
{frontmatter}

Foreword
Nearly all my friends use tmux. I remember going out at night for drinks and
the three of us would take a seat at a round table and take out our smart phones.
This was back when phones still had physical “QWERTY” keyboards.

Despite our home computers being asleep or turned off, our usernames in the
IRC channel we frequently visited persisted in the chatroom list. Our screens
were lit by a kaleidoscope of colors on a black background. We ssh’d with
ConnectBot into our cloud servers and reattached by running screen(1). As
it hit 2AM, our Turkish coffee arrived, the |away status indicator trailing our
online nicknames disappeared.

It was funny noticing, even though we knew each other by our real names, we
sometimes opted to call each other by our nicks. It’s something about how
personal relationships, formed online, persist in real life.

It seemed as if it were orchestrated, but each of us fell into the same ebb and
flow of living our lives. No one told us to do it, but bit by bit, we incrementally
optimized our lifestyles, personally and professionally, to arrive at destinations
seeming eerily alike.

Like many things in life, when we act on autopilot, we sometimes arrive at
similar destinations. This is often unplanned.

So, when I write an educational book about a computer application, I hope to
write it for human beings. Not to sell you on tmux, convince you to like it or
hate it, but to tell you what it is and how some people use it. I’ll leave the rest
to you.

About this book
I’ve helped thousands learn tmux through my free resource under the name The
Tao of tmux, which I kept as part of the documentation for the tmuxp session
manager. And now, it’s been expanded into a full-blown book with refined
graphics, examples, and much more.

You do not need a book to use or understand tmux. If you want a technical
manual, look at the manpage for tmux. Manpages, however, are rarely sufficient
to wrap your brain around abstract concepts; they’re there for reference. This
learning book is the culmination of years of explaining tmux to others online
and in person.

In this book, we will break down tmux by its objects, from servers down to
panes. It also includes a rehash of terminal facilities we use every day to keep us
autodidacts up to speed with what is what. I’ve included numerous examples of

1

projects, permissively licensed source code, and workflows designed for efficiency
in the world of the terminal.

tmux is a tool I find useful. While I don’t attach it to my personal identity, it’s
been part of my daily life for years. Besides the original resource, I’ve written a
popular tmux starter configuration, a pythonic tmux library, and a tmux session
manager.

I am writing this from vim running in a tmux pane, inside a window, in a session
running on a tmux server, through a client.

A word to absolute beginners: Don’t feel you need to grasp the concepts of the
command line and terminal multiplexing in a single sitting. You have the choice
of picking out concepts of tmux you like, according to your needs or interests.
If you haven’t installed tmux yet, please view the Installation section in the
Appendix of the book.

Follow [@TheTaoOfTmux](https://twitter.com/TheTaoOfTmux) for updates or
share on Twitter!

Styles
Formatted text like this is source code.

Formatted text with a $ in front is a terminal command. $ echo 'like this'.
The text can be typed into the console, without the dollar character. For more
information on the meaning of the “dollar prompt”, check out What is the origin
of the UNIX $ (dollar) prompt? on Super User.

In tmux, shortcuts require a prefix key to be sent beforehand. For instance,
Prefix + d will detach a tmux client from its session. This prefix, by default,
is <Ctrl-b>, but users can override it. This is discussed in greater detail in the
prefix key section and configuration.

How this book is structured
First, anything involving installation and hard technical details are in the Ap-
pendix. A lot of books use installation instructions as filler in the early chapters.
For me, it’s more of not wanting to confuse beginners.

For special circumstances, like tmux on Windows 10, I decided adding screen-
shots is best, since many readers may be more comfortable with a visual ap-
proach.

Thinking in tmux goes over what tmux does and how it relates to the GUI
desktops on our computers. You’ll understand the big picture of what tmux is
and how it can make your life easier.

Terminal Fundamentals shows the text-based environments you’ll be dealing
with. It’s great for those new to tmux, but also presents technical background for

2

developers, who learned the ropes through examples and osmosis. At the end of
this section, you’ll be more confident and secure using the essential components
underpinning a modern terminal environment.

Practical usage covers common bread-and-butter uses for you to use tmux im-
mediately.

Server gives life to the unseen workhorse behind the scenes powering tmux.
You’ll think of tmux differently and may be impressed a client-server architecture
could be presented to end users so seamlessly.

Sessions are the containers holding windows. You’ll learn what sessions are and
how they help organize your workspace in the terminal. You’ll learn how to
manipulate and rename and traverse sessions.

Windows are what you see when tmux is open in front of you. You’ll learn how
to rename and move windows.

Panes are a terminal in a terminal. This is where you get to work and do your
magic! You’ll learn how to create, delete, move between, and resize panes.

Configuration discusses customization of tmux and sets the foundation for how
to think about .tmux.conf so you can customize your own.

Status bar and styling is devoted to the customization of the status line and
colors in tmux. As a bonus, you’ll even learn how to display system information
like CPU and memory usage via the status line.

Scripting tmux goes into command aliases and the advanced and powerful Tar-
gets and Formats concepts.

Technical stuff is a glimpse at tmux source code and how it works under the
hood. You may learn enough to impress colleagues who already use tmux. If
you like programming on Unix-like systems, this one is for you.

Tips and tricks wraps up with a whirlwind of useful terminal tutorials you can
use with tmux to improve day to day development and administration experi-
ence.

Cheatsheets are organized tables of commands, shortcuts, and formats grouped
by section.

Donations
If you enjoy my learning material or my open source software projects, please
consider donating. Donations go directly to me and my current and future
open source projects and are not squandered. Visit http://www.git-pull.com/
support.html for ways to contribute.

3

Formats
This book is available for sale on Leanpub and Amazon Kindle.

It’s also available to read for free on the web.

Errata
This is my first book. I am human and make mistakes.

If you find errors in this book, please submit them to me at tao.of.tmux nospam
git-pull.com.

You can also submit a pull request via https://github.com/git-pull/tao-of-tmux.

I will update digital versions of the book with the changes where applicable.

Thanks
Thanks to the contributors for spotting errors in this book and submitting
errata through GitHub. In addition, readers like Graziano Misuraca, who looked
through the book closely, providing valuable feedback.

Some copy, particularly in cheatsheets, comes straight out of the manual of
tmux, which is ISC-licensed.

Book Updates and tmux changes
This book was written for tmux 2.3, released September 2016.

As of January 2017, it’s trivial to push out minor changes to Leanpub. Kindle
is harder.

tmux does intermittently receive updates. I’ve accommodated many over the
past 5 years on my personal configurations and software libraries set with con-
tinuous integration tests against multiple tmux versions. Sometimes, publishers
overplay version numbers to make it seem as if it’s worth striking a new edi-
tion of a book over it. It’s effective for them, but I’d rather be honest to my
readership.

If you’re considering keeping up to date with new features and adjustments
to tmux, the CHANGES file in the project source serves as a way to see what’s
updated between official releases.

4

{mainmatter}

Thinking in tmux
In the world of modern computing, user interaction has 2 realms:

1. The text realm
2. The graphical realm

tmux lives in the graphical realm in which fixed-width fonts appear in a rectan-
gular grid in a window, like in a terminal from the 1980s.

Window manager for the terminal
tmux is to the console what a desktop is to GUI apps. It’s a world inside the
text dimension. Inside tmux, you can:

• multitask inside the terminal, run multiple applications
• have multiple command lines (pane) in the same window
• have multiple windows (window) in the workspace (session)
• switch between multiple workspaces, like virtual desktops

tmux “Desktop”-Speak Plain English
Multiplexer Multi-tasking Multiple applications

1

tmux “Desktop”-Speak Plain English
simultaneously.

——————- ———————- ———————————–
Session Desktop Applications are visible here
——————- ———————- ———————————–
Window Virtual Desktop or Desktop containing its own screen

applications
——————- ———————- ———————————–
Pane Application Performs operations

Just like in a graphical desktop environment, they throw in a clock, too.

{width=75%}

Multitasking
tmux allows you to keep multiple terminals running on the same screen. After
all, the abbreviation “tmux” comes from - Terminal Multiplexer.

In addition to multiple terminals on one screen, tmux allows you to create and
link multiple “windows” within the confines of the tmux session you attached.

Even better, you can copy and paste and scroll. No requirement for graphics
either, so you have full power, even if you’re SSH’ing or on a system without a
display server such as X.

Here are a few common scenarios:

• Running $ tail -F /var/log/apache2/error.log in a pane to get a
live stream of the latest system events.

• Running a file watcher, like watchman, gulp-watch, grunt-watch, guard,
or entr. On file change, you could do stuff like:

– rebuild LESS or SASS files, minimize CSS and/or assets and static
files

– lint with linters, like cpplint, Cppcheck, rubocop, ESLint, or Flake8

2

– rebuild with make or ninja
– reload your Express server
– run any other custom command of your liking

• Keeping a text editor, like vim, emacs, pico, nano, etc., open in a main
pane, while leaving two others open for CLI commands and building via
make or ninja.

Figure 1: vim + building a C++ project w/ CMake + Ninja using entr to
rebuild on file changes, LLDB bottom right

With tmux, you quickly have the makings of an IDE! And on your terms.

Keep your applications running in the background
Sometimes, GUI applications will have an option to be sidelined to the system
tray to run in the background. The application is out of sight, but events and
notifications can still come in, and the app can be instantly brought to the
foreground.

In tmux, a similar concept exists, where we can “detach” a tmux session.

Detaching can be especially useful on:

3

• Local machines. You start all your normal terminal applications within
a tmux session, you restart X. Instead of losing your processes as you
normally would if you were using an X terminal, like xterm or konsole,
you’d be able to tmux attach after and find all the processes inside that
were alive and kicking all along.

• Remote SSH applications and workspaces you run in tmux. You can
detach your tmux workspace at work before you clock out, then the next
morning, reattach your session. Ahhh. Refreshing. :)

• Those servers you rarely log into. Perhaps, a cloud instance you log into
9 months later, and as a reflex, tmux attach to see if there is anything
on there. And boom, you’re back in a session you’ve forgotten about, but
still jogs your memory to what you were tweaking or fixing. It’s like a
hack to restore your memory.

Powerful combos
Chatting on irssi or weechat, one of the “classic combos”, along with a bitlbee
server to manage AIM, MSN, Google Talk, Jabber, ICQ, even Twitter. Then,
you can detach your IRC and “idle” in your favorite channels, stay online on
instant messengers, and get back to your messages when you return.

Figure 2: Chatting on weechat w/ tmux

Some keep development services running in a session. Hearty emphasis on de-
velopment, you probably will want to daemonize and wrap your production web
applications, using a tool like supervisor, with its own safe environmental set-

4

tings.

You can also have multiple users attach their clients to the same sessions, which
is great for pair programming. If you were in the same session, you and the
other person would see the same thing, share the same input, and the same
active window and pane.

The above are just examples; any general workspace you’d normally use in a
terminal could work, especially projects or repetitive efforts you multitask on.
The tips and tricks section will dive into specific flows you can use today.

Q> ### Do tmux sessions persist after a system restart? Q> Q> Unfortu-
nately, no. A restart will kill the tmux server and any processes Q> running
within it. Q> Q> Thankfully, the modern server can stay online for a long
time. Even for Q> consumer laptops and PC’s with a day or two uptime, hav-
ing tmux persist Q> tasks for organizational purposes is satisfactory to run it.
Q> Q> It comes as a disappointment, because some are interested in being able
to Q> persist a tree of processes after restart. It goes out of the scope of what
Q> tmux is meant to do. Q> Q> For tasks you repeat often, you can always
use a tool, like Q> tmuxp, tmuxinator, Q> or teamocil, to resume common
Q> sessions. Q> Q> Besides session managers, tmux-resurrect Q> attempts
to preserve running programs, working directories, and Q> so on within tmux.
The benefit with tmux-resurrect is there’s no JSON/YAML Q> config needed.

Summary
tmux is a versatile addition to your terminal toolbelt. It helps you cover the
gaps between multitasking and workspace organization you’d otherwise lose,
since there’s no GUI. In addition, it includes a nice ability to detach workspaces
to the background and reattach later.

In the next chapter, we will touch on some terminal basics before diving deeper
into tmux.

5

Terminal fundamentals
Before getting into tmux, a few fundamentals of the command line should be
reviewed. Often, we’re so used to using these out of street smarts and muscle
memory, a great deal of us never see the relation of where these tools stand next
to each other.

Seasoned developers are familiar with Zsh, Bash, iTerm2, konsole, /dev/tty,
shell scripting, and so on. If you use tmux, you’ll be around these all the time,
regardless whether you’re in a GUI on a local machine or SSH’ing into a remote
server.

If you want to learn more about how processes and TTYs work at the kernel
level (data structures and all), the book The Design and Implementation of
the FreeBSD Operating System (2nd Edition) by Marshall Kirk McKusick is
nice, particularly, Chapter 4, Process Management and Section 8.6, Terminal
Handling. The TTY demystified by Linus Åkesson (available online) dives into
the TTY and is a good read.

Much more exists to glean off the history of Unix, 4.2 BSD, etc. I probably
could have a coffee / tea with you discussing it for hours. You could look at
it from multiple perspectives (The C Language, anything from the Unix/BSD
lineage, etc.), and some clever fellow would likely chime in, mentioning Linux,
GNU, and so on. It’s like Game of Thrones; there’s multiple story arcs you
can follow, some of which intersect. A few good video resources would be A
Narrative History of BSD by Marshall Kirk McKusick, The UNIX Operating
System by AT&T, Early days of Unix and design of sh by Stephen R. Bourne.

POSIX standards
Operating systems like macOS (formerly OS X), Linux, and the BSDs, follow
something similar to the POSIX specification in terms of how they square away
various responsibilities and interfaces of the operating system. They’re catego-
rized as “Mostly POSIX-compliant”.

In daily life, we often break compatibility with POSIX standards for reasons
of sheer practicality. Operating systems, like macOS, will drop you right into
Bash. make(1), a POSIX standard, is GNU Make on macOS by default. Did
you know, as of September 2016, POSIX Make has no conditionals?

I’m not saying this to take a run at purists. As someone who tries to remain
compatible in my scripting, it gets hard to do simple things after a while. On
FreeBSD, the default Make (PMake) uses dots between conditionals:

{line-numbers=off} .IF

.ENDIF

But on most Linux systems and macOS, GNU Make is the default, so they get
to do:

1

{line-numbers=off} IF

ENDIF

This is one of the many tiny inconsistencies that span operating systems, their
userlands, their binary / library / include paths, and adherence / interpretation
of the Filesystem Hierarchy Standard or whether they follow their own.

I> Find your path I> I> Most operating systems inspired by Unix (BSD’s,
macOS, Linux) will allow you I> to get the info of your systems’ filesystem
hierarchy via hier(7). I> I> {language=shell, line-numbers=off} I> $ man
hier

These differences add up. A good deal of software infrastructure out there exists
solely to abstract the differences across them. For example: CMake, Autotools,
SFML, SDL2, interpreted programming languages, and their standard libraries
are dedicated to normalizing the banal differences across BSD-derivatives and
Linux distributions. Many, many #ifdef preprocessor directives in your C and
C++ applications. You want open source, you get choice, but be aware; there’s
a lot of upkeep cost in keeping these upstream projects (and even your personal
ones) compatible. But I digress, back to terminal stuff.

Why does it matter? Why bring it up? You’ll see this stuff everywhere. So,
let’s separate the usual suspects into their respective categories.

Terminal interface
The terminal interface can be best introduced by citing official specification,
laying out its technical properties, interfaces, and responsibilities. This can be
viewed in its POSIX specification.

This includes TTYs, including text terminals and X sessions within them. On
Linux / BSD systems, you can switch between sessions via <ctrl-alt-F1>
through <ctrl-alt-F12>.

Terminal emulators
GUI Terminals: Terminal.app, iterm, iterm2, konsole, lxterm, xfce4-terminal,
rxvt-unicode, xterm, roxterm, gnome terminal, cmd.exe + bash.exe

Shell languages
Shell languages are programming languages. You may not compile the code into
binaries with gcc or clang, or have shiny npm package manager for them, but
a language is a language.

Each shell interpreter has its own language features. Like with shells, many will
resemble the POSIX shell language and strive to be compatible with it. Zsh
and Bash should be able to understand POSIX shell scripts you write, but not
the other way around (we will cover this in shell interpreters).

2

The first line of shell file is the shebang statement, which points to the interpreter
to run the script in. They normally use the .sh extension, but they can also be
.zsh, .csh and so on if they’re for a specific interpreter.

Zsh scripts are implemented by the Zsh shell interpreter, Bash scripts by Bash.
But the languages are not as closely regulated and standardized as, say, C++’s
standards committee workgroups or python’s PEPs. Bash and Zsh take fea-
tures from Korn and C Shell’s languages, but without all the ceremony and
bureaucracy other languages espouse.

Shell interpreters (Shells)
Examples: POSIX sh, Bash, Zsh, csh, tcsh, ksh, fish

Shell interpreters implement the shell language. They are a layer on top of the
kernel and are what allow you, interactively, to run commands and applications
inside them.

As of October 2016, the latest POSIX specification covers in technical detail the
responsibilities of the shell.

For shells and operating systems: each distro or group does their own darn thing.
On most Linux distributions and macOS, you’ll typically be dropped into Bash.

On FreeBSD, you may default to a plain vanilla sh unless you specify otherwise
during the installation process. In Ubuntu, /bin/sh used to be bash (Bourne
Again Shell) but was replaced with dash (Debian Almquist Shell). So, here, you
are thinking “hmm, /bin/sh, probably just a plain old POSIX shell”; however,
system startup scripts on Ubuntu used to allow non-POSIX scripting via Bash.
This is because specialty shell languages, such as Bash and Zsh, add helpful and
practical features, but they’re not portable. For instance, you would need to
install the Zsh interpreter across all your systems if you rely on Zsh-specialized
scripting. If you conformed with POSIX shell scripting, your scripting would
have the highest level of compatibility at the cost of being more verbose.

Recent versions of macOS include Zsh by default. Linux distributions typically
require you to install it via package manager and install it to /usr/bin/zsh.
BSD systems build it via the port system, pkg(8) on FreeBSD, or pkg_add(1)
on OpenBSD, and it will install to /usr/local/bin/zsh.

It’s fun to experiment with different shells. On many systems, you can use chsh
-s to update the default shell for a user.

The other thing to mention is, for chsh -s to work, you typically need to have
it added to /etc/shells.

Summary
To wrap it up, you will hear people talking about shells all the time. Context
is key. It could be:

3

• A generic way to refer to any terminal you have open. “Type $ top into
your shell and see what happens.” (Press q to quit.)

• A server they have to log into. Before the era of the cloud, it would be
popular for small hosts to sell “C Shells” with root access.

• A shell within a tmux pane.
• If scripting is mentioned, it is likely either the script file, an issue related

to the scripts’ behavior, or something about the shell language.

But overall, after this overview, go back to doing what you’re doing. If shell
is what people say and they understand it, use it. The backing you have here
should make you more confident in yourself. These days, it’s an ongoing battle
catching our street smarts up with book smarts.

In the next chapter, we will touch some terminal basics before diving deeper
into tmux.

4

Practical usage
This is the easiest part; open your terminal and type tmux, hit enter.

{language=shell, line-numbers=off} $ tmux

You’re in tmux.

The prefix key
The prefix is how we send commands into tmux. With this, we can split windows,
move windows, switch windows, switch sessions, send in custom commands, you
name it.

And it’s a hump we have to get over.

It’s kind of like Street Fighter. In this video game, the player inputs a combina-
tion of buttons in sequence to perform flying spinning kicks and shoot fireballs;
sweet. As the player grows more accustomed with the combos, they repeat
moves by intuition, since they develop muscle memory.

Without understanding how to send command sequences to tmux via the prefix
key, you’ll be dead in the water.

Key sequences will come up later if you use Vim, Emacs, or other TUI (Terminal
User Interface) applications. If you haven’t internalized the concept, let’s do it
now. Prior experience command sequences in TUI/GUI applications will come
in handy.

When you memorize a key combo, it’s one less time you’ll be moving your hand
away from the keyboard to grab your mouse. You can focus your short-term
memory on getting stuff done, resulting in fewer mistakes.

Q> ### Coming from GNU Screen? Q> Q> Your tmux prefix key can be
set via your tmux configuration later! In Q> your ~/.tmux.conf file, set the
prefix option: Q> Q> {language=shell, line-numbers=off} Q> set-option -g
prefix C-a Q> Q> This will set the prefix key to screen(1)’s (another terminal
Q> multiplexer’s) prefix key.

The default leader prefix is <Ctrl-b>. While holding down the control key,
press b.

X> ### Sending tmux commands X> X> Practice: X> X> 1. Press control
key down and hold it. X> 2. Press b and hold it. X> 3. Release both keys at
the same time. X> X> Try it a few times. It may feel unnatural until you’ve
done it a couple X> times, which is normal when memorizing shortcuts. X> X>
Now, let’s try something: X> X> <Ctrl-b> d. So, X> X> 1. Press control
key down and hold it. X> 2. Press b and hold it. X> 3. Release both keys at
the same time. X> 4. Hit d! X> X> You’ve sent tmux your first command,
and you’re now outside of tmux!

1

You’ve detached the tmux session you were in. You can reattach via $ tmux
attach.

Nested tmux sessions

You can also send the prefix key to nested tmux sessions. For instance, if you’re
inside a tmux client on a local machine and you SSH into a remote machine in
one of your panes, on the remote machine, you can attach the client via tmux
attach as you normally would. To send the prefix key to the machine’s tmux
client, not your local one, hit the prefix key again.

So, if your prefix key is the default, <Ctrl-b>, do <Ctrl-b> + b again, then hit
the shortcut for what you want to do.

Example: If you wanted to create a window on the remote machine, which would
normally be <Ctrl-b> + c locally, it’d be <Ctrl-b> + b + c.

Hereinafter, the book will refer to shortcuts by Prefix. Instead of <Ctrl-b> +
d, you will see Prefix + d.

Session persistence and the server model
If you use Linux or a similar system, you’ve likely brushed through Job Control,
such as fg(1), jobs(1). tmux behavior feels similar, like you ran <Ctrl-z>
except, technically, you were in a “job” all along. You were just using a client
to view it.

Another way of understanding it: <Ctrl-b> + d closed the client connection,
therefore, ‘detached’ from the session.

Your tmux client disconnected from the server instance. The session, however,
is still running in the background.

It’s all commands
Multiple roads can lead you to the same behavior. Commands are what tmux
uses to define instructions for setting options, resizing, renaming, traversing,
switching modes, copying and pasting, and so forth.

• Configs are the same as automatically running commands via $ tmux
command.

• Internal tmux commands via Prefix + : prompt.
• Settings defined in your configuration can also set shortcuts, which can

execute commands via keybindings via bind-key.
• Commands called from CLI via $ tmux cmd
• To pull it all together, source code files are prefixed cmd-.

2

Summary
We’ve established tmux automatically creates a server upon starting it. The
server allows you to detach and later reattach your work. The keyboard se-
quences you send to tmux require understanding how to send the prefix key.

Keyboard sequences, configuration, and command line actions all boil down to
the same core commands inside tmux. In our next chapter, we will cover the
server.

3

Server
The server holds sessions and the windows and panes within them.

When tmux starts, you are connected to a server via a socket connection. What
you see presented in your shell is merely a client connection. In this chapter, we
uncover the invisible engine enabling your terminal applications to persist for
months or even years at a time.

{width=90%}

What? tmux is a server?
Often, when “server” is mentioned, what comes to mind for many may be rack-
mounted hardware; to others, it may be software running daemonized on a
server and managed through a utility, like upstart, supervisor, and so on.

Unlike web or database software, tmux doesn’t require specialized configuration
settings or creating a service entry to start things.

tmux uses a client-server model, but the server is forked to the background for
you.

1

Zero config needed
You don’t notice it, but when you use tmux normally, a server is launched and
being connected via a client.

tmux is so streamlined, the book could continue to explain usage and not even
mention servers. But, I’d rather you have a true understanding of how it works
on systems. The implementation feels like magic, while living up to the unix
expectations of utilitarianism. One cannot deny it’s exquisitely executed from
a user experience standpoint.

How is it utilitarian? We’ll go into it more in future chapters, where we dive
into Formats, Targets, and tools, such as libtmux I made, which utilize these
features.

It surprises some, because servers often beget a setup process. But servers
being involved doesn’t entail hours of configuration on each machine you run
on. There’s no setup.

When people think server, they think pain. It invokes an image of digging
around /etc/ for configuration files and flipping settings on and off just to get
basic systems online. But not with tmux. It’s a server, but in the good way.

Stayin’ alive
The server part of tmux is how your sessions can stay alive, even after your
client is detached.

You can detach a tmux session from an SSH server and reconnect later. You
can detach a tmux session, stop your X server in Linux/BSD, and reattach your
tmux session in a TTY or new X server.

The tmux server won’t go away until all sessions are closed.

Servers hold sessions
One server can contain one or multiple sessions.

Starting tmux after a server already is running will create a new session inside
the existing server.

W> ### Advanced: Multiple servers W> W> tmux is nimble. To use a
separate server, pass in the -L flag to any W> command. W> W> tmux -L
moo - connect to server under socket name “moo” and attach W> a new session.
Create server if none already exists for socket. W> W> tmux -L moo attach
will attempt to re-attach a session if one exists.

How servers are “named”
The default name for the server is default, which is stored as a socket in
/tmp. The default directory for storing this can be overridden via setting the

2

TMUX_TMPDIR environment variable.

So, something like:

{language=shell, line-numbers=off} $ export TMUX_TMPDIR=$HOME $
tmux

Will give you a tmux directory created within your $HOME folder. On OS X,
your home folder will probably be something like /Users/yourusername. On
other systems, it may be /home/yourusername. If you want to find out, type $
echo $HOME.

Clients
Servers will have clients (you) connecting to them.

When you connect to a session and see windows and panes, it’s a client connec-
tion into tmux.

You can retrieve a list of active client connections via:

{language=shell, line-numbers=off} $ tmux list-clients

These commands and the other list- commands, in practice, are rare. But,
they are part of tmux scriptability should you want to get creative. The scripting
tmux chapter will cover this in greater detail.

Clipboard
tmux clients wield a powerful clipboard feature to copy and paste across sessions,
windows, and panes.

Much like vi, tmux handles copying as a mode in which a pane is temporarily
placed. When inside this mode, text can be selected and copied to the paste
buffer, tmux’s clipboard.

The default key to enter copy mode is Prefix + [.

1. From within, use [space] to enter copy mode.
2. Use the arrow keys to adjust the text to be selected.
3. Press [enter] to copy the selected text.

The default key to paste the text copied is Prefix +].

I> Vi-like copy-paste I> I> In your config, put this: I> I> {language=shell, line-
numbers=off} I> # Vi copypaste mode I> set-window-option -g mode-keys vi I>
bind-key -t vi-copy ‘v’ begin-selection I> bind-key -t vi-copy ‘y’ copy-selection

In addition to the “copy mode”, tmux has advanced functionality to program-
matically copy and paste. Later in the book, the Capturing pane content sec-
tion in the Scripting tmux chapter goes into $ tmux capture-pane and how

3

you can use targets to copy pane content into your paste buffer or files with $
tmux save-buffer.

Summary
The server is one of the fundamental underpinnings of tmux. Initialized auto-
matically to the user, it persists by forking into the background. Running behind
the scenes, it ensures sessions, windows, panes, and buffers are operating, even
when the client is detached.

The server can hold one or more sessions. You can copy and paste between
sessions via the clipboard. In the next chapter, we will go deeper into the
role sessions play and how they help you organize and control your terminal
workspace.

4

Sessions
Welcome to the session, the highest-level entity residing in the server instance.
Server instances are forked to the background upon starting a fresh instance
and reconnected to when reattaching sessions. Your interaction with tmux will
have at least one session running.

A session holds one or more windows.

The active window will have a * symbol next to it.

Creating a session
The simplest command to create a new session is typing tmux:

{language=shell, line-numbers=off} $ tmux

The $ tmux application, with no commands is equivalent to $ tmux
new-session. Nifty!

By default, your session name will be given a number, which isn’t too descriptive.
What would be better is:

{language=shell, line-numbers=off} $ tmux new-session -s’my rails project’

1

Figure 1: The first window, ID 1, titled “manuscript” is active. The second
window, ID 2, titled zsh.

Switching sessions within tmux
Some acquire the habit of detaching their tmux client and reattaching via tmux
att -t session_name. Thankfully, you can switch sessions from within tmux!

Shortcut Action
Prefix + (Switch the attached client to the previous session.
Prefix +) Switch the attached client to the next session.
Prefix + L Switch the attached client back to the last

session.
Prefix + s Select a new session for the attached client

interactively.

Prefix + s will allow you to switch between sessions within the same tmux
client.

This command name can be confusing. switch-client will allow you to traverse
between sessions in the server.

Example usage:

{language=shell, line-numbers=off} $ tmux switch-client -t dev

If already inside a client, this will switch to a session, named “dev”, if it exists.

Naming sessions
Sometimes, the default session name given by tmux isn’t descriptive enough. It
only takes a few seconds to update it.

You can name it whatever you want. Typically, if I’m working on multiple web
projects in one session, I’ll name it “web”. If I’m assigning one software project
to a single session, I’ll name it after the software project. You’ll likely develop
your own naming conventions, but anything is more descriptive than the default.

If you don’t name your sessions, it’ll be difficult to keep track of what the session
contains. Sometimes, you may forget you have a project opened, especially if
your machine has been running for a few days, weeks, or months. You can save
time by reattaching your session and avoid creating a duplicate.

You can rename sessions from within tmux with Prefix + $. The status bar
will be temporarily altered into a text field to allow altering the session name.

Through command line, you can try:

{language=shell, line-numbers=off} $ tmux rename-session -t 1 “my session”

2

Figure 2: Renaming a session ‘0’ to ‘react web’

Does my session exist?
If you’re scripting tmux, you will want to see if a session exists. has-session
will return a 0 exit code if the session exists, but will report a 1 exit code and
print an error if a session does not exist.

{language=shell, line-numbers=off} $ tmux has-session -t 1

It assumes the session “1” exists; it’ll just return 0 with no output.

But if it doesn’t, you’ll get something like this in a response:

{language=shell, line-numbers=off} $ tmux has-session -t 1 > can’t find session
1

To try it in a shell script:

{language=shell, line-numbers=off} if tmux has-session -t 0 ; then echo “has
session 0” fi

Summary
In this chapter, you learned how to rename sessions for organizational purposes
and how to switch between them quickly.

You’ll always be attached to a session when you’re using a client in tmux. When
the last remaining session is closed, the server will close also.

Think of sessions as workspaces designed to help organize a set of windows,
analogous to virtual desktop spaces in GUI computing.

In the next chapter, we will go into windows, which, like sessions, are also
nameable and let you switch between them.

3

Windows
Windows hold panes. They reside within a session.

They also have layouts, which can be one of many preset dimensions or a custom
one done through pane resizing.

You can see the current windows through the status bar at the bottom of tmux.

Creating windows
All sessions start with at least one window open. From there, you can create
and kill windows as you see fit.

Window indexes are numbers tmux uses to determine ordering. The first win-
dow’s index is 0, unless you set it via base-index in your configuration. I
usually set -g base-index 1 in my tmux configuration, since 0 is after 9 on
the keyboard.

Prefix + c will create a new window at the first open index. So, if you’re
in the first window, and there is no second window created, it will create the
second window. If the second window is already taken, and the third hasn’t
been created, it will create the third window.

If the base_index is 1 and there are 7 windows created, with the 5th window
missing, creating a new window will fill the empty 5th index, since it’s the next
one in order and nothing is filling it. The next created window would be the
eighth.

1

Naming windows
Just like with sessions, windows can have names. Labelling them helps keep
track of what you’re doing inside them.

Figure 1: Renaming a window ‘zsh’ to ‘renamed’

When inside tmux, the shortcut Prefix + , is most commonly used. It opens
a prompt in the tmux status line, where you can alter the name of the current
window.

The default numbers given to windows also become muscle memory after a while.
But naming helps you when you’re in a new tmux flow and want to organize
yourself. Also, if you’re sharing tmux with another user, it’s good practice to
give a hint what’s inside the windows.

Traversing windows
Moving around windows is done in two ways, first, by iterating through via
Prefix + p and Prefix + n and via the window index, which takes you directly
to a specific window.

Prefix + 1, Prefix + 2, and so on… allows quickly navigating to windows via
their index. Unlike window names, which change, indexes are consistent and
only require a quick key combo for you to invoke.

Prompt for a window index (useful for indexes greater than 9) with Prefix +
'. If the window index is 10 or above, this will help you a lot.

I> ### Tip: Search + Traverse Windows for Text I> I> You can forward to
a window with a match of a text string by doing Prefix + I> f.

Bring up the last selected window with Prefix + l.

A list of current windows can be displayed with Prefix + w. This also gives
some info on what’s inside the window. Helpful when juggling a lot of things!

2

Moving windows
Windows can also be reordered one by one via move-window and its associated
shortcut. This is helpful if a window is worth keeping open but not important
or rarely looked at. After you move a window, you can continue to reorder them
at any point in time after.

The command $ tmux move-window can be used to move windows.

The accepted arguments are -s (the window you are moving) and -t, where
you are moving the window to.

You can also use $ tmux movew for short.

Example: move the current window to number 2:

{language=shell, line-numbers=off} $ tmux movew -t2

Example: move window 2 to window 1:

{language=shell, line-numbers=off} $ tmux movew -s2 -t1

The shortcut to prompt for an index to move the current window to is Prefix
+ ..

Layouts
Prefix + space switches window layouts. These are preset configurations au-
tomatically adjusting proportions of panes.

As of tmux 2.3, the supported layouts are:

{width=75%}

3

{width=75%}

{width=75%}

{width=75%}

4

{width=75%}

Specific touch-ups can be done via resizing panes.

To reset the proportions of the layout (such as after splitting or resizing panes),
you have to run $ tmux select-layout again for the layout.

This is different behavior than some tiling window managers. awesome and
xmonad, for instance, automatically handle proportions upon new items being
added to their layouts.

To allow easy resetting to a sensible layout across machines and terminal dimen-
sions, you can try this in your config:

{language=shell, line-numbers=off} bind m set-window-option main-pane-
height 60; select-layout main-horizontal

This allows you to set a main-horizontal layout and automatically set the
bottom panes proportionally on the bottom every time you do Prefix + m.

Layouts can also be custom. To get the custom layout snippet for your current
window, try this:

{language=shell, line-numbers=off} $ tmux lsw -F “#{window_active} #{win-
dow_layout}” | grep “^1” | cut -d ” ” -f2

To apply this layout:

{language=shell, line-numbers=off} $ tmux lsw -F “#{window_active} #{win-
dow_layout}” | grep “^1” | cut -d ” ” -f2 > 5aed,176x79,0,0[176x59,0,0,0,176x19,0,60{87x19,0,60,1,88x19,88,60,2}]

resize your panes or try doing this in another window to see the outcome
$ tmux select-layout "5aed,176x79,0,0[176x59,0,0,0,176x19,0,60{87x19,0,60,1,88x19,88,60,2}]"

Closing windows
There are two ways to kill a window. First, exit or kill every pane in the
window. Panes can be killed via Prefix + x or by Ctrl + d within the pane’s
shell. The second way, Prefix + &, prompts if you really want to delete the

5

window. Warning: this will destroy all the window’s panes, along with the
processes within them.

From inside the current window, try this:

{language=shell, line-numbers=off} $ tmux kill-window

Another thing, when scripting or trying to kill the window from outside, use a
target of the window index:

{language=shell, line-numbers=off} $ tmux kill-window -t2

If you’re trying to find the target of the window to kill, they reside in the number
in the middle section of the status line and via $ tmux choose-window. You
can hit “return” after you’re in choose-window to go back to where you were
previously.

Summary
In this chapter, you learned how to manipulate windows via renaming and
changing their layouts, a couple of ways to kill windows in a pinch or in when
shell scripting tmux. In addition, this chapter demonstrated how to save any
tmux layout by printing the window_layout template variable.

If you are in a tmux session, you’ll always have at least one window open, and
you’ll be in it. And within the window will be “pane”; a shell within a shell.
When a window closes all of its panes, the window closes too. In the next
chapter, we’ll go deeper into panes.

6

Panes
Panes are pseudoterminals encapsulating shells (e.g., Bash, Zsh). They reside
within a window. A terminal within a terminal, they can run shell commands,
scripts, and programs, like vim, emacs, top, htop, irssi, weechat, and so on
within them.

Creating new panes
To create a new pane, you can split-window from within the current window
and pane you are in.

Shortcut Action
Prefix + % split-window -h (split horizontally)
Prefix + " split-window -v (split vertically)

You can continue to create panes until you’ve reached the limit of what the
terminal can fit. This depends on the dimensions of your terminal. A normal
window will usually have 1 to 5 panes open.

Example usage:

{language=shell, line-numbers=off} # Create pane horizontally, $HOME direc-
tory, 50% width of current pane $ tmux split-window -h -c $HOME -p 50 vim

1

{width=75%}

{language=shell, line-numbers=off} # create new pane, split vertically with 75%
height tmux split-window -p 75

{width=75%}

{pagebreak}

Traversing Panes

Shortcut Action
Prefix + ; Move to the previously active pane.
Prefix + Up / Change to the pane above, below,
Down / Left / to the left, or to the
Right the right of the current pane.

2

Shortcut Action
Prefix + o Select the next pane in the current window.

I> Moving around vimtuitively I> I> If you like vim (hjkl) keybindings, add
these to your config: I> I> {language=shell, line-numbers=off} I> # hjkl pane
traversal I> bind h select-pane -L I> bind j select-pane -D I> bind k select-pane
-U I> bind l select-pane -R

Zoom in
To zoom in on a pane, navigate to it and do Prefix + z.

You can unzoom by pressing Prefix + z again.

In addition, you can unzoom and move to an adjacent pane at the same time
using a pane traversal key.

Behind the scenes, the keybinding is a shortcut for $ tmux resize-pane -Z.
So, if you ever wanted to script tmux to zoom/unzoom a pane or apply this
functionality to a custom key binding, you can do that too, for instance:

{line-numbers=off} bind-key -T prefix y resize-pane -Z

This would have Prefix + y zoom and unzoom panes.

Resizing panes
Pane size can be adjusted within windows via window layouts and resize-pane.
Adjusting window layout switches the proportions and order of the panes. Re-
sizing the panes targets a specific pane inside the window containing it, also
shrinking or growing the size of the other columns or rows. It’s like adjusting
your car seat or reclining on a flight; if you take up more space, something else
will have less space.

Shortcut Action
Prefix M-Up resize-pane -U 5
Prefix M-Down resize-pane -D 5
Prefix M-Left resize-pane -L 5
Prefix M-Right resize-pane -R 5
Prefix C-Up resize-pane -U
Prefix C-Down resize-pane -D
Prefix C-Left resize-pane -L
Prefix C-Right resize-pane -R

3

Outputting pane to a file
You can output the display of a pane to a file.

{language=shell, line-numbers=off} $ tmux pipe-pane -o ‘cat >>~/output.#I-
#P’

The #I and #P are formats for window index and pane index, so the file created
is unique. Clever!

Summary
Panes are shells within a shell. You can keep adding panes to a tmux window
until you run out of room on your screen. Within your shell, you can tail -F
log files, write and run scripts, and run curses-powered applications, like vim,
top, htop, ncmpcpp, irssi, weechat, mutt, and so on.

You will always have at least one pane open. Once you kill the last pane in the
window, the window will close. Panes are also resizable; you can resize panes
by targeting them specifically and changing the window layout.

In the next chapter, we will go into the ways you can customize your tmux
shortcuts, status line, and behavior.

4

Configuration
Most tmux users break away from the defaults by creating their own customized
configurations. These configurations vary from the trivial, such as adding key-
bindings, and adjusting the prefix key, to complex things, such as decking out
the status bar with system stats and fancy glyphs via powerlines.

Configuration of tmux is managed through .tmux.conf in your $HOME directory.
The paths ~/.tmux.conf and $HOME/.tmux.conf should work on OS X, Linux,
and BSD.

Configuration is applied upon initially starting tmux. The contents of the con-
figuration are tmux commands. The file can be reloaded later via source-file,
which is discussed in this chapter.

For a sample config, I maintain a pretty decked out one at https://github.com/
tony/tmux-config. It’s permissively licensed, and you’re free to copy and paste
from it as you wish.

I> Custom Configs I> I> You can specify your config via the -f com-
mand. Like this: I> I> {language=shell, line-numbers=off} I> $ tmux -f
path/to/config.conf I> I> Note: If a tmux server is running in the background
and you want I> to test a fresh config, you must either shut down the
rest of the I> tmux sessions or use a different socket name. Like this: I>
I> {language=shell, line-numbers=off} I> $ tmux -f path/to/config.conf
-Ltesting_tmux I> I> And you can treat everything like normal; just keep
passing -Ltesting_tmux I> (or whatever socket name you feel like testing
configs with) for reuse. I> I> {language=shell, line-numbers=off} I> $ tmux
-Ltesting_tmux attach

Reloading configuration
You can apply config files in live tmux sessions. Compare this to source or
“dot” in the POSIX standard.

Prefix + : will open the tmux prompt, then type:

:source /path/to/config.conf

And hit return.

$ tmux source-file /path/to/config.conf can also achieve the same result
via command line.

I> Easy reloadin’ I> I> Even better, often, you will keep your default tmux
config stored in I> $HOME/.tmux.conf. So, what can you do? You can bind-key
to I> source-file ~/.tmux.conf: I> I> bind r source ~/.tmux.conf I>
I> You can also have it give you a confirmation afterwards: I> I> bind
r source ~/.tmux.conf\; display "~/.tmux.conf sourced!" I> I> Now,
you can type Prefix + r to get the config to reload.

1

Note that reloading the configuration only re-runs the configuration file. It will
not reset keybindings or styling you apply to tmux.

How configs work
The tmux configuration is processed just like run commands in a ~/.zshrc or
~/.bashrc file. bind r source ~/.tmux.conf in the tmux configuration is the
same as $ tmux bind r source ~/.tmux.conf.

You could always create a shell script prefixing tmux in front of commands and
run it on fresh servers. The result is the same. Same goes if you manually type
in $ tmux set-option and $ tmux bind-key commands into any terminal (in
or outside tmux).

This in .tmux.conf:

{language=shell, line-numbers=off} bind-key a send-prefix

Is the same as having no .tmux.conf (or $ tmux -f/dev/null) and typing:

{language=shell, line-numbers=off} $ tmux bind-key a send-prefix

in a newly started tmux server.

The important thing to internalize is that a tmux configuration consists of set-
ting server options (set-option -s), global session (set-option -g), and win-
dow options (set-window-option -g).

The rest of this chapter is going to proceed cookbook-style. You can pick out
these tweaks and add them to your .tmux.conf and reload.

Server options
Server options are set with set-option -s option value.

Tweak timing between key sequences

{line-numbers=off} set -s escape-time 0

Terminal coloring

If you’re having an issue with color detail in tmux, it may help to set
default-terminal to screen-256color.

{line-numbers=off} set -g default-terminal “screen-256color”

This sets the TERM variable in new panes.

2

Session options
Aside from the status bar, covered in the next chapter, most user configuration
will be custom keybindings. This section covers the few generic options, and
the next section goes into snippets involving keybindings.

Base index

This was mentioned earlier in the book, but it’s a favorite tweak of many tmux
users, who find it more intuitive to start their window counting at 1, rather
than the default, 0. To set the starting number (base index) for windows:

{line-numbers=off} set -g base-index 1

Setting base-index assures newly created windows start at 1 and count up-
wards.

Window options
Window options are set via set-option -w or set-window-option. They are
the same thing.

Automatic window naming

Setting automatic-rename alters the name of the window based upon its active
pane:

{line-numbers=off} set-window-option -g automatic-rename

Automatic renaming will be disabled for the window if you rename it manually.

Keybindings
Prefix key

The default prefix key in tmux is <Ctrl-b>. You can customize it by setting a
new prefix and unsetting the default. To set the prefix to <Ctrl-a>, like GNU
Screen, try this:

{line-numbers=off} set-option -g prefix C-a unbind-key C-b bind-key a send-
prefix

New window with prompt

Prompt for window name upon creating a new window, Prefix + C (capital C):

{line-numbers=off} bind-key C command-prompt -p “Name of new window:”
“new-window -n ‘%%’ ”

3

Vi copy-paste keys

This is comprised of two-parts: Setting the mode-keys window option to vi and
setting the vi-copy bindings to use v to begin selection and y to yank.

{line-numbers=off} # Vi copypaste mode set-window-option -g mode-keys vi
bind-key -t vi-copy ‘v’ begin-selection bind-key -t vi-copy ‘y’ copy-selection

hjkl / vi-like pane traversal

Another one for vi fans, this keeps your right hand on the home row when
moving directionally across panes in a window.

{line-numbers=off} bind h select-pane -L bind j select-pane -D bind k select-pane
-U bind l select-pane -R

Further inspiration

For more ideas, I have a .tmux.conf you can copy-paste from on the internet
at https://github.com/tony/tmux-config/blob/master/.tmux.conf.

In the next chapter, we will go into configuring the status line.

4

Status bar and styling
The status bar, or status line, serves as a customizable taskbar in the bottom
of tmux. It is comprised of 3 sections. The status fields on either side of the
status line are customizable. The center field is a list of windows.

The status-left and status-right option can be configured with variables.

It’s configurable through the .tmux.conf file and modifiable live through using
$ tmux set-option.

I> Finding your current status line settings I> I> {language=shell, line-
numbers=off} I> $ tmux show-options -g | grep status

Window status symbols
This window list is between the left and right status bar regions.

tmux indicates status of a window through symbols. See below:

Symbol Meaning
* Denotes the current window.
- Marks the last window (previously selected).
Window is monitored and activity has been detected.
! A bell has occurred in the window.
~ The window has been silent for the monitor-silence interval.
M The window contains the marked pane.
Z The window’s active pane is zoomed.

Reminder: A pane can be zoomed via Prefix + z. To unzoom, press Prefix +
z or move left / right / up / down panes.

Date and time
status-left and status-right accept variables for the date.

This happens via piping the status templates through format_expand_time in
format.c, which routes right into strftime(3) from time.h.

A full list of variables can be found in the documentation for strftime(3). This
can be viewed through $ man strftime on Unix-like systems.

1

Shell command output
You can also call applications, such as tmux-mem-cpu-load, conky, and power-
line.

For this example, we’ll use tmux-mem-cpu-load. This works on Unix-like sys-
tems like FreeBSD, Linux distributions, and macOS.

To build from source, you must have CMake and git, which are available
through your package manager. You must have a C++ compiler. On macOS,
install Xcode CLI Utilities. You can do this by going to Applications -> Utilities,
launching Terminal.app and typing $ xcode-select --install. macOS can
use Homebrew to install the CMake and git package. Major Linux distributions
package CMake, clang, and git.

Before this step, you can cd into any directory you’re ok keeping code in.

{language=shell, line-numbers=off} $ git clone https://github.com/thewtex/tmux-
mem-cpu-load.git $ cd tmux-mem-cpu-load $ mkdir ./build $ cd ./build $
cmake .. $ make

macOS, no sudo required
$ make install

Linux, BSD will require sudo / root to install
$ sudo make install

If successful, you should see the output below:

{language=shell, line-numbers=off} [100%] Built target tmux-mem-cpu-load
Install the project… – Install configuration: “MinSizeRel” – Installing:
/usr/local/bin/tmux-mem-cpu-load

You can remove the source code you cloned from the computer. The compiled
application is installed.

You can now add #(tmux-mem-cpu-load) to your status-left or
status-right option. In the “Dressed up” example below, I use status-left
and also theme it to be green:

#[fg=green,bg=default,bright]#(tmux-mem-cpu-load)

So to apply it to your theme, you need to double check what you already have.
You may have information on there you want to keep.

{language=shell, line-numbers=off} $ tmux show-option -g status-right status-
right ” “#{=21:pane_title}” %H:%M %d-%b-%y”

Copy what you had in response (or change, rearrange as you see fit) then add
the #(tmux-mem-cpu-load) to it. You can apply the new status line in your
current tmux session via $ tmux set-option -g status-right:

2

{language=shell, line-numbers=off} $ tmux set-option -g status-right
‘ “#{=21:pane_title}” #(tmux-mem-cpu-load) %H:%M %d-%b-%y’

Also, note how I switched out the double quotes on either side of the option
with single quotes. This is required, since there are double quotes inside.

You can do this with anything, for instance, try adding uptime. This could be
done by adding #(uptime) to your status line. Typically the output is pretty
long, so trim it down by doing something like this:

‘#(uptime | cut -f 4-5 -d ” ” | cut -f 1 -d “,”)“

In the next section, we go into how you can style (color) tmux.

Styling
The colors available to tmux are:

• black, red, green, yellow, blue, magenta, cyan, white.
• bright colors, such as brightred, brightgreen, brightyellow,

brightblue, brightmagenta, brightcyan.
• colour0 through colour255 from the 256-color set.
• default
• hexadecimal RGB code like #000000, #FFFFFF, similar to HTML colors.

Status line

You can use [bg=color] and [fg=color] to adjust the text color and
background within for status line text. This works on status-left and
status-right.

Let’s say you want to style the background:

Command: $ tmux set-option status-style fg=white,bg=black

In config: status-style fg=white,bg=black

In the examples at the end of the chapter, you will see complete examples of
how colors can be used.

Clock styling

You can style the color of the tmux clock via:

{lang=“text”, line-numbers=off} set-option -g clock-mode-colour white

Reminder: Clock mode can be opened with $ tmux clock-mode or Prefix +
t. Pressing any key will exit clock mode.

3

Prompt colors

The benefit of wrapping your brain around this styling is you will see it
message-command-style, message style and so on.

Let’s try this:

{lang=“shell”, line-numbers=off} $ tmux set-option -ag message-style
fg=yellow,blink; set-option -ag message-style bg=black

Figure 1: Top: default scheme for prompt. Bottom: newly-styled.

Styling while using tmux
So, you want to customize your tmux status line before you write the changes
to your config file.

Start by grabbing your current status line section you want to edit, for instance:

{lang=“text”, line-numbers=off} $ tmux show-options -g status-left > status-left
“[#S]” $ tmux show-options -g status-right > status-right ” “#{=21:pane_title}”
%H:%M %d-%b-%y”

Also, you can try to snip off the variable with | cut -d' ' -f2-:

{lang=“text”, line-numbers=off} $ tmux show-options -g status-left | cut
-d’ ’ -f2- > “[#S]” $ tmux show-options -g status-right | cut -d’ ’ -f2- > ”
“#{=21:pane_title}” %H:%M %d-%b-%y”

Then, add the options to your configuration.

To be sure your configuration fully works, you can start it in a different server
via tmux -Lrandom, verify the settings, and close it. This is helpful to make
sure your config file isn’t missing any styling info.

Toggling status line
The tmux status line can be hidden, as well. Turn it off:

{language=shell, line-numbers=off} $ tmux set-option status off

And, turn it on:

{language=shell, line-numbers=off} $ tmux set-option status on

The above is best for scripting, but if you’re binding it to a keyboard shortcut,
toggling, or reversing the current option, it can be done via omitting the on/off
value:

4

{language=shell, line-numbers=off} $ tmux set-option status

Bind toggling status line to Prefix + q:

{language=shell, line-numbers=off} $ tmux bind-key q set-option status

Example: Default config

This is an example of the default config you see if your tmux configuration has
no status styling.

{line-numbers=off} status on status-interval 15 status-justify left status-keys vi
status-left “[#S]” status-left-length 10 status-left-style default status-position
bottom status-right ” “#{=21:pane_title}” %H:%M %d-%b-%y” status-right-
length 40 status-right-style default status-style fg=black,bg=green

Example: Dressed up

{line-numbers=off} status on status-interval 1 status-justify centre status-keys
vi status-left “#[fg=green]#H #[fg=black]• #[fg=green,bright]#(uname -r
| cut -c 1-6)#[default]” status-left-length 20 status-left-style default status-
position bottom status-right “#[fg=green,bg=default,bright]#(tmux-mem-
cpu-load) #[fg=red,dim,bg=default]#(uptime | cut -f 4-5 -d” ” | cut -f 1 -d
“,”) #[fg=white,bg=default]%a%l:%M:%S %p#[default] #[fg=blue]%Y-
%m-%d” status-right-length 140 status-right-style default status-style
fg=colour136,bg=colour235

default window title colors
set-window-option -g window-status-fg colour244 # base0
set-window-option -g window-status-bg default

active window title colors
set-window-option -g window-status-current-fg colour166 # orange
set-window-option -g window-status-current-bg default

Configs can print the output of an application. In this example, tmux-mem-
cpu-load is providing system statistics in the right-side section of the status
line.

To build tmux-mem-cpu-load, you have to install CMake and have a C++ com-
piler, like clang or GCC.

On Ubuntu, Debian, and Mint machines, you can do this via $ sudo apt-get
install cmake build-essential. On macOS w/ brew via $ brew install
cmake.

Source: https://github.com/tony/tmux-config

5

Example: Powerline

The most full-featured solution available for tmux status lines is powerline,
which heavily utilizes the shell command outputs, not only to give direct system
statistics, but also to generate graphical-like styling.

To get the styling to work correctly, special fonts must be installed. The easiest
way to use this is to install powerline fonts, a collection of fixed width coder
fonts patched to support Wingdings-like symbols.

Installation instructions are on Read the Docs. For a better idea:

{language=shell, line-numbers=off} $ pip install –user powerline-status psutil

psutil, a required dependency of powerline, is a cross-platform tool to gather
system information.

Assure you properly configured python with your PATHs, and try this:

{line-numbers=off} set -g status-interval 2 set -g status-right ‘#(powerline tmux
right)’

Summary
Configuring the status line is optional. It can use the output of programs in-
stalled on your system to give you specialized information, such as CPU, ram,
and I/O usage. By default, you’ll at least have a window list and a clock.

In addition, you can customize the colors of the status line, clock, and prompt.
By default, it’s only a green bar with dark text, so take some time to customize
yours, if you want, and save it to your configuration.

In the next chapter, we will go into the command line and scripting features of
tmux.

6

Scripting tmux
The command line shortcuts and options in tmux is an area often uncharted.

I will use tables in this chapter. Never get a feeling you have to commit a table
to memory immediately. Not my intention, but every person’s way of using
tmux is slightly different. I want to cover points most likely to benefit people’s
flows. Full tables are in the cheatsheets.

Aliases
tmux supports a variety of alias commands. With aliases, instead of typing $
tmux attach-session to attach a session, $ tmux attach could do the trick.

Most aliases come to mind via intuition and are a lot friendlier than typing the
full hyphenated commands.

{width=“narrow”} | Command | Alias | |———————|———–| | attach-
session | attach | | break-pane | breakp | | capture-pane | capturep | |
display-panes | displayp | | find-window | findw | | join-pane | joinp | | kill-pane
| killp | | kill-window | killw | | last-pane | lastp | | last-window | last | |
link-window | linkw | | list-panes | lsp | | list-windows | lsw | | move-pane
| movep | | move-window | movew | | new-session | new | | new-window |
neww | | next-layout | nextl | | next-window | next | | pipe-pane | pipep | |
previous-layout | prevl | | previous-window | prev | | rename-window | renamew
| | resize-pane | resizep | | respawn-pane | respawnp | | respawn-window |
respawnw | | rotate-window | rotatew | | select-layout | selectl | | select-pane |
selectp | | set-option | set | | set-window-option | setw | | show-options | show |
| show-window-options | showw | | split-window | splitw | | swap-pane | swapp |
| swap-window | swapw | | unlink-window | unlinkw |

If you know the full name of the command, if you were to chop the hyphen
(-) from the command and add the first letter of the last word, you’d get the
shortcut, e.g., swap-window is swapw, split-window is splitw.

Pattern matching
In addition to aliases, tmux commands and arguments may all be accessed via
fnmatch(3) patterns.

For instance, you need not type $ tmux attach-session every time. First,
there’s the alias of $ tmux attach, but additionally, more concise commands
can be used if they partially match the name of the command or the target.
tmux’s pattern matching allows $ tmux attac, $ tmux att, $ tmux at and $
tmux a to reach $ tmux attach.

Every tmux command has shorthands; let’s try this for $ tmux new-session:

{language=shell, line-numbers=off} $ tmux new-session

1

$ tmux new-sessio

...

$ tmux new-s

and so on, until:

{language=shell, line-numbers=off} $ tmux new- ambiguous command: new-,
could be: new-session, new-window

The limitation, as seen above, is command matches can collide. Multiple com-
mands begin with new-. So, if you wanted to use matches, $ tmux new-s for
a new session or $ tmux new-w for a new window would be the most efficient
way. But, the alias of $ tmux new for new session and $ tmux neww for new
windows is even more concise than matching, since the special alias exists.

Patterns can also match targets with window and session names. For instance,
a session named mysession can be matched via mys:

{language=shell, line-numbers=off} $ tmux attach -t mys

Matching targets will fail if a pattern matches more than one item. If 2 sessions
exist, named mysession and mysession2, the above command would fail. To
target either session, the complete target name must be specified.

Targets
If a command allows target specification, it’s usually done through -t.

Think of targets as tmux’s way of specifying a unique key in a relational
database.

Entity Prefix Example
server n/a n/a, uses socket-name and socket-path
client n/a n/a, uses /dev/tty{p,s}[000-9999]
session $ $13
window @ @2313
pane % %5432

What I use to help me remember:

So, sessions are represented by dollar signs ($) because they hold your projects
(ostensibly where you make money or help someone else do it).

Windows are represented by the at sign (@). So, windows are like referencing /
messaging a user on a social networking website.

Panes are the fun one, represented by the percent sign (%), like the default
prompt for csh and tcsh. Hey, makes sense, since panes are pseudoterminals!

2

When scripting tmux, the symbols help denote the type of object, but also serve
as a way to target something deeply, such as the pane, directly, without needing
to know or specify its window or session.

Here are some examples of targets, assuming one session named mysession and
a client at /dev/ttys004:

attach-session [-t target-session]

{language=shell, line-numbers=off} $ tmux attach-session -t mysession

detach-client [-s target-session] [-t target-client]

{language=shell, line-numbers=off} $ tmux detach-client -s mysession -t
/dev/ttys004

If within client, -t is assumed to be current client
$ tmux detach-client -s mysession

has-session [-t target-session]

{language=shell, line-numbers=off} $ tmux has-session -t mysession

Pattern matching session name
$ tmux has-session -t mys

$ tmux kill-session [-t target-session]

{language=shell, line-numbers=off} $ tmux kill-session -t mysession

$ tmux list-clients [-t target-session]

{language=shell, line-numbers=off} $ tmux list-clients -t mysession

$ tmux lock-client [-t target-client]

{language=shell, line-numbers=off} $ tmux lock-clients -t /dev/ttys004

$ tmux lock-session [-t target-session]

{language=shell, line-numbers=off} $ tmux lock-session -t mysession

$ tmux new-session [-t target-session]

{language=shell, line-numbers=off} $ tmux new-session -t newsession

Create new-session in the background
$ tmux new-session -t newsession -d

3

$ tmux refresh-client [-t target-client]

{language=shell, line-numbers=off} $ tmux refresh-client -t /dev/ttys004

$ tmux rename-session [-t target-session] session-name

{language=shell, line-numbers=off} $ tmux rename-session -t mysession
renamedsession

If within attached session, -t is assumed
$ tmux rename-session renamedsession

$ tmux show-messages [-t target-client]

{language=shell, line-numbers=off} $ tmux show-messages -t /dev/ttys004

$ tmux suspend-client [-t target-client]

{language=shell, line-numbers=off} $ tmux suspend-client -t /dev/ttys004

If already in client
$ tmux suspend-client

Bring client back to the foreground
$ fg

$ tmux switch-client [-c target-client] [-t target-session]

{language=shell, line-numbers=off} $ tmux suspend-client -c /dev/ttys004 -t
othersession

Within current client, -c is assumed
$ tmux suspend-client -t othersession

Formats
tmux provides a minimal template language and set of variables to access infor-
mation about your tmux environment.

Formats are specified via the -F flag.

You know how template engines, such as mustache, handlebars ERB in ruby,
jinja2 in python, twig in PHP, and JSP in Java, allow template variables? For-
mats are a similar concept.

The FORMATS (variables) provided by tmux have expanded greatly since version
1.8. Some of the most commonly used formats as of tmux 2.3 are listed below.
See the appendix section on formats for a complete list.

Let’s try to output it:

4

{language=shell, line-numbers=off} $ tmux list-windows -F “#{window_id}
#{window_name}” > @0 zsh

Here’s a cool trick to list all panes with the x and y coordinates of the cursor
position:

{language=shell, line-numbers=off} $ tmux list-panes -F “#{pane_id}
#{pane_current_command}
#{pane_current_path} #{cursor_x},#{cursor_y}” > %0 vim /Users/me/work/tao-
of-tmux/manuscript 0,34 %1 tmux /Users/me/work/tao-of-tmux/manuscript
0,17 %2 man /Users/me/work/tao-of-tmux/manuscript 0,0

Variables are specific to the objects being listed. For instance:

Server-wide variables: host, host_short (no domain name), socket_path,
start_time and pid.

Session-wide variables: session_attached, session_activity, session_created,
session_height, session_id, session_name, session_width, session_windows
and all server-wide variables.

Window variables: window_activity, window_active, window_height,
window_id, window_index, window_layout, window_name, window_panes,
window_width and all session and server variables.

Pane variables: cursor_x, cursor_y, pane_active, pane_current_command,
pane_current_path, pane_height, pane_id, pane_index, pane_width,
pane_pid and all window, session and server variables.

This book focuses on separating the concept of server, sessions, windows, and
panes. With the knowledge of targets and formats, this separation takes shape
in tmux’s internal attributes. If you list-panes all variables up the ladder,
including window, session and server variables are available for the panes being
listed. Try this:

{language=shell, line-numbers=off} $ tmux list-panes -F “pane: #{pane_id},
window: #{window_id},
session: #{session_id}, server: #{socket_path}” > pane: %35, window: @13,
session: $6, server: /private/tmp/tmux-501/default pane: %38, window: @13,
session: $6, server: /private/tmp/tmux-501/default pane: %36, window: @13,
session: $6, server: /private/tmp/tmux-501/default

Listing windows isn’t designed to display variables for pane-specific properties.
Since a window is a collection of panes, it can have 1 or more panes open at any
time.

{language=shell, line-numbers=off} $ tmux list-windows -F “window: #{win-
dow_id}, panes: #{window_panes}
pane_id: #{pane_id}” > window: @15, panes: 1 pane_id: %40 window: @13,
panes: 3 pane_id: %36 window: @25, panes: 1 pane_id: %50

5

This will show the window ID, prefixed by an @ symbol, and the number of
panes inside the window.

Surprisingly, pane_id shows up via list-windows, as of tmux 2.3. While this
output occurs in this version of tmux, it’s undefined behavior. It’s advised
to keep use of -F scoped to the objects being listing when scripting to avoid
breakage. For instance, if you want the active pane, use #{pane_active} via $
tmux list-panes -F "#{pane_active}".

By default, list-panes will only show panes in a window, unless you specify -a
to output all on a server or -s [-t session-name] for all panes in a session:

{language=shell, line-numbers=off} $ tmux list-panes -s -t mysession > 1.0:
[176x29] [history 87/2000, 21033 bytes] %0 1.1: [87x6] [history 1814/2000,
408479 bytes] %1 (active) 1.2: [88x6] [history 1916/2000, 464932 bytes] %2 2.0:
[176x24] [history 9/2000, 2262 bytes] %13 2.1: [55x11] [history 55/2000, 7395
bytes] %14

And the -t flag lists all panes in a window:

{language=shell, line-numbers=off} $ tmux list-panes -t @0 > 0: [176x29] [his-
tory 87/2000, 21033 bytes] %0 1: [176x36] [history 1790/2000, 407807 bytes] %1
(active) 2: [88x6] [history 1916/2000, 464932 bytes] %2

The same concept applies to list-windows. By default, The -a flag will list
all windows on a server, -t lists windows within a session, and omitting -t will
only list windows within the current session inside tmux.

{language=shell, line-numbers=off} $ tmux list-windows > 1: zsh* (3 panes)
[176x36] [layout f9a4,176x36,0,0[176x29,0,0,0,176x6,0,30{87x6,0,30,1,88x6,88,30,2}]]
@0 (active) 2: zsh- (5 panes) [176x36] [layout 55ef,176x36,0,0[176x24,0,0,13,176x11,0,25{55x11,0,25,14,58x11,56,25[58x7,56,25,16,58x3,56,33,17],61x11,115,25,15}]]
@6

Controlling tmux
tmux allows sending keys, including Ctrl via C- or ^, alt (Meta) via M-, and
special key names. Here’s a list of special keys straight from the manual:

Up, Down, Left, Right, BSpace, BTab, DC (Delete), End, Enter, Escape, F1
to F12, Home, IC (Insert), NPage/PageDown/PgDn, PPage/PageUp/PgUp, Space,
and Tab.

If special keys are not matched, the defined behavior is to send it as a string to
the pane, character by character.

For this example, we will use send-keys through tmux prompt, because omit-
ting target (-t) will direct the command to the current pane, but the keys sent
will sometimes print before the prompt.

Open tmux command prompt via Prefix + : and type this after the ::

send-keys echo 'hi'

6

Hit enter. This inserted hi into the current active pane. You can also use targets
to specify which pane to send it to.

Let’s now try to send keys to another pane in our current window. Create a
second pane via splitting the window if one doesn’t exist. You can also do this
exercise outside of tmux or inside a scripting file and running it.

Grab a pane ID from the output of list-panes:

{language=shell, line-numbers=off} $ tmux list-panes > 0: [180x57] [history
87/2000, 21033 bytes] %0 1: [89x14] [history 1884/2000, 509864 bytes] %1 (ac-
tive) 2: [90x14] [history 1853/2000, 465297 bytes] %2

%2 looks good. Replace %2 with the pane you want to target. This sends cal to
the input:

{language=shell, line-numbers=off} $ tmux send-keys -t %2 ‘cal’

Nice, let’s cancel that out by sending a SIGINT:

{language=shell, line-numbers=off} $ tmux send-keys -t %2 ‘C-c’

This cancelled the command and brought up a fresh input. This time, let’s send
an Enter keypress to run cal(1).

{language=shell, line-numbers=off} $ tmux send-keys -t %2 ‘cal’ ‘Enter’

This outputs in the adjacent pane.

Figure 1: Top-left: Listing panes, Bottom-left: Sending keys to right pane,
Right: Output of cal(1).

Capturing pane content
$ tmux capture-pane will copy a panes’ contents.

By default, the contents will be saved to tmux’s internal clipboard, the paste
buffer. You can run capture-pane within any pane, then navigate to an editor,
paste the contents (don’t forget to :set paste and go into insert mode with i

7

in vim), and save it to a file. To paste, use Prefix +] inside the pane you’re
pasting into.

You can also add the -p flag to print it to stdout. From there, you could use
redirection to place the output into a file. Let’s do >> so we don’t accidentally
truncate a file:

{language=shell, line-numbers=off} $ tmux capture-pane -p >> ./test

As an alternative to redirection, you can also use save-buffer. The -a flag will
get you the same behavior as appended output direction.

{language=shell, line-numbers=off} $ tmux save-buffer -a ./test

To check what’s inside:

{language=shell, line-numbers=off} $ cat ./test

Like with send-keys, targets can be specified with -t. Let’s copy a pane into
tmux’s clipboard (“paste buffer”) and paste it into a text editor in a third pane:

Figure 2: Top-left: Listing panes, Bottom-left: Capturing pane output of top-
left pane, Right: Pasting buffer into vim.

Remember, you can also copy, paste, and send-keys to other windows and ses-
sions also. Targets are server-wide.

Summary
tmux has a well-devised and intuitive command system, enabling the user to
access bread and butter functionality quickly. At the same time, tmux provides
a powerful way of retrieving information on its objects between list-panes,
list-windows and list-sessions and formats. This makes tmux not only
accessible and configurable, but also scriptable.

The ability to retrieve explicitly and reliably, from session the sesson down to a
pane. All it takes is a pane’s ID to capture its contents or even send it keys. Used
by the skilled programmer, scripting tmux can facilitate orchestrating terminals
in ways previously deemed unrealistic; anything from niche shell scripts to mon-
itor and react to behavior on systems to high-level, intelligent and structured
control via object oriented libraries, like libtmux.

8

In the next chapter, we delve into optimizations that showcase the latest genera-
tion of unix tools that build upon old, time-tested concepts, like man pages and
piping, while maintaining portability across differences in platforms and graceful
degradation to ensure development tooling works on machines missing optional
tools. Also, the chapter will introduce session managers, a powerful, high-level
tool leveraging tmux’s scripting capabilities to consistently load workspace via
a declarative configuration.

9

Takeaway
In this book, we’ve taken an organized approach to understanding tmux. As you
use tmux more and more, continue to come back and use this resource to help
wrap your brain around concepts. You do not have to understand the intricacies
of tmux, let alone the terminal, in a single sitting. Acclimation happens over
time.

tmux’s userbase varies in skill level. Some readers of this book may have just
learned how to use the Prefix key yesterday. Others are looking to tweak their
configurations and host it in their “dot files” on github. There also exists a
very clever hacker who utilizes the advanced scripting capabilities tmux offers
to pilot the terminal in ways previously thought impossible.

We’ve covered the server, session, window, and pane concepts. Panes are shells,
AKA pseudoterminals or PTYs. The command system. That configuration is
basically a file filled with commands. An overview of the target system lets you
specify objects to interact with tmux commands. A breeze through formats, a
template system with variables to retrieve information on tmux’s current state.
How to send keystrokes and copy from tmux panes programmatically. A lot
of terminal tricks that work across platforms and well with tmux, including
a file watching workflow to run linting, testing, and build commands on file
changes. Two permissively licensed open source projects for demonstration. A
tmux configuration you can copy and paste from. An object oriented tmux API
wrapper and a tmux session manager.

If you liked this book, please leave a review on Amazon and Goodreads. I
would also appreciate you leaving something in my tip jar. I am an independent
software developer and could use all the help I can get.

If you found an error or have a suggestion, please contact me at tao.of.tmux@git-pull.com.
I want this book to be the best it can be. If you are having technical difficulties
with Kindle, please send me your receipt and I will comp you a leanpub coupon.

1

{backmatter}

Appendix: Cheatsheets
These are taken directly from tmux’s manual pages, tabled and organized by
hand into sections for convenience.

Commands
Session

{width=“wide”} | Command | Action | |——————|————————
———————————-| | no command | Short-cut for new-session | |
attach-session | Attach or switch to a session | | choose-session | Put
a window into session choice mode | | has-session | Check and report if a
session exists on the server | | kill-session | Destroy a given session | |
list-sessions | List sessions managed by server | | lock-session | Lock
all clients attached to a session | | new-session | Create a new session | |
rename-session | Rename a session |

Window

{width=“wide”} | Command | Action | |———————-|—————————
—————————| | choose-window | Put a window into window choice | |
find-window | Search for a pattern in windows | | kill-window | Destroy a
given window | | last-window | Select the previously selected | | link-window
| Link a window to another | | list-windows | List windows of a session
| | move-window | Move a window to another | | new-window | Create a
new window | | next-window | Move to the next window in a sesssion | |
previous-window | Move to the previous window in session | | rename-window
| Rename a window | | respawn-window | Reuse a window in which a command
has exited | | rotate-window | Rotate positions of panes in a window | |
select-window | Select a window | | set-window-option | Set a window
option | | show-window-options| Show window options | | split-window |
Splits a pane into two | | swap-window | Swap two windows | | unlink-window
| Unlink a window |

Pane

{width=“wide”} | Command | Action | |—————–|———————————
————————–| | break-pane | Break a pane from an existing into a new
window | | capture-pane | Capture the contents of a pane to a buffer | |
display-panes | Display an indicator for each visible pane | | join-pane | Split
a pane and move an existing one into the new space | | kill-pane | Destroy a
given pane | | last-pane | Select the previously selected pane | | list-panes
| List panes of a window | | move-pane | Move a pane into a new space | |

1

pipe-pane | Pipe output from a pane to a shell command | | resize-pane |
Resize a pane | | respawn-pane | Reuse a pane in which a command has exited
| | select-pane | Make a pane the active one in the window | | swap-pane |
Swap two panes |

{pagebreak}

Keybindings
{width=“wide”} | Shortcut | Action | |——————|———————————
——————-| |C-b | Send the prefix key (C-b) through to the | | | application.
|

Miscellaneous

{width=“wide”} | Shortcut | Action | |——————|————————————
—————-| |C-z | Suspend the tmux client. | |r | Force redraw of the attached
client. | |t | Show the time. | |~ | Show previous messages from tmux, if any. |
|f | Prompt to search for text in open windows. | |d | Detach the current client.
| |D | Choose a client to detach. | |? | List all key bindings. | |: | Enter the
tmux command prompt. |

Copy/Paste

{width=“wide”} | Shortcut | Action | |——————|————————————
—————-| |# | List all paste buffers. | |[| Enter copy mode to copy text or
view the history. | |] | Paste the most recently copied buffer of text. | |Page Up
| Enter copy mode and scroll one page up. | |= | Choose which buffer to paste
interactively from a | | | list. | |- | Delete the most recently copied buffer of text.
|

{pagebreak}

Session

{width=“wide”} | Shortcut | Action | |——————|————————————
—————-| |$ | Rename the current session. |

Session Traversal

{width=“wide”} | Shortcut | Action | |——————|————————————
—————-| |L | Switch the attached client back to the last | | | session. | |s |
Select a new session for the attached client | | | interactively. |

{pagebreak}

2

Window

{width=“wide”} | Shortcut | Action | |——————|————————————
—————-| |c | Create a new window. | |& | Kill the current window. | |i |
Display some information about the current window. | |, | Rename the current
window. |

Window Traversal

{width=“wide”} | Shortcut | Action | |——————|————————————
—————-| |0 to 9 | Select windows 0 to 9. | |w | Choose the current window
interactively. | |M-n | Move to the next window with a bell or activity | | | marker.
| |M-p | Move to the previous window with a bell or activity| | | marker. | |p |
Change to the previous window. | |n | Change to the next window. | |l | Move
to the previously selected window. | |' | Prompt for a window index to select. |

Window Moving

{width=“wide”} | Shortcut | Action | |——————|————————————
—————-| |. | Prompt for an index to move the current window |

{pagebreak}

Pane

{width=“wide”} | Shortcut | Action | |——————|————————————
—————-| |x | Kill the current pane. | |q | Briefly display pane indexes. | |% |
Split the current pane into two, left and right. | |" | Split the current pane into
two, top and bottom. |

Pane Traversal

{width=“wide”} | Shortcut | Action | |——————|————————————
—————-| |; | Move to the previously active pane. | |Up, Down | Change to
the pane above, below, to the left, or to| |Left, Right | the right of the current
pane. | |o | Select the next pane in the current window. |

Pane Moving

{width=“wide”} | Shortcut | Action | |——————|———————————
——————-| |C-o | Rotate the panes in the current window forwards. | |M-o
| Rotate the panes in the current window backwards. | |{ | Swap the current
pane with the previous pane. | |} | Swap the current pane with the next pane.
| |! | Break the current pane out of the window. |

Pane Resizing

{width=“wide”} | Shortcut | Action | |——————|———————————
——————-| |M-1 to M-5 | Arrange panes in one of the five preset layouts:

3

| | | even-horizontal, even-vertical, main-horizontal, | | | main-vertical, or tiled.
| |C-Up, C-Down | Resize the current pane in steps of one cell. | |C-Left,
C-Right | | |M-Up, M-Down | Resize the current pane in steps of five cells. |
|M-Left, M-Right | |

{pagebreak}

Formats
Copy / paste

{width=“wide”} | Variable name | Description | |———————–|—————
—————————| | buffer_name |Name of buffer | | buffer_sample |Sample
of start of buffer | | buffer_size |Size of the specified buffer in bytes |

Clients

{width=“wide”} | Variable name | Description | |———————–|—————
—————————| | client_activity |Integer time client last had activity | |
client_created |Integer time client created | | client_control_mode |1 if client is
in control mode | | client_height |Height of client | | client_key_table |Current
key table | | client_last_session |Name of the client’s last session | | client_pid
|PID of client process | | client_prefix |1 if prefix key has been pressed | |
client_readonly |1 if client is readonly | | client_session |Name of the client’s
session | | client_termname |Terminal name of client | | client_tty |Pseudo
terminal of client | | client_utf8 |1 if client supports utf8 | | client_width |Width
of client | | line |Line number in the list |

Panes

{width=“wide”} | Variable name | Description | |———————–|—————
—————————| | alternate_on |If pane is in alternate screen | | alter-
nate_saved_x |Saved cursor X in alternate screen | | alternate_saved_y |Saved
cursor Y in alternate screen | | cursor_flag |Pane cursor flag | | cursor_x
|Cursor X position in pane | | cursor_y |Cursor Y position in pane | | in-
sert_flag |Pane insert flag | | keypad_cursor_flag |Pane keypad cursor flag |
| keypad_flag |Pane keypad flag | | mouse_any_flag |Pane mouse any flag | |
mouse_button_flag |Pane mouse button flag | | mouse_standard_flag |Pane
mouse standard flag | | pane_active |1 if active pane | | pane_bottom |Bot-
tom of pane | | pane_current_command |Current command if available | |
pane_current_path |Current path if available | | pane_dead |1 if pane is dead |
| pane_dead_status |Exit status of process in dead pane | | pane_height |Height
of pane | | pane_id |Unique pane ID (Alias: #D) | | pane_in_mode |If pane is
in a mode | | pane_input_off |If input to pane is disabled | | pane_index |Index
of pane (Alias: #P) | | pane_left |Left of pane | | pane_pid |PID of first process
in pane | | pane_right |Right of pane | | pane_start_command |Command pane
started with | | pane_synchronized |If pane is synchronized | | pane_tabs |Pane

4

tab positions | | pane_title |Title of pane (Alias: #T) | | pane_top |Top of
pane | | pane_tty |Pseudo terminal of pane | | pane_width |Width of pane |
| scroll_region_lower |Bottom of scroll region in pane | | scroll_region_upper
|Top of scroll region in pane | | scroll_position |Scroll position in copy mode | |
wrap_flag |Pane wrap flag |

Sessions

{width=“wide”} | Variable name | Description | |———————–|—————
—————————| | session_alerts |List of window indexes with alerts | |
session_attached |Number of clients session is attached to | | session_activity
|Integer time of session last activity | | session_created |Integer time session
created | | session_last_attached |Integer time session last attached | | ses-
sion_group |Number of session group | | session_grouped |1 if session in a
group | | session_height |Height of session | | session_id |Unique session ID | |
session_many_attached |1 if multiple clients attached | | session_name |Name
of session (Alias: #S) | | session_width |Width of session | | session_windows
|Number of windows in session |

Windows

{width=“wide”} | Variable name | Description | |———————–|—————
—————————| | history_bytes |Number of bytes in window history | |
history_limit |Maximum window history lines | | history_size |Size of history
in bytes | | window_activity |Integer time of window last activity | | win-
dow_activity_flag |1 if window has activity | | window_active |1 if window
active | | window_bell_flag |1 if window has bell | | window_find_matches
|Matched data from the find-window | | window_flags |Window flags (Alias:
#F) | | window_height |Height of window | | window_id |Unique window ID | |
window_index |Index of window (Alias: #I) | | window_last_flag |1 if window is
the last used | | window_layout |Window layout description, ignoring zoomed|
| |window panes | | window_linked |1 if window is linked across sessions | |
window_name |Name of window (Alias: #W) | | window_panes |Number of
panes in window | | window_silence_flag |1 if window has silence alert | | win-
dow_visible_layout |Window layout description, respecting | | |zoomed window
panes | | window_width |Width of window | | window_zoomed_flag |1 if window
is zoomed |

Servers

{width=“wide”} | Variable name | Description | |———————–|—————
—————————| | host |Hostname of local host (alias: #H) | | host_short
|Hostname of local host (no domain name) | | |(alias: #h) | | socket_path |Server
socket path | | start_time |Server start time | | pid |Server PID |

5

Commands

For $ tmux list-commands.

{width=“wide”} | Variable name | Description | |———————–|—————
—————————| | command_hooked |Name of command hooked, if any |
| command_name |Name of command in use, if any | | command_list_name
|Command name if listing commands | | command_list_alias |Command alias if
listing commands | | command_list_usage |Command usage if listing commands
|

6

Appendix: Installing tmux
macOS / OS X
brew

{language=shell, line-numbers=off} $ brew install tmux

macports

{language=shell, line-numbers=off} $ sudo port install tmux

fink

{language=shell, line-numbers=off} $ fink install tmux

Linux
Ubuntu / Mint / Debian, etc.

{language=shell, line-numbers=off} $ sudo apt-get install tmux

CentOS / Fedora / Redhat, etc.

{language=shell, line-numbers=off} $ sudo yum install tmux

Arch Linux (pacman)

{language=shell, line-numbers=off} $ sudo pacman -S tmux

Gentoo (portage)

{language=shell, line-numbers=off} $ sudo emerge –ask app-misc/tmux

BSD
FreeBSD

pkg(1)

{line-numbers=off} # pkg install tmux

pkg_add(1)

{line-numbers=off} # pkg_add -r tmux

1

OpenBSD

As of OpenBSD 4.6, tmux is part of the base system.

If you are using an earlier version:

{line-numbers=off} # pkg_add tmux

NetBSD

{language=shell, line-numbers=off} $ make -C /usr/pkgsrc/misc/tmux install

Windows 10
Check out the tmux on Windows 10 appendix section.

2

Appendix: tmux on Windows 10
As of Windows 10 build 14361, you can run tmux via the Linux Subsystem
feature.

Usage requires enabling Developer mode via the “For Developers” tab in the
“Update & security” settings.

After enabling, open “Windows Features”. You can find it by searching for
“Turn Windows features on or off”. Then check “Windows Subsystem for Linux
(Beta)”.

You may be asked to restart.

Then open Command Prompt as you normally would (Run cli.exe). Then type

C:\Users\tony> bash.exe

It will prompt you to agree to terms, create a user. In my build, tmux was
already installed! But if it’s not, type sudo apt-get install tmux.

yourusername@COMPUTERNAME-ID321FJ:/mnt/c/Users/username$ tmux

This should allow you to run tmux within bash.exe.

This is a real ubuntu installation, so you can continue to install packages
via sudo apt-get install **packagename** and update packages via sudo
apt-get update && sudo apt-get upgrade.

1

Figure 1: Find Turn Windows Features on or off
2

Figure 2: Check Windows Subsystem for Linux (Beta)

3

Figure 3: Windows completed the requested changes. Restart

4

Figure 4: Use Developer features
5

Figure 5: Select Developer mode in Update & Security

Figure 6: Installing Ubuntu from Windows Store

6

Figure 7: Create Linux user

Figure 8: In bash!

7

Figure 9: In tmux!

8

