
Introducing
Markdown
and Pandoc

Using Markup Language and
Document Converter
—
Thomas Mailund

Introducing
Markdown and

Pandoc
Using Markup Language and

Document Converter

Thomas Mailund

Introducing Markdown and Pandoc: Using Markup Language and

Document Converter

ISBN-13 (pbk): 978-1-4842-5148-5     ISBN-13 (electronic): 978-1-4842-5149-2
https://doi.org/10.1007/978-1-4842-5149-2

Copyright © 2019 by Thomas Mailund

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Steve Anglin
Development Editor: Matthew Moodie
Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail editorial@apress.com; for reprint, paperback, or
audio rights, please email bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book’s product page, located at www.apress.com/9781484251485.
For more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Thomas Mailund
Aarhus N, Denmark

https://doi.org/10.1007/978-1-4842-5149-2

iii

Chapter 1: The Beginner’s Guide to Markdown and Pandoc������������������1

Chapter 2: Why Use Markdown and Pandoc��5

Separating Semantics from Formatting���6

Preprocessing Documents���8

Why Markdown?��9

Why Pandoc?���11

Chapter 3: Writing Markdown���13

Sections���13

Emphasis���14

Lists���15

Block Quotes��17

Verbatim Text���18

Links��18

Images���20

Exercises��20

Sections��21

Emphasis��21

Lists��21

Table of Contents
About the Author���vii

About the Technical Reviewer��ix

iv

Block Quotes��21

Links���22

Images��22

Chapter 4: Pandoc Markdown Extensions���23

Lists���23

Tables���27

Smart Punctuation���32

Footnotes���33

Exercises��34

Lists��34

Tables���34

Footnotes��34

Chapter 5: Translating Documents��35

Formatting a Markdown Document with Pandoc���35

Frequently Useful Options��40

Sections and Chapters���40

Table of Contents��41

Image Extensions���41

Ebook Covers��42

Using Makefiles���42

Chapter 6: Math and Computer Programming Languages������������������47

Writing Math��47

Writing Code Blocks���50

Code Block Options��52

Syntax Highlighting Styles���54

Exercises��55

Table of ContentsTable of Contents

v

Code blocks��55

Code Block Options��55

Syntax Highlighting��55

Chapter 7: Cross-referencing��57

Referencing Sections���58

Reference Prefixes���61

Referencing Figures, Tables, and Equations��63

Bibliographies��64

Exercises��66

Reference Sections��66

Figures, Tables, and Equations���66

Bibliographies���66

Chapter 8: Metadata��67

YAML for metadata���68

Chapter 9: Using Templates���73

Writing Your Own Templates��77

Template Examples��78

Exercises��89

Chapter 10: Preprocessing��91

Examples���92

Including Files��92

Conditional Inclusion��94

Running Code���96

Exercises��98

Table of ContentsTable of Contents

vi

Chapter 11: Filters���99

Exploring Panflute��104

Conditional Inclusion of Exercise Solutions���106

Conditional Inclusions Based on Format��112

Evaluating Code���115

Numbering Exercises���119

Exercises��130

Conditional Inclusion��130

Conditional on Output���130

Evaluating Code��131

Numbering Exercises���131

Chapter 12: Conclusions��133

Index��135

Table of ContentsTable of Contents

vii

About the Author

Thomas Mailund is an associate professor in bioinformatics at Aarhus

University, Denmark. He has a background in math and computer science.

For the past decade, his main focus has been on genetics and evolutionary

studies, particularly comparative genomics, speciation, and gene flow

between emerging species. He has published R Data Science Quick

Reference, The Joys of Hashing, Domain-Specific Languages in R, Beginning

Data Science in R, Functional Programming in R, and Metaprogramming

in R, all from Apress, as well as other books.

ix

About the Technical Reviewer

Germán González-Morris is a polyglot software architect/engineer with

20+ years in the field, with knowledge in Java(EE), Spring, Haskell, C,

Python, and Javascript, among others. He works with web distributed

applications. Germán loves math puzzles (including reading Knuth) and

swimming. He has tech-reviewed several books, including an application

container book (Weblogic), as well as titles covering various programming

languages (Haskell, Typescript, WebAssembly, Math for coders, and

regexp). You can find more details at his blog site (https://devwebcl.

blogspot.com/) or twitter account (@devwebcl).

https://urldefense.proofpoint.com/v2/url?u=https-3A__devwebcl.blogspot.com_&d=DwMFaQ&c=vh6FgFnduejNhPPD0fl_yRaSfZy8CWbWnIf4XJhSqx8&r=hBSr1R__kjUcST0tpDOpn6t2rvV4kaPHSZvoArp2MFA&m=JBubaXpxjMKlEOaFmxdPXtt06ZW1CoYXaaEFq_1hh-o&s=sO8Vn4tmRqIE9wKH9Lreod6mn-UWXwcS36ZRZFgsdEM&e=
https://urldefense.proofpoint.com/v2/url?u=https-3A__devwebcl.blogspot.com_&d=DwMFaQ&c=vh6FgFnduejNhPPD0fl_yRaSfZy8CWbWnIf4XJhSqx8&r=hBSr1R__kjUcST0tpDOpn6t2rvV4kaPHSZvoArp2MFA&m=JBubaXpxjMKlEOaFmxdPXtt06ZW1CoYXaaEFq_1hh-o&s=sO8Vn4tmRqIE9wKH9Lreod6mn-UWXwcS36ZRZFgsdEM&e=

1© Thomas Mailund 2019
T. Mailund, Introducing Markdown and Pandoc,
https://doi.org/10.1007/978-1-4842-5149-2_1

CHAPTER 1

The Beginner’s
Guide to Markdown
and Pandoc
Markdown is a markup language. The name is a pun, but where the humor

might be atrocious, the language is not. The Markdown language lets

you write plain text documents with a few lightweight annotations that

specify how you want the document formatted. Such annotations are the

defining characteristics of a markup language. Markup languages separate

the semantic or content part of a document from the formatting of said

document. The content of a document is the text, what should be headers,

what should be emphasized, and so on. The formatting specifies the font

and font size, whether headers should be numbered, and so on.

Markup languages have a stronger focus on semantic information

than direct formatting as you would do with WYSIWYG (what you see is

what you get) formatting. With markup languages, you might annotate

your text with information about where chapters and sections start, but

not how chapter and heading captions should be formatted. Decoupling

the structure of a text from how it is visualized makes it easier for you to

produce different kinds of output. The same text can easily be transformed

into HTML, PDF, or Word documents by tools that understand the

markup annotations. And because writing the text and formatting it are

2

separate steps, you can apply one or more text documents to the same

transformation program to get a consistent look for related documents,

or you can transform the same document into multiple output formats

so the same document can be put on a web page or in a printed book, for

example. Most WYSIWYG editors can export to different formats, but they

usually do not let you output to the same document type with different

formatting, for example, output PDF files in A4, 6˝ x 9˝, and 7˝ x 10˝ with

point size 11 in the first two and 12 in the last. With a Markup language,

this is relatively easy.

Among markup languages, Markdown is one of, if not the, simplest.

The annotations you add to a text are minimal, and most likely you will

already have seen most of them if you occasionally use plain text files.

For example, where you would use italic or boldface in Word, you would

write *italic* and **boldface** in Markdown, and most likely you have

seen this notation before. In my misspelled youth, I frequently used

TeX/LaTeX and HTM-L/SGML/XML. I know people who cannot

concentrate on the text body if it is full of markup information. With

Markdown, the markup annotation is almost invisible, and they have no

problem working with that. With Markdown you can generate documents

in other markup languages, so you do not need to know them. If you want

the full power to format your documents the way you want them, then

I still recommend that you learn the other languages. You can use that

knowledge to create templates (see Chapter 9), and then you only need

to use, for example, LaTeX or HTML when writing the templates. You can

then still keep your document in Markdown. One exception, where you

still want to use LaTeX, is if you need to write math in your document.

Then you need to write it in LaTeX; see Chapter 6.

You need a program for translating Markdown into other file

formats. The tool I will use in this book is Pandoc. Pandoc supports

basic Markdown and several different extensions. It also lets you define

templates and stylesheets to customize the transformed files. Pandoc can

Chapter 1 The Beginner’s Guide to Markdown and Pandoc

3

do more than translate Markdown files into different output files. It can

translate from and to several different formats. I will only describe how

you translate from Markdown to other formats. If you have an existing text

in Word, for example, and you want to try out Markdown by editing that

document, then you should be able to generate a Markdown file from the

Word file, edit the Markdown format, and then translate the Markdown

document back to Word.

Chapter 1 The Beginner’s Guide to Markdown and Pandoc

5© Thomas Mailund 2019
T. Mailund, Introducing Markdown and Pandoc,
https://doi.org/10.1007/978-1-4842-5149-2_2

CHAPTER 2

Why Use Markdown
and Pandoc
If you are used to WYSIWYG editors such as Microsoft Word, you might

reasonably ask why you should use Markdown files. You can write your

document and format them any way you like, and you can export your

document to different file formats if you wish. For short documents that

you only need to format once and to one file format, you do not need

Markdown. I will argue that Markdown is still an excellent choice for such

documents, but it is for more advanced applications where it really shines.

For applications that are just as easy to handle with a WYSIWYG

editor, plain text can be a better choice in situations where you need to

share documents with others. A de facto file format for this is Word files,

but not everyone has Word. I don’t. I can import Word files into Pages,

which I have, and export to Word, but I don’t know what that does to

the formatting. Everyone has an editor that can work on plain files, and

with a plain text file, you know exactly what you are editing. If the text

and the formatting are separated, then someone with more artistic skills

can handle the formatting while I can write the text. One argument for

Word might be tracking of changes. This is an important feature, but with

plain text files, you can put them under real version control, for example,

GitHub, and that is superior to version tracking.

If you need your document in different formats, for example, you might

need to include your text in a printed progress report and also have it on a

6

web site, then you can export the document to as many file formats as you

need. If you need different typography for the different file formats, you

might have to do substantial manual work. You might need to change all

the document styles by hand, and in the numerous occasions where you

need to make changes to your text, you need to change the styles for each

file format more than once. If you separate style and text, you avoid this

problem altogether.

Using a markup language to annotate your text makes it easier for you

to distinguish between the semantic structure of a document and how it is

formatted. In the Markdown document, you markup where headers and

lists are, for example, but not how these should be formatted in the final

output. The formatting styles are held in different files and you can easily

transform your Markdown input into all the output file formats and styles

you need. Furthermore, someone else can work on the style specification

while you concentrate on the text. Your Markdown doesn’t have to be

in a single file either. You can split it into as many as you want, and then

different authors can work on separate pieces of the text without worrying

about how to merge files afterward. With version control, you can even

work on the same file in parallel up to a point.

�Separating Semantics from Formatting
Most documents have a semantic structure. Texts consist of chapters and

sections, plain text and emphasized text, figures and citations, quotes, and

lists. When we read a document, these semantic elements are visualized

by different fonts, bold and italic text, different font sizes, and we do not

directly see the semantic structure. Because we don’t immediately see the

structure, it is easy to forget that it is there.

Most word processors separate semantics from formatting. If you take

care to use the formatting section when working on a Word document,

then the semantic information needed to change styles, that is, the visual

Chapter 2 Why Use Markdown and Pandoc

7

representation of all semantic units (e.g., headings) is readily available.

Separating the semantics of a document from its formatting is not an

exclusive property of markup languages. However, when the separation

of text and semantics is not enforced, there is a potential for error. If you

decide to change the font size of level-two section headers, for example,

you can easily do this, but you can equally easy highlight a single section

header and reformat that, changing only that single header. That makes

this particular header different from all the rest, and if you later modify the

formatting of level-two headers, you won’t be changing this one header.

Great if this is on purpose; not great if this is not what you wanted.

With WYSIWYG editors, you can separate semantics from formatting,

but it is easy to break this separation. With markup languages, you can

also define some text elements as special and their format different from

related items, but you have to do this explicitly so you cannot easily do

this by mistake. Keeping the core text consisting of semantic elements and

separate from formatting is vital in many situations. If you want to translate

your text into both paper documents and web pages, you typically want the

format to be different in the two resulting documents. If the core text only

contains the semantic structure, this is quickly done, by having a different

mapping from semantic elements to formatting information, typically

called templates or stylesheets (see Chapter 9). With different stylesheets

for different output formats, the formatting is tied to the output text rather

than the input text (see Figure 2-1).

Chapter 2 Why Use Markdown and Pandoc

8

Explicitly representing the semantic elements in the text, rather than

implicitly through how the text is formatted, is also essential if you want

to automatically make a table of contents or lists of figures and tables. If

all sections are marked up explicitly as sections, with headers at different

section levels, any tool can scan your document and identify these. If the

tools had to guess at the semantic meaning of text elements, based on how

the text was formatted, this would be a much harder task.

Using WYSIWYG word processors doesn’t prevent you from structuring

your documents as semantic units—they usually support this—but having

an explicit markup language makes it much easier to enforce.

�Preprocessing Documents
If your documents are in plain text, you also get a lot of options for how

to process your document before you format it into a final output. There

are a large number of tools that will work well with plain text and let you

preprocess your documents.

Preprocessing documents often require a few programming skills,

so it might not be the first thing you want to worry about if you are only

Markdown files

Templates &
style sheets

Output files

Pandoc

Figure 2-1.  You can translate the text in multiple documents, or
multiple chapters that should be merged into a single document. You
combine these with templates for formatting the documents, and using
Pandoc you can combine it all to produce the documents you want.

Chapter 2 Why Use Markdown and Pandoc

9

interested in writing text, but since the option is there, you can write your

text without worrying about processing it initially, and add such steps later.

I write a lot about R programming, and in those books, I have a lot of

code examples. Here, I use another preprocessor, one that lets me evaluate

the code when processing the documents so I know that all the code

examples work and so I can get the output of running code inserted into

the documents automatically before I create the output formats.

Preprocessing your documents adds some complications to how you

format your text, but the complexities are only there when you need them.

If you do not need a preprocessor, then you can ignore that they exist

altogether. If you do need preprocessing, then read Chapter 10.

�Why Markdown?
There are many different markup languages you can use. HTML (hypertext

markup language) is used for web pages. TeX and LaTeX are used for

many kinds of text documents but are especially powerful for typesetting

mathematics. Markdown is what we do on in this book.

What makes Markdown particularly pleasant to work with is its

simplicity. In HTML, for example, you need to structure your text using tags

that enclose every paragraph, every header, every list, and so on. When you

edit an HTML document, it is hard to separate the annotations from just

the text you want to write. LaTeX has the same problem. The annotation of

the text can be hard to ignore when you want to focus on writing.

Worse, if you write your documents in HTML or LaTeX, much of the

text is markup codes that specify the formatting. How much, of course,

depends on your document, but any markup instructions you make can

make the text difficult to read.

Consider this Markdown document:

This is a level one header

This is a paragraph

Chapter 2 Why Use Markdown and Pandoc

10

This is a level two header

Here is a paragraph that is followed by

 * an unnumbered

 * list

1. and a numbered

2. list that is

3. three items long

I hope you will agree that the markups here are minimal and that they

do not get in the way of reading or writing the text.

For comparison, the HTML version of the same text looks like this:

<h1>This is a level one header</h1>

<p>This is a paragraph</p>

<h2>This is a level two header</h2>

<p>Here is a paragraph that is followed by</p>

 an unnumbered

 list

<ol type="1">

 and a numbered

 list that is

 three items long

It is not terribly complicated, and after looking at it a bit, you can certainly

follow the structure of a document. It is far from as clean as the Markdown file.

The LaTeX version is slightly easier to read than the HTML file, but there

are still several formatting instructions that get in the way of just writing.

\section{This is a level one header}

This is a paragraph

Chapter 2 Why Use Markdown and Pandoc

11

\subsection{This is a level two header}

Here is a paragraph that is followed by

\begin{itemize}

\item an unnumbered

\item list

\end{itemize}

\begin{enumerate}

\item and a numbered

\item list that is

\item three items long

\end{enumerate}

Markdown is designed so you can annotate your text with semantic

information with little annotation clutter. It is designed such that reading

the input text is almost as easy as reading the formatted text. With

Markdown you don’t have quite the same power to control your formatting

as you do in a language like LaTeX, but the simplicity of Markdown more

than makes up for it.

�Why Pandoc?
Since Markdown is just a language for adding structure to a text, it is not

tied to any particular tool. You can use any Markdown-aware software

when you want to process your documents. Many blogging platforms

will let you write your text in Markdown and automatically format it for

you. Translating Markdown into HTML was, after all, one of the primary

motivations for the language. Now, many text editors also support

Markdown and will support formatting in Markdown and exporting to

various file formats, usually with various formatting and style choices

determining what your output files will look like.

Chapter 2 Why Use Markdown and Pandoc

12

If your editor can export to different file formats and in different styles,

then that is obviously the easiest way for you to export your Markdown

text. With Pandoc, however, you have a lot of power over how your

documents should be processed. Pandoc is vastly more versatile than any

Markdown-aware text editor that I am aware of.

If you want to create a simple document with no fluff, it is easy to do so

with Pandoc, but easier to do from inside your editor. Try using Pandoc for

simple cases though, so you get familiar with the tool. When you get into

serious writing, and you want full control of how your final documents will

look, then you need the power of Pandoc. The learning curve can be steep,

but if you are familiar with using Pandoc for simple documents, then you

have a foundation to build on when you explore advanced features.

Chapter 2 Why Use Markdown and Pandoc

13© Thomas Mailund 2019
T. Mailund, Introducing Markdown and Pandoc,
https://doi.org/10.1007/978-1-4842-5149-2_3

CHAPTER 3

Writing Markdown
If you have used plain text to write and share documents in the past, then

you are likely to be familiar with most Markdown markup annotations

already. Much of the syntax for Markdown is based on how people have

written plain text documents for years. This chapter covers the basic

Markdown annotations, which make up 99% of the annotations you will

use regularly. The notation I present in this chapter is supported by all

Markdown tools (as far as I am aware). The next chapter covers notation

that is not universally supported although many tools do support the

features there. All of them, of course, are supported by Pandoc.

If you write plain text with no special markup commands, as listed in

the remainder of this chapter, then the result will be plain text in the output

as well. One or more lines of text becomes a paragraph. If you need to start

a new paragraph, then use two new lines, that is, separate one paragraph

from the next with a blank line.

�Sections
At the highest level, a text document is composed of its sections. Sections

come at different levels. In a book, the top level might be chapters,

the second level sections within the chapters, and the third level are

subsections within the sections.

To make a new section, you give it a header. The headers start with

a hashtag. Using one hashtag gives you a level-one header, which will

14

be a chapter in a book or a section in a smaller document. Two hashtags

give you a level-two section, a section if the first level is chapters or a

subsection if the first level is section. The next level sections have three

hashtags, and so on.

Header level 1

Header level 2

Header level 3

For the first two levels, you can alternatively underline the section titles

with = and -, respectively:

Level one header

=================

Level two header

Any text you write following a header becomes the body of the section.

By default the headers are numbered. You can change this using

a template (see Chapter 9) or you can disable numbering on selected

headers by putting “{-}” or “{.unnumbered}” after the header title:

Unnumbered header {-}

Another unnumbered header { .unnumbered }

�Emphasis
We emphasize part of a text by putting it in italic or boldface. In Markdown

we use asterisks, ∗, to do this. To put a word in italic, we use one asterisk,

and to put it in boldface, we use two.

The preceding section, in Markdown, looks like this:

We emphasise part of a text by putting

it in italic or boldface. In Markdown

we use asterisks, *, to do this.

Chapter 3 Writing Markdown

15

To put a word in italic, we use *one*
asterisk and to put it in boldface we

use **two**.

You will also notice that the first asterisk is escaped using a backslash.

That backslash prevents Markdown from interpreting the asterisks as the

beginning of an italic text.

�Lists
You have two kinds of lists: numbered and unnumbered. To create a

numbered list, you put a number, followed by a period, at the start of a line

and write the list item after it. For the next list item, you go to the next line,

add another number, followed by a dot, and write the next item text. An

example could look like this:

1. This is a numbered list.

2. Where this is list item two.

3. And this is list item three.

The result will look like this:

	 1.	 This is a numbered list.

	 2.	 Where this is list item two.

	 3.	 And this is list item three.

The actual numbers are ignored, so you can get the same result if you

wrote:

10. This is a numbered list.

51. Where this is list item two.

42. And this is list item three.

Chapter 3 Writing Markdown

16

If you want your list items to span multiple lines, you need to indent

the lines following the number, like this:

1. This is a multi-line list item.

 This is also part of the list item.

 And so is this

2. Here is another one.

 Where this is also part of the list item.

Doing that will give you this list:

	 1.	 This is a multi-line list item. This is also part of the

list item. And so is this.

	 2.	 Here is another one. Where this is also part of the list

item.

For unnumbered lists, you use an asterisk or a dash instead of

numbers; so you can write an unnumbered list like this:

* This is a numbered list

- Where this is list item two

* And this is list item three

•	 This is a numbered list

•	 Where this is list item two

•	 And this is list item three

As you can see, you can mix asterisks and dashes, or stick to any

of the two you prefer. How the list is formatted when you create a

document is determined by the stylesheet and not which symbol you

use to create the list.

Chapter 3 Writing Markdown

17

If you want to have sublists under a list item, you can do this by

indenting the lines for the sublists. So you can write a list with a sublist

like this:

* This is a top-level list item

 * Here is a sublist item

 * Here is another

* Now we are at the top level again.

Just add sufficient spaces to put the sub-items under the enclosing

item. The result will look like this:

•	 This is a top-level list item

–– Here is a sublist item

–– Here is another

•	 Now we are at the top level again.

When you indent, you need at least four spaces or a tab per level.

�Block Quotes
Should you need to add a quote to your text, you put a “>” before the

quoted text.

So you can write:

> This is a blockquote. The blockquote

> can span multiple lines. If you don't

> put any new lines in it, you only

> need to put the ">" at the beginning

> of the line.

> If you want multiple lines where you

> include new lines, you should add

> the ">" to each line.

Chapter 3 Writing Markdown

18

The result will look like this:

This is a blockquote. The blockquote can span

multiple lines. If you don’t put any new lines in it,

you only need to put the “>” at the beginning of the

line. If you want multiple lines where you include

new lines, you should add the “>” to each line.

�Verbatim Text
Sometimes, you don’t want any formatting at all of a text; you want to leave

it verbatim as it is. When you want this, you can indent it with a tab (or four

spaces). You can write this:

This will be shown

absolutely verbatim

The result will then look like this:

This will be shown

absolutely verbatim

Sometimes, you also want to add verbatim text inline in a paragraph.

To achieve this, simply put the verbatim text in backticks. So you can write

'this' to achieve this.

�Links
Markdown was initially written to make it easier to write content for web

pages. Consequently, it has built-in syntax for inserting hypertext links.

These will work both with links to web pages and for cross-references

within your text.

Chapter 3 Writing Markdown

19

You have two options for specifying a link: you can put the destination

URL where you insert the link, or you can create a label and map it to the

URL so you can refer to the label when you insert a link. To put the URL

where you insert the link, you put the text you want to be the link in square

brackets and the destination URL for the link in round parentheses right

after. You would write a text like this:

This is a link to [my blog](http://www.mailund.dk).

This is fine for most cases, but if you have many links in a paragraph,

then the link annotations start interfering with how easy it is to read the

text. Instead, you can give the destinations a shorter name and put the

destination later in the text. To do this, you replace the round parentheses

with square brackets, like this:

This is a link to [my blog][blog].

Then, later in the text, you define what the link should point to like this:

[blog]: http://www.mailund.dk

You use the same syntax to make hypertext links within your

document. The simplest way to create a link to a section is to leave out the

destination but put the name of the section in square brackets. A link to

this chapter would then be written like this:

This is a link to the [Writing Markdown] chapter.

This, of course, will not work if you want the link to contain a different

text than the section name, or if you have several sections with the same

name. You can work around this by giving the section headers explicit

labels. These, you put in curly brackets after the section header. You can

assign a label to a header like this:

My header {#header}

Chapter 3 Writing Markdown

20

The hashtag is needed here and is also necessary when linking to the

section. The hashtags are used in HTML to refer to sections of a web page,

and it is from there that Markdown gets its syntax. To link to the section we

have labeled this way, we would write the link like this:

This is a link to [the section](#header).

Links are only handy for hypertext documents, and in standard

Markdown, you cannot make cross-references to figures or tables or any

non-section elements. In Pandoc you can, using an extension, but we

cover that in Chapter 7.

�Images
To insert figures in your document, you use a syntax similar to inserting

links. The difference is that you need to put a bang, “!”, before the link.

![Title of the figure](URL-to-figure)

Typically, you will have the figures as local files and there you use the

path to the figure file, either relative to where you build your document or

as an absolute path.

![Title of the figure](path-to/my-figure)

�Exercises
In the following text are a few exercises where you can test yourself on the

material covered previously. If you use an editor that can immediately

show you the result of a Markdown text, then test your results there.

Otherwise, put your answers aside until we have covered how to format

Markdown in Chapter 5.

Chapter 3 Writing Markdown

21

�Sections
Write a document with three level-two sections and with two level-three

sections inside each. Remember that the number of # determines the

section level. Make them both numbered and unnumbered.

�Emphasis
Write this text in Markdown.

�Lists
Take the three items

•	 one item

•	 two items

•	 three items

and write them as a numbered and an unnumbered list.

Now, put

•	 four items

•	 five items

as a sublist under one item.

�Block Quotes
Make the following text a block quote:

This is a text that we want to put in block quotes.

Your task is to do this.

Chapter 3 Writing Markdown

22

�Links
Write a text and insert a link to a web page and to a section in your text.

�Images
Find an image file and insert it into a text.

Chapter 3 Writing Markdown

23© Thomas Mailund 2019
T. Mailund, Introducing Markdown and Pandoc,
https://doi.org/10.1007/978-1-4842-5149-2_4

CHAPTER 4

Pandoc Markdown
Extensions
Markdown is, unfortunately, not standardized. Different tools will support

different markup syntax and process them differently. The Markdown

described in the previous chapter will work in most, if not all, tools. The

table syntax is usually less well supported, but the rest of the markup will

ordinarily work.

Pandoc provides several extensions to the Markdown language

described in the previous chapter. In this chapter, we will see some

useful extensions for lists and tables. To get a complete list of Pandoc

extensions to Markdown, you should consult the Pandoc documentation

at https://tinyurl.com/y87mstzf.

�Lists
Generally, the numbers you use when you write an ordered list are

ignored. They are used to indicate list items, but the actual numbering

does not matter. This makes it easier to insert a new item in the middle

of a list, which is a good thing, but sometimes you want to start a list at a

different number than one, and in that case, basic Markdown can’t help

https://tinyurl.com/y87mstzf

24

you. With Pandoc, though, lists start with the number you give the first

item in a list. So you can start a list at number three like this:

3. This lists start at number three.

5. Although we used "5." to start this

 item, it still gets the number 4.

The numbers in the following list items are still ignored. The result will

look like this:

3. This lists start at number three.

4. Although we used “5.” to start this item, it still gets

the number 4.

This is a good way to continue lists, but you will have to update the

initial number when you have added or removed items in the previous list.

To automatically make a list continue at the next number, even when

you changed a previous list, you can use the special symbol “@”. This works

just as a number when you use it in a list, and it always counts from where

you left off. So you can write something like this:

(@) Starting a list

(@) Continuing the list

Here is some text that doesn't

belong to the list.

(@) This continues the list,

 numbered from where we

 left off the list.

(@label) This item is labelled

 so that we can refer back

 to it. Like this: see item

 (@label).

Chapter 4 Pandoc Markdown Extensions

25

The result will look like this:

	 (1)	 Starting a list

	 (2)	 Continuing the list

Here is some text that doesn’t belong to the list.

	 (3)	 This continues the list, numbered from where we

left off the list.

	 (4)	 This item is labelled so that we can refer back to it.

Like this: see item (4).

This can be very useful for lists of examples or such, but the “@”

counter is global so you cannot restart the counter. Unfortunately, there

is currently no support for both automatically numbered items and

restarting counters.

In this example, we also saw another feature of Pandoc. We do not

have to write a number followed by a dot. In the previous example, we put

numbers—represented by @—in parentheses, and the result was a list that

used parentheses. You can also use a single closing parenthesis:

1) This is a

2) list

3) it really is

It will give you this list:

	 1)	 This is a

	 2)	 list

	 3)	 it really is

If you make lists using a number and a period, you get the standard

numbered lists, but you can also use letters or Roman numerals just by

Chapter 4 Pandoc Markdown Extensions

26

starting the list with such. If you want to use parenthesis instead of periods,

you can also do this. You can, for example, create a list like this:

	 a.	 This list uses letters instead of numbers.

	 b.	 We can make a sublist with roman numerals:

	 i.	 This sublist also uses parenthesis

	 ii.	 Cool, isn’t it?

The source markup for that list looks like this:

	 a.	 This list uses letters instead of numbers.

	 b.	 We can make a sublist with a roman numerals:

	 i.	 This sublist also uses parenthesis

	 ii.	 Cool, isn’t it?

You can mix the different list notations so you have different list formats

as sublists, but if you mix them at the same level, you will start a new list.

Lists are frequently used to define terms or concepts, and in Pandoc

you can create definition lists by following a term with a colon and

indenting the start of the definition with a tab or at least four spaces. So

you can create definition lists like this:

Something we want to define. Definition of the thing

As long as we indent the following lines, they become part of the

definition.

Here starts the next thing we define. Here we write the definition.

More of the definition

The syntax for creating this list is this:

Something we want to define.

: Definition of the thing

 As long as we indent the following lines, they

 become part of the definition.

Chapter 4 Pandoc Markdown Extensions

27

Here starts the next thing we define.

: Here we write the definition.

 More of the definition

An alternative syntax uses tildes, “~”, instead of colons:

Term 1

 ~ Definition 1

Term 2

 ~ Definition 2a

 ~ Definition 2b

Term 1 Definition 1

Term 2 Definition 2a

Definition 2b

Either syntax will do.

�Tables
To add tables to a document, you can mark up the columns using dashes.

You can write a table like this:

 Right Left Center Default

------- ------ ---------- -------

 12 12 12 12

 123 123 123 123

 1 1 1 1

Chapter 4 Pandoc Markdown Extensions

28

The result will look like this:

Right Left Center Default

12 12   12 12

123 123 123 123

1 1 1 1

How you align the elements in the columns determine how you align

the headers above the dashes. If the text is to the right, the column will be

right-aligned. The same for left and center alignment, if the text is on the

left or in the middle, the table column will be left-aligned or centered. If

you start the header at the same position as the dashes, you get the default

alignment, which is left alignment.

You can leave out the headers, but then you need to repeat the dashes

at the end of the table as well.

------- ------ ---------- -------

 12 12 12 12

 123 123 123 123

 1 1 1 1

------- ------ ---------- -------

12 12   12 12

123 123 123 123

1 1 1 1

If you do not provide a header, the alignment is determined by the

first line in the table. In the preceding example, in the last column, the

reason it isn’t right-aligned is that there is a space after the first number

in the column before the end of the dashes that specify the column. Move

the first number one position to the right, and that column would also be

right-aligned.

Chapter 4 Pandoc Markdown Extensions

29

Tables are the Markdown markups with the least consistent support in

different tools. The table syntax described often frequently works, but in

the two editors I use for writing my books, they are not supported. In all the

Markdown viewers I am familiar with, though, they display correctly.

In Pandoc, there is excellent support for tables, and Pandoc provides

some extensions to table markup beyond the preceding notation.

For figures, you can add captions using the link syntax. For tables,

you have no similar syntax. You can, however, add a caption to a table

using “Table: Caption” following the table. So you can create a table with a

caption like this:

------- ------ ---------- -------

 12 12 12 12

 123 123 123 123

 1 1 1 1

------- ------ ---------- -------

Table: This is a caption

The result looks like this:

Table 4-3.  This is a caption

12 12   12 12

123 123 123 123

1 1 1 1

You can leave out the “Table” part if you want; just having the colon

will give you a caption.

If you want table cells to span multiple lines, you can do this as well.

For multi-line tables, you must put a row of dashes before the header

(unless you don’t have a header), you must end the table with a row of

Chapter 4 Pandoc Markdown Extensions

30

dashes and then a blank line, and you must separate rows by a blank line.

This example, from the Pandoc manual, shows how this works:

 Centred Default Right Left

 Header Aligned Aligned Aligned

----------- ------- ---------- ----------------------

 First row 12.0 Example of a row that

 spans multiple lines.

 Second row 5.0 Here's another one.

 Note the blank line

 between rows.

----------- ------- ---------- ----------------------

The result will look like this:

Centred Header Default Aligned Right Aligned Left Aligned

First row 12.0 Example of a row that spans

multiple lines.

Second row 5.0 Here’s another one. Note the

blank line between rows.

You can leave out the header, but then you must repeat the dashes that

define the columns after the table, followed by a blank line.

----------- ------- ---------- ----------------------

 First row 12.0 Example of a row that

 spans multiple lines.

 Second row 5.0 Here's another one.

 Note the blank line

 between rows.

----------- ------- ---------- ----------------------

Chapter 4 Pandoc Markdown Extensions

31

Result:

First row 12.0 Example of a row that spans multiple lines.

Second row 5.0 Here’s another one. Note the blank line between rows.

An alternative syntax for tables uses plain text grids to separate

columns. An example, with a header, looks like this:

+---------------+---------------+--------------------+

| Right | Left | Centered |

+==============:+:==============+:==================:+

| Right | Left | Centered |

+---------------+---------------+--------------------+

Result:

Right Left Centered

Right Left Centered

Without headers, it looks like this:

+--------------:+:--------------+:------------------:+

| Right | Left | Centered |

+---------------+---------------+--------------------+

Result:

Right Left Centered

For these types of headers, the colons determine the alignment. Put

a colon at the end of the “=” or “-” of the cell-border to get right-aligned

columns, at the left to get left-aligned columns, and at both ends to get

centered columns, and leave them out for the default alignment.

Chapter 4 Pandoc Markdown Extensions

32

You can also use pipes, “|”, to specify the columns. Then, the syntax will

look like this:

| Right | Left | Default | Center |

|------:|:-----|---------|:------:|

| 12 | 12 | 12 | 12 |

| 123 | 123 | 123 | 123 |

| 1 | 1 | 1 | 1 |

Result:

Right Left Default Center

12 12 12 12

123 123 123 123

1 1 1 1

�Smart Punctuation
Proper text typography uses different types of dashes—hyphens in

words, en-dashes for numeric intervals, and em-dashes for parenthetical

sentences and emphasis. Quotes are usually different at the beginning and

end of a text in quotation marks. Three dots are different from ellipses.

Many word editors will automatically substitute some dashes and translate

straight quotes into the correct form, but not all. Since you are writing

Markdown in plain text, and since most keyboards do not give you access

to all typographic symbols, Pandoc can help you out with getting these

symbols. To enable this, you need to call Pandoc with the option --smart

(we see how to invoke Pandoc in Chapter 5).

If you turn on smart punctuation, quotes will be handled correctly,

three dots will be translated into ellipses, a single “-” will be a hyphen, two

dashes will give you an en-dash, and three dashes will give you an em-dash.

Chapter 4 Pandoc Markdown Extensions

33

�Footnotes
You can insert footnotes in your text using a syntax resembling links and

images. For footnotes, you need to add a caret, (ˆ). To put the footnote

inside the text paragraph you are writing, you add a caret and then the

footnote text in square brackets.

Footnote inside a paragraph.^[This is the footnote.]

Since footnotes tend to interfere with the main text, you can give

them a label and add the text elsewhere. When you do this, you name the

footnote and put the name in the main text.

Reference to a footnote.[^footnotelabel]

When you add a footnote this way, the caret has to go inside the

brackets. If it goes before the brackets, you are adding the footnote inside

the text.

Somewhere the text you must define what a footnote label refers to.

The syntax is the same as the one for defining links you can refer to inside

the text, except that for defining footnotes the name must start with a caret.

[^footnotelabel]: This is footnote two.

 If you want it to cover multiple lines, you

 have to indent the following footnote lines.

 by at least four spaces.

The output of the two approaches should look like this: Footnote

inside a paragraph.1

Reference to a footnote.2

1�This is footnote one.
2�This is footnote two.
If you want it to cover multiple lines, you have to indent the following footnote
lines by at least four spaces.

Chapter 4 Pandoc Markdown Extensions

34

�Exercises
�Lists
Write a list with five items. Between two and three, add a paragraph of text,

but make sure that the numbers continue with four.

Add a label to item three and refer to it in item five. Create a list of

definitions as well. Make them multi-line.

�Tables
Make a table with three columns where you left-justify the first column,

center the second column, and right-justify the third.

Write a table with a caption. Until we format the Markdown with

Pandoc in the next chapter, you will not see the result but keep the text so

you can test it there

�Footnotes
Write a text with a footnote. Use both notations for footnotes.

Chapter 4 Pandoc Markdown Extensions

35© Thomas Mailund 2019
T. Mailund, Introducing Markdown and Pandoc,
https://doi.org/10.1007/978-1-4842-5149-2_5

CHAPTER 5

Translating
Documents
Once we have a document written in Markdown, we want to translate it

into other file formats using Pandoc. First, though, we have to download

Pandoc. Go to Pandoc’s installation guide at http://pandoc.org/

installing.html and follow the instructions relevant for your platform.

�Formatting a Markdown Document
with Pandoc
For our first example, we can take the small Markdown document shown

here:

This is a test document

Here is some text in the document.

* This is a list

* With two items

If we save this Markdown document in a file called input.md, we can

translate it into an HTML file, output.html, using the command:

pandoc -o output.html input.md

http://pandoc.org/installing.html
http://pandoc.org/installing.html

36

The -o option specifies the output file. The input.md file is specified

without any options. You do not need any options for input files, and you

can provide more than one. If you provide more than one input file, they

are in effect concatenated before Pandoc processes them, so if you want

to construct a book from several chapters you have written in separate

files, you can provide them on the command line in the order you want the

chapters to appear in the book.

Pandoc figures out the input and output format from the file

extensions, so if you use the preceding command, it will know that the

input is Markdown (filename suffix .md) and that the output should be

HTML (filename suffix .html). You can make the format of input and

output formats explicit. You can use the option --from to specify the input

format and --to to specify the output format. In most cases, you will not

need to specify the formats—the filenames contain all the information you

need—but sometimes different formats share the same filename suffixes,

such as the EPUB and EPUB3 formats that both use filename suffix .epub.

In those cases, you need the options.

If you specify the input and output document format, then you can also

treat pandoc as a program you can pipe input into and get the formatted

document out from. You could, for example, write

cat input.md | \

 pandoc --from markdown --to html \

 > output.html

In itself there is little use for this, but combined with preprocessing

(Chapter 10) and filters (Chapter 11), it is very handy.

Back to the output of pandoc. If you run the previous command

pandoc -o output.html input.md

Chapter 5 Translating Documents

37

in your terminal, then the output.html file should now contain the

following HTML:

<h1 id="this-is-a-test-document.">

 This is a test document

</h1>

<p>Here is some text in the document.</p>

This is a list

With two items

If you are not familiar with HTML, this might not be readable, but I hope

that you can at least recognize the elements from the input Markdown.

This HTML is not a complete HTML file. It is a fragment of an HTML

file that corresponds to the Markdown document, but it is missing header

and footer markup that is needed for a complete HTML page. Per default,

Pandoc creates HTML markup that can be added to a web page, but not

standalone documents. To get the header and footer added as well, you

can use the option --standalone.

pandoc --standalone -o output.html input.md

The --standalone option is needed for HTML output if you want a

complete document. If you choose an output format that is typically not

meaningful as a fragment, such as PDF documents (suffix .pdf), EPUB

documents (suffix .epub or .epub3, or Word files (suffix .docx), Pandoc

will automatically create complete documents, and the --standalone

option is not needed.

If you run pandoc --standalone -o output.html input.md, you will

get a warning:

[WARNING] This document format requires a nonempty

 <title> element.

Chapter 5 Translating Documents

38

 Please specify either 'title' or 'pagetitle' in

 the metadata,

 e.g. by using --metadata pagetitle="..." on the

 command line.

 Falling back to 'input'

But despite the warning, you will get an HTML document that contains

all the elements such a document needs:

<!DOCTYPE html>

<html xmlns="http://www.w3.org/1999/xhtml"

 lang="" xml:lang="">

<head>

 <meta charset="utf-8" />

 <meta name="generator" content="pandoc" />

 <meta name="viewport"

 content="width=device-width,

 initial-scale=1.0,

 user-scalable=yes" />

 <title>input</title>

 <style>

 code{white-space: pre-wrap;}

 span.smallcaps{font-variant: small-caps;}

 span.underline{text-decoration: underline;}

 div.column{display: inline-block;

 vertical-align: top; width: 50%;}

 </style>

</head>

<body>

<h1 id="this-is-a-test-document">

 This is a test document

</h1>

Chapter 5 Translating Documents

39

<p>Here is some text in the document.</p>

This is a list

With two items

</body>

</html>

There is more general HTML here than there is in our text, but luckily

we do not need to worry about it; we can focus on the Markdown and let

Pandoc worry about the rest.

The warning we got has to do with the title we get in the line

<title>input</title>

Pandoc just took the name from the input file but was hoping to get

the title explicitly provided. You can do this using metadata; see Chapter 8.

Ignore it for now.

You can try making different output formats with the commands

pandoc -o output.pdf input.md

pandoc -o output.docx input.md

pandoc -o output.epub input.md

pandoc --to=epub3 -o output.epub input.md

In the last example, we explicitly specify that the EPUB format to use in

the output is EPUB3.

Another case is where we might want to specify the --to format is for

PDFs. By default, Pandoc will create PDF files using LaTeX, but you can

specify that it should use ConTeXt instead with the command:

pandoc --to=context -o output.pdf input.md

Chapter 5 Translating Documents

40

To get a complete list of supported input and output formats, run the

commands

pandoc --list-input-formats

and

pandoc --list-output-formats

respectively.

Pandoc can translate between many different input and output

formats, but in this book, we will only consider Markdown input and how

to translate Markdown to other formats.

�Frequently Useful Options
There are many options you can use to influence how Pandoc transform a

document. I refer you to the online manual1 for a full list. Here, I will list a

few that I find particularly useful in my own writing.

�Sections and Chapters
First, we consider options that relate to how sections are interpreted.

In Markdown we specify the different levels of section headers by the

number of hashtags, but when we produce a document, we sometimes

have to worry about whether the top-level sections are parts, chapters,

or sections. If we are writing a short report or paper, we want the level-

one headers to start sections, but if we are writing a book, we want them

to start chapters. The default depends on the output we produce, and

Pandoc does some guessing for us, but you can choose explicitly what

1�http://pandoc.org/MANUAL.html

Chapter 5 Translating Documents

http://pandoc.org/MANUAL.html

41

the top level should be using the --top-level-division option. For my

books, where I want the level-one headers to be chapter headers, I use

--top-level-division=chapter.

�Table of Contents
To add a table of contents to your output document, you can use the

option --toc or the option --table-of-contents; the first is just a shorter

version of the second. You can specify the level of sections you want in the

table of contents using the --toc-depth option. When I produce ebooks,

I typically only want the table of contents for the chapter level, so I use

--toc-depth=1. When I produce PDF, I am happy with the default. You can

play around with the option to see what you prefer.

�Image Extensions
If you want to produce both PDFs and ebooks from your Markdown input,

you might want to use PDF vector graphics for figures for the PDF output

but bitmap PNG for the ebook version. Using bitmap graphics for the

PDF output means you have to worry about the resolution, but using PDF

graphics for ebooks doesn’t always work. When you insert images into

your document using the

![Figure caption](graphics-file)

syntax, you need to specify the input file name, but if you want to produce

both ebooks and PDFs, you don’t want to have to change all the file names

depending on which output format you are producing.

You can leave out the filename suffix for graphics files and specify the

desired suffix using the

--default-image-extension

Chapter 5 Translating Documents

42

option instead. Then, for any graphics file where you haven’t explicitly

written the filename suffix, Pandoc will use the default. I always use

--default-image-extension=pdf

when producing PDF documents and

--default-image-extension=png

when producing ebooks.

�Ebook Covers
Ebooks contain cover images together with their text. If you produce

ebooks, you want to specify the cover image as well. You can do this

using the --epub-cover-image option. If your cover image is in the file

cover.png, you write

--epub-cover-image=cover.png

�Using Makefiles
For this book, I have all my text in a single book.md document. This is fine

for a short book like this one, but usually, I keep each chapter in a separate

file. The command line for compiling my books can get rather long, and

I often have various options for different output formats that I need to

remember, so if I had to use the command line each time I wanted to build

a new version of a book, it would quickly become tedious and extremely

error-prone. So I use Make (https://tinyurl.com/nyc2ec2) for compiling

my books.

If you are not familiar with Make, I will give you sufficient detail for

to read the Makefile I give as an example, and maybe a starting point for

your own Pandoc Makefile, but introducing Make in full detail is beyond

Chapter 5 Translating Documents

https://tinyurl.com/nyc2ec2

43

the scope of this book. Many programs solve the same problem that Make

does, so there are alternatives to choose from if you do not like Make.

The Makefile I use is not sophisticated and it suffices to know this:

	 1.	 You define a variable by writing

VARIABLE_NAME := VALUES

	 2.	 You refer to the value that a variable holds using

$(VARIABLE_NAME)

	 3.	 When you write target: dependencies you say

that of you want to have target and then, if any of

the dependencies have changed since lasts time

you constructed target then you need to construct

it again. If dependencies of dependencies have

changed, then you need to build the dependencies

and then the target. And so on.

	 4.	 The lines after target: dependencies that

are indented by a tab are the instructions your

computer needs to make target.

	 5.	 The first target: dependencies line in the Makefile

is the target that Make will handle if you do not

provide another target on the command line.

The Makefile I use for this book looks roughly like this (although I have

left out a few options). I will walk you through it here.

CHAPTERS := header.yml book.md

PANDOC := pandoc

OPTS_ALL := --toc --smart \

 --top-level-division=chapter

Chapter 5 Translating Documents

44

PDF_OPTS := $(OPTS_ALL) \

 --default-image-extension=pdf

EPUB_OPTS := $(OPTS_ALL) \

 --default-image-extension=png \

 -t epub3 --toc-depth=1 \

 --epub-cover-image=cover.png

all: book.pdf book.epub book.docx

book.pdf: $(CHAPTERS) Makefile

 $(PANDOC) $(PDF_OPTS) -o $@ $(CHAPTERS)

book.epub: $(CHAPTERS) Makefile

 $(PANDOC) $(EPUB_OPTS) -o $@ $(CHAPTERS)

book.docx: $(CHAPTERS) Makefile

 $(PANDOC) $(PDF_OPTS) -o $@ $(CHAPTERS)

clean:

 rm book.pdf book.epub book.docx

I use a variable to hold the input files. Just the header and the single

Markdown file in this case. You can specify metadata (see Chapter 8) on

the Pandoc command line or in a YML file. You can put the metadata in

your Markdown text, but then it has to be at the top of the input, and you

cannot translate a single chapter without including the first one. I prefer to

put my metadata in a separate file, which in this case is header.yml.

I only have one Markdown file for this book. I am writing this in the

Ulysses editor where I can split the book into different sections but export

it as one combined file. Since the partition into chapters and sections is

kept in Ulysses and not in separate files, I do not have a file per chapter.

I put the input files in the variable CHAPTERS. If you have several, you

can add it to the CHAPTERS variable. I keep the Pandoc command tool in a

variable as well. I have more than one version installed, and I can switch

Chapter 5 Translating Documents

45

between them by updating the variable. After that, I put the arguments

that all Pandoc runs share in OPTS_ALL and then PDF and EPUB-specific

options in PDF_OPTS and EPUB_OPTS. I make a Word document, but I can

use the PDF arguments for this; Pandoc will know how to make a Word

document with the same options as used for the PDF. Next is all the targets,

dependencies, and commands for making the targets. The targets all and

clean are special. The first doesn’t build anything; it just triggers a build of

its dependencies—so it is indirectly building these—which are the three

book formats the Makefile knows how to make. The clean target doesn’t

have any dependencies, but it will delete the books we generate with the

middle three commands.

I then define some options I want to use for all output formats and

then options that I only want to use for PDF and others I only want to use

for ebooks. In the metadata I set for PDF output, I could also have put in

the header—they wouldn’t interfere with the EPUB output if I did—but I

have chosen to set them here.

I build an EPUB book in the Makefile, but if you are planning to

publish on iBooks, I do not recommend using this file. I find it much

easier to format and submit a book using Pages. Pages can read the Word

document, and that is how I usually submit a book to iBooks: I make a

Word document, open it in Pages, and then submit it. You might think that

building a book in the right format and then use iTunes Connect to submit

it would be easier. You would be wrong. If you want to publish on Amazon

(on Kindle Direct Publishing), you are also better of using their tool Kindle

Create. Kindle Create can read the Word file, and you can submit from

there. There is a command line tool that can translate from EPUB to the

MOBI file format used on Kindle, but Kindle Create is easier to use.

Chapter 5 Translating Documents

47© Thomas Mailund 2019
T. Mailund, Introducing Markdown and Pandoc,
https://doi.org/10.1007/978-1-4842-5149-2_6

CHAPTER 6

Math and Computer
Programming
Languages
You might not be in the habit of writing technical or scientific text,

but if you are, then Pandoc supports both mathematics and computer

programming code formatting.

�Writing Math
Pandoc has some excellent support for writing math as long as your

output file format supports it. Word files have built-in support for math,

and Pandoc will use this if the output file is a Word document. With PDF,

Pandoc uses LaTeX as an intermediate format, and LaTeX is spectacularly

perfect for math. With HTML and EPUB, you have some math support

depending on the version and libraries you use to display the math.

48

For HTML and EPUB, you have different options for how the output

should handle math. I usually use either MathML1 or MathJax2 when I have

math in HTML or EPUB documents. For MathML you can use the option

--mathml:

pandoc --mathml -o document.epub document.md

For MathJax, you need to produce EPUB3 documents to get it to work,

so you must specify the output format as well:

pandoc --to=epub3 --mathjax \

 -o document.epub document.md

With either option, you get an EPUB document that displays the math

well. Not as beautiful as in PDF documents, where LaTeX handles the

math, but reasonably well.

The way you write math in your document is by inlining TeX syntax.

The math in output documents will only be TeX if you output a LaTeX file

or go through LaTeX when building a PDF file, but the de facto standard for

how to write math in plain text is TeX, so that is what Pandoc uses.

You start and end math using dollar signs. If you use one, you get inline

math, and if you use two, you get “display” math, which means you get the

math on a single line and centered. This is inline math: $\int_aˆb x\,

\mathrm{d}x$ looks like
a

b

x xò d . You write display mode math between

double dollar signs, so this

$$\sum_{j=1}^N \frac{1}{j^2}$$

will result in this:

	 j

N

j=
å

1
2

1
�

1�www.w3.org/Math
2�www.mathjax.org

Chapter 6 Math and Computer Programming Languages

http://www.w3.org/Math
http://www.mathjax.org

49

Pandoc supports a large subset of math you can write in LaTeX.

For example, here is a more complex equation:

	

d i j
i
j

d i j i j
d i j
d i j

,

,
,

,

() =
- -() + ¹()
-() +

-() +

ì

í
ï

î
ï

min
1 1 1

1 1
1 1

jj
i
i j

=
=
> >

ì

í

ï
ï
ï
ïï

î

ï
ï
ï
ï
ï

0
0
0 0,

�

The LaTeX code looks like this:

$$

d(i,j) = \begin{cases}

\,i & j = 0 \\

\,j & i = 0 \\

\,\min\begin{cases}

 d(i-1,j-1) + \mathrm{1}(i\neq j) \\

 d(i,j-1) + 1 \\

 d(i-1,j) + 1

\end{cases} & i>0,j>0

\end{cases}

$$

If you write math that Pandoc cannot handle, for example, if you use a

LaTeX package that Pandoc does not know about, then you can just write

the LaTeX code anyway. What Pandoc doesn’t understand it passes on to

the output. So, as long as your output is a format that goes through LaTeX,

you are good to go.

Chapter 6 Math and Computer Programming Languages

50

If your output is HTML or EPUB where you use MathML or MathJax,

then you can also write an equation that should be passed along verbatim

to the output.

If you have a single document but want separate equations for different

output formats, you cannot just let the text fall through to the output.

There, you need to output one version for one output format and another

for another format. Here, Pandoc lets you write verbatim text that will only

be included for a specific output format. You can write

```{=latex}

$$\sum_{j=1}^N \frac{1}{j^2}$$

```

for a block of text that should only be included if the output is LaTeX and

write

`$f(x)=x^2$`{=latex}

for inline text.

�Writing Code Blocks
Markdown is frequently used by programmers to write about programs, so

not surprisingly it has support for displaying code examples, typically with

formatting to syntax highlight the examples. This support varies between

different tools, but Pandoc has terrific support for many programming

languages.

The syntax for writing a block of code uses either tilde, “~”, or backticks,

“‘”. Of these, backticks are more likely to be supported by other tools; so,

I will use these here. Every example I give in the following will also work if

you use ~ instead of a backtick.

You start a block with three backticks, then write your code, and then

end the block with another three backticks.

Chapter 6 Math and Computer Programming Languages

51

```

for (int i = 0; i < n; i++) {

    printf("%d\n", i);

}

```

You can also use tiles instead of backticks, but I will use backticks in

this chapter.

~~~

for (int i = 0; i < n; i++) {

    printf("%d\n", i);

}

~~~

If you only use backticks or ~, you get a verbatim text block, just as if

you had indented the text. To get syntax highlighting, you must also inform

Pandoc of which programming language you are using. You can do this by

writing the name of the language after the first line of backticks. To syntax

highlight the preceding code, which is written in C programming language,

you would write

```c

for (int i = 0; i < n; i++) {

    printf("%d\n", i);

}

```

The result will look like this:

for (int i = 0; i < n; i++) {

 printf("%d\n", i);

}

Chapter 6 Math and Computer Programming Languages

52

A block of Python code would look like this:

```python

for i in range(n):

    print(i)

```

The result would look like this:

for i in range(n):

 print(i)

To get a complete list of supported programming languages, you can

run the command

pandoc --list-highlight-languages

�Code Block Options
This syntax for displaying code is supported by many web sites where it is

usual to write code in text, such as on GitHub. You can give more advanced

instructions for how code should be displayed, but then you need to use

a slightly different syntax that is more Pandoc specific. There, you put

instructions in curly brackets after the first three backticks. You must

specify the programming language but prepend a dot to the name, for

example, write .python for Python. You can then number the code lines

with the instruction .numberLines:

```{.python .numberLines}

for i in range(n):

    print(i)

```

Chapter 6 Math and Computer Programming Languages

53

The result will look like this:

1 for i in range(n):

2 print(i)

You can specify which line number to start from with the option

startFrom. To start from line 100, we can write

```{.python .numberLines startFrom=100}

for i in range(n):

    print(i)

```

The result will look like this:

100 for i in range(n):

101 print(i)

You can give the code block an identifier:

```{#my-code .python .numberLines}

for i in range(n):

    print(i)

```

This will make the code block a hypertext target (an anchor in HTML),

so you can create hypertext references to it. The anchor id is the same as

the identifier excluding the hashtag. That is, in the preceding example, it

is my-code. You refer to the target as you would with other references in a

Markdown document, for example:

```{#my-code .python}

for i in range(n):

    print(i)

```

See [my code](my-code)

Chapter 6 Math and Computer Programming Languages

54

In HTML output, you can also make each line an anchor using the

option .lineAnchors.

```{#my-code .python .numberLines .lineAnchors}

for i in range(n):

    print(i)

```

The line identifiers are the code block id followed by the line number.

In this case, the two lines my-code-1 and my-code-2.

In HTML output, all the options that start with a . will be added to the

class of the <pre> block that contains the code. With a stylesheet, you can

easily make code blocks formatting distinct. In filters (see Chapter 11),

you can use the options for arbitrary transformations or calculations. One

crucial thing to keep in mind if you start using code block options to a

larger extent is that all options without arguments

.python

.numberLines

must start with a dot, and all options that take an argument

startsFrom=100

cannot start with a dot. If you break these rules, Pandoc will not do what

you want.

�Syntax Highlighting Styles
The syntax highlighting scheme is controlled by variations of stylesheets:

cascading style sheets (CSS) for HTML output and a set of \newcommand

options for LaTeX (and thus PDF) output. These highlighting instructions

are put directly in the output file (when you make a standalone

document) and are thus not easy to override. You can, however, choose

Chapter 6 Math and Computer Programming Languages

55

from a list of predefined highlighting styles. You can see the complete list

by running the command

pandoc --list-highlight-styles

You select a style using the --highlight-style option. When I build

print versions of my books, I want a black-and-white output, so I use the

option

pandoc --highlight-style=monochrome

This gives me a black and white highlighting using italic and boldface

to display different language components. You can also completely

disable syntax highlighting while still using code blocks, using the option

--no-highlight.

�Exercises
�Code blocks
Write the Markdown to display this Python code:

print("hello, world")

for i in range(10):

 print(i)

�Code Block Options
Now add line numbers to it

�Syntax Highlighting
Format the code in at least three different highlight formats and check the

results.

Chapter 6 Math and Computer Programming Languages

57© Thomas Mailund 2019
T. Mailund, Introducing Markdown and Pandoc,
https://doi.org/10.1007/978-1-4842-5149-2_7

CHAPTER 7

Cross-referencing
Cross-referencing is not directly supported by standard Markdown.

Markdown was mainly invented to write hypertext documents for web

pages, so referencing section numbers, figures, or tables is not part of it. We

can use the link syntax to make hypertext references to sections but not get

section numbers and such.

Pandoc itself doesn’t support extensions for other kinds of cross-

referencing, but there is a so-called “filter,” pandoc-crossref, that adds

this support. Filters (see Chapter 11) are scripts that are run to modify a

document after it has been parsed by Pandoc and before the output format

is generated. Filters are beyond the scope of this book, but we will use two

in this and the next chapter.

The pandoc-crossref filter is not necessarily automatically installed

when you install Pandoc, so you might need to install it manually. How

you do this will depend on your platform. I work on MacOS and use the

Homebrew1 package manager, so I installed it using

brew install pandoc-crossref

The filter is a Haskell package, so you can also install it using the cabal

package manager if you have the Haskell system installed.

cabal update

cabal install pandoc-crossref

1�http://brew.sh

http://brew.sh/

58

It might take a little while.

If you installed Pandoc using any of the packages from the Pandoc

releases web page,2 the filter should already be included. If all else fails,

you can download the source code and compile it at the pandoc-crossref

homepage.3

To invoke the filter when processing a document with Pandoc, you

use the option --filter (or -F as a shorter option). To enable the pandoc-

crossref filter, run Pandoc as

pandoc --filter pandoc-crossref

Cross-referencing using pandoc-crossref uses a syntax similar to

hypertext links, but with a twist. You specify labels with curly brackets

and insert references to them using square brackets. You need to include

cross-referencing type as part of the labels, though. To insert a label,

you use the syntax {#type:label}, and to refer to it, you use the syntax

[@type:label]. The type, here, specifies whether you are referring to

sections, tables, figures, or equations.

�Referencing Sections
Using cross-referencing via links works well for HTML or EPUB

documents, where you have hypertext, but less well for printed media,

where you don’t. There, you would make references to chapters and

sections using their numbers instead, but that isn’t supported in standard

Markdown.

Using pandoc-crossref, we can refer to sections via section numbers.

We need to define labels for the headers we want to refer to, and these

labels must start with the prefix sec: (in addition to the hashtag that all

2�https://github.com/jgm/pandoc/releases
3�https://hackage.haskell.org/package/pandoc-crossref

Chapter 7 Cross-referencing

https://github.com/jgm/pandoc/releases
https://hackage.haskell.org/package/pandoc-crossref

59

header labels must have). We can then insert cross-references to section

numbers using [@sec:label] markup. An example could look like this:

This is a chapter {#sec:chapter}

This is a section {#sec:section}

See [@sec:chapter] and [@sec:section].

Pandoc doesn’t number sections by default, and while it will number

sections in some formats when we use pandoc-crossref, we should use

the option --number-sections to make sure. If, for example, you generate

PDF output, sections will not be numbered if you leave out this option, and

consequently, it makes no sense to refer to sections by their numbers.

pandoc --number-sections \

 --filter pandoc-crossref \

 -o output.pdf \

 input.md

This approach will use the LaTeX section numbering system for PDF

output but will also work for other output formats such as HTML.

You can set the section numbering depth with the metavariable

secnumdepth. For example, to number chapters and sections (or sections

and subsections, depending on the top level section type), you can add the

following line to your metadata header:

secnumdepth: 2

This will only affect LaTeX and PDF output, though, and not other

output formats.

Alternatively, you can leave the section numbering entirely up to the

filter by setting metadata variable

numberSections

Chapter 7 Cross-referencing

60

to true and set the section depth you want to be numbered with the

metadata variable

sectionsDepth

For example, in your header, you can add the following lines to get

chapters and sections, but not subsections, numbered (assuming the top

level headers are chapters; otherwise you get sections and subsection

headers numbered):

numberSections: true

sectionsDepth: 2

This will insert chapter and section numbers at the desired depth

and let you cross-reference sections in HTML and EPUB format, but

unfortunately the cross-referencing does not work in LaTeX and PDF. Here,

you only get the section numbers but not the cross-references inserted.

Neither of the two choices for section numbering is ideal for both PDF

and EPUB output. Using

--number-sections

will insert section numbers in both output formats, but you can only

control the numbering depth in PDF output. Using

numberSections

will insert section numbers to the desired depth in both output formats,

but you can’t insert references to them in PDF output. You can’t use both

--number-sections

and

numberSections

either since both the Pandoc filter and LaTeX will insert section numbers,

and you end up with two of them in each header.

Chapter 7 Cross-referencing

61

One solution I use for this is to call Pandoc with different options when

generating EPUB and PDF. For EPUB output, I use

pandoc --metadata numberSections=true \

 --filter pandoc-crossref ...

For PDF output, I use

pandoc --number-sections \

 --filter pandoc-crossref ...

I set the numbering depth in my YAML header, using both options for

controlling that:

sectionsDepth: 2

secnumdepth: 2

�Reference Prefixes
When you need to refer to a section, you use the syntax

[@sec:label]

When you reference a section this way, the filter will insert both the

section number and a default prefix, which is “sec.” for a single section and

“secs.” for multiple sections. You can refer to more than one section but

separating the labels by semicolons inside the square brackets:

[@sec:label1; @sec:label2]

For documents where you have both chapters and sections, this might

not be what you want. There you might want to use the prefix “Chapter”

for chapters and “Section” for sections. Unfortunately, you cannot make

prefixes that depend on the header depth, but you can disable the prefixes

by overriding them.

Chapter 7 Cross-referencing

62

You can either change the reference prefix on a per-reference basis or

globally through metadata. For referring to chapters as “Chapter” rather

than “sec.”—as in this example—the best solution is probably to set the

prefix explicitly when referring to a chapter, but we can see how both

approaches work.

To use a per-reference specific prefix, you need to insert the prefix

you want between the start square bracket and the label. So, to make

the prefix for the reference to a chapter be “Chapter,” we would write

[Chapter @sec:chapter].

To change the prefixes globally, we need to set a metadata variable.

The metadata variable that controls the section references prefix is

secPrefix. If we set it to the empty string, we get rid of the prefixes.

secPrefix: ""

You can then manually insert the prefixes you want in the Markdown text:

See Chapter[@sec:chapter]

and Section[@sec:section].

Notice the lack of spaces between prefix and references here. This

is needed for PDF output; the LaTeX document that Pandoc generates

for the references contain a hard space, so if we put a space between the

prefix and reference, the PDF document will have too much space in the

generated text. For HMTL and EPUB, it doesn’t matter.

Completely disabling a prefix can be done on a per-reference basis

as well. Just add a “-” between the start bracket and the label. If you write

[-@sec:chapter], you only get the chapter number and not the prefix.

You rarely need to set the default prefix to the empty string explicitly. But

using that as an example gave me an excuse to introduce the variable.

You can set the secPrefix metadata to a list. The first element is

used for single references and the second for plural. So, to use “Sect.” as

Chapter 7 Cross-referencing

63

the prefix for a reference to a single section, and “Sects.” as the prefix for

multiple sections, we could specify this metadata:

secPrefix: ["Sect.", "Sects."]

The prefix list can have any length, and the number of references is

used to select a prefix. So, if you want a special prefix when you refer to

three sections, you can add a third element to the list. When you have

more references than prefixes, you get the last element in the list. Thus, if

you specify two elements in the list, the first is used for singular references

and the second for multiple references.

You might want to use lowercase “sect.” when you refer to a section in

the middle of a sentence but “Sect.” at the beginning of sentences. With

pandoc-crossref it is simple to switch between uppercase and lowercase

label prefixes. If you insert a label that starts with an uppercase, your prefix

will be in uppercase as well. Thus, if you write [@Sec:label], the default

prefix will be “Sec.”; if you write [@sec:label], the default prefix will be

“sec.”. The same goes for references to figures, tables, equations, and so on.

�Referencing Figures, Tables, and Equations
To reference figures, you use the same syntax as for sections, except for

where you define figure labels and the prefix of the labels. To define a label

for a figure, you must give it the prefix #fig: and place the label right after

the markup for inserting the figure, so using the syntax

[Caption](link-to-figure){#fig:label}

You cannot put a space between the figure insertion and the label

definition. You refer to figure labels as you would with references to

sections.

Chapter 7 Cross-referencing

64

For tables, your labels must start with #tbl: and placed after the table

caption:

 a b c

--- --- ---

 1 2 3

 4 5 6

: Caption {#tbl:label}

For tables you must have a space between the caption and the label.

For display-style math, math that stands on a line of its own and is

written with two dollar signs, you can add labels if they begin with #eq:

and are put on the same line as the math with a space between the label

and the terminating double dollar signs:

$$ f(x) = x^2 + a x $$ {#eq:label}

You can change the default prefix for figures, tables, and equations,

as you can for sections, with the metadata figPrefix, tblPrefix, and

eqnPrefix, respectively.

For more details on how to use the cross-reference filter, I will refer to

its online manual.4

�Bibliographies
If your text requires citations and a bibliography, you can enable the filter

pandoc-citeproc by either running Pandoc with the

--bibliography

option or using

--filter pandoc-citeproc

4�https://hackage.haskell.org/package/pandoc-crossref

Chapter 7 Cross-referencing

https://hackage.haskell.org/package/pandoc-crossref

65

If you use both pandoc-crossref and pandoc-citeproc filters, you

must always use pandoc-crossref first

pandoc --filter pandoc-crossref \

 --filter pandoc-citeproc ...

The two filters use similar kinds of citation syntax, and this means

that the order in which you run the filters matter. The citeproc filter gets

confused if it sees cross-reference labels. The same does not happen if you

run the cross-reference filter first; it will leave the citation codes alone so

they can be handled by the citation filter.

With the --bibliography option, you need to specify the file that

contains your bibliography. Using

--filter pandoc-citeproc

you can specify the bibliography file as metadata in your YAML header

instead, for example:

 bibliography: citations.bib

The pandoc-citeproc filter can read bibliographies in various file

formats and will pick the format based on the file suffix. With .bib files it

will use BibTeX. For EndNote you would use .enl and for ISI .wos. Check

the online documentation5 for a complete list.

To control the format used for citations and the bibliography, you can

specify a CSL6 file with the metadata variable csl or the Pandoc option

--csl. CSL files for most journal styles can be downloaded from GitHub.7

For example, if “smith12” is a key in your bibliography, you can insert a

citation using [@smith12]. You need to include @ even though it isn’t part

5�https://tinyurl.com/yyx6j3aa
6�http://citationstyles.org
7�https://tinyurl.com/ac8f8eg

Chapter 7 Cross-referencing

https://tinyurl.com/yyx6j3aa
http://citationstyles.org/
https://tinyurl.com/ac8f8eg

66

of the reference key; the filter (and Pandoc) uses this to recognize citations.

You can cite more than one reference by separating the references with

semicolons: [@smith12; @smith14].

Depending on the citation style, the inserted reference might contain

author names. This doesn’t read well if you have already mentioned

authors in the text, and you can disable it with a minus before the

reference: [-@smith12]. The same effect is achieved by leaving out the

square brackets and write @smith12.

More generally, you can insert text in the citations to add, for example,

page information or other comments, such as [see @smith12, chap1;

also @smith14, chap 12]. If you leave out the square brackets to get an

in-text citation, you can add comments to appear inside the parenthesis

(again, depending on your citation style) by writing the comments in

square brackets after the reference: see @smith12 [chapter 11].

The bibliography will be put at the end of your document. If you want

to give the bibliography a section header, you should end your Markdown

document with the header for the bibliography.

�Exercises
�Reference Sections
Write three sections. In two and three, refer back to one and two, respectively.

�Figures, Tables, and Equations
Write a document with each of a figure, a table, and an equation. Make

references to each.

�Bibliographies
If you have a bibliography, then make a document that cites the elements in it.

Chapter 7 Cross-referencing

67© Thomas Mailund 2019
T. Mailund, Introducing Markdown and Pandoc,
https://doi.org/10.1007/978-1-4842-5149-2_8

CHAPTER 8

Metadata
If you go back and look at the standalone HTML document we looked at in

Chapter 5, the document was this:

This is a test document

Here is some text in the document.

 * This is a list

 * With two items

We compiled it like this

pandoc --standalone -o output.html input.md

You should get the warning

[WARNING] This document format requires a nonempty

<title> element.

Please specify either 'title' or 'pagetitle' in

the metadata,

e.g. by using --metadata pagetitle="..." on the

command line.

Falling back to 'input'

and the title in your document will then, just as the warning says,

look like this:

<title>input</title>

68

Pandoc inserted a title to your document, but it is set to a default value,

input, because we didn’t specify it. Try running this command instead:

pandoc --metadata title="My Title" \

 --standalone -o output.html input.md

If you now read the output.html file, you will see that Pandoc has

inserted “My Title” between the title tags and inserted a level-one header

that says “My Title”.

When Pandoc generates a standalone document, it uses metadata such

as title and author(s) to fill in some information. This data is usually not

specified in the Markdown input—there aren’t any Markdown annotations

for defining such metadata—but you can set it using the --metadata

option or using YAML (see the following text).

Strictly speaking, there are two types of variables that are used when

producing the output: metadata, specified with --metadata, and variables,

specified with --variable. The difference between them is that metadata

can be seen and processed by Pandoc and Pandoc filters—scripts that

process your input before it is formatted for the output—while variables

are used in templates. If you set a variable using the --metadata tag, or in

a metadata header, the variable will also be available to templates, so you

can usually stick to metadata. The output isn’t exactly the same since filters

might do something with metadata that they won’t do with variables, but it

is easier to stick with one kind of options. So unless you have good reasons

not to, use metadata.

�YAML for metadata
There are potentially many values you want to specify as metadata, so

you don’t want to rely on command line options for all of those. Luckily,

Pandoc can read metadata from a header in your input, specified in

another markup language called YAML (Yet Another Markup Language).

Chapter 8 Metadata

69

YAML is a different kind of markup language than Markdown. It is not

intended for marking up a text but for providing structured data to tools.

You can put a YAML header with metadata at the top of your input text

to provide Pandoc with theinformation. I usually put my metadata in a

separate file instead and give that as the first input file when I run Pandoc.

Since Pandoc concatenates the input files you give it, this is equivalent

to putting the metadata at the top of the document, but it does give me

the option of using different headers when I produce output in different

formats and I can easily format different Markdown files with the same

metadata.

A YAML header starts with three hyphens --- on a line of their own

and is terminated with another three hyphens. Inside the header, you

can put key-value information. The keys are followed by a colon, and the

values follow the colon. The header I use for this book looks like this:

title:

 "My Markdown and Pandoc book"

author:

 - Thomas Mailund

year: 2019

It sets three values, the title, the author, and the year I am writing the

book, which is all that I need for this book. I didn’t need to put the title

in quotes. I could write it as it is, the same way I write my name in the

author’s field. However, if a title, or any value in general, contains a colon,

you do need to put the value in quotes. Here, I use the quotes to show that

as an example.

You will notice that for the author: field I have a hyphen before my

name. I didn’t have to put that there either, but I did to show you a list.

When you want a key to refer to a sequence of values, for example, if

Chapter 8 Metadata

70

you have more than one author on a document, you use hyphens before

each element in the list. Here, I make author refer to a list of length one.

The result is the same as if I hadn’t put my name in a list, but if I had a

coauthor, we would need the list syntax.

I have this header in a file called header.yml, and I can compile the

book into a PDF file with the command

pandoc -o book.pdf header.yml book.md

The actual command line is more complex (see the Makefile in

Chapter 5), but this command would suffice to generate a book.

The YAML language is essentially a way of mapping keys to values.

In the preceding header, you have three keys: title, author, and year.

A key can map to a single scalar value. title and year do that. They can

also map to a list, as author does. Keys can also map to nested key-value

mappings. Consider this:

author:

 - name: Thomas Mailund

 affiliation: Unseen University

 - name: Karsken Baelg

 affiliation: Brakebills University

Here author is a list—you can see this because you have dashes before

each author. Each author is a nested mapping; they have two keys, name

and affiliation. That it is another mapping is because they have keys

followed by a colon and then values to the right of this. In short, scalars

are keys followed by a single value, lists are keys followed by a sequence of

items separated by hyphens, and nested maps are nested key-value maps.

For lists and maps, there is a more concise notation. For a list you can put

its values in square brackets and comma-separate them:

author_names: ["Thomas Mailund", "Karsken Baelg"]

Chapter 8 Metadata

71

For maps you can use curly brackets instead

author:

 - { name: "Thomas Mailund",

 affiliation: "Unseen University" }

 - { name: "Karsken Baelg",

 affiliation: "Brakebills University" }

Here, the items in the list have the same structure. They need not have

this; it is easier to write code to process it when they do, though.

If you have a long text, you can break it into several lines in the YAML

file using either | or >

abstract: |

 This is a very long abstract and

 it is probably the best paper ever.

 We are sure that you will all agree.

The difference between the two is that | will preserve linebreaks, while

> will remove new lines and replace them with space. You can continue the

text in these blocks as long as you want to, as long as you indent each line.

You can write arbitrarily complex YAML, but Pandoc will only use the

metadata that it knows how to process. Which variables are interpreted by

Pandoc depends on the output format and the template you that use (see

Chapter 9). Check the Pandoc manual at https://tinyurl.com/yyxgole5

for details on the default templates, and see Chapter 9 for how to use

metadata in your own templates.

Chapter 8 Metadata

https://tinyurl.com/yyxgole5

73© Thomas Mailund 2019
T. Mailund, Introducing Markdown and Pandoc,
https://doi.org/10.1007/978-1-4842-5149-2_9

CHAPTER 9

Using Templates
When Pandoc creates a standalone document, it uses a template for the

output. A template is essentially a document with some placeholder

variables, where metadata and your processed Markdown text will be

inserted. Which metadata will be used in a template depends on the

output format; you can get a full list of variables for your output in the

Pandoc manual.1 Pandoc automatically sets some metadata, described in

the manual, but you can specify other metadata in the header.

Unless you specify another template explicitly, Pandoc will use a

default for the output format. You can get Pandoc to show you the template

it uses for a specific output by running the

pandoc -D <format>

command, for example, to see what it will use if you generate a PDF file—

which it does by generating a LaTeX document and then compiling it—you

can write

pandoc -D latex

You can also get a full list of default templates and what they look like

at https://github.com/jgm/pandoc-templates.

If you don’t know LaTeX, the template you get by running

pandoc -D latex

1�http://pandoc.org/MANUAL.html#templates

https://github.com/jgm/pandoc-templates
http://pandoc.org/MANUAL.html#templates

74

might not make much sense, so let us look at

pandoc -D html

instead. The output is rather long, and I won’t replicate it all here but

highlight a few parts of it.

Remember the title we discussed in Chapter 8. It was empty before we

provided metadata for the title. Let us see what it looks like in the template.

There you will find a line that looks like this:

<title>

 $if(title-prefix)$

 $title-prefix$ -

 $endif$

 $pagetitle$

</title>

The stuff in dollar signs specifies placeholders and code for how the

template should be processed. Inside the title tags in the HTML template,

you have two metadata variables that can be inserted, title-prefix and

pagetitle. The title prefix will only be inserted if it exists; that is what the

$if(title-prefix)$ code checks. Strictly speaking, pagetitle will also

only be inserted if it exists. Otherwise, we get an empty string. But because

the title prefix should be followed by a dash, there is an explicit test to see if

anything should be inserted.

We never provided metadata for title-prefix and pagetitle, so it is

hard to see how they relate to the title metadata we provided. We could

have provided those two explicitly, but Pandoc creates them based on our

title. It directly uses title variable elsewhere in the template, where the

template contains:

<h1 class="title">$title$</h1>

Chapter 9 Using Templates

75

Pandoc and filters can access metadata and create new metadata,

which is what it does for the title-prefix and pagetitle. The title

placeholder is just inserted directly as the text you specified in the

metadata.

I am not aware of any documentation for precisely what metadata

manipulations you can expect for each output format, and I am not sure

you should rely on any as it might not be stable across different versions

of Pandoc and filters. If you don’t work with derived metadata and stick

to explicitly defined metadata, however, how the data is used is relatively

straightforward. If you have a simple placeholder like $title$, then the

string you specified in the metadata will just be inserted there in the

output file.

As we saw for title-prefix, metadata can also be inserted

conditionally on it being defined. To insert some text only if a

metavariable variable is defined, a template can contain this

construction:

$if(variable)$ some text $endif$

There is also an if-else construction that looks like this:

$if(variable)$

some text

$else$

some other text

$endif$

Finally, there is a loop construction. In the HTML template, you can

find this piece of text:

$for(author)$

<p class="author">$author$</p>

$endfor$

Chapter 9 Using Templates

76

This runs through the authors specified in the metadata and inserts

each of them. If author is not a list, it will still work; it will just be

considered a list of length one, but if we did have a list of authors, we

would get a level-two header for each of them.

Remember that metadata can be structured with values containing

lists of key-value bindings. Take this example:

author:

- name: Thomas Mailund

 affiliation: Unseen University

- name: Karsken Baelg

 affiliation: Brakebills University

Here, authors are not simple strings, but a list of key-value structures,

each with a name and an affiliation. Inside a template, these fields can be

accessed using “dot-notation,” so a template might contain code like this:

$for(author)$

 $if(author.name)$

 $author.name$

 $if(author.affiliation)$

 ($author.affiliation$)

 $endif$

 $else$

 $author$

 $endif$

$endfor$

This code iterates through the author list and inserts authors’ names

(if they have a name, which they probably should have). If they have an

affiliation, the affiliation is added after the name. If the list of authors

contains items that are not structured with a name and an affiliation, the

template inserts the list item (see the $else$ part of the $if(author.

name)$ test).

Chapter 9 Using Templates

77

The most important part of the output, of course, is the processed

Markdown from the input text. In the template, this is inserted at the

hardly noticeable $body$ placeholder. It doesn’t look like much, but this

is where all your Markdown will be inserted once it is processed to the

output format.

�Writing Your Own Templates
Templates are another of those features that are nice to have when you

need them, but you don’t have to worry about when you don’t. You can

use Pandoc without ever having to worry about templates, but if you have

to format your documents in a specific way, you don’t have to abandon

Pandoc to write your text; you can create a template to take care of the

formatting. For example, if you are an academic like me, and have to

use different formats for different journals, you can make templates to

match the journals. Journals often provide LaTeX templates for papers,

and you can take one of those templates and put in Pandoc placeholders,

and presto you have a Pandoc template and you can write the paper in

Markdown and still have it formatted according to the journal standard.

You can get inspiration for writing your own templates from Pandoc’s

user-contributed templates.2 I find that the easiest way to create a new

template is to take one of Pandoc’s existing templates and modify it or by

taking an existing HTML or LaTeX file and put in metadata and $body$

placeholders.

The reason that the default templates are lengthy and complicated is

that they need to set up a long list of things, such as configuring math or

source code highlighting. If you need all the features that Pandoc provides,

I suggest that you copy one of the existing templates and modify it. For

this chapter, I will write simpler templates, aiming for clarity rather than

2�https://tinyurl.com/yyrgd66c

Chapter 9 Using Templates

https://tinyurl.com/yyrgd66c

78

completeness. The Markdown input is correspondently simple. If you need

more features, you can find the necessary code in the default template. It is

usually not hard to find.

�Template Examples
Consider this text. Most of it is metadata since that is what we are

interested in here. As you can see, there are three variables in the YAML

header: title, subtitle, and author. The first two holds a single value

and the last is a list of simple values.

title:

 A terrible novel

subtitle:

 Seriously, one of the worst!

author:

 - Thomas Mailund

 - Karsken Baelg

It was a dark and stormy night

If we write the following HTML template, we add a title and a subtitle

in the HTML header and the level-one header in the main document.

If there are any authors in the metadata, then we insert a div element

to right-align the list of authors, and we get the said list by iterating over

them. The sep variable is not a metavariable as such but a way to tag

the following token. If you use sep, then the token—word or comma, for

example—will be put between all the elements you iterate over but will not

follow the last element. Try removing it and you will see.

Chapter 9 Using Templates

79

<html>

 <header>

 <title>

 $title$$if(subtitle)$: $subtitle$$endif$

 </title>

 </header>

 <body>

 <h1>

 $title$$if(subtitle)$: $subtitle$$endif$

 </h1>

 $if(author)$

 <div align="right">

 By

 $for(author)$$author$$sep$and $endfor$

 </div>

 $endif$

 $body$

 </body>

</html>

If we format our text with this template, we get the following HTML:

<html>

 <header>

 <title>

 A terrible novel: Seriously, one of the worst!

 </title>

 </header>

 <body>

 <h1>

 A terrible novel: Seriously, one of the worst!

 </h1>

Chapter 9 Using Templates

80

 <div align="right">

 By

 Thomas Mailund and Karsken Baelg

 </div>

 <p>It was a dark and stormy night</p>

 </body>

</html>

For PDF/LaTeX output, this template does the same as the preceding

HTML template.

\documentclass{book}

\usepackage{hyperref}

\title{$title$$if(subtitle)$: $subtitle$ $endif$}

\author{$for(author)$$author$$sep$and $endfor$}

\begin{document}

\maketitle

\end{document}

(The inclusion of hyperref is not relevant for the example, but it is one

of those packages that Pandoc expects to be included. At the time I am

writing this, it is the only one you need for this particular example).

Applying the template to our document gives us this:

\documentclass{book}

\usepackage{hyperref}

\title{A terrible novel: Seriously, one of the worst! }

\author{Thomas Mailund and Karsken Baelg}

Chapter 9 Using Templates

81

\begin{document}

\maketitle

\end{document}

You can “dot” yourself into nested information in metadata, so if your

data looks like this

title:

 A terrible novel

subtitle:

 Seriously, one of the worst!

author:

 - name: "Thomas Mailund"

 affiliation: "Unseen University"

 - name: "Karsken Baelg"

 affiliation: "Brakebills University"

and your template looks like this

\documentclass{book}

\usepackage{hyperref}

\title{$title$$if(subtitle)$: $subtitle$ $endif$}

\author{$for(author)$$author.name$

 from $author.affiliation$

 sep and

 $endfor$}

\begin{document}

\maketitle

$body$

\end{document}

Chapter 9 Using Templates

82

then progressing the document will generate this output:

\documentclass{book}

\usepackage{hyperref}

\title{A terrible novel: Seriously, one of the worst! }

\author{Thomas Mailund from Unseen University

 and Karsken Baelg from Brakebills University}

\begin{document}

\maketitle

It was a dark and stormy night

\end{document}

You need to get the name and affiliation for each author using

$author.name$ and $author.affiliation$. You cannot simply use

$author$ any more. You can still check if a value is set; just dot yourself

into it. For example, if some authors do not have an affiliation, you can test

for it and only insert it when it exists.

\documentclass{book}

\usepackage{hyperref}

\title{$title$$if(subtitle)$: $subtitle$ $endif$}

\author{

$for(author)$ $author.name$

 $if(author.affiliation)$

 from $author.affiliation$

 $endif$

 sep and $endfor$

}

Chapter 9 Using Templates

83

\begin{document}

\maketitle

$body$

\end{document}

If you have a LaTeX template as the preceding one (or for any other

output format), you want it to apply to as many documents as possible.

You don’t want to have to update it every few documents you write. There

are often a few tweaks necessary for each document, though. For example,

in LaTeX you might need to import one special package or you want to

define some commands. You don’t want those modifications in your

actual template, and you do not want to have many copies of the template

lying around either. It is easy, however, to use metavariables to make your

template adaptable.

Considering the case of LaTeX files as I just described, we can add

packages and definitions to the template like this3:

\documentclass{book}

\usepackage{hyperref}

$for(packages)$

\usepackage{$packages$}

$endfor$

$if(definitions)$

 $definitions$

$endif$

\title{$title$$if(subtitle)$: $subtitle$ $endif$}

\author{

 $for(author)$

3�Pandoc already has a metavariable, header-includes, for inserting LaTeX code
into a template, but the example helps illustrate templates.

Chapter 9 Using Templates

84

 $author.name$

 $if(author.affiliation)$

 from $author.affiliation$

 $endif$

 sep and

 $endfor$

}

\begin{document}

\maketitle

$body$

\end{document}

We iterate over packages to insert each of them in a usepackage

command. We just insert the definitions here. With this input

title:

 A terrible novel

subtitle:

 Seriously, one of the worst!

author:

 - name: "Thomas Mailund"

 affiliation: "Unseen University"

 - name: "Karsken Baelg"

 affiliation: "Brakebills University"

packages:

 - amssymb

 - amsmath

 - booktabs

 - xspace

definitions: |

Chapter 9 Using Templates

85

 \newcommand{\TMRCA}%

 {\ensuremath{T_\textrm{MRCA}}\xspace}

 \newcommand{\tAC}%

 {\ensuremath{\tau_{AC}}\xspace}

 \newcommand{\tBC}%

 {\ensuremath{\tau_{BC}}\xspace}

 \newcommand{\tABC}%

 {\ensuremath{\tau_{ABC}}\xspace}

 \newcommand{\tadmix}%

 {\ensuremath{\tau_\text{admix}}\xspace}

It was a dark and stormy night

we get

\documentclass{book}

\usepackage{hyperref}

\usepackage{amssymb}

\usepackage{amsmath}

\usepackage{booktabs}

\usepackage{xspace}

 \newcommand{\TMRCA}%

 {\ensuremath{T_\textrm{MRCA}}\xspace}

 \newcommand{\tAC}%

 {\ensuremath{\tau_{AC}}\xspace}

 \newcommand{\tBC}%

 {\ensuremath{\tau_{BC}}\xspace}

 \newcommand{\tABC}%

 {\ensuremath{\tau_{ABC}}\xspace}

 \newcommand{\tadmix}%

 {\ensuremath{\tau_\text{admix}}\xspace}

Chapter 9 Using Templates

86

\title{A terrible novel: Seriously, one of the worst! }

\author{

 Thomas Mailund

 from Unseen University

 and

 Karsken Baelg

 from Brakebills University

 }

\begin{document}

\maketitle

It was a dark and stormy night

\end{document}

If you do not want this LaTeX-specific code to turn up in HTML output,

then simply do not include it in the template. If you want separate header

configurations in HTML and PDF documents, you can use two different

metavariables. For LaTeX macros (unlike the package inclusion), you

do not need to modify a template. Pandoc understands the definition of

macros and will apply a macro you invoke when producing output. If you

call a macro inside math, Pandoc will produce the result of calling the

macro in the math format the output needs. Outside of math, the result of

calling the macro will be included in LaTeX and Markdown output but left

out in other formats.

In case you are interested, the template I have used to format this book

evolved over several books but currently looks like the following. I have not

listed all the code that Pandoc has in its template but show, in a comment,

where you can insert it.

\documentclass[11pt, openright,

 twoside, onecolumn, final]{memoir}

Chapter 9 Using Templates

87

%% Setting up the paper size

\setstocksize{9in}{6in}

\settrimmedsize{\stockheight}{\stockwidth}{∗}
\usepackage{canoniclayout}

\nonzeroparskip

\setlength{\parindent}{0pt}

%% Setting up the font

\usepackage[T1]{fontenc}

\usepackage{baskervillef}

\usepackage[scale=.95,type1]{cabin}

\usepackage[baskerville,vvarbb]{newtxmath}

\usepackage[cal=boondoxo]{mathalfa}

%% Disable hypertext (annoying in output)

\usepackage{nohyperref}

\usepackage{url}

%% Setup chapter heading

\renewcommand*\rmdefault{dayrom}

\chapterstyle{madsen}

%%%%%%%%%%%%

%% A long list of commands taken from

%% the default template

%%%%%%%%%%%%

\begin{document}

\frontmatter

%% Title page

\begingroup

\thispagestyle{empty}

{\bfseries\sffamily\noindent

Chapter 9 Using Templates

88

$if(series)$ {\large $series$}\\[50pt]$endif$

% Book title

{\huge $title$}\\[35pt]

% Authors

{\Large $for(author)$$author$$sep$\\$endfor$}

\vfill

\endgroup

%% Copyright page

\newpage

~\vfill

\thispagestyle{empty}

% Book title

{\Large $title$}\\[15pt]

% Authors

\noindent Copyright

 $year$

 $for(author)$$author$$sep$, $endfor$\\

\clearpage

%% Table of contents

$if(toc)$

\setcounter{tocdepth}{1}

\pagestyle{empty}

\tableofcontents

\cleardoublepage

$endif$

%% Document body

\mainmatter

\counterwithout{figure}{chapter}

\pagestyle{plain}

Chapter 9 Using Templates

89

$body$

\end{document}

The metavariables I have set for this book are

title:

 "The Beginner's Guide to Markdown and Pandoc"

author:

 - Thomas Mailund

year: 2019

There is no good reason that author is a list here. I have only

coauthored one book, and it has been a list since, but for one author, it

might as well have been a scalar value.

I admit that there is slightly more work involved with creating

templates than just writing Markdown documents, but I do not believe

that it is much harder to make a template than it would be to write the

document in LaTeX or HTML in the first place. Plus, you have put all the

complicated formatting in one document while you can focus on the

content in another. If you reuse the same template multiple times, you

amortize the time spent on creating it over many writing projects, and very

quickly you will have saved time compared to writing in LaTeX or HTML

directly in cases where you need more than one output format. And you

can share your templates with friends and colleagues for gold or glory.

�Exercises
Write your own templates; write one for HTML and one for LaTeX.

Chapter 9 Using Templates

91© Thomas Mailund 2019
T. Mailund, Introducing Markdown and Pandoc,
https://doi.org/10.1007/978-1-4842-5149-2_10

CHAPTER 10

Preprocessing
Markdown is just a plain text document, and you can do any rewriting

of that text before you pass it through Pandoc. Any rewriting of the text

before you give it to Pandoc is called preprocessing. Pandoc will read from

standard input, so we can pipe the result of preprocessing into it on the

command line (see Figure 10-1).

Assuming that the preprocessor takes the input file as input and that it

writes its output to standard out, then a pipeline can look like this:

preprocessor infile.md | \

 pandoc --from markdown ... -o outfile

You need to tell Pandoc that it is getting Markdown as input if it reads it

from standard in, and you do this with the --from option.

The preprocessor can do whatever you want it to as long as it outputs a

file that Pandoc can process. The output does not need to be Markdown—

you can change the --from option if it is not—but it must be a file in a

format that Pandoc can read. I will use Markdown as my output in the

following.

Input Markdown file Pandoc Output filePreprocessor

Figure 10-1.  Document formatting pipeline with a preprocessing step

92

�Examples
In the following examples, I will use GPP1 for the first two and Python2 for

the last. GPP is a preprocessor with somewhat limited functionality, but for

including files and for selectively including or excluding segments of a file,

it works excellently. Getting Python to do the same is additional work. On

the other hand, since Python is a general-purpose programming language,

we can get it to do whatever we want with the input document.

�Including Files
One use for a preprocessor is to have some information we can reuse

in some files and another document-specific input—like a document’s

body—in another file. That is the idea with templates, but there are other

cases we might have such a setup.

Imagine that you are teaching a class and hand out exercises every

week. Some information, such as the name of the class and the name of

the instructor, do not change from week to week but other information

does, for example, the week number.

We can make a file header.yml with the general information

class: Markdown and Pandoc

instructor: Thomas Mailund

The header here is, of course, artificially simple. You only want to

include a file that is of some complexity, but the example shows the

principle.

For a specific week, we can then specify the week information, for

example, the week number and the actual exercises for that week. Here is a

file; let us call it exercises.md. It holds the exercises for week 14 of the class.

1�https://logological.org/gpp
2�https://www.python.org

Chapter 10 Preprocessing

https://logological.org/gpp
https://www.python.org

93

#include "header.yml"

week: Week 14

This is an exercise

Do something difficult

This is another exercises

Do something even more difficult

The #include "header.yml " is where the preprocessor does its thing.

Notice that the three dashes delimiting the YAML specification are not

in the header.yml. If it was then couldn’t include it and still set the variable

week in the exercises.md file. When we include it into the YAML header,

we can combine the general variables set in header.yml with the file-

specific variables.

If we pipe the document through the preprocessor

gpp < exercises.md

we get this result:

class: Markdown and Pandoc

instructor: Thomas Mailund

week: Week 14

This is an exercise

Do something difficult

This is another exercises

Do something even more difficult

Chapter 10 Preprocessing

94

We can combine this with a template:

\documentclass{article}

\usepackage{hyperref}

\title{$class$: $week$}

\author{$instructor$}

\begin{document}

\maketitle

\end{document}

Combining the preprocessor and Pandoc now lets us build a document

with our exercises.

gpp exercises.md | \

 pandoc --template exercises.tex \

 --from markdown \

 -o exercises.pdf

�Conditional Inclusion
Continuing with the exercise example, we could imagine that you have

TAs for your class and you want to give them solutions to the exercise. It

is easier to have the solutions in the same document as the exercises, but

you don’t want to hand the solutions to your student. So, what you want is

a way to include the solutions when you make documents to the TAs and

exclude them otherwise. This is something GPP is excellent at as well.

You can test if a variable is defined using #ifdef. A variable here

should not be confused with the variables that Pandoc works with.

Remember that the preprocessor sees the document before Pandoc and

does not communicate with Pandoc other than piping its output into it.

Chapter 10 Preprocessing

95

If we want to include or exclude a block of text, we can put them

between #ifdef and #endif. We can do that for the solutions to our

exercises:

#include "header.yml"

week: Week 14

This is an exercise

Do something difficult

#ifdef SOLUTIONS

This is the solution to the exercise

#endif

This is another exercises

Do something even more difficult

#ifdef SOLUTIONS

This is the solution to the exercise

#endif

If you build a document as the preceding one, you will not get the

solutions in the output. To get them, you need to define SOLUTIONS. You

can do this in the file with a #define statement, but for this particular

application, we might as well give them to gpp on the command line.

Here we can use the option -D. This command line will build a PDF that

contains both the exercises and the solutions.

gpp -DSOLUTIONS week14_exercises.md | \

 pandoc --template exercises.tex \

 --from markdown \

 -o week14_exercises_solutions.pdf

Chapter 10 Preprocessing

96

�Running Code
Leaving the exercises, imagine that you are writing a book about

programming and you have code examples. You want to show the result

of running the code, so you want to evaluate all your code and insert the

result into your document.

For example, you have the code

```python

for i in range(10):

    print(i, end = ' ')

```

```python

for i in range(10):

    print(-i, end = ' ')

```

and you want the first code block to be followed by the numbers 0–9 and

the second from 0 to -9.3

This Python code iterates over all lines in the input. It uses sys.stdin

to read the input, so you must pipe input to it and not call it with a file

name. For each line, it checks if it is a code block line, that is, whether it

starts with three backtics. If it is, and it starts with python, then it starts

collecting lines until it sees the end of the block. When it gets there, it

evaluates the python code, using exec. This function will execute the code

producing any output the code prints—which is what we want here. Since

we are using exec, functions and variables defined in earlier block scan be

used in later blocks.

3�In this book, whenever I present Python code, I assume that you use Python 3.
If not, you need to adjust the code accordingly.

Chapter 10 Preprocessing

97

from sys import stdin

def main():

 exec_env = {}

 incode = False

 codeblock = []

 for line in stdin:

 print(line, end=“)

 if line.startswith("```python"):

 incode = True

 continue

 if incode:

 if line.startswith("```"):

 exec("".join(codeblock), exec_env)

 incode = False

 codeblock = []

 continue

 codeblock.append(line)

if __name__ == "__main__":

 main()

You can call the preprocess like this

python3 evalpy.py < eval-python.md

and get this result:

```python

for i in range(10):

    print(i, end = ' ')

```

0 1 2 3 4 5 6 7 8 9

Chapter 10 Preprocessing

98

```python

for i in range(10):

    print(-i, end = ' ')

```

0 -1 -2 -3 -4 -5 -6 -7 -8 -9

�Exercises
If you have gpp installed, then preprocess a document such that you use a

flag that gets you a different output when you create HTML and when you

create LaTeX output. You have to explicitly set variables to do this, but see

the next chapter for how to handle output formats in filters.

Chapter 10 Preprocessing

99© Thomas Mailund 2019
T. Mailund, Introducing Markdown and Pandoc,
https://doi.org/10.1007/978-1-4842-5149-2_11

CHAPTER 11

Filters
Filters let you manipulate your documents similarly to preprocessors.

Unlike preprocessors, they do not modify the text before Pandoc gets hold

of it, but instead, they are plugged into the text transformation that Pandoc

does. Think of them as post-processors; it is not far from the truth except

that Pandoc will run after they are done.

Both preprocessors and filters have strength and weaknesses. They can

do the same things to your files, but some things are easier to program in a

preprocessor, while some things are easier to program in a filter.

Pandoc can read from standard input and output to standard output—

it does this by default—and you can control the input and output formats

using the --from and --to options. As with any pipeline, you can connect

multiple programs, so instead of manipulating the input to Pandoc, as

with a preprocessor, you can read the output from Pandoc, transform it,

through as many steps as you like, and pipe it back into Pandoc for the

final formatting (see Figure 11-1).

You can string together any number of programs this way, as long as

the output format of one matches the input format of the next, but what

Pandoc thinks of as filters, and what you can add using the --filter or

Input Markdown file Pandoc Output fileFiltersPandoc

Figure 11-1.  Document formatting pipeline with filters

100

-F options, should read and write in the JSON format. Consequently, any

program that can read and write JSON can be used as a filter. You don’t

want to parse JSON yourself, though, if you can avoid it, so to write filters,

you wish to use a software package/modules/libraries that help you

rewrite the input.

There is support for filters in many languages, for some languages

more than one package to support them; see a list at https://tinyurl.

com/y2fsn89s. I am most familiar with Python, so in the following

examples, I will use that language. The package I will use is panflute

which is my favourite for writing Pandoc filters. To install panflute, you

can run

$ pip3 install panflute

The JSON representation of a document can be thought of as a tree.

A document contains paragraphs, paragraphs contain words and spaces,

some words are emphasized, and so on. What the Pandoc filter packages

typically will do is that they will traverse this tree structure and apply to

each node a function that you provide. This function can leave the local

tree structure alone, or it can return a modified tree. The output of the filter

will be the input tree with your modifications.

You can use pandoc <inputfile> --to json to see the JSON

representation of a file, but I find it easier to see the structure using pandoc

<inputfile> -- native. The native format is a format used internally

by Pandoc and is what you will traverse over with a filter. I suggest using

it to recognize the structure a document will have, what to match on to

recognize what you wish to rewrite, and what the rewritten structure

should be.

Take a document like this:

This is a level one header

This is a paragraph

Chapter 11 Filters

https://tinyurl.com/y2fsn89s
https://tinyurl.com/y2fsn89s

101

The JSON format of this document is this:

{"blocks":[

 {"t":"Header",

 "c":[

 1,

 ["this-is-a-level-one-header",[],[]],

 [{"t":"Str","c":"This"},

 {"t":"Space"},

 {"t":"Str","c":"is"},

 {"t":"Space"},

 {"t":"Str","c":"a"},

 {"t":"Space"},

 {"t":"Str","c":"level"},

 {"t":"Space"},

 {"t":"Str","c":"one"},

 {"t":"Space"},

 {"t":"Str","c":"header"}

]]},

 {"t":"Para",

 "c":[{"t":"Str","c":"This"},

 {"t":"Space"},

 {"t":"Str","c":"is"},

 {"t":"Space"},

 {"t":"Str","c":"a"},

 {"t":"Space"},

 {"t":"Str","c":"paragraph"}]}

],

 "pandoc-api-version":[1,17,5,4],

 "meta":{}

}

It is a bit verbose which is why I prefer the native format:

Chapter 11 Filters

102

Pandoc (Meta {unMeta = fromList []})

[Header 1 ("this-is-a-level-one-header",[],[])

 [Str "This",Space,

 Str "is",Space,

 Str "a",Space,

 Str "level",Space,

 Str "one",Space,

 Str "header"],

 Para

 [Str "This",Space,

 Str "is",Space,

 Str "a",Space,

 Str "paragraph"]

]

Except for the API version, which we are not concerned with for our

filters, the two formats contain precisely the same information (obviously

since it is JSON that is used between filters and a filter pipeline usually

begins and ends with Pandoc).

The document has a metadata header (it is empty in this document)

and then a list of document nodes. There are two top-level nodes, the

header and the paragraph. The header has level 1 and then a triplet of

extra information. The first element in the triplet is its identifier—it is

used for hyperlinks when formatted as HTML and LaTeX. The next two

elements in the triplet are classes and options. Inside the header is a list of

strings and spaces. It is the text in the document. We will use identifiers,

classes, and options in the following examples. The paragraph contains a

lists of strings and spaces.

Chapter 11 Filters

103

The hierarchy in this document is not deep. We have sequences of

strings and spaces nested in the header and the paragraph. They can get

deeper but usually not much. Consider this example:

oh: my

This is *very* important

If we get its structure, we get a string inside an emphasis inside a

paragraph, but the depth is still small.

Pandoc

(Meta

 {unMeta = fromList

 [("oh",MetaInlines [Str "my"])]}

)

[Para

 [Str "This",Space,

 Str "is",Space,

 Emph [Str "very"],

 Space,

 Str "important"]

]

Here you also see an example of metadata. It looks more complicated

than what we would expect from a simple map from oh to my, but it is what

it is. In the following Python code, the panflute model will translate it into

a simple map from keys to values.

To write a filter, try to make a small Markdown file containing input that

you expect to transform and the output you want it to become. Then run

the example through Pandoc to see what the native structure is. From that,

and a package for Pandoc filters, you should be able to get what you want.

Chapter 11 Filters

104

�Exploring Panflute
Before we see concrete examples of filters, let us explore how panflute lets

us traverse a document. As an example I will use this script:

import sys

from panflute import *

def print_structure(elem, doc):

 if type(elem) == Header:

 print("identifier:", elem.identifier,

 file = sys.stderr)

 print("classes:", elem.classes,

 file = sys.stderr)

 print("attributes:", elem.attributes,

 file = sys.stderr)

run_filter(print_structure)

The run_filter traverses the entire tree structure, depth-first, and

calls a function we provide it; here that is print_structure. I have written

a function that lets me show some of the properties of the header in the

previous example. Let me add a few more properties to the header and

process the document:

This is my header {#header-id

 .class1 .class2

 foo=bar baz=qux}

This is *very* important

I have broken the header classes over multiple lines; Pandoc doesn’t

mind.

In the print_structure function, I ignore all document elements that

are not Header—simply because I only do anything in case the element is a

Chapter 11 Filters

105

header element. What I do is that I print the identifier, the classes, and the

attributes of a header. I print them to standard error—if I printed them to

standard out, I would mess up the JSON output that makes a filter work.

The text I print to standard error looks like this:

identifier: header-id

classes: ['class1', 'class2']

attributes: OrderedDict([('foo', 'bar'),

 ('baz', 'qux')])

You can recognize the properties from the header.

This is my header {#header-id

 .class1 .class2

 foo=bar baz=qux}

The identifier is first in the curly brackets, and it starts with #. The

classes begin with a dot and otherwise standalone, and the attributes are

key-value mappings. The different document elements have different

properties but panflute is well documented, and you can find all the

attributes each document element has.

The print_structure function doesn’t explicitly return any values

which means that it implicitly returns the None object. The panflute

module will interpret that as saying that the function does not want to

make any transformations but leave elem as it is. If we wanted to change

anything, we must return an element to replace the input elem.

If you translate the preceding document into HTML, you can see how

the various components are used. The identifier becomes the id in the

header tag, the classes become classes, and the attributes become

data attributes.

<h1 id="header-id"

 class="class1 class2"

 data-foo="bar"

Chapter 11 Filters

106

 data-baz="qux">

 This is my header

</h1>

<p>This is very important</p>

Not all of the components are used in all output formats. In LaTeX, for

example, only the identifier is used.

\hypertarget{header-id}{%

\section{This is my header}\label{header-id}}

This is \emph{very} important

That classes and attributes are not used much in the output here does

mean that they are useless. You just need to find a use for them yourself.

We can abuse them for our own nefarious purposes in our own filters.

�Conditional Inclusion of Exercise Solutions
Consider this example from the previous chapter: we have text with

exercises and solutions, and we want to compile it into documents where

the solutions have been removed and documents where they have not.

The preprocessing solution is excellent, but now we can see how we can

achieve the same thing using a filter.

Let this be the input format:

Here is an exercise. Everyone can see it.

::: SOLUTION :::

Here is a solution to the exercise.

Do not give it to the students.

:::

Chapter 11 Filters

107

The ::: SOLUTION ::: syntax is not one we have seen before because

it is relatively rare. It creates a div tag in HTML—you can use it with a CSS

file for formatting—and it adds a hyper reference target in LaTeX. We want

neither of that, but we can use a Div structure in our filter.

You can see what the structure looks like by running this:

pandoc solutions.md -s --to native

where I assume that the Markdown is in the file solutions.md.

Pandoc (Meta {unMeta = fromList []})

[Para [

 Str "Here",Space,

 Str "is",Space,

 Str "an",Space,

 Str "exercise.",Space,

 Str "Everyone",Space,

 Str "can",Space,

 Str "see",Space,

 Str "it."

],

Div ("",["SOLUTION"],[])

 [Para [

 Str "Here",Space,

 Str "is",Space,

 Str "a",Space,

 Str "solution",Space,

 Str "to",Space,

 Str "the",Space,

 Str "exercise.",Space,

 Str "Do",Space,

 Str "not",Space,

 Str "give",Space,

Chapter 11 Filters

108

 Str "it",Space,

 Str "to",SoftBreak,

 Str "the",Space,

 Str "students."]

]

]

The ::: SOLUTION ::: syntax sets the class of the Div structure to

SOLUTION (the middle element in the Div object’s properties). Classes are

always lists, so it really sets the classes to a list with a single element, which

is SOLUTION. If you want to give the Div object more attributes, you can

use an alternative syntax:

::: SOLUTION :::

Solution 1

:::

::: {#solution-2 .SOLUTION .advanced}

Solution 2

:::

::: {#solution-3 .SOLUTION level=difficult }

Solution 3

:::

The first solution here has the same syntax as before. It will set the

class of the Div object to SOLUTION and leave the other two properties

empty. The second solution sets an identifier and adds another class to the

list. The third solution is back to a single class but adds one key to value

mapping to the attributes.

If you use this filter

import sys

from panflute import *

Chapter 11 Filters

109

def print_structure(elem, doc):

 if type(elem) == Div:

 print("id:", elem.identifier,

 file = sys.stderr)

 print("classes:", elem.classes,

 file = sys.stderr)

 print("attributes:", elem.attributes,

 file = sys.stderr)

run_filter(print_structure)

on the preceding Markdown file, you will get this output:

id:

classes: ['SOLUTION']

attributes: OrderedDict()

id: solution-2

classes: ['SOLUTION', 'advanced']

attributes: OrderedDict()

id: solution-3

classes: ['SOLUTION']

attributes: OrderedDict([('level', 'difficult')])

We can use this information to process the example. We want to

include or exclude solutions based on metadata. We could not easily do

that in the preprocessor, but there we could use preprocessor variables

which are harder to do here. Each method has its pros and cons.

The preceding information tells us that 'SOLUTION' will be in the class

of the Div if we have an ::: SOLUTION ::: block (or with the alternative

syntax an ::: { .SOLUTION }" block). We want to check the metadata

to see if we should include the solutions. We can get the meta information

from the doc parameter that run_filter will give our filter function.

If we call doc.get_metadata(), we will get a table from which we can

Chapter 11 Filters

110

get metavariables. We want our filter to remove Div objects that have

SOLUTION as their class unless there is a metavariable called solutions

and it is true.

This filter does that:

from panflute import *

def solution(elem, doc):

 if type(elem) == Div:

 if 'SOLUTION' not in elem.classes:

 # Return None to leave the node as it is

 return None

 meta = doc.get_metadata()

 if "solutions" not in meta:

 return Null

 if meta["solutions"] != True:

 return Null

 return None

run_filter(solution)

First, we check if 'SOLUTION' is in the classes. If not, then we don’t

have a solution block and we leave the element alone by returning

None. We could also have returned elem; it would make no difference.

Otherwise, we get hold of the metadata. We check if "solutions" is in

the metadata. If it is not in the metadata, then it definitely cannot be true,

so we return Null as a replacement for elem in the output. Notice that

it is Null and not None! The former is an element in Pandoc, while the

latter is an element in Python; the former replaces elem with an empty

block, effectively removing the solutions block, while the latter keeps

elem as it is, that is, leaves the solutions block in the output. Finally, if

"solutions" is in the metadata but not true, then we also remove the

Chapter 11 Filters

111

solutions block. The solutions metavariable can have more than true as

a value, and those would be considered as true as well in the expression

meta["solutions"], so I explicitly check for True.

If we do not get past the checks, we remove the solutions block. If the

“solutions” is not set in the metadata, or if it is set to anything but True, we

remove the block. Otherwise, we keep it by returning None.

If the block is not a solutions block, if "solutions" is not set or set to

anything except true, then we have a solutions block, and we are supposed

to keep it.

If we go back to the example Markdown

Here is an exercise. Everyone can see it.

::: SOLUTION :::

Here is a solution to the exercise.

Do not give it to the students.

:::

then we can check how Pandoc reacts when the metavariable "solutions"

is set to false:

pandoc --metadata solutions:false -F solutions.py \

 solutions.md --to markdown

This is the result:

Here is an exercise. Everyone can see it.

The solutions block is removed in the output. The same happens if you

do not set the metavariable or if you set it to any other value, except true. If

you do set it to true

pandoc --metadata solutions:true -F solutions.py \

 solutions.md -- to markdown

Chapter 11 Filters

112

the solution block is included.

Here is an exercise. Everyone can see it.

::: {.SOLUTION}

Here is a solution to the exercise.

Do not give it to the students.

:::

Pandoc uses this syntax in its output, but you can use either of the two

ways to define a Div block.

�Conditional Inclusions Based on Format
Sometimes we want a different text in the output conditional on the output

format, for example, a different text for HTML and LaTeX.

You can insert raw text that is only included in the right output

using text followed by {=format}. The delimiters for the text you write is

slightly different based on whether you want a block or inline text. For a

block, you write

```{=html}

See examples

<ul>

  <li><a href="#ex:ex1">Exercise 1</a></li>

  <li><a href="#ex:ex2">Exercise 2</a>

</ul>

```

For inline text, you use backticks:

See examples

`Exercise 1 and

 Exercise 2`{=html}

 `\cite{ex:ex1} and \cite{ex:ex2}`{=latex}.

Chapter 11 Filters

113

In either case, the quoted text is only inserted if the output format

matches. We saw this syntax back in Chapter 6.

The text we include here will not be processed by Pandoc, so you

cannot use Pandoc’s features. That means that you cannot, for example,

use the [text](link) syntax but must the hyperlinks in HTML. We will

write a filter that allows us to do this.

We will use two or more classes. The first is used to tag that it is text

that should only be output for some formats and another to indicate which

output we want to output the text for.

We have already seen how to add classes to a Div block of text:

:::{.out .html}

This is only included for HTML

:::

:::{.out .latex}

This is only included for LaTeX

:::

:::{.out .html .latex}

This is only included for HTML and LaTeX

:::

For inline text, you have to use square brackets:

[HTML only]{.out .html} [LaTeX only]{.out .latex}

For blocks of text, we have to capture Div objects, and for an inline text,

we need to catch Span objects. In either case, we need to check if we have

the out class. Otherwise, we leave the object alone—it could be used for

something else in another filter. If we have the out class, we check if the

output format is also a class. If not, we remove the object; if the format is a

class, then we include it.

Chapter 11 Filters

114

The filter looks like this:

from panflute import *

def format_include(elem, doc):

 if type(elem) == Span:

 if not "out" in elem.classes:

 return elem

 if doc.format not in elem.classes:

 return []

 else:

 return elem.content.list

 if type(elem) == Div:

 if not "out" in elem.classes:

 return elem

 if doc.format not in elem.classes:

 return Null

 else:

 return elem.content.list

run_filter(format_include)

When we return the elements, we want to keep we do not just return

elem. We don’t necessarily want to have the Span and Div show up in the

output. Instead, we get the object’s contents. The script wants this as a list,

so we use elem.content.list.

If you use the filter on this Markdown:

[HTML only]{.out .html} [LaTeX only]{.out .latex}

:::{.out .html}

This is only included for HTML

:::

:::{.out .latex}

Chapter 11 Filters

115

This is only included for LaTeX

:::

:::{.out .html .latex}

This is only included for HTML and LaTeX

:::

you will get this HTML output

<p>HTML only </p>

<p>This is only included for HTML</p>

<p>This is only included for HTML and LaTeX</p>

and this LaTeX output

LaTeX only

This is only included for LaTeX

This is only included for HTML and LaTeX

There is no formatting here because there is no formatting in the input.

If you use another output format, for example, Markdown, then you

will not get any output with this input; all the text is only included for

HTML and LaTeX.

�Evaluating Code
Now take another example we considered in the previous chapter: running

Python code while formatting a document and inserting the results.

In this version, we will use classes to distinguish between code blocks

we want to evaluate and those we do not. We only consider Python code

blocks—those whose classes contain "python"—but to evaluate them,

we will also require that they have the class "eval". For example, in the

markdown, before we will evaluate the second but not the first code block.

Chapter 11 Filters

116

~~~{.python}

for i in range(10):

    print(i, end = ")

~~~

~~~{.python .eval}

for i in range(10):

    print(-i, end = ")

~~~

The filter is straightforward. Ignore for now the run_python we call—I

list it in the following text, but it is not important how it works. Focus on

eval_python. I realize that I have not been that inventive with the names,

but run_python_process executes a Python process that evaluates a code

block, while eval_python is the filter.

Consider the filter, eval_python. Here, we only look at elements of type

CodeBlock. When we have a CodeBlock, we get hold of the classes and

check that both "python" and "eval" are in it. If they are not, we do not

enter the inner if statement, so the function will, by default, return None

which leaves elem as it is. If we have the right classes, then we evaluate the

Python code using execute_code function and insert the result after elem

and return that.

import sys

from panflute import *

definition of execute_code

def eval_python(elem, doc):

 if type(elem) == CodeBlock:

 classes = elem.classes

 code_body = elem.text

 if 'python' in classes and "eval" in classes:

Chapter 11 Filters

117

 eval_res = execute_code(code_body)

 return [elem, CodeBlock(eval_res)]

run_filter(eval_python)

The execute_code function is slightly more complicated than the way

we used exec in the preprocessor. It is simpler to use exec and let it print

its output in the preprocessor compared to evaluating the code in a filter

where we do not want any unwanted output.

If exec writes something to standard out, it will break the JSON format

and this will break the rest of the pipeline.

Therefore, we need to capture the output of exec and then get hold of it

again. Since the output of the code in exec gets sent to standard output, we

need to change that into a file we can use, open that file when we execute

code, close it again to flush it, open it, and read the result. It is not pretty,

but it gets the job done, and you can do it like this:

PYTHON_IO_FILE = "/tmp/eval-python-io"

real_stdout = sys.stdout

exec_env = {}

def execute_code(code):

 f = open(PYTHON_IO_FILE, "w")

 sys.stdout = f

 exec(code, exec_env)

 sys.stdout.close()

 sys.stdout = real_stdout

 f = open(PYTHON_IO_FILE, "r")

 return f.read()

You do not need to understand this part of the filter to understand how

the filter itself works.

We can run the filter and in this case get the result as Markdown:

pandoc -F eval-python.py eval-python.md --to markdown

Chapter 11 Filters

118

The result is this:

``` {.python}

for i in range(10):

    print(i, end = ")

```

``` {.python .eval}

for i in range(10):

    print(-i, end = ")

```

 0-1-2-3-4-5-6-7-8-9

The output is not in a “backtick”-block but indented. This is just

another way to write the same in Markdown.

If you use this document, you will see that we can define a function in

one code block and use it in another

~~~{.python}

for i in range(10):

    print(i, end = ")

~~~

~~~{.python .eval}

print("defining foo")

def foo():

    for i in range(10):

        print(-i, end = ")

foo()

~~~

~~~{.python .eval}

print("calling foo from different block")

foo()

~~~

Chapter 11 Filters

119

This is the output:

``` {.python}

for i in range(10):

    print(i, end = ")

```

``` {.python .eval}

print("defining foo")

def foo():

    for i in range(10):

        print(-i, end = ")

foo()

```

 defining foo

 0-1-2-3-4-5-6-7-8-9

``` {.python .eval}

print("calling foo from a different block")

foo()

```

 calling foo from a different block

 0-1-2-3-4-5-6-7-8-9

�Numbering Exercises
As a final example, let us return to the exercise examples. This time, we

are not concerned with including or excluding the solutions, but we want

to put exercises in a LaTeX environment when the output is LaTeX and

otherwise number them and add a header.

Chapter 11 Filters

120

Consider an input like this:

::: Exercise :::

First exercise

:::

::: Exercise :::

Second exercise

:::

We have two Div blocks with class Exercise and some text within

them. Those are the ones we want to modify. For HTML, say, we want to

give them a header, and for LaTeX, we want to put them inside a LaTeX

environment.

We can get the output format from the doc object. The input and

output of filters are, as mentioned earlier, JSON, and if we just used shell

pipes, we couldn’t know what the final output is. When we run a script as a

filter, however, Pandoc knows what the final output will be, and we can get

that information.

The first attempt at the filter looks like this:

 1 from panflute import *

 2

 3 no_exercise = 1

 4

 5 def number_exercises(elem, doc):

 6 global no_exercise

 7 if type(elem) == Div and \

 8 "Exercise" in elem.classes:

 9

10 meta = doc.get_metadata()

11

12 if doc.format == "latex":

13 exercise_env = "exercises"

Chapter 11 Filters

121

14 if "exercise_env" in meta:

15 exercise_env = meta["exercise_env"]

16 block = [

17 RawBlock(r"\begin{" + exercise_env + "}",

18 "latex"),

19 elem,

20 RawBlock(r"\end{" + exercise_env + "}",

21 "latex")

22]

23 return block

24

25 level = 1

26 if "exercise_header_level" in meta:

27 level = int(meta["exercise_header_level"])

28

29 title = [Str("Exercise"),

30 Space,

31 Str(str(no_exercise))]

32 no_exercise += 1

33 return [Header(*title, level = level,

34 classes = elem.classes), elem]

35

36 run_filter(number_exercises)

We use a global variable, no_exercise (line 3), for increasing the

header number for each exercise. Inside the filter, we first check if we have

a Div block with an Exercise class. If so, we get hold of the meta object

from the doc element (line 10) and use it to check if its output format

is LaTeX or HTML. If it is LaTeX (line 12), then we get the metavariable

exercise_env (with exercises as default), and we create a new block as a

replacement for the Div block.

Chapter 11 Filters

122

The RawBlock is just verbatim text but only inserted if the output

format is “latex.” Of course, we know that the output is LaTeX here and we

could leave out the argument, but in other cases, a RawBlock can be useful

when you output roughly the same text for all output formats and do not

want to check for the output format.

For all other formats (line 24 and below), we use a default level of 1

and otherwise use the metavariable exercise_header_level (lines 26 and

27). We create the header text (lines 29–31), increment the no_exercise

variable (line 32), and then create the Header element. Its first argument

is the list of text object that should comprise the header, then the header

level, and keep the classes from the Div block. We put the elem text after

the header.

Let us try it on HTML output (where the filter filename is exercises.

py and the input Markdown is in exercises.md):

pandoc -F exercises.py exercises.md --to html

The output is this:

<h1 class="Exercise">Exercise 1</h1>

<div class="Exercise">

<p>First exercise</p>

</div>

<h1 class="Exercise">Exercise 2</h1>

<div class="Exercise">

<p>Second exercise</p>

</div>

As you can see, we have added a header to the exercises.

If we set the metavariable for the header level, we modify the level of

the header:

pandoc --metadata=exercise_header_level=4 \

 -F exercises.py exercises.md --to html

Chapter 11 Filters

123

<h4 class="Exercise">Exercise 1</h4>

<div class="Exercise">

<p>First exercise</p>

</div>

<h4 class="Exercise">Exercise 2</h4>

<div class="Exercise">

<p>Second exercise</p>

</div>

For LaTeX, we get this:

pandoc -F exercises.py exercises.md --to latex

\begin{exercises}

First exercise

\end{exercises}

\begin{exercises}

Second exercise

\end{exercises}

Here we do not create a header but put the exercises into an exercises

environment. Since we do not add headers, the header level is ignored.

You need to define the environment in LaTeX for this to work. How to

do this is beyond the scope of this book, but you can add an incantation

like this in your YAML header:

header-includes: |

 \newcounter{exercounter}[section]

 \newcommand{\theexercise}%

 {\thesection.\arabic{exercounter}}

 \makeatletter

 \newenvironment{exercises}{%

Chapter 11 Filters

124

 \par\refstepcounter{exercounter}%

 \protected@edef\@currentlabel{\theexercise}%

 \noindent\textbf{Exercise \theexercise}}{}

 \makeatother

and then have

$for(header-includes)$

$header-includes$

$endfor$

in your template before \begin{document}.

We can add references to the Div blocks.

::: {#ex1 .Exercise}

First exercise

:::

::: {#ex1 .Exercise}

Second exercise

:::

These are automatically kept for the elem Div blocks.

<h4 class="Exercise">Exercise 1</h4>

<div id="ex1" class="Exercise">

<p>First exercise</p>

</div>

<h4 class="Exercise">Exercise 2</h4>

<div id="ex1" class="Exercise">

<p>Second exercise</p>

</div>

Chapter 11 Filters

125

You can now use the link syntax, text, to create hyperlinks to the

exercises. If you want the reference to be in the header instead of the Div

block, you can replace lines 33 and 34 with this:

identifier = elem.identifier

if not identifier:

 identifier = ""

header = Header(*title,

 identifier = identifier,

 level = level,

 classes = elem.classes)

elem.identifier = ""

return [header, elem]

It gives the header the elements identifier and sets the elements

identifier to the empty string, which means that it will not be inserted in

the output.

For LaTeX we want to use \ref commands; we do get hyper reference

targets, but it is not what we want. We add a LaTeX reference command,

however. To do this, we need to add a \label command inside the

environments. Doing this is straightforward. Simply replace lines 11 to 22

with this:

if doc.format == "latex":

 exercise_env = "exercises"

 if "exercise_env" in meta:

 exercise_env = meta["exercise_env"]

 if elem.identifier:

 label = r"\label{" + elem.identifier + "}"

 else:

 label = ""

Chapter 11 Filters

126

 block = [

 RawBlock(r"\begin{" + exercise_env + "}" +

 label,

 "latex"),

 elem,

 RawBlock(r"\end{" + exercise_env + "}",

 "latex")

]

return block

We get the identifier for the Div argument—we have seen identifiers

earlier—and then we insert it after the \begin command. If there is no

identifier, we insert the empty string.

Now we have labels we can use with \ref{} commands in LaTeX

(and we can insert those conditional on the output format) and we

can insert links for other formats (dependent on those). LaTeX will

automatically number the environments (if you have the LaTeX magic

listed earlier to define the environment type), and it will automatically

insert their reference number. For other formats, you need to insert the

numbers yourself in the link.

This is not desirable. It means you have to manually update all

numbers if you add an exercise inside your text. We need a better solution.

We are going to use syntax similar to

pandoc-crossref

and

pandoc-citeproc

and we need to run our filter before pandoc-citeproc for the same

reason that pandoc-crossref must. We don’t want to interfere with

references handled by these two filters, so we will give them a

Chapter 11 Filters

127

prefix (like pandoc-crossref). Our references will look like this:

[@ex:identifier].

Before we can handle references, however, we want to collect a

map from identifiers to exercise numbers. LaTeX will handle this for

environments and \ref{} commands but for other formats we must. Since

we are not guaranteed that we see an exercise before we reference it, we

must traverse the entire document and make the map before we traverse it

again and modify the document.

The easiest way to traverse the document is with the run_filter

function, but we cannot run it more than once. There is another function,

run_filters—notice the plural—that handles that. One filter will provide

the input to the next; we don’t want to modify anything with the filter that

collects the map, so we just let it return None (implicitly by not returning

another value).

The filter for making the map is straightforward and looks like this:

ex_dict = {}

no_exercise = 1

def collect_numbers(elem, doc):

 global no_exercise

 if type(elem) == Div and \

 "Exercise" in elem.classes:

 if elem.identifier:

 ex_dict[elem.identifier] = no_exercise

 no_exercise += 1

When we number the exercises, in the filter that modifies the

document, we need to reset no_exercise. This is not easy when the two

scripts are called one after another, but a straightforward solution is to use

a second counter. If you do this, then the preceding number_exercises

Chapter 11 Filters

128

filter will work as before. It adds the numbers, but it didn’t need the map

earlier, and it doesn’t need it now.

Instead, we will write a third filter that does this; let us call it handle_

citations. I describe this function in the following text.

We can call the three filters using

run_filters([

 collect_numbers,

 number_exercises,

 handle_citations

])

We must run collect_numbers before handle_citations, but number_

exercises can go anywhere in the list.

If you get the native format for a file that contains these [@ref]

references, you get a complex text, but you will see that we have a Cite

object that contains a Citation element (there can be more than one, but

we will only handle one here). We want to translate these elements. We

really want to work with Citation, but if we filter on that, we will create

an object that goes into the Cite that encloses it, so we will handle Cite

objects and extract the Citation object from it.

A Cite object contains several attributes including the identifier

(the @reference text), a prefix (text that goes inside the square brackets

but before the reference), and a suffix (text that goes after the text). We

will only use the prefix and the identifier here and ignore—effectively

remove—the suffix. See the exercises for including the suffix.

 1 def handle_citations(elem, doc):

 2 if type(elem) == Cite:

 3 actual_cite = elem.citations[0]

 4 identifier = actual_cite.id

 5 if not identifier.startswith("ex:"):

 6 return elem

 7

Chapter 11 Filters

129

 8 prefix_text = actual_cite.prefix.list

 9 prefix_text.extend([Space, Str("exercise")])

10

11 if doc.format == "latex":

12 return actual_cite.prefix.list + [

13 RawInline(r"~\ref{" + identifier + "}",

14 "latex")

15]

16

17 if identifier in ex_dict:

18 ex_num = ex_dict[identifier]

19 prefix_text.extend([

20 Space, Str(str(ex_num))

21])

22 return [

23 Link(*actual_cite.prefix.list,

24 url = "#" + identifier)

25]

In the first line in the filter, we check if we have a Cite element. There is

nothing new there. Then we extract the element we are actually interested

in, which is a Citation element.

We get the identifier, which is the citation label (line 4), and check if it

is an example label, that is, starts with "ex:" (line 5). If it is not, we return

the element; we do not want to modify other citation objects since these

could be used by other filters.

Now we extract the prefix of the Citation object; again we get the

actual content using .list. We add the text "exercise" to the prefix

(line 9), so the references will contain this text as well. We need to add

a space as well to prevent the prefix from being concatenated with the

"exercise" text. We also need to add a space after "exercise", but I

Chapter 11 Filters

130

want a non-breaking space in the LaTeX output, so there I want a tilde

rather than a space (see the following text).

I am assuming that there is already a space before the reference, that is,

that the reference looks like this [see @ex:ref] rather than [see@ex:ref];

if not we need to add a space before "exercise". We will need to add it

after the reference. Otherwise, the prefix and the reference number will be

concatenated.

We now handle LaTeX output separately (lines 11 to 15). We append

the \ref{} command to the prefix and return the result. We put the LaTeX

code in a RawInline object. This is similar to a RawBlock object but for

inline text. We do not add a space here but a tilde.

For other output formats, lines 17 to 25, we look up the exercise

number from our map, assuming that there is an identifier, and then we

add a space and the number to the prefix. We add a space before the

number, so it isn’t concatenated to "exercise". Finally, we create a link

from the reference.

�Exercises
�Conditional Inclusion
Modify the filter so you can use a metavariable to determine which

difficulties should be included and which should be removed.

�Conditional on Output
We removed the Span and Div objects when we modified the input. If the

objects had more than the output and format classes, we might want to

keep them (but with the .out and .format classes removed). Modify the

script to do this.

Chapter 11 Filters

131

�Evaluating Code
Add a class to the code blocks that will determine whether the original

code and the block should remain in the output, while you still evaluate

the code in the block.

�Numbering Exercises
Can you add the reference suffixes to the output as well?

Chapter 11 Filters

133© Thomas Mailund 2019
T. Mailund, Introducing Markdown and Pandoc,
https://doi.org/10.1007/978-1-4842-5149-2_12

CHAPTER 12

Conclusions
By now, you have seen most of the features of Markdown and Pandoc.

I have not covered all the features, but you should have a good idea of what

you can do with these tools and be able to learn more from online manuals.

With Markdown you do not have quite as much control over

typesetting and document structure as you would have, for example, in

LaTeX, but the substantially simpler syntax for many markup instructions

makes it much easier to work with. Especially for tables, lists, and figures,

where LaTeX’s syntax can take the focus away from the actual content of

your document.

From time to time, you need more than Markdown can do by itself,

but then Pandoc has several handles you can turn. If you need to specify

formatting beyond Markdown, you have templates, and if you need to

transform your document while formatting it, you can preprocess it or use

filters to rewrite it.

If you have to write new templates and new filters for each new

document, then there is nothing gained from using Markdown and Pandoc

compared to formatting each document manually, using, for example,

LaTeX or Word. If you are like me, however, you can reuse a few templates

for all your documents, and the occasions where you need a new filter are

few and far between—and I have never experienced writing a filter that I

did not use more than once.

I hope that you have found this introduction to Markdown and Pandoc

instructive and that you will enjoy writing Markdown in the future.

135© Thomas Mailund 2019
T. Mailund, Introducing Markdown and Pandoc,
https://doi.org/10.1007/978-1-4842-5149-2

Index

A, B
begin command, 126
Bibliography, 64–66
Bitmap graphics, 41
Block of code,

writing, 50, 52
Block quotes, 17–18, 21

C
cabal package manager, 57
Cascading style sheets (CSS), 54
citeproc filter, 65
Code block options, 52–54
Conditional inclusion

exercise solutions, 106–112
formatting, 112–115

Cross-reference filter, 64, 65
Cross-referencing

figure labels, 63, 64
pandoc-crossref, 58
prefixes, 61–63
prefix of labels, 63, 64
sections, 58–61
tables and equations, 64, 66

D
Div blocks, 121, 122, 124, 125
doc.get_metadata(), 109
Documents translation

formatting, Markdown
document, 35–40

options
Ebook covers, 42
image extensions, 41, 42
sections and chapters, 40, 41
table of contents, 41

E
elem.content.list, 114
elem Div blocks, 124
Emphasis, 14–15, 21
eval_python, 116
execute_code function, 116–117
exercise_header_level, 122
Extensions, Pandoc Markdown

footnotes, 33, 34
lists, 23–27, 34
smart punctuation, 32
tables, 27–32, 34

https://doi.org/10.1007/978-1-4842-5149-2

136

F, G
Figure labels, 63
File formats, 5
Filters, 57

code evaluation, 115–119
conditional inclusion (see

Conditional inclusion)
document formatting

pipeline, 99
--filter/-F options, 100
JSON, 101, 102
native format, 101
numbering exercises (see

Numbering exercises)
panflute (see panflute)

Footnotes, 33
Formatting styles, 6
--from and--to

options, 99
--from option, 91

H
Hypertext markup

language (HTML), 9

I
Image extensions, 41–42
Images, 20, 22

J, K
JSON representation, 100

L
LaTeX, 9, 39, 47, 60, 107, 112
LaTeX macros, 86
Links, 18–20, 22
Lists, 15–17, 21

M
Makefiles, 43–45
Markdown, 1

formatting and style choices, 11
HTML, 9, 10
LaTeX version, 10
text editors, 11
text with semantic

information, 11
writing

block quotes, 17
emphasize, 14
hypertext links, 18–20
images, 20
numbered and unnumbered

list, 15–17
sections, 13, 14
verbatim text, 18

Markdown-aware software, 11
Markdown-aware text editor, 12
Markup languages, 1, 6
Math, writing, 47–50
Metadata

lists, key-value bindings, 76
Markdown annotations, 68
variables, 68
YAML, 68, 70, 71

INDEX

137

--metadata option, 68
Metavariables, 75, 78, 83, 86, 89

N, O
Numbering exercises

begin command, 126
Cite object, 128, 129
class Exercise, 120
collect_numbers, 128
Div argument, 126
Div blocks, 121, 124, 125
doc object, 120
elem Div blocks, 124
elements identifier, 125
elem text, 122
exercise_header_level, 122
exercises environment, 123
filter, 120, 121
handle_citations, 128
label command, 125
LaTeX environment, 119, 123
link syntax, 125
metavariable, 122
metavariable

exercise_env, 121
native format, 128
no_exercise, 121, 127
number_exercises filter, 128
pandoc-citeproc, 126
RawBlock, 122, 130
ref{} commands, 126, 127, 130
run_filter function, 127
YAML header, 123

P, Q
Pandoc, 2

block of code, writing, 50, 52
formatting, Markdown

document, 35–40
simple documents, 12
templates, formatting, 7
text translate, multiple

documents, 8
writing math, 47–50

pandoc-citeproc filter, 65, 126
pandoc-crossref filter, 57, 58, 126
pandoc <inputfile>--native, 100
pandoc <inputfile>--to json, 100
Pandoc’s user-contributed

templates, 77
panflute, 100

classes and attributes, 106
data-attributes, 105
document element, 105
install, 100
Pandoc filters, writing, 100
print_structure, 104
run_filter traverses, 104

Preprocessing
conditional inclusion, 94, 95
definition, 91
document formatting

pipeline, 91
documents, 8
exercises.md file, 92, 93
--from option, 91
GPP, 92

Index

138

header.yml file, 92, 93
running code, 96–98

print_structure function, 104, 105
Python, 92

R
RawBlock object, 122, 130
ref{} commands, 126, 127
Reference figures, 63
Reference prefixes, 61–63
Reference sections, 66
Referencing sections, 58–61
R programming, 9
run_filter, 127
run_python, 116
run_python_process, 116

S
Sections, 13, 14, 21
Semantic elements, 6–8
Semantic structure, 6, 8
Smart punctuation, 32
::: SOLUTION ::: block, 109
solutions metavariable, 111
::: SOLUTION ::: syntax, 107, 108
Stylesheets, 7, 54
Syntax highlighting

scheme, 51, 54–55

T
Tables, 27–32
Templates, 7

$body$ placeholder, 77
document writing in

LaTeX/HTML, 89
dot-notation, 76
formatting, 77
HTML, 78, 79
if-else construction, 75
journals, 77
LaTeX, 73, 83, 84
loop construction, 75
metadata variables, 74
metavariables, 89
name and affiliation,

author, 82
Pandoc code, 86, 88
PDF/LaTeX output, 80
progressing document, 82
text format, HTML, 79, 80
title metadata, 74
title prefix, 74, 75
title variable, 74
usepackage command, 84–86
YAML header, 78

[text](link) syntax, 113
title-prefix, 74, 75
Tree structure, 100, 104
Triplet, 102

Preprocessing (cont.)

INDEX

139

U
usepackage

command, 84–86

V
Verbatim text, 18, 50, 51, 122

W, X
WYSIWYG editors, 2, 5, 7
WYSIWYG word processors, 8

Y, Z
YAML, metadata, 68, 70, 71

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Chapter 1: The Beginner’s Guide to Markdown and Pandoc
	Chapter 2: Why Use Markdown and Pandoc
	Separating Semantics from Formatting
	Preprocessing Documents
	Why Markdown?
	Why Pandoc?

	Chapter 3: Writing Markdown
	Sections
	Emphasis
	Lists
	Block Quotes
	Verbatim Text
	Links
	Images
	Exercises
	Sections
	Emphasis
	Lists
	Block Quotes
	Links
	Images

	Chapter 4: Pandoc Markdown Extensions
	Lists
	Tables
	Smart Punctuation
	Footnotes
	Exercises
	Lists
	Tables
	Footnotes

	Chapter 5: Translating Documents
	Formatting a Markdown Document with Pandoc
	Frequently Useful Options
	Sections and Chapters
	Table of Contents
	Image Extensions
	Ebook Covers

	Using Makefiles

	Chapter 6: Math and Computer Programming Languages
	Writing Math
	Writing Code Blocks
	Code Block Options
	Syntax Highlighting Styles
	Exercises
	Code blocks
	Code Block Options
	Syntax Highlighting

	Chapter 7: Cross-referencing
	Referencing Sections
	Reference Prefixes
	Referencing Figures, Tables, and Equations
	Bibliographies
	Exercises
	Reference Sections
	Figures, Tables, and Equations
	Bibliographies

	Chapter 8: Metadata
	YAML for metadata

	Chapter 9: Using Templates
	Writing Your Own Templates
	Template Examples

	Exercises

	Chapter 10: Preprocessing
	Examples
	Including Files
	Conditional Inclusion
	Running Code

	Exercises

	Chapter 11: Filters
	Exploring Panflute
	Conditional Inclusion of Exercise Solutions
	Conditional Inclusions Based on Format
	Evaluating Code
	Numbering Exercises
	Exercises
	Conditional Inclusion
	Conditional on Output
	Evaluating Code
	Numbering Exercises

	Chapter 12: Conclusions
	Index

