisco APIC credentials.

provider "aci" {

 username = var.user.username

 password = var.user.password

 url = var.user.url

 insecure = true

}

Define an ACI Tenant Resource

resource "aci_tenant" "atlantis-testing" {

 name = "atlantis-testing"

 description = "This tenant is created by terraform using atlantis"

}

After this configuration is committed to a branch within a repository and a pull request (PR)
created, Atlantis receives the webhook; it processes a workflow like using Terraform on a
local workstation (specific Terraform commands are seen in Example 7-4).

BOOK.indb 209 19/05/22 5:52 PM

https://10.10.20.14"

ptg39201256

210 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Example 7-4 Atlantis Receiving the Webhook from GitHub and Performing Terraform
Actions

{"level":"info","ts":"2021-11-29T16:34:15.437-0700","caller":"events/events_control-
ler.go:318","msg":"identified event as type \"opened\"","json":{}}

{"level":"info","ts":"2021-11-29T16:34:15.437-0700","caller":"events/events_control-
ler.go:346","msg":"executing autoplan","json":{}}

{"level":"info","ts":"2021-11-29T16:34:20.841-0700","caller":"events/work-
ing_dir.go:202","msg":"creating dir \"/Users/qsnyder/.atlantis/repos/qsnyder/
devcor-atlantis/1/default\"","json":{"repo":"qsnyder/devcor-atlantis","pull":"1"}}

{"level":"info","ts":"2021-11-29T16:34:21.757-0700","caller":"events/project_com-
mand_builder.go:266","msg":"found no atlantis.yaml file","json":{"repo":"qsnyder/
devcor-atlantis","pull":"1"}}

{"level":"info","ts":"2021-11-29T16:34:21.757-0700","caller":"events/project_finder.
go:57","msg":"filtered modified files to 2 .tf or terragrunt.hcl files: [main.tf
variable.tf]","json":{"repo":"qsnyder/devcor-atlantis","pull":"1"}}

{"level":"info","ts":"2021-11-29T16:34:21.757-0700","caller":"events/
project_finder.go:78","msg":"there are 1 modified project(s) at path(s):
.","json":{"repo":"qsnyder/devcor-atlantis","pull":"1"}}

{"level":"info","ts":"2021-11-29T16:34:21.757-0700","caller":"events/project_
command_builder.go:271","msg":"automatically determined that there were 1 projects
modified in this pull request: [repofullname=qsnyder/devcor-atlantis path=.]","json"
:{"repo":"qsnyder/devcor-atlantis","pull":"1"}}

{"level":"info","ts":"2021-11-29T16:34:21.758-0700","caller":"events/project_
command_context_builder.go:240","msg":"cannot determine which version to use from
terraform configuration, detected 0 possibilities.","json":{"repo":"qsnyder/
devcor-atlantis","pull":"1"}}

{"level":"info","ts":"2021-11-29T16:34:22.059-0700","caller":"events/project_locker.
go:80","msg":"acquired lock with id \"qsnyder/devcor-atlantis/./default\"","json":
{"repo":"qsnyder/devcor-atlantis","pull":"1"}}

{"level":"info","ts":"2021-11-29T16:34:25.066-0700","caller":"terraform/terraform_
client.go:279","msg":"successfully ran \"/usr/local/bin/terraform init -input=false
-no-color -upgrade\" in \"/Users/qsnyder/.atlantis/repos/qsnyder/devcor-atlantis/1/
default\"","json":{"repo":"qsnyder/devcor-atlantis","pull":"1"}}

{"level":"info","ts":"2021-11-29T16:34:26.319-0700","caller":"terraform/terraform_
client.go:279","msg":"successfully ran \"/usr/local/bin/terraform workspace show\"
in \"/Users/qsnyder/.atlantis/repos/qsnyder/devcor-atlantis/1/default\"","json":
{"repo":"qsnyder/devcor-atlantis","pull":"1"}}

{"level":"info","ts":"2021-11-29T16:34:28.251-0700","caller":"terraform/terraform_
client.go:279","msg":"successfully ran \"/usr/local/bin/terraform plan -input=false
-refresh -no-color -out \\\"/Users/qsnyder/.atlantis/repos/qsnyder/devcor-atlantis/
1/default/default.tfplan\\\"\" in \"/Users/qsnyder/.atlantis/repos/qsnyder/
devcor-atlantis/1/default\"","json":{"repo":"qsnyder/devcor-atlantis","pull":"1"}}

This example creates a local artifact (the outfile from Terraform) that can then be applied via
communication in the pull request window, as shown in Figure 7-3.

BOOK.indb 210 19/05/22 5:52 PM

ptg39201256

Chapter 7: Application Deployment 211

7

Figure 7-3 Atlantis Plan Output in PR Workflow

Applying the plan yields more webhooks to the Atlantis application. This is done through the
comment section of the PR workflow, illustrated by Figure 7-4. Example 7-5 shows the out-
put indicating that when the apply command is issued, Atlantis issues a terraform apply.

Figure 7-4 Applying a Terraform Plan Within the PR Workflow Using Atlantis

BOOK.indb 211 19/05/22 5:52 PM

ptg39201256

212 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Example 7-5 Atlantis Performing an Apply Action Using Terraform

{"level":"info","ts":"2021-11-29T16:37:58.469-0700","caller":"events/events_control-
ler.go:417","msg":"parsed comment as command=\"apply\" verbose=false dir=\"\" work-
space=\"\" project=\"\" flags=\"\"","json":{}}

{"level":"info","ts":"2021-11-29T16:38:04.360-0700","caller":"events/apply_command_
runner.go:110","msg":"pull request mergeable status: true","json":{"repo":"qsnyder/
devcor-atlantis","pull":"1"}}

{"level":"info","ts":"2021-11-29T16:38:04.373-0700","caller":"events/project_com-
mand_context_builder.go:240","msg":"cannot determine which version to use from
terraform configuration, detected 0 possibilities.","json":{"repo":"qsnyder/
devcor-atlantis","pull":"1"}}

{"level":"info","ts":"2021-11-29T16:38:04.373-0700","caller":"runtime/
apply_step_runner.go:37","msg":"starting apply","json":{"repo":"qsnyder/
devcor-atlantis","pull":"1"}}

{"level":"info","ts":"2021-11-29T16:38:06.490-0700","caller":"terraform/terraform_
client.go:279","msg":"successfully ran \"/usr/local/bin/terraform apply -input=false
-no-color \\\"/Users/qsnyder/.atlantis/repos/qsnyder/devcor-atlantis/1/default/
default.tfplan\\\"\" in \"/Users/qsnyder/.atlantis/repos/qsnyder/devcor-atlantis/1/
default\"","json":{"repo":"qsnyder/devcor-atlantis","pull":"1"}}

{"level":"info","ts":"2021-11-29T16:38:06.490-0700","caller":"runtime/apply_step_
runner.go:56","msg":"apply successful, deleting planfile","json":{"repo":"qsnyder/
devcor-atlantis","pull":"1"}}

The result is a successful application within the PR window, as well as within the fabric, indi-
cating that a new tenant has been created per the Terraform configuration, with the resulting
creation similar to what is seen in Figures 7-5 and 7-6.

Figure 7-5 Successful Output from Atlantis Applying Terraform Configuration

Figure 7-6 Verification of Tenant Creation Within ACI

The PR can now be merged inside the repository. This is important because Terraform has
locked the workspace from making any changes within the directory, ensuring that only a
single PR is effecting change on the infrastructure at any one time. When the PR is merged,

BOOK.indb 212 19/05/22 5:52 PM

ptg39201256

Chapter 7: Application Deployment 213

7

this lock is removed and the directory can now have additional changes made to it through
the GitOps workflow. This is reflected in the final webhook output, shown in Example 7-6.

Example 7-6 Atlantis Removing the Configuration Lock Within the Repository

{"level":"info","ts":"2021-11-29T16:38:06.490-0700","caller":"runtime/apply_step_
runner.go:56","msg":"apply successful, deleting planfile","json":{"repo":"qsnyder/
devcor-atlantis","pull":"1"}}

{"level":"info","ts":"2021-11-29T16:43:17.865-0700","caller":"events/events_
controller.go:318","msg":"identified event as type \"closed\"","json":{}}

{"level":"info","ts":"2021-11-29T16:43:23.720-0700","caller":"events/events_
controller.go:360","msg":"deleted locks and workspace for repo qsnyder/devcor-
atlantis, pull 1","json":{}}

Deploying Applications (Flux + Kubernetes)
Kubernetes (“K8s”) is a distributed platform that supports the deployment, operations,
and management of containerized, “cloud native” applications. After K8s is deployed, the
entire application management lifecycle is handled through interactions with APIs; even if
an operator is leveraging a CLI interface, the commands invoked through the CLI are trans-
lated to API actions on the control node. Because K8s is entirely API-centric, a multitude of
tools and applications exists to abstract varying levels of complexity away from the operator
when deploying or managing applications. This illustrates the positive aspects of API-driven
development, as well as the negatives: the availability of choices leads to a variety of differ-
ent opinions on which method, tool, or process leads to the best outcomes. Tools like Helm,
kustomize, and Kapitan provide different ways of deploying apps on the underlying K8s
infrastructure, and each can be integrated within a CI/CD pipeline to deploy the resultant
containerized applications to K8s. However, each requires a unique deployment configura-
tion file to be followed and a different set of commands to be included within the CI/CD
definition file. As a project grows larger, encompassing a greater number of developers or
teams, this may create technical debt that slows down the development team to implement
changes in an agile manner.

Application deployments within K8s also expose an interesting paradigm: end packages may
be an amalgamation of both readily available packages entirely (composed in novel ways),
or one or more bespoke applications coupled with other preexisting applications. In both
examples, it may be entirely possible (and reasonable) for a repository to be created that
exists solely for the act of deployment of the application, creating a traceable history of the
applications and versions deployed to the infrastructure over time. This repository would
exist solely to track and deploy the applications, either third-party or delivered through a
continuous integration/continuous delivery pipeline to allow operations-focused personnel
to leverage the benefits of GitOps in a way that doesn’t rely on the inclusion of raw code.

Flux is a pure CD platform focused on the deployment of applications to K8s. When the
Flux agent is installed, along with the credentials/keys required to integrate an application
with a VCS account, Flux can manage the application deployments residing on a cluster
through a single push to a VCS repo. Unlike other pipelines leveraging branching and merg-
ing, Flux leverages only the main branch for all configuration files, with locations and state
for deployments delineated within folders for different environments, rather than having dif-
ferent actions within the CI/CD definition file and state for each deployment location.

BOOK.indb 213 19/05/22 5:52 PM

ptg39201256

214 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Flux works by watching a VCS repository for application deployment manifests to be cre-
ated, modified, or removed. When a manifest is added, Flux deploys the application to the
cluster based on the configuration within the manifest file. If any changes are made to the
manifest (or through the kubectl CLI), Flux replicates those changes within the deployment
of that application (and if a change is made through kubectl, Flux reflects that change by
modifying the manifest and storing it within the VCS). This workflow not only allows for a
source of truth for all applications deployed within a cluster but also ensures that the VCS
remains the source of truth even through changes outside of the repository.

Flux also handles two challenges that arise as a consequence of continuous deployment: han-
dling application version upgrades and providing a staged rollout of applications to produc-
tion. Flux can be configured to periodically scan container registries for updated versions of
applications deployed to the cluster. When a version is incremented in the registry, Flux can
automatically update the tracked deployment manifest within the VCS and then perform a
redeploy action of that app using the updated version. Flux can also interact with Flagger to
provide a staggered rollout of any new or updated applications to the cluster.

A typical workflow using Flux would follow (assuming Flux is installed and bootstrapped):

1. The cluster administrator configures Flux to watch a VCS repository. This becomes the
single source of truth repository for all applications deployed by Flux.

2. The cluster administrator creates a source manifest within the tracked repository. This
manifest provides information to Flux about the application’s source repository, which
branch the application should be pulled from, and some other K8s-specific informa-
tion (like namespaces).

3. The source manifest is then committed to the VCS repository.

4. Flux is then used to create a Kustomize deployment manifest, referencing the source
manifest created in the previous step.

5. The deployment manifest is then committed to the VCS repository.
6. Flux detects the changes within the VCS repository and initiates the installation of

the apps based on the deployment manifest, by pulling the source from the repository
indicated in the source manifest.

Flux has a guide to quickly get started deploying a simple application written in Go on top
of an existing Kubernetes cluster by using an application manifest (Kustomization). However,
this assumes that the user has an existing cluster. Additionally, if an application is deployed
using a Helm chart, some changes are required to recognize the alternative application
description.

It is possible to create a small Kubernetes cluster on a development workstation using KIND
(Kubernetes in Docker). Using KIND, you are able to test Flux without needing a production
Kubernetes cluster.

NOTE KIND is bound by the same limitations as Docker within the host workstation.
As such, for this example, the target system may have insufficient memory to fully deploy
the “sock shop” app. If there is a resource or other contention, the containers are staged for
deployment and the application is partially functional, but the deployment is functionally
the same as one in a production cluster.

BOOK.indb 214 19/05/22 5:52 PM

ptg39201256

Chapter 7: Application Deployment 215

7

After the binaries for KIND and Docker are installed on the target host, you can create a
KIND cluster. To expose the NodePort from the sock shop app, you need to use a custom
KIND configuration at runtime. Example 7-7 should be saved as config.yml.

Example 7-7 Custom KIND Configuration

apiVersion: kind.x-k8s.io/v1alpha4

kind: Cluster

nodes:

- role: control-plane

 extraPortMappings:

 - containerPort: 30001

 hostPort: 30001

 listenAddress: "0.0.0.0"

 protocol: tcp

- role: worker

- role: worker

The cluster can then be created. This command downloads the KIND containers and initial-
izes them such that the cluster will be functional:

kind create cluster --config=config.yaml

When the cluster is functional, Flux can be bootstrapped on the cluster. This assumes that
a GitHub token is assigned as an environment variable ($GITHUB_TOKEN), as well as the
GitHub user ($GITHUB_USER) and the repository that will hold the Flux configuration
($GITHUB_REPO). The repository needn’t be created within the user’s account, and it will
be created as a private repository, ensuring limited visibility to the applications running on
the infrastructure.

flux bootstrap github \

 --owner=$GITHUB_USER \

 --repository=$GITHUB_REPO \

 --path=clusters/my-cluster \

 --personal

After Flux has been bootstrapped, clone the resulting directory to the local system. This
clone needn’t happen on the system in which Flux is running because the bootstrap process
adds an SSH key to the VCS account to ensure communication. After it is cloned, navigate
to the $GITHUB_REPO/clusters/my-cluster/ directory. Additionally, because the sock shop
app should be deployed within its own namespace, you need to create this on the cluster by
using kubectl:

kubectl create namespace sock-shop

The last step is to create the source files within the repository and commit them. Flux
requires two files to be created: one that declares the source of the files that will be
deployed to the cluster (in this case, a git repository) and a second that declares that a Helm
chart will be used to deploy the application to the cluster. These specific files reference the

BOOK.indb 215 19/05/22 5:52 PM

http://kind.x-k8s.io/v1alpha4

ptg39201256

216 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

location of the repository as well as the path within the repository to find the required Helm
chart to deploy the application. They can be given any arbitrary names, but, for ease of man-
agement, use the names sock-source.yml and sock-release.yml. Examples 7-8 and 7-9 pro-
vide examples for the source and release files, including the mapping of the sock shop app
Helm chart to a Flux release.

Example 7-8 sock-source.yml

apiVersion: source.toolkit.fluxcd.io/v1beta1

kind: GitRepository

metadata:

 name: sock-shop

 namespace: flux-system

spec:

 interval: 1m

 url: https://github.com/microservices-demo/microservices-demo

 ref:

 branch: master

Example 7-9 sock-release.yml

apiVersion: helm.toolkit.fluxcd.io/v2beta1

kind: HelmRelease

metadata:

 name: sock-shop

 namespace: sock-shop

spec:

 interval: 4m

 chart:

 spec:

 chart: ./deploy/kubernetes/helm-chart/

 sourceRef:

 kind: GitRepository

 name: sock-shop

 namespace: flux-system

 interval: 1m

 values:

 replicaCount: 1

After these files have been created, they can be committed and pushed to the repository
tracked by Flux. When you push them to the remote repository, Flux reads the configura-
tion and begins to reconcile the resources and then begins the deployment of the application
to the cluster:

git add -A && git commit -m "Pushing sock-shop config" && git push

After the files have been committed, the logs for Flux can be examined to ensure the appli-
cation will be deployed. By invoking flux logs, you can see the stages that Flux goes through
to deploy the application, the reconciliation of which is shown in Example 7-10.

BOOK.indb 216 19/05/22 5:52 PM

http://source.toolkit.fluxcd.io/v1beta1
https://github.com/microservices-demo/microservices-demo
http://helm.toolkit.fluxcd.io/v2beta1

ptg39201256

Chapter 7: Application Deployment 217

7

Example 7-10 Flux Reconciling the Configuration Files Within the Repository

2021-11-30T17:27:26.954Z error HelmChart/sock-shop-sock-shop.flux-system - Reconciler
error no artifact found for source `sock-shop` kind 'GitRepository'

2021-11-30T17:27:26.975Z error HelmChart/sock-shop-sock-shop.flux-system - Reconciler
error no artifact found for source `sock-shop` kind 'GitRepository'

2021-11-30T17:27:27.006Z error HelmChart/sock-shop-sock-shop.flux-system - Reconciler
error no artifact found for source `sock-shop` kind 'GitRepository'

2021-11-30T17:27:27.045Z error HelmChart/sock-shop-sock-shop.flux-system - Reconciler
error no artifact found for source `sock-shop` kind 'GitRepository'

2021-11-30T17:27:27.134Z error HelmChart/sock-shop-sock-shop.flux-system - Reconciler
error no artifact found for source `sock-shop` kind 'GitRepository'

2021-11-30T17:27:27.233Z error HelmChart/sock-shop-sock-shop.flux-system - Reconciler
error no artifact found for source `sock-shop` kind 'GitRepository'

2021-11-30T17:27:27.418Z error HelmChart/sock-shop-sock-shop.flux-system - Reconciler
error no artifact found for source `sock-shop` kind 'GitRepository'

2021-11-30T17:27:27.758Z error HelmChart/sock-shop-sock-shop.flux-system - Reconciler
error no artifact found for source `sock-shop` kind 'GitRepository'

2021-11-30T17:27:27.783Z info GitRepository/sock-shop.flux-system - Reconciliation
finished in 899.751555ms, next run in 1m0s

2021-11-30T17:27:28.210Z info GitRepository/sock-shop.flux-system - Reconciliation
finished in 427.223286ms, next run in 1m0s

2021-11-30T17:27:28.309Z info HelmChart/sock-shop-sock-shop.flux-system -
Reconciliation finished in 527.686846ms, next run in 1m0s

2021-11-30T17:27:28.583Z info HelmChart/sock-shop-sock-shop.flux-system -
Reconciliation finished in 184.304943ms, next run in 1m0s

When the reconciliation is complete, the containers begin to deploy on the cluster. You can
examine the status using standard kubectl commands, and when the deployment is complete (or
as complete as possible given potential resource constraints on the end system), you can access
the sock shop app by opening a web browser to the KIND host on port 30001, seen in Figure 7-7.

Figure 7-7 The Sock Shop App Running on KIND Deployed via FluxCD

BOOK.indb 217 19/05/22 5:52 PM

ptg39201256

218 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Application Deployment Methods over Time
Any discussion of application deployment would be incomplete without a review of the dif-
ferent options available over time. The purpose is to gain an understanding about the amount
of change that has transpired over the years and empathy for the amount of work and
operational and system change required to support the new models of deployment. These
changes did not happen overnight, nor did they happen in a vacuum, because prevailing con-
ditions around speed, agility, and locations of end users have caused the entire industry to
shift. While we’ve broken out this review of the application deployment methods into rough
decades of time, we are in no way saying that one method is better than the other. Rather,
we used this approach to show the progress and evolution over time and how deployment-
related tooling has had to shift with the needs and wants of the end users. Within a single
organization, it may be possible to find all the methods discussed, regardless of the adop-
tion of SRE or DevOps principles.

The 2000s: Sysadmins, Terminals, and SSH
As applications moved from centralized mainframes to being distributed among multiple
servers (either for load sharing or geographic resiliency), system administrators and opera-
tions staff had a much larger task on their hands because most software had to be compiled
from source code. As anyone who worked on an *NIX-based workstation during this time-
frame can tell you, deploying applications by building from source can be a daunting task,
even under ideal conditions, and operations teams lived this life on a regular basis.

A standard workflow for operations to deploy software would be similar to the following:

1. Clone source code from VCS using Concurrent Version System (CVS) or Subversion
(SVN).

In the mid-2000s, options like Mercurial and Git appeared.

2. Through documentation or by working with developers, understand any required
headers, libraries, or packages for the software to be compiled.

■ Most applications were written in C or C++ and were required to be compiled
before execution.

■ Java code came with its own dependencies, often requiring both compilation as well
as a JVM to process the runtime.

3. Compile the code on the machine, either using the language toolchain or using a
Makefile within the project repository.

■ This process may be iterative, depending on how exacting the dependencies are.

■ Resolving conflicting versions of a dependency may take multiple attempts, addi-
tional install/uninstall of software, and troubleshooting if the offending conflict is
needed by another piece of software.

4. Execute the resulting binary executable file, ensuring runtime errors do not occur.
5. Validate the application function through manual testing, especially if required ser-

vices/connections exist on other servers.

6. Repeat for all devices that require this application.

BOOK.indb 218 19/05/22 5:52 PM

ptg39201256

Chapter 7: Application Deployment 219

7

A sample Makefile is shown in Example 7-11. This example builds an application called edit,
which depends on several other source files to be built prior to the main application build.
When you invoke the top-level item, it subsequently builds all of the other dependent items
as required.

Example 7-11 GNU Makefile

edit : main.o kbd.o command.o display.o \

 insert.o search.o files.o utils.o

 cc -o edit main.o kbd.o command.o display.o \

 insert.o search.o files.o utils.o

main.o : main.c defs.h

 cc -c main.c

kbd.o : kbd.c defs.h command.h

 cc -c kbd.c

command.o : command.c defs.h command.h

 cc -c command.c

display.o : display.c defs.h buffer.h

 cc -c display.c

insert.o : insert.c defs.h buffer.h

 cc -c insert.c

search.o : search.c defs.h buffer.h

 cc -c search.c

files.o : files.c defs.h buffer.h command.h

 cc -c files.c

utils.o : utils.c defs.h

 cc -c utils.c

clean :

 rm edit main.o kbd.o command.o display.o \

 insert.o search.o files.o utils.o

You start the build process by invoking make. This step compiles the required output objects
from source using the C code and header files. After each of the dependent output files
has been compiled, the main application (edit) can be built. The final target (clean) is just a
“phony” target that, when invoked, performs an action defined by the bash script following
the target name.

You can easily see how fragile this process could be, especially given the differences in
installed headers and compilers, requiring system administrators to keep close track of each
system. When the sysadmin team grew beyond a few people, this logging and tracking of
information became nearly impossible, because the time and effort required to document
and share information were not available given the demands of keeping the servers and soft-
ware functional for the end users.

This process was made marginally easier with Linux packages (.deb, .rpm, etc.) and package
management front ends (such as Debian’s apt and Yellow Dog’s yum) for packaged software
and dependencies (though circular-dependency references can make for a nightmarish expe-
rience). Any software needing to be compiled on the system still went through the same
progression.

BOOK.indb 219 19/05/22 5:52 PM

ptg39201256

220 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

It’s not difficult to see the burden this process placed on operations teams, who were respon-
sible for moving code into production, ensuring the proper function of the overall system/
application stack, and ensuring uptime and reliability during patching/bugfix/maintenance
events. Often, operations and systems personnel would create shell scripts to help automate
the process. Although this effort helped speed the time to deployment, these scripts could
be fragile, depending on configuration standardization across server fleets, both in base
operating system and installed packages. This fragility eventually became less and less of a
problem because many enterprises moved to Linux on x86 platforms, ultimately enabling the
next leap in application deployment automation.

The 2010s: Automated Configuration Management
With the standardization on platforms, operating systems, and package management utilities,
the conditions were right for something beyond shell (generally bash) scripting to assist with
configuration management and deployment. Apps needed to scale faster, and infrastructure
was treated as a commodity rather than something that needed constant care and feeding
(the analogy of treating something like cattle, rather than a pet). The combination of these
two shifts drove a need for stronger distributed configuration management among systems
(and therefore apps). These tools allowed system administrators and operations teams
to define the desired end state of a system in a flat text file written in a domain-specific
language (DSL). A typical workflow would look like the following:

1. A flat file is written in tooling DSL, defining the end state of the device.

■ Includes dependencies and versions

■ Contains edits to any configuration files (either edited or pulled from remote loca-
tions into proper directories)

■ Performs application package installation

2. The tool is executed using the configuration from the flat file.

3. Results of individual steps are reported back to the control station.

4. When complete, the server and application end in a valid state.

While this process does not detail the time that is spent to create the DSL flat file, the pro-
cess is much simpler to execute (and to repeat across tens or even hundreds of servers). There
are several added benefits to this approach as well, some of which align to DevOps (or SRE)
principles:

1. Automation removes tedious, manual labor (“toil”).
2. The same tooling used to deploy to a test or staging area can be used to deploy into

production (changing end device targets, of course), allowing for a standard platform
from which to test and observe behavior.

3. Because the tooling defines the end state, if any server is lost, unresponsive, or fails,
the tooling can deploy an exact copy of what is required directly to that machine,
reducing mean time to recovery and increasing reliability and uptime.

A full discussion of each of the different tools is beyond the scope of this section, but
some of the popular configuration management tools of the time, as well as some high-level
details, are given in Table 7-2.

BOOK.indb 220 19/05/22 5:52 PM

ptg39201256

Chapter 7: Application Deployment 221

7

Table 7-2 Popular Configuration Management Utilities

Tool Name Year Released Language Agent? Notes

Puppet 2005 Ruby Sometimes Initially agent based, now
supports network devices
without an agent. Ruby-based
DSL for “manifests.”

Chef 2009 Ruby Yes Used for server infrastructure,
very limited network device
capabilities. Ruby-based DSL for
“recipes.”

SaltStack 2011 Python Sometimes Leverages YAML definition files
with Jinja2 templating, supports
both network and server, can
pull configuration files from
master servers.

Ansible 2012 Python No Large community support,
network device support through
paramiko. Supports third-party
collections. YAML playbook
syntax.

Terraform 2014 Go No No support for SSH; limited
individual network device
support (more supported in
network controller platforms);
API driven, primary focus on
cloud providers. HCL syntax.

Most of these tool names should sound familiar, though adoption and use of some have
waned over the years. One tool, Ansible, has grown in popularity over time, not just as a
configuration management tool for servers and systems, but for network devices and cloud
automations as well.

Ansible (arguably the most popular configuration management and automation tool today) is
written in Python and allows for device management in a completely agentless fashion. Play-
books written in YAML define tasks that perform a small unit of work on the target device.
These tasks reference modules, written in Python, which are copied to the end system
and executed as Python code, using parameters defined in the playbook as input variables
where appropriate. These tasks can manipulate system parameters (users, groups, and so on),
modify configuration files (either through edits or by copying from remote sources), manage
installed packages with full CRUD operations, or any perform combination thereof. Ansible
is declarative rather than procedural, allowing for human-readable configuration playbooks
instead of a script composed of chained shell commands. Ansible supports external files as
variable sources for information in the playbooks, allowing the same tasks to be run across
different systems (such as dev, Q/A, and production) by importing the appropriate set of
variables files. Finally, Ansible playbooks are not only well supported through SCM applica-
tions (GitHub, GitLab) but also can be used to drive automation inside of CI/CD pipelines,
due to Ansible’s declarative, agentless operating model.

BOOK.indb 221 19/05/22 5:52 PM

ptg39201256

222 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

A sample playbook that performs an installation of Python through the operating system’s
package management system (yum), clones code from several SCM repositories, creates a
Python virtual environment, and then installs the Python packages within the virtual envi-
ronment is shown in Example 7-12.

Example 7-12 Ansible Playbook Driving Device Automation

- hosts: localhost

 gather_facts: no

 vars:

 packages:

 - python36

 - python36-devel

 - vim

 repositories:

 - { org: 'qsnyder', repo: 'arya' }

 - { org: 'qsnyder', repo: 'webarya' }

 - { org: 'datacenter', repo: 'acitoolkit' }

 - { org: 'CiscoDevNet', repo: 'pydme' }

 cobra_eggs:

 - { url: 'https://d1nmyq4gcgsfi5.cloudfront.net/fileMedia/1f3d41ce-d154-44e3-
74c1-d6cf3b525eaa/', file: 'acicobra-4.2_3h-py2.py3-none-any.whl' }

 - { url: 'https://d1nmyq4gcgsfi5.cloudfront.net/fileMedia/b3b69aa3-891b-41ff-
46db-a73b4b215860/', file: 'acimodel-4.2_3h-py2.py3-none-any.whl' }

 virtualenv: py3venv

 dev_folder: ~/aci

 tasks:

 - name: Create ACI code repository

 file:

 path: "{{ dev_folder }}"

 state: directory

 mode: '0755'

 - name: Install packages via YUM

 yum:

 name: "{{ packages }}"

 state: latest

 - name: Install virtualenv module for Python3

 pip:

 name: virtualenv

 executable: pip3.6

 - name: Make virtualenv inside of development folder; install requirements

 pip:

 requirements: ~/requirements.txt

 virtualenv: "{{ dev_folder }}/{{ virtualenv }}"

BOOK.indb 222 19/05/22 5:52 PM

https://d1nmyq4gcgsfi5.cloudfront.net/fileMedia/1f3d41ce-d154-44e3-74c1-d6cf3b525eaa/'
https://d1nmyq4gcgsfi5.cloudfront.net/fileMedia/1f3d41ce-d154-44e3-74c1-d6cf3b525eaa/'
https://d1nmyq4gcgsfi5.cloudfront.net/fileMedia/b3b69aa3-891b-41ff-46db-a73b4b215860/'
https://d1nmyq4gcgsfi5.cloudfront.net/fileMedia/b3b69aa3-891b-41ff-46db-a73b4b215860/'

ptg39201256

Chapter 7: Application Deployment 223

7

 virtualenv_command: /usr/bin/python3.6 -m venv

 - name: Clone code into directory

 git:

 repo: "https://github.com/{{ item.org }}/{{ item.repo }}.git"

 dest: "{{ dev_folder }}/{{ item.repo }}"

 with_items: "{{ repositories }}"

 - name: Download the Cobra modules for ACI 4.2(3h)

 get_url:

 url: "{{ item.url }}{{item.file}}"

 dest: /tmp/

 with_items: "{{ cobra_eggs }}"

 - name: Install Cobra modules into virtualenv

 pip:

 name: file:///tmp/{{ item.file }}

 virtualenv: "{{ dev_folder }}/{{ virtualenv }}"

 with_items: "{{ cobra_eggs }}"

 - name: Install ACI toolkit, Arya, pyDME

 shell: source {{ dev_folder }}/{{ virtualenv }}/bin/activate && python setup.
py install

 args:

 chdir: "{{ dev_folder }}/{{ item }}"

 with_items:

 - acitoolkit

 - arya

 - pydme

 - name: Install WebArya requirements

 pip:

 requirements: "{{ dev_folder }}/webarya/requirements.txt"

 virtualenv: "{{ dev_folder }}/{{ virtualenv }}

Configuration management applications helped drive the speed and agility that the busi-
ness drivers demanded from the infrastructure, but there was a finite limit on how elastic the
infrastructure could be. Even with infrastructure provisioning and application rollout auto-
mated, if there were more applications required than servers that could host them, purchas-
ing cycles would remove whatever time and energy savings were realized.

As the latter half of the 2010s arrived, elasticity was no longer a “nice to have,” but a require-
ment for many organizations, both startups looking for capital-light ways to scale and large
enterprises finding ways to burst periods of high demand without having to have idle infra-
structure. The problem of elasticity was solved through cloud computing, but this meant that
as cloud resources spun up to meet demand (which could be only a short duration), provi-
sioning routines would need to be run, causing delays in ability to use the new resources.

BOOK.indb 223 19/05/22 5:52 PM

https://github.com/{{
http://item.org

ptg39201256

224 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Elasticity was not the only concept to experience a renaissance; the concept of ephemeral
infrastructure also experienced a significant shift. As ideas like containerization became
popular, along with management and orchestration platforms like Kubernetes, the idea of
deployments requiring specific requirements of the infrastructure started to disappear. With
containers, the entire app and its dependencies could be packaged in a single file that could be
shipped to any host, which could run the container if it had the runtime installed. This model
greatly simplified individual host management because all requirements would be packaged in
the container at build (inside of the CI/CD pipeline) automatically. However, this new model of
application required new models of deployment options for utmost speed and elasticity.

The 2020s: The Clouds Never Looked So Bright
The promise of the cloud was ultimate flexibility and scale to support whatever infrastructure
need the business had (for a cost, of course). Public cloud providers, such as Amazon, Micro-
soft, and Google, have absolutely delivered on this promise. However, with great flexibility
comes the potential for confusion, especially as many services offered by a single cloud pro-
vider seem to overlap or have only subtle differences. It would be impossible to cover every
cloud service available for running applications in this new paradigm; however, the concepts
within each option should be generally applicable enough to understand the broad differences
between the varying layers of abstraction offered and the requirements to successfully deploy
an application on the specific service “type.” Each cloud provider also has similar offerings
to the ones detailed in the following subsections, but you should take the time to understand
any idiosyncratic differences due to architectural designs within each cloud.

Managed Kubernetes (e.g., GKE)
Kubernetes was released as an open-source project in 2014. Originally created by Google, it
provides an API-driven platform on which to run, manage, operate, and schedule containerized
workloads within an enterprise. With add-on packages, it is possible to provide for overlay net-
working between nodes, enable distributed storage, and create full-featured “network-centric”
services like firewalls and load balancers. However, with the flexibility of being able to shape the
cluster as an organization saw fit came the challenge of managing the cluster, software versions,
and underlying physical network and server infrastructure. In much the same way the system
administrators and operations teams struggled with dependencies in the 2000s compiling soft-
ware from source, the K8s platform administrators of the mid-2010s often struggled with man-
aging updates and changes to K8s and its required (and third-party) software packages.

By moving the underlying K8s platform into the cloud, enterprises can focus on higher-level
problems, rather than the nitty-gritty of platform administration. In this shift, the cloud pro-
vider ensures that the cluster is up to date and functional at the sacrifice of complete flexibil-
ity (for example, some services may be provided only by the provider, rather than having full
support of every third-party tool), but the overall gain in agility and speed to deployment
outweighs the loss of (a potentially unused) flexibility.

It only makes sense then that Google’s cloud product (Google Cloud Platform, GCP) offers
managed K8s within its suite of offers and tools. Google Kubernetes Engine (GKE) allows
organizations to leverage Google’s cloud and automation to manage and provision clusters to
deploy apps, while removing the need to worry about things like

■ Load balancing across compute instances

■ Node failure and repair

BOOK.indb 224 19/05/22 5:52 PM

ptg39201256

Chapter 7: Application Deployment 225

7

■ Scaling of the cluster as load increases

■ Logging and observability of the cluster

■ Software and package upgrades to the underlying K8s infrastructure

GKE provides two different levels of administration requirements to the end user, standard
and autopilot, providing an additional layer of abstraction to the end resources. In autopilot,
everything from the size and number of compute nodes to the underlying node operat-
ing system, all the way down to the security measures at boot time, is handled by Google.
This comes at a cost of support for things like GPUs, Calico network overlays, or Istio
service-mesh, and even support for some of GCP’s other products, but serves as a way for
administrators to focus strictly on the K8s API and the outcomes delivered through their
microservices applications.

Access to GKE (and GCP in general) is provided either through a web UI, a web-based con-
sole, or locally installed console tools. API access is also supported, allowing for the use
of automation and orchestration tools (like Ansible or Terraform) to provision and manage
cloud infrastructure. As an example of using GKE, you can deploy the microservice demo
sock shop app to GKE using the cloud console.

Deploying an application to GKE is similar to any Kubernetes application deployment. The
majority of the configuration steps required are GCP-specific, ensuring that the specific
region and zone are set, as well as scaling the cluster size. To deploy the sock-shop applica-
tion, you need to create the GKE cluster:

gcloud config set compute/zone us-west1-a

gcloud config set compute/region us-west1

gcloud container clusters create sock-shop --num-nodes=3

These commands create a cluster in US-West-1 within GCP but can be modified to suit the
desired region and zone close to another location. After the cluster is created, a functional
Kubernetes cluster is presented (this may take several minutes). When the cluster is func-
tional, the next steps are the same as if you were deploying the application to on-premises
Kubernetes:

kubectl create namespace sock-shop

kubectl apply -f https://raw.githubusercontent.com/microservices-
demo/microservices-demo/master/deploy/kubernetes/complete-demo.yaml

These commands apply the manifest on the Kubernetes cluster and deploy the application
to a fully functional state within a few minutes. The final step to accessing the application
requires the default GCP firewall to allow connections to the sock-shop app and find the IP
address of one of the nodes running the app:

gcloud compute firewall-rules create sock-shop --allow tcp:30001

kubectl get nodes -o wide

The output provides the external IP addresses of the three nodes provisioned within the
cluster. Each one of these nodes has the sock-shop app port exposed (tcp/30001). Sample
output is shown in Example 7-13.

BOOK.indb 225 19/05/22 5:52 PM

https://raw.githubusercontent.com/microservices-demo/microservices-demo/master/deploy/kubernetes/complete-demo.yaml
https://raw.githubusercontent.com/microservices-demo/microservices-demo/master/deploy/kubernetes/complete-demo.yaml

ptg39201256

226 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Example 7-13 Determining External IP Addresses of GKE Cluster Running the Sock-
shop Application

snyderq@cloudshell:~ (devcor-studies)$ kubectl get nodes -o wide

NAME STATUS ROLES AGE VERSION
INTERNAL-IP EXTERNAL-IP OS-IMAGE KERNEL-VERSION
CONTAINER-RUNTIME

gke-sock-shop-default-pool-30c3b3ad-n844 Ready <none> 5m37s
v1.21.5-gke.1302 10.138.0.6 34.145.72.58 Container-Optimized OS from Google
5.4.144+ containerd://1.4.8

gke-sock-shop-default-pool-30c3b3ad-v31p Ready <none> 5m36s
v1.21.5-gke.1302 10.138.0.5 35.185.195.99 Container-Optimized OS from Google
5.4.144+ containerd://1.4.8

gke-sock-shop-default-pool-30c3b3ad-v6tf Ready <none> 5m36s
v1.21.5-gke.1302 10.138.0.7 104.198.107.29 Container-Optimized OS from Google
5.4.144+ containerd://1.4.8w

Navigating to one of the external IP addresses on port 30001 brings up the sock-shop sam-
ple application, shown in Figure 7-8, using one of the IP addresses shown in Example 7-13.

Figure 7-8 The Sock-shop Application Running on GKE

After the application is verified to be working, ensure that the cluster is destroyed to ensure
that no additional charges are incurred:

gcloud container clusters delete sock-shop

BOOK.indb 226 19/05/22 5:52 PM

ptg39201256

Chapter 7: Application Deployment 227

7

Containers on Serverless Clouds (e.g., AWS ECS on Fargate)
The goal of any cloud provider is to remove the barriers to entry that present themselves
through infrastructure and abstract them away, such that the administrator can focus on the
tasks that are relevant to the business. Despite the levels of abstraction afforded by man-
aged Kubernetes offerings, the underlying infrastructure is still Kubernetes and carries with
it the management responsibilities of that platform. Even in autopilot mode, you must be
cognizant of what can and cannot be done within the platform and (some would say more
importantly) the cost implications of running a heavyweight container platform in the cloud
(because everything comes with a price).

Amazon Web Service’s (AWS) Elastic Container Service (ECS) has existed for many years,
even before Amazon’s own managed Kubernetes offering, to run Docker-packaged contain-
ers on AWS’s cloud. ECS can either be run using the Elastic Compute Cloud (EC2) launch
type, which is similar in spirit to running Docker on cloud hosts, or using a Fargate launch
type, which abstracts the underlying compute instances away from the end user. If running
ECS in EC2 mode, the user must first create the underlying systems and clusters capable
of supporting the containerized workloads and then register them with ECS. However, that
overhead can be removed if leveraging Fargate launch types within ECS.

Fargate itself is not an AWS offering; it is a deployment methodology that exists within
the AWS cloud that abstracts the underlying infrastructure supporting containerized work-
loads away from the end user. The net result is that for a user to run an arbitrary workload
on ECS, that user simply needs to define the compute requirements for the container and
deploy the app to the cloud using AWS’s tooling, which is like GCP’s tooling in that a web
UI, a web-based console, and locally installable CLI tools are available. This tooling creates a
serverless feel to running containers, in that the system and administration duties that are
normally required with running enterprise applications are removed; the only focus is on the
end application being deployed.

Although products like Google Cloud Run and Azure Container Instances also provide a
similar experience (albeit through their own interfaces) to ECS on Fargate, we focus on the
latter in deploying a sample application to review the process using the AWS CloudShell,
which you access by logging in to an AWS account and clicking the terminal icon on the top
bar, as seen in Figure 7-9.

Figure 7-9 Accessing the AWS CloudShell

When the CloudShell is active and connected to an instance, there are some prerequisites to
ensure proper permissions and settings are instantiated within the cluster. First, you need to
create an IAM role by creating a JSON file (task-execution.json) with the payload described
in Example 7-14.

BOOK.indb 227 19/05/22 5:52 PM

ptg39201256

228 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Example 7-14 Task Execution IAM Role File Payload

{

 "Version": "2012-10-17",

 "Statement": [

 {

 "Sid": "",

 "Effect": "Allow",

 "Principal": {

 "Service": "ecs-tasks.amazonaws.com"

 },

 "Action": "sts:AssumeRole"

 }

]

}

NOTE Be sure not to change the version value; this is not a date value but references a spe-
cific revision of IAM policy that can be applied within the AWS IAM universe.

You then can create the IAM policy and attach it to the account:

aws iam --region us-west-2 create-role --role-name
ecsTaskExecutionRole --assume-role-policy-document file://task-
execution.json

aws iam --region us-west-2 attach-role-policy --role-name
ecsTaskExecutionRole --policy-arn arn:aws:iam::aws:policy/service-
role/AmazonECSTaskExecutionRolePolicy

NOTE You need to perform this task only once—the first time you bring up the ECS cluster.
After this is done the first time, the IAM policy is persistent and tied to the account in use.

NOTE The example references the use of us-west-2 as the compute region for the ECS
cluster. You might need to change this depending on the desired AWS compute region.

After the IAM role has been attached, the ECS parameters can be defined. You can do this
through the CloudShell using ecs-cli (as shown in the following output) but can also define it
within the ~/.ecs/ directory of the CloudShell instance using YAML definitions:

ecs-cli configure --cluster DEVCOR --default-launch-type FARGATE
--config-name DEVCOR --region us-west-2

ecs-cli configure profile --access-key AWS_ACCESS_KEY_ID --secret-
key AWS_SECRET_ACCESS_KEY --profile-name DEVCOR-Profile

BOOK.indb 228 19/05/22 5:52 PM

http://"ecs-tasks.amazonaws.com"

ptg39201256

Chapter 7: Application Deployment 229

7

This code creates a configuration profile for the ECS cluster. ECS supports multiple pro-
files, which can be referenced at cluster launch time. However, because only a single profile
is defined, this profile is used by default. You can create the AWS_ACCESS_KEY_ID and
AWS_SECRET_ACCESS_KEY by navigating to the IAM settings window, clicking Users, the
desired username, and then the Security Credentials tab.

NOTE You need to apply this configuration only once. After it is applied, the ecs-cli
parameters are translated to a YAML file in ~/.ecs/. The credentials file is translated to
another YAML file in the same directory.

Now that the cluster parameters and keys are stored, the cluster can be created and an appli-
cation deployed to the cluster. In this example, a Jupyter notebook container is deployed
and exposed to the public Internet. The following output shows the result of bringing up the
ECS cluster using the ecs-cli command. As the command runs, information about the cre-
ated VPC and subnets is displayed on the CLI.

ecs-cli up

 VPC created: vpc-0f87e8258f2e01577

 Subnet created: subnet-077625f74808df789

 Subnet created: subnet-03cf7318516bb08d6

The displayed values will become important. In Example 7-15, the VPC_ID value referenced
in the command string is the value displayed after bringing up the cluster. The important
value to record is the value for the GroupId, which is the security group value that controls
network policy for the cluster.

Example 7-15 Gathering the Security Group Information for the Deployed Cluster

aws ec2 describe-security-groups --filters Name=vpc-id,Values=VPC_ID --region
us-west-2

...

{

 "SecurityGroups": [

 {

 "Description": "default VPC security group",

 "GroupName": "default",

 "IpPermissions": [],

 "OwnerId": "860261725131",

 "GroupId": "sg-0e7357356e89b1c31",

 "IpPermissionsEgress": [

 {

 "IpProtocol": "-1",

 "IpRanges": [

 {

BOOK.indb 229 19/05/22 5:52 PM

ptg39201256

230 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

 “CidrIp”: “0.0.0.0/0”

 }

],

 "Ipv6Ranges": [],

 "PrefixListIds": [],

 "UserIdGroupPairs": []

 }

],

 "VpcId": "vpc-0f87e8258f2e01577"

 }

]

}

Now that the security group ID value is known, the policy to allow ingress traffic to the ECS
cluster can be permitted. By default, the Jupyter notebook container has TCP/8888 exposed,
which needs to be allowed through the ACL applied. Ensure that the value of GroupId is
placed in the appropriate location within the command illustrated in Example 7-16.

Example 7-16 Allowing Inbound Traffic to the ECS Container

aws ec2 authorize-security-group-ingress --group-id SECURITY_GROUP_ID --protocol tcp
--port 8888 --cidr 0.0.0.0/0 --region us-west-2

{

 "Return": true,

 "SecurityGroupRules": [

 {

 "SecurityGroupRuleId": "sgr-002ff2137fc89825a",

 "GroupId": "sg-0e7357356e89b1c31",

 "GroupOwnerId": "860261725131",

 "IsEgress": false,

 "IpProtocol": "tcp",

 "FromPort": 8888,

 "ToPort": 8888,

 "CidrIpv4": "0.0.0.0/0"

 }

]

}

The infrastructure has been prepared to allow connections and traffic to the cluster. All
that remains is to deploy the application. Deployment requires two files to be created: one
defines the parameters for the task execution on ECS, and the other is the docker-compose.
yml file (shown in Example 7-18), which defines the application to be deployed. You need
to create them using CloudShell. Additionally, within the ecs-params.yml file (an example of
which is shown in Example 7-17), the subnets and security groups need to be filled in with
the values obtained when the cluster is created.

BOOK.indb 230 19/05/22 5:52 PM

ptg39201256

Chapter 7: Application Deployment 231

7

NOTE Filenames should follow the exact naming of ecs-params.yml and docker-compose.
yml because ECS looks to these files by default when instantiating an application. It is pos-
sible to reference others using command-line switches, but they are omitted for simplicity.
Ensure the files end in .yml.
Within the docker-compose.yml file, note the volume mapping. As ECS abstracts the under-
lying infrastructure from the end user, a host mapping is not required. Defining the volume is
sufficient for ECS to map a data storage volume to the container.

Example 7-17 ecs-params.yml

version: 1

task_definition:

 task_execution_role: ecsTaskExecutionRole

 ecs_network_mode: awsvpc

 os_family: Linux

 task_size:

 mem_limit: 8192

 cpu_limit: 2048

run_params:

 network_configuration:

 awsvpc_configuration:

 subnets:

 - "SUBNET_1"

 - "SUBNET_2"

 security_groups:

 - "SECURITY_GROUP_ID"

 assign_public_ip: ENABLED

Example 7-18 docker-compose.yml

version: "3"

services:

 minimal-notebook:

 image: jupyter/minimal-notebook

 environment:

 - NB_USER=USERNAME

 - PASSWORD=cisco12345

 - JUPYTER_TOKEN=cisco12345

 volumes:

 - work

 ports:

 - "8888:8888"

 container_name: minimal-notebook-container

BOOK.indb 231 19/05/22 5:52 PM

ptg39201256

232 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

After creating the two files, you can now deploy the application by using ecs-cli. The output
of running the ecs-cli command should look similar to the output shown in Example 7-19.

Example 7-19 Instantiating the Application on the ECS Cluster

ecs-cli compose service up

...

WARN[0000] Skipping unsupported YAML option for service... option name=container_
name service name=minimal-notebook

INFO[0000] Using ECS task definition TaskDefinition="cloudshell-
user:8"

INFO[0000] Auto-enabling ECS Managed Tags

INFO[0010] (service cloudshell-user) has started 1 tasks: (task 60ab7a0ad7ee-
4a69a95d3caef79b409f). timestamp="2021-12-02 00:13:37 +0000 UTC"

INFO[0106] Service status desiredCount=1 running-
Count=1 serviceName=cloudshell-user

INFO[0106] (service cloudshell-user) has reached a steady state. time-
stamp="2021-12-02 00:15:15 +0000 UTC"

INFO[0106] (service cloudshell-user) (deployment ecs-svc/9087318749417985970)
deployment completed. timestamp="2021-12-02 00:15:15 +0000 UTC"

INFO[0106] ECS Service has reached a stable state desiredCount=1 running-
Count=1 serviceName=cloudshell-user

INFO[0106] Created an ECS service service=cloudshell-user
taskDefinition="cloudshell-user:8"

After the service has been created in ECS, you are able to gather the exposed IP address of
the application on the cluster:

ecs-cli compose service ps

...

WARN[0000] Skipping unsupported YAML option for service... option
name=container_name service name=minimal-notebook

Name
State Ports TaskDefinition Health

DEVCOR/60ab7a0ad7ee4a69a95d3caef79b409f/minimal-notebook RUNNING
54.190.18.166:8888->8888/tcp cloudshell-user:8 UNKNOWN

Finally, after you open a web browser and enter the IP address and port information, a win-
dow appears with the Jupyter notebook login. This password is what was defined within the
docker-compose.yml file. A Jupyter notebook is now running on serverless containers within
AWS. Figure 7-10 shows the login for the notebook, password protected using credentials in
the docker-compose.yml file, and Figure 7-11 illustrates the mapped data folder for gener-
ated notebook files.

BOOK.indb 232 19/05/22 5:52 PM

ptg39201256

Chapter 7: Application Deployment 233

7

Figure 7-10 Jupyter Notebook Login

Figure 7-11 Jupyter Notebook Running on ECS

Finally, when the application has served its purpose, you should shut it down to avoid incur-
ring unnecessary costs. This two-step process requires draining the application service
from the cluster, followed by shutting down the cluster itself, both of which are shown in
Example 7-20.

BOOK.indb 233 19/05/22 5:52 PM

ptg39201256

234 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Example 7-20 Stopping the Service and Destroying the ECS Cluster

ecs-cli compose service down

...

WARN[0000] Skipping unsupported YAML option for service... option name=container_
name service name=minimal-notebook

INFO[0000] Deleted ECS service service=cloudshell-user

INFO[0000] Service status desiredCount=0 running-
Count=1 serviceName=cloudshell-user

INFO[0020] Service status desiredCount=0 running-
Count=0 serviceName=cloudshell-user

INFO[0020] (service cloudshell-user) has stopped 1 running tasks: (task
12999444a1f9488dbe73536d53d59610). timestamp="2021-12-02 00:29:09 +0000 UTC"

INFO[0020] ECS Service has reached a stable state desiredCount=0 running-
Count=0 serviceName=cloudshell-user

ecs-cli down

...

Are you sure you want to delete your cluster? [y/N]

y

INFO[0002] Waiting for your cluster resources to be deleted...

INFO[0002] Cloudformation stack status stackStatus=DELETE_IN_PROG-
RESS

INFO[0063] Cloudformation stack status stackStatus=DELETE_IN_PROG-
RESS

INFO[0093] Deleted cluster cluster=DEVCOR

Serverless Functions (e.g., AWS Lambda)
If ECS removes the underlying infrastructure from running containerized workloads, you can
assume without any prior knowledge, based on the trajectory of this section, that serverless
functions serve to provide another layer of abstraction and packaging removal from the end
user. Whereas products like ECS remove the necessity of managing the server infrastructure
from running container workloads, products like AWS Lambda remove the requirement of
packaging and shipping a container from running a single application within the cloud.

On its surface, the move from packaging containers to running cloud functions may seem
trivial, or even a step backward. In a container workflow, the application can be packaged
and deployed on any number of local or cloud providers; you know the application can be
ported because the application and dependencies are included within the container package
file, which can be executed by the container runtime. However, if this is stripped back, given
a consistent environment (that is, one that consists of a given set of prerequisites, dependen-
cies, and language versions), the container packaging creates an unnecessary layer of “stuff”
that hides the code from the end user. Sure, there is portability in the container, but if the
need arises, that code can be placed in a container and shipped elsewhere, whether that be
cloud or on-premises hosts.

AWS Lambda enables you to run pure code (Python, Go, Node, C#, Java, Ruby, or
PowerShell) within a predefined environment. Compute resources, such as RAM and CPU,
are allocated to the function, and any requirements for the code are uploaded as a custom
environment for the runtime execution. When the environment is in place, you can add code

BOOK.indb 234 19/05/22 5:52 PM

ptg39201256

Chapter 7: Application Deployment 235

7

to the function using a variety of methods, including copy/paste, API, or some pipeline
within AWS that adds the code from a VCS code repository. This code can then be invoked
through a timed-based setting, through an API gateway provided by AWS, or through a
larger chain of events triggered through a messaging bus or service (such as Kafka).

Both ECS on Fargate and Lambda are referred to as serverless. The common question “if it’s
serverless, how does it run?” refers to the idea that there must be a server underneath the
abstraction that is performing the desired action. This misses the point because serverless is
not a technology that is devoid of servers themselves but references the removal of the man-
agement aspect of the compute infrastructure and applications/packages required to support
running the desired application. These application operating models enable developers to
focus on the code and application (and the intended outcomes of it) rather than the opera-
tions and maintenance aspects that were required in decades past.

All the abstraction and removal of infrastructure comes at a cost, however. By removing
the requirement for management of the servers, operating systems, and supporting applica-
tions, cloud providers also remove the level of customization and flexibility afforded to the
end user. Although many common use cases are covered, if an application or enterprise has
requirements outside of what is supported, then it must be deployed on products that pro-
vide a similar look and feel to on-premises infrastructure, as well as similar overhead of man-
agement, patching, and dependencies. As a result, organizations sometimes standardize on
what is possible within their development process in order to ensure they comply with the
requirements of the serverless platform to which they deploy.

Deploying a function to Lambda is slightly different from the other methods discussed thus
far; while other methods rely on external packages, manifests, or charts to run the applica-
tion, Lambda is completely bespoke and requires the end user to build the environment that
can be run on the Lambda platform. This means that if a developer builds a Python function
(making Lambda a Function as a Service [FaaS] platform), the developer would build and
test their code locally and then deploy that exact environment as a layer within the Lambda
platform.

This effort can easily be accomplished by packaging up the Python virtualenv in use as a ZIP
file. This requires navigation to the site-packages folder of the virtualenv and invoking the
zip command:

sounding-data » cd venv/lib/python3.8/site-packages/

site-packages » zip -r ../../../../python-bot.zip .

After the ZIP archive is created, the source code for the Lambda function must be added.
This code must be named lambda_function.py so that it can be executed by the Lambda
environment. If this file is not named appropriately, the function cannot be invoked by a
Lambda trigger.

After the virtualenv has been added to the ZIP archive, it can be uploaded to AWS as a
Lambda layer. You do this in the Lambda console under the Layers menu. Within the Create
Layer menu, you upload the ZIP archive, along with the desired application runtime environ-
ment, license, and a layer name. Figure 7-12 shows how to create a sample layer within the
AWS console.

BOOK.indb 235 19/05/22 5:52 PM

ptg39201256

236 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Figure 7-12 Uploading a Layer to Lambda

Next, a function needs to be created to tie the code and the layer together. You do this under
the Functions menu. This function needs to be given a name and runtime environment. The
default setting of Author from Scratch will suffice because the code has already been writ-
ten and tested on a local machine, which is shown in Figure 7-13.

Figure 7-13 Creating New Lambda Function

BOOK.indb 236 19/05/22 5:52 PM

ptg39201256

Chapter 7: Application Deployment 237

7

After the function is created, a new window appears with a code editor. First, the code needs
to be added to the function. You can do this by creating a ZIP archive of the code, which
replaces what is currently within the editor:

site-packages » cd ../../../../

sounding-data » zip lambda_function.zip lambda_function.py

After the code is added to a ZIP archive on the local machine, you can upload it to Lambda
by selecting Upload From at the top right of the code editor. This allows a ZIP archive to be
uploaded and adds the desired code to the function. Figure 7-14 shows the location of the
ZIP upload menu item, but alternatively, an S3 bucket location can be specified if the code
resides there.

Figure 7-14 Selecting a ZIP Upload Method for Code

When the upload is complete, the code editor reflects the code tested locally on the
workstation.

The next step is to add the runtime layer to the function, because without it, any custom
module or library (even those that exist by default within a given language) will not work.
You create the layer association at the bottom of the console by selecting the Add a Layer
button, shown in Figure 7-15. Figure 7-16 illustrates the association of the layer to the func-
tion within the AWS console.

Figure 7-15 Adding a Layer to the Lambda Function

BOOK.indb 237 19/05/22 5:52 PM

ptg39201256

238 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Figure 7-16 Associating the Custom Layer to the Lambda Function

The function is now deployed and can be tested using the console. However, after the code
is written, it needs to be triggered by some event. These triggers are configured using the
Add Trigger button under Function Overview. Supported triggers include simple cron tim-
ings to API gateways to database or Alexa events. A full discussion of these triggers is out-
side the scope of this chapter, but a common use is to tie the function to an API Gateway,
which will receive an HTTP verb via an exposed REST URI. The verb used in interrogating
this API endpoint, along with any payload (if required), can be passed to the function for
processing.

Software Practices for Operability: The 12-Factor App
Much of this chapter has focused on the act of deploying an app and the infrastructure on
which it can be deployed. By using tools for automation and ways to abstract the need for
continuous maintenance on infrastructure, teams that adopt SRE or DevOps principles can
drastically reduce the amount of time focused on responsibilities that are ancillary to the
applications and their uptime. This ensures that time is left for “higher-order” problems, pro-
cess improvements, and innovate thinking, key aspects for any agile team.

However, just as the tooling and supporting infrastructure must be ready to handle the speed
of rapid deployment, the application and its development process must also adhere to cer-
tain guidelines in order to be deployed in such a manner. If an application is not tracked in a
VCS, does not declare specific dependencies, lacks an ability to scale out, or does not handle

BOOK.indb 238 19/05/22 5:52 PM

ptg39201256

Chapter 7: Application Deployment 239

7

logging in a graceful manner, the ability for any team (no matter how DevOps-y) to operate,
maintain, and upgrade the application under the demands of the app economy is signifi-
cantly hampered.

To create a baseline of application development best practices, a team at Heroku (a Platform
as a Service, or PaaS, that supports application development and serverless hosting) created
the notion of a 12-factor application design and development methodology and released it
to the public around 2011. Although not entirely canonical across every development team
or platform, the 12 factors create a baseline to ensure an application is not the weakest link
in DevOps or SRE principles—namely, resilience, uptime, and an ability to run anywhere to
meet those needs. It is also important to realize that, although some of these factors are self-
evident today, in the era of development in which these factors were released, practices and
methodologies were much less rigid and prescriptive. For a deeper dive into the 12-factor
app, refer to The 12-Factor App (see the “References” section at the end of this chapter).

Factor 1: Codebase
Factor 1 is self-explanatory: everything must be in a VCS code repository (the original book
mentions others, but the de facto standard is Git-based). In addition, that codebase should be
the single source of truth for all deployments, whether in development, test, or production.
This is not to say that feature or bugfix branches within the codebase can’t occur or that
development, test, and production can’t be running at different points within the branches,
but that all branching, edits, and deployments should be done from the same repository.

Factor 2: Dependencies
Within the codebase, every application should explicitly define the required supporting
packages to be able to run. In fact, if you have downloaded a Python application recently,
you may find that it includes a requirements.txt file that can install all required dependencies
using pip (Ruby, Perl, and others also have similar mechanisms). In addition, these dependen-
cies must be able to be installed in a self-contained environment, like a Python virtualenv, to
ensure that any required system dependencies do not interfere with what is required for the
application to run. Both aspects make up the second factor and should be considered basic
hygiene for all written applications.

Additionally, all required dependencies should be explicitly declared as part of the codebase
to the point where there are no requirements of any system-installed applications; the code
should be able to be self-contained and functional through the explicit dependencies and the
language isolation mechanism.

Factor 3: Config
Limits of duplicate infrastructure exist within every organization. Under ideal circumstances,
it would be very beneficial for app developers to have the identical sets of IP addresses, cre-
dentials, or resources existing in development, test, and production environments. In the real
world, this is highly impractical, especially because limitations on the duplicity are placed
on the app from externalities, like the network, compute resources, cloud applications, and
the like.

To overcome this, external constants (also known as the apps “config”) should be abstracted
away from the code itself and either imported at runtime through environment variables or
through a secret store with an external API, like HashiCorp Vault. This has a two-factor side
effect in that (a) the code can be released (either intentionally or not) to the public without

BOOK.indb 239 19/05/22 5:52 PM

ptg39201256

240 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

compromise of sensitive information and (b) the same code can be used across development,
test, and production environments with a simple change of the configuration, while the code
is still the same.

Factor 4: Backing Services
Just as the applications configuration should be abstracted from the application itself, ser-
vices that support the application should be coded into the application in such a way that
the idiosyncrasies of an individual package or deployment of the service are inconsequential
to the application’s function. Supporting services, such as databases or messaging queues,
should be defined as resources, irrespective of whether the service resides within the same
data center or resides in the cloud. This abstraction allows for the portability between back-
ing services, for cost or supportability reasons, in pursuit of utmost uptime principles. The
credentials or locations of these backing services can be defined within the application’s
configuration and can differ between environments in which the app is run such as develop-
ment, test, or production.

Factor 5: Build, Release, Run
For any code to be moved into production, it must be transformed into some sort of execut-
able process that can be invoked by the system on which it is installed. When separate stages
are defined for the build, release, and run stages, the code is provided isolation and immu-
tability at runtime. When the codebase is moved to a binary file through compilation, it is
moved to a defined packaged release based on the procedures within the releasing organiza-
tion. This release creates a “line in the sand” definition that is unique from both prior and
future releases in its features and support. When this release is moved into production, it is
run, but the running release does not have the ability to move, modify, or edit the code on
which it is running. The only process for moving changes into production is through a modi-
fication of the codebase and a repetition of the cycle.

This idea does become slightly blurred when discussing or developing with applications
that are compiled at runtime (such as Python) when compared to compiled languages (such
as C/C++ or Go). In runtime-compiled languages, there is no concept of a compiled binary
because this is done at the invocation of the file containing the code. However, when you are
developing with such languages, the release strategy should still be adopted to create a clear
demarcation of the application and its features, and, most importantly, the running code
should not be able to change the code on which it was originally invoked, creating unique
outcomes depending on the run.

Factor 6: Processes
Applications designed within the 12-factor process are meant to be stateless in nature. This
(loosely) means that any transaction that occurs between one or more parts of the applica-
tion is completely independent from another transaction. More importantly, this transaction
is not shared between different components of the app unless there is a specific request
that is invoked between components, which in and of itself is stateless. If any transaction or
record is required, it must be stored in a database or object store, because any other compo-
nent is not designed to store this state.

If you are familiar with microservices, or even have read the example provided by nginx,
this concept should be familiar. Because you should be able to be restart, upgrade, or scale
each component of the application independently of the other components, nothing should

BOOK.indb 240 19/05/22 5:52 PM

ptg39201256

Chapter 7: Application Deployment 241

7

be contained within an individual invocation of the application or service. Treating different
components of the application in this way ensures that as demands require it, reliability and
scalability are present.

Factor 7: Port Binding
Port binding combines the concepts of several different factors. At its core, any application
defining an external service should declare the service and start it from its invocation, rather
than leveraging a preinstalled service running on the target host. Any code defining that
service (for example, a web server) should be compiled at runtime and be immutable unless
another build, release, or run cycle is performed. Finally, because the methods in which the
application may be accessed (locally in development versus a cloud server in production), the
use of an environment configuration based on the deployment location may be necessary.

The most important takeaway from factor 7 is that any service that exposes a service north-
bound should be explicitly declared and exposed on the individual host. That service should
be listening for any request from any other component or resource within the application
stack.

Factor 8: Concurrency
In much the same way that port binding combines multiple aspects, concurrency is enabled
through the adherence of other previous factors. By ensuring that applications handle exter-
nalities as resources rather than built-in components, referenced by individual configuration
files, the applications become stateless in nature. This stateless nature enables the individual
components of a larger application (web, application, and database to use a common three-
tier app) to be scaled independently according to need at the time. These different compo-
nents should be able to be scaled in a nondaemonized fashion (that is, separate processes for
each invocation, rather than using a global parent process with unique children), leveraging
tools like systemd for process management, which is responsible for the lifecycle of the pro-
cess itself (restarts, crashes, and so on). The concurrent management of disparate numbers of
the application’s process should be transparent to both the operations team supporting the
application, as well as the end user.

Factor 9: Disposability
Disposability is a concept extended from the stateless nature of the application itself. If the
components that make up the application have no data or state, it becomes trivial if those
components scale upward (due to load) or are removed (due to a lull). The application should
gracefully handle the removal of the scaled services, through a standard SIGTERM on the
process managed by the process manager, assuming no work is destined for that scaled com-
ponent. Disposability also states that if some scaled worker process no longer responds or
times out, it should be removed from the worker queue (and ideally some queueing process
should requeue the work for a node that is alive).

Factor 10: Dev/Prod Parity
On its surface, you may look at parity to mean that the environment that exists between
development and production should be the same. This means that if the application is meant
to run in production with a given set of applications as resources (for example, using nginx
as a web server), then that web server should be used when code is being developed and run
in a test environment. This might seem self-evident; however, if a single developer’s laptop
is being used to mock and mimic the application, resource, time, or knowledge constraints

BOOK.indb 241 19/05/22 5:52 PM

ptg39201256

242 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

may cause the developer to look for lightweight applications to use in substitution. While
completely well intentioned, the use of a single system to mock entire environments not only
exposes production to issues due to different application behavior but also makes trouble-
shooting an issue harder because there is no replicated environment to understand the code’s
steady-state operation.

Parity should also exist in two other areas that will seem familiar to principles within
DevOps methodology. The first is that there should be as little a gap as possible between
code being committed to the main repository and it being moved into a deployed state
(which could be a test environment; the code needn’t move directly into production). The
complete code parity aligns directly with the automated integration, build, and deploy
process advocated by DevOps and SREs. The second parity involves the folks tasked with
supporting the application as it has moved into a deployment stage; namely, those who built
the application should be the same people tasked with supporting the deployment when it is
live. While the 12-factor app is neither DevOps nor SRE, the concepts in this factor strongly
overlap.

Factor 11: Logs
Visibility into applications is critical for the support of the running application. This vis-
ibility is required both at an application’s steady state, as well as when certain aspects of the
app are not performing as desired due to some issue. Visibility is gained through access and
correlation to the logs of the application as it is running; however, an application designed
to the 12-factor principles should not directly handle the logs or the logging process. Within
*NIX-based operating systems, output from an application is passed to a stream, generally
either stdout or stderr. These operating systems have robust utilities and output redirection
abilities to move this output to purpose-built applications to handle logging, especially the
centralized logging required for high-visibility observability. These tools allow for streamed
application output to be passed to tools such as syslog, Logstash, Splunk, or other log col-
lection utilities. The use of log streams coupled with purpose built logging applications frees
the developer from having to rewrite implementations of these tools (such as sending data to
syslog) within the application or from having to design a mechanism to pass locally created
flat logfiles to the centralized process (incurring delays in visibility and having to design log-
file rotation mechanisms).

The important distinction is that factor 11 focuses on the concept of the logs streamed from
the app. It is important to design proper logging within the application to ensure that proper
information is relayed to the stream process after the application is executed on the server.
If no information is being captured and sent to the logging stream, you have no ability to
monitor and ensure the proper function or performance of the application.

Factor 12: Admin Processes
Admin processes within an application are ancillary functions that perform maintenance,
administration, or other duties that are not invoked within the application’s execution. These
could be situations in which the module needs to be installed, internal databases need to
be migrated or reset to a clean state, or the consistency of the environment from which the
application is being run needs to be ensured.

In keeping with the first factor, these admin processes should be included within the single
codebase, the same one that includes the application code. They should explicitly declare
any dependencies required and should be able to be executed from the same environment in

BOOK.indb 242 19/05/22 5:52 PM

ptg39201256

Chapter 7: Application Deployment 243

7

which the application runs. Finally, any external or required configuration should be explic-
itly defined and stored outside of the administrative process functions to ensure consistency
and function across environments. In short, you should treat any administration processes
with the same discipline and rigor that you would when designing and developing the main
application.

Summary
This chapter focuses on the guiding principles, cultures, and methodologies of modern
application development teams. It provides some insight into how applications move from
repositories of code to compiled applications and binaries to being deployed on infrastruc-
ture and examples of leveraging the capabilities of such pipelines for both infrastructure and
applications. These pipelines are contrasted with some of the challenges that operations staff
faced in the early days of application deployment and support as well as how modern opera-
tions staff can be removed from supporting the infrastructure. Finally, the chapter discusses
the design principles that can serve as a baseline for the development of a modern web-based
or SaaS application.

Exam Preparation Tasks
As mentioned in the section “How to Use This Book” in the Introduction, you have a couple
of choices for exam preparation: the exercises here, Chapter 17, “Final Preparation,” and the
exam simulation questions in the Pearson Test Prep Software Online.

Review All Key Topics
Review the most important topics in this chapter, noted with the Key Topic icon in the outer
margin of the page. Table 7-3 lists a reference of these key topics and the page numbers on
which each is found.

Table 7-3 Key Topics for Chapter 7

Key Topic
Element

Description Page
Number

Section SRE vs. DevOps 198
Paragraph Need and purpose of continuous integration (CI) pipelines 199
List Automated deployment methodologies of applications 206
Paragraph Ways in which CI/CD pipelines (or outcomes) can be built 207
Table 7-2 Popular Configuration Management Utilities 221
Paragraph Explanation of value of managed Kubernetes offerings 224
Paragraph Definition and operation of serverless container platforms 227
Paragraph What are serverless functions? 234

BOOK.indb 243 19/05/22 5:52 PM

ptg39201256

244 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Complete Tables and Lists from Memory
There are no memory tables or lists in this chapter.

Define Key Terms
Define the following key terms from this chapter and check your answers in the glossary:

DevOps, site reliability engineering (SRE), continuous integration (CI), continuous delivery
(CD), continuous deployment (CD), version control system (VCS), source code manager
(SCM), Infrastructure as Code (IaC), serverless, Kubernetes

References
URL QR Code

https://cloud.google.com/blog/products/devops-sre/
how-sre-teams-are-organized-and-how-to-get-started

https://sre.google/sre-book/introduction/

https://www.runatlantis.io/guide/testing-locally.html

https://kind.sigs.k8s.io/docs/user/quick-start/

https://www.tiobe.com/tiobe-index/

https://www.gnu.org/software/make/manual/html_node/Simple-
Makefile.html

BOOK.indb 244 19/05/22 5:52 PM

https://cloud.google.com/blog/products/devops-sre/how-sre-teams-are-organized-and-how-to-get-started
https://cloud.google.com/blog/products/devops-sre/how-sre-teams-are-organized-and-how-to-get-started
https://sre.google/sre-book/introduction/
http://https://www.runatlantis.io/guide/testing-locally.html
https://kind.sigs.k8s.io/docs/user/quick-start/
https://www.tiobe.com/tiobe-index/
https://www.gnu.org/software/make/manual/html_node/Simple-Makefile.html
https://www.gnu.org/software/make/manual/html_node/Simple-Makefile.html

ptg39201256

Chapter 7: Application Deployment 245

7

URL QR Code

https://microservices-demo.github.io/docs/

https://12factor.net

BOOK.indb 245 19/05/22 5:52 PM

https://microservices-demo.github.io/docs/
https://12factor.net

ptg39201256

CHAPTER 8

Security in Application Design

This chapter covers the following topics:

■ Protecting Privacy: This section covers what constitutes personally identifiable infor-
mation (PII), data states (in motion or at rest), and how the state affects the security
architecture and process. Laws and regulations governing privacy and security are also
discussed.

■ Storing IT Secrets: In this section, you learn about the various types of “secrets” or
credentials used to authenticate and authorize any communication or transaction.
Passwords are a common example, but others also are described in this section.

■ Public Key Infrastructure (PKI): This section covers PKI, which is a type of asymmet-
ric cryptography algorithm that requires the generation of two keys. One key is secure
and known only to its owner; it’s the private key. The other key, called the public key,
is available and known to anyone or anything that wishes to communicate with the pri-
vate key owner.

■ Securing Web and Mobile Applications: This section provides a detailed look at the
Open Web Application Security Project (OWASP) application security verification
system and discusses a few common attacks and how to prevent them.

■ OAuth Authorization Framework: This section discusses how OAuth 2.0 works and
the most common flows for authorization.

This chapter maps to the first part of the Developing Applications Using Cisco Core Plat-
forms and APIs v1.0 (350-901) Exam Blueprint Section 4.0, “Application Deployment and
Security,” specifically subsections 4.9, 4.10, and 4.11.

This chapter focuses on various security aspects in application design and execution. As
applications become more distributed, business data is forced to cross multiple boundar-
ies outside the control of enterprise security systems. Throughout the chapter, we cover
a few issues and scenarios related to designing and building applications with security in
mind. In addition to security needed to protect assets and your business reputation, it has
also become an important focus area for regulations and compliance. There has been a rise
in multiple regulations and frameworks related to data privacy and sovereignty, such as the
General Data Protection Regulation (GDPR) in the European Union and the California Con-
sumer Protection Act (CCPA), a US-based state regulation example.

In the following sections, we run through a number of examples about security design in
application development.

BOOK.indb 246 19/05/22 5:52 PM

ptg39201256

“Do I Know This Already?” Quiz
The “Do I Know This Already?” quiz allows you to assess whether you should read this
entire chapter thoroughly or jump to the “Exam Preparation Tasks” section. If you are in
doubt about your answers to these questions or your own assessment of your knowledge
of the topics, read the entire chapter. Table 8-1 lists the major headings in this chapter and
their corresponding “Do I Know This Already?” quiz questions. You can find the answers in
Appendix A, “Answers to the ‘Do I Know This Already?’ Quizzes.”

Table 8-1 “Do I Know This Already?” Section-to-Question Mapping

Foundation Topics Section Questions

Protecting Privacy 1–3
Storing IT Secrets 4, 5
Public Key Infrastructure (PKI) 6, 7
Securing Web and Mobile Applications 8, 9
OAuth Authorization Framework 10

1. What does the information security CIA triad stand for?
a. Central Intelligence Agency
b. Confidentiality, integrity, and availability
c. Certificate Improvement Administration
d. None of these answers are correct.

2. The term data states refers to data being _________. (Choose all that apply.)
a. In motion or at rest
b. Encrypted or decrypted
c. Clear text or encrypted
d. In a relational or nonrelational database

3. What does data at rest mean?
a. Data is not in transit
b. On a hard drive
c. Stored in a database
d. All of these answers are correct.

4. What does PII refer to?
a. Personally identifiable information
b. Personal and interested identity
c. Professionally identifiable information
d. None of these answers are correct.

BOOK.indb 247 19/05/22 5:52 PM

ptg39201256

248 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

5. GDPR is a data protection law in the EU; what does it stand for?
a. General Data Public Relations
b. General Data Protection Regulation
c. Generic Decision Probability Router
d. None of these answers are correct.

6. IT secrets are all the following except _________.
a. Passwords
b. API keys
c. Account credentials
d. Vehicle identification number (VIN)

7. What is a certificate authority’s main function?
a. Certifying authorities in data communication
b. Issuing and signing certificates
c. Certifying account security
d. Storing personal passwords

8. Which of the following is considered to be an injection attack? (Choose all that apply.)
a. SQL injection
b. LDAP
c. Operating system commands
d. All of these answers are correct.

9. Which of the following is not a cryptographic attack?
a. Brute-force attack
b. Implementation attack
c. Statistical attack
d. PoH attack

10. What is the difference between a two-legged authorization flow and a four-legged
one?
a. The two-legged one utilizes an authorization server.
b. The four-legged one takes longer to execute.
c. There is no such thing as a four-legged authorization.
d. They are identical.

Foundation Topics
Information system security can be summed up in three fundamental components: confiden-
tiality, integrity, and availability. This is sometimes referred to as the CIA triad, as shown in
Figure 8-1.

BOOK.indb 248 19/05/22 5:52 PM

ptg39201256

Chapter 8: Security in Application Design 249

8

C
on

fid
en

tia
lit

y

Availability

Integrity

Figure 8-1 Information System Security Triad

Simply put:

■ Confidentiality: The capability to protect data from unauthorized access.

■ Integrity: The capability to protect data from modification (authorized or unauthor-
ized modification). Any interception of data that affects the content is considered a
violation of the integrity of the data.

■ Availability: The capability of an authorized entity or process to access data anytime
it needs to reliably.

Included within or adjacent to CIA are a number of supporting security elements:

■ Authentication

■ Authorization

■ Identity and identity management

■ Auditing

■ Anomaly detection

In some scenarios, security used to be external to the software development process. In
other words, applications had functions to perform, and they were protected by perimeter-
type security devices like firewalls enabled with the appropriate access polices or intrusion
detection or prevention systems watching for specific signatures and stopping them. You can
think of security as a negative goal. It cannot be achieved and guaranteed; therefore, these
methods focused on the “don’ts” (things that cannot happen). When you look at security
from a nonfunctional requirement perspective, you immediately realize that you’re facing a
difficult task, and trade-offs must apply. A simple trade-off would be: If you want a highly
secure system, then be prepared to give up some performance.

The next best alternative was to standardize a checklist-type process like the Open Web
Application Security Project (OWASP) application security verification system. The
OWASP website at https://owasp.org/ lists the Top 10 Web Application Security Risks for
2021:

1. Broken access control
2. Cryptographic failures

3. Injection

4. Insecure design

5. Security misconfiguration

BOOK.indb 249 19/05/22 5:52 PM

https://owasp.org/

ptg39201256

250 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

6. Vulnerable and outdated components

7. Identification and authentication failures

8. Software and data integrity failures

9. Security logging and monitoring failures

10. Server-side request forgery

With the emergence of DevOps, a shift toward integration of security began early in the
design and development lifecycles. You may see this movement of security referred to as the
“shift left.” In the following sections, we work on concepts for designing security into the
application and its data at rest or in motion.

Protecting Privacy
Privacy is one of the hottest issues in security today. The emergence of the digital economy,
e-commerce, and social media continues to put privacy issues at the forefront. Eventu-
ally, local (or global) governments and standard bodies had to step in and bring awareness
and regulations to protect individuals. But first they had to define what constitutes private
information.

Personally Identifiable Information
Personally identifiable information (PII) is any information that can be used to identify
a person. Various standard and regulatory bodies define PII in their own ways and in various
contexts, and using generic language; however, the following examples are common to most
definitions:

■ Name(s)

■ Social Security number or tax identification number

■ Driver’s license number

■ Credit card number

■ Address

■ Personal biometric data: fingerprints, retina scan, voice

■ Photographs

■ The list goes on and could possibly depend on the context in which the data is being
used.

PII data is everywhere and is used in almost every transaction and must be protected. The
applications you’re writing must protect PII data and must pass periodic audits.

Data States
To protect data, you must first know the state it is in. Data is either in motion, at rest, or in
use:

■ Data in motion: The data is in transit or traveling between two nodes or across the
network. Data needs to move between nodes and applications to create transactions.
For example, data needs to move between a point-of-sale (POS) system and a credit

BOOK.indb 250 19/05/22 5:52 PM

ptg39201256

Chapter 8: Security in Application Design 251

8

card processing application. It must be protected. You would commonly think of
encryption to protect that data while in transit. Encryption can be applied at different
stages of the data journey: at the link level, network level, or application level.

Transport Layer Security (TLS) is the most common encryption protocol and is
considered to be strong enough for web traffic. Commonly, web data is transmitted
over the Secure Sockets Layer (SSL) using TLS 1.1 or 1.2. TLS is used for ensuring
integrity and confidentiality over a network. It uses symmetric cryptography using a
shared key negotiated at the initialization of a session. It is also possible to use TLS
for authentication using public key–based authentication involving digital certificates.

■ Data at rest: When data is not being transmitted, then it is considered at rest. When
data is stored on a hard drive, tape, or any other media type, then it is at rest. A great
deal of sensitive data is at rest. Examples include password files, databases, and back-
up data. In today’s distributed system web applications, the definition is widened to
include data within personal hard drives, network-attached storage (NAS), storage-area
networks (SANs), and cloud-based storage. Similar to data in motion, encryption plays
a big role in protecting data at rest. Encryption can be applied to the entire disk or to
individual files. Encrypting the entire disk may tax performance, but it’s a small price
to pay to secure sensitive data.

■ Data in use: Some security and privacy standards define this third state. When data
is being processed, updated, or generated, then it is considered to be in use. You
could argue that when data is the in the in-use state, it is actually sitting in memory or
“swap” space somewhere and could be considered “at rest.” You would not be wrong.

Whether data is at rest or in motion, protecting the data with access control, encryption, or
other means is what we discuss in the next few sections.

Laws, Regulations, and Standards for Protecting Privacy
A number of US, European, and global standards and regulations continue to evolve to keep
up with the speed of change in how business is conducted and information is shared.

In addition, these regulations specify and make a clear distinction among the following:

■ Data privacy: Addresses confidentiality of data and preventing unauthorized access.

■ Data sovereignty: Identifies who has power over the data. If data resides in the US, it
does not matter what entity or government owns it, the data is subject to US laws.

■ Data localization: Specifies where the data should be located. For example, all data
related to EU citizens must be located in the EU, even if the entity in possession of
the data is a US-based company.

The following are laws or regulations that you may see or hear about:

■ General Data Protection Regulation (GDPR): This regulation gives European
Union (EU) citizens control over their own personal data. In addition, it is built with
the digital economy in mind. GDPR is increasing new personal data rights to EU citi-
zens, including the right to withdraw consent, have easier access to their data, under-
stand where their data is stored, and know if their data has been compromised by a

BOOK.indb 251 19/05/22 5:52 PM

ptg39201256

252 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

cyberattack within 72 hours, depending on the relevance of the attack. In a nutshell,
GPDR helps people gain more control over their personal data and, in turn, mandates
companies to be transparent, accountable, and fair when using personal data.

■ Health Insurance Portability and Accountability Act (HIPAA): This US federal law
creates national standards for protecting patient data. It controls the use and disclosure
of people’s health information. HIPAA not only is for all US health-care businesses
that have access to protected health information (that is, hospitals, private doctors,
health insurance companies) but also covers business associates that provide services
to those covered entities that process protected health information (PHI) on their
behalf (including cloud service providers hosting health-care applications).

■ Sarbanes-Oxley Act of 2002 (SOX): SOX might not seem to be a “privacy” law ini-
tially, but it does include some privacy clauses in it. It’s designed to protect investors
by improving the accuracy and reliability of corporate reporting.

■ Payment Card Industry Data Security Standard (PCI DSS): This standard aims to
secure credit card data and transactions against theft or fraud.

GDPR is the toughest of these examples and is much broader in scope than the other three;
it includes security, privacy, and data localization elements.

Storing IT Secrets
To move at the speed of business, today’s enterprises utilize commercial off-the-shelf
(COTS), home-grown, and open-source software to build applications that automate their
business and serve their customers. There are no magic applications; applications need to
interact with other applications and do so using credentials. These credentials are called
secrets; in an IT context, they’re called IT secrets, and are used as “keys” to unlock pro-
tected applications or application data.

The following examples are secrets exchanged between applications:

■ Passwords

■ API keys

■ Account credentials

■ Encryption keys

■ Credentials for connecting to databases

■ Credentials used for API calls

Secrets can be used by the application for

■ Securing CI/CD pipelines and tools (for example, Jenkins, Ansible, Puppet)

■ Securing containers

■ Improving portability

BOOK.indb 252 19/05/22 5:52 PM

ptg39201256

Chapter 8: Security in Application Design 253

8

■ Providing direct code storage or through environment variables

■ Providing database storage

■ Enabling API calling and synchronization

■ Furnishing encrypted code storage

■ Presenting cloud-based secret services

Managing and storing secrets can be easy or can be difficult. That ease or difficulty depends
on the scope of the applications and the boundaries that the application interaction must
cross. You can store secrets in the source code, and it can be seen by everyone who reviews
your code (this approach is not recommended). Secrets can also be stored directly in the
code but encrypted. You can also use an external secret management service.

When planning to protect application secrets, you should consider the following:

■ Make this a design decision. Take all applications (centralized or distributed), net-
works, and cloud interactions into consideration.

■ Update secrets before moving the application into production. Do not use the same
set of secrets for development, QA, and production.

■ Use multifactor authentication when possible and for critical information retrieval.

■ Using single sign-on is recommended whenever possible and whenever the capabilities
are available and simple to apply.

The following are common secrets-storing strategies:

■ Embedded into the code: This strategy is not the best because anyone with access to
the code will have access to the secrets. You can change secrets after code reviews and
audits, if possible, but again, this is not a safe way. This approach is not recommended
and is shown in the following example:

MyApp_example.py
MyApp_API_KEY = 'lkajdfuishglkjg' # Hello World, look at my
password

On the other hand, it can be used with encryption if you manage to store and use the
key safely.

■ In the environment: This strategy is safer than the method before it. It has more con-
trol as to who has access to secrets. However, it is also prone to user misconfigurations
because you have to update environments on every server. Automated orchestration of
passwords may not be a bad idea here:

MyApp_example.py
MyApp_API_KEY = os.environ["MyApp_API_Key"]

BOOK.indb 253 19/05/22 5:52 PM

ptg39201256

254 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

■ In a database: In this strategy, a single infrastructure is used to manage passwords and
secrets:

MyApp_example.py
db = MySQLdb.connect ("192.168.100.2","username","mypassword",
"MYDB")

■ At a syncing service: This strategy provides a centralized way for managing secrets.
You manage a single password to manage a service that manages all your secrets; how-
ever, all passwords and API keys need to be hosted with that service. Understanding
your application’s landscape and dependencies is essential at this stage.

The syncing service can also be hosted in the cloud as SaaS—for example, Amazon’s
AWS Key Management Service (KMS). Similarly, Microsoft Azure offers Vault as an
alternative. The advantages are clear:

■ Centralized key management

■ Fully managed service

■ Low cost, depending on your organization

■ Support for auditing

■ Help with your compliance efforts

HashiCorp Vault is widely used; it is a free and open-source product that can also
come with an enterprise offer.

Public Key Infrastructure (PKI)
A public key infrastructure (PKI) is a type of asymmetric (a.k.a. public key) cryptography
algorithm that requires the generation of two keys. One key is secure and known only to
its owner; it is called the private key. The other key, called the public key, is available and
known to anyone or anything that wishes to communicate with the private key owner. PKI
has multiple components that coordinate the trust and the generation and destruction (revo-
cation) of keys, so let’s look at a quick summary of the main ones.

A certificate authority (CA) is the main component that brings together the full cycle
that starts with a “trusted” certificate authority issuing and signing a certificate. Certificate
authorities are third-party or neutral organizations that certify that the other entities com-
municating with each are in fact who they say they are. The communicating entities (such as
the server/client) can be users, machines, servers, or databases.

When a CA certifies an entity, the CA verifies that entity’s identity and grants it a certificate,
signing it with the CA’s private key. The CA has its public key, available to everyone. It also
has a private key, which is securely stored. Servers and clients use the CA’s root certificate to
verify signatures that the certificate authority has issued.

BOOK.indb 254 19/05/22 5:52 PM

ptg39201256

Chapter 8: Security in Application Design 255

8

A simple search for the top certification authorities revealed multiple “top 10” results. The
following names are common to the majority of the lists:

1. Symantec

2. GeoTrust

3. Comodo

4. DigiCert

5. Thawte

6. GoDaddy

7. Network Solutions

8. RapidSSLonline

9. SSL.com

10. Entrust Datacard

As you build your security architecture, it is important to know your CA landscape. In the
majority of cases, your organization has probably made the choice for you, so you don’t
have to know much above and beyond which CA you should direct your traffic to initially.
It is also worth mentioning that it is not uncommon to see private (organization-specific)
implementations of PKI.

Figure 8-2 demonstrates what’s referred to as the enrollment and verification process and
how a user requests and receives a CA’s identity certificate.

Obtain Certificate

Certificate
Authority

Verification

Request Certificate

Registration
Authority

Registration

Verification

VerifierUser

3

3

2

1

4

Figure 8-2 User Request and Verification

The steps are as follows:

1. Register with the CA or the registration authority (RA) (this can be a physical meeting
or other means of identity verification).

2. Request a certificate from the CA admin.

BOOK.indb 255 19/05/22 5:52 PM

http://SSL.com

ptg39201256

256 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

3. Independently verify the identity of the user and that the certificate planned for issue
is not on the certificate revocation list.

4. The CA admin issues and signs a certificate.

Digital certificates (or simply certificates) are identities verified and issued by the CA. The
format of the certificates is defined by the International Telecommunication Union (ITU) in
their X.509 standard, and it includes:

■ Version

■ Serial number

■ Signature (algorithm ID used to sign the certificate)

■ Name of issuer

■ Validity (dates, durations)

■ Subject (owner’s name, also called distinguished name)

■ Subject’s public key information

■ Issuer’s unique ID (CA’s ID)

■ Subject’s unique ID

■ Optional extensions for specific implementations

Certificate Revocation
As you saw in the preceding section, certificates have a “validity” period or an expiration
date. When certificates expire, they become in doubt, or some foul play is expected, they
get revoked. Revoked certificates and their serial numbers are added to a certificate revoca-
tion list (CRL). Figure 8-3 shows a high-level illustration of the revocation process and the
storing of the CRL at the CA server.

Client gets CRL
list and verifies
server certificate

Client connects to website

Server sends certificateClient Server

CA or CRL Issuer

List of Revoked Certificates
3

2

1

Figure 8-3 Certificate Revocation

BOOK.indb 256 19/05/22 5:52 PM

ptg39201256

Chapter 8: Security in Application Design 257

8

Certificate revocation is a centralized function, providing push and pull methods to obtain a
list of revoked certificates periodically or on demand.

Hierarchical Multiple CA Infrastructure
PKI has a hierarchical structure where it has a root CA and subordinate CAs. The subordi-
nate CAs are used for offloading the root CA or for flexibility to support various use cases.
The hierarchy can also help with reliability and availability because CAs can validate one
another or for one another. Figure 8-4 shows an example of hierarchical CA implementation.

Client Certificate

Subject Name

Subject Public Key

Issuer (Intermediate
CA) Name

Issuer Signature

Reference

Intermediate CA

Owner (CA Name)

Owner Public Key

Issuer (Root CA) Name

Issuer Signature

Sign

Self-sign

Reference

Root CA

Root CA Name

Root CA Public Key

Root CA Signature

Sign

Figure 8-4 Hierarchical CA Implementation

The root CA has a self-assigned certificate. The trust within the hierarchy is derived from
the Rivest-Shamir-Adleman (RSA) algorithm. RSA is an asymmetric key cryptography
system that provides both encryption and digital signatures used for nonrepudiation and
authentication.

TLS, PKI, and Web Applications Security
As business moves more and more into the digital or e-commerce economy, web applications
are used to conduct most of that business. Encryption is an essential facilitator of commu-
nication with web applications. SSL/TLS have become the standard security protocols for
authentication and integrity for protecting HTTP traffic.

Figure 8-5 shows the client/server exchange for negotiating and establishing a new TLS
connection.

BOOK.indb 257 19/05/22 5:52 PM

ptg39201256

258 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Client connects to website
Client Server

Server sends certificate with server’s public key

Client Key Exchange: shared secret key encrypted
with public key of server

Client verifies and
validates certificate

Client generates
a shared secret key

Data exchange encrypted with shared symmetric key

5

6

3

2

1

4

Figure 8-5 TLS New Connection Exchange

In practice, the certificates are stored and hidden from the user within the browser. The
TLS validation is also hidden unless the user wants to view the details. Here’s an example of
where or how to verify the exchange:

1. The user attempts to connect to a security training site (see Figure 8-6). When the
connection to the server is first initialized, the server provides its PKI certificate to the
client. This contains the public key of the server and is signed with the private key of
the CA that the owner of the server has used.

Figure 8-6 User Connects to a Web App

2. The signature is subsequently verified to confirm that the PKI certificate is trustwor-
thy. If the signature can be traced back to a public key that already is known to the
client, the connection is considered trusted. Figures 8-7 and 8-8 show an example that
was executed on a macOS and may look a little different than one executed on a
Windows or Linux operating system.

BOOK.indb 258 19/05/22 5:52 PM

ptg39201256

Chapter 8: Security in Application Design 259

8

Figure 8-7 Valid and Trusted Certificate

Figure 8-8 Continuation from the Data Viewed in Figure 8-7

BOOK.indb 259 19/05/22 5:52 PM

ptg39201256

260 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

3. Now that the connection is trusted, the client can send encrypted packets to the
server. Figure 8-9 shows that after verification, the connection is trusted, and
encrypted traffic can be exchanged with the server.

Figure 8-9 Highlighting the Validity, Trust, and Encryption (Highlighted and Boxed)

4. Because public/private key encryption is one-way encryption, only the server can
decrypt the traffic by using its private key. Figure 8-10 displays further verification
that only the shown server can decrypt the traffic.

In Figure 8-10, it is possible to view the path to the issuing CA. Before a certificate is
trusted, the system (the client OS) must verify that the certificate comes from a trusted
source. This process is called certificate path validation (CPV), which says that every cer-
tificate’s path from the root CA to the client (or host system) is legitimate or valid. CPV can
also help ensure that the session between two nodes remains trusted. If there is a problem
with one of the certificates in the path, or if the host OS cannot find a certificate, the path
is considered “untrusted.” Typically, the certification path includes a root certificate and one
or more intermediate certificates.

BOOK.indb 260 19/05/22 5:52 PM

ptg39201256

Chapter 8: Security in Application Design 261

8

Figure 8-10 Root CA Path Validation

Browser Security Issues
As a web app developer, you must be able to handle and absorb warning messages related to
certificate validation. Clear messages are usually displayed at the event of any issue, regard-
less of the severity. Don’t ignore the warnings; they may turn out to be easy-to-fix issues or
may actually be cryptographic attacks. The most common issues associated with security
warnings are as follows:

■ Hostname/identity mismatch: URLs specify a web server name. If the name specified
in the URL does not match the name specified in the server’s identity certificate, the
browser displays a security warning. Hence, DNS is critical to support the use of PKI
in web browsing.

■ Validity date range: X.509v3 certificates specify two dates: not before and not after.
If the current date is within those two values, there is no warning. If it is outside
the range, the web browser displays a message. The validity date range specifies the
amount of time that the PKI will provide certificate revocation information for the
certificate.

BOOK.indb 261 19/05/22 5:52 PM

ptg39201256

262 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

■ Signature validation error: If the browser cannot validate the signature on the certifi-
cate, there is no assurance that the public key in the certificate is authentic. Signature
validation will fail if the root certificate of the CA hierarchy is not available in the
browser’s certificate store. A common reason may be that the server uses a self-signed
certificate.

■ Cryptographic attacks: There are many types of cryptographic attacks; they may or
may not look any different than other security-type attacks, which include

■ Brute-force attacks: These attacks utilize highly capable computational systems to
try every combination of keys or passwords.

■ Statistical attacks: These attacks exploit statistical weaknesses in the crypto sys-
tem or algorithm.

■ Implementation attacks: These attacks exploit weaknesses in the implementation
of the crypto system. As mentioned earlier, anyone can implement the system with
or without adherence to X.509v3.

■ Others: Other types of attacks may be related to specific implementations or cus-
tomizations, such as meet-in-the-middle, side-channel, birthday, or social engineer-
ing attacks.

Securing Web and Mobile Applications
We introduced OWASP at the beginning of the chapter and briefly discussed a few vulner-
abilities or common security scenarios affecting web applications. We also briefly described
the Top 10 web application security risks. OWASP published a list in 2017 and recently pub-
lished the list shown in 2021. The items on the list are ranked based on a score presented and
justified by OWASP and the community of security professionals it surveys. The scores are
based on factors like exploitability, detectability, likelihood, and impact. Here’s the list with
details as published on https://owasp.org/www-project-top-ten/. We highly recommend that
you visit the site and learn about the security issues and possible techniques for mitigating
them.

■ A01:2021-Broken Access Control: Access control enforces policy such that users
cannot act outside of their intended permissions. Failures typically lead to unauthor-
ized information disclosure, modification, or destruction of all data or performing a
business function outside the user’s limits.

■ A02:2021-Cryptographic Failures: Cryptography failures or attacks often lead to
sensitive data exposure or system compromise.

■ A03:2021-Injection: When user data is not frequently validated, then injection or
extraction of sensitive records is possible.

■ A04:2021-Insecure Design: This broad category represents different weaknesses,
expressed as “missing or ineffective control design.” This category was not listed in
the 2017 list.

BOOK.indb 262 19/05/22 5:52 PM

https://owasp.org/www-project-top-ten/

ptg39201256

Chapter 8: Security in Application Design 263

8

■ A05:2021-Security Misconfiguration: This is an important category, and it comes in
many forms: missing information, password management issues, error handling, and so
on.

■ A06:2021-Vulnerable and Outdated Components: This is also a broad category that
we mention in this book multiple times. You should have a good handle on all versions,
vulnerabilities, and the recommended versions.

■ A07:2021-Identification and Authentication Failures: Confirmation of the user’s
identity, authentication, and session management is critical to protect against authenti-
cation-related attacks.

■ A08:2021-Software and Data Integrity Failures: This new category for 2021 focuses
on making assumptions related to software updates, critical data, and CI/CD pipelines
without verifying integrity.

■ A09:2021-Security Logging and Monitoring Failures: This one is self-explanatory.
Without logging and monitoring, your ability to detect breaches or attacks is dimin-
ished.

■ A10:2021-Server-Side Request Forgery: This category is also self-explanatory and is
considered to be high on the list of issues needing attention.

In the next few sections, we provide a practical approach to dealing with a few of the items
on the list.

Injection Attacks
Injection attacks affect a wide range of attack vectors. In the 2017 OWASP Top 10 list,
injection attacks were classified as the top web application security risk. On the 2021 list, it
dropped to third place, possibly because of advanced tooling and monitoring allowing you
to detect injections or because the top risks have been observed more frequently. Regardless
of the ranking, injection remain a serious issue.

The most common injection attacks are related to SQL and common databases; however, the
following list will possibly grow:

■ SQL, NoSQL injection

■ Object relational mapping

■ LDAP injection

■ Operating system commands

■ Code injection

■ CRLF injection

■ Email header injection

■ Host header injection

■ Operating system command injection

■ XPath injection

BOOK.indb 263 19/05/22 5:52 PM

ptg39201256

264 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

SQL attacks are the most common type of attack, partly due to the nature of the language
and the ability to build dynamic queries. SQL injection attacks happen when an application
is not able to differentiate trusted from untrusted.

string query = 'SELECT * FROM users_data WHERE user = ' + user_name

If the user gives the input as user_name = "' OR 1=1", the query returns all users in the data-
base because 1=1 always evaluates as true and all user data is displayed.

To protect your code and database against injection, we recommend following these leading
practices:

■ Use prepared statements with variable binding (parameterize queries). Prepared state-
ments are specific. Using 1=1 does not have specificity and in essence means nothing.
These statements are also simple to write and easier to read than dynamic queries.

■ Allow lists are the next best alternative when you’re unable to use variable binding
because it is not always allowed or legal in SQL. Creating allow lists increases the dif-
ficulty for an attacker to inject queries. Allow lists match every user input to a list of
“allowed” or “acceptable” characters.

■ OWASP.org mentions stored procedures as another defense option. In a way, they’re
like prepared statements where prepared (or canned) SQL is built, saved, and used
frequently and as needed.

NOTE The OWASP website offers great information for understanding the attacks and
provides you with various ways to protect your code and applications. We found the “SQL
Injection Prevention Cheat Sheet” to be of great value:
https://cheatsheetseries.owasp.org/cheatsheets/SQL_Injection_Prevention_Cheat_Sheet.html

Cross-Site Scripting
Cross-site scripting (XSS) comes in various forms and outcomes and is also considered a
type of an injection attack. With XSS, attackers inject malicious scripts into a web applica-
tion to obtain information about the application or its users. The three main types of
XSS are

■ Stored XSS: In Figure 8-11, the attacker injects a script (a.k.a. a Payload) into a web
server, and the script is triggered every time a user visits the website.

BOOK.indb 264 19/05/22 5:52 PM

http://OWASP.org
https://cheatsheetseries.owasp.org/cheatsheets/SQL_Injection_Prevention_Cheat_Sheet.html

ptg39201256

Chapter 8: Security in Application Design 265

8

Attacker injects a malicious
script on the website that steals
visitor’s session cookies.

Attacker discovers a
vulnerable website that
allows script injection.

Session cookie is sent to attacker.
This allows attacker to access private
and sensitive data of the victim.

Attacker

Website

Each time the website is
visited, the malicious
script is executed.

Victim

32

1

4

Figure 8-11 Stored XSS Attack

■ Reflected XSS: This attack or injection, detailed in Figure 8-12, is delivered to the
“victim” using a trusted email or URL. The injection can also be reflected off a web-
site like an error message or query result. The victim is then tricked into clicking or
responding, leading to the execution of the code.

The website loads the
content from DB containing
the malicious script.

Database

Malicious script stored in DB.

Victim sends a
request to website.

Website

Website sends
response to victim.

The attacker accesses private and
sensitive data of the victim.

Attacker discovers a
vulnerable website that
allows script injection.

Attacker Victim

Attacker posts a submission
with the malicious script.

5

6

3

2

1

4

7

Figure 8-12 Reflected XSS Attack

BOOK.indb 265 19/05/22 5:52 PM

ptg39201256

266 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

■ DOM-based XSS: The attacker injects a script or payload into the Document Object
Model (DOM), and the script is triggered through the console. The steps are clearly
detailed in Figure 8-13. Unlike the stored and reflected attacks, a DOM-based attack is
a client-based attack instead of a server-side attack.

The victim is misled into
opening the URL.

Website

Victim
Attacker

Website received request. The
response does not include malicious
content.

The attacker accesses private and
sensitive data of the victim.

The user's browser executes the licit script
inside the response, which causes the
insertion of the malicious script in the page.

The client-side code is responsible for
the execution of the malicious script in
the user browser.

The attacker makes up a URL with the
malicious string and sends it to the victim.

Attacker discovers a
vulnerable website.

5

6

7

3

2

1

4

Figure 8-13 DOM-Based XSS Attack

OAuth Authorization Framework
Open Authentication (OAuth) is an open standard defined by IETF RFC 6749. Two ver-
sions are in use today: OAuth 1.0 and 2.0. OAuth 2.0 is not backward compatible with OAuth
1.0 (RFC 5849). OAuth 2.0 is widely used and is briefly covered in this chapter.

OAuth is designed with HTTP in mind and allows users to log in to multiple sites or applica-
tions with one account.

NOTE RFC 6749 is a good read, and we highly recommend that you get familiar with the
main concepts if your work responsibilities include building application security compo-
nents: https://datatracker.ietf.org/doc/html/rfc6749.

How Does OAuth Work?
If you’ve ever logged in to your Google account and used the same account to log in to
Facebook and Twitter, then there is a high probability that single sign-on (SSO) was involved
and OAuth was at work. To grant access to a Facebook service, you in essence authorized
an OAuth server via authentication to issue an OAuth token to Facebook. By allowing the
sharing of tokens with the third party (Facebook in this example), you’re allowing Google to
grant Facebook a token without sharing your credentials.

BOOK.indb 266 19/05/22 5:52 PM

https://datatracker.ietf.org/doc/html/rfc6749

ptg39201256

Chapter 8: Security in Application Design 267

8

OAuth defines these four roles:

■ Resource owner (end user or thing): Normally, the end user but can also be any com-
pute entity.

■ Resource server: The host of the secured accounts. The server responds to the client.

■ Client (client application): The application making a resource request.

■ Authorization server: The server issuing access tokens to the client after it verifies
identity.

OAuth also defines four grant type flows. A grant is a credential representing the end user’s
authorization used by the client application to obtain an access token. The four grant types
are as follows:

■ Authorization code: The authorization code is obtained by an authorization server as
intermediary between the client and the end user.

■ Implicit flow: This simplified authorization code flow is optimized for client applica-
tions implemented in a browser using a scripting language. Instead of issuing the client
and authorization code, the client is issued an access token directly.

■ Resource owner password credentials: Simply put, this one is more like a name and
password for the end user.

■ Client credentials: Client application credentials can be used when the client is acting
on its own behalf. This means when the client application is acting as a resource owner
(or end user) requesting access to protected resources with the authorization server.

Figure 8-14 details the exchange among the four defined roles.

Client Application

Access Token

Protected Resource
Resource Server

Authorization Server

Resource Owner

Aut
ho

riz
at

io
n

G
ra

nt

Aut
ho

riz
at

io
n

Req
ue

st

Access Token
Authorization Grant

5

6

3

2

1
4

Figure 8-14 OAuth 2.0 Protocol Flow

The flow steps illustrated in Figure 8-14 are as follows:

1. The client requests authorization from the resource owner (end user). The authoriza-
tion request can be made directly to the resource owner (as shown), or preferably indi-
rectly via the authorization server as an intermediary.

BOOK.indb 267 19/05/22 5:52 PM

ptg39201256

268 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

2. The client receives an authorization grant, which is a credential representing the
resource owner’s authorization, expressed using one of four grant types defined in this
specification or using an extension grant type. The authorization grant type depends
on the method used by the client to request authorization and the types supported by
the authorization server.

3. The client requests an access token by authenticating with the authorization server
and presenting the authorization grant.

4. The authorization server authenticates the client and validates the authorization grant,
and if valid, issues an access token.

5. The client requests the protected resource from the resource server and authenticates
by presenting the access token.

6. The resource server validates the access token, and if valid, serves the request.

OAuth 2.0 has two authorization flows: two-legged and three-legged.

OAuth 2.0 Two-Legged Authorization
The two-legged flow authorization has two exchanges (flows) among three components. It
involves three parties: the authorization server, client application, and resource server. It is a
simple and straightforward flow. As seen in Figure 8-15, the two-legged authorization flow
does not require the presence of an end user.

Resource Server
Client Application

Authorization Server

First Flow

Second Flow
3

2

1
4

Figure 8-15 Two-Legged OAuth Flow

Initially, the client application authenticates with the authorization server and requests an
access token. This action is done by making the request with grant_type = client_creden-
tials and providing the client_id and client_secret. The following code example illustrates
the point:

POST /oauth/oauth20/token HTTP/1.1

Host: server.devcor.com

Content-Type: application/x-www-form-urlencoded

Accept: application/json

grant_type=client_credentials

BOOK.indb 268 19/05/22 5:52 PM

http://server.devcor.com

ptg39201256

Chapter 8: Security in Application Design 269

8

client_id=pwmdisdz78fs9dujtn35wps67

client_secret=45kj86985utjfk98u389o658ogwti

The authorization server then authenticates the request and, if valid, issues an access token
including any additional parameters:

HTTP/1.1 200 OK

Date: Wed, 15 Dec 2021 14:32:12 GMT

Content-Type: application/json

{

 "access_token":"2YotnFZFEjr1zCsicMWpAA",

 "token_type":"bearer",

 "expires_in":3600,

 "example_parameter":"example_value"

 }

OAuth 2.0 Three-Legged Authorization
The three-legged OAuth flow requires four parties: the authorization server, client applica-
tion, resource server, and resource owner (end user). The three flows or exchanges among the
four parties are why the authorization is called three-legged. By looking at the difference in
interaction between the two-legged and the three-legged authorization, you can probably
guess that the two-legged one is used for API authorization versus end-user authorization
with the three-legged flow.

Resource Server
Client Application

Resource Owner

Authorization Server

First Flow

Second Flow

Third Flow

5

6

3

1

4

4

Figure 8-16 Conceptual Diagram of the Three-Legged Authorization

Figure 8-16 provides a general representation of the three-legged authorization. The first step
is to retrieve the authorization code. The second step is to exchange the authorization code
for an access token. The third exchange is to use the token. The flows or exchanges repre-
sented in Figures 8-16 and 8-17 assume that the authorization server uses two authentication

BOOK.indb 269 19/05/22 5:52 PM

ptg39201256

270 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

protocols: OAuth and OpenID. The two protocols work well together to ensure a seamless
authorization process.

Authorization Server

Resource ServerClient
Application

Resource Owner

6

7

8

10

2

1

4

9

5

3

Figure 8-17 Detailed Workflow of the Three-Legged Authorization

Figure 8-17 illustrates the detailed exchange of the three-legged OAuth 2.0 authorization:

1. The end user (resource owner) sends a request to the OAuth client application.

2. The client application sends the resource owner a “redirect” to the authorization server.

3. The resource owner connects directly with the authorization server and authenticates.

4. The authorization server presents a form to the resource owner to grant access.

5. The resource owner submits the form to allow or to deny access.

6. Based on the response from the resource owner, the following processing occurs:

■ If the resource owner allows access, the authorization server sends the OAuth client
a redirection with the authorization grant code or the access token.

■ If the resource owner denies access, then the request is redirected to the client
without a grant.

7. The OAuth client sends the authorization grant code, client ID, and the certificate to
the authorization server.

8. When the information is verified, the authorization server sends the client an access
token and a refresh token (refresh tokens are optional).

9. The client sends the access token to the resource server to request protected resources.

10. If the access token is valid for the requested protected resources, then the OAuth client
can access the protected resources.

BOOK.indb 270 19/05/22 5:52 PM

ptg39201256

Chapter 8: Security in Application Design 271

8

Additional OAuth Authorization Code Grant Types
In the following sections, we briefly describe additional OAuth authorization grant types
and illustrate their flows.

OAuth 2.0 Client Credentials
The client credentials grant type is used by clients (applications) to obtain an access token
for their own resources, not on behalf of a user. Figure 8-18 illustrates the flows.

Authenticate with Client ID + Client
Secret, request access token from token
endpoint (/token)

Client Application Authorization Server Resource Server

Validate Client ID + Client Secret

Request information about the access token

Return information about the access token

Verify access token and return the
requested resource

Issue an access token to application

Request resource with access token

5

6

7

3

2

1

4

Figure 8-18 Client Credential Flow

The steps are as follows:

1. The client application requests an access token from the authorization server using the
token endpoint and passing the client ID and client secret parameters. The following
request call is made to the /token endpoint:

POST /token HTTP/1.1

Host: authorization-server.example.com

Content-Type: application/x-www-form-urlecoded

grant_type=client_credentials // - Required

&scope={Scopes} // - Optional

BOOK.indb 271 19/05/22 5:52 PM

http://authorization-server.example.com

ptg39201256

272 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

client_id= -kUr9VhvB_tWvv2orfPsKHGz

client_secret= LSidh2foCzJngCJqLSElXIl5TchjvL9_2l7OzbRpEFW6RlNf

2. The authorization server validates the client ID and client secret.

3. The authorization server issues an access token to the application. The following is an
example of the authorization server response:

HTTP/1.1 200 OK

Content-Type: application/json;charset=UTF-8

Cache-Control: no-store

Pragma: no-cache

{

 "access_token": "{Access Token}", // - Always included

 "token_type": "{Token Type}", // - Always included

 "expires_in": {Lifetime In Seconds}, // - Optional

 "scope": "{Scopes}" // - Mandatory if the
granted

 // scopes differ from the

 // requested ones.

}

4. The client application retrieves the access token and requests the resource from the
resource server.

5. The resource server requests information about the access token from the
authorization server, for verification purposes.

6. The authorization server returns the requested information to the resource server.

7. The resource server verifies the access token, and if valid, it returns the resource to the
client application.

Resource Owner Password Credential Flow
Figure 8-19 illustrates the resource owner password credential flows.

BOOK.indb 272 19/05/22 5:52 PM

ptg39201256

Chapter 8: Security in Application Design 273

8

R
es

ou
rc

e
O

w
ne

r

A
pp

lic
at

io
n

re
qu

es
ts

 u
se

r
to

 a
cc

es
s

pr
ot

ec
te

d
re

so
ur

ce
 a

nd
 u

se
r

ap
pr

ov
es

A
pp

 p
ro

m
pt

s
us

er
 to

 in
pu

t I
D

 a
nd

 p
as

sw
or

d

U
se

r
in

pu
ts

 ID
 a

nd
 p

as
sw

or
d

S
en

d
to

ke
n

re
qu

es
t t

o
se

rv
ic

e’
s

to
ke

n
en

dp
oi

nt
(in

cl
ud

e
ID

 a
nd

 p
as

sw
or

d)

S
en

d
ac

ce
ss

 to
ke

n
to

 a
pp

lic
at

io
n

R
eq

ue
st

 r
es

ou
rc

e
w

ith
 a

cc
es

s
to

ke
n

R
eq

ue
st

 in
fo

rm
at

io
n

ab
ou

t t
he

 a
cc

es
s

to
ke

n

R
et

ur
n

in
fo

rm
at

io
n

ab
ou

t t
he

 a
cc

es
s

to
ke

n

V
er

ify
 a

cc
es

s
to

ke
n

an
d

re
tu

rn
 th

e
re

qu
es

te
d

re
so

ur
ce

C
lie

nt
 A

pp
lic

at
io

n
A

ut
ho

riz
at

io
n

S
er

ve
r

R
es

ou
rc

e
S

er
ve

r

5 6

7 8 9

321

4

Fi
g

u
re

 8
-1

9
R

es
ou

rc
e

O
w

ne
r

Pa
ss

w
or

d
C

re
de

nt
ia

l F
lo

w

BOOK.indb 273 19/05/22 5:52 PM

ptg39201256

274 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

The steps are as follows:

1. The client application requests access to a protected resource, and the resource owner
approves.

2. The client application prompts the resource owner to input credentials: ID and
password.

3. The resource owner inputs their ID and password.

4. The client application sends a token request to the authorization server token endpoint,
including the ID and password. The following request is made to the token endpoint:

POST /token HTTP/1.1

Host: https://authorization-server.example.com

Content-Type: application/x-www-form-urlecoded

grant_type=password

&username={User ID}

&password={Password}

&scope={Scopes}

5. The authorization server sends an access token to the client application. The following
is an example of a response from the token endpoint:

HTTP/1.1 200 OK

Content-Type: application/json;charset=UTF-8

Cache-Control: no-store

Pragma: no-cache{

 "access_token": "{Access Token}",

 "token_type": "{Token Type}",

 "expires_in": {Lifetime In Seconds},

 "refresh_token": "{Refresh Token}",

 "scope": "{Scopes}"

}

6. The client application requests the resource from the resource server using the access
token.

7. The resource server requests information about the access token from the
authorization server, for verification purposes.

8. The authorization server returns the requested information to the resource server.

9. The resource server verifies the access token, and if valid, it returns the resource to the
client application.

BOOK.indb 274 19/05/22 5:52 PM

https://authorization-server.example.com

ptg39201256

Chapter 8: Security in Application Design 275

8

OAuth 2.0 Implicit Flow
Figure 8-20 illustrates the OAuth 2.0 implicit flow.

Resource Owner Client Application Authorization Server Resource Server

Application requests user to access
protected resource and user approves

Request resource with access token

Verify client_id and redirect_uri

Request information about the access token

Return information about the access token

Verify access token and return the requested resource

1

2

5

6

7

8

9

10

3

4 Display scopes and prompt user to log in if required

User check request, log in, and authorize access

Redirect user and issue an access token to application

Request authorization to access resource (/authorize)

Figure 8-20 OAuth 2.0 Implicit Flow

The steps are as follows:

1. The application requests the user to access protected resources, and the user approves.

2. Build the authorization URL and redirect the user to the authorization server:

https://authorization-server.example.com/authorize?

 response_type=token

 &client_id=-kUr9VhvB_tWvv2orfPsKHGz

 &redirect_uri=https://example-app.com/implicit.html

 &scope=photo

 &state=RqQ-hXJYv3seO6Mp

3. Verify client_id and redirect_uri.

4. Display scopes and prompt the user to log in if required.

5. The user logs in and authorizes access.

6. Redirect the user and issue an access token to the application.

■ Verify the state matches:

access_token=V2tY2H9NSV3nlDIRUSN2CHUsbkH9Hn3Hx1jcvZ6N6v2
OYFWUoKhAqEHUxqc7r76FqVIDQHWE&token_type=Bearer&expires_
in=86400&scope=photos&state=RqQ-hXJYv3seO6Mp

BOOK.indb 275 19/05/22 5:52 PM

https://authorization-server.example.com/authorize?response_type=token
https://authorization-server.example.com/authorize?response_type=token
https://example-app.com/implicit.html

ptg39201256

276 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

NOTE The implicit flow is being deprecated in the Security BCP because there is no solu-
tion in OAuth for protecting the implicit flow, and it will not stop a malicious actor from
injecting an access token into your client.

■ Extract the access token from the URL fragment:

access_token: c1CqK7fBYqg7XEno4H82wpw4P_
Pn3p7mUk4No05xOJ81x8kqgcq4B3HghETCBx3PizwZHLPF

token_type: Bearer

expires_in: 86400

scope: photos

7. Request a resource with the access token.

8. The resource server requests information about the access token.

9. The authorization server returns information about the access token.

10. The resource owner verifies the access token and, if valid, then it returns the requested
resource.

OAuth 2.0 Authorization Code Flow
Figure 8-21 illustrates the authorization code flow of OAuth 2.0.

Resource Owner

Application requests user to access
protected resource and user approves

Verify client_id and redirect_uri

Request resource with access token

Request information about the access token

Return information about the access token

Verify access token and return the requested resource

Client Application Authorization Server Resource Server

5

6

7

8

9

10

11

12

3

2

1

4

Redirect user and issue a short-lived authorization code

Present the authorization code to service’s token endpoint (/token)

Service issues an access token and a refresh token to app

Request authorization to access resource (/authorize)

Display scopes and prompt user to log in if required

User check request, log in, and authorize access

Figure 8-21 OAuth 2.0 Authorization Code Flow

BOOK.indb 276 19/05/22 5:52 PM

ptg39201256

Chapter 8: Security in Application Design 277

8

The steps are as follows:

1. The application requests the user to access protected resources, and the user approves.

2. Build the authorization URL and redirect the user to the authorization server:

https://authorization-server.example.com/authorize?

 response_type=code

 &client_id=-kUr9VhvB_tWvv2orfPsKHGz

 &redirect_uri=https://www.example-app.com/authorization-code.html

 &scope=photo+offline_access

 &state=SzbChK9KrCGa8Gnp

3. Verification.

4. Display scope and prompt the user to log in if required.

5. The user authorizes access.

6. Redirect the user and issue a short-lived authorization code:

■ Verify the state parameter:

?state=SzbChK9KrCGa8Gnp&code=sescvu5DJd568Xso8z2RxgonSk9Ucl0MIe8JD5
sJ8Z_dojc

7. Exchange the authorization code for an access token:

POST https://authorization-server.example.com/token

grant_type=authorization_code

&client_id=-kUr9VhvB_tWvv2orfPsKHGz

&client_secret=LSidh2foCzJngCJqLSElXIl5TchjvL9_2l7OzbRpEFW6RlNf

&redirect_uri=https://www.example-app.com/authorization-code.html

&code=sescvu5DJd56-8Xso8z2RxgonSk9Ucl0MIe8JD5sJ8Z_dojc

8. The token endpoint response is as follows:

{

 "token_type": "Bearer",

 "expires_in": 86400,

 "access_token": "kzTq84yQvIhjEgNlg7Jb3tOrbuydA0mpO4fSuDA-
xMzzhPOf-a4x9iF8wQF2PzSxCgIBkGVW",

 "scope": "photo offline_access",

 "refresh_token": "a0fbHhsmcrV1VBNeimrJdNk8"

}

M08_Davis_C08_p246-p285.indd 277 20/05/22 11:10 PM

https://authorization-server.example.com/authorize?
https://www.example-app.com/authorization-code.html
https://authorization-server.example.com/token
https://www.example-app.com/authorization-code.html&code=sescvu5DJd56-8Xso8z2RxgonSk9Ucl0MIe8JD5sJ8Z_dojc
https://www.example-app.com/authorization-code.html&code=sescvu5DJd56-8Xso8z2RxgonSk9Ucl0MIe8JD5sJ8Z_dojc

ptg39201256

278 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

9. Extract the access token and request a resource with the access token.

10. The resource server requests information about the access token.

11. The authorization server returns information about the access token.

12. The resource owner verifies the access token and, if valid, it returns the requested
resource.

OAuth 2.0 PKCE Flow
Figure 8-22 illustrates the PKCE flow of OAuth 2.0.

Resource Owner

Application requests user to access
protected resource and user approves

Request access token with authorization code,
redirect_uri, and code_verifier (/token)

Request resource with access token

Request information about the access token

Verify client_id and redirect_uri

Return information about the access token

Verify access token and return the requested resource

Client Application Authorization Server Resource Server

5

6

7

8

9

10

11

12

3

2

1

4

Create code_challenge and code_verifier, then
request authorization to access resource (/authorize)

Store code_challenge and code_challenge_method, then
redirect user to redirect_uri with authorization code

If code_challenge and authorization code are valid, return
an access token and a refresh token to app

Display scopes and prompt user to log in if required

User check request, log in, and authorize access

Figure 8-22 OAuth 2.0 PKCE Flow

The steps are as follows:

1. The application requests the user to access protected resources, and the user approves.

2. Create a code verifier and challenge; then build the authorization URL:

Code verifier: JrlOqZuBNMuA9vpwg49DgwcQaP4tMBKVgZUlOE__kbGAlAm3

Code Challenge: base64url(sha256(code_verifier)) =
 QesOP7mDGTTFDzZgFTZAYMWIXv17SRE9G4i601mwE4M

The client needs to store the code_verifier for later use.

https://authorization-server.example.com/authorize?

 response_type=code

 &client_id=-kUr9VhvB_tWvv2orfPsKHGz

BOOK.indb 278 19/05/22 5:52 PM

https://authorization-server.example.com/authorize?

ptg39201256

Chapter 8: Security in Application Design 279

8

 &redirect_uri=https://www.example.com/authorization-code-with-
pkce.html

 &scope=photo+offline_access

 &state=nb3l0xXX4MlHR3k_

 &code_challenge=QesOP7mDGTTFDzZgFTZAYMWIXv17SRE9G4i601mwE4M

 &code_challenge_method=S256

The client includes the code_challenge parameter in this request, which the authoriza-
tion server stores and compares later during the code exchange step.

3. Verify the client_id and redirect_uri.

4. Display the scope and prompt the user to log in if required.

5. The user logs in and authorizes access.

6. The authorization server stores code_challenge and code_challenge_method and then
redirects the user and issues an authorization code:

■ Verify the state parameter.

The user is redirected back to the client with a few additional query parameters in the
URL:

?state=nb3l0xXX4MlHR3k_&code=70diP-rT46VdBFb2SSf_hrFxczgyO1QbH
 pQmQQTdqoLPMY7_

The state value isn’t strictly necessary here because the PKCE parameters provide
CSRF protection themselves.

7. Exchange the authorization code for an access token.

The client builds a POST request to the token endpoint with the following parameters:

POST https://authorization-server.example.com/token

grant_type=authorization_code

&client_id=-kUr9VhvB_tWvv2orfPsKHGz

&client_secret=LSidh2foCzJngCJqLSElXIl5TchjvL9_2l7OzbRpEFW6RlNf

&redirect_uri=https://www.example.com/authorization-code-with-
 pkce.html

&code=70diP-rT46VdBFb2SSf_hrFxczgyO1QbHpQmQQTdqoLPMY7_

&code_verifier=JrlOqZuBNMuA9vpwg49DgwcQaP4tMBKVgZUlOE__kbGAlAm3

The code_verifier is sent along with the token request. The authorization server checks
whether the verifier matches the challenge that was used in the authorization request.
This ensures that a malicious party that intercepted the authorization code is not able
to use it.

BOOK.indb 279 19/05/22 5:52 PM

https://www.example.com/authorization-code-with-pkce.html
https://www.example.com/authorization-code-with-pkce.html
https://authorization-server.example.com/token
https://www.example.com/authorization-code-with-
http://pkce.html

ptg39201256

280 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

8. The token endpoint response follows.

The response includes the access token and refresh token:

{

 "token_type": "Bearer",

 "expires_in": 86400,

 "access_token": "8K63E0hHj_NdQokyP-1_awC8_pSwnJxnPKbmJEw98DHssRg
 W7NU1XEAC2M2ZGF1pQJD4Ak2P",

 "scope": "photo offline_access",

 "refresh_token": "Ni8yoGKqWT9gfjeREMn5Rkol"

}

9. Extract the access token and request a resource with the access token.

10. The resource server requests information about the access token.

11. The authorization server returns information about the access token.

12. The resource owner verifies the access token and, if valid, it returns the requested
resource.

Refresh Token Flow
Figure 8-23 illustrates the refresh token flow. Here, assume that the application has a refresh
token that was issued previously with an access token during an authorization request in the
past.

Client Application

Issue an access token to application

Request resource with access token

Request information about the access token

Return information about the access token

Authorization Server Resource Server

5

6

3

2

1

4

Request to reissue access token from token endpoint

Verify access token and return the requested resource

Figure 8-23 Refresh Token Flow

BOOK.indb 280 19/05/22 5:53 PM

ptg39201256

Chapter 8: Security in Application Design 281

8

The steps are as follows:

1. The client application sends a request to the authorization server token endpoint to
reissue the access token. The following request is made to the token endpoint:

POST {Token Endpoint} HTTP/1.1

Host: {Authorization Server}

Content-Type: application/x-www-form-urlecoded

grant_type=refresh_token

&refresh_token={Refresh Token}

&scope={Scopes}

2. The authorization server provides the access token to the client application. The fol-
lowing is an example of the response from the authorization server token endpoint:

HTTP/1.1 200 OK

Content-Type: application/json;charset=UTF-8

Cache-Control: no-store

Pragma: no-cache{

 "access_token": "{Access Token}",

 "token_type": "{Token Type}",

 "expires_in": {Lifetime In Seconds},

 "refresh_token": "{Refresh Token}",

 "scope": "{Scopes}"

}

3. The client application requests the resource from the resource server using the access
token.

4. The resource server requests information about the access token from the
authorization server, for verification purposes.

5. The authorization server returns the requested information to the resource server.

6. The resource server verifies the access token, and if valid, it returns the resource to the
client application.

OAuth 2.0 Device Code Flow
Figure 8-24 illustrates the device code flow of OAuth 2.0.

BOOK.indb 281 19/05/22 5:53 PM

ptg39201256

282 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

5

6

7
8

3

2

1

4

Client Device

Request device_code

Issue user_code to user

Poll for authorization with device_code

loop

User authenticates and confirms user_code

User approves and grants client access

Return authorization_pending

Return access_token

Authorization Server User

Return device_code, user_code, verification_uri

Figure 8-24 OAuth 2.0 Device Code Flow

The steps are as follows:

1. Request a device code from the authorization server:

POST https://example.com/device

client_id=https://www.oauth.com/example/

2. The authorization server returns a response that includes the device code, a code to
display to the user, and the URL the user should visit to enter the code.

{

 "device_code": "NGU5OWFiNjQ5YmQwNGY3YTdmZTEyNzQ3YzQ1YSA",

 "user_code": "BDWD-HQPK",

 "verification_uri": "https://example.com/device",

 "interval": 5,

 "expires_in": 1800

}

3. Present the verification_uri and user_code to the user and instruct the user to enter
the code at the URL.

4. Poll the token endpoint.

While you wait for the user to visit the URL, sign in to their account, and approve
the request, you need to poll the token endpoint with the device code until an access
token or error is returned:

POST https://example.com/token

grant_type=urn:ietf:params:oauth:grant-type:device_code

BOOK.indb 282 19/05/22 5:53 PM

https://example.com/device
https://www.oauth.com/example/
https://example.com/device"
https://example.com/token

ptg39201256

Chapter 8: Security in Application Design 283

8

&client_id=https://www.oauth.com/example/

&device_code=NGU5OWFiNjQ5YmQwNGY3YTdmZTEyNzQ3YzQ1YSA

5. Poll: Before the user has finished signing in and approving the request, the authoriza-
tion server returns a status indicating the authorization is still pending.

HTTP/1.1 400 Bad Request

{

 "error": "authorization_pending"

}

6. The user authenticates and confirms user_code.

7. The user approves client access.

8. Poll the authorization server periodically until the code has been successfully entered.

When the user approves the request, the token endpoint responds with the access
token:

HTTP/1.1 200 OK

{

 "token_type": "Bearer",

 "access_token": "RsT5OjbzRn430zqMLgV3Ia",

 "expires_in": 3600,

 "refresh_token": "b7a3fac6b10e13bb3a276c2aab35e97298a060e0ed
e5b43ed1f720a8"

}

Now the device can use this access token to make API requests on behalf of the user.

Exam Preparation Tasks
As mentioned in the section “How to Use This Book” in the Introduction, you have a couple
of choices for exam preparation: the exercises here, Chapter 17, “Final Preparation,” and the
exam simulation questions on the companion website.

Review All Key Topics
Review the most important topics in this chapter, noted with the Key Topic icon in the outer
margin of the page. Table 8-2 lists a reference of these key topics and the page numbers on
which each is found.

BOOK.indb 283 19/05/22 5:53 PM

https://www.oauth.com/example/&device_code=NGU5OWFiNjQ5YmQwNGY3YTdmZTEyNzQ3YzQ1YSA
https://www.oauth.com/example/&device_code=NGU5OWFiNjQ5YmQwNGY3YTdmZTEyNzQ3YzQ1YSA

ptg39201256

284 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Table 8-2 Key Topics for Chapter 8

Key Topic Element Description Page
Number

Section Personally Identifiable Information 250

Section Storing IT Secrets 252

Section TLS, PKI, and Web Applications Security 257

Section Injection Attacks 263

Section Cross-Site Scripting 264

Figure 8-15 Two-Legged OAuth Flow 268

Figure 8-16 Conceptual Diagram of the Three-Legged
Authorization

269

Figure 8-17 Detailed Workflow of the Three-Legged
Authorization

270

Figure 8-18 Client Credential Flow 271

Figure 8-19 Resource Owner Password Credential Flow 273

Complete Tables and Lists from Memory
There are no memory tables or lists in this chapter.

Define Key Terms
Define the following key terms from this chapter and check your answers in the glossary:

certificate authority (CA), data at rest, data in motion, digital certificate, General Data
Protection Regulation (GDPR), injection attack, Open Authentication (OAuth), Open Web
Application Security Project (OWASP), personally identifiable information (PII), public
key infrastructure (PKI), Transport Layer Security (TLS), cross-site scripting (XSS)

References
URL QR Code

RFC 6749:
https://datatracker.ietf.org/doc/html/rfc6749

Open Web Application Security Project (OWASP):
https://owasp.org/

BOOK.indb 284 19/05/22 5:53 PM

https://datatracker.ietf.org/doc/html/rfc6749
https://owasp.org/

ptg39201256

Chapter 8: Security in Application Design 285

8

URL QR Code

ITU X.509:
https://www.itu.int/rec/T-REC-X.509

GDPR:
https://gdpr.eu/

BOOK.indb 285 19/05/22 5:53 PM

https://www.itu.int/rec/T-REC-X.509
https://gdpr.eu/

ptg39201256

CHAPTER 9

Infrastructure

This chapter covers the following topics:

■ Network Management: This section covers the purpose of network management
through concept, engineering, provisioning, monitoring/operations, and decommis-
sioning.

■ Methods of Network Provisioning: This section reveals different methods in the
process of network provisioning, such as CLI/console, SNMP, file transfer, embedded
management, and the use of management systems.

■ Zero-Touch Provisioning (ZTP): This section covers the concept of zero-touch pro-
visioning or bootstrap configuring a device without physical access and manual
effort.

■ Atomic or SDN-Like/Controller-Based Networking: This section covers the concept
of software-defined networking and its impact on network engineering and manage-
ment.

■ Advanced Concepts—Intent-Based Networking: This section covers intent-based
networking and the advanced concepts that propel networks into the next generation
of functionality.

This chapter maps to the first part of the Developing Applications Using Cisco Core
Platforms and APIs v1.0 (350-901) Exam Blueprint Section 5.0, “Infrastructure and
Automation.”

We cover historical capabilities in infrastructure provisioning for context but move on
to recommended methods and protocols for modern, automated environments. If you’ve
been doing network infrastructure for a while, some of these references may bring back
fond memories. If you’re new to the industry or have a cloud-native focus, some of this
content may make you laugh, but hopefully you appreciate the progress. We all start from
somewhere.

“Do I Know This Already?” Quiz
The “Do I Know This Already?” quiz allows you to assess whether you should read this
entire chapter thoroughly or jump to the “Exam Preparation Tasks” section. If you are in
doubt about your answers to these questions or your own assessment of your knowledge
of the topics, read the entire chapter. Table 9-1 lists the major headings in this chapter and
their corresponding “Do I Know This Already?” quiz questions. You can find the answers in
Appendix A, “Answers to the ‘Do I Know This Already?’ Quizzes.”

BOOK.indb 286 19/05/22 5:53 PM

ptg39201256

Table 9-1 “Do I Know This Already?” Section-to-Question Mapping

Foundation Topics Section Questions

Network Management 1, 3
Methods of Network Provisioning 2, 4, 7, 8
Element Management Systems 9
Zero-Touch Provisioning (ZTP) 5
Atomic or SDN-Like/Controller-Based Networking 7
Advanced Concepts—Intent-Based Networking 6

1. What does the acronym PDIOO stand for?
a. Prep, do, inform, organize, operate
b. Python, define, integrate, own, observe
c. Plan, design, implement, operate, optimize
d. Plan, do, integrate, organize, operate

2. SNMPv3 uses
a. The MD5 and SHA authentication methods.
b. Community string-based authentication.
c. Key-based authentication.
d. The AES-128 authentication method.

3. What does SRE stand for?
a. Source route engineering
b. Site reliability engineering
c. Self-regulating entity
d. Source route entity

4. What type of network is used for highly partitioned administrative traffic?
a. FWM (firewall management)
b. SR (segment routing)
c. OOB (out-of-band network)
d. VLAN (virtual local-area network)

5. What is an example of zero-touch deployment functionality?
a. Powered-on provisioning
b. Plug-and-play (PNP)
c. Auto SmartPorts
d. Papoose

BOOK.indb 287 19/05/22 5:53 PM

ptg39201256

288 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

6. Intent-based networking transforms a hardware-centric network of manually provi-
sioned devices into a controller-centric network that uses ____________ translated into
policies that are automated and applied consistently across the network.
a. Business requirements
b. Software definitions
c. Routing protocols
d. Artificial intelligence

7. What is NETCONF?
a. A collaboration protocol for audio conferencing.
b. A JSON-based schema for configuration management.
c. A network controller function using Python.
d. A protocol standardized by the IETF to normalize configuration management

across multiple vendors using XML-based schemas and YANG models.
8. What is a 2FA or MFA function used to do?

a. Develop resilient Python functions for device auditing.
b. Provide a user-access accounting service.
c. Validate something a user knows with proof of who they are to provide access.
d. Programmatically initiate a Webex meeting.

9. An embedded management function is all that is needed for comprehensive IT Service
Management.
a. True
b. False

Foundation Topics

Network Management
Ahh, network management. The oft-maligned discipline of network IT. If you ever worked
in an environment where you were given marching orders, you might have cringed at the
boss’s directive: “I need you to work on network management.” If you were in an environ-
ment where you were able to pick your own priorities, you probably did not select network
management as a first choice. However, much has changed; there have been great strides and
improvements in network management and operations that can be attributed to advance-
ments with software-defined networks (SDN), DevOps, continuous integration/continuous
deployment (CI/CD), and site reliability engineering (SRE).

You can’t deal with network infrastructure without using proper planning, design, imple-
mentation, operation, and optimization (PDIOO) methodologies. The PDIOO model has
been used for many years to provide structure in the networking discipline. Implementation,
operations, and optimization have been most impacted by network programmability and
automation over the years. The other planning and design components have also seen ben-
efits from frameworks such as the Information Technology Information Library (ITIL), The
Open Group Architecture Framework (TOGAF), and Control Objectives for Information and
Related Technologies (COBIT). Whichever IT service management model is used, it is impor-
tant that automation be a prime consideration in order to reduce human effort and errors, to

BOOK.indb 288 19/05/22 5:53 PM

ptg39201256

Chapter 9: Infrastructure 289

9

increase speed of service delivery, and to gain operational efficiencies and repeatability of
services against the network infrastructure.

However, you might wonder why network management and operations were given short
shrift. Many times, it was the last consideration on the proposal/budget and the first to get
cut. It’s true that a well-engineered network could operate for a time without network man-
agement focus and still perform well. Over time that well-engineered network would undergo
changes. A few configuration changes here. A decommissioned syslog event server there. An
additional branch network here or 20 everywhere, and before you know it, serious problems
need to be addressed! How many times have you heard about someone walking through the
data center to see a red or amber light on a module, fan, or power supply, and then look at
the logs and see the alert was first registered months ago (something like Figure 9-1)? Surely
that has never happened to you!

Figure 9-1 Alarming Device

Network has always been important. Depending on an organization’s complexity, level of
sophistication, and operational needs, using common commercial offerings from Cisco, such
as DNA Center, Prime Infrastructure, Crosswork Network Automation, or Network Ser-
vices Orchestrator (NSO), may be well suited to the situation. There are also well-equipped
solutions from other vendors. However, as complexity increases and as scope of services
expands, then automation, orchestration, and integration—among many other management
tools and controllers—must occur.

A company that has multiple networking domains and dependent services will have many
management tools and controllers to consider. Additionally, other IT systems, both commer-
cial and open source, would be common. Popular open-source solutions, such as Grafana,
Zabbix, Nagios, and OpenNMS, are often seen. Figure 9-2 shows an example.

Figure 9-2 A Broad IT Service Management Ecosystem

BOOK.indb 289 19/05/22 5:53 PM

ptg39201256

290 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Network management concepts provided strong roots for current alignments to automation,
orchestration, software-defined networking (SDN), DevOps, CI/CD, and site reliability
engineering (SRE). SDN is a mature technology by now, whereas DevOps, CI/CD, and SRE
may be new concepts to traditional network engineers. The collaboration among developers
and network operations personnel to achieve highly automated solutions in a quick fashion is
the foundation of DevOps. Continuous integration/continuous deployment (CI/CD)
refers to a combined practice in software development of continuous integration and either
continuous delivery or continuous deployment. Site reliability engineering is a practice
that brings together facets of software engineering and development, applying them to
infrastructure and operations. SRE seeks to create functional, scalable, and highly reliable
software systems. It is good to have foundational networking skills, but it is even better when
you can complement them with programming skills that can make monitoring and provision-
ing more automated and scalable.

As an engineer, like you, I experience a lot of personal satisfaction in creating practical solu-
tions that impact my company and the world.

So, network management is not the career-limiting role it was once considered. Those in that
discipline benefited by augmenting their skills with network programmability because it
felt like a logical extension of the work already being done. And it served as the foundation
for the skills professionals are aspiring to today. Don’t lose heart if you’re just joining us on
your own network programmability journey; you’re not too late! When you break free from
continuous fire-fighting mode and enjoy the benefits of automation and network program-
mability, there is a lot of satisfaction. Ideally, the network management, operations, or SRE
teams are doing their best work when network IT is transparent and accountable to the user
and customer.

Indeed, the automation of network management, including service provisioning, has been
a key differentiator for several large, successful companies. As an example, consider how
Netflix moved from private data centers to the public cloud between 2008 and 2016. The
company focused on automating its processes and tooling to give it a sense of assurance,
even though its service operated over physical infrastructure it did not control. The company
recognized that while it didn’t own the infrastructure, it still owned the customer experience.
Automation reduces effort for you and your customers. A customer-experience-focused
business is a differentiator. Remember Henry Ford’s 1909 comment about his Model T that
you could “have any color so long as it’s black”? That was not a customer-inclusive concept
then and remains so now. Obviously, the company has since transformed its business to
appeal to broader customer preferences.

Many companies differentiate themselves from competitors through automation. When they
automate more services, they save money and meet customer expectations faster.

Methods of Network Provisioning
Network provisioning has taken many forms over the years. To be sure, the industry had to
start somewhere. All the way back to the earliest Cisco products of AGS, AGS+, and IGS in
the late 1980s and early 1990s, network engineers would interact with their network devices
through serial console cables directly connected to their terminal. Who can forget the ubiq-
uitous blue serial console cable that came in the box with a router or switch (see Figure 9-3)?
How many have a dozen or so squirreled away in the lab or at home?

BOOK.indb 290 19/05/22 5:53 PM

ptg39201256

Chapter 9: Infrastructure 291

9

Figure 9-3 The Ubiquitous Serial Console Cable

In a worst-case scenario of needing to do a password reset, you might even have used dual
in-line package (DIP) switches that needed to be flipped in sequence.

Fortunately, the industry has come a long way. Ideally, you don’t even need to see a device
physically or know where it exists to influence its operation. In some environments, the net-
working functions are not even physical devices. Consider the Cisco Cloud Services Router
(CSR) 1000V. It is a wholly software virtualized router running Cisco IOS XE software, com-
monly deployed in cloud environments. Virtualization of network functions and services
means no more physical console cables and no need to “touch” something to affect its func-
tion or operation.

As the device (or node) count increases, it is unrealistic to expect individuals to interact with
them physically or manually. There are just too many devices and too many changes. Some
resource or feature requirements can be very short-lived. If human effort, which can be error-
prone from time to time, is regularly used, then your deployments and customer experience
will suffer. Customers expect speedy delivery in a consistent fashion. Waiting for an engineer
to read an email, process a request, and implement it takes too long.

CLI/Console
The original serial console connection methods morphed into solutions using terminal serv-
ers that could aggregate 8, 16, 32, or more terminal connections into one device that would
fan out to many other devices in the same or nearby racks. Figure 9-4 shows a logical net-
work representation illustrating where a multiplexing terminal server might reside.

BOOK.indb 291 19/05/22 5:53 PM

ptg39201256

292 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

P1 Sub-slot 0-7 Console R1

R2

R3

R4

Console

Console

Console

P0 Sub-slot 0-7

P1 Sub-slot 8-15

P0 Sub-slot 8-15

gig 0/0

Terminal
Server

Figure 9-4 A Typical Terminal Server Deployment

This out-of-band (OOB) management model separates a dedicated management network
from production traffic. OOB models persist in highly available or remotely accessible envi-
ronments today. In-band management models intermingle the administrative and management
traffic with the regular user and production traffic.

In-band management became de rigueur with insecure Telnet persisting for many years.
Eventually, slowly, Secure Shell (SSH) took over as the preferred mode to connect to a device
for configuration management or other interaction. The initial methods of configuration
management would entail typing entire configuration syntax. Only slightly more advanced
was using terminal cut-and-paste operations, if you had a well-equipped terminal emulator!
However, this method does not scale, nor is it efficient.

Let’s look at a classic “what not to do” user example from many years ago. In this situation, the
network team used a service request management (SRM) system to document, request, review,
and gain approvals for change requests. However, the SRM was not integrated with their change
management processes, which were PuTTY and HyperTerminal. The change one Friday night
was to implement an almost 10,000-line access control list (ACL). The network engineer dutifully
accepted the approved change, took a copy of the 10K-line ACL from the pages of a Microsoft
Word document detailing the change request, and then started PuTTY. The engineer SSH’d into
the device, entered configuration mode, and pasted the ACL. Because a command-line interface
(and paste) is a flow-control-based method, it took more than 10 minutes to get the ACL into
the system. When the engineer saw the device prompt, they copied the running configuration to
the startup configuration and went home at the end of their shift. Four hours later, the engineer
was called back in because network traffic was acting unexpectedly. Some desirable traffic was
being blocked, and other, undesirable traffic was being passed! Eventually, the root cause was

BOOK.indb 292 19/05/22 5:53 PM

ptg39201256

Chapter 9: Infrastructure 293

9

determined. The engineer had a 10K-line access control list, but the terminal emulator was con-
figured for a maximum of 5K lines. They pasted only half the total ACL!

Despite examples like this, the CLI model of managing a device has persisted for many years.
I often refer to it as finger-defined networking (FDN) in a snarky accommodation against the
preferred software-defined networking (SDN) model everyone aspires to, as you can see in
Figure 9-5.

Figure 9-5 Finger-Defined Networking

Why has this model persisted so long? The reality of ease of use with command arguments
and syntax that suit users’ readability explains the “death grip” among many network engi-
neers. If you want to see an FDN-centric engineer squirm, disable or delete their terminal
emulator.

If you’re going to be using FDN, you should at least do so securely. Thankfully, SSH is ubiq-
uitous today. It is used in foundational interactions with device CLIs, but also as the Secure
Copy Protocol (SCP) subsystem to move files. The growth of git and the use of SSH to
synchronize code and files in repositories only increase the need for security. The interactive
username/password model has been common for authentication. Key-based authentication
has been available for many years, but some organizations are resistant to use it, despite it
being well suited to automation and unattended device interaction. Two-factor authentication
(2FA) and multifactor authentication (MFA) are some of the most impactful innovations in
securing user access. Combining something you know, like a username and password, with
something that proves who you are, like the possession of a smartphone with an authentica-
tion app or a hardware token generator or even a biometric reader, has significant impact on
authorized access.

BOOK.indb 293 19/05/22 5:53 PM

ptg39201256

294 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

The Cisco acquisition of Duo in 2018 provides MFA that enables varied and flexible alterna-
tive factor authentication methods, such as smartphone app, callback, SMS, and hardware
token generator, as shown in Figure 9-6.

Figure 9-6 A Cisco Duo Hardware Token Generator

Although some 2FA token generators are physical devices, recognize that alternative solu-
tions are necessary to generate tokens for automated and programmatic purposes.

Some environments implement 2FA for human user interaction and have alternative key-
based authentication for automated service accounts. Thankfully, the staunch dependency to
continue FDN and yet increase the security posture influenced the industry to create pro-
grammatic token generators for Python scripts and other automated and unattended uses.

The most desirable methods for interacting with a physical or virtual device, in order of
security posture, are

■ SSHv2 with two-factor authentication

■ SSHv2 with key-based authentication

■ SSHv2 with username/password authentication

■ Terminal server/console (physical)

■ Telnet (not suggested)

The use of insecure Trivial File Transfer Protocol (TFTP) transfer of a configuration with a
TFTP server is still popular. However, the better-intentioned Secure Copy Protocol is where
most discerning network operators focus.

SNMP
Simple Network Management Protocol (SNMP) continues to exist, seemingly off to the side.

NOTE SNMP is not part of the DEVCOR exam, so the information provided here is for
historical context.

Many network engineers repeat the joke that SNMP is not simple. Can you configure a
device with it? In some cases, many more MIB objects are readable versus those that are

BOOK.indb 294 19/05/22 5:53 PM

ptg39201256

Chapter 9: Infrastructure 295

9

writable. SNMP has been the standard method for collecting performance, configuration,
inventory, and fault information. It did not take off as well for provisioning. Indeed, the
closest that SNMP got to network provisioning for most situations was using an SNMP Set
operation against the CISCO-CONFIG-MAN-MIB to specify a TFTP server and a file to
transfer representing text of the configuration. A second SNMP Set operation triggered the
merge with a device’s running configuration.

Thankfully, the industry pushes toward streaming telemetry, a more efficient and pro-
grammatic method that we cover later. It’s notable that Google talked of its push
away from SNMP at the North American Network Operators’ Group (NANOG)
73 conference in the summer of 2018. Reference the video at https://youtu.be/
McNm_WfQTHw and presentation at https://pc.nanog.org/static/published/meetings/
NANOG73/1677/20180625_Shakir_Snmp_Is_Dead_v1.pdf.

Then Google shared experiences with its three-year project to remove SNMP usage. Because
SNMP is still widely used in many environments and the core collection mechanism of most
performance management tools, we continue our review of it, limited to the more secure
SNMPv3, which you should be using if doing SNMP at all.

SNMPv3 brought new excitement to the network management space in the early 2000s.
SNMPv3 brought authentication and encryption along with other security features like
anti-replay protections. The criticisms about SNMPv1 and v2c being insecure finally could
be addressed. The use of MIB objects did not change, only the transport and packaging
of the SNMP packets. Figure 9-7 alludes to the promise of securing the sensitive manage-
ment traffic.

Figure 9-7 The Promise of Encryption for Sensitive Management Data

BOOK.indb 295 19/05/22 5:53 PM

https://youtu.be/McNm_WfQTHw
https://youtu.be/McNm_WfQTHw
https://pc.nanog.org/static/published/meetings/NANOG73/1677/20180625_Shakir_Snmp_Is_Dead_v1.pdf
https://pc.nanog.org/static/published/meetings/NANOG73/1677/20180625_Shakir_Snmp_Is_Dead_v1.pdf

ptg39201256

296 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

The Internet Engineering Task Force (IETF) defined SNMPv3 in RFCs 3410 to 3418, while
RFC 3826 brought advanced encryption. SNMPv3 provides secure access to devices
through a combination of authenticating and encrypting packets. The security features pro-
vided in SNMPv3 are

■ Message integrity: Ensuring that a packet has not been tampered with in transit

■ Authentication: Determining the message is from a valid source

■ Encryption (optional): Obscuring the contents of an SNMP payload, preventing it
from being seen by an unauthorized source

Whereas SNMPv1/2c required community strings to read/write a device’s MIB variables, in
SNMPv3 user/group assignments with an authentication password permit authentication.
A separate privacy passphrase enables encryption, if desired.

Every SNMPv3 sender/receiver has a snmpEngineID that uniquely identifies it. Even back to
legacy Cisco IOS 12.0 in 2000, if you looked at a device config, an snmp-server engineID
local 000 statement existed. This was the foundation for SNMPv3 on the device.

Any read/write done with an invalid snmpEngineID is rejected, and a REPORT packet, a new
type of notification, is generated.

Each device can have multiple identities called a context, which is essentially a separate MIB
environment or partitioned space, used with situations like BRIDGE-MIB/VLAN polling or
VRFs.

Figure 9-8 shows the new SNMPv3 category levels and capabilities.

Figure 9-8 SNMPv3 Versions and Capabilities

Many organizations and network management tools initially test the waters by supporting
authNoPriv—Authentication with No Privacy (encryption). This can be a reasonable first
step; SNMP interactions are authenticated, and if encryption isn’t a goal, such as with inter-
nal networks or labs, then the model is sufficient. For organizations needing more security,
such as financial, government, and health-care industries, then authPriv—Authentication
with Privacy—is more desirable.

BOOK.indb 296 19/05/22 5:53 PM

ptg39201256

Chapter 9: Infrastructure 297

9

The initial IETF specification for SNMPv3 called for 56-bit DES encryption. For some
environments, this is enough. However, there was pressure from the financial industry to
embrace more sophisticated encryption models. The IETF complied through RFC 3826 by
adding AES-128; many devices and management tools likewise added support for the addi-
tional specification. Cisco went a step further with even more enhanced encryption models
to include 168-bit triple-DES: 128-, 168-, and even 256-bit AES. It is important to map the
device authentication and encryption capabilities with those of the management tools; oth-
erwise, the security will not be as desired.

File Transfer Methods
For network provisioning, TFTP is common in lower-risk areas, such as development and
testing environments. Traditional methods of archiving a device configuration or changing
it through TFTP would be logging in to the device with a terminal emulator through an out-
of-band console or in-band SSH session and issuing a copy tftp running-config (or similar)
command. This method is also used for file transfer of device software images. Some of the
CLI and UI representations in Figure 9-9 should be familiar.

Figure 9-9 A TFTP Process and Application

Regular File Transfer Protocol (FTP) and the more secure method, Secure File Transfer Proto-
col (SFTP), are options with devices to a varying level of adoption. When it comes to secure
transfer of configurations or software images, the Secure Copy Protocol has been more
widely used because it depends on a subsystem of SSH for its secure transport, which is
already, hopefully, being used for command-line access.

Element Management Systems
While progress was being made to help device manageability, most service providers and
large enterprise environments were looking for more efficiencies. In the late 1990s and early
2000s, the story on the network management application side was not much better. The
applications, or element management systems (EMSs), as they became known, were focused
on their individual functionality. The notion of even sharing device lists—hostnames, IP
addresses, and credentials—was largely an unrealized concept. The EMSs acted as isolated
islands of functionality and information. Eventually, attempts were made to integrate, first
among product suites of individual vendors, then across popular EMSs. The integration
adapters were the first pair-wise data sharing systems. A network management operator in

BOOK.indb 297 19/05/22 5:53 PM

ptg39201256

298 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

the early 2000s might remember hearing about the integration adapters between Cisco-
Works 2000 and HP OpenView Network Node Manager. Other adapters became available
with popular EMSs like Concord eHealth, Tivoli OMNIbus Netcool, and Infovista. However,
these were still one-to-one pairings, as depicted in Figure 9-10.

Figure 9-10 Legacy, Pair-wise Integration

Web interfaces on routers and switches became possible but underutilized for making
changes. People just loved the CLI and FDN!

The device-by-device web method lacked efficiencies that large-scale environments sought
even though the browser-based model appeared intriguing.

Some attempts at vendor- and product-specific interactions with remote-procedure calls
(RPCs) were also developed. Eventually, around 2006, the industry recognized that having
different configuration syntax for different device types, models, and vendors was ineffi-
cient. The IETF working group for NETCONF (network configuration) was born to normal-
ize configuration management through the use of common Extensible Markup Language
(XML) schemas. The operator or management tool would perform a terminal connection to a
specific port, and the device’s NETCONF agent would respond. The XML-rendered configu-
ration would be pushed, and the NETCONF agent would translate it to the device’s native
syntax. The hope was there would be no further need for the Cisco IOS BGP configlet, the
Cisco IOS-XR BGP configlet, the Juniper JUNOS BGP configlet, the HP BGP configlet, and
so on. If you had multiple device models, operating systems, and/or vendors, you could have
one representation of that BGP configuration standard. It could be pushed to any NET-
CONF-supporting device with equal effect.

It wasn’t until the advent of SDN starting in 2008 that there was a push to include network
programmability in earnest with control plane and data plane separation and network vir-
tualization. The IT industry experienced a proliferation of mechanisms to change network
devices. Some methods came from the compute/application IT discipline because they had
similar needs to perform rapid and scalable configuration changes. Users first saw Pup-
pet and Chef, and the now-popular Ansible and Terraform. Sophisticated and cloud-native

BOOK.indb 298 19/05/22 5:53 PM

ptg39201256

Chapter 9: Infrastructure 299

9

environments use Kubernetes and Terraform-based solutions to achieve orchestrated provi-
sioning. Some of these systems required agents on the managed devices, as the early Puppet
and Chef implementations did, but others were agentless and would leverage the near-ubiq-
uitous SSH interface on devices to automate the same commands and configuration direc-
tives a person would perform manually. The agentless model is largely used now. It was the
primary method for Ansible and was later picked up by Puppet and Chef.

An interesting artifact of the drive to network programmability was the growing community
of programmers and coders who were joining the network IT discipline. These innovators
brought with them the notions of DevOps, CI/CD, and Infrastructure as Code (IaC). When
the coders were onboard with IaC, new solutions that abstracted the network device con-
figuration into intent-based models became relevant, such as HashiCorp’s Terraform.

Embedded Management
As centralized EMSs increased in prominence, the notion of a device’s “self-monitoring” was
considered. The benefits of distributing the management work or dealing with a network
isolation issue were found through embedded management techniques. Cisco’s Embedded
Event Manager (EEM) has been a popular and mature feature for many years in distributing
management functions to the devices themselves.

Some use cases with EEM have been

■ Monitoring an interface error counter and administratively disabling when a threshold
is reached

■ Sending an email or syslog event message when a CPU or memory threshold is reached

■ Changing a routing metric when a specific condition is met

■ Clearing a terminal line that has been running over a defined time length

Often, having the device self-monitor with EEM could be more frequent than a centralized
monitoring solution that may be managing hundreds, thousands, or more devices. This is
especially true if the condition being monitored is not something that needs to be collected
and graphed for long-term reporting. Consider monitoring an interface or module health
state every 30 seconds. This rate may be unachievable with a centralized system that has tens
of thousands of devices to manage. However, a device may be able to use embedded man-
agement functions to self-monitor at this rate with little impact. It could then send notifica-
tions back to a centralized fault management system as necessary.

In IT, service management performance and fault management often have similar goals. Per-
formance management usually entails periodic polling or reception of streaming telemetry in
a periodic fashion. The performance information may be below thresholds of concern, and
the information is not especially useful. However, retaining the periodically gathered data
can be useful for trending and long-term analysis.

Conversely, the fault management function may collect data to compare against a threshold
or status and not retain it if the data doesn’t map to the condition. This function becomes
very ad hoc and may not align to standard polling frequencies. Fault management also ben-
efits from asynchronous alerts and notifications, usually through Syslog event messaging or
SNMP traps.

BOOK.indb 299 19/05/22 5:53 PM

ptg39201256

300 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

For CiscoLive events, the network operations center (NOC) has used advanced EEM scripts
to monitor CDP neighbor adjacency events; identify the device type; and configure the con-
nected port for the appropriate VLAN, security, QoS, and interface description settings.

Using Embedded Event Manager is beneficial for device-centric management; however, it
should not be relied on solely for health and availability management. If you didn’t get an
email or syslog event message from the device, does that mean all is healthy? Or does it
mean the device went offline and can’t report? It is wise to supplement embedded manage-
ment solutions with a robust availability monitoring process to ensure device reachability.

Zero-Touch Provisioning (ZTP)
A zero-touch provisioning (ZTP) function enables you to provision and configure devices
automatically. It is useful primarily during the initial setup of an unconfigured, or virgin
state, device. ZTP has been achieved by different feature names on varying platforms, such
as AutoInstall, Power-On Auto Provisioning (POAP), Network Plug and Play (PnP), and
SmartInstall. AutoInstall is the most ubiquitous and historical of these options.

The general process is similar, however; an unconfigured device starts up, seeking its IP
address from a DHCP server, and kicks off a process to download a base configuration file
from a file server identified in DHCP options. The secure and recommended approach would
be via HTTPS, whereas the TFTP service was initially offered in the feature. Even older varia-
tions rely on BOOTP processes that will not be covered.

It’s notable that the Meraki and Cisco SD-WAN platforms fundamentally use ZTP as their
core means of provisioning via cloud or centralized controller means. Essentially, these
classes of devices organically have enough network intelligence and process/workflow
embedded to make connections through the Internet to their cloud-based provisioning sys-
tems. The network administrator uses the Meraki or SD-WAN portal to “claim” the device
and proceed with specific customizations.

ZTP is an alternative method for configuration on many other platforms using IOS-XE,
NX-OS, IOS-XR, and so on, when there is no base configuration. It is also intriguing to net-
work programmers because it allows mass provisioning in a programmatic sense.

A ZTP process has several common functions that mimic some familiar staging tasks:

■ Obtaining base network connectivity (DHCP, DNS, default routing)

■ Performing software/firmware upgrades

■ Obtaining and incorporating “Day-0” base config (core services such as NTP, SSH,
SNMP, Syslog; generating/importing certificates, or using Trusted Platform Module or
International Organization for Standardization and the International Electrotechnical
Commission (ISO/IEC) Standard 11889, and so on)

■ Obtaining and incorporating “Day-0” device/function-specific configuration (inter-
faces, routing protocols, VLANs/VRFs, and so on)

The ZTP process has most of its notable magic in the Obtaining Base Network Connectiv-
ity task. Consider the standard flow of ZTP for NX-OS, IOS-XR, and IOS-XE devices from
Figure 9-11.

BOOK.indb 300 19/05/22 5:53 PM

ptg39201256

Chapter 9: Infrastructure 301

9

Administrator
connects to the
router remotely

to save the
configuration
to the startup-

configuration file

AutoInstall
terminates Yes

YesYes

No

No

NoNetworking device
loads the

configuration file

Configuration
file exists on the

TFTP server

AutoInstall fails

AutoInstall
terminates

Networking device
attempts to load the
configuration file that
matches its hostname
from the TFTP server

Networking device uses the
hostname that is configured in

the network-config file for the IP
address that it was assigned

Networking device
uses the hostname

the DNS server
responded with

Networking
device’s IP address

mapped to hostname in
network-config file

AutoInstall
terminates

AutoInstall fails

Default
configuration file
exists on TFTP

server

Networking device
loads the default
configuration file
(router-confg or

router.cfg)

AutoInstall
terminates

Administrator connects to
the router remotely to
finish the configuration

and save it to the startup-
configuration file

Reverse
DNS lookup
successful

Networking device
is connected to

the network

Networking device
is assigned an IP
address by DHCP,
BOOTP, or SLARP

Networking device
loads the

network-config
from the TFTP

server

Networking device does
a reverse DNS lookup for
the IP address that it was

assigned to learn its
hostname

No

Figure 9-11 A Typical AutoInstall Process Flow

NOTE Check your platform support with the Cisco Feature Navigator (https:
//cfnng.cisco.com/).

Of interest to network programmers is the enhanced AutoInstall Support for TCL Script
feature. It enhances AutoInstall by providing more flexibility in the installation process.
The administrator can program the device with TCL scripts to get information about
what to download and to choose the type of file server and the required file transfer
protocol.

Of special interest to network programmers is the even more advanced option to ZTP using
Python scripts, as found in the IOS-XE 16.6+ platforms. In this case, DHCP option 67 set-
tings are used to identify a Python script to download. The device executes the Python
script locally using Guest Shell on-box functionality, as depicted in Figure 9-12.

BOOK.indb 301 19/05/22 5:53 PM

https://cfnng.cisco.com/
https://cfnng.cisco.com/

ptg39201256

302 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Step 1:
Booting Up
Seeking IP Address
via HDCP

Step 2:
Your IP is...
Your router-gw, DNS are...
Oh, and your TFTP server is 1.2.3.4 and
pick up file bootstrap.py

DHCP Server

TFTP Server
1.2.3.4

Step 4:
Here is bootstrap.py

Step 5:
Executing bootstrap.py locally

Step 3:
(I’m configured enough to network)
Hey 1.2.3.4 give me bootstrap.py

Unconfigured
Router/
Switch

Figure 9-12 ZTP with Python Script Enhancements

With a script-based deployment, you can program and execute a dynamic installation pro-
cess on the device itself instead of relying on a configuration management function driven
by a centralized server.

As an example, consider the Python ZTP script in Example 9-1.

Example 9-1 Python ZTP Script

Importing cli module

import cli

print('\n## Bootstrap ZTP Python Script\n')

cli.execute('configure replace flash:base-config force')

print('## Executing show version\n\n')

cli.executep('show version')

print('## Configuring Loopback Interface\n\n')

cli.configurep(["interface loop 10", "ip address 10.1.1.1 255.255.255.255", "end"])

print('## Executing show ip interface brief\n')

cli.executep('show ip int brief')

print('## Bootstrap ZTP Python Script Execution Complete\n\n')

NOTE If you are using a platform with legacy Python 2.x support, the print statements
need to be modified as follows:
print “Example”

BOOK.indb 302 19/05/22 5:53 PM

ptg39201256

Chapter 9: Infrastructure 303

9

This simplistic Python script merely echoes the show version command (to the console,
when booting up), configures a Loopback 10 interface, and then echoes the show ip inter-
face brief command. Obviously, in its current form, the script is not portable, but with some
basic Python skills, you can easily enhance it to have conditional logic or even off-box,
alternate server interactions performing basic GET/POST operations to a REST API. This is
when the magic happens: the device could provide a unique identifier, such as serial number
or first interface MAC address, which could be used for more sophisticated and purposeful
device provisioning.

Atomic or SDN-Like/Controller-Based Networking
The traditional element management system (EMS) approach to network management is very
atomic and becoming untenable. In atomic-based EMSs, devices are managed one by one
with little or no consideration to interdependencies and relationships across devices. The
EMS might expect you to provide the intelligence and discernment that upgrading both
devices in service-pairs, such as HSRP, primary/backup DHCP, or route reflectors, at the
same time is unwise. The EMS may dutifully take both out of service, without warning you
of the implication to service availability.

With atomic EMSs, the notion of service is largely foreign because it involves characteristics
and relationships spanning multiple devices.

In traditional networking, there is the notion of the control plane and data plane residing
on the same device. These logical concepts functionally separate the forwarding determina-
tions and decisions, as a brain would, from the actual processing of the packets for forward-
ing, as muscles would. There is also a provisioning distinction known as the management
plane that deals with protocols and methods to configure the control plane, such as SNMP,
NETCONF/RESTCONF, and REST. Table 9-2 shows this distinction.

Table 9-2 Logical Plane Models

Model Function Example

Control plane Determines/calculates packet or
frame-forwarding decisions

Software processes, such as OSPF,
EIGRP, BGP, IS-IS, LDP, and ARP

Data plane Executes on packet or frame
forwarding

Interfaces

Management plane Protocols/methods for
provisioning the control plane

CLI/SSH, SNMP, NETCONF/
RESTCONF

Figure 9-13 depicts this model graphically.

BOOK.indb 303 19/05/22 5:53 PM

ptg39201256

304 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Control and Data
Plane Resides Within

Physical Device

Management Tools
Treat Devices

Atomically

Control Plane Learns/Computes Forwarding Decisions
Data Plane Acts on the Forwarding Decisions

Each Device Operates Autonomously Without Regard for Others

Control Plane (CP)

Data Plane (DP)

CP DP CP DP CP DP CP DP

CP DPCP DP

CP DP CP DP

Figure 9-13 Traditional Networking: Converged Control and Data Plane Functions

If you find yourself running network discovery or entering device management addresses
and credentials with a network management tool, you are probably dealing with a traditional
EMS system. Systems like Prime Infrastructure, Data Center Network Manager (DCNM),
Prime Collaboration, Statseeker, and others are examples of atomic EMSs.

The advent of software-defined networking catalyzed the centralized controller management
model. In most cases, the managed devices seek out the controller that manages it. Mini-
mal, if any, initial configuration is necessary on the device. The controller identification may
occur by expected IP address or hostname, broadcast/multicast address, a DHCP option,
DNS resource record (SRV), or a Layer-2/3 discovery process.

After the device registers with the controller, it shows up in the inventory. Additional autho-
rization may have been performed with the device and/or controller. In the Meraki or Cisco
SD-WAN models, the devices register with a central, cloud-based controller, and administra-
tors must “claim” the device. Additional examples of SDN and controller-like management
systems are DNA Center and the ACI APIC controller.

You can look to the wireless industry for some examples of both atomic EMS and SDN con-
troller models. Initially, wireless access points (WAPs) operated autonomously and required
individual configuration. A centralized management tool, like Cisco Prime Network Control
System (NCS), which eventually converged with Prime Infrastructure, was used to manage
autonomous WAPs. Later, centralized controller-based WAPs, or lightweight WAPs (LWAPs),
were developed that used the wireless LAN controller (WLC) appliance for central manage-
ment. Yet another iteration of manageability occurred with a distributed model using wiring
closet-based controllers in the Catalyst 3850. The multiple options existed to suit customer
deployment preference and need.

In a more SDN literal model, the control plane function is separated from the device and is
provided by a centralized controller. The data plane function still resides on the device, as
seen in Figure 9-14.

BOOK.indb 304 19/05/22 5:53 PM

ptg39201256

Chapter 9: Infrastructure 305

9

The Network As It Could Be…to an SDN “Purist”

Central Point of
Management

Control Plane Becomes Centralized
Physical Device Retains Data Plane Functions Only

CP DPCP DP

CP DP

CP DP CP DP CP DP CP DP

CP DP

Controller

Figure 9-14 SDN Networking: Separate Control and Data Plane Functions

Advanced Concepts—Intent-Based Networking
Intent-based networking (IBN) is one of the newest principles to transform the network-
ing industry. Users, devices, and distributed applications have exploded in number, greatly
outstripping legacy frameworks such as IPv4 and complicating security frameworks.

The Cisco Annual Internet Report (www.cisco.com/c/en/us/solutions/collateral/
executive-perspectives/annual-internet-report/white-paper-c11-741490.html) describes a
healthy growth of Internet-connected users and devices. Figure 9-15 shows how growth
appears over several years.

Figure 9-15 Population and Internet Growth (Source: Cisco IBSG 2011, Cisco VNI
results and forecasts 2010, 2015, 2018, 2020)

BOOK.indb 305 19/05/22 5:53 PM

http://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
http://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html

ptg39201256

306 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

When you consider the growth of underpinning network devices necessary to accommodate
the mobile user, servers, and virtual machines, you can quickly understand how atomic EMS-
based management is truly untenable. To address the diversity of endpoints and functions,
the networking environment has become exponentially more complex. IBN transforms a
hardware-centric network of manually provisioned devices into a controller-centric network
that uses business intent translated into policies that are automated and applied consistently
across the network. The network continuously monitors and adjusts network configuration
and performance to achieve the specified business outcomes. Operational efficiencies are
realized when IBN models allow for natural language directions to be translated to native
controller-centric directives as conceptualized in Figure 9-16.

Figure 9-16 Natural Language to Native Controller Directives

IBN augments the network controller model of software-defined networking. The network
controller is the central, authoritative control point for network provisioning, monitor-
ing, and management. Controllers empower network abstraction by treating the network
as an integrated whole. This is different from legacy element management systems where
devices are managed atomically, without functional or relational consideration. Cross-
domain orchestration is enabled when controllers span multiple domains (access, WAN, data
center, compute, cloud, security, and so on) or when they provide greater efficiencies in
programmability.

A closed-loop function of IBN ensures practical feedback of provisioning intent that reflects
actual implementation and operations. The activation function translates the intent into poli-
cies that are provisioning into the network. An assurance function continuously collects
analytics from the devices and services to assess whether proper intent has been applied and
achieved. Advanced solutions apply machine learning to accurately estimate performance or
capacity constraints before they become service impacting.

The DNA Center management solution and CX Cloud are solutions from Cisco that enable
intent-based networking.

BOOK.indb 306 19/05/22 5:53 PM

ptg39201256

Chapter 9: Infrastructure 307

9

Summary
This chapter focuses on capabilities in network management, infrastructure provisioning,
element management systems, zero-touch provisioning (ZTP), atomic or SDN-like/controller-
based networking, and intent-based networking. It depicts the growth and transformation in
the network industry over the past 30 years. As technological problems were identified, solu-
tions were made and transformation occurred. Each step of the way, refined principles have
improved the state of networking. If you find yourself implementing or sustaining the legacy
methods first described, you are highly encouraged to adopt the newer methods defined
later in the chapter.

Exam Preparation Tasks
As mentioned in the section “How to Use This Book” in the Introduction, you have a couple
of choices for exam preparation: the exercises here, Chapter 17, “Final Preparation,” and the
exam simulation questions in the Pearson Test Prep Software Online.

Review All Key Topics
Review the most important topics in this chapter, noted with the Key Topic icon in the outer
margin of the page. Table 9-3 lists a reference of these key topics and the page numbers on
which each is found.

Table 9-3 Key Topics for Chapter 9

Key Topic Element Description Page
Number

Paragraph Network management concepts 290

Paragraph Embedded management concepts 299

Figure 9-11 A Typical AutoInstall Process Flow 301

Table 9-2 Logical Plane Models 303

Paragraph Intent-based network concepts 306

Complete Tables and Lists from Memory
Print a copy of Appendix C, “Memory Tables” (found on the companion website), or at least
the section for this chapter, and complete the tables and lists from memory. Appendix D,
“Memory Tables Answer Key,” also on the companion website, includes completed tables
and lists to check your work.

Define Key Terms
Define the following key terms from this chapter and check your answers in the glossary:

continuous integration/continuous deployment (CI/CD), control plane, data plane,
DevOps, intent-based networking (IBN), management plane, Power-On Auto-Provisioning
(POAP), software-defined networking (SDN), site reliability engineering (SRE), zero-touch
provisioning (ZTP)

M09_Davis_C09_p286-p309.indd 307 20/05/22 9:39 PM

ptg39201256

308 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

References
URL QR Code

https://youtu.be/McNm_WfQTHw

https://pc.nanog.org/static/published/meetings/
NANOG73/1677/20180625_Shakir_Snmp_Is_Dead_v1.pdf

https://cfnng.cisco.com/

https://www.cisco.com/c/en/us/solutions/collateral/executive-
perspectives/annual-internet-report/white-paper-c11-741490.html

BOOK.indb 308 19/05/22 5:53 PM

https://youtu.be/McNm_WfQTHw
https://pc.nanog.org/static/published/meetings/NANOG73/1677/20180625_Shakir_Snmp_Is_Dead_v1.pdf
https://pc.nanog.org/static/published/meetings/NANOG73/1677/20180625_Shakir_Snmp_Is_Dead_v1.pdf
https://cfnng.cisco.com/
http://https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
http://https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html

ptg39201256

This page intentionally left blank

ptg39201256

CHAPTER 10

Automation

This chapter covers the following topics:

■ Challenges Being Addressed: This section identifies the challenges that need to be
addressed with the advent of software-defined networking, DevOps, and network
programmability.

■ Software-Defined Networking (SDN): This section covers the genesis of software-
defined networking, its purpose, and the value gained.

■ Application Programming Interfaces (APIs): This section provides guidance around
application programming interfaces. Network engineering and operations were very
different before APIs; some environments are still resistant to change, but the benefits
outweigh the risks of not embracing them.

■ REST APIs: This section provides insights to the functionality and benefit of REST
APIs and how they are used.

■ Cross-Domain, Technology-Agnostic Orchestration: This section contains material
that is not covered in the DEVCOR certification test. However, as network IT con-
tinues to transform, it provides an important consideration for the transformation of
environments.

■ Impact to IT Service Management and Security: This section acknowledges the
influence of IT service management and security to network programmability. With
so many companies investing in ITIL and TOGAF methodologies in the early 2010s,
understanding the alignments is helpful.

This chapter maps to the second part of the Developing Applications Using Cisco
Core Platforms and APIs v1.0 (350-901) Exam Blueprint Section 5.0, “Infrastructure and
Automation.”

As we’ve learned about the infrastructure involved in network IT and see the continued
expansion, we also recognize that static, manual processes can no longer sustain us. When
we were managing dozens or hundreds of devices using manual methods of logging in to ter-
minal servers, through a device’s console interface, or through inband connectivity via SSH,
it may have been sufficient. However, now we are dealing with thousands, tens of thousands,
and in a few projects I’ve been on, hundreds of thousands of devices. It is simply untenable
to continue manual efforts driven by personal interaction. At some point, these valuable
engineering, operations, and management resources must be refocused on more impactful
activities that differentiate the business. So, automation must be embraced. This chapter
covers some key concepts related to automation: what challenges need to be addressed, how
SDN and APIs enable us, and the impact to IT service management and security.

BOOK.indb 310 19/05/22 5:53 PM

ptg39201256

“Do I Know This Already?” Quiz
The “Do I Know This Already?” quiz allows you to assess whether you should read this
entire chapter thoroughly or jump to the “Exam Preparation Tasks” section. If you are in
doubt about your answers to these questions or your own assessment of your knowledge
of the topics, read the entire chapter. Table 10-1 lists the major headings in this chapter and
their corresponding “Do I Know This Already?” quiz questions. You can find the answers in
Appendix A, “Answers to the ‘Do I Know This Already?’ Quizzes.”

Table 10-1 “Do I Know This Already?” Section-to-Question Mapping

Foundation Topics Section Questions

Challenges Being Addressed 1–5
Software-Defined Networking (SDN) 6
Application Programming Interfaces (APIs) 11
REST APIs 7–10

1. When you are considering differences in device types and function, which technology
provides the most efficiencies?
a. Template-driven management
b. Model-driven management
c. Atomic-driven management
d. Distributed EMSs

2. The SRE discipline combines aspects of _______ engineering with _______ and
_______.
a. Hardware, software, firmware
b. Software, infrastructure, operations
c. Network, software, DevOps
d. Traffic, DevOps, SecOps

3. What do the Agile software development practices focus on?
a. Following defined processes of requirements gathering, development, testing, QA,

and release.
b. Giving development teams free rein to engineer without accountability.
c. Pivoting from development sprint to sprint based on testing results.
d. Requirements gathering, adaptive planning, quick delivery, and continuous

improvement.
4. Of the software development methodologies provided, which uses a more visual

approach to the what-when-how of development?
a. Kanban
b. Agile
c. Waterfall
d. Illustrative

BOOK.indb 311 19/05/22 5:53 PM

ptg39201256

312 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

5. Concurrency focuses on _______ lots of tasks at once. Parallelism focuses on _______
lots of tasks at once.
a. Doing; working with
b. Exchanging; switching
c. Threading; sequencing
d. Working with; doing

6. The _______ specification, originally the _______ specification, defines a model for
machine-readable interface files for describing, producing, consuming, and visualizing
RESTful web services.
a. OpenAPI; Swagger
b. REST; CLI
c. SDN; Clean Slate
d. OpenWeb; CORBA

7. What would be the correct method to generate a basic authentication string on a
macOS/Linux CLI?
a. echo -n 'username:password' | openssl md5
b. echo -n 'username:password' | openssl
c. echo -n 'username:password' | openssl base64
d. echo -n 'username&password' | openssl base64

8. What does XML stand for?
a. Extendable machine language
b. Extensible markup language
c. Extreme machine learning
d. Extraneous modeling language

9. In JSON, what are records or objects denoted with?
a. Angle braces < >
b. Square brackets []
c. Simple quotes “ ”
d. Curly braces { }

10. Which REST API HTTP methods are both idempotent?
a. PATCH, POST
b. HEAD, GET
c. POST, OPTIONS
d. PATCH, HEAD

11. Which are APIs? (Choose two.)
a. REST
b. RMON
c. JDBC
d. SSH

BOOK.indb 312 19/05/22 5:53 PM

ptg39201256

Chapter 10: Automation 313

10

Foundation Topics

Challenges Being Addressed
As described in the chapter introduction, automation is a necessity for growing sophis-
ticated IT environments today. Allow me to share a personal example: if you’ve been to a
CiscoLive conference in the US, it is common to deploy a couple thousand wireless access
points in the large conference venues in Las Vegas, San Diego, and Orlando. I’m talking a
million square feet plus event spaces.

Given that the network operations center (NOC) team is allowed onsite only four to five
days before the event starts, that’s not enough time to manually provision everything with
a couple dozen event staff volunteers. The thousands of wireless APs are just one aspect
of the event infrastructure (see Figure 10-1). There are still the 600+ small form-factor
switches that must be spread across the venue to connect breakout rooms, keynote areas,
World of Solutions, testing facilities and labs, the DevNet pavilion, and other spaces (see
Figure 10-2).

Figure 10-1 Moving a Few Wireless APs

BOOK.indb 313 19/05/22 5:53 PM

ptg39201256

314 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Figure 10-2 Lots of Equipment to Stage

Automation is a “do or die” activity for our businesses: without it, we overwork individuals
and that impacts the broader organization. Automation must also extend beyond provision-
ing into the wide-scale collection of performance, health, and fault information.

Discerning companies are investigating how artificial intelligence and machine learning (AI/
ML) can benefit them in obtaining new operational insights and reducing human effort even
more.

We might even acknowledge “change is hard and slow.” If you started networking after prior
experience with a more programmatic environment or dealt with other industries where mass
quantities of devices were managed effectively, you might wonder why network IT lags. This
is a fair question, but also to be fair, enormous strides have been made in the last 10 years
with an industry that found its start in ARPANET at the end of the 1960s. Cisco incorpo-
rated in 1984, and the industry has been growing in scale and functionality ever since.

Being involved in the latter part of the first wave of network evolution has been a constant
career of learning and advancing skills development. The change and expansion of scope and
function with networking have been very interesting and fulfilling for me.

Differences of Equipment and Functionality
Some of the challenges with networking deal with the diversity of equipment and function-
ality. In the last part of the 1960s and early 1970s, the aforementioned ARPANET included
few network protocols and functions. A router’s purpose was to move traffic across different,
isolated network segments of specialized endpoints. The industry grew with shared media
technologies (hubs), then to switches. Businesses started acquiring their own servers; they
weren’t limited to government agencies and the development labs of colleges and universities.
Slowly, home PCs contributed to a burgeoning technology space.

BOOK.indb 314 19/05/22 5:53 PM

ptg39201256

Chapter 10: Automation 315

10

Connectivity technology morphed from more local-based technologies like token ring and
FDDI to faster and faster Ethernet-based solutions, hundred megabit and gigabit local inter-
faces, also influencing the speed of WAN technologies to keep up.

Switches gave advent to more intelligent routing and forwarding switches. IP-based telephony
was developed. Who remembers that Cisco’s original IP telephony solution, Call Manager,
was originally delivered as a compact disc (CD), as much software was?

Storage was originally directly connected but then became networked, usually with different
standards and protocols. The industry then accepted the efficiencies of a common, IP-based
network. The rise of business computing being interconnected started influencing home
networking. Networks became more interconnected and persistent. Dial-up technologies and
ISDN peaked and started a downward trend in light of always-on cable-based technologies
to the home. Different routing protocols needed to be created. Multiple-link aggregation
requirements needed to be standardized to help with resiliency.

Wireless technologies came on the scene. Servers, which had previously been mere end-
points to the network, now became more integrated. IPv6. Mobile technologies. A lot of
hardware innovations but also a lot of protocols and software developments came in parallel.
So why the history lesson? Take them as cases in point of why networking IT was slow in
automation. The field was changing rapidly and growing in functionality. The scope and pace
of change in network IT were unlike those in any other IT disciplines.

Unfortunately, much of the early development relied on consoles and the expectation of a
human administrator always creating the service initially and doing the sustaining changes.
The Information Technology Information Library (ITIL) and The Open Group Architecture
Framework (TOGAF) service management frameworks helped the industry define structure
and operational rigor. Some of the concepts seen in Table 10-2 reflect a common vocabulary
being established.

Table 10-2 Operational Lifecycle

Operational Perspective Function

Day-0 Initial installation
Day-1 Configuration for production purpose
Day-2 Compliance and optimization
Day-X Migration/decommissioning

The full lifecycle of a network device or service must be considered. All too often the “spin-
up” of a service is the sole focus. Many IT managers have stories about finding orphaned
recurring charges from decommissioned systems. Migrating and decommissioning a service
are just as important as the initial provisioning. We must follow up on reclaiming precious
consumable resources like disk space, IP addresses, and even power.

In the early days of compute virtualization, Cisco had an environment called CITEIS—Cisco
IT Elastic Infrastructure Services, which were referred to as “cities.” CITEIS was built to pro-
mote learning, speed development, and customer demos, and to prove the impact of automa-
tion. A policy was enacted that any engineer could spin up two virtual machines of any kind
as long as they conformed to predefined sizing guidelines. If you needed something differ-
ent, you could get it, but it would be handled on an exception basis. Now imagine the num-
ber of people excited to learn a new technology all piling on the system. VMs were spun up;

BOOK.indb 315 19/05/22 5:53 PM

ptg39201256

316 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

CPU, RAM, disk space, and IP addresses consumed; used once or twice, then never accessed
again. A lot of resources were allocated. In the journey of developing the network program-
mability discipline, network engineers also needed to apply operational best practices. New
functions were added to email (and later send chat messages to) the requester to ensure the
resources were still needed. If a response was not received in a timely fashion, the resources
were archived and decommissioned. If no acknowledgment came after many attempts over
a longer period, the archive may be deleted. These kinds of basic functions formed the basis
of standard IT operations to ensure proper use and lifecycle management of consumable
resources.

With so many different opportunities among routing, switching, storage, compute, collabo-
ration, wireless, and such, it’s also understandable that there was an amount of specialization
in these areas. This focused specialization contributed to a lack of convergence because each
technology was growing in its own right; the consolidation of staff and budgets was not
pressuring IT to solve the issue by building collaborative solutions. But that would change.
As addressed later in the topics covering SDN, the industry was primed for transformation.

In today’s world of modern networks, a difference of equipment and functionality is to be
expected. Certainly, there are benefits recognized with standardizing device models to pro-
vide efficiencies in management and device/module sparing strategies. However, as network
functions are separated, as seen later with SDN, or virtualized, as seen with Network Func-
tion Virtualization (NFV), a greater operational complexity is experienced. To that end, the
industry has responded with model-driven concepts, which we cover in Chapter 11, “NET-
CONF and RESTCONF.” The ability to move from device-by-device, atomic management
considerations to more service and function-oriented models that comprehend the relation-
ships and dependencies among many devices is the basis for model-driven management.

Proximity of Management Tools and Support Staff
Another situation that needed to be addressed was the proximity of management tools and
support staff. Early networks were not as interconnected, persistent, or ingrained to as many
aspects of our lives as they are now. It was common to deploy multiple copies of manage-
ment tools across an environment because the connectivity or basic interface link speed
among sites often precluded using a central management tool. Those were the days of “Hey,
can you drive from Detroit down to Dayton to install another copy of XYZ?”

Support staff existed at many large sites, sometimes with little collaboration among them or
consistency of service delivery across states or countries.

Because early networks often metered and charged on traffic volume across a wide area,
they were almost disincentivized to consolidate monitoring and management. “Why would I
want to run more monitoring traffic and increase my cost? I only want ‘business-critical traf-
fic’ across those WAN links now.” However, fortunately, even this way of thinking changed.

Today networks are more meshed, persistent, highly available, and faster connected. There
is little need to deploy multiple management tools, unless it is purposeful for scale or
functional segmentation. The support teams today may include a “follow the sun” model
where three or four different support centers are spread across the globe to allow personnel
to serve others in their proximate time zone. As businesses experience higher degrees of

BOOK.indb 316 19/05/22 5:53 PM

ptg39201256

Chapter 10: Automation 317

10

automation and orchestration, there is reduced need for on-shift personnel. Consolidation of
support teams is possible. This pivot to a more on-call or exception-based support model is
desired. The implementation of self-healing networks that require fewer and fewer support
personnel is even more desirable. Google’s concept of site reliability engineering (SRE) is an
example of addressing the industry’s shortcomings with infrastructure and operations sup-
port. The SRE discipline combines aspects of software engineering with infrastructure and
operations. SRE aims to enable highly scalable and reliable systems. Another way of thinking
about SRE is what happens when you tell a software engineer to do an operations role.

Speed of Service Provisioning
With early networks being “small” and “specialized,” there was a certain acceptance to how
long it took to provision new services. The network engineer of the late 1990s and early
2000s might have experienced lead times of many months to get new circuits from their
WAN service provider. However, this was an area of transformation in network IT also. Net-
works became more critical to businesses. Soon, having a web presence, in addition to any
brick-and-mortar location, was a necessity. This would drive a need for faster service provi-
sioning and delivery. Previous manual efforts that included a “truck roll,” or someone driving
to another location, put too much latency into the process.

Businesses that could provide a service in weeks were driving a competitive differentiator to
those that took months. Then this model progressed to those that could provide services in
days versus weeks, and now you see the expectation of minutes, or “while I watch from my
browser.”

Business models have greatly changed. The aforementioned brick-and-mortar model was
the norm. As the Internet flourished, having a web presence became a differentiator, then a
requirement. To that end, so many years later, it is very difficult to find impactful domain
names to register. Or it may cost a lot to negotiate a transfer from another owner!

Today, the physical presence is not required and is sometimes undesirable. More agile busi-
ness models mean companies can be operated out of the owner’s home. Fulfillment can be
handled by others, and the store or marketplace is handled through a larger e-commerce
entity like Amazon, Alibaba, or eBay.

It is impossible to provide services in such a rapid fashion without automation. The customer
sitting at a browser expects to see an order confirmation or expected service access right
then. Indeed, some customers give up and look for alternative offers if their request is not
met as they wait.

This expectation of now forces businesses to consolidate their offers into more consistent or
templatized offers. The more consistent a service can be delivered, the better suited it is for
automation. It’s the exceptions that tend to break the efficiencies of automation and cause
longer service delivery cycles.

This rapid pace of service delivery influenced IT service management and development with
DevOps and models like Agile and Lean. Figure 10-3 depicts the Agile methodology.

BOOK.indb 317 19/05/22 5:53 PM

ptg39201256

318 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Figure 10-3 Agile Methodology

Agile, as a software development practice, focuses on extracting requirements and develop-
ing solutions with collaborative teams and their users. Planning with an adaptive approach to
quick delivery and continuous improvement sets Agile apart from other, less flexible mod-
els. Agile is just one software development methodology, but it has a large following and is
suggested for consideration in your network programmability journey. Several more of the
broad spectrum of methodologies and project management frameworks are described in
Table 10-3.

Table 10-3 Software Development Methodologies and Frameworks

Method Name Description

Agile Flexible and incremental design process focused on collaboration
Kanban Visual framework promoting what, when, and how to develop in

small, incremental changes; complements Agile
Lean Process to create efficiencies and remove waste to produce more

with less
Scrum Process with fixed-length iterations (sprints); follows roles,

responsibilities, and meetings for well-defined structure; derivative
of Agile

Waterfall Sequential design process; fully planned; execution through phases

Whatever model you choose, take time to understand the pros and cons and evaluate against
your organization’s capabilities, culture, motivations, and business drivers. Ultimately, the
right software development methodology for you is the one that is embraced by the most
people in the organization.

BOOK.indb 318 19/05/22 5:53 PM

ptg39201256

Chapter 10: Automation 319

10

Accuracy of Service Provisioning
Walt Disney is known for sharing this admirable quote, “Whatever you do, do it well.” That
has been the aspiration of any product or service provider. The same thinking can be drawn
to network service provisioning: nobody truly intends to partially deploy a service or to
deploy something that will fail. One reason accuracy of service provisioning struggled before
network programmability hit its stride was due to the lack of programmatic interfaces.

As we mentioned before, much of the genesis of network IT, and dare we say even IT more
broadly, was founded on manual command-line interface interactions. Provisioning a device
meant someone was logging into it and typing or pasting a set of configuration directives.
The task wasn’t quite as bad as that in Figure 10-4, but it sure felt that way!

Figure 10-4 Not Quite This Painful

A slightly more advanced method might be typing or pasting those directives and putting
them into a file to be transferred to the device and incorporated into its running configura-
tion state. However, these manual efforts still required human interaction and an ability to
translate intent to a set of configuration statements.

Some automations were, and sometimes still are, simply the collection and push of those
same CLI commands (see Figure 10-5), but in an unattended fashion by a script or manage-
ment application.

BOOK.indb 319 19/05/22 5:53 PM

ptg39201256

320 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Figure 10-5 Automating the CLI

The fact that the foundation has been based on CLI automation seems to imply that the
industry was conceding the “best” way to interact with a device was through the CLI. A lot
of provisioning automation occurs through CLI with many management applications and
open-source solutions.

Yet the CLI, while suited for human consumption, is not optimal for programmatic use. If
the command syntax or output varies between releases or among products, the CLI-based
solutions need to account for the differences. Consider the command output for show
interface in Example 10-1.

Example 10-1 Show Interface Output

Switch# show interface te1/0/2

TenGigabitEthernet1/0/2 is up, line protocol is up (connected)

 Hardware is Ten Gigabit Ethernet, address is 0023.ebdd.4006 (bia 0023.ebdd.4006)

 MTU 1500 bytes, BW 10000000 Kbit, DLY 10 usec,

 reliability 255/255, txload 1/255, rxload 1/255

 Encapsulation ARPA, loopback not set

 Keepalive not set

 Full-duplex, 10Gb/s, link type is auto, media type is 10GBase-SR

 input flow-control is off, output flow-control is unsupported

 ARP type: ARPA, ARP Timeout 04:00:00

 Last input 00:00:04, output 00:00:00, output hang never

 Last clearing of "show interface" counters never

 Input queue: 0/75/0/0 (size/max/drops/flushes); Total output drops: 0

 Queueing strategy: fifo

 Output queue: 0/40 (size/max)

BOOK.indb 320 19/05/22 5:53 PM

ptg39201256

Chapter 10: Automation 321

10

 5 minute input rate 5000 bits/sec, 9 packets/sec

 5 minute output rate 0 bits/sec, 0 packets/sec

 200689496 packets input, 14996333682 bytes, 0 no buffer

 Received 195962135 broadcasts (127323238 multicasts)

 0 runts, 0 giants, 0 throttles

 0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored

 0 watchdog, 127323238 multicast, 0 pause input

 0 input packets with dribble condition detected

 7642905 packets output, 1360729535 bytes, 0 underruns

 0 output errors, 0 collisions, 0 interface resets

 0 babbles, 0 late collision, 0 deferred

 0 lost carrier, 0 no carrier, 0 PAUSE output

 0 output buffer failures, 0 output buffers swapped out

What are the options for extracting information like number of multicast packets output?

The use of Python scripts is in vogue, so let’s consider that with Example 10-2, which
requires a minimum of Python 3.6.

Example 10-2 Python Script to Extract Multicast Packets

import paramiko

import time

import getpass

import re

username = input('Enter Username: ')

userpassword = getpass.getpass('Enter Password: ')

devip = input('Enter Device IP: ')

devint = input('Enter Device Interface: ')

try:

 devconn = paramiko.SSHClient()

 devconn.set_missing_host_key_policy(paramiko.AutoAddPolicy())

 devconn.connect(devip, username=username, password=userpassword,timeout=60)

 chan = devconn.invoke_shell()

 chan.send("terminal length 0\n")

 time.sleep(1)

 chan.send(f'show interface {devint}')

 time.sleep(2)

 cmd_output = chan.recv(9999).decode(encoding='utf-8')

 devconn.close()

 result = re.search('(\d+) multicast,', cmd_output)

 if result:

 print(f'Multicast packet count on {devip} interface {devint} is {result.
group(1)}')

 else:

 print(f'No match found for {devip} interface {devint} - incorrect
interface?')

BOOK.indb 321 19/05/22 5:53 PM

ptg39201256

322 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

except paramiko.AuthenticationException:

 print("User or password incorrect - try again")

except Exception as e:

 err = str(e)

 print(f'ERROR: {err}')

There’s a common theme in methodologies that automate against CLI output which requires
some level of string manipulation. Being able to use regular expressions, commonly called
regex, or the re module in Python, is a good skill to have for CLI and string manipula-
tion operations. While effective, using regex can be difficult skill to master. Let’s call it
an acquired taste. The optimal approach is to leverage even higher degrees of abstraction
through model-driven and structure interfaces, which relieve you of the string manipulation
activities. You can find these in solutions like pyATS (https://developer.cisco.com/pyats/)
and other Infrastructure-as-Code (IaC) solutions, such as Ansible and Terraform.

Product engineers intend to maintain consistency across releases, but the rapid rate of
change and the intent to bring new innovation to the industry often result in changes to
the command-line interface, either in provisioning syntax and arguments or in command-
line output. These differences often break scripts and applications that depend on CLI; this
affects accuracy in service provisioning. Fortunately, the industry recognizes the inefficien-
cies and results of varying CLI syntax and output. Apart from SNMP, which generally lacked
a strong provisioning capability, one of the first innovations to enable programmatic interac-
tions with network devices was the IETF’s NETCONF (network configuration) protocol.

We cover NETCONF and the follow-on RESTCONF protocol in more detail later in this
book. However, we can briefly describe NETCONF as an XML representation of a device’s
native configuration parameters. It is much more suited to programmatic use. Consider now
a device configuration shown in an XML format with Figure 10-6.

Figure 10-6 Partial NETCONF Device Configuration

BOOK.indb 322 19/05/22 5:53 PM

https://developer.cisco.com/pyats/

ptg39201256

Chapter 10: Automation 323

10

Although the format may be somewhat unfamiliar, you can see patterns and understand
the basic structure. It is the consistent structure that allows NETCONF/RESTCONF and an
XML-formatted configuration to be addressed more programmatically. By referring to tags
or paths through the data, you can cleanly extract the value of a parameter without depend-
ing on the existence (or lack of existence) of text before and after the specific parameter(s)
you need. This capability sets NETCONF/RESTCONF apart from CLI-based methods that
rely on regex or other string-parsing methods.

A more modern skillset would include understanding XML formatting and schemas, along
with XPath queries, which provide data filtering and extraction functions.

Many APIs output their data as XML- or JSON-formatted results. Having skills with XPath
or JSONPath queries complements NETCONF/RESTCONF. Again, we cover these topics
later in Chapter 11.

Another way the industry has responded to the shifting sands of CLI is through abstracting
the integration with the device with solutions like Puppet, Chef, Ansible, and Terraform.
Scripts and applications can now refer to the abstract intent or API method rather than a
potentially changing command-line argument or syntax. These also are covered later in this
book.

Scale
Another challenge that needs to be addressed with evolving and growing network is scale.
Although early and even some smaller networks today can get by with manual efforts of a
few staff members, as the network increases in size, user count, and criticality, those models
break. Refer back to Figure 9-19 to see the growth of the Internet over the years.

Scalable deployments are definitely constrained when using CLI-based methodologies, espe-
cially when using paste methodologies because of flow control in terminal emulators and
adapters. Slightly more efficiencies are gained when using CLI to initiate a configuration file
transfer and merge process.

Let me share a personal example from a customer engagement. The customer was dealing
with security access list changes that totaled thousands of lines of configuration text and
was frustrated with the time it took to deploy the change. One easy fix was procedural: cre-
ate a new access list and then flip over to it after it was created. The other advice was show-
ing the customer the inefficiency of CLI flow-control based methods. Because the customer
was copying/pasting the access list, they were restricted by the flow control between the
device CLI and the terminal emulator.

Strike one: CLI/terminal.

Strike two: Size of access list.

Strike three: Time to import.

Pasting the customer’s access list into the device’s configuration took more than 10 minutes.
I showed them the alternative of putting the configuration parameters into a file that could
be transferred and merged with the device and the resulting seconds that this approach took
instead. Needless to say, the customer started using a new process.

Using NETCONF/RESTCONF protocols to programmatically collect information and
inject provisioning intent is efficient. In this case, it is necessary to evaluate the extent of

BOOK.indb 323 19/05/22 5:53 PM

ptg39201256

324 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

deployment to gauge the next level of automation for scale. Here are some questions to ask
yourself:

■ How many devices, nodes, and services do I need to deploy?

■ Do I have dependencies among them that require staggering the change for optimal
availability? Any primary or secondary service relationships?

■ How much time is permitted for the change window, if applicable?

■ How quickly can I revert a change if unexpected errors occur?

Increasingly, many environments have no maintenance windows; there is no time that they
are not doing mission-critical work. They implement changes during all hours of the day
or night because their network architectures support high degrees of resiliency and avail-
ability. However, even in these environments, it is important to verify that the changes being
deployed do not negatively affect the resiliency.

One more important question left off the preceding list for special mention is “How much
risk am I willing to take?” I remember working with a customer who asked, “How many
devices can we software upgrade over a weekend? What is that maximum number?”
Together, we created a project and arranged the equipment to mimic their environment as
closely as possible—device types, code versions, link speeds, device counts. The lab was
massive—hundreds of racks of equipment with thousands of devices. In the final analysis,
I reported, “You can effectively upgrade your entire network over a weekend.” In this case,
it was 4000 devices, which at the time was a decent-sized network. I followed by saying,
“However, I wouldn’t do it. Based on what I know of your risk tolerance level, I would sug-
gest staging changes. The network you knew Friday afternoon could be very different from
the one Monday morning if you run into an unexpected issue.” We obviously pressed for
extensive change testing, but even with the leading test methodologies of the time, we had
to concede something unexpected could happen. We saved the truly large-scale changes for
those that were routine and low impact. For changes that were somewhat new, such as new
software releases or new features and protocols, we established a phased approach to gain
confidence and limit negative exposure.

■ Lab testing of single device(s) representing each model/function

■ Lab testing of multiple devices, including primary/backup peers

■ Lab testing of multiple devices, including primary/backup peers to maximum scale
possible in lab

■ Production deployment of limited device counts in low-priority environments
(10 percent of total)

■ Change observation for one to two weeks (depending on criticality of change)

BOOK.indb 324 19/05/22 5:53 PM

ptg39201256

Chapter 10: Automation 325

10

■ Production deployment of devices in standard priority environments (25 percent of
total)

■ Change observation for two to four weeks (depending on criticality of change)

■ Second batch deployment in standard priority environments (25 percent of total)

■ Change observation for two to four weeks (depending on criticality of change)

■ Production deployment of devices in high-priority environments (10 percent of total)

■ Change observation for two to four weeks (depending on criticality of change)

■ Second batch deployment of high-priority environments (10 percent of total)

■ Change observation for two to four weeks (depending on criticality of change)

■ Third batch deployment of high-priority environments (20 percent of total)

As you contemplate scale, if you’re programming your own solutions using Python scripts or
similar, it is worthwhile to understand multithreading and multiprocessing. A few definitions
of concurrency and parallelism also are in order.

An application completing more than one task at the same time is considered concurrent.
Concurrency is working on multiple tasks at the same time but not necessarily simultane-
ously. Consider a situation with four tasks executing concurrently (see Figure 10-7). If you
had a virtual machine or physical system with a one-core CPU, it would decide the switching
involved to run the tasks. Task 1 might go first, then task 3, then some of task 2, then all of
task 4, and then a return to complete task 2. Tasks can start, execute their work, and com-
plete in overlapping time periods. The process is effectively to start, complete some (or all)
of the work, and then return to incomplete work where necessary—all the while maintain-
ing state and awareness of completion status. One issue to observe is that concurrency may
involve tasks that have no dependency among them. In the world of IT, an overall workflow
to enable a new web server may not be efficient for concurrency. Consider the following
activities:

1. Create the virtual network.

2. Create the virtual storage volume.

3. Create the virtual machine vCPUs and vMemory.

4. Associate the VM vNet and vStorage.

5. Install the operating system to the VM.

6. Configure the operating system settings.

7. Update the operating system.

8. Install the Apache service.

9. Configure the Apache service.

BOOK.indb 325 19/05/22 5:53 PM

ptg39201256

326 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Figure 10-7 Workflow Creating a Web Server

Several of these steps depend on a previous step being completed. So, this workflow is not
well suited to concurrency. However, deploying software images to many devices across the
network would be well suited. Consider these actions on a multidevice upgrade process (see
Figure 10-8):

1. Configure Router-A to download new software update (wait for it to process, flag it to
return to later, move on to next router), then . . .

2. Configure Router-B to download new software update (wait for it to process, flag it to
return to later, move on to next router), then . . .

3. Configure Router-C to download new software update (wait for it to process, flag it to
return to later, move on to next router), then . . .

4. Check Router-A status—still going—move on to next router.
5. Configure Router-D to download new software update (wait for it to process, flag it to

return to later, move on to next router).

6. Check Router-B status—complete—remove flag to check status; move to next router.

7. Configure Router-E to download new software update (wait for it to process, flag it to
return to later, move on to next router).

8. Check Router-A status—complete—remove flag to check status; move to next router.

9. Check Router-C status—complete—remove flag to check status; move to next router.

10. Check Router-D status—complete—remove flag to check status; move to next router.

11. Check Router-E status—complete—remove flag to check status; move to next router.

BOOK.indb 326 19/05/22 5:53 PM

ptg39201256

Chapter 10: Automation 327

10

Router-A

Router-B

Router-C

Router-D

Router-E

Figure 10-8 Concurrency Example

Parallelism is different in that an application separates tasks into smaller activities to process
in parallel on multiple CPUs simultaneously. Parallelism doesn’t require multiple tasks to
exist. It runs parts of the tasks or multiple tasks at the same time using multicore functions
of a CPU. The CPU handles the allocation of each task or subtask to a core.

Returning to the previous software example, consider it with a two-core CPU. The following
actions would be involved in this multidevice upgrade (see Figure 10-9):

1. Core-1: Configure Router-A to download new software update (wait for it to process, flag
it to return to later, move on to next router), while at the same time on another CPU . . .

2. Core-2: Configure Router-B to download new software update (wait for it to process,
flag it to return to later, move on to next router).

3. Core-1: Configure Router-C to download new software update (wait for it to process,
flag it to return to later, move on to next router).

4. Core-1: Check Router-A status—still going—move on to next router.

5. Core-2: Configure Router-D to download new software update (wait for it to process,
flag it to return to later, move on to next router).

6. Core-2: Check Router-B status—complete—remove flag to check status; move to next
router.

7. Core-2: Configure Router-E to download new software update (wait for it to process,
flag it to return to later, move on to next router).

8. Core-1: Check Router-A status—complete—remove flag to check status; move to next
router.

9. Core-1: Check Router-C status—complete—remove flag to check status; move to next
router.

10. Core-1: Check Router-D status—complete—remove flag to check status; move to next
router.

11. Core-2: Check Router-E status—complete—remove flag to check status; move to next
router.

BOOK.indb 327 19/05/22 5:53 PM

ptg39201256

328 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Router-A

Router-B

Router-C

Router-D

Router-E

Figure 10-9 Parallelism Example

Because two tasks are executed simultaneously, this scenario is identified as parallelism. Par-
allelism requires hardware with multiple processing units, cores, or threads.

To recap, a system is concurrent if it can support two or more tasks in progress at the same
time. A system is parallel if it can support two or more tasks executing simultaneously. Con-
currency focuses on working with lots of tasks at once. Parallelism focuses on doing lots of
tasks at once.

So, what is the practical application of these concepts? In this case, I was dealing with the
Meraki Dashboard API; it allows for up to five API calls per second. Some API resources
like Get Organization (GET /organizations/{organizationId}) have few key-values to return,
so they are very fast. Other API resources like Get Device Clients (GET /devices/{serial}/cli-
ents) potentially return many results, so they may take more time. Using a model of parallel-
ism to send multiple requests across multiple cores—allowing for some short-running tasks
to return more quickly than others and allocating other work—provides a quicker experience
over doing the entire process sequentially.

To achieve this outcome, I worked with the Python asyncio library and the semaphores feature
to allocate work. I understood each activity of work had no relationship or dependency on
the running of other activities; no information sharing was needed, and no interference across
threads was in scope, also known as thread safe. The notion of tokens to perform work was
easy to comprehend. The volume of work was created with a loop building a list of tasks; then
the script would allocate as many tokens as were available in the semaphore bucket. When the

BOOK.indb 328 19/05/22 5:53 PM

ptg39201256

Chapter 10: Automation 329

10

script first kicked off, it had immediate access to do parallel processing of the four tokens I
had allocated. As short-running tasks completed, tokens were returned to the bucket and made
available for the next task. Some tasks ran longer than others, and that was fine because the
overall model was not blocking other tasks from running as tokens became available.

Doing More with Less
Continuing in the theme of challenges being addressed, we must acknowledge the busi-
ness pressures of gaining efficiencies to reduce operation expenses (OpEx) and potentially
improve margins, if applicable. Network IT varies between a necessary cost center and a
competitive differentiating profit center for many businesses. It is not uncommon for the
cost center–focused businesses to manage budgets by reducing resources and attempting to
get more productivity from those remaining. The profit center–focused businesses may do
the same, but mostly for margin improvement.

Automation, orchestration, and network programmability provide the tools to get more done
with less. If tasks are repetitive, automation reduces the burden—and burnout—on staff.
Team members are able to focus on more strategic and fulfilling endeavors.

In reflection with the previous section on scale, if you have a lot of tasks that would benefit
from parallel execution, if they are not dependent on each other, then it makes sense to allo-
cate more threads/cores to the overall work. Efficient use of existing resources is desirable. It
is a waste of resources if a system with many cores is often idle.

When building automated solutions, observe the tasks and time the original manual pro-
cess from end to end. After you have automated the process, measure the runtime of the
newly automated process and provide reporting that shows time and cost savings with the
automation. Having practical examples of return on investment (ROI) helps decision makers
understand the benefits of automation and encourage its implementation. You’re building the
automation; you can create your own telemetry and instrumentation!

Software-Defined Networking (SDN)
The catalyst for software-defined networking is largely attributed to Stanford University’s
Clean Slate Program in 2008. Cisco was a sponsor of this project, which reimagined what a
new Internet would look like if we set aside conventional norms of traditional networks and
worked from a clean slate. It was difficult to develop next-generation routing or connectivity
protocols if the equipment available was purposely programmed to follow the original con-
ventions. Programmable logic arrays (PLAs) were pretty expensive to test theories, so a more
software-based approach was proposed.

What Is SDN and Network Programmability?
Definitions of SDN and network programmability varied among network IT vendors, but
some points were generally agreed upon. As illustrated in Figure 10-10, SDN is

■ An approach and architecture in networking where control and data planes are decou-
pled, and intelligence and state are logically centralized

■ An enabling technology where the underlying network infrastructure is abstracted
from the applications (network virtualization)

■ A concept that leverages programmatic interfaces to enable external systems to influ-
ence network provisioning, control, and operations

BOOK.indb 329 19/05/22 5:53 PM

ptg39201256

330 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Figure 10-10 The SDN Concept

Although all of these definitions were exciting and transformative, the last item of leverag-
ing programmatic interfaces appeals mostly to the network programming crowd. The last
item also enables us to influence the first two through provisioning and monitoring network
assets.

In my talks at CiscoLive, I would share that SDN was

■ An approach to network transformation*

■ Empowering alternative, nontraditional entities to influence network design and opera-
tions

■ Impacting the networking industry, challenging the way we think about engineering,
implementing, and managing networks

■ Providing new methods to interact with equipment and services via controllers and
APIs

■ Normalizing the interface with equipment and services

■ Enabling high-scale, rapid network and service provisioning and management

■ Providing a catalyst for traditional route/switch engineers to branch out

Approach
So, why the asterisk next to an approach to network transformation? Well, it wasn’t the first
attempt at network transformation. If we consider separation of the control plane and data
plane, we can look no further than earlier technologies, such as SS7, ATM LANE, the wire-
less LAN controller, and GMPLS. If we were considering network overlays/underlays and
encapsulation, the earlier examples were MPLS, VPLS, VPN, GRE Tunnels, and LISP. Finally,
if our consideration was management and programmatic interfaces, we had SNMP, NET-
CONF and EEM. Nonetheless, SDN was a transformative pursuit.

BOOK.indb 330 19/05/22 5:53 PM

ptg39201256

Chapter 10: Automation 331

10

Nontraditional Entities
What about those nontraditional entities influencing the network? As new programmatic
interfaces were purposely engineered into the devices and controllers, a new wave of net-
work programmers joined the environment. Although traditional network engineers skilled
up to learn programming (and that may be you, reading this book!), some programmers who
had little prior networking experience decided to try their hand at programming a network.
Or the programmers decided it was in their best interests to configure an underpinning net-
work for their application themselves, rather than parsing the work out to a network provi-
sioning team.

Regardless of the source of interaction with the network, it is imperative that the new inter-
faces, telemetry, and instrumentation be secured with the same, if not more, scrutiny as the
legacy functions. The security policies can serve to protect the network from unintentional
harm by people who don’t have deep experience with the technology and from the inten-
tional harm of bad actors.

Industry Impact
The impact to the network industry with operations and engineering was greatly influenced
by control plane and data plane separation and the development of centralized controllers.
The network management teams would no longer work as hard to treat each network asset as
an atomic unit but could manage a network en masse through the controller. One touchpoint
for provisioning and monitoring of all these devices! The ACI APIC controller is acknowl-
edged as one of the first examples of an SDN controller, as seen in Figure 10-11. It was able
to automatically detect, register, and configure Cisco Nexus 9000 series switches in a data
center fabric.

Leaf Switches

ESX ServerPhysical
APIC

Spine Switches

APIC APIC

VM1 VM2

ACI ACI

ACI ACI

ACI ACI

Figure 10-11 Cisco ACI Architecture with APIC Controllers

New Methods
With respect to new methods, protocols, and interfaces to managed assets, APIs became
more prolific with the SDN approach. Early supporting devices extended a style of REST-
like interface and then more fully adopted the model. First NETCONF and then RESTCONF
became the desired norm. Centralized controllers, like the wireless LAN controller, ACI’s

BOOK.indb 331 19/05/22 5:53 PM

ptg39201256

332 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

APIC controller, Meraki, and others, prove the operational efficiency of aggregating the
monitoring and provisioning of fabrics of devices. This model has coaxed the question
“What else can we centralize?”

Normalization
SDN’s impact on network normalization is reflected in the increasingly standardized inter-
faces. While SNMP had some utility, SDN provided a fresh opportunity to build and use
newer management technologies that had security at their core, not just a “bolt-on” consid-
eration. Although the first API experiences felt a bit like the Wild Wild West, the Swagger
project started to define a common interface description language to REST APIs. Swagger
has since morphed into the OpenAPI initiative, and specification greatly simplifies API
development and documentation tasks.

Enabling Operations
Network operations, service provisioning, and management were influenced with SDN
through the new interfaces, their standardization, and programmatic fundamentals. Instead
of relying on manual CLI methods, operators began to rely on their growing knowledge base
of REST API methods and sample scripts in growing their operational awareness and ability
to respond and influence network functions.

Besides the REST API, other influences include gRPC Network Management Interface
(gNMI), OpenConfig, NETCONF, RESTCONF, YANG, time-series databases, AMQP pub-
sub architectures, and many others.

Enabling Career Options
Finally, SDN provided traditional network engineers an opportunity to extend their skills
with new network programming expertise. The traditional network engineer with years of
domain experience could apply that knowledge in an impactful way with these program-
matic interfaces. They could deploy more services at scale, with fewer errors and more
quickly.

How impactful could SDN be? Let’s consider the early days of IP telephony: it didn’t ramp
up as quickly as desired. On one side there were the traditional “tip-ring telco” team mem-
bers; on the other side was the new “packet-switch” team. IP telephony technology was slow
to gain momentum because few individuals crossed the aisle to learn the other side and
become change and translation agents for the greater good. When people started to under-
stand and share the nuanced discipline of the other side, then SDN started to make strides.

Network programmability is in that same transition: there are strong network engineers who
understand their tradition route/switch technology. Likewise, there are very strong software
developers who understand how to build apps and interact with systems; they just don’t have
the network domain expertise. As network engineers skill up with the automation and net-
work programming discipline, they bring their experience of networks with them. So, let’s
do IT!

Use Cases and Problems Solved with SDN
SDN aimed to address several use cases. The research and academic communities were look-
ing for ways to create experimental network algorithms and technologies. The hope was to
turn these into new protocols, standards, and products. Because existing products closely

BOOK.indb 332 19/05/22 5:53 PM

ptg39201256

Chapter 10: Automation 333

10

adhered to well-defined routing protocol specifications, SDN was to help separate the cur-
rent norms from new, experimental concepts.

The massively scalable data center community appreciated SDN for the ability to separate
the control plane from the data plane and use APIs to provide deep insight into network traf-
fic. Cloud providers drew upon SDN for automated provisioning and programmable network
overlays. Service providers aligned to policy-based control and analytics to optimize and
monetize service delivery. Enterprise networks latched onto SDN’s capability to virtualize
workloads, provide network segmentation, and orchestrate security profiles.

Nearly all segments realized the benefits of automation and programmability with SDN:

■ Centralized configuration, management control, and monitoring of network devices
(physical or virtual)

■ The capability to override traditional forwarding algorithms to suit unique business or
technical needs

■ The capability of external applications or systems to influence network provisioning
and operation

■ Rapid and scalable deployment of network services with lifecycle management

Several protocols and solutions contributed to the rise of SDN. See Table 10-4 for examples.

Table 10-4 Contributing Protocols and Solutions to SDN

Protocol/Solution Definition Function

OpenFlow Layer-2 programmable
forwarding protocol and
specification for switch
manufacturing

I2RS Interface to Routing System Layer-3 programmable
protocol to the routing
information base (RIB);
allowed manipulation and
creation of new routing
metrics

PCEP Path Computation Element
Protocol

L3 protocol capable of
computing a network
path or route based on a
network graph and applying
computational constraints

BGP-LS/FS BGP Link-State / Flow Spec The ability to gather IGP
topology of the network
and export to a central SDN
controller or alternative
method to remotely triggered
black hole filtering useful for
DDoS mitigation

BOOK.indb 333 19/05/22 5:53 PM

ptg39201256

334 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Protocol/Solution Definition Function

OpenStack Hypervisor technology for
virtualization of workloads

OMI Open Management
Infrastructure

Open-source Common
Information Model
with intent to normalize
management

Puppet Agent-based configuration
management solution
embedded in devices (later
updated to agentless)

Ansible Agentless configuration
management solution

NETCONF Network Configuration
standard

IETF working group
specification normalizing
configuration across vendors
using XML schemas (later
updated with YANG)

YANG Data Modeling Language Data modeling language for
defining IT technologies and
services

Overview of Network Controllers
One of the main benefits of SDN was the notion of control plane and data plane separation.
You can think of the control plane as the brains of the network: it makes forwarding deci-
sions based on interactions with adjacent devices and their forwarding protocols. The data
plane is the muscle, acting on the forwarding decisions programmed into it. Routing proto-
cols like OSPF and BGP operate in the control plane. A link aggregation protocol like LACP
or the MAC address table would be representative of the data plane.

The first traditional networks combined the functionality of the control plane/data plane
into the same device. Each device acted autonomously, creating and executing its own for-
warding decisions. With the advent of SDN, the notion of centralizing that brain function
into one control unit yet keeping the data plane function at the managed device was the new
architectural goal. These centralized controllers aggregated the monitoring and management
function. They oftentimes also provided that centralized forwarding path determination and
programming function.

The separation of functional planes also resulted in the definition of new overlay and under-
lay functionality. Network overlays defined that tunnel endpoints terminated on routers and
switches. The physical devices executed the protocols to handle resiliency and loops. Some
examples are OTV, VXLAN, VPLS, and LISP.

Host overlays defined that tunnel endpoints terminated on virtual nodes. Examples of host
overlays are VXLAN, NVGRE, and STT. Finally, integrated overlays allowed for physical
or virtual endpoints in tunnel termination. The Cisco ACI fabric with Nexus 9000 series
switches are examples of integrated overlays.

BOOK.indb 334 19/05/22 5:53 PM

ptg39201256

Chapter 10: Automation 335

10

The Cisco Solutions
Cisco has many offerings in the SDN space, the most prominent being the Cisco ACI fabric
with Nexus 9000 series switches. Software-defined access (SDA) is enabled by Cisco DNA
Center on enterprise fabric-enabled devices. Software-defined wide-area networks (SD-
WANs) can be seen in the acquired technologies of Viptela, resulting in the vManage solu-
tion for central cloud management, authentication, and licensing.

Network Function Virtualization (NFV) enables cloud technology to support network func-
tions, such as the Cisco Integrated Services Virtual Router (ISRv), ASAv, and vWLC. The
Cisco Managed Services Accelerator (MSX) provides automated end-to-end SD-WAN ser-
vices managed from the service provider cloud.

Application Programming Interfaces (APIs)
Application programming interfaces are the foundational method for interacting with
devices, applications, controllers, and other networked entities. Although the command-
line interface has reigned supreme for years, we must admit, if an entity has an API, it is the
desirable method for interacting with it.

APIs are common in many fashions: some are application to application, whereas others are
application to hardware entity. Consider some of the following interactions as examples:

■ DNAC software controller API call to Cisco Support API endpoint for opening cases:
software to software

■ Cisco Intersight with UCS IMC for device registration, monitoring, and provisioning
from the cloud: software to hardware

■ Network Services Orchestrator (NSO) to ASR1000 for provisioning and monitoring:
software to hardware

To use an API, you must know the way to make requests, how to authenticate to the service,
how to handle the return results (data encoding), and other conventions it may use, such as
cookies. Public APIs often involve denial-of-service protections beyond authentication, such
as rate limiting the number of requests per time period, the number of requests from an IP
endpoint, and pagination or volume of data returned.

For the purposes of network IT, we mostly focus on web APIs, as we discuss in the next
section on REST APIs, but other common APIs you may experience are the Java Database
Connectivity (JDBC) and Microsoft Open Database Connectivity (ODBC) APIs. JDBC and
ODBC permit connections to different types of databases, such as Oracle, MySQL, and
Microsoft SQL Server, with standard interfaces that ease application development.

The Simple Object Access Protocol (SOAP) is also a well-known design model for web ser-
vices. It uses XML and schemas with a strongly typed messaging framework. A web service
definition (WSDL) defines the interaction between a service provider and the consumer. In
Cisco Unified Communications, the Administrative XML Web Service (AXL) is a SOAP-
based interface enabling insertion, retrieval, updates, and removal of data from the Unified
Communication configuration database.

Because a SOAP message has the XML element of an “envelope” and further contains
a “body,” many people draw the parallel of SOAP being like a postal envelope, with the

BOOK.indb 335 19/05/22 5:53 PM

ptg39201256

336 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

necessary container and the message within, to REST being like a postcard that has none of
the “wrapper” and still contains information. Figure 10-12 illustrates this architecture.

POST /v1/devices

Figure 10-12 Cisco ACI Architecture with APIC Controllers

APIs are used in many Internet interactions—logins, data collection, performance reporting,
analytics. Microservices are associated with APIs as self-contained, lightweight endpoints
that you can interact with to gather data or effect change. They are usually specific to a
function, such as validate login, and are engineered with resiliency in mind, so continuous
integration/continuous deployment (CI/CD) processes allow for routine maintenance without
service impact to users.

REST APIs
RESTful APIs (or representational state transfer APIs) use Web/HTTP services for read and
modification functions. This stateless protocol has several predefined operations, as seen
in Table 10-5. Because it’s a stateless protocol, the server does not maintain the state of a
request. The client’s request must contain all information needed to complete a request, such
as session state.

Table 10-5 REST API Operation Types

Method Function Idempotency Safety/Read-
only Function

GET Reads resource data, settings YES YES
HEAD Tests the API endpoint for validity,

accessibility, and recent modifications;
similar to GET without response
payload

YES YES

POST Creates a new resource NO NO
PUT Updates or replaces a resource YES NO
PATCH Modifies changes to a resource (not

complete replacement)
NO NO

DELETE Deletes a resource YES NO
CONNECT Starts communications with the

resource; opens a tunnel
YES YES

OPTIONS Provides information about the
capabilities of a resource, without
initiating a resource retrieval function

YES YES

BOOK.indb 336 19/05/22 5:53 PM

ptg39201256

Chapter 10: Automation 337

10

API Methods
Another important aspect of a RESTful API is the API method’s idempotency, or capabil-
ity to produce the same result when invoked, regardless of the number of times. The same
request repeated to an idempotent endpoint should return an identical result regardless of
two executions or hundreds.

API Authentication
Authentication to a RESTful API can take any number of forms: basic authentication, API
key, bearer token, OAuth, or digest authentication, to name a few. Basic authentication is
common, where the username is concatenated with a colon and the user’s password. The
combined string is then Base64-encoded. You can easily generate the authentication string
on macOS or other Linux derivatives using the built-in openssl utility. Windows platforms
can achieve the same result by installing OpenSSL or obtaining a Base64-encoding utility.

NOTE Do not use an online website to generate Base64-encoded authentication strings.
You do not know whether the site is logging user input, and security may be undermined.

Example 10-3 shows an example of generating a basic authentication string with openssl on
macOS.

Example 10-3 Generating Base64 Basic Authentication String on MacOS

Mac ~ % echo -n 'myusername:DevNet4U!' | openssl base64

bXl1c2VybmFtZTpEZXZOZXQ0VSE=

Mac ~ %

This method is not considered secure due to the encoding; at a minimum, the connection
should be TLS-enabled so that the weak security model is at least wrapped in a layer of
transport encryption.

Either API key or bearer token is more preferable from a security perspective. These models
require you to generate a one-time key, usually from an administrative portal or user profile
page. For example, you can enable the Meraki Dashboard API by first enabling the API for
your organization: Organization > Settings > Dashboard API access. Then the associated
Dashboard Administrator user can access the My Profile page to generate an API key. The
key can also be revoked and a new key generated at any time, if needed.

API Pagination
API pagination serves as a method to protect API servers from overload due to large data
retrieval requests. An API may limit return results, commonly rows or records, to a specific
count. For example, the DNA Center REST API v2.1.2.x limits device results to 500 records
at a time. To poll inventory beyond that, you would use pagination:

GET /dna/intent/api/v1/network-device/{index}/{count}

For example, if you had 1433 devices in inventory, you would use these successive polls:

GET /dna/intent/api/v1/network-device/1/500

GET /dna/intent/api/v1/network-device/501/500

GET /dna/intent/api/v1/network-device/1000/433

BOOK.indb 337 19/05/22 5:53 PM

ptg39201256

338 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Other APIs may provide different cues that pagination was in effect. The API return results
may include the following parameters:

Records: 2034

First: 0

Last: 999

Next: 1000

Payload Data Formats JSON XML
When dealing with REST APIs, you often need to provide a request payload containing
parameters. The parameters could be anything—username to provision, interface name to
poll, operating system template for a virtual machine. The API response payload body like-
wise has information to be consumed. In either case, it is common to work with XML- or
JSON-formatted data, although others are possible and less common. These two data encod-
ing models are conducive to programmatic use.

XML
The Extensible Markup Language (XML) is a markup language and data encoding model
that has similarities to HTML. It is used to describe and share information in a programmatic
but still humanly readable way.

XML documents have structure and can represent records and lists. Many people look at
XML as information and data wrapped in tags. See Example 10-4 for context.

Example 10-4 XML Document

<Document>

 <Nodes>

 <Node>

 <Name>Router-A</Name>

 <Location>San Jose, CA</Location>

 <Interfaces>

 <Interface>

 <Name>GigabitEthernet0/0/0</Name>

 <IPv4Address>10.1.2.3</IPv4Address>

 <IPv4NetMask>255.255.255.0</IPv4NetMask>

 <Description>Uplink to Switch-BB</Description>

 </Interface>

 <Interface>

 <Name>GigabitEthernet0/0/1</Name>

 <IPv4Address>10.2.2.1</IPv4Address>

 <IPv4NetMask>255.255.255.128</IPv4NetMask>

 <Description />

 </Interface>

 </Interfaces>

 </Node>

 </Nodes>

</Document>

BOOK.indb 338 19/05/22 5:53 PM

ptg39201256

Chapter 10: Automation 339

10

In this example, the structure of this XML document represents a router record. <Docu-
ment>, <Nodes>, <Node>, <Name>, and <Location> are some of the tags created by the
document author. They also define the structure. Router-A, San Jose, CA, and GigabitEther-
net0/0/0 are values associated with the tags. Generally, when an XML document or schema
is written, the XML tags should provide context for the value(s) supplied. The values associ-
ated with the tags are plaintext and do not convey data type. As a plaintext document, XML
lends well to data exchange and compression, where needed.

XML has a history associated with document publishing. Its functional similarity with
HTML provides value: XML defines and stores data, focusing on content; HTML defines
format, focusing on how the content looks. The Extensible Stylesheet Language (XSL) pro-
vides a data transformation function, XSL Transformations (XSLT), for converting XML
documents from one format into another, such as XML into HTML. When you consider
that many APIs output results in XML, using XSLTs to convert that output into HTML is an
enabling feature. This is the basis for simple “API to Dashboard” automation.

Referring to Example 10-4, you can see that XML documents contain starting tags, such as
<Node>, and ending (or closing) tags, such as </Node>. There is also the convention of an
empty element tag; note the <Description /> example. All elements must have an end tag or
be described with the empty element tag for well-formed XML documents. Tags are case
sensitive, and the start and end tags must match case. If you’re a document author, you are
able to use any naming style you wish: lowercase, uppercase, underscore, Pascal case, Camel
case, and so on. It is suggested that you do not use dashes (-) or periods (.) in tags to prevent
misinterpretation by some processors.

All elements must be balanced in nesting, but the spacing is not prescribed. A convention
of three spaces aids the reader. It is acceptable for no spacing in a highly compressed docu-
ment, but the elements must still be nested among start and end tags.

XML can have attributes, similar to HTML. In the HTML example <img src="devnet_
logo.png" alt="DevNet Logo" />, you can recognize attributes of src and alt with values of
"devnet_logo.png" and "DevNet Logo". Similarly, in XML, data can have attributes—for
example, <interface type="GigabitEthernet">0/0/0</interface>.

Attribute values, such as “GigabitEthernet”, must be surrounded by double quotes. Values
between tags, such as 0/0/0, do not require quotes.

XML documents usually start with an XML declaration or prolog to describe the version
and encoding being used, but it is optional:

<?xml version="1.0" encoding="UTF-8"?>

XML documents are often described as trees composed of elements. The root element starts
the document. Branches and child elements define the structure with elements potentially
having subelements, or children. In Example 10-4, the root element is <Document>. Because
XML does not predefine tags, you may see other root element tags. Some common ones are
<Root>, <DocumentRoot>, <Parent>, and <rootElement>. It is up to the document author to
define the tags and structure.

The <Nodes> element is a child. The <Node> elements are also children. The <Node>
elements are also siblings to each other, as a list of records. The <Name>, <IPv4Address>,
<IPv4NetMask>, and <Description> elements are children to <Node>, siblings to each other
and form a record. Because there are multiple <Node> elements, a list is formed.

BOOK.indb 339 19/05/22 5:53 PM

ptg39201256

340 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

XML documents can be viewed in browsers, typically through an Open File function. The
browser may render the XML with easy-to-understand hierarchy and expand or collapse
functions using + and -or ^ and > gadgets. See Figure 10-13 for another example of ACI
XML data, rendered in a browser.

Figure 10-13 ACI XML Data Rendered in Browser

JSON
JavaScript Object Notation (JSON) is a newer data encoding model than XML and is
growing in popularity and use with its more compact notation, ease of understanding, and
closer integration with Python programming. It is lightweight, self-describing, and program-
ming language independent. If your development includes JavaScript, then JSON is an easy
choice for data encoding with its natural alignment to JavaScript syntax.

The JSON syntax provides data being written as name-value pairs. Data is separated by com-
mas. Records or objects are defined by curly braces { }. Arrays and lists are contained within
square brackets [].

The name of a name-value pair should be surrounded by double quotes. The value should
have double quotes if representing a string. It should not have quotes if representing a
numeric, Boolean (true/false), or null value. See Example 10-5 for a sample JSON record.

BOOK.indb 340 19/05/22 5:53 PM

ptg39201256

Chapter 10: Automation 341

10

Example 10-5 REST API Payload as JSON

{

 "Document": {

 "Nodes": {

 "Node": {

 "Name": "Router-A",

 "Location": "San Jose, CA",

 "InterfaceCount": 2,

 "Interfaces": {

 "Interface": [

 {

 "Name": "GigabitEthernet0/0/0",

 "IPv4Address": "10.1.2.3",

 "IPv4NetMask": "255.255.255.0",

 "Description": "Uplink to Switch-BB",

 "isConnected": true

 },

 {

 "Name": "GigabitEthernet0/0/1",

 "IPv4Address": "10.2.2.1",

 "IPv4NetMask": "255.255.255.128",

 "Description": null,

 "isConnected": false

 }

]

 }

 }

 }

 }

}

Using this example, you can compare the structure with the previous XML representation.
There is a list of interfaces; each interface is a record or object.

With APIs, the system may not give you a choice of data formatting; either XML or JSON
may be the default. However, content negotiation is supported by many APIs. If the server
drives the output representation, a Content-Type header shows “application/xml” or “appli-
cation/json” as the response body payload type.

If the requesting client can request what’s desired, then an Accept header specifies similar
values for preference. With some APIs, appending .xml or .json to the request URI returns
the data with the preferred format.

BOOK.indb 341 19/05/22 5:53 PM

ptg39201256

342 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Cross-Domain, Technology-Agnostic Orchestration
(CDTAO)

This section is not part of the official DEVCOR certification; however, in the spirit of grow-
ing network programmability skills, it does seem appropriate to discuss. You may skip this
section if you prefer.

Most work in network IT tends to be very domain-specific. It’s not unusual to see engineers
and operators focus on specific technologies—enterprise networking, route/switch, wire-
less, storage networks, compute, wide-area networking, MPLS, security, and so on. However,
many do embrace multidomain expertise.

Often the management applications follow a similar segmentation. It is easy to appreciate,
then, when management apps bring a multidomain perspective to monitoring, provisioning,
and management. However, consider why you’re doing IT: there’s a lot to support a business
and the apps it depends on for the services it provides. Some typical supporting technolo-
gies include DNS, server connectivity, link aggregation, routing, switching, storage, compute,
virtualized workloads, authentication, databases, firewall security, content filtering security,
threat mitigation security, and application hosting. I’m sure you can think of many more!

So, is your operational perspective keeping up with the scope of your IT services? If you
end up using multiple tools for different domains or scale or geographical segments or secu-
rity segmentation, do you have an aggregate view of the health of your IT services, or do
you switch back and forth between multiple tools? Doesn’t this issue get exacerbated when
you pull in other IT vendors and open-source solutions? Is this something you accept as
“the way it is” or do you try to “glue” together these systems for more unified operational
insight?

How do you glue these systems together?

APIs are the unifying capability that enable you to achieve that glue. Most partner-vendors,
Cisco included, strive to provide the best customer experience possible with their product
and service offers. However, there are many customer segments, different sizes, different
areas of concentration, and constraints. I have been asked, “Why isn’t there just one manage-
ment tool?” Can you imagine the size in server requirements, cost, and maintenance neces-
sary to provide such a solution? Would the broad functions, some of which don’t apply to
your circumstances, distract your focus or enable it? In a friendly recognition to Hasbro, the
movie series, and the legacy Cisco management suite, we would have to call it “Cisco Opti-
mus Prime”! Most would agree that’s a bit unrealistic. Even building an uber-modular frame-
work to allow the specific selection of desired functions and device support would increase
complexity.

So is there an answer? Most providers enable their tools with APIs. If you pick the tools and
apps you need based on function, need, cost, and preference, then you can obtain a converged
operational perspective by using orchestration to collect the key health indicators from the
individual tools and controllers. The orchestrator’s workflow would also include activities to
create dashboards and portals unifying the information into converged operational portals
that direct your attention to the domain-specific management tools, as necessary.

Is this possible? It’s not provided out of the box, again due to the variety of device types and
functions, but it is doable. Consider the portal developed for the CiscoLive NOC in Figure

BOOK.indb 342 19/05/22 5:53 PM

ptg39201256

Chapter 10: Automation 343

10

10-14. This example represents, essentially, a mashup of key health metrics from several tools:
Prime Infrastructure, DNA Center, vCenter, Prime Network Registrar, Hyperflex, and so on.

Figure 10-14 NOC Dashboard

So what does the technology-agnostic part of Cross-Domain, Technology-Agnostic Orches-
tration (CDTAO) entail? It’s a wonderful concept to glue together network IT services in
a cross-domain perspective. What about some out-of-the-box thinking that also brings in
non-networking IT? From Figure 10-14, you can observe collaboration, digital signage, and
NetApp storage. What other network-connected technology (think IoT) can be accessed and
operational insight retrieved?

What industry do you work in?

■ Healthcare: Pull in network-connected systems, such as blood-pressure cuffs, pulse ox
monitors, and crash carts.

■ Financial: Pull in ATM (cash, not legacy networking!), vault/deposit box status.

■ Retail: Fork lifts, credit card and point-of-sale terminals.

■ Education: Digital projector status, teacher location/availability, bus/parking lot,
camera status.

If you add “business care-abouts” to the network IT perspectives, does that allow you to see
contribution and impact of the supporting infrastructure to the broader company? Sure, it
does!

Impact to IT Service Management and Security
This section is a continuation and amplification of the earlier “Software-Defined Networking
(SDN)” section mentioning the impact of other nontraditional entities influencing the net-
work. In a traditional networking case, you probably wrapped security around your change
management and provisioning of the network devices, even if performed manually. SSH was
enabled; access lists permitting only NOC or other specific personnel and network ranges

BOOK.indb 343 19/05/22 5:53 PM

ptg39201256

344 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

were configured; logging and accounting were enabled; possibly two-factor or multifactor
authentication was provisioned. In any case, security was given a strong consideration.

So now that network devices, management applications, and controllers have program-
matic interfaces to extract and change functions of networks, are you continuing the same
scrutiny? Are you the main source of API integration, or were other people with strong
programming experience brought in to beef up automation? Do they have strong network-
ing experience in concert with their programming skills? Are they keeping in touch with you
about changes? Oh no! Did that network segment go down?

Okay, enough of the histrionic “what if” scenario. You just need to make sure the same rigor
applied to traditional network engineering and operations is also being applied to newer,
SDN, and programmatic environments.

What are the leading practices related to programmable networks? First, consider your risk.
What devices and services are managed through controllers? They should be secured first
because they have the broadest scope of impact with multiple devices in a fabric. Enable all
the security features the controller provides with the least amount of privileges necessary to
the fewest number of individuals (and other automated systems). If the controller has limited
security options, consider front-ending it with access lists or firewall services to limit access
and content. Remember to implement logging and accounting; then review it periodically.

The next order of business should be high-priority equipment where the loss of availability
has direct service, revenue, or brand recognition impact. It’s the same activity: tighten up
access controls to the newer programmatic interfaces and telemetry.

Finally, go after the regular and low-priority equipment to shore up their direct device man-
agement interfaces in a similar fashion.

Exam Preparation Tasks
As mentioned in the section “How to Use This Book” in the Introduction, you have a couple
of choices for exam preparation: the exercises here, Chapter 17, “Final Preparation,” and the
exam simulation questions in the Pearson Test Prep Software Online.

Review All Key Topics
Review the most important topics in this chapter, noted with the Key Topic icon in the outer
margin of the page. Table 10-6 lists a reference of these key topics and the page numbers on
which each is found.

Table 10-6 Key Topics for Chapter 10

Key Topic Element Description Page
Number

Figure 10-3 Agile Methodology 318
Paragraph SDN concepts 329
Table 10-4 Contributing Protocols and Solutions to SDN 333
Table 10-5 REST API Operation Types 336
Paragraph XML description 338
Paragraph JSON description 340

BOOK.indb 344 19/05/22 5:53 PM

ptg39201256

Chapter 10: Automation 345

10

Complete Tables and Lists from Memory
Print a copy of Appendix C, “Memory Tables” (found on the companion website), or at least
the section for this chapter, and complete the tables and lists from memory. Appendix D,
“Memory Tables Answer Key,” also on the companion website, includes completed tables
and lists to check your work.

Define Key Terms
Define the following key terms from this chapter and check your answers in the glossary:

JavaScript Object Notation (JSON), Network Configuration Protocol (NETCONF), REST,
Extensible Markup Language (XML), YANG

References
URL QR Code

https://developer.cisco.com/pyats/

BOOK.indb 345 19/05/22 5:53 PM

https://developer.cisco.com/pyats/

ptg39201256

CHAPTER 11

NETCONF and RESTCONF

This chapter covers the following topics:

■ Catalyst for NETCONF: This section covers the reasons and benefits for NETCONF.

■ Atomic and Model-Driven Configuration Management: This section covers the dif-
ferences between atomic, templatized, and model-driven configuration management.

■ How to Implement NETCONF: This section covers the methods for implementing
NETCONF, the skills needed, and sample configuration guidelines.

■ YANG Models: This section covers the reasons and benefits for YANG models.

■ The Evolution with RESTCONF: This section covers the additional benefits beyond
NETCONF provided with RESTCONF.

■ Management Solutions Using NETCONF and RESTCONF: This section provides
insights into the current management tool offerings that leverage NETCONF and/or
RESTCONF. Both commercial and open-source examples are shared.

This chapter maps to the Developing Applications Using Cisco Core Platforms and APIs
v1.0 (350-901) Exam Blueprint Section 5.2, “Utilize RESTCONF to configure a network
device including interfaces, static routes, and VLANs (IOS XE only).”

NETCONF and RESTCONF are relatively new but mature management protocols that are
well suited for network programmability. This chapter covers the basic theory behind NET-
CONF and RESTCONF. It shows examples of how to use them so that you can apply them
in your Cisco network environment.

“Do I Know This Already?” Quiz
The “Do I Know This Already?” quiz allows you to assess if you should read this entire
chapter. If you miss no more than one of these self-assessment questions, you might want
to move ahead to the “Exam Preparation Tasks” section. Table 11-1 lists the major headings
in this chapter and the “Do I Know This Already?” quiz questions covering the material in
those headings so you can assess your knowledge of these specific areas. You can find the
answers in Appendix A, “Answers to the ‘Do I Know This Already?’ Quizzes.”

Table 11-1 “Do I Know This Already?” Section-to-Question Mapping

Foundation Topics Section Questions

Catalyst for NETCONF 1–2
Atomic and Model-Driven Configuration Management 3
How to Implement NETCONF 4–6
YANG Models 7–8
The Evolution with RESTCONF 9–10

M11_Davis_C11_p346-p385.indd 346 20/05/22 9:41 PM

ptg39201256

1. Which standards body started the work on NETCONF?
a. ANSI
b. IETF
c. ITU
d. TMF

2. What RFCs defined NETCONF, initially and lately?
a. RFCs 3413 and 4741
b. RFCs 3413 and 8040
c. RFCs 4741 and 8040
d. RFCs 4741 and 6241

3. What is a key characteristic of model-driven configuration management?
a. Model-driven management reflects relationships across deployed networks and

nodes to configure accurate intent.
b. Model-driven management treats networks and devices with segmentation.
c. Model-driven management applies to the RC hobby industry.
d. Model-driven management uses inference engines to dynamically generate con-

figuration parameters.
4. Which command do you use to enable NETCONF on an IOS XE device?

a. netconf enable
b. netconf start
c. netconf-yang
d. enable netconf
e. None of these answers are correct.

5. What is the standard port for NETCONF sessions?
a. TCP/443
b. UDP/443
c. TCP/830
d. UDP/830
e. None of these answers are correct.

6. What is the ending sequence for a NETCONF RPC hello exchange over an SSH
session?
a. ..END..
b.]]>]]>
c. >>]>>]
d. <EOF>

7. What IETF working group worked on YANG, and what function does it provide?
a. NETCONF; it serves as a data abstraction protocol that serves to normalize firm-

ware images.
b. NETCONF; it provides a complementary encoding method to YIN.

BOOK.indb 347 19/05/22 5:54 PM

ptg39201256

348 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

c. NETMOD; it serves as a data modeling language to characterize configuration,
state, and administrative functions.

d. NETMOD; it is the next-generation availability monitoring protocol that extends
ICMP ping.

8. What are common YANG objects?
a. Module, container, list, leaf
b. Container, spine, leaf
c. spine, leaf, interconnect
d. None of these answers are correct.

9. What header and value should be provided in a RESTCONF operation to identify an
intent to receive results in JSON format?
a. Content-Type: application/json
b. Content-Type: application/yang-data+json
c. Accept: application/json
d. Accept: application/yang-data+json

10. Suppose you want to update an existing configuration setting via RESTCONF. What
would be the most appropriate operation type?
a. GET
b. POST
c. PUT
d. DELETE

Foundation Topics

Catalyst for NETCONF
As the number of network equipment manufacturers increased, so did the variety of con-
figuration syntaxes and parameters to provision and monitor those systems. Sometimes, as
it was for Cisco, network equipment suppliers had multiple product lines that used different
software—essentially network operating systems. These different operating systems often
meant different command syntax and provisioning arguments. Even considering a funda-
mental feature like Border Gateway Protocol (BGP) meant different “golden configs” or tem-
plates across operating systems for Cisco IOS, Cisco IOS XE, Cisco NX-OS, Cisco IOS-XR,
Juniper Junos OS, HPE Comware, Arista EOS, and so on. This difference in configuring the
same function across different device vendors, models, and operating systems led to many
network engineers maintaining multiple configuration standards. Having multiple configura-
tion standards meant a higher probability of variance, especially when periodic review and
synchronization were not part of a standard process. The industry, most notably the service
provider segment, sought a way to have “one configuration to rule them all.” We’re sure this
would make Frodo the network engineer happy!

In May 2003, the Internet Engineering Task Force (IETF) formed the NETCONF (network
configuration) working group. Their work was first published as RFC 4741 in December

BOOK.indb 348 19/05/22 5:54 PM

ptg39201256

Chapter 11: NETCONF and RESTCONF 349

11

2006. Cisco provided initial support all the way back in IOS 12.4(9)T and presented the
NETCONF topic at the CiscoLive 2009 event in San Diego. Several updates and enhance-
ments have been developed over the years; the foundational protocol was updated as RFC
6241 in June 2011.

Figure 11-1 shows the layered model for NETCONF, which includes a bottoms-up transport
layer, messaging container, operational directives, and content payload.

Layer Example

Content

Messages

Operations

Secure
Transport

Notification
Data

<notification>

Configuration
Data

<rpc>,
<rpc-reply>

<get>,
<edit-config>, …

SSH, TLS, BEEP/TLS, SOAP/HTTP/TLS, ...

Figure 11-1 NETCONF Conceptual Layers

Content
Originally, the content of NETCONF operations was founded on the Extensible Markup
Language (XML). XML provided structure and syntax for encoding data in a format that is
both human-readable and machine-readable. This provision served the needs of both tradi-
tional network engineers who wanted more control over the provisioning and monitoring of
their network and devices with those who wanted more programmatic options. The NET-
CONF protocol has also been enhanced to support JavaScript Object Notation (JSON)
(note RFC 7951), but it remains common to see XML in implementations.

Later in this chapter, you learn how the NETMOD (network modeling) working group aimed
to define a modeling language that was also easy to use for humans. It would define seman-
tics of operational data, configuration data, notifications, and operations in a standard called
YANG.

XML has its origins in Standard Generalized Markup Language (SGML) and has similarities
to Hypertext Markup Language (HTML). Markup is a type of artificial language used to
annotate a document’s content to give instructions regarding structure or how it is to be dis-
played (rendered). XML is used to describe data, whereas HTML is used to display or render
the data.

XML provides many benefits: it promotes the capability to use data or text in many ways
from one original input source. This capability promotes data exchange and enables cross-
platform data sharing. XML provides a software- and hardware-independent markup

BOOK.indb 349 19/05/22 5:54 PM

ptg39201256

350 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

language for structuring and transmitting data. So the early days of NETCONF drove mar-
ket trends leaning to it for configuration management and provisioning, verification, fault,
and operational state monitoring. Later and more currently, JSON is being used more promi-
nently for data encoding in the network IT discipline.

Operations
To effectively manage device configurations, different tasks and operation types have to be
accommodated. The standard editing and deleting of a configuration are nearly universal
across vendors and products. The support of more sophisticated methods, such as locking a
configuration, varies in device implementation.

The base NETCONF protocol defines several operation types, as seen in Table 11-2.

Table 11-2 NETCONF Protocol Operations

Operation Description

get Retrieves running configuration and device state information
get-config Retrieves all or part of a specified configuration
edit-config Loads all or part of a specified configuration to the specified target

configuration
copy-config Creates or replaces an entire configuration datastore with the contents

of another complete configuration datastore
delete-config Deletes a configuration datastore
lock Locks an entire configuration datastore of a device
unlock Releases a configuration lock previously obtained with the <lock>

operation
close-session Requests graceful termination of a NETCONF session
kill-session Forces the termination of a NETCONF session

Messages
The NETCONF messages layer is a simple, transport-independent framing mechanism for
encoding directives. Remote-procedure calls (RPCs) are declared with <rpc> messages. The
RPC results are handled with <rpc-reply> messages, and asynchronous notifications or alerts
are defined by <notification> message types.

Every NETCONF message is a well-formed XML document. An original <rpc> message
provides an association to <rpc-reply> with a message-id attribute. Multiple NETCONF
messages can be sent without waiting for sequential RPC result messages. Figure 11-2 shows
a simple XML-encoded NETCONF message. Note the structure and message-id linkage. We
cover more specifics in the “How to Implement NETCONF” section.

BOOK.indb 350 19/05/22 5:54 PM

ptg39201256

Chapter 11: NETCONF and RESTCONF 351

11

<?xml version="1.0" encoding="UTF-8"?>
<rpc-reply message-id="4" xmlns="urn:ietf:params:netconf:base:1.0">
 <data>
 <xml-config-data> Building configuration...
 <Device-Configuration>
 <version>
 <Param>15.2</Param>
 </version>
 <service>
 <timestamps>
 <log>
 <datetime>
 <msec/>
 </datetime>
 </log>
 </timestamps>
 </service>
 <service>
 <password-encryption/>
 </service>
 <hostname><SystemNetworkName>NetConfRouter</SystemNetworkName></hostname>
. . .

<?xml version="1.0" encoding="UTF-8"?>
<rpc message-id="4" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get-config>
 <source>
 <running/>
 </source>
 <filter type="cli">
 <config-format-xml options="all"></config-format-xml>
 </filter>
 </get-config>
</rpc>
]]>]]>

Request
Manager

to
Device

Response
Device

to
Manager

Figure 11-2 NETCONF Request and Reply

Transport
When you are dealing with the transfer of critical infrastructure configurations, it is manda-
tory to keep the information private and secure. This was a shortcoming in version 1 and
2c of the Simple Network Management Protocol (SNMP). SNMP did not have inherent
security for the authentication of management systems or the encryption of the data being
transferred. SNMPv3 transformed the protocol by bringing both authentication and encryp-
tion. The IETF NETCONF working group planned security as a foundational requirement
for NETCONF. The initial RFC 4741 stipulated that NETCONF connections must provide
authentication, data integrity, and confidentiality. It further provided that connections may
be encrypted in Transport Layer Security (TLS) or Secure Shell (SSH). The most widely used
implementations were the transport layer for NETCONF using SSHv2. An additional option
was the Blocks Extensible Exchange Protocol (BEEP); however, it was not widely supported
and is not suggested for future implementations.

RFC 7589 has brought additional functionality in TLS with Mutual X.509 Authentication.

Atomic and Model-Driven Configuration Management
Using atomic configuration management techniques is common and familiar. Most engineers
are comfortable with the model of creating a configuration template and noting the variable
parameters that must be reconciled among deployments. Maybe you’re deploying a standard
interface configuration for an access layer switch and its downstream connection to a server,
as in Figure 11-3.

BOOK.indb 351 19/05/22 5:54 PM

ptg39201256

352 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

interface GigabitEthernet##INT_NUM##
 description ##DESCRIPTION##
 switchport access vlan ##VLAN_NUM##
 switchport mode access
 switchport port-security maximum 10
 switchport port-security
 switchport port-security aging time 10
 switchport port-security aging type inactivity
 no logging event link-status
 load-interval 30
 storm-control broadcast level pps 100
 storm-control multicast level pps 2k
 storm-control action trap
 spanning-tree portfast

Figure 11-3 Sample Configuration Template

Or maybe you’ve deployed configurations using Configuration Management functions in a
templatized sense that were part of commercial tools, like Prime Infrastructure, as in
Figure 11-4.

Figure 11-4 Configuration Management with Templates in Prime Infrastructure

There’s even the next level of sophistication, where you’ve deployed configurations by
answering questions in provisioning wizards that generated the configurations, as with
DNA Center.

In any case, these systems depended on a known set of conventions with the command
syntax and arguments where the network engineer provided answers to the variables. Addi-
tionally, this atomic model generally referred to specific devices and did not maintain an
awareness or understanding of interdependencies among the devices. The configuration
management function was unintelligent; it merely pushed what it was told without consider-
ation of peering relationships and dependencies.

If you consider a well-known feature such as Hot Standby Router Protocol (HSRP), you
can recognize there’s a configuration template for the primary router and a similar but

BOOK.indb 352 19/05/22 5:54 PM

ptg39201256

Chapter 11: NETCONF and RESTCONF 353

11

slightly different configuration template for the standby router(s). An atomic configura-
tion management solution would not recognize the interdependencies and would allow
you to push the changes in a way that may not function or could cause a larger service
outage.

Conversely, model-driven configuration management strives to abstract the individual
device configurations in favor of the deployment of a service or feature. The result-
ing configuration(s) generated may involve multiple devices as they form the basis for
deploying the service/feature. The model is either fully deployed successfully, or it is
rolled back or removed entirely so that no partial configuration fragments are left on
any devices.

Another well-known but more advanced example would be deploying Multiprotocol Label
Switching (MPLS). Figure 11-5 depicts a standard architecture for MPLS.

Site 1

Site 2

Site 3

Site 4

CE

PE PE

CE

P

P

P

P

P

P

Figure 11-5 Standard MPLS Architecture

Consider how a virtual routing and forwarding (VRF) feature is deployed. It involves several
device types and functions. In a typical MPLS deployment, a customer edge (CE) router per-
forms local routing and shares routing information with the provider edge (PE) where routing
tables are virtualized. PE routers encapsulate traffic, marking it to identify the VRF instance,
and transmit it across the service provider backbone network over provider devices to the
destination PE router. The destination PE router then decapsulates the traffic and forwards it
to the CE router at the destination. The backbone network is completely transparent to the
customer equipment, allowing multiple customers or user communities to use the common
backbone network while maintaining end-to-end traffic separation.

Now consider the previous architecture with a bit more configuration definition.
In Figure 11-6 note the commonalities across the highlighted devices.

BOOK.indb 353 19/05/22 5:54 PM

ptg39201256

354 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Site 1

CE

PE

configure terminal
ip vrf v1
rd 100:1
route-target export 100:1
route-target import 100:1
exit

router bgp 100
address-family ipv4 vrf vl
neighbor 10.0.0.8 remote-as 800
neighbor 10.0.0.8 activate
neighbor 10.0.0.8 send-label
end

interface gigabitethernet1/0/0.10
ip vrf forwarding v1
ip address 10.0.0.3 255.255.255.0
mpls bgp forwarding
exit

configure terminal
ip vrf v11
rd 800:1
route-target export 800:1
route-target import 800:1
exit

interface fastethernet5/0/0
ip vrf forwarding v11
ip address 10.0.0.8 255.255.255.0
exit

router ospf 1 vrf v11
network 10.0.0.0 255.255.255.0 area 0
exit

router bgp 800
address-family ipv4 vrf v11
neighbor 10.0.0.3 remote-as 100
neighbor 10.0.0.3 activate
neighbor 10.0.0.3 send-label
redistribute ospf 1 match internal

end
interface gigabitethernet3/0/0.10
ip vrf forwarding v11
ip address 10.0.0.8 255.255.255.0
mpls bgp forwarding
exit

g3/0/0

g1/0/0

g5/0/0

Figure 11-6 MPLS CE-PE Configlets

In a traditional, atomic configuration model, those configlets would be templates, and the
highlighted parts would be parameters that need to be reconciled across the deployment to
two (or more) devices. It would be up to the network engineer and operations personnel to
correctly reconcile the variables and deploy them device by device. The deployment per-
sonnel would be responsible for each device implementation and have to gauge its correct
deployment or remove all associated configurations from all the devices, again device by
device. Can you see the possibility for user-induced error?

In a model-driven configuration management approach, those templates would be merged
into a common model that would deploy the rendered configlets appropriately to the devices
involved in the service. The configurations would deploy accurately, or they would be rolled
back from each associated device so that no partially deployed configurations would remain.
The network administrator would still need to identify the device(s), their role(s), and the
required parameters to deploy the service, but they wouldn’t need to treat each device
individually.

How to Implement NETCONF
As mentioned earlier, NETCONF interactions are typically done via an SSH transport and
the NETCONF subsystem; the default port is TCP/830. A specifically formed XML docu-
ment is transmitted to share a hello and capabilities exchange. The hello and capabilities
exchange is typically followed by the NETCONF directives and response. Most Cisco
devices running IOS XR, IOS XE, or NX-OS, and recent software versions support NET-
CONF/YANG because it is a mature feature. Initial support for NETCONF was released all
the way back to traditional IOS 12.4(9)T and later, and IOS XE 2.1.

BOOK.indb 354 19/05/22 5:54 PM

ptg39201256

Chapter 11: NETCONF and RESTCONF 355

11

TIP If you want to get some hands-on experience with the feature but would rather not use
your own equipment (or don’t have dev-test equipment), then check out the DevNet Always
On Labs and Sandbox environments at https://developer.cisco.com/site/sandbox/. There are
shared Always On environments for IOS XE, IOS XR, and NX-OS to use.

Let’s get started by enabling the feature and work from there.

Enabling NETCONF on IOS XE
If you wish to have a separate NETCONF user account (which is recommended), then ensure
it is enabled in your AAA (or local) configuration with level 15 access.

Enable the NETCONF (and YANG) feature from the configuration mode with

Device (config)# netconf-yang

That’s it!

Candidate datastores (essentially “work in progress” or “scratch config” spaces) can be
enabled with

Device (config)# netconf-yang feature candidate-datastore

You can validate the NETCONF feature with the following command:

Device# show netconf-yang datastores

Datastore Name : running

The command output shows any configuration locks, if they exist, by session identifier and
date-time.

If there are current sessions, they can be identified with the command shown in
Example 11-1.

Example 11-1 Identifying Current Sessions with show netconf-yang sessions

Device# show netconf-yang sessions

R: Global-lock on running datastore

C: Global-lock on candidate datastore

S: Global-lock on startup datastore

Number of sessions : 4

session-id transport username source-host global-lock

10 netconf-ssh admin 10.15.1.110 None

12 netconf-ssh admin 10.15.1.110 None

14 netconf-ssh admin 10.15.1.110 None

16 netconf-ssh admin 10.15.1.110 None

BOOK.indb 355 19/05/22 5:54 PM

https://developer.cisco.com/site/sandbox/

ptg39201256

356 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

You can obtain detailed NETCONF session data with the command shown in Example 11-2.

Example 11-2 Using show netconfig-yang to Get Detailed Session Data

Device# show netconf-yang sessions detail

R: Global-lock on running datastore

C: Global-lock on candidate datastore

S: Global-lock on startup datastore

Number of sessions : 1

session-id : 10

transport : netconf-ssh

username : netconf-admin

source-host : 2001:db8::110

login-time : 2021-04-15T10:22:13+00:00

in-rpcs : 0

in-bad-rpcs : 0

out-rpc-errors : 0

out-notifications : 0

global-lock : None

Finally, if you’re interested in the amount of NETCONF feature use, you can use the com-
mand shown in Example 11-3.

Example 11-3 Using show netconf-yang to Get Feature Statistics

Device# show netconf-yang statistics

netconf-start-time : 2021-04-15T10:25:33+00: 00

in-rpcs : 0

in-bad-rpcs : 0

out-rpc-errors : 0

out-notifications : 15

in-sessions : 124

dropped-sessions : 0

in-bad-hellos : 0

Enabling NETCONF on IOS XR
If you wish to have a separate NETCONF user account (which is recommended), then ensure
it is enabled in your AAA (or local) configuration.

Enable the NETCONF (and YANG) feature from the configuration mode with

RP/0/RSP0/CPU0:router (config)# netconf agent ssh

RP/0/RSP0/CPU0:router (config)# ssh server netconf vrf NETCONF_VRF
ipv4 access-list IPV4_NETOPS ipv6 access-list IPV6_NETOPS

RP/0/RSP0/CPU0:router (config)# ssh server netconf port 830

BOOK.indb 356 19/05/22 5:54 PM

ptg39201256

Chapter 11: NETCONF and RESTCONF 357

11

The VRF and access-list definition should be defined to suit your environment. The last com-
mand, ssh server netconf port, can be omitted if you use the default port 830; otherwise,
include the custom port desired.

To view the NETCONF (and YANG) statistics, you can use the command shown in Example 11-4.

Example 11-4 Using show netconfig-yang to Extract Statistics

RP/0/RSP0/CPU0:router# show netconf-yang statistics

Summary statistics reqs| total time| min time / req| max time / req|
 avg time / req|

other 0| 0h 0m 0s 0ms| 0h 0m 0s 0ms| 0h 0m 0s 0ms|
 0h 0m 0s 0ms|

close-session 4| 0h 0m 0s 3ms| 0h 0m 0s 0ms| 0h 0m 0s 1ms|
 0h 0m 0s 0ms|

kill-session 0| 0h 0m 0s 0ms| 0h 0m 0s 0ms| 0h 0m 0s 0ms|
 0h 0m 0s 0ms|

get-schema 0| 0h 0m 0s 0ms| 0h 0m 0s 0ms| 0h 0m 0s 0ms|
 0h 0m 0s 0ms|

get 0| 0h 0m 0s 0ms| 0h 0m 0s 0ms| 0h 0m 0s 0ms|
 0h 0m 0s

get-config 1| 0h 0m 0s 1ms| 0h 0m 0s 1ms| 0h 0m 0s 1ms|
 0h 0m 0s 1ms|

edit-config 3| 0h 0m 0s 2ms| 0h 0m 0s 0ms| 0h 0m 0s 1ms|
 0h 0m 0s 0ms|

commit 0| 0h 0m 0s 0ms| 0h 0m 0s 0ms| 0h 0m 0s 0ms|
 0h 0m 0s 0ms|

cancel-commit 0| 0h 0m 0s 0ms| 0h 0m 0s 0ms| 0h 0m 0s 0ms|
 0h 0m 0s 0ms|

lock 0| 0h 0m 0s 0ms| 0h 0m 0s 0ms| 0h 0m 0s 0ms|
 0h 0m 0s 0ms|

unlock 0| 0h 0m 0s 0ms| 0h 0m 0s 0ms| 0h 0m 0s 0ms|
 0h 0m 0s 0ms|

discard-changes 0| 0h 0m 0s 0ms| 0h 0m 0s 0ms| 0h 0m 0s 0ms|
 0h 0m 0s 0ms|

validate 0| 0h 0m 0s 0ms| 0h 0m 0s 0ms| 0h 0m 0s 0ms|
 0h 0m 0s 0ms|

Additionally, you can obtain detailed session and client information with the following
command:

RP/0/RSP0/CPU0:router# show netconf-yang clients

client session ID| NC version| client connect time| last OP
 time| last OP type| <lock>|

 423| 1.1| 0d 1h 13m 33s|
14:36:24| close-session| No|

 424 1.1| 0d 1h 35m 1s|
14:57:25| get-config| No|

Enabling NETCONF on NX-OS
If you wish to have a separate NETCONF user account (which is recommended), then ensure
it is enabled in your AAA (or local) configuration and has level 15 privilege.

BOOK.indb 357 19/05/22 5:54 PM

ptg39201256

358 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Ensure the SSHv2 feature is enabled.

Enable the NETCONF (and YANG) feature from the configuration mode with

switch(config)# feature netconf

switch(config)# netconf idle-timeout 10

switch(config)# netconf sessions 5

Basic Manual Use of NETCONF
Now that the NETCONF agent is enabled on the device, you can start to interact with it. For
the sake of learning, you can use manual SSH sessions to show the exchanges between the
manager (the SSH terminal emulator) and the NETCONF device. These interactions would be
done behind the scenes by NETCONF-enabled management tools, such as Cisco Network
Services Orchestrator (NSO) and others.

First, connect to the device’s NETCONF subsystem using your preferred SSH terminal emu-
lator (connecting to default port 830) or with a common SSH command-line tool, as seen in
any common Linux or macOS distribution in the next example:

client-host$ ssh -s admin@192.168.1.110 -p 830 netconf

The device responds with a capabilities exchange, which could be hundreds of lines long
reflecting all the features and YANG models that are supported and installed, like that shown
in Example 11-5.

Example 11-5 NETCONF Capabilities Exchange/Hello

<?xml version="1.0" encoding="UTF-8"?>

<hello xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

<capabilities>

<capability>urn:ietf:params:netconf:base:1.0</capability>

<capability>urn:ietf:params:netconf:base:1.1</capability>

<capability>urn:ietf:params:netconf:capability:writable-running:1.0</capability>

<capability>urn:ietf:params:netconf:capability:xpath:1.0</capability>

<capability>urn:ietf:params:netconf:capability:validate:1.0</capability>

<capability>urn:ietf:params:netconf:capability:validate:1.1</capability>

<capability>urn:ietf:params:netconf:capability:rollback-on-error:1.0</capability>

<capability>urn:ietf:params:netconf:capability:notification:1.0</capability>

<capability>urn:ietf:params:netconf:capability:interleave:1.0</capability>

<capability>urn:ietf:params:netconf:capability:with-defaults:1.0?basic-
mode=explicit&also-supported=report-all-tagged</
capability>

<capability>urn:ietf:params:netconf:capability:yang-library:1.0?revision=2016-
06-21&module-set-id=7294e20b121b24ac71a8fb609b7d3afd</
capability>

<capability>http://tail-f.com/ns/netconf/actions/1.0</capability>

<capability>http://tail-f.com/ns/netconf/extensions</capability>

BOOK.indb 358 19/05/22 5:54 PM

http://tail-f.com/ns/netconf/actions/1.0</capability
http://tail-f.com/ns/netconf/extensions</capability

ptg39201256

Chapter 11: NETCONF and RESTCONF 359

11

<capability>http://cisco.com/ns/cisco-xe-ietf-ip-
deviation?module=cisco-xe-ietf-ip-deviation&revision=2016-08-10</
capability>

<capability>http://cisco.com/ns/cisco-xe-ietf-ipv4-unicast-routing-
deviation?module=cisco-xe-ietf-ipv4-unicast-routing-deviation&revis
ion=2015-09-11</capability>

<capability>http://cisco.com/ns/cisco-xe-ietf-ipv6-unicast-routing-
deviation?module=cisco-xe-ietf-ipv6-unicast-routing-deviation&revis
ion=2015-09-11</capability>

. . . (MANY lines omitted) . . .

<capability>urn:ietf:params:xml:ns:yang:ietf-netconf-with-
defaults?module=ietf-netconf-with-defaults&revision=2011-06-01</
capability>

<capability>

 urn:ietf:params:netconf:capability:notification:1.1

 </capability>

</capabilities>

<session-id>21</session-id></hello>]]>]]>

Some items of note: the usual XML declaration line is followed by a <hello> element, fol-
lowed by a <capabilities> list element of many <capability> child elements. Finally, there’s a
session identifier (21 in this case), some closing tags, and a unique session ending sequence:

]]>]]>

This sequence is important for both manager and managed device to recognize the end of an
exchange.

To (manually) interact with the NETCONF agent, you must send your capabilities also, or
the agent will not respond to any other input. For example, you can send into the SSH termi-
nal the text (pasted) shown in Example 11-6.

Example 11-6 NETCONF Hello from Management Station

<?xml version="1.0" encoding="UTF-8"?>

<hello xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

 <capabilities>

 <capability>urn:ietf:params:netconf:base:1.0</capability>

 </capabilities>

</hello>]]>]]>

You do not see any results from the device, but it registers your capabilities (NETCONF
base 1.0) and awaits your next directives.

NETCONF uses RPCs to wrap the directives. Let’s assume the next thing you want to do is
obtain the running configuration from the device. Using this method is a good way to under-
stand the structure and syntax of an XML-encoded configuration. You would send the code
shown in Example 11-7 in your SSH session.

BOOK.indb 359 19/05/22 5:54 PM

http://cisco.com/ns/cisco-xe-ietf-ip-deviation?module=cisco-xe-ietf-ip-deviation&revision=2016-08-10</capability
http://cisco.com/ns/cisco-xe-ietf-ip-deviation?module=cisco-xe-ietf-ip-deviation&revision=2016-08-10</capability
http://cisco.com/ns/cisco-xe-ietf-ip-deviation?module=cisco-xe-ietf-ip-deviation&revision=2016-08-10</capability
http://cisco.com/ns/cisco-xe-ietf-ipv4-unicast-routing-deviation?module=cisco-xe-ietf-ipv4-unicast-routing-deviation&revision=2015-09-11</capability
http://cisco.com/ns/cisco-xe-ietf-ipv6-unicast-routing-deviation?module=cisco-xe-ietf-ipv6-unicast-routing-deviation&revision=2015-09-11</capability>
http://cisco.com/ns/cisco-xe-ietf-ipv4-unicast-routing-deviation?module=cisco-xe-ietf-ipv4-unicast-routing-deviation&revision=2015-09-11</capability
http://cisco.com/ns/cisco-xe-ietf-ipv4-unicast-routing-deviation?module=cisco-xe-ietf-ipv4-unicast-routing-deviation&revision=2015-09-11</capability
http://cisco.com/ns/cisco-xe-ietf-ipv6-unicast-routing-deviation?module=cisco-xe-ietf-ipv6-unicast-routing-deviation&revision=2015-09-11</capability>
http://cisco.com/ns/cisco-xe-ietf-ipv6-unicast-routing-deviation?module=cisco-xe-ietf-ipv6-unicast-routing-deviation&revision=2015-09-11</capability>

ptg39201256

360 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

NOTE The device may time out after a few minutes of nonactivity. If so, reconnect and
resend the capabilities exchange.

Example 11-7 NETCONF XML Payload to Get Configuration

<?xml version="1.0" encoding="UTF-8" ?>

<rpc message-id="200" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

 <get-config>

 <source>

 <running/>

 </source>

 </get-config>

</rpc>]]>]]>

In this case, the device immediately responds with the running configuration in a compact
XML form, as shown in Example 11-8.

Example 11-8 NETCONF Response from Device

<?xml version="1.0" encoding="UTF-8"?>

<rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" mes-
sage-id="200"><data><native xmlns="http://cisco.com/ns/yang/
Cisco-IOS-XE-native"><version>16.9</version><boot-start-marker/><boot-end-
marker/><banner><motd><banner>^C</banner></motd></banner><service><timestamps><debug
><datetime><msec></msec></datetime></debug><log><datetime><msec/></datetime></log></
timestamps></service><platform><console xmlns="http://cisco.com/ns/yang/Cisco-IOS-
XE-platform"><output>virtual</output></console></platform><hostname>csr1000v-1</host
name><enable><secret><type>5</type>

. . . (A LOT OF CONFIG OMITTED . . .

</routing-instance></routing></data></rpc-reply>]]>]]>

Running this response through an XML formatting utility may be useful to discern the
structure.

NOTE Don’t copy and paste the XML-formatted configuration of one of your devices into
an online XML utility. It is hard to say whether those free online services are retaining your
data input. One of the easiest ways to view this without an external or a third-party resource
is to save the output, minus the]]>]]> closing sequence, to a text file with an .xml file exten-
sion and then load that text file into your browser. The browser renders it formatted and
enables you to expand or close branches of configurations. Figure 11-7 shows the results of
a browser processing the compact XML output from Example 11-8.

BOOK.indb 360 19/05/22 5:54 PM

http://cisco.com/ns/yang/Cisco-IOS-XE-native"><version>16.9</version><boot-start-marker/><boot-end-marker/><banner><motd><banner>^C</banner></motd></banner><service><timestamps><debug
http://cisco.com/ns/yang/Cisco-IOS-XE-native"><version>16.9</version><boot-start-marker/><boot-end-marker/><banner><motd><banner>^C</banner></motd></banner><service><timestamps><debug
http://cisco.com/ns/yang/Cisco-IOS-XE-native"><version>16.9</version><boot-start-marker/><boot-end-marker/><banner><motd><banner>^C</banner></motd></banner><service><timestamps><debug
http://cisco.com/ns/yang/Cisco-IOS-XE-platform"><output>virtual</output></console></platform><hostname>csr1000v-1</host
http://cisco.com/ns/yang/Cisco-IOS-XE-platform"><output>virtual</output></console></platform><hostname>csr1000v-1</host

ptg39201256

Chapter 11: NETCONF and RESTCONF 361

11

Figure 11-7 NETCONF Configuration as XML Rendered in a Browser

Now let’s do a simple NETCONF configuration editing operation. In this example, you
change an interface description, so what you learn does not impact the service. If you col-
lapse much of the XML structure from the configuration shown in Figure 11-7 in your
browser, you can see some structure that is helpful. Focus on GigabitEthernet2 in this
example (see Figure 11-8).

BOOK.indb 361 19/05/22 5:54 PM

ptg39201256

362 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

1

2

3

4

Figure 11-8 NETCONF Configuration of Gig2 Interface as XML Rendered in a Browser

To (manually) create the XML RPC to do a configuration change, you need to retain the
XML hierarchy after the <data> element, down to the specific interface and the <descrip-
tion> element you wish to change. Example 11-9 shows the partial XML of interest.

Example 11-9 XML Fragment for RPC Building

<native xmlns="http://cisco.com/ns/yang/Cisco-IOS-XE-native">

<interface>

 <GigabitEthernet>

 <name>2</name>

 <description>

The intermediary parts are nonessential and can be omitted. You only need to send in the
hierarchy and the element being changed. Example 11-10 shows how to change Gigabit-
Ethernet2’s port description.

BOOK.indb 362 19/05/22 5:54 PM

http://cisco.com/ns/yang/Cisco-IOS-XE-native"

ptg39201256

Chapter 11: NETCONF and RESTCONF 363

11

Example 11-10 NETCONF XML Payload to Edit the Configuration

<?xml version="1.0" encoding="UTF-8"?>

<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="300">

 <edit-config>

 <target>

 <running/>

 </target>

 <config>

 <native xmlns="http://cisco.com/ns/yang/Cisco-IOS-XE-native">

 <interface>

 <GigabitEthernet>

 <name>2</name>

 <description>My Description from NETCONF message-id 300</
description>

 </GigabitEthernet>

 </interface>

 </native>

 </config>

 </edit-config>

</rpc>]]>]]>

When you push that into an active NETCONF session (with the capabilities exchange
already being complete), you get the following result from the device:

<rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-
id="300"><ok/></rpc-reply>]]>]]>

The highlighted <ok/> element signifies a good result from the device. You can confirm that
in several ways. You can log in to the device and look at the interface descriptions, such as
that shown in Example 11-11.

Example 11-11 Device Interface Descriptions

csr1000v-1# show int description

Interface Status Protocol Description

Gi1 up up MANAGEMENT INTERFACE - DON'T TOUCH ME

Gi2 admin down down My Description from NETCONF message-id 300

Gi3 admin down down Network Interface

csr1000v-1#

Or, more appropriately to your network programmability interest, you could execute the
same <get-config> operation as before and get the configuration back in XML form, as seen
in Figure 11-9, rendered in an XML editor.

M11_Davis_C11_p346-p385.indd 363 20/05/22 9:43 PM

http://cisco.com/ns/yang/Cisco-IOS-XE-native"

ptg39201256

364 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Figure 11-9 NETCONF Configuration Updated as XML Rendered in a Browser

Note that the GigabitEthernet2 port description in the boxed area reflects the change you
pushed with the <edit-config> operation.

If you’re an astute observer of the XML structure, you may have also noticed the use of the
<native xmlns="http://cisco.com/ns/yang/Cisco-IOS-XE-native"> hierarchy to edit the con-
figuration. However, there is also an element reference of <interfaces xmlns="urn:ietf:params:
xml:ns:yang:ietf-interfaces">.

The first reference managed the device using its native syntax and model. This may not be
especially portable. The second reference mentioning YANG and IETF provides a more
cross-platform approach to referencing device configurations and represents the spirit of
NETCONF’s focus: cross-platform configuration management. We cover that in the next
section. The device could have been configured in either native or YANG model methods;
both models also show the same results when getting the configuration.

It is helpful that the device and operating system supported both models, so you have
options in how you want to manage the device—familiar, native syntax or cross-platform,
device-abstracted syntax. Get familiar with both methods; you will find, however, the YANG
model approach provides the closest option to that single “golden configuration standard”
that can be applied across multiple devices.

BOOK.indb 364 19/05/22 5:54 PM

http://cisco.com/ns/yang/Cisco-IOS-XE-native"

ptg39201256

Chapter 11: NETCONF and RESTCONF 365

11

YANG Models
NETCONF provides the protocol layer for managing device configurations in a program-
matic and consistent way, but to be more effective, a data modeling language needed to
be paired with NETCONF. The Yet Another Next Generation, or YANG, data modeling
language provides a standardized way to represent operational and configuration data of a
network device. YANG is protocol independent and can be converted into any encoding for-
mat, such as XML or JSON. You may also hear YANG referred to as a data model or even
device data.

Similar to NETCONF, YANG was born from an IETF working group. The NETMOD work-
ing group was charged with creating a “human-friendly” modeling language to define
semantics of operational data, configuration data, notifications, and operations. The original
version of YANG was defined in RFC 6020 with an update (version 1.1) in RFC 7950. RFC
6991 defined “Common YANG Data Types,” such as seen in Table 11-3. Although SNMP is
not a foundational component of the DEVCOR exam, the SMIv2 types are shown for com-
parison for those with SNMP background.

Table 11-3 IETF YANG Types Compared to SMIv2 Types

YANG Type Equivalent SMIv2 type (module)

counter32 Counter32 (SNMPv2-SMI)
zero-based-counter32 ZeroBasedCounter32 (RMON2-MIB)
counter64 Counter64 (SNMPv2-SMI)
zero-based-counter64 ZeroBasedCounter64 (HCNUM-TC)
gauge32 Gauge32 (SNMPv2-SMI)
gauge64 CounterBasedGauge64 (HCNUM-TC)
object-identifier —
object-identifier-128 OBJECT IDENTIFIER
yang-identifier —
date-and-time —
timeticks TimeTicks (SNMPv2-SMI)
timestamp TimeStamp (SNMPv2-TC)
phys-address PhysAddress (SNMPv2-TC)
mac-address MacAddress (SNMPv2-TC)
xpath1.0 —
hex-string —
uuid —
dotted-quad —

BOOK.indb 365 19/05/22 5:54 PM

ptg39201256

366 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Separate Internet types, ietf-inet-types, were also defined and can be seen in Table 11-4.

Table 11-4 IETF INET Types Compared to SMIv2 Types

YANG Type Equivalent SMIv2 type (module)

ip-version InetVersion (INET-ADDRESS-MIB)
dscp Dscp (DIFFSERV-DSCP-TC)
ipv6-flow-label IPv6FlowLabl (IPV6-FLOW-LABEL-MIB)
port-number InetPortNumber (INET-ADDRESS-MIB)
ip-address —
ipv4-address —
ipv6-address —
ip-prefix —
ipv4-prefix —
ipv6-prefix —
domain-name —
host —
uri Uri (URI-TC-MIB)

NETMOD also worked on foundational configuration models such as system, interface, and
routing. These models are part of a class of open models that are meant to be independent
from the platform. The intent is also to normalize configuration syntax across vendors. Open
YANG models are developed by the IETF, the ITU agency, the OpenConfig consortium, and
other standards bodies. Conversely, native models are developed by equipment manufactur-
ers. The models may be specialized to features or syntax specific to that device type, model,
or platform.

Besides being the data modeling language for NETCONF, YANG also became associated
with RESTCONF and gRPC, which is covered in Chapter 12, “Model-Driven Telemetry,” for
streaming telemetry.

Let’s look at some of the structure of YANG modules by using a familiar construct
such as device interfaces. Review the IETF’s implementation of the interface’s YANG
model at https://github.com/YangModels/yang/blob/master/standard/ietf/RFC/
ietf-interfaces.yang.

As we review Figure 11-10, you’ll see some easy-to-understand constructs.

BOOK.indb 366 19/05/22 5:54 PM

https://github.com/YangModels/yang/blob/master/standard/ietf/RFC/ietf-interfaces.yang
https://github.com/YangModels/yang/blob/master/standard/ietf/RFC/ietf-interfaces.yang

ptg39201256

Chapter 11: NETCONF and RESTCONF 367

11

Figure 11-10 ietf-interfaces YANG Model

In this figure, you can see a module name, ietf-interfaces, with version, namespace, and pre-
fix. The standard ietf-yang-types, mentioned earlier, are imported for use in this model, so
data types are recognized. If you navigate down to the interfaces section as in Figure 11-11,
you see more familiar structure.

BOOK.indb 367 19/05/22 5:54 PM

ptg39201256

368 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Figure 11-11 ETF-interfaces YANG Model—Interfaces Section

Specifically, note the container component called interfaces, which has hierarchy over a of
list of individual interface items, keyed by name. Then below that in the hierarchy is the
name as a leaf component.

At this point, the verbosity of the YANG model may make comprehension a bit difficult.
Using a tool like pyang from Github at https://github.com/mbj4668/pyang can be more
helpful in familiarizing yourself with the model.

The pyang tool is used to validate and transform YANG models. It also has a code generator
function, which is helpful when you get more in depth with YANG. It can easily be installed
to a Python development environment, such as a virtual environment, with the pip command
shown in Example 11-12.

BOOK.indb 368 19/05/22 5:54 PM

https://github.com/mbj4668/pyang

ptg39201256

Chapter 11: NETCONF and RESTCONF 369

11

Example 11-12 Pip Installing pyang

(pyang) [yanguser@pthon-vm pyang]$ pip install pyang

Collecting pyang

 Downloading https://files.pythonhosted.org/packages/12/22/16c98564086f4f5901b7e8d8
86ad928ce6eceb577b3504edc333762df92f/pyang-2.4.0-py2.py3-none-any.whl (591kB)

 |████████████████████████████████| 593kB 1.8MB/s

Collecting lxml (from pyang)

 Downloading

https://files.pythonhosted.org/packages/e5/d7/2d8b9e1d4fe05b8b72b3d2345d5a741b005640
681482502b5ce3d8f020d4/lxml-4.6.3-cp38-cp38-manylinux1_x86_64.whl (5.4MB)

 |████████████████████████████████| 5.4MB 29.2MB/s

Installing collected packages: lxml, pyang

Successfully installed lxml-4.6.3 pyang-2.4.0

(pyang) [yanguser@pthon-vm pyang]$

After installing the pyang utility, you can use it to review the ietf-interfaces.yang module.
First, you need to download the YANG module; then you use the utility to read it in a tree
format. Because you’re looking at the GitHub ietf-interfaces YANG model, note that the
official reference of https://github.com/YangModels/yang/blob/master/standard/ietf/RFC/
ietf-interfaces.yang is actually a symbolic link to a date-referenced version that aligns to RFC
updates. As of this writing, the latest correct reference is https://raw.githubusercontent.com/
YangModels/yang/master/standard/ietf/RFC/ietf-interfaces%402018-02-20.yang; this is what
you should reference to download with wget, as shown in Example 11-13.

Example 11-13 Using the wget Utility to Download the YANG Model

(pyang) [yanguser@python-vm pyang]$ wget https://raw.githubusercontent.com/
YangModels/yang/master/standard/ietf/RFC/ietf-interfaces%402018-02-20.yang

--2021-04-18 16:59:41-- https://raw.githubusercontent.com/YangModels/yang/master/
standard/ietf/RFC/ietf-interfaces%402018-02-20.yang

Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 185.199.108.133,
185.199.110.133, 185.199.109.133, ...

Connecting to raw.githubusercontent.com (raw.githubusercontent.
com)|185.199.108.133|:443... connected.

HTTP request sent, awaiting response... 200 OK

Length: 39365 (38K) [text/plain]

Saving to: 'ietf-interfaces@2018-02-20.yang'

ietf-interfaces@2018-02-20.yang 100%[===
=======>] 38.44K --.-KB/s in 0.008s

2021-04-18 16:59:41 (4.67 MB/s) - 'ietf-interfaces@2018-02-20.yang' saved
[39365/39365]

(pyang) [yanguser@python-vm pyang]$ pyang -f tree ietf-interfaces\@2018-02-20.yang

module: ietf-interfaces

 +--rw interfaces

 | +--rw interface* [name]

 | +--rw name string

 | +--rw description? string

BOOK.indb 369 19/05/22 5:54 PM

https://files.pythonhosted.org/packages/12/22/16c98564086f4f5901b7e8d886ad928ce6eceb577b3504edc333762df92f/pyang-2.4.0-py2.py3-none-any.whl
https://files.pythonhosted.org/packages/e5/d7/2d8b9e1d4fe05b8b72b3d2345d5a741b005640681482502b5ce3d8f020d4/lxml-4.6.3-cp38-cp38-manylinux1_x86_64.whl
https://github.com/YangModels/yang/blob/master/standard/ietf/RFC/ietf-interfaces.yang
https://github.com/YangModels/yang/blob/master/standard/ietf/RFC/ietf-interfaces.yang
https://raw.githubusercontent.com/YangModels/yang/master/standard/ietf/RFC/ietf-interfaces%402018-02-20.yang
https://raw.githubusercontent.com/YangModels/yang/master/standard/ietf/RFC/ietf-interfaces%402018-02-20.yang
https://raw.githubusercontent.com/YangModels/yang/master/standard/ietf/RFC/ietf-interfaces%402018-02-20.yang
https://raw.githubusercontent.com/YangModels/yang/master/standard/ietf/RFC/ietf-interfaces%402018-02-20.yang
https://raw.githubusercontent.com/YangModels/yang/master/standard/ietf/RFC/ietf-interfaces%402018-02-20.yang
https://raw.githubusercontent.com/YangModels/yang/master/standard/ietf/RFC/ietf-interfaces%402018-02-20.yang
http://raw.githubusercontent.com
http://raw.githubusercontent.com
http://raw.githubusercontent.com
http://raw.githubusercontent.com)|185
http://raw.githubusercontent.com)|185
https://files.pythonhosted.org/packages/12/22/16c98564086f4f5901b7e8d886ad928ce6eceb577b3504edc333762df92f/pyang-2.4.0-py2.py3-none-any.whl
https://files.pythonhosted.org/packages/e5/d7/2d8b9e1d4fe05b8b72b3d2345d5a741b005640681482502b5ce3d8f020d4/lxml-4.6.3-cp38-cp38-manylinux1_x86_64.whl

ptg39201256

370 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

| +--rw type identityref

| +--rw enabled? boolean

 | +--rw link-up-down-trap-enable? enumeration {if-mib}?

 | +--ro admin-status enumeration {if-mib}?

 | +--ro oper-status enumeration

 | +--ro last-change? yang:date-and-time

 | +--ro if-index int32 {if-mib}?

 | +--ro phys-address? yang:phys-address

 | +--ro higher-layer-if* interface-ref

 | +--ro lower-layer-if* interface-ref

 | +--ro speed? yang:gauge64

 | +--ro statistics

 | +--ro discontinuity-time yang:date-and-time

 | +--ro in-octets? yang:counter64

 | +--ro in-unicast-pkts? yang:counter64

 | +--ro in-broadcast-pkts? yang:counter64

 | +--ro in-multicast-pkts? yang:counter64

 | +--ro in-discards? yang:counter32

 | +--ro in-errors? yang:counter32

 | +--ro in-unknown-protos? yang:counter32

 | +--ro out-octets? yang:counter64

 | +--ro out-unicast-pkts? yang:counter64

 | +--ro out-broadcast-pkts? yang:counter64

 | +--ro out-multicast-pkts? yang:counter64

 | +--ro out-discards? yang:counter32

 | +--ro out-errors? yang:counter32

 x--ro interfaces-state

 x--ro interface* [name]

 x--ro name string

 x--ro type identityref

 x--ro admin-status enumeration {if-mib}?

 x--ro oper-status enumeration

 x--ro last-change? yang:date-and-time

 x--ro if-index int32 {if-mib}?

 x--ro phys-address? yang:phys-address

 x--ro higher-layer-if* interface-state-ref

 x--ro lower-layer-if* interface-state-ref

 x--ro speed? yang:gauge64

 x--ro statistics

 x--ro discontinuity-time yang:date-and-time

 x--ro in-octets? yang:counter64

 x--ro in-unicast-pkts? yang:counter64

 x--ro in-broadcast-pkts? yang:counter64

 x--ro in-multicast-pkts? yang:counter64

BOOK.indb 370 19/05/22 5:54 PM

ptg39201256

Chapter 11: NETCONF and RESTCONF 371

11

 x--ro in-discards? yang:counter32

 x--ro in-errors? yang:counter32

 x--ro in-unknown-protos? yang:counter32

 x--ro out-octets? yang:counter64

 x--ro out-unicast-pkts? yang:counter64

 x--ro out-broadcast-pkts? yang:counter64

 x--ro out-multicast-pkts? yang:counter64

 x--ro out-discards? yang:counter32

 x--ro out-errors? yang:counter32

(pyang) [yanguser@python-vm pyang]$

Looking at Figure 11-12 with annotations, you can more easily understand the structure,
syntax, and data-type representations.

Module Name

Read-Writable
Container

“interfaces”

Read-Writable
List of “interface” Objects

Keyed by “name”

Leaf Object “name,”
Which Is Read-

Writable and of Type
“string”

Figure 11-12 ietf-interfaces YANG Model Processed Through pyang

The Evolution with RESTCONF
Although NETCONF was a lot of fun to start with in 2007, YANG brought better structure
to the use of the protocol in 2010. However, the notion of software-defined networking
(SDN) lit a fire under vendors to enable their management products and devices with APIs.
RESTful APIs were useful for many use cases. The question became, “Can we make NET-
CONF a bit more RESTful API like?” Thus, RESTCONF came into being with the publica-
tion of the IETF’s RFC 8040 in 2017. There, it is defined as

an HTTP-based protocol that provides a programmatic interface for accessing data
defined in YANG, using the datastore concepts defined in the Network Configuration
Protocol (NETCONF).

While RESTCONF provides an API-like functionality using familiar HTTP-based techniques,
some feature-parity still must be addressed. You may find yourself using hybrid management
tasks that include both NETCONF and RESTCONF until that time comes.

BOOK.indb 371 19/05/22 5:54 PM

ptg39201256

372 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

The RESTCONF Protocol Stack
As defined in RFC 8040, RESTCONF is an HTTP-based protocol, but HTTPS is the only
supported transport. For obvious security reasons, HTTPS was defined as the secure exten-
sion to HTTP. Installing and configuring an SSL/TLS certificate enable the use of the HTTPS
protocol to establish a secure connection with the network device.

RESTCONF continues the alignment to YANG data model definitions that you learned with
NETCONF. It also facilitates the use of XML or JSON data encoding. When you look at
Figure 11-13, the RESTCONF protocol stack becomes more clear.

Layer Example

Operations

Content

Transport

Actions

Configuration or
Operational Data

TCP/IP

GET,
POST, PUT,

PATCH, DELETE

XML
JSON

HTTPS

Figure 11-13 RESTCONF Protocol Stack

RESTCONF Operations
Similar to RESTful APIs, RESTCONF uses a familiar request/response model where the
management tool or application makes a request to the network device that provides the
response. Ideally, you get a familiar HTTP 200 OK response!

The use of REST APIs also parallels create, retrieve, update, delete (CRUD)–style operations.
Table 11-5 shows a mapping of NETCONF operations to HTTP operation and RESTCONF
equivalents.

Table 11-5 Mapping of NETCONF to HTTP/RESTCONF Operations

NETCONF RESTCONF (HTTP)

<get>, <get-config> GET
<edit-config> (operation="create") POST
<edit-config> (operation="create/replace") PUT
<edit-config> (operation="merge") PATCH
<edit-config> (operation="delete") DELETE

Content-Type and Accept headers are often used to define the data type being sent from the
requester and the desired type to be returned. Here are the options to define the data being
sent from the requester:

Content-Type: application/yang-data+json

Content-Type: application/yang-data+xml

BOOK.indb 372 19/05/22 5:54 PM

ptg39201256

Chapter 11: NETCONF and RESTCONF 373

11

And here are the options to define the desired data type to be returned:

Accept: application/yang-data+json

Accept: application/yang-data+xml

RESTCONF and Authentication
RESTCONF operates much like other RESTful APIs and requires authentication. It uses
basic authentication, as defined in RFC 7617, where a request contains a header field in the
form of Authorization: Basic <credentials>. In this form, credentials is the Base64 encoding
of username and password joined by a single colon (:).

It is simple to generate the authentication string on macOS or other Linux derivatives using
the built-in openssl binary. Windows platforms can achieve the same by installing OpenSSL
or obtaining a Base64 encoding utility.

NOTE Do not use an online website to generate Base64-encoded authentication strings. It
is not known whether the site is logging the user input, and security may be undermined.

Example 11-14 shows an example of generating a basic authentication string with openssl on
macOS. Try it on your system.

Example 11-14 Generating Base64 Basic Authentication String on a Mac

Mac ~ % echo -n 'myusername:DevNet4U!' | openssl base64

bXl1c2VybmFtZTpEZXZOZXQ0VSE=

The basic authentication mechanism does not provide confidentiality of the transmitted
credentials. Base64 is only encoding data; it is not equivalent to encryption or hashing. So,
basic authentication must be used in conjunction with HTTPS to provide confidentiality
through an encrypted transport session, as is required in RESTCONF.

RESTCONF URIs
All RESTCONF URIs follow this format:

https://<DeviceNameOrIP>/<ROOT>/data/<[YANGMODULE:]CONTAINER>/

 <LEAF>[?<OPTIONS>]

The components are explained in Table 11-6.

Table 11-6 RESTCONF URI Components

Component Explanation

https:// The default, secure HTTP transport, as specified by RFC 8040.
DeviceNameOrIP The DNS name or IP address for the RESTCONF agent; also provides the

port (such as 8443) if using a nonstandard port other than 443.
<ROOT> The main branch for RESTCONF requests. The de facto convention is

restconf, but it should be verified to ensure proper operation.
data The RESTCONF API resource type for data. An operations resource type

accesses RPC operations.

BOOK.indb 373 19/05/22 5:54 PM

https://<DeviceNameOrIP>/<ROOT>/data/<[YANGMODULE:]CONTAINER><LEAF>[?<OPTIONS>]
https://<DeviceNameOrIP>/<ROOT>/data/<[YANGMODULE:]CONTAINER><LEAF>[?<OPTIONS>]

ptg39201256

374 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Component Explanation

[YANG
MODULE:]
CONTAINER

The base model container being used; inclusion of the module name is
optional.

LEAF An individual element from within the container.
[?<OPTIONS>] Query parameters that modify or filter returned results; see Table 11-7.

Optional query parameters or options are explained in Table 11-7.

Table 11-7 Optional RESTCONF Query Parameters

Query Parameter Explanation

depth=unbounded Follow nested models to end [Integer value] = only to specified
hierarchical depth

depth=N Follow nested model to hierarchical depth of N level(s)
content=all Show all types of returned data (default)
content=config Show only configuration-related data
content=nonconfig Show only non-configuration-related data, essentially operational

data
fields=<expr> Limit what leaves are returned to the expression, <expr>

Before connecting to a RESTCONF server, you must determine the root, or the main branch,
for NETCONF requests. Per the RESTCONF standard and RFC 6415, devices expose a
resource called /.well-known/host-meta to enable discovery of the root programmatically.

Example 11-15 shows how to obtain this information via cURL, but you can use well-known
tools like Postman that are shown in the next section. You access the DevNet Sandbox envi-
ronment and the IOS XE on CSR Recommended Code Always On lab. For the latest DevNet
Sandbox information, go to https://devnetsandbox.cisco.com.

Example 11-15 Determining Main Branch for NETCONF Requests

[restconfuser@python-vm ~]$ curl --insecure -u developer:C1sco12345 https://sandbox-
iosxe-latest-1.cisco.com:443/.well-known/host-meta

<XRD xmlns='http://docs.oasis-open.org/ns/xri/xrd-1.0'>

 <Link rel='restconf' href='/restconf'/>

</XRD>

In your situation, use the --insecure option if using a self-signed certificate on the managed
device, or remove it if using registered certificates. For the DevNet Sandbox environment,
the NETCONF agent is purposely registered on port 9443, which is different than yours if
using defaults. Also, your specific username-password combination for basic authentication
will be different.

Note that the device returns XML-formatted data with an XRD element. There also may
be multiple Link child elements; if so, the one of note is the entry with the rel attribute of
restconf. In this case, the href attribute value of /restconf/ is the information you need,
matching the normal convention.

BOOK.indb 374 19/05/22 5:54 PM

https://devnetsandbox.cisco.com
https://sandbox-iosxe-latest-1.cisco.com:443/.well-known/host-meta
https://sandbox-iosxe-latest-1.cisco.com:443/.well-known/host-meta
http://docs.oasis-open.org/ns/xri/xrd-1.0'

ptg39201256

Chapter 11: NETCONF and RESTCONF 375

11

Performing a RESTCONF GET Operation with cURL
For the next example, let’s continue the focus on device interfaces in the IETF-INTERFACES
YANG model, as we discussed earlier. In Example 11-16, you can continue to use cURL, but
now access the NETCONF URI at https://sandbox-iosxe-latest-1.cisco.com:443/restconf/
data/ietf-interfaces:interfaces.

Example 11-16 Using RESTCONF to Get Interface Information with cURL

[restconfuser@python-vm ~]$ curl --insecure -u developer:C1sco12345 https:// sand-
box-iosxe-latest-1.cisco.com:443/restconf/data/ietf-interfaces:interfaces

<interfaces xmlns="urn:ietf:params:xml:ns:yang:ietf-interfaces" xmlns:if="urn:ietf:
params:xml:ns:yang:ietf-interfaces">

 <interface>

 <name>GigabitEthernet1</name>

 <description>MANAGEMENT INTERFACE - DON’T TOUCH ME</description>

 <type xmlns:ianaift="urn:ietf:params:xml:ns:yang:i
ana-if-type">ianaift:ethernetCsmacd</type>

 <enabled>true</enabled>

 <ipv4 xmlns="urn:ietf:params:xml:ns:yang:ietf-ip">

 <address>

 <ip>10.10.20.48</ip>

 <netmask>255.255.255.0</netmask>

 </address>

 </ipv4>

 <ipv6 xmlns="urn:ietf:params:xml:ns:yang:ietf-ip">

 </ipv6>

 </interface>

 <interface>

 <name>GigabitEthernet2</name>

 <description>Configured by RESTCONF</description>

 <type xmlns:ianaift="urn:ietf:params:xml:ns:yang:i
ana-if-type">ianaift:ethernetCsmacd</type>

 <enabled>true</enabled>

 <ipv4 xmlns="urn:ietf:params:xml:ns:yang:ietf-ip">

 <address>

 <ip>10.255.255.1</ip>

 <netmask>255.255.255.0</netmask>

 </address>

 <address>

 <ip>10.255.255.1</ip>

 <netmask>255.255.255.0</netmask>

 </address>

 </ipv4>

 <ipv6 xmlns="urn:ietf:params:xml:ns:yang:ietf-ip">

 </ipv6>

 </interface>

BOOK.indb 375 19/05/22 5:54 PM

https://sandbox-iosxe-latest-1.cisco.com:443/restconf/data/ietf-interfaces:interfaces
https://sandbox-iosxe-latest-1.cisco.com:443/restconf/data/ietf-interfaces:interfaces
https:// sandbox-iosxe-latest-1.cisco.com:443/restconf/data/ietf-interfaces:interfaces
https:// sandbox-iosxe-latest-1.cisco.com:443/restconf/data/ietf-interfaces:interfaces

ptg39201256

376 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

 <interface>

 <name>GigabitEthernet3</name>

 <description>Configured by RSTconf</description>

 <type xmlns:ianaift="urn:ietf:params:xml:ns:yang:i
ana-if-type">ianaift:ethernetCsmacd</type>

 <enabled>true</enabled>

 <ipv4 xmlns="urn:ietf:params:xml:ns:yang:ietf-ip">

 <address>

 <ip>10.255.244.14</ip>

 <netmask>255.255.255.0</netmask>

 </address>

 </ipv4>

 <ipv6 xmlns="urn:ietf:params:xml:ns:yang:ietf-ip">

 </ipv6>

 </interface>

 <interface>

 <name>Loopback1000</name>

 <description>Added with Restconf</description>

 <type xmlns:ianaift="urn:ietf:params:xml:ns:yang:i
ana-if-type">ianaift:softwareLoopback</type>

 <enabled>true</enabled>

 <ipv4 xmlns="urn:ietf:params:xml:ns:yang:ietf-ip">

 <address>

 <ip>1.1.5.5</ip>

 <netmask>255.255.255.255</netmask>

 </address>

 </ipv4>

 <ipv6 xmlns="urn:ietf:params:xml:ns:yang:ietf-ip">

 </ipv6>

 </interface>

 <interface>

 <name>Loopback1313</name>

 <description>'test interface'</description>

 <type xmlns:ianaift="urn:ietf:params:xml:ns:yang:i
ana-if-type">ianaift:softwareLoopback</type>

 <enabled>false</enabled>

 <ipv4 xmlns="urn:ietf:params:xml:ns:yang:ietf-ip">

 <address>

 <ip>13.13.13.13</ip>

 <netmask>255.255.255.255</netmask>

 </address>

 </ipv4>

 <ipv6 xmlns="urn:ietf:params:xml:ns:yang:ietf-ip">

 </ipv6>

 </interface>

</interfaces>

BOOK.indb 376 19/05/22 5:54 PM

ptg39201256

Chapter 11: NETCONF and RESTCONF 377

11

How many interfaces do you see in the DevNet Sandbox IOS XE on CSR Recommended
Code Always On lab device? How many interfaces are enabled?

If you had another device with many interfaces, this could be a much larger result! You
can get a subset of this information by specifying a desired leaf, as with Example 11-17,
using the following URI: https://sandbox-iosxe-latest-1.cisco.com:443/restconf/data/
ietf-interfaces:interfaces/interface=GigabitEthernet2.

Example 11-17 Querying for Interface-Specific Results with RESTCONF and cURL

[restconfuser@python-vm ~]$ curl --insecure -u developer:C1sco12345 https://
sandbox-iosxe-latest-1.cisco.com:443/restconf/data/ietf-interfaces:interfaces/
interface=GigabitEthernet2

<interface xmlns="urn:ietf:params:xml:ns:yang:ietf-interfaces" xmlns:if="urn:ietf:p
arams:xml:ns:yang:ietf-interfaces">

 <name>GigabitEthernet2</name>

 <description>Configured by RESTCONF</description>

 <type xmlns:ianaift="urn:ietf:params:xml:ns:yang:i
ana-if-type">ianaift:ethernetCsmacd</type>

 <enabled>true</enabled>

 <ipv4 xmlns="urn:ietf:params:xml:ns:yang:ietf-ip">

 <address>

 <ip>10.255.255.1</ip>

 <netmask>255.255.255.0</netmask>

 </address>

 <address>

 <ip>10.255.255.1</ip>

 <netmask>255.255.255.0</netmask>

 </address>

 </ipv4>

 <ipv6 xmlns="urn:ietf:params:xml:ns:yang:ietf-ip">

 </ipv6>

</interface>

Excellent! Now you can try your hand at modifying a configuration using RESTCONF.

Performing RESTCONF GET Operations with the Postman Utility
Because we’re going to eventually pivot to performing a REST PUT operation, you can also
switch to using the Postman utility. Postman is a multiplatform utility that is helpful in doing
API testing. It also has a helpful code generator that can be the starting point for scripting
work. You can obtain Postman free from https://www.postman.com. You may also be inter-
ested in the DevNet Postman collection at https://www.postman.com/ciscodevnet.

For this example, create a new collection called RESTCONF, as seen in Figure 11-14.

BOOK.indb 377 19/05/22 5:54 PM

https://sandbox-iosxe-latest-1.cisco.com:443/restconf/data/ietf-interfaces:interfaces/interface=GigabitEthernet2
https://sandbox-iosxe-latest-1.cisco.com:443/restconf/data/ietf-interfaces:interfaces/interface=GigabitEthernet2
https://www.postman.com
https://www.postman.com/ciscodevnet
https://sandbox-iosxe-latest-1.cisco.com:443/restconf/data/ietf-interfaces:interfaces/interface=GigabitEthernet2
https://sandbox-iosxe-latest-1.cisco.com:443/restconf/data/ietf-interfaces:interfaces/interface=GigabitEthernet2
https://sandbox-iosxe-latest-1.cisco.com:443/restconf/data/ietf-interfaces:interfaces/interface=GigabitEthernet2

ptg39201256

378 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Figure 11-14 Creating a Postman Collection

Also, for ease of use, on the collection-level Authorization tab, set Type to Basic Auth and
the username and password to their appropriate values. Setting the values at the collection-
level allows you to inherit these authorization sessions for all other requests in the containing
collection or folder.

To reinforce the previous experience with cURL, build a Postman equivalent of pulling the
same IETF-INTERFACES YANG model data. Yours should look similar to Figure 11-15.

Figure 11-15 Creating a Postman Request to a GET Interface

BOOK.indb 378 19/05/22 5:54 PM

ptg39201256

Chapter 11: NETCONF and RESTCONF 379

11

On the Authorization tab, you should see Inherit Auth from Parent. The operation should be
GET, and the request URL should be https://sandbox-iosxe-latest-1.cisco.com:443/restconf/
data/ietf-interfaces:interfaces/interface=GigabitEthernet2.

Now, if you execute the request by clicking the Send button, you get results similar to
Figure 11-16.

Figure 11-16 Executing a Postman Request to a GET Interface

If you click the Code button, which appears as the </> icon, on the right side and select
Python > Requests, then you get the helpful code snippet shown in Example 11-18.

Example 11-18 Postman Code Snippet

import requests

url = "https://sandbox-iosxe-latest-1.cisco.com:443/restconf/data/
ietf-interfaces:interfaces/interface=GigabitEthernet2"

payload={}

headers = {

 'Authorization': 'Basic ZGV2ZWxvcGVyOkMxc2NvMTIzNDU='

}

response = requests.request("GET", url, headers=headers, data=payload)

print(response.text)

How cool is that!? This code can serve to seed a more sophisticated Python script. Of
course, you should do some appropriate security cleanup, such as removing the credentials
from being fixed in your script, but it’s a start!

BOOK.indb 379 19/05/22 5:54 PM

https://sandbox-iosxe-latest-1.cisco.com:443/restconf/data/ietf-interfaces:interfaces/interface=GigabitEthernet2
https://sandbox-iosxe-latest-1.cisco.com:443/restconf/data/ietf-interfaces:interfaces/interface=GigabitEthernet2
https://sandbox-iosxe-latest-1.cisco.com:443/restconf/data/ietf-interfaces:interfaces/interface=GigabitEthernet2"
https://sandbox-iosxe-latest-1.cisco.com:443/restconf/data/ietf-interfaces:interfaces/interface=GigabitEthernet2"

ptg39201256

380 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Let’s do one more GET operation to exercise your understanding of using query options
(parameters). Now create a copy of the earlier Postman request, but this time onto the end of
the URI, add ?fields=name;description;enabled. Your entry (and execution) should be simi-
lar to Figure 11-17.

Figure 11-17 Executing a Postman Request to GET Interface with Query Option

Now that you’ve rebuilt the GET method in Postman, you can pivot to doing a PUT opera-
tion and pushing an updated interface description into the device, as you did earlier with
NETCONF means.

Create a copy of the GET Interface request, but save it as PUT Interface Description. In the
new request, change the request type from GET to PUT. Select the Headers tab and create
or modify the Content-Type header to a value of application/yang-data+xml. On the Body
tab, select the Raw option and paste the following:

<interface xmlns="urn:ietf:params:xml:ns:yang:ietf-interfaces" xml
ns:if="urn:ietf:params:xml:ns:yang:ietf-interfaces">

 <name>GigabitEthernet2</name>

 <description>Configured by RESTCONF again</description>

 <type xmlns:ianaift="urn:ietf:params:xml:ns:yang:iana-if-
type">ianaift:ethernetCsmacd</type>

</interface>

You can make the description anything you like. After you click Send, the results should
appear similar to Figure 11-18.

BOOK.indb 380 19/05/22 5:54 PM

ptg39201256

Chapter 11: NETCONF and RESTCONF 381

11

Figure 11-18 Creating and Executing a Postman Request to PUT Interface Description

Again, you can use the Postman Code feature to generate a Python-Requests code snippet,
allowing you to create more robust scripts that would programmatically change the device
configuration with RESTCONF via Python.

Try your hand at getting information in JSON format. Remember that you’ll need to change
the Accept header for a GET operation to application/yang-data+json. See Figure 11-19 as
the JSON equivalent to the operation performed in Figure 11-16.

Figure 11-19 Executing a Postman Request to GET Interface Information as JSON

BOOK.indb 381 19/05/22 5:54 PM

ptg39201256

382 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Hopefully, you’re seeing the prospects of using RESTCONF to programmatically obtain and
change device settings.

Management Solutions Using NETCONF and
RESTCONF

By now, you’ve seen a few manual methods to interact with NETCONF using an SSH ter-
minal emulator. You’ve also seen manual methods to interact with RESTCONF using cURL,
Postman, and the Python code snippets it generates. Some commercial management prod-
ucts that leverage NETCONF and RESTCONF methods may be appealing in your situation.

Tail-f Systems was one of the first companies to release a commercial application that
embraced NETCONF. The company’s Network Control System (NCS) product was created
by several industry shapers of the NETCONF protocol. Cisco acquired Tail-f Systems in
2014, with the product evolving into Cisco’s Network Services Orchestrator (NSO). NSO is
a multivendor configuration management platform that provides a north-bound abstraction
layer to managed devices using network element drivers (NEDs), which may involve NET-
CONF, SNMP, SSH, or REST methods to interact with the managed devices.

NSO is widely used by large service providers and enterprise companies to solve their
multivendor and model-driven configuration management challenges. More information is
available on NSO at https://www.cisco.com/c/en/us/products/cloud-systems-management/
network-services-orchestrator/index.html.

A DevNet-specific portal for NSO can be found at https://developer.cisco.com/site/nso/.

Increasingly more and more management tools are pivoting from SNMP-initiated TFTPing
of configurations as text files or SSH-driven pasting of the same to NETCONF- and REST-
CONF-style management. Be on the lookout for NETCONF/RESTCONF setting require-
ments with your next set of tools, and ask your vendors when they’ll support the newer style
management methods!

If you’re using open-source solutions, pyang is an excellent utility for validating and inspect-
ing YANG models without the verbosity of the YANG model file. Cisco has provided
another graphical tool, YANG Suite, available at https://developer.cisco.com/yangsuite/.

Ansible supports the following modules that are helpful with NETCONF:

■ community.yang.fetch

■ community.yang.get

■ community.yang.configure

■ community.yang.generate_spec

In the summer of 2020, work was started on the ansible.netcommon.restconf HttpApi plug-
in for devices supporting RESTCONF API.

If you are a Puppet user, check out this DevNet Code Exchange entry that uses Puppet and
NETCONF to manage IOS XR-based devices: https://developer.cisco.com/codeexchange/
github/repo/cisco/cisco-yang-puppet-module/.

BOOK.indb 382 19/05/22 5:54 PM

https://www.cisco.com/c/en/us/products/cloud-systems-management/network-services-orchestrator/index.html
https://www.cisco.com/c/en/us/products/cloud-systems-management/network-services-orchestrator/index.html
https://developer.cisco.com/site/nso/
https://developer.cisco.com/yangsuite/
https://developer.cisco.com/codeexchange/github/repo/cisco/cisco-yang-puppet-module/
https://developer.cisco.com/codeexchange/github/repo/cisco/cisco-yang-puppet-module/

ptg39201256

Chapter 11: NETCONF and RESTCONF 383

11

The previous examples of using Postman and the Code generator, especially for Python-
Requests code snippets, should be helpful to get you started with RESTCONF options. Con-
sider the next time you have a need to change all Syslog and SNMP trap receivers in your
environment. In the past, have you simply jammed the new ones in the configurations and
held off on removing the old ones? Were you sure you got all decommissioned options out
of the configuration? By using the newer manageability protocols and some simple Python
scripting, you will be able to execute mass configuration updates and do it quickly and
effectively!

Exam Preparation Tasks
As mentioned in the section “How to Use This Book” in the Introduction, you have a couple
of choices for exam preparation: the exercises here, Chapter 17, “Final Preparation,” and the
exam simulation questions in the Pearson Test Prep Software Online.

Review All Key Topics
Review the most important topics in this chapter, noted with the Key Topic icon in the outer
margin of the page. Table 11-8 lists a reference of these key topics and the page numbers on
which each is found.

Table 11-8 Key Topics for Chapter 11

Key Topic Element Description Page
Number

Paragraph NETCONF definition 348

Figure 11-1 NETCONF Conceptual Layers 349

Table 11-2 NETCONF Protocol Operations 350

Paragraph Enabling NETCONF on IOS-XE 355

Paragraph Enabling NETCONF on NX-OS 358

Paragraph YANG definition 365

Example 11-13 Using the wget Utility to Download the YANG
Model

369

Figure 11-13 RESTCONF Protocol Stack 372
Paragraph NETCONF/YANG IETF interfaces 375

Complete Tables and Lists from Memory
Print a copy of Appendix C, “Memory Tables” (found on the companion website), or at least
the section for this chapter, and complete the tables and lists from memory. Appendix D,
“Memory Tables Answer Key,” also on the companion website, includes completed tables
and lists to check your work.

Define Key Terms
Define the following key terms from this chapter and check your answers in the glossary:

NETCONF (network configuration), RESTCONF, YANG

M11_Davis_C11_p346-p385.indd 383 20/05/22 9:45 PM

ptg39201256

384 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

References
URL QR Code

https://developer.cisco.com/site/sandbox/

https://github.com/YangModels/yang/blob/master/standard/ietf/
RFC/ietf-interfaces.yang

https://github.com/mbj4668/pyang

https://devnetsandbox.cisco.com

https://www.postman.com

https://www.postman.com/ciscodevnet

https://www.cisco.com/c/en/us/products/cloud-systems-
management/network-services-orchestrator/index.html

BOOK.indb 384 19/05/22 5:54 PM

https://developer.cisco.com/site/sandbox/
http://https://github.com/YangModels/yang/blob/master/standard/ietf/RFC/ietf-interfaces.yang
http://https://github.com/YangModels/yang/blob/master/standard/ietf/RFC/ietf-interfaces.yang
https://github.com/mbj4668/pyang
https://devnetsandbox.cisco.com
https://www.postman.com
https://www.postman.com/ciscodevnet
https://www.cisco.com/c/en/us/products/cloud-systems-management/network-services-orchestrator/index.html
https://www.cisco.com/c/en/us/products/cloud-systems-management/network-services-orchestrator/index.html

ptg39201256

Chapter 11: NETCONF and RESTCONF 385

11

URL QR Code

https://developer.cisco.com/site/nso/

https://developer.cisco.com/yangsuite/

https://developer.cisco.com/codeexchange/github/repo/cisco/
cisco-yang-puppet-module/

BOOK.indb 385 19/05/22 5:54 PM

https://developer.cisco.com/site/nso/
https://developer.cisco.com/yangsuite/
https://developer.cisco.com/codeexchange/github/repo/cisco/cisco-yang-puppet-module/
https://developer.cisco.com/codeexchange/github/repo/cisco/cisco-yang-puppet-module/

ptg39201256

CHAPTER 12

Model-Driven Telemetry

This chapter covers the following topics:

■ Transformation of Inventory, Status, Performance, and Fault Monitoring: This
section covers the challenges and necessary transformation of the network engineer-
ing, management, and operations disciplines toward inventory, status, performance,
and fault monitoring.

■ Scaling with the Push Model: This section covers the intentions of model-driven
telemetry (MDT).

■ How to Implement Model-Driven Telemetry: This section covers how MDT is config-
ured and used on various Cisco platforms.

■ Picking Sensor Paths and Metrics: This section covers the methodology in determin-
ing sensor paths and metrics used to monitor an MDT-enabled environment.

■ Practical Application of Streaming Telemetry: This section covers a practical applica-
tion of streaming telemetry and shows how sensor paths are determined, configured,
and implemented in Telegraf, InfluxDB, and Grafana stacks.

■ Beyond MDT—Event-Driven Telemetry: This section covers the progression to event-
driven telemetry (EDT).

This chapter maps to the Developing Applications Using Cisco Core Platforms and APIs
v1.0 (350-901) Exam Blueprint Section 5.1, “Explain considerations of model-driven telem-
etry (including data consumption and data storage).”

Network engineering and operations have seen many changes over the years. Despite the
standardization and adoption of the Simple Network Management Protocol (SNMP), which
was often mocked as being anything but simple, change needed to happen. Even as early
as mid-2002, the IETF recognized that the current protocols were insufficient for future
growth and innovation. The concerns were documented in Informational RFC 3535 (https://
tools.ietf.org/html/rfc3535). To that end, innovation has happened in this space, which can
be seen in the development and adoption of model-driven telemetry (MDT). MDT pro-
vides a fresh perspective at obtaining network inventory, performance, and fault informa-
tion using an efficient push model over the traditional request-response methods seen in
SNMP. Indeed, some innovators in the cloud space largely bypassed SNMP in lieu of MDT
approaches. At NANOG 73 (June 2018), Google shared its experience moving away from
SNMP to MDT, as seen in its presentation link (https://pc.nanog.org/static/published/
meetings//NANOG73/daily/day_2.html#talk_1677).

BOOK.indb 386 19/05/22 5:54 PM

https://tools.ietf.org/html/rfc3535
https://tools.ietf.org/html/rfc3535
https://pc.nanog.org/static/published/meetings//NANOG73/daily/day_2.html#talk_1677
https://pc.nanog.org/static/published/meetings//NANOG73/daily/day_2.html#talk_1677

ptg39201256

12

NOTE URLs in this book are also shared in the chapter-ending “References” section with
QR codes to ease use.

In this chapter, first we review the benefits of adopting model-driven telemetry and then
weigh options for our purposes.

“Do I Know This Already?” Quiz
The “Do I Know This Already?” quiz allows you to assess whether you should read this
entire chapter thoroughly or jump to the “Exam Preparation Tasks” section. If you are in
doubt about your answers to these questions or your own assessment of your knowledge
of the topics, read the entire chapter. Table 12-1 lists the major headings in this chapter and
their corresponding “Do I Know This Already?” quiz questions. You can find the answers in
Appendix A, “Answers to the ‘Do I Know This Already?’ Quizzes.”

Table 12-1 “Do I Know This Already?” Section-to-Question Mapping

Foundation Topics Section Questions

Transformation of Inventory, Status, Performance, and Fault Monitoring 1, 8
Scaling with the Push Model 2
How to Implement Model-Driven Telemetry 3, 4, 5
Picking Sensor Paths and Metrics 6
Practical Application of Streaming Telemetry 7
Beyond MDT—Event-Driven Telemetry 9, 10

1. When you are comparing the different capabilities of SNMP with model-driven telem-
etry, which is true?
a. SNMPv1 data security is similar to MDT data security.
b. SNMPv2c data security is similar to MDT data security.
c. SNMPv1 and 2c data security is similar to MDT data security.
d. SNMPv3 data security is similar to MDT data security.

2. MDT gRPC uses which application protocol?
a. HTTP
b. HTTP/2
c. SPDY
d. SCP
e. sFTP

3. Considering MDT dial-out mode, which statement is true?
a. The device is the client and source pushing data; the telemetry receiver is the

server.
b. The device is passive; the telemetry receiver initiates the connection, requesting

the data.
c. The device is active; the telemetry receiver initiates the connection, requesting the

data.

BOOK.indb 387 19/05/22 5:54 PM

ptg39201256

388 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

d. The device is the server; the telemetry receiver is the client.
e. The device maintains no configuration; the telemetry receiver updates the sub-

scriptions to the device.
4. Which one of the following is not a major task needed to configure telemetry dial-out?

a. Create a destination group.
b. Create a sensor group.
c. Create a flow spec.
d. Create a subscription.

5. What is GPB encoding an acronym for?
a. General Port Buffers
b. Giant Port Buffers
c. Google Protocol Buffers
d. Good Protocol Borders
e. Gopher Protocol Bandwidth

6. What is a sensor path?
a. A combination of SNMP MIB object and interface
b. A hierarchy to chassis/module/interface
c. The pathway from managed element to receiving telemetry collector
d. A combination of YANG data model and metric node

7. Where are YANG data models published for most vendors and standards bodies?
(Choose two.)
a. https://stackoverflow.com/YangModels
b. https://github.com/YangModels/yang
c. https://yang.org
d. https:/yangcatalog.org
e. https://www.ietf.org/yang-data-models

8. The TIG stack refers to which open-source project components?
a. Telemetry, Ingestion, and Graphing
b. Telemetry, Injection, and Graphing
c. Telegraphy, Importation, and Generation
d. Telegraf, InfluxDB, and Grafana

9. Which MDT policy is most frugal with disk space and overhead processing?
a. periodic
b. data-pump
c. on-change
d. gzip

10. What is an optimal way to evaluate disk usage with model-driven telemetry?
a. Add the number of network elements and multiply by 1480 bytes.
b. Baseline the telemetry consumption for a time period and extrapolate.
c. (# of devices) * (sensor paths) * (frequency/min)
d. Use the IEFT Telemetry calculator from RFC 2795.

BOOK.indb 388 19/05/22 5:54 PM

https://stackover�ow.com/YangModels
https://github.com/YangModels/yang
https://yang.org
http://https:/yangcatalog.org
https://www.ietf.org/yang-data-models

ptg39201256

Chapter 12: Model-Driven Telemetry 389

12Foundation Topics

Transformation of Inventory, Status, Performance, and
Fault Monitoring

As discussed earlier, the stone age of network IT involved manual effort by logging in to a
device through a serial console cable and using Telnet or (eventually) SSH. The process of
executing show commands worked fine for checking device inventory, status, and perfor-
mance and for fault monitoring in smaller environments. However, as network device counts
increased, the need for automation and network programmability became clear. Would you
want to manage a network of 230,000 devices using command-line methods of SSH and
show commands? Of course not!

Some improvements were gained over using the CLI with management tools; a progression
was to use SNMP to access similar instrumentation. For example, the ENTITY-MIB could
identify much of a device’s inventory. The IF-MIB could show interface statistics. But a more
effective approach for fault monitoring was needed—ideally, in a “push me a notification”
model.

SNMP notifications (traps) and syslog event messages were useful for fault monitoring.
Unfortunately, their scope and information depth were different. Let’s consider a popular
legacy platform: the Catalyst 6500. It supported about 100 SNMP notifications, but over
8,000 syslog event messages. Environments that were focused on just SNMP notifications
missed a lot of event visibility. Additionally, SNMP notifications did not have severity identi-
fiers unless the Management Information Base (MIB) developer intentionally put a varbind
(variable binding) into a notification type that included a severity declaration.

Syslog event messages were great; they had severity identifiers and were written with gener-
ally readable facility, severity, mnemonic, and message text, as in this example:

*Mar 9 13:41:34.452 UTC: %LINEPROTO-5-UPDOWN: Line protocol on
Interface GigabitEthernet0, changed state to up

However, their human-readable form wasn’t optimized for programmatic use.

Using SNMP for data gathering was effective, and many network management tools still use
this approach today. There was structure to the instrumentation, but using this method also
remained more of an art than a science for many users. SNMP did not gain a strong adop-
tion for configuration management and service provisioning. There was not a large number
of read-write-capable MIB objects. Indeed, when SNMP was used to effect configuration
changes, it was largely done by writing parameters to the CISCO-CONFIG-MAN-MIB,
defining a text file that needed to be pushed via TFTP to a network element’s flash location.
The device would replace or merge the configuration, as directed. Other configuration tasks
might have been affected by automating CLI methods using copy tftp flash, which per-
formed a similar function. Worst-case scenarios were systems that automated CLI sessions
and pasted the configuration through flow-control-based Telnet/SSH sessions. I remember
several customer engagements where pushing multi-thousand-line access lists would take
minutes or longer.

BOOK.indb 389 19/05/22 5:54 PM

ptg39201256

390 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

All of these issues were unacceptable to growing networks that needed automation and
network programmability. Addressing the need for network monitoring, streaming telem-
etry provided an alternative to SNMP. The generic term streaming telemetry is used when
referring to model-driven telemetry (MDT) or event-driven telemetry (EDT). With
streaming telemetry, the network element pushes, or “streams,” the instrumentation or data
measurement to a streaming telemetry collector (or controller). Model-driven telemetry
uses YANG models that define the structure and instrumentation of a device or service
model. MDT is commonly sample-interval-based, also known as cadence-based. EDT also
depends on YANG models, but rather than sample-interval-based, its data is pushed upon
change of an object or data measurement. Both employ the concept of sensor path,
which defines the object, instrumentation, or data measurement of concern. This is an ana-
log to SNMP’s MIB object.

Telemetry applications can subscribe to specific data items they need, by using standards-
based YANG data models. The transport can be based on NETCONF, RESTCONF, gRPC,
or gRPC Network Management Interface protocols. Subscriptions can also be created by
using CLIs if they are configured subscriptions.

Google Remote Procedure Call (gRPC) is a remote-procedure call (RPC) system devel-
oped by Google in 2015. gRPC uses HTTP/2 for transport with TLS and token-based authentica-
tion. The HTTP/2 support provides low latency and scalability beyond SNMP implementations.
With support of the OpenConfig community in 2017, Google also introduced Google Remote
Procedure Call (gRPC) Network Management Interface (gNMI). gNMI focuses on config-
uration management and state retrieval. It complements telemetry in that regard. The expectation
is that gNMI will take more prominence as more platforms adopt support.

Within telemetry, structured data is published at a defined cadence, or on-change, based on
the subscription criteria and data type. Streaming telemetry has several benefits, as seen in
Table 12-2.

Table 12-2 SNMP and Streaming Telemetry Comparison

Function SNMP Streaming Telemetry

Model Request-response Push
Security SNMPv1 and 2c—none

SNMPv3 authentication and
privacy

TLS default

Encoding ASN.1 GPB, JSON, XML
Programmatic Use Medium High
Transport UDP TCP, NETCONF, gRPC,

gNMI
Instrumentation model MIB YANG Model

When you have a high-level understanding of streaming telemetry being pushed from a net-
work element, the next question is “What is the telemetry receiver or controller it is pushing
to?” Several options are available. On the commercial software side, the Cisco Crosswork
solution provides a telemetry receiver (https://www.cisco.com/c/en/us/products/collateral/
cloud-systems-management/crosswork-network-automation/datasheet-c78-743287.html).

BOOK.indb 390 19/05/22 5:54 PM

https://www.cisco.com/c/en/us/products/collateral/cloud-systems-management/crosswork-network-automation/datasheet-c78-743287.html
https://www.cisco.com/c/en/us/products/collateral/cloud-systems-management/crosswork-network-automation/datasheet-c78-743287.html

ptg39201256

Chapter 12: Model-Driven Telemetry 391

12
A fine open-source solution for consuming streaming telemetry is the TIG stack—Telegraf,
InfluxDB, and Grafana. We cover the TIG stack in a later section with practical examples.
Other options are Apache Kafka and the Cloud Native Computing Foundation’s hosted
project named Prometheus.

Scaling with the Push Model
One of the largest benefits from streaming telemetry has been the use of its push model.
Comparatively, SNMP is a poll-request model. An SNMP agent on the managed device (net-
work element) responds to every CPU, interface, or memory (or other) data collection initi-
ated from an SNMP manager (management application) as a request. Because SNMP is also
a UDP-based protocol, the initial request is not guaranteed to be delivered. It is possible to
have missed polls and data responses in a congested or lossy network.

Let’s consider the smallest SNMP request of one managed object. RFCs stipulate a mini-
mum size of 484 bytes. SNMP supports packing the payload with multiple requests; think
CPU, multiple interfaces, and memory counters. These are considered variable bindings,
or varbinds—the combination of an object identifier (OID) and a value. Traditional SNMP
packet size would be limited to the MTU size of the network, such as 1500 or 9500 bytes.
If you’re going with nondefault or jumbo frames, it’s also good to question whether the
network management system has a limit of what it can receive, such as 8192-byte PDUs. It’s
common to see payloads of up to 10 SNMP varbinds and stay within the default of 1500-
byte MTUs.

On the minimum side, you would have a 484-byte request and a similar response. On the
maximum side, you would have a 1500-byte request and a 1500- to 9000-byte response.

Streaming telemetry can use a few different transport options, which we cover in the
next section. However, for now, let’s consider streaming telemetry with gRPC. On the
minimum side, you would have a 1286-byte exchange for the first RPC. gRPC is intended
for multiple RPCs and gains efficiency in that model, much like packing SNMP payloads.
Additional RPCs would be 564 bytes. On the maximum side, gRPC benefits from TCP
sessions and windowing, but it also has a default maximum message size set arbitrarily
at 4 MB.

So right off, you can see an advantage of gRPC’s HTTP/2 and TCP pedigree against SNMP’s
UDP. You can also acknowledge the difference in maximum payload. Cisco engineer Shelly
Cadora has used this wonderful graphic, shown in Figure 12-1, for years at CiscoLive and
IETF events; it aptly shows the processing contention that manifests in SNMP as the number
of pollers or polled objects increases.

BOOK.indb 391 19/05/22 5:54 PM

ptg39201256

392 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Figure 12-1 gRPC Versus SNMP in Speed and Scale Comparison

SNMP is just not able to keep up with its legacy protocol, data encoding, and processing
models against gRPC from 2015 using the latest technology. That’s okay, SNMP; you were
there at the beginning when we needed you, and we thank you for it! Now it’s appropriate for
our evolving requirements to focus on gRPC and more enhanced functionality.

Beyond gRPC is another Google innovation: the gRPC Network Management Interface,
or gNMI. Initially, the industry focused on configuration management aspects, as seen
with NETCONF. Although NETCONF was capable of obtaining operational data, it was
not oriented to streaming data as seen with the innovations it preceded. Initial telemetry
development happened later, and soon management interfaces for configuration manage-
ment, operational state, and telemetry needed to be consolidated. gNMI provides the
mechanism to install, change, and delete the configuration of network devices, and also
to view operational data. The content provided through gNMI can be modeled using
YANG. gRPC carries gNMI and provides the means to define and transmit data and oper-
ation requests.

Another aspect of scaling optimization touches the configuration management function. In
the next section, we cover the dial-in/dial-out modes of streaming telemetry, but for now
let’s consider where the configuration change must happen. In a dial-out mode, the managed
device, or source of telemetry data, has a static or configured subscription that is part of
the device’s running configuration. Some configuration management systems must provide
a mechanism to create those telemetry subscription configurations and do the configura-
tion management actions necessary to implement them. These configurations get pushed
across many devices and must be maintained, archived, and change controlled. In an abso-
lute worst-case scenario, some engineer needs to do the work manually—logging in to each
device and installing the configuration. In either case, the authoritative definition of the
telemetry subscriptions is peppered across devices in the network.

In a dial-in mode, the telemetry receiver creates the subscription and becomes the initia-
tor. No configuration change is made to the running configuration of the device, even as the

BOOK.indb 392 19/05/22 5:54 PM

ptg39201256

Chapter 12: Model-Driven Telemetry 393

12
operational configuration and state can be shown, if needed. The telemetry subscriptions
are created and managed in a central location, characteristic of one of the foundational prin-
ciples of software-defined networking—centralized controllers. This centralization of the
configuration management function serves to benefit scale and reduce operational burden.

How to Implement Model-Driven Telemetry
To appreciate the functionality of model-driven telemetry, you should first understand the
basic concept of telemetry. In its most basic form, telemetry is a data point or measurement
representing health, performance, or fault status of a device component or service. Does
SNMP provide telemetry? Generally, yes, but most network operators reserve the use of
telemetry for methods that use an automated communications process where measurements
are collected at the device and transmitted to a receiving collector. A model-driven telem-
etry approach uses this mechanism but augments it through the use of device and/or service
models that represent features and functionality to be configured or monitored.

Model-driven telemetry replaces the periodic polling of network elements as seen with the
SNMP request-response method. Instead, a subscription defines what information, or sen-
sor path, is created with the network element where a subscriber, or telemetry controller
(receiver), can obtain continuous streams of updates. The updates can be sent periodically
or as the objects, data, or status changes. This is why it is sometimes referred to as streaming
telemetry.

In some MDT implementations, a subscription is defined on the publisher (network element)
with a target of the subscriber (telemetry controller or receiver), as seen in Figure 12-2. This
type of implementation requires a higher degree of configuration management discipline.

Network Element
(Provider)

Telemetry Receiver/Controller
(Subscriber)

Receives periodic or event-driven telemetry updates

One-time configuration management task identifying telemetry
sensor path(s) and target/receiver (subscriber)Push

Figure 12-2 Network Element and Telemetry Receiver Concept

In other implementations, the subscriber pushes the telemetry subscription of desired sen-
sor paths to the publisher (managed device) as a one-time configuration task, or subscrip-
tion configuration, as depicted in Figure 12-3. The network element, acting as the publisher,
honors the subscription parameters of sensor paths and frequency. This implementation type
follows a more SDN controller-like model.

BOOK.indb 393 19/05/22 5:54 PM

ptg39201256

394 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Network Element
(Provider)

Telemetry Receiver/Controller
(Subscriber)

11

2 2

1. Initiates a one-time configuration directive to the network element(s)
3. Receives periodic or event-driven telemetry updates

2. Receives subscription (configuration directives) from telemetry
receiver/controller identifying telemetry sensor path(s) and frequencyPush

3

Figure 12-3 Detailed Push Model Exchange

Key concepts used in streaming model-driven telemetry data are

■ Session: One or more telemetry receivers collect the streamed data using a dial-in or
dial-out mode.

■ Dial-in mode: The receiver “dials in” to the network element and subscribes dynami-
cally to one or more sensor paths. This process effectively creates a configuration
change on the network element (although it may not be rendered in the device’s run-
ning configuration). The network element acts as the provider, and the receiver is the
subscriber (client). The network element streams telemetry data through the same
session. The dial-in mode of subscriptions is dynamic. This dynamic subscription
terminates when the receiver-subscriber cancels the subscription or when the session
terminates. Figure 12-4 depicts a dial-in mode, compared with a dial-out mode.

Dial-Out

Telemetry
Receiver

SYN

SYN-ACK

ACK

Device

Dial-In

Telemetry
Receiver

SYN

SYN-ACK

ACK

Device

Figure 12-4 Dial-In and Dial-Out Mode Comparison

■ Dial-out mode: The network element “dials out” to the receiver. This is the default
mode of operation. The network element acts as a client, and the receiver acts as a
server. In this mode, sensor paths and destinations are configured and bound together
into one or more subscriptions. The network element establishes a session with each
destination in the subscription and streams data to the receiver. The dial-out mode of
subscriptions is persistent. When a session terminates, the network element continu-
ally attempts to re-establish a new session with the receiver every 30 seconds. As men-
tioned, Figure 12-4 depicts a dial-in mode, compared with a dial-out mode.

BOOK.indb 394 19/05/22 5:54 PM

ptg39201256

Chapter 12: Model-Driven Telemetry 395

12
■ Sensor path: The sensor path describes a YANG path or a subset of data definitions in

a YANG model with a container. In a YANG model, the sensor path can be specified
to end at any level in the container hierarchy (for example, Cisco-IOS-XR-infra-statsd-
oper:infra-statistics/interfaces/interface/latest/generic-counters).

■ Subscription: A configuration session that binds one or more sensor paths to destina-
tions and specifies the criteria to stream data. In time- or cadence-based telemetry,
data is streamed continuously at a configured frequency.

■ Transport and encoding: The network element streams telemetry data using a trans-
port mechanism. The generated data is encapsulated into the desired format using
encoders.

Dial-In and Dial-Out Mode
The distinction between dial-in and dial-out modes bears even more consideration because it
has implications on where configurations are generated and stored, along with session main-
tenance. Figure 12-4 shows these two modes graphically.

Essentially, dial-out mode provides for the telemetry source device initiating a session with
the telemetry receiver defined in the subscription configuration. The subscription configura-
tion is defined and provisioned on the device’s running configuration and shows the param-
eters of the subscription—destination, sensor path(s), and subscription. Dial-in mode has the
telemetry subscriber-receiver initiating the session and pushing the subscription parameters
to the telemetry source device, which streams it back to the subscriber-receiver.

Table 12-3 describes other dial-in/dial-out considerations of note.

Table 12-3 Dial-In and Dial-Out Comparison

Dial-In Mode Dial-Out Mode

Subscription configuration is dynamically
provisioned.

Subscription configuration is statically
(purposely) provisioned on the device.

Telemetry data is sent to the initiator/
subscriber requesting it.

Telemetry data is sent to the specified
receiver/collector(s).

Lifetime of the subscription is associated with
the session that created it (and sends the data).

Lifetime of the subscription is associated
with the existence of the device configuration
defining it.

No change to the telemetry source’s running
configuration is seen.

Telemetry source’s running configuration
reflects the subscription settings.

Subscriptions must be reinitiated after a
reload or stateful switchover (established
sessions are killed).

Subscriptions automatically connect to
the receiver/collector after reload/stateful
switchover.

Subscription identifier is dynamically
generated when successfully established.

Subscription identifier is defined as part of
the subscription configuration.

Encoding (Serialization)
Several encoding, or data serialization, mechanisms are used in telemetry. XML is a legacy
and has inefficient encoding due to its verbosity with open and close tags. It has a strong

BOOK.indb 395 19/05/22 5:54 PM

ptg39201256

396 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

history in dynamic content management, especially with web publishing because of its align-
ments with HTML and CSS.

JSON is widely adopted in software development projects because of its ease of human
readability, coupled with excellent programmatic use. It is an efficient encoding method that
is seen across many aspects of IT for configuration, inventory, and other basic data encoding.

Google Protocol Buffer (GPB), sometimes colloquially called protobufs, is another data
encoding method to serialize structured data. Google created it with a design intended for
simplicity and performance. Its encoding and efficiency beat XML in all regards and do
well against JSON. However, the efficiency brings operational complexity because it is not
very human-readable. Interpreting GPB-encoded structured data requires a type of “secret
decoder ring” in the form of a .proto file that defines the mappings and data types. Com-
pact GPB was the original format seen with Cisco IOS XR 6.0.0. kvGPB is a derivative—a
self-describing key-value pair Google Protocol Buffer. kvGPB is trending to be the de facto
encoding of choice. It is easier to interpret because the key-value pairings are typically
human-readable.

Figure 12-5 shows these data encodings side by side for comparison.

XML

JSON Key−Value GPB

Compact GPB

<data>
 <interface_name>GigabitEthernet0/0</interface_name>
 <packets_sent>5938501</packets_sent>
 <bytes_sent>69286077</bytes_sent>
 <packets_received>492884</packets_received>
 <bytes_received>48829336</bytes_received>
</data>

{InterfaceName: GigabitEthernet0/0
 GenericCounters {
 PacketsSent: 5938501
 BytesSent: 69286077
 PacketsReceived: 492884
 BytesReceived: 48829336
<...>

{ "keys":{
 "interface-name":"GigabitEthernet0/0"
},
"content":{
"packets-sent": 5938501,
"bytes-sent": 69286077,
"packets-received": 492884,
"bytes-received": 48829336,
<. . . >

1: GigabitEthernet0/0
50: 5938501
51: 69286077
52: 492884
53: 48829336
<...>

Figure 12-5 Data Encoding Comparisons

Protocols
The next topic of consideration is the type of protocol used. The protocol that is used for
the connection between a telemetry publishing device and the telemetry receiver decides
how the data is sent. This protocol is referred to as the transport protocol and is indepen-
dent of the management protocol for configured subscriptions. The transport protocol also
impacts the encoding used. Telemetry implementations can span several options, depend-
ing on platform support—NETCONF, RESTCONF, HTTP, TCP, UDP, secure UDP (DTLS),
gRPC, and gNMI.

NETCONF and RESTCONF are typically associated with configuration management func-
tions, but they can also be used to extract operational data. The NETCONF protocol is

BOOK.indb 396 19/05/22 5:54 PM

ptg39201256

Chapter 12: Model-Driven Telemetry 397

12
available on IOS XE platforms for the transport of dynamic subscriptions and can be used
with yang-push and yang-notif-native streams using XML encoding.

HTTP is observed as an option since NX-OS 7.0 with JSON encoding. HTTPS is also sup-
ported if a certificate is configured.

TCP is supported for dial-out only on Cisco IOS-XR platforms since Release 6.1.1 on the
64-bit Linux-based platforms, such as NCS5500, NCS5000, and ASR9000, and the 32-bit
IOS XR platforms, such as CRS and legacy ASR9000.

UDP is supported also for dial-out only on IOS-XR platforms since Release 6.1.1 on the
64-bit Linux-based platforms, such as NCS5500, NCS5000, and ASR9000. Starting with
Cisco NX-OS Release 7.0(3)I7(1), UDP and secure UDP (DTLS) are supported as telemetry
transport protocols. You can add destinations that receive UDP. The encoding for UDP and
secure UDP can be GPB or JSON.

gRPC is a preferred transport protocol and is supported on IOS-XR platforms since Release
6.1.1 on the 64-bit Linux-based platforms, such as NCS5500, NCS5000, and ASR9000. It is
also broadly supported on the common IOS XE-based platforms, such as the Catalyst 9000
Series.

Because of the variety of support and dependencies, Table 12-4 represents a matrix of
mode, encoding, and telemetry protocols.

Table 12-4 Matrix of Telemetry Modes, Encoding, and Protocols

Transport
Protocol

NETCONF gRPC gNMI HTTP TCP UDP

Mode Dial-
in

Dial-out Dial-
in

Dial-out Dial-in Dial-
out

Dial-out Dial-out Dial-out

Stream

yang-push Yes No NA Yes Yes No

yang-notif-
native

Yes No NA No No No

Encodings XML NA NA kvGPB,
JSON

JSON_
IETF

NA JSON GPB,
JSON

GPB,
JSON

Platforms IOS
XE

IOS XE IOS
XR

IOS
XE,
NX-OS,
IOS XR

NX-OS
9.3(5)

NX-OS
9.3(5)

NX-OS IOS
XR

IOS XR

NOTE The yang streaming table row references are specific to IOS XE platforms.

BOOK.indb 397 19/05/22 5:54 PM

ptg39201256

398 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Configuring MDT in IOS-XR
The following YANG models are used to configure and monitor MDT:

■ Cisco-IOS-XR-telemetry-model-driven-cfg.yang and openconfig-telemetry.yang—
Configure MDT using NETCONF or merge-config over gRPC.

■ Cisco-IOS-XR-telemetry-model-driven-oper.yang—Get operational information about
MDT.

As previously mentioned, the sensor path, transport, and encoding are key considerations in
enabling MDT. The mode, whether dial-out or dial-in, must also be determined.

NOTE From IOS-XR Release 6.1.1, Cisco introduced support for the 64-bit Linux-based
IOS XR operating system. The 64-bit platforms, such as NCS5500, NCS5000, and ASR9000,
support gRPC, UDP, and TCP protocols. All 32-bit IOS XR platforms, such as CRS and
legacy ASR9000, support only the TCP protocol. TCP, in this sense, uses the familiar three-
way handshaking without the benefits of gRPC, which also uses TCP, but with HTTP/2 for
advanced traffic forwarding.

Configuring Dial-Out Mode
With dial-out mode, the network element initiates a session to the telemetry receiver(s)
based on the subscription.

The process to configure a dial-out mode involves these steps:

■ Create a destination group.

■ Create a sensor group.

■ Create a subscription.

■ Verify the dial-out configuration.

Step 1: Create a Destination Group
A destination group specifies the destination address, port, encoding, and transport that
the network element uses to send out telemetry data. Example 12-1 shows the configuration
template.

Example 12-1 Configuration Template for Creating a Destination Group

telemetry model-driven

 destination-group <group-name>

 vrf <vrf-name>

 address family ipv4 <IP-address> port <port-number>

 encoding <encoding-format>

 protocol <transport>

 commit

BOOK.indb 398 19/05/22 5:54 PM

ptg39201256

Chapter 12: Model-Driven Telemetry 399

12NOTE Your implementation may not require virtual routing and forwarding (VRF), so the
next command may not apply in your implementation.

Example 12-2 shows the destination group DestGroup1 created for TCP dial-out configura-
tion with encoding of self-describing-gpb (reflecting key-value Google Protocol Buffers).

Example 12-2 Destination Group for TCP Dial-Out

Router(config)# telemetry model-driven

Router(config-model-driven)# destination-group DestGroup1

Router(config-model-driven-dest)# address family ipv4 192.168.1.10 port 5432

Router(config-model-driven-dest-addr)# encoding self-describing-gpb

Router(config-model-driven-dest-addr)# protocol tcp

Router(config-model-driven-dest-addr)# commit

To use UDP dial-out, replace protocol tcp with protocol udp.

Note that model-driven telemetry with UDP is not suitable for critical production networks.
There is no retry if a message is dropped before it reaches the collector. TCP dial-out is
suggested for critical product networks because a retry is possible in potentially lossy
environments.

To use gRPC dial-out, you need to address a few more considerations. First, ensure that the
network element is a 64-bit platform. The gRPC protocol supports TLS; model-driven telem-
etry uses TLS to dial out by default. The certificate for the receiver-server must be copied
to the network element’s /misc/config/grpc/dialout/ flash storage directory. Example 12-3
depicts the certificate store.

Example 12-3 Certificate Store on a Device

RP/0/RP0/CPU0:ios# run

Mon Feb 24 13:10:13.713 UTC

[xr-vm_node0_RP0_CPU0:~]$ls -l /misc/config/grpc/dialout/

total 4

-rw-r--r-- 1 root root 4017 Feb 19 14:22 dialout.pem

[xr-vm_node0_RP0_CPU0:~]$

The CommonName (CN) used in the certificate must be configured similarly to the previ-
ous example with an additional protocol parameter defined as protocol grpc tls-hostname
<CommonName>.

For dev-test environments or where you want to bypass the TLS option, modify the protocol
parameter to use protocol grpc no-tls.

BOOK.indb 399 19/05/22 5:54 PM

ptg39201256

400 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Step 2: Create a Sensor Group
A sensor group specifies one or more YANG models to be streamed. Example 12-4 shows
the configuration template.

Example 12-4 Configuration Template for Creating a Sensor Group

telemetry model-driven

 sensor-group <group-name>

 sensor-path <XR YANG model>

 commit

Example 12-5 depicts a more complete representation of a sample configuration.

Example 12-5 Sensor Group for Dial-Out with the YANG Model for Interface Statistics

Router(config)# telemetry model-driven

Router(config-model-driven)# sensor-group SensorGroup1

Router(config-model-driven-snsr-grp)# sensor-path Cisco-IOS-XR-
infra-statsd-oper:infra-statistics/interfaces/interface/latest/
generic-counters

Router(config-model-driven-snsr-grp)# commit

NOTE See “Picking Sensor Paths and Metrics” later in this chapter for additional guidance
on identifying YANG models and sensor paths.

Step 3: Create a Subscription
A subscription associates a destination group with a sensor group and sets the streaming
frequency—sample-interval-based or event-based telemetry. Example 12-6 shows a configu-
ration template for deploying a subscription.

Example 12-6 Configuration Template for Creating a Subscription

telemetry model-driven

 subscription <subscription-name>

 sensor-group-id <sensor-group> sample-interval <interval>

 destination-id <destination-group>

 source-interface <source-interface>

 commit

NOTE The source-interface configuration syntax may not be required in your
implementation.

Example 12-7 shows the subscription Subscription1 that is created to associate the sensor
group and destination group and to configure an interval of 20 seconds to stream data.

BOOK.indb 400 19/05/22 5:54 PM

ptg39201256

Chapter 12: Model-Driven Telemetry 401

12
Example 12-7 Subscription for Sample-Interval-Based Dial-Out Configuration

Router(config)# telemetry model-driven

Router(config-model-driven)# subscription Subscription1

Router(config-model-driven-subs)# sensor-group-id SensorGroup1 sample-interval 20000

Router(config-model-driven-subs)# destination-id DestGroup1

Router(config-mdt-subscription)# commit

If a sample-interval is set to 0, then event-based telemetry is provisioned. The network ele-
ment streams updates to the destination-receiver when measurements change. This method is
more efficient when you’re monitoring items such as interface or module state. In a periodic
sample-interval configuration, the same value may be returned over and over.

Time-0 Interface: Up

Time+1 Interface: Up

Time+2 Interface: Up

Time+3 Interface: Up

Consider Example 12-8, where event-based dial-out configuration is used for more efficiency
in monitoring the interface state.

Example 12-8 Configuration Template for Event-Based Dial-Out

telemetry model-driven

 destination-group DestGroup1

 address family ipv4 192.168.1.10 port 5432

 encoding self-describing-gpb

 protocol grpc tls-hostname telem-receiver.example.com

 !

 !

 sensor-group SensorGroup1

 sensor-path Cisco-IOS-XR-pfi-im-cmd-oper:interfaces/interface-xr/interface/state

!

 subscription Subscription2

 sensor-group-id SensorGroup1 sample-interval 0

 destination-id DestGroup1

!

Step 4: Verify the Dial-Out Configuration
Use the following command to verify that you have correctly configured the network ele-
ment for dial-out:

Router# show telemetry model-driven subscription <subscription-
group-name>

Example 12-9 shows the results of this command output for reference.

BOOK.indb 401 19/05/22 5:54 PM

http://telem-receiver.example.com

ptg39201256

402 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Example 12-9 Validation for TCP Dial-Out

Router# show telemetry model-driven subscription Subscription1

Tue Feb 25 16:22:31.320 UTC

Subscription: Subscription1 State: ACTIVE

 Sensor groups:

 Id Interval(ms) State

 SensorGroup1 30000 Resolved

 Destination Groups:

 Id Encoding Transport State Port IP

 DestGroup1 self-describing-gpb tcp Active 5432 192.168.1.10

If you use gRPC dial-out, the results would be slightly different, as seen in Example 12-10.

Example 12-10 Validation for gRPC Dial-Out

Router# show telemetry model-driven subscription Subscription2

Tue Feb 25 16:27:44.635 UTC

Subscription: Subscription2 State: ACTIVE

 Sensor groups:

 Id Interval(ms) State

 SensorGroup2 30000 Resolved

 Destination Groups:

 Id Encoding Transport State Port IP

 DestGroup2 self-describing-gpb grpc ACTIVE 57500
192.168.1.10

Configuring Dial-In Mode
In a dial-in mode, the destination (telemetry receiver) initiates a session to the network
element and subscribes to data to be streamed.

The process to configure a dial-in mode involves these tasks:

■ Enable gRPC.

■ Create a sensor group.

■ Create a subscription.

■ Validate the configuration.

Step 1: Enable gRPC
Configure the gRPC server on the network element to accept incoming connections from the
collector (telemetry receiver). This will be an HTTP/2 connection:

Router# configure

Router (config)# grpc

BOOK.indb 402 19/05/22 5:54 PM

ptg39201256

Chapter 12: Model-Driven Telemetry 403

12
Enable access to a specified port number:

Router (config-grpc)# port <port-number>

The <port-number> range is from 57344 to 57999. If the port number is already in use, an
error is displayed.

In the configuration mode, set the session parameters:

Router (config)# grpc{ address-family | dscp | max-request-per-
user | max-request-total | max-streams | max-streams-per-user |
no-tls | service-layer | tls-cipher | tls-mutual | tls-trustpoint
| vrf }

Table 12-5 shows gRPC options.

Table 12-5 gRPC Options and Functionality

grpc Option Function

address-family Sets the address family identifier type.
dscp Sets QoS marking DSCP on the transmitted gRPC.
max-request-per-user Sets the maximum concurrent requests per user.
max-request-total Sets the maximum concurrent requests in total.
max-streams Sets the maximum number of concurrent gRPC requests.

The maximum subscription limit is 128 requests. The
default is 32 requests.

max-streams-per-user Sets the maximum concurrent gRPC requests for each
user. The maximum subscription limit is 128 requests. The
default is 32 requests.

no-tls Disables Transport Layer Security (TLS). TLS is enabled
by default. Using this option is not advised unless security
impact is well understood.

service-layer Enables the gRPC service layer configuration.
tls-cipher Enables the gRPC TLS cipher suites.
tls-mutual Sets the mutual authentication.
tls-trustpoint Configures trustpoint.
server-vrf Enables server vrf.

Commit the configuration:

Router(config-grpc)# commit

Example 12-11 shows the output of the show grpc command. The sample output displays
the gRPC configuration when TLS is enabled on the network element.

BOOK.indb 403 19/05/22 5:54 PM

http://requests.no-tlsDisables
http://requests.no-tlsDisables

ptg39201256

404 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Example 12-11 grpc Command Output

Router# show grpc

Address family : ipv4

Port : 57300

VRF : global-vrf

TLS : enabled

TLS mutual : disabled

Trustpoint : none

Maximum requests : 128

Maximum requests per user : 10

Maximum streams : 32

Maximum streams per user : 32

TLS cipher suites

 Default : none

 Enable : none

 Disable : none

 Operational enable : ecdhe-rsa-chacha20-poly1305

 : ecdhe-ecdsa-chacha20-poly1305

 : ecdhe-rsa-aes128-gcm-sha256

 : ecdhe-ecdsa-aes128-gcm-sha256

 : ecdhe-rsa-aes256-gcm-sha384

 : ecdhe-ecdsa-aes256-gcm-sha384

 : ecdhe-rsa-aes128-sha

 : ecdhe-ecdsa-aes128-sha

 : ecdhe-rsa-aes256-sha

 : ecdhe-ecdsa-aes256-sha

 : aes128-gcm-sha256

 : aes256-gcm-sha384

 : aes128-sha

 : aes256-sha

 Operational disable : none

Step 2: Create a Sensor Group
A sensor-group specifies one or more YANG models to be streamed. Example 12-12 shows a
configuration template for creating a sensor group.

Example 12-12 Configuration Template for Creating a Sensor Group

telemetry model-driven

 sensor-group <group-name>

 sensor-path <XR YANG model>

 commit

BOOK.indb 404 19/05/22 5:54 PM

ptg39201256

Chapter 12: Model-Driven Telemetry 405

12
Example 12-13 shows the sensor group SensorGroup3 created for gRPC dial-in configura-
tion with the OpenConfig YANG model for interfaces.

Example 12-13 Sample Configuration of a Sensor Group for gRPC Dial-In

Router(config)# telemetry model-driven

Router(config-model-driven)# sensor-group SensorGroup3

Router(config-model-driven-snsr-grp)# sensor-path openconfig-interfaces:interfaces/
interface

Router(config-model-driven-snsr-grp)# commit

Step 3: Create a Subscription
A subscription associates a sensor group with a streaming frequency—sample-interval-based
or event-based telemetry. Example 12-14 depicts a configuration template for creating a
subscription.

Example 12-14 Configuration Template for Creating a Subscription

telemetry model-driven

 subscription <subscription-name>

 sensor-group-id <sensor-group> sample-interval <interval>

 destination-id <destination-group>

 commit

Example 12-15 shows the subscription Subscription3 that is created to associate the sensor
group with an interval of 20 seconds to stream data.

Example 12-15 Subscription for gRPC Dial-In

Router(config)# telemetry model-driven

Router(config-model-driven)# subscription Subscription3

Router(config-model-driven-subs)# sensor-group-id SensorGroup3 sample-interval 20000

Router(config-mdt-subscription)# commit

Step 4: Validate the Configuration
Use the command shown in Example 12-16 to verify that you have correctly configured the
router for gRPC dial-in.

BOOK.indb 405 19/05/22 5:54 PM

ptg39201256

406 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Example 12-16 Validating Telemetry Subscription

Router# show telemetry model-driven subscription

Example: Validation for gRPC Dial-in

Router# show telemetry model-driven subscription Subscription3

Wed Feb 26 14:31:12.473 UTC

Subscription: Subscription3

 State: ACTIVE

 Sensor groups:

 Id: SensorGroup3

 Sample Interval: 20000 ms

 Sensor Path: openconfig-interfaces:interfaces/interface

 Sensor Path State: Resolved

 Destination Groups:

 Group Id: DialIn_1005

 Destination IP: 192.168.1.10

 Destination Port: 44841

 Encoding: self-describing-gpb

 Transport: dialin

 State: Active

 Total bytes sent: 13909

 Total packets sent: 14

 Last Sent time: 2020-02-26 14:29:25.131464901 +0000

 Collection Groups:

 Id: 2

 Sample Interval: 30000 ms

 Encoding: self-describing-gpb

 Num of collection: 5

 Collection time: Min: 24 ms Max: 41 ms

 Total time: Min: 24 ms Avg: 41 ms Max: 54 ms

 Total Deferred: 0

 Total Send Errors: 0

 Total Send Drops: 0

 Total Other Errors: 0

 Last Collection Start: 2020-02-26 14:20:25.134464823 +0000

 Last Collection End: 2020-02-26 14:29:24.032887433 +0000

 Sensor Path: openconfig-interfaces:interfaces/interface

BOOK.indb 406 19/05/22 5:54 PM

ptg39201256

Chapter 12: Model-Driven Telemetry 407

12Picking Sensor Paths and Metrics
As you saw in a previous section, one of the common activities to set up streaming telemetry
is to define a sensor group. The sensor group would contain one or more sensor paths. It
might be helpful to think of it like SNMP MIB objects that are being polled (or pushed, as in
the desirable case with streaming telemetry). So how do you pick sensor paths? Fortunately,
there are several methods to do this. Sensor paths come from the YANG models that are
most commonly defined by feature or functionality. Take, for example, some of the sensor
paths used in the previous configuration examples:

openconfig-interfaces:interfaces/interface

Cisco-IOS-XR-pfi-im-cmd-oper:interfaces/interface-xr/interface/
state

Researching Public Documentation
One method to find sensor paths is to review public documentation. Cisco publishes its ven-
dor-specific YANG models on GitHub and Yang Catalog. The following URLs provide access
to many vendors’ hardware-specific YANG models, along with standards bodies’ models for
services:

https://github.com/YangModels/yang/tree/master/vendor/cisco

https://yangcatalog.org

Figure 12-6 shows the Cisco YANG model repository on GitHub.

Figure 12-6 Cisco YANG Model Repository on GitHub

Additionally, you should be aware that there is increasing support for the OpenConfig data
models. You can find them at https://github.com/openconfig/public/tree/master/release/models.

Although the documentation method provides visibility into the entire complement of
YANG models, it doesn’t guarantee device support. Testing the support or finding other
documentation that verifies the support is important. For this point, getting the model sup-
port declarations from the device itself is more effective.

BOOK.indb 407 19/05/22 5:54 PM

https://github.com/YangModels/yang/tree/master/vendor/cisco
https://yangcatalog.org
https://github.com/openconfig/public/tree/master/release/models

ptg39201256

408 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Extracting Model Support from the Device—NETCONF Manually
In Chapter 11, “NETCONF and RESTCONF,” we reviewed NETCONF capabilities. You can
use that information to extract the YANG models a device supports. Refer to that chapter
to refresh your memory on how to enable NETCONF/YANG in your environment. For this
next example, let’s use the DevNet IOS XE on CSR Latest Code Always On sandbox lab
environment. It is described more fully at https://devnetsandbox.cisco.com/RM/Diagram/
Index/7b4d4209-a17c-4bc3-9b38-f15184e53a94?diagramType=Topology.

Because this sandbox lab environment is already online and enabled, you just need to use the
target reference and credentials described in the preceding link to manually obtain the NET-
CONF capabilities. You can do this through a simple SSH connection:

client-host$ ssh -s USER@DEVICE -p 830 netconf

The device responds with a capabilities exchange, which could be hundreds of lines long,
reflecting all the features and YANG models that are supported and installed. You can see a
NETCONF capabilities exchange in Example 12-17.

Example 12-17 NETCONF Capabilities Exchange Dialogue

client-host$ ssh -s developer@sandbox-iosxe-latest-1.cisco.com -p 830 netconf

developer@sandbox-iosxe-latest-1.cisco.com's password: ********

<?xml version="1.0" encoding="UTF-8"?>

<hello xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

<capabilities>

<capability>urn:ietf:params:netconf:base:1.0</capability>

<capability>urn:ietf:params:netconf:base:1.1</capability>

<capability>urn:ietf:params:netconf:capability:writable-running:1.0</capability>

<capability>urn:ietf:params:netconf:capability:rollback-on-error:1.0</capability>

<capability>urn:ietf:params:netconf:capability:validate:1.0</capability>

<capability>urn:ietf:params:netconf:capability:validate:1.1</capability>

<capability>urn:ietf:params:netconf:capability:xpath:1.0</capability>

[. . . TRIMMED . . .]

<capability>http://cisco.com/ns/yang/Cisco-IOS-XE-aaa?module=Cisco-IOS-XE-aaa&
revision=2020-07-01</capability>

<capability>http://cisco.com/ns/yang/Cisco-IOS-XE-aaa-oper?module=Cisco-IOS-XE-aaa-
oper&revision=2019-05-01</capability>

<capability>http://cisco.com/ns/yang/Cisco-IOS-XE-acl?module=Cisco-IOS-XE-acl&
revision=2020-03-01</capability>

<capability>http://cisco.com/ns/yang/Cisco-IOS-XE-acl-oper?module=Cisco-IOS-XE-acl-
oper&revision=2020-03-01</capability>

<capability>http://cisco.com/ns/yang/Cisco-IOS-XE-app-hosting-cfg?module=Cisco-
IOS-XE-app-hosting-cfg&revision=2020-03-01</capability>

<capability>http://cisco.com/ns/yang/Cisco-IOS-XE-app-hosting-oper?module=Cisco-
IOS-XE-app-hosting-oper&revision=2019-05-01</capability>

<capability>http://cisco.com/ns/yang/Cisco-IOS-XE-arp?module=Cisco-IOS-XE-arp&
revision=2019-07-01</capability>

<capability>http://cisco.com/ns/yang/Cisco-IOS-XE-arp-oper?module=Cisco-IOS-XE-
arp-oper&revision=2019-05-01</capability>

<capability>http://cisco.com/ns/yang/Cisco-IOS-XE-atm?module=Cisco-IOS-XE-atm&
revision=2020-07-01</capability>

BOOK.indb 408 19/05/22 5:54 PM

https://devnetsandbox.cisco.com/RM/Diagram/Index/7b4d4209-a17c-4bc3-9b38-f15184e53a94?diagramType=Topology
https://devnetsandbox.cisco.com/RM/Diagram/Index/7b4d4209-a17c-4bc3-9b38-f15184e53a94?diagramType=Topology
http://1.cisco.com
http://1.cisco.com's
http://cisco.com/ns/yang/Cisco-IOS-XE-aaa?module=Cisco-IOS-XE-aaa&revision=2020-07-01</capability>
http://cisco.com/ns/yang/Cisco-IOS-XE-aaa-oper?module=Cisco-IOS-XE-aaa-oper&revision=2019-05-01</capability
http://cisco.com/ns/yang/Cisco-IOS-XE-aaa-oper?module=Cisco-IOS-XE-aaa-oper&revision=2019-05-01</capability
http://cisco.com/ns/yang/Cisco-IOS-XE-acl?module=Cisco-IOS-XE-acl&revision=2020-03-01</capability>
http://cisco.com/ns/yang/Cisco-IOS-XE-acl-oper?module=Cisco-IOS-XE-acl-oper&revision=2020-03-01</capability
http://cisco.com/ns/yang/Cisco-IOS-XE-acl-oper?module=Cisco-IOS-XE-acl-oper&revision=2020-03-01</capability
http://cisco.com/ns/yang/Cisco-IOS-XE-app-hosting-cfg?module=Cisco-IOS-XE-app-hosting-cfg&revision=2020-03-01</capability
http://cisco.com/ns/yang/Cisco-IOS-XE-app-hosting-cfg?module=Cisco-IOS-XE-app-hosting-cfg&revision=2020-03-01</capability
http://cisco.com/ns/yang/Cisco-IOS-XE-app-hosting-oper?module=Cisco-IOS-XE-app-hosting-oper&revision=2019-05-01</capability
http://cisco.com/ns/yang/Cisco-IOS-XE-app-hosting-oper?module=Cisco-IOS-XE-app-hosting-oper&revision=2019-05-01</capability
http://cisco.com/ns/yang/Cisco-IOS-XE-arp?module=Cisco-IOS-XE-arp&revision=2019-07-01</capability>
http://cisco.com/ns/yang/Cisco-IOS-XE-arp-oper?module=Cisco-IOS-XE-arp-oper&revision=2019-05-01</capability
http://cisco.com/ns/yang/Cisco-IOS-XE-arp-oper?module=Cisco-IOS-XE-arp-oper&revision=2019-05-01</capability
http://cisco.com/ns/yang/Cisco-IOS-XE-atm?module=Cisco-IOS-XE-atm&revision=2020-07-01</capability>
http://cisco.com/ns/yang/Cisco-IOS-XE-aaa?module=Cisco-IOS-XE-aaa&revision=2020-07-01</capability>
http://cisco.com/ns/yang/Cisco-IOS-XE-arp?module=Cisco-IOS-XE-arp&revision=2019-07-01</capability>
http://cisco.com/ns/yang/Cisco-IOS-XE-atm?module=Cisco-IOS-XE-atm&revision=2020-07-01</capability>

ptg39201256

Chapter 12: Model-Driven Telemetry 409

12<capability>http://cisco.com/ns/yang/Cisco-IOS-XE-bba-group?module=Cisco-IOS-XE-
bba-group&revision=2019-07-01</capability>

<capability>http://cisco.com/ns/yang/Cisco-IOS-XE-bfd?module=Cisco-IOS-XE-bfd&
revision=2020-07-01</capability>

<capability>http://cisco.com/ns/yang/Cisco-IOS-XE-bfd-oper?module=Cisco-IOS-XE-
bfd-oper&revision=2019-05-01</capability>

<capability>http://cisco.com/ns/yang/Cisco-IOS-XE-bgp?module=Cisco-IOS-XE-bgp&
revision=2020-07-01</capability>

<capability>http://cisco.com/ns/yang/Cisco-IOS-XE-bgp-common-oper?module=Cisco-
IOS-XE-bgp-common-oper&revision=2019-05-01</capability>

<capability>http://cisco.com/ns/yang/Cisco-IOS-XE-bgp-oper?module=Cisco-IOS-XE-bgp-
oper&revision=2019-11-01</capability>

<capability>http://cisco.com/ns/yang/Cisco-IOS-XE-bgp-route-oper?module=Cisco-IOS-
XE-bgp-route-oper&revision=2019-05-01</capability>

<capability>http://cisco.com/ns/yang/Cisco-IOS-XE-bridge-domain?module=Cisco-IOS-XE-
bridge-domain&revision=2020-03-01</capability>

[. . . TRIMMED . . .]

<capability>http://openconfig.net/yang/bgp-policy?module=openconfig-bgp-policy
&revision=2016-06-21&deviations=cisco-xe-openconfig-bgp-policy-deviation</
capability>

<capability>http://openconfig.net/yang/bgp-types?module=openconfig-bgp-types&
revision=2016-06-21</capability>

<capability>http://openconfig.net/yang/cisco-xe-openconfig-if-ip-deviation?module=
cisco-xe-openconfig-if-ip-deviation&revision=2017-03-04</capability>

<capability>http://openconfig.net/yang/cisco-xe-openconfig-interfaces-deviation?
module=cisco-xe-openconfig-interfaces-deviation&revision=2018-08-21</capability>

<capability>http://openconfig.net/yang/cisco-xe-routing-csr-openconfig-platform-
deviation?module=cisco-xe-routing-csr-openconfig-platform-deviation&revis
ion=2010-10-09</capability>

<capability>http://openconfig.net/yang/cisco-xe-routing-openconfig-system-deviation?
module=cisco-xe-routing-openconfig-system-deviation&revision=2017-11-27</
capability>

<capability>http://openconfig.net/yang/fib-types?module=openconfig-aft-types&
revision=2017-01-13</capability>

[. . . TRIMMED . . .]

<capability>

 urn:ietf:params:netconf:capability:notification:1.1

 </capability>

</capabilities>

<session-id>201</session-id></hello>]]>]]>

In the highlights in Example 12-17, you can see that many Cisco vendor-specific YANG mod-
els are supported—more than 100. The highlighted samples should be familiar networking
functions. The search criteria to filter more could be as simple as

<capability>http://cisco.com/ns/yang/Cisco-*

Many OpenConfig YANG models also are supported—almost 60. You can find them with
the following search criteria:

<capability>http://openconfig.net/yang/*

BOOK.indb 409 19/05/22 5:54 PM

http://cisco.com/ns/yang/Cisco-IOS-XE-bba-group?module=Cisco-IOS-XE-bba-group&revision=2019-07-01</capability
http://cisco.com/ns/yang/Cisco-IOS-XE-bba-group?module=Cisco-IOS-XE-bba-group&revision=2019-07-01</capability
http://cisco.com/ns/yang/Cisco-IOS-XE-bfd?module=Cisco-IOS-XE-bfd&revision=2020-07-01</capability>
http://cisco.com/ns/yang/Cisco-IOS-XE-bfd-oper?module=Cisco-IOS-XE-bfd-oper&revision=2019-05-01</capability
http://cisco.com/ns/yang/Cisco-IOS-XE-bfd-oper?module=Cisco-IOS-XE-bfd-oper&revision=2019-05-01</capability
http://cisco.com/ns/yang/Cisco-IOS-XE-bgp?module=Cisco-IOS-XE-bgp&revision=2020-07-01</capability>
http://cisco.com/ns/yang/Cisco-IOS-XE-bgp-common-oper?module=Cisco-IOS-XE-bgp-common-oper&revision=2019-05-01</capability
http://cisco.com/ns/yang/Cisco-IOS-XE-bgp-common-oper?module=Cisco-IOS-XE-bgp-common-oper&revision=2019-05-01</capability
http://cisco.com/ns/yang/Cisco-IOS-XE-bgp-oper?module=Cisco-IOS-XE-bgp-oper&revision=2019-11-01</capability
http://cisco.com/ns/yang/Cisco-IOS-XE-bgp-oper?module=Cisco-IOS-XE-bgp-oper&revision=2019-11-01</capability
http://cisco.com/ns/yang/Cisco-IOS-XE-bgp-route-oper?module=Cisco-IOS-XE-bgp-route-oper&revision=2019-05-01</capability
http://cisco.com/ns/yang/Cisco-IOS-XE-bgp-route-oper?module=Cisco-IOS-XE-bgp-route-oper&revision=2019-05-01</capability
http://cisco.com/ns/yang/Cisco-IOS-XE-bridge-domain?module=Cisco-IOS-XE-bridge-domain&revision=2020-03-01</capability
http://cisco.com/ns/yang/Cisco-IOS-XE-bridge-domain?module=Cisco-IOS-XE-bridge-domain&revision=2020-03-01</capability
http://openconfig.net/yang/bgp-policy?module=openconfig-bgp-policy&revision=2016-06-21&deviations=cisco-xe-openconfig-bgp-policy-deviation</capability
http://openconfig.net/yang/bgp-policy?module=openconfig-bgp-policy&revision=2016-06-21&deviations=cisco-xe-openconfig-bgp-policy-deviation</capability
http://openconfig.net/yang/bgp-policy?module=openconfig-bgp-policy&revision=2016-06-21&deviations=cisco-xe-openconfig-bgp-policy-deviation</capability
http://openconfig.net/yang/bgp-types?module=openconfig-bgp-types&revision=2016-06-21</capability>
http://openconfig.net/yang/cisco-xe-openconfig-if-ip-deviation?module=cisco-xe-openconfig-if-ip-deviation&revision=2017-03-04</capability
http://openconfig.net/yang/cisco-xe-openconfig-if-ip-deviation?module=cisco-xe-openconfig-if-ip-deviation&revision=2017-03-04</capability
http://openconfig.net/yang/cisco-xe-openconfig-interfaces-deviation?module=cisco-xe-openconfig-interfaces-deviation&revision=2018-08-21</capability
http://openconfig.net/yang/cisco-xe-openconfig-interfaces-deviation?module=cisco-xe-openconfig-interfaces-deviation&revision=2018-08-21</capability
http://openconfig.net/yang/cisco-xe-routing-csr-openconfig-platform-deviation?module=cisco-xe-routing-csr-openconfig-platform-deviation&revision=2010-10-09</capability>
http://openconfig.net/yang/cisco-xe-routing-openconfig-system-deviation?module=cisco-xe-routing-openconfig-system-deviation&revision=2017-11-27</capability
http://openconfig.net/yang/cisco-xe-routing-openconfig-system-deviation?module=cisco-xe-routing-openconfig-system-deviation&revision=2017-11-27</capability
http://openconfig.net/yang/cisco-xe-routing-openconfig-system-deviation?module=cisco-xe-routing-openconfig-system-deviation&revision=2017-11-27</capability
http://openconfig.net/yang/fib-types?module=openconfig-aft-types&revision=2017-01-13</capability>
http://cisco.com/ns/yang/Cisco-*
http://openconfig.net/yang/*
http://cisco.com/ns/yang/Cisco-IOS-XE-bfd?module=Cisco-IOS-XE-bfd&revision=2020-07-01</capability>
http://cisco.com/ns/yang/Cisco-IOS-XE-bgp?module=Cisco-IOS-XE-bgp&revision=2020-07-01</capability>
http://openconfig.net/yang/bgp-types?module=openconfig-bgp-types&revision=2016-06-21</capability>
http://openconfig.net/yang/cisco-xe-routing-csr-openconfig-platform-deviation?module=cisco-xe-routing-csr-openconfig-platform-deviation&revision=2010-10-09</capability>
http://openconfig.net/yang/fib-types?module=openconfig-aft-types&revision=2017-01-13</capability>
http://openconfig.net/yang/cisco-xe-routing-csr-openconfig-platform-deviation?module=cisco-xe-routing-csr-openconfig-platform-deviation&revision=2010-10-09</capability>

ptg39201256

410 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Extracting Model Support from the Device—Python and NETCONF
This book about network programmability and DevNet concerns wouldn’t be complete
without Python scripts. You can also use the following handy Python method to connect
to the device via NETCONF and extract the capabilities that you saw from the manual SSH
method just described.

You can start by making a Python virtual environment to contain your project-specific mod-
ules and Python script, as seen in Example 12-18. Make sure you have a Python3 environ-
ment on your laptop or virtual machine. After you create the virtual environment, you can
import the ncclient module, which is a useful Python library for client-side scripting and
application development with the NETCONF protocol.

Example 12-18 Installing ncclient

devnetuser@mylaptop Python % python3 -m venv pynetconf

devnetuser@mylaptop Python % cd pynetconf

devnetuser@mylaptop pynetconf % source bin/activate

(pynetconf) devnetuser@mylaptop pynetconf % pip install ncclient

Collecting ncclient

 Downloading ncclient-0.6.12.tar.gz (106 kB)

 |████████████████████████████████| 106 kB 2.9 MB/s

Requirement already satisfied: setuptools>0.6 in ./lib/python3.9/site-packages (from
ncclient) (56.0.0)

Collecting paramiko>=1.15.0

 Downloading paramiko-2.7.2-py2.py3-none-any.whl (206 kB)

 |████████████████████████████████| 206 kB 3.9 MB/s

Collecting lxml>=3.3.0

 Downloading lxml-4.6.3-cp39-cp39-macosx_10_9_x86_64.whl (4.6 MB)

 |████████████████████████████████| 4.6 MB 4.2 MB/s

Collecting six

 Downloading six-1.16.0-py2.py3-none-any.whl (11 kB)

Collecting cryptography>=2.5

 Downloading cryptography-3.4.7-cp36-abi3-macosx_10_10_x86_64.whl (2.0 MB)

 |████████████████████████████████| 2.0 MB 12.4 MB/s

Collecting bcrypt>=3.1.3

 Downloading bcrypt-3.2.0-cp36-abi3-macosx_10_9_x86_64.whl (31 kB)

Collecting pynacl>=1.0.1

 Downloading PyNaCl-1.4.0-cp35-abi3-macosx_10_10_x86_64.whl (380 kB)

 |████████████████████████████████| 380 kB 10.7 MB/s

Collecting cffi>=1.1

 Downloading cffi-1.14.5-cp39-cp39-macosx_10_9_x86_64.whl (177 kB)

 |████████████████████████████████| 177 kB 8.5 MB/s

Collecting pycparser

 Downloading pycparser-2.20-py2.py3-none-any.whl (112 kB)

 |████████████████████████████████| 112 kB 9.8 MB/s

Using legacy 'setup.py install' for ncclient, since package 'wheel' is not
installed.

BOOK.indb 410 19/05/22 5:54 PM

ptg39201256

Chapter 12: Model-Driven Telemetry 411

12Installing collected packages: pycparser, six, cffi, pynacl, cryptography, bcrypt,
paramiko, lxml, ncclient

 Running setup.py install for ncclient ... done

Successfully installed bcrypt-3.2.0 cffi-1.14.5 cryptography-3.4.7 lxml-4.6.3 nccli-
ent-0.6.12 paramiko-2.7.2 pycparser-2.20 pynacl-1.4.0 six-1.16.0

(pynetconf) devnetuser@mylaptop pynetconf %

Next, the Python script in Example 12-19 helps extract the YANG module capabilities from
a device. Here, you can use the DevNet IOS XE on CSR Latest Code Always On sandbox
lab environment again.

Example 12-19 Simple Python Script to Extract NETCONF Capabilities

from ncclient import manager

with manager.connect(

 host='sandbox-iosxe-latest-1.cisco.com',

 port=830,

 username='developer',

 password='C1sco12345',

 device_params={'name': 'csr'}

) as session:

 for capability in session.server_capabilities:

 print(capability)

Now, execute this Python script, using the process shown in Example 12-20.

Example 12-20 Executing pynetconf.py Script

(pynetconf) devnetuser@mylaptop pynetconf % python3 pynetconf.py

urn:ietf:params:netconf:base:1.0

urn:ietf:params:netconf:base:1.1

urn:ietf:params:netconf:capability:writable-running:1.0

urn:ietf:params:netconf:capability:rollback-on-error:1.0

[. . . TRIMMED . . .]

http://cisco.com/ns/yang/Cisco-IOS-XE-aaa?module=Cisco-IOS-XE-aaa&revision=2020-07-01

http://cisco.com/ns/yang/Cisco-IOS-XE-aaa-oper?module=Cisco-IOS-XE-aaa-
oper&revision=2019-05-01

http://cisco.com/ns/yang/Cisco-IOS-XE-acl?module=Cisco-IOS-XE-acl&revision=2020-03-01

http://cisco.com/ns/yang/Cisco-IOS-XE-acl-oper?module=Cisco-IOS-XE-acl-
oper&revision=2020-03-01

http://cisco.com/ns/yang/Cisco-IOS-XE-app-hosting-cfg?module=Cisco-IOS-XE-app-host-
ing-cfg&revision=2020-03-01

http://cisco.com/ns/yang/Cisco-IOS-XE-app-hosting-oper?module=Cisco-IOS-XE-app-hos-
ting-oper&revision=2019-05-01

http://cisco.com/ns/yang/Cisco-IOS-XE-arp?module=Cisco-IOS-XE-arp&revision=2019-07-01

http://cisco.com/ns/yang/Cisco-IOS-XE-arp-oper?module=Cisco-IOS-XE-arp-
oper&revision=2019-05-01

http://cisco.com/ns/yang/Cisco-IOS-XE-atm?module=Cisco-IOS-XE-atm&revision=2020-07-01

[. . . TRIMMED . . .]

BOOK.indb 411 19/05/22 5:54 PM

http://1.cisco.com'
http://cisco.com/ns/yang/Cisco-IOS-XE-aaa?module=Cisco-IOS-XE-aaa&revision=2020-07-01
http://cisco.com/ns/yang/Cisco-IOS-XE-aaa-oper?module=Cisco-IOS-XE-aaa-oper&revision=2019-05-01
http://cisco.com/ns/yang/Cisco-IOS-XE-aaa-oper?module=Cisco-IOS-XE-aaa-oper&revision=2019-05-01
http://cisco.com/ns/yang/Cisco-IOS-XE-acl?module=Cisco-IOS-XE-acl&revision=2020-03-01
http://cisco.com/ns/yang/Cisco-IOS-XE-acl-oper?module=Cisco-IOS-XE-acl-oper&revision=2020-03-01
http://cisco.com/ns/yang/Cisco-IOS-XE-acl-oper?module=Cisco-IOS-XE-acl-oper&revision=2020-03-01
http://cisco.com/ns/yang/Cisco-IOS-XE-app-hosting-cfg?module=Cisco-IOS-XE-app-host-ing-cfg&revision=2020-03-01
http://cisco.com/ns/yang/Cisco-IOS-XE-app-hosting-cfg?module=Cisco-IOS-XE-app-host-ing-cfg&revision=2020-03-01
http://cisco.com/ns/yang/Cisco-IOS-XE-app-hosting-oper?module=Cisco-IOS-XE-app-hos-ting-oper&revision=2019-05-01
http://cisco.com/ns/yang/Cisco-IOS-XE-app-hosting-oper?module=Cisco-IOS-XE-app-hos-ting-oper&revision=2019-05-01
http://cisco.com/ns/yang/Cisco-IOS-XE-arp?module=Cisco-IOS-XE-arp&revision=2019-07-01
http://cisco.com/ns/yang/Cisco-IOS-XE-arp-oper?module=Cisco-IOS-XE-arp-oper&revision=2019-05-01
http://cisco.com/ns/yang/Cisco-IOS-XE-arp-oper?module=Cisco-IOS-XE-arp-oper&revision=2019-05-01
http://cisco.com/ns/yang/Cisco-IOS-XE-atm?module=Cisco-IOS-XE-atm&revision=2020-07-01

ptg39201256

412 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

http://openconfig.net/yang/bgp?module=openconfig-bgp&revision=2016-06-21

http://openconfig.net/yang/bgp-policy?module=openconfig-bgp-policy&revision=2016-
06-21&deviations=cisco-xe-openconfig-bgp-policy-deviation

http://openconfig.net/yang/bgp-types?module=openconfig-bgp-types&revision=2016-06-21

[. . . TRIMMED . . .]

http://openconfig.net/yang/interfaces?module=openconfig-interfaces&revision=2018-
01-05&deviations=cisco-xe-openconfig-if-ip-deviation,cisco-xe-openconfig-interfaces-
deviation,cisco-xe-routing-openconfig-vlan-deviation

http://openconfig.net/yang/interfaces/aggregate?module=openconfig-if-
aggregate&revision=2018-01-05

http://openconfig.net/yang/interfaces/ethernet?module=openconfig-if-
ethernet&revision=2018-01-05

http://openconfig.net/yang/interfaces/ip?module=openconfig-if-ip&revision=2018-
01-05&deviations=cisco-xe-openconfig-if-ip-deviation,cisco-xe-openconfig-interfaces-
deviation

http://openconfig.net/yang/interfaces/ip-ext?module=openconfig-if-ip-
ext&revision=2018-01-05

[. . . TRIMMED . . .]

 urn:ietf:params:netconf:capability:notification:1.1

(pynetconf) devnetuser@mylaptop pynetconf %

In this example, you can again see the Cisco vendor-specific and OpenConfig models. To
obtain telemetry, you map the function—BGP, interfaces, AAA, ARP, and so on—to the
YANG model name as a reference. The *-oper YANG models are focused on operational sta-
tistics, so you can start there when looking for metrics you might associate with dashboards
when showing volume, consumption, performance, and so on.

The following list provides some popular YANG models you might be interested in trying
out when getting started. A mixture of IOS-XR and IOS-XE models is listed. First, note the
model name before the colon (:) and the subtree path afterward. This combination is supplied
in the sensor path (or filter path) definition when creating a telemetry configuration. The pre-
ceding section includes references on configuration templates.

■ Health

■ Cisco-IOS-XR-wdsysmon-fd-oper:system-monitoring/cpu-utilization

■ Cisco-IOS-XR-nto-misc-oper:memory-summary/nodes/node/summary

■ Cisco-IOS-XR-shellutil-oper:system-time/uptime

■ Cisco-IOS-XR-telemetry-model-driven-oper:telemetry-model-driven

■ Cisco-IOS-XE-process-cpu-oper: cpu-usage/cpu-utilization/five-seconds

■ Cisco-IOS-XE-environment-oper

■ Cisco-IOS-XE-memory-oper: memory-statistics

■ Cisco-IOS-XE-platform-software-oper

■ Cisco-IOS-XE-process-memory-oper

BOOK.indb 412 19/05/22 5:54 PM

http://openconfig.net/yang/bgp?module=openconfig-bgp&revision=2016-06-21
http://openconfig.net/yang/bgp-policy?module=openconfig-bgp-policy&revision=2016-06-21&deviations=cisco-xe-openconfig-bgp-policy-deviation
http://openconfig.net/yang/bgp-policy?module=openconfig-bgp-policy&revision=2016-06-21&deviations=cisco-xe-openconfig-bgp-policy-deviation
http://openconfig.net/yang/bgp-types?module=openconfig-bgp-types&revision=2016-06-21
http://openconfig.net/yang/interfaces?module=openconfig-interfaces&revision=2018-01-05&deviations=cisco-xe-openconfig-if-ip-deviation,cisco-xe-openconfig-interfaces-deviation,cisco-xe-routing-openconfig-vlan-deviation
http://openconfig.net/yang/interfaces?module=openconfig-interfaces&revision=2018-01-05&deviations=cisco-xe-openconfig-if-ip-deviation,cisco-xe-openconfig-interfaces-deviation,cisco-xe-routing-openconfig-vlan-deviation
http://openconfig.net/yang/interfaces?module=openconfig-interfaces&revision=2018-01-05&deviations=cisco-xe-openconfig-if-ip-deviation,cisco-xe-openconfig-interfaces-deviation,cisco-xe-routing-openconfig-vlan-deviation
http://openconfig.net/yang/interfaces/aggregate?module=openconfig-if-aggregate&revision=2018-01-05
http://openconfig.net/yang/interfaces/aggregate?module=openconfig-if-aggregate&revision=2018-01-05
http://openconfig.net/yang/interfaces/ethernet?module=openconfig-if-ethernet&revision=2018-01-05
http://openconfig.net/yang/interfaces/ethernet?module=openconfig-if-ethernet&revision=2018-01-05
http://openconfig.net/yang/interfaces/ip?module=openconfig-if-ip&revision=2018-01-05&deviations=cisco-xe-openconfig-if-ip-deviation,cisco-xe-openconfig-interfaces-deviation
http://openconfig.net/yang/interfaces/ip?module=openconfig-if-ip&revision=2018-01-05&deviations=cisco-xe-openconfig-if-ip-deviation,cisco-xe-openconfig-interfaces-deviation
http://openconfig.net/yang/interfaces/ip?module=openconfig-if-ip&revision=2018-01-05&deviations=cisco-xe-openconfig-if-ip-deviation,cisco-xe-openconfig-interfaces-deviation
http://openconfig.net/yang/interfaces/ip-ext?module=openconfig-if-ip-ext&revision=2018-01-05
http://openconfig.net/yang/interfaces/ip-ext?module=openconfig-if-ip-ext&revision=2018-01-05

ptg39201256

Chapter 12: Model-Driven Telemetry 413

12
■ Interfaces

■ Cisco-IOS-XR-infra-statsd-oper:infra-statistics/interfaces/interface/latest/generic-
counters

■ Cisco-IOS-XR-ipv6-ma-oper:ipv6-network/nodes/node/interface-data/vrfs/vrf/
global-briefs/global-brief

■ Cisco-IOS-XR-pfi-im-cmd-oper:interfaces/interface-summary

■ Cisco-IOS-XR-pfi-im-cmd-oper:interfaces/interface-xr/interface

■ Cisco-IOS-XR-ethernet-lldp-oper:lldp/global-lldp/lldp-info

■ Cisco-IOS-XR-ethernet-lldp-oper:lldp/nodes/node/interfaces/interface

■ Cisco-IOS-XR-ethernet-lldp-oper:lldp/nodes/node/neighbors/details/detail

■ ietf-interfaces

■ Openconfig-interfaces

■ Openconfig-network-instance

■ Inventory

■ Cisco-IOS-XR-plat-chas-invmgr-oper:platform-inventory/racks/rack

■ Optics

■ Cisco-IOS-XR-controller-optics-oper:optics-oper/optics-ports/optics-port/
optics-info

■ Routing

■ Cisco-IOS-XR-clns-isis-oper:isis/instances/instance/levels/level/adjacencies/
adjacency

■ Cisco-IOS-XR-clns-isis-oper:isis/instances/instance/statistics-global

■ Cisco-IOS-XR-ip-rib-ipv4-oper:rib/vrfs/vrf/afs/af/safs/saf/ip-rib-route-table-names/
ip-rib-route-table-name/protocol/isis/as/information

■ Cisco-IOS-XR-ipv4-bgp-oper:bgp/instances/instance/instance-active/default-vrf/
process-info

■ ietf-ospf

■ ietf-routing

■ Openconfig-routing-policy

■ MPLS Traffic Engineering

■ Cisco-IOS-XR-mpls-te-oper:mpls-te/tunnels/summary

■ Cisco-IOS-XR-ip-rsvp-oper:rsvp/interface-briefs/interface-brief

■ Cisco-IOS-XR-ip-rsvp-oper:rsvp/counters/interface-messages/interface-message

BOOK.indb 413 19/05/22 5:54 PM

ptg39201256

414 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Digging into the YANG Models
Researching and navigating the YANG models to understand hierarchy, containers, leaves,
and available functionality is important. You can glean some information by reviewing the
YANG models as documented in the GitHub links mentioned earlier, but the manual method
may be a case of last resort. How many times did you revert to reading SNMP MIB files?
Fortunately, there are some helpful, graphical tools to help you investigate the YANG mod-
els. One such tool is YANG Suite. It replaces a mature Yang Explorer open-source project
that needed to be updated due to its dependency on Flash technology.

The next steps are to install Docker on a Linux VM, obtain the YANG Suite docker con-
tainer, run it, and then use YANG Suite.

Installing Docker to the Linux VM
For this step, start with a virgin Linux virtual machine (RedHat, CentOS, Ubuntu, and so on).
You need Docker installed. If it’s not there, install it.

To start, you add the repository to the system:

mylinuxvm$ sudo dnf config-manager --add-repo=https://
download.docker.com/linux/centos/docker-ce.repo

Then install the Docker package:

mylinuxvm$ sudo dnf install docker-ce docker-ce-cli containerd.io

Next, start the Docker service and add it to autorun:

mylinuxvm$ sudo systemctl enable --now docker

Some Linux operating systems have client firewalls enabled by default. If so, find out how
to enable a masquerade rule. Masquerading is a type of NAT used to link a private network
with the Internet. In the CentOS 8 system, you can use these commands to add a masquer-
ade rule:

mylinuxvm$ sudo firewall-cmd --zone=public --add-masquerade
–permanent

mylinuxvm$ sudo firewall-cmd --reload

Docker is often installed along with the docker-compose utility, which enables you to deploy
a project to another machine simply. To download it, run the following command:

mylinuxvm$ sudo curl -L "https://github.com/docker/compose/
releases/download/1.29.2/docker-compose-$(uname -s)-$(uname -m)"
-o /usr/local/bin/docker-compose

Make the newly downloaded docker-compose binary executable:

mylinuxvm$ sudo chmod +x /usr/local/bin/docker-compose

You want to be able to use Docker as a nonroot user, so you must add that user to the
docker group. Replace username with the desired account in the following command:

mylinuxvm$ sudo usermod -aG docker username

To pick up all privileges, log out from the system and log in again.

BOOK.indb 414 19/05/22 5:54 PM

https://download.docker.com/linux/centos/docker-ce.repo
https://download.docker.com/linux/centos/docker-ce.repo
http://containerd.io
https://github.com/docker/compose/releases/download/1.29.2/docker-compose-$(uname
https://github.com/docker/compose/releases/download/1.29.2/docker-compose-$(uname

ptg39201256

Chapter 12: Model-Driven Telemetry 415

12
Verify Docker is working properly by pulling down and running a test container, as shown in
Example 12-21.

Example 12-21 Verifying Docker Operation with Hello World

mylinuxvm$ docker run hello-world

Unable to find image 'hello-world:latest' locally

latest: Pulling from library/hello-world

b8dfde127a29: Pull complete

Digest: sha256:9f6ad537c5132bcce57f7a0a20e317228d382c3cd61edae14650eec68b2b345c

Status: Downloaded newer image for hello-world:latest

Hello from Docker!

This message shows that your installation appears to be working correctly.

To generate this message, Docker took the following steps:

 1. The Docker client contacted the Docker daemon.

 2. The Docker daemon pulled the "hello-world" image from the Docker Hub.

 (amd64)

 3. The Docker daemon created a new container from that image which runs the

 executable that produces the output you are currently reading.

 4. The Docker daemon streamed that output to the Docker client, which sent it

 to your terminal.

To try something more ambitious, you can run an Ubuntu container with:

 $ docker run -it ubuntu bash

Share images, automate workflows, and more with a free Docker ID:

 https://hub.docker.com/

For more examples and ideas, visit:

 https://docs.docker.com/get-started/

Installing the YANG Suite Docker Image to the Linux VM
Now that you’re confident Docker is installed and working, it’s time to get the YANG Suite
docker container image, shown in Example 12-22.

Example 12-22 Obtaining YANG Suite from GitHub

mylinuxvm$ git clone https://github.com/CiscoDevNet/yangsuite

Cloning into 'yangsuite'...

remote: Enumerating objects: 727, done.

remote: Counting objects: 100% (727/727), done.

remote: Compressing objects: 100% (495/495), done.

remote: Total 727 (delta 283), reused 610 (delta 215), pack-reused 0

Receiving objects: 100% (727/727), 24.96 MiB | 30.36 MiB/s, done.

Resolving deltas: 100% (283/283), done.

BOOK.indb 415 19/05/22 5:54 PM

https://hub.docker.com/For
https://hub.docker.com/For
https://docs.docker.com/get-started/
https://github.com/CiscoDevNet/yangsuite

ptg39201256

416 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Next, you generate self-signed certificates by running a supplied shell script, as described in
Example 12-23.

Example 12-23 Generating Self-Signed Certificates in YANG Suite

mylinuxvm$ cd yangsuite/docker/

mylinuxvm$./gen_test_certs.sh

##

Generating self-signed certificates...

##

WARNING: Obtain certificates from a trusted authority!

##

NOTE: Some browsers may still reject these certificates!!

##

Generating a RSA private key

..+++++

......................+++++

writing new private key to 'nginx/nginx-self-signed.key'

Finally, you bring up the docker container by using docker-compose, with Example 12-24
providing the guidance.

Example 12-24 Starting YANG Suite from the Docker Container

mylinuxvm$ docker-compose up

Creating network "docker_default" with the default driver

Creating volume "docker_static-content" with default driver

Creating volume "docker_uwsgi" with default driver

Building yangsuite

Sending build context to Docker daemon 12.29kB

Step 1/19 : FROM ubuntu:18.04

18.04: Pulling from library/ubuntu

4bbfd2c87b75: Pull complete

d2e110be24e1: Pull complete

889a7173dcfe: Pull complete

Digest: sha256:67b730ece0d34429b455c08124ffd444f021b81e06fa2d9cd0adaf0d0b875182

Status: Downloaded newer image for ubuntu:18.04

[. . . TRUNCATED . . .]

Downloading the container’s operating system (Ubuntu 18.04) and other dependencies, such
as Python3.6 and nginx, may take several minutes.

After all the downloads are finished and activated, leave the terminal session running and
access the console/desktop of the VM to run a browser. Access YANG Suite via the locally
running nginx web server at http://127.0.0.1.

You are prompted to accept the End User License Agreement and Privacy Policy, as seen in
Figure 12-7.

BOOK.indb 416 19/05/22 5:54 PM

http://127.0.0.1

ptg39201256

Chapter 12: Model-Driven Telemetry 417

12

Figure 12-7 Cisco YANG Suite Web Portal and User Agreement

After you accept the agreement and policy, you are presented with a login screen, as shown
in Figure 12-8.

Figure 12-8 Cisco YANG Suite Login Portal

The default username and password are admin and superuser. Note that you can change
them in the <installation directory>/yangsuite/docker/docker-compose.yml file as the
services:yangsuite:environment: YS_ADMIN_USER and YS_ADMIN_PASS variables. See
Figure 12-9 for an example.

Figure 12-9 Cisco YANG Suite docker-compose.yml File

BOOK.indb 417 19/05/22 5:54 PM

ptg39201256

418 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Upon successful login, you see the YANG Suite portal, as shown in Figure 12-10.

Figure 12-10 Cisco YANG Suite Initial Portal

As you can see, the portal suggests the first way to use YANG Suite is to connect to a device
and obtain YANG models from it. The second is to load or install them yourself.

For this example, go with the first method. Click the Setup option on the left navigation
panel and then Device Profiles. The menu shown in Figure 12-11 then appears.

Figure 12-11 Cisco YANG Suite Device Profile Options

Click the Create New Device button. You can use the DevNet IOS XE on CSR Latest Code
Always On sandbox lab environment. It is described more fully at https://
devnetsandbox.cisco.com/RM/Diagram/Index/7b4d4209-a17c-4bc3-9b38-f15184e53a94?di
agramType=Topology.

BOOK.indb 418 19/05/22 5:54 PM

https://devnetsandbox.cisco.com/RM/Diagram/Index/7b4d4209-a17c-4bc3-9b38-f15184e53a94?di
https://devnetsandbox.cisco.com/RM/Diagram/Index/7b4d4209-a17c-4bc3-9b38-f15184e53a94?di

ptg39201256

Chapter 12: Model-Driven Telemetry 419

12
You should fill in the New Device Profile fields as shown in Table 12-6.

Table 12-6 Device Profile Field Settings

Field Value Notes

Profile Name DevNet IOS XE

Description Always On Sandbox Device

Address sandbox-iosxe-latest-1.cisco.com

Username developer

Password C1sco12345

Device supports NETCONF (selected)

Skip SSH key validation for this device (selected)

Your entries should look like those shown in Figure 12-12.

Figure 12-12 Cisco YANG Suite Device Profile Entry for DevNet Always On Sandbox
Device

Additionally, you can select the Check Connectivity button and get a result, as shown in
Figure 12-13.

BOOK.indb 419 19/05/22 5:54 PM

http://1.cisco.com

ptg39201256

420 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Figure 12-13 Cisco YANG Suite Device Connectivity Check

Note that it’s fine to have the pings fail because they are blocked in the Sandbox environ-
ment. You should see a successful, green NETCONF connection.

Close the connectivity check pop-up window and select the Create Profile button.

Next, select the new DevNet IOS XE device profile in the middle column and select the Cre-
ate Default Repository and Yangset button (see Figure 12-14) to connect to the device and
pull down its YANG models.

Figure 12-14 Cisco YANG Suite Option to Create a Default Repository

BOOK.indb 420 19/05/22 5:55 PM

ptg39201256

Chapter 12: Model-Driven Telemetry 421

12
The system then retrieves the YANG model information. This process may take several
minutes and show a progress bar along the top, as seen in Figure 12-15.

Figure 12-15 Cisco YANG Suite Progressing Through Device Information Capture

Eventually, when the process is complete, you see a screen with a success pop-up similar to
that shown in Figure 12-16.

Figure 12-16 Cisco YANG Suite Success in Connectivity

Close the pop-up window. On the left-hand navigation panel, select Explore and the YANG
option. From the main frame, select the drop-down menu option that reflects the YANG

BOOK.indb 421 19/05/22 5:55 PM

ptg39201256

422 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

set you just created, probably named devnet-ios-xe-default-yangset. In the Select a YANG
Module(s) menu, pick something like the Cisco-IOS-XE-bgp-oper model. Then click the
Load Module(s) button on the right side, as shown in Figure 12-17.

Figure 12-17 Loading a Module in Cisco YANG Suite

Feel free to navigate around the web UI and see how YANG models are represented
(see Figure 12-18).

Figure 12-18 Exploring a YANG Model in Cisco YANG Suite

BOOK.indb 422 19/05/22 5:55 PM

ptg39201256

Chapter 12: Model-Driven Telemetry 423

12
Note that when individual leaves are selected, the Node Properties are populated on the
right-hand side. The Xpath and Prefix properties are very helpful in forming the streaming
telemetry sensor paths for the device or collector configurations.

You now have a solid tool and process for exploring YANG models and developing your
desired sensor paths.

Practical Application of Streaming Telemetry
Now let’s consider again the cadence-based model-driven telemetry model. Assume you’re
using a push model of interface statistics on an IOS XE-based platform. IOS XE runs on the
Catalyst 9000 series network switches; Catalyst 9800 wireless LAN controllers; routers like
the ASR 1000, CSR1000v, and ISR 1000 and 4000s; and other devices in IoT and cable prod-
uct lines. For this case, target IOS XE 16.6 or newer for MDT support.

For convenience, you can use the preceding section’s instructions about using YANG Suite
and accessing the DevNet Sandbox Always On IOS XR device. Returning to the YANG
Suite and pulling down the models as previously described, you can search for interface type
models. Figure 12-19 shows that example.

Figure 12-19 Searching for YANG Models with Interface Names

You should select the Cisco-IOS-XE-interface-oper model because the oper models have the
operational statistics leaves you generally want. Selecting that option and selecting the Load
Module(s) button shows the data model in a tree hierarchy. If you expand the main branch
of the model, you can see a hierarchy navigating down through interfaces and interface.
Some of the leaf and leaf-list type names should be familiar and self-explanatory. Expand-
ing the statistics container, which looks like a folder in YANG Suite, reveals other leaf nodes
that should have familiar names, such as in-octets, out-octets, and in-unicast-pkts. For this
example, you can settle on selecting the statistics container and viewing the node properties,
as seen in Figure 12-20.

BOOK.indb 423 19/05/22 5:55 PM

ptg39201256

424 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Figure 12-20 Navigating the Statistics Container in the Interfaces YANG Model

To build the sensor path reference, you take the prefix, interface-ios-xe-oper, and the Xpath,
/interfaces/interface/statistics, to result in the following combined XPath filter:

/interface-ios-xe-oper:interfaces/interface/statistics

This path would provide telemetry of all nodes below the statistics container, which includes
the in-octets and out-octets counters you’re interested in.

To build a cadence-based configuration in an IOS XE-based device, such as a Cisco
CSR1000v, you can enter a configuration similar to that shown in Example 12-25.

Example 12-25 Configuration Template for Interface Statistics Telemetry

telemetry ietf subscription 100

 encoding encode-kvgpb

 filter xpath /interfaces-ios-xe-oper:interfaces/interface/statistics

 source-address 10.1.1.20

 stream yang-push

 update-policy periodic 1000

 receiver ip address 10.1.1.100 57000 protocol grpc-tcp

Example 12-25 uses Google protobufs (GPBs) as key-value pairs, noted as encoding encode-
kvgpb. It has the filter xpath you extracted earlier and uses a yang-push streaming model.
You define the frequency in centiseconds; for this example, 1000 would be every
10 seconds. Finally, the streaming telemetry receiver IP address and protocol are defined
using TCP-based Google RPCs.

If you don’t like the preceding configuration template approach, you can push the following
XML payload shown in Example 12-26 in a NETCONF session, achieving the same effect.

BOOK.indb 424 19/05/22 5:55 PM

ptg39201256

Chapter 12: Model-Driven Telemetry 425

12
Example 12-26 XML Payload for NETCONF Session Creating Interface Statistics
Telemetry

<mdt-config-data xmlns="http://cisco.com/ns/yang/Cisco-IOS-XE-mdt-cfg">

 <mdt-subscription>

 <subscription-id>100</subscription-id>

 <base>

 <stream>yang-push</stream>

 <encoding>encode-kvgpb</encoding>

 <source-address>10.1.1.20</source-address>

 <period>1000</period>

 <xpath>/interface-ios-xe-oper:interfaces/interface/statistics</xpath>

 </base>

 <mdt-receivers>

 <address>10.1.1.100</address>

 <port>57000</port>

 <protocol>grpc-tcp</protocol>

 </mdt-receivers>

 </mdt-subscription>

</mdt-config-data>

You can check the status of the streaming telemetry with the show telemetry ietf subscrip-
tion all detail command, as seen in Example 12-27.

Example 12-27 Validating Streaming Telemetry Subscriptions

CSR100V# show telemetry ietf subscription all detail

Telemetry subscription detail:

 Subscription ID: 100

 Type: Configured

 State: Valid

 Stream: yang-push

 Filter:

 Filter type: xpath

 XPath: /interfaces-ios-xe-oper:interfaces/interface/statistics

 Update policy:

 Update Trigger: periodic

 Period: 1000

 Encoding: encode-kvgpb

 Source VRF:

 Source Address: 10.1.1.20

 Notes:

 Receivers:

 Address Port Protocol Protocol Profile

 --

 10.1.1.100 57000 grpc-tcp

CSR100V#

BOOK.indb 425 19/05/22 5:55 PM

http://cisco.com/ns/yang/Cisco-IOS-XE-mdt-cfg"

ptg39201256

426 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Using Telegraph, InfluxDB, and Grafana
An excellent open-source option for a streaming telemetry receiver is the TIG Stack, which
includes Telegraf, InfluxDB, and Grafana.

Telegraf is the agent for collecting and reporting metrics and data. It is the receiver or collec-
tor of streaming telemetry data. Telegraf uses plug-ins for collecting and reporting metrics.
It has integrations to extract metrics, events, and logs from systems it’s running on. It can
pull metrics from APIs and listen for metrics sourced from StatsD and Kafka. On the output
side, it can send metrics to files, message queues, and other endpoints, including InfluxDB,
Graphite, OpenTSDB, Kafka, and MQTT.

InfluxDB is the time series database (TSDB) of the stack. InfluxDB is an open-source proj-
ect written in Go. It is optimized for fast, high-availability storage and retrieval of time
series data.

Grafana is also an open-source project. It extracts data from databases like InfluxDB, per-
forms basic or advanced data analytics, and creates dashboards.

Installing InfluxDB
Start by installing InfluxDB. This example uses Ubuntu, specifically Ubuntu Server 20.04.2
LTS, but any Linux distribution should have similar install methods.

First, import the influxdata key to the Ubuntu registry:

mdtuser@tig-stack:~$ sudo curl -sL https://repos.influxdata.com/
influxdb.key | sudo apt-key add -

Next, add the influxdata repository to the apt sources:

mdtuser@tig-stack:~$ source /etc/lsb-release

mdtuser@tig-stack:~$ echo "deb https://repos.influxdata.
com/${DISTRIB_ID,,} ${DISTRIB_CODENAME} stable" | sudo tee /etc/
apt/sources.list.d/influxdb.list

Update the local repository and install the influxdb package:

mdtuser@tig-stack:~$ sudo apt update

mdtuser@tig-stack:~$ sudo apt install influxdb -y

After installation is complete, start the influxdb service. Configure it to launch at every boot:

mdtuser@tig-stack:~$ sudo systemctl start influxdb

mdtuser@tig-stack:~$ sudo systemctl enable influxdb

Then check to see the service is running with port listeners active by using the process
shown in Example 12-28.

BOOK.indb 426 19/05/22 5:55 PM

https://repos.influxdata.com/influxdb.key
https://repos.influxdata.com/influxdb.key
https://repos.influxdata.com/${DISTRIB_ID,,}
https://repos.influxdata.com/${DISTRIB_ID,,}

ptg39201256

Chapter 12: Model-Driven Telemetry 427

12
Example 12-28 Verifying Active Port Listeners

mdtuser@tig-stack:~$ ss -plntu

Netid State Recv-Q Send-Q Local Address:Port Peer Address:Port
 Process

udp UNCONN 0 0 127.0.0.53%lo:53 0.0.0.0:*

tcp LISTEN 0 4096 127.0.0.53%lo:53 0.0.0.0:*

tcp LISTEN 0 128 0.0.0.0:22 0.0.0.0:*

tcp LISTEN 0 4096 127.0.0.1:8088 0.0.0.0:*

tcp LISTEN 0 4096 *:8086 *:*

tcp LISTEN 0 128 [::]:22 [::]:*

You’re specifically looking for the port listeners on ports 8086 and 8088.

Next, create an InfluxDB database and database user. Use the influx command to access the
InfluxDB console:

mdtuser@tig-stack:~$ influx

Connected to http://localhost:8086 version 1.8.6

InfluxDB shell version: 1.8.6

>

Issue the following commands in the influx shell to create a database and user:

create database telegraf

create user telegrafuser with password '<YourPreference>'

You can double-check the creation with the following:

> show databases

name: databases

name

_internal

telegraf

> show users

user admin

---- -----

telegrafuser false

>

Use exit to leave the influx shell.

BOOK.indb 427 19/05/22 5:55 PM

http://localhost:8086version1.8.6

ptg39201256

428 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Installing Telegraf
Telegraf comes from the same organization as InfluxDB. Earlier, you imported the influxdata
key and repository definitions, so you can reuse them now for Telegraf. Install the Telegraf
package:

mdtuser@tig-stack:~$ sudo apt install telegraf -y

Start Telegraf and enable it to start on boot, as you did earlier with InfluxDB:

mdtuser@tig-stack:~$ sudo systemctl start telegraf

mdtuser@tig-stack:~$ sudo systemctl enable telegraf

It also makes sense to double-check the service has started. Example 12-29 provides the
steps and expected output.

Example 12-29 Validating Telegraf Process Status

mdtuser@tig-stack:~$ sudo systemctl status telegraf

• telegraf.service - The plugin-driven server agent for reporting metrics into
InfluxDB

 Loaded: loaded (/lib/systemd/system/telegraf.service; enabled; vendor preset:
enabled)

 Active: active (running) since Sun 2021-06-20 23:20:42 UTC; 1min 45s ago

 Docs: https://github.com/influxdata/telegraf

 Main PID: 20504 (telegraf)

 Tasks: 8 (limit: 9448)

 Memory: 32.4M

 CGroup: /system.slice/telegraf.service

 20504 /usr/bin/telegraf -config /etc/telegraf/telegraf.conf -config-
directory /etc/telegraf/telegraf.d

Jun 20 23:20:42 tig-stack systemd[1]: Started The plugin-driven server agent for
reporting metrics into InfluxDB.

Jun 20 23:20:42 tig-stack telegraf[20504]: time="2021-06-20T23:20:42Z" level=error
msg="failed to create cache directory. />

Jun 20 23:20:42 tig-stack telegraf[20504]: time="2021-06-20T23:20:42Z" level=error
msg="failed to open. Ignored. open /etc/>

Jun 20 23:20:42 tig-stack telegraf[20504]: 2021-06-20T23:20:42Z I! Starting Telegraf
1.19.0

Jun 20 23:20:42 tig-stack telegraf[20504]: 2021-06-20T23:20:42Z I! Loaded inputs:
cpu disk diskio kernel mem processes swap>

Jun 20 23:20:42 tig-stack telegraf[20504]: 2021-06-20T23:20:42Z I! Loaded
aggregators:

Jun 20 23:20:42 tig-stack telegraf[20504]: 2021-06-20T23:20:42Z I! Loaded
processors:

Jun 20 23:20:42 tig-stack telegraf[20504]: 2021-06-20T23:20:42Z I! Loaded outputs:
influxdb

Jun 20 23:20:42 tig-stack telegraf[20504]: 2021-06-20T23:20:42Z I! Tags enabled:
host=tig-stack

Jun 20 23:20:42 tig-stack telegraf[20504]: 2021-06-20T23:20:42Z I! [agent] Config:
Interval:10s, Quiet:false, Hostname:"tig>

mdtuser@tig-stack:~$

BOOK.indb 428 19/05/22 5:55 PM

https://github.com/influxdata/telegraf

ptg39201256

Chapter 12: Model-Driven Telemetry 429

12
Next, you need to configure Telegraf. First, you can configure it for standard functionality;
then you can enhance for handling streaming telemetry functions:

mdtuser@tig-stack:~$ cd /etc/telegraf/

mdtuser@tig-stack:/etc/telegraf$ sudo mv telegraf.conf
telegraf.conf.default

Edit telegraf.conf with your favorite editor, such as vi or vim. Then paste the contents of
Example 12-30.

Example 12-30 telegraf.conf File with Sample Settings

Global Agent Configuration

[agent]

 hostname = "tig-stack"

 flush_interval = "15s"

 interval = "15s"

Input Plugins

[[inputs.cpu]]

 percpu = true

 totalcpu = true

 collect_cpu_time = false

 report_active = false

[[inputs.disk]]

 ignore_fs = ["tmpfs", "devtmpfs", "devfs"]

[[inputs.io]]

[[inputs.mem]]

[[inputs.net]]

[[inputs.system]]

[[inputs.swap]]

[[inputs.netstat]]

[[inputs.processes]]

[[inputs.kernel]]

Output Plugin InfluxDB

[[outputs.influxdb]]

 database = "telegraf"

 urls = ["http://127.0.0.1:8086"]

 username = "telegrafuser"

 password = "<PasswordFromEarlier>"

BOOK.indb 429 19/05/22 5:55 PM

http://[inputs.io]
http://[inputs.net]
http://127.0.0.1:8086"

ptg39201256

430 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Add the following to the telegraf.conf file to enable gRPC Dial-Out Telemetry and enable a
listener port:

gRPC Dial-Out Telemetry Listener

[[inputs.cisco_telemetry_mdt]]

transport = "grpc-dialout"

service_address = ":57000"

Save the file and then restart the Telegraf service:

mdtuser@tig-stack:~$ sudo systemctl start telegraf

The next task is to install Grafana. Install the grafana snap package:

mdtuser@tig-stack:~$ sudo snap install grafana

The Grafana app should be installed. Check for a TCP port 3000 listener with the command
shown in Example 12-31.

Example 12-31 Reviewing Listener Ports for the Grafana Service

mdtuser@tig-stack:~$ ss -plntu

Netid State Recv-Q Send-Q Local Address:Port Peer Address:Port
Process

udp UNCONN 0 0 127.0.0.53%lo:53 0.0.0.0:*

tcp LISTEN 0 4096 127.0.0.53%lo:53 0.0.0.0:*

tcp LISTEN 0 128 0.0.0.0:22 0.0.0.0:*

tcp LISTEN 0 4096 127.0.0.1:8088 0.0.0.0:*

tcp LISTEN 0 4096 *:57000 *:*

tcp LISTEN 0 4096 *:8086 *:*

tcp LISTEN 0 128 [::]:22 [::]:*

tcp LISTEN 0 4096 *:3000 *:*

The last entry in this list shows the port listener, so you can be confident the app is running.
Access Grafana through the Ubuntu console and a local web browser at http://localhost. It
can also be accessed through another local system with the Ubuntu system’s IP address or
registered DNS hostname.

The Grafana login portal appears in the browser, as shown in Figure 12-21; use admin
/admin for the initial login.

BOOK.indb 430 19/05/22 5:55 PM

http://localhost

ptg39201256

Chapter 12: Model-Driven Telemetry 431

12

Figure 12-21 Grafana Login Portal

The system prompts you to reset the password as a security measure. Select (and record) a
new password.

The first action in Grafana is to associate the local InfluxDB as a data source for Grafana.
From the left-side navigation panel, select the gear icon and the Data Sources option. Fill out
the HTTP URL; enable Basic Auth; define User and Password under Basic Auth Details; and
define Database, User, and Password under InfluxDB Details. Finally, click the Save & Test
button at the bottom. A screen like the one shown in Figure 12-22 should appear.

BOOK.indb 431 19/05/22 5:55 PM

ptg39201256

432 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Figure 12-22 Grafana Data Sources Panel

Creating a new dashboard is also fairly easy because of the graphical user interface. From
the left-side navigation panel, select the plus (+) icon. Then select the Create Dashboard
option. Click the Add Query option within the New Panel. Fill out the query parameters as
shown in Figure 12-23.

BOOK.indb 432 19/05/22 5:55 PM

ptg39201256

Chapter 12: Model-Driven Telemetry 433

12

Figure 12-23 Grafana Create Dashboard and Query Panel

For the Visualization icon on the left-side navigation panel, you can set Left Y Unit to bits/
sec to match the data type. The full dashboard resulting from these settings appears as in
Figure 12-24.

Figure 12-24 Grafana Panel of a Graph on a Dashboard

Additional dashboards are easily created and left to your imagination. More advanced func-
tions, such as templates, are available in Grafana to simplify your effort in adding mass num-
bers of dashboards indexed on interface, module, and so on.

Grafana also supports other visualizations such as data panel, table, heat map, and several
others. Take, for example, one of the popular CiscoLive event dashboards from the NOC
where WAN traffic stats are merged with IPv4 and IPv6 information (see Figure 12-25).

BOOK.indb 433 19/05/22 5:55 PM

ptg39201256

434 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Figure 12-25 A Grafana Dashboard of the CiscoLive NOC

So now your opportunities are limitless! Determine what metrics are important to you;
research and extract their sensor paths with YANG Suite; build the device configuration;
export to a TIG stack VM; and create your dashboard.

Beyond MDT—Event-Driven Telemetry
The earlier examples in the “How to Implement Model-Driven Telemetry” and “Practical
Application of Streaming Telemetry” sections focused on time- or cadence-based telemetry
with a quick mention of event-driven telemetry. Let’s double-click more deeply on EDT now
by comparing the two.

In the “Practical Application” section, you learned how to extract interface statistics. Specifi-
cally, you graphed in-octets, or the number of bytes coming into an interface. This counter
metric should always be increasing as long as the interface is up and receiving traffic. This
kind of metric makes a lot of sense for cadence-based telemetry monitoring.

However, what if your sensor path is something other than a counter? What if it is oper-
status, as seen in Figure 12-26?

BOOK.indb 434 19/05/22 5:55 PM

ptg39201256

Chapter 12: Model-Driven Telemetry 435

12

Figure 12-26 YANG Model of Interfaces Oper(ational) Statistics

You know operational status of an interface is an important metric. You want to know when
a link goes down. The YANG Suite perspective of the interfaces YANG model shows the
oper-status node to be an enumeration basetype. This type represents values from a set of
assigned names. YANG Suite doesn’t extract the set of assigned names, but if you’re inter-
ested, you can look more closely at the YANG data model. Go to the GitHub source of the
Cisco-IOS-XE-interfaces-oper YANG data model at https://github.com/YangModels/yang/
blob/master/vendor/cisco/xe/1681/Cisco-IOS-XE-interfaces-oper.yang.

Within that text file, use the browser search function for oper-status. You should see the
information shown in Figure 12-27.

BOOK.indb 435 19/05/22 5:55 PM

https://github.com/YangModels/yang/blob/master/vendor/cisco/xe/1681/Cisco-IOS-XE-interfaces-oper.yang
https://github.com/YangModels/yang/blob/master/vendor/cisco/xe/1681/Cisco-IOS-XE-interfaces-oper.yang

ptg39201256

436 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Figure 12-27 YANG Interfaces Oper-Status Leaf Summary

Looking more closely at the oper-status leaf, note the type, which is interface-ios-xe-
oper:oper-state. Use the browser search function again for oper-state. This time you should
see results like those shown in Figure 12-28.

Figure 12-28 YANG Interfaces Oper-State Details

BOOK.indb 436 19/05/22 5:55 PM

ptg39201256

Chapter 12: Model-Driven Telemetry 437

12
In this figure, you see the oper-status enumeration resolves to several predefined enum
types, such as if-oper-state-invalid, if-oper-state-ready, if-oper-state-dormant, and
if-oper-state-ready.

Indeed, you can update the CSR1000v configuration with a new subscription that captures
this oper-status node and exports to the Telegraf instance. The following configuration
should be pushed to the device:

telemetry ietf subscription 101

 encoding encode-kvgpb

 filter xpath /interfaces-ios-xe-oper:interfaces/interface/oper-
status

 source-address 10.1.1.10

 stream yang-push

 update-policy periodic 1000

 receiver ip address 10.1.1.100 57000 protocol grpc-tc

After a few minutes of exporting metrics, you can see the results injected into the Influx
database. Use the Ubuntu VM’s influx command as seen in Example 12-32.

Example 12-32 Reviewing InfluxDB-Received Telemetry Data

mdtuser@tig-stack:~$ influx

Connected to http://localhost:8086 version 1.8.6

InfluxDB shell version: 1.8.6

> use telegraf

Using database telegraf

> SELECT "name", "oper_status" from "Cisco-IOS-XE-interfaces-oper:interfaces/inter-
face" where "name" = 'GigabitEthernet1'

name: Cisco-IOS-XE-interfaces-oper:interfaces/interface

time name oper_status

---- ---- -----------

1624280416736000000 GigabitEthernet1 if-oper-state-ready

1624280426736000000 GigabitEthernet1 if-oper-state-ready

1624280436736000000 GigabitEthernet1 if-oper-state-ready

1624280446736000000 GigabitEthernet1 if-oper-state-ready

1624280456736000000 GigabitEthernet1 if-oper-state-ready

1624280466736000000 GigabitEthernet1 if-oper-state-ready

1624280476736000000 GigabitEthernet1 if-oper-state-ready

1624280486736000000 GigabitEthernet1 if-oper-state-ready

[. . . a lot more info trimmed . . .]

As you can see in the output in this example, the GigabitEthernet1 interface has a status of
if-oper-state-ready, and it repeats over and over. Because you configured the subscription for
a push every 10 seconds, you get a lot of the same information repeating with little gain.
As a matter of fact, you’re being inefficient because of so many repeat values. It makes sense
to preserve disk usage. So, how do you do that?

BOOK.indb 437 19/05/22 5:55 PM

http://localhost:8086version1.8.6

ptg39201256

438 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Event-driven telemetry.

Although cadence-driven telemetry is the de facto usage of model-driven telemetry, you can
pivot to an event-driven method where you receive a push only when the value changes. This
way, you preserve disk space and unnecessary processing overhead.

With the Cisco IOS XE platform, you can display the list of YANG models that support on-
change subscriptions, using the show platform software ndbman switch {switch-number |
active | standby} models command.

With Cisco IOS XR platforms, you can determine the YANG models that support event-
driven telemetry where the model is annotated with xr:event-telemetry. For example, Cisco-
IOS-XR-ip-rib-ipv6-oper has this for IPv6 RIB operational monitoring:

leaf v6-nexthop {

 type inet:ipv6-address;

 description

 "V6 nexthop";

 xr:event-telemetry "Subscribe Telemetry Event";

 }

To configure event-driven telemetry on a subscription, set the update policy definition to
update policy on-change. See the full configuration below. You can also remove the previous
cadence-based example with a new sensor path that targets the Cisco-IOS-XE-ios-events-
oper YANG model and specifically the /ios-events-ios-xe-oper:interface-state-change xpath.

For good measure, Figure 12-29 shows the YANG Suite representation of that node.

Figure 12-29 Interfaces YANG Model with interface-state-change leaf

BOOK.indb 438 19/05/22 5:55 PM

ptg39201256

Chapter 12: Model-Driven Telemetry 439

12
And now the configuration:

no telemetry ietf subscription 102

telemetry ietf subscription 102

 encoding encode-kvgpb

 filter xpath /ios-events-ios-xe-oper:interface-state-change

 source-address 10.1.1.20

 stream yang-notif-native

 update-policy on-change

 receiver ip address 10.1.1.100 57000 protocol grpc-tcp

After waiting for a bit, you can go into that CSR1000v and use no shut on one of the cur-
rently down interfaces, as shown in Example 12-33.

Example 12-33 Triggering an Interface Status Change

CSR100V# show ip inter brief

Interface IP-Address OK? Method Status Protocol

GigabitEthernet1 10.1.1.20 YES manual up up

GigabitEthernet2 unassigned YES unset administratively down down

GigabitEthernet3 unassigned YES unset administratively down down

CSR100V# conf term

Enter configuration commands, one per line. End with CNTL/Z.

CSR100V(config)# int GigabitEthernet2

CSR100V(config-if)# no shut

CSR100V(config-if)# exit

CSR100V(config)# exit

CSR100V# show ip inter brief

Interface IP-Address OK? Method Status Protocol

GigabitEthernet1 10.1.1.20 YES manual up up

GigabitEthernet2 unassigned YES DHCP up up

GigabitEthernet3 unassigned YES unset administratively down down

CSR100V#

Now if you return to the Ubuntu VM and the InfluxDB shell, you can see the event change
recorded without the cadence-driven pushes. Example 12-34 shows the process.

BOOK.indb 439 19/05/22 5:55 PM

ptg39201256

440 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Example 12-34 InfluxDB Query Searching for Interface Changes

> select "if_name", "new_state" from "Cisco-IOS-XE-ios-events-oper:interface-state-
change"

name: Cisco-IOS-XE-ios-events-oper:interface-state-change

time if_name new_state

---- ------- ---------

2021-06-21T17:28:06.005Z GigabitEthernet2 interface-notif-state-down

2021-06-21T17:28:12.386Z GigabitEthernet2 interface-notif-state-up

2021-06-21T17:29:41.559Z GigabitEthernet2 interface-notif-state-down

2021-06-21T17:31:32.389Z GigabitEthernet2 interface-notif-state-up

2021-06-21T17:43:57.63Z GigabitEthernet2 interface-notif-state-down

2021-06-21T17:44:12.396Z GigabitEthernet2 interface-notif-state-up

>

Notice the timing isn’t spaced 10 seconds (other otherwise) between state transitions. The
times correspond to the instance of enabling or disabling the port.

The next option would be to create a new Grafana dashboard as a panel that would show the
last value of new_state. You might even alias the interface-notif-state-down and -up values
to toggle to more friendly versions.

Other Considerations—Disk Usage
Clearly, the on-change model with event-driven telemetry is optimal for saving space and
processing overhead. But it doesn’t make sense for always changing metrics like interface
statistics, which grow in value with time. Generally, any consumption-based counter or met-
ric is a good candidate for cadence-based policy. When thinking about features and which
policy to use, consider the suggestions listed in Table 12-7 for the two policies.

Table 12-7 Comparing Cadence and Event-Based Policies for Metrics/Sensor Selection

Cadence-Based (Policy Periodic) Event-Based (Policy On-change)

Interface statistics (octets, packets) Interface state (admin/oper)
Routing table size Routing adjacencies/peer count
CPU percentage

Memory percentage

CDP/LLDP neighbor adjacencies

Temperature Fan status (running, failure)
Optics power (dbm) Optics status (on, off)
MAC Address / CAM table size

Last config change date/time

BOOK.indb 440 19/05/22 5:55 PM

ptg39201256

Chapter 12: Model-Driven Telemetry 441

12
A common question when using the cadence-driven method (policy) is “How much disk
space will I use?” This is not an easy question to answer because several levers are at play:

■ Number of devices

■ Number of interfaces (per device and in total)

■ Number of sensor paths

Frequency of Telemetry Push
Trying to build a spreadsheet with macros to gauge all the permutations would be chasing
levels of minutiae.

If disk space on the telemetry receiver (TIG stack or other) is a concern, the best option is to
baseline the environment and extrapolate. Start by using tcpdump or Wireshark on the incom-
ing interface of the telemetry receiver and filtering traffic for the receiver port—TCP 57000 in
these examples. Measure the traffic volume for at least a day; one week, if possible. Knowing
how many devices, subscriptions, and sensor paths are configured, you can extrapolate that
information to disk consumption for a month, quarter, and year. This information should help
with planning any need to extend storage volumes or to prune existing collected data.

Baselining provides a much more accurate representation of your circumstances over trying
to build mathematical models.

Exam Preparation Tasks
As mentioned in the section “How to Use This Book” in the Introduction, you have a couple
of choices for exam preparation: the exercises here, Chapter 17, “Final Preparation,” and the
exam simulation questions in the Pearson Test Prep Software Online.

Review All Key Topics
Review the most important topics in this chapter, noted with the Key Topic icon in the outer
margin of the page. Table 12-8 lists a reference of these key topics and the page numbers on
which each is found.

Table 12-8 Key Topics for Chapter 12

Key Topic
Element

Description Page
Number

Paragraph Streaming telemetry concept 390

Table 12-2 SNMP and Streaming Telemetry Comparison 390

Paragraph gRPC and gNMI concepts 392

List Key concepts of MDT 394

Table 12-3 Dial-In and Dial-Out Comparison 395

Paragraph GPB concept 396

Paragraph gRPC concept 397

List Configuring dial-out mode 398

BOOK.indb 441 19/05/22 5:55 PM

ptg39201256

442 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Key Topic
Element

Description Page
Number

List Configuring dial-in mode 402

Figure 12-18 Exploring a YANG Model in Cisco YANG Suite 422

Section Configuring Telegraf for MDT 429

Section Configuring Cisco CSR1000v for telemetry 437

Section Configuring event-driven/on-change telemetry 438

Section Considering storage impact of MDT 440

Complete Tables and Lists from Memory
Print a copy of Appendix C, “Memory Tables” (found on the companion website), or at least
the section for this chapter, and complete the tables and lists from memory. Appendix D,
“Memory Tables Answer Key,” also on the companion website, includes completed tables
and lists to check your work.

Define Key Terms
Define the following key terms from this chapter and check your answers in the glossary:

dial-in, dial-out, event-driven telemetry (EDT), Google Network Management Interface
(gNMI), Google Remote Procedure Call (gRPC), model-driven telemetry (MDT), remote-
procedure call (RPC), sensor-path, subscription, YANG

References
URL QR Code

https://tools.ietf.org/html/rfc3535

https://pc.nanog.org/static/published/meetings//NANOG73/daily/
day_2.html#talk_1677

https://www.cisco.com/c/en/us/products/collateral/cloud-systems-
management/crosswork-network-automation/datasheet-c78-743287.
html

BOOK.indb 442 19/05/22 5:55 PM

https://tools.ietf.org/html/rfc3535
https://pc.nanog.org/static/published/meetings//NANOG73/daily/day_2.html#talk_1677
https://pc.nanog.org/static/published/meetings//NANOG73/daily/day_2.html#talk_1677
https://www.cisco.com/c/en/us/products/collateral/cloud-systems-management/crosswork-network-automation/datasheet-c78-743287.html
https://www.cisco.com/c/en/us/products/collateral/cloud-systems-management/crosswork-network-automation/datasheet-c78-743287.html
https://www.cisco.com/c/en/us/products/collateral/cloud-systems-management/crosswork-network-automation/datasheet-c78-743287.html

ptg39201256

Chapter 12: Model-Driven Telemetry 443

12URL QR Code

https://github.com/YangModels/yang/tree/master/vendor/cisco

https://yangcatalog.org/

https://github.com/openconfig/public/tree/master/release/models

https://devnetsandbox.cisco.com/RM/Diagram/Index/7b4d4209-
a17c-4bc3-9b38-f15184e53a94?diagramType=Topol
ogy

https://github.com/YangModels/yang/blob/master/vendor/cisco/
xe/1681/Cisco-IOS-XE-interfaces-oper.yang

BOOK.indb 443 19/05/22 5:55 PM

https://github.com/YangModels/yang/tree/master/vendor/cisco
https://yangcatalog.org/
https://devnetsandbox.cisco.com/RM/Diagram/Index/7b4d4209-a17c-4bc3-9b38-f15184e53a94?diagramType=Topology
https://github.com/YangModels/yang/blob/master/vendor/cisco/xe/1681/Cisco-IOS-XE-interfaces-oper.yang
https://github.com/YangModels/yang/blob/master/vendor/cisco/xe/1681/Cisco-IOS-XE-interfaces-oper.yang
https://github.com/openconfig/public/tree/master/release/models
https://devnetsandbox.cisco.com/RM/Diagram/Index/7b4d4209-a17c-4bc3-9b38-f15184e53a94?diagramType=Topology
https://devnetsandbox.cisco.com/RM/Diagram/Index/7b4d4209-a17c-4bc3-9b38-f15184e53a94?diagramType=Topology

ptg39201256

CHAPTER 13

Open-Source Solutions

This chapter covers the following topics:

■ Infrastructure-as-Code (IaC) Concepts: This section covers the concepts defining
Infrastructure as Code and its benefits.

■ Provisioning or Configuration Management: This section covers the provisioning and
configuration management models, plus their similarities and differences.

■ Differences Between Agent and Agentless Solutions: This section discusses the dif-
ferences between agent and agentless solutions and includes benefits and resource
requirements.

■ Agent-Based Solutions—Puppet and Chef: This section provides commentary on
Puppet and Chef with detailed guidance on how to install Puppet and build a manifest,
including examples.

■ Agentless Solutions—Ansible and Terraform: This section provides an overview of
Ansible and Terraform as agentless solutions. Detailed examples of building both are
provided, along with examples of Ansible playbooks and Terraform configurations.

■ Cisco Solutions Enabled for IaC: Finally, this section provides some closing thoughts
on Cisco’s solutions that are enabled for Infrastructure-as-Code projects.

This chapter maps to the Developing Applications Using Cisco Core Platforms and APIs
v1.0 (350-901) Exam Blueprint Section 5.3, “Construct a workflow to configure network
parameters with: Ansible playbook and Puppet manifest.”

Open-source solutions are a popular option for network programmability projects. Although
commercial network management applications and controllers offer an “all batteries
included” approach that may be specialized to a specific vendor or technology, open-source
solutions often provide broad device-type capabilities and function extensibility through
code modification. Open-source solutions that have extensive community support may also
reduce the risk associated with supportability. This chapter addresses several open-source
concepts and solutions. We encourage you to approach open-source projects with discern-
ment and a critical view. Although the notion of “free” is appealing, there are always costs
to any project, even if the source code is freely available. Ideally, before implementing such
projects, you are fully apprised of all functionality and are comfortable with reviewing code
to ensure “fit for purpose” and security intents are followed. Open source works best when
you contribute back to the community. If you are new to open source, even helping to write
documentation and test is appreciated.

BOOK.indb 444 19/05/22 5:55 PM

ptg39201256

13

“Do I Know This Already?” Quiz
The “Do I Know This Already?” quiz allows you to assess whether you should read this
entire chapter thoroughly or jump to the “Exam Preparation Tasks” section. If you are in
doubt about your answers to these questions or your own assessment of your knowledge
of the topics, read the entire chapter. Table 13-1 lists the major headings in this chapter and
their corresponding “Do I Know This Already?” quiz questions. You can find the answers in
Appendix A, “Answers to the ‘Do I Know This Already?’ Quizzes.”

Table 13-1 “Do I Know This Already?” Section-to-Question Mapping

Foundation Topics Section Questions

Infrastructure-as-Code (IaC) Concepts 1–3
Provisioning or Configuration Management 4
Differences Between Agent and Agentless Solutions 5
Agent-Based Solutions—Puppet and Chef 6–7
Agentless Solutions—Ansible and Terraform 8–10

1. How are Infrastructure-as-Code solutions offered?
a. Only as declarative modeled solutions
b. Only as imperative modeled solutions
c. As both declarative and imperative modeled solutions
d. As neither declarative nor imperative modeled solutions

2. What functionality does an imperative model solution provide?
a. It provides a programming paradigm.
b. It expresses the logic of programming without describing control flow.
c. It expresses the logic of programming by describing control flow and state.
d. A and B
e. A and C

3. What functionality does a declarative model solution provide?
a. It provides a programming paradigm.
b. It expresses the logic of programming without describing control flow.
c. It expresses the logic of programming by describing control flow and state.
d. A and B
e. A and C

4. Which statement is true about provisioning and configuration management?
a. Provisioning is a zero task deployment (ZTD) function.
b. Provisioning generally refers to the action of performing device changes, whereas

configuration management refers to the function or concept.
c. ZTD methods involve XModem file transfer.
d. Configuration management functions require GLBP services.

BOOK.indb 445 19/05/22 5:55 PM

ptg39201256

446 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

5. Which is true about open-source solutions using agent or agentless models? (Choose
three.)
a. Chef is agent-based.
b. Chef is agentless.
c. Puppet supports both agent and agentless modes.
d. Ansible is agent-based.
e. Ansible is agentless.

6. The Puppet Facter tool outputs data in which default data exchange method?
a. ANSI
b. JSON
c. XML
d. YAML

7. What is the configuration file for a Puppet operation called?
a. Configuration file
b. Data Definition Language (DDL)
c. Manifest
d. Playbook

8. With which data exchange format can an Ansible inventory source file be written?
(Choose two.)
a. INI
b. JSON
c. YAML
d. zsh

9. Which Ansible inventory format allows for inline references of Ansible Vault
definitions?
a. INI
b. JSON
c. YAML
d. XML

10. What sequence of commands is used to deploy a Terraform configuration from start
to finish?
a. terraform add config_file.tf, terraform deploy config_file.tf
b. terraform create, terraform deploy config_file.tf
c. terraform init, terraform plan, terraform apply
d. terraform add ., terraform build ., terraform deploy

BOOK.indb 446 19/05/22 5:55 PM

ptg39201256

Chapter 13: Open-Source Solutions 447

13

Foundation Topics

Infrastructure-as-Code (IaC) Concepts
When networks were small, services few, and users more limited, the notion of manual,
interactive provisioning was not resource demanding. Operational expenses (OpEx) were not
regularly considered. However, organizations have all experienced the immense growth of
an ever-growing, ever-evolving network that provides more services that ebb and flow on a
regular basis. Users are no longer constrained to an office or specific geography. Equipment
can exist in any location, even in the most inaccessible places where there are no users.

Most network engineers have IT war stories of supporting a device that required hours of
travel to access. How many have needed specialized training to even access the device?
There have been times at CiscoLive conferences when accessing a wireless access point in a
ceiling space 30 feet above the event floor required specialized lift training and certification.
Figure 13-1 suggests only those without a fear of heights should apply.

Figure 13-1 Those with Fear of Heights Need Not Apply

Could you imagine having to support equipment in space? Figure 13-2 shows the Cisco
Space Router from 2010.

BOOK.indb 447 19/05/22 5:55 PM

ptg39201256

448 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Figure 13-2 Routers in Space

Obviously, the use of a console cable is nontrivial. As the industry evolved in scale and
breadth of deployment, so did the management interfaces and processes.

Infrastructure as Code (IaC) relates to the process of configuring (or provisioning) and moni-
toring IT systems, such as compute, storage, and networking components. Whereas legacy
processes involved manual efforts and direct engineer involvement, IaC provides an alterna-
tive that is automated through machine-readable definition files that are also administrator-
friendly. IaC has a strong following in cloud and data center deployments. However, it can be
used broadly across many domains and is equally impactful for bare-metal and virtualized
components.

With a focus in coding and software development disciplines and the use of machine-read-
able definition files, IaC is also well suited to version control, so the concepts and disciplines
learned previously around git will be well used. IaC is often described in terms of using
declarative or imperative functions.

Imperative and Declarative Models
Configuration changes to network infrastructure have traditionally been made atomically, on
a per-device basis. The specific command syntax and arguments needed to be specified. On
the one hand is the imperative model: the exact steps to achieve an end-state are specified.
If a new task must be performed, a new workflow (or script) must be created. The workflows
can be quite large as the number of devices and functions increases. Because syntax and
arguments can vary across device operating systems, the infrastructure engineer must have
extensive training and knowledge of the equipment.

On the other hand is the declarative model. An infrastructure engineer describes the
layout and architecture of the environment, and the network elements and management
tools (controllers) determine the implementation specifics. The network infrastructure and
management tools essentially translate the generic directives to native, device-specific
configurations.

BOOK.indb 448 19/05/22 5:55 PM

ptg39201256

Chapter 13: Open-Source Solutions 449

13

Declarative or model-based configuration management techniques allow architects and
managers to model an entire infrastructure beyond the data center. The benefits are large
when considering the diversity of equipment types, models, and software versions.

Provisioning or Configuration Management
Provisioning and configuration management are terms that have been used interchange-
ably. One distinction is using the term provisioning to denote an action and configuration
management to describe a function or concept.

Regardless of the differences between these terms, a basic activity is required to make a
device useful: changing the operational state or function of it. If a device is in a virgin state
upon startup, it may perform an initial configuration process that requests its operational
parameters from an authoritative source. This is sometimes called zero-touch deployment
(ZTD). A common method for ZTD involves the mature Dynamic Host Configuration Pro-
tocol (DHCP) regularly used to obtain an IP address for a connected interface. The com-
mon scenario for a virgin device startup would be for it to send a DHCP request out its
first network-connected interface. The DHCP server would respond with a lease offer of an
available IP address, but also include additional options containing a file server address and
filename. If the device is operating in ZTD mode, it uses those options to download a set
of configuration directives using common file transport protocols, such as TFTP or HTTPS.
The device may attempt a specific configuration file that could be based on matching device
name, MAC, or IP address. The initial configuration could contain all device parameters, or it
may be limited to only enough parameters to allow the device to be accessed completely in a
secure fashion. The remaining configuration parameters would be pushed by a configuration
management solution or controller.

Some types of equipment, such as Cisco’s Meraki products, have embedded processes that
determine optimal network connectivity to cloud-based provisioning systems. Once online
and connected to the Meraki cloud, the device owner “claims” it through the management
portal and then follows with the intended, final state configuration.

We certainly have come a long way from legacy equipment that would pause the startup,
waiting for an infrastructure administrator to complete its operational personality, sometimes
requiring console-connected means! Certainly, that option still exists, but if this is your pri-
mary way of initializing network devices: Just. Say. No!

With the advent of software-defined networking (SDN) and the growth of controller-based
architectures, the initial device provisioning and ongoing configuration management are
greatly simplified. If you consider a controller-based solution, such as the Cisco Applica-
tion Centric Infrastructure (ACI) for data center fabric topologies, you can see how access-
layer “leaf” switches are discovered by core “spine” switches, which are likewise managed
through a cluster of centralized controllers—the Cisco Application Policy Infrastructure
Controller (APIC). The APIC becomes the central source of truth, policy, and management
for all devices in its domain. Whereas legacy provisioning processes used a device-by-device
approach, new controller models are a single-point administrative console that impacts a
large amount of equipment.

BOOK.indb 449 19/05/22 5:55 PM

ptg39201256

450 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Differences Between Agent and Agentless Solutions
Agent and agentless configuration management solutions are common in network program-
mability and IaC. We begin this section with open-source options for DevOps tooling.
Although there are many, we cover four: Puppet, Chef, Ansible, and Terraform. We close out
the section with some Cisco-specific solutions for your consideration.

The agent-based Puppet solution was released in 2005, with Chef coming on the scene in
2009. Both solutions require a software component, an agent, running on the device. In some
cases, the agent may be an embedded part of the device’s core operating system or a separate,
virtualized environment, like a containerized service. This specialized component listens for and
translates the provisioning directives to the native syntax of the device. A centralized server
component communicates directly to the device agent providing configuration directives. A
common requirement with agent-based solutions is that the software component must be in
existence or be added to the device before the broader management solution can operate.

In some environments, the installation, administration, and maintenance of these agents are
considered an operational burden.

On the other side of the spectrum are agentless solutions like Ansible, which was first
released in 2012, and Terraform, which was initially released in 2014 but obtained version
1.0.0 status in June 2021. These solutions use functionality that already exists, such as an
embedded SSH server, within the networked device. Because SSH is commonly available and
may already be configured for terminal access, its reuse for programmatic functions reduces
administrative overhead.

Using an embedded SSH server simplifies connectivity requirements, but it doesn’t provide
for sophisticated device-side processing. Therefore, agentless solutions depend fully on their
management server or controller to handle the conversion of provisioning directives into
native syntax of the networked device.

In the early days of IaC, the agent-based systems were the ones capable of “call-home”
actions triggered at the device targeting the managing server or controller asynchronously.
The agents would sense change events local to the device or work from a specific schedule
to check in for needed updates. As a software agent, it could operate autonomously and pro-
vide more functionality. However, it is possible for both models to achieve a call-home-like
function now.

Agent-Based Solutions—Puppet and Chef
When we look at Puppet and Chef, there are a few differences for consideration. Several
Cisco and industry surveys imply that Puppet has a larger following than Chef. Both are
strong configuration management solutions that started their base in server management and
branched out to network management. Both treat the provisioned device as mutable and can
change them incrementally as needed. Both solutions were born through server and operat-
ing system provisioning and later added network infrastructure functionality. Both operate
with a server-to-agent architecture.

Chef is procedural and imperative; an administrator creates “recipes” representing foun-
dational configuration directives written in Ruby, specifying step by step how to reach
a desired end state. One or more recipes are included in a “cookbook,” which defines a

BOOK.indb 450 19/05/22 5:55 PM

ptg39201256

Chapter 13: Open-Source Solutions 451

13

scenario of configuration and policy management. Chef also has a higher licensing cost than
Puppet.

To align with the DevNet certification blueprint, we focus on Puppet here. However, if you
find that your organization has more resources and investments in Chef, it may be beneficial
to assess expanding that investment into the networking domain.

Again, considering that Puppet is a server-to-agent based solution, the obvious first depen-
dency check is “Does this equipment have an embedded Puppet agent, or can I install it?”

We’ve talked about Puppet being agent-based. And it was, initially. The great news is that, since
2019, the ciscopuppet module enables many NX-OS devices to be supported in agentless mode
(see Figure 13-3). Table 13-2 reflects the latest (summer 2021) support matrix from Puppetlabs.

Figure 13-3 Puppet Server to Client Interaction

Table 13-2 Puppet Platform Support Matrix

Platform Environment Description

N3k agentless, bash-shell,
guestshell

N30xx and N31xx models only
N35xx is not supported

N3k-F agentless, bash-shell,
guestshell

All N3xxx models running NX-OS 7.0(3)
Fx(x)

N5k Open Agent Container
(OAC)

N56xx models only
N50xx and N55xx not supported

N6k agentless, Open Agent
Container

All N6xxx models

N7k agentless, Open Agent
Container

All N7xxx models

N9k agentless, bash-shell,
guestshell

All N9xxx models

N9k-F agentless, bash-shell,
guestshell

All N95xx models running NX-OS 7.0(3)
Fx(x)

If you wish to install the Puppet agent on a guestshell or containerized environment, follow
this git repository: https://github.com/cisco/cisco-network-puppet-module/blob/develop/
docs/README-agent-install.md.

BOOK.indb 451 19/05/22 5:55 PM

https://github.com/cisco/cisco-network-puppet-module/blob/develop/docs/README-agent-install.md
https://github.com/cisco/cisco-network-puppet-module/blob/develop/docs/README-agent-install.md

ptg39201256

452 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

However, going forward, we suggest you use agentless as the preferred mode of interaction.
Let’s start with some high business-impact, low device-impact actions, such as extracting
device information, and then move to an activity that could modify a device configuration.
The Puppet framework requires a server; the legacy name was Puppet Master, but now it is
known as the Puppet Server.

Puppet enables you to define the desired end state of your infrastructure devices; it does
not require you to define the sequence of actions necessary to achieve the end state. This
makes it effectively a declarative solution. Puppet supports a variety of devices, servers, and
network components across many operating systems. Puppet code is used to write the infra-
structure code in Puppet’s domain-specific language (DSL). The Puppet primary server then
automates the provisioning of the devices to obtain your defined state. In a legacy agent-
based mode, the Puppet primary server uses the code to direct the Puppet agent on the
device to translate the directives into native commands, arguments, and syntax. Since 2019
the ciscopuppet module supports an agentless mode that leverages the NX-OS NX-API
feature and does not require a Puppet agent. In this mode, the Puppet primary server talks
directly to the switch’s NX-API service. In either mode, the execution of the Puppet process
is called a Puppet run.

Figure 13-4 shows the simplified server-agent architecture.

Figure 13-4 Puppet-to-Device Exchanges

BOOK.indb 452 19/05/22 5:55 PM

ptg39201256

Chapter 13: Open-Source Solutions 453

13

Let’s assume you’re starting from scratch. You need a puppetserver component installed.
puppetserver is supported on several Linux distributions. The server install includes a Pup-
pet agent for the local system. It’s good to know that agents can be installed on a variety
of systems; more than 30 operating systems are supported! We do not have you install the
agent on a Nexus switch because you’ll use agentless mode. But first, you can start with a
vanilla Ubuntu Server install. For this exercise, you can install Ubuntu 20.04.

NOTE Currently, the grpc module required for agentless NX-API use requires a Ruby ver-
sion between 2.0 and 2.6. The latest Puppet 7 installs Ruby version 2.7. Please follow the
GitHub issue at https://github.com/grpc/grpc/issues/21514 to see when the grpc support
catches up to Puppet 7 and Ruby 2.7. Workarounds exist to allow Puppet 7, but for purposes
of a simpler install in this use case with agentless NX-API, we suggest you install the earlier
Puppet 6 release.

Step 1. Download puppet software using wget or curl (see Example 13-1).
Example 13-1 Using wget to Download Puppet Software

puppetadmin@puppetserver:~$ wget https://apt.puppet.com/puppet6-release-focal.deb

--2021-08-28 15:26:35-- https://apt.puppet.com/puppet6-release-focal.deb

Resolving apt.puppet.com (apt.puppet.com)... 13.249.38.122, 13.249.38.117,
13.249.38.64, ...

Connecting to apt.puppet.com (apt.puppet.com)|13.249.38.122|:443... connected.

HTTP request sent, awaiting response... 200 OK

Length: 11752 (11K) [application/x-debian-package]

Saving to: 'puppet6-release-focal.deb'

puppet6-release-focal.deb 100%[==
====================>] 11.48K --.-KB/s in 0s

2021-08-28 15:26:36 (221 MB/s) - 'puppet6-release-focal.deb' saved [11752/11752]

puppetadmin@puppetserver:~$

Step 2. Install the package with dpkg (see Example 13-2).
Example 13-2 Using the dpkg Utility to Install Puppet

puppetadmin@puppetserver:~$ sudo dpkg -i puppet6-release-focal.deb

Selecting previously unselected package puppet6-release.

(Reading database ... 71474 files and directories currently installed.)

Preparing to unpack puppet6-release-focal.deb ...

Unpacking puppet6-release (6.0.0-14focal) ...

Setting up puppet6-release (6.0.0-14focal) ...

BOOK.indb 453 19/05/22 5:55 PM

https://github.com/grpc/grpc/issues/21514
https://apt.puppet.com/puppet6-release-focal.deb
https://apt.puppet.com/puppet6-release-focal.deb
http://apt.puppet.com
http://apt.puppet.com
http://apt.puppet.com
http://apt.puppet.com)|13

ptg39201256

454 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Step 3. Update the package information from all configured repositories (see
Example 13-3).

Example 13-3 Performing Repository Updates

puppetadmin@puppetserver:~$ sudo apt-get update

Hit:1 http://us.archive.ubuntu.com/ubuntu focal InRelease

Get:2 http://us.archive.ubuntu.com/ubuntu focal-updates InRelease [114 kB]

Get:3 http://apt.puppetlabs.com focal InRelease [99.1 kB]

Get:4 http://us.archive.ubuntu.com/ubuntu focal-backports InRelease [101 kB]

Get:5 http://us.archive.ubuntu.com/ubuntu focal-security InRelease [114 kB]

Get:6 http://us.archive.ubuntu.com/ubuntu focal-updates/main amd64 Packages [1,169 kB]

Get:7 http://us.archive.ubuntu.com/ubuntu focal-updates/universe amd64 Packages [848 kB]

Get:8 http://apt.puppetlabs.com focal/puppet6 all Packages [5,927 B]

Get:9 http://apt.puppetlabs.com focal/puppet6 amd64 Packages [22.5 kB]

Fetched 2,473 kB in 1s (3,078 kB/s)

Reading package lists... Done

Note the apt-get update retrieval of multiple packages from puppetlabs.com.

Step 4. Use the package manager to install the Puppet server software (see Example
13-4).

Example 13-4 Using the Package Manager to Install the Puppet Server

puppetadmin@puppetserver:~$ sudo apt-get install puppetserver

Reading package lists... Done

Building dependency tree

Reading state information... Done

The following additional packages will be installed:

 ca-certificates-java fontconfig-config fonts-dejavu-core java-common libavahi-cli-
ent3 libavahi-common-data libavahi-common3 libcups2

 libfontconfig1 libjpeg-turbo8 libjpeg8 liblcms2-2 libpcsclite1 libxi6 libxrender1
libxtst6 net-tools openjdk-8-jre-headless puppet-agent

 x11-common

Suggested packages:

 default-jre cups-common liblcms2-utils pcscd libnss-mdns fonts-dejavu-extra fonts-
ipafont-gothic fonts-ipafont-mincho fonts-wqy-microhei

 fonts-wqy-zenhei fonts-indic

The following NEW packages will be installed:

 ca-certificates-java fontconfig-config fonts-dejavu-core java-common libavahi-cli-
ent3 libavahi-common-data libavahi-common3 libcups2

 libfontconfig1 libjpeg-turbo8 libjpeg8 liblcms2-2 libpcsclite1 libxi6 libxrender1
libxtst6 net-tools openjdk-8-jre-headless puppet-agent

 puppetserver x11-common

0 upgraded, 21 newly installed, 0 to remove and 0 not upgraded.

Need to get 118 MB of archives.

After this operation, 330 MB of additional disk space will be used.

Do you want to continue? [Y/n] y

BOOK.indb 454 19/05/22 5:55 PM

http://us.archive.ubuntu.com/ubuntu
http://us.archive.ubuntu.com/ubuntu
http://apt.puppetlabs.com
http://us.archive.ubuntu.com/ubuntu
http://us.archive.ubuntu.com/ubuntu
http://us.archive.ubuntu.com/ubuntu
http://us.archive.ubuntu.com/ubuntu
http://apt.puppetlabs.com
http://apt.puppetlabs.com
http://puppetlabs.com

ptg39201256

Chapter 13: Open-Source Solutions 455

13

Get:1 http://apt.puppetlabs.com focal/puppet6 amd64 puppet-agent amd64 6.24.0-1focal
[22.3 MB]

Get:2 http://us.archive.ubuntu.com/ubuntu focal/main amd64 java-common all 0.72
[6,816 B]

[. . . SOME OUTPUT TRIMMED . . .]

done.

Setting up puppetserver (6.16.1-1focal) ...

usermod: no changes

Processing triggers for libc-bin (2.31-0ubuntu9.2) ...

Processing triggers for systemd (245.4-4ubuntu3.11) ...

Processing triggers for man-db (2.9.1-1) ...

Processing triggers for ca-certificates (20210119~20.04.1) ...

Updating certificates in /etc/ssl/certs...

0 added, 0 removed; done.

Running hooks in /etc/ca-certificates/update.d...

done.

done.

Step 5. Start and enable the Puppet Server service for restart and check its status (see
Example 13-5).

Example 13-5 Starting and Enabling the Puppet Server Service

puppetadmin@puppetserver:~$ sudo systemctl start puppetserver

puppetadmin@puppetserver:~$ sudo systemctl enable puppetserver

Synchronizing state of puppetserver.service with SysV service script with /lib/
systemd/systemd-sysv-install.

Executing: /lib/systemd/systemd-sysv-install enable puppetserver

Created symlink /etc/systemd/system/multi-user.target.wants/puppetserver.service → /
lib/systemd/system/puppetserver.service.

puppetadmin@puppetserver:~$ sudo systemctl status puppetserver

• puppetserver.service - puppetserver Service

 Loaded: loaded (/lib/systemd/system/puppetserver.service; enabled; vendor pre-
set: enabled)

 Active: active (running) since Sat 2021-08-28 15:36:06 UTC; 16s ago

 Main PID: 31249 (java)

 Tasks: 42 (limit: 4915)

 Memory: 974.1M

 CGroup: /system.slice/puppetserver.service

 └─31249 /usr/bin/java -Xms2g -Xmx2g -Djruby.logger.class=com.puppetlabs.
jruby_utils.jruby.Slf4jLogger -XX:OnOutOfMemoryError=">

Aug 28 15:35:43 puppetserver systemd[1]: Starting puppetserver Service...

Aug 28 15:36:06 puppetserver systemd[1]: Started puppetserver Service.

puppetadmin@puppetserver:~$

BOOK.indb 455 19/05/22 5:55 PM

http://apt.puppetlabs.com
http://us.archive.ubuntu.com/ubuntu

ptg39201256

456 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Installing puppetserver also installs the puppet-agent locally for the server.
However, if you need to install the agent separately (or on another server), the
package manager can perform this task, as shown in Example 13-6.

Example 13-6 Using Package Manager to Install the Puppet Agent

puppetadmin@puppetserver:~$ sudo apt-get install puppet-agent

Reading package lists... Done

Building dependency tree

Reading state information... Done

[…package install process trimmed…]

done.

puppetadmin@puppetserver:~$

In the Ubuntu environment, the package installer puts the contents into /opt/
puppetlabs. The puppet-agent installer also provides a useful shell script to add
the package binaries to the executable path. Run the following command and
consider adding it to the user’s startup shell script: $HOME/.bashrc.

Step 6. Execute the puppet agent profile script (see Example 13-7).
Example 13-7 Enabling the Puppet Environment Variables

puppetadmin@puppetserver:~$ source /etc/profile.d/puppet-agent.sh

Now you can verify the executable path, as shown in Example 13-8.
Example 13-8 Reviewing the Executable Path

puppetadmin@puppetserver:~$ echo $PATH

/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/
games:/snap/bin:/opt/puppetlabs/bin

puppetadmin@puppetserver:~$

Consider also adding the /opt/puppetlabs/bin directory to sudo’s secure_path
so that using sudo with Puppet commands will result in the correct path being
used:

puppetadmin@puppetserver:~$ sudo visudo

Edit the Defaults secure_path setting to appear like the following.

Defaults secure_path="/usr/local/sbin:/usr/
local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/snap/bin:/opt/
puppetlabs/bin"

Next, you can verify the installation with version checks, as in Example 13-9.

BOOK.indb 456 19/05/22 5:55 PM

ptg39201256

Chapter 13: Open-Source Solutions 457

13

Example 13-9 Reviewing the Puppet Server and Agent Versions

puppetadmin@puppetserver:~$ puppetserver -v

puppetserver version: 6.16.1

puppetadmin@puppetserver:~$ puppet -V

6.24.0

puppetadmin@puppetserver:~$ puppet agent -V

6.24.0

The next activity is to configure the server setting that defines which Puppet
server the Puppet client accesses. It is the only mandatory setting. You can set
this option by editing the /etc/puppetlabs/puppet/puppet.conf file directory or
by using the puppet config set command-line interface, as shown in Example
13-10. Because you are configuring the local agent to the local server, you
define the server as the puppet server’s DNS name.

Step 7. Configure the Puppet server location on the local agent (see Example 13-10).
Example 13-10 Configuring the Puppet Server Setting

puppetadmin@puppetserver:~$ sudo puppet config set server puppetserver.cisco.com
--section main

puppetadmin@puppetserver:~$

Then you can verify the setting by looking at the puppet.conf file, as shown in
Example 13-11.

Example 13-11 Reviewing the puppet.conf Configuration File

puppetadmin@puppetserver:~$ cat /etc/puppetlabs/puppet/puppet.conf

[main]

server = puppetserver.cisco.com

This file can be used to override the default puppet settings.

See the following links for more details on what settings are available:

- https://puppet.com/docs/puppet/latest/config_important_settings.html

- https://puppet.com/docs/puppet/latest/config_about_settings.html

- https://puppet.com/docs/puppet/latest/config_file_main.html

- https://puppet.com/docs/puppet/latest/configuration.html

[server]

vardir = /opt/puppetlabs/server/data/puppetserver

logdir = /var/log/puppetlabs/puppetserver

rundir = /var/run/puppetlabs/puppetserver

pidfile = /var/run/puppetlabs/puppetserver/puppetserver.pid

codedir = /etc/puppetlabs/code

puppetadmin@puppetserver:~$

Step 8. Start and enable the Puppet agent service (see Example 13-12).

BOOK.indb 457 19/05/22 5:55 PM

http://puppetserver.cisco.com
http://puppetserver.cisco.com
https://puppet.com/docs/puppet/latest/config_important_settings.html
https://puppet.com/docs/puppet/latest/config_about_settings.html
https://puppet.com/docs/puppet/latest/config_file_main.html
https://puppet.com/docs/puppet/latest/configuration.html

ptg39201256

458 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Example 13-12 Starting and Enabling the Puppet Agent Service

puppetadmin@puppetserver:~$ sudo puppet resource service puppet ensure=running
enable=true

[sudo] password for puppetadmin:

Notice: /Service[puppet]/ensure: ensure changed 'stopped' to 'running'

service { 'puppet':

 ensure => 'running',

 enable => 'true',

 provider => 'systemd',

}

An optional task is to install PuppetDB. For the purposes of this chapter, you
can use the embedded database, but you should consider PuppetDB and Post-
gresQL integration for a large, production implementation.

Because Puppet uses certificates and TLS, check and sign for any outstanding
certificates, as shown in Example 13-13.

Example 13-13 Reviewing Puppet Certificates

puppetadmin@puppetserver:~$ sudo puppetserver ca list --all

Signed Certificates:

 puppetserver.cisco.com (SHA256) C4:FD:EA:3E:E4:5E:1A:25:28:72:A9:64:4B:E8
:C8:AF:1C:B2:A4:2D:65:76:C5:31:22:6F:6B:58:FC:5D:76:D5 alt names: ["DNS:puppet",
"DNS:puppetserver.cisco.com"] authorization extensions: [pp_cli_auth: true]

puppetadmin@puppetserver:~$ sudo puppetserver ca sign --all

Error:

 No waiting certificate requests to sign

puppetadmin@puppetserver:~$

Next, test the agent connectivity, as shown in Example 13-14; because you’re
running the server and agent on the same system, this test is trivial.

Example 13-14 Testing Puppet Agent Connectivity

puppetadmin@puppetserver:~$ sudo puppet agent --test

Info: Using configured environment 'production'

Info: Retrieving pluginfacts

Info: Retrieving plugin

Info: Retrieving locales

Info: Caching catalog for puppetserver.cisco.com

Info: Applying configuration version '1630170859'

Notice: Applied catalog in 0.01 seconds

puppetadmin@puppetserver:~$

Now that you have the Puppet server and agent on the same system, you can do
a low-risk, medium-impact activity: extract information from the environment.
Because only the local agent is registered, you get only the Puppet server’s
“facts.” You will expand to a network device later.

BOOK.indb 458 19/05/22 5:55 PM

http://puppetserver.cisco.com
http://"DNS:puppetserver.cisco.com"
http://puppetserver.cisco.com

ptg39201256

Chapter 13: Open-Source Solutions 459

13

Puppet has a module called facter that deals with collecting facts about the managed
devices, servers, network elements, and so on. So one of the first IoC actions can be to
extract this information for review and reuse. You can start at the command line for familiar-
ity and branch out from there.

The facter command with the p flag loads Puppet libraries, providing Puppet-specific facts.
These facts may or may not be useful in your implementation, so you can assess and decide.
The j flag is suggested because it produces the output in JSON (see Example 13-15). With-
out the j flag, the output appears in a key-value pair form.

Example 13-15 Getting Puppet Node Inventory Information Via facter

puppetadmin@puppetserver:~$ facter -p -j

{

 "aio_agent_version": "7.10.0",

 "augeas": {

 "version": "1.12.0"

 },

 "disks": {

 "sda": {

 "model": "Virtual disk",

 "size": "40.00 GiB",

 "size_bytes": 42949672960,

 "type": "hdd",

 "vendor": "VMware"

 },

 "sr0": {

 "model": "VMware SATA CD00",

 "size": "1.00 GiB",

 "size_bytes": 1073741312,

 "type": "hdd",

 "vendor": "NECVMWar"

 }

 },

[. . . TRIMMED OUTPUT . . .]

 },

 "system_uptime": {

 "days": 0,

 "hours": 2,

 "seconds": 9854,

 "uptime": "2:44 hours"

 },

 "timezone": "EDT",

 "virtual": "vmware"

}

puppetadmin@puppetserver:~$

BOOK.indb 459 19/05/22 5:55 PM

ptg39201256

460 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

There’s a lot of output to consider. If you have the Linux jq utility installed, you can use it to
identify the major output categories. If you don’t have the jq utility on your system, follow
Example 13-16 to install it.

Example 13-16 Installing the jq Utility

puppetadmin@puppetserver:~$ sudo apt-get install jq

Reading package lists... Done

Building dependency tree

Reading state information... Done

The following additional packages will be installed:

 libjq1 libonig4

The following NEW packages will be installed:

 jq libjq1 libonig4

0 upgraded, 3 newly installed, 0 to remove and 63 not upgraded.

Need to get 271 kB of archives.

After this operation, 1,090 kB of additional disk space will be used. […package
install process trimmed…]

done.

puppetadmin@puppetserver:~$

Continue on with the extraction of major output categories, as keys, by using the jq utility.
You can see the results in Example 13-17.

Example 13-17 Using the jq Utility with facter to Extract Keys

puppetadmin@puppetserver:~$ facter -p -j | jq '. | keys'

[

 "aio_agent_version",

 "augeas",

 "disks",

 "dmi",

 "facterversion",

 "filesystems",

 "fips_enabled",

 "hypervisors",

 "identity",

 "is_virtual",

 "kernel",

 "kernelmajversion",

 "kernelrelease",

 "kernelversion",

 "load_averages",

 "memory",

 "mountpoints",

"networking",

 "os",

BOOK.indb 460 19/05/22 5:55 PM

ptg39201256

Chapter 13: Open-Source Solutions 461

13

 "partitions",

 "path",

 "processors",

 "puppetversion",

 "ruby",

 "ssh",

 "system_uptime",

 "timezone",

 "virtual"

]

The Puppetlabs documentation site has some good references on the facter core facts; see
https://puppet.com/docs/puppet/7/core_facts.html. See also Figure 13-5 for a portion.

Figure 13-5 Puppet Core Facts Obtained with facter

Knowing these facts, you can choose ones important to your work. Because you’re inter-
ested in network connectivity, extracting the networking fact is a good call; the facter utility
enables you to filter (see Example 13-18).

BOOK.indb 461 19/05/22 5:55 PM

https://puppet.com/docs/puppet/7/core_facts.html

ptg39201256

462 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Example 13-18 Extracting Puppet Networking Facts with facter

puppetadmin@puppetserver:~$ facter -p -j networking

{

 "networking": {

 "domain": "cisco.com",

 "fqdn": "puppetserver.cisco.com",

 "hostname": "puppetserver",

 "interfaces": {

 "ens160": {

 "bindings": [

 {

 "address": "172.31.0.160",

 "netmask": "255.255.254.0",

 "network": "172.31.0.0"

 }

],

 "bindings6": [

 {

 "address": "fe80::250:56ff:feb6:7ea3",

 "netmask": "ffff:ffff:ffff:ffff::",

 "network": "fe80::",

 "scope6": "link",

 "flags": [

 "permanent"

]

 }

],

 "ip": "172.31.0.160",

 "ip6": "fe80::250:56ff:feb6:7ea3",

 "mac": "00:50:56:b6:7e:a3",

 "mtu": 1500,

 "netmask": "255.255.254.0",

 "netmask6": "ffff:ffff:ffff:ffff::",

 "network": "172.31.0.0",

 "network6": "fe80::",

 "scope6": "link"

 }

 },

 "ip": "172.31.0.160",

 "ip6": "fe80::250:56ff:feb6:7ea3",

 "mac": "00:50:56:b6:7e:a3",

 "mtu": 1500,

 "netmask": "255.255.254.0",

 "netmask6": "ffff:ffff:ffff:ffff::",

 "network": "172.31.0.0",

BOOK.indb 462 19/05/22 5:55 PM

http://"cisco.com"
http://"puppetserver.cisco.com"

ptg39201256

Chapter 13: Open-Source Solutions 463

13

 "network6": "fe80::",

 "primary": "ens160",

 "scope6": "link"

 }

}

puppetadmin@puppetserver:~$

Likewise, being comfortable using the jq utility and JSON path queries affords benefits
across many programming activities.

So what other ways might be interesting to use Puppet and read-only access to facts? How
about as an availability monitor backup? For instance, you can show the uptime on a device
to be alerted to a reboot, whether planned or unplanned, as in Example 13-19.

Example 13-19 Using Puppet facter to Extract system_uptime

puppetadmin@puppetserver:~$ facter -p -j system_uptime

{

 "system_uptime": {

 "days": 0,

 "hours": 6,

 "seconds": 24356,

 "uptime": "6:45 hours"

 }

}

puppetadmin@puppetserver:~$

By extracting that seconds key and its value, you can check for devices that have less than
120 seconds of uptime.

Now let’s approach integration from a Python script perspective. Moving forward, let’s use
Puppet against a Cisco Nexus switch. To continue, first install the ciscopuppet module. You
can do it from within Puppet, as in Example 13-20.

Example 13-20 Installing the ciscopuppet Module

puppetadmin@puppetserver:~$ sudo puppet module install puppetlabs-ciscopuppet
--version 2.1.0

[sudo] password for puppetadmin:

Notice: Preparing to install into /etc/puppetlabs/code/environments/production/
modules ...

Notice: Downloading from https://forgeapi.puppet.com ...

Notice: Installing -- do not interrupt ...

/etc/puppetlabs/code/environments/production/modules

└─┬ puppetlabs-ciscopuppet (v2.1.0)

 ├── puppetlabs-netdev_stdlib (v0.23.0)

 └─┬ puppetlabs-resource_api (v1.1.0)

 └── puppetlabs-puppetserver_gem (v1.1.1)

puppetadmin@puppetserver:~$

BOOK.indb 463 19/05/22 5:55 PM

https://forgeapi.puppet.com

ptg39201256

464 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Next, edit the Puppet device.conf file to specify device type and configuration file location,
as in Example 13-21.

Example 13-21 Editing the Puppet device.conf File

puppetadmin@puppetserver:~$ sudo vi /etc/puppetlabs/puppet/device.conf

Then ensure the file contents appear as Example 13-22 depicts.

Example 13-22 Puppet device.conf Example

[sandbox-nxos-1.cisco.com]

type cisco_nexus

url file:////etc/puppetlabs/puppet/devices/sandbox-nxos-1.cisco.com.conf

The next step is to create a device-specific configuration file in the puppet/devices directory.
It is helpful to maintain the device name for quick identification. Call this one sandbox-
nxos-1.cisco.com.conf to align with the DevNet always-on NX-OS device you’re using. Edit
the file using Example 13-23 as a guide.

Example 13-23 Editing the Puppet Device Configuration File

puppetadmin@puppetserver:~$ sudo vi /etc/puppetlabs/puppet/devices/sandbox-nxos-1.
cisco.com.conf

At this point, edit the file to appear as shown in Example 13-24. These credentials map to
the Sandbox documentation defined at https://devnetsandbox.cisco.com/RM/Diagram/
Index/dae38dd8-e8ee-4d7c-a21c-6036bed7a804?diagramType=Topology.

Example 13-24 Modified Puppet Device Configuration File

host: sandbox-nxos-1.cisco.com

user: admin

password: "Admin_1234!"

port: 443

transport: https

Now trigger Puppet to connect to the device by using the puppet device --target command,
as in Example 13-25.

Example 13-25 Triggering Puppet to Connect to a Device

puppetadmin@puppetserver:~$ sudo puppet device --verbose --target sandbox-nxos-1.
cisco.com

Info: Creating a new RSA SSL key for sandbox-nxos-1.cisco.com

Info: csr_attributes file loading from /opt/puppetlabs/puppet/cache/devices/sandbox-
nxos-1.cisco.com/csr_attributes.yaml

Info: Creating a new SSL certificate request for sandbox-nxos-1.cisco.com

Info: Certificate Request fingerprint (SHA256): 88:B5:CE:47:0B:06:2F:31:39:B7:55:46:
93:6D:A4:0F:AE:42:86:AC:9A:81:7F:58:90:E2:82:6C:FC:F8:B1:02

BOOK.indb 464 19/05/22 5:55 PM

http://1.cisco.com
http://1.cisco.com.conf
http://1.cisco.com.conf
http://1.cisco.com.conf
http://1.cisco.com.conf
https://devnetsandbox.cisco.com/RM/Diagram/Index/dae38dd8-e8ee-4d7c-a21c-6036bed7a804?diagramType=Topology
https://devnetsandbox.cisco.com/RM/Diagram/Index/dae38dd8-e8ee-4d7c-a21c-6036bed7a804?diagramType=Topology
http://1.cisco.com
http://1.cisco.com
http://1.cisco.com
http://1.cisco.com
http://1.cisco.com/csr_attributes.yaml
http://1.cisco.com

ptg39201256

Chapter 13: Open-Source Solutions 465

13

Info: Certificate for sandbox-nxos-1.cisco.com has not been signed yet

Couldn’t fetch certificate from CA server; you might still need to sign this agent’s
certificate (sandbox-nxos-1.cisco.com).

Info: Will try again in 120 seconds.

^CCancelling startup

The output in Example 13-25 shows that Puppet has not signed the device agent’s pending
certificate. You can show Puppet’s certificates by using the puppetserver ca list command.
Example 13-26 depicts the command syntax to list and sign the certificates.

Example 13-26 Listing and Signing Puppet Certificates

puppetadmin@puppetserver:~$ sudo puppetserver ca list --all

Requested Certificates:

 sandbox-nxos-1.cisco.com (SHA256) 88:B5:CE:47:0B:06:2F:31:39:B7:55:46:93:
6D:A4:0F:AE:42:86:AC:9A:81:7F:58:90:E2:82:6C:FC:F8:B1:02

Signed Certificates:

 puppetserver.cisco.com (SHA256) C4:FD:EA:3E:E4:5E:1A:25:28:72:A9:64:4B:E8
:C8:AF:1C:B2:A4:2D:65:76:C5:31:22:6F:6B:58:FC:5D:76:D5 alt names: ["DNS:puppet",
"DNS:puppetserver.cisco.com"] authorization extensions: [pp_cli_auth: true]

puppetadmin@puppetserver:~$ sudo puppetserver ca sign --all

Successfully signed certificate request for sandbox-nxos-1.cisco.com

You might need to install the cisco_node_utils Ruby gem. You can use the Puppet-supplied
gem command to install from public repositories. Example 13-27 shows the process.

Example 13-27 Installing the cisco_node_utils Ruby gem

puppetadmin@puppetserver:~$ sudo /opt/puppetlabs/puppet/bin/gem install
cisco_node_utils

Fetching: cisco_node_utils-2.1.0.gem (100%)

Building native extensions. This could take a while...

Successfully installed cisco_node_utils-2.1.0

Parsing documentation for cisco_node_utils-2.1.0

Installing ri documentation for cisco_node_utils-2.1.0

Done installing documentation for cisco_node_utils after 4 seconds

1 gem installed

Now let’s pivot to using Puppet with an NX-OS based device. For this exercise, I used the
Nexus 9000v virtual appliance as an OVA image integrated with my VMware environment.
After booting the image and providing an IP address for the management interface I enabled
the feature nxapi and saved the configuration. I updated the Puppet device.conf and the
device-specific credentials file, as seen previously using the device IP and credentials I
configured.

To follow along, tell Puppet to attempt a connection to obtain the certificate; then press
Ctrl+C when it starts looping. Example 13-28 reflects the process.

BOOK.indb 465 19/05/22 5:55 PM

http://1.cisco.com
http://1.cisco.com
http://1.cisco.com
http://puppetserver.cisco.com
http://"DNS:puppetserver.cisco.com"
http://1.cisco.com

ptg39201256

466 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Example 13-28 Connecting Puppet to an NX-OS Device

puppetadmin@puppetserver:~$ sudo puppet device –verbose –target n9kv-nxapi-1.cisco.
com

Info: Creating a new RSA SSL key for n9kv-nxapi-1.cisco.com

Info: csr_attributes file loading from /opt/puppetlabs/puppet/cache/devices/n9kv-
nxapi-1.cisco.com/csr_attributes.yaml

Info: Creating a new SSL certificate request for n9kv-nxapi-1.cisco.com

Info: Certificate Request fingerprint (SHA256): DC:59:ED:D6:1A:2C:68:9B:1E:C2:AF:B3:
9D:C2:E0:7B:C0:7D:A1:8C:52:94:BE:66:97:55:69:41:EC:CC:3A:A1

Info: Certificate for n9kv-nxapi-1.cisco.com has not been signed yet

Couldn't fetch certificate from CA server; you might still need to sign this agent's
certificate (n9kv-nxapi-1.cisco.com).

Info: Will try again in 120 seconds.

^Ccancelling startup

Now tell the Puppet server to retrieve the certificates list, as in Example 13-29.

Example 13-29 Listing Puppet Certificates

puppetadmin@puppetserver:~$ sudo puppetserver ca list --all

Requested Certificates:

 n9kv-nxapi-1.cisco.com (SHA256) DC:59:ED:D6:1A:2C:68:9B:1E:C2:AF:B3:9D:C2
:E0:7B:C0:7D:A1:8C:52:94:BE:66:97:55:69:41:EC:CC:3A:A1

Signed Certificates:

 sandbox-nxos-1.cisco.com (SHA256) 91:0D:3C:B9:2B:90:71:9D:B8:48:6D:76:9F:
72:3A:39:54:22:4F:E0:11:D3:68:3D:2C:6A:29:2C:ED:32:A9:F8

 alt names: ["DNS:sandbox-nxos-1.cisco.com"]

 puppetserver.cisco.com (SHA256) C4:FD:EA:3E:E4:5E:1A:25:28:72:A9:64:4B:
E8:C8:AF:1C:B2:A4:2D:65:76:C5:31:22:6F:6B:58:FC:5D:76:D5

 alt names: ["DNS:puppet", "DNS:puppetserver.cisco.com"] authorization exten-
sions: [pp_cli_auth: true]

Note the outstanding signing request from the new device, n9kv-nxapi-1.cisco.com.

Now, have the Puppet server use its intermediary certificate authority (CA) to sign them.
Signing the certificate is shown in Example 13-30.

Example 13-30 Signing Certificates with the Puppet Server

puppetadmin@puppetserver:~$ sudo puppetserver ca sign --all

Successfully signed certificate request for n9kv-nxapi-1.cisco.com

Next, repeat the connection to the new device and note that a lot more output is generated
with the successful connection. Example 13-31 should reflect your experience in a similar
fashion.

BOOK.indb 466 19/05/22 5:55 PM

http://1.cisco.com
http://1.cisco.com
http://1.cisco.com
http://1.cisco.com/csr_attributes.yaml
http://1.cisco.com
http://1.cisco.com
http://1.cisco.com
http://1.cisco.com
http://1.cisco.com
http://1.cisco.com"
http://puppetserver.cisco.com
http://"DNS:puppetserver.cisco.com"
http://1.cisco.com
http://1.cisco.com

ptg39201256

Chapter 13: Open-Source Solutions 467

13

Example 13-31 Puppet Device Connectivity After Signing Certificates

puppetadmin@puppetserver:~$ sudo puppet device --verbose --target n9kv-nxapi-1.
cisco.com

Info: csr_attributes file loading from /opt/puppetlabs/puppet/cache/devices/n9kv-
nxapi-1.cisco.com/csr_attributes.yaml

Info: Creating a new SSL certificate request for n9kv-nxapi-1.cisco.com

Info: Certificate Request fingerprint (SHA256): DC:59:ED:D6:1A:2C:68:9B:1E:C2:AF:B3:
9D:C2:E0:7B:C0:7D:A1:8C:52:94:BE:66:97:55:69:41:EC:CC:3A:A1

Info: Downloaded certificate for n9kv-nxapi-1.cisco.com from https://puppetserver.
cisco.com:8140/puppet-ca/v1

Info: Retrieving pluginfacts

Info: Retrieving plugin

Notice: /File[/opt/puppetlabs/puppet/cache/devices/n9kv-nxapi-1.cisco.com/lib/
facter]/ensure: created

Notice: /File[/opt/puppetlabs/puppet/cache/devices/n9kv-nxapi-1.cisco.com/lib/
facter/cisco.rb]/ensure: defined content as '{md5}0e4175be403bdfc856fbb0d5104efa36'

Notice: /File[/opt/puppetlabs/puppet/cache/devices/n9kv-nxapi-1.cisco.com/lib/
facter/cisco_nexus.rb]/ensure: defined content as

[. . . A LOT OF TRIMMED OUTPUT . . .]

Info: Retrieving locales

Info: starting applying configuration to n9kv-nxapi-1.cisco.com at file:////etc/pup-
petlabs/puppet/devices/n9kv-nxapi-1.cisco.com.conf

Info: Using configured environment 'production'

/opt/puppetlabs/puppet/lib/ruby/gems/2.5.0/gems/cisco_node_utils-2.1.0/lib/cisco_
node_utils/node.rb:153: warning: constant ::Fixnum is deprecated

Info: Caching catalog for n9kv-nxapi-1.cisco.com

Info: Applying configuration version '1630279177'

Info: Creating state file /opt/puppetlabs/puppet/cache/devices/n9kv-nxapi-1.cisco.
com/state/state.yaml

Notice: Applied catalog in 0.03 seconds

puppetadmin@puppetserver:~$

Now, collect Puppet facts from this new remote Nexus device, as in Example 13-32.

Example 13-32 A More Complete Output of Puppet Facts

puppetadmin@puppetserver:~$ sudo puppet device --verbose --facts --target n9kv-
nxapi-1.cisco.com

Info: retrieving facts from n9kv-nxapi-1.cisco.com at file:////etc/puppetlabs/pup-
pet/devices/n9kv-nxapi-1.cisco.com.conf

{

 "name": "n9kv-nxapi-1.cisco.com",

 "values": {

 "operatingsystem": "nexus",

 "cisco_node_utils": "2.1.0",

 "cisco": {

 "images": {

 "system_image": "bootflash:///nxos64.10.2.1.F.bin",

 "full_version": "10.2(1)",

BOOK.indb 467 19/05/22 5:55 PM

http://1.cisco.com
http://1.cisco.com
http://1.cisco.com/csr_attributes.yaml
http://1.cisco.com
http://1.cisco.com
https://puppetserver.cisco.com:8140/puppet-ca/v1
https://puppetserver.cisco.com:8140/puppet-ca/v1
http://1.cisco.com/lib/facter]/ensure:
http://1.cisco.com/lib/facter]/ensure:
http://1.cisco.com/lib/facter/cisco.rb]/ensure:
http://1.cisco.com/lib/facter/cisco.rb]/ensure:
http://1.cisco.com/lib/facter/cisco_nexus.rb]/ensure:
http://1.cisco.com/lib/facter/cisco_nexus.rb]/ensure:
http://1.cisco.com
http://1.cisco.com.conf
http://1.cisco.com
http://1.cisco.com/state/state.yaml
http://1.cisco.com/state/state.yaml
http://1.cisco.com
http://1.cisco.com
http://1.cisco.com.conf
http://1.cisco.com"

ptg39201256

468 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

 "packages": {

 }

 },

 "hardware": {

 "type": "cisco Nexus9000 C9500v Chassis",

 "cpu": "Intel(R) Xeon(R) CPU E5-2699 v4 @ 2.20GHz",

 "board": "9F3I6MFDAW2",

 "last_reset": "",

 "reset_reason": "Unknown",

 "memory": {

 "total": "10211572K",

 "used": "5171128K",

 "free": "5040444K"

 },

 "uptime": "1 days, 4 hours, 37 minutes, 35 seconds"

 },

 "inventory": {

 "chassis": {

 "descr": "Nexus9000 C9500v Chassis",

 "pid": "N9K-C9500v",

 "vid": "",

 "sn": "9WYQFON66B3"

 },

 "Slot 1": {

 "descr": "Nexus 9000v 64 port Ethernet Module",

 "pid": "N9K-X9564v",

 "vid": "",

 "sn": "904TSSBDH5Q"

 },

 "Slot 27": {

 "descr": "Supervisor Module",

 "pid": "N9K-vSUP",

 "vid": "",

 "sn": "9F3I6MFDAW2"

 }

 },

 "interface_count": 65,

 "interface_threshold": 9,

 "virtual_service": {

 },

 "feature_compatible_module_iflist": {

 "fabricpath": [

]

 }

 },

BOOK.indb 468 19/05/22 5:55 PM

ptg39201256

Chapter 13: Open-Source Solutions 469

13

 "hostname": "n9kv-nxapi-1",

 "operatingsystemrelease": "10.2(1)",

 "clientcert": "n9kv-nxapi-1.cisco.com",

 "clientversion": "6.24.0",

 "clientnoop": false

 },

 "timestamp": "2021-08-29T19:40:11.902778717-04:00",

 "expiration": "2021-08-29T20:10:11.902898379-04:00"

}

puppetadmin@puppetserver:~$

Using that same process with the jq utility, as described previously, you can extract the
device uptime. Example 13-33 provides guidance.

Example 13-33 Using Puppet and the jq Utility to Extract Device Uptime

puppetadmin@puppetserver:~$ sudo puppet device --verbose --facts --target n9kv-
nxapi-1.cisco.com 2> /dev/null | sed -n '/{/,/^}/p' - | jq '.values.cisco.hardware.
uptime'

"1 days, 4 hours, 53 minutes, 50 seconds"

Unpacking that, you use the puppet device command with options, redirecting standard err
(STDERR) or file handle #2 to /dev/null, effectively ignoring errors. The output of the com-
mand is fed with a pipe (|) into the Linux sed (stream editor) utility to capture any output
that starts with an opening brace ({) and ends with a closing brace (}). This effectively cap-
tures the JSON output of the puppet command, ignoring other output. That output is fed
into the jq utility, which filters for the hierarchy of values, cisco, hardware, and uptime.

Now that you have an idea about how to programmatically access device information or
facts, you can move on to more sophisticated examples, such as programmatically changing
a device configuration.

To set device parameters or configurations, you still use the puppet device command, but
this time you use the --apply option and specify a Puppet manifest that generally ends with
a .pp extension.

What is a Puppet manifest? Manifests are a collection of resource definitions (configurable
items) and their variables/parameters, collected into a single “Puppet policy” file with the
.pp extension. Typically, these files exist on the Puppet server in the /etc/puppetlabs/code/
environments/production/manifests directory. Manifests support the use of variables, loops,
conditionals, and importing of other files and classes from separate Puppet files. These capa-
bilities allow you to make complex provisioning scenarios, if needed.

In Example 13-34, a manifest completes many actions. It defines a specific Ethernet1/61 port
for an access port and labels it to be used for a server. It provisions three different VLANs,
also pulling in their configuration parameters from another file. Then it requires a specific
NTP server to not exist, as if you are unconfiguring a decommissioned server. Then it config-
ures a new one. On the Puppet server, this is the /etc/puppetlabs/code/environments/produc-
tion/manifests/site.pp file.

BOOK.indb 469 19/05/22 5:55 PM

http://1.cisco.com"
http://1.cisco.com

ptg39201256

470 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Example 13-34 Puppet Manifest to Change a Device

node 'n9kv-nxapi-1.cisco.com' {

 cisco_interface { 'Ethernet1/61' :

 shutdown => false,

 switchport_mode => access,

 description => 'Puppet managed - server port',

 access_vlan => 100,

 }

 include vlan_data

 $vlan_data::vlans.each |$vlanid,$value|

 {

 $vlanname = "${value[name]}"

 $intfName = "Vlan${vlanid}"

 #Create VLAN

 cisco_vlan {"${vlanid}":

 vlan_name => $vlanname,

 ensure => present

 }

 #Create VLAN interface (stage 2)

 cisco_interface { $intfName:

 description => $vlanname,

 shutdown => false,

 }

 }

 ntp_server { '1.2.3.4':

 ensure => 'absent',

 }

 ntp_server { '64.100.58.75':

 ensure => 'present',

 prefer => true,

 vrf => 'management',

 minpoll => 4,

 maxpoll => 10,

 }

}

Example 13-35 contains the associated vlan_data.pp file, which is called with the include
vlan_data directive seen in Example 13-34.

BOOK.indb 470 19/05/22 5:55 PM

http://1.cisco.com'

ptg39201256

Chapter 13: Open-Source Solutions 471

13

Example 13-35 vlan_data.pp File for the Puppet Manifest Reference

class vlan_data {

 $vlans = {

 100 => { name => "Production" },

 200 => { name => "Site_Backup" },

 300 => { name => "Development" },

 }

}

Example 13-36 shows how you can trigger Puppet to pull down this policy and reconfigure
the device.

Example 13-36 Triggering Puppet to Connect to a Device and Run a Policy

puppetadmin@puppetserver:/etc/puppetlabs/code/environments/production/manifests$
sudo puppet device --verbose --target n9kv-nxapi-1.cisco.com

[sudo] password for puppetadmin:

Info: Retrieving pluginfacts

Info: Retrieving plugin

Info: Retrieving locales

Info: starting applying configuration to n9kv-nxapi-1.cisco.com at
file:////etc/puppetlabs/puppet/devices/n9kv-nxapi-1.cisco.com.conf

Info: Using configured environment 'production'

Info: Caching catalog for n9kv-nxapi-1.cisco.com

Info: Applying configuration version '1630358256'

Info: Puppet::Type::Cisco_interface::ProviderCisco: [prefetch each interface
independently] (threshold: 9)

Notice: /Stage[main]/Main/Node[n9kv-nxapi-1.cisco.com]/Cisco_
interface[Ethernet1/61]/ensure: created (corrective)

Notice: /Stage[main]/Main/Node[n9kv-nxapi-1.cisco.com]/Cisco_vlan[100]/ensure:
created (corrective)

Notice: /Stage[main]/Main/Node[n9kv-nxapi-1.cisco.com]/Cisco_interface[Vlan100]/
ensure: created (corrective)

Notice: /Stage[main]/Main/Node[n9kv-nxapi-1.cisco.com]/Cisco_vlan[200]/ensure:
created (corrective)

Notice: /Stage[main]/Main/Node[n9kv-nxapi-1.cisco.com]/Cisco_interface[Vlan200]/
ensure: created (corrective)

Notice: /Stage[main]/Main/Node[n9kv-nxapi-1.cisco.com]/Cisco_vlan[300]/ensure:
created (corrective)

Notice: /Stage[main]/Main/Node[n9kv-nxapi-1.cisco.com]/Cisco_interface[Vlan300]/
ensure: created (corrective)

Notice: /Stage[main]/Main/Node[n9kv-nxapi-1.cisco.com]/Ntp_server[64.100.58.75]/
ensure: defined 'ensure' as 'present' (corrective)

Notice: ntp_server[64.100.58.75]: Creating: Setting '64.100.58.75' with
{:name=>"64.100.58.75", :ensure=>"present", :maxpoll=>10, :minpoll=>4,
:prefer=>true, :vrf=>"management"}

Notice: ntp_server[64.100.58.75]: Creating: Finished in 0.146842 seconds

Info: Node[n9kv-nxapi-1.cisco.com]: Unscheduling all events on Node[n9kv-nxapi-1.
cisco.com]

Notice: Applied catalog in 18.20 seconds

puppetadmin@puppetserver:/etc/puppetlabs/code/environments/production/manifests$

BOOK.indb 471 19/05/22 5:55 PM

http://1.cisco.com
http://1.cisco.com
http://1.cisco.com.conf
http://1.cisco.com
http://1.cisco.com]/Cisco_interface[Ethernet1/61]/ensure:
http://1.cisco.com]/Cisco_interface[Ethernet1/61]/ensure:
http://1.cisco.com]/Cisco_vlan[100]/ensure:
http://1.cisco.com]/Cisco_interface[Vlan100]/ensure:
http://1.cisco.com]/Cisco_interface[Vlan100]/ensure:
http://1.cisco.com]/Cisco_vlan[200]/ensure:
http://1.cisco.com]/Cisco_interface[Vlan200]/ensure:
http://1.cisco.com]/Cisco_interface[Vlan200]/ensure:
http://1.cisco.com]/Cisco_vlan[300]/ensure:
http://1.cisco.com]/Cisco_interface[Vlan300]/ensure:
http://1.cisco.com]/Cisco_interface[Vlan300]/ensure:
http://1.cisco.com]/Ntp_server[64
http://1.cisco.com]:
http://1.cisco.com
http://1.cisco.com

ptg39201256

472 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Now you can look at the configuration changes of the n9kv-nxapi-1.cisco.com node using a
method similar to Example 13-37.

Example 13-37 Puppet-Influenced Configuration Change Results

n9kv-nxapi-1# sh running-config

!Command: show running-config

!Running configuration last done at: Mon Aug 30 21:17:55 2021

!Time: Mon Aug 30 21:19:48 2021

version 10.2(1) Bios:version

switchname n9kv-nxapi-1

vdc n9kv-nxapi-1 id 1

 limit-resource vlan minimum 16 maximum 4094

 limit-resource vrf minimum 2 maximum 4096

 limit-resource port-channel minimum 0 maximum 511

 limit-resource m4route-mem minimum 58 maximum 58

 limit-resource m6route-mem minimum 8 maximum 8

feature nxapi

feature interface-vlan

no password strength-check

username admin password 5 5***w2 role network-admin

ip domain-lookup

copp profile strict

snmp-server user admin network-admin auth md5 207E4F*** priv aes-128 205E0B***
localizedV2key

ntp server 64.100.58.75 prefer use-vrf management maxpoll 10

system default switchport

vlan 1,100,200,300

vlan 100

 name Production

vlan 200

 name Site_Backup

vlan 300

 name Development

vrf context management

 ip route 0.0.0.0/0 172.31.0.1

interface Vlan1

BOOK.indb 472 19/05/22 5:55 PM

http://1.cisco.com

ptg39201256

Chapter 13: Open-Source Solutions 473

13

interface Vlan100

 description Production

 no shutdown

interface Vlan200

 description Site_Backup

 no shutdown

interface Vlan300

 description Development

 no shutdown

interface Ethernet1/1

interface Ethernet1/2

[. . . SOME OUTPUT TRIMMED . . .]

interface Ethernet1/60

interface Ethernet1/61

 description Puppet managed - server port

 switchport access vlan 100

interface Ethernet1/62

interface Ethernet1/63

interface Ethernet1/64

interface mgmt0

 vrf member management

 ip address 172.31.0.170/20

icam monitor scale

line console

line vty

no system default switchport shutdown

n9kv-nxapi-1#v

How cool is that? By programmatically creating the site.pp and device.conf files, you can
perform highly automated provisioning. This is Infrastructure as Code, or IaC.

BOOK.indb 473 19/05/22 5:55 PM

ptg39201256

474 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Agentless Solutions—Ansible and Terraform
So far we have discussed IaC solutions like Puppet and a bit of agent and agentless technol-
ogy solutions. Ansible is another IaC solution that commands a large following. It is also an
agentless technology, so there is no device-side installation of software bits.

Although you do not need an agent on the managed nodes, you do need SSH for Ansible to
communicate with them. When Ansible communicates with many server operating systems,
it uses SSH for connectivity and SFTP for transferring Python code and modules. SFTP is
not a common transport for network devices, so Ansible uses SSH and secure copy protocol
(SCP).

You first need to ensure the SSH server is configured appropriately for Ansible to access
your devices with the appropriate user, password, public/private key, routing, and access
control lists. Fortunately, those configurations are probably the same ones that were done for
terminal access anyway.

Let’s start in a similar fashion as done with the Puppet example in the previous section: start
with a virgin Ubuntu 20.04 server and build the Ansible server to connect to the managed
devices.

NOTE Feel free to use a desktop operating system like macOS or Windows if you have the
Linux subsystem enabled.

You can choose a simple package manager install or a more involved installation from a
virtualized Python package installer (pip) install. Pick your preference from the next two
sections. Note that the package manager install provides a version that lags the latest. The
virtualized Python pip environment installs a more recent version without the complexity of
doing a source-code-based install.

NOTE As of 2021, the Ansible project is in a transitionary period with version numbering.
With Ansible 3.0 and later, the project is separated into two packages:

■ ansible-core (previously known as ansible-base in ansible 3.0), the runtime, and a built-in
Collection (select core modules, plug-ins, and so on)

■ ansible, community-curated Collections

The ansible-core package maintains the existing versioning scheme (like the Linux Kernel),
whereas the ansible package is adopting semantic versioning.
The current Ansible 4.0 comprises two packages: ansible-core 2.12 and ansible 4.0.

Installing Ansible from the Package Manager
Installing Ansible from the package manager is straightforward in most Linux distributions.
For Ubuntu, you use the basic sudo apt install ansible command, as in Example 13-38.

BOOK.indb 474 19/05/22 5:55 PM

ptg39201256

Chapter 13: Open-Source Solutions 475

13

Example 13-38 Installing Ansible from Ubuntu Server 20.04

ansibleadmin@ansibleserver:~$ sudo apt install ansible

[sudo] password for ansibleadmin:

Reading package lists... Done

Building dependency tree

Reading state information... Done

The following additional packages will be installed:

 ieee-data python3-argcomplete python3-crypto python3-dnspython python3-jmespath
python3-kerberos python3-libcloud python3-lockfile

 python3-netaddr python3-ntlm-auth python3-requests-kerberos python3-requests-ntlm
python3-selinux python3-winrm python3-xmltodict

Suggested packages:

 cowsay sshpass python-lockfile-doc ipython3 python-netaddr-docs

The following NEW packages will be installed:

 ansible ieee-data python3-argcomplete python3-crypto python3-dnspython python3-
jmespath python3-kerberos python3-libcloud

 python3-lockfile python3-netaddr python3-ntlm-auth python3-requests-kerberos
python3-requests-ntlm python3-selinux python3-winrm

 python3-xmltodict

0 upgraded, 16 newly installed, 0 to remove and 0 not upgraded.

Need to get 9,643 kB of archives.

After this operation, 90.2 MB of additional disk space will be used.

Do you want to continue? [Y/n] y

Get:1 http://us.archive.ubuntu.com/ubuntu focal/main amd64 python3-crypto amd64
2.6.1-13ubuntu2 [237 kB]

Get:2 http://us.archive.ubuntu.com/ubuntu focal/main amd64 python3-dnspython all
1.16.0-1build1 [89.1 kB]

Get:3 http://us.archive.ubuntu.com/ubuntu focal/main amd64 ieee-data all 20180805.1
[1,589 kB]

Get:4 http://us.archive.ubuntu.com/ubuntu focal/main amd64 python3-netaddr all
0.7.19-3 [235 kB]

Get:5 http://us.archive.ubuntu.com/ubuntu focal/universe amd64 ansible all
2.9.6+dfsg-1 [5,794 kB]

[. . . Some output trimmed . . .]

Selecting previously unselected package ansible.

Preparing to unpack .../04-ansible_2.9.6+dfsg-1_all.deb ...

Unpacking ansible (2.9.6+dfsg-1) ...

[. . . Some output trimmed . . .]

Progress: [98%] [##
##..]

[. . . Some output trimmed . . .]

Setting up ansible (2.9.6+dfsg-1) ...

Processing triggers for man-db (2.9.1-1) ...

ansibleadmin@ansibleserver:~$

That installation is painless. You can check the version installed for your information.
Observe the operation in Example 13-39.

BOOK.indb 475 19/05/22 5:55 PM

http://us.archive.ubuntu.com/ubuntu
http://us.archive.ubuntu.com/ubuntu
http://us.archive.ubuntu.com/ubuntu
http://us.archive.ubuntu.com/ubuntu
http://us.archive.ubuntu.com/ubuntu

ptg39201256

476 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Example 13-39 Showing Ansible Version

ansibleadmin@ansibleserver:~$ ansible --version

ansible 2.9.6

 config file = /etc/ansible/ansible.cfg

 configured module search path = ['/home/ansibleadmin/.ansible/plugins/modules', '/
usr/share/ansible/plugins/modules']

 ansible python module location = /usr/lib/python3/dist-packages/ansible

 executable location = /usr/bin/ansible

 python version = 3.8.10 (default, Jun 2 2021, 10:49:15) [GCC 9.4.0]

As of summer 2021, Ansible 2.9.6 version is getting a bit dated, so if you want a newer ver-
sion, you need to forgo the package manager version and install in a different manner. Follow
the steps in the next section for the most recent version.

Installing the Latest Ansible from a Virtual Python Environment
with pip

The process of installing Ansible from a virtual Python environment with pip gets you the
latest functionality and decent separation from other projects on the server. You do have
to depend on Python, so ensure you have the latest Python installed first. Example 13-40
depicts how to install Python 3.9.

Example 13-40 Installing Python 3.9 on Ubuntu Server 20.04

ansibleadmin@ansibleserver:/opt/ansible$ sudo apt-get install python3.9
python3.9-venv

Reading package lists... Done

Building dependency tree

Reading state information... Done

The following additional packages will be installed:

 libpython3.9-minimal libpython3.9-stdlib python-pip-whl python3.9-minimal

Suggested packages:

 python3.9-doc binutils binfmt-support

The following NEW packages will be installed:

 libpython3.9-minimal libpython3.9-stdlib python-pip-whl python3.9 python3.9-mini-
mal python3.9-venv

0 upgraded, 6 newly installed, 0 to remove and 0 not upgraded.

Need to get 1,811 kB/6,788 kB of archives.

After this operation, 22.2 MB of additional disk space will be used.

Do you want to continue? [Y/n] y

Get:1 http://us.archive.ubuntu.com/ubuntu focal-updates/universe amd64 python-pip-
whl all 20.0.2-5ubuntu1.6 [1,805 kB]

Get:2 http://us.archive.ubuntu.com/ubuntu focal-updates/universe amd64 python3.9-
venv amd64 3.9.5-3~20.04.1 [5,444 B]

Fetched 1,811 kB in 0s (4,148 kB/s)

Selecting previously unselected package libpython3.9-minimal:amd64.

(Reading database ... 71637 files and directories currently installed.)

Preparing to unpack .../0-libpython3.9-minimal_3.9.5-3~20.04.1_amd64.deb ...

Unpacking libpython3.9-minimal:amd64 (3.9.5-3~20.04.1) ...

BOOK.indb 476 19/05/22 5:55 PM

http://us.archive.ubuntu.com/ubuntu
http://us.archive.ubuntu.com/ubuntu

ptg39201256

Chapter 13: Open-Source Solutions 477

13

Selecting previously unselected package python3.9-minimal.

Preparing to unpack .../1-python3.9-minimal_3.9.5-3~20.04.1_amd64.deb ...

Unpacking python3.9-minimal (3.9.5-3~20.04.1) ...

Selecting previously unselected package libpython3.9-stdlib:amd64.

Preparing to unpack .../2-libpython3.9-stdlib_3.9.5-3~20.04.1_amd64.deb ...

Unpacking libpython3.9-stdlib:amd64 (3.9.5-3~20.04.1) ...

Selecting previously unselected package python-pip-whl.

Preparing to unpack .../3-python-pip-whl_20.0.2-5ubuntu1.6_all.deb ...

Unpacking python-pip-whl (20.0.2-5ubuntu1.6) ...

Selecting previously unselected package python3.9.

Preparing to unpack .../4-python3.9_3.9.5-3~20.04.1_amd64.deb ...

Unpacking python3.9 (3.9.5-3~20.04.1) ...

Selecting previously unselected package python3.9-venv.

Preparing to unpack .../5-python3.9-venv_3.9.5-3~20.04.1_amd64.deb ...

Unpacking python3.9-venv (3.9.5-3~20.04.1) ...

Setting up libpython3.9-minimal:amd64 (3.9.5-3~20.04.1) ...

Setting up python-pip-whl (20.0.2-5ubuntu1.6) ...

Setting up python3.9-minimal (3.9.5-3~20.04.1) ...

Setting up libpython3.9-stdlib:amd64 (3.9.5-3~20.04.1) ...

Setting up python3.9 (3.9.5-3~20.04.1) ...

Setting up python3.9-venv (3.9.5-3~20.04.1) ...

Processing triggers for man-db (2.9.1-1) ...

Processing triggers for mime-support (3.64ubuntu1) ...

ansibleadmin@ansibleserver:/opt/ansible$

You can check which specific version of Python you have installed, as in Example 13-41.

Example 13-41 Checking Python Version

ansibleadmin@ansibleserver:~$ python3.9 -V

Python 3.9.5

ansibleadmin@ansibleserver:~$

Now prepare for a project directory for Ansible under /opt, where optional software usually
is installed. This setup can be found in Example 13-42.

Example 13-42 Setting Up a Project Directory

ansibleadmin@ansibleserver:~$ sudo chgrp ansibleadmin /opt/ansible/

ansibleadmin@ansibleserver:~$ sudo chmod 775 /opt/ansible/

ansibleadmin@ansibleserver:~$ ls -ld /opt/ansible/

drwxrwxr-x 2 root ansibleadmin 4096 Sep 1 23:18 /opt/ansible/

Now create the virtual environment, which Example 13-43 explains.

Example 13-43 Setting Up a Python Project Virtual Environment

ansibleadmin@ansibleserver:/opt/ansible$ cd /opt/ansible

ansibleadmin@ansibleserver:/opt/ansible$ python3.9 -m venv env

BOOK.indb 477 19/05/22 5:55 PM

ptg39201256

478 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Then activate the virtual environment with Example 13-44 as a reference.

Example 13-44 Activating a Python Virtual Environment

ansibleadmin@ansibleserver:/opt/ansible$ source env/bin/activate

(env) ansibleadmin@ansibleserver:/opt/ansible$

Note that the virtual environment is activated by the inclusion of env at the command-line
prompt.

You can also validate where the Python executable is referenced and which version the envi-
ronment is running by using the steps in Example 13-45.

Example 13-45 Validating Python Path and Version

(env) ansibleadmin@ansibleserver:/opt/ansible$ which python

/opt/ansible/env/bin/python

(env) ansibleadmin@ansibleserver:/opt/ansible$ python -V

Python 3.9.5

(env) ansibleadmin@ansibleserver:/opt/ansible$

It is a good idea to ensure that the latest version of the pip is available. Example 13-46 iden-
tifies the actions to validate and update.

Example 13-46 Validating and Updating the Python pip Utility

(env) ansibleadmin@ansibleserver:/opt/ansible$ pip --version

pip 20.0.2 from /opt/ansible/env/lib/python3.9/site-packages/pip (python 3.9)

(env) ansibleadmin@ansibleserver:/opt/ansible$ pip install --upgrade pip

Collecting pip

 Downloading pip-21.2.4-py3-none-any.whl (1.6 MB)

 |████████████████████████████████| 1.6 MB 6.5 MB/s

Installing collected packages: pip

 Attempting uninstall: pip

 Found existing installation: pip 20.0.2

 Uninstalling pip-20.0.2:

 Successfully uninstalled pip-20.0.2

Successfully installed pip-21.2.4

(env) ansibleadmin@ansibleserver:/opt/ansible$ pip --version

pip 21.2.4 from /opt/ansible/env/lib/python3.9/site-packages/pip (python 3.9)

(env) ansibleadmin@ansibleserver:/opt/ansible$

Now you can install the latest Ansible using Python pip. This process is shown in
Example 13-47.

BOOK.indb 478 19/05/22 5:55 PM

ptg39201256

Chapter 13: Open-Source Solutions 479

13

Example 13-47 Using Python pip to Install Ansible

(env) ansibleadmin@ansibleserver:/opt/ansible$ python -m pip install ansible

Collecting ansible

 Downloading ansible-4.5.0.tar.gz (35.5 MB)

 |████████████████████████████████| 35.5 MB 6.4 MB/s

Collecting ansible-core<2.12,>=2.11.4

 Downloading ansible-core-2.11.4.tar.gz (6.8 MB)

 |████████████████████████████████| 6.8 MB 44.5 MB/s

Collecting PyYAML

 Downloading PyYAML-5.4.1-cp39-cp39-manylinux1_x86_64.whl (630 kB)

 |████████████████████████████████| 630 kB 46.2 MB/s

Collecting cryptography

 Downloading cryptography-3.4.8-cp36-abi3-manylinux_2_24_x86_64.whl (3.0 MB)

 |████████████████████████████████| 3.0 MB 48.8 MB/s

Collecting jinja2

 Downloading Jinja2-3.0.1-py3-none-any.whl (133 kB)

 |████████████████████████████████| 133 kB 62.9 MB/s

Collecting packaging

 Downloading packaging-21.0-py3-none-any.whl (40 kB)

 |████████████████████████████████| 40 kB 13.3 MB/s

Collecting resolvelib<0.6.0,>=0.5.3

 Downloading resolvelib-0.5.4-py2.py3-none-any.whl (12 kB)

Collecting cffi>=1.12

 Downloading cffi-1.14.6-cp39-cp39-manylinux1_x86_64.whl (405 kB)

 |████████████████████████████████| 405 kB 51.7 MB/s

Collecting pycparser

 Downloading pycparser-2.20-py2.py3-none-any.whl (112 kB)

 |████████████████████████████████| 112 kB 62.2 MB/s

Collecting MarkupSafe>=2.0

 Downloading MarkupSafe-2.0.1-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.
manylinux_2_12_x86_64.manylinux2010_x86_64.whl (30 kB)

Collecting pyparsing>=2.0.2

 Downloading pyparsing-2.4.7-py2.py3-none-any.whl (67 kB)

 |████████████████████████████████| 67 kB 6.7 MB/s

Using legacy 'setup.py install' for ansible, since package 'wheel' is not installed.

Using legacy 'setup.py install' for ansible-core, since package 'wheel' is not
installed.

Installing collected packages: pycparser, pyparsing, MarkupSafe, cffi, resolvelib,
PyYAML, packaging, jinja2, cryptography, ansible-core, ansible

 Running setup.py install for ansible-core ... done

 Running setup.py install for ansible ... done

Successfully installed MarkupSafe-2.0.1 PyYAML-5.4.1 ansible-4.5.0
ansible-core-2.11.4 cffi-1.14.6 cryptography-3.4.8 jinja2-3.0.1 packaging-21.0
pycparser-2.20 pyparsing-2.4.7 resolvelib-0.5.4

(env) ansibleadmin@ansibleserver:/opt/ansible$

BOOK.indb 479 19/05/22 5:55 PM

ptg39201256

480 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Looking through the output, you can see that at the time of this installation Ansible 4.5.0
with ansible-core package version 2.11.4 was installed.

Another quick confirmation at the command-line interface is shown in Example 13-48.

Example 13-48 Reviewing Ansible Version

(env) ansibleadmin@ansibleserver:/opt/ansible$ ansible --version

ansible [core 2.11.4]

 config file = None

 configured module search path = ['/home/ansibleadmin/.ansible/plugins/modules', '/
usr/share/ansible/plugins/modules']

 ansible python module location = /opt/ansible/env/lib/python3.9/site-packages/
ansible

 ansible collection location = /home/ansibleadmin/.ansible/collections:/usr/share/
ansible/collections

 executable location = /opt/ansible/env/bin/ansible

 python version = 3.9.5 (default, May 19 2021, 11:32:47) [GCC 9.3.0]

 jinja version = 3.0.1

 libyaml = True

(env) ansibleadmin@ansibleserver:/opt/ansible$

A quick verification on the Ansible release summary website confirms that this release is the
latest.

One last thing to do is to install the paramiko module, which is useful for SSH-based proj-
ects. Example 13-49 depicts the pip install process.

Example 13-49 Python pip Installing the paramiko Module

(env) ansibleadmin@ansibleserver:/opt/ansible$ python -m pip install paramiko

Collecting paramiko

 Downloading paramiko-2.7.2-py2.py3-none-any.whl (206 kB)

 |████████████████████████████████| 206 kB 6.2 MB/s

Collecting pynacl>=1.0.1

 Downloading PyNaCl-1.4.0-cp35-abi3-manylinux1_x86_64.whl (961 kB)

 |████████████████████████████████| 961 kB 34.2 MB/s

Requirement already satisfied: cryptography>=2.5 in ./env/lib/python3.9/site-pack-
ages (from paramiko) (3.4.8)

Collecting bcrypt>=3.1.3

 Downloading bcrypt-3.2.0-cp36-abi3-manylinux2010_x86_64.whl (63 kB)

 |████████████████████████████████| 63 kB 5.7 MB/s

Collecting six>=1.4.1

 Downloading six-1.16.0-py2.py3-none-any.whl (11 kB)

Requirement already satisfied: cffi>=1.1 in ./env/lib/python3.9/site-packages (from
bcrypt>=3.1.3->paramiko) (1.14.6)

Requirement already satisfied: pycparser in ./env/lib/python3.9/site-packages (from
cffi>=1.1->bcrypt>=3.1.3->paramiko) (2.20)

Installing collected packages: six, pynacl, bcrypt, paramiko

Successfully installed bcrypt-3.2.0 paramiko-2.7.2 pynacl-1.4.0 six-1.16.0

(env) ansibleadmin@ansibleserver:/opt/ansible$

BOOK.indb 480 19/05/22 5:55 PM

ptg39201256

Chapter 13: Open-Source Solutions 481

13

Now that the foundational software is laid, you can start your Ansible IaC journey by creat-
ing an inventory file to define devices and their credentials.

Configuring Ansible Inventory
Because Ansible uses SSH to connect to the managed devices, you must maintain your cre-
dentials somewhere. You could put them in your Ansible files—the playbooks—but that’s a
security disaster waiting to happen. So we don’t even show how to set your passwords in the
playbooks. Instead, we show you how to use a “Secure First” strategy and use the Ansible
Vault feature, which provides an encryption model.

To start, you create a vault password in a secure, limited-access vault credentials file. Your
vault password can be any string you prefer. Do not include this file in shared version con-
trol, such as git. Example 13-50 shows these steps.

Example 13-50 Creating an Ansible Vault Password

(env) ansibleadmin@ansibleserver:/opt/ansible$ echo -n "my_secure_password" >
my_vault_cred

(env) ansibleadmin@ansibleserver:/opt/ansible$ chmod 600 my_vault_cred

(env) ansibleadmin@ansibleserver:/opt/ansible$ ls -l my_vault_cred

-rw------- 1 ansibleadmin ansibleadmin 18 Sep 2 16:07 my_vault_cred

Next, assume you have a device password that you want to encrypt, so the encrypted string
can be included in a version-controlled Ansible playbook, thus reducing your security
exposure. You can choose your own variable name; the standard ansible_password variable
is used in Example 13-51 to represent the password for infrastructure devices in a DMZ
environment.

Example 13-51 Encrypting Strings for Device Passwords in Ansible

(env) ansibleadmin@ansibleserver:/opt/ansible$ ansible-vault encrypt_string --vault-
id dmz@my_vault --stdin-name 'ansible_password'

Reading plaintext input from stdin. (ctrl-d to end input, twice if your content does
not already have a newline)

ansible_password: !vault |

 $ANSIBLE_VAULT;1.2;AES256;dmz

 36343665373737326533646435363164363336353732393135336636386366663434323636
316130

 3535336335646136643338333631353136326661323164630a396330613639346264636531
363931

 33373332653064666134653034343433383636393161353839336566326634653730346464
623234

 6238343235376265660a396266663339626238346664323562363761666136393337626433
616331

 6364

Encryption successful

Now you can take that ansible_pass variable with the trailing data to represent the password
in the Ansible playbook without exposing the device password(s).

BOOK.indb 481 19/05/22 5:55 PM

ptg39201256

482 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Let’s progress further by creating a basic project-level inventory file and validate the
connectivity.

Creating a Project-Level Inventory File
If you installed Ansible from a package manager version, note that a new global inven-
tory file exists in /etc/ansible/hosts. However, if you installed using a virtualized Python
environment with pip, this file does not exist. You can create your own inventory file in a
project-oriented directory. This is considered a leading practice. You can name the inventory
file anything you want and define it using YAML data encoding, as seen in Example 13-52.
Although Ansible inventory files do support INI format, they do not support the inline vault
references, which we prefer for security reasons. So, if you’re not comfortable using YAML
to build inventory files and other configuration-related data, here are a couple of good refer-
ences to learn it:

https://www.w3schools.io/file/yaml-introduction/

https://docs.ansible.com/ansible/latest/reference_appendices/YAMLSyntax.html

Now you can create a file called inventory by using YAML syntax as shown in Example 13-52.

Example 13-52 Ansible Inventory File in YAML Syntax

all:

 vars:

 ansible_connection: ansible.netcommon.network_cli

infra:

 hosts:

 n9kv-nxapi-1:

 ansible_host: 172.31.0.170

 n9kv-nxapi-2:

 ansible_host: 172.31.0.171

 vars:

 ansible_become: yes

 ansible_become_method: enable

 ansible_network_os: cisco.ios.ios

 ansible_user: admin

 ansible_password: !vault |

 $ANSIBLE_VAULT;1.2;AES256;dmz

 36343665373737326533646435363164363336353732393135336636386366663434323636
316130

 3535336335646136643338333631353136326661323164630a396330613639346264636531
363931

 33373332653064666134653034343433383636393161353839336566326634653730346464
623234

 6238343235376265660a396266663339626238346664323562363761666136393337626433
616331

 6364

BOOK.indb 482 19/05/22 5:55 PM

https://www.w3schools.io/file/yaml-introduction/
http://https://docs.ansible.com/ansible/latest/reference_appendices/YAMLSyntax.html

ptg39201256

Chapter 13: Open-Source Solutions 483

13

Now that you’ve defined an inventory file, you can validate connectivity from the Ansible
server to the managed devices by using the Ansible ping module. Example 13-53 depicts the
process and results.

Example 13-53 Validating Ansible Connectivity with a Vault-Enabled Device

(env) ansibleadmin@ansibleserver:/opt/ansible$ ansible all -i inventory -m ping
--vault-id dmz@my_vault

n9kv-nxapi-1 | SUCCESS => {

 "changed": false,

 "ping": "pong"

}

n9kv-nxapi-2 | SUCCESS => {

 "changed": false,

 "ping": "pong"

}

What happens here is that you tell Ansible to run the ping module (-m ping) against all hosts
in the inventory file (-i inventory) and to use the DMZ vault ID with the my_vault vault
password file (--vault-id dmz@my_vault). This effectively decrypts the ansible_password
inline vault reference to obtain the correct device password for connectivity. The command
results show each device is sent a ping, and the response of the device is pong, or reachable.

Let’s move on to a nondestructive, read-only type use case and then later do configuration
changes.

Creating an Ansible Playbook to Obtain show Command Results
As you saw in the inventory file, you can create IaC directives in YAML syntax. Ansible also
allows for INI format, but you would lose the ability to do inline vault references. To keep
your security profile high, keep using YAML.

Let’s assume a use case in which you would like to execute and capture the output of several
show commands and archive the device running-config as JSON. This is the backup-info pro-
cess. You first create the Ansible playbook as a YAML file:

(env) ansibleadmin@ansibleserver:/opt/ansible$ vi backup-info.yaml

You start to define the YAML file in the text editor. YAML files in Ansible start with three
dashes (---). You have to think of the sequence of activities and tasks you must perform. In
this case, you create a directory named job-output in the current project directory where the
ansible-playbook command will be executed and where the inventory and playbook files
exist. You indent and provide a name for the play and the hosts that are involved. The tasks
for this play are to create a directory. See the partial playbook in Example 13-54.

BOOK.indb 483 19/05/22 5:55 PM

ptg39201256

484 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Example 13-54 Ansible Playbook Creating a Filesystem Directory

 - name: Create output directory

 hosts: localhost

 tasks:

 - name: Create directory

 file:

 path: ./job-output

 state: directory

To create a directory, you use the file module and specify the path and state. Ansible has
many modules; you can find documentation at https://docs.ansible.com/ansible/latest/collec-
tions/index_module.html.

The file module is specifically defined as a presupplied built-in at https://docs.ansible.com/
ansible/latest/collections/ansible/builtin/file_module.html#ansible-collections-ansible-
builtin-file-module.

The next play needs to capture some command output and store it in files. You can capture
the output of show version, show ip route, and show mac address-table. You also can get
the running-config stored in JSON format so that you can use it programmatically later if
you wish.

Continuing to append the earlier playbook, you can add additional content, as described in
Example 13-55.

Example 13-55 Additional Ansible Playbook Content

 - name: Capture show output

 hosts: infra

 gather_facts: no

 connection: network_cli

 tasks:

 - name: Execute show commands

 cisco.nxos.nxos_command:

 commands:

 - show version

 - show ip route

 - show mac address-table

 register: showcmds

 - name: Save show commands output to local directory

 copy:

 content: "{{ showcmds.stdout | replace('\\n', '\n') }}"

 dest: "job-output/{{ inventory_hostname }}.out"

BOOK.indb 484 19/05/22 5:55 PM

https://docs.ansible.com/ansible/latest/collec-tions/index_module.html
https://docs.ansible.com/ansible/latest/collec-tions/index_module.html
https://docs.ansible.com/ansible/latest/collections/ansible/builtin/file_module.html#ansible-collections-ansible-builtin-file-module
https://docs.ansible.com/ansible/latest/collections/ansible/builtin/file_module.html#ansible-collections-ansible-builtin-file-module
https://docs.ansible.com/ansible/latest/collections/ansible/builtin/file_module.html#ansible-collections-ansible-builtin-file-module

ptg39201256

Chapter 13: Open-Source Solutions 485

13

The name of the play is now Capture show output. The hosts for this play are the infra
device group. If you recall the inventory file, you created an infra group of the two Nexus
9K switches. Next, you can use the cisco.nxos.nxos_command module of Ansible to
execute a list of commands. The ios_command module is documented at https://
docs.ansible.com/ansible/latest/collections/cisco/nxos/nxos_command_module.html.

NOTE Ansible v2.9 is still commonly supplied in many Linux distributions. You may see
the unqualified module names in older releases, such as nxos_command:. Ensure you under-
stand the version you are running and reference the documentation for proper references.

The module requires you to specify the commands, and you do so as a list. In YAML syntax,
a list is prepended with a dash (-). Finally, you log the output using the register argument,
calling the output variable showcmds, which is referenced later.

The next task is named Save show commands output to local directory and uses the built-
in copy module. This module is documented at https://docs.ansible.com/ansible/latest/
collections/ansible/builtin/copy_module.html#ansible-collections-ansible-builtin-
copy-module.

The content and dest (destination) parameters define the content of the file and where it is
saved. This task is a little more tricky. It uses the standard output (stdout) of the showcmds
variable you previously defined. It passes that output via a pipe (|) to the replace function.
The replace function takes all '\\n' strings and replaces them with '\n', effectively giving you
real newline breaks instead of one long string output. Likewise, the dest parameter defines
the file as going into the job-output directory with the filename of the currently processed
inventory hostname appended with .out.

The next two tasks are pretty similar—capturing some output and storing in a file—as seen
in Example 13-56.

Example 13-56 Using Ansible to Obtain JSON-Formatted Device Configuration

 - name: Get running-config as JSON

 cisco.nxos.nxos_command:

 commands:

 - show run | json-pretty

 register: config

 - name: Save running-config JSON to local directory

 copy:

 content: "{{ config.stdout | replace('\\n', '\n') }}"

 dest: "job-output/{{ inventory_hostname }}-config.json"

...

One notable callout is the show run | json-pretty command. The Nexus 9ks in the environ-
ment supports NX-OS features of redirecting command output to JSON in a “pretty” format.
This is convenient for programmatic use. The output is stored in a device-hostnamed file
with -config.json appended.

Now you can execute the playbook, with Example 13-57 as your guide.

BOOK.indb 485 19/05/22 5:55 PM

https://docs.ansible.com/ansible/latest/collections/cisco/nxos/nxos_command_module.html
https://docs.ansible.com/ansible/latest/collections/cisco/nxos/nxos_command_module.html
https://docs.ansible.com/ansible/latest/collections/ansible/builtin/copy_module.html#ansible-collections-ansible-builtin-copy-module
https://docs.ansible.com/ansible/latest/collections/ansible/builtin/copy_module.html#ansible-collections-ansible-builtin-copy-module
https://docs.ansible.com/ansible/latest/collections/ansible/builtin/copy_module.html#ansible-collections-ansible-builtin-copy-module

ptg39201256

486 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Example 13-57 Running an Ansible Playbook That Archives a Configuration

(env) ansibleadmin@ansibleserver:/opt/ansible$ ansible-playbook -I inventory–-vault-
id dmz@my_vault backup-info.yaml

PLAY [Create output directory] ***
**

TASK [Gathering Facts] ***
**

ok: [localhost]

TASK [Create directory] **
**

changed: [localhost]

PLAY [Capture show output] ***
**

TASK [Execute show commands] ***
**

ok: [n9kv-nxapi-1]

ok: [n9kv-nxapi-2]

TASK [Save show commands output to local directory] ********************************
**

changed: [n9kv-nxapi-1]

changed: [n9kv-nxapi-2]

TASK [Get running-config as JSON] **
**

ok: [n9kv-nxapi-1]

ok: [n9kv-nxapi-2]

TASK [Save running-config JSON to local directory] *********************************
**

changed: [n9kv-nxapi-1]

changed: [n9kv-nxapi-2]

PLAY RECAP ***
**

localhost : ok=2 changed=1 unreachable=0 failed=0
skipped=0 rescued=0 ignored=0

n9kv-nxapi-1 : ok=4 changed=2 unreachable=0 failed=0
skipped=0 rescued=0 ignored=0

n9kv-nxapi-2 : ok=4 changed=2 unreachable=0 failed=0
skipped=0 rescued=0 ignored=0

You can see the various plays and tasks executing and the recap showing if there were any
device configurations changed or if there were reachability issues and so on.

BOOK.indb 486 19/05/22 5:55 PM

ptg39201256

Chapter 13: Open-Source Solutions 487

13

If you navigate on the Ansible server’s CLI to the project directory and the job-output sub-
directory, you see the files created, as depicted in Example 13-58.

Example 13-58 Reviewing Ansible Output

(env) ansibleadmin@ansibleserver:/opt/ansible$ ls -l job-output/

total 72

-rw-rw-r-- 1 ansibleadmin ansibleadmin 28770 Sep 2 21:45 n9kv-nxapi-1-config.json

-rw-rw-r-- 1 ansibleadmin ansibleadmin 1868 Sep 2 21:45 n9kv-nxapi-1.out

-rw-rw-r-- 1 ansibleadmin ansibleadmin 28999 Sep 2 21:45 n9kv-nxapi-2-config.json

-rw-rw-r-- 1 ansibleadmin ansibleadmin 1868 Sep 2 21:45 n9kv-nxapi-2.out

(env) ansibleadmin@ansibleserver:/opt/ansible$ more job-output/n9kv-nxapi-1-config.
json

['{

 "nf:source": {

 "nf:running": null

 },

 "nf:filter": {

 "m:configure": {

 "m:terminal": {

 "switchname": {

 "__XML__PARAM__name": {

 "__XML__value": "n9kv-nxapi-1"

 }

 },

 "vdc": {

 "__XML__PARAM__e-vdc": {

 "__XML__value": "n9kv-nxapi-1",

 "id": {

 "__XML__PARAM__new_id": {

 "__XML__value": "1",

[. . . Additional output trimmed . . .]

Filtering, Templating, and Jinja2
The previous examples showed how to create playbooks that use the Ansible task keyword
register to store the output of a task. The output was then passed to a simple replace filter
to provide proper newline outputs on lines in an output file. Behind the scenes, Ansible uses
Jinja2 filtering following a common form, seen in Example 13-59.

Example 13-59 Ansible Jinja2 Filter Format

my_new_var: "{{ <input_var> | <filter()> }}"

In a simple activity like the ones shown in Examples 13-55 and 13-56, this syntax is easily
understood and used. However, often, parsing the output requires more complex logic—
potentially loops and conditionals. In these instances, filters using Ansible built-in function-
ality or Jinja2 are preferred. RedHat suggests these references for Jinja2:

https://docs.ansible.com/ansible/latest/user_guide/playbooks_templating.html

https://jinja.palletsprojects.com/en/3.0.x/templates/#builtin-filters

BOOK.indb 487 19/05/22 5:55 PM

https://docs.ansible.com/ansible/latest/user_guide/playbooks_templating.html
https://jinja.palletsprojects.com/en/3.0.x/templates/#builtin-filters

ptg39201256

488 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Let’s try an advanced method that uses the built-in Ansible ansible.netcommon.parse_xml
filter, which is documented at https://docs.ansible.com/ansible/latest/user_guide/playbooks_
filters.html#network-xml-filters.

This filter requires a path to a YAML-formatted spec file that defines how to parse the
XML output. Example 13-60 shows the syntax.

Example 13-60 ansible.netcommon.parse_xml Syntax

{{ output | ansible.netcommon.parse_xml('path/to/spec') }}

After looking at the show vlan | xml output from an NX-OS based Nexus 9000 series
switch, you can define this nxos-vlan.yml file as shown in Example 13-61.

Example 13-61 Sample nxos-vlan.yml File

keys:

 vlans:

 value: "{{ vlanid }}"

 top: nf:rpc-reply/nf:data/show/vlan/__XML__OPT_Cmd_show_vlan___readonly__/__
readonly__/TABLE_vlanbrief/ROW_vlanbrief/

 items:

 vlanid: vlanid

 name: name

 state: state

 adminstate: adminstate

 intlist: intlist

vars:

 vlan:

 key: "{{ item.vlanshowbr-vlanid }}"

 values:

 vlanid: "{{ item.vlanshowbr-vlanid }}"

 name: "{{ item.vlanshowbr-vlanname }}"

 state: "{{ item.vlanshowbr-vlanstate }}"

 adminstate: "{{ item.vlanshowbr-shutstate }}"

 intlist: "{{ item.vlanshowplist-ifidx }}"

Now using an Ansible playbook with a task that registers show vlan | xml to an output vari-
able and defines another action as debug or set_fact with {{ output | ansible.netcommon.
parse_xml('/path/to/nxos-vlan.yml') }} renders back structured JSON that you can use in
other ways.

To wrap a bow on Ansible, let’s create a new playbook that changes device configurations.
Let’s add some VLANs to these two switches.

Using Ansible to Modify Device Configurations
As you saw in the previous section about simple device information extraction, you can use
Ansible modules to interact with a device. The modules are supplied by the Ansible project

BOOK.indb 488 19/05/22 5:55 PM

https://docs.ansible.com/ansible/latest/user_guide/playbooks_filters.html#network-xml-filters
https://docs.ansible.com/ansible/latest/user_guide/playbooks_filters.html#network-xml-filters

ptg39201256

Chapter 13: Open-Source Solutions 489

13

and community members. Many modules are built-ins, or part of the core project—over 700!
Even more modules are available from the community repository, called Galaxy, at https://
galaxy.ansible.com/.

To create a playbook that creates VLANs, you need to find a Cisco IOS or NX-OS module
that interacts with the VLAN feature. At the most simplistic level, you can use a module that
pushes commands you provide, but that approach might not provide the level of abstraction
you’re looking for. Many modules handle the translation of abstract functions into the device
native syntax. These kinds of modules are optimal for programmatic use and in diverse
device-type environments. You can research them further in the Ansible collections library
at https://docs.ansible.com/ansible/latest/collections/ansible/index.html. Searching for cisco
nx-os vlan reveals that the cisco.nxos.nxos-vlans module is the optimal fit. It is documented
at https://docs.ansible.com/ansible/latest/collections/cisco/nxos/nxos_vlans_module.html.

Let’s create three new VLANs as done for the previous Puppet example, providing the appro-
priate names. To start, create a new Ansible playbook called create-vlans.yaml:

(env) ansibleadmin@ansibleserver:/opt/ansible$ vi create-vlans.yaml

The contents should appear as shown in Example 13-62.

Example 13-62 Creating VLANs in an Ansible Playbook

 - name: Create VLANs

 hosts: infra

 gather_facts: no

 vars:

 ansible_connection: network_cli

 ansible_network_os: nxos

 ansible_become: no

 tasks:

 - name: Merge provided configuration with device configuration.

 cisco.nxos.nxos_vlans:

 config:

 - vlan_id: 100

 name: Production

 - vlan_id: 200

 name: Site_Backup

 - vlan_id: 300

 name: Development

 state: merged

...

Then you can execute the playbook, as depicted in Example 13-63.

BOOK.indb 489 19/05/22 5:55 PM

https://galaxy.ansible.com/
https://galaxy.ansible.com/
https://docs.ansible.com/ansible/latest/collections/ansible/index.html
https://docs.ansible.com/ansible/latest/collections/cisco/nxos/nxos_vlans_module.html

ptg39201256

490 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Example 13-63 Executing the Ansible Playbook to Deploy VLANs

(env) ansibleadmin@ansibleserver:/opt/ansible$ ansible-playbook -i inventory
--vault-id dmz@my_vault create-vlans.yaml

PLAY [Create VLANs] **
**

TASK [Merge provided configuration with device configuration.] *********************
**

changed: [n9kv-nxapi-2]

changed: [n9kv-nxapi-1]

PLAY RECAP ***
**

n9kv-nxapi-1 : ok=1 changed=1 unreachable=0 failed=0
skipped=0 rescued=0 ignored=0

n9kv-nxapi-2 : ok=1 changed=1 unreachable=0 failed=0
skipped=0 rescued=0 ignored=0

(env) ansibleadmin@ansibleserver:/opt/ansible$

Inspecting one of the device configurations, you can see the results shown in
Example 13-64.

Example 13-64 Reviewing Ansible Playbook Results

n9kv-nxapi-1# sh vlan

VLAN Name Status Ports

---- -------------------------------- --------- -------------------------------

1 default active Eth1/1, Eth1/2, Eth1/3, Eth1/4

 Eth1/5, Eth1/6, Eth1/7, Eth1/8

 Eth1/9, Eth1/10, Eth1/11

 Eth1/12, Eth1/13, Eth1/14

 Eth1/15, Eth1/16, Eth1/17

[. . . Some output trimmed . . .]

 Eth1/60, Eth1/61, Eth1/62

 Eth1/63, Eth1/64

100 Production active

200 Site_Backup active

300 Development active

BOOK.indb 490 19/05/22 5:55 PM

ptg39201256

Chapter 13: Open-Source Solutions 491

13

VLAN Type Vlan-mode

---- ----- ----------

1 enet CE

100 enet CE

200 enet CE

300 enet CE

Remote SPAN VLANs

Now let’s make a more complicated example that includes conditional logic and loops. In this
case, create a playbook that creates two new VLANs if VLAN 200 does not exist; deletes
NTP server 10.1.1.100 if it exists; and creates a new message of the day, MOTD, login ban-
ner. Call this playbook prep-dev-env.yaml.

You can look up Ansible documentation for the cisco ntp module from the Ansible collec-
tions doc URL provided previously at https://docs.ansible.com/ansible/latest/collections/
cisco/nxos/nxos_ntp_module.html.

Likewise, you can look for the banner/MOTD functionality and find cisco nxos banner with
the module documentation at https://docs.ansible.com/ansible/latest/collections/cisco/nxos/
nxos_banner_module.html.

Start by creating the Ansible playbook:

(env) ansibleadmin@ansibleserver:/opt/ansible$ vi prep-dev-env.yaml

It should look like Example 13-65.

Example 13-65 A More Feature-Rich Playbook with Conditions

 - name: Prep Development Environment

 hosts: infra

 gather_facts: no

 vars:

 ansible_connection: network_cli

 ansible_network_os: nxos

 ansible_become: no

 dev_vlans:

 - { vlan_id: 1000, name: Dev1 }

 - { vlan_id: 1001, name: Dev2 }

 tasks:

 - name: Get Nexus facts

 nxos_facts:

 gather_subset: legacy

 register: data

BOOK.indb 491 19/05/22 5:55 PM

https://docs.ansible.com/ansible/latest/collections/cisco/nxos/nxos_ntp_module.html
https://docs.ansible.com/ansible/latest/collections/cisco/nxos/nxos_ntp_module.html
https://docs.ansible.com/ansible/latest/collections/cisco/nxos/nxos_banner_module.html
https://docs.ansible.com/ansible/latest/collections/cisco/nxos/nxos_banner_module.html

ptg39201256

492 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

 - name: Create Dev VLANs, if VLAN 200 is missing

 cisco.nxos.nxos_vlans:

 config:

 - vlan_id: "{{ item.vlan_id }}"

 name: "{{ item.name }}"

 state: merged

 with_items: "{{ dev_vlans }}"

 when: ("200") not in data.ansible_facts.ansible_net_vlan_list

 - name: Delete the decommissioned NTP server 10.1.1.100

 cisco.nxos.nxos_ntp:

 server: 10.1.1.100

 state: absent

 - name: Create MOTD banner message

 cisco.nxos.nxos_banner:

 banner: motd

 text: |

 This is my multiline MOTD banner

 that was deployed by an Ansible playbook

 state: present

...

Now you can run the Ansible playbook, as in Example 13-66.

Example 13-66 Running the More Sophisticated Ansible Playbook with Conditionals

(env) ansibleadmin@ansibleserver:/opt/ansible$ ansible-playbook -i inventory
--vault-id dmz@my_vault prep-dev-env.yaml

PLAY [Prep Development Environment] **
**

TASK [Get Nexus facts] ***
**

ok: [n9kv-nxapi-2]

ok: [n9kv-nxapi-1]

TASK [Create Dev VLANs, if VLAN 200 is missing] ************************************
**

skipping: [n9kv-nxapi-1] => (item={'vlan_id': 1000, 'name': 'Dev1'})

skipping: [n9kv-nxapi-1] => (item={'vlan_id': 1001, 'name': 'Dev2'})

changed: [n9kv-nxapi-2] => (item={'vlan_id': 1000, 'name': 'Dev1'})

changed: [n9kv-nxapi-2] => (item={'vlan_id': 1001, 'name': 'Dev2'})

BOOK.indb 492 19/05/22 5:55 PM

ptg39201256

Chapter 13: Open-Source Solutions 493

13

TASK [Delete the decommissioned NTP server 10.1.1.100] *****************************
**

ok: [n9kv-nxapi-1]

ok: [n9kv-nxapi-2]

TASK [Create MOTD banner message] **
**

changed: [n9kv-nxapi-2]

changed: [n9kv-nxapi-1]

PLAY RECAP ***
**

n9kv-nxapi-1 : ok=3 changed=1 unreachable=0 failed=0
skipped=1 rescued=0 ignored=0

n9kv-nxapi-2 : ok=4 changed=2 unreachable=0 failed=0
skipped=0 rescued=0 ignored=0

Interpreting the output, you can see that n9kv-nxapi-1 does have VLAN 200, so it skips
adding the new VLANs. However, nk9v-nxapi-2 does not have VLAN 200, so it adds the
new VLANs 1000 and 1001 (the “changed” results). Neither device has the decommissioned
NTP server 10.1.1.100—the ok result, not changed. The MOTD banner is created on both
devices—the changed results. You can see the summary results of one change for the first
device and two changes for the second device.

Now that you’ve experienced some Ansible-style IaC, let’s get into Terraform, another popu-
lar IaC solution.

Terraform Overview
Terraform is another open-source IaC solution that is generally associated with cloud
orchestration. It is a relative newcomer to the IaC fold, initially released mid-2014 by
HashiCorp (see Figure 13-6). As noted previously, it achieved version 1.0.0 status in the
summer of 2021.

BOOK.indb 493 19/05/22 5:55 PM

ptg39201256

494 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Figure 13-6 HashiCorp Blog Announcing Terraform v1.0.0 GA Status

Terraform uses a declarative configuration language known as HashiCorp Configuration
Language, or HCL. Terraform designers define their data center infrastructure and/or cloud
resources by using “providers” that define a logical abstraction of a product vendor’s API
and deal with the translation from HCL to the native device’s syntax.

Terraform has a great following and application in the cloud space, where managed work-
loads can be spun up or deleted by defining the desire end state (declarative model) versus
the step-by-step process (imperative model).

The Terraform community maintains a repository of providers at https://registry.terraform.
io/browse/providers. These pluggable modules can be added to the base Terraform server as
your needs grow. The selection is vast: AWS, Kubernetes, Azure, Oracle, Google Cloud Plat-
form, Active Directory, Cisco, and many others.

Let’s look at Terraform at a high level. Because the DEVCOR exam focuses more on Ansible,
our coverage of Terraform is not as extensive, but it serves to show the power of IaC. If you
find yourself doing a lot of cloud-based engineering, especially in spin-up/spin-down of
DevTest environments, you will be well served by Terraform.

Installing Terraform
To install Terraform, you can use the same model you used for Puppet and Ansible. In this
case, start with a virgin Ubuntu 21.04 server and build up a Terraform server from there.

BOOK.indb 494 19/05/22 5:55 PM

https://registry.terraform.io/browse/providers
https://registry.terraform.io/browse/providers

ptg39201256

Chapter 13: Open-Source Solutions 495

13

NOTE Terraform supports Windows (using Chocolatey) and OS X (using Homebrew) also.
In this chapter, we show a common Linux example for broader application.

Terraform has a simple client-only architecture that is easily installed. You start by adding
HashiCorp’s GNU Privacy Guard (gpg) key by downloading it with the curl utility and pass-
ing it to the apt-key utility, adding it to your list of trusted keys. This approach is shown in
Example 13-67.

Example 13-67 Obtaining Hashicorp GPG Keys for Package Management

terraformadmin@terraformserver:~$ curl https://apt.releases.hashicorp.com/gpg | sudo
apt-key add -

[sudo] password for terraformadmin:

 % Total % Received % Xferd Average Speed Time Time Time Current

 Dload Upload Total Spent Left Speed

100 3195 100 3195 0 0 58090 0 --:--:-- --:--:-- --:--:-- 58090

Progress: [80%] [##
############################........................]

OK

Next, you add the software repository to your local list of authorized sources, as in
Example 13-68.

Example 13-68 Adding the Hashicorp Software Repository to the Package Manager

terraformadmin@terraformserver:~$ sudo apt-add-repository "deb [arch=$(dpkg --print-
architecture)] https://apt.releases.hashicorp.com $(lsb_release -cs) main"

Hit:1 http://us.archive.ubuntu.com/ubuntu focal InRelease

Hit:2 http://us.archive.ubuntu.com/ubuntu focal-updates InRelease

Get:3 https://apt.releases.hashicorp.com focal InRelease [4,419 B]

Hit:4 http://us.archive.ubuntu.com/ubuntu focal-backports InRelease

Hit:5 http://us.archive.ubuntu.com/ubuntu focal-security InRelease

Get:6 https://apt.releases.hashicorp.com focal/main amd64 Packages [31.2 kB]

Fetched 35.7 kB in 1s (64.0 kB/s)

Reading package lists... Done

For good measure, Example 13-69 shows how to update the package information from all
configured sources.

BOOK.indb 495 19/05/22 5:55 PM

https://apt.releases.hashicorp.com/gpg
https://apt.releases.hashicorp.com
http://us.archive.ubuntu.com/ubuntu
http://us.archive.ubuntu.com/ubuntu
https://apt.releases.hashicorp.com
http://us.archive.ubuntu.com/ubuntu
http://us.archive.ubuntu.com/ubuntu
https://apt.releases.hashicorp.com

ptg39201256

496 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Example 13-69 Performing a Package Manager Update

terraformadmin@terraformserver:~$ sudo apt update

Hit:1 https://apt.releases.hashicorp.com focal InRelease

Hit:2 http://us.archive.ubuntu.com/ubuntu focal InRelease

Hit:3 http://us.archive.ubuntu.com/ubuntu focal-updates InRelease

Hit:4 http://us.archive.ubuntu.com/ubuntu focal-backports InRelease

Hit:5 http://us.archive.ubuntu.com/ubuntu focal-security InRelease

Reading package lists... Done

Building dependency tree

Reading state information... Done

All packages are up to date.

Then you direct the package installer to install Terraform, as shown in Example 13-70.

Example 13-70 Using the Package Manager to Install Terraform

terraformadmin@terraformserver:~$ sudo apt install terraform

Reading package lists... Done

Building dependency tree

Reading state information... Done

The following NEW packages will be installed:

 terraform

0 upgraded, 1 newly installed, 0 to remove and 0 not upgraded.

Need to get 32.7 MB of archives.

After this operation, 79.4 MB of additional disk space will be used.

Get:1 https://apt.releases.hashicorp.com focal/main amd64 terraform amd64 1.0.6
[32.7 MB]

Fetched 32.7 MB in 0s (70.9 MB/s)

Selecting previously unselected package terraform.

(Reading database ... 71474 files and directories currently installed.)

Preparing to unpack .../terraform_1.0.6_amd64.deb ...

Unpacking terraform (1.0.6) ...

Setting up terraform (1.0.6) ...

For good measure, Example 13-71 shows how to verify the version of Terraform installed.

Example 13-71 Checking the Installed Version of Terraform

terraformadmin@terraformserver:~$ terraform --version

Terraform v1.0.6

on linux_amd64

Using Terraform
Let’s use Terraform to do an IaC provisioning use case that deploys new tenants in an ACI
environment. Terraform can download and install any provider defined in a configuration file
as it initializes the project’s working directory.

BOOK.indb 496 19/05/22 5:55 PM

https://apt.releases.hashicorp.com
http://us.archive.ubuntu.com/ubuntu
http://us.archive.ubuntu.com/ubuntu
http://us.archive.ubuntu.com/ubuntu
http://us.archive.ubuntu.com/ubuntu
https://apt.releases.hashicorp.com

ptg39201256

Chapter 13: Open-Source Solutions 497

13

If you have your own ACI DevTest environment, feel free to use that. If not, the DevNet ACI
Always On Sandbox Lab is free to use as a shared, public resource at https://devnetsand-
box.cisco.com/RM/Diagram/Index/18a514e8-21d4-4c29-96b2-e3c16b1ee62e?diagramType
=Topology.

The first thing to do is create a project directory to maintain configuration files and Terra-
form state information:

terraformadmin@terraformserver:~$ mkdir aci-create-tenant

terraformadmin@terraformserver:~$ cd aci-create-tenant/

Next, create the Terraform configuration file; ideally, this would be programmatically created
and maintained in a git repo. Terraform files are named with a .tf extension by convention.

terraformadmin@terraformserver:~/aci-create-tenant$ vi

deploy-test-tenant.tf

Ensure the configuration file contents appear as shown in Example 13-72. Replace the ACI
APIC URL and credentials to suit your environment or use the DevNet Always On environ-
ment, as supplied.

Example 13-72 A Terraform File to Create an ACI Tenant and App

terraform {

 required_providers {

 aci = {

 source = "ciscodevnet/aci"

 }

 }

}

#configure provider with your cisco aci credentials.

provider "aci" {

 # cisco-aci user name

 username = "admin"

 # cisco-aci password

 password = "!v3G@!4@Y"

 # cisco-aci url

 url = "https://sandboxapicdc.cisco.com"

 insecure = true

 #proxy_url = "https://proxy_server:proxy_port"

}

resource "aci_tenant" "devcor-test-tenant" {

 name = "devcor-test-tenant"

 description = "This tenant is created by terraform"

}

BOOK.indb 497 19/05/22 5:55 PM

https://devnetsand-box.cisco.com/RM/Diagram/Index/18a514e8-21d4-4c29-96b2-e3c16b1ee62e?diagramType=Topology
https://devnetsand-box.cisco.com/RM/Diagram/Index/18a514e8-21d4-4c29-96b2-e3c16b1ee62e?diagramType=Topology
https://devnetsand-box.cisco.com/RM/Diagram/Index/18a514e8-21d4-4c29-96b2-e3c16b1ee62e?diagramType=Topology
https://sandboxapicdc.cisco.com"

ptg39201256

498 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

resource "aci_app_profile" "devcor-test-app" {

 tenant_dn = "${aci_tenant.devcor-test-tenant.id}"

 name = "devcor-test-app"

 description = "This app profile is created by terraform"

}

To make use of Terraform, you must initialize your current working directory. Initializing the
directory creates a .terraform subdirectory containing provider information. You may also
see a lock file with a .lock.hcl extension. Example 13-73 shows the execution.

Example 13-73 Initializing a Terraform Project

terraformadmin@terraformserver:~/aci-create-tenant$ terraform init

Initializing the backend...

Initializing provider plugins...

- Finding latest version of ciscodevnet/aci...

- Installing ciscodevnet/aci v0.7.1...

- Installed ciscodevnet/aci v0.7.1 (signed by a HashiCorp partner, key ID
433649E2C56309DE)

Partner and community providers are signed by their developers.

If you'd like to know more about provider signing, you can read about it here:

https://www.terraform.io/docs/cli/plugins/signing.html

Terraform has created a lock file .terraform.lock.hcl to record the provider

selections it made above. Include this file in your version control repository

so that Terraform can guarantee to make the same selections by default when

you run "terraform init" in the future.

Terraform has been successfully initialized!

You may now begin working with Terraform. Try running "terraform plan" to see

any changes that are required for your infrastructure. All Terraform commands

should now work.

If you ever set or change modules or backend configuration for Terraform,

rerun this command to reinitialize your working directory. If you forget, other

commands will detect it and remind you to do so if necessary.

Note that the terraform init command also downloads the ciscodevnet/aci provider from the
Terraform registry.

The next activity is to instruct Terraform to assess the IaC configuration you provided. You
use the terraform plan command to show the changes necessary to bring the environment
in line with the configuration you declared. Terraform connects to the endpoints defined in

BOOK.indb 498 19/05/22 5:55 PM

https://www.terraform.io/docs/cli/plugins/signing.html

ptg39201256

Chapter 13: Open-Source Solutions 499

13

the configuration file to assess the changes necessary. Example 13-74 shows the execution
of terraform plan.

Example 13-74 Executing terraform plan

terraformadmin@terraformserver:~/aci-create-tenant$ terraform plan

Terraform used the selected providers to generate the following execution plan.
Resource actions are indicated with the following symbols:

 + create

Terraform will perform the following actions:

 # aci_tenant.devcor-test-tenant will be created

 + resource "aci_tenant" "devcor-test-tenant" {

 + annotation = "orchestrator:terraform"

 + description = "This tenant is created by terraform"

 + id = (known after apply)

 + name = "devcor-test-tenant"

 + name_alias = (known after apply)

 }

 # aci_tenant.devcor-test-tenant2 will be created

 + resource "aci_tenant" "devcor-test-tenant2" {

 + annotation = "orchestrator:terraform"

 + description = "This tenant is created by terraform"

 + id = (known after apply)

 + name = "devcor-test-tenant2"

 + name_alias = (known after apply)

 }

 # aci_tenant.devcor-test-tenant3 will be created

 + resource "aci_tenant" "devcor-test-tenant3" {

 + annotation = "orchestrator:terraform"

 + description = "This tenant is created by terraform"

 + id = (known after apply)

 + name = "devcor-test-tenant3"

 + name_alias = (known after apply)

 }

Plan: 3 to add, 0 to change, 0 to destroy.

──
───

Note: You didn't use the -out option to save this plan, so Terraform can't guarantee
to take exactly these actions if you run "terraform

apply" now.

BOOK.indb 499 19/05/22 5:55 PM

ptg39201256

500 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

If you agree with the assessment of creating three new tenants, you can move to the provi-
sioning mode with terraform apply, depicted in Example 13-75.

Example 13-75 Applying the Terraform Plan

terraformadmin@terraformserver:~/aci-create-tenant$ terraform apply

Terraform used the selected providers to generate the following execution plan.
Resource actions are indicated with the following symbols:

 + create

Terraform will perform the following actions:

 # aci_tenant.devcor-test-tenant will be created

 + resource "aci_tenant" "devcor-test-tenant" {

 + annotation = "orchestrator:terraform"

 + description = "This tenant is created by terraform"

 + id = (known after apply)

 + name = "devcor-test-tenant"

 + name_alias = (known after apply)

 }

 # aci_tenant.devcor-test-tenant2 will be created

 + resource "aci_tenant" "devcor-test-tenant2" {

 + annotation = "orchestrator:terraform"

 + description = "This tenant is created by terraform"

 + id = (known after apply)

 + name = "devcor-test-tenant2"

 + name_alias = (known after apply)

 }

 # aci_tenant.devcor-test-tenant3 will be created

 + resource "aci_tenant" "devcor-test-tenant3" {

 + annotation = "orchestrator:terraform"

 + description = "This tenant is created by terraform"

 + id = (known after apply)

 + name = "devcor-test-tenant3"

 + name_alias = (known after apply)

 }

Plan: 3 to add, 0 to change, 0 to destroy.

Do you want to perform these actions?

 Terraform will perform the actions described above.

 Only 'yes' will be accepted to approve.

BOOK.indb 500 19/05/22 5:55 PM

ptg39201256

Chapter 13: Open-Source Solutions 501

13

 Enter a value: yes

aci_tenant.devcor-test-tenant2: Creating...

aci_tenant.devcor-test-tenant3: Creating...

aci_tenant.devcor-test-tenant: Creating...

aci_tenant.devcor-test-tenant: Creation complete after 1s [id=uni/
tn-devcor-test-tenant]

aci_tenant.devcor-test-tenant2: Creation complete after 1s [id=uni/
tn-devcor-test-tenant2]

aci_tenant.devcor-test-tenant3: Creation complete after 1s [id=uni/
tn-devcor-test-tenant3]

Apply complete! Resources: 3 added, 0 changed, 0 destroyed.

terraformadmin@terraformserver:~/aci-create-tenant$

To verify the creation, you can go to the ACI APIC controller’s web UI, as shown in Figure 13-7.

Figure 13-7 ACI APIC Controller Showing Terraform Provisioning Results

To glean some more ideas about ACI provisioning, check out the Terraform ACI provider
examples on GitHub at https://github.com/CiscoDevNet/terraform-provider-aci/tree/master/
examples.

Cisco Solutions Enabled for IaC
Following the default route of hands-on-keyboards or “finger-defined networks,” as I like to
call it, can be over if you’re with us. Embracing Infrastructure as Code provides the opportu-
nity to programmatically define and build your networks, including the compute and cloud-
based services you regularly employ.

From open management interfaces, such as NX-API, NETCONF, and RESTCONF; to avail-
able agent-based technologies, such as Puppet and Chef; to agentless technologies in Ansible
and Terraform, Cisco is providing options. The portfolio is broad with products that support
these technologies—routers, switches, servers, collaboration, wireless, security, cloud, and
management solutions.

BOOK.indb 501 19/05/22 5:55 PM

https://github.com/CiscoDevNet/terraform-provider-aci/tree/master/examples
https://github.com/CiscoDevNet/terraform-provider-aci/tree/master/examples

ptg39201256

502 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

You have the flexibility to align your provisioning and orchestration with the same solutions
that are popular in the server/compute domain. Cisco is an active developer in all these com-
munities and has a dedicated developer advocacy team in its DevNet organization. You can
engage with them through the following links:

Twitter: @CiscoDevNet

Facebook: https://www.facebook.com/ciscodevnet/

GitHub: https://github.com/CiscoDevNet

Cisco developer forums: https://community.cisco.com/t5/for-developers/
ct-p/4409j-developer-home

Exam Preparation Tasks
As mentioned in the section “How to Use This Book” in the Introduction, you have a couple
of choices for exam preparation: the exercises here, Chapter 17, “Final Preparation,” and the
exam simulation questions in the Pearson Test Prep Software Online.

Review All Key Topics
Review the most important topics in this chapter, noted with the Key Topic icon in the outer
margin of the page. Table 13-3 lists a reference of these key topics and the page numbers on
which each is found.

Table 13-3 Key Topics for Chapter 13

Key Topic Element Description Page
Number

Section Imperative and Declarative Models 448

Paragraph Agent-based technologies 450

Paragraph Agentless technologies 450

Table 13-2 Puppet Platform Support Matrix 451

Paragraph Puppet facter module 459

Example 13-19 Using Puppet facter to Extract system_uptime 463

Example 13-34 Puppet Manifest to Change a Device 470

Example 13-50 Creating an Ansible Vault Password 481

Example 13-51 Encrypting Strings for Device Passwords in
Ansible

481

Example 13-52 Ansible Inventory File in YAML Syntax 482

Example 13-56 Using Ansible to Obtain JSON-Formatted Device
Configuration

485

Example 13-61 Sample nxos-vlan.yml File 488

BOOK.indb 502 19/05/22 5:55 PM

https://www.facebook.com/ciscodevnet/
https://github.com/CiscoDevNet
https://community.cisco.com/t5/for-developers/ct-p/4409j-developer-home
https://community.cisco.com/t5/for-developers/ct-p/4409j-developer-home

ptg39201256

Chapter 13: Open-Source Solutions 503

13

Key Topic Element Description Page
Number

Example 13-62 Creating VLANs in an Ansible Playbook 489

Example 13-72 A Terraform File to Create an ACI Tenant and App 497

Example 13-74 Executing terraform plan 499

Example 13-75 Applying the Terraform Plan 500

Complete Tables and Lists from Memory
Print a copy of Appendix C, “Memory Tables” (found on the companion website), or at least
the section for this chapter, and complete the tables and lists from memory. Appendix D,
“Memory Tables Answer Key,” also on the companion website, includes completed tables
and lists to check your work.

Define Key Terms
Define the following key terms from this chapter and check your answers in the glossary:

agentless, agent-based, declarative model, imperative model, Chef, Puppet, Ansible, Terra-
form, manifest, playbook, spec file, plan

References
URL QR Code

https://github.com/cisco/cisco-network-puppet-module/blob/develop/
docs/README-agent-install.md

https://github.com/grpc/grpc/issues/21514

https://puppet.com/docs/puppet/7/core_facts.html

https://devnetsandbox.cisco.com/RM/Diagram/Index/
dae38dd8-e8ee-4d7c-a21c-6036bed7a804?diagramType=Topology

BOOK.indb 503 19/05/22 5:55 PM

https://github.com/cisco/cisco-network-puppet-module/blob/develop/docs/README-agent-install.md
https://github.com/cisco/cisco-network-puppet-module/blob/develop/docs/README-agent-install.md
https://github.com/grpc/grpc/issues/21514
https://puppet.com/docs/puppet/7/core_facts.html
https://devnetsandbox.cisco.com/RM/Diagram/Index/dae38dd8-e8ee-4d7c-a21c-6036bed7a804?diagramType=Topology
https://devnetsandbox.cisco.com/RM/Diagram/Index/dae38dd8-e8ee-4d7c-a21c-6036bed7a804?diagramType=Topology

ptg39201256

504 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

URL QR Code

https://www.w3schools.io/file/yaml-introduction/

https://docs.ansible.com/ansible/latest/reference_appendices/
YAMLSyntax.html

https://docs.ansible.com/ansible/latest/collections/index_module.html

https://docs.ansible.com/ansible/latest/collections/ansible/builtin/
file_module.html#ansible-collections-ansible-builtin-file-module

https://docs.ansible.com/ansible/latest/collections/cisco/nxos/nxos_
command_module.html

https://docs.ansible.com/ansible/latest/collections/ansible/builtin/
copy_module.html#ansible-collections-ansible-builtin-copy-module

https://docs.ansible.com/ansible/latest/user_guide/playbooks_
templating.html

https://jinja.palletsprojects.com/en/3.0.x/templates/#builtin-filters

BOOK.indb 504 19/05/22 5:55 PM

https://www.w3schools.io/file/yaml-introduction/
http://https://docs.ansible.com/ansible/latest/reference_appendices/YAMLSyntax.html
http://https://docs.ansible.com/ansible/latest/reference_appendices/YAMLSyntax.html
https://docs.ansible.com/ansible/latest/collections/index_module.html
https://docs.ansible.com/ansible/latest/collections/ansible/builtin/file_module.html#ansible-collections-ansible-builtin-file-module
https://docs.ansible.com/ansible/latest/collections/ansible/builtin/file_module.html#ansible-collections-ansible-builtin-file-module
https://docs.ansible.com/ansible/latest/collections/cisco/nxos/nxos_command_module.html
https://docs.ansible.com/ansible/latest/collections/cisco/nxos/nxos_command_module.html
https://docs.ansible.com/ansible/latest/collections/ansible/builtin/copy_module.html#ansible-collections-ansible-builtin-copy-module
https://docs.ansible.com/ansible/latest/collections/ansible/builtin/copy_module.html#ansible-collections-ansible-builtin-copy-module
https://docs.ansible.com/ansible/latest/user_guide/playbooks_templating.html
https://docs.ansible.com/ansible/latest/user_guide/playbooks_templating.html
https://jinja.palletsprojects.com/en/3.0.x/templates/#builtin-filters

ptg39201256

Chapter 13: Open-Source Solutions 505

13

URL QR Code

https://docs.ansible.com/ansible/latest/user_guide/playbooks_
filters.html#network-xml-filters

https://galaxy.ansible.com/

https://docs.ansible.com/ansible/latest/collections/ansible/index.html

https://docs.ansible.com/ansible/latest/collections/cisco/nxos/nxos_
vlans_module.html

https://docs.ansible.com/ansible/latest/collections/cisco/nxos/nxos_
ntp_module.html

https://docs.ansible.com/ansible/latest/collections/cisco/nxos/nxos_
banner_module.html

https://registry.terraform.io/browse/providers

https://devnetsandbox.cisco.com/RM/Diagram/Index/18a514e8-21d4-
4c29-96b2-e3c16b1ee62e?diagramType=Topology

BOOK.indb 505 19/05/22 5:55 PM

https://docs.ansible.com/ansible/latest/user_guide/playbooks_filters.html#network-xml-filters
https://docs.ansible.com/ansible/latest/user_guide/playbooks_filters.html#network-xml-filters
https://galaxy.ansible.com/
http://https://docs.ansible.com/ansible/latest/collections/ansible/index.html
https://docs.ansible.com/ansible/latest/collections/cisco/nxos/nxos_vlans_module.html
https://docs.ansible.com/ansible/latest/collections/cisco/nxos/nxos_vlans_module.html
https://docs.ansible.com/ansible/latest/collections/cisco/nxos/nxos_ntp_module.html
https://docs.ansible.com/ansible/latest/collections/cisco/nxos/nxos_ntp_module.html
https://docs.ansible.com/ansible/latest/collections/cisco/nxos/nxos_banner_module.html
https://docs.ansible.com/ansible/latest/collections/cisco/nxos/nxos_banner_module.html
https://registry.terraform.io/browse/providers
https://devnetsandbox.cisco.com/RM/Diagram/Index/18a514e8-21d4-4c29-96b2-e3c16b1ee62e?diagramType=Topology
https://devnetsandbox.cisco.com/RM/Diagram/Index/18a514e8-21d4-4c29-96b2-e3c16b1ee62e?diagramType=Topology

ptg39201256

506 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

URL QR Code

https://github.com/CiscoDevNet/terraform-provider-aci/tree/master/
examples

https://www.facebook.com/ciscodevnet/

https://github.com/CiscoDevNet

https://community.cisco.com/t5/for-developers/
ct-p/4409j-developer-home

BOOK.indb 506 19/05/22 5:56 PM

https://github.com/CiscoDevNet/terraform-provider-aci/tree/master/examples
https://github.com/CiscoDevNet/terraform-provider-aci/tree/master/examples
https://www.facebook.com/ciscodevnet/
https://community.cisco.com/t5/for-developers/ct-p/4409j-developer-home
https://community.cisco.com/t5/for-developers/ct-p/4409j-developer-home
https://github.com/CiscoDevNet

ptg39201256

This page intentionally left blank

ptg39201256

CHAPTER 14

Software Configuration
Management

This chapter covers the following topics:

■ Software Configuration Management (SCM): In this section we discuss general SCM
concepts and how to track all development properties, processes, characteristics, dis-
ciplines, and responsibilities of a software product. We also discuss a few of the avail-
able systems and decision criteria for choosing the one that fulfills your requirements.
In addition, we cover Ansible and Terraform strengths, weaknesses, and decision-
making criteria.

■ Business and Technical Requirements: In this section we cover architectural require-
ments and how they affect architectural decisions and trade-offs. We also discuss tech-
nical debt and how it is created by certain architectural decisions.

This chapter maps to the first part of the Developing Applications Using Cisco Core
Platforms and APIs v1.0 (350-901) Exam Blueprint Section 5.0, “Infrastructure and Automa-
tion,” with specific connection to subsections 5.3 and 5.4.

Gathering requirements, building a development plan, and then building an implementation
plan, a test plan, and a support plan are a few small tasks of a huge software development
project. Diligence, speed, and the ability to correct course are also the basis for achieving
success. In this chapter we introduce you to few important concepts for participating in or
leading major software development projects and how to ensure that adequate communica-
tion, documentation, and interaction with all parties are essential for flawless execution.

At the beginning of this book we focused on helping you understand the functional and
nonfunctional requirements. You learned what they are, how they influence the architecture,
and what trade-offs you must make to build the best product. But you also learned that
architectures could evolve to meet new requirements, or they may also be changed to speed
up the go-to-market cycle. Time to market is important to business and marketing stakehold-
ers; however, architecture adherence and diligence are important to engineering teams striv-
ing to build high-quality products. Somewhere in between the two lies the perfect world (or
the perfect product, if such a thing even exists).

“Do I Know This Already?” Quiz
The “Do I Know This Already?” quiz allows you to assess whether you should read this
entire chapter thoroughly or jump to the “Exam Preparation Tasks” section. If you are in
doubt about your answers to these questions or your own assessment of your knowledge
of the topics, read the entire chapter. Table 14-1 lists the major headings in this chapter and
their corresponding “Do I Know This Already?” quiz questions. You can find the answers in
Appendix A, “Answers to the ‘Do I Know This Already?’ Quizzes.”

BOOK.indb 508 19/05/22 5:56 PM

ptg39201256

Table 14-1 "Do I Know This Already?” Section-to-Question Mapping

Foundation Topics Section Questions

Software Configuration Management (SCM) 1–7
Business and Technical Requirements 8

1. Why is software configuration management needed?
a. To track changes
b. To track the names of persons or organizations conducting changes
c. To house data dictionaries
d. All of these answers are correct.

2. Which of the following is not tracked by an SCM?
a. Design
b. Implementation
c. Market data
d. Release data

3. The following are widely used SCM tools except
a. Chef
b. Ansible
c. Muppet
d. SaltStack

4. What are the main components of Ansible?
a. Control node, software node, and management node
b. Control node, inventory files, playbooks, modules, and managed nodes
c. Core engine, automation and orchestration engine
d. Platform, files, inventory, and providers

5. To find the versions of Ansible and Python being used, which command do you exe-
cute at the CLI?
a. ansible-version
b. ansible-vault -v
c. ansible -version
d. ansible -Show version

6. There are two approaches to IaC tools: imperative and declarative. What does declara-
tive mean?
a. The user defines the desired outcome, and the system achieves it.
b. The user defines all procedures; the system executes them, and they are declared

as “Done.”
c. The declared state should be imperatively defined first.
d. There is no such thing.

BOOK.indb 509 19/05/22 5:56 PM

ptg39201256

510 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

7. Terraform uses the declarative approach and has the following simple lifecycle:
a. Initialize, execute, reset, repeat
b. Init, plan, apply, destroy
c. Architect, document, init, apply, delete
d. Open, execute, reset, close

8. What is technical debt?
a. A database decision that does not support all quality attributes
b. Short-term decisions that have long-term consequences
c. A test environment that facilitates easier testing but simulates a production

environment
d. All of these answers are correct.

Foundation Topics

Software Configuration Management (SCM)
Chapter 1, “Software Development Essentials,” defined software architecture to be a set
of structures needed to reason about the system. These structures comprise software ele-
ments, relations among them, and properties of both. When you inspected several software
architecture documents, you likely found very little text explaining rationale and a lot more
diagrams with colors and a lot of arrows among the colorful components. You know that
you arrived at that architecture as a result of meetings, questionnaires, and interviews with
business and technical stakeholders. You know that the rationale exists for all these colors
and arrows (on an architectural diagram), but how is it continuously being referenced as
you move toward the development cycle? You know for a fact that many technical deci-
sions are made during the development cycle that are not fully captured into the original
documentations or specifications. That chapter also discussed how to solve some of these
issues through continuous collaboration and frequent communication with Agile processes.
However, are you making sure that the proper “feedback loops” exists? Are you updating all
aspects or layers of the project?

SCM Definitions and Standards
Configuration management is concerned with keeping track of definitions and standards
with defined disciplines and responsibilities. First, you need to define what constitutes a
“product” and all documentation related to it. The following are common examples (this is
only a partial list):

■ Business and functional requirements

■ Technical requirements and technical specifications

■ Testing (design, cases, automation)

■ Support systems

■ Source code

■ Libraries

BOOK.indb 510 19/05/22 5:56 PM

ptg39201256

Chapter 14: Software Configuration Management 511

14

■ Data dictionaries

■ Maintenance documentation

■ Modification requests and implementation

You can add other documentations or items to this list, but what you use to represent the
architecture’s lifecycle may be project- or organization-dependent.

ANSI and IEEE attempted to put on paper what configuration management is. There are a
few documents that can help you. A simple and most recent attempt is “The IEEE Standard
for Configuration Management in Systems and Software Engineering” (IEEE Std 828.).
Figure 14-1 sums it up.

Requirements
Management

Project
Management

Operation and
Maintenance

Release/
Transition

Verification

Configuration
Management

Integration

Implementation

Design

Figure 14-1 Configuration Management Lifecycle (Source: IEEE Std 828-2012)

Why Do You Need SCM?
The configuration management process (or system) is essential throughout the product’s
lifecycle, from inception until its end-of-life stages. DevOps, CI/CD, and Agile development
practices are changing how to look at software architecture and how to execute the develop-
ment and deployment cycles, but at the same time they’re increasing dependence on SCM
tools and practices to preserve the integrity of the architecture. Above and beyond the
architecture, there is the massive scale of deployment and provisioning within enterprises
(campuses, branches, data centers, and clouds). To move at the speed of business and to
ensure consistency within networks, you need to rely on SCMs as a central repository for
everything related to the infrastructure and as a single point of truth related to the architec-
ture and how it is being deployed in production.

BOOK.indb 511 19/05/22 5:56 PM

ptg39201256

512 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

The general answer to “Why do you need SCM?” can be summarized as follows:

■ Software configuration management (SCM) decomposes architecture compo-
nents into deliverables.

■ It helps to track changes at the macroscopic level (the entire project).

■ It helps with planning the process and duration.

■ It helps track status of deployments of subprojects.

Which SCM Process Is Best for You?
In today’s distributed environments with a high degree of automation, the question you
ask should probably be “Which SCM process is best for Infrastructure as Code (IaC)
practices?” There are many SCM systems, and each has its own pros and cons. The best one
among all these tools is the one you know, the one your team is comfortable using, or the
one your team decided on before you came along. In addition, if you end up choosing an
open-source system, you need to ensure that you have a strong community standing behind
it and that it has clear documentation.

Several SCM and automation systems are available. Some are open source, but some aren’t,
so we want to cover a few of them quickly. Our focus is on the most relevant to our practices
of automating network functions and infrastructures. The following names seem to enjoy a
high degree of popularity among the infrastructure automation community:

■ Chef: An excellent SCM and IaC tool with few restrictions. The fact that it uses Ruby
is great if you’re a fan. But you have no choice here. Chef has good interoperability
and integration with major operating systems (Windows included). It’s open source but
is also available as an enterprise offering. Unlike Puppet and Ansible, Chef does not
support Push functionality.

■ Puppet: An open-source SCM tool. Puppet is mostly used for the server side of the
operation; however, it has wider infrastructure capabilities. Puppet is also agent-based
and therefore not the preferred choice as compared to the agentless tools. Puppet is
known for having excellent reporting and compliance tools, alongside its easy-to-use
user interface. You can find more information at https://puppet.com/.

■ Ansible: See the description in the following section.

Ansible gets the most attention in this chapter because we have found it to be the most
popular among the development communities we interact with.

Ansible
Ansible is open source, free, and easy to use. What else do you need? It also integrates
with almost all the major infrastructure providers out there. Alongside all the automation
and management capabilities, it also provides for an adequate collaboration platform among
developers, communities, or departments.

The main reasons that Ansible is a favorite include

■ Ease of use (You can get up to speed and get on with your automation journey in a
very short time.)

BOOK.indb 512 19/05/22 5:56 PM

https://puppet.com/

ptg39201256

Chapter 14: Software Configuration Management 513

14

■ Secure communication between the nodes and the servers (It uses SSH.)

■ Agentless execution

■ The ability to run ad hoc commands to execute single tasks once

■ Interoperability

■ Sizable user community

The main components of Ansible are

■ Control node: Any machine with Ansible and Python installed can be a control node.
The control node is like the engine that runs the automation flow. There can be one or
multiple control nodes.

■ Inventory files: All hosts can be managed or operated by Ansible.

■ Playbooks: Playbooks are developed in YAML and contain domain-specific language
(DSL) for tasks to be executed. YAML is easy to read and understand.

Figure 14-2 shows a simple playbook that performs two tasks:

■ Show run

■ Backup config to Linux

Task

Task

Play

hosts: cisco-ios
gather_facts: true
connection: local

ios_command:
commands: show run

host: "{{ ansible_host }}"
username: cisco-ios
password: cisco-ios
register: config

- name: Backup config to linux
copy:
content: "{{ config.stdout[0] }}"
dest: "/home/show_run_{{ inventory_hostname }}.txt"

tasks:
- name: show run

-

Figure 14-2 A Playbook Showing One Play and Two Tasks

■ Modules: Modules are units of code that Ansible executes. There is a high degree
of flexibility in modules. You can execute single tasks (single modules) or a group of
modules as specified by a playbook.

■ Managed nodes: These nodes are servers or network devices to be managed by
Ansible.

BOOK.indb 513 19/05/22 5:56 PM

ptg39201256

514 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Figure 14-3 shows the flow and interaction among all the components of Ansible.

Developers Build
Playbooks

Playbooks
in YAML Ansible Control Node

Mod
ule

s

M
od

ul
es

M
odules

Modules

Modules Inventory

APIs

ModulesManaged Nodes

Figure 14-3 Ansible High-Level Workflow (Simplified View)

As mentioned earlier, Ansible supports the execution of ad hoc CLI commands like the
examples supplied here:

■ ansible: CLI command for running individual tasks or modules

Example 14-1 shows ansible -version returning the Ansible version as well as the
Python version (and the path to all relevant directories).

Example 14-1 An Ansible CLI Command to Display the Version

testuser@test_machine ~ % ansible –version

ansible [core 2.12.1]

 config file = None

 configured module search path = [‘/Users/testuser/.ansible/plugins/modules’, ‘/
usr/share/ansible/plugins/modules’]

 ansible python module location = /usr/local/lib/python3.9/site-packages/ansible

 ansible collection location = /Users/testuser/.ansible/collections:/usr/share/
ansible/collections

 executable location = /usr/local/bin/ansible

 python version = 3.9.9 (main, Nov 21 2021, 03:23:44) [Clang 13.0.0
(clang-1300.0.29.3)]

 jinja version = 3.0.3

 libyaml = True

■ ansible-playbook: CLI command or tool for running playbooks against a host

■ ansible-vault: CLI command for encrypting sensitive data

■ ansible -h: Help command that shows a number of supported features

BOOK.indb 514 19/05/22 5:56 PM

ptg39201256

Chapter 14: Software Configuration Management 515

14

NOTE A great deal of information about Ansible is available online, and it is rapidly grow-
ing. We recommend you take a look at the open-source data at https://docs.ansible.com/
ansible/latest/index.html as well as the Red Hat sponsored sites at https://www.ansible.com/.

Terraform
Terraform is not an SCM. This is why it is explained in its own section. It’s not unusual for
engineers to speak about Terraform and Ansible in the same context and in direct compari-
son. There is some truth to that, but there are differences in how each tool performs its tasks.
There is no doubt Terraform is the most-used Infrastructure as Code (IaC) tool for managing
data centers, software-defined networks (SDNs), and cloud assets.

Terraform is a secure, efficient, easy-to-use open-source system for building, configuring,
and managing infrastructure. Here are a few interesting features:

■ It enables you to compose and combine infrastructure resources to build and maintain
a desired state.

■ It provides for fast and easy deployment because of the declarative approach.

Declarative means that the user defines the end state and Terraform takes the appro-
priate actions to achieve the desired outcome. The SCMs we discussed earlier take an
imperative or procedural approach, meaning that the user defines a series of steps or
tasks that the system must follow. Ansible uses an imperative approach as a configura-
tion management tool. However, Ansible does have orchestration capabilities using the
declarative approach. For this reason, we like to think of Ansible as a hybrid.

■ It manages all actions through APIs.

■ It provides for rapid deployment and provisioning.

■ Agentless management is available for a wide range of systems.

■ There are no server-side dependencies.

■ You can reuse resources multiple times within a single module.

As seen in Figure 14-4, the Core provides the simplicity and the sophistication for the
system. It defines a configuration language (HashiCorp Configuration Language, or HCL),
rules of operations, and plug-ins. Providers, on the other hand, are an abstraction that uses
a plug-in to interact with the cloud service providers. A common example of providers would
be Google Cloud (GCP), Microsoft Azure, or Amazon Web Services (AWS).

BOOK.indb 515 19/05/22 5:56 PM

https://docs.ansible.com/ansible/latest/index.html
https://docs.ansible.com/ansible/latest/index.html
https://www.ansible.com/

ptg39201256

516 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Azure

Google
Cloud

AWS

Developer Community

Configuration
 Files

Other IaaS
Terraform Core

Terraform
State

(Current State)

Providers

Figure 14-4 High-Level Terraform Architecture

Terraform has a simple lifecycle. As a matter of fact, the core Terraform workflow is “write,
plan, apply.” In practical coding terms, Figure 14-5 through Figure 14-8 explain the lifecycle.

Init Plan Apply Destroy

Errors

Errors

Figure 14-5 Terraform Lifecycle of IaC

■ Init: Initialize workflows and build directories of all configuration files to represent
your environments. This is where you write configuration files.

Figure 14-6 Terraform Initialization Workflow

BOOK.indb 516 19/05/22 5:56 PM

ptg39201256

Chapter 14: Software Configuration Management 517

14

■ Plan: Create the execution plan for desired state(s). During the development cycle, it is
recommended to repeatedly run plan to flush out errors as you go.

Figure 14-7 Terraform plan

■ Apply: Execute changes defined in the plan.

Figure 14-8 Terraform apply

■ Destroy: Delete older infrastructure resources marked as “Tainted’” after you run
apply. Figure 14-8 shows “0 destroyed.” This result is clearly because the example
shows a new or clean implementation where no older configs exist to be destroyed.

The following are a few important Terraform terms:

■ Variable: This key-value pair is used by Terraform modules to allow customization.

■ Provider: A provider is an abstraction of the API/service provider, such as AWS, GCP,
DNSimple, or Fastly. Providers typically require some sort of configuration data, such
as an API key or credential file.

■ Resources: This term refers to a block of one or more infrastructure objects (compute
instances, virtual networks, and so on), which are used in configuring and managing
the infrastructure.

■ Data source: This source is implemented by providers to return information on exter-
nal objects to Terraform.

■ Output values: These return values of a Terraform module can be used by other con-
figurations.

■ Interpolation: Terraform includes a built-in syntax for referencing attributes of other
resources. This technique is called interpolation. Terraform also provides built-in

BOOK.indb 517 19/05/22 5:56 PM

ptg39201256

518 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

functions for performing string manipulations, evaluating math operations, and doing
list comprehensions.

■ HashiCorp Configuration Language (HCL): Terraform’s syntax and interpolation are
part of an open-source language and specification called HCL.

NOTE A great deal of information about Terraform is available online, and it is rapidly growing.
We recommend you take a look at the open-source data at https://www.terraform.io/.

Terraform or Ansible: A High-Level Comparison
As a software engineer and networking expert, you are certain to get the famous “It
depends” answer when trying to determine whether to use Terraform or Ansible. Both sys-
tems have strengths and limitations. You can argue that a typical SCM system goes above
and beyond orchestration. You can also argue that you have room for both. All these ideas
are valid, and at the end, your choice may just depend on your organization and the commu-
nity you’re working within.

Table 14-2 presents a simple comparison between Terraform and Ansible. Ansible, which was
originally built to be a configuration manager, has evolved to include orchestration capabili-
ties similar to Terraform.

Table 14-2 High-Level Comparative Analysis of Ansible and Terraform

Terraform Ansible Implications

Open-source and free Open-source and free —
Commercial offerings
available

Commercial offerings
available

—

Orchestration Software configuration
management

Many similar capabilities,
but Ansible has device-level
management capabilities
independent of orchestration.

Mainly for cloud automation Mainly for infrastructure
automation (including bare
metal support by default)

A great deal of similarities.

Development community
support

Development community
support

Surveying colleagues across
enterprises, we hear that
Ansible has more support
from the community,
whereas Terraform has more
commercial offerings. (Our
sample is small and may not
represent the market.)

Declarative Imperative or procedural (can
also be classified as hybrid as
some declarative capabilities
exist)

Ansible depends on smart
engineers and a good
understanding of the
infrastructure they support.

Stateful: Maintain state of Stateless

BOOK.indb 518 19/05/22 5:56 PM

https://www.terraform.io/

ptg39201256

Chapter 14: Software Configuration Management 519

14

At the end of the day, you know your organization, the level of collaboration, the level
of adherence to process, the politics within your IT group, and what tool serves you best.
Which one you choose depends!

Business and Technical Requirements
Previously, we focused on tools or systems for building configuration files for managing
infrastructure wherever it may exist (on-premises, off-premises, or in the cloud). One thing
we wanted to emphasize along these lines is the “process” or the “project.” At some time
before you arrived at the orchestration or provisioning state, you must have had an archi-
tecture that explains why you need to configure the infrastructure that way and to support
what application delivers what business process. So, we want to take you back to the “archi-
tecture” talk.

Chapter 2, “Software Quality Attributes,” discussed quality attributes (nonfunctional
requirements), and you learned that, after you get the functional and business architecture
figured out, the most important part of the architecture worthy of your attention is the qual-
ity attributes (a.k.a. nonfunctional requirements). That chapter also discussed a few of the
quality attributes like

■ Maintainability

■ Availability

■ Usability

■ Security

■ Performance

■ Modularity

A majority of the product failures are due to weak quality attributes. Applications or web apps
that fail to meet performance or security thresholds expected by their customers will fail.

So, what do you do about quality attributes?

Architectural Decisions
The answer to the question about quality attributes is simple: List all quality attributes that
are most important to your stakeholders in the order of priority and prepare for trade-offs.
You will not be able to treat them all the same. For example, you want the highest level of
security? In that case, prepare to give up some performance or compromise on usability.
These are architectural decisions that you must make, and you must clearly document
them. This is the only way you can get in the mind of the architects and how they arrived at
these decisions and what trade-offs you allowed. There are many ways to do this—whether
as an extension of your SCM tooling (see the previous section) or through development plat-
forms where the interpretation of the architecture into working code happens. For example,

M14_Davis_C14_p508-p523.indd 519 20/05/22 9:46 PM

ptg39201256

520 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

GitHub provides what’s called “Architectural Decision Records” (https://adr.github.io), which
are explained as follows:

An Architectural Decision (AD) is a software design choice that addresses a functional or
non-functional requirement that is architecturally significant. An Architecturally Signifi-
cant Requirement (ASR) is a requirement that has a measurable effect on a software sys-
tem’s architecture and quality. An Architectural Decision Record (ADR) captures a single
AD, such as often done when writing personal notes or meeting minutes; the collection of
ADRs created and maintained in a project constitute its decision log. All these are within
the topic of Architectural Knowledge Management (AKM).

This paragraph sums it up very well. The https://adr.github.io/ site has few interesting articles
and blogs from software engineering professionals. It’s worth the time to check them out.

Technical Debt
It’s natural to discuss technical debt after architectural decisions. It is not unusual to work
against a go-to-market deadline or against system constraints that require you to make quick
or short architectural decisions that may or may not deviate from the main architecture prin-
ciples. In other words, small or short-term decisions that expedite the development process,
if not corrected at a later time, will turn into big or long-term problems. Simply speaking,
that’s technical debt.

Although the original idea was concerned with the code, rightly so, it was recently expanded
to include other aspects of the software development lifecycle (SDLC). In their book Con-
tinuous Architecture in Practice, Murat Erder, Pierre Pureur, and Eoin Woods categorized
technical debt into three distinct categories:

■ Code: Code written to meet an aggressive timeline and few short decisions at the early
stages may make it difficult to maintain and evolve (that is, introduce new features).

■ Architecture: This comes as a result of architectural decisions made during the soft-
ware development cycle. This type of technical debt is difficult to measure via tools
but usually has a more significant impact on the system than other types of debt. This
type of debt affects scalability and maintainability of the architecture.

■ Production infrastructure: This category of technical debt deals with decisions
focused on the infrastructure and code that are used to build, test, and deploy a soft-
ware system. Build-test-deploy is becoming increasingly integral to software develop-
ment and is the main focus of DevOps.

Figure 14-9 presents the problem and where it manifests itself and what effect it has on the
software quality.

BOOK.indb 520 19/05/22 5:56 PM

https://adr.github.io
https://adr.github.io/

ptg39201256

Chapter 14: Software Configuration Management 521

14

Visible Mostly Invisible Visible

Defects

Low External Quality

Architecture

T
ec

h
n

o
lo

g
ic

al
 G

ap

Production Infrastructure
Build, Test, and Deploy Issues

Architecture Smells
Pattern Violations

Structural Complexity

Low Internal Quality
Code Complexity

Code Smells
Coding Style Violations

Code

New Features

Additional Functionality

Evolution Issues: Evolvability Quality Issues: Maintainability

Figure 14-9 Technical Department Landscape (Source: M. Erder, P. Pureur, & E. Woods,
Continuous Architecture in Practice, Addison-Wesley Professional, 2021)

Technical debt is visible and incurred by choice when you’re adding new features. You want
to integrate new features quickly to meet market demand or to improve the user experience.
Similarly, technical debt is also visible and difficult to deal with when you’re troubleshooting
technical or quality issues. However, it’s almost invisible when you’re working on these three
categories. Complex architecture is interpreted or simplified by programmers and tested or
deployed on an infrastructure also customized for the final product (debt included). This is
how technical debt gets compounded and becomes difficult to handle.

A few interesting terms in Figure 14-9 are in the middle section marked “Technological
Gap.” It clearly shows the bulk of the software development decisions that are made without
an immediate visible impact to the quality software. Architecture Smells and Code Smells
are both symptoms of bad decisions, bad code, or bad design that can solve a short-term
problem but introduce software quality issues and technical debt that affects the evolvability
or maintainability on the long run.

Exam Preparation Tasks
As mentioned in the section “How to Use This Book” in the Introduction, you have a couple
of choices for exam preparation: the exercises here, Chapter 17, “Final Preparation,” and the
exam simulation questions on the companion website.

Review All Key Topics
Review the most important topics in this chapter, noted with the Key Topic icon in the outer
margin of the page. Table 14-3 lists a reference of these key topics and the page
numbers on which each is found.

BOOK.indb 521 19/05/22 5:56 PM

ptg39201256

522 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Table 14-3 Key Topics for Chapter 14

Key Topic
Element

Description Page
Number

Section SCM Definitions and Standards 510

Section Ansible 512

Figure 14-3 Ansible High-Level Workflow 514

Section Terraform 515

Table 14-2 High-Level Comparative Analysis of Ansible and Terraform 518

Section Architectural Decisions 519

Section Technical Debt 520

Complete Tables and Lists from Memory
There are no Memory Tables or lists in this chapter.

Define Key Terms
Define the following key terms from this chapter and check your answers in the glossary:

architectural decisions, Ansible, Infrastructure as Code (IaC), software configuration
management (SCM), technical debt, Terraform

References
URL QR Code

https://standards.ieee.org/standard/828-2012.html

https://www.ansible.com/

BOOK.indb 522 19/05/22 5:56 PM

https://standards.ieee.org/standard/828-2012.html
https://www.ansible.com/

ptg39201256

Chapter 14: Software Configuration Management 523

14

URL QR Code

https://www.terraform.io/

Continuous Architecture in Practice: Software
Architecture in the Age of Agility and DevOps
https://www.informit.com/store/continuous-
architecture-in-practice-software-
architecture-9780136523567

BOOK.indb 523 19/05/22 5:56 PM

https://www.terraform.io/
https://www.informit.com/store/continuous-architecture-in-practice-software-architecture-9780136523567
https://www.informit.com/store/continuous-architecture-in-practice-software-architecture-9780136523567
https://www.informit.com/store/continuous-architecture-in-practice-software-architecture-9780136523567

ptg39201256

CHAPTER 15

Hosting an Application on a
Network Device

This chapter covers the following topics:

■ Benefits of Edge Computing: This section covers the concept of pushing compute
functionality to the network edge, closer to the user. We explore the benefits and limi-
tations of edge computing.

■ Application Container Ideas: This section covers the concept of application con-
tainers and how they may be used along with cautions about where they may not be
optimal.

■ Platforms Supporting Application Containers: This section discusses which Cisco
products support application containers. You may be able to quickly jump into appli-
cation containers with the equipment you already have.

■ How to Implement Application Containers: This section provides an overview of
how to implement application containers with provisioning guidelines.

■ Best Practices for Managing Application Containers: This section covers best prac-
tices for managing your deployed application containers. When you get the container
bug, your next challenge is how to manage your growing inventory.

This chapter maps to the Developing Applications Using Cisco Core Platforms and APIs
v1.0 (350-901) Exam Blueprint Section 5.5, “Describe how to host an application on a net-
work device (including Catalyst 9000 and Cisco IOx-enabled devices).”

Application containers are a newish technology with a legacy following Sun Solaris Zones
and BSD jails. Around 2000, shared-environment hosting providers developed the notion of
FreeBSD jails. They provided partitioning of the operating system into multiple independent
systems, or “jails.” Each independent environment could have its own IP address and separate
configuration for common applications like Apache and mail server. In 2004, Sun Microsys-
tems released Solaris Containers, which also leveraged a common underpinning operating
system with separations called “zones.”

This chapter provides information on containers running on network devices. You may find
suitable use cases in your environment by distributing the computing requirements and data
collection for your applications.

“Do I Know This Already?” Quiz
The “Do I Know This Already?” quiz allows you to assess whether you should read this
entire chapter thoroughly or jump to the “Exam Preparation Tasks” section. If you are in

BOOK.indb 524 19/05/22 5:56 PM

ptg39201256

doubt about your answers to these questions or your own assessment of your knowledge
of the topics, read the entire chapter. Table 15-1 lists the major headings in this chapter and
their corresponding “Do I Know This Already?” quiz questions. You can find the answers in
Appendix A, “Answers to the ‘Do I Know This Already?’ Quizzes.”

Table 15-1 “Do I Know This Already?” Section-to-Question Mapping

Foundation Topics Section Questions

Benefits of Edge Computing 1–3
Application Container Ideas 4
Platforms Supporting Application Containers 5–6
How to Implement Application Containers 7–10
Best Practices for Managing Application Containers 11

1. Which of the following are examples of Type-1 hypervisors? (Choose two.)
a. Microsoft Hyper-V
b. Oracle VM VirtualBox
c. Parallels Desktop
d. VMware ESXi

2. Which of the following are examples of Type-2 hypervisors? (Choose two.)
a. QEMU with KVM
b. Oracle VirtualBox
c. VMware Workstation
d. Citrix XenServer

3. Docker aligns more to operating system containerization versus application
containerization.
a. True
b. False

4. Application hosting/containerized workloads are well suited for which use cases?
(Choose two.)
a. Where low-latency is not a high priority
b. Where data sovereignty is a key consideration
c. Where centralized management is preferred over regional management
d. Where WAN traffic is metered and cost-prohibitive

5. Application hosting is supported on the Catalyst 9300 at what minimum release?
a. Cisco IOS-XE 15.0
b. Cisco IOS-XE 16.2.1
c. Cisco IOS-XE 17.1.1
d. Cisco IOS-XE 17.5.1

BOOK.indb 525 19/05/22 5:56 PM

ptg39201256

526 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

6. Docker containers are supported on NX-OS–based switches starting at what release?
a. 6.2.1
b. 7.0
c. 9.2.1
d. 10.1

7. Which of the following are deployment options for Docker containers with IOx-
supported Catalyst 9000 series switches? (Choose three.)
a. Cisco DNA Center
b. Command-line interface (CLI)
c. Docker Deployer
d. IOx Local Manager
e. Prime KVM

8. What docker command is used on a local system to prepare an image for remote host-
ing in an IOx-capable device?
a. docker archive image/latest my_image.tar
b. docker create image/latest my_image.tar
c. docker export image/latest my_image.tar
d. docker save repo/image:latest -o my_image.tar

9. What Cisco IOS XE command is used to configure an application and enter applica-
tion hosting configuration mode?
a. docker config appid <name>
b. app config <name>
c. app-config appid <name>
d. docker-host app <name>
e. app-hosting appid <name>

10. In IOS-XE, what interface is created for application hosting?
a. interface AppGigabitEthernet0
b. interface AppGigabitEthernet1/0/1
c. interface DockerApp0
d. interface AppHostGigE0

11. The IOx Local Manager centralizes Docker container images for enterprisewide
deployments.
a. True
b. False

BOOK.indb 526 19/05/22 5:56 PM

ptg39201256

Chapter 15: Hosting an Application on a Network Device 527

15

Foundation Topics

Benefits of Edge Computing
Edge computing is a design methodology in which computing resources are shifted from
remote, centralized data centers and the cloud to networked devices closer to users at the
edge of the network. Edge computing use cases include architecture, applications, and meth-
odologies such as 5G, Internet of Things (IoT), and streaming services.

Some applications have strict requirements for low latency. User experience for voice and
video applications suffers when there is lag due to long-distance network paths. Indeed,
the longer the distance is, the greater potential for additional hop-counts and routing deci-
sion points that make a nondeterministic experience among different invocations. Gaming
applications also benefit from low-latency, low-loss networks (according to my son, Every.
Single. Day.).

The promise of new 5G networks with higher bandwidth and lower latency even enables
intelligent car navigation systems that require the best performance for public safety
interests.

The IoT community also benefits from pushing the reception, computation, and analysis of
sensor data closer to the device.

Next, let’s consider situations where polling at the edge of the network is desirable. In most
traditional network management situations, the element management systems (EMSs), plus
performance and fault management systems, are centralized, many times in a data center.
When those systems are responsible for polling or taking alerts in from hundreds, thousands,
or tens of thousands of devices, then extreme amounts of data can be transferred. Addition-
ally, the information is often duplicated or nonurgent. If the data is being collected regularly
for trending or accounting purposes, then the collection of every data point may be neces-
sary. However, if not, then great efficiencies of data transfer and retention can be achieved
by only transferring data that violates a threshold or policy. Distributing the collection, anal-
ysis, and exception-based alerting to the edge can greatly reduce the administrative network
management traffic.

Similarly, businesses can save network backhaul costs if their use case can be handled closer
to the source. If the information is regional in nature, there may be little need to serve and
distribute it from a centralized data store or cloud location.

Not all use cases are practical or economically feasible for edge computing, so careful
consideration must be given to the application requirements and costs before distributing
workloads. Some business decisions may support edge computing where there are higher
concentrations of users who do multimedia streaming, whereas other locations may still be
served from consolidated compute farms in a centralized data center because of lower user
count.

Virtualization Technologies
Edge computing can be implemented on bare-metal compute nodes near the data consum-
ers; however, the use of compute virtualization technologies is more common for flexibility
of service delivery and resource utilization. Several virtualization technologies exist today:

BOOK.indb 527 19/05/22 5:56 PM

ptg39201256

528 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Type-1 and Type-2 hypervisors, Linux Containers (LXC), and Docker containers. We
cover the nuances of each, but for purposes of the DEVCOR exam, the Cisco support of
LXC and Docker container solutions is of key importance. In any of these virtualization
methods, a hosting system shares its finite resources with a guest environment that can
take a portion of those resources—CPU, memory, or disk—for its own application ser-
vicing purposes. The virtualization technologies differ on the level of isolation from the
foundational hypervisor, or operating system, and that among the separate virtualized
environments.

Type-1 Hypervisors
The architecture of Type-1, or native (or bare-metal), hypervisors typically involves the
hypervisor kernel acting as a shim layer between the underlying hardware serving compute,
memory, network, and storage, from the overlying operating systems. Sample solutions are
Microsoft Hyper-V, Xen, and VMware ESXi. Figure 15-1 depicts the architecture involving a
Type-1 hypervisor.

Hardware

Hypervisor

Virtual Machine

Guest Operating
System

Binaries/Libraries

App App

Virtual Machine

Guest Operating
System

Binaries/Libraries

App App

Virtual Machine

Guest Operating
System

Binaries/Libraries

App App

Figure 15-1 Type-1 Hypervisor Architecture

The operating systems are truly isolated as virtual machines in this model, allowing for
different deployments; separate RedHat, Ubuntu, Windows, FreeBSD, and others are
possible. The operating system licensing requirements must be considered, even though
virtualized.

Type-2 Hypervisors
The architecture of Type-2, or hosted, hypervisors involves running the hypervisor over
the top of a conventional hosted operating system (OS). Other applications, besides the

BOOK.indb 528 19/05/22 5:56 PM

ptg39201256

Chapter 15: Hosting an Application on a Network Device 529

15

hypervisor, may also run on the hosted OS as other programs or processes. One or more
guest operating systems run over the hypervisor. Figure 15-2 shows the architecture of a
Type-2 hypervisor.

Hardware

Host Operating System

Virtual Machine

Guest Operating
System

Binaries/Libraries

App App

Virtual Machine

Guest Operating
System

Binaries/Libraries

App App

Virtual Machine

Guest Operating
System

Binaries/Libraries

App App

Hypervisor

Figure 15-2 Type-2 Hypervisor Architecture

Type-2 hypervisors abstract guest OSs from the host OS. Parallels Desktop for Mac, QEMU,
Oracle VirtualBox, VMware Player, and VMware Workstation are examples of Type-2
hypervisors.

Linux Containers (LXC)
Linux Containers (LXC) is a type of virtualization realized mid-2008. LXC is operating-
system-based, where all container instances share the same kernel of the hosting compute
node. The guest operating systems may execute in different user space. This can be mani-
fested as different Linux distributions with the same kernel. An LXC architecture can be
seen in Figure 15-3.

LXC provides operating-system-level virtualization as a virtual environment with its own
process and network space. Linux kernel release 2.6.24 brought control groups, also known
as cgroups, which provide the capability to limit, prioritize, measure, and control resource
usage in a collection of processes.

BOOK.indb 529 19/05/22 5:56 PM

ptg39201256

530 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Hardware

Host Operating System

Container

Binaries/Libraries

App App

Container

App App

Hypervisor

Binaries/Libraries

Figure 15-3 Linux Containers Architecture

When you’re considering virtualization, the isolation, segmentation, and reallocation of
resources are important. CPU, memory, storage, and networking are finite resources on host
systems, but assigning them efficiently among virtual workloads is desirable.

Namespace isolation is not specifically encompassed in cgroups but is a related Linux kernel
feature. The notion of process identifier (PID) namespace isolation allows control of par-
ent processes with its children but restricts it across different parent namespaces. Network
namespace isolation restricts physical or virtual network interface controllers, routing tables,
and firewall rules. The Mount, or storage, namespace provides isolation across different
filesystems, including file ownership, read-write, or read-only attributes. Interprocess com-
munication (IPC) namespace isolation constrains System V IPCs: message queues, sema-
phores, and shared memory. Additionally, user namespaces isolate among user IDs among
namespaces. The mixture and depth of these namespace options provide extreme flexibility
for enhancing security and accountability.

Docker Containers
Docker is another type of containerized virtual environment. A Docker runtime is executed
on the hosting operating system and controls the deployment and status of the contain-
ers. Docker containers are lightweight; you don’t have the administrative burden of setting
up virtual machines and environments. Docker containers use the host OS but don’t have a
separate kernel to run the containers; this is shown in Figure 15-4. It uses the same resources
as the host OS. Docker also uses namespaces and control groups, as you saw with Linux
Containers.

BOOK.indb 530 19/05/22 5:56 PM

ptg39201256

Chapter 15: Hosting an Application on a Network Device 531

15

Hardware

Host Operating System

Container

App App

Docker

Figure 15-4 Docker Container Architecture

When comparing Docker to LXC, note that there is no guest operating system (in a tradi-
tional sense). The Docker daemon runs on the hosting OS. It is responsible for creating,
executing, and maintaining the containers. By convention, each container runs a process (or
application). There are strong affinities for microservices with Docker containers. Each appli-
cation is isolated from others and executes without affecting them. Each container instance
has its own configuration file, Dockerfile, which defines its base image, any layered depen-
dencies, and definitions for copying files/folders and running tasks necessary to build the
container to desired specifications.

What are the main differences between LXC and Docker containers? LXC aligns more to
operating system containerization, whereas Docker is focused more on application contain-
erization. Many virtualization designers use Docker for single-purpose application virtual-
ization, whereas LXC serves multipurpose OS virtualization services. An administrator could
log in to a virtualized LXC environment and create packages dynamically. Docker containers
tend to be built-to-function and are less oriented toward dynamic updates or upgrades. If
you had a Docker containerize app that needed a newer version of OpenSSL libraries, you
would traditionally update the Dockerfile to reflect the updated dependency, spin up the
new instance, and deprecate the original one. Docker containers are also ephemeral, so any
data you need to retain across invocations must be purposely stored in persistent volumes or
databases where the information can be extracted.

BOOK.indb 531 19/05/22 5:56 PM

ptg39201256

532 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Application Container Ideas
When you’re considering application container opportunities, here are some relevant
questions to ask:

■ Where do applications or data need to be restricted to a locale? (data sovereignty,
governmental/corporate restrictions)

■ Where are you trying to improve user experience by reducing latency due to network
distance and routing?

■ Where are apps that need to be managed by regional teams only?

■ Are you equipped to push management of containers to the edge?

As mentioned in the previous section, an example could be monitoring network stats at the
edge, reporting to a central system only when out of norms. This model would relieve net-
work polling requirements, traffic, and data storage from centralized management tools. If
your business model doesn’t require high detail trending of network statistics, this may be a
viable option.

Measuring user experience through availability, latency, packet loss, and responsiveness
ensures visibility into what your customers are seeing. Consider the deployment model used
with the Cisco IP SLAs feature and the Cisco ThousandEyes technology; they use an agent-
based, source-destination deployment. If the monitoring source is as close to the network
edge as possible, then you benefit from the closest possible user experience.

When there are clustered users in a locale, it may make sense to keep their local, regional
data as close to them as possible. If the data being collected and processed involves person-
ally identifiable information (PII), then country data privacy and sovereignty regulations may
apply. In those cases, it makes sense to handle the data in the region without backhauling to
a regional or centralized corporate data center or cloud environment, potentially outside the
country policy.

Even if the localized or regional data is not governed by data privacy or sovereignty, it may
make sense to host the information closer to the interested users. If the “Woolly Worm Fes-
tival” is only interesting to consumers in Banner Elk, North Carolina, why store and serve it
in a data center in Seattle?

Another common use case for application hosting and containerization is with packet cap-
ture applications, such as Wireshark, embedded with a Cisco network switch. Now, no more
dragging out a physical packet sniffer device when needing to do deep packet inspection of
network traffic!

Syslog event messaging is an important monitoring service. Oftentimes it is used for alerting
on failure of a component, but it is also possible to alert on informational events, such as a
port or service being used. Security management is another prominent use case for syslog
event data. With the diversity of network component failures, informational service report-
ing, and security notification, syslog event data is often multiplexed to different consuming
management applications focused on function or domain. Another idea is to host a local
syslog management application in a container to optimize the management traffic and limit
redundancies. Other network devices (or application servers) that generate syslog event mes-
sages can forward to the containerized syslog receiver.

BOOK.indb 532 19/05/22 5:56 PM

ptg39201256

Chapter 15: Hosting an Application on a Network Device 533

15

Platforms Supporting Application Containers
The Cisco Unified Computing System (UCS) and Hyperflex solutions are integrated com-
pute, storage, and networking systems. It is broadly accepted that these “big iron” systems
can be run in data centers and can also host bare-metal Docker environments. From an edge
computing perspective, it is less likely that they are deployed to an extreme network edge,
such as a cellular tower site, unless there are optimal levels of services and user traffic. How-
ever, several Cisco platforms do support application hosting or containers. Review the fol-
lowing options for your specific use case.

■ The Cisco IC3000 Industrial Compute Gateway running software release 1.2.1 or
higher for native Docker support for industrial IoT use cases.

■ The Cisco IR809 and 829 platforms running Cisco IOS-XE release 15.6(1)T1 or higher
for mobile IoT use cases.

■ The Cisco IR1101 Integrated Services Router (ISR) platform running Cisco IOS-XE
release 17.2.1 or higher for ARM-based IoT gateway use cases.

■ The Cisco IE3400 switch platform running Cisco IOS-XE release 17.2.1 or higher for
ruggedized industrial IoT use cases.

■ The Cisco IE4000 switch platform running Cisco IOS release 15.2(5)E1 or higher for
ruggedized industrial IoT user cases. Note that the IE4010 does not support Cisco IOx.

■ The Catalyst 9000 series switch platform running Cisco IOS-XE release 16.2.1 or
higher for diverse LAN access deployment use cases. This platform is most generally
covered in this book and the DEVCOR exam.

■ Catalyst 9300/L series switches with Cisco IOS XE 16.12.1 release

■ Catalyst 9404 and 9407 switches with Cisco IOS XE 17.1.1 release

■ Catalyst 9410 switches with Cisco IOS XE 17.5.1 release

■ Catalyst 9500 High Performance and 9600 series switches with Cisco IOS XE
17.5.1 release

NOTE The new AppGigabitEthernet interface was introduced on the Catalyst 9300/9400
for dedicated application traffic. Catalyst 9500/9600 switches do not support the AppGiga-
bitEthernet interface. Containers that need external network connectivity must use a man-
agement interface through loopback from any front-panel port.

■ The CGR1000 Compute Module for CGR1000 series routers running Cisco IOS
release 15.6(3)M2 for edge compute enablement on Connected Grid Routers
(SmartGrid deployments).

■ The Cisco IW6300 heavy duty series access points managed by Cisco Wireless
Controller (WLC) release 8.10 or higher.

■ The Cisco Nexus series switches running Cisco NX-OS Release 9.2(1) or higher.

BOOK.indb 533 19/05/22 5:56 PM

ptg39201256

534 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

How to Implement Application Containers
Cisco IOx (IOs + linuX) is an end-to-end application framework that provides application
hosting capabilities of Docker containers in IOS XE-based platforms. Separately, the Cisco
Guest Shell is also a specialized container service that allows for embedded Python inter-
preter and packet capture services. IOx provides lifecycle management of applications and
data, including distribution, deployment, hosting, starting, stopping (management), and
monitoring. The standard lifecycle phases are seen in Figure 15-5.

Install

Activate

Start

Stop

Deactivate

Uninstall

Figure 15-5 Application Container Lifecycle Phases

For the purposes of education and demonstration, we show you how to deploy a premade
Docker container to a Catalyst 9000 running IOS XE 16.12 (or higher). Later, we show you
how to deploy your own custom-developed container and deploy that to the switch. You can
use a Catalyst 9000 in your environment—preferably a lab! Follow along on your own device
or use a DevNet Sandbox Lab.

NOTE If you prefer to go the DevNet Sandbox Lab route, navigate to https://
devnetsandbox.cisco.com and use the search bar to find options with “DNA Center,” “IOS
XE,” or “Catalyst 9.” The intent is to find an available lab with Catalyst 9300 platforms run-
ning IOS XE 16.12 or higher—17.3, ideally. The Always On labs would be the most imme-
diately available but may not have all the permissions or dependencies needed for these
examples (such as SSD flash drives). Alternatively, reservable labs like the ones for DNA Cen-
ter, including Catalyst 9300s, would provide more access but may also be reserved, requiring
you to schedule a timeslot in the future.

There are several steps to implementing a Docker container on a network switch: validate
prerequisites, enable the application hosting framework, and install/activate/start the app.

Validating Prerequisites
For a Catalyst 9k switch, ensure you are running at least IOS XE release 16.12.1; release
17.3.3 or higher is preferable, in case you wish to deploy a Cisco ThousandEyes agent as a
Docker container image. Example 15-1 provides the process and sample output for validating
the running IOS XE release.

BOOK.indb 534 19/05/22 5:56 PM

https://devnetsandbox.cisco.com
https://devnetsandbox.cisco.com

ptg39201256

Chapter 15: Hosting an Application on a Network Device 535

15

Example 15-1 Validating the IOS XE Software Release Version

cat9k# show version

Cisco IOS XE Software, Version 17.03.03

Cisco IOS Software [Amsterdam], Catalyst L3 Switch Software (CAT9K_IOSXE), Version
17.3.3, RELEASE SOFTWARE (fc7)

Technical Support: http://www.cisco.com/techsupport

Copyright (c) 1986-show 2021 by Cisco Systems, Inc.

Compiled Thu 04-Mar-21 12:32 by mcpre

Cisco IOS-XE software, Copyright (c) 2005-2021 by cisco Systems, Inc.

All rights reserved. Certain components of Cisco IOS-XE software are

[. . . REMAINING TRIMMED . . .]

Ensure you have a Cisco-certified USB 3.0 Flash Drive installed into the back-panel USB port
to host the application hosting files. Part numbers SSD-120G or SSD-240G (for Catalyst
9300) are supported. Example 15-2 shows how to validate the existence of a USB 3.0 Flash
Drive using the dir and show inventory commands.

Example 15-2 Verifying USB 3.0 Flash Drive Availability

cat9k# dir usbflash1:

Directory of usbflash1:/

13 -rw- 104034816 Jul 29 2021 14:51:49 +00:00 suricata.tar

12 -rw- 793325568 Jul 24 2021 05:32:38 +00:00 snort3.tar

524289 drwx 4096 Jul 19 2021 17:43:22 +00:00 iox_host_data_share

11 -rw- 6052864 Jun 27 2020 11:13:12 +00:00 iperf3.tar

118014062592 bytes total (108672851456 bytes free)

cat9k#

cat9k# show inventory

NAME: "c93xx Stack", DESCR: "c93xx Stack"

PID: C9300-48T , VID: V02 , SN: FJC********

NAME: "Switch 1", DESCR: "C9300-48T"

PID: C9300-48T , VID: V02 , SN: FJC********

NAME: "Switch 1 - Power Supply B", DESCR: "Switch 1 - Power Supply B"

PID: PWR-C1-350WAC-P , VID: V01 , SN: ART********

NAME: "Switch 1 FRU Uplink Module 1", DESCR: "8x10G Uplink Module"

PID: C9300-NM-8X , VID: V02 , SN: FJZ********

NAME: "usbflash1", DESCR: "usbflash1-1"

PID: SSD-120G , VID: STP22270NXB, SN: V01

BOOK.indb 535 19/05/22 5:56 PM

http://www.cisco.com/techsupport

ptg39201256

536 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

At this point, ensure you have the DNA-Advantage subscription licensing enabled:

cat9k# show license summary

License Usage:

 License Entitlement Tag Count Status

 network-advantage (C9300-48 Network Advan...) 1 IN USE

 dna-advantage (C9300-48 DNA Advantage) 1 IN USE

Enabling Application Hosting Framework
The application hosting framework is not enabled by default. You should enable the IOx
service from configuration mode. To do so, use the following IOS XE CLI commands and
configuration directives to enable it. IOx takes a few minutes to start. Additional infor-
mation on the Guest Shell virtual environment, enabled by the IOx Application Hosting
Infrastructure, is available at https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/prog/
configuration/173/b_173_programmability_cg/guest_shell.html.

cat9k# configure terminal

Enter configuration commands, one per line. End with CNTL/Z.

cat9k(config)# iox

cat9k(config)#

Verify the application hosting services are running by using the IOS XE CLI command
shown in Example 15-3.

Example 15-3 Verifying the IOx Application Hosting Infrastructure Services

cat9k# show iox-service

IOx Infrastructure Summary:

IOx service (CAF) 1.11.0.5 : Running

IOx service (HA) : Running

IOx service (IOxman) : Running

IOx service (Sec storage) : Not Running

Libvirtd 1.3.4 : Running

Dockerd 18.03.0 : Running

Application DB Sync Info : Available

Sync Status : Disabled

cat9k#

If the highlighted services do not show as Running, toggle the IOx configuration in config
mode with no iox; iox to restart the services.

BOOK.indb 536 19/05/22 5:56 PM

https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/prog/configuration/173/b_173_programmability_cg/guest_shell.html.c
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/prog/configuration/173/b_173_programmability_cg/guest_shell.html.c
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/prog/configuration/173/b_173_programmability_cg/guest_shell.html.c

ptg39201256

Chapter 15: Hosting an Application on a Network Device 537

15

Be patient when you run the following IOS XE CLI command to review the status and list of
hosted applications. It may take several minutes for the application hosting environment to
be fully ready, even if reporting that no applications are registered.

cat9k# sh app-hosting list

No App found

Now that you have an environment ready to host a Docker container, you must decide what
application to host. Several Cisco-validated open-source options are available at https://
developer.cisco.com/app-hosting/opensource/.

You are free to pick other Docker container options, but for this exercise, choose iPerf
because it is a useful utility. iPerf3 is an open-source, cross-platform, and CLI-based utility
that performs active measurements between iPerf endpoints to gauge bandwidth and loss
statistics. It supports IPv4 and IPv6 endpoints.

The first action is to download the iPerf Docker container code to the usbflash1: file-system.
We also suggest you familiarize yourself with the project notes from https://hub.docker.com/
r/mlabbe/iperf3.

Pulling the Docker image directly from Docker hub to an IOx-enabled Cisco platform is not
currently supported. However, you can pull the Docker image down to another system that
already has the Docker utilities—a PC, laptop, or Linux VM—and save the Docker image
as a tar archive. Example 15-4 shows the process of using a separate computer with Docker
installed to pull the iPerf image and save it as a tar file for later transfer to the network
device.

Example 15-4 Using Docker Commands to Pull and Save the iPerf Container Image

[sre@docker-utils Downloads]$ docker pull mlabbe/iperf3

Using default tag: latest

latest: Pulling from mlabbe/iperf3

4c0d98bf9879: Pull complete

c9050d8c9c5a: Pull complete

Digest: sha256:0f5780e6a5dc6a9e0187701ad4540445d8fa08023692e0d930772a654305d167

Status: Downloaded newer image for mlabbe/iperf3:latest

docker.io/mlabbe/iperf3:latest

[sre@docker-utils Downloads]$ docker save mlabbe/iperf3:latest -o iperf3.tar

[sre@docker-utils Downloads]$ ls -l

total 5960

-rw-------. 1 sre sre 6100992 Oct 23 12:11 iperf3.tar

You now have several deployment options. You can use Cisco DNA Center, the Cisco IOx
Local Manager, or you can do CLI-based actions. We cover each option in the following
sections.

BOOK.indb 537 19/05/22 5:56 PM

https://developer.cisco.com/app-hosting/opensource/
https://developer.cisco.com/app-hosting/opensource/
https://hub.docker.com/r/mlabbe/iperf3
https://hub.docker.com/r/mlabbe/iperf3
http://docker.io/mlabbe/iperf3:latest

ptg39201256

538 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Using Cisco DNA Center for App Hosting
Cisco DNA Center Release 1.3.1 introduced the application hosting feature, which allows the
upload/import, configuration, and startup of Docker containers in Catalyst IOS XE-based
switches. For purposes of this example, you can use Cisco DNA Center Release 2.2.2.3 with
a Catalyst 9300-24 running IOS XE 17.3.3.

Step 1. Check that device prerequisites are complete. Navigate to the main DNA Center
menu panel to Provision, into Services and App Hosting for Switches, as seen
in Figure 15-6.

Figure 15-6 DNA Center App Hosting for Switches Feature

Click the All Devices link in the upper-right corner to review whether the
devices meet prerequisites. DNA Center does an assessment and identifies the
App Hosting status, as seen in Figure 15-7.

Figure 15-7 Devices in DNA Center with App Hosting Status

BOOK.indb 538 19/05/22 5:56 PM

ptg39201256

Chapter 15: Hosting an Application on a Network Device 539

15

If devices are Not Ready, you can hover over the status to get a summary of
what needs to be fixed. The summary does not list all discrepancies, so you
may need to take an iterative approach to fixing each issue until the device
becomes fully Ready. The prerequisites are also documented on this portal on
the Click Here link in the Information banner. Example 15-5 shows the content
of the prerequisites.

Example 15-5 DNA Center Guidance on Application Hosting Prerequisites

Prerequisites

To enable application hosting on a Cisco Catalyst 9000 device, the following prereq-
uisites must be fulfilled.

1. Configure a secure HTTP server on the switch where the applications will be
hosted.

2. Configure local or AAA based authentication server for the HTTPS user on the
switch. You must configure the username and the password with privilege level 15.

3. Ensure Cisco Catalyst 9300 Series switches are running Cisco IOS XE 16.12.x or
later version and Cisco Catalyst 9400 Series switches are running Cisco IOS XE
17.1.x or later version.

4. Ensure that the device has an external USB SSD pluggable storage. (Only for the
switches of 9300 family)

5. The following example shows a working configuration on a switch.

 prompt# sh run | sec http

 ip http server

 ip http authentication local

 ip http secure-server

 ip http max-connections 16

 ip http client source-interface Loopback0

To verify that the configuration on the switch is correct, open the WebUI on the
switch and ensure that you can log in as the HTTPS user.

6. On Cisco DNA Center, configure the HTTPS credentials while manually adding the
device. The HTTPS username, password, and port number are mandatory for application
hosting. The default port number is 443. You can also edit the device credentials.
If you edit a device that is already managed, resynchronize that device in the
inventory before it is used for application hosting-related actions.

BOOK.indb 539 19/05/22 5:56 PM

ptg39201256

540 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Step 2. Upload the container image into the DNA Center App Hosting software
repository.

Navigate to the main DNA Center menu panel to Provision, into Services and
App Hosting for Switches, as seen in Figure 15-6, resulting in the software
repository seen in Figure 15-8. There may or may not be existing app packages
based on prior use.

Figure 15-8 Cisco DNA Center App Hosting Portal

If you click on the New App gadget in the upper-right corner, a new pop-up
window appears, like the one in Figure 15-9.

Figure 15-9 Uploading an App into Cisco DNA Center

At this point, you can select an App Package (container image) to import
into DNAC. Note the supported formats that require using the IOx applica-
tion package process, as documented at https://developer.cisco.com/docs/

BOOK.indb 540 19/05/22 5:56 PM

https://developer.cisco.com/docs/

ptg39201256

Chapter 15: Hosting an Application on a Network Device 541

15

iox/#!package-format/iox-application-package. It is also possible to use a
locally derived docker image that was created with the docker save command,
as previously described in Example 15-4.

Clicking the Choose a File link presents a local file chooser where you can
navigate your file system to the docker .tar or .tar.gz image. After you select a
file, click the Upload button and DNA Center then shows a progression of the
file upload, as seen in Figure 15-10.

Figure 15-10 Cisco DNA Center Performing App Hosting Image Import

When the import into the DNA Center App Hosting repository is complete, the
portal updates to show the new app. In this situation, Figure 15-11 depicts this
as Mlabbe/Iperf3, the first app in the list.

Figure 15-11 Cisco DNA Center App Hosting After iPerf3 Import

BOOK.indb 541 19/05/22 5:56 PM

ptg39201256

542 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Step 3. Update container parameters, as necessary.

Some Docker containers offer services that need to be exposed to the host
system. iPerf requires a management port, TCP/UDP 5201, to be exposed. At
the main app portal, the ellipses (…) icon provides Update and Delete options.
Click the Edit option to update the Docker Runtime Options, as seen in
Figure 15-12.

Figure 15-12 Editing iPerf3 Application Docker Runtime Options

Specifically, -p 5201:5201/tcp -p 5201:5201/udp must be added to allow the
guest container’s port listener on TCP/UDP 5201 to be exposed on the hosting
switch. iPerf uses this port for management communication between the server
and client.

You can then click the Save option under the Docker Runtime Options text
window and the Install button to import the container change. A Success pop-
up should appear, acknowledging the update.

Step 4. Select app deployment hosts.

When you return to the main app portal, select the app to install—in this
case, Mlabbe/Iperf3. A Site Selector presents options to select a building.
After you make a selection and click the Next button, a Select Switches
screen shows options to deploy the app to any preferred switches that are
ready. One or more switches can be selected, and the workflow can continue,
as seen in Figure 15-13.

BOOK.indb 542 19/05/22 5:56 PM

ptg39201256

Chapter 15: Hosting an Application on a Network Device 543

15

Figure 15-13 Selecting Devices for App Hosting Deployment in Cisco DNA Center

Step 5. Configure host-specific deployment options—Network Settings.

The next portal to appear is the Configure App, where Network Settings can be
defined. If the app doesn’t expose network services or if your environment is
appropriately configured to serve DHCP IP addresses, then this step is trivial. In
scenarios using static IP addresses, there are several more steps. First, you must
click the Export button to download a CSV file defining the network specifica-
tions. Figures 15-14 and 15-15 show these steps.

Figure 15-14 Configuring App Dependencies by Exporting Network Settings

BOOK.indb 543 19/05/22 5:56 PM

ptg39201256

544 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Figure 15-15 Editing Network Settings for Application Hosting Deployment

After editing the CSV file to suit your needs and saving it, you can return to the
DNA Center portal to click Import Gadget and upload the modified CSV file.
At this point, you can expect to see the Static Network Settings pop-up shown
in Figure 15-16.

Figure 15-16 Importing Network Settings for Application Hosting Deployment

The Network Settings should reflect changes. If desired, you can scroll down
and review App Resources, App Data, and Docker Runtime Options. Click the
Next button to review the deployment on a Summary screen. One more click
of the Next button takes you to a Provisioning Task.

Step 6. Perform the app-to-host(s) provisioning.

Figure 15-17 depicts the final step: provisioning. Click the Provision button to
upload the container app to the device(s), configure the docker parameters and
network settings, and start the app.

BOOK.indb 544 19/05/22 5:56 PM

ptg39201256

Chapter 15: Hosting an Application on a Network Device 545

15
Figure 15-17 Provisioning iPerf Application Hosting Instance

The workflow continues to show a provisioning status screen, as seen in
Figure 15-18. The amount of time to complete depends on the number of sites,
building, switches, and the size of the container apps that must be uploaded to
each host switch.

Figure 15-18 Monitoring iPerf Application Hosting Provisioning Status

If desired, you can return to the home portal of the App Hosting for Switches
function and select the app ellipses icon for the Manage function to review
all hosting switches and their status related to the container app. Figure 15-19

BOOK.indb 545 19/05/22 5:56 PM

ptg39201256

546 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

shows this portal, and Figure 15-20 shows the selection of a specific hosting
switch for its individual app details and status.

Figure 15-19 Reviewing the iPerf App-Specific Deployment Inventory

Figure 15-20 Reviewing the Device-Specific Deployment Parameters of iPerf App

BOOK.indb 546 19/05/22 5:56 PM

ptg39201256

Chapter 15: Hosting an Application on a Network Device 547

15

At this point, you can interact with the container app. Navigate down to the
“Interacting with App Hosted iPerf3” section if you prefer. The following
sections cover a similar process of getting the container app into the host-
ing switch using alternative IOx Local Manager or command-line interface
methods.

Using Cisco IOx Local Manager for App Hosting
The Cisco IOx Local Manager is a graphical, web-based app that runs local to the Cisco
device doing application hosting. For this use case, ensure the device has ip http secure-
server configured; then log in through a web browser at https://<IP_Address>/iox/login. The
login screen appears as shown in Figure 15-21.

Figure 15-21 Cisco IOx Local Manager Login Portal

Use an account with Priv-15 access.

After successful login, for a system with no registered or active Docker container apps, the
browser shows this status as in Figure 15-22.

BOOK.indb 547 19/05/22 5:56 PM

https://<IP_Address>/iox/login

ptg39201256

548 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Figure 15-22 Cisco IOx Local Manager Applications Portal

Feel free to click through the IOx Local Manager app tabs for familiarity’s sake, but there
will be limited information until you deploy an app. Next, click the prominent Add New but-
ton in the middle of the Applications tab frame.

A new pop-up window appears, as seen in Figure 15-23. Give the app a name or application
ID; then use the Choose File button to navigate to a file selector. Look for the iperf3.tar file
that was created earlier from the “docker save” activity.

Figure 15-23 Using Cisco IOx Local Manager to Import iPerf3 App

After you click the OK button, the system starts importing the Docker app, as seen in
Figure 15-24, resulting in the message shown in Figure 15-25.

BOOK.indb 548 19/05/22 5:56 PM

ptg39201256

Chapter 15: Hosting an Application on a Network Device 549

15

Figure 15-24 Cisco IOx Local Manager iPerf3 Import Progress

Figure 15-25 Cisco IOx Local Manager iPerf3 Import Completion

At this point, the image is deployed. Next, click the Activate button, as seen in Figure 15-26.
Doing so enables you to update the container parameters, as seen in Figure 15-27, where you
need to identify the guest app networking and Docker options. Specific to iPerf3, when you
want to run as a listening server, you need to pass through a port listener from the Catalyst
switch host to the guest app. The settings for the Docker options are

--rm -p 5201:5201/tcp -p 5201:5201/udp

These are default port settings for iPerf3. Make note if you chose alternative settings.

BOOK.indb 549 19/05/22 5:56 PM

ptg39201256

550 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Figure 15-26 Activating the iPerf3 Image in Cisco IOx Local Manager

Figure 15-27 Updating iPerf3 Image Network and Docker Options in Cisco IOx Local
Manager

Now that the Docker container app has the desired guest parameters, you can fully activate
it by clicking the Activate App button in the upper-right corner, as seen in Figure 15-28. This
shows a processing pop-up, like the one in Figure 15-29.

BOOK.indb 550 19/05/22 5:56 PM

ptg39201256

Chapter 15: Hosting an Application on a Network Device 551

15

Figure 15-28 Activating the iPerf3 App in Cisco IOx Local Manager

Figure 15-29 Activation Progress of iPerf3 App in Cisco IOx Local Manager

With an activated application, you can now start it by clicking the Start button, as shown in
Figure 15-30. You then see a processing pop-up, like the one in Figure 15-31.

Figure 15-30 Starting the iPerf3 App in Cisco IOx Local Manager

BOOK.indb 551 19/05/22 5:57 PM

ptg39201256

552 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Figure 15-31 Startup Progress of iPerf3 App in Cisco IOx Local Manager

Finally, the IOx Local Manager shows a fully running Docker container app, as in
Figure 15-32.

Figure 15-32 Final Startup Status of iPerf3 App in Cisco IOx Local Manager

Jump ahead to the “Interacting with App Hosted iPerf3” section to interact with the running
Docker container app.

BOOK.indb 552 19/05/22 5:57 PM

ptg39201256

Chapter 15: Hosting an Application on a Network Device 553

15

Using the Command-Line Interface for App Hosting
To use the command-line interface for app hosting, you must get the Docker image from the
previous “docker save” activity onto the switch filesystem, specifically usbflash1:.

Step 1. Copy the tar file to the switch usbflash1: filesystem using available file trans-
fer protocols, such as TFTP, SCP, FTP, RCP, HTTP, or HTTPS. If you need a
refresher, reference this document for Catalyst 9300 and the minimum IOS XE
release 16.12 at http://cs.co/9004Jryo2#concept_lqt_ltk_l1b.

Step 2. Configure the AppGigabitEthernet1/0/1 interface.

Application hosting in IOS XE on Catalyst 9300/9400 includes a new App-
GigabitEthernet interface, specifically, AppGigabitEthernet1/0/1, which acts as
the bridge between the physical switch networking and the virtualized Docker
application.

Depending on your use case, you can trunk all switch VLAN traffic, a subset,
or just a single VLAN. For this educational use case, you can trunk but allow
just one VLAN:

!

interface AppGigabitEthernet1/0/1

 switchport trunk allowed vlan 100

 switchport mode trunk

end

Step 3. Map any Docker application virtual network (vNIC) interfaces. For this iPerf
example, there is only one, but there could be other scenarios where your
Docker app may have a “management” interface that is separate from a “sniffer”
or “data-traffic” interface. Pay attention to any VLAN, guest IP address, gate-
way, and Docker resource dependencies.

app-hosting appid iPerf3

 app-vnic AppGigabitEthernet trunk

 vlan 100 guest-interface 0

 guest-ipaddress 10.10.20.101 netmask 255.255.255.0

 app-default-gateway 10.10.20.254 guest-interface 0

 app-resource docker

 run-opts 1 "-p 5201:5201/tcp -p 5201:5201/udp"

Unpacking this set of commands a bit, you can see that it gives the Docker con-
tainer app an application ID (appid) of iPerf3. You’re defining the application
virtual network interface card (vNIC) to the AppGigabithEthernet trunk. Cor-
respondingly, it assigns the application’s guest-interface, traditionally Ethernet0,
as instance 0 mapped to VLAN 100, matching the earlier interface AppGiga-
bitEthernet1/0/1 settings. In this use case, the intention is to give the guest app
a static IP address, so the address, netmask, and default gateway should be sup-
plied. DNS is optional. DHCP served parameters are supported. Finally, there
is a special consideration to add Docker resource parameters that port forward

BOOK.indb 553 19/05/22 5:57 PM

http://cs.co/9004Jryo2#concept_lqt_ltk_l1b

ptg39201256

554 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

TCP and UDP port 5201 externally from the hosting switch to the internal port
5201 of the guest app. This is a default port listener for iPerf3.

Step 4. Install the iPerf3 docker app by referencing its flash file-system location. You
can follow the installation with commands to verify the status:

cat9k# app-hosting install appid iPerf3 package
usbflash1:iperf3.tar

Installing package 'usbflash1:iperf3.tar' for 'iPerf3'.
Use 'show app-hosting list' for progress.

cat9k# show app-hosting list

App id State

iPerf3 DEPLOYED

cat9k#

Again, remember the show app-hosting list command may take some time to
process.

Step 5. Activate the docker app, referencing it by application ID (appid).

cat9k# app-hosting activate appid iPerf3

iPerf3 activated successfully

Current state is: ACTIVATED

cat9k#

Step 6. Finally, run the iPerf3 docker app with the app-hosting start directive:

cat9k# app-hosting start appid iPerf3

iPerf3 started successfully

Current state is: RUNNING

Again, you can double-check the status with other app-hosting commands.
Example 15-6 shows a couple of commands to verify status.

Example 15-6 Reviewing Container Status with show app-hosting Commands

cat9k# show app-hosting list

App id State

iPerf3 RUNNING

cat9k# show app-hosting detail appid iPerf3

App id : iPerf3

Owner : iox

State : RUNNING

BOOK.indb 554 19/05/22 5:57 PM

ptg39201256

Chapter 15: Hosting an Application on a Network Device 555

15

Application

 Type : docker

 Name : mlabbe/iperf3

 Version : latest

 Description :

 Path : usbflash1:iperf3.tar

 URL Path :

Activated profile name : custom

Resource reservation

 Memory : 1024 MB

 Disk : 10 MB

 CPU : 3700 units

 VCPU : 1

Attached devices

 Type Name Alias

 serial/shell iox_console_shell serial0

 serial/aux iox_console_aux serial1

 serial/syslog iox_syslog serial2

 serial/trace iox_trace serial3

Network interfaces

eth0:

 MAC address : 52:54:dd:56:a:40

 IPv4 address : 10.10.20.101

 Network name : mgmt-bridge100

Docker

Run-time information

 Command :

 Entry-point : iperf3 -s

 Run options in use : -p 5201:5201/tcp -p 5201:5201/udp

 Package run options :

Application health information

 Status : 0

 Last probe error :

 Last probe output :

BOOK.indb 555 19/05/22 5:57 PM

ptg39201256

556 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Now that you have a fully running iPerf3 Docker application, you can proceed to interacting
with the app either as a server endpoint or as an embedded client.

Interacting with App Hosted iPerf3
Regardless of how you deployed the App hosted iPerf3, now you can interact with it.
From another system acting as a client, you can send test traffic to the Catalyst 9300 run-
ning the iPerf3 Docker app acting as the server endpoint. Figure 15-33 depicts a couple of
options:

■ A local laptop, server, or virtual machine with the iPerf3 utility as a client, target-
ing a local Cisco Nexus 9300 running the iPerf3 docker-app in IOx Application
Hosting

■ A local laptop, server, or virtual machine with the iPerf3 utility as a client and the
OpenConnect VPN software, targeting a Cisco Sandbox Lab environment with a
Cisco Nexus 9300 running the iPerf3 docker-app in IOx Application Hosting

6

Local Environment

Server,
Laptop, or

VM with iPerf
(as Client)

Cat9300
with iPerf

Container App
(as Server)

Server,
Laptop, or

VM with iPerf
(as Client)

and OpenConnect
VPN Software

Cat9300
with iPerf

Container App
(as Server)
in DevNet

Sandbox Lab

DevNet Sandbox Lab
Environment

Cat9300

Cat9300

Figure 15-33 Testing iPerf3 Environment Options

Either way, Example 15-7 guides you in using the iPerf3 utility on a local system to target
the Catalyst 9300 acting as an iPerf3 server. The iPerf deployment on the Catalyst switch
enabled server-listener mode based on the Docker runtime options provided in activation
and startup.

BOOK.indb 556 19/05/22 5:57 PM

ptg39201256

Chapter 15: Hosting an Application on a Network Device 557

15

Example 15-7 Running the iPerf3 Utility as a Client on the Local System

sre@docker-utils Utilities % ./iperf3 -c 10.10.20.101

Connecting to host 10.10.20.101, port 5201

[4] local 192.168.254.11 port 56235 connected to 10.10.20.101 port 5201

[ID] Interval Transfer Bandwidth

[4] 0.00-1.00 sec 935 KBytes 7.65 Mbits/sec

[4] 1.00-2.00 sec 892 KBytes 7.32 Mbits/sec

[4] 2.00-3.00 sec 1.12 MBytes 9.37 Mbits/sec

[4] 3.00-4.00 sec 390 KBytes 3.20 Mbits/sec

[4] 4.00-5.00 sec 386 KBytes 3.16 Mbits/sec

[4] 5.00-6.00 sec 387 KBytes 3.17 Mbits/sec

[4] 6.00-7.00 sec 386 KBytes 3.17 Mbits/sec

[4] 7.00-8.00 sec 386 KBytes 3.16 Mbits/sec

[4] 8.00-9.00 sec 386 KBytes 3.16 Mbits/sec

[4] 9.00-10.00 sec 379 KBytes 3.10 Mbits/sec

- -

[ID] Interval Transfer Bandwidth

[4] 0.00-10.00 sec 5.54 MBytes 4.65 Mbits/sec sender

[4] 0.00-10.00 sec 5.53 MBytes 4.64 Mbits/sec receiver

iperf Done.

Now let’s go from the embedded Docker app running on the switch using iPerf3 out to
another iPerf3 system running in server (-s) mode. The iPerf project page documents some
publicly accessible iPerf servers if you don’t have any other systems available (see https://
iperf.fr/iperf-servers.php).

Figure 15-34 shows the topology use case options:

■ A local laptop, server, or virtual machine with the iPerf3 utility as a server, receiving
client traffic from a local Cisco Nexus 9300 running the iPerf3 docker-app in IOx
Application Hosting

■ A local Cisco Nexus 9300 running the iPerf3 docker-app in IOx Application Hosting
as a client, targeting Internet-based iPerf3 servers

■ A local laptop, server, or virtual machine with the iPerf3 utility as a server and the
OpenConnect VPN software, receiving client traffic from a Cisco Sandbox Lab envi-
ronment with a Cisco Nexus 9300 running the iPerf3 docker-app in IOx Application
Hosting as a client

NOTE A Cisco Sandbox environment sending traffic out the general Internet is not
displayed in this example because it is not supported.

BOOK.indb 557 19/05/22 5:57 PM

https://iperf.fr/iperf-servers.php
https://iperf.fr/iperf-servers.php

ptg39201256

558 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Local Environment

Server,
Laptop, or

VM with iPerf
(as Server)

Cat9300
with iPerf

Container App
(as Client)

Cat9300
with iPerf Container App

(as Client)

Internet iPerf Based
DevNet Sandbox Lab

Environment

Server,
Laptop, or

VM with iPerf
(as Server)

and OpenConnect
VPN Software

Cat9300
with iPerf

Container App
(as Client)
in DevNet

Sandbox Lab

Cat9300 Cat9300

Cat9300

Figure 15-34 Testing iPerf3 Environment Options with a Catalyst Switch as the Client

Example 15-8 shows the steps you need to run from the Catalyst 9300 to access the iPerf3
container-app and run the iPerf3 utility. In this example, the server would be the local PC,
server, or virtual machine running in server mode with iperf3 -s and a local Catalyst 9300
targeting that local system. Sending traffic to Internet-based iPerf servers is possible if your
system allows traffic to the Internet.

Example 15-8 Accessing the Catalyst Switches’ iPerf3 Container-App and Running as
a Client

cat9k# app-hosting connect appid iPerf3 session

/ $ iperf3 -c 10.10.20.20

Connecting to host 10.10.20.20, port 5201

[5] local 10.10.20.101 port 59998 connected to 10.10.20.20 port 5201

[ID] Interval Transfer Bitrate Retr Cwnd

[5] 0.00-1.00 sec 114 MBytes 952 Mbits/sec 14 754 KBytes

[5] 1.00-2.00 sec 112 MBytes 940 Mbits/sec 65 799 KBytes

[5] 2.00-3.00 sec 112 MBytes 941 Mbits/sec 146 635 KBytes

[5] 3.00-4.00 sec 112 MBytes 938 Mbits/sec 152 714 KBytes

[5] 4.00-5.00 sec 112 MBytes 941 Mbits/sec 1 822 KBytes

[5] 5.00-6.00 sec 112 MBytes 937 Mbits/sec 0 922 KBytes

[5] 6.00-7.00 sec 113 MBytes 945 Mbits/sec 1 1008 KBytes

[5] 7.00-8.00 sec 112 MBytes 940 Mbits/sec 22 1.01 MBytes

[5] 8.00-9.00 sec 109 MBytes 915 Mbits/sec 870 573 KBytes

[5] 9.00-10.00 sec 110 MBytes 922 Mbits/sec 5 691 KBytes

- -

[ID] Interval Transfer Bitrate Retr

[5] 0.00-10.00 sec 1.09 GBytes 937 Mbits/sec 1276 sender

[5] 0.00-10.00 sec 1.09 GBytes 935 Mbits/sec receiver

iperf Done.

/ $

Now that you have a taste for using traffic testing functions, what other workloads can you
think of? Would it be useful to run a local syslog receiver with more advanced filtering and

BOOK.indb 558 19/05/22 5:57 PM

ptg39201256

Chapter 15: Hosting an Application on a Network Device 559

15

forwarding as a local Docker container app? How about using the robust ThousandEyes
Enterprise agent to get much more observability functions?

As one more example of this exciting container functionality, let’s build a container in which
you run a local syslog receiver in the Catalyst 9300. This container-app will run the popular,
feature-rich Syslog-NG utility and do better event message handling, filtering, and forward-
ing than the native IOS XE can do. You can forward the hosting Catalyst 9300’s syslog
messages to the container. It is possible to have other devices near the hosting system also
forward their messages to the container. You can provide a Syslog-NG configuration file that

■ Sends security-focused ACL violations to the security management tools, like Cisco
Secure Network Analytics (formerly Stealthwatch)

■ Sends all messages to a DNA Center system

■ Sends all messages to a secondary logging system for archival purposes

■ Sends all messages to a local file within the container-app

This model would be effective for regional collection, filtering, and follow-on forwarding to
centralized systems.

First, you need to access a system that has a Docker engine running on it to build a container
app. You can use something familiar like Ubuntu, Red Hat Enterprise Linux, or CentOS to
build the container. Then use the following commands to create a project directory:

sre@docker-utils home/sre % mkdir -p Docker/syslog-ng

sre@docker-utils syslog-ng % cd Docker/syslog-ng

sre@docker-utils syslog-ng % vi Dockerfile

Now that you have a vi editor session, you need to create the Dockerfile. Use Example 15-9
for guidance.

Example 15-9 Dockerfile for Syslog-NG

FROM balabit/syslog-ng:latest

ADD syslog-ng.conf /etc/syslog-ng/syslog-ng.conf

EXPOSE 514/udp

EXPOSE 601/tcp

HEALTHCHECK --interval=2m --timeout=3s --start-period=30s CMD /usr/sbin/syslog-ng-
ctl stats || exit 1

ENTRYPOINT ["/usr/sbin/syslog-ng", "-F"]

In Example 15-9 the FROM directive pulls the balabit/syslog-ng:latest image from Dock-
erhub. You use ADD to add a syslog-ng.conf file, which you define in the next step, and
mount it to the container’s /etc/syslog-ng/syslog-ng.conf location. You then use EXPOSE to
expose the traditional Syslog UDP/514 port, which is typical for the network equipment,
but you also use EXPOSE to expose and listen to TCP/601 for any reliable syslog event

BOOK.indb 559 19/05/22 5:57 PM

ptg39201256

560 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

messages coming from other sources. Then you define a HEALTHCHECK function that
periodically checks the operation of Syslog-NG. Finally, you use ENTRYPOINT to execute
the Syslog-NG utility.

The Dockerfile is complete and can be saved, but you need to define the syslog-ng.conf file
that was referenced in the Dockerfile before you can build the image. Example 15-10 depicts
a suggested syslog-ng.conf file. You can use an editor to create this syslog-ng.conf file in the
same directory as the Dockerfile.

Example 15-10 syslog-ng.conf File

@version: 3.35

@include "scl.conf"

source s_net { default-network-drivers(); };

filter f_ACL-violation {

 match("SEC-6-IPACCESSLOG" value("MESSAGE")) or

 match("SYS-5-PRIV_AUTH_FAIL" value("MESSAGE"))

};

destination d_securityapp { udp("<CiscoSecureNetworkAnalytics>" port(514)); };

destination d_DNAC { udp("<DNACenter>" port(514)); };

destination d_LOGArchive { udp("<LOGArchive>" port(514)); };

destination d_localfile { file("/var/log/${YEAR}.${MONTH}.${DAY}/messages" };

log {

 source(s_net);

 filter(f_ACL-violation);

 destination(d_securityapp);

};

log {

 source(s_net);

 destination(d_DNAC);

 destination(d_LOGArchive);

 destination(d_localfile);

};

The first lines of the syslog-ng file are administrative but necessary. If you are pulling a dif-
ferent version of the Syslog-NG utility, then specify the correct version; if newer than v3.35,
you can leave as is. The @include “acl.conf” is necessary for the network drivers source seen
next.

BOOK.indb 560 19/05/22 5:57 PM

ptg39201256

Chapter 15: Hosting an Application on a Network Device 561

15

The source s_net definition pulls in default network drivers that list to several ports, such
as UDP/514, TCP/601, and TCP/6514 (for syslog over TLS). It also includes a standard Cisco
parser. You can define other ports to suit your needs.

The filter f_ACL-violation definition includes a pattern match for a typical login and ACL
violation message with SYS-5-PRIV_AUTH_FAIL and SEC-6-IPACCESSLOG. You can
define even more by using additional or conditions.

The destination d_securityapp definition specifies the target syslog receiver for security
messages. Change the entry, including the < >s, to reflect your environment.

The destination d_DNAC definition specifies a target syslog receiver for Cisco DNA Center.
Change the entry, including the < >s, to reflect your environment.

The destination d_LOGArchive definition specifies a target syslog receiver for another
Syslog-NG server for archival purposes. Change the entry, including the < >s, to reflect your
environment.

The destination d_localfile definition specifies a target file, which is in the switch’s Docker
container in the /var/log/ directory and with subdirectories by Year, Month, and Date.
Dynamic directories are created, such as /var/log/2022.01.01/messages, for all incoming
syslog event messages received on January 1, 2022.

The first log definition takes in messages from the network source and matches any with the
ACL-violation filter and then sends to the security app destination.

The second log definition takes in messages from the network source and sends all messages
to the DNAC, LOGArchive, and localfile destinations. No filter is defined, so no messages
are excluded.

Now, you should save the syslog-ng.conf file in the same directory as the Dockerfile.

Example 15-11 shows the process of building the container image.

Example 15-11 Building the Syslog-NG Container Image

sre@docker-utils syslog-ng % docker build --tag syslog-ng .

Sending build context to Docker daemon 3.584kB

Step 1/6 : FROM balabit/syslog-ng:latest

 ---> 123b82e5cba8

Step 2/6 : ADD syslog-ng.conf /etc/syslog-ng/syslog-ng.conf

 ---> 8890abfd7006

Step 3/6 : EXPOSE 514/udp

 ---> Running in 41667db3e024

Removing intermediate container 41667db3e024

 ---> fd1459249233

Step 4/6 : EXPOSE 601/tcp

 ---> Running in fdae437f557a

Removing intermediate container fdae437f557a

 ---> 7b5691da5b3f

BOOK.indb 561 19/05/22 5:57 PM

ptg39201256

562 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Step 5/6 : HEALTHCHECK --interval=2m --timeout=3s --start-period=30s CMD /usr/sbin/
syslog-ng-ctl stats || exit 1

Note: overriding previous HEALTHCHECK: [CMD-SHELL /usr/sbin/syslog-ng-ctl stats ||
exit 1]

 ---> Running in 0725d6fa7629

Removing intermediate container 0725d6fa7629

 ---> 817b3135bc93

Step 6/6 : ENTRYPOINT ["/usr/sbin/syslog-ng", "-F"]

 ---> Running in 2a11758cacad

Removing intermediate container 2a11758cacad

 ---> de5f49139a68

Successfully built de5f49139a68

Successfully tagged syslog-ng:latest

sre@docker-utils syslog-ng %

Use the docker save command previously described to create a .tar image of the container
on the local system:

sre@docker-utils syslog-ng % docker save syslog-ng > syslog-ng.tar

Now, copy the .tar image to the hosting device using DNA Center, IOx Local Manager, or
CLI methods described in earlier sections. Also, remember that the UDP/514 port must be
exposed. When you have a running image, you should be able to verify it from a terminal
session with the hosting switch using the show app-hosting list command:

cat9k# show app-hosting list

App id State

syslog_ng RUNNING

Then you can access the Syslog-NG container-app with the app-hosting connect command:

cat9k# app-hosting connect appid syslog_ng session

cat /var/log/2021.10.26/messages

Oct 26 21:31:11 758d4280b792 syslog-ng[1]: syslog-ng starting up;
version='3.31.2'

#

Finally, remember to forward the syslog event messages from your hosting system back to
the assigned IP address of the Docker container:

cat9k(config)# logging host 10.10.20.101 vrf Mgmt-vrf

Use a similar logging host IP_Address command on other Cisco network devices to have
them forward their syslog event messages to this container-app also. If everything is config-
ured, forwarding, and filtering correctly, you see the securityapp system receiving log mes-
sages that are filtered to ACL violations like this:

BOOK.indb 562 19/05/22 5:57 PM

ptg39201256

Chapter 15: Hosting an Application on a Network Device 563

15

Oct 26 21:15:58.154: cat9300 1895: Oct 26 21:15:58: %SYS-5-PRIV_
AUTH_FAIL: Authentication to Privilege level 15 failed by Bob on
vty0 (192.168.1.14)

Oct 26 21:00:07.958: cat9300 1896: Oct 26 21:00:07: %SEC-6-
IPACCESSLOGDP: list stop-ping denied icmp 192.168.1.230 ->
192.168.1.11 (0/0), 51packets

Oct 26 21:05:07.980: cat3560 5943: Oct 26 21:05:07: %SEC-6-
IPACCESSLOGDP: list stop-ping denied icmp 192.168.1.230 ->
192.168.1.11 (0/0), 162 packets

The other systems that are not filtered receive messages like this:

Oct 26 20:54:43.492: cat9300 1894: Oct 25 20:54:42: %SYS-5-
CONFIG_I: Configured from console by admin on vty0 (192.168.1.230)

Oct 26 21:15:58.154: cat9300 1895: Oct 26 21:15:58: %SYS-5-PRIV_
AUTH_FAIL: Authentication to Privilege level 15 failed by Bob on
vty0 (192.168.1.14)

Oct 26 21:00:07.958: cat9300 1896: Oct 26 21:00:07: %SEC-6-
IPACCESSLOGDP: list stop-ping denied icmp 192.168.1.230 ->
192.168.1.11 (0/0), 51packets

Oct 26 21:03:02.903: cat9300 1897: Oct 26 21:03:02: %SYS-5-
CONFIG_I: Configured from console by admin on vty0 (192.168.1.230)

Oct 26 21:05:07.980: cat3560 5943: Oct 26 21:05:07: %SEC-6-
IPACCESSLOGDP: list stop-ping denied icmp 192.168.1.230 ->
192.168.1.11 (0/0), 162 packets

Oct 26 21:07:40.747: cat3560 5944: Oct 26 21:07:40: %LINK-3-
UPDOWN: Interface GigabitEthernet0/5, changed state to down

Oct 26 21:07:45.235: cat3560 5945: Oct 26 21:07:45: %LINK-3-
UPDOWN: Interface GigabitEthernet0/6, changed state to down

Oct 26 21:07:45.492: cat3560 5946: Oct 26 21:07:45: %SYS-5-
CONFIG_I: Configured from console by admin on vty0 (192.168.1.230)

Using this model allows you to create a more sophisticated syslog event management process
than is available in the native IOS-XE software.

Best Practices for Managing Application Containers
Some basic practices around the administration of the application hosting containers focus
on inventory management. If you are using Cisco DNA Center to manage and deploy your
containers, then the inventory is already centrally managed and monitored. If you use the
embedded Cisco IOx Local Manager or CLI models, then you should consider implementing

BOOK.indb 563 19/05/22 5:57 PM

ptg39201256

564 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

a centralized software repository to manage the .tar and .tar.gz files and facilitate version
control. The centralized software repository can also serve to host the images via TFTP or
SCP, if desired. It is also suggested that you need a database or spreadsheet of which appli-
cations and versions are being deployed to which switches.

For containerized apps that store files, plus syslog event messages, binary software images,
database components, and so on, it is also a best practice to routinely monitor the usage of
the switch’s usbflash1: filesystem. Monitoring the flash disk usage by container-app is best,
but at a minimum, you should retrieve the whole flash disk usage to know when “spring
cleaning” is necessary.

Availability monitoring of the container-apps is trivial if the apps expose an IP address to
ping or if they have APIs accessible for polling. If you are in control of the development and
deployment of the container-apps, consider building API endpoints that expose the app
name, version, resource deployment, uptime, CPU/memory/interface, and disk usage.

Performance monitoring of the container-apps depends on the embedded instrumentation
and telemetry. If the container-app has a lightweight Linux foundation with shell access,
then a simple Ansible script that accesses it via SSH to run relevant performance commands
would be appropriate. If you are in control of the development and deployment of the con-
tainer-apps, consider using a gRPC or AMQP message bus approach to stream telemetry and
messages from the remote app to a centralized collection and monitoring system.

Fault monitoring of the container-apps is like the performance monitoring aspect: it depends
on the embedded instrumentation and telemetry. If the container-app is generating log
messages, then ensure a function like syslog-ng or logger is creating outbound copies for
collection, archiving, and analysis.

Security management of the container-apps varies on the services deployed in the container.
Remember that containers are not full-blown operating systems. The docker daemon and
Cisco IOx hosting services provide some protections. If your container-app provides a shell
access, then you should use basic practices of good password management, prioritizing pub-
lic key authentication over passwords. Be mindful of the ports and services exposed from
the container-app to the hosting device. In a containerized database scenario, you might con-
sider the application-level configuration protections: encryption, RBAC, and table/schema
partitioning. If the container-app is running a more feature-rich base like Ubuntu Linux and
the app data is sensitive or proprietary, it may make sense to implement host-based firewalls
like iptables, firewalld, or UFW. Note, however, that Docker does manipulate and control
many networking interactions, so you need to review documentation associated with the
version of dockerd running on the host. Nginx, haproxy, and other proxy use common with
containers prevents the container-app from seeing the remote IP address, so dynamic track-
ing and blocking tools (such as fail2ban) are not effective without using Layer-2/bridging
connectivity. Finally, it might be warranted to run a container-app firewall appliance and
chain the other container-app traffic through it. Keep in mind the best practices learned with
traditional, hardware-based architectures because many are possible to implement with vir-
tualized software.

BOOK.indb 564 19/05/22 5:57 PM

ptg39201256

Chapter 15: Hosting an Application on a Network Device 565

15

As mentioned earlier, inventory and asset management are important. Keeping track of
container-app versions to ensure the latest with the newest features, bug fixes, and patches is
an additional administrative task. Routine asset scans to validate the asset tracking system or
CMDB are desirable.

Exam Preparation Tasks
As mentioned in the section “How to Use This Book” in the Introduction, you have a couple
of choices for exam preparation: the exercises here, Chapter 17, “Final Preparation,” and the
exam simulation questions in the Pearson Test Prep Software Online.

Review All Key Topics
Review the most important topics in this chapter, noted with the Key Topic icon in the outer
margin of the page. Table 15-2 lists a reference of these key topics and the page numbers on
which each is found.

Table 15-2 Key Topics for Chapter 15

Key Topic Element Description Page
Number

Section Type-1 Hypervisors 528

Section Type-2 Hypervisors 528

Section Linux Containers (LXC) 529

Section Docker Containers 530

Paragraph Enabling application hosting framework 536

Step Uploading an image to DNAC 540

Paragraph Uploading an image to IOx Local Manager 548

Step Installing an image via CLI 554

Example 15-8 Accessing the Catalyst Switches’ iPerf3
Container-App and Running as a Client

558

Complete Tables and Lists from Memory
There are no memory tables or lists in this chapter.

Define Key Terms
Define the following key terms from this chapter and check your answers in the glossary:

hypervisor, Type-1 hypervisor, Type-2 hypervisor, Linux Containers (LXC), container

M15_Davis_C15_p524-p567.indd 565 20/05/22 9:50 PM

ptg39201256

566 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

References
URL QR Code

https://devnetsandbox.cisco.com/

https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/prog/
configuration/173/b_173_programmability_cg/guest_shell.html

https://developer.cisco.com/app-hosting/opensource/

https://hub.docker.com/r/mlabbe/iperf3

https://developer.cisco.com/docs/iox/#!package-format/
iox-application-package

http://cs.co/9004Jryo2#concept_lqt_ltk_l1b

https://iperf.fr/iperf-servers.php

BOOK.indb 566 19/05/22 5:57 PM

https://devnetsandbox.cisco.com/
http://https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/prog/configuration/173/b_173_programmability_cg/guest_shell.html
http://https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/prog/configuration/173/b_173_programmability_cg/guest_shell.html
https://developer.cisco.com/app-hosting/opensource/
http://https://hub.docker.com/r/mlabbe/iperf3
https://developer.cisco.com/docs/iox/#!package-format/iox-application-package
https://developer.cisco.com/docs/iox/#!package-format/iox-application-package
http://cs.co/9004Jryo2#concept_lqt_ltk_l1b
https://iperf.fr/iperf-servers.php

ptg39201256

This page intentionally left blank

ptg39201256

CHAPTER 16

Cisco Platforms

This chapter covers the following topics:

■ Webex: This section covers practical examples of using the Webex API and SDKs.

■ Firepower: This section covers practical examples of using the Firepower Manage-
ment Center APIs.

■ Meraki: This section covers practical examples of using the Meraki API and SDKs.

■ Intersight: This section covers practical examples of using the Intersight API and
SDKs.

■ UCS Manager: This section covers practical examples of using the UCS Manager API
and SDKs.

■ DNA Center: This section covers practical examples of using the DNA Center API
and SDKs.

■ App Dynamics: This section covers practical examples of using the AppDynamics API.

This chapter does not map to a specific section of the Developing Applications Using
Cisco Core Platforms and APIs v1.0 (350-901) Exam Blueprint. However, the examples in
this chapter may be instructional for other components of the exam. Specifically, it is ben-
eficial for you to understand the common product application programming interfaces, how
they authenticate, and some basic function methods. This chapter provides those examples
that should augment your continuous learning process.

“Do I Know This Already?” Quiz
The “Do I Know This Already?” quiz allows you to assess whether you should read this
entire chapter thoroughly or jump to the “Exam Preparation Tasks” section. If you are in
doubt about your answers to these questions or your own assessment of your knowledge
of the topics, read the entire chapter. Table 16-1 lists the major headings in this chapter and
their corresponding “Do I Know This Already?” quiz questions. You can find the answers in
Appendix A, “Answers to the ‘Do I Know This Already?’ Quizzes.”

BOOK.indb 568 19/05/22 5:57 PM

ptg39201256

Table 16-1 “Do I Know This Already?” Section-to-Question Mapping

Foundation Topics Section Questions

Webex 1–2
Firepower 3–4
Meraki 5–6
Intersight 7–8
UCS Manager 9–10
DNA Center 11–12
AppDynamics 13–14

1. The Webex SDK is available for what frameworks?
a. iOS
b. Android
c. Java
d. Python
e. All of these answers are correct.

2. Where can you publish a Webex bot using the Webex REST API?
a. Apple App Store
b. Google Play Store
c. Webex App Hub
d. Windows App Store

3. What authentication headers are generated using the api/fmc_platform/v1/auth/
generatetoken endpoint within the FMC API?
a. X-authorization
b. X-bearer, X-refresh
c. X-auth-access-token, X-auth-refresh-token
d. X-fmc-device-auth, X-fmc-device-refresh

4. How does the Firepower Management Center handle concurrent logins with the same
username/password combination to the FMC portal, API explorer, and API?
a. All logins can be used concurrently.
b. Only one session is supported to the FMC at one time, regardless of access

method.
c. FMC supports a session to the FMC web UI and another to either the API

explorer or logged in to the REST API.
d. None of these answers are correct.

BOOK.indb 569 19/05/22 5:57 PM

ptg39201256

570 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

5. Which one of the following would be a correct authentication body for the Meraki
Dashboard v1 API?
a.

{

 "Authentication": "Basic <MERAKI_DASHBOARD_API_KEY>"

}

b.

{

 "Authentication": "Bearer <MERAKI_DASHBOARD_API_KEY>"

}

c.

{

 "Authorization": "Bearer <MERAKI_DASHBOARD_API_KEY>"

}

d.

{

 "Authorization": "Basic <MERAKI_DASHBOARD_API_KEY>"

}

6. Which of the following is the correct method invocation for the Meraki Python SDK
to obtain device information from a specific organization?
a. api.organizations.getOrganizationDevices(organization_id)
b. api.devices.getDevices(organization_id)
c. api.getOrganizationDevices()
d. api.organizations.<orgid>.getOrganizationDevices()

7. What pieces of information must be present to successfully authenticate to the Inter-
sight REST API?
a. Username and password
b. API key and password
c. MD5-encoded bearer token
d. API key and private key

8. What tools or SDKs exist to interact with the Intersight APIs?
a. REST APIs
b. Python SDK, PowerShell SDK
c. Ansible, Terraform
d. All of these answers are correct.

BOOK.indb 570 19/05/22 5:57 PM

ptg39201256

Chapter 16: Cisco Platforms 571

16

9. What data format(s) of request and response are supported by the UCS Manager API?
a. JSON only
b. XML only
c. JSON and XML
d. RESTCONF

10. Which statement about the UCS PowerTool is correct?
a. It is supported only on Windows operating systems.
b. It requires a manually collected API key to connect to the UCS Manager instance.
c. It allows output to be filtered to only specific object values.
d. It displays output data in native XML format by default.

11. Direct REST API usage with DNA Center requires which type of header?
a. An authorization header with a basic authentication string
b. An authentication header with a basic authentication string
c. A bearer token authentication header
d. An OAuth token authorization header

12. What is the name of the community-supported Python SDK that should be pip
installed and imported into your Python script for DNA Center SDK usage?
a. ciscodnacsdk
b. dnacsdk
c. ciscodnac
d. dnacentersdk

13. In AppDynamics authorization, what is the difference in usage between client secrets
and temporary access tokens? (Choose two.)
a. The client secret is generated through the API.
b. A client secret is used to generate a short-lived access token via the API.
c. The temporary access token is generated in the WebUI and is generally a longer-

term assignment.
d. The client secret can be defined by the user.
e. The temporary access token can be defined by the user.

14. In what format is the AppDynamics API default output encoded?
a. JSON
b. SAML
c. XML
d. YAML

Foundation Topics

Webex
Webex by Cisco is the industry’s leading collaboration platform, providing users with a
secured unified experience of meeting, calling, and messaging in one app. Webex brings
virtual meetings to life by allowing users to stay connected with video conferencing that’s

BOOK.indb 571 19/05/22 5:57 PM

ptg39201256

572 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

engaging, intelligent, and inclusive. Webex Calling provides a fully integrated, carrier grade
cloud phone system that keeps users connected from anywhere. Webex Messaging keeps the
work flowing between meetings by bringing everyone together with secure and intelligent
messaging organized by workstreams. The Webex Events portfolio delivers solutions for any
occasion, any size audience, anywhere—from town halls and customer webinars to multises-
sion conferences and networking events.

Webex provides an extensive set of REST APIs and SDKs to build Webex-embedded apps,
bots, integrations, widgets, or guest issuer apps. These APIs and SDKs provide your applica-
tions with direct access to the Cisco Webex platform, which includes a suite of features and
applications for performing administrative tasks, meetings, calling, messaging, device con-
figuration, and Webex Assistant. Webex provides SDKs for iOS, Android, Web Apps, Node.
js, and Java. Several other community-developed SDKs are available for other languages.

Enabling the Webex REST API/SDK Access
To start using the Webex REST APIs and SDKs, you must have an access token. This access
token is used to identify you as the requesting user.

Step 1. You need a Webex account backed by Cisco Webex Common Identity (CI).
You can sign up for a free Webex account at https://www.webex.com/.

Step 2. Using your Webex credentials, access the developer dashboard at https://
developer.webex.com/ (see Figure 16-1).

Figure 16-1 Webex Developer Website

Step 3. Navigate through the menus by selecting Start Building Apps > Create a New
App (see Figure 16-2).

BOOK.indb 572 19/05/22 5:57 PM

https://www.webex.com/
https://developer.webex.com/
https://developer.webex.com/

ptg39201256

Chapter 16: Cisco Platforms 573

16
Figure 16-2 The Dashboard

Step 4. After creating the application, you are assigned a personal access token (PAT)
based on the application type. A bot access token is issued for bot applica-
tions, and an OAuth access token is issued for integrations or guest issuer
applications.

Step 5. You can review existing access tokens for your apps by navigating through Pro-
file Photo or Avatar > My Webex Apps (see Figure 16-3).

Figure 16-3 Navigation Menu for Webex Apps

Webex API Documentation
The Webex REST APIs and SDKs are officially documented at https://developer.webex.com/
docs/platform-introduction.

Webex API tutorials and structured lab lessons are available on Learning Labs by Cisco
DevNet and can be accessed at https://developer.cisco.com/learning/tracks/collab-cloud (see
Figure 16-4).

BOOK.indb 573 19/05/22 5:57 PM

https://developer.webex.com/docs/platform-introduction
https://developer.webex.com/docs/platform-introduction
https://developer.cisco.com/learning/tracks/collab-cloud

ptg39201256

574 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Figure 16-4 Webex Developer Tutorials by Cisco

The Webex API Support team is available to help you with API questions and can be reached
at https://developer.webex.com/support (see Figure 16-5).

Figure 16-5 Webex Developer Support

BOOK.indb 574 19/05/22 5:57 PM

https://developer.webex.com/support

ptg39201256

Chapter 16: Cisco Platforms 575

16

When your Webex bot or integration is ready, you can publish it on Webex App Hub, where
existing Webex users can browse the App Hub and find your apps (see Figure 16-6).

Figure 16-6 Existing Webex Apps (App Hub)

You can access the Webex App Hub submission process at https://developer.webex.com/
docs/app-hub-submission-process.

API Examples
Using the Webex REST API (documented at https://developer.webex.com/docs/getting-
started) or through Postman collections (available at https://github.com/CiscoDevNet/
postman-webex) is simple. The first activity is to understand the Webex API authentication
process. When you make requests to the Webex REST API, an authentication HTTP header
is used to identify you as the requesting user. The header must include an access token—
whether a personal access token, bot token, or OAuth token—as described previously. The
token is supplied as bearer authentication, sometimes called token authentication.

{

'Authorization': 'Bearer ***

************_***_********-****-****-****-************'

}

It is important to note that personal access tokens are time-limited to 12 hours after you log
in to the site. You can extract your PAT from the getting-started URL at https://developer.
webex.com/docs/getting-started.

As a simple example, let’s assume that you want to determine what Webex rooms a bot is
part of. You can find the Webex REST API for Messaging and Rooms directly at https://
developer.webex.com/docs/api/v1/rooms (see Figure 16-7).

BOOK.indb 575 19/05/22 5:57 PM

https://developer.webex.com/docs/app-hub-submission-process
https://developer.webex.com/docs/app-hub-submission-process
https://developer.webex.com/docs/getting-started
https://developer.webex.com/docs/getting-started
https://github.com/CiscoDevNet/postman-webex
https://github.com/CiscoDevNet/postman-webex
https://developer.webex.com/docs/getting-started
https://developer.webex.com/docs/getting-started
https://developer.webex.com/docs/api/v1/rooms
https://developer.webex.com/docs/api/v1/rooms

ptg39201256

576 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Figure 16-7 Webex Personal Room API

A GET API call to the endpoint at https://developer.webex.com/docs/api/v1/rooms/
list-rooms results in the desired information.

Example 16-1 shows how a Python script can serve as a template for obtaining this room
information for an access token that is supplied via an environment variable—a more secure
way of using that credential versus hard-coding it in the script.

Example 16-1 Obtaining Personal Room Information

import requests

import os

import json

import pprint

Get environment variables

ACCESS_TOKEN = os.getenv('WEBEX_ACCESS_TOKEN')

pp = pprint.PrettyPrinter(indent=4)

url = "https://webexapis.com/v1/rooms"

payload={}

headers = {

 'Authorization': 'Bearer ' + ACCESS_TOKEN

}

BOOK.indb 576 19/05/22 5:57 PM

https://developer.webex.com/docs/api/v1/rooms/list-rooms
https://developer.webex.com/docs/api/v1/rooms/list-rooms
https://webexapis.com/v1/rooms"

ptg39201256

Chapter 16: Cisco Platforms 577

16

fimi

response = requests.request("GET", url, headers=headers, data=payload)

json_response = json.loads(response.text)

pp.pprint(json_response)

By running this script, you obtain the output shown in Example 16-2.

Example 16-2 Output of Running the Script Shown in Example 16-1

(.venv) sre@pythonserver DEVCOR % export WEBEX_ACCESS_TOKEN=*****…'

(.venv) sre@pythonserver DEVCOR % python getWebexRooms.py

{ 'items': [{ 'created': '2020-07-16T17:43:03.982Z',

 'creatorId': 'Y2lz*****…',

 'id': 'Y2lz*****…',

 'isLocked': False,

 'lastActivity': '2020-08-05T20:51:35.741Z',

 'ownerId': 'Y2lz*****…',

 'title': 'Firstname Lastname',

 'type': 'direct'},

 { 'created': '2020-03-26T13:39:27.664Z',

 'creatorId': 'Y2lz*****…',

 'id': 'Y2lz*****…',

 'isLocked': False,

 'lastActivity': '2021-06-10T19:29:13.440Z',

 'ownerId': 'Y2lz*****…',

 'teamId': 'Y2lz*****…',

 'title': Development',

 'type': 'group'},

 { 'created': '2019-10-30T18:51:05.869Z',

 'creatorId': 'Y2lz*****…',

 'id': 'Y2lz*****…',

 'isLocked': False,

 'lastActivity': '2020-06-24T22:10:03.317Z',

 'ownerId': 'Y2lz*****…',

 'teamId': 'Y2lz*****…',

 'title': 'Alerts',

 'type': 'group'}]}

SDK Examples
The Webex software development kit is available for iOS, Android, Web Apps, Node.js, and
Java, making it easy for you to integrate Webex functionalities within your own mobile and
web applications (see Figure 16-8). In addition to these, you can access community-
developed SDKs for other language applications on GitHub at https://github.com/
CiscoDevNet/awesome-webex-client-sdk.

BOOK.indb 577 19/05/22 5:57 PM

https://github.com/CiscoDevNet/awesome-webex-client-sdk
https://github.com/CiscoDevNet/awesome-webex-client-sdk

ptg39201256

578 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Figure 16-8 Webex SDK Menu

Extensive Webex SDK documentation for each platform is accessible on the developer dash-
board. SDK documentation includes a detailed getting started guide, installation steps, demo
apps, versions, features, requirements, limitations, and troubleshooting details.

You need to set up your Xcode environment to a minimum of Xcode 13 (released in 2019).
At the time of writing (2021), Xcode 15 is the latest release. The Webex iOS SDK can be
obtained from https://developer.webex.com/docs/sdks/ios. As of December 2021, the cur-
rent iOS SDK version is 3.2.

Assuming you already have an Xcode project, such as MyWebexApp, for your iOS app, here
are the steps to integrate the Webex iOS SDK into your Xcode project using CocoaPods:

Step 1. Install CocoaPods:

gem install cocoapods

Step 2. Set up CocoaPods:

pod setup

Step 3. Create a new file, Podfile, with the content shown in Example 16-3 in your
MyWebexApp project directory.

Example 16-3 Webex iOS SDK Integration

source 'https://github.com/CocoaPods/Specs.git'

use_frameworks!

target 'MyWebexApp' do

 platform :ios, '13'

 pod 'WebexSDK'

end

BOOK.indb 578 19/05/22 5:57 PM

https://developer.webex.com/docs/sdks/ios
https://github.com/CocoaPods/Specs.git'

ptg39201256

Chapter 16: Cisco Platforms 579

16

target 'MyWebexAppBroadcastExtension' do

 platform :ios, '13'

 pod 'WebexBroadcastExtensionKit'

end

Step 4. Install the Webex iOS SDK from your MyWebexApp project directory:

pod install

Step 5. To your app’s Info.plist, add the GroupIdentifier entry with the value as your
app’s GroupIdentifier. This step is required so that you can get a path to store
the local data warehouse.

Step 6. If you plan to use the WebexBroadcastExtensionKit, you also need to add a
GroupIdentifier entry with the value as your app’s GroupIdentifier to your
Broadcast Extension target. This step is required so that you can communicate
with the main app for screen sharing.

Step 7. Modify the Signing & Capabilities section in your Xcode project, as shown in
Figure 16-9.

Figure 16-9 Configuration of Webex iOS SDK in Xcode

You can find a sample app that implements this SDK with source code at https://github.com/
webex/webex-ios-sdk-example. This example showcases how to consume the APIs and is not
meant to be a production-grade app.

BOOK.indb 579 19/05/22 5:57 PM

https://github.com/webex/webex-ios-sdk-example
https://github.com/webex/webex-ios-sdk-example

ptg39201256

580 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

The following examples show how to use the iOS SDK in your iOS app:

Step 1. Create the Webex instance using Webex ID authentication (OAuth-based), as
shown in Example 16-4.

Example 16-4 Creating an Instance Using Webex ID

let clientId = "$YOUR_CLIENT_ID"

let clientSecret = "$YOUR_CLIENT_SECRET"

let scope = "spark:all" // space separated list of scopes. spark:all is always
required

let redirectUri = "https://webexdemoapp.com/redirect"

let authenticator = OAuthAuthenticator(clientId: clientId, clientSecret: clientSe-
cret, scope: scope, redirectUri: redirectUri, emailId: "user@example.com")

let webex = Webex(authenticator: authenticator)

webex.enableConsoleLogger = true

webex.logLevel = .verbose // Highly recommended to make this end-user configurable
in case you need to get detailed logs.

webex.initialize { isLoggedIn in

 if isLoggedIn {

 print("User is authorized")

 } else {

 authenticator.authorize(parentViewController: self) { result in

 if result == .success {

 print("Login successful")

 } else {

 print("Login failed")

 }

 }

Step 2. Create the Webex instance with Guest ID authentication (JWT-based), as
shown in Example 16-5.

Example 16-5 Creating a Webex Instance

let authenticator = JWTAuthenticator()

let webex = Webex(authenticator: authenticator)

webex.initialize { [weak self] isLoggedIn in

 guard let self = self else { return }

 if isLoggedIn {

 print("User is authorized")

 } else {

 authenticator.authorizedWith(jwt: myJwt) { result in

 switch result {

BOOK.indb 580 19/05/22 5:57 PM

https://webexdemoapp.com/redirect"
mailto:"user@example.com"

ptg39201256

Chapter 16: Cisco Platforms 581

16

 case .failure(let error):

 print("JWT Login failed")

 case .success(let authenticated):

 if authenticated {

 print("JWT Login successful")

 }

 }

 })

 }

 }

Step 3. Use the Webex service as shown in Example 16-6.
Example 16-6 Creating a Webex Service

webex.spaces.create(title: "Hello World") { result in

 switch result {

 case .success(let space):

 // ...

 case .failure(let error):

 // ...

 }

}

// ...

webex.memberships.create(spaceId: spaceId, personEmail: email) { result in

 switch result {

 case .success(let membership):

 // ...

 case .failure(let error):

 // ...

 }

 }

}

Step 4. Make an outgoing call, as shown in Example 16-7.

BOOK.indb 581 19/05/22 5:57 PM

ptg39201256

582 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Example 16-7 Making a Call

webex.phone.dial("coworker@example.com", option: MediaOption.audioVideo(local: ...,
remote: ...)) { result in

 switch result {

 case .success(let call):

 call.onConnected = {

 // ...

 }

 call.onDisconnected = { reason in

 // ...

 }

 case .failure(let error):

 // failure

 }

}}

Step 5. Enable Background Noise Removal (BNR):

webex.phone.audioBNREnabled = true

You can access more examples showing how to use the Webex iOS SDK at https://
github.com/webex/webex-ios-sdk/blob/master/README.md.

Firepower
Firepower Threat Defense (FTD) is the Cisco next-generation firewall (NGFW) solution,
providing not only a traditional L3/L4 security policy, but also L7 application inspection
and a comprehensive IDS/IPS, leveraging the Cisco Snort acquisition. These devices can be
managed individually, using Firepower Device Management (FDM), or using a central man-
agement platform called Firepower Management Center (FMC). Although both tools can be
used, they cannot be used concurrently (the use of FDM removes the ability to manage the
device using FMC and vice versa). Additionally, when opting to use FDM rather than FMC,
the management functions (and subsequent APIs supporting the functions) are diminished or
smaller in number. As such, this discussion focuses on the FMC APIs.

The REST APIs provided within FMC cover the complete operations and management of the
devices under FMC, the deployed security policy, and configuration objects.

Enabling API/SDK Access to Firepower
Access to the FMC REST API is enabled through a setting within the FMC WebUI, as shown
in the following steps:

Step 1. Log in to the FMC WebUI using your username and credentials.

Step 2. Navigate through System > Configuration > REST API Preferences > Enable
REST API.

Step 3. Click the Enable REST API check box, as shown in Figure 16-10.

BOOK.indb 582 19/05/22 5:57 PM

mailto:"coworker@example.com"
https://github.com/webex/webex-ios-sdk/blob/master/README.md
https://github.com/webex/webex-ios-sdk/blob/master/README.md

ptg39201256

Chapter 16: Cisco Platforms 583

16

Figure 16-10 Enabling the REST API Within FMC

Step 4. Click Save. You should see a dialog box indicating that the settings were saved
successfully.

Firepower API Documentation
Firepower Management Center API documentation is available through the on-box API
explorer accessible through https://<FMC-IP>/api/api-explorer/, the main screen of which is
shown in Figure 16-11. Access to the API explorer is protected via the same username and
password credentials that are used to log in directly to the FMC WebUI. When you are logged
in, the authorization and refresh token are generated and placed into the variables within the
interactive API browser. This allows anyone accessing the API browser to execute live calls on
the FMC, see the API call (in cURL format) and responses to the call, and view sample pay-
loads. The OAS 3.0 spec (in JSON format) can also be downloaded from this portal.

Figure 16-11 Cisco FMC REST API Explorer

BOOK.indb 583 19/05/22 5:57 PM

https://<FMC-IP>/api/api-explorer/

ptg39201256

584 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

The DevNet team offers several labs focused on exploring and utilizing the FMC REST
API. There is also a reservable FMC Sandbox available for learning and testing the API. This
Sandbox provides a view into the FMC UI as well as the APIs, while ensuring security and
preventing the Sandbox from being sabotaged.

Another helpful resource is the Postman collection, which allows you to import all public
API resources into a common utility that is popular with software developers. The Postman
collection can be accessed and imported into your Postman environment at https://
www.postman.com/ciscodevnet/workspace/cisco-devnet-s-public-workspace/collection/
8697084-bf06287b-a7f3-4572-a4d5-84f1c652109a?ctx=documentation (or following the
QR code in the “References” section at the end of this chapter) and clicking the Cisco Secure
Firewall Management collection, as seen in Figure 16-12. You can then fork this collection
into your personal collection for editing and use.

Figure 16-12 Cisco FMC Postman Collection

Unlike many other Postman collections, the FMC collection does not leverage an environ-
ment to store all variables. Instead, the collection has variables defined within the collection
itself, illustrated in Figure 16-13. When you use the collection, you should set the environ-
ment in the upper-right corner of the Postman window to No Collection to ensure that over-
lapping variables are not used and overwritten in the requests. Any required values, such as
hostname, username, and password, need to be changed to reflect the target endpoint prior
to use.

BOOK.indb 584 19/05/22 5:57 PM

https://www.postman.com/ciscodevnet/workspace/cisco-devnet-s-public-workspace/collection/8697084-bf06287b-a7f3-4572-a4d5-84f1c652109a?ctx=documentation
https://www.postman.com/ciscodevnet/workspace/cisco-devnet-s-public-workspace/collection/8697084-bf06287b-a7f3-4572-a4d5-84f1c652109a?ctx=documentation
https://www.postman.com/ciscodevnet/workspace/cisco-devnet-s-public-workspace/collection/8697084-bf06287b-a7f3-4572-a4d5-84f1c652109a?ctx=documentation

ptg39201256

Chapter 16: Cisco Platforms 585

16

Figure 16-13 Cisco FMC Postman Collection Variables

By inspecting the collection, you can see that a variety of requests exist, from devices and
device groups, system information, device health, status of deployment tasks, and the FMC
object management of different objects within the FMC configuration universe. However,
prior to sending any request toward the FMC, the calling station must be authenticated.
You do this by using the request in the Authentication > Retrieve Authorization Token
within the collection. This request sends a Base64-encoded string of the username and pass-
word to the /api/fmc_platform/v1/auth/generatetoken/ URI. When inspecting the Tests tab
within the request, you can see that it stores the response headers X-auth-access-token and
X-auth-refresh-token to variables within the environment. For all other requests, the value of
X-auth-access-token is set as a header value; this serves as the authentication mechanism.

One other consideration when using the Postman collection is that the FMC does not
distinguish between sessions via the WebUI and those made via the API. If the same user
credentials are supplied to the API as a currently logged-in session to the WebUI, the FMC
disconnects the web user. Alternatively, if a session is currently using the API and a login
using the same credentials is attempted using the web, a dialog box asks if the active session
is to be ended.

The FMC does not have an official SDK, though some unofficial repositories that contain
SDK skeletons do exist. Although they are out of scope for this book, the API of the FMC
can be accessed directly using Python and the requests library. This method, however,
requires you to manually handle the authorization header to process any requests. First, you

BOOK.indb 585 19/05/22 5:57 PM

ptg39201256

586 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

should set up a Python virtual environment (despite the requirements for accessing the FMC
to be only the requests library). Example 16-8 demonstrates the steps required to create this
virtual environment.

Example 16-8 Creating a Python Virtual Environment to Access the FMC REST API

dev » mkdir devcor-fmc

dev » python -m venv venv

dev » source venv/bin/activate

[venv] dev » pip install requests

Collecting requests

 Using cached requests-2.26.0-py2.py3-none-any.whl (62 kB)

Collecting urllib3<1.27,>=1.21.1

 Using cached urllib3-1.26.7-py2.py3-none-any.whl (138 kB)

Collecting certifi>=2017.4.17

 Using cached certifi-2021.10.8-py2.py3-none-any.whl (149 kB)

Collecting idna<4,>=2.5

 Using cached idna-3.3-py3-none-any.whl (61 kB)

Collecting charset-normalizer~=2.0.0

 Using cached charset_normalizer-2.0.9-py3-none-any.whl (39 kB)

Installing collected packages: urllib3, idna, charset-normalizer, certifi, requests

Successfully installed certifi-2021.10.8 charset-normalizer-2.0.9 idna-3.3
requests-2.26.0 urllib3-1.26.7

After creating the virtual environment, you can create the code to gather the authorization
token for the FMC, as shown in Example 16-9.

Example 16-9 Python Code for FMC API Authorization

import argparse

import json

import requests

from requests.packages.urllib3.exceptions import InsecureRequestWarning

requests.packages.urllib3.disable_warnings(InsecureRequestWarning)

def get_token(fmcIP, path, user, password):

 try:

 r = requests.post(f"https://{fmcIP}/{path}", auth=(f"{user}",

 f"{password}"), verify=False)

 except requests.exceptions.HTTPError as e:

 raise SystemExit(e)

 except requests.exceptions.RequestException as e:

 raise SystemExit(e)

BOOK.indb 586 19/05/22 5:57 PM

ptg39201256

Chapter 16: Cisco Platforms 587

16

 required_headers = ('X-auth-access-token', 'X-auth-refresh-token',
'DOMAIN_UUID')

 result = {key: r.headers.get(key) for key in required_headers}

 return result

if __name__ == "__main__":

 parser = argparse.ArgumentParser(

 formatter_class=argparse.RawDescriptionHelpFormatter)

 parser.add_argument("user", type=str, help ="Valid FMC Username")

 parser.add_argument("password", type=str, help="Valid FMC Password")

 parser.add_argument("ip_address", type=str, help="IP of FMC")

 args = parser.parse_args()

 user = args.user

 password = args.password

 ip = args.ip_address

 token_path = "/api/fmc_platform/v1/auth/generatetoken"

 header = get_token(ip, token_path, user, password)

This code gathers the appropriate headers from the response and stores them as a header
variable for use in subsequent requests against the API. You need to use this header value
to gather additional information against the FMC API. You do so by appending the sample
code shown in Example 16-10 to the request in Example 16-9.

Example 16-10 Gathering FMC Version Using the REST API and Python

 version_path = f"/api/fmc_platform/v1/info/serverversion"

 try:

 r = requests.get(f"https://{ip}/{version_path}", headers=header,

 verify=False)

 except requests.exceptions.HTTPError as e:

 raise SystemExit(e)

 except requests.exceptions.RequestException as e:

 raise SystemExit(e)

 try:

 print(json.dumps(r.json(), indent=2))

 except Exception as e:

 raise SystemExit(e)

When this code is combined and run, output like that shown in Example 16-11 is received.
Keep in mind that the exact output will vary depending on the version of code running on
the FMC within your environment.

BOOK.indb 587 19/05/22 5:57 PM

ptg39201256

588 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Example 16-11 Output from Gathering the FMC Version Using the REST API

{

 "links": {

 "self": "https://198.19.10.120/api/fmc_platform/v1/info/
serverversion?offset=0&limit=1"

 },

 "items": [

 {

 "serverVersion": "6.7.0 (build 65)",

 "geoVersion": "2021-01-25-002",

 "vdbVersion": "build 340 (2020-12-16 00:13:46)",

 "sruVersion": "2021-01-20-001-vrt",

 "type": "ServerVersion"

 }

],

 "paging": {

 "offset": 0,

 "limit": 1,

 "count": 1,

 "pages": 1

 }

}

Using the header variable passed in as part of the GET request does work (otherwise, the
code shown in Example 16-11 would not return the FMC version). However, it is a generally
accepted practice to leverage the .session() method within the requests library to ensure a
persistent HTTP session instead of creating a new request with each new URI. This approach
works fine because the header value is passed in as part of the GET request to the system
version URI. However, when you use the requests module, you can leverage the header as
part of a persistent session. Doing so removes the need for sending the header with each
request, increasing performance, and removing the need to have as much duplicated code
within the script.

Example 16-12 Using the .session() Method to Query Multiple API Endpoints on the
FMC Using Python

import argparse

import json

import requests

from requests.packages.urllib3.exceptions import InsecureRequestWarning

requests.packages.urllib3.disable_warnings(InsecureRequestWarning)

def get_token(fmcIP, path, user, password):

 try:

BOOK.indb 588 19/05/22 5:57 PM

https://198.19.10.120/api/fmc_platform/v1/info/serverversion?offset=0&limit=1"
https://198.19.10.120/api/fmc_platform/v1/info/serverversion?offset=0&limit=1"

ptg39201256

Chapter 16: Cisco Platforms 589

16

 r = requests.post(f"https://{fmcIP}/{path}", auth=(f"{user}",

 f"{password}"), verify=False)

 except requests.exceptions.HTTPError as e:

 raise SystemExit(e)

 except requests.exceptions.RequestException as e:

 raise SystemExit(e)

 required_headers = ('X-auth-access-token', 'X-auth-refresh-token',
'DOMAIN_UUID')

 result = {key: r.headers.get(key) for key in required_headers}

 return result

if __name__ == "__main__":

 parser = argparse.ArgumentParser(

 formatter_class=argparse.RawDescriptionHelpFormatter)

 parser.add_argument("user", type=str, help ="Valid FMC Username")

 parser.add_argument("password", type=str, help="Valid FMC Password")

 parser.add_argument("ip_address", type=str, help="IP of FMC")

 args = parser.parse_args()

 user = args.user

 password = args.password

 ip = args.ip_address

 token_path = "/api/fmc_platform/v1/auth/generatetoken"

 header = get_token(ip, token_path, user, password)

 UUID = header["DOMAIN_UUID"]

 version_path = f"/api/fmc_platform/v1/info/serverversion"

 device_path = f"/api/fmc_config/v1/domain/{UUID}/devices/devicerecords?
expanded=True"

 sess = requests.Session()

 sess.headers.update({'X-auth-access-token': header["X-auth-access-token"],
'X-auth-refresh-token': header["X-auth-refresh-token"]})

 try:

 resp1 = sess.get(f"https://{ip}/{version_path}", verify=False)

 resp2 = sess.get(f"https://{ip}/{device_path}", verify=False)

 except requests.exceptions.HTTPError as e:

 raise SystemExit(e)

 except requests.exceptions.RequestException as e:

 raise SystemExit(e)

BOOK.indb 589 19/05/22 5:57 PM

ptg39201256

590 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

 try:

 print(json.dumps(resp1.json(), indent=2))

 print()

 print("*************")

 print()

 print(json.dumps(resp2.json(), indent=2))

 except Exception as e:

 raise SystemExit(e)

By adding (or changing) the highlighted sessions, you are able to define the headers to be
sent toward the API endpoint only once. These values are then used for all subsequent
requests calling that instance of the .session() method, without declaring explicit header
values each time. Multiple requests can use the same instance and store the response within
different variables to be accessed later. The results of the script look like Example 16-13
(depending on devices connected to the FMC).

Example 16-13 Responses from Querying the FMC Version and Managed Device APIs

{

 "links": {

 "self": "https://198.19.10.120/api/fmc_platform/v1/info/
serverversion?offset=0&limit=1"

 },

 "items": [

 {

 "serverVersion": "6.7.0 (build 65)",

 "geoVersion": "2021-01-25-002",

 "vdbVersion": "build 340 (2020-12-16 00:13:46)",

 "sruVersion": "2021-01-20-001-vrt",

 "type": "ServerVersion"

 }

],

 "paging": {

 "offset": 0,

 "limit": 1,

 "count": 1,

 "pages": 1

 }

}

{

 "links": {

 "self": "https://198.19.10.120/api/fmc_config/v1/domain/
e276abec-e0f2-11e3-8169-6d9ed49b625f/devices/devicerecords?o

ffset=0&limit=3&expanded=True"

 },

BOOK.indb 590 19/05/22 5:57 PM

https://198.19.10.120/api/fmc_platform/v1/info/serverversion?offset=0&limit=1"
https://198.19.10.120/api/fmc_platform/v1/info/serverversion?offset=0&limit=1"
https://198.19.10.120/api/fmc_config/v1/domain/e276abec-e0f2-11e3-8169-6d9ed49b625f/devices/devicerecords?o
https://198.19.10.120/api/fmc_config/v1/domain/e276abec-e0f2-11e3-8169-6d9ed49b625f/devices/devicerecords?o

ptg39201256

Chapter 16: Cisco Platforms 591

16

 "items": [

 {

 "id": "15c6c338-4f6e-11eb-845c-b89f5b28ebea",

 "type": "Device",

 "links": {

 "self": "https://198.19.10.120/api/fmc_config/v1/domain/
e276abec-e0f2-11e3-8169-6d9ed49b625f/devices/devicerecor

ds/15c6c338-4f6e-11eb-845c-b89f5b28ebea"

 },

 "name": "NGFWBR1",

 "description": "NOT SUPPORTED",

 "model": "Cisco Firepower Threat Defense for VMWare",

 "modelId": "A",

 "modelNumber": "75",

 "modelType": "Sensor",

 "healthStatus": "green",

 "sw_version": "6.7.0",

 "healthPolicy": {

 "id": "c253737c-2b73-11eb-960a-bf3ad063ddd4",

 "type": "HealthPolicy",

 "name": "Initial_Health_Policy 2020-11-20 21:02:54"

 },

 "accessPolicy": {

 "name": "Branch Access Control Policy",

 "id": "00505697-87b7-0ed3-0000-034359738978",

 "type": "AccessPolicy"

 },

 "advanced": {

 "enableOGS": false

 },

 "hostName": "ngfwbr1.dcloud.local",

 "license_caps": [

 "THREAT",

 "MALWARE",

 "URLFilter"

],

 "keepLocalEvents": false,

 "prohibitPacketTransfer": false,

 "ftdMode": "ROUTED",

 "metadata": {

 "readOnly": {

 "state": false

 },

BOOK.indb 591 19/05/22 5:57 PM

https://198.19.10.120/api/fmc_config/v1/domain/e276abec-e0f2-11e3-8169-6d9ed49b625f/devices/devicerecor
https://198.19.10.120/api/fmc_config/v1/domain/e276abec-e0f2-11e3-8169-6d9ed49b625f/devices/devicerecor

ptg39201256

592 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

 "inventoryData": {

 "cpuCores": "1 CPU (4 cores)",

 "cpuType": "CPU Pentium II 2700 MHz",

 "memoryInMB": "8192"

 },

 "deviceSerialNumber": "9A1V2FD3L7A",

 "domain": {

 "name": "Global",

 "id": "e276abec-e0f2-11e3-8169-6d9ed49b625f",

 "type": "Domain"

 },

 "isPartOfContainer": false,

 "isMultiInstance": false,

 "snortVersion": "2.9.17 (Build 200 - daq12)",

 "sruVersion": "2021-01-20-001-vrt",

 "vdbVersion": "Build 340 - 2020-12-16 00:13:46"

 }

 },

<...output omitted for brevity...>

For further exploration of the FMC API, Cisco DevNet provides several learning modules
dedicated to Firepower APIs, including Threat Defense, Device Manager, Management
Center, and others. You can find these modules at https://developer.cisco.com/learning/
modules?keywords=firepower.

Meraki
Cisco’s acquisition of Meraki in 2012 has proven to be popular with those desiring a cloud-
managed solution of software-defined WAN devices, switches, wireless access points,
security, and IoT solutions. Even with simplified management and monitoring, the Meraki
solutions have a robust set of APIs and SDKs that are appealing to companies looking to
extract even more functionality from their cloud-managed assets.

The APIs span the gamut of provisioning functions, monitoring and performance values, and
inventory whether your perspective is at an organization, network, or device level. The API
also provides an architecture that reflects product types: Appliance, Camera, Cellular Gate-
way, Switch, Wireless, Insight (traffic analytics), and Sm (Systems Manager, Mobile Device
Manager).

The APIs and Python SDK are useful for custom application development, guest Wi-Fi
insights, location services, and sensor management.

Enabling API/SDK Access to Meraki
To use the Meraki Dashboard API or Python SDK, you must first obtain an API key. This
secure credential is used in your Python scripts, Postman, REST API calls, or other program-
matic use accessing the Meraki cloud API gateway.

Step 1. Access your Meraki dashboard at http://dashboard.meraki.com.

BOOK.indb 592 19/05/22 5:57 PM

https://developer.cisco.com/learning/modules?keywords=firepower
https://developer.cisco.com/learning/modules?keywords=firepower
http://dashboard.meraki.com

ptg39201256

Chapter 16: Cisco Platforms 593

16

Step 2. Navigate through Organization > Settings down to the Dashboard API access
section.

Step 3. Ensure the Enable Access to the Cisco Meraki Dashboard API option is
selected, as shown in Figure 16-14.

Figure 16-14 Meraki Dashboard API Access Option

Step 4. Click the Profile hyperlink to navigate to your personal profile portal. Scroll
down to the API Access section, as shown in Figure 16-15.

Figure 16-15 Meraki API Key Settings

If your portal shows an existing key, search your secure password repository
for a key ending in the same last four digits as shown. In this example, you
would search for keys ending in 1234.

If you have no existing key, or if you’ve forgotten your prior key, then it is sim-
ple to generate a new key by clicking the Generate New API Key button.

Step 5. If you generated a new key, remember to store it in your secure password repos-
itory. If you do a lot of development with API keys, it’s inefficient to regener-
ate keys and impact several applications because of unrecorded credentials, so
develop a discipline of secure credential storage.

Meraki API Documentation
The Meraki Dashboard API is officially documented at https://developer.cisco.com/meraki/
api-v1/.

The DevNet team offers many learning labs that can familiarize you with the API. There is
also a DevNet Sandbox Lab for accessing an always-on environment that is useful for train-
ing when you don’t have Meraki equipment or prefer not to use your environment.

Another helpful resource is the Postman collection, which allows you to import all public
API resources into a common utility that is popular with software developers. The Postman
collection can be accessed and imported into your Postman environment at https://
www.postman.com/meraki-api?tab=collections.

At this time, v1.15 is the latest to download and import, as shown in Figure 16-16.

BOOK.indb 593 19/05/22 5:57 PM

https://developer.cisco.com/meraki/api-v1/
https://developer.cisco.com/meraki/api-v1/
https://www.postman.com/meraki-api?tab=collections
https://www.postman.com/meraki-api?tab=collections

ptg39201256

594 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Figure 16-16 Postman Application with Meraki Dashboard API

Perusing the Postman collection hierarchy, you can see the following categories:

■ General: Involving organizational, network, and device-level resources

■ Products: Involving product-specific resources, such as appliances, cameras, and cel-
lular gateways

Within each category, further Configure and Monitor subdivisions allow for specific func-
tions related to provisioning and management.

Meraki SDK Documentation
Meraki’s Python SDK is an easy-to-use solution that relieves you of routine coding tasks
regarding API authentication, data encoding, pagination, rate limiting, and error handling.
Understanding the API resources is important and useful; it is simplified in using tools like
Postman, but you will find that the SDK provides even more benefits. Because the documen-
tation is extensive and accessible, SDK use is encouraged.

You need to set up your Python environment to a minimum of Python v3.7 (released in the
summer of 2018). As of Fall 2021, Python 3.10 is the latest, so for the love of all that is good
and super(), use a recent release! Also, consider using a virtual environment (venv) when set-
ting up your project.

You can easily obtain the Meraki SDK through the Python Package Index (PyPi) project at
https://pypi.org/project/meraki/.

A quick method would be to use the steps shown in Example 16-14.

BOOK.indb 594 19/05/22 5:57 PM

https://pypi.org/project/meraki/

ptg39201256

Chapter 16: Cisco Platforms 595

16

Example 16-14 Creating a Meraki Project from the CLI

myserver Python % mkdir MyProject

myserver Python % cd MyProject

myserver MyProject % python3 -m venv .venv

myserver MyProject % source .venv/bin/activate

(.venv) myserver MyProject % pip install meraki

Collecting meraki

 Downloading meraki-1.15.0-py3-none-any.whl (416 kB)

 |████████████████████████████████| 416 kB 573 kB/s

Collecting requests

 Using cached requests-2.26.0-py2.py3-none-any.whl (62 kB)

Collecting aiohttp

 Downloading aiohttp-3.8.1-cp39-cp39-macosx_10_9_x86_64.whl (574 kB)

 |████████████████████████████████| 574 kB 34.3 MB/s

Collecting attrs>=17.3.0

 Downloading attrs-21.2.0-py2.py3-none-any.whl (53 kB)

 |████████████████████████████████| 53 kB 7.1 MB/s

Collecting charset-normalizer<3.0,>=2.0

 Downloading charset_normalizer-2.0.8-py3-none-any.whl (39 kB)

Collecting yarl<2.0,>=1.0

 Downloading yarl-1.7.2-cp39-cp39-macosx_10_9_x86_64.whl (121 kB)

 |████████████████████████████████| 121 kB 21.3 MB/s

Collecting multidict<7.0,>=4.5

 Downloading multidict-5.2.0-cp39-cp39-macosx_10_9_x86_64.whl (45 kB)

 |████████████████████████████████| 45 kB 11.8 MB/s

Collecting async-timeout<5.0,>=4.0.0a3

 Downloading async_timeout-4.0.1-py3-none-any.whl (5.7 kB)

Collecting frozenlist>=1.1.1

 Downloading frozenlist-1.2.0-cp39-cp39-macosx_10_9_x86_64.whl (81 kB)

 |████████████████████████████████| 81 kB 26.5 MB/s

Collecting aiosignal>=1.1.2

 Downloading aiosignal-1.2.0-py3-none-any.whl (8.2 kB)

Collecting typing-extensions>=3.6.5

 Downloading typing_extensions-4.0.0-py3-none-any.whl (22 kB)

Collecting idna>=2.0

 Downloading idna-3.3-py3-none-any.whl (61 kB)

 |████████████████████████████████| 61 kB 14.5 MB/s

Collecting urllib3<1.27,>=1.21.1

 Downloading urllib3-1.26.7-py2.py3-none-any.whl (138 kB)

 |████████████████████████████████| 138 kB 25.9 MB/s

Collecting certifi>=2017.4.17

 Downloading certifi-2021.10.8-py2.py3-none-any.whl (149 kB)

 |████████████████████████████████| 149 kB 2.1 MB/s

BOOK.indb 595 19/05/22 5:57 PM

ptg39201256

596 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Installing collected packages: typing-extensions, multidict, idna, frozenlist, yarl,
urllib3, charset-normalizer, certifi, attrs, async-timeout, aiosignal, requests,
aiohttp, meraki

Successfully installed aiohttp-3.8.1 aiosignal-1.2.0 async-timeout-4.0.1 attrs-
21.2.0 certifi-2021.10.8 charset-normalizer-2.0.8 frozenlist-1.2.0 idna-3.3 mer-
aki-1.15.0 multidict-5.2.0 requests-2.26.0 typing-extensions-4.0.0 urllib3-1.26.7
yarl-1.7.2

(.venv) myserver MyProject %

Now the environment is ready for the follow-on SDK examples. Note the authorization
methods available in the next section.

Meraki Authorization
The Meraki Dashboard API requires a REST request header parameter, X-Cisco-Meraki-
API-Key, for authorization in each request.

The JSON representation of this parameter is

{

 "X-Cisco-Meraki-API-Key": <MERAKI_DASHBOARD_API_KEY>

}

If you use the curl command-line tool, it would appear as

curl https://api.meraki.com/api/v1/<request_resource> \

 -H 'X-Cisco-Meraki-API-Key: <MERAKI_DASHBOARD_API_KEY>'

The Python SDK method, without follow-on processing, would appear as

import meraki

Use the shell environment variable method for more secure

implementation as a leading practice, e.g.

$ export MERAKI_DASHBOARD_API_KEY=****1234

Dashboard = meraki.DashboardAPI()

The newer and current Dashboard API v1 supports bearer authentication using the authori-
zation header parameter. This is generally preferred over using bespoke header parameters.

The JSON representation of this parameter is

BOOK.indb 596 19/05/22 5:57 PM

https://api.meraki.com/api/v1/

ptg39201256

Chapter 16: Cisco Platforms 597

16

{

 "Authorization": "Bearer <MERAKI_DASHBOARD_API_KEY>"

}

If you use the curl command-line tool, it would appear as

curl https://api.meraki.com/api/v1/<request_resource> \

 -L -H 'Authorization: Bearer <MERAKI_DASHBOARD_API_KEY>'

The Python SDK method handles authorization without change, assuming the shell environ-
ment variable is configured correctly, so the previous example is still applicable.

When using the Postman API platform and after having imported the Meraki collection, as
described previously, you see the overall collection has a default predefined authentication
method, as shown in Figure 16-17.

Figure 16-17 Configuring Meraki Authorization Settings in Postman

In the upper-right corner, you need to ensure you create a Meraki environment that has a
key-value pairing of apiKey with your personal API key. It is also suggested you create a
key-value pairing of organizationId with whatever numeric string represents your specific
organization ID of interest. See Figure 16-18, for example.

BOOK.indb 597 19/05/22 5:57 PM

https://api.meraki.com/api/v1/<

ptg39201256

598 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Figure 16-18 Creating Meraki Environment Variables in Postman

If you are unsure of your organization ID, one of the first API endpoints to poll would be

GET https://api.meraki.com/api/v1/organizations

This poll should result in output like that shown in Figure 16-19 using Postman.

Figure 16-19 Using Postman to Poll Meraki Organizations

BOOK.indb 598 19/05/22 5:57 PM

https://api.meraki.com/api/v1/organizations

ptg39201256

Chapter 16: Cisco Platforms 599

16

From this output, you can see the organization name DevNet Sandbox has the ID 549236.
Knowing and retaining your specific organization ID help make Meraki polling more effi-
cient and specific.

The following simple script extracts Meraki devices in a cloud-managed environment. You
start by maintaining the Meraki API key in a shell environment variable. This is a more
secure method over storing it in a Python script variable.

export MERAKI_DASHBOARD_API_KEY=1234567890…

Then you create a new Python script in a virtual environment:

vi GetMerakiDevices.py

Next, you create the contents of the file as shown in Example 16-15.

Example 16-15 Python Script to Extract Meraki Devices in the Organization

import meraki

import pprint

pp = pprint.PrettyPrinter(indent=4)

organization_id = '549236'

dashboard = meraki.DashboardAPI()

my_devices = dashboard.organizations.getOrganizationDevices(organization_id,
total_pages='all')

pp.pprint(my_devices)

Executing the script provides a structured output view of devices, as shown in Example 16-16.

Example 16-16 Execution and Output of GetMerakiDevices.py

(.venv) myserver MyProject % python GetMerakiDevices.py

[{ 'address': '',

 'configurationUpdatedAt': '2021-10-26T04:49:57Z',

 'firmware': 'Not running configured version',

 'lanIp': None,

 'lat': 37.4180951010362,

 'lng': -122.098531723022,

 'mac': 'e0:55:3d:10:42:8a',

 'model': 'MR84',

 'name': '',

 'networkId': 'L_6468294……..',

 'notes': '',

 'productType': 'wireless',

 'serial': 'Q2EK-….-….',

 'tags': [],

 'url': 'https://n1**.meraki.com/DNSMB3-jxxxxxxat/n/hW2vCavc/manage/nodes/
new_list/2466567013****'},

BOOK.indb 599 19/05/22 5:57 PM

https://n1**.meraki.com/DNSMB3-jxxxxxxat/n/hW2vCavc/manage/nodes/new_list/2466567013****'}
https://n1**.meraki.com/DNSMB3-jxxxxxxat/n/hW2vCavc/manage/nodes/new_list/2466567013****'}

ptg39201256

600 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

 { 'address': '',

 'configurationUpdatedAt': '2021-11-29T17:57:48Z',

 'firmware': 'Not running configured version',

 'lanIp': None,

 'lat': 37.****951010362,

 'lng': -122.****31723022,

 'mac': 'e0:55:3d:10:**:**',

 'model': 'MR84',

 'name': '',

 'networkId': 'L_64682949648*****',

 'notes': '',

 'productType': 'wireless',

 'serial': 'Q2EK-****-****',

 'tags': [],

 'url': 'https://n149.meraki.com/DNSMB1-wireless/n/XhipOdvc/manage/nodes/
new_list/246656701****'},

 { 'address': '',

 'configurationUpdatedAt': '2021-11-28T16:21:51Z',

 'firmware': 'Not running configured version',

 'lanIp': None,

 'lat': 34.****4579899,

 'lng': -117.****867527,

 'mac': '34:56:fe:a2:**:**,

 'model': 'MV12WE',

 'name': '',

 'networkId': 'L_64682949648*****',

 'notes': '',

 'productType': 'camera',

 'serial': 'Q2FV-****-****',

 'tags': [],

 'url': 'https://n149.meraki.com/DNENT1-vxxxogmai/n/o4tztdvc/manage/nodes/
new_list/575482438****'

/*** Abbreviated output ***/

]

(.venv) myserver MyProject %

For other SDK (and API) insights, you can find the interactive Meraki API documentation at
https://developer.cisco.com/meraki/api-v1/#!get-device.

It serves as a great resource for planning your Python development strategy on Meraki
equipment.

If you’re looking to get deep into the guts of the SDK, the project is maintained on GitHub
at https://github.com/meraki/dashboard-api-python.

Specifically, this directory shows a lot of detail on the API methods: https://github.com/
meraki/dashboard-api-python/tree/master/meraki/api.

BOOK.indb 600 19/05/22 5:57 PM

https://n149.meraki.com/DNSMB1-wireless/n/XhipOdvc/manage/nodes/new_list/246656701****'}
https://n149.meraki.com/DNSMB1-wireless/n/XhipOdvc/manage/nodes/new_list/246656701****'}
https://n149.meraki.com/DNENT1-vxxxogmai/n/o4tztdvc/manage/nodes/new_list/575482438****'/***
https://n149.meraki.com/DNENT1-vxxxogmai/n/o4tztdvc/manage/nodes/new_list/575482438****'/***
https://n149.meraki.com/DNENT1-vxxxogmai/n/o4tztdvc/manage/nodes/new_list/575482438****'/***
https://developer.cisco.com/meraki/api-v1/#!get-device
https://github.com/meraki/dashboard-api-python
https://github.com/meraki/dashboard-api-python/tree/master/meraki/api
https://github.com/meraki/dashboard-api-python/tree/master/meraki/api

ptg39201256

Chapter 16: Cisco Platforms 601

16

Intersight
Intersight is the Cisco cloud-enabled management platform for on-premises compute. Rather
than relying on local connectivity to the server management portal (UCSM or CIMC), Inter-
sight enables remote, API-enabled capabilities via secured connections between devices
and the Intersight cloud. Although Intersight provides a powerful management platform for
server infrastructure, enabling ease of logging, proactive TAC/RMA cases, and hardware
compatibility lists based on the OS/hypervisor running on the server, it also allows adminis-
trators and operators to utilize purpose-built applications powered by the cloud to manage
and operate their server infrastructure in a faster, orchestrated manner.

Because Intersight is API-driven, you can use a robust set of REST APIs in lieu of the
graphical web interface. You can use these APIs to interact with not only the Cisco hard-
ware controlled by Intersight but also the management of Kubernetes clusters, workflow
orchestration, and third-party hardware platforms connected to Intersight. Additionally, the
Intersight APIs are designed using the Open API Specification version 3 (OASv3) standard,
enabling them to be easily translated into SDKs for various languages, as well as modules and
providers for third-party automation and orchestration tools, such as Ansible and Terraform.

Enabling API Access to Intersight
API access to Intersight is not enabled by default; it must be enabled on a per-user basis.
Additionally, if a user manages multiple accounts, access must be enabled for that user per
account because an API key pair is scope-limited to a single account. The process to enable
API access generates an API key, as well as an API secret, both of which are required to
access the Intersight API.

Step 1. Log in to the Intersight portal at http://www.intersight.com. Login requires an
account if you do not already have one.

Step 2. In the upper-right corner of the Intersight UI, click the user and then the
account, as highlighted in Figure 16-20.

Figure 16-20 Accessing Intersight User Account

BOOK.indb 601 19/05/22 5:57 PM

http://www.intersight.com

ptg39201256

602 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Step 3. Click the API Keys menu item toward the bottom of the account management
window. This brings up the API key management screen, where you can create a
new API key by clicking the Generate API Key button.

Step 4. Within the resulting dialog box, you provide a name for the API key pair, as
well as which version of key you want to generate. At the time of this writing,
the OASv2 schema will suffice for most users, though you can create both key
types within the account (see Figure 16-22). The “legacy” version uses RSA pri-
vate keys, whereas the newer version uses elliptical curve private keys.
Figure 16-21 shows the generation of the API keys, and Figure 16-22 shows all
generated API keys for that user account.

Figure 16-21 Generating Intersight API Keys

Figure 16-22 Viewing Generated Intersight API Keys for a User Account

If a previous API key and secret have been generated, there is no way to recover
them if they are not documented. In this instance, a new API key and secret
need to be created prior to using the API or SDK.

Step 5. If you generated a new key, remember to store it in your secure password reposi-
tory. If you do a lot of development with API keys, it's inefficient to regener-
ate keys and impact several applications because of unrecorded credentials, so
develop a discipline of secure credential storage. Ensure that both the API key and

BOOK.indb 602 19/05/22 5:57 PM

ptg39201256

Chapter 16: Cisco Platforms 603

16

secret are kept and labeled together because API keys and secrets are generated in
pairs and cannot be mismatched with other generated key/secret pairs.

Intersight API Documentation
All documentation related to Intersight programmability is documented at https://intersight.
com/apidocs/introduction/overview/. The documentation includes the behavior of the APIs,
a canonical reference guide for all exposed API endpoints, and a download page for the OAS
documents (in various formats) as well as SDKs, Ansible modules, and Terraform providers.

The DevNet team offers several different Learning Labs that are focused around the learn-
ing and use of the Intersight API and its integrations. There are also several Sandbox Labs to
complement the Learning Labs. These Sandboxes provide either a virtualized environment
that can be claimed within Intersight (to test the control plane and APIs only) or a physical
hardware domain that can support virtualized and containerized workloads.

Another helpful resource is the Postman collection, allowing you to import all public API
resources into a common utility that is popular with software developers. The Postman col-
lection can be accessed and imported into your Postman environment at https://documenter.
getpostman.com/view/30210/SVfWN6Yc (or following the QR code in the “References” sec-
tion at the end of this chapter).

When you click the Run in Postman button at the upper left of the window, a copy of this
collection is added to your local instance of Postman (either installed on your local machine
or using the cloud version).

To use this collection, you should create an environment that includes api-key-id with a value
set to the created API key from the previous steps, as well as a secret-key value with the full
output of the generated secret key (including the begin and end RSA lines with dashes). An
example of these values filled into the Postman collection is shown in Figure 16-23.

Figure 16-23 Adding api-key and secret-key Values to the Postman Collection for Intersight

Intersight must have devices added in order for you to manage them. If you’re reserving the
DevNet Sandbox for Intersight, which contains a pair of UCS Platform Emulators (UCSPEs),
these devices should be claimed in order to receive data into Intersight, which requires the
device’s DeviceID and claim code. You can find them within the UCSPE by clicking the
Admin menu on the left side of the screen and then Device Connector at the bottom of the
submenu screen, as shown in Figure 16-24. The time-sensitive claim code is refreshed every
five minutes.

BOOK.indb 603 19/05/22 5:57 PM

https://intersight.com/apidocs/introduction/overview/
https://intersight.com/apidocs/introduction/overview/
https://documenter.getpostman.com/view/30210/SVfWN6Yc
https://documenter.getpostman.com/view/30210/SVfWN6Yc

ptg39201256

604 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Figure 16-24 UCS Manager Intersight Claim Code

You can claim the device with the Postman collection, using the Device Claim request under
the Device Claiming folder. After you add the DeviceID and claim code to the body of the
request, you can send them to Intersight to initiate the device claim process. Inserting the
DeviceID into the Serial Number field and the claim code in the Security Token field of the
request body yields a payload similar to Figure 16-25. The claim can also be verified in Inter-
sight under Targets.

Figure 16-25 Claiming UCS Manager Instances Using the Postman Collection for Intersight

BOOK.indb 604 19/05/22 5:57 PM

ptg39201256

Chapter 16: Cisco Platforms 605

16

The rest of the Postman collection is focused on various tasks, including activities around
server profiles, vMedia policies, boot policies, and NTP policies. The collection is not
exhaustive, especially because the capabilities within Intersight have been under constant
development and some features require additional licensing, but it should suffice when you’re
getting familiar with the REST API of the platform.

Intersight SDK Documentation
The Intersight SDK provides a level of both abstraction and completeness in interacting with
Intersight, without the tedium of interacting directly with API endpoints. The SDK also
handles the transition of the v2 API key method to v3 seamlessly because the appropriate
methods have been coded directly into the SDK. The SDK is written to support Python,
but PowerShell commandlets, Ansible modules, and Terraform providers all exist to manage
Intersight through any workflow. Through the API Documentation page, you are able to
download the JSON and YAML API schemas to create SDKs in languages outside of Python.

Using a recent version of Python (3.9.7 in this example), you can set up an environment to
support the Intersight SDK. If you use a Python virtual environment, the process would look
like the code in Example 16-17.

Example 16-17 Setup for Python Virtual Environment for Intersight

devcor-intersight » python -m venv venv

devcor-intersight » source venv/bin/activate

[venv] devcor-intersight » pip install intersight

Collecting intersight

 Downloading intersight-1.0.9.4903.tar.gz (12.1 MB)

 |████████████████████████████████| 12.1 MB 10.0 MB/s

Collecting urllib3>=1.25.3

 Using cached urllib3-1.26.7-py2.py3-none-any.whl (138 kB)

Collecting python-dateutil

 Downloading python_dateutil-2.8.2-py2.py3-none-any.whl (247 kB)

 |████████████████████████████████| 247 kB 10.6 MB/s

Collecting pem>=19.3.0

 Downloading pem-21.2.0-py2.py3-none-any.whl (8.8 kB)

Collecting pycryptodome>=3.9.0

 Downloading pycryptodome-3.11.0-cp35-abi3-macosx_10_9_x86_64.whl (1.5 MB)

 |████████████████████████████████| 1.5 MB 1.9 MB/s

Collecting six>=1.5

 Using cached six-1.16.0-py2.py3-none-any.whl (11 kB)

Using legacy 'setup.py install' for intersight, since package 'wheel' is not
installed.

Installing collected packages: six, urllib3, python-dateutil, pycryptodome, pem,
intersight

 Running setup.py install for intersight ... done

Successfully installed intersight-1.0.9.4903 pem-21.2.0 pycryptodome-3.11.0 python-
dateutil-2.8.2 six-1.16.0 urllib3-1.26.7

BOOK.indb 605 19/05/22 5:57 PM

ptg39201256

606 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Intersight Authorization
Authorization requirements using the Python SDK are like those required for using the
Postman collection: everything is generated using the API and secret keys. However, authen-
ticating directly using the key and secret is not possible (as evidenced by the Pre-request
Script within the Intersight Postman collection). Plus, both the v2 and v3 API key methods
can be used to authenticate to the Intersight cloud. The Intersight SDK repository within
the CiscoDevNet organization (https://github.com/ciscodevnet/intersight-python) has a
sample script to authenticate to the Intersight API. This script can be added to Python code
as a function or created as a standalone Python file that can be imported into a subsequent
Python script. Example 16-18 provides sample Intersight authorization code that can handle
both types of API keys generated from the Intersight portal.

Example 16-18 Intersight Authorization Python Code

import intersight

import re

def get_api_client(api_key_id, api_secret_file, endpoint="https://intersight.com"):

 with open(api_secret_file, 'r') as f:

 api_key = f.read()

 if re.search('BEGIN RSA PRIVATE KEY', api_key):

 # API Key v2 format

 signing_algorithm = intersight.signing.ALGORITHM_RSASSA_PKCS1v15

 signing_scheme = intersight.signing.SCHEME_RSA_SHA256

 hash_algorithm = intersight.signing.HASH_SHA256

 elif re.search('BEGIN EC PRIVATE KEY', api_key):

 # API Key v3 format

 signing_algorithm = intersight.signing.
ALGORITHM_ECDSA_MODE_DETERMINISTIC_RFC6979

 signing_scheme = intersight.signing.SCHEME_HS2019

 hash_algorithm = intersight.signing.HASH_SHA256

 configuration = intersight.Configuration(

 host=endpoint,

 signing_info=intersight.signing.HttpSigningConfiguration(

 key_id=api_key_id,

 private_key_path=api_secret_file,

 signing_scheme=signing_scheme,

 signing_algorithm=signing_algorithm,

 hash_algorithm=hash_algorithm,

 signed_headers=[

BOOK.indb 606 19/05/22 5:57 PM

https://github.com/ciscodevnet/intersight-python
https://intersight.com"

ptg39201256

Chapter 16: Cisco Platforms 607

16

 intersight.signing.HEADER_REQUEST_TARGET,

 intersight.signing.HEADER_HOST,

 intersight.signing.HEADER_DATE,

 intersight.signing.HEADER_DIGEST,

]

)

)

 return intersight.ApiClient(configuration)

This code handles the computations that occurred in the Pre-request Script within the Post-
man collection, showing the value of an SDK because the SDK can abstract API complexity
away from a user, allowing the user to focus on the end result of the code. Adding additional
code to apply or retrieve configuration becomes somewhat trivial, given how the SDK is
organized. Referencing the API documentation on intersight.com and the samples within the
GitHub repository, you can make some assumptions within the code to achieve the desired
outcomes. Assuming that you want to receive all alarms within Intersight, you can start by
looking at the API docs. You can see that this falls inside the cond/Alarms API path, shown
in Figure 16-26.

Figure 16-26 Finding the API Path to Query Alarms in Intersight

Looking at the samples within the GitHub repository (based on retrieving the boot policy),
you can assume that you need to leverage the CondApi() method to get a list of alarms. You
can glean the exact Pythonic path by analyzing the specific code within the module, or by
importing the module into an API and viewing the available methods.

When you put this all together, a code sample to gather the alarms can be similar to that
shown in Example 16-19. This code assumes that you have set the Intersight API key as an
environment variable within your system.

BOOK.indb 607 19/05/22 5:57 PM

http://intersight.com

ptg39201256

608 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Example 16-19 Gathering Intersight Alarm Status Using the Intersight Python SDK

import intersight

import os

import re

from intersight.api import cond_api

from pprint import pprint

def get_api_client(api_key_id, api_secret_file, endpoint="https://intersight.com"):

 with open(api_secret_file, 'r') as f:

 api_key = f.read()

 if re.search('BEGIN RSA PRIVATE KEY', api_key):

 # API Key v2 format

 signing_algorithm = intersight.signing.ALGORITHM_RSASSA_PKCS1v15

 signing_scheme = intersight.signing.SCHEME_RSA_SHA256

 hash_algorithm = intersight.signing.HASH_SHA256

 elif re.search('BEGIN EC PRIVATE KEY', api_key):

 # API Key v3 format

 signing_algorithm = intersight.signing.
ALGORITHM_ECDSA_MODE_DETERMINISTIC_RFC6979

 signing_scheme = intersight.signing.SCHEME_HS2019

 hash_algorithm = intersight.signing.HASH_SHA256

 configuration = intersight.Configuration(

 host=endpoint,

 signing_info=intersight.signing.HttpSigningConfiguration(

 key_id=api_key_id,

 private_key_path=api_secret_file,

 signing_scheme=signing_scheme,

 signing_algorithm=signing_algorithm,

 hash_algorithm=hash_algorithm,

 signed_headers=[

 intersight.signing.HEADER_REQUEST_TARGET,

 intersight.signing.HEADER_HOST,

 intersight.signing.HEADER_DATE,

 intersight.signing.HEADER_DIGEST,

]

)

)

 return intersight.ApiClient(configuration)

api_key = os.environ.get('INTERSIGHT_KEY')

BOOK.indb 608 19/05/22 5:57 PM

https://intersight.com"

ptg39201256

Chapter 16: Cisco Platforms 609

16

api_key_file = "/Users/qsnyder/Downloads/SecretKey.txt.old.txt"

api_client = get_api_client(api_key, api_key_file)

api_instance = cond_api.CondApi(api_client)

try:

 api_response = api_instance.get_cond_alarm_list()

 pprint(api_response)

except intersight.ApiException as e:

 print("Exception calling alarm list: %s\n" % e)

The output of this code is lengthy and includes a lot of superfluous information regarding
the alarms seen by Intersight that may or may not be appropriate for the given application.
Looking through the examples within the GitHub README, you can see that selectors
are supported, allowing you to parse the resulting query without needing to run through
the machinations of JSON parsing using keys and values. By changing the code to include
query selectors, you can filter the information returned as part of the response, as shown in
Example 16-20.

Example 16-20 Using Query Selectors Within the Intersight SDK

import intersight

import re

from intersight.api import cond_api

from pprint import pprint

def get_api_client(api_key_id, api_secret_file, endpoint="https://intersight.com"):

 with open(api_secret_file, 'r') as f:

 api_key = f.read()

 if re.search('BEGIN RSA PRIVATE KEY', api_key):

 # API Key v2 format

 signing_algorithm = intersight.signing.ALGORITHM_RSASSA_PKCS1v15

 signing_scheme = intersight.signing.SCHEME_RSA_SHA256

 hash_algorithm = intersight.signing.HASH_SHA256

 elif re.search('BEGIN EC PRIVATE KEY', api_key):

 # API Key v3 format

 signing_algorithm = intersight.signing.
ALGORITHM_ECDSA_MODE_DETERMINISTIC_RFC6979

 signing_scheme = intersight.signing.SCHEME_HS2019

 hash_algorithm = intersight.signing.HASH_SHA256

BOOK.indb 609 19/05/22 5:57 PM

https://intersight.com"

ptg39201256

610 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

 configuration = intersight.Configuration(

 host=endpoint,

 signing_info=intersight.signing.HttpSigningConfiguration(

 key_id=api_key_id,

 private_key_path=api_secret_file,

 signing_scheme=signing_scheme,

 signing_algorithm=signing_algorithm,

 hash_algorithm=hash_algorithm,

 signed_headers=[

 intersight.signing.HEADER_REQUEST_TARGET,

 intersight.signing.HEADER_HOST,

 intersight.signing.HEADER_DATE,

 intersight.signing.HEADER_DIGEST,

]

)

)

 return intersight.ApiClient(configuration)

api_key = "5c1c24e273766a3634d3f8d0/5c1c242e73766a3634d3f02e/61a927537564612d33b9d
2be"

api_key_file = "/Users/qsnyder/Downloads/SecretKey.txt.old.txt"

api_client = get_api_client(api_key, api_key_file)

api_instance = cond_api.CondApi(api_client)

query_selector="CreationTime,Description"

try:

 api_response = api_instance.get_cond_alarm_list(select=query_selector)

 pprint(api_response)

except intersight.ApiException as e:

 print("Exception calling alarm list: %s\n" % e)

The results are filtered to include only the creation time and the description of the alarm.
This data is still incredibly raw, as you can see in Example 16-21, and can benefit from for-
matting the date, for instance, but it illustrates the query selection available within the SDK.

Example 16-21 Raw Returned Response from the Use of Query Selectors

{'class_id': 'cond.Alarm',

'creation_time': datetime.datetime(2021, 12, 2, 17, 21, 8, 115000, tzinfo=tzutc()),

'description': 'Connection to Adapter 1 eth interface 1 in '

 'server 4 missing',

'moid': '61a9a2a265696e2d3216210a',

'object_type': 'cond.Alarm'},

BOOK.indb 610 19/05/22 5:57 PM

ptg39201256

Chapter 16: Cisco Platforms 611

16

Further examples using the Intersight SDK are available at https://github.com/CiscoDevNet/
intersight-python-utils. Although the structure of the Python code differs (creating the
authentication using credentials.py and formatting the time using helpers.py), the classes
and methods are the same.

Additionally, it is possible to interact with Intersight outside of the SDK, using the Ansible
modules and Terraform providers. They could be useful if you’re automating changes to the
Intersight-managed infrastructure using Infrastructure-as-Code (IaC) principles. You can
find links to these specific pieces on the Intersight API docs page or at https://
galaxy.ansible.com/cisco/intersight (Ansible) or https://registry.terraform.io/providers/
CiscoDevNet/intersight/latest (Terraform). Although neither one provides as complete cov-
erage as the SDK, they both cover a majority of the use cases and can provide a higher level
of abstraction than the SDK, allowing infrastructure developers to focus on the outcome
more than the code.

UCS Manager
Cisco Unified Computing System Manager (UCS Manager or UCSM) provides a single point
of management for all UCS form factors, including blades and rack-mount servers. By con-
necting the devices to the UCS Fabric Interconnects, you can centralize device profiles, net-
work configuration, and systems management through a single plane. UCSM configuration
is provided through a well-documented model, known as the Management Information Tree
(MIT). This model exposes all configuration objects available within the UCSM UI through
API endpoints.

While the UI and capabilities have been expanded since its initial release in 2009, UCSM’s
APIs were designed during a time in which “unspoken standards” hadn’t been fully decided,
so if you have used OAS-compliant APIs, using UCSM may feel a bit clunky because the
data returned is only available via XML. However, a fully documented API explorer tool,
called Visore, is included on each UCSM instance. Additionally, several different tools
available to interact with the UCSM API don’t require complex parsing of XML, but sim-
ply knowledge of Python or PowerShell. Ansible modules are also available for UCSM via
Ansible Galaxy.

Enabling API Access to UCS Manager
API access to the UCS Manager is enabled by default, with no option within the UI to dis-
able the access.

UCS Manager API Documentation
UCS Manager has several different locations for referencing API documentation. You can
view online references without access to a UCSM platform (or platform emulator) directly on
Cisco’s website via https://www.cisco.com/c/en/us/td/docs/unified_computing/ucs/sw/api/
b_ucs_api_book.html. This reference contains background and sample information on using
the API, including the object model reference, filters, sample XML payloads, and descrip-
tions of which classes are exposed via API. While not interactive, this resource serves as a
canonical reference for the API endpoints within the platform.

The second resource available for the API reference exists within the UCSM itself. By access-
ing the Visore API browser at http://<UCSM-IP>/visore.html, you open an interactive tool
that allows you to navigate and view the UCS Management Information Tree, which is the

BOOK.indb 611 19/05/22 5:57 PM

https://github.com/CiscoDevNet/intersight-python-utils
https://github.com/CiscoDevNet/intersight-python-utils
https://galaxy.ansible.com/cisco/intersight
https://galaxy.ansible.com/cisco/intersight
https://registry.terraform.io/providers/CiscoDevNet/intersight/latest
https://registry.terraform.io/providers/CiscoDevNet/intersight/latest
https://www.cisco.com/c/en/us/td/docs/unified_computing/ucs/sw/api/b_ucs_api_book.html
https://www.cisco.com/c/en/us/td/docs/unified_computing/ucs/sw/api/b_ucs_api_book.html
http://<UCSM-IP>/visore.html

ptg39201256

612 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

model upon which all UCS interactions (via API or UI) are built. Figure 16-27 shows the
Visore landing page when you first access the tool.

Figure 16-27 UCSM Visore Landing Page

While the full MIT may take some time to understand, Visore can help with the relationship
between parent and child managed objects (MOs). If you search for topSystem in the search
bar at the top of the Visore page, you are taken to a new page with a single entry on it—the
topSystem class—which is the top-level object for all UCS devices within the UCSM domain
(shown in Figure 16-28). This page also provides two key tools for exploring UCS APIs: (a)
the ability to view the XML of the previous query and (b) a complete doc page for that MO/
class.

Figure 16-28 topSystem MO Page Within Visore

When you click the ? next to the topSystem link, you are taken to a simple text page docu-
menting the MO. Within this documentation are the “contained” and “container” hierarchies,

BOOK.indb 612 19/05/22 5:57 PM

ptg39201256

Chapter 16: Cisco Platforms 613

16

which document what the parent MO of this object is and which MOs are children of this
object, both of which are provided in a tree-style format. This information allows you to
understand the distinguished name (DN) path to access each configuration item within the
UCS MIT. Below the hierarchy tables is the properties table, which is what is output when
this specific MO is queried. This page is shown in Figure 16-29.

Figure 16-29 topSystem MO Documentation

Returning to the Visore page for the topSystem, you can see that the keys shown on the
left side of the column align with what was seen under the properties section of the doc
page, and the values reflect the current state at the time the page was generated, indicat-
ing that, while not in the OAS style of more recently created tools, it is an interactive API
browser for UCS.

The other important piece to Visore is the ability to generate the XML query that produced
the output seen on-screen. Using this feature, you are able to

■ Understand what XML query needs to be sent to generate a desired payload.

■ Provide a check to ensure that the information being received is as to be expected
from the query.

As a result, you can quickly understand and develop queries to glean the desired information
from the API. Figure 16-30 illustrates the XML required to generate a query for the
topSystem MO.

BOOK.indb 613 19/05/22 5:57 PM

ptg39201256

614 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Figure 16-30 XML Query for the topSystem MO

Although UCSM does not have a published Postman collection, you can easily get started
by querying the API directly via cURL. This query can then be translated into a Postman
request if so desired for reuse. We explore both methods of querying the API so that you
gain familiarity with the steps required for translation.

All API queries to UCSM are sent toward the URL http://<UCSM-IP>/nuova. This URL
serves as the single entry point for all requests, with the delineation of which MO to query/
configure being defined within the payload of the API request. However, UCSM requires
a two-step authentication process to access the API: an initial step using the username
and password to gather a cookie/token that is then copied into the body of all subsequent
requests to validate that the user is authorized to access the API.

To gather the cookie, you must first send a payload of the username and password of the
UCSM to the aaaLogin method. You can accomplish this using cURL by entering the following:

» curl -d "<aaaLogin inName='ucspe' inPassword='ucspe'>
</aaaLogin>" http://192.168.111.7/nuova

In this example, the username and password are passed in the request to the IP address of
the UCSM at the API entrypoint. UCSM responds with a payload similar to the following:

<aaaLogin cookie="" response="yes" outCookie="1638850563/999f4f8e-
d32a-442c-b108-2084603ea17c" outRefreshPeriod="600" outPriv="aaa,
admin,ext-lan-config,ext-lan-policy,ext-lan-qos,ext-lan-security,
ext-san-config,ext-san-policy,ext-san-security,fault,operations,
pod-config,pod-policy,pod-qos,pod-security,read-only" outDomains=
"org-root" outChannel="noencssl" outEvtChannel="noencssl"
outSessionId="" outVersion="4.1(2c)" outName=""> </aaaLogin>

This response provides several pieces of information, such as the UCSM version, the permis-
sions assigned to the user who authenticated to the API, the domain of the user, and, most
importantly, the cookie that will be used for subsequent API authentication. This value is
given by the outCookie tag and includes everything after the slash (/) within the tag body
(everything before the slash [/] is the current time of the request given in UNIX epoch time,
which allows you to correlate the start time of the cookie validity with the time at which the
cookie expires because the refresh period is provided within the aaaLogin body).

After the cookie is received, you can place it in the XML query of another API request. The
cookie is added to the request as given by the View XML Request link within Visore. To
query the topSystem MO, you would enter a request like the following:

» curl -d "<configResolveClass cookie="999f4f8e-d32a-442c-b108-
2084603ea17c" inHierarchical="false" classId="topSystem"/>"
http://192.168.111.7/nuova

BOOK.indb 614 19/05/22 5:57 PM

http://<UCSM-IP>/nuova
http://192.168.111.7/nuova
http://192.168.111.7/nuova

ptg39201256

Chapter 16: Cisco Platforms 615

16

This request generates the same data as seen in the Visore viewer, but with XML tag
delineation:

<configResolveClass cookie="999f4f8e-d32a-442c-b108-
2084603ea17c" response="yes" classId="topSystem"> <outCon-
figs> <topSystem address="192.168.111.7" currentTime="2021-12-
07T04:18:08.080" descr="" dn="sys" ipv6Addr="::" mode="cluster"
name="UCSPE-192-168-111-7" owner="" site="" systemUp-
Time="00:09:20:19"/> </outConfigs> </configResolveClass>

The XML can be difficult to read at times, especially when it is all placed together on a
single line and especially if the MO query includes many child objects and classes of the
parent. However, when you use command-line tools, you are able to format the resulting
response without having to either save it locally or copy/paste to another tool. By piping the
output of the response to xmllint, you can print formatted output directly to stdout, similar
to what is shown in Example 16-22.

Example 16-22 Formatting UCSM XML Responses Using xmllint

» curl -d "<configResolveClass cookie="999f4f8e-d32a-442c-b108-2084603ea17c"
inHierarchical="false" classId="topSystem"/>" http://192.168.111.7/nuova | xmllint
--format -

 % Total % Received % Xferd Average Speed Time Time Time Current

 Dload Upload Total Spent Left Speed

100 449 100 345 100 104 11638 3508 --:--:-- --:--:-- --:--:-- 21380

<?xml version="1.0"?>

<configResolveClass cookie="999f4f8e-d32a-442c-b108-2084603ea17c" response="yes"
classId="topSystem">

 <outConfigs>

 <topSystem address="192.168.111.7" currentTime="2021-12-07T04:45:32.208"
descr="" dn="sys" ipv6Addr="::" mode="cluster" name="UCSPE-192-168-111-7" owner=""
site="" systemUpTime="00:09:47:43"/>

 </outConfigs>

</configResolveClass>

This same process can be followed for all classes and MOs available within the UCSM API.

It is possible to translate the cURL requests from the CLI to be used in Postman and have
Postman store the cookie as an environment variable to be used for subsequent requests. To
do so, follow these steps:

Step 1. Open Postman. Create a new environment and collection.

Step 2. Within the environment, create a variable for the IP address of the UCSM and
assign it an IP address. Create a placeholder variable with no value to store the
resulting cookie, as seen in Figure 16-31.

BOOK.indb 615 19/05/22 5:57 PM

http://192.168.111.7/nuova

ptg39201256

616 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Figure 16-31 Placeholder Variable Created Within Postman for the UCSM Cookie

Step 3. Create a new POST request, pointing to the API entrypoint address (http://
UCSM-IP/nuova). Add the same XML payload to include the username and
password of the UCSM, in XML format, as in Figure 16-32.

Figure 16-32 XML Payload to Authenticate to the UCSM API

Step 4. The final piece is to add a test to capture the outCookie value from the XML
response, strip the epoch time, and store the cookie value into a variable for use
in subsequent API calls. You add this code (written in JavaScript) to the Tests
tab within the login request (shown in Figure 16-33):

var responseJson = xml2Json(responseBody);

var withTime = responseJson.aaaLogin.$.outCookie;

var removeEpoch = withTime.indexOf('/');

var removeEpochAndSlash = removeEpoch + 1;

var withoutTime = withTime.substr(removeEpochAndSlash, withTime.
length);

postman.setEnvironmentVariable("cookie", withoutTime);

Figure 16-33 Creating the Test to Gather the UCSM API Cookie from the Response Payload

BOOK.indb 616 19/05/22 5:57 PM

http://UCSM-IP/nuova
http://UCSM-IP/nuova

ptg39201256

Chapter 16: Cisco Platforms 617

16

Step 5. After you save the request, you can send it toward the UCSM. When the
response is received, the full XML body is displayed within the response win-
dow, but the cookie value is stored within the environment (you can confirm
this by clicking the Environment Quick Look button next to the environment
name in the upper right of the Postman window).

Step 6. The final step is to transpose the topSystem request to Postman, similar to what is
shown in Figure 16-34. You do this by creating a new POST request to the same
URL as the login (remember, UCSM does not have unique entrypoints within the
API; the returned data is determined by the class and classID within the XML
payload). The value for cookie is then replaced with the newly created cookie vari-
able within the UCS Postman environment. The response from the request is for-
matted similarly to the xmllint formatted request from the cURL command line.

<configResolveClass cookie="{{cookie}}" inHierarchical="false"
classId="topSystem"/>

Figure 16-34 Using the Newly Gathered UCSM API Cookie to Query the topSystem MO

The DevNet team offers several different Learning Labs that enable you to learn and use the
UCSM API and SDKs that accompany the same Sandbox used for Intersight exploration.
Using this singular Sandbox, you can explore both the original UCSM platform and the
next-generation compute management system, Intersight.

Python SDK Documentation
Two SDKs are available to interact with the UCSM API: Python and PowerShell. Both of
these SDKs greatly reduce the friction in interacting with the API because you can use the
tooling within the language you are most familiar with to extract information from UCSM.
The installation of both SDKs is covered in this section.

The Python SDK for UCSM is written to provide a Pythonic wrapper around the interactions
with the API and to provide methods and classes for data extraction from the individual
MOs. The UCSM SDK supports the full range of CRUD operations within the UCS MIT,
conversion of UI paths to Python code, and configuration backup and restore. It also sup-
ports other operational tasks, such as starting an IP KVM session and capturing tech sup-
port bundles. Complete documentation is located at https://ucsmsdk.readthedocs.io, and
the GitHub repository for the SDK is located at https://github.com/CiscoUcs/ucsmsdk. The
UCM SDK is supported through Python 3.9.

BOOK.indb 617 19/05/22 5:57 PM

https://ucsmsdk.readthedocs.io
https://github.com/CiscoUcs/ucsmsdk

ptg39201256

618 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Using a recent version of Python (3.9.7 in this example), you can set up an environment to
support the UCSM SDK. If you use a Python virtual environment, the process would be like
that shown in Example 16-23.

Example 16-23 Creating a Python Virtual Environment for Accessing the UCSM API

devcor-ucsmsdk » python -m venv venv

devcor-ucsmsdk » source venv/bin/activate

[venv] devcor-ucsmsdk » pip install ucsmsdk

Collecting ucsmsdk

 Downloading ucsmsdk-0.9.12-py2.py3-none-any.whl (6.5 MB)

 |████████████████████████████████| 6.5 MB 5.2 MB/s

Requirement already satisfied: setuptools in ./venv/lib/python3.9/site-packages
(from ucsmsdk) (57.4.0)

Collecting pyparsing

 Downloading pyparsing-3.0.6-py3-none-any.whl (97 kB)

 |████████████████████████████████| 97 kB 16.0 MB/s

Requirement already satisfied: six in ./venv/lib/python3.9/site-packages (from
ucsmsdk) (1.16.0)

Installing collected packages: pyparsing, ucsmsdk

Successfully installed pyparsing-3.0.6 ucsmsdk-0.9.12

When the SDK is installed, it may be beneficial to explore the SDK using the Python REPL
(or bpython package) to understand how objects are created and accessed. You can enter the
code to connect to a UCSM as shown in Example 16-24.

Example 16-24 Accessing the UCSM SDK from bpython

[venv] devcor-ucsmsdk » bpython

bpython version 0.22.1 on top of Python 3.9.7 /Users/qsnyder/dev/devcor-intersight/
venv/bin/python

>>> import ucsmsdk.ucshandle as handler

>>> ucs_session = handler.UcsHandle("10.10.20.40", "ucspe", "ucspe")

>>> ucs_session.login()

True

This code connects the SDK to the UCSM instance. When it is connected, you can begin to
explore simple queries of MOs within the MIT. Carrying forward the topSystem example,
you can explore several ways to access the information from this MO. The SDK supports
accessing objects by classID, like you did using the XML queries. You do this using the
query_classid() method, as shown in Example 16-25.

BOOK.indb 618 19/05/22 5:57 PM

ptg39201256

Chapter 16: Cisco Platforms 619

16

Example 16-25 Querying the topSystem MO Using the UCSM SDK in bpython

>>> classObject = ucs_session.query_classid("topSystem")

>>> type(classObject)

<class 'list'>

>>> print(classObject)

[<ucsmsdk.mometa.top.TopSystem.TopSystem object at 0x1032d0f10>]

>>> print(type(classObject[0]))

<class 'ucsmsdk.mometa.top.TopSystem.TopSystem'>

>>> print(classObject[0])

Managed Object : TopSystem

class_id :TopSystem

address :10.10.20.40

child_action :None

current_time :2021-12-07T23:24:11.870

descr :

dn :sys

ipv6_addr :::

mode :cluster

name :UCSPE-10-10-20-40

owner :

rn :sys

sacl :None

site :

status :None

system_up_time :05:06:16:51

>>> print(classObject[0].name)

UCSPE-10-10-20-40

Note that the object created is of class list and needs to be indexed to correctly print the
output. When the root of the object is accessed, the full table of information is presented in
a much easier-to-digest form than the XML payload from the cURL/Postman calls. Addition-
ally, any individual item can be accessed by accessing the method called by the name of the
MO (such as .name to gather hostname information).

The UCSM SDK also supports accessing MOs by the distinguished name (DN) path within
the MIT. Recall Figure 16-28, which is a snapshot of the Visore page for the topSystem
classID, or the output from Example 16-25. Within this table, there is a reference for the
DN, the unique path from the top level of the MIT to the specific MO. If you choose to
access the topSystem object by DN using the SDK, the code would look like that shown in
Example 16-26.

BOOK.indb 619 19/05/22 5:57 PM

ptg39201256

620 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Example 16-26 Querying the sys DN Using the UCSM SDK

>>> dnObject = ucs_session.query_dn("sys")

>>> print(type(dnObject))

<class 'ucsmsdk.mometa.top.TopSystem.TopSystem'>

>>> print(dnObject)

Managed Object : TopSystem

class_id :TopSystem

address :10.10.20.40

child_action :None

current_time :2021-12-07T23:44:43.755

descr :

dn :sys

ipv6_addr :::

mode :cluster

name :UCSPE-10-10-20-40

owner :

rn :sys

sacl :None

site :

status :None

system_up_time :05:06:37:23

>>> print(dnObject.name)

UCSPE-10-10-20-40

This example looks similar to queries done by classID, but the resulting output object does
not need to be indexed; it is ready to be accessed in full or through a method to gather the
specific values needed. To carry this example one level deeper, you can query a specific
computeRackUnit by DN. You can utilize Visore to gather the DN and query it, with results
similar to Example 16-27.

Example 16-27 Querying a Specific UCS Server by DN Using the UCSM SDK

>>> dnComputeRack = ucs_session.query_dn("sys/rack-unit-10")

>>> print(dnComputeRack)

Managed Object : ComputeRackUnit

class_id :ComputeRackUnit

admin_power :policy

admin_state :in-service

asset_tag :

assigned_to_dn :

association :none

BOOK.indb 620 19/05/22 5:57 PM

ptg39201256

Chapter 16: Cisco Platforms 621

16

availability :available

available_memory :49152

check_point :discovered

child_action :None

conn_path :A,B

conn_status :A,B

descr :

discovery :complete

discovery_status :

dn :sys/rack-unit-10

enclosure_id :0

fan_speed_config_status :

fan_speed_policy_fault :no

flt_aggr :2

fsm_descr :

fsm_flags :

fsm_prev :DiscoverSuccess

fsm_progr :100

fsm_rmt_inv_err_code :none

fsm_rmt_inv_err_descr :

fsm_rmt_inv_rslt :

fsm_stage_descr :

fsm_stamp :2021-12-02T17:24:55.696

fsm_status :nop

fsm_try :0

id :10

int_id :86468

kmip_fault :no

kmip_fault_description :

lc :discovered

lc_ts :1970-01-01T00:00:00.000

local_id :

low_voltage_memory :not-applicable

managing_inst :A

memory_speed :not-applicable

mfg_time :not-applicable

model :HX220C-M5SX

name :

num_of40_g_adaptors_with_old_fw :0

num_of40_g_adaptors_with_unknown_fw:0

num_of_adaptors :2

num_of_cores :16

num_of_cores_enabled :16

num_of_cpus :2

num_of_eth_host_ifs :0

BOOK.indb 621 19/05/22 5:57 PM

ptg39201256

622 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

num_of_fc_host_ifs :0

num_of_threads :16

oper_power :off

oper_pwr_trans_src :unknown

oper_qualifier :

oper_qualifier_reason :N/A

oper_state :unassociated

operability :operable

original_uuid :1b4e28ba-2fa1-11d2-e00a-b9a761bde3fb

part_number :

physical_security :chassis-open

policy_level :0

policy_owner :local

presence :equipped

revision :0

rn :rack-unit-10

sacl :None

serial :RK93

server_id :10

slot_id :0

status :None

storage_oper_qualifier :unknown

total_memory :49152

usr_lbl :

uuid :1b4e28ba-2fa1-11d2-e00a-b9a761bde3fb

vendor :Cisco Systems Inc

version_holder :no

veth_status :A,B

vid :0

You can see that this method of accessing the API provides a much cleaner interface for
gathering information and selecting specific pieces of information from the API. Finally,
because the SDK opens a persistent session connection to the UCSM, it is good program-
matic practice to close the connection before exiting the REPL:

>>> ucs_session.logout()

True

>>> exit()

PowerShell SDK Documentation
The PowerShell SDK (also known as the UCS PowerTool) is a PowerShell-based alternative
to interacting with the UCSM API. It follows the traditional PowerShell syntax of “verb +
noun” commandlet syntax and provides a low barrier to entry for those looking to automate
UCSM who already have experience with PowerShell, such as Windows systems administra-
tors. However, because PowerShell has been released as a cross-platform application, it is
possible to leverage the UCS PowerTool on Linux and macOS systems. See the following

BOOK.indb 622 19/05/22 5:57 PM

ptg39201256

Chapter 16: Cisco Platforms 623

16

URLs for your system OS. Each URL is also available in QR code format in the “References”
section at the end of this chapter:

■ Linux: https://docs.microsoft.com/en-us/powershell/scripting/install/installing-
powershell-on-linux?view=powershell-7.2

■ macOS: https://docs.microsoft.com/en-us/powershell/scripting/install/installing-
powershell-on-macos?view=powershell-7.2

■ Windows: https://docs.microsoft.com/en-us/powershell/scripting/install/installing-
powershell-on-windows?view=powershell-7.2

It is also possible to run PowerShell as a container within the Docker runtime. This capability
provides portability across systems without worrying about installation permissions (assum-
ing Docker is installed). Although this method is demonstrated in the following examples,
the steps performed after the container is running apply to any operating system.

You can download the (Linux-based) PowerShell core container from Microsoft’s DockerHub
page and run it in interactive mode by using the process shown in Example 16-28.

Example 16-28 Pulling the Docker PowerShell Container

~ » docker pull mcr.microsoft.com/powershell

Using default tag: latest

latest: Pulling from powershell

7b1a6ab2e44d: Pull complete

f738ed9de711: Pull complete

68dfbdc8ea02: Pull complete

501a0230e302: Pull complete

Digest: sha256:bbf28e97eb6ecfcaa8b1e80bdc2700b443713f7dfac3cd648bfd3254007995e2

Status: Downloaded newer image for mcr.microsoft.com/powershell:latest

mcr.microsoft.com/powershell:latest

~ » docker run -it mcr.microsoft.com/powershell

PowerShell 7.2.0

Copyright (c) Microsoft Corporation.

https://aka.ms/powershell

Type 'help' to get help.

PS />

When the container is running in interactive mode, the process to install the UCS PowerTool
is the same within the container as it would be in a bare-metal OS, as seen in Example 16-29.

BOOK.indb 623 19/05/22 5:57 PM

https://docs.microsoft.com/en-us/powershell/scripting/install/installing-powershell-on-linux?view=powershell-7.2
https://docs.microsoft.com/en-us/powershell/scripting/install/installing-powershell-on-linux?view=powershell-7.2
https://docs.microsoft.com/en-us/powershell/scripting/install/installing-powershell-on-macos?view=powershell-7.2
https://docs.microsoft.com/en-us/powershell/scripting/install/installing-powershell-on-macos?view=powershell-7.2
https://docs.microsoft.com/en-us/powershell/scripting/install/installing-powershell-on-windows?view=powershell-7.2
https://docs.microsoft.com/en-us/powershell/scripting/install/installing-powershell-on-windows?view=powershell-7.2
http://mcr.microsoft.com/powershell
http://mcr.microsoft.com/powershell:latest
http://mcr.microsoft.com/powershell:latest
http://mcr.microsoft.com/powershell
https://aka.ms/powershell

ptg39201256

624 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Example 16-29 Installing the UCS PowerTool into the Running Docker PowerShell
Container

PS /> Install-Module -Name Cisco.UCSManager

Untrusted repository

You are installing the modules from an untrusted repository. If you trust this
repository, change its InstallationPolicy value by running the Set-PSRepository cmd-
let. Are

you sure you want to install the modules from 'PSGallery'?

[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help (default is
"N"): y

After the prompt to install the module, you may be prompted to accept several different
license agreements. After you accept them, you can use the UCS PowerTool to work with
the UCSM API. First, you must import the module, and then you must establish a connec-
tion to the UCSM, as shown in Example 16-30.

Example 16-30 Connecting to a UCSM Instance Using UCS PowerTool

PS /> Import-Module Cisco.UCSManager

PS /> Connect-Ucs -Name 10.10.20.40

cmdlet Connect-Ucs at command pipeline position 1

Supply values for the following parameters:

Credential

User: ucspe

Password for user ucspe: *****

NumPendingConfigs : 0

Ucs : UCSPE-10-10-20-40

Cookie : 1638934478/e08f56e8-f796-49c8-8496-e4760882c6d0

Domains : org-root

LastUpdateTime : 12/8/2021 3:35:28 AM

Name : 10.10.20.40

NoSsl : False

NumWatchers : 0

Port : 443

Priv : {aaa, admin, ext-lan-config, ext-lan-policy…}

PromptOnCompleteTransaction : False

Proxy :

RefreshPeriod : 600

SessionId :

TransactionInProgress : False

Uri : https://10.10.20.40

BOOK.indb 624 19/05/22 5:57 PM

https://10.10.20.40

ptg39201256

Chapter 16: Cisco Platforms 625

16

UserName : ucspe

Version : 4.0(4c)

VirtualIpv4Address : 10.10.20.40

WatchThreadStatus : None

PS />

When you’re connected to the UCS, you are able to perform all standard CRUD operations.
However, to compare similar examples, continue gathering topSystem data. Gathering the
same information is simple enough because there is a noun built for most classIDs within the
PowerTool, as shown in Example 16-31.

Example 16-31 Querying the topSystem MO Using UCS PowerTool

PS /> Get-UcsTopSystem

Address : 10.10.20.40

CurrentTime : 2021-12-08T03:37:04.720

Descr :

Ipv6Addr : ::

Mode : cluster

Name : UCSPE-10-10-20-40

Owner :

Sacl :

Site :

SystemUpTime : 05:10:29:44

Ucs : UCSPE-10-10-20-40

Dn : sys

Rn : sys

Status :

XtraProperty : {}

It’s also possible to extract the raw XML data, in addition to the formatted table of data, by
using the -Xml switch, with results similar to those shown in Example 16-32.

Example 16-32 topSystem Output in XML Format

PS /> Get-UcsTopSystem -Xml

==>UCSPE-10-10-20-40:<configResolveClass classId="topSystem" cookie="1638934478/
e08f56e8-f796-49c8-8496-e4760882c6d0" inHierarchical="false" />

<==UCSPE-10-10-20-40: <configResolveClass cookie="1638934478/e08f56e8-f796-49c8-
8496-e4760882c6d0" response="yes" classId="topSystem"> <outConfigs> <topSys-
tem address="10.10.20.40" currentTime="2021-12-08T03:38:58.207" descr="" dn="sys"
ipv6Addr="::" mode="cluster" name="UCSPE-10-10-20-40" owner="" site="" systemUp-
Time="05:10:31:38"/> </outConfigs> </configResolveClass>

BOOK.indb 625 19/05/22 5:57 PM

ptg39201256

626 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Address : 10.10.20.40

CurrentTime : 2021-12-08T03:38:58.207

Descr :

Ipv6Addr : ::

Mode : cluster

Name : UCSPE-10-10-20-40

Owner :

Sacl :

Site :

SystemUpTime : 05:10:31:38

Ucs : UCSPE-10-10-20-40

Dn : sys

Rn : sys

Status :

XtraProperty : {}

By piping the command output to the Select-Object command, you can print only the desired
fields of information (similar to accessing the specific methods within the Python SDK):

PS /> Get-UcsTopSystem | Select-Object Name

Name

UCSPE-10-10-20-40

It is also possible to query specific paths within the API. All the filters and query parameters
are accepted, as well as filtering-specific commands by DN, much like finding a specific
compute rack unit within the overall computeRackUnit classID, as shown in Example 16-33.

Example 16-33 Accessing a Specific Server Instance Using the UCS PowerTool

PS /> Get-UcsRackUnit -dn sys/rack-unit-10

AdminPower : policy

AdminState : in-service

AssetTag :

AssignedToDn :

Association : none

Availability : available

AvailableMemory : 49152

CheckPoint : discovered

ConnPath : {A, B}

ConnStatus : {A, B}

Descr :

Discovery : complete

DiscoveryStatus :

BOOK.indb 626 19/05/22 5:57 PM

ptg39201256

Chapter 16: Cisco Platforms 627

16

EnclosureId : 0

FanSpeedConfigStatus :

FanSpeedPolicyFault : no

Id : 10

KmipFault : no

KmipFaultDescription :

Lc : discovered

LcTs : 1970-01-01T00:00:00.000

LocalId :

LowVoltageMemory : not-applicable

ManagingInst : A

MemorySpeed : not-applicable

MfgTime : not-applicable

Model : HX220C-M5SX

Name :

NumOf40GAdaptorsWithOldFw : 0

NumOf40GAdaptorsWithUnknownFw : 0

NumOfAdaptors : 2

NumOfCores : 16

NumOfCoresEnabled : 16

NumOfCpus : 2

NumOfEthHostIfs : 0

NumOfFcHostIfs : 0

NumOfThreads : 16

OperPower : off

OperPwrTransSrc : unknown

OperQualifier :

OperQualifierReason : N/A

OperState : unassociated

Operability : operable

OriginalUuid : 1b4e28ba-2fa1-11d2-e00a-b9a761bde3fb

PartNumber :

PhysicalSecurity : chassis-open

PolicyLevel : 0

PolicyOwner : local

Presence : equipped

Revision : 0

Sacl :

Serial : RK93

ServerId : 10

SlotId : 0

StorageOperQualifier : unknown

TotalMemory : 49152

UsrLbl :

BOOK.indb 627 19/05/22 5:57 PM

ptg39201256

628 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Uuid : 1b4e28ba-2fa1-11d2-e00a-b9a761bde3fb

Vendor : Cisco Systems Inc

VersionHolder : no

VethStatus : A,B

Vid : 0

Ucs : UCSPE-10-10-20-40

Dn : sys/rack-unit-10

Rn : rack-unit-10

Status :

XtraProperty : {}

Finally, when the interaction is complete, it is good programmatic practice to close the con-
nection with the UCSM:

PS /> Disconnect-Ucs

Ucs : UCSPE-10-10-20-40

InCookie : 1638937107/e815357b-1047-49ab-8620-27b6e78a41c7

Name : 10.10.20.40

OutStatus : success

SessionId :

Uri : https://10.10.20.40

Version : 4.0(4c)

Additional UCS Manager Programmability Resources
Cisco DevNet maintains a comprehensive library of Learning Labs to help you understand
the UCS Python SDK and the UCS PowerTool:

■ Introduction to the UCS Python SDK: https://developer.cisco.com/learning/modules/
ucs-python-sdk-introduction

■ Introduction to the UCS PowerTool: https://developer.cisco.com/learning/modules/
ucs-powertool-introduction

■ Intermediate PowerTool and Python SDK: https://developer.cisco.com/learning/
modules/ucs-programmability-intermediate

DNA Center
The Cisco DNA Center solution is the controller for enterprise fabric deployments. It serves
as the follow-on management solution from Prime Infrastructure. DNA Center provides con-
figuration management, software image management, performance and fault monitoring, and
inventory tracking. Traditional route/switch and wireless inventory can be managed. DNA
Center serves as an on-premises management solution with open and extensible APIs that
complement your intent-based networking (IBN) requirements.

BOOK.indb 628 19/05/22 5:57 PM

https://10.10.20.40
https://developer.cisco.com/learning/modules/ucs-python-sdk-introduction
https://developer.cisco.com/learning/modules/ucs-python-sdk-introduction
https://developer.cisco.com/learning/modules/ucs-powertool-introduction
https://developer.cisco.com/learning/modules/ucs-powertool-introduction
https://developer.cisco.com/learning/modules/ucs-programmability-intermediate
https://developer.cisco.com/learning/modules/ucs-programmability-intermediate

ptg39201256

Chapter 16: Cisco Platforms 629

16

The DNA Center APIs span provisioning, monitoring, performance, and inventory functions
and are generally broken into Intent and Integration APIs, Event and Notification Webhooks,
and a multivendor SDK, as shown in Figure 16-35.

Figure 16-35 Cisco DNA Center Platform

The northbound Intent API provides functional capabilities of the DNA Center platform
related to policy-based abstraction of business intent. The RESTful API provides GET, POST,
PUT, and DELETE operations and uses JSON-structured data. The obligatory authentica-
tion function provides for a security token that aligns privileges to the REST API user. The
remaining categories are aligned to inventory, provisioning, monitoring, and software mainte-
nance functions, as shown in the Postman representation in Figure 16-36.

Figure 16-36 Cisco DNA Center API Documentation from Postman

The APIs and Python SDK are useful for custom application development, extracting net-
work and service information, provisioning, and software maintenance.

BOOK.indb 629 19/05/22 5:57 PM

ptg39201256

630 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Enabling API/SDK Access to DNA Center
To use the DNA Center API or Python SDK, you must first ensure the REST API feature
is enabled. Within the DNA Center portal, navigate to the upper-right menu gadget (which
appears as three parallel, horizontal lines). Next, select Platform and then Manage.
Figures 16-37 through 16-39 show this progression.

2

1

Figure 16-37 Cisco DNA Center Platform > Manage

Figure 16-38 Cisco DNA Center REST API Bundle

BOOK.indb 630 19/05/22 5:58 PM

ptg39201256

Chapter 16: Cisco Platforms 631

16

Figure 16-39 Cisco DNA Center REST API Bundle Documentation

If the Cisco DNA Center REST API feature does not show ACTIVE, you can turn it on from
the Bundles page (shown in Figure 16-38) by clicking the Enable button.

DNA Center API Documentation
The latest DNA Center API is officially documented at https://developer.cisco.com/docs/dna-
center/. At the time of this writing, v2.2.3 is the latest. Note that since v2.2.2 of the API, there
are now generic function methods separated from software-defined access (SDA) methods.

The northbound Intent API authentication domain provides security and aligns privileges to
REST API user accounts.

The Know Your Network domain provides access to information about clients, sites, topol-
ogy, devices, and issues. Site Management methods include Site Design, Network Settings,
Software Image Management (sometimes called SWIM), Device Onboarding (sometimes
called Plug and Play, or PnP), and Configuration Templates. Connectivity methods enable
you to configure and manage fabric wired and non-fabric wireless networks. Operational
tasks and tools extend functionality of

■ Command Runner: Supports CLI command retrieval and execution

■ Network Discovery: Enables you to execute network inventory scans

■ Path Trace: Provides flow analysis between two endpoints in the network

■ Tasks: Enables you to initiate activities via an API request, including status and com-
pletion results

■ Tags: Assigns named attributes to devices for ease of searching

Policy management aligns business intent in a simplified representation to network- or
device-specific configurations that account for device type, operating system, and network
role/function.

Event Management provides custom notification functions when specific alerts are triggered
in DNA Assurance, configuration management, or software image management events.

BOOK.indb 631 19/05/22 5:58 PM

https://developer.cisco.com/docs/dna-center/
https://developer.cisco.com/docs/dna-center/

ptg39201256

632 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

On the southbound perspective, Multivendor Support is provided through an SDK allowing
DNA Center to manage third-party devices.

Events and Notifications are supported eastbound to offer notification handling with other
IT Service Management systems.

Finally, westbound Integration API capabilities address the need to glue DNA Center
together with other management tools in the broader IT Service Management ecosystem.

The DevNet team provides many Learning Labs that can familiarize you with the API. There
is also a DevNet Sandbox Lab for accessing an always-on environment useful for training
when you don’t have an existing DNA Center environment or prefer not to use your own.
You can access this link at https://devnetsandbox.cisco.com/RM/Topology and enter dna in
the search box to see the current lab catalog. The catalog is shown in Figure 16-40.

Figure 16-40 Cisco DevNet Sandbox Labs for DNA Center

The DNA Center REST API requires BASIC access authentication, depending on Base64
encoding of the username and password concatenated with a colon (:). For example, with the
username Aladdin and password open sesame, Base64-encoding the string 'Aladdin:open
sesame' would provide

QWxhZGRpbjpvcGVuIHNlc2FtZQ==

Therefore, the authorization HTTP header you use is

Authorization: Basic QWxhZGRpbjpvcGVuIHNlc2FtZQ==

To build the Base64 authorization string on Windows, you install OpenSSL and use the
following instructions, or obtain a Base64-encoding utility (preferably an offline one!).

To build the Base64 authorization string on Mac/Linux, you use built-in openssl binaries and
execute

BOOK.indb 632 19/05/22 5:58 PM

https://devnetsandbox.cisco.com/RM/Topology

ptg39201256

Chapter 16: Cisco Platforms 633

16

echo –n 'USERNAME:PASSWORD' | openssl base64

A helpful resource is the Postman collection, which allows you to import public API
resources into a common utility that is popular with software developers. You can access the
Postman collection and import it into your Postman environment at https://www.postman.
com/ciscodevnet/workspace/cisco-dna-center/collection/382059-634a2adf-f673-42eb-8c36-
290f38e37971?ctx=documentation. (Because that’s a monster URL, a QR code representa-
tion is provided in the “References” section at the end of the chapter.)

Figure 16-41 shows the organization of the DNA Center REST API, as described earlier.

Figure 16-41 Cisco DNA Center Postman Collection

While the web-based Postman is useful for cloud-based endpoints, you may find a need for a
local, inside network instance on your laptop. If you highlight the Cisco DNA Center APIs head-
ing and click the ellipsis icon (…), you find an Export option that extracts the Postman collec-
tion to a JSON file. The JSON file can then be imported into your Postman app. Figure 16-42
shows this result. You can further navigate into the Authentication POST request.

Figure 16-42 Cisco DNA Center Postman Collection Inside Postman App

Several Postman environment variables are used. They need to be reconciled for the collec-
tion to be used. To do so, you create a new environment by clicking the Environments menu
option from the left navigation panel. Click the plus (+) icon in that fly-out menu option to
create a new environment. Fill in the environment settings as shown in Figure 16-43.

BOOK.indb 633 19/05/22 5:58 PM

https://www.postman.com/ciscodevnet/workspace/cisco-dna-center/collection/382059-634a2adf-f673-42eb-8c36-290f38e37971?ctx=documentation
https://www.postman.com/ciscodevnet/workspace/cisco-dna-center/collection/382059-634a2adf-f673-42eb-8c36-290f38e37971?ctx=documentation
https://www.postman.com/ciscodevnet/workspace/cisco-dna-center/collection/382059-634a2adf-f673-42eb-8c36-290f38e37971?ctx=documentation

ptg39201256

634 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Figure 16-43 Postman Environment Settings for Cisco DNA Center on DevNet
Sandbox Lab

The settings in Figure 16-43 are for the DevNet Always On DNAC 2.2 Sandbox. Feel free to
use it for your education or create another environment with settings relevant to your DNA
Center. As you hover over the {{variable}} entries, you should note that Postman shows a pop-
up with the variable resolved.

If you return to the Authentication request and click the Send button (on the right), note
the completion of a request for an API token. The Tests tab has been filled with simple
JavaScript code to extract the API response and create a new token environment variable.
If you navigate back to the Environment section, you can see the new entry.

A nice feature of Postman is the Translate to Code feature. Along the right navigation col-
umn, the </> icon represents this feature. Click this icon to create a code snippet. A Python-
Requests version is suggested and results in the code shown in Example 16-34.

Example 16-34 Default Postman Translate to Code Output

import requests

url = "https://sandboxdnac.cisco.com/api/system/v1/auth/token"

payload = ""

headers = {

 'Authorization': 'Basic ZGV2bmV0dXNlcjpDaXNjbzEyMyE='

}

response = requests.request("POST", url, headers=headers, data=payload)

print(response.text)

Because we prefer more secure coding practices, we suggest that you do not put creden-
tials and authorization codes inside your script. The possibility of posting this into an open
GitHub repository is a risk too great! So, we suggest the following method: put your user-
name and password in shell environment variables and tweak the script to read them. Here is
an example providing similar functionality to the Postman generic code snippet but with a
touch better security:

$ export DNAC_USER=devnetuser

$ export DNAC_USERPASSWORD=Cisco123!

BOOK.indb 634 19/05/22 5:58 PM

https://sandboxdnac.cisco.com/api/system/v1/auth/token"

ptg39201256

Chapter 16: Cisco Platforms 635

16

The full script is shown in Example 16-35.

Example 16-35 A More Refined Python Script for DNA Center as Template

import requests

import os

import base64

url = "https://sandboxdnac.cisco.com/api/system/v1/auth/token"

Get environment variables

USER = os.getenv('DNAC_USER')

PASSWORD = os.environ.get('DNAC_USERPASSWORD')

payload = ""

response = requests.request("POST", url, auth=HTTPBasicAuth(USER, PASSWORD),
data=payload)

print(response.text)

Running the script results in the following.

(.venv) sre@pythonserver DEVCOR % python dnac-getauth.py

{"Token":"eyJhbGciOiJSUzI1NiIsInR5cCI6IkpXVCJ9..."}

You now have a template for a script to do other DNA Center REST API work.

DNA Center SDK Documentation
DNA Center’s Python SDK is an easy-to-use solution that relieves you of routine coding
tasks regarding API authentication, data encoding, pagination, rate limiting, and error han-
dling. The SDK is community supported and is shared from the PyPI project or GitHub from
the following URLs:

https://pypi.org/project/dnacentersdk/

https://github.com/cisco-en-programmability/dnacentersdk

Understanding the foundational API resources is important and useful. It is simplified in
using tools like Postman; however, you will find that the SDK provides even more benefits.
Because the documentation is extensive and accessible, SDK use is encouraged. You can find
the authoritative docs for the DNA Center SDK at https://dnacentersdk.readthedocs.io/en/
latest/.

You can find additional helpful guidance on DevNet at https://developer.cisco.com/docs/
dna-center/#!python-sdk-getting-started/pip-install.

For purposes of this example, we consider the latest version, 2.4.1, released December 1,
2021. To get started, set up your Python environment to a minimum of Python v3.6 (released
December 2016). As of Fall 2021, Python 3.10 is the latest release. Using a recent release is

BOOK.indb 635 19/05/22 5:58 PM

https://sandboxdnac.cisco.com/api/system/v1/auth/token"
https://pypi.org/project/dnacentersdk/
https://dnacentersdk.readthedocs.io/en/latest/
https://dnacentersdk.readthedocs.io/en/latest/
https://developer.cisco.com/docs/dna-center/#!python-sdk-getting-started/pip-install
https://developer.cisco.com/docs/dna-center/#!python-sdk-getting-started/pip-install
https://github.com/cisco-en-programmability/dnacentersdk

ptg39201256

636 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

recommended, but if you have a current environment at version 3.6 or higher, that is suffi-
cient. Also, consider using a virtual environment (venv) when setting up your project.

The quick install method uses the PyPi project to obtain the dnacentersdk package, as
shown in Example 16-36.

Example 16-36 Creating a Cisco DNA Center SDK Project

myserver Python % mkdir MyDNACProject

myserver Python % cd MyDNACProject

myserver MyDNACProject % python3 -m venv .venv

myserver MyDNACProject % source .venv/bin/activate

(.venv) myserver MyDNACProject % pip install dnacentersdk

Collecting dnacentersdk

 Downloading dnacentersdk-2.4.1-py3-none-any.whl (2.4 MB)

 |████████████████████████████████| 2.4 MB 2.7 MB/s

Collecting requests<3.0.0,>=2.25.1

 Using cached requests-2.26.0-py2.py3-none-any.whl (62 kB)

Collecting requests-toolbelt<0.10.0,>=0.9.1

 Downloading requests_toolbelt-0.9.1-py2.py3-none-any.whl (54 kB)

 |████████████████████████████████| 54 kB 9.6 MB/s

Collecting fastjsonschema<3.0.0,>=2.14.5

 Downloading fastjsonschema-2.15.1-py3-none-any.whl (21 kB)

Collecting future<0.19.0,>=0.18.2

 Downloading future-0.18.2.tar.gz (829 kB)

 |████████████████████████████████| 829 kB 4.3 MB/s

Collecting idna<4,>=2.5

 Using cached idna-3.3-py3-none-any.whl (61 kB)

Collecting urllib3<1.27,>=1.21.1

 Using cached urllib3-1.26.7-py2.py3-none-any.whl (138 kB)

Collecting certifi>=2017.4.17

 Using cached certifi-2021.10.8-py2.py3-none-any.whl (149 kB)

Collecting charset-normalizer~=2.0.0

 Downloading charset_normalizer-2.0.9-py3-none-any.whl (39 kB)

Using legacy 'setup.py install' for future, since package 'wheel' is not installed.

Installing collected packages: urllib3, idna, charset-normalizer, certifi, requests,
requests-toolbelt, future, fastjsonschema, dnacentersdk

 Running setup.py install for future ... done

Successfully installed certifi-2021.10.8 charset-normalizer-2.0.9 dnacentersdk-2.4.1
fastjsonschema-2.15.1 future-0.18.2 idna-3.3 requests-2.26.0 requests-toolbelt-0.9.1
urllib3-1.26.7

WA

Now your environment is ready for the follow-on SDK examples. The next section addresses
authorization. If you haven’t already covered the DNA Center REST API enablement steps,

BOOK.indb 636 19/05/22 5:58 PM

ptg39201256

Chapter 16: Cisco Platforms 637

16

go back to the “Enabling API/SDK Access to DNA Center” section. You must ensure that the
feature is enabled and that you have a user (with password) defined.

SDK Authorization
The DNA Center SDK enables you to obtain the username and password credentials via envi-
ronment variables, which is recommended over putting your credentials inside your Python
script. For example, if you’re using the DevNet Always On Sandbox Lab for DNA Center,
these would be the applicable environment variables:

export DNA_CENTER_USERNAME=devnetuser

export DNA_CENTER_PASSWORD=Cisco123!

export DNA_CENTER_BASE_URL=https://sandboxdnac.cisco.com:443

Now you can build a sample Python script that uses the SDK. You can reference the API
docs from the community portal to see the various functions and options. At the time of
this writing, this link refers to the latest API information:

https://dnacentersdk.readthedocs.io/en/latest/api/api.html#dnacenterapi-v2-2-3-3

Navigating down to the Devices section would be a safe approach and would result in
practical information you might want to obtain for putting into an asset management sys-
tem. Specifically, you can use the devices.get_device_list() method for this first approach.
Now, create the Python script in Example 16-37 as getDNACdevicelist.py in your virtual
environment.

Example 16-37 Python Script to Extract Cisco DNA Center Devices

from dnacentersdk import DNACenterAPI

import pprint

pp = pprint.PrettyPrinter(indent=4)

api = DNACenterAPI()

my_devices = api.devices.get_device_list()

for device in my_devices.response:

 pp.pprint(device)

This simple script imports the necessary libraries: the DNA Center SDK and pretty print. It
configures the pretty print feature to indent four spaces. You create the DNA Center session,
passing authentication credentials via the environment variables previously set. You then call
the devices group get_device_list() and store the list into a my_devices variable. Finally, you
pretty print out the list device by device.

Now you can execute the script shown in Example 16-38.

BOOK.indb 637 19/05/22 5:58 PM

https://sandboxdnac.cisco.com:443
https://dnacentersdk.readthedocs.io/en/latest/api/api.html#dnacenterapi-v2-2-3-3

ptg39201256

638 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Example 16-38 Executing and Observing getDNACdevicelist.py

(.venv) myserver MyDNACProject % python getDNACdevicelist.py

{ 'apEthernetMacAddress': None,

 'apManagerInterfaceIp': '',

 'associatedWlcIp': '',

 'bootDateTime': '2021-07-09 13:31:59',

 'collectionInterval': 'Global Default',

 'collectionStatus': 'Managed',

 'description': 'Cisco Controller Wireless Version:8.5.140.0',

 'deviceSupportLevel': 'Supported',

 'errorCode': None,

 'errorDescription': None,

 'family': 'Wireless Controller',

 'hostname': 'c3504.abc.inc',

 'id': '6b741b27-f7e7-4470-b6fc-d5168cc*****',

 'instanceTenantId': '5e8e896e4d4add00ca2*****',

 'instanceUuid': '6b741b27-f7e7-4470-b6fc-d5168cc*****',

 'interfaceCount': '0',

 'inventoryStatusDetail': '<status><general code="SUCCESS"/></status>',

 'lastUpdateTime': 1639144079982,

 'lastUpdated': '2021-12-10 13:47:59',

 'lineCardCount': '0',

 'lineCardId': '',

 'location': None,

 'locationName': None,

 'macAddress': 'ac:4a:56:6c:**:**',

 'managedAtleastOnce': True,

 'managementIpAddress': '10.10.20.51',

 'managementState': 'Managed',

 'memorySize': '3735302144',

 'platformId': 'AIR-CT3504-K9',

 'reachabilityFailureReason': '',

 'reachabilityStatus': 'Reachable',

 'role': 'ACCESS',

 'roleSource': 'AUTO',

 'serialNumber': 'FOL250*****',

 'series': 'Cisco 3500 Series Wireless LAN Controller',

 'snmpContact': '',

 'snmpLocation': '',

 'softwareType': 'Cisco Controller',

 'softwareVersion': '8.5.140.0',

 'tagCount': '0',

 'tunnelUdpPort': '16666',

 'type': 'Cisco 3504 Wireless LAN Controller',

 'upTime': '154 days, 0:16:55.00',

 'uptimeSeconds': 13312136,

BOOK.indb 638 19/05/22 5:58 PM

ptg39201256

Chapter 16: Cisco Platforms 639

16

 'waasDeviceMode': None}

{ 'apEthernetMacAddress': None,

 'apManagerInterfaceIp': '',

 'associatedWlcIp': '',

 'bootDateTime': '2021-10-28 18:10:20',

 'collectionInterval': 'Global Default',

 'collectionStatus': 'Managed',

 'description': 'Cisco IOS Software [Amsterdam], Catalyst L3 Switch '

 'Software (CAT9K_IOSXE), Version 17.3.3, RELEASE SOFTWARE '

 '(fc7) Technical Support: http://www.cisco.com/techsupport '

 'Copyright (c) 1986-2021 by Cisco Systems, Inc. Compiled '

 'Thu 04-Mar-21 12:32 by mcpre',

 'deviceSupportLevel': 'Supported',

 'errorCode': None,

 'errorDescription': None,

 'family': 'Switches and Hubs',

 'hostname': 'leaf1.abc.inc',

 'id': 'aa0a5258-3e6f-422f-9c4e-9c196db*****',

 'instanceTenantId': '5e8e896e4d4add00ca2*****',

 'instanceUuid': 'aa0a5258-3e6f-422f-9c4e-9c196db*****',

 'interfaceCount': '0',

 'inventoryStatusDetail': '<status><general code="SUCCESS"/></status>',

 'lastUpdateTime': 1639144220380,

 'lastUpdated': '2021-12-10 13:50:20',

 'lineCardCount': '0',

So, you can see the SDK simplified a lot of actions behind the scenes: authentication, data
encoding, error handling, and rate limiting. You could, of course, go directly to the REST
API, but you would still need to perform these functions. The SDK reduces the code require-
ments for developers, like you.

AppDynamics
AppDynamics (a.k.a. AppD) is a cloud-enabling, full-stack application performance monitor-
ing (APM) solution. It is used in a multicloud world to improve performance through visibil-
ity and detection of issues via real-time monitoring. AppD provides end-to-end visibility of
application traffic, enabling developers and architects to deploy and manage solutions with
assurance. It also uses machine learning in executing automated root-cause analysis. AppD
agents in your environment discover and track individual transactions with servers, data-
bases, and other application dependencies. The user experience is tracked and can be attrib-
uted to specific code blocks, database calls, name resolution, or other dependencies. The
insight can be mapped to business metrics, providing deep insight into impact and severity.

As a rich APM solution, AppD has an extensive API. We cover some of the basics for
authentication and basic information gathering, but a whole book could be written about
the depth of its API. The AppDynamic APIs are documented at https://docs.appdynamics.
com/21.12/en/extend-appdynamics/appdynamics-apis.

BOOK.indb 639 19/05/22 5:58 PM

http://www.cisco.com/techsupport
https://docs.appdynamics.com/21.12/en/extend-appdynamics/appdynamics-apis
https://docs.appdynamics.com/21.12/en/extend-appdynamics/appdynamics-apis

ptg39201256

640 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

The system provides for short-term, API-generated access tokens that expire within five
minutes by default or for longer-term, UI-generated temporary access tokens that can be
defined by the administrator for hour, day, or year expirations. You can define your API
clients by logging in to your AppDynamics portal and accessing the gear icon in the upper-
right corner. From the drop-down navigation panel, select Administration. Then on the left
tab option, select API Clients. Next, click the Create (or +) button and define your client
name with an optional description. Click the Generate Secret button and the copy gadget
to the left of it. Make sure to retain this client secret in a secure password manager. Further-
more, click the Add (+) button under Roles and select the appropriate roles for the API user.
Finally, click Save in the upper-right corner. Figure 16-44 depicts the steps just described.

Figure 16-44 Generating a Temporary Access Token in AppDynamics

Authentication with the longer-term, WebUI-generated client secret is done as described in
the next process.

A POST operation is created to the controller with the following characteristics:

■ URL: https://<CONTROLLER_HOST>:8090/controller/api/oauth/access_token

■ Header Content-Type: 'application/vnd.appd.cntrl+protobuf;v=1'

■ Payload Data: x-www-form-urlencoded of

 grant_type=client_credentials

 client_id=<APIUserName>@<CustomerName>

 client_secret=<ClientSecret>

An example curl utility equivalent would be

 curl -X POST -H "Content-Type: application/vnd.appd.
 cntrl+protobuf;v=1" "http://<CONTROLLER_HOST>:8090/controller/

BOOK.indb 640 19/05/22 5:58 PM

ptg39201256

Chapter 16: Cisco Platforms 641

16

api/oauth/access_token" -d 'grant_type=client_
credentials&client_id=<APIUserName>@<CustomerName>&client_
secret=<ClientSecure>'

The output results in the following:

appserver[centos]$ curl -X POST -H "Content-Type: application/
vnd.appd.cntrl+protobuf;v=1" "http://****:8090/controller/api/
oauth/access_token" -d 'grant_type=client_credentials&client_
id=devcore@customer1&client_secret=fa42bc81-f3a8-4cbd-
9ac7-******'

{"access_token": "eyJraWQiOiIyY2Q3YjY0YS0zYTAzLTRiNzMtYmN
lMS02MjgwZTVmMzAyMTMiLCJhbGciOiJIUzI1NiJ9.****M",
"expires_in": 300}

appserver[centos]$

A Postman utility equivalent is provided in Figure 16-45.

Figure 16-45 Using Postman to Generate AppDynamics Access Token

BOOK.indb 641 19/05/22 5:58 PM

ptg39201256

642 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Additionally, this Python script would be a helpful baseline for progressing to other API
methods. You can set the following environment variables to perform a more secure authen-
tication method:

$ export APPD_CONTROLLER=10.10.20.2:8090

$ export APPD_API_USER=devcore

$ export APPD_CUSTOMER=customer1

$ export APPD_CLIENT_SECRET=fa42bc81-f3a8-4cbd-9ac7-cf9766bcd93d

The full script is shown in Example 16-39.

Example 16-39 Python Script to Generate an AppDynamics Access Token

import os

import requests

Get environment variables

APPD_CONTROLLER = os.getenv('APPD_CONTROLLER')

APPD_API_USER = os.getenv('APPD_API_USER')

APPD_CUSTOMER = os.getenv('APPD_CUSTOMER')

APPD_CLIENT_SECRET = os.getenv("APPD_CLIENT_SECRET")

url = f'http://{APPD_CONTROLLER}/controller/api/oauth/access_token'

payload = f'grant_type=client_credentials&client_id={APPD_API_USER}%40{APPD_
CUSTOMER}&client_secret={APPD_CLIENT_SECRET}'

headers = {

 'Content-Type': 'application/x-www-form-urlencoded'

 }

response = requests.request("POST", url, headers=headers, data=payload)

data = response.json()

access_token = data['access_token']

print(access_token)

This script, when executed, generates the following:

appserver[centos]$ python3 getAppDToken.py

eyJraWQiOiIyY2Q3YjY0YS0zYTAzLTRiNzMtYmNlMS02MjgwZTVmMzAyMTMiLCJhbG-
ciOiJIUzI1NiJ9.****

appserver[centos]$

With a slight addition to the authentication template, as shown in Example 16-40, you can
move on to getting all the web applications that AppDynamics is currently monitoring.

BOOK.indb 642 19/05/22 5:58 PM

ptg39201256

Chapter 16: Cisco Platforms 643

16

Example 16-40 Python Script to Get AppDynamics Applications

import os

import requests

Get environment variables

APPD_CONTROLLER = os.getenv('APPD_CONTROLLER')

APPD_API_USER = os.getenv('APPD_API_USER')

APPD_CUSTOMER = os.getenv('APPD_CUSTOMER')

APPD_CLIENT_SECRET = os.getenv("APPD_CLIENT_SECRET")

url = f'http://{APPD_CONTROLLER}/controller/api/oauth/access_token'

payload = f'grant_type=client_credentials&client_id={APPD_API_USER}%40{APPD_
CUSTOMER}&client_secret={APPD_CLIENT_SECRET}'

headers = {

 'Content-Type': 'application/x-www-form-urlencoded'

 }

response = requests.request("POST", url, headers=headers, data=payload)

data = response.json()

access_token = data['access_token']

url2 = f'http://{APPD_CONTROLLER}/controller/rest/applications'

headers2 = { 'Authorization': 'Bearer ' + access_token }

response2 = requests.request("GET", url2, headers=headers2)

print(response2.text)

This script would result in the following simple output:

appserver[centos]$ python3 getAppDapplications.py

<applications><application>

 <id>6</id>

 <name>Supercar-Trader</name>

 <accountGuid>2cd7b64a-3a03-4b73-bce1-6280e5f30213</accountGuid>

</application>

</applications>

Note the API’s default output is XML. If you prefer JSON, you can append the URL with
?output=JSON.

BOOK.indb 643 19/05/22 5:58 PM

ptg39201256

644 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

You can make additional enhancements to this script by using the API to extract the applica-
tions involved and the nodes of those applications with detailed information, as shown in
Example 16-41. This enhancement may be useful for documentation purposes.

Example 16-41 Python Script to Get AppDynamics Application Nodes

import os

import requests

import xml.etree.ElementTree as ET

Get environment variables

APPD_CONTROLLER = os.getenv('APPD_CONTROLLER')

APPD_API_USER = os.getenv('APPD_API_USER')

APPD_CUSTOMER = os.getenv('APPD_CUSTOMER')

APPD_CLIENT_SECRET = os.getenv("APPD_CLIENT_SECRET")

url = f'http://{APPD_CONTROLLER}/controller/api/oauth/access_token'

payload = f'grant_type=client_credentials&client_id={APPD_API_USER}%40{APPD_
CUSTOMER}&client_secret={APPD_CLIENT_SECRET}'

headers = {

 'Content-Type': 'application/x-www-form-urlencoded'

 }

response = requests.request("POST", url, headers=headers, data=payload)

data = response.json()

access_token = data['access_token']

url2 = f'http://{APPD_CONTROLLER}/controller/rest/applications'

headers2 = { 'Authorization': 'Bearer ' + access_token }

response2 = requests.request("GET", url2, headers=headers2)

print(response2.text)

root = ET.ElementTree(ET.fromstring(response2.text))

for app in root.findall('application'):

 appname = app.find('name').text

 print(appname)

 url3 = f'http://{APPD_CONTROLLER}/controller/rest/applications/{appname}/nodes'

 response3 = requests.request("GET", url3, headers=headers2)

 print(response3.text)

Executing this script results in the output shown in Example 16-42.

BOOK.indb 644 19/05/22 5:58 PM

ptg39201256

Chapter 16: Cisco Platforms 645

16

Example 16-42 Executing and Observing getAppDAppNodes.py

appserver[centos]$ python3 getAppDAppNodes.py

<applications><application>

 <id>6</id>

 <name>Supercar-Trader</name>

 <accountGuid>2cd7b64a-3a03-4b73-bce1-6280e5f30213</accountGuid>

</application>

</applications>

Supercar-Trader

<nodes><node>

 <id>300</id>

 <name>Web-Portal_Node-01</name>

 <type>Other</type>

 <tierId>10</tierId>

 <tierName>Web-Portal</tierName>

 <machineId>301</machineId>

 <machineName>appserver.localdomain</machineName>

 <machineOSType>Linux</machineOSType>

 <machineAgentPresent>false</machineAgentPresent>

 <appAgentPresent>true</appAgentPresent>

 <appAgentVersion>Server Agent #21.11.0.33247 v21.11.0 GA compatible with 4.4.1.0
r7f7d2e9ac67aabc2b2b39b7b6fcf9b071104bf79 release/21.11.0</appAgentVersion>

 <agentType>APP_AGENT</agentType>

</node>

<node>

 <id>302</id>

 <name>Inventory-Services_Node-01</name>

 <type>Other</type>

 <tierId>11</tierId>

 <tierName>Inventory-Services</tierName>

 <machineId>301</machineId>

 <machineName>appserver.localdomain</machineName>

 <machineOSType>Linux</machineOSType>

 <machineAgentPresent>false</machineAgentPresent>

 <appAgentPresent>true</appAgentPresent>

 <appAgentVersion>Server Agent #21.11.0.33247 v21.11.0 GA compatible with 4.4.1.0
r7f7d2e9ac67aabc2b2b39b7b6fcf9b071104bf79 release/21.11.0</appAgentVersion>

 <agentType>APP_AGENT</agentType>

</node>

<node>

 <id>303</id>

 <name>Enquiry-Services_Node-01</name>

 <type>Other</type>

 <tierId>12</tierId>

BOOK.indb 645 19/05/22 5:58 PM

ptg39201256

646 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

 <tierName>Enquiry-Services</tierName>

 <machineId>301</machineId>

 <machineName>appserver.localdomain</machineName>

 <machineOSType>Linux</machineOSType>

 <machineAgentPresent>false</machineAgentPresent>

 <appAgentPresent>true</appAgentPresent>

 <appAgentVersion>Server Agent #21.11.0.33247 v21.11.0 GA compatible with 4.4.1.0
r7f7d2e9ac67aabc2b2b39b7b6fcf9b071104bf79 release/21.11.0</appAgentVersion>

 <agentType>APP_AGENT</agentType>

</node>

In this output, you can see a lot of helpful information related to server name, operat-
ing system type, whether the AppD agent is installed, and what version, along with other
characteristics.

We encourage you to continue to investigate the AppD API for extracting information that
may be beneficial to your projects.

Exam Preparation Tasks
As mentioned in the section “How to Use This Book” in the Introduction, you have a couple
of choices for exam preparation: Chapter 17, “Final Preparation,” and the exam simulation
questions on the companion website.

References
URL QR Code

https://www.postman.com/ciscodevnet/workspace/cisco-
dna-center/collection/382059-634a2adf-f673-42eb-8c36-
290f38e37971?ctx=documentation

https://www.postman.com/ciscodevnet/workspace/cisco-
devnet-s-public-workspace/collection/8697084-bf06287b-
a7f3-4572-a4d5-84f1c652109a?ctx=documentation

https://documenter.getpostman.com/view/30210/
SVfWN6Yc

BOOK.indb 646 19/05/22 5:58 PM

https://www.postman.com/ciscodevnet/workspace/cisco-dna-center/collection/382059-634a2adf-f673-42eb-8c36-290f38e37971?ctx=documentation
https://www.postman.com/ciscodevnet/workspace/cisco-dna-center/collection/382059-634a2adf-f673-42eb-8c36-290f38e37971?ctx=documentation
https://www.postman.com/ciscodevnet/workspace/cisco-dna-center/collection/382059-634a2adf-f673-42eb-8c36-290f38e37971?ctx=documentation
https://www.postman.com/ciscodevnet/workspace/cisco-devnet-s-public-workspace/collection/8697084-bf06287b-a7f3-4572-a4d5-84f1c652109a?ctx=documentation
https://www.postman.com/ciscodevnet/workspace/cisco-devnet-s-public-workspace/collection/8697084-bf06287b-a7f3-4572-a4d5-84f1c652109a?ctx=documentation
https://www.postman.com/ciscodevnet/workspace/cisco-devnet-s-public-workspace/collection/8697084-bf06287b-a7f3-4572-a4d5-84f1c652109a?ctx=documentation
https://documenter.getpostman.com/view/30210/SVfWN6Yc
https://documenter.getpostman.com/view/30210/SVfWN6Yc

ptg39201256

Chapter 16: Cisco Platforms 647

16

URL QR Code

https://docs.microsoft.com/en-us/powershell/scripting/
install/installing-powershell-on-linux?view=powershell-7.2

https://docs.microsoft.com/en-us/powershell/scripting/
install/installing-powershell-on-macos?view=powershell-7.2

https://docs.microsoft.com/en-us/
powershell/scripting/install/
installing-powershell-on-windows?view=powershell-7.2

BOOK.indb 647 19/05/22 5:58 PM

https://docs.microsoft.com/en-us/powershell/scripting/install/installing-powershell-on-linux?view=powershell-7.2
https://docs.microsoft.com/en-us/powershell/scripting/install/installing-powershell-on-linux?view=powershell-7.2
https://docs.microsoft.com/en-us/powershell/scripting/install/installing-powershell-on-macos?view=powershell-7.2
https://docs.microsoft.com/en-us/powershell/scripting/install/installing-powershell-on-macos?view=powershell-7.2
https://docs.microsoft.com/en-us/powershell/scripting/install/installing-powershell-on-windows?view=powershell-7.2
https://docs.microsoft.com/en-us/powershell/scripting/install/installing-powershell-on-windows?view=powershell-7.2
https://docs.microsoft.com/en-us/powershell/scripting/install/installing-powershell-on-windows?view=powershell-7.2

ptg39201256

CHAPTER 17

Final Preparation

The first 16 chapters of this book cover the technologies, protocols, design concepts, and
considerations required to be prepared to pass the Developing Applications Using Cisco
Core Platforms and APIs v1.0 DevNet Professional 350-901 DEVCOR Exam. Although these
chapters supply the detailed information, most people need more preparation than simply
reading the first 16 chapters of this book. This chapter details a set of tools and a study plan
to help you complete your preparation for the exams.

This short chapter has two main sections. The first section lists the exam preparation tools
useful at this point in the study process. The second section lists a suggested study plan now
that you have completed all the earlier chapters in this book.

Getting Ready
Here are some important tips to keep in mind to ensure you are ready for this rewarding exam!

■ Build and use a study tracker: Consider taking the exam objectives shown in each
chapter and building yourself a study tracker! This will help ensure you have not
missed anything and that you are confident for your exam! As a matter of fact, this
book offers a sample Study Planner as a website supplement.

■ Think about your time budget for questions in the exam: When you do the math,
you realize that on average you have one minute per question. Although this does not
sound like enough time, realize that many of the questions are very straightforward,
and you will take 15 to 30 seconds on those. This builds time for other questions as
you take your exam.

■ Watch the clock: Check in on the time remaining periodically as you are taking the
exam. You might even find that you can slow down pretty dramatically as you have
built up a nice block of extra time.

■ Get some ear plugs: The testing center might provide them, but get some just in case
and bring them along. There might be other test takers in the center with you, and you
do not want to be distracted by their screams. Some people have no issue blocking out
the sounds around them, so they never worry about this, but it is an issue for some.

■ Plan your travel time: Give yourself extra time to find the center and get checked in.
Be sure to arrive early. As you test more at that center, you can certainly start cutting
it closer time-wise.

■ Get rest: Most students report success with getting plenty of rest the night before the
exam. All-night cram sessions are not typically successful.

■ Bring in valuables but get ready to lock them up: The testing center will take your
phone, your smart watch, your wallet, and other such items. They will provide a secure
place for them.

BOOK.indb 648 19/05/22 5:58 PM

ptg39201256

■ Take notes: You will be given note-taking implements, so do not be afraid to use them.
You might try jotting down any questions you struggled with. You then can memorize
them at the end of the test by reading your notes over and over again. Make sure to
have a pen and paper in the car. You can write down the issues in there just after the
exam. After you get home with a pass or fail, you can research those items!

Tools for Final Preparation
This section lists some information about the available tools and how to access the tools.

Pearson Cert Practice Test Engine and Questions on the Website
Register this book to get access to the Pearson IT Certification test engine (software that
displays and grades a set of exam-realistic, multiple-choice questions). Using the Pearson
Cert Practice Test Engine, you can either study by going through the questions in Study
Mode or take a simulated (timed) DevNet Professional 350-901 DEVCOR exam.

The Pearson Test Prep practice test software comes with two full practice exams. These
practice tests are available to you either online or as an offline Windows application. To
access the practice exams that were developed with this book, please see the instructions in
the card inserted in the sleeve in the back of the book. This card includes a unique access
code that enables you to activate your exams in the Pearson Test Prep software.

Accessing the Pearson Test Prep Software Online
The online version of this software can be used on any device with a browser and connec-
tivity to the Internet, including personal computer, tablets, and smartphones. To start using
your practice exams online, simply follow these steps:

Step 1. Go to http://www.PearsonTestPrep.com.

Step 2. Select Pearson IT Certification as your product group.

Step 3. Enter your email/password for your account. If you don’t have an account on
PearsonITCertification.com or CiscoPress.com, you need to establish one by
going to PearsonITCertification.com/join.

Step 4. In the My Products tab, click the Activate New Product button.

Step 5. Enter the access code printed on the insert card in the back of your book to
activate your product.

Step 6. When the product is listed in your My Products page, click the Exams button
to launch the exam settings screen and start your exam.

Accessing the Pearson Test Prep Software Offline
If you wish to study offline, you can download and install the Windows version of the Pear-
son Test Prep software. There is a download link for this software on the book’s companion
website, or you can just enter this link in your browser:

http://www.pearsonitcertification.com/content/downloads/pcpt/engine.zip

BOOK.indb 649 19/05/22 5:58 PM

http://www.PearsonTestPrep.com
http://PearsonITCertification.com
http://CiscoPress.com
http://PearsonITCertification.com/join
http://www.pearsonitcertification.com/content/downloads/pcpt/engine.zip

ptg39201256

650 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

To access the book’s companion website and the software, simply follow these steps:

Step 1. Register your book by going to PearsonITCertification.com/register and enter-
ing the ISBN: 9780137370443.

Step 2. Respond to the challenge questions.

Step 3. Go to your account page and select the Registered Products tab.

Step 4. Click the Access Bonus Content link under the product listing.

Step 5. Click the Install Pearson Test Prep Desktop Version link under the Practice
Exams section of the page to download the software.

Step 6. When the software finishes downloading, unzip all the files on your computer.

Step 7. Double-click the application file to start the installation, and follow the on-
screen instructions to complete the registration.

Step 8. When the installation is complete, launch the application and select the Acti-
vate Exam button on the My Products tab.

Step 9. Click the Activate a Product button in the Activate Product Wizard.

Step 10. Enter the unique access code found on the card in the sleeve in the back of
your book and click the Activate button.

Step 11. Click Next and then the Finish button to download the exam data to your
application.

Step 12. You can now start using the practice exams by selecting the product and click-
ing the Open Exam button to open the exam settings screen.

Note that the offline and online versions synch together, so saved exams and grade results
recorded on one version are available to you on the other as well.

Customizing Your Exams
When you are in the exam settings screen, you can choose to take exams in one of three
modes:

■ Study Mode

■ Practice Exam Mode

■ Flash Card Mode

Study Mode enables you to fully customize your exams and review answers as you are tak-
ing the exam. This is typically the mode you would use first to assess your knowledge and
identify information gaps. Practice Exam Mode locks certain customization options, as it is
presenting a realistic exam experience. Use this mode when you are preparing to test your
exam-readiness. Flash Card Mode strips out the answers and presents you with only the
question stem. This mode is great for late-stage preparation when you really want to chal-
lenge yourself to provide answers without the benefit of seeing multiple-choice options.
This mode does not provide the detailed score reports that the other two modes do, so you
should not use it if you are trying to identify knowledge gaps.

BOOK.indb 650 19/05/22 5:58 PM

http://PearsonITCertification.com/register

ptg39201256

Chapter 17: Final Preparation 651

17

In addition to these three modes, you can select the source of your questions. You can
choose to take exams that cover all of the chapters, or you can narrow your selection to
just a single chapter or the chapters that make up specific parts in the book. All chapters are
selected by default. If you want to narrow your focus to individual chapters, simply deselect
all the chapters and then select only those on which you wish to focus in the Objectives
area.

You can also select the exam banks on which to focus. Each exam bank comes complete
with a full exam of questions that cover topics in every chapter. The two exams printed in
the book are available to you as well as two additional exams of unique questions. You can
have the test engine serve up exams from all four banks or just from one individual bank by
selecting the desired banks in the exam bank area.

There are several other customizations you can make to your exam from the exam settings
screen, such as the time of the exam, the number of questions served up, whether to ran-
domize questions and answers, whether to show the number of correct answers for multiple-
answer questions, or whether to serve up only specific types of questions. You can also
create custom test banks by selecting only questions that you have marked or questions on
which you have added notes.

Updating Your Exams
If you are using the online version of the Pearson Test Prep software, you should always
have access to the latest version of the software as well as the exam data. If you are using the
Windows desktop version, every time you launch the software, it checks to see if there are
any updates to your exam data and automatically downloads any changes that were made
since the last time you used the software. This requires that you are connected to the Inter-
net at the time you launch the software.

Sometimes, due to many factors, the exam data may not fully download when you activate
your exam. If you find that figures or exhibits are missing, you may need to manually update
your exams.

To update a particular exam you have already activated and downloaded, simply select the
Tools tab and select the Update Products button. Again, this is an issue only with the desk-
top Windows application.

If you wish to check for updates to the Pearson Test Prep exam engine software, Windows
desktop version, simply select the Tools tab and select the Update Application button. This
ensures you are running the latest version of the software engine.

Premium Edition
In addition to the free practice exam provided on the website, you can purchase additional
exams with expanded functionality directly from Pearson IT Certification. The Premium
Edition of this title contains an additional two full practice exams and an eBook (in both
PDF and ePub format). In addition, the Premium Edition title also has remediation for each
question to the specific part of the eBook that relates to that question.

Because you have purchased the print version of this title, you can purchase the Premium
Edition at a deep discount. There is a coupon code in the book sleeve that contains a one-
time-use code and instructions for where you can purchase the Premium Edition.

To view the premium edition product page, go to www.informit.com/title/9780137370344.

BOOK.indb 651 19/05/22 5:58 PM

http://www.informit.com/title/9780137370344

ptg39201256

652 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Chapter-Ending Review Tools
Chapters 1 through 16 each provide several features in the “Exam Preparation Tasks” section
at the end of the chapter. You might have already worked through them in each chapter. It
can also be useful to use these tools again as you make your final preparations for the exam.

Suggested Plan for Final Review/Study
This section lists a suggested study plan from the point at which you finish reading through
Chapter 16, until you take the Developing Applications Using Cisco Core Platforms and
APIs v1.0 DevNet Professional 350-901 DEVCOR Exam. Certainly, you can ignore this plan,
use it as is, or just take suggestions from it.

The plan uses two steps:

Step 1. Review key topics and DIKTA? questions: You can use the table that lists the
key topics in each chapter, or just flip the pages looking for key topics. Also,
reviewing the DIKTA? questions from the beginning of the chapter can be
helpful.

Step 2. Use the Pearson Cert Practice Test engine to practice: The Pearson Cert
Practice Test engine can be used to study using a bank of unique exam-realistic
questions available only with this book.

Summary
The tools and suggestions listed in this chapter have been designed with one goal in mind: to
help you develop the skills required to pass the Developing Applications Using Cisco Core
Platforms and APIs v1.0 DevNet Professional 350-901 DEVCOR Exam. This book has been
developed from the beginning to not just tell you the facts but to also help you learn how
to apply the facts. No matter what your experience level leading up to when you take the
exams, it is our hope that the broad range of preparation tools, and even the structure of the
book, helps you pass the exam with ease. We hope you do well on the exam!

BOOK.indb 652 19/05/22 5:58 PM

ptg39201256

This page intentionally left blank

ptg39201256

APPENDIX A

Answers to the “Do I Know This
Already?” Questions

Chapter 1
1. D. Software architecture includes functional and business requirements and non-

functional requirements, which include building blocks and structures. All of these
answers relate to this concept.

2. B. Although the synchronous data link control is a real communication protocol cre-
ated in the 1970s for IBM Mainframe computer connectivity, the correct response
here is software development lifecycle. At the time of this writing, social data lan-
guage controller does not exist.

3. A. Functional requirements define the functionality and business purpose of an
application. Answer B is incorrect because high availability is an attribute of the
application and is considered part of the nonfunctional requirements. How to
develop an application and what programming language to use are not part of the
functional requirements.

4. D. Scalability, modularity, and high availability are part of a long list of nonfunctional
requirements briefly discussed in this chapter and in more detail in Chapter 2, “Soft-
ware Quality Attributes.”

5. B. Flexibility, speed, and collaboration among the various independent teams are the
main characteristics of Agile development.

6. D. The Lean process relies on rapid development and a lot less planning at the early
stages of the development cycle. Answers A, B, and C are clear characteristics of the
Lean development model.

7. D. DevOps has four metrics for assessing performance. Three are listed here, and the
fourth one is mean time to response.

8. C. White-box testing is different from black-box testing in that full knowledge of the
system under testing is needed; that’s also a requirement of unit testing.

9. D. Code reviewers should be looking at a variety of aspects or concepts related to
high-quality code, including functionality, complexity, naming, testability of code,
style, and the presence of proper comments and documentation.

10. B. Patterns ensure consistency of coding practices and the approach or context of
the solution. They are meant to reduce complexity (not increase it). There are various
patterns to choose from, and you should choose one that works well with the con-
text of the architecture you’re working on.

BOOK.indb 654 19/05/22 5:58 PM

ptg39201256

Chapter 2
1. D. As you will learn later, nonfunctional requirements, like scalability, availability, and

security, define the success of your application, and it is to attract and maintain the
user base. The other answers, independently, do not define quality. Quality is a com-
bination of several applicable attributes. A bug-free application with slow access or
slow transaction times is not considered high quality because it does not address all
predefined quality attributes.

2. D. Functional requirements, in a way, dictate the limitations and measurability of
nonfunctional requirements. For example, if you build a globally accessed application
to be hosted from a centralized data center in the US, you cannot require transaction
times to be less than 50 milliseconds, knowing very well that Internet latency for a
user in Europe or Australia is higher than 100 milliseconds.

3. A. It is safe to assume that nonfunctional requirements and quality attributes are
the same. Scalability, availability, flexibility, and other “-ilities” are referred to by
software developers.

4. D. These attributes are all qualities of a software application and should clearly be
defined and measurable.

5. B. The degree to which a system is operational and accessible when needed for use
is how we measure availability. Answers A and C are incorrect because they give half
the answer.

6. D. The ISO/IEC 25010 attempts to tabulate the most common quality attributes
based on relevance, and all the answers here are correct.

7. C. Whether they are called chunks or blocks does not matter; the emphasis here is
on the interaction among the various blocks and how they each contribute to the big
picture.

8. D. When two or more functions are dependent on each other or share functions or
datasets, they’re closely coupled. Independence or dependence is a form of coupling.
In simple terms, loosely coupled means there is a degree of independence. Tightly
coupled means there is a degree of dependence.

9. A. Coupling is used to refer to relationships among modules, and cohesion is
used for relationships and interactions within a module. Cohesion within a module
indicates that all elements needed for a specific computation within a function are
included and done within the module. There is no dependence on other elements.

10. D. Answers A, B, and C are all examples of horizontal scalability. Adding servers to
an application either through clustering or load balancing is an example of scaling
out and subsequently an example of horizontal scaling.

11. D. The type of redundancy you use is a pure design dilemma and trade-off. The type
of standby depends on your functional and nonfunctional requirements.

12. D. Hello packets are exchanged between two systems to inform each other of their
state. The packets may be as simple as a heartbeat or may carry more details about
failing subcomponents.

BOOK.indb 655 19/05/22 5:58 PM

ptg39201256

656 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Chapter 3
1. D. Maintainability of software depends on various factors, including proper com-

ments, documentation, and modular design. A modular design without adequate
documentation is useless.

2. D. Structured programming is the traditional way of using a set of functions and is
not a characteristic of object-oriented programming.

3. C. SOLID is software design principles for building maintainable code. The five
SOLID principles are discussed in detail in the “Maintainability Design and Imple-
mentation” section.

4. B. The text of the question is a simple definition of the open-closed principle (or
OCP).

5. E. The dependency inversion principle states that high-level modules should not
depend on low-level modules. Both should depend on abstractions, and abstractions
should not depend on details. Details should depend on abstractions.

6. D. Latency, round-trip time, and throughput are all indicators of performance. Moni-
toring these parameters may also be an indicator of system- or network-related issues
that need attention or further optimization.

7. B. Network oversubscription is the safest answer. You can also argue that oversub-
scribed wireless systems lead to the same effect.

8. A and B. Both caching and rate limiting are ways to manage system load and prevent
performance degradations and outages. Echo replies can measure latency but are not
related to managing load in this question. Open Shortest Path First (OSPF) is a rout-
ing protocol.

9. D. Observability is a combination of logging, metrics, and tracing. They are all part
of the three answers A, B, and C.

10. C. The three pillars of observability are logging, metrics, and tracing. The other
answers are not related.

11. B and C. Relational databases store data in rows and columns like spreadsheets,
whereas nonrelational databases have four different types: one of them is document-
oriented stores designed for storing, managing, and retrieving document-oriented
information. The other types of nonrelational databases are key-value stores, wide-
column stores, and graph stores.

Chapter 4
1. D. Although the primary use of version control is to track code changes, version

control, in practice, is often used to store configuration, release, and deployment
information.

2. B. GitHub adds development workflow functionality associated with Git. This func-
tionality includes pull requests, review/approvals, searchability, and tags. GitHub
is a repository hosting service toolset that includes access control and collabora-
tion features. GitLab is a repository hosting manager toolset developed by GitLab
Incorporated.

BOOK.indb 656 19/05/22 5:58 PM

ptg39201256

Appendix A: Answers to the “Do I Know This Already?” Questions 657

A
3. D. A version control system is used for managing the code base, streamlining the

development process, and tracking all changes. It also tracks who made the changes.

4. B. When a file is deleted, it can no longer be modified. There are many ways conflicts
can be generated. When two programmers commit changes to the same line, for
example, a merge conflict can be generated. Two developers opening the same file
does not cause a conflict; however, two developers saving changes to the same area
of a file may cause a conflict.

5. B and C. A branching strategy needs to define the types of branches and all the rules
governing usage by the development team. In addition, every developer has to agree
to the strategy. These are basic branching and branching strategy concepts, and no
successful branching can be achieved without them. All developers need to under-
stand branching strategies; otherwise, conflicts will continually arise.

Chapter 5
1. A. You can use the PATCH request to require partial resources or to modify an

existing resource. Answers B and D are incorrect because a GET request retrieves
resource details and Delete removes resources. There is no cancel HTTP method,
which means answer C is incorrect.

2. B. The PUT method is idempotent; it is not safe because changes can be made,
resulting in misconfiguration and errors if the wrong details are sent to a resource. It
replaces whatever exists at the target URL with something else. Answers A and C are
incorrect because they are not safe and idempotent. Answer D is incorrect because
an HTTP PUT method will modify but not remove (delete) resources.

3. A. With application/x-www-form-urlencoded, the keys and values are encoded in
key-value tuples separated by an ampersand (&), with an equal sign (=) between the
key and the value. Answer B is incorrect because multipart/form-data is a special
type of body whereby each value is sent as a block of data. Answers C and D are
incorrect because the request body format is not indicated as XML.

4. C. Swagger is a set of open-source tools for writing REST-based APIs. It enables you
to describe the structure of your APIs so that machines can read them. Answers A,
B, and D are incorrect because multiple languages can be used to document APIs
with Swagger UI, and it can support more than browser/Postman testing.

5. A and C. REST represents Representational State Transfer; it is a relatively new aspect
of writing web APIs. Answer B and D are incorrect because REST/RESTful APIs are
not sets of rules that developers follow when they create their APIs.

RESTful refers to web services written by applying REST architectural concepts; they
are called RESTful services. They focus on system resources and how the state of a
resource should be transported over the HTTP protocol to different clients written in
different languages. In a RESTful web service, HTTP methods like GET, POST, PUT,
and DELETE can be used to perform CRUD operations.

6. A. In the context of transaction processing, the acronym ACID refers to the four key
properties of a transaction: atomicity, consistency, isolation, and durability.

BOOK.indb 657 19/05/22 5:58 PM

ptg39201256

658 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

7. B. SOAP is defined as an XML-based protocol. It is known for designing and devel-
oping web services as well as enabling communication between applications devel-
oped on different platforms using various programming languages over the Internet.
It is both platform and language independent. Answers A and C are not correct
because SOAP only allows XML and has built-in error handling. Although SOAP can
be stateless by default, it is possible to make SOAP stateful by changing the code on
the server; this makes D incorrect.

8. A. NETCONF/YANG provides a standardized way to programmatically update and
modify the configuration of a network device; this makes B incorrect. YANG is the
modeling language that describes the configuration changes. NETCONF is the pro-
tocol that applies the changes to the relevant datastore (such as running, saved) on
the device. Answers C and D are incorrect because NETCONF can also update and
modify the running configuration of a network device and does not have an irre-
placeable attribute operation.

9. A, B, C, and D. A client/server architecture is made up of clients, servers, and
resources, with requests managed through HTTP. The most common formats found
in modern APIs are JavaScript Object Notation (JSON) and Extensible Markup
Language (XML). A uniform interface exists between components so that informa-
tion is transferred in a standard form. Communication is stateless, meaning no cli-
ent information is stored between GET requests, and each request is separate and
unconnected.

10. A, B, C, D. gRPC is a modern, open-source remote-procedure call (RPC) framework
that can run in any environment. gRPC is built on http/2, which makes it very lean
and ideal in low latency, with support for multiple languages such as Java, Python,
and Go. gRPC enables client and server applications to communicate transparently
and makes it easier to build connected systems.

Chapter 6
1. B. A software development kit (SDK) helps speed up and improve the adoption and

developer experience of an API. Answer A is incorrect because asynchronous API
performance refers to overall throughput. Answers C and D could be partially cor-
rect; B has the correct two main benefits of an API SDK.

2. C. The OpenAPI Specification (OAS) defines a standard programming language–
agnostic interface to RESTful APIs, which allows both humans and computers to dis-
cover and understand the capabilities of the service without access to source code,
documentation, or through network traffic inspection. Answers A, B, and D are
incorrect as OpenAPI Specification (OAS) for RESTFUL APIs.

3. A and B. An API client abstracting and encapsulating all the necessary REST API
endpoints calls for authenticating. Other resources might include code samples, test-
ing and analytics, and documentation. Answers C and D are incorrect because both
headers and parameters are additional or optional options.

4. D. The bearer token is an opaque string, which is generated by the server response to
a developer login request, and not intended to have any meaning to clients using it.

BOOK.indb 658 19/05/22 5:58 PM

ptg39201256

Appendix A: Answers to the “Do I Know This Already?” Questions 659

A
Answers A, B, and C are incorrect because OAuth uses a single string, which has no
meaning and may be of varying lengths.

5. A. True. A WebSocket uses a bidirectional protocol, in which there are no predefined
message patterns such as request/response. The client and the server can send mes-
sages to each other.

6. A. The back-end infrastructure already exists within an organization and is used as
a foundation for defining the API. This means that answers B and C are incorrect.
Answer D is incorrect because a mock server is not a back-end infrastructure but is
rather a fake server.

7. A and C. Outside-in API design allows for a lot more elasticity than inside-out API
design, covering more use cases in single API calls, thus leading to fewer APIs being
made by the consumer and less traffic on the wire and back-end systems for the pro-
vider. Answers B and C are incorrect because outside-in does not increase API adop-
tion rate, and in an outside-in approach to API design the UI is often the first to be
built.

8. A. True. The HTTP endpoints indicate how you access the resource, whereas the
HTTP method indicates the allowed interactions (such as GET, POST, or DELETE)
with the resource. HTTP methods should not be included in endpoints.

9. A and B. With page-based pagination, the developer can choose to view the required
number of pages and items on the page. This could be a single page or a preset range
of pages. An API could allow the developer to select a starting page—for example,
page 10 through page 15. This is referred to as offset pagination. Answers C and D
are incorrect because page-based is often used when the list of items is of a fixed
and predetermined length.

10. E. Rate limiting protects an API from inadvertent or malicious overuse by limiting
how often each developer or account can call the API. Rate limiting is also used for
scalability, performance, monetization, authentication, and availability.

Chapter 7
1. C. The idea is that DevOps is a cultural shift to enable cross-functional teams

experienced in a variety of areas to develop and operate an application in produc-
tion. Answers A, B, and D are aspects of DevOps but need not occur if DevOps is
adopted (they are somewhat optional).

2. B. DevOps and SRE share a common outcome, to deliver higher uptimes and reli-
ability to an application or service—and the use of tooling/observability/training/
etc. to help enable that uptime and resilience. DevOps encourages cross-functional
teams, whereas SRE encourages a separate team to liaise between development and
operations. Answer A is incorrect because it is generally looked at as part of SRE as
a new team is instituted. Answer D is generally looked at as part of DevOps culture.
Answer C is incorrect because the two overlap.

3. D. CI is meant to build/compile the code, perform standard unit testing against the
code, and then ensure there are no security holes against the dependencies or devel-
oped code. Answer A refers to deployment of an application. Answers B and C refer

BOOK.indb 659 19/05/22 5:58 PM

ptg39201256

660 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

to the act of application development and merging of code branches (which need not
have a CI component).

4. B. CI/CD pipeline definition files are generally written in YAML. Answers A and C
can represent the same information as YAML, but it is not used. Answer D is a pro-
gramming language and is not used to define the pipelines.

5. C. Pilot covers the specific methods in which applications can be deployed via CD.
Answers A, B, and D are valid ways to release applications or incremental updates to
applications to an environment (production, test, etc.).

6. B. This question specifically discusses what the name serverless means as it pertains
to the focus on the underlying infrastructure needed to deploy an app. Answer A is
incorrect because we still need to use servers. Answer C is incorrect because there
does need to be packaging.

7. A and D. There is a discussion around the levels of abstraction and the benefits pro-
vided versus the trade-offs. As we abstract away management of the underlying infra
in the cloud, we don’t have to worry about the details of the platforms, but we must
conform to the cloud provider in what is allowed and exposed from the abstraction,
which is the opposite of answers B and C.

8. D. The idea of the 12-factor app is to create a set of standards and recommendations
to be followed when designing an application meant to be deployed across multiple
clouds. Answer A is incorrect because they are not specific “tests” that can be run.
Answer B is incorrect because the 12 aspects don’t directly deal with user experi-
ence. These rules don’t just apply to a CI/CD pipeline, so answer C is also incorrect.

Chapter 8
1. B. Information system security can be summed up in three fundamental components:

confidentiality, integrity, and availability.

2. A and D. The data is either at rest (for example, stored on a hard drive or a data-
base) or in motion (for example, flowing or in transit though the network between
two nodes). You may encounter some references that use a third state called in use,
indicating that data is being processed by a CPU or a system. As for encryption and
clear text, data can be in motion and encrypted, or clear text while it’s in motion or
at rest.

3. D. Data at rest is stored on a hard drive, tape, database, or in other ways.

4. A. PII refers to personally identifiable information. The other answers do not apply
or relate to the topic.

5. B. GDPR gives European Union (EU) citizens control over their own personal data.
It gives citizens the right to withdraw consent, to have easier access to their data, to
understand where their data is stored, and to know if their data has been compro-
mised by a cyberattack within 72 hours, depending on the relevance of the attack.

6. D. IT secrets are used as “keys” to unlock protected applications or application data.
Passwords, account information, and API keys are examples. A VIN is not considered
a secret because it is always displayed on every car’s windshield.

BOOK.indb 660 19/05/22 5:58 PM

ptg39201256

Appendix A: Answers to the “Do I Know This Already?” Questions 661

A
7. B. The main responsibility of a certificate authority (CA) is issuing and signing cer-

tificates. Certificates are used to protect account and personal information.
8. D. Injection attacks are common and are one of the main issues that OWASP warns

about. Injection attacks can come in different formats, such as database, LDAP, or OS
command injections.

9. D. A PoH (or Proof of History) attack is not a cryptographic attack. It is closely
related to Blockchain and crypto currency. Brute-force, statistical, and implementa-
tion attacks are types of cryptographic attacks.

10. C. There is no such thing as a four-legged authorization. The most common authori-
zation flows are two-legged and three-legged. The three-legged OAuth flow requires
four parties: the authorization server, client application, resource server, and resource
owner (end user).

Chapter 9
1. C. Option C has the common categories of the PDIOO model in the correct order.

The other options are contrived or out of order.

2. A. SNMPv3 uses the MD5 or SHA authentication method. Option B is incorrect for
SNMPv3 but is correct for SNMPv1 and 2c. Option C is incorrect; there is no key-
based authentication. Option D is incorrect; AES-128 is a function of data encryp-
tion, not authentication.

3. B. Option B is the proper expansion of the acronym, as defined by Google, which
coined the term. The other options are contrived.

4. C. OOB stands for out-of-band networking, which is a way to partition management/
administrative traffic from other traffic. Segment routing and VLANs are technolo-
gies used to segment or partition traffic, but they are generally or more commonly
used with user traffic. Answer A is incorrect because FWM (firewall management)
firewalls are useful for restricting traffic, but firewall management is not a type of
network for separating administrative traffic from other production traffic.

5. B. PnP is a common and recommended process for zero-touch deployments. Options
A and D are contrived answers. Option C is a user-initiated feature common to SMB
products.

6. A. Intent-based networking is aligned to business requirements that are easily trans-
lated into policies reflecting native device configurations. All the other options are
incorrect; the software image of a device does not make it intent-based; the rout-
ing protocols do not make a network intent-based, even if the routing protocols are
defined similarly in an IBN; and AI does not intuit business requirements. It may
inform you of what is more predominant or what is out of the norm.

7. D. NETCONF is an IETF working group specification and protocol standardized
to normalize configuration management across multiple vendors using XML sche-
mas and YANG models. Option A is incorrect; it is a contrived answer. Option B is
incorrect; XML was the first (and consistent) data encoding method for NETCONF.
Option C is incorrect; it is a contrived answer. Python may be used to implement
NETCONF-based management, but it is only an option.

BOOK.indb 661 19/05/22 5:58 PM

ptg39201256

662 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

8. C. Two-factor or multifactor authentication relies on something a user knows, such
as a password with proof of who they are (for example, a hardware token, mobile
app response, or something else in their possession). Options A and B are contrived
answers. Option D is incorrect; although an organization may use 2FA/MFA to allow
access to Webex, it is not the definition of what 2FA/MFA is. Likewise, the current
model of programmatically accessing Webex (via API) does not use 2FA/MFA.

9. B. Embedded management is often found in sophisticated ITSM environments; how-
ever, it should be augmented by off-box monitoring (EMS, cloud-native monitoring
systems) to have a broader perspective. If a network node using embedded manage-
ment (and only embedded management) goes down, it lacks reporting/notification.

Chapter 10
1. B. In environments where devices perform different functions using a model to define

a device’s configuration and desired state, model-driven management is highly effi-
cient and effective. Answers A, C, and D are incorrect. Templates can be effective
but are less flexible. They also require more routine maintenance, especially as soft-
ware images change. Atomic-driven management is a contrived answer, and generally,
managing devices atomically (one by one) leads to a higher degree of maintenance.
Distributed EMSs also is a contrived answer. Having multiple element management
systems can be less efficient, especially when they are not integrated or used.

2. B. Software, infrastructure, and operations are defined by Google’s catalyst of this
role. Answers A, C, and D are incorrect. Firmware is not a focus (while software
image management may be addressed). While close, answer C puts more focus on
network engineering than SRE promotes. Likewise, traffic and SecOps are not gen-
eral focus areas for SRE (although security can be a component of it).

3. D. Agile promotes requirements gathering, adaptive (and collaborative) planning,
quick delivery, and a CI/CD approach. Answers A, B, and C are incorrect. The
“defined process” part implies a rigorous structure that is inflexible; this is not Agile.
Although Agile does provide flexibility, it does not give developers a “free pass”
without accountability. Answer C reflects more of a test-driven methodology.

4. A. Kanban provides a more visual, graphical approach of software development;
many people attribute the “board” and “cards” approach to identify work and prog-
ress. Answers B, C, and D are incorrect. Neither Agile nor Waterfall is specifically a
visual, graphical-based approach to software development. Answer D is contrived.
Although the term illustrative does imply a visual, graphical approach, it is the
Kaban methodology that is the accepted industry term.

5. A. Concurrency provides the ability to do lots of tasks at once, and parallelism is
defined as working with lots of tasks at once. Answers B, C, and D are incorrect.
Exchanging implies swapping away from tasks; switching also implies changing focus
among tasks. The threading part of answer C is accurate, but the sequencing part is
incorrect. Answer D is the opposite of answer A.

6. A. OpenAPI was previously known as Swagger. Answers B, C, and D are incorrect.
REST was never known as the CLI, but it’s funny. SDN was catalyzed in the Clean

BOOK.indb 662 19/05/22 5:58 PM

ptg39201256

Appendix A: Answers to the “Do I Know This Already?” Questions 663

A
Slate project, but it is broader than RESTful web services. OpenWeb and CORBA are
not specifications for RESTful web services.

7. C. Basic authentication takes a concatenation of username and password with a
colon (:) separating them, and Base64 encodes the string. The openssl utility is help-
ful for performing that function. Answers A, B, and D are incorrect. Basic authentica-
tion does not use the md5 hash function. There is no specification of what encoding
method to use with the openssl utility. Also, basic authentication does not use the
ampersand (&) to join the username and password.

8. B. XML is the Extensible Markup Language. Answers A, C, and D are incorrect. It is
not extendable or machine. Nor is it extreme or machine or learning—but it sounds
fun. Likewise, it is not extraneous or modeling.

9. D. JSON records and objects are denoted with curly braces. Answers A, B, and C
are incorrect. Angle braces are seen in XML, not JSON. Square brackets note lists in
JSON, not records. Simple quotes note strings in JSON, not records.

10. B. HEAD and GET methods in REST operations are both idempotent (able to be
run multiple times receiving the same result). Answers A, C, and D are incorrect. In
A and C, POST is not idempotent (both need to be for the correct answer). In D,
PATCH is not idempotent, but HEAD is idempotent (both need to be for the correct
answer).

11. A and C. REST and JDBC are APIs. Answers B and D are incorrect. RMON is a
legacy management protocol. SSH is a useful protocol, but it is predominately used
for human interaction with a device; it is not optimal for programmatic use as an API
would be.

Chapter 11
1. B. The Internet Engineering Task Force (IETF) created the NETCONF working

group in May 2003 to tackle the configuration management problem across vendors.
Option A is incorrect because the ANSI organization is a private nonprofit organiza-
tion that oversees the development of voluntary consensus standards for products,
services, processes, systems, and personnel in the United States. It did not initiate the
work for NETCONF. Option C is incorrect because the ITU is a specialized agency
of the United Nations responsible for all matters related to information and com-
munication technologies, but it did not initiate the work for NETCONF. Option D
is incorrect because the TM Forum is a global industry association for service pro-
viders and their suppliers in the telecommunications industry; it did not initiate the
work for NETCONF.

2. D. The IETF RFC defining NETCONF initially was RFC 4741 in December 2006.
RFC 6241 provided updates to the base protocol in June 2011. Option A is incorrect
because they are related to SNMP. Option B is incorrect because they are related to
SNMP. Option C is incorrect because they are related to RESTCONF.

3. A. Model-driven configuration management allows for the definition of relationship
and desired configuration distinctives across networks/devices/services. Answers B,
C, and D are incorrect. A model describes network/device/service relationships and

BOOK.indb 663 19/05/22 5:58 PM

ptg39201256

664 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

configures them with consideration of the interdependencies, not segmentation or
isolation. Answer C is a contrived answer that plays on remote control devices some-
times being called models. Answer D is incorrect because an inference engine is part
of a machine-learning solution that decides solutions from the rules and knowledge
base; it might not reflect true intent. A model provides specific guidance.

4. C. Cisco IOS XE requires the netconf-yang configuration command to enable NET-
CONF. The other answers use incorrect syntax.

5. C. NETCONF uses IANA-assigned TCP port 830, as defined in RFC 6242. Answer A
is incorrect because it is the standard port for HTTP protocol over TLS/SSL. Answer
B is incorrect because it is the standard port for UDP-based HTTP protocol over
TLS/SSL. Answer D is incorrect; although the port number 830 is accurate, the UDP
transport protocol is incorrect.

6. B. The end-of-message framing sequence for a NETCONF RPC over an SSH session
is]]>]]>, as defined in RFC 6242, Section 4.3. The other options are incorrect; they
are not the ending sequences for a hello exchange.

7. C. NETMOD is the IETF working group, and YANG serves as a data modeling lan-
guage to characterize configuration, state, and administrative functions. Answers A,
B, and D are incorrect. There is not a focus or catalyst with firmware image manage-
ment. There is no complementary YIN encoding method.

8. A. YANG definition files are made of module declarations, containers of objects, lists
of objects, and individual leaf items. Answer B is incorrect because there is no spine
item. Answer C is incorrect because there are no spine or interconnect items.

9. D. The Accept header identifies the requester’s intent to receive data in a specific for-
mat. The value of application/yang-data+json is correct for JSON-encoded data com-
ing from a YANG-enabled endpoint. Answer A is incorrect because the header is not
Content-Type and the value is not application/json. Answer B is incorrect because
the header is not Content-Type, even as the value is correct. Answer C is incorrect
because it has the correct header type of Accept but the value of application/json is
incorrect.

10. C. The HTTP PUT operation, used by NETCONF, would be appropriate for update/
replace operations. Another option is the PATCH operation, but it is not supplied as
an option. Answer A is incorrect because GET operations retrieve data from APIs.
Answer B is incorrect because POST operations set data for APIs. Answer D is incor-
rect because DELETE operations remove data from APIs.

Chapter 12
1. D. SNMPv3 uses MD5/SHA for authentication and DES/3DES/AES for encryp-

tion and data security. MDT gRPC has SSL/TLS integration and promotes its use
to authenticate the server and encrypt the data exchanged between client and
server. These capabilities afford similar data security. Answer A is incorrect because
SNMPv1 uses community string authorization and no encryption, which affords
little security. MDT can provide TLS. Answer B is incorrect because SNMPv2c uses
community string authorization and no encryption, which affords little security.
Answer C is incorrect because answers A and B are.

BOOK.indb 664 19/05/22 5:58 PM

ptg39201256

Appendix A: Answers to the “Do I Know This Already?” Questions 665

A
2. B. MDT uses the HTTP/2 application protocol. Answer A is incorrect because MDT

uses the more advanced HTTP/2 application protocol rather than HTTP. Answer C is
incorrect because SPDY was an original experimental protocol, but HTTP/2 became
the final model. Answer D is incorrect because MDT does not use secure copy
(SCP). Answer E is incorrect because MDT does not use secure FTP (sFTP).

3. A. In MDT, the device is the authoritative source of the telemetry. In dial-out mode,
the device pushes telemetry to the receiver/collector. Answer B is incorrect because
it describes dial-in mode with an inaccurate representation of the device being pas-
sive. Answer C is incorrect because it describes a dial-in mode model. Answer D is
incorrect because in dial-out mode the telemetry receiver is still considered a server.
Answer E is incorrect because it describes dial-in mode where the receiver dials in to
the network device and subscribes dynamically to one or more sensor paths.

4. C. When building a telemetry dial-out configuration, you must create a destination
group, sensor group, and subscription. Answer C is not a major task because flow
spec is not necessary and is a contrived detractor reminiscent of OpenFlow. Answers
A, B, and D are incorrect because they are major tasks needed to configure telemetry
dial-out.

5. C. Google Protocol Buffers (or protobufs) is the correct answer. Answers A, B, and D
are incorrect because they are contrived answers. Answer E is incorrect because it is
a contrived answer of a legacy protocol, Gopher, with other unaffiliated terms.

6. D. A sensor path is a combination of YANG data model for the feature of interest
with the specific metric node (leaf, leaf-list, container, and so on). Answer A is incor-
rect because a sensor path is not related to SNMP. Answer B is incorrect because
a sensor path is more than a hierarchy to an interface/module/interface. Answer C
is incorrect because a sensor path does not define the receiving telemetry collector
settings.

7. B and D. YANG data models are published on GitHub by de facto convention across
several vendors and standards bodies. They are also published and searchable on
yangcatalog.org, an IETF project since 2015’s IETF 92 YANG Model Coordination
Group and Hackathon. Answer A is incorrect because YANG models are not pub-
lished to stackoverflow. Answer C is incorrect because YANG models are not
published to yang.org.

8. D. The TIG stack is Telegraf, InfluxDB, and Grafana. Answers A, B, and C are incor-
rect because none of the references map to TIG stack actual definitions.

9. C. The on-change MDT policy provides for event-driven telemetry, which pushes
metrics only on change. A periodic policy pushes telemetry at a predefined interval
and can repeat nonchanging values, which leads to poor disk usage and processing
overhead. Answer A is incorrect because periodic frequency is not a frugal deploy-
ment policy. Answer B is incorrect because it is a reference to a database export
process. Answer D is incorrect because MDT does not use gzip for compression or
policy.

10. B. The most accurate estimation of disk and processing utilization is gleaned from
baselining the traffic volume and receiver CPU after the subscriptions are configured
and then extrapolating over time. Answers A and C are incorrect because the data

BOOK.indb 665 19/05/22 5:58 PM

http://yangcatalog.org
http://yang.org

ptg39201256

666 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

size and payload can vary; there is no static equation. Answer D is incorrect because
there is no such calculator.

Chapter 13
1. C. IaC solutions come as both declarative and imperative modeled solutions. Answer

A is incorrect because IaC solutions can be declaratively modeled. Answer B is
incorrect because IaC solutions can be imperatively modeled. Answer D is incorrect
because IaC solutions can be declaratively or imperatively modeled.

2. E. An imperative model is a programming paradigm that uses implicit commands
and flow directives that change a device or environment’s state. Answer A is correct
but not only by itself, as answer C is also correct. Answer B is incorrect; imperative
model solutions do describe control flow. Answer C is correct but not only by itself,
as answer A is also correct. Answer D is incorrect because it contains answer B,
which is incorrect.

3. D. A declarative model is a programming paradigm that expresses the desired state
of a device or environment but does not describe the control flow. Answer A is cor-
rect but not only by itself, as answer B is also correct. Answer B is correct but not
only by itself, as answer A is also correct. Answer C is incorrect because it describes
an imperative model solution. Answer E is incorrect because it contains the incorrect
answers A and C.

4. B. This response provides the correct definition of both items. Provisioning gener-
ally refers to the action of performing device changes, whereas configuration man-
agement refers to the function or concept. Answer A is incorrect because the ZTD
function is zero touch deployment, not zero task deployment. Answer C is incorrect
because ZTD does not implement XModem for file transfer. Answer D is incor-
rect because configuration management does not require Gateway Load Balancing
Protocol.

5. A, C, and E. Chef is agent-based, Puppet supports both modes, and Ansible is agent-
less, depending on the SSH feature of a device. Answer B is incorrect because Chef
requires an agent. Answer D is incorrect because Ansible does not require an agent;
it is agentless.

6. B. The Puppet Facter tool’s default output is to JSON. Answer A is incorrect because
Puppet Facter output defaults to JSON, not ANSI. Answer C is incorrect because
Puppet Facter’s output defaults to JSON, not XML. Answer D is incorrect because
Puppet output defaults to JSON, not YAML.

7. C. A Puppet configuration or definition file is called a manifest. Answer A is incor-
rect because the file used to define Puppet operations/definitions/parameters is
called a manifest. Answer B is incorrect because the Puppet file for operations/defini-
tions/parameters is not a DDL; it is a manifest. Answer D is incorrect because it is the
operations/definition/parameters file for Ansible, not Puppet.

8. A and C. Ansible playbooks support YAML and INI data exchange format. The
YAML style allows for greater functionality with key-value definitions. Answers B
and D are incorrect because Ansible playbooks support YAML and INI, not JSON,
and zsh is a type of shell.

Z01_Davis_APPA_p654-p671.indd 666 20/05/22 9:51 PM

ptg39201256

Appendix A: Answers to the “Do I Know This Already?” Questions 667

A
9. C. The YAML style of Ansible playbooks allows for inline references to Ansible

Vault parameters. Answer A is incorrect because INI format does not allow for inline
references of Ansible Vault definitions. Answers B and D are incorrect because they
are not valid data exchange formats for Ansible inventory files.

10. C. You use terraform init to initialize a project working directory. The terraform
plan command reads the configuration file and compares it to the current state, and
the terraform apply command deploys the desired state. Answers A, B, and D are
incorrect because they are not valid Terraform commands.

Chapter 14
1. D. Tracking changes, along with who made them, and housing the data repositories

are all functions of the SCM.

2. C. Almost everything related to the software product is tracked by the SCM. The
market research data related to the marketability of your product may not be tracked
by the SCM.

3. C. Chef, Ansible, and SaltStack are examples of an SCM. Muppet is not an SCM and
should not be confused with Puppet, which is an SCM.

4. B. Ansible has five main components: the control node, inventory files, playbooks,
modules, and managed nodes.

5. C. The CLI command ansible -version displays both software versions. The other
commands do not work. We recommend that you familiarize yourself with the help
command: ansible -h.

6. A. Terraform is an example of a declarative Infrastructure as Code (IaC) automation
and orchestration tool. Ansible is an example of an imperative one.

7. B. One of the strengths of Terraform is its simplicity and straightforward lifecycle.
The lifecycle is init, plan, apply, and destroy.

8. D. Technical debt consists of decisions made to satisfy short-term goals but have
long-term consequences. The first three answers are examples of that. A bad data-
base decision is a test environment that’s not representative of the production
environments.

Chapter 15
1. A and D. Microsoft Hyper-V and VMware ESXi are Type-1 hypervisors. They are

characterized as bare-metal hypervisors acting as a software layer between the under-
lying hardware and the overlying virtual machines (with self-contained operating
systems and applications). Answer B is incorrect because Oracle VM VirtualBox is a
Type-2 hypervisor running over the top of another operating system, such as Micro-
soft Windows, macOS, or Linux. Answer C is incorrect because Parallels Desktop is
a Type-2 hypervisor running over the top of macOS.

2. B and C. Oracle VirtualBox and VMware Workstation are Type-2 hypervisors. They
are characterized as being installed over a foundational operating system and provid-
ing virtualized operating system service to overlying guest virtual machines. Answers

BOOK.indb 667 19/05/22 5:58 PM

ptg39201256

668 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

A and D are incorrect because QEMU with KVM and Citrix XenServer are
considered Type-1 hypervisors.

3. B. False. Docker aligns more to application containerization. LXC aligns more to
operating system containerization.

4. B and D. Moving workloads to the network edge with application hosting/contain-
erization can help with data sovereignty requirements and reduce costs where WAN
traffic is metered and cost-prohibitive. Answer A is incorrect because application
hosting/containerization can be used where low latency is desirable. Answer C is
incorrect because application hosting/containerization is more suited to distributed
solutions.

5. B. Cisco IOS-XE release 16.2.1 is the minimum version supporting application host-
ing and Docker containers. Answers A, C, and D are incorrect because application
hosting is supported on Catalyst 9300 at a minimum of Cisco IOS-XE 16.2.1.

6. C. Cisco NX-OS release 9.2.1 is the minimum version supporting Docker contain-
ers. Answers A, B, and D are incorrect because Docker containers are supported on
NX-OS–based switches starting on release 9.2.1.

7. A, B, and D. Docker containers can be deployed on IOx-supported Catalyst 9000
series switches with Cisco DNA Center, the command-line interface, or the IOx
Local Manager. Answer C is incorrect because there is no such Docker Deployer
deployment option. Answer E is incorrect because there is no such Prime KVM
deployment option.

8. D. The docker save command is used to create an image that can be copied to
another system for import (for example, docker load in traditional environments).
This process is necessary to prepare an image from a local Docker system for import
into Cisco DNA Center, IOx Local Manager, or a network device CLI. Answer A
is incorrect because there is no docker archive command. Answer B is incorrect
because the docker create command creates a writeable container layer over the
specified image and prepares it for running the specified command. Answer C is
incorrect because the docker export command exports a container’s filesystem, not
the image, as a tar archive.

9. E. The Cisco IOS XE command app-hosting appid <name> is used to configure an
application and enter application hosting configuration mode. It was introduced in
IOS XE 16.12.1 on the Cisco Catalyst 9300 series switches. Answers A and D are
incorrect because these commands are not supported in Cisco IOS XE. Answers B
and C are incorrect because no such command syntax exists.

10. B. The interface AppGigabitEthernet1/0/1 is created for application hosting. It is used
to trunk or pass specific VLAN traffic into the Docker environment. Answer A is
incorrect because it is an incomplete interface reference. Answers C and D are incor-
rect because they are not legitimate interface references.

11. B. False. The IOx Local Manager manages the Docker container lifecycle of a single
hosting device. It is a best practice to create a central software repository for con-
tainer image tracking, archiving, and distribution.

Z01_Davis_APPA_p654-p671.indd 668 20/05/22 3:25 PM

ptg39201256

Appendix A: Answers to the “Do I Know This Already?” Questions 669

AChapter 16
1. E. Webex SDKs are available for Apple iOS, Google Android, Java, and Python envi-

ronments, along with several other platforms and languages not mentioned here.

2. C. You can publish a Webex bot in the Webex App Hub. The other sites will have
the complete application. Subcomponents like bots and APIs will be posted at the
Webex App Hub.

3. C. X-auth-access-token and X-auth-refresh-token are returned in the response to a
POST request with a valid FMC username and password. None of the other answers
are returned in the API response from an FMC login.

4. B. Access to the FMC is supported with only one concurrent login using a username,
regardless of the method used to access the FMC.

5. C. Meraki Dashboard v1 API uses the bearer token authentication with the API key.
Answer A is incorrect because the Meraki Dashboard v1 API does not use HTTP
authentication; it uses bearer token authentication with the API key. Also, the header
key is not Authentication; it is Authorization. Answer B is incorrect because the
header key is not Authentication; it is Authorization. Answer D is incorrect because
the Meraki Dashboard v1 API does not use HTTP authentication; it uses bearer
token authentication with the API key.

6. A. You can find organization-level device information via the SDK under
<api_session>.organizations.getOrganizationDevices(orgId). Answer B is incorrect
because there is no api.device.getDevices method. Answer C is incorrect because
api.getOrganizationDevices is not a correct method; it is subordinate to organiza-
tions. Answer D is incorrect because it is a contrived method—Meraki does not use
the orgid inside the method path.

7. D. The API key and private key are required to compute the hash values that are sent
to the REST API with every request.

8. D. You can find the list of supported tools and SDKs on the Downloads page of the
online Intersight API documentation.

9. B. The UCS API only supports XML output natively. SDKs and other tools display
the output in different formats through text manipulation on the output.

10. C. You can filter the output from running a command by invoking | Select-Object
<value> after the command. Answer A is incorrect because the PowerTool is sup-
ported across different platforms. Answer B is incorrect because the PowerTool does
not use an API key to connect to a UCSM instance (it uses a username/password
combination). Answer D is incorrect because the PowerTool can also display output
information in more ways than just the native XML output through formatting.

11. A. The DNA Center REST API requires an authorization header with basic access
authentication. Answer B is incorrect because the authorization header is used
with basic authentication for DNA Center REST API access. Answer C is incorrect
because DNA Center does not use bearer token authentication; it uses HTTP authen-
tication. Answer D is incorrect because DNA Center does not use OAuth token
authentication; it uses HTTP authentication.

Z01_Davis_APPA_p654-p671.indd 669 20/05/22 9:52 PM

ptg39201256

670 Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

12. D. The Cisco DNA Center SDK package is called dnacentersdk on PyPI. Answers A,
B, and C are incorrect because they are contrived examples.

13. B and C. The client secret is used to generate a short-lived (generally five-minute)
access token created via the API. The temporary access token is created in the Web-
UI and generally is used for longer-term access. Answer A is incorrect because App-
Dynamics does not generate the client secret through the API. Answer D is incorrect
because the AppDynamics client secret is generated for the user. Answer E is incor-
rect because the AppDynamics temporary access token is generated for the user.

14. C. The default output of the AppDynamics API is XML. You can specify that it
use JSON by appending '?output=JSON' to the calling URL. Answer A is incorrect
because the AppDynamics API data can be retrieved by appending '?output=JSON'
to the calling URL, but it is not the default encoding. Answer B is incorrect because
SAML is an open standard for exchanging authentication and authorization data
between an identity provider and a service provider. It is not an encoding method for
API data from AppDynamics. Answer D is incorrect because YAML is a data encod-
ing method commonly used for configuration file declarations, but it is not the data
encoding method used for the AppDynamics API.

BOOK.indb 670 19/05/22 5:58 PM

ptg39201256

This page intentionally left blank

ptg39201256

APPENDIX B

Cisco DevNet Professional
DEVCOR 350-901 Exam Updates

Updates
Over time, reader feedback allows Pearson to gauge which topics give our readers the most
problems when taking the exams. To assist readers with those topics, the authors create new
materials clarifying and expanding on those troublesome exam topics. As mentioned in the
Introduction, the additional content about the exam is contained in a PDF on this book’s
companion website, at http://www.ciscopress.com/title/9780137370443.

This appendix is intended to provide you with updated information if Cisco makes minor
modifications to the exam upon which this book is based. When Cisco releases an entirely
new exam, the changes are usually too extensive to provide in a simple update appendix. In
those cases, you might need to consult the new edition of the book for the updated content.
This appendix attempts to fill the void that occurs with any print book. In particular, this
appendix does the following:

■ Mentions technical items that might not have been mentioned elsewhere in the book

■ Covers new topics if Cisco adds new content to the exam over time

■ Provides a way to get up-to-the-minute current information about content for the
exam

Always Get the Latest at the Book’s Product Page
You are reading the version of this appendix that was available when your book was printed.
However, given that the main purpose of this appendix is to be a living, changing document,
it is important that you look for the latest version online at the book’s companion website.
To do so, follow these steps:

Step 1. Browse to www.ciscopress.com/title/9780137370443.

Step 2. Click the Updates tab.

Step 3. If there is a new Appendix B document on the page, download the latest
Appendix B document.

BOOK.indb 672 19/05/22 5:58 PM

http://www.ciscopress.com/title/9780137370443
http://www.ciscopress.com/title/9780137370443

ptg39201256

NOTE The downloaded document has a version number. Comparing the version of the
print Appendix B (Version 1.0) with the latest online version of this appendix, you should do
the following:
■ Same version: Ignore the PDF that you downloaded from the companion website.

■ Website has a later version: Ignore this Appendix B in your book and read only the latest
version that you downloaded from the companion website.

Technical Content
The current Version 1.0 of this appendix does not contain additional technical coverage.

BOOK.indb 673 19/05/22 5:58 PM

ptg39201256

BOOK.indb 674 19/05/22 5:58 PM

ptg39201256

GLOSSARY

A
agent-based Technologies that do require additional software modules or functions to
perform work. Agent-based technologies might not be able to experience the breadth of func-
tionality needed using existing, embedded functions like SSH. Therefore, the agent extends the
functionality desired through its installed software/module. Early Puppet and Chef implementa-
tions required agents to be installed on the managed nodes.

agentless Technologies that do not require additional software modules or functions to per-
form work. Oftentimes agentless technologies depend on existing functionality, such as SSH or
NETCONF, to act as the endpoint’s processing receiver. Common agentless solutions in network
IT are Ansible, Terraform, and recent Puppet and Chef implementations.

Ansible An agentless configuration management tool that enables IaC, software provisioning,
and application deployment. Ansible was acquired by RedHat in 2015. It was initially released
in 2012 and is written mainly in Python. Ansible uses playbooks written in YAML to define
tasks and actions to perform on managed endpoints.

API inside-out design A type of design that commences with the infrastructure or database
followed by the back-end classes and services. The user interface (UI) is typically the last bit to
get built.

API outside-in/user interface (API first approach) A type of design that begins with UI
creation, and then the APIs are built with the database schema.

application performance monitoring (APM) A discipline or tool set for measuring vari-
ous granular parameters related to performance of application code, runtime environments, and
interactions.

architectural decision A software design choice that addresses a functional or nonfunc-
tional requirement that is architecturally significant.

C
caching The capability to store data as close as possible to the users so that subsequent or
future requests are answered faster.

certificate authority (CA) Third-party or neutral organization that certifies that other enti-
ties communicating with each are in fact who they say they are.

Chef A company and tool name for a configuration management solution written in Ruby. Ini-
tially released in 2009, it supports configuration management for systems, network, and cloud
environments. It also supports CI/CD, DevOps, and IaC initiatives. A recipe defines how a Chef
server manages environment configuration. Progress acquired Chef mid-2020.

BOOK.indb 675 19/05/22 5:58 PM

ptg39201256

676 clustering

clustering A technology for combining multiple servers (or resources), making them appear
as a single server.

cohesion In software engineering, the interaction and relationships within a module and the
ability for a module to complete its tasks within the module.

cold standby A redundancy concept in which a redundant resource is available as a spare and
is ready to take over in case of failure of the active resource.

container A type of lightweight virtualization where the workload uses an underpinning
operating system kernel. A container is an image constructed of all necessary runtime libraries,
code, and local storage and is portable. Docker containers are a de facto implementation and are
the foundation for stateless microservice architectures.

content delivery network/content distribution network (CDN) A geographically distrib-
uted network of proxy servers and their data centers. The goal is to provide high availability and
performance by distributing the service spatially relative to end users.

continuous delivery (CD) The automated process involved in moving the software that has
passed through the continuous integration pipeline to a state in which it is moved to a staging
area for live testing. This often involves packaging the software into a format in which it can be
deployed and moving the resulting package to a remote repository or fileshare.

continuous integration/continuous deployment (CI/CD) A software development con-
cept in which the lifecycle or process flow of development follows a prescribed path of testing,
integration validation, archiving, code scanning, vulnerability checking, and automated publica-
tion to software repositories.

control plane The conceptual layer of network protocols and traffic that involve path deter-
mination and decision-making.

coupling The relationships and interaction between various modules.

cross-site scripting (XSS) A type of injection attack in which attackers inject malicious
scripts into a web application to obtain information about the application or its users.

D
data at rest A data state in which data is being stored in a database, hard drive, or tape.

data in motion A data state in which data is in transit between two nodes.

data plane The conceptual layer of network protocols and traffic that involve the actual user
traffic. Forwarding decisions are followed in the data plane.

declarative model A style of programming, network engineering, and more broadly, IT man-
agement that expresses the logic and desired state of a device or network, instead of describing
the control flow.

DevOps A portmanteau of development and operations; the name for a methodology in
which collaboration and cross-functional teams are formed with both software developers as
well as infrastructure operations personnel. This methodology focuses on rapid development

BOOK.indb 676 19/05/22 5:58 PM

ptg39201256

gRPC Network Management Interface (gNMI) 677

and deployment principles, such as CI/CD and Agile software development, with an idea that
the combination of teams leads to greater empathy between individuals, leading to higher
uptime and support of the end application or service.

dial-in A model-driven telemetry model where the subscribing telemetry receiver initiates a
telemetry session with the telemetry source, which streams the telemetry data back.

dial-out A model-driven telemetry mode where the telemetry source configures a destination,
sensor path, and subscription defining the metrics to be streamed to the receiving telemetry
collector. The telemetry source initiates the session.

digital certificate Also known as a certificate; a file that verifies the identity of a device or
user and enables data exchange over encrypted connections.

E
event-driven telemetry (EDT) A mode of telemetry that initiates the sending of metrics on-
change rather than by periodic cadence.

Extensible Markup Language (XML) A data-encoding method and markup language defin-
ing rules in a form that is humanly readable but also programmatic. There are synergies among
HTML and XML for creating stylesheets that are dynamic to different device capabilities for
representing content. Generally, JSON is preferred in more recent cloud and infrastructure
development.

F
format The way that data is represented, such as JSON and XML.

functional requirements The conditions that specify the business purpose of the function-
ality of software or an application.

G
General Data Protection Regulation (GDPR) A regulation that gives European Union (EU)
citizens control over their own personal data.

Google Remote Procedure Call (gRPC) An open-source, high-performance RPC frame-
work released by Google in 2015. gRPC uses HTTP/2 for transport with TLS and token-based
authentication. The HTTP/2 support provides low latency and scalability.

gRPC Network Management Interface (gNMI) A Google innovation to provide a stan-
dardized management interface for configuration management and telemetry functions. gNMI
provides the mechanism to install, change, and delete the configuration of network devices,
and also to view operational data. The content provided through gNMI can be modeled using
YANG. gRPC carries gNMI and provides the means to define and transmit data and operation
requests.

BOOK.indb 677 19/05/22 5:58 PM

ptg39201256

678 hypervisor

H
hypervisor Software that creates and executes virtual machines (VMs). A hypervisor enables
a host system to support multiple guest VMs by virtually sharing and allocating its resources,
such as CPU, memory, and storage.

I
imperative model A style of programming, network engineering, and more broadly, IT
management that uses exact steps or control statements to define a desired state. This model
requires operating system syntax knowledge for operation and provisioning.

Infrastructure as Code (IaC) The act of defining one or more pieces of infrastructure
(network, compute, storage, platform, and so on) through configuration files that are deployed
using programming languages or higher-level configuration management platforms (such as
Terraform).

injection attack A common type of attack discussed by OWASP. When user data is not
frequently validated, then injection or extraction of sensitive records is possible.

intent-based networking (IBN) A networking concept where business requirements or
intent are translated to native network device configurations and syntax. Using simple language
that maps intent to complex networking characteristics is a key principle.

J
JavaScript Object Notation (JSON) A data-encoding method that is easy for humans to
read and is conducive to programmatic use.

K
Kubernetes An open-source container management and operations platform, originally cre-
ated by Google. Kubernetes provides the foundational infrastructure and APIs such that appli-
cations and supporting services (such as clustering and distributed file storage) are able to run
across one or more hosts.

L
latency The length of time taken for a system to complete a specified task.

Linux Containers (LXC) A type of virtualization that was realized mid-2008. LXC is oper-
ating-system-based where all container instances share the same kernel of the hosting compute
node. The guest operating systems may execute in a different user space. This can be mani-
fested as different Linux distributions with the same kernel.

BOOK.indb 678 19/05/22 5:58 PM

ptg39201256

nonfunctional requirements 679

load balancing Sometimes generically used as server load balancing; a technique for distrib-
uting load among a number of servers or virtual machines for the purpose of scalability, avail-
ability, and security.

logging Reporting of events, their timestamp, and severity.

M
management plane The conceptual layer of network protocols and traffic that involve the
administrative functions of a network device, such as Network Time Protocol (NTP), syslog
event messaging, SNMP, and NETCONF.

manifest A configuration file used by Puppet, written in a Puppet-specific language like
Ruby. The files define resources and state to be provisioned on a managed device and typically
uses a .pp extension.

mean time between failures (MTBF) How likely it is for a system to fail and what events
can contribute to the failure.

mean time to repair or mean time to recovery (MTTR) How much time is needed for the
system to recover from failure or for the issue causing the failure to be repaired.

method The intent of an API call; often referred to as a “verb.” It describes the operations
available, such as GET, POST, PUT, PATCH, and DELETE.

metrics System performance parameters. Latency, response time, sessions per second, and
transactions per second are examples of metrics.

model-driven telemetry (MDT) A function that uses data models, such as YANG, to repre-
sent configuration and operational state. Associated with streaming telemetry, MDT provides a
structure for defining telemetry receivers, sensor paths (metrics), and subscriptions necessary to
encode and transport the data.

multiprocessing Processing independent tasks using additional processors.

multithreading Dividing tasks or requests into threads that can be processed in parallel.

N
NETCONF The Network Configuration Protocol (NETCONF) is a network management
protocol developed and standardized by the IETF as RFC 4741, later revised as RFC 6241. It
enables functionality to provision, change, and delete the configuration of network devices
through remote procedure calls of XML-encoded data.

Network Configuration Protocol (NETCONF) An IETF working group standard and proto-
col. It allows cross-vendor management focused on configuration and state data.

nonfunctional requirements The conditions that describe how a system should perform the
functions described in the functional requirements.

BOOK.indb 679 19/05/22 5:58 PM

ptg39201256

680 object

O
object The resource a user is trying to access. It is often referred to as a “noun” and is typi-
cally a Uniform Resource Identifier (URI).

observability The ability to measure the state of a system based on the output or data it gen-
erates (i.e., logs, metrics, and traces).

Open Authentication (OAuth) An open standard defined by IETF RFC 6749. Two versions
are in use today: OAuth 1.0 and 2.0. OAuth2.0 is not backward compatible with OAuth 1.0 (RFC
5849). OAuth is designed with HTTP in mind and allows users to log in to multiple sites or
applications with one account.

Open Web Application Security Project (OWASP) A nonprofit organization working to
improve software security through community-led open-source projects that develop tools,
resources, and training.

OpenAPI Specification (OAS) Formerly known as the Swagger Specification, this is a pow-
erful format for describing RESTful APIs. A standard, programming language–agnostic inter-
face description for HTTP APIs.

P
pagination The process of splitting data sets into discrete pages with a set of paginated
endpoints. Therefore, an API call to a paginated endpoint is called a paginated request. API end-
points paginate their responses to make the result set easier to handle.

personally identifiable information (PII) Any information that can be used to identify a
person—name, password, Social Security number, driver’s license number, credit card number,
address, and so on.

plan Specific to Terraform, a command process that creates an execution plan allowing a
designer to review changes Terraform would make to an environment.

playbook A configuration file used by Ansible, written in YAML. It defines the tasks and
actions to be performed in provisioning or management functions.

Power-On Auto-Provisioning (POAP) A network function that enables a device to bring
itself to a minimum level of functionality on a network through intuited and configuration-
guided mechanisms during bootup.

public key infrastructure (PKI) A type of asymmetric cryptography algorithm that requires
the generation of two keys. One key is secure and known only to its owner. It is called the pri-
vate key. The other key, called the public key, is available and known to anyone or anything that
wishes to communicate with the private key owner.

Puppet A software configuration management tool that uses a declarative language to
describe configuration state. It was released in 2005 and written in C++, with rewrites in Clo-
jure and Ruby in 2014. Puppet uses a manifest to describe system resources and state using
Puppet’s declarative language or a Ruby domain-specific language. Puppet has a utility called
facter, used to discover system information.

BOOK.indb 680 19/05/22 5:58 PM

ptg39201256

software-defined networking (SDN) 681

R
rate limiting Limiting requests or controlling the rate at which they are passed to the
processor.

remote-procedure call (RPC) A software communication protocol that a system uses to
request a service from another system located in another part of a network without having to
understand the network’s details. RPC is used to call other processes on the remote systems as
if it exists on the local system.

REST (Representational state transfer) A software architectural style that conforms to con-
straints for interacting with APIs. RESTful APIs are commonly used to GET or POST/PUT data
with a device for obtaining state or changing configuration.

RESTCONF An evolution of the use of NETCONF to use RESTful API equivalencies.

round-trip time (RTT) The time taken for round-trip travel between two network nodes or
the length of time taken to complete a set of tasks.

S
sensor-path The unique path of a YANG model and the hierarchy/structure required to iden-
tify a configuration item or metric.

serverless The abstraction of the underlying infrastructure from the application or service
being run on the infrastructure. This abstraction enables operations personnel to focus on the
outcome of the application being served, rather than the supporting operating system, patching,
and system and software dependencies, which are placed under the responsibility of the cloud
provider.

service-level agreement (SLA) A commitment made by the system architect (owner or
operator) that the system will be up for a specified period.

site reliability engineering (SRE) A functional concept catalyzed by Google in which net-
work operations personnel maintain software development skills with the intent of developing
network monitoring and management solutions necessary to sustain IT operations.

software architecture The set of structures needed to reason about the system, which com-
prise software elements, relations among them, and properties of both.

software configuration management (SCM) A discipline or framework for tracking archi-
tecture and development processes and changes. A number of automation and orchestration
tools are available to simplify the process.

software-defined networking (SDN) A concept of network abstraction, virtualization, and
programmability that enables networks to be more resilient, scalable, and programmatic. The
concept of network controllers with control plane and data plane separation is a key concept.
Virtualization or abstraction of functions and services is another key concept.

BOOK.indb 681 19/05/22 5:58 PM

ptg39201256

682 software development kit (SDK)

software development kit (SDK) A collection of software development tools in one
installable package. An SDK is created by products alongside their APIs to make APIs more
accessible.

software development lifecycle (SDLC) A process or framework for designing and imple-
menting software.

SOLID Object-oriented software design principles, which include the single responsibility
principle (SRP), open-closed principle (OCP), Liskov’s substitution principle (LSP), interface
segregation principle (ISP), and dependency inversion principle (DIP).

source code manager A specific platform implementation of a VCS protocol that enables
tracking, management, and collaboration of source code. Common git-based SCMs include
GitHub, BitBucket, and GitLab.

spec file Specific to Ansible, a YAML-based file that defines the XML/XPath syntax used to
map XML-structured data to JSON for use in playbooks.

subscription A desired session between telemetry source and receiver defining the desired
sensor(s)/metric(s), encoding, destination, and frequency.

SwaggerHub A part of the Swagger toolset; it includes a mix of open-source, free, and com-
mercial tools. SwaggerHub is an integrated API development platform, which enables the core
capabilities of the Swagger framework to design, build, document, and deploy APIs. Swagger-
Hub enables teams to collaborate and coordinate the lifecycle of an API. It can work with ver-
sion control systems such as GitHub, GitLab, and Bitbucket.

T
technical debt A term used to describe short-term decisions that can possibly affect the
quality of the software on the long run.

Terraform An Infrastructure-as-Code solution created by HashiCorp, initially released in
2014 to manage IT resources in the public or private cloud, network devices, or SaaS endpoints
using providers to translate the desired state and intent to device-native syntax. Terraform
works from the known state of deployed resources and can safely provision environments idem-
potently using Create, Read, Update, Delete (CRUD) actions.

throughput The amount of load (utilization) a system is capable of handling during a time
period.

tracing The ability to track multiple events or a series of distributed events through a system.

Transport Layer Security (TLS) TLS is a successor to Secure Sockets Layer protocol. It
provides secure communications on the Internet for such things as e-mail, Internet faxing, and
other data transfers. Common cryptographic protocols are used to imbue web communications
with integrity, security, and resilience against unauthorized tampering.

Type-1 hypervisor Architecture that typically involves the hypervisor kernel acting as a
shim-layer between the underlying hardware serving compute, memory, network, and storage,

BOOK.indb 682 19/05/22 5:58 PM

ptg39201256

zero-touch provisioning (ZTP) 683

from the overlying operating systems. Sample solutions are Microsoft Hyper-V, Xen, and
VMware ESXi.

Type-2 hypervisor Architecture that involves running the hypervisor over the top of a con-
ventional, hosted operating system (OS). Other applications, besides the hypervisor, may also
run on the hosted OS as other programs or processes. One or more guest operating systems run
over the hypervisor.

V
version control A process for tracking and managing changes of code or files during the
development process.

version control system (VCS) A specific protocol-based system that allows for source code
to be tracked, checked in, and worked on in a collaborative manner. A VCS specifically refers to
the higher-level protocol, such as git or subversion, rather than a specific platform implementa-
tion of the protocol.

W
web scraping Data scraping used for extracting data from websites. Also known as web har-
vesting or web data extraction.

Y
YANG A data modeling language for the definition of data sent from NETCONF and REST-
CONF. It was released by the NETMOD working group of the IETF as RFC 6020 and later
updated in RFC 7950. YANG can model configuration data or network element state data.

Z
zero-touch provisioning (ZTP) A network function that enables an unconfigured device to
bring itself to a defined level of functionality on a network through configurations provided via
file servers.

BOOK.indb 683 19/05/22 5:58 PM

ptg39201256

A
acceptance testing, 22, 23
access tokens (OAuth 2.0), 181
accessibility as quality attribute, 32
accessing Pearson Test Prep software,

649–650
accountability as quality attribute, 32
ACI tenant deployment with

Terraform, 496–501
ACID properties, 148
active recovery (hot standby), 47–48
admin processes in 12-factor applica-

tion design, 242
administrative requirements for soft-

ware architecture, 13
agent-based configuration manage-

ment, 450–473
downloading and installing Puppet,

453–458
extracting information via Puppet,

459–463
NX-OS devices with Puppet, 465–469
Puppet manifests, 469–473
Puppet platform support matrix, 451
Python scripts with Puppet, 463–465

agentless configuration management
solutions, 450, 474–501

ACI tenant deployment, 496–501
configuring Ansible inventory,

481–482

Index

downloading and installing Ansible,
474–481

installing Terraform, 494–496
Jinja2 filtering, 487–488
modifying device configurations,

488–493
playbooks in Ansible, 483–487
project-level inventory files in Ansible,

482–483
Agile, 18–20, 317–318
Agile Manifesto, 18–19
agrparse, 174
alpha testing, 22
Amazon Web Services (AWS)

ECS on Fargate, 227–234
Jeff Bezos’s API mandate, 136–138
Lambda, 234–238

analyzability as quality attribute, 33
Ansible, 334

as agentless solution, 450, 474–493
configuring inventory, 481–482
downloading and installing,

474–481
Jinja2 filtering, 487–488
modifying device configurations,

488–493
playbooks, 483–487
project-level inventory files,

482–483
comparison with Terraform, 518–519
described, 512–514

BOOK.indb 684 19/05/22 5:58 PM

ptg39201256

in evolution of application deploy-
ment, 221–223

with NETCONF and RESTCONF, 382
API keys, 180
Apigee, 147
APIs (application programming

interfaces)
AppDynamics, 639–646
architectural styles

gRPC, 154–155
OpenAPI/Swagger, 155–156
purpose of, 146
REST vs. RPC, 152–154
selecting, 147–148

authentication, 337
authentication types, 139, 162,

179–181
calling, 138–144
components of, 132

formats, 134–135
methods, 133–134
objects, 134

definition of, 132
development

CLI wrapper code, 174–177
client creation, 165–173
design considerations, 177–178
IMDb API example, 165–173
methods for, 162
purpose of, 162
security, 162, 179–181
tools for, 146–147
types of APIs, 144–145

headers, 139
HTTP requests, 149–150
idempotency, 337
Intersight

authorization, 606–611

documentation, 603–605
enabling access, 601–603

Jeff Bezos’s API mandate, 136–138
lack of, 135
Meraki

authorization, 596–600
documentation, 593–594
enabling access, 592–593

NETCONF APIs, 158–159
operational overview, 335–336
pagination, 337–338
payload data formats, 338

JSON, 340–341
XML, 338–340

performance
caching, 163, 188
error handling/timeouts/rate lim-

iting, 184–188
pagination, 162
streaming vs. pagination,

181–184
public/open, 140
RESTful APIs, 157–158. See also

RESTCONF
cache-control, 151–152
constraints on, 157
documentation, 631–635
enabling DNA center access,

630–631
enabling Firepower access,

582–583
enabling Webex access, 572–573
Firepower documentation,

583–585
Firepower use cases, 585–592
HTTP status codes, 184
JSON, 150–151
NETCONF APIs vs.159

BOOK.indb 685 19/05/22 5:58 PM

ptg39201256

686 APIs (application programming interfaces)

operation types, 336
streaming APIs vs.181–184
uniform interfaces, 158
Webex documentation, 573–575
Webex use cases, 575–577

UCS Manager
documentation, 611–617
enabling access, 611

web scraping as alternative, 135–136
APM (application performance moni-

toring) applications, 77
AppDynamics, 77, 639–646
application containers

implementation, 534
Cisco DNA Center for applica-

tion hosting, 538–547
Cisco IOx Local Manager for

application hosting, 547–552
CLI for application hosting,

553–556
enabling application hosting

framework, 536–537
validating prerequisites,

534–536
interaction with iPerf3, 556–563
management best practices, 563–565
platforms supporting, 533
use cases, 532

application deployment
CI/CD

components of, 198–201
integration deployment, 207–217
pipeline implementation,

201–203
stages of, 203–206

DevOps, responsibilities of, 194–196
evolution of methods, 218–238

automated configuration
management, 220–224

cloud services, 224–238
sysadmins compiling from

source code, 218–220
SRE, 196–198

DevOps vs.198
responsibilities of, 197–198

12-factor application design, 238–242
admin processes, 242
backing services, 240
build/release/run stages, 240
codebase, 239
concurrency, 241
configuration, 239
dependencies, 239
disposability, 241
logs, 242
parity, 241–243
port binding, 241
processes, 240

application design
API design considerations, 177–178
availability and resiliency in, 44–53

deployment models, 51–53
failure prevention, 50
fault detection, 46–47
planning, 50–51
recovery, 47–50
requirements, 45

database selection in, 79–83
data variety, 82–83
data velocity, 82
data volume, 81–82
types of databases, 80–81

maintainability in, 59–66
DIP (dependency inversion

principle), 65–66
ISP (interface segregation

principle), 64–65

BOOK.indb 686 19/05/22 5:58 PM

ptg39201256

authenticity as quality attribute 687

LSP (Liskov’s substitution prin-
ciple), 63–64

modularity and, 59
OCP (open-closed principle),

62–63
SOLID design, 60–66
SRP (single responsibility prin-

ciple), 61
modularity in, 36–41

benefits of, 36–37
best practices, 37–40
definition of, 36
microservices and, 40–41

for performance
caching, 70–71
exponential backoff, 72–73
latency, 66–73
observability, 73–79
parallel processing, 72
rate limiting, 71–72
trade-offs in, 69

scalability in, 41–44
horizontal, 41–42
practical, 43–44
vertical, 42–43

security
CIA triad, 248–249
IT secrets storage, 252–254
OAuth 2.0, 266–283
OWASP, 262–266
PKI, 254–262
privacy, 250–252
top 10 risks, 249–250

12-factor application design, 238–242
admin processes, 242
backing services, 240
build/release/run stages, 240
codebase, 239

concurrency, 241
configuration, 239
dependencies, 239
disposability, 241
logs, 242
parity, 241–243
port binding, 241
processes, 240

application hosting
with Cisco DNA Center, 538–547
with Cisco IOx Local Manager,

547–552
with CLI, 553–556
enabling framework, 536–537

application performance monitoring
(APM) applications, 77

application programming interfaces.
See APIs (application programming
interfaces)

architectural decisions, 519–520
architectural styles (APIs)

gRPC, 154–155
OpenAPI/Swagger, 155–156
purpose of, 146
REST vs. RPC, 152–154
selecting, 147–148

architecture. See software architecture
Atlantis, 207–213
atomic configuration management,

model-driven vs.351–354
atomic network management,

controller-based vs.303–305
atomicity as ACID property, 148
authentication

for APIs, 139, 162, 179–181, 337
RESTCONF and, 373
Webex API, 575–577

authenticity as quality attribute, 32

BOOK.indb 687 19/05/22 5:58 PM

ptg39201256

688 authorization

authorization. See also OAuth 2.0
DNA Center, 637–639
Intersight, 606–611
Meraki, 596–600

authorization code flow (OAuth 2.0),
276–278

automated configuration manage-
ment. See also SCM (software con-
figuration management); streaming
telemetry

agent-based solutions, 450–473
downloading and installing Pup-

pet, 453–458
extracting information via Pup-

pet, 459–463
NX-OS devices with Puppet,

465–469
Puppet manifests, 469–473
Puppet platform support matrix,

451
Python scripts with Puppet,

463–465
agentless solutions, 450, 474–501

ACI tenant deployment, 496–501
configuring Ansible inventory,

481–482
downloading and installing

Ansible, 474–481
installing Terraform, 494–496
Jinja2 filtering, 487–488
modifying device configurations,

488–493
playbooks in Ansible, 483–487
project-level inventory files in

Ansible, 482–483
atomic vs. model-driven, 351–354
in evolution of application deploy-

ment, 220–224
imperative vs. declarative models,

448–449

provisioning vs.449
automation

APIs
authentication, 337
idempotency, 337
JSON and, 340–341
operational overview, 335–336
pagination, 337–338
payload data formats, 338
RESTful APIs, 336
XML and, 338–340

CDTAO, 342–343
challenges addressed by, 313–329

accuracy of provisioning,
319–323

diversity of equipment and func-
tionality, 314–316

proximity of management tools
and support staff, 316

reducing operation expenses,
329

scalability in provisioning,
323–328

speed of provisioning, 317–318
in evolution of network management

and software development, 6–7
in failure prevention, 50
IT service management and security,

343–344
SDN, 329–335

Cisco solutions for, 335
definition of, 329–332
network controllers, 334
use cases, 332–334

autoscaling in application design, 42
availability

in application design, 44–53
deployment models, 51–53

BOOK.indb 688 19/05/22 5:58 PM

ptg39201256

caching 689

failure prevention, 50
fault detection, 46–47
planning, 50–51
recovery, 47–50
requirements, 45

definition of, 249
as quality attribute, 30, 32

availability monitoring of application
containers, 564

AWS (Amazon Web Services)
ECS on Fargate, 227–234
Jeff Bezos’s API mandate, 136–138
Lambda, 234–238

B
backing services in 12-factor applica-

tion design, 240
bandwidth, 66
basic authentication (APIs), 179
BCP (business continuity planning),

50–51
bearer authentication (APIs), 180
best practices

for application container management,
563–565

in modular design, 37–40
beta testing, 22
Bezos, Jeff, API mandate, 136–138
BGP-LS/FS (BGP Link-State/Flow

Spec), 333
black-box design in modular design, 39
black-box testing, 23
blue-green deployment (CI/CD), 206
Branch and Pull Workflow (Git), 89–103

branches
creating, 93–94
pushing to origin repo, 97

current changes review, 94
pros and cons, 89
sample exercise, 90–103
sample setup, 90
staged changes review, 94

branches (Git)
branch protection rules, 125–126
branching strategies, 121–123

definition of, 121
Git Flow, 123
GitHub Flow, 122–123
GitLab Flow, 123
list of, 122
selecting, 122

creating, 93–94, 111
pushing

to forked repo, 114
to origin repo, 97

browser security, 261–262
bug fixes, cost of, 60
bugs, definition of, 46
build stage (CI/CD), 204
business continuity planning (BCP),

50–51
business process management in evolu-

tion of network management and
software development, 6

business requirements for software
architecture, 12, 13

C
cache-control, 151–152
caching

for API performance, 163, 188
for application performance,

70–71

BOOK.indb 689 19/05/22 5:58 PM

ptg39201256

690 cadence-based telemetry

cadence-based telemetry. See MDT
(model-driven telemetry)

calling APIs, 138–144
canary deployment (CI/CD), 206
capacity as quality attribute, 31
CAs (certificate authorities)

hierarchical structure of, 257
purpose of, 254–256
web application security, 257–260

CD (continuous delivery), 200
CD (continuous deployment), 200–201
CDNs (content delivery networks/con-

tent distribution networks), 188
CDTAO (cross-domain, technology-

agnostic orchestration), 342–343
certificate path validation (CPV), 260
certificates

format of, 256
revoking, 256–257

Chef
as agent-based solution, 450–451
described, 512
in evolution of application deploy-

ment, 221
choosing. See selecting
CI (continuous integration), 199–200
CIA (confidentiality, integrity, availabil-

ity) triad, 248–249
CI/CD (continuous integration/continu-

ous delivery (deployment)), 290
components of, 198–201
integration deployment, 207–217

to cloud-native applications,
213–217

to infrastructure, 207–213
pipeline implementation, 201–203
stages of, 203–206

build, 204

deploy, 205–206
release/deliver, 205
test, 205

cisco_node_utils Ruby gem, installing,
465

ciscopuppet module, installing, 463
CITEIS (Cisco IT Elastic Infrastructure

Services), 315
CLI (command-line interface)

accuracy of provisioning, 319–323
on Ansible, 514
application hosting with, 553–556
definition of, 174
IMDb API example, 174–177
network provisioning, 291–294
wrapper code for APIs, 174–177

Click
command creation, 175
group creation, 175
help function, 176
importing, 175
purpose of, 174

client credential flow (OAuth 2.0),
271–272

clients (APIs)
creating, 165–173
definition of, 138
IMDb API example, 165–173

close-session operation (NETCONF),
350

cloud availability deployment model,
52

cloud services in evolution of applica-
tion deployment, 224–238

containers on serverless clouds,
227–234

managed Kubernetes, 224–226
serverless functions, 234–238

BOOK.indb 690 19/05/22 5:58 PM

ptg39201256

containers 691

cloud-native applications, integration
deployment to, 213–217

clustering
in application design, 41–42
for high availability, 51–52

code adaptation, cost of, 60
code comments as documentation, 79
code refactoring, cost of, 60
code reviews, 21–22
codebase

in 12-factor application design, 239
technical debt of, 520

coding standards for maintainability,
59

cohesion in modular design, 37–38
cold standby (spare recovery), 49
command-line interface (CLI). See CLI

(command-line interface)
commands (Click), creating, 175
common toolsets for maintainability,

59
compatibility as quality attribute, 31
compiling from source code, 218–220
concurrency

in 12-factor application design, 241
definition of, 325–327

confidentiality, definition of, 249
configuration

in 12-factor application design, 239
of Ansible inventory, 481–482
of MDT

dial-in mode, 402–406
dial-out mode, 398–402
in IOS-XR, 397–398

configuration management, auto-
mated. See also SCM (software con-
figuration management); streaming
telemetry

agent-based solutions, 450–473
downloading and installing Pup-

pet, 453–458
extracting information via Pup-

pet, 459–463
NX-OS devices with Puppet,

465–469
Puppet manifests, 469–473
Puppet platform support matrix,

451
Python scripts with Puppet,

463–465
agentless solutions, 450, 474–501

ACI tenant deployment, 496–501
configuring Ansible inventory,

481–482
downloading and installing

Ansible, 474–481
installing Terraform, 494–496
Jinja2 filtering, 487–488
modifying device configurations,

488–493
playbooks in Ansible, 483–487
project-level inventory files in

Ansible, 482–483
atomic vs. model-driven, 351–354
in evolution of application deploy-

ment, 220–224
imperative vs. declarative models,

448–449
provisioning vs.449

CONNECT requests, 336
consistency as ACID property, 148
console, network provisioning from,

291–294
constraints (limitations)

on RESTful APIs, 157
for software architecture, 10

containers. See also application
containers

BOOK.indb 691 19/05/22 5:58 PM

ptg39201256

692 containers

Docker, 530–531
LXC (Linux Containers), 529–530
on serverless clouds, 227–234

content delivery networks/content dis-
tribution networks (CDNs), 188

content layer (NETCONF), 349
continuous delivery (CD), 200
continuous deployment (CD), 200–201
continuous integration (CI), 199–200
control plane, 303–304
controller-based network management,

atomic vs.303–305
cookie authentication (APIs), 180–181
copy-config operation (NETCONF),

350
coupling

DIP (dependency inversion principle)
and, 65–66

in modular design, 37–38
CPV (certificate path validation), 260
credentials. See IT secrets stor-

age; OAuth 2.0; PKI (public key
infrastructure)

cross-domain, technology-agnostic
orchestration (CDTAO), 342–343

cross-site scripting (XSS), 264–266
culture in evolution of network man-

agement and software development,
8

cURL, RESTCONF GET operations
with, 375–377

current changes (Git), reviewing, 94,
112

customizing exam modes, 650–651

D
data at rest, 251
data backup and replication for high

availability, 51

data encoding
JSON, 340–341
XML, 338–340

data in motion, 250–251
data in use, 251
data localization, definition of, 251
data plane, 303–304
data privacy, definition of, 251
data sources (Terraform), 517
data sovereignty, definition of, 251
data states, 250–251
data variety, 82–83
data velocity, 82
data volume, 81–82
databases

injection attacks, 263–264
selecting in application design, 79–83

data variety, 82–83
data velocity, 82
data volume, 81–82
types of databases, 80–81

declarative configuration management
models, 448–449

DELETE requests, 133–134, 336
delete-config operation (NETCONF),

350
deliver stage (CI/CD), 205
dependencies

in 12-factor application design, 239
in modular design, 38

dependency inversion principle (DIP),
65–66

deploy stage (CI/CD), 205–206
deployment models for high avail-

ability, 51–53. See also application
deployment

design. See application design
destination groups, creating, 398–399

BOOK.indb 692 19/05/22 5:58 PM

ptg39201256

edge computing 693

device code flow (OAuth 2.0), 281–283
DevOps, 290

in evolution of network management
and software development, 8

key practices in, 8
responsibilities of, 194–196
vs. SRE, 198

dial-in mode (streaming telemetry), 392
configuring, 402–406
definition of, 394
dial-out vs.395

dial-out mode (streaming telemetry),
392

configuring, 398–402
definition of, 394
dial-in vs.395

digital certificates. See certificates
DIP (dependency inversion principle),

65–66
disaster recovery, 47
disaster recovery planning (DRP),

50–51
disk space usage, EDT vs. MDT,

440–441
disposability in 12-factor application

design, 241
distributed tracing, 77
DNA Center, 628–639

API documentation, 631–635
application hosting with, 538–547
enabling access, 630–631
purpose of, 628–629
SDK authorization, 637–639
SDK documentation, 635–637

Docker
containers, 530–531. See also applica-

tion containers
installing, 414–415

YANG Suite installation, 415–423
documentation

for application performance, 78–79
DNA Center APIs, 631–635
DNA Center SDKs, 635–637
Firepower, 583–585
Intersight APIs, 603–605
Intersight SDKs, 605
for maintainability, 59
Meraki APIs, 593–594
Meraki SDKs, 594–596
researching sensor paths, 407
UCS Manager APIs, 611–617
UCS Manager PowerShell SDKs,

622–628
UCS Manager Python SDKs, 617–622
Webex, 573–575

DOM-based XSS, 266
downloading

Ansible, 474–481
Pearson Test Prep software, 649–650
Puppet, 453–458
YANG models, 369–371

DRP (disaster recovery planning),
50–51

durability as ACID property, 148

E
eager loading, 70–71
ECS (Elastic Container Service),

227–234
edge computing

application containers
Cisco DNA Center for applica-

tion hosting, 538–547
Cisco IOx Local Manager for

application hosting, 547–552

BOOK.indb 693 19/05/22 5:58 PM

ptg39201256

694 edge computing

CLI for application hosting,
553–556

enabling application hosting
framework, 536–537

implementation, 534
interaction with iPerf3, 556–563
management best practices,

563–565
platforms supporting, 533
use cases, 532
validating prerequisites,

534–536
benefits of, 527
virtualization technologies, 527–531

Docker containers, 530–531
LXC (Linux Containers),

529–530
Type-1 hypervisors, 528
Type-2 hypervisors, 528–529

edit-config operation (NETCONF), 350
EDT (event-driven telemetry)

definition of, 390
MDT vs.434–441

EEM (Embedded Event Manager),
299–300

Elastic Container Service (ECS),
227–234

elasticity
in application deployment, 223
in application design, 43

EMSs (element management systems),
297–299

enabling
access

DNA Center, 630–631
Firepower, 582–583
Intersight, 601–603
Meraki, 592–593
UCS Manager, 611

Webex, 572–573
application hosting framework,

536–537
gRPC, 402–404
NETCONF

on IOS XE, 355–356
on IOS XR, 356–357
on NX-OS, 357–358

encoding (streaming telemetry)
definition of, 395
types of, 395–396

endpoints (APIs), definition of, 138
errors

APIs, 184–188
definition of, 46

event streaming, definition of, 15
event-driven architecture, definition of,

15
event-driven telemetry (EDT)

definition of, 390
MDT vs.434–441

evolution
of application deployment methods,

218–238
automated configuration man-

agement, 220–224
cloud services, 224–238
sysadmins compiling from

source code, 218–220
of network management and software

development, 5–8
exam preparation, 648–652

customizing exams, 650–651
tips for, 648–649
tools for, 649–650
updating exams, 651

exponential backoff for application
performance, 72–73

BOOK.indb 694 19/05/22 5:58 PM

ptg39201256

future-proofing, cost of 695

extensibility in application design, 62–63
Extensible Markup Language (XML),

338–340, 349, 395
external APIs, 145
extracting model support

manually via NETCONF, 408–410
with Python and NETCONF, 410–413

Extreme Programming (XP), 19, 20

F
facter utility (Puppet), 459–463
failures

availability and recovery, 47–50
definition of, 46
prevention of, 50

Fargate, 227
fat interfaces, 64
fault detection, availability and, 46–47
fault monitoring in application contain-

ers, 564
fault tolerance as quality attribute, 32
faults, definition of, 46
FCAPS (Fault, Configuration, Account-

ing, Performance, and Security)
model in evolution of network man-
agement and software development, 5

FDM (Firepower Device Management),
582

Fiddler, 147
file transfer methods, 297
File Transfer Protocol (FTP), 297
Firepower, 582–592

documentation, 583–585
enabling access, 582–583
purpose of, 582
use cases, 585–592

Firepower Device Management
(FDM), 582

Firepower Management Center (FMC),
582

firewalls. See Firepower
five nines (availability), 45
fixed window (rate limiting), 187
Flash Card Mode (exam preparation),

650
flow control. See performance
Flux, 213–217
FMC (Firepower Management Center),

582
forced loading, 70–71
Fork and Pull Workflow (Git), 104–120

branches
creating, 111
pushing to forked repo, 114

current changes review, 112
pros and cons, 105
sample exercise, 106–120
sample setup, 105
staged changes review, 112–113

formats (APIs), 134–135
four nines (availability), 45
FTD (Firepower Threat Defense). See

Firepower
FTP (File Transfer Protocol), 297
functional appropriateness as quality

attribute, 31
functional correctness as quality attri-

bute, 31
functional requirements for software

architecture, 10–11, 12–13
comparison with nonfunctional, 12
relationship with nonfunctional, 29

functional stability as quality
attribute, 31

functional testing, 23
future-proofing, cost of, 60

BOOK.indb 695 19/05/22 5:58 PM

ptg39201256

696 GDPR (General Data Protection Regulation)

G
GDPR (General Data Protection Regu-

lation), 251–252
get operation (NETCONF), 350
GET operation (RESTCONF)

with cURL, 375–377
with Postman, 377–382

GET requests, 133, 149, 336
get-config operation (NETCONF), 350
Git

branching strategies, 121–123
definition of, 121
Git Flow, 123
GitHub Flow, 122–123
GitLab Flow, 123
list of, 122
selecting, 122

features of, 88
recommended settings, 125–126
workflows, 88–89

Branch and Pull Workflow,
89–103

Fork and Pull Workflow,
104–120

Git Flow, 122, 123
GitHub Flow, 122–123, 125–126
GitLab Flow, 122, 123
GKE (Google Kubernetes Engine),

224–226
gNMI (gRPC Network Management

Interface), 390, 392
GPB (Google Protocol Buffer), 396
Grafana

installing, 430–434
purpose of, 426

GraphQL, 147
gRPC (Google Remote Procedure Call)

as architectural style, 154–155
definition of, 390
enabling, 402–404
in MDT, 397

H
HCL (HashiCorp Configuration Lan-

guage), 494, 518
HEAD requests, 336
headers (APIs), 139, 149–150
Health Insurance Portability and

Accountability Act (HIPAA), 252
heartbeats for fault detection, 46
hello packets for fault detection, 46
help function (Click), 176
high availability. See availability
HIPAA (Health Insurance Portability

and Accountability Act), 252
horizontal scaling in application design,

41–42
hot standby (active recovery), 47–48
HTTP requests, 149–150
HTTP status codes, 184
hybrid availability deployment model,

53
hybrid scaling in application design, 42
hypervisors

definition of, 527–528
Type-1, 528
Type-2, 528–529

I
I2RS (Interface to Routing System),

333
IaC (Infrastructure as Code), 447–448

agent-based solutions, 450–473
agentless solutions, 474–501

BOOK.indb 696 19/05/22 5:58 PM

ptg39201256

interpolation (Terraform) 697

Cisco solutions for, 501–502
IBN (intent-based networking),

305–306
ICMP echo/echo-reply for fault detec-

tion, 46–47
idempotency of APIs, 337
IETF RFC 5424 (Syslog), logging with,

75
IMDb API

calling, 140–144
CLI wrapper code, 174–177
client creation, 165–173

imperative configuration management
models, 448–449

implicit flow (OAuth 2.0), 275–276
importing Click, 175
INET data types, 366
InfluxDB

installing, 426–427
purpose of, 426

information security. See security
infrastructure. See also IaC (Infrastruc-

ture as Code)
integration deployment to, 207–213
network management, 288–290

atomic vs. controller-based net-
working, 303–305

intent-based networking,
305–306

network provisioning, 290–291
from CLI/console, 291–294
EEM, 299–300
element management systems,

297–299
file transfer methods, 297
SNMP, 294–297
ZTP, 300–303

technical debt of, 520
Infrastructure as Code (IaC), 447–448

agent-based solutions, 450–473
agentless solutions, 474–501
Cisco solutions for, 501–502

injection attacks, 263–264
inside-out design (APIs), 178
installability as quality attribute, 33
installing

Ansible, 474–481
cisco_node_utils Ruby gem, 465
ciscopuppet module, 463
Docker, 414–415
Grafana, 430–434
InfluxDB, 426–427
jq utility, 460
Puppet, 453–458
pyang tool, 368–369
Telegraf, 428
Terraform, 494–496
YANG Suite, 415–423

integration deployment (CI/CD),
207–217

to cloud-native applications, 213–217
to infrastructure, 207–213

integration testing, 22
integrity

definition of, 249
as quality attribute, 32

intent-based networking (IBN),
305–306

interface segregation principle (ISP),
64–65

Interface to Routing System (I2RS),
333

interfaces in modular design, 39–40
internal APIs, 144–145
interoperability as quality attribute,

30, 31
interpolation (Terraform), 517–518

BOOK.indb 697 19/05/22 5:58 PM

ptg39201256

698 Intersight

Intersight, 601–611
API documentation, 603–605
authorization, 606–611
enabling access, 601–603
purpose of, 601
SDK documentation, 605

inventory (Ansible)
configuring, 481–482
project-level files, 482–483

inventory management for application
containers, 563–564, 565

IOS XE, enabling NETCONF on,
355–356

IOS XR
configuring MDT in, 397–398
enabling NETCONF on, 356–357

IOx
described, 534
enabling, 536–537

IOx Local Manager, application hosting
with, 547–552

iPerf3, interaction with, 556–563
isolation

as ACID property, 148
in failure prevention, 50

ISP (interface segregation principle),
64–65

IT secrets storage, 252–254
IT service management, automation

and, 343–344

J
JDBC (Java Database Connectivity),

335
Jinja2 filtering, 487–488
jq utility, installing, 460
JSON (JavaScript Object Notation)

as data encoding method, 396
data encoding with, 340–341
REST and, 150–151
RPC and, 152–154

K
Kanban, 19, 318
keys. See IT secrets storage; OAuth 2.0;

PKI (public key infrastructure)
kill-session operation (NETCONF), 350
KIND (Kubernetes in Docker),

214–215
Kubernetes

integration deployment in, 213–217
managed Kubernetes, 224–226

L
Lambda, 234–238
latency, 66–73

definition of, 67
factors affecting, 67–68
high performance design, 69–73
side effects of, 69

laws governing privacy protection,
251–252

lazy loading, 70–71
leaky bucket (rate limiting), 187
Lean, 19, 20, 318
learnability as quality attribute, 32
limitations (constraints)

on RESTful APIs, 157
for software architecture, 10

Linux Containers (LXC), 529–530
Linux VM

Docker installation, 414–415
YANG Suite installation, 415–423

BOOK.indb 698 19/05/22 5:58 PM

ptg39201256

metrics 699

Liskov’s substitution principle (LSP),
63–64

load balancing in application design,
41–42

lock operation (NETCONF), 350
logging. See also monitoring

for application performance, 74–76
definition of, 73
Python levels of, 75
with Syslog (IETF RFC 5424), 75

logs in 12-factor application design,
242

loose coupling. See coupling
low-level documentation, 79
LSP (Liskov’s substitution principle),

63–64
LXC (Linux Containers), 529–530

M
maintainability

in application design, 59–66
DIP (dependency inversion prin-

ciple), 65–66
ISP (interface segregation prin-

ciple), 64–65
LSP (Liskov’s substitution prin-

ciple), 63–64
modularity and, 59
OCP (open-closed principle),

62–63
SOLID design, 60–66
SRP (single responsibility prin-

ciple), 61
as quality attribute, 33

managed Kubernetes, 224–226
management plane, 303–304
manifests (Puppet), 469–473
manual usage of NETCONF, 358–364

MDT (model-driven telemetry)
configuring

dial-in mode, 402–406
dial-out mode, 398–402
in IOS-XR, 397–398

definition of, 390
dial-in/dial-out comparison, 395
EDT vs.434–441
encodings in, 395–396
implementation, 393–395
protocols in, 396–397
sensor path selection, 407–413

extracting NETCONF capabili-
ties with Python, 410–413

manually extracting NETCONF
capabilities, 408–410

public documentation for, 407
terminology, 394–395
use cases, 423–425
YANG model investigation via YANG

Suite, 414–423
mean time between failures (MTBF), 45
mean time to repair (MTTR), 45, 47
measurability of nonfunctional require-

ments, 29, 35–36
Meraki, 592–600

API documentation, 593–594
authorization, 596–600
enabling access, 592–593
purpose of, 592
SDK documentation, 594–596

merge button settings (Git), 125
messages layer (NETCONF), 350–351
methods (APIs), 133–134
metrics

for application performance, 76–77
definition of, 73

BOOK.indb 699 19/05/22 5:58 PM

ptg39201256

700 microservices

microservices
definition of, 14
modular design and, 40–41

mobile application security, 262–266
model-driven configuraiton manage-

ment, atomic vs.351–354
model-driven telemetry (MDT). See

MDT (model-driven telemetry)
model-view-controller (MVC), defini-

tion of, 15
modifiability as quality attribute, 30,

33
modularity in application design, 36–41

benefits of, 36–37
best practices, 37–40
definition of, 36
maintainability and, 59
microservices and, 40–41
scalability and, 43–44

monitoring. See also logging; streaming
telemetry

application containers, 564
for application performance, 73–79

documentation, 78–79
logging, 74–76
metrics, 76–77
tracing, 77–78

with Embedded Event Manager,
299–300

evolution from SNMP to streaming
telemetry, 386–391

for fault detection, 46
MTBF (mean time between failures), 45
MTTR (mean time to repair), 45, 47
multiprocessing, 72
multithreading, 72
MVC (model-view-controller), defini-

tion of, 15

N
naming conventions for maintainability,

59
native models, 366
NETCONF, 334. See also RESTCONF

APIs, 158–159
definition of, 322
implementation, 354–364

on IOS XE, 355–356
on IOS XR, 356–357
manual usage, 358–364
on NX-OS, 357–358

layers in, 349–351
content, 349
messages, 350–351
operations, 350
transport, 351

management solutions with, 382–383
mapping to RESTCONF operations,

372–373
in MDT, 396

extracting capabilities with
Python, 410–413

manually extracting capabilities,
408–410

origin of, 348–349
YANG models and, 365–371

network APIs. See APIs (application
programming interfaces)

network controllers, 334
network management

atomic vs. controller-based network-
ing, 303–305

evolution of, 5–8
improvements in, 288–290
intent-based networking, 305–306

BOOK.indb 700 19/05/22 5:58 PM

ptg39201256

object-oriented design (OOD) 701

network management systems (NMS)
in evolution of network management

and software development, 5
with NETCONF and RESTCONF,

382–383
proximity of tools and support staff,

316
SNMP, 294–297

network operations center (NOC) in
evolution of network management
and software development, 6

network programmability, definition of,
329–332

network provisioning, 290–291
accuracy of, 319–323
from CLI/console, 291–294
configuration management vs.449
EEM, 299–300
element management systems,

297–299
file transfer methods, 297
scalability in, 323–328
SNMP, 294–297
speed of, 317–318
ZTP, 300–303

Network Services Orchestrator (NSO),
382

new features and upgrades, cost of, 60
Nginx, 186
NMS (network management systems)

in evolution of network management
and software development, 5

with NETCONF and RESTCONF,
382–383

proximity of tools and support staff,
316

SNMP, 294–297
NOC (network operations center) in

evolution of network management
and software development, 6

nonfunctional requirements for soft-
ware architecture, 11–12, 13–14,
29–36

architectural decisions, 519–520
comparison with functional, 12
ISO/IEC 25010 standard, 31–33
measurability of, 29, 35–36
most common, 29–30, 519
stages of, 35
technical debt, 520–521

nonrepudiation as quality attribute, 32
northbound APIs, 135
NoSQL (nonrelational) databases, 80
NSO (Network Services Orchestrator),

382
NX-OS devices

enabling NETCONF on, 357–358
with Puppet, 465–469

O
OAS (OpenAPI Specification),

155–156, 165
OAuth 2.0, 181, 266–283

authorization code flow, 276–278
client credential flow, 271–272
device code flow, 281–283
implicit flow, 275–276
operational overview, 266–268
PKCE flow, 278–280
refresh token flow, 280–281
resource owner password credential

flow, 272–274
three-legged authorization, 269–270
two-legged authorization, 268–269

object-oriented design (OOD)
for maintainability, 59
SOLID design, 60–66

BOOK.indb 701 19/05/22 5:58 PM

ptg39201256

702 objects (APIs)

objects (APIs), 134
observability for application perfor-

mance, 73–79
documentation, 78–79
logging, 74–76
metrics, 76–77
tracing, 77–78

OCP (open-closed principle), 62–63
ODBC (Open Database Connectivity),

335
OMI (Open Management Infrastruc-

ture), 334
on-premises availability deployment

model, 52
OOD (object-oriented design)

for maintainability, 59
SOLID design, 60–66

open APIs, definition of, 140
Open Web Application Security Proj-

ect (OWASP), 249, 262–266
open YANG models, 366
OpenAPI Specification (OAS), 155–

156, 165
open-closed principle (OCP), 62–63
OpenFlow, 333
open-source solutions, purpose of, 444
OpenStack, 334
operability as quality attribute, 32
operation expenses, reducing, 329
operational lifecycle of devices, 315
operations layer (NETCONF), 350
optimization, cost of, 60
OPTIONS requests, 336
orchestration

CDTAO, 342–343
in evolution of network management

and software development, 6–7
output values (Terraform), 517

outside-in/user interface design
(APIs), 178

OWASP (Open Web Application Secu-
rity Project), 249, 262–266

ownership in evolution of network
management and software develop-
ment, 6

P
pagination, 70, 162, 181–184,

337–338
parallel processing

for application performance, 72
definition of, 327–328

parity in 12-factor application design,
241–243

partner APIs, 145
passive recovery (warm standby), 48
PATCH requests, 133, 336
patterns (software architecture), 14–15
PCEP (Path Computation Element Pro-

tocol), 333
PCI DSS (Payment Card Industry Data

Security Standard), 252
PDIOO (planning , design, implementa-

tion, operation, and optimization)
model, 288–289

Pearson Cert Practice Test Engine, 649
Pearson Test Prep software

accessing, 649–650
customizing, 650–651
Premium Edition, 651
updating, 651

performance
of APIs

caching, 163, 188
error handling/timeouts/rate

limiting, 184–188

BOOK.indb 702 19/05/22 5:58 PM

ptg39201256

protobufs 703

pagination, 162
streaming vs. pagination,

181–184
in application design

caching, 70–71
exponential backoff, 72–73
latency, 66–73
observability, 73–79
parallel processing, 72
rate limiting, 71–72
trade-offs in, 69

as quality attribute, 30
performance efficiency as quality attri-

bute, 31
performance monitoring of application

containers, 564
performance optimization, cost of, 60
performance testing, 23
picking. See selecting
PII (personally identifiable informa-

tion), 250
ping for fault detection, 46–47
pip, installing Ansible via, 476–481
PKCE flow (OAuth 2.0), 278–280
PKI (public key infrastructure),

254–262
browser security, 261–262
certificate revocation, 256–257
hierarchical structure of, 257
purpose of CAs, 254–256
web application security with TLS,

257–260
planning for high availability, 50–51
playbooks (Ansible), 483–487,

488–493
port binding in 12-factor application

design, 241
portability as quality attribute, 33
POST requests, 133, 336

Postman, 146
DNA Center documentation,

633–635
Firepower documentation, 584–585
Intersight documentation, 603–605
Meraki authorization, 596–600
Meraki documentation, 593–594
RESTCONF GET operations with,

377–382
PowerShell, UCS Manager documenta-

tion, 622–628
practical applications. See use cases
practical scaling in application design,

43–44
Practice Exam Mode (exam prepara-

tion), 650
predictive analytics in failure preven-

tion, 50
Premium Edition of Pearson Test Prep

software, 651
preparation for exam, 648–652

customizing exams, 650–651
tips for, 648–649
tools for, 649–650
updating exams, 651

prerequisites, validating, 534–536
prevention

cost of, 60
of failures, 50

privacy protection, 250–252
problem prevention, cost of, 60
processes in 12-factor application

design, 240
programmability, definition of,

329–332
project-level inventory files in Ansible,

482–483
protecting privacy, 250–252
protobufs, 396

BOOK.indb 703 19/05/22 5:58 PM

ptg39201256

704 Protocol Buffer (Protobuf) IDL (Interface Definition Language)

Protocol Buffer (Protobuf) IDL (Inter-
face Definition Language), 154–155

protocols in MDT, 396–397
providers (Terraform), 517
provisioning networks, 290–291

accuracy of, 319–323
from CLI/console, 291–294
configuration management vs.449
EEM, 299–300
element management systems,

297–299
file transfer methods, 297
scalability in, 323–328
SNMP, 294–297
speed of, 317–318
ZTP, 300–303

public APIs, 140, 335
public documentation. See

documentation
public key infrastructure (PKI). See PKI

(public key infrastructure)
publisher/subscriber (pub/sub) model,

definition of, 15
Puppet, 334

as agent-based solution, 450–473
downloading and installing,

453–458
extracting information, 459–463
manifests, 469–473
NX-OS devices with, 465–469
Puppet platform support matrix,

451
Python scripts with, 463–465

described, 512
in evolution of application deploy-

ment, 221
with NETCONF and RESTCONF, 383

push model in streaming telemetry,
391–392

pushing branches (Git)
to forked repo, 114
to origin repo, 97

PUT requests, 133, 336
pyang tool, 368–369, 382
Python

AppDynamics APIs, 642–646
DNA Center authorization, 637–639
DNA Center documentation, 635–637
extracting model support with,

410–413
installing Ansible via pip, 476–481
Intersight authorization, 606–611
Intersight documentation, 605
logging levels, 75
Meraki authorization, 596–600
Meraki documentation, 594–596
scripts with Puppet, 463–465
UCS Manager documentation,

617–622

Q
quality attributes. See nonfunc-

tional requirements for software
architecture

R
rate limiting

APIs, 184–188
for application performance,

71–72
recoverability as quality attribute, 32
recovery, availability and, 47–50
reducing operation expenses, 329
redundancy, recovery and, 47–50
reflected XSS, 265

BOOK.indb 704 19/05/22 5:58 PM

ptg39201256

RESTful APIs 705

refresh tokens (OAuth 2.0), 181,
280–281

regulations governing privacy protec-
tion, 251–252

relational databases, 80
release stage (CI/CD), 205
reliability as quality attribute, 30, 32
remote-procedure call (RPC)

definition of, 147
gRPC, 390
REST vs.152–154

replaceability as quality attribute, 33
representational state transfer. See

REST (representational state
transfer)

requirements
for database selection

data variety, 82–83
data velocity, 82
data volume, 81–82
types of databases, 80–81

for software architecture, 10–14
architectural decisions, 519–520
availability, 45
business, 12
comparison of functional and

nonfunctional, 12
constraints (limitations), 10
functional, 10–11, 12–13, 29
nonfunctional, 11–12, 13–14,

29–36, 519
technical debt, 520–521

resiliency
in application design, 44–53

availability requirements, 45
deployment models, 51–53
failure prevention, 50
fault detection, 46–47

planning, 50–51
recovery, 47–50

as quality attribute, 30
resource owner password credential

flow (OAuth 2.0), 272–274
resource utilitization as quality attri-

bute, 31
resources (Terraform), 517
response time (RT). See latency
respositories (Git). See Git
REST (representational state transfer).

See also RESTCONF; RESTful APIs
definition of, 147
RPC vs.152–154

RESTCONF
authentication, 373
definition of, 371
GET operations

with cURL, 375–377
with Postman, 377–382

management solutions with, 382–383
in MDT, 396
operations, 372–373
protocol stack, 372
URIs, 373–374

RESTful APIs, 157–158
cache-control, 151–152
constraints on, 157
DNA Center

documentation, 631–635
enabling access, 630–631

Firepower
documentation, 583–585
enabling access, 582–583
use cases, 585–592

HTTP status codes, 184
JSON, 150–151
NETCONF APIs vs.159

BOOK.indb 705 19/05/22 5:58 PM

ptg39201256

706 RESTful APIs

operation types, 336
streaming APIs vs.181–184
uniform interfaces, 158
Webex

documentation, 573–575
enabling access, 572–573
use cases, 575–577

retries, recovery and, 49
reusability as quality attribute, 33
reviewing

current changes (Git), 94, 112
staged changes (Git), 94, 112–113

reviews, 21–22
revoking certificates, 256–257
rollbacks, recovery and, 50
rolling deployment (CI/CD), 206
RPC (remote-procedure call)

definition of, 147
gRPC, 390
REST vs.152–154

RT (response time). See latency
RTT (round-trip time), 66–67

S
SaltStack in evolution of application

deployment, 221
sanity checks for fault detection, 47
Sarbanes-Oxley Act of 2002 (SOX),

252
scalability

in application design, 41–44
horizontal, 41–42
practical, 43–44
vertical, 42–43

in network provisioning, 323–328
of streaming telemetry, 391–392

SCM (software configuration manage-
ment). See also automated configura-
tion management

Ansible
comparison with Terraform,

518–519
described, 512–514

definitions and standards, 510–511
in evolution of application deploy-

ment, 220–224
list of systems, 512
for maintainability, 59
purpose of, 511–512
Terraform

comparison with Ansible,
518–519

described, 515–518
scope in modular design, 38
Scrum, 19, 20, 318
SDKs (software development kits). See

also clients (APIs)
DNA Center

authorization, 637–639
documentation, 635–637
enabling access, 630–631

Firepower, enabling access, 582–583
Intersight

authorization, 606–611
documentation, 605

Meraki
authorization, 596–600
documentation, 594–596
enabling access, 592–593

UCS Manager
additional resources, 628
PowerShell documentation,

622–628
Python documentation, 617–622

BOOK.indb 706 19/05/22 5:58 PM

ptg39201256

sensor groups, creating 707

Webex
documentation, 573–575
enabling access, 572–573
use cases, 577–582

SDLC (software development lifecycle)
phases of, 15–17
software architecture in, 510

SDN (software-defined networking),
290, 329–335

atomic networking vs.303–305
Cisco solutions for, 335
contributing protocols and solutions,

333–334
definition of, 329–332
error reduction in, 68
in evolution of network management

and software development, 7
network controllers, 334
northbound/southbound APIs, 135
use cases, 332–334

secrets. See IT secrets storage
Secure Copy Protocol, 297
Secure File Transfer Protocol (SFTP),

297
security

in API development, 162, 179–181
of application containers, 564
automation and, 343–344
CIA triad, 248–249
in evolution of network management

and software development, 5
IT secrets storage, 252–254
for network provisioning, 293–294
OAuth 2.0, 266–283

authorization code flow,
276–278

client credential flow, 271–272
device code flow, 281–283

implicit flow, 275–276
operational overview, 266–268
PKCE flow, 278–280
refresh token flow, 280–281
resource owner password cre-

dential flow, 272–274
three-legged authorization,

269–270
two-legged authorization,

268–269
OWASP, 262–266
PKI, 254–262

browser security, 261–262
certificate revocation, 256–257
hierarchical structure of, 257
purpose of CAs, 254–256
web application security with

TLS, 257–260
privacy, 250–252
as quality attribute, 30, 32
top 10 risks, 249–250

selecting
API architectural styles, 147–148
databases in application design, 79–83

data variety, 82–83
data velocity, 82
data volume, 81–82
types of databases, 80–81

Git branching strategies, 122
sensor paths, 407–413

extracting NETCONF capabili-
ties with Python, 410–413

manually extracting NETCONF
capabilities, 408–410

public documentation for, 407
self-testing for fault detection, 46
sensor groups, creating, 400,

404–405

BOOK.indb 707 19/05/22 5:58 PM

ptg39201256

708 sensor paths

sensor paths
definition of, 390, 394
selecting, 407–413

extracting NETCONF capabili-
ties with Python, 410–413

manually extracting NETCONF
capabilities, 408–410

public documentation for, 407
server load balancing in application

design, 41–42
serverless clouds, containers on,

227–234
serverless functions, 234–238
servers (APIs), definition of, 138
serviceability as quality attribute, 30
service-level agreement (SLA), 45
service-oriented architecture (SOA),

definition of, 14–15
sessions (streaming telemetry), defini-

tion of, 394
SFTP (Secure File Transfer Protocol),

297
Simple Network Management Protocol

(SNMP)
in evolution of network management

and software development, 5
network provisioning, 294–297

Simple Object Access Protocol (SOAP),
definition of, 148, 335–336

simple ping for fault detection, 46–47
single responsibility principle (SRP), 61
site reliability engineering (SRE),

196–198, 290
DevOps vs.198
responsibilities of, 197–198

six nines (availability), 45
SLA (service-level agreement), 45
sliding window (rate limiting), 188
SMIv2 data types, 365–366

SNMP (Simple Network Management
Protocol)

in evolution of network management
and software development, 5

network provisioning, 294–297
transition to streaming telemetry,

386–391
SOA (service-oriented architecture),

definition of, 14–15
SOAP (Simple Object Access Protocol),

definition of, 148, 335–336
software architecture

application design
availability and resiliency in,

44–53
database selection in, 79–83
maintainability in, 59–66
modularity in, 36–41
scalability in, 41–44

application performance
caching, 70–71
exponential backoff, 72–73
latency, 66–73
observability, 73–79
parallel processing, 72
rate limiting, 71–72
trade-offs in, 69

definition of, 9
patterns, 14–15
requirements, 10–14

architectural decisions, 519–520
business, 12
comparison of functional and

nonfunctional, 12
constraints (limitations), 10
functional, 10–11, 12–13, 29
nonfunctional, 11–12, 13–14,

29–36, 519
technical debt, 520–521

BOOK.indb 708 19/05/22 5:58 PM

ptg39201256

streaming telemetry 709

reviews, 21–22
in software development cycle, 510

software configuration management
(SCM). See also automated configu-
ration management

Ansible
comparison with Terraform,

518–519
described, 512–514

definitions and standards, 510–511
in evolution of application deploy-

ment, 220–224
list of systems, 512
for maintainability, 59
purpose of, 511–512
Terraform

comparison with Ansible,
518–519

described, 515–518
software developers, definition of, 5
software development

costs associated with, 60
evolution of, 5–8
methodologies and frameworks, 318
reviews, 21–22
testing, 22–23

software development kits (SDKs). See
SDKs (software development kits)

software development lifecycle (SDLC)
phases of, 15–17
software architecture in, 510

software development models,
17–21

Agile, 18–20
comparison of, 20–21
Extreme Programming, 19
Kanban, 19
Lean, 19

Scrum, 19
waterfall, 17–18

software engineers, definition of, 5
software quality. See nonfunc-

tional requirements for software
architecture

software-defined networking (SDN).
See SDN (software-defined
networking)

SOLID design, 60–66
DIP (dependency inversion principle),

65–66
ISP (interface segregation principle),

64–65
LSP (Liskov’s substitution principle),

63–64
OCP (open-closed principle), 62–63
SRP (single responsibility principle),

61
source code, compiling from, 218–220
southbound APIs, 135
SOX (Sarbanes-Oxley Act of 2002),

252
spare recovery (cold standby), 49
SQL (Structured Query Language)

databases, 80
SRE (site reliability engineering),

196–198, 290
DevOps vs.198
responsibilities of, 197–198

SRP (single responsibility principle), 61
staged changes (Git), reviewing, 94,

112–113
standards of privacy protection,

251–252
stored XSS, 264
storing IT secrets, 252–254
streaming, 181–184
streaming telemetry

Grafana, installing, 430–434

BOOK.indb 709 19/05/22 5:58 PM

ptg39201256

710 streaming telemetry

InfluxDB, installing, 426–427
MDT

dial-in mode configuration,
402–406

dial-in/dial-out comparison, 395
dial-out mode configuration,

398–402
EDT vs.434–441
encodings in, 395–396
implementation, 393–395
IOS-XR configuration, 397–398
protocols in, 396–397
sensor path selection, 407–413
terminology, 394–395
use cases, 423–425
YANG model investigation via

YANG Suite, 414–423
push model, 391–392
Telegraf, installing, 428
transition from SNMP, 386–391

stress testing, 23
Structured Query Language (SQL)

databases, 80
Study Mode (exam preparation), 650
subscriptions

creating, 400–401, 405
definition of, 395

substitutability in application design,
63–64

Swagger, 147, 155–156
SwaggerHub, 165–166
sysadmins in evolution of application

deployment, 218–220
Syslog, logging with, 75
Syslog-NG utility, running in applica-

tion container, 559–563
system requirements for software

architecture, 13

system testing, 23
system upgrades, recovery and, 49–50

T
Tail-f Systems, 382
technical debt, 520–521
technical requirements for software

architecture, 13–14
Telegraf

installing, 428
purpose of, 426

telemetry. See streaming telemetry
Terraform

as agentless solution, 450, 493–501
ACI tenant deployment, 496–501
installing, 494–496

comparison with Ansible, 518–519
described, 493–494, 515–518
in evolution of application deploy-

ment, 221
integration deployment to infrastruc-

ture, 207–213
test preparation, 648–652

customizing exams, 650–651
tips for, 648–649
tools for, 649–650
updating exams, 651

test stage (CI/CD), 205
testability as quality attribute, 30, 33
testing, 22–23
TFTP (Trivial File Transfer Protocol),

297
three nines (availability), 45
three-legged authorization (OAuth 2.0),

269–270
throughput, 66–67

BOOK.indb 710 19/05/22 5:58 PM

ptg39201256

use cases 711

TIG stack. See Grafana; InfluxDB;
Telegraf

time series databases (TSDB), 80–81
time-based telemetry. See MDT (model-

driven telemetry)
timeouts

APIs, 184–188
recovery and, 49

time-series metrics. See metrics
TLS (Transport Layer Security), 162,

251, 257–260
token authentication (APIs), 180
token bucket (rate limiting), 187
tracing

for application performance, 77–78
definition of, 74

transport (streaming telemetry)
definition of, 395
protocols in, 396–397

transport layer (NETCONF), 351
Transport Layer Security (TLS), 162,

251, 257–260
Trivial File Transfer Protocol (TFTP),

297
TSDB (time series databases), 80–81
12-factor application design, 238–242

admin processes, 242
backing services, 240
build/release/run stages, 240
codebase, 239
concurrency, 241
configuration, 239
dependencies, 239
disposability, 241
logs, 242
parity, 241–243
port binding, 241
processes, 240

two nines (availability), 45
two-legged authorization (OAuth 2.0),

268–269
Type-1 hypervisors, 528
Type-2 hypervisors, 528–529

U
UCS Manager, 611–628

additional resources, 628
API documentation, 611–617
enabling access, 611
PowerShell SDK documentation,

622–628
purpose of, 611
Python SDK documentation, 617–622

Unified Computing System Manager.
See UCS Manager

uniform interfaces in RESTful APIs,
158

unit testing, 22
unlock operation (NETCONF), 350
updating Pearson Test Prep software,

651
URIs (Uniform Resource Identifiers),

134, 150, 373–374
URLs (Uniform Resource Locators),

150
usability as quality attribute, 30, 32
usability testing, 23
use cases

for application containers, 532
definition of, 13
Firepower API, 585–592
for MDT, 423–425
for SDN, 332–334
Webex API, 575–577
Webex SDK, 577–582

BOOK.indb 711 19/05/22 5:58 PM

ptg39201256

712 user error protection as quality attribute

user error protection as quality attri-
bute, 32

user interface aesthetics as quality
attribute, 32

user requirements for software archi-
tecture, 13

user stories, definition of, 13
users (APIs), definition of, 138

V
validating

gRPC dial-in configuration, 405–406
prerequisites, 534–536

variables (Terraform), 517
variety of data, 82–83
Vault (Ansible), 481–482
VCS (version control system). See ver-

sion control
velocity of data, 82
verifying dial-out configuration,

401–402
version control

CI/CD and, 198–199
Git

Branch and Pull Workflow,
89–103

branching strategies, 121–123
features of, 88
Fork and Pull Workflow,

104–120
recommended settings, 125–126
workflows, 88–89

for maintainability, 59
vertical scaling in application design,

42–43
virtualization

in edge computing, 527–531
Docker containers, 530–531

LXC (Linux Containers),
529–530

Type-1 hypervisors, 528
Type-2 hypervisors, 528–529

in evolution of network management
and software development, 6

visibility in 12-factor application
design, 242

volume of data, 81–82

W
warm standby (passive recovery), 48
waterfall model, 17–18, 20, 318
web application security

OWASP, 262–266
TLS and, 257–260

web scraping, 135–136
Webex, 571–582

API examples, 575–577
documentation, 573–575
enabling REST API/SDK access,

572–573
purpose of, 571–572
SDK examples, 577–582

white-box testing, 23
workflows (Git), 88–89

Branch and Pull Workflow, 89–103
branch creation, 93–94
current changes review, 94
pros and cons, 89
pushing branches to origin repo,

97
sample exercise, 90–103
sample setup, 90
staged changes review, 94

Fork and Pull Workflow, 104–120
branch creation, 111

BOOK.indb 712 19/05/22 5:58 PM

ptg39201256

ZTP (zero-touch provisioning) 713

current changes review, 112
pros and cons, 105
pushing branches to forked repo,

114
sample exercise, 106–120
sample setup, 105
staged changes review, 112–113

X
XML (Extensible Markup Language),

338–340, 349, 395
XP (Extreme Programming), 19, 20
XSS (cross-site scripting), 264–266

Y
YANG models, 334

data types in, 365–366
downloading, 369–371

EDT vs.434–441
extracting support for

manually via NETCONF,
408–410

with Python and NETCONF,
410–413

investigation via YANG Suite,
414–423

list of, 412–413
management solutions for, 382
in MDT and EDT, 390
NETCONF and, 365–371
public documentation for, 407

YANG Suite, 382, 415–423

Z
ZTD (zero-touch deployment), 449
ZTP (zero-touch provisioning),

300–303

BOOK.indb 713 19/05/22 5:58 PM

ptg39201256

This page intentionally left blank

ptg39201256

APPENDIX C

Memory Tables

Chapter 1
Table 1-2 Simple Comparison Between Functional and Nonfunctional Requirements

Functional Nonfunctional

System quality attribute specific

Mandatory

Performance or quality specific

User requirements

Test for performance, security, etc.

Describe as can or shall

Table 1-3 Comparative Analysis of the Various Development Models

Model Pros Cons

■ Provides simple, easy-to-
understand deliverables and
stakeholders

■ Rigid
■ Suitable where strict control is

needed
■ Good for small or shorter-term

projects

■ Possibly higher cost than other
models, especially if changes are
needed in later stages

■ Not change request friendly
■ Not the best option for large or

longer-term projects

■ Emphasizes frequent and direct
communication

■ Friendly to change requests or
design improvements

■ Normally yields high-quality
iterative development and frequent
fixes

■ Good for larger projects where
work is distributed over smaller
teams

■ Documentation is not emphasized
■ It’s easy to lose the big picture if

individual teams are controlled
with clear milestones or outcomes

ptg39201256

Model Pros Cons

■ Provides for rapid development
and eliminates waste

■ Team empowerment
■ Continuous learning
■ Continuous development with

functioning systems or subsystems
early in the lifecycle

■ Easy to lose focus and the full-
system impact

■ Documentation is not emphasized
or produced during early
development phases

■ Provides for team empowerment
■ Clear documentation of

requirements (especially functional
or business ones) is significant

■ Rapid development using a team of
experienced developers

■ Easy to lose the big picture
■ Small to medium projects
■ It may be costly (depends on the

size and skills of teams)

■ Involves all stakeholders
■ Typically produces high-quality

software
■ Dependent on skilled and

dedicated developers for high-
quality outcomes

■ Short sprints
■ Allows for changes frequently

■ Highly skilled resources add to
cost

■ Frequent meetings and
checkpoints

■ Visibility into small subsystems
and not the big picture or the final
outcomes

■ Quality may suffer if the number
of changes introduced is high

Chapter 2
Table 2-4 Modular Design Best Practices

Modular Design Best
Practice

Benefits

Reduce coupling and
increase cohesion

Monitor scope or span of
control

Address consistency

■ Simple (avoid complexity)
■ Small interfaces (limit information exchange between

modules)
■ Avoid redundant interfaces (the smaller, the better)
■ Overall architecture alignment

ptg39201256

4    Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Modular Design Best
Practice

Benefits

Avoid “lost-in-translation” scenarios where modules significantly
deviate from design principles of the overall system

Table 2-6 Availability Deployment Models

Deployment Model Advantages Disadvantages

Full control of your data

Own and control SLA

Ability to customize

Relatively costly to acquire, ramp
up, and maintain

Not easily scalable

Elasticity in scale and
performance

Low maintenance

Low cost (few exceptions apply)

Ability to place apps and data as
close as possible to your users or
customers

Mobility and easy access
regardless of location

High availability and disaster
recovery built into the
infrastructure (Make sure your
application is able to utilize the
features)

Functionality is limited by cloud
provider capabilities

Security is still an issue,
especially if access is through
the Internet

Technical support; of course, it
all depends on your application
and its functionality, but this is
an important aspect to keep in
mind

Workload mobility between
on-premises and cloud based on
demand or resource utilization
thresholds

Flexibility to utilize both models
based on demand or customer
requirements

Complexity in configuration

Difficult to maintain

Chapter 3
Table 3-2 Performance Parameters from Networking and Software Perspectives

Performance Indicator Computer Networking or
Communication Design

Software or Application
Design

Length of time taken for a
packet to traverse a system.
This could be in/out a single
system or the total time
between a sender and receiver

ptg39201256

Appendix C: Memory Tables     5

C

Performance Indicator Computer Networking or
Communication Design

Software or Application
Design

Round-trip time

Length of time taken to
complete a set of tasks

The rate at which packets
(or any unit of information)
are being transferred in a
time period (e.g., packets per
second or bits per second)

The amount of load
(utilization) a system is
capable of handling during a
time period (e.g., transaction
per second or user requests
per second)

Table 3-4 Syslog Message Severities as Defined by the IETF RFC 5424

Severity Keyword Level Description Syslog Definition

0 System unusable

1 Immediate action needed

2 Critical conditions

3 Error conditions

4 Warning conditions

5 Normal but significant condition

6 Informational messages only

7 Debugging messages

Chapter 9
Table 9-2 Logical Plane Models

Model Function Example

Control plane Software processes, such as OSPF,
EIGRP, BGP, IS-IS, LDP, and ARP

Data plane Interfaces

Management
plane

CLI/SSH, SNMP, NETCONF/
RESTCONF

Chapter 10
Table 10-2 Operational Lifecycle

Operational Perspective Function

Day-0

Day-1

ptg39201256

6    Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Operational Perspective Function

Day-2

Day-X

Table 10-3 Software Development Methodologies and Frameworks

Method Name Description

Agile
Kanban

Lean

Scrum

Waterfall

Table 10-4 Contributing Protocols and Solutions to SDN

Protocol/Solution Definition Function

OpenFlow

I2RS Interface to Routing System

PCEP Path Computation Element
Protocol

BGP-LS/FS BGP Link-State / Flow Spec

OpenStack

ptg39201256

Appendix C: Memory Tables     7

C

Protocol/Solution Definition Function

OMI Open Management
Infrastructure

Puppet

Ansible

NETCONF Network Configuration
standard

YANG Data Modeling Language

Table 10-5 REST API Operation Types

Method Function Idempotency Safety/Read-
only Function

GET Reads resource data, settings
HEAD Tests the API endpoint for validity,

accessibility, and recent modifications;
similar to GET without response
payload

POST Creates a new resource
PUT Updates or replaces a resource
PATCH Modifies changes to a resource (not

complete replacement)
DELETE Deletes a resource
CONNECT Starts communications with the

resource; opens a tunnel
OPTIONS Provides information about the

capabilities of a resource, without
initiating a resource retrieval function

ptg39201256

8    Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Chapter 11
Table 11-2 NETCONF Protocol Operations

Operation Description

Retrieves running configuration and device state information
Retrieves all or part of a specified configuration
Loads all or part of a specified configuration to the specified target
configuration
Creates or replaces an entire configuration datastore with the contents
of another complete configuration datastore
Deletes a configuration datastore
Locks an entire configuration datastore of a device
Releases a configuration lock previously obtained with the <lock>
operation
Requests graceful termination of a NETCONF session
Forces the termination of a NETCONF session

Table 11-5 Mapping of NETCONF to HTTP/RESTCONF Operations

NETCONF RESTCONF (HTTP)

<get>, <get-config> GET
<edit-config> (operation="create")
<edit-config> (operation="create/replace")
<edit-config> (operation="merge")
<edit-config> (operation="delete") DELETE

Table 11-6 RESTCONF URI Components

Component Explanation

The default, secure HTTP transport, as specified by
RFC 8040.
The DNS name or IP address for the RESTCONF
agent; also provide the port (such as 8443) if using a
nonstandard port other than 443.
The main branch for RESTCONF requests. The
de facto convention is restconf, but it should be
verified to ensure proper operation.
The RESTCONF API resource type for data. An
operations resource type accesses RPC operations.
The base model container being used; inclusion of
the module name is optional.
An individual element from within the container.
Query parameters that modify or filter returned
results; see Table 11-7.

ptg39201256

Appendix C: Memory Tables     9

C

Chapter 12
Table 12-2 SNMP and Streaming Telemetry Comparison

Function SNMP Streaming Telemetry

Model Request-response
Security SNMPv1 and 2c—none

SNMPv3 authentication
and privacy

Encoding ASN.1
Programmatic Use Medium
Transport UDP
Instrumentation
model

MIB

Chapter 13
Table 13-2 Puppet Platform Support Matrix

Platform Environment Description

N3k N30xx and N31xx models only

N35xx is not supported
N3k-F All N3xxx models running NX-OS 7.0(3)

Fx(x)
N5k N56xx models only

N50xx and N55xx not supported
N6k All N6xxx models

N7k All N7xxx models

N9k All N9xxx models

N9k-F All N95xx models running NX-OS 7.0(3)
Fx(x)

ptg39201256

APPENDIX D

Memory Tables Answer Key

Chapter 1
Table 1-2 Simple Comparison Between Functional and Nonfunctional Requirements

Functional Nonfunctional

Use case or business process specific System quality attribute specific

Mandatory Not mandatory/affected by trade-offs

Functionality specific Performance or quality specific

User requirements User experience

Test for functionality Test for performance, security, etc.

Describe as can or shall Describes as must or should

Table 1-3 Comparative Analysis of the Various Development Models

Model Pros Cons

Waterfall ■ Provides simple, easy-
to-understand deliverables and
stakeholders

■ Rigid
■ Suitable where strict control is

needed
■ Good for small or shorter-term

projects

■ Possibly higher cost than other
models, especially if changes are
needed in later stages

■ Not change request friendly
■ Not the best option for large or

longer-term projects

Agile ■ Emphasizes frequent and direct
communication

■ Friendly to change requests or
design improvements

■ Normally yields high-quality
iterative development and frequent
fixes

■ Good for larger projects where
work is distributed over smaller
teams

■ Documentation is not emphasized
■ It’s easy to lose the big picture if

individual teams are controlled
with clear milestones or outcomes

ptg39201256

Model Pros Cons

Lean ■ Provides for rapid development
and eliminates waste

■ Team empowerment
■ Continuous learning
■ Continuous development with

functioning systems or subsystems
early in the lifecycle

■ Easy to lose focus and the full-
system impact

■ Documentation is not emphasized
or produced during early
development phases

Scrum ■ Provides for team empowerment
■ Clear documentation of

requirements (especially functional
or business ones) is significant

■ Rapid development using a team of
experienced developers

■ Easy to lose the big picture
■ Small to medium projects
■ It may be costly (depends on the

size and skills of teams)

Extreme
Programming
(XP)

■ Involves all stakeholders
■ Typically produces high-quality

software
■ Dependent on skilled and

dedicated developers for high-
quality outcomes

■ Short sprints
■ Allows for changes frequently

■ Highly skilled resources add to
cost

■ Frequent meetings and
checkpoints

■ Visibility into small subsystems
and not the big picture or the final
outcomes

■ Quality may suffer if the number
of changes introduced is high

Chapter 2
Table 2-4 Modular Design Best Practices

Modular Design Best
Practice

Benefits

Reduce coupling and
increase cohesion

Maintain clear, functional relationships and the strength of
interaction

Monitor scope or span of
control

Watch for interdependencies and how data generated by one
module affects other modules downstream or upstream from it
in sequence

Address consistency Provide consistency in execution. Don’t maintain data or
“memory” within a module that is not properly being reset. The
same input must always generate the same output.

Interface design is vital ■ Simple (avoid complexity)
■ Small interfaces (limit information exchange between

modules)
■ Avoid redundant interfaces (the smaller, the better)
■ Overall architecture alignment

ptg39201256

4    Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Modular Design Best
Practice

Benefits

Align to overall architecture Avoid “lost-in-translation” scenarios where modules significantly
deviate from design principles of the overall system

Table 2-6 Availability Deployment Models

Deployment Model Advantages Disadvantages

On-premises Full control of your data

Own and control SLA

Ability to customize

Relatively costly to acquire, ramp
up, and maintain

Not easily scalable

Cloud Elasticity in scale and
performance

Low maintenance

Low cost (few exceptions apply)

Ability to place apps and data as
close as possible to your users or
customers

Mobility and easy access
regardless of location

High availability and disaster
recovery built into the
infrastructure (Make sure your
application is able to utilize the
features)

Functionality is limited by cloud
provider capabilities

Security is still an issue,
especially if access is through
the Internet

Technical support; of course, it
all depends on your application
and its functionality, but this is
an important aspect to keep in
mind

Hybrid Workload mobility between
on-premises and cloud based on
demand or resource utilization
thresholds

Flexibility to utilize both models
based on demand or customer
requirements

Complexity in configuration

Difficult to maintain

Chapter 3
Table 3-2 Performance Parameters from Networking and Software Perspectives

Performance Indicator Computer Networking or
Communication Design

Software or Application
Design

Latency Length of time taken for a
packet to traverse a system.
This could be in/out a single
system or the total time
between a sender and receiver

Length of time taken for
a system to complete a
specified task.

ptg39201256

Appendix D: Memory Tables Answer Key    5

Performance Indicator Computer Networking or
Communication Design

Software or Application
Design

Round-trip time Time taken for a round-trip
travel between two network
nodes (from, to, and back).

Length of time taken to
complete a set of tasks

Throughput The rate at which packets
(or any unit of information)
are being transferred in a
time period (e.g., packets per
second or bits per second)

The amount of load
(utilization) a system is
capable of handling during a
time period (e.g., transaction
per second or user requests
per second)

Table 3-4 Syslog Message Severities as Defined by the IETF RFC 5424

Severity Keyword Level Description Syslog Definition

emergency 0 System unusable LOG_EMERG

alert 1 Immediate action needed LOG_ALERT

critical 2 Critical conditions LOG_CRIT

error 3 Error conditions LOG_ERR

warning 4 Warning conditions LOG_WARNING

notification 5 Normal but significant condition LOG_NOTICE

informational 6 Informational messages only LOG_INFO

debugging 7 Debugging messages LOG_DEBUG

Chapter 9
Table 9-2 Logical Plane Models

Model Function Example

Control plane Determines/calculates packet or
frame-forwarding decisions

Software processes, such as OSPF,
EIGRP, BGP, IS-IS, LDP, and ARP

Data plane Executes on packet or frame
forwarding

Interfaces

Management
plane

Protocols/methods for provisioning
the control plane

CLI/SSH, SNMP, NETCONF/
RESTCONF

Chapter 10
Table 10-2 Operational Lifecycle

Operational Perspective Function

Day-0 Initial installation

Day-1 Configuration for production purpose

D

ptg39201256

6    Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Operational Perspective Function

Day-2 Compliance and optimization

Day-X Migration/decommissioning

Table 10-3 Software Development Methodologies and Frameworks

Method Name Description

Agile Flexible and incremental design process focused on collaboration
Kanban Visual framework promoting what, when, and how to develop in

small, incremental changes; complements Agile
Lean Process to create efficiencies and remove waste to produce more

with less
Scrum Process with fixed-length iterations (sprints); follows roles,

responsibilities, and meetings for well-defined structure; derivative
of Agile

Waterfall Sequential design process; fully planned; execution through phases

Table 10-4 Contributing Protocols and Solutions to SDN

Protocol/Solution Definition Function

OpenFlow Layer-2 programmable
forwarding protocol and
specification for switch
manufacturing

I2RS Interface to Routing System Layer-3 programmable
protocol to the routing
information base (RIB);
allowed manipulation and
creation of new routing
metrics

PCEP Path Computation Element
Protocol

L3 protocol capable of
computing a network
path or route based on a
network graph and applying
computational constraints

BGP-LS/FS BGP Link-State / Flow Spec The ability to gather IGP
topology of the network
and export to a central SDN
controller or alternative
method to remotely triggered
black hole filtering useful for
DDoS mitigation

OpenStack Hypervisor technology for
virtualization of workloads

ptg39201256

Appendix D: Memory Tables Answer Key    7

Protocol/Solution Definition Function

OMI Open Management
Infrastructure

Open-source Common
Information Model
with intent to normalize
management

Puppet Agent-based configuration
management solution
embedded in devices (later
updated to agentless)

Ansible Agentless configuration
management solution

NETCONF Network Configuration
standard

IETF working group
specification normalizing
configuration across vendors
using XML schemas (later
updated with YANG)

YANG Data Modeling Language Data modeling language for
defining IT technologies and
services

Table 10-5 REST API Operation Types

Method Function Idempotency Safety/Read-
only Function

GET Reads resource data, settings YES YES
HEAD Tests the API endpoint for validity,

accessibility, and recent modifications;
similar to GET without response
payload

YES YES

POST Creates a new resource NO NO
PUT Updates or replaces a resource YES NO
PATCH Modifies changes to a resource (not

complete replacement)
NO NO

DELETE Deletes a resource YES NO
CONNECT Starts communications with the

resource; opens a tunnel
YES YES

OPTIONS Provides information about the
capabilities of a resource, without
initiating a resource retrieval function

YES YES

D

ptg39201256

8    Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Chapter 11
Table 11-2 NETCONF Protocol Operations

Operation Description

get Retrieves running configuration and device state information
get-config Retrieves all or part of a specified configuration
edit-config Loads all or part of a specified configuration to the specified target

configuration
copy-config Creates or replaces an entire configuration datastore with the contents

of another complete configuration datastore
delete-config Deletes a configuration datastore
lock Locks an entire configuration datastore of a device
unlock Releases a configuration lock previously obtained with the <lock>

operation
close-session Requests graceful termination of a NETCONF session
kill-session Forces the termination of a NETCONF session

Table 11-5 Mapping of NETCONF to HTTP/RESTCONF Operations

NETCONF RESTCONF (HTTP)

<get>, <get-config> GET
<edit-config> (operation="create") POST
<edit-config> (operation="create/replace") PUT
<edit-config> (operation="merge") PATCH
<edit-config> (operation="delete") DELETE

Table 11-6 RESTCONF URI Components

Component Explanation

https:// The default, secure HTTP transport, as specified by
RFC 8040.

DeviceNameOrIP The DNS name or IP address for the RESTCONF
agent; also provide the port (such as 8443) if using a
nonstandard port other than 443.

<ROOT> The main branch for RESTCONF requests. The
de facto convention is restconf, but it should be
verified to ensure proper operation.

data The RESTCONF API resource type for data. An
operations resource type accesses RPC operations.

[YANG MODULE:]CONTAINER The base model container being used; inclusion of
the module name is optional.

LEAF An individual element from within the container.
[?<OPTIONS>] Query parameters that modify or filter returned

results; see Table 11-7.

ptg39201256

Appendix D: Memory Tables Answer Key    9

Chapter 12
Table 12-2 SNMP and Streaming Telemetry Comparison

Function SNMP Streaming Telemetry

Model Request-response Push
Security SNMPv1 and 2c—none

SNMPv3 authentication
and privacy

TLS default

Encoding ASN.1 GPB, JSON, XML
Programmatic Use Medium High
Transport UDP TCP, NETCONF, gRPC, gNMI
Instrumentation
model

MIB YANG Model

Chapter 13
Table 13-2 Puppet Platform Support Matrix

Platform Environment Description

N3k agentless, bash-shell,
guestshell

N30xx and N31xx models only

N35xx is not supported
N3k-F agentless, bash-shell,

guestshell
All N3xxx models running NX-OS 7.0(3)
Fx(x)

N5k Open Agent Container
(OAC)

N56xx models only

N50xx and N55xx not supported
N6k agentless, Open Agent

Container
All N6xxx models

N7k agentless, Open Agent
Container

All N7xxx models

N9k agentless, bash-shell,
guestshell

All N9xxx models

N9k-F agentless, bash-shell,
guestshell

All N95xx models running NX-OS 7.0(3)
Fx(x)

D

ptg39201256

APPENDIX E

Dashboard Basics

Dashboards can serve a useful function in an operations center. Often, operations teams use
traditional, commercial management tools and their web-based portals in a kiosk mode as
a quick analog to a dashboard. Sometimes their metrics do not map to the priority metrics
needed to run the business or glean new insights into its operation. By embracing DevOps
principles, sometimes complemented with some open-source projects, you can create dash-
boards that reflect your specific purpose.

You are encouraged to use commercially available solutions where available and appropriate.
There is little reason to reinvent the wheel to obtain common metrics such as CPU, memory,
interface, error rates, and client MAC addresses. However, there may be other parts of your
IT environment and the instrumentation within that could be appealing for your project
intentions. As an example and a partial mea culpa, I use a situation from a CiscoLive event
many years ago.

Many large events at conference venues use IT service providers in concert with the venue’s
own IT staff to design, provision, and monitor the event’s network. This is especially true
when the event host is not in the technology industry. After a few years of using these
providers, we at Cisco had to ask ourselves, “Can’t we design, install, and operate the event
network ourselves? It’s often our gear. We have access to all the top talent in the industry at
the event.” So, we set off to build our own NOC team for CiscoLive events. True to form,
as it is for most of our customers, taking on this task was a learning experience in what was
important to monitor and what was “nice to have.” One year we learned that monitoring
the Internet routing table size was important even though it was not a common metric in
the commercially available tools at the time—even those from Cisco. Additionally, around
2016, CiscoLive became the first technology event of scale to bring dual 100 Gbps links
to the venue for attendee use. We were keenly interested in seeing how optical power levels
contributed to operational performance. So, we decided to collect those metrics and create
dashboards, thresholds, and alerts that would let us know if there were impactful changes
upstream from our event network.

Newer terminology like observability resonates with the network management and operations
team. Getting data into dashboards is a multistep consideration that involves these actions:

■ Metric identification

■ Metric extraction

■ Data normalization

■ Data storage/extraction

■ Data rendering

ptg39201256

Metric identification involves determining which data points are important to track and seek-
ing to find how they are instrumented or if they are even available.

Metric extraction uses that insight to develop a plan, method, script, or program to obtain
that information. The metrics might be available as SNMP MIB objects. Or they could be
available through API calls, log extraction, or the execution of CLI/shell commands.

Data normalization involves taking the raw data, possibly with other metrics to create new
data expressions or values. At this stage, before storing or using the information, standard-
izing the information is important. If you see data that can be in degrees Fahrenheit, you
might want to convert, or normalize, to degrees Celsius so that all measurements are con-
sistent across all collection types. Data that is in percentages might need to be consistently
applied as decimal values less than or equal to 100 and rounded to two decimals (depending
on what is warranted and/or desirable). Otherwise, a common convention may be less than
or equal to 1.00.

Data storage and extraction depend on the data collected. For many years, time-series data
was purposely jammed into relational databases. However, it became clear over time that
relational databases were suboptimal for date-stamped information. The time-series database
concept was developed, and now more optimal solutions are available, such as InfluxDB,
Prometheus, and the open-source Apache Pinot.

Data rendering involves the actual dashboarding and visualization in which you tradition-
ally relate. Solutions in this space are Telegraf and Grafana. The solutions provide common
visualizations like panels, gauges, graphs, pie charts, and line charts. Other valuable visualiza-
tions can be heat maps, sparkle graphs, and bubble plots.

In any case, using these open-source solutions provides you more opportunity to focus on
the data instrumentation and telemetry that’s desired and worry less about how to store it
and develop visualizations.

Consider, again, the previous description of the CiscoLive NOC scenario using routing table
and optical power-level metrics. Initially, we automated the execution of show ip route
summary and show hw-module subslot <#/#> transceiver status commands to obtain the
information. Later, we tried SNMP MIB objects; then eventually streaming telemetry became
the optimal method. In any of these cases, we took the metric as a snapshot in time and pro-
grammatically injected it into a time-series database like InfluxDB.

InfluxDB offers a line protocol method to take in data as optionally tagged values. For
more detail, see the guide at https://docs.influxdata.com/influxdb/v1.8/write_protocols/
line_protocol_tutorial/.

Our main activity was to take that data and render it in our Python scripts as REST API calls
to the server similar to the following.

POST "http://INFLUX_SERVER:8086/write?db=CLNOC" --data-binary 'rout
ingtable,location=WAN,device=wan-edge-1 count 700000'

POST "http://INFLUX_SERVER:8086/write?db=CLNOC" --data-binary 'opti
calpower,location=WAN,device=wan-edge-2 dbm -4.50'

ptg39201256

4    Cisco Certified DevNet Professional DEVCOR 350-901 Official Cert Guide

Because we did not specify a timestamp, InfluxDB would assume the current time. If we
were collecting and normalizing the data quickly, this was a safe assumption.

We could then use Grafana with the time-series graphs to depict the routing table size over
snapshots every 10 minutes. We were especially interested in drops of the table count con-
secutively over time because they may indicate an upstream removal of our advertised net-
work. Figure E-1 shows an optical power-level graph (from an event years ago).

Figure E-1 CiscoLive NOC Dashboard Showing Optical Power Levels

In any case, the important thing is to obtain and display metrics that are interesting and
valuable to you and your business. One more example from CiscoLive: recognizing that we
have a high-tech event with many attendees interested in leading technologies, we decided to
provide an IPv6-centric dashboard. Figure E-2 shows such data as a melding of several data
points in Grafana.

Figure E-2 CiscoLive NOC Dashboard Showing IPv4/v6 Statistics

ptg39201256

Appendix E: Dashboard Basics    5

So, in the final analysis of dashboarding, you must ask yourself: What metrics are important
to my business? How can I obtain the data? How do I want to depict the data?

We encourage you to think outside the box. Use metrics and automation in ways to differen-
tiate your product or service to the benefit of your customers. Take chances. Be bold. Fail on
occasion. But recover and move on.

E

ptg39201256

ciscopress.com/video

Exclusive Offer – 40% OFF

Advance Your Skills

Get star ted with fundamentals,
become an expert, or get certified.

Train Anywhere

Train anywhere, at your
own pace, on any device.

Learn

Learn from trusted author
trainers published by Cisco Press.

Cisco Press
Video Training

ciscopress.com/video
Use coupon code CPVIDEO40 during checkout.

Video Instruction from Technology Experts

Try Our Popular Video Training for FREE!
ciscopress.com/video

Explore hundreds of FREE video lessons from our growing library of Complete Video
Courses, LiveLessons, networking talks, and workshops.

Z04_Davis_Index_p684-p717.indd 715 20/05/22 3:29 PM

http://ciscopress.com/video
http://ciscopress.com/video
http://ciscopress.com/video

ptg39201256

REGISTER YOUR PRODUCT at CiscoPress.com/register
Access Additional Benefits and SAVE 35% on Your Next Purchase

• Download available product updates.

• Access bonus material when applicable.

• Receive exclusive offers on new editions and related products.
(Just check the box to hear from us when setting up your account.)

• Get a coupon for 35% for your next purchase, valid for 30 days.
Your code will be available in your Cisco Press cart. (You will also find
it in the Manage Codes section of your account page.)

Registration benefits vary by product. Benefits will be listed on your account page
under Registered Products.

CiscoPress.com – Learning Solutions for Self-Paced Study, Enterprise, and the Classroom
Cisco Press is the Cisco Systems authorized book publisher of Cisco networking technology,
Cisco certification self-study, and Cisco Networking Academy Program materials.

At CiscoPress.com you can
• Shop our books, eBooks, software, and video training.
• Take advantage of our special offers and promotions (ciscopress.com/promotions).
• Sign up for special offers and content newsletters (ciscopress.com/newsletters).
• Read free articles, exam profiles, and blogs by information technology experts.
• Access thousands of free chapters and video lessons.

Connect with Cisco Press – Visit CiscoPress.com/community
Learn about Cisco Press community events and programs.

Z04_Davis_Index_p684-p717.indd 716 20/05/22 3:29 PM

http://CiscoPress.com/register
http://CiscoPress.com
http://ciscopress.com/promotions
http://ciscopress.com/newsletters
http://CiscoPress.com/community

ptg39201256

Cisco Certified DevNet
Professional DEVCOR 350-901
Official Cert Guide
Companion Website

Access interactive study tools on this book’s companion website, including
practice test software, review exercises, Key Term flash card application,
a study planner, and more!

To access the companion website, simply follow these steps:

1. Go to www.ciscopress.com/register.

2. Enter the print book ISBN: 9780137370443.

3. Answer the security question to validate your purchase.

4. Go to your account page.

5. Click on the Registered Products tab.

6. Under the book listing, click on the Access Bonus Content link.

If you have any issues accessing the companion website, you can contact
our support team by going to pearsonitp.echelp.org.

https://www.ciscopress.com/register
https://pearsonitp.echelp.org

ptg39201256

Where are the companion
content files?

Thank you for purchasing this
Premium Edition version of
Cisco Certified DevNet Professional
DEVCOR 350-901 Official Cert Guide
This product comes with companion

content. You have access to these files

by following the steps below:

1. Go to ciscopress.com/account
and log in.

2. Click on the “Access Bonus

Content” link in the Registered

Products section of your account

page for this product, to be

taken to the page where your

downloadable content is available.

Please note that many of our

companion content files can be very

large, especially image and video files.

If you are unable to locate the files for this

title by following the steps at left, please

visit ciscopress.com/support
and select the chat, phone, or web ticket

options to get help from a tech support

representative.

The Professional and Personal Technology Brands of Pearson

https://ciscopress.com/account
https://ciscopress.com/support

	Cover
	Title Page
	Copyright Page
	About the Authors
	Dedications
	Acknowledgments
	Contents
	Introduction
	Part I: Software Development and Design
	Chapter 1 Software Development Essentials
	“Do I Know This Already?” Quiz
	Foundation Topics
	A Brief History of the Future
	The Evolution
	Automation, Orchestration, and DevOps

	Software Architecture and Design
	Architecture Requirements
	Functional Requirements
	Nonfunctional Requirements

	Architectural Patterns
	Software Development Lifecycle (SDLC) Approach
	Software Development Models
	Waterfall
	Agile Software Development
	Scrum
	Extreme Programming
	Kanban
	Lean
	Which Model?

	Architecture and Code Reviews
	Software Testing
	Exam Preparation Tasks
	Review All Key Topics
	Complete Tables and Lists from Memory
	Define Key Terms
	References

	Chapter 2 Software Quality Attributes
	“Do I Know This Already?” Quiz
	Foundation Topics
	Quality Attributes and Nonfunctional Requirements
	Brief Overview of the Most Common Quality Attributes
	Measuring Quality Attributes

	Modularity in Application Design
	Benefits of Modularity
	Modularity Coding Best Practices
	Microservices and Modular Design

	Scalability in Application Design
	Horizontal Scalability
	Vertical Scalability

	Practical Scalability in Application Design
	High Availability and Resiliency in Application Design
	Failure or Fault Detection
	Recovery: High Availability in Practice
	Prevention
	High Availability Planning and the Responsibilities of the Developer
	High Availability Deployment Models

	Exam Preparation Tasks
	Review All Key Topics
	Complete Tables and Lists from Memory
	Define Key Terms
	References

	Chapter 3 Architectural Considerations and Performance Management
	“Do I Know This Already?” Quiz
	Foundation Topics
	Maintainable Design and Implementation
	Maintaining a SOLID Design
	Single Responsibility Principle (SRP)
	Open-Closed Principle (OCP)
	Liskov’s Substitution Principle (LSP)
	Interface Segregation Principle (ISP)
	Dependency Inversion Principle (DIP)

	Latency and Rate Limiting in Application Design and Performance
	Designing for Application Low Latency and High Performance
	Architecture Trade-offs
	Improving Performance

	Design and Implementation for Observability
	Logging
	Metrics
	Tracing
	Good Documentation Practices: An Observability Reminder

	Database Selection Criteria
	Database Requirements Gathering
	Data Volume
	Data Velocity
	Data Variety

	Exam Preparation Tasks
	Review All Key Topics
	Complete Tables and Lists from Memory
	Define Key Terms
	References

	Chapter 4 Version Control and Release Management with Git
	“Do I Know This Already?” Quiz
	Foundation Topics
	Version Control and Git
	Git Workflow
	Branch and Pull Workflow
	Pros
	Cons
	Sample Setup
	Sample Branch and Pull Workflow
	Fork and Pull Workflow
	Pros
	Cons
	Sample Setup
	Sample Fork and Pull Workflow

	Git Branching Strategy
	What Is a Branching Strategy?
	The Most Important Factor When Selecting a Git Branching Strategy
	Popular Git Branching Strategies
	When to Use GitHub Flow
	When to Use Git Flow
	When to Use GitLab Flow
	Recommended GitHub Settings
	Configuring the PR Merge Button
	Configuring a Branch Protection Rule to Require Code Reviews
	Exam Preparation Tasks
	Review All Key Topics
	Complete Tables and Lists from Memory
	Define Key Terms
	References

	Part II: APIs
	Chapter 5 Network APIs
	“Do I Know This Already?” Quiz
	Foundation Topics
	What Are APIs?
	Methods
	Objects
	Formats
	APIs vs. No API
	Web Scraping
	Jeff Bezos’s API Mandate: How the AWS API-Driven Cloud Was Born

	Calling an API
	What Is API Development?
	API Architectural Styles

	Selecting an API Style
	HTTP/JSON
	REST/JSON
	Cache-Control
	REST vs. RPC
	gRPC
	OpenAPI/Swagger

	Network API Styles
	NETCONF APIs

	Exam Preparation Tasks
	Review All Key Topics
	Complete Tables and Lists from Memory
	Define Key Terms
	References

	Chapter 6 API Development
	“Do I Know This Already?” Quiz
	Foundation Topics
	Creating API Clients
	Code Generation Client API Libraries for IMDb
	Adding CLI Wrapper Code
	Making Calls to IMDb Using a CLI Program

	API Design Considerations
	API Authentication Models
	Flow Control (Pagination vs. Streaming)
	Error Handling, Timeouts, and Rate Limiting
	Caching

	Exam Preparation Tasks
	Review All Key Topics
	Complete Tables and Lists from Memory
	Define Key Terms
	References

	Part III: Application Development, Deployment, and Security
	Chapter 7 Application Deployment
	“Do I Know This Already?” Quiz
	Foundation Topics
	The Evolution of Application Responsibilities
	The Hybridization of Development and Operations
	The Journey to DevOps
	A Cultural Shift
	The Emergence of the Site Reliability Engineer(ing)
	SRE Responsibilities and Tenets
	SRE vs. DevOps
	Continuous Integration/Continuous Delivery (Deployment)
	Continuous Integration (CI)
	Continuous Delivery: One of the CDs
	Continuous Deployment: The Other CD

	CI/CD Pipeline Implementation
	Pipeline Components
	Build
	Test
	Release/Deliver
	Deploy
	Adding Deployment to Integration
	Deploying to Infrastructure (Terraform + Atlantis)
	Deploying Applications (Flux + Kubernetes)

	Application Deployment Methods over Time
	The 2000s: Sysadmins, Terminals, and SSH
	The 2010s: Automated Configuration Management
	The 2020s: The Clouds Never Looked So Bright
	Managed Kubernetes (e.g., GKE)
	Containers on Serverless Clouds (e.g., AWS ECS on Fargate)
	Serverless Functions (e.g., AWS Lambda)

	Software Practices for Operability: The 12-Factor App
	Factor 1: Codebase
	Factor 2: Dependencies
	Factor 3: Config
	Factor 4: Backing Services
	Factor 5: Build, Release, Run
	Factor 6: Processes
	Factor 7: Port Binding
	Factor 8: Concurrency
	Factor 9: Disposability
	Factor 10: Dev/Prod Parity
	Factor 11: Logs
	Factor 12: Admin Processes

	Summary
	Exam Preparation Tasks
	Review All Key Topics
	Complete Tables and Lists from Memory
	Define Key Terms
	References

	Chapter 8 Security in Application Design
	“Do I Know This Already?” Quiz
	Foundation Topics
	Protecting Privacy
	Personally Identifiable Information
	Data States
	Laws, Regulations, and Standards for Protecting Privacy

	Storing IT Secrets
	Public Key Infrastructure (PKI)
	Certificate Revocation
	Hierarchical Multiple CA Infrastructure
	TLS, PKI, and Web Applications Security
	Browser Security Issues

	Securing Web and Mobile Applications
	Injection Attacks
	Cross-Site Scripting

	OAuth Authorization Framework
	How Does OAuth Work?
	OAuth 2.0 Two-Legged Authorization
	OAuth 2.0 Three-Legged Authorization
	Additional OAuth Authorization Code Grant Types
	OAuth 2.0 Client Credentials
	Resource Owner Password Credential Flow
	OAuth 2.0 Implicit Flow
	OAuth 2.0 Authorization Code Flow
	OAuth 2.0 PKCE Flow
	Refresh Token Flow
	OAuth 2.0 Device Code Flow

	Exam Preparation Tasks
	Review All Key Topics
	Complete Tables and Lists from Memory
	Define Key Terms
	References

	Part IV: Infrastructure and Automation
	Chapter 9 Infrastructure
	“Do I Know This Already?” Quiz
	Foundation Topics
	Network Management
	Methods of Network Provisioning
	CLI/Console
	SNMP
	File Transfer Methods

	Element Management Systems
	Embedded Management
	Zero-Touch Provisioning (ZTP)
	Atomic or SDN-Like/Controller-Based Networking
	Advanced Concepts—Intent-Based Networking
	Summary
	Exam Preparation Tasks
	Review All Key Topics
	Complete Tables and Lists from Memory
	Define Key Terms
	References

	Chapter 10 Automation
	“Do I Know This Already?” Quiz
	Foundation Topics
	Challenges Being Addressed
	Differences of Equipment and Functionality
	Proximity of Management Tools and Support Staff
	Speed of Service Provisioning
	Accuracy of Service Provisioning
	Scale
	Doing More with Less

	Software-Defined Networking (SDN)
	What Is SDN and Network Programmability?
	Approach
	Nontraditional Entities
	Industry Impact
	New Methods
	Normalization
	Enabling Operations
	Enabling Career Options
	Use Cases and Problems Solved with SDN
	Overview of Network Controllers
	The Cisco Solutions

	Application Programming Interfaces (APIs)
	REST APIs
	API Methods
	API Authentication
	API Pagination
	Payload Data Formats JSON XML
	XML
	JSON

	Cross-Domain, Technology-Agnostic Orchestration (CDTAO)
	Impact to IT Service Management and Security
	Exam Preparation Tasks
	Review All Key Topics
	Complete Tables and Lists from Memory
	Define Key Terms
	References

	Chapter 11 NETCONF and RESTCONF
	“Do I Know This Already?” Quiz
	Foundation Topics
	Catalyst for NETCONF
	Content
	Operations
	Messages
	Transport

	Atomic and Model-Driven Configuration Management
	How to Implement NETCONF
	Enabling NETCONF on IOS XE
	Enabling NETCONF on IOS XR
	Enabling NETCONF on NX-OS
	Basic Manual Use of NETCONF

	YANG Models
	The Evolution with RESTCONF
	The RESTCONF Protocol Stack
	RESTCONF Operations
	RESTCONF and Authentication
	RESTCONF URIs
	Performing a RESTCONF GET Operation with cURL
	Performing RESTCONF GET Operations with the Postman Utility

	Management Solutions Using NETCONF and RESTCONF
	Exam Preparation Tasks
	Review All Key Topics
	Complete Tables and Lists from Memory
	Define Key Terms
	References

	Chapter 12 Model-Driven Telemetry
	“Do I Know This Already?” Quiz
	Foundation Topics
	Transformation of Inventory, Status, Performance, and Fault Monitoring
	Scaling with the Push Model
	How to Implement Model-Driven Telemetry
	Dial-In and Dial-Out Mode
	Encoding (Serialization)
	Protocols
	Configuring MDT in IOS-XR
	Configuring Dial-Out Mode
	Step 1: Create a Destination Group
	Step 2: Create a Sensor Group
	Step 3: Create a Subscription
	Step 4: Verify the Dial-Out Configuration
	Configuring Dial-In Mode
	Step 1: Enable gRPC
	Step 2: Create a Sensor Group
	Step 3: Create a Subscription
	Step 4: Validate the Configuration

	Picking Sensor Paths and Metrics
	Researching Public Documentation
	Extracting Model Support from the Device—NETCONF Manually
	Extracting Model Support from the Device—Python and NETCONF
	Digging into the YANG Models
	Installing Docker to the Linux VM
	Installing the YANG Suite Docker Image to the Linux VM

	Practical Application of Streaming Telemetry
	Using Telegraph, InfluxDB, and Grafana
	Installing InfluxDB
	Installing Telegraf

	Beyond MDT—Event-Driven Telemetry
	Other Considerations—Disk Usage
	Frequency of Telemetry Push

	Exam Preparation Tasks
	Review All Key Topics
	Complete Tables and Lists from Memory
	Define Key Terms
	References

	Chapter 13 Open-Source Solutions
	“Do I Know This Already?” Quiz
	Foundation Topics
	Infrastructure-as-Code (IaC) Concepts
	Imperative and Declarative Models

	Provisioning or Configuration Management
	Differences Between Agent and Agentless Solutions
	Agent-Based Solutions—Puppet and Chef
	Agentless Solutions—Ansible and Terraform
	Installing Ansible from the Package Manager
	Installing the Latest Ansible from a Virtual Python Environment with pip
	Configuring Ansible Inventory
	Creating a Project-Level Inventory File
	Creating an Ansible Playbook to Obtain show Command Results
	Filtering, Templating, and Jinja2
	Using Ansible to Modify Device Configurations
	Terraform Overview
	Installing Terraform
	Using Terraform

	Cisco Solutions Enabled for IaC
	Exam Preparation Tasks
	Review All Key Topics
	Complete Tables and Lists from Memory
	Define Key Terms
	References

	Chapter 14 Software Configuration Management
	“Do I Know This Already?” Quiz
	Foundation Topics
	Software Configuration Management (SCM)
	SCM Definitions and Standards
	Why Do You Need SCM?
	Which SCM Process Is Best for You?
	Ansible
	Terraform
	Terraform or Ansible: A High-Level Comparison

	Business and Technical Requirements
	Architectural Decisions
	Technical Debt

	Exam Preparation Tasks
	Review All Key Topics
	Complete Tables and Lists from Memory
	Define Key Terms
	References

	Chapter 15 Hosting an Application on a Network Device
	“Do I Know This Already?” Quiz
	Foundation Topics
	Benefits of Edge Computing
	Virtualization Technologies
	Type-1 Hypervisors
	Type-2 Hypervisors
	Linux Containers (LXC)
	Docker Containers

	Application Container Ideas
	Platforms Supporting Application Containers
	How to Implement Application Containers
	Validating Prerequisites
	Enabling Application Hosting Framework
	Using Cisco DNA Center for App Hosting
	Using Cisco IOx Local Manager for App Hosting
	Using the Command-Line Interface for App Hosting
	Interacting with App Hosted iPerf3

	Best Practices for Managing Application Containers
	Exam Preparation Tasks
	Review All Key Topics
	Complete Tables and Lists from Memory
	Define Key Terms
	References

	Part V: Platforms
	Chapter 16 Cisco Platforms

	“Do I Know This Already?” Quiz
	Foundation Topics
	Webex
	Enabling the Webex REST API/SDK Access
	Webex API Documentation
	API Examples
	SDK Examples

	Firepower
	Enabling API/SDK Access to Firepower
	Firepower API Documentation

	Meraki
	Enabling API/SDK Access to Meraki
	Meraki API Documentation
	Meraki SDK Documentation
	Meraki Authorization

	Intersight
	Enabling API Access to Intersight
	Intersight API Documentation
	Intersight SDK Documentation
	Intersight Authorization

	UCS Manager
	Enabling API Access to UCS Manager
	UCS Manager API Documentation
	Python SDK Documentation
	PowerShell SDK Documentation
	Additional UCS Manager Programmability Resources

	DNA Center
	Enabling API/SDK Access to DNA Center
	DNA Center API Documentation
	DNA Center SDK Documentation
	SDK Authorization

	AppDynamics
	Exam Preparation Tasks
	References

	Chapter 17 Final Preparation
	Getting Ready
	Tools for Final Preparation
	Pearson Cert Practice Test Engine and Questions on the Website
	Accessing the Pearson Test Prep Software Online
	Accessing the Pearson Test Prep Software Offline
	Customizing Your Exams
	Updating Your Exams
	Premium Edition
	Chapter-Ending Review Tools

	Suggested Plan for Final Review/Study
	Summary

	Appendix A: Answers to the “Do I Know This Already?” Questions
	Appendix B: Cisco DevNet Professional DEVCOR 350-901 Exam Updates
	Glossary
	A
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	V
	W
	Y
	Z

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Online Elements
	Appendix C: Memory Tables
	Appendix D: Memory Tables Answer Key
	Appendix E: Dashboard Basics

	Blank Page
	Blank Page
	Blank Page

