

Linux Kernel
Debugging

Leverage proven tools and advanced techniques to
effectively debug Linux kernels and kernel modules

Kaiwan N Billimoria

BIRMINGHAM—MUMBAI

Linux Kernel Debugging

Copyright © 2022 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without warranty,
either express or implied. Neither the author, nor Packt Publishing or its dealers and distributors,
will be held liable for any damages caused or alleged to have been caused directly or indirectly by
this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing
cannot guarantee the accuracy of this information.

Group Product Manager: Vijin Boricha
Publishing Product Manager: Riyan Khan
Content Development Editor: Romy Dias
Technical Editor: Arjun Varma
Copy Editor: Safis Editing
Project Coordinator: Ashwin Dinesh Kharwa
Proofreader: Safis Editing
Indexer: Rekha Nair
Production Designer: Roshan Kawale
Marketing Coordinator: Sourodeep Sinha
Senior Marketing Coordinator: Hemangi Lotlikar

First published: June 2022
Production reference: 1010722

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-80107-503-9

www.packt.com

http://www.packt.com

To the brave Covid warriors who led from the front; to the open source and
Linux communities at large; to the wonderful Runner's High community

that I am lucky to be a part of, with Santhosh leading from the front.

Contributors

About the author
Kaiwan N Billimoria taught himself programming on his dad's PC in 1983. By the early
90s, he had discovered the joys of programming on Unix, and by 1997, on Linux!

Kaiwan has worked on many aspects of the Linux system programming stack, including
Bash, system programming in C, kernel internals, device drivers, and embedded Linux.
He has actively worked on commercial/FOSS projects. His contributions include drivers
for the mainline Linux OS and many smaller projects hosted on GitHub. His Linux
passion feeds well into his passion for teaching these topics to engineers, which he has
done for close to three decades now. He's the author of Hands-On System Programming
with Linux and Linux Kernel Programming. He is a recreational ultrarunner too.

First, to my wonderful family – my parents, Nads and Diana; my wife,
Dilshad; my children, Sheroy and Danesh; my bro, Darius; and the rest

of the family. Thanks for being there. The Packt team has shepherded me
through this work with patience and excellence, as usual. A special call out

to Romy Dias – thanks for all the timely and super editing!

About the reviewer
Chi-Thanh Hoang is currently working as a principal software technologist at Dell
Technologies, currently developing an O-RAN 5G radio. He has over 29 years of software
development experience, specializing mostly in embedded networking systems (switches,
routers, Wi-Fi, and mobile networks) from chipsets up to communication protocols
and of course kernel/RTOS. His first experience with the Linux kernel was in 1993. He
still does hands-on debugging inside the kernel. He has a bachelor's degree in electrical
engineering from Sherbrooke University, Canada. He is also an avid tennis player and
invariably tinkers with electronics and software.

Table of Contents
Preface

Part 1: A General Introduction and
Approaches to Kernel Debugging

1
A General Introduction to Debugging Software

Technical requirements 4
Cloning this book's code repository 4

Software debugging – what it is,
origins, and myths 5
Software bugs – a few
actual cases 7
Patriot missile failure 7
The ESA's unmanned Ariane 5 rocket 8
Mars Pathfinder reset issue 8
The Boeing 737 MAX aircraft – the
MCAS and lack of training of the
flight crew 9
Other cases 10

Setting up the workspace 10
Running Linux as a native or guest OS 11

Running Linux as a guest OS 12
Installing the Oracle VirtualBox
guest additions 13
Installing required software packages 14

A tale of two kernels 15
A production and a debug kernel 16
Setting up our custom production kernel 19
Setting up our custom debug kernel 26
Seeing the difference – production and
debug kernel config 35

Debugging – a few quick tips 38
A programmer's checklist – seven rules 41

Summary 41
Further reading 42

viii Table of Contents

2
Approaches to Kernel Debugging

Technical requirements 46
Classifying bug types 46
Types of bugs – the classic view 46
Types of bugs – the memory view 48
Types of bugs – the CVE/CWE
security-related view 48
Types of bugs – the Linux kernel 49

Kernel debugging – why there
are different approaches to it 50

Summarizing the different
approaches to kernel debugging 51
The development phase 51
Unit testing and/or QA phases 52
Categorizing into different scenarios 54

Summary 58
Further reading 59

Part 2: Kernel and Driver Debugging
Tools and Techniques

3
Debug via Instrumentation – printk and Friends

Technical requirements 64
The ubiquitous kernel printk 64
Using the printk API's logging levels 66
Leveraging the pr_<foo> convenience
macros 68
Understanding where the printk
output goes 72
Practically using the printk format
specifiers – a few quick tips 74

Leveraging the printk for
debug purposes 75
Writing debug messages to
the kernel log 75
Debug printing – quick and useful tips 79
Device drivers – using the
dev_dbg() macro 80
Trying our kernel module
on the custom production kernel 81

Rate limiting the printk 82

Using the kernel's powerful
dynamic debug feature 86
Dynamic debugging via
module parameters 87
Specifying what and how
to print debug messages 90
Exercising dynamic debugging on
a kernel module on a production kernel 96

Remaining printk miscellany 104
Printing before console
init – the early printk 105
Designating the printk to
some known presets 109
Printing exactly once 110
Emitting a printk from userspace 112
Easily dumping buffer content 113

Table of Contents ix

Remaining points – bootloader log
peeking, LED flashing, and more 114

Summary 116
Further reading 116

4
Debug via Instrumentation – Kprobes

Understanding kprobes basics 120
What we intend to do 122

Using static kprobes –
traditional approaches
to probing 123
Demo 1 – static kprobe – trapping
into the file open the traditional static
kprobes way – simplest case 123
Demo 2 – static kprobe – specifying
the function to probe via a module
parameter 130

Understanding the basics
of the Application Binary
Interface (ABI) 132
Using static kprobes – demo 3
and demo 4 134
Demo 3 – static kprobe – probing
the file open syscall and retrieving the
filename parameter 135
Demo 4 – semi-automated static
kprobe via
our helper script 141

Getting started with kretprobes 147
Kprobes miscellany 151

Kprobes – limitations
and downsides 152
Interface stability 152

The easier way – dynamic
kprobes or kprobe-based
event tracing 153
Kprobe-based event
tracing – minimal internal details 157
Setting up a dynamic kprobe (via
kprobe events) on any function 160
Using dynamic kprobe event tracing
on a kernel module 166
Setting up a return probe (kretprobe)
with kprobe-perf 169

Trapping into the execve()
API – via perf and eBPF tooling 171
System calls and where they
land in the kernel 171
Observability with eBPF
tools – an introduction 173

Summary 176
Further reading 176

5
Debugging Kernel Memory Issues – Part 1

Technical requirements 182
What's the problem with
memory anyway? 183

Tools to catch kernel memory
issues – a quick summary 184

x Table of Contents

Using KASAN and UBSAN
to find memory bugs 186
Understanding KASAN – the basics 186
Requirements to use KASAN 187
Configuring the kernel for Generic
KASAN mode 189
Bug hunting with KASAN 191
Using the UBSAN kernel checker to
find Undefined Behaviour 214

Building your kernel and
modules with Clang 223
Using Clang 13 on Ubuntu 21.10 223

Catching memory defects
in the kernel – comparisons
and notes (Part 1) 226
Miscellaneous notes 228

Summary 229
Further reading 230

6
Debugging Kernel Memory Issues – Part 2

Technical requirements 234
Detecting slab memory
corruption via SLUB debug 234
Configuring the kernel for SLUB debug 235
Leveraging SLUB debug features via
the slub_debug kernel parameter 236
Running and tabulating the SLUB
debug test cases 239
Interpreting the kernel's SLUB debug
error report 243
Learning how to use the slabinfo and
related utilities 248

Finding memory leakage
issues with kmemleak 260
Configuring the kernel for kmemleak 264
Using kmemleak 266
A few tips for developers regarding
dynamic kernel memory allocation 281

Catching memory defects
in the kernel – comparisons
and notes (Part 2) 284
Miscellaneous notes 286

Summary 287
Further reading 287

7
Oops! Interpreting the Kernel Bug Diagnostic

Technical requirements 290
Generating a simple kernel
bug and Oops 290
The procmap utility 291

What's this NULL trap page anyway? 291
A simple Oops v1 – dereferencing the
NULL pointer 294

Table of Contents xi

Doing a bit more of an
Oops – our buggy module v2 297

A kernel Oops and
what it signifies 307
The devil is in the details –
decoding the Oops 308
Line-by-line interpretation of an Oops 308

Tools and techniques to
help determine the location
of the Oops 325
Using objdump to help pinpoint the
Oops code location 327
Using GDB to help debug the Oops 330

Using addr2line to help pinpoint the
Oops code location 331
Taking advantage of kernel scripts
to help debug kernel issues 332
Leveraging the console device
to get the kernel log after Oopsing
in IRQ context 340

An Oops on an ARM Linux
system and using netconsole 348
Figuring out the actual buggy code
location (on ARM) 352

A few actual Oopses 356
Summary 358
Further reading 358

8
Lock Debugging

Technical requirements 363
Locking and lock debugging 363
Locking – a quick
summarization of key points 364
Understanding data
races – delving deeper 365

Catching concurrency
bugs with KCSAN 367
What KCSAN does, in a nutshell 368
Configuring the kernel for KCSAN 369
Using KCSAN 374

Knee-jerk reactions to KCSAN
reports – please don't! 380

A few actual use cases of kernel
bugs due to locking defects 382
Defects identified by KCSAN 382
Identifying locking rules and bugs
from the LDV project 382
Identifying locking bugs from the
Linux kernel Bugzilla 385
Identifying some locking defects
from various blog articles and the like 387

Summary 392
Further reading 393

xii Table of Contents

Part 3: Additional Kernel Debugging Tools
and Techniques

9
Tracing the Kernel Flow

Technical requirements 400
Kernel tracing technology – an
overview 400
Using the ftrace kernel tracer 403
Accessing ftrace via the filesystem 404
Configuring the kernel for ftrace 405
Using ftrace to trace the flow
of the kernel 408
Useful ftrace filtering options 426
Case 1 – tracing a single ping with
raw ftrace 433
Case 2 – tracing a single ping with
raw ftrace via the set_event interface 439
Using trace_printk() for debugging 443
Ftrace – miscellaneous remaining
points via FAQs 443
Ftrace use cases 447

Using the trace-cmd,
KernelShark, and perf-tools
ftrace frontends 451
An introduction to using trace-cmd 451
Using the KernelShark GUI 457
An introduction to using perf-tools 462

An introduction to kernel
tracing with LTTng and Trace
Compass 467
A quick introduction to recording a
kernel tracing session with LTTng 467
Using the Trace Compass GUI to
visualize the single ping LTTng trace 470

Summary 473
Further reading 474

10
Kernel Panic, Lockups, and Hangs

Technical requirements 480
Panic! – what happens
when a kernel panics 480
Let's panic 480
To the rescue with netconsole 483
Interpreting the panic output 484
Kernel parameters, tunables, and
configs that affect kernel panic 489

Writing a custom kernel
panic handler routine 492

Linux kernel panic notifier chains – the
basics 492
Setting up our custom panic handler
within a module 493

Detecting lockups and CPU
stalls in the kernel 502
A short note on watchdogs 502
Employing the kernel's hard and soft
lockup detector 504

Table of Contents xiii

Employing the kernel's
hung task and workqueue
stall detectors 516
Leveraging the kernel hung task

detector 516
Detecting workqueue stalls 518

Summary 520
Further reading 520

11
Using Kernel GDB (KGDB)

Technical requirements 524
Conceptually understanding
how KGDB works 525
Setting up an ARM target
system and kernel for KGDB 526
Building a minimal custom ARM Linux
target system with SEALS 526
Configuring the kernel for KGDB 528
Testing the target system 533

Debugging the kernel
with KGDB 536
Running our target (emulated)
ARM32 system 537
Running and working with the remote
GDB client on the host system 538

Debugging kernel modules
with KGDB 542
Informing the GDB client about the
target module's locations in memory 542

Step by step – debugging a buggy
module with KGDB 543

[K]GDB – a few tips and tricks 561
Setting up and using GDB scripts
with CONFIG_GDB_SCRIPTS 561
KGDB target remote :1234
command doesn't work
on physical systems 563
Setting the system root with sysroot 564
Using GDB's TUI mode 564
What to do when the <value optimized
out> GDB response occurs 567
GDB convenience routines 567
GDB custom macros in its startup file 568
Fancy breakpoints and hardware
watchpoints 568
Miscellaneous GDB tips 571

Summary 572
Further reading 572

12
A Few More Kernel Debugging Approaches

An introduction to the kdump/
crash framework 576
Why use kdump/crash? 576
Understanding the kdump/crash
basic framework 577

A mention on performing
static analysis on kernel code 579
Examples using cppcheck and
checkpatch.pl for static analysis 580

xiv Table of Contents

An introduction to kernel
code coverage tools and
testing frameworks 582
Why is code coverage important? 582
A brief note on kernel testing 584

Miscellaneous – using
journalctl, assertions,
and warnings 586

Looking up system logs
with journalctl 586
Assertions, warnings,
and BUG() macros 590

Summary 591
Further reading 592

Index
Other Books You May Enjoy

Preface
Linux Kernel Debugging is a modern, up-to-date take on the key topic of kernel and kernel
module debugging. It covers in detail various powerful open source tools, as well as many
advanced techniques (far beyond printk!), to debug the kernel, kernel modules, and
device drivers. This is a key skill that the professional developer must learn and possess.

Who this book is for
This book is for Linux kernel developers, module, device driver authors, and testers
interested in debugging and enhancing their Linux systems at the level of the kernel.
System administrators who want to understand and debug the internal infrastructure
of their Linux kernels will also find this book useful. A good hold on C programming
and the Linux command line is necessary. Some experience with kernel (module)
development will certainly benefit you.

What this book covers
Chapter 1, A General Introduction to Debugging Software, begins this journey by covering
what debugging software actually entails, how it's really a mix of science and art. A few
select software "horror stories" will serve to underline the importance of careful design,
good (and secure) coding, and the ability to debug issues. On the more practical side, you
will then set up the required workspace on your Linux system (or VM) so that you can –
very importantly – work upon examples and assignments that will follow later.

Chapter 2, Approaches to Kernel Debugging, covers various approaches that can be taken
to perform debugging at the level of kernel code. This will give you the insight to select
the best, or the most viable, approach(es) depending on your particular situation and
system constraints.

Chapter 3, Debug via Instrumentation – printk and Friends, refreshes the basics of using
the common kernel printk() API. Next, we go into specifics of how to leverage it for
the express purpose of kernel/driver debug via the instrumentation approach. The heart of
this chapter – the kernel's powerful dynamic debug framework and how you can leverage
it even in production – is then covered in detail.

xvi Preface

Chapter 4, Debug via Instrumentation – Kprobes, explains the kernel's powerfull Kprobes
framework, a means to – among other things – instrument the kernel and modules, by
hooking into pretty much any kernel or module function, even in production. This can
prove to be a practically useful way to debug systems during production.

Chapter 5, Debugging Kernel Memory Issues – Part 1, looks at memory bugs and
corruption – a very common issue when working with a language such as C. First, you'll
learn why this is, and, importantly, about the typical types of memory issues that tend to
arise in such systems. Next, you will learn how to tackle these memory issues head-on,
using the powerful compiler-based KASAN technology, as well as the kernel's compiler-
based UBSAN technology.

Chapter 6, Debugging Kernel Memory Issues – Part 2, continues the coverage of debugging
kernel memory issues. We delve in depth into the details of catching common memory
issues on slab (SLUB) memory and then detecting difficult kernel memory leakage bugs
with kmemleak. A detailed comparison between various memory corruption issues and
the appropriate tooling to detect them rounds off these two chapters.

Chapter 7, Oops! Interpreting the Kernel Bug Diagnostic, covers a key topic – what a kernel
"Oops" diagnostic message really is and, very importantly, how to interpret it in depth.
Along this interesting journey, you will generate a simple kernel Oops and understand
exactly how to interpret it. Further, several tools and techniques to help with this task will
be shown. Getting to the bottom of an Oops often helps pinpoint the root cause of the
kernel bug! A few actual Oops messages will also be pointed out.

Chapter 8, Lock Debugging, looks at an integral part of writing robust kernel or driver
code: locking. Unfortunately, it's really quite easy to land up with errors – deadlocks and
such – that are difficult to debug after the fact. This chapter skims over the basics of lock
debugging, instead spending the bulk of it on a really powerful modern tool that helps
uncover deep locking issues (data races) – the Kernel Concurrent Sanitizer (KCSAN).
Here, you'll learn how to configure the (debug) kernel for KCSAN, and how to use it in
detail. We round it off by delving into several actual instances of kernel bugs whose root
cause is locking issues.

Chapter 9, Tracing the Kernel Flow, introduces powerful technologies that allow you to
trace the flow of kernel code in detail, at the granularity of every function call made!
Usage of the primary kernel tracing infrastructure – ftrace – is covered first. You will then
learn how to use powerful frontends to ftrace: trace-cmd, the KernelShark GUI, and the
perf-tools collection. We wrap up this topic with an introduction to using LTTng (and
visualization with the TraceCompass GUI!) to perform kernel-level tracing and analysis.

Preface xvii

Chapter 10, Kernel Panic, Lockups, and Hangs, explains what kernel panic means precisely,
and about the code paths executed within the kernel when it panics. More importantly,
you'll learn how to write a custom kernel panic handler routine so that your code (also)
runs if and when the kernel does panic. Associated topics – detecting lockups and CPU /
work queue stalls, and hangs within the kernel – are covered as well.

Chapter 11, Using Kernel GDB (KGDB), introduces the powerful KGDB kernel source-level
debug framework. You will learn how to configure and set up KGDB, after which, you'll see
how to make use of it practically to debug kernel/module code at the level of the source,
setting breakpoints, hardware watchpoints, leveraging GDB Python scripts, and more.

Chapter 12, A Few More Kernel Debugging Approaches, rounds off this vast topic of
kernel debugging by introducing other approaches you can – and at times should – use.
This includes understanding what the powerful (though resource-intensive) Kdump/crash
tooling is, which can at times be a lifesaver. Then, we introduce you to why static analysis
is key, and the available tools for analyzing Linux kernel/module/driver code.
An introduction to code coverage and kernel testing frameworks follows. We round off
the discussion with an introduction to logging (via journalctl), kernel assertions, and
warning macros.

To get the most out of this book
We assume you're familiar with programming in C and are comfortable working on the
Linux command line (the shell). Even minimal experience writing kernel code or modules
(drivers) will certainly help as well, though it isn't mandatory.

In terms of the software workspace setup, we cover this in detail in Chapter 1, A General
Introduction to Debugging Software, in the Setting up the workspace section.

If you are using the digital version of this book, we advise you to type the code yourself
or access the code from the book's GitHub repository (a link is available in the next
section). Doing so will help you avoid any potential errors related to the copying and
pasting of code.

Being software, and a pretty hands-on activity like debugging it, we highly recommend you
read the book in a hands-on manner, trying out the demos and examples covered as you
go. Be sure to work on the few exercises mentioned within the chapters as well. When you
finish this book, your real journey will just begin! With the key knowledge we're hoping,
indeed betting, you gain herein, it should be that much easier and sweeter an experience.

xviii Preface

Download the example code files
You can download the example code files for this book from GitHub at https://
github.com/PacktPublishing/Linux-Kernel-Debugging. If there's an
update to the code, it will be updated in the GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at
https://github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots and diagrams used in
this book. You can download it here: https://packt.link/2zUIX.

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles.
Here is an example: "The end result is the kernel configuration file saved as .config in
the root of the kernel source tree."

A block of code is set as follows:

#include <linux/init.h>

#include <linux/module.h>

#include <linux/kernel.h>

[...]

static int __init printk_loglevels_init(void)

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

 if (lotype & (1<<5)) {

 pr_emerg("CPU#%d: Possible thermal failure (CPU on fire
?).\n", smp_processor_id());

 }

https://github.com/PacktPublishing/Linux-Kernel-Debugging
https://github.com/PacktPublishing/Linux-Kernel-Debugging
https://github.com/PacktPublishing/
https://packt.link/2zUIX

Preface xix

Any command-line input or output is written as follows:

sudo apt update

sudo apt upgrade

sudo apt install build-essential dkms linux-headers-$(uname –r)
ssh -y

Bold: Indicates a new term, an important word, or words that you see onscreen. For
instance, words in menus or dialog boxes appear in bold. Here is an example: "Select
System info from the Administration panel."

Tips or Important Notes
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at
customercare@packtpub.com and mention the book title in the subject of
your message.

Errata: Although we have taken every care to ensure the accuracy of our content,
mistakes do happen. If you have found a mistake in this book, we would be grateful if
you would report this to us. Please visit www.packtpub.com/support/errata
and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet,
we would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise
in and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

http://www.packtpub.com/support/errata

xx Preface

Share Your Thoughts
Once you've read Linux Kernel Debugging, we'd love to hear your thoughts! Please click
here to go straight to the Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we're
delivering excellent quality content.

https://packt.link/r/1801075034
https://packt.link/r/1801075034

Part 1:
A General

Introduction and
Approaches to

Kernel Debugging

In this section, you'll get an introduction to what debugging software really is about, along
with several real-world examples of software going wrong. This is followed by the setup
of the Linux kernel debugging workspace (including building debug and production
kernels). Then, we delve into various approaches to kernel debugging.

The following chapters will be covered in this section:

• Chapter 1, A General Introduction to Debugging Software

• Chapter 2, Approaches to Kernel Debugging

1
A General

Introduction to
Debugging Software

Hello there! Welcome on this journey of learning how to go about debugging a really
sophisticated, large, and complex piece of software that's proven absolutely critical to
big businesses as well as tiny embedded systems and everything in between – the
Linux kernel.

Let's begin this very first chapter, and our journey of kernel debugging, by first
understanding a little more about what a bug really is, and the origins and myths of the
term debugging. Next, a glimpse at some actual real-world software bugs will (hopefully)
provide the required inspiration and motivation (to firstly avoid bugs and then to find and
fix bugs, of course). You will be guided on how to set up an appropriate workspace to work
on a custom kernel and debug issues, including setting up a full-fledged debug kernel.
We'll wrap up with some useful tips on debugging.

4 A General Introduction to Debugging Software

In this chapter, we're going to cover the following main topics:

• Software debugging – what it is, origins, and myths

• Software bugs – a few actual cases

• Setting up the workspace

• Debugging – a few quick tips

Technical requirements
You will require a modern and powerful desktop or laptop. We tend to use Ubuntu
20.04 LTS running on an x86_64 Oracle VirtualBox Virtual Machine (VM) as the
primary platform for this book. Ubuntu Desktop specifies the recommended minimum
system requirements (https://help.ubuntu.com/community/Installation/
SystemRequirements) for the installation and usage of the distribution; do refer to
those specifications to verify that your system (even a guest) is up to it. The Running Linux
as a guest OS section covers the details.

Cloning this book's code repository
The complete source code for this book is freely available on GitHub at https://
github.com/PacktPublishing/Linux-Kernel-Debugging. You can work on
it by cloning the Git tree using the following command:

git clone https://github.com/PacktPublishing/Linux-Kernel-
Debugging

The source code is organized chapter-wise. Each chapter is represented as a directory
in the repository – for example, ch1/ has the source code for this chapter. A detailed
description of installing a viable system is covered in the Setting up the workspace section.

https://help.ubuntu.com/community/Installation/SystemRequirements
https://help.ubuntu.com/community/Installation/SystemRequirements
https://github.com/PacktPublishing/Linux-Kernel-Debugging
https://github.com/PacktPublishing/Linux-Kernel-Debugging

Software debugging – what it is, origins, and myths 5

Software debugging – what it is, origins,
and myths
In the context of a software practitioner, a bug is a defect or an error within code. A key,
and often large, part of our job as software developers is to hunt them down and fix them,
so that, as far as is humanely possible, the software is defect-free and runs precisely
as designed.

Of course, to fix a bug, you first have to find it. Indeed, with non-trivial bugs, it's often
the case that you aren't even aware there is a bug (or several) until some event occurs
to expose it! Shouldn't we have a disciplined approach to finding bugs before shipping
a product or project? Of course we should (and do) – it's the Quality Assurance (QA)
process, more commonly known as testing. Though glossed over at times, testing
remains one of the – if not the – most important facets of the software life cycle. (Would
you voluntarily fly in a new aircraft that's never been tested? Well, unless you're the lucky
test pilot...)

Okay, back to bugs; once identified (and filed), your job as a software developer is to then
identify what exactly is causing them – what the actual underlying root cause is. A large
portion of this book is devoted to tools, techniques, and just thinking about how to do this
exactly. Once the root cause is identified, and you have clearly understood the underlying
issue, you will, in all probability, be able to fix it. Yay!

This process of identifying a bug – using tools, techniques, and some hard thinking
to figure out its root cause – and then fixing it is subsumed into the word debugging.
Without bothering to go into details, there's a popular story regarding the origin of the
word debugging: on a Tuesday at Harvard University (on September 9, 1947), Admiral
Grace Hopper's staff discovered a moth caught in a relay panel of a Mark II computer.
As the system malfunctioned because of it, they removed the moth, thus de-bugging the
system! Well, as it turns out: one, Admiral Hopper has herself stated that she didn't coin
the term, debugging; two, its origins seem to be rooted in aeronautics. Nevertheless, the
term debugging has stuck.

6 A General Introduction to Debugging Software

The following figure shows the picture at the heart of this story – the unfortunate
but posthumously famous moth that inadvertently caught itself in the system that
had to be debugged!

Figure 1.1 – The famous moth (by courtesy of the Naval Surface Warfare Center, Dahlgren, VA., 1988.
- U.S. Naval Historical Center Online Library Photograph NH 96566-KN. Public Domain, https://

commons.wikimedia.org/w/index.php?curid=165211)

Having understood what a bug and debugging basically are, let's move on to something
both interesting and important – we'll briefly examine a few real-world cases where a
software bug (or bugs) has been the cause of some unfortunate and tragic accidents.

Software bugs – a few actual cases 7

Software bugs – a few actual cases
Using software to control electro-mechanical systems is not only common, it's pretty
much all-pervasive in today's world. The unfortunate reality though, is that software
engineering is a relatively young field and that we humans are naturally prone to making
mistakes. These factors can combine to create unfortunate accidents when software
doesn't execute conforming to its design (which, of course, leads to it being called buggy).

Several real-world examples of this occurring exist; we highlight a few of them in the
following sub-sections. The brief synopsis given here is really just that – (too) brief: to
truly understand the complex issues behind failures like this, you do need to take the trouble
to study the technical crash (or failure) investigation reports in detail (do see the links in the
Further reading section of this chapter). Here, I briefly mention and summarize these cases
to, one, underline the fact that software failures, even in large, heavily tested systems, can
and do occur, and two, to motivate all of us involved in any part of the software life cycle
to pay closer attention, to stop making assumptions, and to do a better job of designing,
implementing, and testing the software we work on.

Patriot missile failure
During the Gulf War, the US deployed a Patriot missile battery in Dharan, Saudi Arabia.
Its job was to track, intercept, and destroy incoming Iraqi Scud missiles. But, on February
25, 1991, a Patriot system failed to do so, causing the death of 28 soldiers and injury to
about 100 others. An investigation revealed that the problem's root was at the heart of
the software tracking system. Briefly, the system uptime was tracked as a monotonically
increasing integer value. It was converted to a real – floating-point – value by multiplying
the integer by 1/10 (which is a recurring binary expression evaluating to 0.000110011001
10011001100110011001100...; a quick online calculator's available here: http://www.
easysurf.cc/fracton2.htm). The trouble is, the computer used a 24-bit (integer)
register for this conversion, resulting in the computation being truncated at 24 bits. This
caused a loss of precision, which only became significant when the time quantity was
sufficiently large.

This was exactly the case that day. The Patriot system had been up for about 100 hours,
thus, the loss of precision during the conversion translated to an error of approximately
0.34 seconds. Doesn't sound like much, except that a Scud missile's velocity is about 1,676
meters per second, thus resulting in a tracking error of about 570 meters. This was large
enough for the Scud to be outside the Patriot tracking system's range gate and it was thus
not detected. Again, a case of loss of precision during conversion from an integer value to
a real (floating-point) number value.

http://www.easysurf.cc/fracton2.htm
http://www.easysurf.cc/fracton2.htm

8 A General Introduction to Debugging Software

The ESA's unmanned Ariane 5 rocket
On the morning of June 4, 1996, the European Space Agency's (ESA's) Ariane 5
unmanned rocket launcher took off from the Guiana Space Centre, off the South
American coast of French Guiana. A mere 40 seconds into its flight, the rocket lost control
and exploded. The final investigation report revealed that the primary cause ultimately
came down to a software overflow error.

It's more complex than that; a brief summary of the chain of events leading to the loss of
the rocket follows. (In most cases like this, it's not one single event that causes an accident;
rather, it's a chain of several events.) The overflow error occurred during the execution of
code converting a 64-bit floating-point value to a 16-bit signed integer; an unprotected
conversion gave rise to an exception (Operand Error; the programming language was
Ada). This, in turn, occurred due to a much higher than expected internal variable value
(BH – Horizontal Bias). The exception caused the shutdown of the Inertial Reference
Systems (SRIs). This caused the primary onboard computer (OBC) to send erroneous
commands to the nozzle deflectors resulting in full nozzle deflection of the boosters and
the main Vulcain engine, which caused the rocket to veer dramatically off its flight path.

The irony is that the SRIs were, by default, not even supposed to function after launch;
but due to a delay in the launch window, the design specified that they remain active for
50 seconds after launch! An interesting analysis of why this software exception wasn't
caught during development and testing (https://archive.eiffel.com/doc/
manuals/technology/contract/ariane/) boils down to concluding that the
fault lay in a reuse error:

"The SRI horizontal bias module was reused from a 10-year-old software, the software
from Ariane 4."

Mars Pathfinder reset issue
On July 4, 1997, NASA's Pathfinder lander touched down on the surface of Mars and
proceeded to deploy its smaller robot cousin – the Sojourner rover, the very first wheeled
device to embark upon another planet! The lander suffered from periodic reboots;
the problem was ultimately diagnosed as being a classic case of priority inversion – a
situation where a high-priority task is made to wait for lower-priority tasks. As such, this
by itself may not cause an issue; the trouble is that the high-priority task was left off the
CPU long enough for the watchdog timer to expire, causing the system to reboot.

https://archive.eiffel.com/doc/manuals/technology/contract/ariane/
https://archive.eiffel.com/doc/manuals/technology/contract/ariane/

Software bugs – a few actual cases 9

An irony here was that there exists a well-known solution – enabling the priority
inheritance feature of the semaphore object (allowing the task taking the semaphore
lock to have its priority raised to the highest on the system for the duration for which it
holds the lock, thus enabling it to complete its critical section and release the lock quickly,
preventing starvation of higher-priority tasks). The VxWorks RTOS employed here
defaulted to having the priority inheritance attribute turned off and the Jet Propulsion
Laboratory (JPL) team left it that way. As they (very deliberately) allowed the robot to
continuously stream telemetry debug data to Earth, they were able to correctly determine
the root cause and thus fix it – by enabling the semaphore priority inheritance feature. An
important lesson here is this one, as the team lead Glenn Reeves put it:

"We test what we fly and we fly what we test."

I'd venture that these articles (see the Further reading section) are a must-read for any
system software developer!

The Boeing 737 MAX aircraft – the MCAS and lack of
training of the flight crew
Two unfortunate accidents, taking 346 lives in all, put the Boeing 737 MAX under the
spotlight: the crash of Lion Air Flight 610 from Jakarta into the Java Sea (October 29,
2018) and the crash of Ethiopian Airlines Flight 302 from Nairobi into the desert (March
10, 2019). These incidents occurred just 13 and 6 minutes after take-off, respectively.

Of course, the situation is complex. At one level, this is what likely caused these accidents:
once Boeing determined that the aerodynamic characteristics of the 737 MAX left
something to be desired, they worked on fixing it via a hardware approach. When that
did not suffice, engineers came up with (what seemed) an elegant and relatively simple
software fix, christened the maneuvering characteristics augmentation system (MCAS).
Two sensors on the aircraft's nose continually measure the aircraft's angle of attack
(AoA). When the AoA is determined to be too high, this typically entails a pending
stall (dangerous!). The MCAS kicks in, (aggressively) moving control surfaces on the
tail elevator, causing the nose to go down, and stabilizing the aircraft. But, for whatever
reasons, the MCAS was designed to use only one of the sensors! If the sensor failed,
the MCAS could automatically activate, causing the nose to go down and the aircraft to
rapidly lose altitude; this is what seems to have actually occurred in both crashes.

Further, many pilot crews weren't explicitly trained in managing the MCAS (some
claimed they weren't even aware of it!). The luckless flights' pilots apparently did not
manage to override the MCAS, even when no actual stall occurred.

10 A General Introduction to Debugging Software

Other cases
A few other examples of such cases are as follows:

• June 2002, Fort Drum: a US Army report maintained that a software issue
contributed to the death of two soldiers. This incident occurred when they were
training to fire artillery shells. Apparently, unless the target altitude is explicitly
entered into the system, the software assumes a default of zero. Fort Drum is
apparently 679 feet above sea level.

• In November 2001, a British engineer, John Locker, noticed that he could easily
intercept American military satellite feeds – live imagery of US spy planes over the
Balkans. The almost unbelievable reason was the stream was being transmitted
unencrypted, enabling pretty much anyone in Europe with a regular satellite TV
receiver to see it! In today's context, many IoT devices have similar issues...

• Jack Ganssle, a veteran and widely known embedded systems developer and author,
brings out the excellent TEM – The Embedded Muse – newsletter bi-monthly. Every
issue has a section entitled Failure of the Week, typically highlighting a hardware
and/or software failure. Do check it out!

• Read the web page on Software Horror Stories here (http://www.cs.tau.
ac.il/~nachumd/horror.html); though old, it provides many examples of
software gone wrong with, at times, tragic consequences.

• A quick Google search on Linux kernel bug stories yields interesting results:
https://www.google.com/search?q=linux+kernel+bug+story.

Again, if interested in digging deeper, I urge you to read the detailed official reports on
these accidents and faults; the Further reading section has several relevant links.

By now, you should be itching to begin debugging on Linux! Let's do just that – begin –
by first setting up the workspace.

Setting up the workspace
Firstly, you'll have to decide whether to run your test Linux system as a native system (on
the bare metal) or as a guest OS. We'll cover the factors that will help you decide. Next, we
(briefly) cover the installation of some software (the guest additions) for a case where you
use a guest Linux OS, followed by the required software packages to install.

http://www.cs.tau.ac.il/~nachumd/horror.html
http://www.cs.tau.ac.il/~nachumd/horror.html
https://www.google.com/search?q=linux+kernel+bug+story

Setting up the workspace 11

Running Linux as a native or guest OS
Ideally, you should run a recent Linux distribution (Ubuntu, Fedora, and so on) on
native hardware. We tend to use Ubuntu 20.04 LTS in this book as the primary system to
experiment upon. The more powerful your system – in terms of RAM, processing power,
and disk space – the better! Of course, as we shall be debugging at the level of the kernel,
crashes and even data loss (the chances of the latter are small, but nevertheless...) can
occur; hence, the system should be a test one with no valuable data on it.

If running Linux on native hardware – on the bare metal, as it were – isn't feasible for you,
then a practical and convenient alternative is to install and use the Linux distribution as a
guest OS, a VM. It's important to install a recent Linux distribution.

Running a Linux guest as a VM is certainly feasible but (there's always a but isn't there?!),
it will almost certainly feel a lot slower than running Linux natively. Still, if you must
run a Linux guest, it certainly works. It goes without saying that the more powerful
your host system, the better the experience. There's also an arguable advantage to
running your test system as a guest OS: even if it does crash (please do expect that to
happen, especially with the deliberate (de)bugging we'll do in this book!), you don't even
need to reboot the hardware; merely reset the hypervisor software running the guest
(typically Oracle VirtualBox).

Alternate Hardware – Using Raspberry Pi (and Other) ARM-Based Systems
Though we specified that you can run a recent Linux distro either as a native
system or as a guest VM, the assumption was that it's an x86_64 system. While
that suffices, to get more out of the experience of this book (and simply to
have more fun), I highly recommend you also try out the sample code and
run the (buggy) test cases on alternate architectures. With many, if not most,
modern embedded Linux systems being ARM-based (on both 32-bit ARM and
64-bit AArch64 processors), the Raspberry Pi hardware is extremely popular,
relatively cheap, and has tremendous community support, making it an ideal
test bed. I do use it every now and then within this book, in the chapters that
follow; I'd recommend you do the same!

All the details – installation, setup, and so on – are amply covered in the well-
documented Raspberry Pi documentation pages here: https://www.
raspberrypi.org/documentation/.

Ditto for another popular embedded prototyping board - TI's BeagleBone
Black (affectionately, the BBB). This site is a good place to get started with the
BBB: https://beagleboard.org/black.

https://www.raspberrypi.org/documentation/
https://www.raspberrypi.org/documentation/
https://beagleboard.org/black

12 A General Introduction to Debugging Software

Running Linux as a guest OS
If you do decide to run Linux as an x86_64 guest, I'd recommend using Oracle VirtualBox
6.x (or the latest stable version) as a comprehensive and powerful all-in-one GUI
hypervisor application appropriate for a desktop PC or laptop. Other virtualization
software, such as VMware Workstation or QEMU, should also be fine. All of these are
freely available and open source. It's just that the code for this book has been tested on
Oracle VirtualBox 6.1. Oracle VirtualBox is considered Open Source Software (OSS) and
is licensed under the GPL v2 (the same as the Linux kernel). You can download it from
https://www.virtualbox.org/wiki/Downloads. Its documentation can be
found here: https://www.virtualbox.org/wiki/End-user_documentation.

The host system should be either MS Windows 10 or later (of course, even Windows 7 will
work), a recent Linux distribution (for example, Ubuntu or Fedora), or macOS.

The guest (or native) Linux distribution can be any sufficiently recent one. For the purpose
of following along with the material and examples presented in this book, I'd recommend
installing Ubuntu 20.04 LTS. This is what I primarily use for the book.

How can you quickly check which Linux distribution is currently
installed and running?
On Debian/Ubuntu, the lsb_release –a command should do the trick; for example,
on my guest Linux:

$ lsb_release –a 2> /dev/null

Distributor ID: Ubuntu

Description: Ubuntu 20.04.2 LTS

Release: 20.04

Codename: focal

$

How can you check if the Linux currently running is on native hardware or is a guest VM
(or a container)? There are many ways to do so. The script virt-what is one (we will be
installing it). Other commands include hostnamectl(1), dmidecode(8) (on x86),
systemd-detect-virt(1) (if systemd is the initialization framework), lshw(1)
(x86, IA-64, PPC), raw ways via dmesg(1) (grepping for Hypervisor detected),
and via /proc/cpuinfo.

https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/End-user_documentation

Setting up the workspace 13

In this book, I shall prefer to focus on setting up what is key from a kernel debug
perspective; hence, we won't discuss the in-depth details of installing a guest VM
(typically on a Windows host running Oracle VirtualBox) here. If you require some help,
please refer to the many links to tutorials on precisely this within the Further reading
section of this chapter. (FYI, these installation details, and a lot more, are amply covered
in my previous book Linux Kernel Programming, Chapter 1, Kernel Workspace Setup).

Tip – Using Prebuilt VirtualBox Images
The OSBoxes project allows you to freely download and use prebuilt
VirtualBox (as well as VMware) images for popular Linux distributions.
See their site here: https://www.osboxes.org/virtualbox-
images/.

In our case, you can download a prebuilt x86_64 Ubuntu 20.04.3 (as well as
others) Linux image here: https://www.osboxes.org/ubuntu/. It
comes with the guest additions preinstalled! The default username/password is
osboxes/osboxes.org.

(Of course, for more advanced readers, you'll realize it's really up to you.
Running an as-light-as-possible custom Linux system on a Qemu (emulated)
standard PC is a choice as well.)

Note that if your Linux system is installed natively on the hardware platform, you're using
an OSBoxes Linux distro with the VirtualBox guest additions preinstalled, or you're using
a Qemu-emulated PC, simply skip the next section.

Installing the Oracle VirtualBox guest additions
The guest additions are essentially software (para-virtualization accelerators) that quite
dramatically enhance the performance, as well as the look and feel, of the experience of
running a guest OS on the host system; hence, it's important to have it installed. (Besides
acceleration, the guest additions provide conveniences such as the ability to nicely scale
the GUI window and share facilities such as folders, the clipboard, and to drag and drop
between the host and the guest.)

https://www.osboxes.org/virtualbox-images/
https://www.osboxes.org/virtualbox-images/
https://www.osboxes.org/ubuntu/

14 A General Introduction to Debugging Software

Before doing this though, please ensure you have already installed the guest VM (as
mentioned previously). Also, the first time you log in, the system will likely prompt you to
update and possibly restart; please do so. Then, follow along:

1. Log in to your Linux guest VM (I'm using the login name letsdebug; guess why!)
and first run the following commands within a Terminal window (on a shell):

sudo apt update

sudo apt upgrade

sudo apt install build-essential dkms linux-headers-
$(uname –r) ssh -y

(Ensure you run each of the preceding commands on one line.)
2. Install the Oracle VirtualBox Guest Additions now. Refer to How to Install

VirtualBox Guest Additions in Ubuntu: https://www.tecmint.com/
install-virtualbox-guest-additions-in-ubuntu/.

3. On Oracle VirtualBox, to ensure that you have access to any shared folders you
might have set up, you need to set the guest account to belong to the vboxsf
group; you can do so like this (once done, you'll need to log in again, or sometimes
even reboot, to have this take effect):

sudo usermod -G vboxsf -a ${USER}

The commands (step 1), after updating, have us install the build-essential
package along with a couple of others. This ensures that the compiler (gcc), make, and
other essential build utility programs are installed so that the Oracle VirtualBox Guest
Additions can be properly installed straight after (in step 2).

Installing required software packages
To install the required software packages, perform the following steps (do note that, here,
we assume the Linux distribution is our preferred one, Ubuntu 20.04 LTS):

1. Within your Linux system (be it a native one or a guest OS), first do the following:

sudo apt update

Now, to install the remaining required packages for the kernel build, run the
following command in a single line:

sudo apt install bison flex libncurses5-dev ncurses-dev
xz-utils libssl-dev libelf-dev util-linux tar -y

https://www.tecmint.com/install-virtualbox-guest-additions-in-ubuntu/
https://www.tecmint.com/install-virtualbox-guest-additions-in-ubuntu/

A tale of two kernels 15

(The -y option switch has apt assume a yes answer to all prompts; careful though,
this could be dangerous in other circumstances.)

2. To install the packages required for work we'll do in other parts of this book, run
the following command in a single line:

sudo apt install bc bpfcc-tools bsdmainutils clang cmake
cppcheck cscope curl \

dwarves exuberant-ctags fakeroot flawfinder git gnome-
system-monitor gnuplot \

hwloc indent kernelshark libnuma-dev libjson-c-dev linux-
tools-$(uname -r) \

net-tools numactl openjdk-16-jre openssh-server perf-
tools-unstable psmisc \

python3-distutils rt-tests smem sparse stress sysfsutils
tldr-py trace-cmd \

tree tuna virt-what -y

A point to mention: all the packages mentioned above aren't strictly required in order for
you to work on this book; some are those we encounter just once or twice.

Tip – A Script to Auto-Install Required Packages
To make the (immediately above-mentioned) package install task simpler,
you can make use of a simple bash script that's part of the GitHub repository
for this book: pkg_install4ubuntu_lkd.sh. It's been tested on an
x86_64 OSBoxes Ubuntu 20.04.3 LTS VM (running on Oracle VirtualBox 6.1).

FYI, to check which packages are taking up the most space, install the wajig
package and run this: sudo wajig large.

Great; now that the packages are installed, let's proceed with understanding the next
portion of our workspace setup – the need for two kernels!

A tale of two kernels
When working on a project or product, there obviously will be a Linux kernel that will be
deployed as part of the overall system.

Requirements for a Working Linux System
A quick aside: a working Linux system minimally requires a bootloader, a
kernel, and root filesystem images. Additionally, typical arm/arm64/ppc
systems require a Device Tree Blob (DTB) as well.

16 A General Introduction to Debugging Software

This system that's deployed to the outside world is, in general, termed the production
system and the kernel the production kernel. Here, we'll limit our discussion to the
kernel only. The configuration, build, test, debug, and deployment of the production
kernel is, no doubt, a key part of the overall project.

Do note though, that in many systems (especially the enterprise-class ones), the
production kernel is often simply the default kernel that's supplied by the vendor (Red
Hat, SUSE, Canonical, or others). On most embedded Linux projects and products, this
is likely not the case: the platform (or Board Support Package (BSP)) team or a vendor
will select a base mainline kernel (typically from kernel.org) and customize it. This
can include enhancements, careful configuration, and deployment of the custom-built
production kernel.

For the purpose of our discussion, let's assume that we need to configure and build a
custom kernel.

A production and a debug kernel
However (and especially after having read the earlier Software bugs – a few actual cases
section), you will realize that there's always the off-chance that even the kernel – more
likely the code you and your team added to it (the kernel modules, drivers, interfacing
components) – has hidden faults (bugs). With a view to catching them before the system
hits the field, thorough testing/QA is of prime importance!

Now, the issue is this: unless certain deeper checks are enabled within the kernel itself,
it's entirely possible that they can escape your test cases. So, why not simply enable them?
Well, one, these deeper checks are typically switched off by default in the production
kernel's configuration. Two, when turned on, they do result in performance degradation,
at times quite significantly.

So, where does that leave us? Simple, really: you should plan on working with at least
two, and possibly three, kernels:

• One, a carefully tuned production kernel, geared toward efficiency, security, and
performance.

• Two, a carefully configured debug kernel, geared toward catching pretty much all
kinds of (kernel) bugs! Performance is not a concern here, catching bugs is.

• Three (optional, case by case): a production kernel with one or more very specific
debug options enabled and the rest turned off.

A tale of two kernels 17

The second one, the so-called debug kernel, is configured in such a way that all required
or recommended debug options are turned on, enabling you to (hopefully!) catch those
hidden bugs. Of course, performance might suffer as a result, but that's okay; catching
– and subsequently fixing – kernel-level bugs is well worth it. Indeed, in general, during
development and (unit) testing, performance isn't paramount; catching and fixing
deeply hidden bugs is! We do understand that, at times, bugs need to be reproduced and
identified on the production kernel itself. The third option mentioned above can be a life-
saver here.

The debug kernel is only used during development, testing, and very possibly later when
bugs do actually surface. How exactly it's used later is something we shall certainly cover
in the course of this book.

Also, this point is key: it usually is the case that the mainline (or vanilla) kernel that
your custom kernel is based upon is working fine; the bugs are generally introduced via
custom enhancements and kernel modules. As you will know, we typically leverage the
kernel's Loadable Kernel Module (LKM) framework to build custom kernel code – the
most common being device drivers. It can also be anything else: custom network filters/
firewalls, a new filesystem, or I/O scheduler. These are out-of-tree kernel components
(typically some .ko files) that become part of the root filesystem (they're usually installed
in /lib/modules/$(uname –r)). The debug kernel will certainly help catch bugs in
your kernel modules as their test cases are executed, as they run.

The third kernel option – an in-between of the first two – is optional of course. From
a practical real-world point of view, it may be exactly what's required on a given setup.
With certain kernel debug systems turned on, to catch specific types of bugs that you're
hunting (or anticipate) and the rest turned off, it can be a pragmatic way to debug even a
production system, keeping performance high enough.

For practical reasons, in this book, we'll configure, build, and make use of the first two
kernels – a custom production one and a custom debug one, only; the third option is
yours to configure as you gain experience with the kernel debug features and tools as well
as your particular product or project.

Which kernel release should you use?
The Linux kernel project is often touted as the most successful open source project ever,
with literally hundreds of releases and a release cadence that's truly phenomenal for such
an enormous project (it averages a new release every 6 to 8 weeks!). Among all of them,
which one should we use (as a starting point, at least)?

18 A General Introduction to Debugging Software

It's really important to use the latest stable kernel version, as it will include all the latest
performance and security fixes. Not just that, the kernel community has different release
types, which determine how long a given kernel release will be maintained (with bug and
security fixes being applied, as they become known). For typical projects or products,
selecting the latest Long Term Stable (LTS) kernel release thus makes the best sense. Of
course, as already mentioned, on many projects – typically, the server-/enterprise-class
ones – the vendor (Red Hat, SUSE, and others) might well supply the production kernel to
be used; here, for the purpose of our learning, we'll start from scratch and configure and
build a custom Linux kernel ourselves (as is often the case on embedded projects).

As of when I wrote this chapter, the latest LTS Linux kernel is 5.10 (particularly, version
5.10.60); I shall use this kernel throughout this book. (You will realize that by the time
you're reading this, it's entirely possible – in fact pretty much guaranteed – that the latest
LTS kernel has evolved to a newer version).

Important – Security
It's already happened of course. Now, it's March 2022, I'm writing the tenth
chapter, the latest 5.10 LTS kernel is 5.10.104, and guess what? A serious
and critical vulnerability (vuln) has emerged in recent Linux kernels –
including 5.10.60! – christened Dirty Pipe. Details: New Linux bug gives
root on all major distros, exploit released, Mar 2022: https://www.
bleepingcomputer.com/news/security/new-linux-bug-
gives-root-on-all-major-distros-exploit-released/.
Here's an explanation by the person who found and reported the vuln
(a must read!): The Dirty Pipe Vulnerability, Max Kellerman: https://
dirtypipe.cm4all.com/.

(It's also very interesting – the fix comes down to 2 lines – initializing
a local variable to 0!: https://lore.kernel.org/
lkml/20220221100313.1504449-1-max.kellermann@
ionos.com/.)

The upshot of all this: I recommend you use a fixed kernel (as of now, kernel
versions 5.16.11, 5.15.25, and 5.10.102 are fixed). Since this book is based
on the 5.10 LTS kernel, I thus highly recommend you use a version 5.10
LTS kernel, specifically, version 5.10.102 or later. (The material, of course,
continues to be based on 5.10.60; besides the security implication, which
of course really matters on actual production systems, the technical details
remain identical.)

Besides, a key point in our favor – the 5.10 LTS kernel will be supported by the community
until December 2026, thus keeping it relevant and valid for a pretty long time!

https://www.bleepingcomputer.com/news/security/new-linux-bug-gives-root-on-all-major-distros-exploit-released/
https://www.bleepingcomputer.com/news/security/new-linux-bug-gives-root-on-all-major-distros-exploit-released/
https://www.bleepingcomputer.com/news/security/new-linux-bug-gives-root-on-all-major-distros-exploit-released/
https://dirtypipe.cm4all.com/
https://dirtypipe.cm4all.com/
https://lore.kernel.org/lkml/20220221100313.1504449-1-max.kellermann@ionos.com/
https://lore.kernel.org/lkml/20220221100313.1504449-1-max.kellermann@ionos.com/
https://lore.kernel.org/lkml/20220221100313.1504449-1-max.kellermann@ionos.com/

A tale of two kernels 19

So, great – let's get to configuring and building both our custom production and debug
5.10 kernels! We'll begin with the production one.

Setting up our custom production kernel
Here, I shall have to assume you are familiar with the general procedure involved in
building a Linux kernel from source: obtaining the kernel source tree, configuring it, and
building it. In case you'd like to brush up on this, the Linux Kernel Programming book
covers this in a lot of detail. As well, do refer to the tutorials and links in the Further
reading section of this chapter.

Though this is meant to be our production kernel, we'll begin with a rather simplistic
default that's based on the existing system (this approach is sometimes called the tuned
kernel config via the localmodconfig one. FYI, this, and a lot more, is covered in depth
in the Linux Kernel Programming book). Once we've got a reasonable starting point, we'll
further tune the kernel for security. Let's begin by performing some base configuration:

1. Create a new directory in which you'll work upon the upcoming production kernel:

mkdir –p ~/lkd_kernels/productionk

Bring in the kernel source tree of your choice. Here, as mentioned in Which kernel
release should you use?, we shall use the latest (at the time of writing this) LTS Linux
kernel, version 5.10.60:

cd ~/lkd_kernels

wget https://mirrors.edge.kernel.org/pub/linux/kernel/
v5.x/linux-5.10.60.tar.xz

Notice that here we have simply used the wget utility to bring in the compressed
kernel source tree; there are several alternate ways (including using git).

Note
As you'll know, the number in parentheses following the command name – for
example, wget(1) – is the section within the manual or man pages where
documentation on this command can be found.

2. Extract the kernel source tree:

tar xf linux-5.10.60.tar.xz --directory=productionk/

20 A General Introduction to Debugging Software

3. Switch to the directory it's just been extracted into (using cd linux-5.10.60)
and briefly verify the kernel version information as shown in the following
screenshot:

Figure 1.2 – Screenshot of the LTS kernel source tree
Every kernel version is christened with a (rather exotic) name; our 5.10.60 LTS
kernel has an appropriately nice name – Dare mighty things – don't you think?

4. Configure for appropriate defaults. This is what you can do to obtain a decent, tuned
starting point for the kernel config based on the current config:

lsmod > /tmp/lsmod.now

make LSMOD=/tmp/lsmod.now localmodconfig

Note
The preceding command might interactively ask you to specify some choices;
just selecting the defaults (by pressing the Enter key) is fine for now. The end
result is the kernel configuration file saved as .config in the root of the
kernel source tree (the current directory).

We back up the config file as follows:
cp –af .config ~/lkd_kernels/kconfig_prod01

Tip
You can always do make help to see the various options (including config)
available; experienced readers can use alternate config options that better suit
their project.

A tale of two kernels 21

Before jumping into the building of our production kernel, it's really important to
consider the security aspect. Let's first configure our kernel to be more secure, hardened.

Securing your production kernel
With security being a major concern, the modern Linux kernel has many security and
kernel hardening features. The thing is, there always tends to be a trade-off between
security and convenience/performance. Thus, many of these hardening features are off by
default; several are designed as an opt-in system: if you want it, turn it on by selecting it
from the kernel config menu (via the familiar make menuconfig UI). It makes sense to
do this, especially on a production kernel.

The question is: how will I know exactly which config features regarding security to turn on
or off? There's literature on this and, better, some utility scripts that examine your existing
kernel config and can make recommendations based on existing state-of-the-art security
best practices! One such tool is Alexander Popov's kconfig-hardened-check Python
script (https://github.com/a13xp0p0v/kconfig-hardened-check). Here's
a screenshot of installing and running it plus a portion of its output, when I ran it against
my custom kernel configuration file:

Figure 1.3 – Partial screenshot – truncated output from the kconfig-hardened-check script

https://github.com/a13xp0p0v/kconfig-hardened-check

22 A General Introduction to Debugging Software

(We won't be attempting to go into details regarding the useful kconfig-hardened-
check script here, as it's beyond this book's scope. Do look up the GitHub link provided
to see details.) Having followed most of the recommendations from this script, I generated
a kernel config file:

$ ls -l .config

-rw-r--r-- 1 letsdebug letsdebug 156781 Aug 19 13:02

.config

$

Note
My kernel config file for the production kernel can be found in the
book's GitHub code repository here: https://github.com/
PacktPublishing/Linux-Kernel-Debugging/blob/main/
ch1/kconfig_prod01. (FYI, the custom debug kernel config file that
we'll be generating in the following section can be found within the same folder
as well.)

Now that we have appropriately configured our custom production kernel, let's build
it. The following commands should do the trick (with nproc helping us determine the
number of CPU cores onboard):

$ nproc

4

$ make -j8

[...]

BUILD arch/x86/boot/bzImage

Kernel: arch/x86/boot/bzImage is ready (#1)

$

Cross Compiling the kernel
If you're working on a typical embedded Linux project, you will need to
install an appropriate toolchain and cross-compile the kernel. As well, you'd
set the environment variable ARCH to the machine type (for example,
ARCH=arm64) and the environment variable CROSS_COMPILE to the
cross-compiler prefix (for example, CROSS_COMPILE=aarch64-none-
linux-gnu-). Your typical embedded Linux builder systems – Yocto and
Buildroot being very common – pretty much automatically take care of this.

https://github.com/PacktPublishing/Linux-Kernel-Debugging/blob/main/ch1/kconfig_prod01
https://github.com/PacktPublishing/Linux-Kernel-Debugging/blob/main/ch1/kconfig_prod01
https://github.com/PacktPublishing/Linux-Kernel-Debugging/blob/main/ch1/kconfig_prod01

A tale of two kernels 23

As you can see, as a rule of thumb, we set the number of jobs to execute as twice the
number of CPU cores available via the make option switch -j. The build should complete
in a few minutes. Once done, let's check that the compressed and uncompressed kernel
image files have been generated:

$ ls -lh arch/x86/boot/bzImage vmlinux

-rw-r--r-- 1 letsdebug letsdebug 9.1M Aug 19 17:21

arch/x86/boot/bzImage

-rwxr-xr-x 1 letsdebug letsdebug 65M Aug 19 17:21 vmlinux

$

Note that it's always only the first file, bzImage – the compressed kernel image – that we
shall boot from. Then what's the second image, vmlinux, for? Very relevant here: it's what
we shall (later) often require when we need to perform kernel debugging! It's the one that
holds all the symbolic information, after all.

Our production kernel config will typically cause several kernel modules to be generated
within the kernel source tree. They have to be installed in a well-known location (/lib/
modules/$(uname –r)); this is achieved by doing the following, as root:

$ sudo make modules_install

[sudo] password for letsdebug: xxxxxxxxxxxxxxxx

 INSTALL arch/x86/crypto/aesni-intel.ko

 INSTALL arch/x86/crypto/crc32-pclmul.ko

[...]

 DEPMOD 5.10.60-prod01

$ ls /lib/modules/

5.10.60-prod01/ 5.11.0-27-generic/ 5.8.0-43-generic/

$ ls /lib/modules/5.10.60-prod01/

build@ modules.alias.bin modules.builtin.bin modules.dep.
bin modules.softdep source@ kernel/ modules.builtin
modules.builtin.modinfo modules.devname modules.symbols
modules.alias modules.builtin.alias.bin modules.dep modules.
order modules.symbols.bin

$

24 A General Introduction to Debugging Software

For the final step, we make use of an internal script to generate the initramfs
image and set up the bootloader (in this case, on our x86_64, it's GRUB) by simply
running the following:

sudo make install

For details and a conceptual understanding of the initial RAM disk, as well as some
basic GRUB tuning, do see the Linux Kernel Programming book. We also provide useful
references within the Further reading section of this chapter.

Now all that's left to do is reboot your guest (or native) system, interrupt the bootloader
(typically by holding the Shift key down during early boot; this can vary if you're booting
via UEFI though), and select the newly built production kernel:

Figure 1.4 – Screenshot showing the GRUB bootloader screen and the new production kernel
to boot from

A tale of two kernels 25

As you can see from the preceding screenshot, I'm running the system as a guest OS
via Oracle VirtualBox. I selected the new production kernel and pressed Enter to
boot into it.

Voila, we're now running our (guest) system with our brand new production kernel:

$ uname -a

Linux dbg-LKD 5.10.60-prod01 #1 SMP PREEMPT Thu Aug 19 17:10:00
IST 2021 x86_64 x86_64 x86_64 GNU/Linux

$

Working on the guest over SSH
The new Linux kernel should run just fine with the existing root filesystem
– the libraries and applications are loosely coupled with the OS, allowing
different versions of the kernel (one at a time, of course) to simply mount the
root filesystem and use them. Also, you may not get all the bells and whistles;
for example, on my guest OS with our new production kernel, the screen
resizing, shared folders, and such, features may not work. How come? They
depend on the guest additions whose kernel modules haven't been built for this
custom kernel. In this case, I find it a lot easier to work on the guest using the
console over SSH. To do so, I installed the dropbear lightweight SSH server on
the guest and then logged in over SSH from my host system. Windows users
might like to try an SSH client such as putty. (In addition, you might need to
set up another bridged mode network adapter on the Linux guest.)

You can (re)check the current kernel's configuration by looking up /boot/config-
$(uname –r). In this case, it should be that of our production kernel, tuned towards
security and performance.

Tip
To have the GRUB bootloader prompt always show up at boot: make a copy
of /etc/default/grub (to be safe), then edit it as root, adding the line
GRUB_HIDDEN_TIMEOUT_QUIET=false and (possibly) commenting
out the line GRUB_TIMEOUT_STYLE=hidden.

Change the GRUB_TIMEOUT value from 0 to 3 (seconds). Run sudo
update-grub to have the changes take effect, and reboot to test.

26 A General Introduction to Debugging Software

So, good, you now have your guest (or native) Linux OS running a new production
kernel. During the course of this book, you will encounter various kernel-level bugs while
running this kernel. Identifying the bug(s) will often – though not always – involve you
booting via the debug kernel instead. So, let's now move on to creating a custom debug
kernel for the system. Read on!

Setting up our custom debug kernel
As you have already set up a production kernel (as described in detail in the previous
section), I won't repeat every step in detail here, just the ones that differ:

1. Firstly, ensure you have booted into the production kernel that you built in
the previous section. This is to ensure that our debug kernel config uses it as
a starting point:

$ uname –r

5.10.60-prod01

2. Create a new working directory and extract the same kernel version again. It's
important to build the debug kernel in a separate workspace from that of the
production one. True, it takes a lot more disk space but it keeps them clean and
from stepping on each other's toes as you modify their configs:

mkdir –p ~/lkd_kernels/debugk

3. We already have the kernel source tree (we earlier used wget to bring in the
5.10.60 compressed source). Let's reuse it, this time extracting it into the debug
kernel work folder:

cd ~/lkd_kernels

tar xf linux-5.10.60.tar.xz --directory=debugk/

4. Switch to the debug kernel directory and set up a starting point for kernel config
– via the localmodconfig approach – just as we did for the production kernel.
This time though, the config will be based on that of our custom production kernel,
as that's what is running right now:

cd ~/lkd_kernels/debugk/linux-5.10.60

lsmod > /tmp/lsmod.now

make LSMOD=/tmp/lsmod.now localmodconfig

A tale of two kernels 27

5. As this is a debug kernel, we now configure it with the express purpose of turning on
the kernel's debug infrastructure as much as is useful. (Though we do not care that
much for performance and/or security, the fact is that as we're inheriting the config
from the production kernel, the security features are enabled by default.)

The interface we use to configure our debug kernel is the usual one:
make menuconfig

Much (if not most) of the kernel debug infrastructure can be found in the last main menu
item here – the one named Kernel hacking:

Figure 1.5 – Screenshot: make menuconfig / Kernel hacking – the majority of kernel debug
options live here

28 A General Introduction to Debugging Software

There are just too many kernel configs relating to debugging to discuss individually here
and now; several of them are important kernel debug features that we will explain and
make use of in the chapters that follow. The following table (Table 1.1) summarizes some
of the kernel config variables that we set or clear, depending on whether the config is for
the debug or the production kernel. It is by no means exhaustive.

Not all of the config changes we make are within the Kernel hacking menu; others are
changed as well (see the merged column rows in the table – for example, the first one is
General setup: init/Kconfig, which specifies from which menu they originate as well as the
Kconfig file(s) that they originate from).

Further, the <D> in the Typical, value, … columns indicates that the decision is left to
you (or the platform/BSP team) as the particular value to use does depend on the actual
product or project, its High Availability (HA) characteristics, security posture, and so on.

Tip
You can search within the make menuconfig UI for a given config
variable (CONFIG_XXX) by typing the key / (just as in vi!) and then typing
the string to search for.

A tale of two kernels 29

30 A General Introduction to Debugging Software

A tale of two kernels 31

32 A General Introduction to Debugging Software

A tale of two kernels 33

Table 1.1 – Summary of a few kernel config variables, their meaning, and value

Besides the <D> value, the other values shown in the preceding table are merely my
recommendations: they may or may not be suitable for your particular use case.

[1] Installing pahole v1.16 or later: pahole is part of the dwarves package. However,
on Ubuntu 20.04 (or older), it's version 1.15, which causes the kernel build – when
enabled with CONFIG_DEBUG_INFO_BTF – to fail. This is because pahole version 1.16
or later is required. To address this on Ubuntu 20.04, we've provided the v1.17 Debian
package in the root of the GitHub source tree. Install it manually as follows:

sudo dpkg –i dwarves_1.17-1_amd64.deb

Viewing the current kernel config
Being able to view (query) the currently running kernel's configuration can prove to
be a very useful thing, especially on production systems. This can be done by looking
up (grepping) /proc/config.gz (a simple zcat /proc/config.gz | grep
CONFIG_<FOO> is typical). The pseudofile /proc/config.gz contains the entire
kernel config (it's practically equivalent to the .config file within the kernel source
tree). Now, this pseudofile is only generated by setting CONFIG_IKCONFIG=y. As
a safety measure on production systems, we set this config to the value m in production,
implying that it's available as a kernel module (called configs). Only once you load this
module does the /proc/config.gz file become visible; and of course, to load it up you
require root access...

34 A General Introduction to Debugging Software

Here's an example of loading the configs kernel module and then querying the kernel
config (for this very feature!):

$ ls -l /proc/config.gz

ls: cannot access '/proc/config.gz': No such file or directory

OK, to begin with (in production), it doesn't show up. So do this:

$ sudo modprobe configs

$ ls -l /proc/config.gz

-r--r--r-- 1 root root 34720 Oct 5 19:35 /proc/config.gz

$ zcat /proc/config.gz |grep IKCONFIG

CONFIG_IKCONFIG=m

CONFIG_IKCONFIG_PROC=y

Ah, it now works just fine!

Food for Thought
Did you notice? In Table 1.1, I set the production kernel's value for CONFIG_
KALLSYMS_ALL as <D>, implying it's up to the system architects to
decide whether to keep it on or off. Why? Shouldn't the ability to view all
kernel symbols be disabled (off) in a production system? Well, yes, that's
the common decision. Recall, though, our brief on the Mars Pathfinder
mission, where it initially failed due to a priority inversion issue. The tech
lead of the software team at JPL, Glenn Reeves, made a very interesting
statement in his now-famous response to Mike Jones (https://www.
cs.unc.edu/~anderson/teach/comp790/papers/mars_
pathfinder_long_version.html): The software that flies on Mars
Pathfinder has several debug features within it that are used in the lab but
are not used on the flight spacecraft (not used because some of them produce
more information than we can send back to Earth). These features were not
"fortuitously" left enabled but remain in the software by design. We strongly
believe in the "test what you fly and fly what you test" philosophy.

Sometimes, keeping debug features (and of course, logging) turned on in the
production version of the system, can be immensely helpful!

For now, don't stress too much about exactly what each of these kernel debug options
means and how you're to use them; we shall cover most of these kernel debug options in
the coming chapters. The entries in Table 1.1 are meant to kickstart the configuration of
your production and debug kernels and give you a brief idea of their effect.

https://www.cs.unc.edu/~anderson/teach/comp790/papers/mars_pathfinder_long_version.html
https://www.cs.unc.edu/~anderson/teach/comp790/papers/mars_pathfinder_long_version.html
https://www.cs.unc.edu/~anderson/teach/comp790/papers/mars_pathfinder_long_version.html

A tale of two kernels 35

Once you're done generating the new debug kernel config, let's back it up as follows:

cp –af .config ~/lkd_kernels/kconfig_dbg01

Build it, as before: make -j8 all (adjust the parameter to –j based on the number of
CPU cores on your box). When done, check out the compressed and uncompressed kernel
image files:

$ ls -lh arch/x86/boot/bzImage vmlinux

-rw-r--r-- 1 letsdebug letsdebug 18M Aug 20 12:35 arch/x86/
boot/bzImage

-rwxr-xr-x 1 letsdebug letsdebug 1.1G Aug 20 12:35 vmlinux

$

Did you notice? The size of the vmlinux uncompressed kernel binary image file is huge.
How come? All the debug features plus all the kernel symbols account for this large size...

Finish off by installing the kernel modules, initramfs, and bootloader update, as earlier:

sudo make modules_install && sudo make install

Great; now that you're done configuring both the production and debug kernels, let's
briefly examine the difference between the configurations.

Seeing the difference – production and debug
kernel config
It's enlightening – and really, it's the key thing within this particular topic – to see the
differences between our original production and the just-built debug kernel configuration.
This is made easy via the convenience script scripts/diffconfig; from within the
debug kernel source tree, simply do this to generate the difference:

scripts/diffconfig ~/lkd_kernels/kconfig_prod01 ~/lkd_kernels/
kconfig_dbg01 > ../../kconfig_diff_prod_to_debug.txt

36 A General Introduction to Debugging Software

View the output file in an editor, seeing for yourself the changes we wrought in
configuration. There are indeed many deltas – on my system, the diff file exceeds 200
lines. Here's a partial look at the same on my system (I use the ellipse […] to denote
skipping some output):

$ cat kconfig_diff_prod_to_debug.txt

-BPF_LSM y

-DEFAULT_SECURITY_APPARMOR y

-DEFAULT_SECURITY_SELINUX n

-DEFAULT_SECURITY_SMACK n

[…]

The - (minus sign) prefixing each of the preceding lines indicates that we removed this
kernel config feature from the debug kernel. The output continues as follows:

DEBUG_ATOMIC_SLEEP n -> y

DEBUG_BOOT_PARAMS n -> y

DEBUG_INFO n -> y

DEBUG_KMEMLEAK n -> y

DEBUG_LOCK_ALLOC n -> y

DEBUG_MUTEXES n -> y

DEBUG_PLIST n -> y

DEBUG_RT_MUTEXES n -> y

DEBUG_RWSEMS n -> y

DEBUG_SPINLOCK n -> y

[…]

In the preceding code snippet, you can clearly see the change made from the production
to the debug kernel; for example, the first line tells us that the kernel config named
DEBUG_ATOMIC_SLEEP was disabled in the production kernel and we've not enabled
it (n->y) in the debug kernel! (Note that it will be prefixed with CONFIG_, that is, it will
show up as CONFIG_DEBUG_ATOMIC_SLEEP in the kernel config file itself.)

A tale of two kernels 37

Here, we can see how the suffix to the name of the kernel – the config directive named
CONFIG_LOCALVERSION – has been changed between the two kernels, besides
other things:

LKDTM n -> m

LOCALVERSION "-prod01" -> "-dbg01"

LOCK_STAT n -> y

MMIOTRACE n -> y

MODULE_SIG y -> n

[…]

The + prefix to each line indicates the feature that has been added to the debug kernel:

+ARCH_HAS_EARLY_DEBUG y

+BITFIELD_KUNIT n

[…]

+IKCONFIG m

+KASAN_GENERIC y

[…]

In closing, it's important to realize these things:

• The particulars of the kernel configuration we're performing here – for both our
production and debug kernels – is merely representative; your project or product
requirements might dictate a different config.

• Many, if not most, modern embedded Linux projects typically employ a
sophisticated builder tool or environment; Yocto and Buildroot are two common
de facto examples. In such cases, you will have to adapt the instructions given here
to cater to using these build environments (in the case of Yocto, this can become a
good deal of work in specifying an alternate kernel configuration via a BB-append-
style recipe).

By now, I am furtively hoping you've absorbed this material and, indeed, built yourself
two custom kernels – a production and a debug one. If not, I request that you please do so
before proceeding further.

So, great – well done! By now, you have both a custom 5.10 LTS production and debug
kernel ready to rip. We'll certainly make use of them in the coming chapters. Let's finish
this chapter with a few debug "tips" that I hope you'll find useful.

38 A General Introduction to Debugging Software

Debugging – a few quick tips
I'll start off by saying this: debugging is both a science and an art, refined by experience
– the mundane hands-on slogging through to reproduce and identify a bug and its root
cause, and (possibly) fix it. I'm of the opinion that the following few debug tips are really
nothing new; that said, we do tend to get caught up in the moment and often miss the
obvious. The hope is that you'll find these tips useful and return to them time and again!

• Assumptions – just say NO!

Churchill famously said, "Never, never, never, give up". We say "Never, never, never,
make assumptions".

Assumptions are, very often, the root cause behind many, many bugs and defects.
Think back, re-read the Software bugs – a few actual cases section!

In fact (hey, I am partially joking here), just look at the word assume: it just begs
saying, "Don't make an ASS out of U and ME"!

Using assertions in your code is a great way to catch assumptions. The userspace
way is to use the assert() macro. It's well documented in the man page. (We
cover more on using macros within the kernel in Chapter 12, A Few More Kernel
Debugging Approaches, in the Assertions, warnings and BUG() macros section).

• Don't lose the forest for the trees!

At times, we do get lost in the twisted mazes of complex code paths. In these
circumstances, it's really easy to lose sight of the big idea, the objective of the
code. Try and zoom out and think of the bigger picture. It often helps spot the
faulty assumption(s) that led to the error(s). Well-written documentation can
be a lifesaver.

• Think small

When faced with a difficult bug, try this: build/configure/get the smallest possible
version of your problem (statement) to execute causing the issue or bug you're
currently facing to surface. This often helps you track down the root cause of the
problem. In fact, very often (in my own experience), the mere act of doing this – or
even just the detailed jotting down of the problem you face – triggers you seeing the
actual issue and its solution in your mind!

Debugging – a few quick tips 39

• "It requires twice the brainpower to debug a piece of code than to write it"

This paraphrased quote is by Brian Kernighan in the book The Elements of
Programming Style. So, should we not use our full brainpower while writing code?
Ha, of course you should... But, debugging is typically harder than writing code. The
real point is this: take the trouble to first carefully do your groundwork: write a brief
very high-level design document and write what you expect the code to do, at a high
level of abstraction. Then move on to the specifics (with a so-called low-level design
doc). Good documentation will save you one day (and blessings shall be showered
upon you!).

That reminds me of another quote: An ounce of design is worth a pound of
refactoring – Karl Wiegers.

• Employ "Zen Mind, Beginner's Mind"

Sometimes, the code can become too complex (spaghetti-like; it just smells). In
many cases, just giving up and starting from scratch again, if viable, is perhaps the
best thing to do.

This Zen-Beginner's Mind state also implies that we at least temporarily stop our
(perhaps over-egotistical) thought patterns (I wrote this so well, how can it be
wrong!?) and look at the situation from the point of view of somebody completely
new to it. It is, in fact, one key reason why a colleague reviewing your code can spot
bugs you'd never see! Plus, a good night's rest can do wonders.

• Variable naming, comments

I recall a Q&A on Quora revealing that the hardest thing a programmer does is name
variables well! This is truer than it might appear at first glance. Variable names stick;
choose yours carefully. As with commenting, don't go overboard either: a local
variable for a loop index? int i is just fine (int theloopindex is just painful).
The same goes for comments: they're there to explain the rationale, the design
behind the code, what it's designed and implemented to achieve, not how the code
works. Any competent programmer can figure that out.

• Ignore logs at your peril!

It's self-evident perhaps, but we can often miss the obvious when under pressure...
Carefully checking kernel (and even app) logs often reveals the source of the
issue you might be facing. Logs are usually able to be displayed in reverse-
chronological order and give you a view of what actually occurred; Linux's systemd
journalctl(1) utility is powerful; learn how to leverage it!

40 A General Introduction to Debugging Software

• Testing can reveal the presence of errors but not their absence

A truism, unfortunately. Still, testing and QA is simply one of the most critical parts
of the software process; ignore it at your peril! The time and the trouble taken to
write exhaustive test cases – both positive and negative – pays off in large dividends
in the long run, helping make the product or project a grand success. Negative
test cases and fuzzing are critical for exposing (and subsequently fixing) security
vulnerabilities in the code base. Then again, runtime testing only tests the portions
of code actually executed. Take the trouble to perform code coverage analysis; 100%
code coverage – and runtime testing it is the objective! (Again, we cover more on
these key points in Chapter 12, A Few More Kernel Debugging Approaches, in the An
introduction to kernel code coverage tools and testing frameworks section).

• Incurring technical debt

Every now and then, you realize deep down that though what you've coded works,
it's not been done well enough (perhaps there still exist corner cases that will trigger
bugs or undefined behavior); that nagging feeling that perhaps this design and
implementation simply isn't the best. The temptation to quickly check it in and hope
for the best can be high, especially as deadlines loom! Please don't; there is really a
thing called technical debt. It will come and get you.

• Silly mistakes

If I had a penny for each time I've made really silly mistakes when developing code,
I'd be a rich man! For instance, I once spent nearly half a day racking my head about
why my C program would just refuse to work correctly until I realized I was editing
the correct code but compiling an old version of it – performing the build in the
wrong directory! (I am certain you've faced your share of such pesky frustrations.)
Often, a break, a good night's sleep, can do wonders.

• Empirical model

The word empirical means to validate something (anything) by actual and direct
observation or experience rather than relying on theory.

Figure 1.6 – Be empirical!

Summary 41

So, don't believe the book (this one is an exception of course!), don't believe the tutorial,
the article, blog, tutor, or author: be empirical – try it out and see for yourself!

Years (decades, actually) back, on my very first day of work at a company I joined, a
colleague emailed me a document that I still hold dear: The Ten Commandments for
C Programmers, by Henry Spencer (https://www.electronicsweekly.com/
open-source-engineering/linux/the-ten-commandments-for-c-
programmers-2009-04/). Do check it out. In a similar, albeit clumsier, manner, I
present a quick checklist for you.

A programmer's checklist – seven rules
Very important! Did you remember to do the following?:

• Check all APIs for their failure case.

• Compile with warnings on (definitely with -Wall and possibly -Wextra or even
-Werror; yes, treating warnings as errors is going to make its way into the kernel!);
eliminate all warnings as far as is possible.

• Never trust (user) input; validate it.

• Eliminate unused (or dead) code from the code base immediately.

• Test thoroughly; 100% code coverage is the objective. Take the time and trouble to
learn how to use powerful tools: memory checkers, static and dynamic analyzers,
security checkers (checksec, lynis, and several others), fuzzers, code coverage
tools, fault injection frameworks, and so on. Don't ignore security!

• With regard to kernels and especially drivers, after eliminating software issues, be
aware that (peripheral) hardware issues could be the root cause of the bug. Don't
discount it out of hand! (You'll learn this the hard way.)

• Do not assume anything (assume: make an ASS out of U and ME); using assertions
helps catch assumptions, and thus bugs.

We shall elaborate on several of these points in the coming material.

Summary
Firstly, congratulations on completing this, our first chapter. Getting started is half the
battle! You began by learning a bit about how the word debug came to be – equal parts
myth, legend, and truth...

https://www.electronicsweekly.com/open-source-engineering/linux/the-ten-commandments-for-c-programmers-2009-04/
https://www.electronicsweekly.com/open-source-engineering/linux/the-ten-commandments-for-c-programmers-2009-04/
https://www.electronicsweekly.com/open-source-engineering/linux/the-ten-commandments-for-c-programmers-2009-04/

42 A General Introduction to Debugging Software

A key section was the brief description of some complex real-world cases of software
gone wrong (several of them very unfortunate tragedies), where a software bug (or bugs)
proved to be a key factor behind the disaster.

You understood that we're using the latest (at the time of this writing) 5.10 LTS kernel
and how to set up the workspace (on x86_64, using either a native Linux system or
Linux running as a guest OS). We covered the configuring and building of two custom
kernels – a production and a debug one, with the production kernel geared toward high
performance and security whereas the debug one was configured with several (most)
kernel debug features turned on, in order to help catch bugs. I will assume you've done
this for yourself, as future chapters will depend on it.

Finally, and I think very importantly, a few debugging tips and a small checklist wrapped
up this chapter. I urge you to read through the tips and checklist often.

In the next chapter, you will learn that there can be, and are indeed, various approaches to
debugging the Linux kernel (and its modules); you'll learn about them and which to use.

Further reading
• Real-world stories of software going wrong – software horror stories:

 � SOFTWARE HORROR STORIES: An old page, but still (mostly) valid and very
interesting! Many, many incidents have been covered here; do take a gander:
http://www.cs.tau.ac.il/~nachumd/horror.html

 � Patriot missile battery failure: https://www-users.cse.umn.
edu/~arnold/disasters/patriot.html

 � Ariane 5 launcher crash:

 � The official report – ARIANE 5 – Flight 501 Failure, by the Inquiry Board:
http://sunnyday.mit.edu/nasa-class/Ariane5-report.html

 � An excellent article on the same thing: Design by Contract: The Lessons
of Ariane, Jean-Marc Jézéquel, Bertrand Meyer (the creator of the Eiffel
programming language): https://archive.eiffel.com/doc/
manuals/technology/contract/ariane/

 � Mars Pathfinder reset issues:

 � Priority inversion: https://en.wikipedia.org/wiki/Priority_
inversion

http://www.cs.tau.ac.il/~nachumd/horror.html
https://www-users.cse.umn.edu/~arnold/disasters/patriot.html
https://www-users.cse.umn.edu/~arnold/disasters/patriot.html
http://sunnyday.mit.edu/nasa-class/Ariane5-report.html
https://archive.eiffel.com/doc/manuals/technology/contract/ariane/
https://archive.eiffel.com/doc/manuals/technology/contract/ariane/
https://en.wikipedia.org/wiki/Priority_inversion
https://en.wikipedia.org/wiki/Priority_inversion

Further reading 43

 � What really happened on Mars?, Glenn Reeves' detailed reply to Mike Jones'
summary of the issue: https://www.cs.unc.edu/~anderson/teach/
comp790/papers/mars_pathfinder_long_version.html

 � What the Media Couldn't Tell You About Mars Pathfinder, Tom Durkin, 1998;
PDF: https://people.cis.ksu.edu//~hatcliff/842/Docs/
Course-Overview/pathfinder-robotmag.pdf

 � Now showing on satellite TV: secret American spy photos, The Guardian, June
13, 2002: https://www.theguardian.com/media/2002/jun/13/
terrorismandthemedia.broadcasting

 � Software problem kills soldiers in training incident, June 13, 2002: http://
catless.ncl.ac.uk/Risks/22.13.html#subj2.1

 � Boeing 737 MAX and the MCAS:

 � The inside story of MCAS: How Boeing's 737 MAX system gained power
and lost safeguards, The Seattle Times, June 22, 2019: https://www.
seattletimes.com/seattle-news/times-watchdog/
the-inside-story-of-mcas-how-boeings-737-max-system-
gained-power-and-lost-safeguards/

 � Boeing 737 Max: why was it grounded, what has been fixed and is it enough?, The
Conversation, Nov 28, 2020: https://theconversation.com/boeing-
737-max-why-was-it-grounded-what-has-been-fixed-and-is-
it-enough-150688

 � As an aside, do watch Nat Geo's 'Air Crash Investigation' series: https://
www.natgeotv.com/in/air-crash-investigation/about

 � Recent: DOWNFALL: The Case Against Boeing | Official Trailer | Netflix, Feb
2022: https://www.youtube.com/watch?v=vt-IJkUbAxY

• Jack Ganssle's TEM (The Embedded Muse) newsletter – back issues: http://www.
ganssle.com/tem-back.htm; excellent newsletters, do check it out

• Kernel and system workspace setup:

 � Various good online articles and tutorials on installing Linux as a guest
VM on Oracle VirtualBox can be found at https://github.com/
PacktPublishing/Linux-Kernel-Programming/blob/master/
Further_Reading.md#chapter-1-kernel-development-
workspace-setup---further-reading

https://www.cs.unc.edu/~anderson/teach/comp790/papers/mars_pathfinder_long_version.html
https://www.cs.unc.edu/~anderson/teach/comp790/papers/mars_pathfinder_long_version.html
https://people.cis.ksu.edu//~hatcliff/842/Docs/Course-Overview/pathfinder-robotmag.pdf
https://people.cis.ksu.edu//~hatcliff/842/Docs/Course-Overview/pathfinder-robotmag.pdf
https://www.theguardian.com/media/2002/jun/13/terrorismandthemedia.broadcasting
https://www.theguardian.com/media/2002/jun/13/terrorismandthemedia.broadcasting
http://catless.ncl.ac.uk/Risks/22.13.html#subj2.1
http://catless.ncl.ac.uk/Risks/22.13.html#subj2.1
https://www.seattletimes.com/seattle-news/times-watchdog/the-inside-story-of-mcas-how-boeings-737-max-system-gained-power-and-lost-safeguards/
https://www.seattletimes.com/seattle-news/times-watchdog/the-inside-story-of-mcas-how-boeings-737-max-system-gained-power-and-lost-safeguards/
https://www.seattletimes.com/seattle-news/times-watchdog/the-inside-story-of-mcas-how-boeings-737-max-system-gained-power-and-lost-safeguards/
https://www.seattletimes.com/seattle-news/times-watchdog/the-inside-story-of-mcas-how-boeings-737-max-system-gained-power-and-lost-safeguards/
https://theconversation.com/boeing-737-max-why-was-it-grounded-what-has-been-fixed-and-is-it-enough-150688
https://theconversation.com/boeing-737-max-why-was-it-grounded-what-has-been-fixed-and-is-it-enough-150688
https://theconversation.com/boeing-737-max-why-was-it-grounded-what-has-been-fixed-and-is-it-enough-150688
https://www.natgeotv.com/in/air-crash-investigation/about
https://www.natgeotv.com/in/air-crash-investigation/about
https://www.youtube.com/watch?v=vt-IJkUbAxY
http://www.ganssle.com/tem-back.htm
http://www.ganssle.com/tem-back.htm
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md#chapter-1-kernel-development-workspace-setup---further-reading
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md#chapter-1-kernel-development-workspace-setup---further-reading
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md#chapter-1-kernel-development-workspace-setup---further-reading
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md#chapter-1-kernel-development-workspace-setup---further-reading

44 A General Introduction to Debugging Software

 � Easy way to determine the virtualization technology of a Linux
machine?, StackExchange: https://unix.stackexchange.com/
questions/89714/easy-way-to-determine-the-virtualization-
technology-of-a-linux-machine

 � Ubuntu Linux – the System Requirements page: https://help.ubuntu.
com/community/Installation/SystemRequirements

 � Kernel documentation: Configuring the kernel (https://www.kernel.org/
doc/html/latest/admin-guide/README.html#configuring-the-
kernel)

 � Article: How to compile a Linux kernel in the 21st century, S Kenlon, Aug 2019:
https://opensource.com/article/19/8/linux-kernel-21st-
century

 � Information on initrd / initramfs and the GRUB bootloader: from the Further
reading notes from the Linux Kernel Programming book's GitHub repository:
https://github.com/PacktPublishing/Linux-Kernel-
Programming/blob/master/Further_Reading.md#chapter-3-
building-the-linux-kernel-from-source---further-reading

• Customizing the GRUB bootloader: How do I add a kernel boot parameter?
https://askubuntu.com/questions/19486/how-do-i-add-a-
kernel-boot-parameter. Do realize, this tends to be x86_64- and
Ubuntu-specific...

• The Ten Commandments for C Programmers, Henry Spencer: https://www.
electronicsweekly.com/open-source-engineering/linux/
the-ten-commandments-for-c-programmers-2009-04/

• Interesting:

 � A MUST-READ book: The Mythical Man-Month, Fred Brooks, 1975

 � What is a coder's worst nightmare?, Quora; answer by Mick Stute: https://www.
quora.com/What-is-a-coders-worst-nightmare

 � Reflections on Trusting Trust, Ken Thompson: https://www.
cs.cmu.edu/~rdriley/487/papers/Thompson_1984_
ReflectionsonTrustingTrust.pdf

https://unix.stackexchange.com/questions/89714/easy-way-to-determine-the-virtualization-technology-of-a-linux-machine
https://unix.stackexchange.com/questions/89714/easy-way-to-determine-the-virtualization-technology-of-a-linux-machine
https://unix.stackexchange.com/questions/89714/easy-way-to-determine-the-virtualization-technology-of-a-linux-machine
https://help.ubuntu.com/community/Installation/SystemRequirements
https://help.ubuntu.com/community/Installation/SystemRequirements
https://www.kernel.org/doc/html/latest/admin-guide/README.html#configuring-the-kernel
https://www.kernel.org/doc/html/latest/admin-guide/README.html#configuring-the-kernel
https://www.kernel.org/doc/html/latest/admin-guide/README.html#configuring-the-kernel
https://opensource.com/article/19/8/linux-kernel-21st-century
https://opensource.com/article/19/8/linux-kernel-21st-century
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md#chapter-3-building-the-linux-kernel-from-source---further-reading
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md#chapter-3-building-the-linux-kernel-from-source---further-reading
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md#chapter-3-building-the-linux-kernel-from-source---further-reading
https://askubuntu.com/questions/19486/how-do-i-add-a-kernel-boot-parameter
https://askubuntu.com/questions/19486/how-do-i-add-a-kernel-boot-parameter
https://www.electronicsweekly.com/open-source-engineering/linux/the-ten-commandments-for-c-programmers-2009-04/
https://www.electronicsweekly.com/open-source-engineering/linux/the-ten-commandments-for-c-programmers-2009-04/
https://www.electronicsweekly.com/open-source-engineering/linux/the-ten-commandments-for-c-programmers-2009-04/
https://www.quora.com/What-is-a-coders-worst-nightmare
https://www.quora.com/What-is-a-coders-worst-nightmare
https://www.cs.cmu.edu/~rdriley/487/papers/Thompson_1984_ReflectionsonTrustingTrust.pdf
https://www.cs.cmu.edu/~rdriley/487/papers/Thompson_1984_ReflectionsonTrustingTrust.pdf
https://www.cs.cmu.edu/~rdriley/487/papers/Thompson_1984_ReflectionsonTrustingTrust.pdf

2
Approaches to

Kernel Debugging
Even a casual perusal of topics related to kernel debugging will quickly have you realize
that there are many approaches to it, and correspondingly, many tools and techniques
that can and are brought to bear on the problem. In this relatively short chapter, we'll first
check out some ways of classifying bugs by type. Classifying defects or bugs by type will
help you gain a high-level understanding of them and where they fall, and at times overlap.
We shall classify bugs by various types or views: the classic view – by memory issues, the
security-related view, and finally, by typical issues caused within the Linux kernel.

Next, we consider why there are various approaches to kernel debugging, and then
summarize exactly what these approaches are and when it's generally appropriate to
use which approach. These topics will help lay the foundation for the remainder of
the book, where we'll delve into learning how to employ each of these kernel debug
approaches or techniques.

In this chapter, we're going to cover the following main topics:

• Classifying bug types

• Kernel debugging – why there are different approaches to it

• Summarizing the different approaches to kernel debugging

46 Approaches to Kernel Debugging

Technical requirements
The technical requirements and workspace remain identical to what's described in
Chapter 1, A General Introduction to Debugging Software, under the Technical requirements
and Setting up the workspace sections.

Classifying bug types
As you will know, defects (bugs) can be quite readily classified into different types.
Here, I attempt to do so (it's nothing new, really), with an added twist: we shall look at
common bug classes through different lenses or viewpoints – first, in the classic (typical,
academic) manner, then focused on memory-type bugs, and then the security-related
view of bugs. Having seen this, we'll further refine this classification to what you'll
typically see when working with the Linux kernel. Do note that there can be, and often
are, overlaps within these classifications. Let's begin with the first one – classifying
defects/bugs in a classic manner.

Types of bugs – the classic view
The classic way of viewing the types of defects or bugs that can occur in a software
program is as follows:

• Logic or implementation errors:

 � Includes off-by-one errors, infinite loops/recursion.

 � Arithmetic errors: Includes loss of precision errors (recall the Patriot missile and
the Ariane 5 incidents!), arithmetic underflow or overflow, division by zero.

 � Syntax defects: This is quite obvious; defects such as (in C) using the equals =
operator instead of the == operator (modern compilers and static analysis tools
should certainly catch these).

• Resource leakage and generic defects on resources:

 � Includes the classic NULL pointer dereference bug and memory bugs:
Uninitialized Memory Reads (UMR), leakage, double-free, Use After Free
(UAF), Out Of Bounds (OOB) buffer overflow errors – read/write underflow/
overflow, stack memory overflow, access violations, and so on.

Classifying bug types 47

 � Hardware: Don't forget about the hardware! Faulty RAM, DMA issues, hardware
freezes, microcode bugs, hardware interrupt misses/spurious interrupts, key
bouncing, data endian errors, data packing/padding issues, instruction faults, and
so on (see the Further reading section for an interesting post).

• Races: Data races, locking issues causing deadlock, livelocks (as in too many
hardware interrupts in too short a time period; network driver layers often use the
so-called New API (NAPI) to mitigate precisely this).

• Performance defects:

 � Includes data (cache line) alignment issues, data races, deadlocks, and livelocks.

 � Poorly chosen APIs (for example, blind usage of the kernel's page/slab allocator
APIs – such as __get_free_pages() / kmalloc() – can lead to highly
suboptimal memory usage due to wild amounts of internal fragmentation issues
(wastage, really). Another: using moderate to highly contended locks with long
critical sections is just begging for performance issues. (The usage of lock-free
algorithms and APIs will help! Perhaps via the Linux kernel's percpu and Read
Copy Update (RCU) lock-free primitives.)

 � Data races (mentioned in the earlier bullet point; as noted, overlaps in the bug
classification can and do occur).

 � Input/Output (I/O): Suboptimal and heavy reads and writes cause major
performance bottlenecks; this applies to both the filesystem and network layers;
it's important to realize that often the actual performance bottlenecks are to do
with suboptimal I/O usage and typically aren't CPU-related.

• There are more ways to classify bugs; we shan't go into any detail here, we shall
merely mention them: According to interface-based and even teamwork-based
side effects.

An interesting paper presented at a conference on software engineering in Melbourne
(ICSE, 1992) proposed that defects (bugs) are introduced and removed at various rates at
different points in the SDLC; interestingly, relatively high bug insertion rates occur in both
the design and coding phases; it helps highlight the need for better design/architecture of
the system (see the Further reading section for the link to the paper, and more).

Let's move along to another way, or viewport, of viewing bugs, the memory defects one.

48 Approaches to Kernel Debugging

Types of bugs – the memory view
As defects due to memory-related bugs are simply so common with procedural
(and non-managed) languages such as C, we'll now view defects from the viewpoint of
memory corruption:

• Incorrect memory access:

 � Using variables uninitialized; aka UMR bugs

 � Out-of-bounds memory accesses (read/write underflow/overflow bugs)

 � Use-after-free/use-after-return (out-of-scope) bugs

 � Double-free

• Memory leakage

• Data races

• Fragmentation (internal implementation) issues:

 � Internal

 � External

All these common memory issues (except fragmentation) are generally classified as
Undefined Behavior (UB). Though fragmentation is a memory issue, it's not a bug in the
sense that we're concerned with, so we won't delve into it further.

You'll have noticed that many bug classes are repeated from the previous classification.
The reason I re-classify defects via memory corruption is to highlight it – it's definitely
among the more common root causes of software issues!

Next, let's view bugs through the viewport of security-related ones.

Types of bugs – the CVE/CWE security-related view
There's an open database of publicly disclosed security vulnerabilities (vulns) and
issues; it's used by security researchers, academicians, and by the industry to track
security-related defects/bugs and helps folks to study and discuss them, build mitigations
(fixes, patches) and thus respond to them in a consistent manner. Each security bug (and
at times a whole bunch of them, forming a class) is assigned a number called a Common
Vulnerabilities and Exposures (CVE) or Common Weaknesses and Enumeration
(CWE) number.

Classifying bug types 49

There are several websites that categorize CWEs and CVEs; among them the US-based
National Institute of Standards and Technology (NIST) with the National Vulnerability
Database (NVD) (https://nvd.nist.gov/vuln/full-listing). It (among
other things) provides a comprehensive categorization of software defects; I urge you
to look up the site, and especially the page showing a subset of the CWE structure
(https://nvd.nist.gov/vuln/categories/cwe-layout).

It's not just the NIST NVD; several other sites categorize CVEs too. Among them are
the CVE Details site (https://www.cvedetails.com/); it provides excellent
explanations alongside the CVE number. MITRE provides this service as well; this is
its FAQ page: https://www.cve.org/ResourcesSupport/FAQs.

As a good example, many security-related bugs boil down to nothing but an implementation
weakness or vulnerability, of the well-known (very often stack-based) Buffer Overflow
(BoF). The CWE MITRE site carries a detailed explanation of that here: CWE-120: Buffer
Copy without Checking Size of Input ('Classic Buffer Overflow') (https://cwe.mitre.
org/data/definitions/120.html), along with example code that demonstrates the
vulnerabilities! Do check it out...

It's really important to realize that, at heart, many security issues are mostly software
defects – bugs!

Types of bugs – the Linux kernel
It's also useful and relevant to look at bug types from the viewpoint of the Linux kernel
itself. Paraphrasing from Sergio Prado's presentation Linux Kernel Debugging: Going
Beyond Printk Messages (https://www.youtube.com/watch?v=NDXYpR_m1CU),
he classifies Linux kernel bugs as follows:

• Defects (bugs) that cause the system to lock up or hang

• Defects that cause the system to crash and/or panic

• Logic or implementation defects

• Resource leakage defects

• Performance issues

https://nvd.nist.gov/vuln/full-listing
https://nvd.nist.gov/vuln/categories/cwe-layout
https://www.cvedetails.com/
https://www.cve.org/ResourcesSupport/FAQs
https://cwe.mitre.org/data/definitions/120.html
https://cwe.mitre.org/data/definitions/120.html
https://www.youtube.com/watch?v=NDXYpR_m1CU

50 Approaches to Kernel Debugging

All right, we've done the (perhaps rather dry) task of classifying bugs. I know what you're
perhaps thinking: this is all rather academic, and perhaps a bit pointless? Well, the idea
is that now that you understand how bugs can be classified, we shall get to the important
point: based on classification (and other methods), which tools/techniques can you
employ to debug them.

But first, we need to also understand that not all debugging techniques or approaches may
be suitable for the task; the following section briefs you on this.

Kernel debugging – why there are different
approaches to it
When the kernel has an error, a bug, no matter how trivial or non-trivial, the entire
system is considered to be in a bad, unrecoverable state and a kernel panic typically
ensues – a fatal condition wherein the system generates a brief diagnostic and then simply
halts (or, it can be configured to reboot after a timeout). Debugging these scenarios is
inherently hard, as, at least on the surface, it appears as though there is no diagnostic
information to work with, and even if there were, the system is unresponsive, essentially
dead. So how do you retrieve diagnostic information in order to analyze it?

What you will soon realize is that even though there are several techniques, tools, and
approaches to kernel debugging, not all of them are suitable for any and all scenarios – the
tools or techniques you use are often dictated by the particular scenario you find yourself in.

So what are these scenarios? Broadly speaking, they include the following:

• The development phase of the project: You are in the process of developing the
code and active development is ongoing. This involves the usage of both the custom
debug and production kernels.

• Unit or individual developer testing and QA (integration/systems/acceptance)
test phases: You have developed a module or component and need to test it. This
involves the usage of both the custom debug and production kernels.

• Post-mortem analysis: The kernel has crashed; you need to try and figure out
the root cause and fix it. This involves the usage of both the custom debug and
production kernels.

• In-field or production: The system is suffering from bugs and/or performance
issues. You need to use appropriate tools to understand the underlying causes. This
involves usage of the custom production kernel (and debug kernel – where symbols
are required – for some of the tools).

Summarizing the different approaches to kernel debugging 51

Finally, let's get to the nitty-gritty: the following section gives you a summary of the
different approaches, actual tools, techniques, and APIs (if appropriate) to debug the
Linux kernel.

Summarizing the different approaches to
kernel debugging
There are many approaches to kernel debugging. The one (or ones) to use depends upon
the scenario. Here are the aforementioned scenarios and some approaches to kernel
debugging in them.

The development phase
Are you currently in the development phase of the project? If yes, the following
approaches and techniques can help:

• Code-based debugging techniques can immediately help (although they're even
useful later). These include the following:

 � Code-level instrumentation with printk() and friends

 � Dynamic debug printk

 � Generating a kernel-mode stack dump and interpreting it

 � Using assertions within the code

 � Setting up and leveraging debug hooks within the code base – there are two
typical ways to do this:

 � Via the debugfs pseudo filesystem

 � Via a special ioctl(2) hook function meant for debug purposes

• Single-stepping through the kernel (or module's) C code, setting breakpoints,
watchpoints, examining the content of data, and so on: via the well-known Kernel
GDB (KGDB) framework.

52 Approaches to Kernel Debugging

Unit testing and/or QA phases
In the unit testing and/or QA phases (both unit and integration/systems/acceptance
tests), you, in your capacity as an individual developer on the project, typically run unit
tests against the code you've developed. Besides that, your team and/or a dedicated QA
team might run a complete (perhaps automated) test suite against the project (interim)
release and discover and report bugs back to the development team. The following tools
and techniques should be used to try and catch possible bugs in these phases:

• Dynamic analysis: You run tools that run on the live system, which perform checks
on code paths as they're executed. These include the following:

 � Memory checkers: detecting memory issues or memory corruption (often the root
cause of bugs) is critical.

 � Undefined Behavior (UB) checkers: UB includes things such as arithmetic
underflows/overflows (including the well-known Integer overFlow (IoF) defect),
invalid bit shifts, misaligned accesses, and so on.

 � Lock debugging tools and instrumentation.

• Static analysis: Involves employing tools that work upon the source code of the
project (similar to the compiler). They can provide a great deal of insight into
overlooked and possibly buggy, as well as security-wise risky, code.

• Code coverage analysis: This isn't really a debug technique; it's to ensure that
every line of code is actually exercised while testing is being done. This is critical –
only then can we have high confidence in the product. Here, you typically employ
code coverage tools (such as gcov) to check which lines of code are actually
executed during a given test run. (These techniques are typically more applicable
to individual developer unit testing than to system-level testing, though they can
certainly be applied there as well.)

• Monitoring and tracing tools: These can be employed in the development and
testing/QA phases, and possibly even in production (in the field):

 � Kernel tracing infrastructure – this is a big area and includes the following:

 � Ftrace and trace-cmd

 � Event Tracing

 � The Linux Tracing Toolkit: next generation (LTTng), the Trace Compass and
KernelShark GUIs

Summarizing the different approaches to kernel debugging 53

 � Perf

 � Enhanced Berkeley Packet Filter (eBPF)

 � SystemTap

 � User-mode tracing infrastructure (often employing the powerful strace and
ltrace utilities)

 � Kernel probes (Kprobes) – both static and dynamic

 � Watchdogs

 � Custom kernel panic handler

 � Detection of soft and hard lockups

 � Detection of hung tasks

 � Magic SysRq handlers

• Post-mortem analysis: One of the common cases for most developers is the
after-a-crash case: (the capture and) analysis of a kernel diagnostic – called the
kernel Oops:

 � Oops (kernel log files) analysis

 � Using kdump to collect a kernel dump image (loosely equivalent to the core
dump produced by a process when it crashes), and the powerful crash application
to interpret it

• In production in-field runtime (mentioned for completeness):

 � Any (or all) of the monitoring and tracing tools (mentioned in the previous
bullet point)

 � Debug hooks within the code (via debugfs, ioctl)

 � Regular and dynamic debug printks

 � Logging (via the systemd journal and app-based logging)

 � A custom panic handler

54 Approaches to Kernel Debugging

Which kernel debug technology you should use is not only dependent on the phases of
the software life cycle; some kernel debug techniques or technologies demand a significant
amount of hardware and/or software resource availability:

• Hardware constraints: Some kernel debug techniques require significant amounts
of hardware resource availability, which you may or may not be able to afford!
For example, using the kdump technology requires significant amounts of RAM,
network bandwidth, and/or disk space. Some tightly constrained embedded Linux
systems just cannot afford this, whereas your typical server system can easily do
so (the same goes for the well-known userspace Valgrind suite of tools; Address
Sanitizer (ASAN) uses fewer resources...).

• Software constraints: Just as with hardware, some systems have a self-imposed
design limitation on what can be enabled in the kernel config, which might preclude
some debugging techniques. Again, kdump, and tracing infrastructure, are good
examples of this.

A key point: dynamic analysis tools can only catch bugs within the code that they actually
see and run. This leads us to understand that having test cases that cover all the code is
extremely critical, as mentioned before (in Chapter 1, A General Introduction to Debugging
Software), 100% code coverage is the objective!

Please do note, that though I've definitively categorized the tools and techniques, cases
will certainly arise where you can (and perhaps should) use a technique in a different
scenario than has been shown above. Keep it flexible and use what's appropriate to the
situation at hand.

Categorizing into different scenarios
The tables that follow are an attempt at a catch-all of kernel debug approaches, tools, and
techniques, categorized by different scenarios to use them in.

Do note the following:

• For now, just look at the available tools/techniques/technologies/APIs for different
scenarios and use cases; don't worry about how exactly to use them. That, of course,
is really at the heart of the book and the coming chapters. The intent is to cover
most of the ones mentioned here.

• As already mentioned, the scenarios in which to use a given tool or technique are
typical, not absolute. You might come across a use case that's different. I suggest you
adapt and make use of whichever techniques seem appropriate.

Summarizing the different approaches to kernel debugging 55

We'll begin with a summary table (Table 2.1) for the scenario where you're developing the
kernel (or kernel/driver module) code – the coding phase:

Table 2.1 – Summary of kernel debug techniques for the development/coding phase

56 Approaches to Kernel Debugging

Now let's check out a summary table of the kernel debugging tools and techniques that
can be employed during the testing and QA phases:

Table 2.2 – Summary of kernel debug techniques for the unit testing/QA phases

Now that we've viewed several kernel debug tools and techniques by scenario, let's view
them in another few categories – tracing, monitoring, and profiling tools:

Table 2.3 – Summary of kernel debug techniques to do with system monitoring and tracing

Summarizing the different approaches to kernel debugging 57

This leaves only the kernel image capture, Oops, and post-mortem crash analysis tools
and techniques:

Table 2.4 – Summary of kernel debug techniques to do with kernel image capture, Oops, post-mortem
crash analysis, and logging

I've included logging (and log analysis) as well in Table 2.4 (instead of allocating an
unnecessary separate table for it); logs are a really important means of ascertaining what
happened on the system after a crash (for user as well as kernel-level debugging).

Finally, the following table shows which kernel debug tools or techniques (or APIs) are
effective for which types of kernel defects:

58 Approaches to Kernel Debugging

Table 2.5 – Summary of kernel debug tools/techniques versus types of kernel defects

Legend:

• Y: Yes, can/should be used

• N: No, avoid using it

• ?: It depends... Your Mileage May Vary (YMMV)

Again, these guidelines are definitely not written in stone; you should use your judgement
and try different techniques as required.

Which kernel debug tools and techniques you enable on your production kernel is typically
something you (or the platform/BSP team) have to decide, based on system constraints
(both hardware and software), performance considerations, and so on. A good starting
point for this is what we already covered back in Chapter 1, A General Introduction to
Debugging Software, under the A tale of two kernels section, which described in some detail
how to go about configuring both a custom production and a custom debug kernel.

Summary
In this chapter, you learned that there are many approaches to debugging the kernel. We
even categorized them in a suitable manner to help you quickly decide which to use in
what situation. This was one of the key points – not every tool or technique will be useful
in every scenario or situation. For example, employing a powerful memory checker such
as KASAN to help find memory bugs is really useful during the development and unit
testing phases but typically impossible during systems testing and production (as the
production kernel will not be configured with KASAN enabled, but the debug kernel will).

Further reading 59

You will also realize that both hardware and software constraints play a role in
determining which kernel debug features can be enabled.

Further, we showed the various approaches, tools, and techniques (even at times the API
or tool names) for kernel debugging categorized in several tables. This can aid you in
narrowing down your armory: which of them to use in which situation.

It's important to not be too rigid when deciding which kernel debug tools/techniques to
use for your project based solely on the tables we've shown here; keep it flexible and try
different approaches for your situation until you find what clicks.

Good job on completing this chapter! In the next one, we'll get down to brass tacks and
learn how to debug via the instrumentation approach!

Further reading
• Estimating software fault content before coding, Eick, Loader, et al, Proceedings of

the International Conference on Software Engineering, Melbourne, June 1992:
https://dl.acm.org/doi/10.1145/143062.143090

• A very in-depth and interesting academic article on UB: Undefined Behavior in
2017, Regehr, Cuoq, July 2017: https://blog.regehr.org/archives/1520

• NASA Study on Flight Software Complexity, March 2009: https://www.nasa.gov/
pdf/418878main_FSWC_Final_Report.pdf. A deep and interesting read.

• Security-related defect tracking via CWE/CVE; very useful to track security-related
defects and gain an understanding of them:

 � NIST NVD database – full listing: https://nvd.nist.gov/vuln/full-
listing

 � CVE details: https://www.cvedetails.com/

 � CVE MITRE: https://cve.mitre.org/

 � 2021 CWE Top 25 Most Dangerous Software Weaknesses: https://cwe.mitre.
org/top25/archive/2021/2021_cwe_top25.html

• Hardware bug! How a broken memory module hid in plain sight — and how I blamed
the Linux Kernel and two innocent hard drives, C Hollinger, Feb 2020: https://
towardsdatascience.com/how-a-broken-memory-module-hid-
in-plain-sight-and-how-i-blamed-the-linux-kernel-and-two-
innocent-ef8ce7560ecc

https://dl.acm.org/doi/10.1145/143062.143090
https://blog.regehr.org/archives/1520
https://www.nasa.gov/pdf/418878main_FSWC_Final_Report.pdf
https://www.nasa.gov/pdf/418878main_FSWC_Final_Report.pdf
https://nvd.nist.gov/vuln/full-listing
https://nvd.nist.gov/vuln/full-listing
https://www.cvedetails.com/
https://cve.mitre.org/
https://cwe.mitre.org/top25/archive/2021/2021_cwe_top25.html
https://cwe.mitre.org/top25/archive/2021/2021_cwe_top25.html
https://towardsdatascience.com/how-a-broken-memory-module-hid-in-plain-sight-and-how-i-blamed-the-linux-kernel-and-two-innocent-ef8ce7560ecc
https://towardsdatascience.com/how-a-broken-memory-module-hid-in-plain-sight-and-how-i-blamed-the-linux-kernel-and-two-innocent-ef8ce7560ecc
https://towardsdatascience.com/how-a-broken-memory-module-hid-in-plain-sight-and-how-i-blamed-the-linux-kernel-and-two-innocent-ef8ce7560ecc
https://towardsdatascience.com/how-a-broken-memory-module-hid-in-plain-sight-and-how-i-blamed-the-linux-kernel-and-two-innocent-ef8ce7560ecc

60 Approaches to Kernel Debugging

• Linux Kernel Debugging: Going Beyond Printk Messages - Sergio Prado, Embedded
Labworks, OSS/ELC Europe, May 2020, YouTube: https://www.youtube.
com/watch?v=NDXYpR_m1CU. Excellent classification (and more) on
kernel-level bugs

• Debugging kernel and modules via gdb, Linux kernel documentation:
https://www.kernel.org/doc/html/latest/dev-tools/
gdb-kernel-debugging.html#debugging-kernel-and-modules-
via-gdb

• The kernel debugging techniques for a device driver developer on arm64, Christina
Jacob, Oct 2019, Medium: https://medium.com/@christina.jacob.
koikara/the-kernel-debugging-techniques-for-a-device-
driver-developer-on-arm64-fa984e4d2a09

https://www.youtube.com/watch?v=NDXYpR_m1CU
https://www.youtube.com/watch?v=NDXYpR_m1CU
https://www.kernel.org/doc/html/latest/dev-tools/gdb-kernel-debugging.html#debugging-kernel-and-modules-via-gdb
https://www.kernel.org/doc/html/latest/dev-tools/gdb-kernel-debugging.html#debugging-kernel-and-modules-via-gdb
https://www.kernel.org/doc/html/latest/dev-tools/gdb-kernel-debugging.html#debugging-kernel-and-modules-via-gdb
mailto:https://medium.com/@christina.jacob.koikara/the-kernel-debugging-techniques-for-a-device-driver-developer-on-arm64-fa984e4d2a09
mailto:https://medium.com/@christina.jacob.koikara/the-kernel-debugging-techniques-for-a-device-driver-developer-on-arm64-fa984e4d2a09
mailto:https://medium.com/@christina.jacob.koikara/the-kernel-debugging-techniques-for-a-device-driver-developer-on-arm64-fa984e4d2a09

Part 2:
Kernel and Driver

Debugging Tools and
Techniques

In this portion of the book, you will learn – in a hands-on fashion – several powerful
kernel- and driver-level debugging tools and techniques. They'll span from leveraging the
humble printk to using Kprobes, debugging kernel memory corruption, generating and
interpreting an Oops, and finish up with powerful lock debugging techniques.

The following chapters will be covered in this section:

• Chapter 3, Debug via Instrumentation – printk and Friends

• Chapter 4, Debug via Instrumentation – Kprobes

• Chapter 5, Debugging Kernel Memory Issues – Part 1

• Chapter 6, Debugging Kernel Memory Issues – Part 2

• Chapter 7, Oops! Interpreting the Kernel Bug Diagnostic

• Chapter 8, Lock Debugging

3
Debug via

Instrumentation –
printk and Friends

Quick, think: how often have you interspersed printf() instances (or the equivalent)
in your program in order to follow its progress as it executes code, and indeed, to see at
approximately which point it (perhaps) crashes? Often, I'm guessing! Don't feel bad at all,
this is a really good debugging technique! It has a fancy name to boot: instrumentation.

What you've been doing is instrumenting your code, allowing you to see the flow
(depending on the granularity of your print statements); this allows you to understand
where it's been. Often enough, this is all that's required to debug many situations.
Do recollect, though, what we discussed in the previous chapter – a technique like
instrumentation is typically useful in certain circumstances, not all. For example,
a resource leak (such as a memory leak) defect is difficult, if not impossible, to debug
with instrumentation. For most other situations though, it's a really useful technique!

In this chapter, we're going to understand how to instrument kernel (or driver) code,
primarily using the powerful printk() – and friends – APIs. Further, we shall continue
along this path in the following chapter as well, focusing our efforts on another kernel
technology than can be used for instrumentation on production systems – kprobes.

64 Debug via Instrumentation – printk and Friends

In this chapter, we will focus on covering the following main topics:

• The ubiquitous kernel printk

• Leveraging the kernel printk for debug purposes

• Using the kernel's powerful dynamic debug feature

These very practical topics are important: knowing how to efficiently debug via
instrumentation can result in a quick cure for annoying bugs!

Technical requirements
The technical requirements and workspace remain identical to what's described in Chapter
1, A General Introduction to Debugging Software. The code examples can be found within
the book's GitHub repository here: https://github.com/PacktPublishing/
Linux-Kernel-Debugging.

The ubiquitous kernel printk
There's a good reason the famous and familiar Kernighan and Ritchie (K&R) Hello,
world C program employs the printf() API: it's the preferred API via which any output
is written to the screen (well, technically, to the standard output channel stdout of the
calling process). After all, it's how we can actually see that our program is really doing
something, right?

You will surely recall using this API when writing your very first C program. Did you
write the code that incorporates the printf() function? No, of course not; then where is
it? You know: it's part of the (typically rather large) standard C library – GNU libc (glibc)
on Linux. Pretty much every binary executable program on a Linux box automatically
and dynamically links into this library; thus printf() is pretty much always available!
(On x86, doing ldd $(which ps) will have the useful ldd script show you the
libraries that the ps app links into; one of them will be the standard C library libc.
so.* – try it.)

https://github.com/PacktPublishing/Linux-Kernel-Debugging
https://github.com/PacktPublishing/Linux-Kernel-Debugging

The ubiquitous kernel printk 65

Except printf() isn't available within the kernel! Why? This itself is a key point: the
Linux kernel does not use libraries – dynamically or statically – in the way userspace
applications do. There are what could perhaps pass as the equivalent: the lib/ branch of
the kernel source tree (peek at it here if you wish: https://github.com/torvalds/
linux/tree/master/lib) contains many useful APIs that get built into the kernel
image itself. Also, the kernel's framework for writing modules – the Loadable Kernel
Module (LKM) – has facilities that kind of mimic the user mode library: the module
stacking approach and the ability to link together several source files into a single kernel
module object (.ko) file.

Important Note
These facilities – writing kernel modules with the LKM framework, the module
stacking approach, the usage of the printk() API, and so on, are covered in
detail in my earlier book Linux Kernel Programming.

So, how is the kernel or driver developer expected to emit a message that can be seen and,
even better, logged? Via the ubiquitous printk() API, that's how! We say this because
the printk() (and friends) APIs can be used anywhere – within interrupt handlers (all
sorts – hardirq/softirq/tasklets), process context, while holding a lock; they're SMP-safe.

For you, the reader of this book, I do assume that you understand the basic usage of
the useful printk() API, so I'll mostly skip over the very basics and instead explain
a summary of typical basic usage, along with a few examples from the kernel code base.

The printk() API's signature is as follows:

// include/linux/printk.h

int printk(const char *fmt, ...);

If you're curious, the actual implementation is here within the kernel source: kernel/
printk/printk.c:printk().

https://github.com/torvalds/linux/tree/master/lib
https://github.com/torvalds/linux/tree/master/lib

66 Debug via Instrumentation – printk and Friends

Tip – Browsing Source Trees
Efficiently browsing large code bases is an important skill; the modern Linux
kernel source tree's Source Lines Of Code (SLOCs) are in excess of 20 million
lines! Though you could go with the typical find <ksrc>/ -name
"*.[ch]" |xargs grep –Hn "<pattern>" approach, it quickly
gets tiresome.

Instead, please do yourself a big favor and learn to use powerful and efficient
purpose-built code-browsing tools like (exuberant!) ctags and cscope (you
installed them when following directions in Chapter 1, A General Introduction
to Debugging Software). In fact, for the Linux kernel, they're built-in targets
to the top-level Makefile; here's how you can build their index files for
the kernel:

cd <kernel-src-tree>

make –j8 tags

make –j8 cscope

To build the indices for a particular architecture, set the environment variable
ARCH to the architecture name; for example, to build cscope indices for
AArch64 (ARM 64-bit):

make ARCH=arm64 cscope

You'll find links to tutorials on using ctags and cscope in the Further
reading section of this chapter.

Great – let's actually make use of the famous printk(); to do so, we'll begin by checking
out the logging levels at which messages can be emitted.

Using the printk API's logging levels
Syntax-wise, the printk API usage is almost identical to that of the familiar printf(3);
the immediately visible difference is the usage of a logging level prefixed to the format
specifier, the KERN_<foo> as the first token. Here's a sample printk with the logging level
set to KERN_INFO:

printk(KERN_INFO "Hello, kernel debug world\n");

First off, notice that KERN_INFO is not a separate parameter; it's part of the format string
being passed as the argument. Next, it's not a priority level; it's merely a marker to specify
that this printk is being logged as an informational one. Utilities to view logs – such as
dmesg(1), journalctl(1), and even GUI tools such as gnome-logs(1) – can
subsequently be used to filter log messages by logging level.

The ubiquitous kernel printk 67

The printk has eight available log levels (from 0 to 7); you're expected to use the one
appropriate to the situation at hand. We'll show them to you direct from the source. The
comment to the right of each log level specifies the typical circumstances under which
you're expected to use it:

// include/linux/kern_levels.h

[...]

#define KERN_EMERG KERN_SOH "0" /* system is unusable */

#define KERN_ALERT KERN_SOH "1" /* action must be taken
immediately */

#define KERN_CRIT KERN_SOH "2" /* critical conditions */

#define KERN_ERR KERN_SOH "3" /* error conditions */

#define KERN_WARNING KERN_SOH "4" /* warning conditions */

#define KERN_NOTICE KERN_SOH "5" /* normal but significant
condition */

#define KERN_INFO KERN_SOH "6" /* informational */

#define KERN_DEBUG KERN_SOH "7" /* debug-level messages */

#define KERN_DEFAULT "" /* the default kernel log
level */

[...]

You can see that the KERN_<FOO> log levels are merely strings ("0", "1", ..., "7") that
get prefixed to the kernel message being emitted by printk, nothing more. KERN_SOH is
simply the kernel Start Of Header (SOH), which is the value \001. The man page on
the ASCII code, ascii(1), shows that the numeric 1 (or \001) is the SOH character,
a convention that is followed here.

What's the printk Default Log Level?
Within printk(), if the log level is not explicitly specified, what log level
is the print emitted at? It's 4 by default, that is, KERN_WARNING. Note,
though, that you are expected to always specify a suitable log level when
using printk or, even better, use the convenience wrapper macros of the form
pr_<foo>() where <foo> specifies the log level (it's coming right up).

Further, the kern_levels.h header contains integer equivalents of the string
loglevel we've just seen (KERN_<FOO>) as the macro's LOGLEVEL_<FOO> (fear not,
we shall make use of it in the first example code that comes up soon!).

A quick introduction to the pr_*() convenience macros will get us closer to the code.
Let's go!

68 Debug via Instrumentation – printk and Friends

Leveraging the pr_<foo> convenience macros
For convenience, the kernel provides simple wrapper macros over the printk of the form
pr_<foo> (or pr_*()) where <foo> specifies the log level; for example, in place of
writing the code as follows:

printk(KERN_INFO "Hello, kernel debug world\n");

You can – and indeed should! – instead use the following:

pr_info("Hello, kernel debug world\n");

The kernel header include/linux/printk.h defines the following pr_<foo>
convenience macros; you're encouraged to use them in place of the traditional
printk():

• pr_emerg(): printk() at log level KERN_EMERG

• pr_alert(: printk() at log level KERN_ALERT

• pr_crit: printk() at log level KERN_CRIT

• pr_err(): printk() at log level KERN_ERR

• pr_warn(): printk() at log level KERN_WARNING

• pr_notice(): printk() at log level KERN_NOTICE

• pr_info(): printk() at log level KERN_INFO

• pr_debug() or pr_devel(): printk() at log level KERN_DEBUG

Here's an example of using the emergency printk:

// arch/x86/kernel/cpu/mce/p5.c

[...]

/* Machine check handler for Pentium class Intel CPUs: */

static noinstr void pentium_machine_check(struct pt_regs *regs)

{

 […]

 if (lotype & (1<<5)) {

 pr_emerg("CPU#%d: Possible thermal failure (CPU on fire
?).\n", smp_processor_id());

 }

[...]

The ubiquitous kernel printk 69

Is the processor on fire!? Whoops! The point: the above message is logged at level
KERN_EMERG.

While on the subject of using the pr_*() macros, there's one called pr_cont().
Its job is to act as a continuation string, continuing the previous printk! This can be
useful... here's an example of its usage:

// kernel/module.c

 if (last_unloaded_module[0])

 pr_cont(" [last unloaded: %s]",

 last_unloaded_module);

 pr_cont("\n");

We typically ensure that only the final pr_cont() contains the newline character. Right,
let's now learn how to automatically prefix every printk we emit!

Fixing the prefix
In addition, there's a rather special macro, pr_fmt(). It's used to generate a uniform
format string for the pr_*() macros (and indeed for any printk()). So, by overriding
its definition, by (re)defining it as the very first (non-comment) line of a source file, you
can guarantee prefixing a given format to all subsequent pr_*() macro and printk()
API invocations. This can be very useful, especially in a debug context, allowing us
to automatically prefix, say, the kernel module name, the function name, and the line
number to every single printk!

Let's check out an example: our very simple printk_loglevels kernel module
demonstrates a couple of things:

• Using the pr_fmt() macro to prefix a custom string to every single printk

• Using the pr_<foo>() macros to emit printks at different logging levels

70 Debug via Instrumentation – printk and Friends

Don't Forget
The code for this, and all kernel/driver modules and demos presented in this
book, is available in its GitHub repo. For this particular demo, you can find the
code here: https://github.com/PacktPublishing/Linux-
Kernel-Debugging/tree/main/ch3/printk_loglevels
Next, when trying out the kernel modules here, please ensure that you have
booted into the custom debug kernel (or even the default distro kernel is okay for
now). Attempting to use our custom production kernel may not work – why
not? This is possibly because its security configuration is tight: it may not even
allow you to try out a kernel module that isn't signed or if the signature can't be
verified (more on this in the Trying our kernel module on the custom production
kernel section).

Let's quickly check out the relevant code from the ch3/printk_loglevels/printk_
loglevels.c file:

#define pr_fmt(fmt) "%s:%s():%d: " fmt, KBUILD_MODNAME, __
func__, __LINE__

#include <linux/init.h>

#include <linux/module.h>

#include <linux/kernel.h>

[...]

static int __init printk_loglevels_init(void)

{

 pr_emerg("Hello, debug world @ log-level KERN_EMERG
[%d]\n", LOGLEVEL_EMERG);

 pr_alert("Hello, debug world @ log-level KERN_ALERT
[%d]\n", LOGLEVEL_ALERT);

 pr_crit("Hello, debug world @ log-level KERN_CRIT
[%d]\n", LOGLEVEL_CRIT);

 pr_err("Hello, debug world @ log-level KERN_ERR
[%d]\n", LOGLEVEL_ERR);

 pr_warn("Hello, debug world @ log-level KERN_WARNING
[%d]\n", LOGLEVEL_WARNING);

 pr_notice("Hello, debug world @ log-level KERN_NOTICE
[%d]\n", LOGLEVEL_NOTICE);

 pr_info("Hello, debug world @ log-level KERN_INFO
[%d]\n", LOGLEVEL_INFO);

 pr_debug("Hello, debug world @ log-level KERN_DEBUG
[%d]\n", LOGLEVEL_DEBUG);

https://github.com/PacktPublishing/Linux-Kernel-Debugging/tree/main/ch3/printk_loglevels
https://github.com/PacktPublishing/Linux-Kernel-Debugging/tree/main/ch3/printk_loglevels

The ubiquitous kernel printk 71

 pr_devel("Hello, debug world via the pr_devel() macro
(eff @KERN_DEBUG) [%d]\n", LOGLEVEL_DEBUG);

 return 0; /* success */

}

static void __exit printk_loglevels_exit(void)

{

 pr_info("Goodbye, debug world @ log-level KERN_INFO
[%d]\n", LOGLEVEL_DEBUG);

}

A (partial) screenshot of trying out this code is shown as follows – do study the output:

Figure 3.1 – Screenshot showing output from our printk_loglevels kernel module

(By the way, I often use a simple wrapper bash script named lkm – in the root of
our source tree – to automate the build, load (insmod(8)), lsmod(8), and
dmesg(1)) of the kernel module. The invocation of the script isn't seen in the
preceding screenshot though.)

In the preceding code and screenshot, do notice the following:

• Due to our pr_fmt() macro (in the first line of code), every printk is prefixed with
the module name, function name, and line number.

• The pr_<foo>() macros have emitted a printk at the relevant log level. Even the
log level integer equivalent is printed within parentheses on the extreme right.

• Any printk at log level emergency (KERN_EMERG) is immediately displayed on all
console devices. You can see the output in the preceding screenshot (see the line in
the upper portion Message from syslog@dbg-LKD at ...).

72 Debug via Instrumentation – printk and Friends

• The dmesg utility has the ability to conveniently color-code the log output, helping
our eyes to catch the more important kernel messages (so too does the powerful
journalctl utility).

• To prevent serious information leakage security issues, many recent distros
configure CONFIG_SECURITY_DMESG_RESTRICT to be on by default, thus
requiring us to either use sudo(8) or have the appropriate capability bits set to
view kernel logs via dmesg.

All right, now that we understand how to use the printk() API as well as the pr_*()
macros, let's move on to figuring out a key point: once emitted, where exactly is the
printk() / pr_*() / dev_*() output visible?

Understanding where the printk output goes
Without going into too many of the details (they're covered in my earlier Linux Kernel
Programming book), let's quickly summarize this key point: we have issued several
printks, but where does the output actually go? The following table precisely shows this.

The first important thing to understand is unlike the printf userspace family of APIs, the
printk output does not go to stdout:

The ubiquitous kernel printk 73

Table 3.1 – Summary of printk output locations

With modern Linux distros (including our x86_64 Ubuntu 20.04 LTS), system daemon
(systemd) is the initialization framework used. Systemd is a pretty powerful (and
intrusive!) framework, taking over many tasks on the OS. These include bringing up
system services, logging, core dump manipulation, the kernel/userspace udev feature,
and more. The logging framework includes sophisticated features such as log rotation,
archival, and so on.

As well, on many modern distros, the traditional style logging does work along with
the modern one. Here, the files logged into for kernel printks depend on the broad type
of distro:

• Debian/Ubuntu type distros: /var/log/syslog

• Red Hat/Fedora/CentOS type distros: /var/log/messages

I'll also mention that the output of the kernel printk to the console device depends upon
the log level that it's emitted at. The first number output by /proc/sys/kernel/
printk specifies that all messages less than this value will appear on the console device
(or devices). Recall that the lower the numeric value of the log level, the higher its relative
importance. For example, this is on our x86_64 Ubuntu 20.04 LTS:

$ cat /proc/sys/kernel/printk

4 4 1 7

74 Debug via Instrumentation – printk and Friends

The first number is 4, representing the log level below which messages will appear on
the console (as well as getting logged into the kernel log buffer and log files). In this case,
we can conclude that all printks at a logging level less than 4 – KERN_WARNING – will
appear on the console. In other words, all printks emitted at log levels KERN_EMERG,
KERN_ALERT, KERN_CRIT, and KERN_ERR. This is useful as it displays only the more
important log messages. Of course, as root, you can change this as you please.

Practically using the printk format specifiers – a few
quick tips
Here are a few top-of-mind common printk format specifiers to keep in mind when
writing portable code:

• For the size_t and ssize_t typedefs (which represent signed and unsigned
integers respectively), use the %zu and %zd format specifiers respectively.

• When printing an address in kernel-space (a pointer):

 � Very Important: use %pK for security (it will emit only hashed values and helps
prevent info leaks, a serious security issue).

 � Use %px for actual pointers, to see the actual address (don't do this in production!).

 � Use %pa for printing a physical address (must pass it by reference).

• To print a raw buffer as a string of hex characters, use %*ph (where * is replaced by
the number of characters; use this for buffers with fewer than 65 characters and use
the print_hex_dump_bytes() routine for buffers with more). Variations are
available (see the kernel doc link that follows).

• To print IPv4 addresses, use %pI4, to print IPv6 addresses use %pI6 (a few
variations exist).

An exhaustive list of printk format specifiers, which to use when (with examples!) is
part of the official kernel documentation here: https://www.kernel.org/doc/
Documentation/printk-formats.txt. I urge you to browse through it!

https://www.kernel.org/doc/Documentation/printk-formats.txt
https://www.kernel.org/doc/Documentation/printk-formats.txt

Leveraging the printk for debug purposes 75

Right, now that you understand the basics of using printk() (and the related pr_*()
/ dev_*() macros), let's move on to specifics on using the printk for the purpose
of debugging.

Leveraging the printk for debug purposes
You might imagine that all you have to do to emit a debug message to the kernel log is
simply to issue a printk at the log level KERN_DEBUG. Though there's (a lot) more to it,
the pr_debug() (and dev_dbg()) macros are actually designed to be more than mere
printers when the kernel's dynamic debug option is enabled. We will learn about this
powerful aspect in the coming Using the kernel's powerful dynamic debug feature section.

In this section, let's first learn more about issuing a debug print, followed by slightly more
advanced ways that help in the issuing of debug messages to the kernel log.

Writing debug messages to the kernel log
In the simple kernel module we covered in the previous section (printk_loglevel),
let's relook at the couple of lines of code that emitted a kernel printk at the debug
log levels:

pr_debug("Hello, debug world @ log-level KERN_DEBUG [%d]\n",
LOGLEVEL_DEBUG);

pr_devel("Hello, debug world via the pr_devel() macro (eff @
KERN_DEBUG) [%d]\n", LOGLEVEL_DEBUG);

Both macros pr_debug() and pr_devel() issue a print to the kernel log at log level
KERN_DEBUG but only when the symbol (macro) DEBUG is defined! If it isn't defined, they
remain silent – no debug output appears. This is precisely what's required!

Module authors should avoid using the pr_devel() macro. It's meant to be used for
kernel-internal debug printk instances whose output should never be visible in
production systems.

76 Debug via Instrumentation – printk and Friends

Figure 5.1 revealed that the messages from the pr_debug() and pr_devel() macros
did indeed make it to the kernel log, but, recall, in order for this to work, the DEBUG
symbol needs to be defined. Where was this done? Especially as it isn't defined in the code.
The answer: we defined it within the module's Makefile. Check it out (I've highlighted
the key portion here); the following Makefile snippet is kept simple, it unconditionally
sets ccflags-y; in the code, we use a variable MYDEBUG to conditionally set ccflags-y):

$ cd ch3/printk_loglevels ; cat Makefile

[...]

Set FNAME_C to the kernel module name source filename
(without .c)

FNAME_C := printk_loglevels

PWD := $(shell pwd)

obj-m += ${FNAME_C}.o

EXTRA_CFLAGS deprecated; use ccflags-y

 ccflags-y += -DDEBUG -g -ggdb -gdwarf-4 -Og -Wall -fno-
omit-frame-pointer -fvar-tracking-assignments

 # man gcc: "...-Og may result in a better debugging
experience"

[...]

By appending the value -DDEBUG to the ccflags-y variable, it gets defined in effect.
The -D implies define this symbol – useful. Likewise, -U implies undefine this symbol.
We typically employ these in the Makefile targets for the debug and production
versions of the app, respectively, or, as in this case, the kernel module. So, here, to generate
the production version, simply change the value of the Makefile variable MYDEBUG
from n to y to enable debug mode.

Leveraging the printk for debug purposes 77

Important – Building a Kernel Module for Debug or Production
The way your kernel module gets built is heavily influenced by the value
that the DEBUG_CFLAGS variable gets set to. This variable is primarily set
within the kernel's top-level Makefile. Here, the value it obtains depends
upon the kernel config CONFIG_DEBUG_INFO. When it's on (implying
a debug kernel), various debug flags make their way into DEBUG_CFLAGS,
and thus your kernel module gets built with them. In effect, what I'm trying to
emphasize here, is that the presence or absence of the –DDEBUG string within
your kernel module's Makefile (as we do here) does not much influence the
way that your kernel module is built.

In effect, when you boot via your debug kernel and build your kernel modules,
they're automatically built with symbolic info and various kernel debug options
turned on. On the other hand, when booted via the production kernel, and (re)
built therein, your kernel modules end up without debug information/symbols.

As an example, when I built this kernel module (ch3/printk_
loglevels) when on the debug kernel, the printk_loglevels.ko
file size was 221 KB, but when built on the production kernel, the size dropped
to under 8 KB! (The lack of debug symbols and info, KASAN instrumentation,
and so on, account for this major difference.)

Quick tips: Doing make V=1 to actually see all options passed to the
compiler can be very enlightening!

Further, and very useful, you can leverage readelf(1) to determine the
DWARF format debug information embedded within the binary Executable
and Linker Format (ELF) file. This can be particularly useful to figure out
exactly which compiler flags your binary executable or kernel module has been
built with. You can do so like this:

readelf --debug-dump <module_dbg.ko> | grep
producer

Note that this technique typically works only when debug info is enabled;
further, when working with a different target architecture (for example, ARM),
you'll need to run that toolchain's version: ${CROSS_COMPILE}readelf.
Do see the Further reading section for links to a series of articles on the GNU
Debugger (GDB), which describe this (and more) in detail (the second part in
the series mentioned is the relevant one here).

78 Debug via Instrumentation – printk and Friends

Let's see an example of actual usage of dev_dbg() within the kernel (drivers). An
interesting, easy, and very cool way of emitting output on typical embedded projects is
via an Organic Light-Emitting Diode (OLED) device. They typically work over an
Inter-Integrated Circuit (I2C) bus, pretty much always available on embedded devices
(such as the popular Raspberry Pi or the BeagleBone). We'll take the SSD1307 OLED
framebuffer driver as an example from this driver source file within the kernel source tree:

// drivers/video/fbdev/ssd1307fb.c

static int ssd1307fb_init(struct ssd1307fb_par *par)

{

 [...]

 /* Enable the PWM */

 pwm_enable(par->pwm);

 dev_dbg(&par->client->dev, "Using PWM%d with a %lluns
period.\n",

 par->pwm->pwm, pwm_get_period(par->pwm));

 }

As you can see, the first parameter to the dev_dbg() macro is a pointer to a device
structure. Here, it happens to be embedded within an i2c_client structure (as this
device is being driven over the popular I2C protocol), which itself is embedded within
the driver's context structure (named ssd1307fb_par). This sort of thing is quite
typical in drivers.

Leveraging the printk for debug purposes 79

To make it more interesting, here's a photo of an SSD1306 OLED display panel in action
(which the ssd1307fb driver can drive as well):

Figure 3.2 – An SSD1306 OLED display panel

As hinted at, there's much more we can do to leverage the kernel's dynamic debug
framework... Before that though, and now that you know the basics of using the printk
for debug, let's round this off with a few more practical tips on debugging with the printk
and friends.

Debug printing – quick and useful tips
When working on a project or product, you'll perhaps need to generate some debug
printk. The pr_debug() macro will get the job done (as long as the symbol DEBUG is
defined of course). But think about this: to look up the debug prints, you will need to run
dmesg over and over. Several tips on what you can do in this situation follow:

1. Clear the kernel log buffer (in RAM) with sudo dmesg -C. Alternatively, sudo
dmesg –c will first print the content and then clear the ring buffer. This way,
stale messages don't clog the system and you see only the latest ones when you
run dmesg.

80 Debug via Instrumentation – printk and Friends

2. Use journalctl -f to keep a watch on the kernel log (in a fashion similar to
how tail -f on a file is used). Try it out!

3. Make the printk behave like the printf and see its output on the console! We can
do this by setting the console log level to the value 8, thus ensuring that all printks
(log levels 0 to 7) will be displayed on the console device:

sudo sh –c "echo \"8 4 1 7\" > /proc/sys/kernel/printk "

I often do this within a startup script when debugging kernel stuff. For example, on
my Raspberry Pi, I keep a startup script that contains the following line:

[$(id -u) -eq 0] && echo "8 4 1 7" > /proc/sys/kernel/
printk

Thus, when it runs as root, this takes effect and all printk instances directly appear on the
minicom(1) (or whichever) console, just as printf output would.

Useful, yes!? But what about a very common case – when you're working on
a device driver? The next section delves into the recommended way – using the dev_
dbg() macro.

Device drivers – using the dev_dbg() macro
A key point for driver authors: when writing a device driver, you are expected to make use
of the dev_dbg() macro to emit a debug message (and not the usual pr_debug()).

Why? The first parameter to this macro is struct device *dev, a pointer to struct
device. This device structure is always present when writing a driver and serves to
describe the device in detail. It's often embedded in a wrapper structure particular to the
kind of driver being written. Printing via the dev_dbg() macro not only gets the debug
printk across and into the kernel log (and possibly the console), but it also typically has
useful information prefixed to the message (such as the name and (sometimes) the class of
the device, the major:minor numbers if appropriate, and so on).

An example from the kernel's Network Block Device (nbd) driver will serve to show how
it's used. I searched, via cscope, for kernel code that calls dev_dbg() on the 5.10.60
kernel and got over 22,000 hits! An important reason is that it's used for dynamic debug as
we'll shortly learn:

// drivers/block/nbd.c

dev_dbg(nbd_to_dev(nbd), "request %p: got reply\n", req);

Here, the nbd_to_dev() inline function retrieves the device structure pointer from the
nbd_device structure, where it's embedded.

Leveraging the printk for debug purposes 81

Remember, when writing a driver, in place of the pr_*() macros, please use the equivalent
dev_*() macros! The header include/linux/dev_printk.h contains their
definitions – the dev_emerg(), dev_crit(), dev_alert(), dev_err(),
dev_warn(), dev_notice(), dev_info(), and of course, as already covered,
dev_dbg(). Everything remains as with the pr_*() macros except that the first
parameter is a pointer to the device structure.

Trying our kernel module on the custom
production kernel
As an experiment, boot into the custom production kernel we built back in Chapter 1,
A General Introduction to Debugging Software. While running on this production kernel,
let's build and then attempt to load the kernel module (notice we're running as root):

make

[...]

dmesg -C; insmod ./printk_loglevels.ko ; dmesg

insmod: ERROR: could not insert module ./printk_loglevels.ko:
Operation not permitted

[1933.232266] Lockdown: insmod: unsigned module loading is
restricted; see man kernel_lockdown.7

It fails due to the fact that, in our custom production kernel's configuration, we enabled
the kernel lockdown mode (a recent kernel feature, from the 5.4 kernel, enabled via
CONFIG_SECURITY_LOCKDOWN_LSM=y). This (and related) config options disallow
the loading of any kernel module that isn't signed or if the signature cannot be validated
by the kernel.

This implies that we can't even test our kernel module on the production kernel. You can,
in one of two ways:

• Actually sign the kernel module (official kernel documentation – Kernel module
signing facility: https://www.kernel.org/doc/html/v5.0/admin-
guide/module-signing.html#kernel-module-signing-facility).

(Also, FYI, with CONFIG_MODULE_SIG_ALL=y, all kernel modules are
auto-signed upon installation, during the make modules_install step of the
kernel build.)

https://www.kernel.org/doc/html/v5.0/admin-guide/module-signing.html#kernel-module-signing-facility
https://www.kernel.org/doc/html/v5.0/admin-guide/module-signing.html#kernel-module-signing-facility

82 Debug via Instrumentation – printk and Friends

• Or, you can always disable these kernel configs, rebuild the kernel, reboot with it,
and then test. We do precisely this in the Disabling the kernel lockdown section,
which follows.

FYI, here's a link to the man page on the kernel lockdown feature: https://man7.
org/linux/man-pages/man7/kernel_lockdown.7.html.

All good with the debug prints, except what are you to do when there are multiple
voluminous printks, especially in a high-volume code path? The following section has
you covered.

Rate limiting the printk
Let's take a plausible scenario: you're writing a device driver for some chipset or
peripheral device... Often, especially during development, and sometimes in order to
debug in production, you of course intersperse your driver code with the now-familiar
dev_dbg() (or similar) macro. This works well until your code paths containing the
debug prints turn out to run (very) often. What will happen? It's quite straightforward:

• The kernel ring (circular) buffer isn't very large (typically between 64 KB and 256
KB, configurable at kernel build time). Once full, it wraps around. This causes you
to lose perhaps precious debug prints.

• Debug (or other) prints in a very high-volume code path (within interrupt handler
routines and timers, for instance), can dramatically slow things down (especially
on an embedded system with prints traveling across a serial line), even leading
to a livelock situation (a situation where the system becomes unresponsive as the
processor(s) are tied up working on logging stuff – console output, framebuffer
scrolling, log file appends, and so on).

• The very same debug (or other) printk message being repeated over and over again
umpteen times (for example, a warning or debug message within a loop) doesn't
really help anyone.

• Also, do realize that it's not just the printk (and similar) APIs that can lead to
logging issues and failures; the usage of kprobes or indeed any kind of event tracing
on high-volume code paths can cause this same issue to crop up (we cover kprobes
in the following chapter and tracing in later ones).

In such situations, you'll notice this message or similar (typically from the
systemd-journald process):

/dev/kmsg buffer overrun, some messages lost.

https://man7.org/linux/man-pages/man7/kernel_lockdown.7.html
https://man7.org/linux/man-pages/man7/kernel_lockdown.7.html

Leveraging the printk for debug purposes 83

(By the way, if you're wondering what the /dev/kmsg character device node is all about,
please do refer to the kernel documentation here: https://www.kernel.org/doc/
Documentation/ABI/testing/dev-kmsg.)

To mitigate exactly these situations, the community came up with the rate-limited printk –
a means to throttle down and not emit prints (the same or different) when certain (tunable)
thresholds have been exceeded!

We'll discuss these thresholds in just a moment... The kernel provides the following
macros to help you rate-limit your prints/logging (#include <linux/kernel.h>):

• printk_ratelimited(): Warning! Do not use it – the kernel warns against this.

• pr_*_ratelimited(): Where the wildcard * is replaced by the usual (emerg,
alert, crit, err, warn, notice, info, debug).

• dev_*_ratelimited(): Where the wildcard * is replaced by the usual (emerg,
alert, crit, err, warn, notice, info, dbg).

Ensure you use the pr_*_ratelimited() macros in preference to printk_
ratelimited(); driver authors should use the dev_*_ratelimited() macros.

But how exactly are the prints rate limited? The kernel provides two tunable thresholds via
the usual control file interfaces within procfs (under the /proc/sys/kernel folder),
named printk_ratelimit and printk_ratelimit_burst for this purpose. Here,
we directly reproduce the sysctl documentation (from https://www.kernel.org/
doc/Documentation/sysctl/kernel.txt) that explains the precise meaning of
these two (pseudo) files:

printk_ratelimit:

Some warning messages are rate limited. printk_ratelimit
specifies the minimum length of time between these messages (in
jiffies), by default we allow one every 5 seconds.

A value of 0 will disable rate limiting.

===

printk_ratelimit_burst:

While long term we enforce one message per printk_ratelimit
seconds, we do allow a burst of messages to pass through.
printk_ratelimit_burst specifies the number of messages we can
send before ratelimiting kicks in.

https://www.kernel.org/doc/Documentation/ABI/testing/dev-kmsg
https://www.kernel.org/doc/Documentation/ABI/testing/dev-kmsg
https://www.kernel.org/doc/Documentation/sysctl/kernel.txt
https://www.kernel.org/doc/Documentation/sysctl/kernel.txt

84 Debug via Instrumentation – printk and Friends

On my x86_64 Ubuntu 20.04 LTS guest system, we find that their (default) values are
as follows:

$ cat /proc/sys/kernel/printk_ratelimit

5

$ cat /proc/sys/kernel/printk_ratelimit_burst

10

This implies that, by default, a burst of up to 10 printk messages occurring within a 5-second
time interval can make it through before rate-limiting kicks in and further messages are
suppressed (until the next time interval).

The printk rate-limiter code, when it does suppress kernel printk instances, emits a helpful
message mentioning exactly how many earlier printk callbacks were suppressed.

We write a simple kernel module to test printk rate limiting (again, only the relevant
snippets are shown here):

// ch3/ratelimit_test/ratelimit_test.c

#define pr_fmt(fmt) "%s:%s():%d: " fmt, KBUILD_MODNAME, __
func__, __LINE__

[…]

#include <linux/kernel.h>

#include <linux/delay.h>

[...]

static int num_burst_prints = 7;

module_param(num_burst_prints, int, 0644);

MODULE_PARM_DESC(num_burst_prints, "Number of printks to
generate in a burst (defaults to 7).");

static int __init ratelimit_test_init(void)

{

 int i;

 pr_info("num_burst_prints=%d. Attempting to emit %d printks
in a burst:\n", num_burst_prints, num_burst_prints);

 for (i=0; i<num_burst_prints; i++) {

 pr_info_ratelimited("[%d] ratelimited printk @ KERN_
INFO [%d]\n", i, LOGLEVEL_INFO);

 mdelay(100); /* the delay helps magnify the rate-
limiting effect, triggering the kernel's "'n' callbacks
suppressed" message... */

Leveraging the printk for debug purposes 85

 }

 return 0; /* success */

}

If you build and run this module with defaults, not modifying the num_burst_prints
module parameter (it defaults to the value 7), you can see that we emit seven rate-limited
printks in a short time interval. This, in spite of the 100-millisecond delay (the delay is
deliberate – you will soon see its effect).

Let's push it a bit: we test by passing the module parameter num_burst_prints, setting
its value to some number greater than the maximum allowed burst (the value of /proc/
sys/kernel/printk_ratelimit_burst – 10 by default). We set it to 60. The
screenshot shows what happens at runtime:

Figure 3.3 – Screenshot showing our ratelimit_test LKM in action

The preceding screenshot should make it clear: we attempt to emit 60 printks in
a burst – but of course, it's the rate-limited version of the printk (via the pr_info_
ratelimited() macro). The kernel's limit gets hit after just 10 printk (the default
value of /proc/sys/kernel/printk_ratelimit_burst), thus, the kernel now
prevents or suppresses further prints. This is clearly seen: you can see prints [0] to [9] –
10 of them being issued and then the message:

40 callbacks suppressed

86 Debug via Instrumentation – printk and Friends

After that, sufficient time elapsed (5 seconds here, as the /proc/sys/kernel/
printk_ratelimit value is 5 by default) that the prints resumed! Our using
mdelay(100) helped create a sufficient delay so that prints could resume... So, out of
the 60 attempted prints, only 20 actually made it to the log (or console). This is a good
thing and clearly demonstrates the point. As root, you can modify the rate-limit sysctl
parameters to suit your requirements.

The ftrace trace_printk() API
The kernel's powerful ftrace subsystem (which we shall cover in detail in
Chapter 9, Tracing the Kernel Flow) provides another way to mitigate high-
volume logging issues: the trace_printk() API. The syntax is identical to
the regular printf() (not printk()!) API. It has two major advantages
over the typical printk: one, it's very fast (as it only writes to a RAM buffer);
two, the size of the trace buffer is large by default and tunable by root.

So, in conclusion, if you have a code path with a high volume of printks, you can mitigate
the potential ill effects by either employing the rate-limiting printk (and/or macros) or by
using trace_printk() (more on the latter in Chapter 9, Tracing the Kernel Flow, in the
Using the trace_printk() for debugging section).

So, by now you have the skills and knowledge to emit a debug printk (typically via the
pr_*[_ratelimited]() or dev_*[_ratelimited]() macros)! It seems this
is sufficient but only until you learn about and start using the kernel's pretty awesome
dynamic debug framework. This is precisely what follows – read on and learn!

Using the kernel's powerful dynamic
debug feature
The instrumentation approach to debugging – interspersing your kernel (and module)
code with many printk is indeed a good technique. It helps you narrow things down and
debug them! But as you've no doubt realized, there can be a (pretty high) cost to this:

• It eats into your disk (or flash) space as logs get filled in. This can be especially
problematic on constrained embedded systems. Also, writing to disk is much slower
than writing to RAM.

• It's fast in RAM, but the ring buffer is not that large and would thus quickly get
overwhelmed; older prints will soon be lost.

Using the kernel's powerful dynamic debug feature 87

• Even more important, on many production systems, a high volume of printks
would have an adverse performance impact, creating bottlenecks and even possible
livelocks! Rate limiting helps with this, to some extent...

A solution would be to use the pr_debug() and/or the dev_dbg() APIs! They're
especially useful during development and testing as it's really easy to turn these debug
printk on or off: the presence of the DEBUG symbol implies the debug printk will run (and
be logged); its absence implies it won't.

That's great; however, think about this: when running in production (using the production
kernel), the DEBUG symbol will almost certainly be undefined by default. Now let's say
you have a situation while running in production where you want your debug prints for
a given kernel module to appear, and thus get logged. Changing the code (or Makefile)
to define the DEBUG symbol, then recompiling and re-installing it is very unlikely to be
allowed during production.

So, what do you do (besides giving up)? There are two broad approaches to dynamically
toggling debug prints: one, via module parameters, and two, via the kernel's powerful
built-in dynamic debug facility – the latter being the superior one and very much the
focus of this section. First, though, let's briefly check out the first option.

Dynamic debugging via module parameters
One approach is to use a module parameter to hold a debug predicate; keep it off by
default (the value 0). You can define it like this:

static int debug;

module_param(debug, int, 0644);

This has the kernel set up the module's parameter named debug under the sysfs pseudo
filesystem (at /sys/module/<module_name>/parameters/debug, with the owner
and group as root and the octal permissions as specified in the third parameter to the
module_param macro).

Interestingly, the i8042 keyboard and mouse controller driver (very often found in
x86-based laptops) does precisely this; it defines this module parameter:

// drivers/input/serio/i8042.c

static bool i8042_debug;

module_param_named(debug, i8042_debug, bool, 0600);

MODULE_PARM_DESC(debug, "Turn i8042 debugging mode on and
off");

88 Debug via Instrumentation – printk and Friends

This has the OS set up a module parameter named debug (notice the usage of the
module_param_named() macro to achieve this), which is a Boolean and off (false) by
default. A given module's parameters can be easily seen by leveraging the modinfo(8)
utility; for example, let's look up the parameters you can supply to the kernel's hid driver:

$ modinfo -p /lib/modules/5.10.60-prod01/kernel/drivers/hid/
hid.ko

debug:toggle HID debugging messages (int)

ignore_special_drivers:Ignore any special drivers and handle
all devices by generic driver (int)

Okay, back to the i8042 driver; once loaded up, you can spot it's debug parameter under
sysfs as follows:

$ ls -l /sys/module/i8042/parameters/debug

-rw------- 1 root root 4096 Oct 3 07:42 /sys/module/i8042/
parameters/debug

Of course, this sysfs-based pseudo file will only be seen after the module has been loaded
into memory, for its lifetime.

Notice the permissions. In this case, only root can read or write to the debug pseudo file:

$ sudo cat /sys/module/i8042/parameters/debug

[sudo] password for letsdebug: xxxxxxxxxx

N

The root user can always turn it on dynamically, by writing the value Y (or 1) into the
sysfs pseudo-file representing it! This way, you can dynamically turn on or off debugging.
So, here, to turn debugging on at runtime, do the following, as root of course:

echo "Y" > /sys/module/i8042/parameters/debug

And turn it off again with the following:

echo "N" > /sys/module/i8042/parameters/debug

Simple. In fact, think about this – you can easily extend this idea: one way to do so is to
use an integer debug parameter, which, depending on its value, will have the module emit
debug messages at various levels of verbosity. (For example, 0 means all debug messages
are off, 1 implies only a few key debug prints will be emitted, 2 implies more debug
verbosity, and so on.)

Using the kernel's powerful dynamic debug feature 89

This general approach does work, but with a significant drawback, especially when
compared to the kernel's dynamic debug facility:

• Performance – you will require a conditional statement of some sort (an if,
switch, and so on) to check whether a debug print should be emitted or not every
time. With multiple levels of verbosity, more checking is required.

• With the kernel's dynamic debug framework (which is covered next), you get
several advantages:

 � The formatting of debug messages with useful information prefixed is part of the
feature set, with a gentle learning curve.

 � Performance remains high, with next to no overhead when debugging is off
(typically the default in production). This is achieved by sophisticated dynamic
code patching techniques that the kernel employs (as is the case for ftrace as well).

 � It's always part of the mainline kernel (from way back, since the 2.6.30 kernel),
not requiring home-brewed solutions that may or may not be maintained,
available or working.

So, for the remainder of this section, we shall focus on learning to use and leverage the
kernel's powerful dynamic debug framework, available right since the 2.6.30 kernel.
Read on!

When the kernel config option CONFIG_DYNAMIC_DEBUG is enabled, it allows you to
dynamically turn on or off debug prints that have been compiled in the kernel image as well
as within kernel modules. This is done by having the kernel always compile in all pr_
debug() and dev_dbg() callsites. Now, the really powerful thing is that you can not
only enable or disable these debug prints but do so at various levels of scope: at the scope
of a given source file, a kernel module, function, or even a line number.

This does imply that the kernel image will be larger; it's not by too much, approximately
a 2% increase in kernel text size. If this is a concern (on a tightly constrained embedded
Linux, perhaps), you can always just set the kernel config CONFIG_DYNAMIC_DEBUG_
CORE. This enables the core support for dynamic printks but it only takes effect on kernel
modules that are compiled with the symbol DYNAMIC_DEBUG_MODULE defined. Thus,
our module Makefile always defines it. You could always comment it out.... This is the
relevant line within our module Makefile:

We always keep the dynamic debug facility enabled; this

allows us to turn dynamically turn on/off debug printks

90 Debug via Instrumentation – printk and Friends

later... To disable it simply comment out the following

line

ccflags-y += -DDYNAMIC_DEBUG_MODULE

In fact, it's not just pr_debug(); all the following APIs can be dynamically enabled/
disabled per callsite: pr_debug(), dev_dbg(), print_hex_dump_debug(), and
print_hex_dump_bytes().

Specifying what and how to print debug messages
As with many facilities, control over the kernel's dynamic debug framework – deciding
which debug printks are enabled and what extraneous information is prefixed to them –
is determined via a control file. Where's this control file then? It depends. If the debugfs
pseudo filesystem is enabled within the kernel config (typically it is, with CONFIG_
DEBUG_FS=y) and the kernel configs CONFIG_DEBUG_FS_ALLOW_ALL=y and
CONFIG_DEBUG_FS_DISALLOW_MOUNT=n – usually the case for a debug kernel – then
the control file is here:

/sys/kernel/debug/dynamic_debug/control

On many production environments though, for security reasons, the debugfs filesystem
is present (functional) but invisible (it can't be mounted) via CONFIG_DEBUG_FS_
DISALLOW_MOUNT=y.

In this case, the debugfs APIs work just fine but the filesystem isn't mounted (in effect,
it's invisible). Alternately, debugfs might be disabled altogether by setting the kernel
config CONFIG_DEBUG_FS_ALLOW_NONE to y. In either of these cases, an identical but
alternate control file for dynamic debug under the pseudo proc filesystem (procfs) should
be used:

/proc/dynamic_debug/control

As with other pseudo filesystems, this control file under debugfs or procfs is a pseudofile;
it exists only in RAM. It gets populated and manipulated by kernel code. Reading its
content will give you a comprehensive list of all debug printk (and/or print_hex_
dump_*()) callsites within the kernel. Thus, its output is typically pretty large (over here,
we're on the custom debug kernel and can hence use the debugfs location for the control
file). Let's begin to interrogate it:

ls -l /sys/kernel/debug/dynamic_debug/control

-rw-r--r-- 1 root root 0 Sep 16 12:26 /sys/kernel/debug/
dynamic_debug/control

Using the kernel's powerful dynamic debug feature 91

wc -l /sys/kernel/debug/dynamic_debug/control

3217 /sys/kernel/debug/dynamic_debug/control

Notice it's only writable as root (and we're running as root). Let's look up the first few
lines of output:

head -n5 /sys/kernel/debug/dynamic_debug/control

filename:lineno [module]function flags format

drivers/powercap/intel_rapl_msr.c:151 [intel_rapl_msr]rapl_msr_
probe =_ "failed to register powercap control_type.\012"

drivers/powercap/intel_rapl_msr.c:94 [intel_rapl_msr]rapl_msr_
read_raw =_ "failed to read msr 0x%x on cpu %d\012"

sound/pci/intel8x0.c:3160 [snd_intel8x0]check_default_spdif_
aclink =_ "Using integrated SPDIF DMA for %s\012"

sound/pci/intel8x0.c:3156 [snd_intel8x0]check_default_spdif_
aclink =_ "Using SPDIF over AC-Link for %s\012"

The format of each entry is shown first; it's reproduced here:

filename:lineno [module]function flags format

Besides the flags member, all are obvious. The last one, format, is the actual
printf-style format string that the debug print uses. So, let's zoom into the first actual
entry seen and examine it minutely, with a (hopefully) helpful diagram:

Figure 3.4 – The dynamic debug control file format specifier

Here's the detailed breakdown, as per the control file output format specifier:

• filename: drivers/powercap/intel_rapl_msr.c: This is the full
pathname of the source file.

• lineno: 151: This is the line number within the source file, the place in code
where the debug print lives (so complicated; yup, I can be sarcastic).

92 Debug via Instrumentation – printk and Friends

• [module]: [intel_rapl_msr]: The name of the kernel module where the
debug print lives. It's optional: if the debug print callsite is in a kernel module,
this – the module name – shows up in square brackets.

• function: rapl_msr_probe: The function containing the debug print.

• flags: =_: Ah, this is really the interesting, juicy bit. We explain it shortly
(Table 3.2).

• format: "failed to register powercap control_type.\012":
This is the actual printf-style format string that's to be printed/logged.

Just to fully verify this, here's the actual code snippet of this example from the kernel code
base (version 5.10.60: I've highlighted the relevant line – # 151 – below):

// drivers/powercap/intel_rapl_msr.c

149 rapl_msr_priv.control_type = powercap_register_control_
type(NULL, "intel-rapl", NULL);

150 if (IS_ERR(rapl_msr_priv.control_type)) {

151 pr_debug("failed to register powercap control_
type.\n");

152 return PTR_ERR(rapl_msr_priv.control_type);

153 }

You can see how it perfectly matches the control file's understanding of it.

(Interestingly, you can use Bootlin's online kernel code browser to look it up as well:
https://elixir.bootlin.com/linux/v5.10.60/source/drivers/
powercap/intel_rapl_msr.c#L151 – useful!)

https://elixir.bootlin.com/linux/v5.10.60/source/drivers/powercap/intel_rapl_msr.c#L151
https://elixir.bootlin.com/linux/v5.10.60/source/drivers/powercap/intel_rapl_msr.c#L151

Using the kernel's powerful dynamic debug feature 93

The real magic lies in the so-called flags specifier. Using flags, you can program the
dynamic debug framework to emit the debug print (thus having it logged) along with
various useful prefixes. The following table summarizes how to program and interpret the
flags specifier:

Table 3.2 – Dynamic debug framework flags specifier

In addition, quite intuitively, you can use the following symbols:

• +: Add the flag(s) specified.

• -: Remove the flag(s) specified.

• =: Set to the flag(s) specified.

A quick experiment: let's grep for the number of debug printk callsites currently enabled
within the kernel (notice how I use sed to strip away the first line, as it's the format string
explanatory line and not an actual entry):

cat /sys/kernel/debug/dynamic_debug/control |sed '1d' |wc -l

3216

94 Debug via Instrumentation – printk and Friends

So, here and now, we have a total of 3,216 debug prints recognized by the kernel's dynamic
debug framework. Now let's grep the flags, only matching the ones that are turned off:

grep " =_ " /sys/kernel/debug/dynamic_debug/control |sed '1d'
|wc -l

3174

So, of the total 3,216 debug printks in the kernel right now, 3,174 of them are turned off,
leaving only 3216 - 3174 = 42 turned on (by the kernel/drivers/whatever). Let's verify this,
by negating the sense of the grep:

grep -n -v " =_ " /sys/kernel/debug/dynamic_debug/control |wc
-l

42

It's verified. Of the ones that are turned on, here's the last three:

grep -v " =_ " /sys/kernel/debug/dynamic_debug/control |tail
-n3

init/main.c:1340 [main]run_init_process =p " with
arguments:\012"

init/main.c:1129 [main]initcall_blacklisted =p "initcall %s
blacklisted\012"

init/main.c:1090 [main]initcall_blacklist =p "blacklisting
initcall %s\012"

So, as their flags value is =p, (just) the debug print will be emitted and logged when the
line of code is hit; nothing will be prefixed to it.

Next, how do you program the dynamic debug framework? Very simple: just write the
command – often via a simple echo statement – into the control file! Needless to say, it
will only go through with root access (or, with the better and modern capabilities model,
having a capability bit such as CAP_SYS_ADMIN set). The command syntax essentially is
the following:

echo –n <match-spec* flags> > <control-file>

match-spec is one of the following:

match-spec ::= 'func' string |

 'file' string |

 'module' string |

 'format' string |

Using the kernel's powerful dynamic debug feature 95

 'line' line-range

line-range ::= lineno | '-'lineno |

 lineno'-' | lineno'-'lineno

lineno ::= unsigned-int

The match-spec syntax shown is taken direct from the kernel documentation on
dynamic debug here: https://www.kernel.org/doc/html/latest/admin-
guide/dynamic-debug-howto.html#command-language-reference.

The flags specifier has already been covered – see Table 3.2. Here's a table summarizing
how to use match-spec to form a command, with examples:

Table 3.3 – Dynamic debug framework match-spec specifiers with examples

Issue the command or program it like this:

echo –n "<command string>" > <control-file>

https://www.kernel.org/doc/html/latest/admin-guide/dynamic-debug-howto.html#command-language-reference
https://www.kernel.org/doc/html/latest/admin-guide/dynamic-debug-howto.html#command-language-reference

96 Debug via Instrumentation – printk and Friends

Where the <command string> parameter to echo is the command formed in the
match-spec* flags format and <control-file> is either <debugfs-mount>/
dynamic_debug/control or /proc/dynamic_debug/control.

Adding to this, several match specifications can be given in a single command; you can
think of them as being implicitly ANDed to form a match to a subset of debug prints.
You can even batch several commands into a file and write the file to the control file.
More examples are available on the kernel documentation page on dynamic debug here:
https://www.kernel.org/doc/html/latest/admin-guide/dynamic-
debug-howto.html#examples.

Exercising dynamic debugging on a kernel module on
a production kernel
For most of us module authors, using this powerful dynamic debug framework on our
kernel module when it's running in production will be a useful thing indeed. A demo will
help you understand how to do so. To make the demo a bit more realistic, let's boot up via
our custom production kernel to help mimic an actual production environment.

Disabling the kernel lockdown
However, what if – as recommended back in the first chapter – you've configured the
custom production kernel for security, by enabling (among other things) the kernel
lockdown mode by default (by setting CONFIG_LOCK_DOWN_KERNEL_FORCE_
CONFIDENTIALITY=y). If this isn't the case, and you can load up your (and other third-
party) kernel modules on the production kernel, then all's well for this experiment and
you can skip this section.

This lockdown mode is good for security, preventing you from loading unsigned
kernel modules (along with other safety measures). But now that we'd like to test our
kernel module on the production kernel, we will have to tweak the production kernel's
configuration, setting the following within the make menuconfig UI:

1. Under Security options | Basic module for enforcing kernel lockdown:

A. Enable lockdown LSM early in init: Set it to n (off).
B. Kernel default lockdown mode: Set it to None.

2. Next, save the config, rebuild, and reboot via the new production kernel.
3. On the (GRUB) bootloader screen, press a key and edit the kernel command-line

parameters, appending lockdown=none. This disables kernel lockdown mode.

https://www.kernel.org/doc/html/latest/admin-guide/dynamic-debug-howto.html#examples
https://www.kernel.org/doc/html/latest/admin-guide/dynamic-debug-howto.html#examples

Using the kernel's powerful dynamic debug feature 97

For more details, please refer to the man page on kernel lockdown: https://man7.
org/linux/man-pages/man7/kernel_lockdown.7.html.

Now let's get that debug printk working dynamically!

Demonstrating dynamic debugging on a simple misc driver
For the purposes of this demo, we'll grab a simple misc class character device driver from
my earlier book, Linux Kernel Programming – Part 2 (the original code's here: https://
github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/
tree/main/ch1/miscdrv_rdwr). Of course, we will keep a copy in this book's
GitHub repo as well...

Looking at the code, you will notice several instances of the dev_dbg() macro being
invoked. Obviously, these are the debug prints that will only get logged when DEBUG is
defined or we use the kernel's dynamic debug facility – the latter being what this demo is
all about!

Here's a sample of the debug prints in the driver (due to space constraints, I won't show all
the code here of course, only a few relevant bits):

// ch3/miscdrv_rdwr/miscdrv_rdwr.c

#define pr_fmt(fmt) "%s:%s(): " fmt, KBUILD_MODNAME, __func__

static int open_miscdrv_rdwr(struct inode *inode, struct file
*filp)

{

 struct device *dev = ctx->dev;

 char *buf = kzalloc(PATH_MAX, GFP_KERNEL);

 [...]

 dev_dbg(dev, " opening \"%s\" now; wrt open file:

 f_flags = 0x%x\n",

 file_path(filp, buf, PATH_MAX), filp->f_flags);

 kfree(buf);

 [...]

}

static ssize_t write_miscdrv_rdwr(struct file *filp, const char
__user *ubuf, size_t count, loff_t *off)

{

https://man7.org/linux/man-pages/man7/kernel_lockdown.7.html
https://man7.org/linux/man-pages/man7/kernel_lockdown.7.html
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/ch1/miscdrv_rdwr
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/ch1/miscdrv_rdwr
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/ch1/miscdrv_rdwr

98 Debug via Instrumentation – printk and Friends

 int ret = count;

 void *kbuf = NULL;

 [...]

 dev_dbg(dev, "%s wants to write %zu bytes\n",

 get_task_comm(tasknm, current), count);

 [...]

 ret = count;

 dev_dbg(dev, " %zu bytes written, returning...

 (stats: tx=%d, rx=%d)\n",

 count, ctx->tx, ctx->rx);

 [...]

}

[...]

Note that the Makefile file for this module will conditionally set the DEBUG symbol to
undefined (as we're building in production mode). Thus, the debug prints will not make it
to the console or kernel logs.

A quick mount |grep -w debugfs shows no output, implying that the debugfs
filesystem isn't visible. This, again, is intentional, a security feature we enabled for our
custom production kernel by setting CONFIG_DEBUG_FS_DISALLOW_MOUNT=y. Don't
panic (yet) – as mentioned, there's a solution. Simply make use of the control file available
here: /proc/dynamic_debug/control.

Grepping it for our module before it's inserted into memory reveals no data, as expected:

grep miscdrv_rdwr /proc/dynamic_debug/control

#

Using the kernel's powerful dynamic debug feature 99

Okay, now we can get it running. The following screenshot shows the source files via ls,
the build (via our convenience lkm script), the resulting dmesg output, and the device
node this driver creates:

Figure 3.5 – Screenshot of our miscdrv_rdwr loading up on our custom production kernel

Also notice (in the preceding screenshot) the following:

• The kernel version is 5.10.60-prod01, showing that we're running on our
custom production kernel.

• The value of the ccflags-y (or the older EXTRA_CFLAGS) variable is -UDEBUG
–DDYNAMIC_DEBUG_MODULE, as expected.

With the current settings, the debug prints do not get logged. Let's try this out and see
(remember: "be empirical"!):

echo "DEBUG undefined, no logging?" > /dev/llkd_miscdrv_rdwr

dmesg

[9177.333822] miscdrv_rdwr:miscdrv_rdwr_init(): LLKD misc
driver (major # 10) registered, minor# = 58, dev node is /dev/
llkd_miscdrv_rdwr

100 Debug via Instrumentation – printk and Friends

As is expected, the kernel log (seen via dmesg) shows only the earlier printk (which,
being pr_info() does show up); none of the debug prints appear. So, let's set up to make
them appear!

Now that our kernel module is loaded up, let's grep the dynamic debug control file again:

grep "miscdrv_rdwr" /proc/dynamic_debug/control

<…>/miscdrv_rdwr.c:303 [miscdrv_rdwr]miscdrv_rdwr_init =_ "A
sample print via the dev_dbg(): driver initialized\012"

<…>/miscdrv_rdwr.c:242 [miscdrv_rdwr]close_miscdrv_rdwr =_ "
filename: \042%s\042\012"

<…>/miscdrv_rdwr.c:239 [miscdrv_rdwr]close_miscdrv_rdwr =_
"%03d) %c%s%c:%d | %c%c%c%u /* %s() */\012"

[...]

Clearly, the dynamic debug control is aware that our module has debug prints. It's
currently off, the flags value of =_ proving this (for readability, I've truncated the
pathname and shown only the first few lines of output).

Now let's set it up such that any and all debug prints from our miscdrv_rdwr kernel
module will get logged via the dynamic debug framework:

echo –n "module miscdrv_rdwr +p" > /proc/dynamic_debug/
control

You'll need to do this only once per session. The value is retained until the module is
removed or a power cycle (or reboot) occurs. Now let's retry the grep command. The
following screenshot shows our setting the debug prints on – by using the +p flags
specifier syntax, the subsequent grep shows that this has been noticed and set up:

Figure 3.6 – Screenshot showing setting on of debug prints for our miscdrv_rdwr module

Using the kernel's powerful dynamic debug feature 101

Let's reprint and study the first line of output:

grep "miscdrv_rdwr" /proc/dynamic_debug/control

<…>/miscdrv_rdwr.c:303 [miscdrv_rdwr]miscdrv_rdwr_init =p "A
sample print via the dev_dbg(): driver initialized\012"

This shows us the following:

• Source line 303 is a debug print callsite. It also shows the source file pathname,
the module and the function name, and then the actual print format string.

• More importantly, between the function name and the format string, you can see
=p. This implies of course that this debug print's callsite is known and, when this
line of code is hit at runtime, the print will be emitted and logged!

To verify that this works, let's exercise our driver a bit (lazy fellow):

Figure 3.7 – Dynamic debug in action!

It works indeed! The preceding screenshot clearly shows the debug printks have actually
run and been logged.

Now let's turn it off:

echo –n "module miscdrv_rdwr -p" > /proc/dynamic_debug/
control

grep "miscdrv_rdwr" /proc/dynamic_debug/control |head -n1

<…>/miscdrv_rdwr.c:303 [miscdrv_rdwr]miscdrv_rdwr_init =_ "A
sample print via the dev_dbg(): driver initialized\012"

And let's retry it:

echo "DEBUG undefined, dynamic debug now OFF for this module"
> /dev/llkd_miscdrv_rdwr

dmesg

[…]

[1010.813777] misc llkd_miscdrv_rdwr: filename: "/dev/llkd_
miscdrv_rdwr"

102 Debug via Instrumentation – printk and Friends

As expected, no debug prints have appeared (the one in the log is the earlier one – see
the timestamp).

One more experiment: we turn on the display of the module name (m) and thread context
PID (t: shows the thread PID that runs this driver code in process context):

echo –n "module miscdrv_rdwr +ptm" > /proc/dynamic_debug/
control

Write to the device node and check dmesg:

echo "DEBUG undefined, dynamic debug now ON for this module"
> /dev/llkd_miscdrv_rdwr

dmesg

[…]

[1010.813777] misc llkd_miscdrv_rdwr: filename: "/dev/llkd_
miscdrv_rdwr"

[1457.376915] [1080] miscdrv_rdwr: miscdrv_rdwr:open_miscdrv_
rdwr(): 001) bash :1080 | ...0 /* open_miscdrv_rdwr() */

[1457.376931] [1080] miscdrv_rdwr: misc llkd_miscdrv_rdwr:
opening "/dev/llkd_miscdrv_rdwr" now; wrt open file: f_flags =
0x8241

[…]

Aha! This time you can see the PID of the thread that performed the write in square
brackets ([1080] it's in fact the PID of our bash shell, as echo is a bash built-in!)
followed by the name of the module.

Super – you now know how to activate and deactivate debug prints on a production
system using the kernel's dynamic debug framework.

Using the kernel's powerful dynamic debug feature 103

Activating debug prints at boot and module init
It's important to realize that any debug prints within the early kernel initialization (boot)
code paths or the initialization code of a kernel module, will not automatically be enabled.
To enable them, do the following:

• For core kernel code and any built-in kernel modules, that is, for activating debug
prints during boot, pass the kernel command-line parameter dyndbg="QUERY"
or module.dyndbg="QUERY", where QUERY is the dynamic debug syntax
(explained earlier). For example, dyndng="module myfoo* +pmft" will
activate all debug prints within the kernel modules named myfoo* with the display
as set by the flags specifier pmft.

• To activate debug prints at kernel module initialization, that is, when modprobe
myfoo is invoked (by systemd, perhaps), there are several ways, by passing along
module parameters (with examples):

 � Via /etc/modprobe.d/*.conf (put this in the /etc/modprobe.d/
myfoo.conf file): options myfoo dyndbg=+pmft

 � Via the kernel command line: myfoo.dyndbg="file myfoobar.c +pmf;
func goforit +mpt"

 � Via parameters to modprobe itself: modprobe myfoo dyndbg==pmft (this,
the = and not the +, overrides any previous settings!)

Interesting: dyndbg is an always-available kernel module parameter, even though you
don't see it (even in /sys/module/<modname>/parameters). You can see it by
grepping the dynamic debug control file or /proc/cmdline.

(FYI, details on passing parameters to and auto-loading kernel modules have been fully
covered in my earlier Linux Kernel Programming book.)

The official kernel documentation on dynamic debug is indeed very complete; be sure to
have a look: https://www.kernel.org/doc/html/latest/admin-guide/
dynamic-debug-howto.html#dynamic-debug.

https://www.kernel.org/doc/html/latest/admin-guide/dynamic-debug-howto.html#dynamic-debug
https://www.kernel.org/doc/html/latest/admin-guide/dynamic-debug-howto.html#dynamic-debug

104 Debug via Instrumentation – printk and Friends

Kernel boot-time parameters
As an important aside, the kernel has an enormous (and useful!) number of kernel
parameters that can be optionally passed to it at boot (via the bootloader). See the
complete list here in the documentation: The kernel's command-line parameters:
https://www.kernel.org/doc/html/v5.10/admin-guide/kernel-
parameters.html (here, we've shown the link for the 5.10 kernel documentation).

While on the topic of the kernel command line, several other useful options with regard
to printk-based debugging exist, enabling us to enlist the kernel's help for debugging
issues concerned with kernel initialization. For example, the kernel provides the following
parameters in this regard (taken directly from the link):

debug

 [KNL] Enable kernel debugging (events log level).

[...]

initcall_debug

 [KNL] Trace initcalls as they are executed. Useful for working
out where the kernel is dying during startup.

[...]

ignore_loglevel

 [KNL] Ignore loglevel setting - this will print /all/ kernel
messages to the console. Useful for debugging. We also add
it as printk module parameter, so users could change it
dynamically, usually by /sys/module/printk/parameters/ignore_
loglevel.

Useful indeed – do try them out! The sheer volume of information posted is surprising at
first; try to carefully and patiently analyze it.

We're almost done here. Let's complete this chapter with some miscellaneous but useful
printk-related logging functions and macros.

Remaining printk miscellany
By now, you're familiar with most of the typical and pragmatic means to leverage the
kernel's powerful and ubiquitous printk and its related APIs, macros, and frameworks. Of
course, innovation never stops (especially in the open source universe). The community
has come up with more and more ways (and tooling) to use this simple and powerful tool.
Without claiming to cover absolutely everything, here's what I think is the remaining and
relevant tooling to do with the printk that we haven't had a chance to cover until now. Do
check it out – it will probably turn out to be useful one day!

https://www.kernel.org/doc/html/v5.10/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/v5.10/admin-guide/kernel-parameters.html

Remaining printk miscellany 105

Printing before console init – the early printk
You understand that the printk output can be sent to the console device of course
(we covered this in the Understanding where the printk output goes section(see Table 3.1).
By default, on most systems, it's configured such that all printk messages of log level 3
and below (<4) are auto-routed to the console device as well (in effect, all kernel
printks emitted at log levels emerg/alert/crit/err will find their way to the
console device).

What exactly is the console device?
Before going any further, it's useful to understand what exactly the console device is...
Traditionally, the console device is a pure kernel feature, the initial Terminal window that
the superuser logs into (/dev/console) in a non-graphical environment. Interestingly,
on Linux, we can define several consoles – a teletype terminal (tty) window (such as /
dev/console), a text-mode VGA, a framebuffer, or even a serial port served over USB
(this being common on embedded systems during development).

For example, when we connect a Raspberry Pi to an x86_64 laptop via a USB-to-RS232
TTL UART (USB-to-serial) cable (see the Further reading section of this chapter for a blog
article on this very useful accessory and how to set it up on the Raspberry Pi!) and then
use minicom(1) (or screen(1)) to get a serial console, this is what shows up as the
tty device – it's the serial port:

rpi # tty

/dev/ttyS0

Now, what's the problem? Let's find out!

Early init – the issue and a solution
Via the printk, you can send messages to the console (and kernel log). Yes, but think about
this: very early in the boot process when the kernel is initializing itself, the console device
isn't ready, it's not initialized, and thus can't be used. Obviously, for any printk emitted at
this early boot time, their output can't be seen on the screen – the console
(even though it may be logged within the kernel log buffer, but we don't yet have a shell to
look it up).

106 Debug via Instrumentation – printk and Friends

Pretty often (especially during things such as embedded board bring-up), hardware quirks
or failures can cause the boot to hang, endlessly probe for some non-existent or faulty
device, or even crash! The frustrating thing is that these issues become hard to debug (to
say the least!) in the absence of console – printk – output, which, if visible, can instrument
the kernel's boot process and pretty clearly show where the issue(s) is occurring (recall the
kernel command-line parameters debug and initcall_debug can be really useful at
times like this – look back at the Kernel boot-time parameters section if you need to).

Well, as we know, necessity is the mother of invention: the kernel community came up
with a possible solution to this issue – the so-called early printk. With it configured,
kernel printks are still able to be sent to the console device. How? Well, it's pretty arch and
device-specific, but the broad and typical idea is that bare minimal console initialization
is performed (this console device is called the early_console) and the string to be
displayed on it is literally bit-banged out over a serial line one character at a time within
a loop (with typical bitrates ranging between 9,600 and 115,200 bps).

To make use of the facility involves doing three things:

• Configure and build the kernel to support the early printk (set CONFIG_EARLY_
PRINTK=y), one time only.

• Boot the target kernel with the appropriate kernel command-line parameter –
earlyprintk=<value>.

• The API to use to emit the early printk is called early_printk(); the syntax is
identical to that of printf().

Let's check out each of the above points briefly, first, configuring the kernel for
early printk.

The kernel config for this feature tends to be arch-dependent. On an x86, you'll have
to configure the kernel with CONFIG_EARLY_PRINTK=y (it's under the Kernel
Hacking | x86 Debugging | Early printk menu). Optionally, you can enable
early printk via a USB debug port. The file that forms the UI – the menu system – for the
kernel config (via the usual make menuconfig) for the kernel debug options is the file
arch/x86/Kconfig.debug. We'll show a snippet of it here – the section where the
early printk menu option is:

Remaining printk miscellany 107

Figure 3.8 – Screenshot showing the early printk portion of the Kconfig.debug file

Reading the help screen shown here is indeed helpful! As it says, this option isn't
recommended by default as the output isn't well-formatted and can interfere with normal
logging. You're typically only to use it to debug an early init issue. (If interested, you'll
find the details on the kernel's Kconfig grammar and usage in my earlier Linux Kernel
Programming book.)

On the other hand, on an ARM (AArch32) system, the kernel config option is under
Kernel Hacking | Kernel low-level debugging functions (read
help!) with the config option being called CONFIG_DEBUG_LL. As the kernel clearly
insists, let's read the help screen:

Figure 3.9 – Screenshot showing the make menuconfig UI menu for early printk on ARM-32

108 Debug via Instrumentation – printk and Friends

Do take note of what it says! Further, the sub-menu following it allows you to configure
the low-level debug port (it's set to the EmbeddedICE DCC channel by default; you can
change it to a serial UART if you have one available).

Okay, that's as far as kernel config goes, a one-time thing. Next, enable it by passing the
appropriate kernel command-line parameter – earlyprintk=<value>. The official
kernel documentation shows all possible ways to pass it (here: https://www.kernel.
org/doc/html/latest/admin-guide/kernel-parameters.html):

earlyprintk= [X86,SH,ARM,M68k,S390]

 earlyprintk=vga

 earlyprintk=sclp

 earlyprintk=xen

 earlyprintk=serial[,ttySn[,baudrate]]

 earlyprintk=serial[,0x...[,baudrate]]

 earlyprintk=ttySn[,baudrate]

 earlyprintk=dbgp[debugController#]
earlyprintk=pciserial[,force],bus:device.function[,baudrate

 earlyprintk=xdbc[xhciController#]

(The remaining paragraphs of the kernel doc are useful to read as well.)

An optional keep parameter can be appended implying that printk messages sent via the
early printk facility aren't disabled even after the VGA subsystem (or whatever the real
console is) begins to function. Once the earlyprintk= parameter is passed, the kernel
is primed to use it (essentially redirecting printk onto a serial, VGA, or whatever console
you specified via this parameter). To emit a print, simply invoke the early_printk()
API. Here's an example within the kernel code base:

// kernel/events/core.c

 if (!irq_work_queue(&perf_duration_work)) {

 early_printk("perf: interrupt took too long (%lld >
%lld), lowering "

 "kernel.perf_event_max_sample_rate to %d\n",

 __report_avg, __report_allowed,

 sysctl_perf_event_sample_rate);

 }

https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html

Remaining printk miscellany 109

What we've described above is mostly the arch-independent stuff. As an example, (only)
on the x86, you can leverage a USB debug port (provided your system has one), as follows.
Pass the kernel command-line parameter earlyprintk=dbgp. Note that it requires
a USB debug port on the (x86) host system and a NetChip USB2 debug port key/cable
(to connect to the client or target system). The kernel documentation details this facility
here: https://www.kernel.org/doc/html/latest/x86/earlyprintk.
html#early-printk.

Designating the printk to some known presets
The kernel provides macros that give you the ability to prefix – and thus designate – a
printk as a firmware bug or warning, a hardware error, a message regarding a deprecated
feature, and so on. This is specified via some kernel-defined macros. The value of the
macro – a string (for example, "[Firmware Bug]: ") – is what will be prefixed to the
message you're emitting:

// include/linux/printk.h

#define FW_BUG "[Firmware Bug]: "

#define FW_WARN "[Firmware Warn]: "

#define FW_INFO "[Firmware Info]: "

[…]

/*

 * HW_ERR

 * Add this to a message for hardware errors, so that user
can report it to hardware vendor instead of LKML or software
vendor.

 */

#define HW_ERR "[Hardware Error]: "

/*

 * DEPRECATED

 * Add this to a message whenever you want to warn userspace
about the use of a deprecated aspect of an API so they can stop
using it

 */

#define DEPRECATED "[Deprecated]: "

https://www.kernel.org/doc/html/latest/x86/earlyprintk.html#early-printk
https://www.kernel.org/doc/html/latest/x86/earlyprintk.html#early-printk

110 Debug via Instrumentation – printk and Friends

Be sure to read the useful comments atop each of these.

An example or two of their usage follows:

// drivers/acpi/thermal.c

static int acpi_thermal_trips_update(struct acpi_thermal *tz,
int flag)

{

[…]

/*

 * Treat freezing temperatures as invalid as well; some

 * BIOSes return really low values and cause reboots at
startup. Below zero (Celsius) values clearly aren't right for
sure..

[…] */

} else if (tmp <= 2732) {

 pr_warn(FW_BUG "Invalid critical threshold (%llu)\n",
tmp);

Here's another example of a printk issuing a deprecated warning (notice the use of
rate-limiting as well!):

// net/batman-adv/debugfs.c

pr_warn_ratelimited(DEPRECATED "%s (pid %d) Use of debugfs file
\"%s\".\n%s", current->comm, task_pid_nr(current), name, alt);

Let's move along to the next point...

Printing exactly once
To emit a printk exactly once, use the macro printk_once(). It guarantees it will emit
the message exactly once, no matter how many times you call it (thus making it similar to
macros such as WARN_[ON]_ONCE()).

As with the usual pr_*() macros, their equivalents are defined for printing a message
exactly once: pr_*_once(). The wildcard * is replaced by the usual log levels (emerg,
alert, crit, err, warn, notice, info, and debug).

Remaining printk miscellany 111

The IPv4 TCP code has an example of using pr_err_once():

// net/ipv4/tcp.c

[...]

if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN))

pr_err_once("%s: found a SYN, please report !\n", __func__);
[...]

Driver authors: you'll realize that the equivalent macros exist in include/linux/dev_
printk.h. You're expected to use the dev_*_once() (in place of the pr_*_once())
macros. As one example, this i.MX53 Real Time Clock (RTC) chip driver uses it:

// drivers/rtc/rtc-mxc_v2.c

if (!--timeout) {

 dev_err_once(dev, "SRTC_LPSCLR stuck! Check your hw.\n");

 return;

Then – again, dear driver authors, do take note - there's the dev_WARN() and dev_
WARN_ONCE() macros; the kernel comment explains it clearly:

// include/linux/dev_printk.h

/*

 * dev_WARN*() acts like dev_printk(), but with the key
difference of using WARN/WARN_ONCE to include file/line
information and a backtrace.

 */

Do think before using these [pr|dev]_*_once() macros; they're to be used when you
want to emit a message exactly once.

Exercise
How many instances of using dev_WARN_ONCE() can you find within the
5.10.60 kernel code base? (Tip: use cscope!)

112 Debug via Instrumentation – printk and Friends

Emitting a printk from userspace
Testing is a critical part of the SDLC. While testing, it's often the case that you will run an
automated batch (or suite) of test cases via a script. Now, say that your test (bash) script
has initiated a test on your driver by invoking something like this:

echo "test data 123<...>" > /dev/mydevnode

That's fine, but you'd like to see the point at which the script initiated some action within
our kernel module, by printing out a certain distinct (signature) message. As a concrete
example, say we want the log to look something like this:

my_test_script:------------- start testcase 1

my_driver_module:

msg1, ..., msgn, msgn+1, ..., msgn+m

my_test_script:------------- end testcase 1

[...]

You can have your userspace test script write a message into the kernel log buffer, just
like a kernel printk would, by writing the given message into the character device file /
dev/kmsg:

sudo bash -c "echo \"my_test_script: start testcase 1\" > /dev/
kmsg"

(Note how we code it to run with root access.)

The message written to the kernel log via the special /dev/kmsg device file will be
printed at the current default log level, typically, 4: KERN_WARNING. We can override
this by actually prefixing the message with the required log level (as a number in string
format, within angle brackets). For example, to write from the userspace into the kernel
log at log level 6:KERN_INFO, use this:

sudo bash -c "echo \"<6>my_test_script: start testcase 1\" > /
dev/kmsg"

$ sudo dmesg --decode |tail -n1

user :info : [33561.862960] my_test_script: start testcase 1

Notice how I used the --decode option to dmesg to provide more human-readable
output. Also, you can see that our latter message is emitted at log level 6 as specified
within the echo statement.

Remaining printk miscellany 113

There is really no way to distinguish between a user-generated kernel message and
a kernel one generated by printk(); they look identical. So, of course, it could be as
simple as prefixing some special signature byte or string within the message, such
as @myapp@, in order to help you distinguish these user-generated prints from the
kernel ones.

Easily dumping buffer content
Once, when working on a network driver, I wrote C code to quite painstakingly dump
the content of the Ethernet (link) header, IP header, and so on, in order to analyze and
understand exactly how things were working... My code did the typical thing: within
a loop, dump each byte of the header structure, printing it in hexadecimal (and, if you're
feeling adventurous, when printable, in ASCII as well on the right side). Sure, we can do
these things, but don't waste time – the kernel provides!

The macro, print_hex_dump_bytes() is there for precisely this kind of work;
it's a wrapper over a similar macro. The comments within its code clearly show you the
meaning of each of its four parameters, and thus how to use it to efficiently dump memory
buffer content:

// include/linux/printk.h

/**

 * print_hex_dump_bytes - shorthand form of print_hex_dump()
with default params

 * @prefix_str: string to prefix each line with; caller
supplies trailing spaces for alignment if desired

 * @prefix_type: controls whether prefix of an offset, address,
or none is printed (%DUMP_PREFIX_OFFSET, %DUMP_PREFIX_ADDRESS,
%DUMP_PREFIX_NONE)

 * @buf: data blob to dump

 * @len: number of bytes in the @buf

 * Calls print_hex_dump(), with log level of KERN_DEBUG,
rowsize of 16, groupsize of 1, and ASCII output included.

 */

#define print_hex_dump_bytes(prefix_str, prefix_type, buf, len)
\

 print_hex_dump_debug(prefix_str, prefix_type, 16, 1, buf,
len, true)

114 Debug via Instrumentation – printk and Friends

Great, but why does the macro invoke the debug version? Ah, it's tied into the kernel's
dynamic debug circuitry! Thus (as we already mentioned in the Using the kernel's powerful
dynamic debug feature section), every print_hex_dump_debug() and print_hex_
dump_bytes() callsite is able to be dynamically toggled via the dynamic debug control
file. Useful!

Here's an example of this macro in action (within a Qualcomm wireless network driver):

// drivers/net/wireless/ath/ath6kl/debug.c

void ath6kl_dbg_dump(enum ATH6K_DEBUG_MASK mask,

 const char *msg, const char *prefix,

 const void *buf, size_t len)

{

 if (debug_mask & mask) {

 if (msg)

 ath6kl_dbg(mask, "%s\n", msg);

 print_hex_dump_bytes(prefix,

 DUMP_PREFIX_OFFSET, buf, len);

 }

[…]

There – all done! Well, no, it's never actually all done, is it...?

Remaining points – bootloader log peeking, LED
flashing, and more
A common problem when debugging kernel crashes is that once the kernel has crashed
or panicked, the system is unusable (typically hung). Reading the kernel log will almost
certainly help in debugging the (root) cause... But – I'm sure you see this – how can we see
the kernel log if the system is hung?! Moreover, there's no iron-clad guarantee that the log
data has been flushed from RAM into non-volatile log files before the system went into
a tailspin...

For these reasons, more exotic debug techniques are required at times. One of them is this:
after the system hangs (or panics), "warm" boot or reset back into the bootloader prompt
(this is assuming that there is a way to do so – let's assume there is).

Remaining printk miscellany 115

Warm Reset – How?
A warm reset or reboot is one where the board reboots but RAM content is
preserved. I once worked on a prototyping project on a TI PandaBoard. It had
a soft reset button; pressing it led to the board performing a warm reboot.

The PC's Ctrl + Alt + Delete (the famous "three-finger salute" – the temptation
to say "read between the lines" and put in a smiley here is great!) is the
equivalent... But that's typically not configured on Linux; you can use the
kernel's Magic SysRq facility (again, assuming it's so configured) to do so (fear
not, we shall cover this in Chapter 10, Kernel Panic, Lockups, and Hangs, in the
What's this Magic SysRq thingy anyway? section).

Once at the bootloader prompt, use its intelligence to dump the kernel log buffer memory
region and you will see the kernel printks! (For example, many embedded systems use
the powerful and elegant Das U-Boot as their bootloader; the command to dump
a memory region is memory display (md).) Hang on though – a key point: even if you
know the kernel log buffer address (that's easy: just do sudo grep __log_buf /
proc/kallsyms to get it), it's not a physical address; it's a kernel virtual address.
You will first have to figure out how to translate it to its physical counterpart – as that's all
the bootloader sees. This is typically done by referring to the Technical Reference Manual
(TRM) for the board or platform you're working on. Once you have the physical address,
simply issue the md (or equivalent – GRUB has the dump command) command to dump
the memory content. You will, in effect, see the kernel log!

I refer you to a few actual examples in this (older but excellent) information here:
https://elinux.org/Debugging_by_printing#Debugging_early_boot_
problems).

Flashing LEDs to debug
Sometimes, especially during the very early stages of board bring-up and likewise, all
we really need to know is that some line of code got executed. You can do this by toggling
an LED on/off or flashing it as lines of code are hit! Developers at times go to the extent of
rigging up the system's GPIO pins (or equivalent) to do so and insert custom code in the
kernel to trigger the LED. This is really nothing new – it's the poor man's printf.

(Interestingly, the Raspberry Pi does precisely this when it can't boot – it flashes
an onboard LED a given number of times (short and long flashes)... Here's the
documentation that explains how to interpret the LED flashes and thus understand what's
causing the boot issue: https://www.raspberrypi.com/documentation/
computers/configuration.html#led-warning-flash-codes).

https://elinux.org/Debugging_by_printing#Debugging_early_boot_problems
https://elinux.org/Debugging_by_printing#Debugging_early_boot_problems
https://www.raspberrypi.com/documentation/computers/configuration.html#led-warning-flash-codes
https://www.raspberrypi.com/documentation/computers/configuration.html#led-warning-flash-codes

116 Debug via Instrumentation – printk and Friends

Even better, you could perhaps even rig up a device such as the OLED display mentioned
earlier to display debug messages. Of course, this will require that I2C initialization has
been performed.

Another thing: you may have heard of the kernel's netconsole facility. Isn't that something
to delve into? It certainly is – netconsole is a powerful thing, a means to send kernel
printks across a network to a target system, which will store it for later perusal! (We cover
it here: Chapter 7, Oops! Interpreting the Kernel Bug Diagnostic, in the An Oops on an ARM
Linux system and using netconsole section; keep a keen eye out!).

Summary
Good going! You've just completed the first of many techniques for debugging the kernel.
Instrumentation, though deceptively simple, almost always proves to be a useful and
powerful debugging technique.

In this chapter, you began by learning the basics regarding the ubiquitous kernel
printk(), pr_*(), and dev_*() routines and macros. We then went into more detail
about the specific use of these routines to help in debug situations and tips and tricks
that will prove useful in debugging your (driver) modules... This included leveraging the
kernel's ability to rate-limit printks, often a necessity on high-volume code paths.

 The kernel's elegant and powerful dynamic debug framework was the highlight of this
chapter. Here, you learned about it, and how to leverage it to be able to toggle your
(and indeed the kernel's) debug prints even on production systems, with virtually no
performance degradation when turned off.

We finished this chapter with a few remaining uses of printk macros that are sure to prove
useful at some point in your kernel/driver journeys.

With these tools in hand, we'll move on to another powerful technology in the coming
chapter: the kernel's kprobes framework where we'll of course focus on using it to aid us to
debug things, primarily via the instrumentation approach. See you there!

Further reading
• Code browser tutorials:

 � Ctags Tutorial: https://courses.cs.washington.edu/courses/
cse451/10au/tutorials/tutorial_ctags.html

 � The Vim/Cscope tutorial: http://cscope.sourceforge.net/cscope_
vim_tutorial.html

https://courses.cs.washington.edu/courses/cse451/10au/tutorials/tutorial_ctags.html
https://courses.cs.washington.edu/courses/cse451/10au/tutorials/tutorial_ctags.html
http://cscope.sourceforge.net/cscope_vim_tutorial.html
http://cscope.sourceforge.net/cscope_vim_tutorial.html

Further reading 117

• The printk and /dev/kmsg: https://www.kernel.org/doc/
Documentation/ABI/testing/dev-kmsg

• Debugging by printing: https://elinux.org/Debugging_by_printing;
covers useful info on debugging with the early printk facility, even debugging by
dumping the kernel log from the bootloader as well!

• Signing kernel modules; official kernel documentation: Kernel module signing
facility: https://www.kernel.org/doc/html/v5.0/admin-guide/
module-signing.html#kernel-module-signing-facility

• Red Hat Developer series on GDB:

 � The GDB developer's GNU Debugger tutorial, Part 1: Getting started with the
debugger, Seitz, RedHat Developer, Apr 2021: https://developers.
redhat.com/blog/2021/04/30/the-gdb-developers-gnu-
debugger-tutorial-part-1-getting-started-with-the-
debugger#

 � The GDB developer's GNU Debugger tutorial, Part 2: All about debuginfo, Seitz,
RedHat Developer, Jan 2022: https://developers.redhat.com/
articles/2022/01/10/gdb-developers-gnu-debugger-tutorial-
part-2-all-about-debuginfo

 � Printf-style debugging using GDB, Part 3, Buettner, RedHat Developer, Dec 2021:
https://developers.redhat.com/articles/2021/12/09/printf-
style-debugging-using-gdb-part-3#

• Dynamic debug:

 � Official kernel doc: Dynamic debug: https://www.kernel.org/doc/html/
latest/admin-guide/dynamic-debug-howto.html#dynamic-debug

 � The dynamic debugging interface, Jon Corbet, LWN, March 2011: https://lwn.
net/Articles/434833/

https://www.kernel.org/doc/Documentation/ABI/testing/dev-kmsg
https://www.kernel.org/doc/Documentation/ABI/testing/dev-kmsg
https://elinux.org/Debugging_by_printing
https://www.kernel.org/doc/html/v5.0/admin-guide/module-signing.html#kernel-module-signing-facility
https://www.kernel.org/doc/html/v5.0/admin-guide/module-signing.html#kernel-module-signing-facility
https://developers.redhat.com/blog/2021/04/30/the-gdb-developers-gnu-debugger-tutorial-part-1-getting-started-with-the-debugger#
https://developers.redhat.com/blog/2021/04/30/the-gdb-developers-gnu-debugger-tutorial-part-1-getting-started-with-the-debugger#
https://developers.redhat.com/blog/2021/04/30/the-gdb-developers-gnu-debugger-tutorial-part-1-getting-started-with-the-debugger#
https://developers.redhat.com/blog/2021/04/30/the-gdb-developers-gnu-debugger-tutorial-part-1-getting-started-with-the-debugger#
https://developers.redhat.com/articles/2022/01/10/gdb-developers-gnu-debugger-tutorial-part-2-all-about-debuginfo
https://developers.redhat.com/articles/2022/01/10/gdb-developers-gnu-debugger-tutorial-part-2-all-about-debuginfo
https://developers.redhat.com/articles/2022/01/10/gdb-developers-gnu-debugger-tutorial-part-2-all-about-debuginfo
https://developers.redhat.com/articles/2021/12/09/printf-style-debugging-using-gdb-part-3#
https://developers.redhat.com/articles/2021/12/09/printf-style-debugging-using-gdb-part-3#
https://www.kernel.org/doc/html/latest/admin-guide/dynamic-debug-howto.html#dynamic-debug
https://www.kernel.org/doc/html/latest/admin-guide/dynamic-debug-howto.html#dynamic-debug
https://lwn.net/Articles/434833/
https://lwn.net/Articles/434833/

4
Debug via

Instrumentation –
Kprobes

A kernel probe (kprobe) is one of the powerful weapons in our debug/performance/
observability armory! Here, you'll learn what exactly it can do for you and how to leverage
it, with the emphasis being on debug scenarios. You will find that there's a so-called static
and a dynamic probing approach to using them... We'll also cover using a way to figure out
the return value of any function via a kernel return probe (kretprobe)!

Along the way, you'll learn what the Application Binary Interface (ABI) is and why it's
important to know at least the basics of the processor ABI.

Don't miss delving into the section on dynamic kprobes or kprobe-based event tracing, as
well as employing the perf-tools and (especially) the modern eBPF BCC frontends –
it makes it all so much easier!

120 Debug via Instrumentation – Kprobes

In this chapter, we're going to cover the following main topics:

• Understanding kprobes basics

• Using static kprobes – traditional approaches to probing

• Understanding the basics of the ABI

• Using static kprobes – demo 3 and demo 4

• Getting started with kretprobes

• Kprobes – limitations and downsides

• The easier way – dynamic kprobes or kprobe-based event tracing

• Trapping into the execve() API – via perf and eBPF tooling

Understanding kprobes basics
A kernel probe (Kprobe, kprobe, or simply probe) is a way to hook or trap into (almost)
any function in the kernel proper or within a kernel module, including interrupt handlers.
You can think of kprobes as a dynamic analysis/instrumentation toolset that can even be
used on production systems to collect (and later analyze) debugging and/or performance-
related telemetry.

To use it, kprobes have to be enabled in the kernel; the kernel config CONFIG_KPROBES
must be set to y (you'll typically find it under the General architecture-
dependent options menu). Selecting it automatically selects CONFIG_KALLSYMS=y
as well. With kprobes, you can set up three – all optional – types of traps or hooks. To
illustrate, let's say you want to trap into the kernel function do_sys_open() (which
is the kernel function invoked when a userspace process or thread issues the open(2)
system call; see the System calls and where they land in the kernel section for more details).
Now, via the kernel kprobes infrastructure, you can set up the following:

• A pre-handler routine: Invoked just before the call to do_sys_open().

• A post-handler routine: Invoked just after the call to do_sys_open().

• A fault-handler routine: Invoked if, during the execution of the pre or post
handler, a processor fault (exception) is generated (or if kprobes is single-stepping
instructions); often, a page fault can occur triggering the fault handler.

Understanding kprobes basics 121

They're optional – it's up to you to set up one or more of them. Further, there are two
broad types of kprobes you can register (and subsequently unregister):

• The regular kprobe: via the [un]register_kprobe[s]() kernel APIs

• A return probe or kretprobe: via the [un]register_kretprobe[s]() kernel
APIs, providing access to the probed function's return value

Let's first work with the regular kprobe and come to the kretprobe a bit later... To trap into
a kernel or module function, issue the kernel API:

#include <linux/kprobes.h>

int register_kprobe(struct kprobe *p);

The parameter, a pointer to struct kprobe, contains the details; the key members we
need to be concerned with are the following:

• const char *symbol_name: The name of the kernel or module function to
trap into (internally, the framework employs the kallsyms_lookup() API – or
a variation of it – to resolve the symbol name into a kernel virtual address (KVA),
and store it in a member named addr). There are a few limitations on which
functions you can and cannot trap into (we cover this in the Kprobes – limitations
and downsides section).

• kprobe_pre_handler_t pre_handler: The pre-handler routine function
pointer, called just before addr is executed.

• kprobe_post_handler_t post_handler: The post-handler routine
function pointer, called just after addr is executed.

• kprobe_fault_handler_t fault_handler: The function pointer to a fault
handling routine, which is invoked if executing addr causes a fault of any kind. You
must return the value 0 to inform the kernel that it must actually handle the fault
(typical) and return 1 if you handled it (uncommon).

Without going into the gory details, it's interesting to realize that you can even set up
a probe to a specified offset within a function! This is achieved by setting the offset
member of the kprobe structure to the desired value (watch out though: the offset should
be used with care, especially on Complex Instruction Set Computing (CISC) machines).

122 Debug via Instrumentation – Kprobes

Once done, you're expected to release the trap or probe (often on module exit), via the
unregister routine:

void unregister_kprobe(struct kprobe *p);

Failing to do so will cause a kernel bug(s) and freeze when that kprobe is next hit; a
resource leak failure of a sort.

How Do Kprobes Work under the Hood?
Unfortunately, this topic lies beyond the scope of this book. Interested readers
can certainly refer to the excellent kernel documentation, which explains the
fundamentals of how kprobes actually work: Concepts: Kprobes and Return
Probes: https://www.kernel.org/doc/html/latest/trace/
kprobes.html#concepts-kprobes-and-return-probes.

What we intend to do
This kind of methodology to set up a probe – where, if any change in the function to be
probed or in the output format is required, it requires a recompile of the module code – is
called a static kprobe. Is there any other way? Indeed there is: modern Linux kernels have
the infrastructure – mostly via the deep ftrace and tracepoints framework, called dynamic
probing or kprobe-based event tracing. There's no C code to write and deal with and no
recompile necessary!

In the following sections, we'll show you different ways of setting things up, going from
the traditional "manual" static kprobes interface approaches to the more recent and
advanced dynamic kernel probes/tracepoints approach. To make this interesting, here's
how we'll go about writing a few demos, most of which will trap into the kernel file open
code path:

• Demo 1 - Traditional and manual approach – simplest case: attaching a static
kprobe, hardcoding it to trap into the open system call; code: ch4/kprobes/1_
kprobe

• Demo 2 - Traditional and manual approach: attaching a static kprobe, slightly
better than our Demo 1, softcoding it via a module parameter (to the open system
call); code: ch4/kprobes/2_kprobe

• Demo 3 - Traditional and manual approach: attaching a static kprobe via a
module parameter (to the open system call), plus retrieving the pathname to the file
being opened (useful!); code: ch4/kprobes/3_kprobe

https://www.kernel.org/doc/html/latest/trace/kprobes.html#concepts-kprobes-and-return-probes
https://www.kernel.org/doc/html/latest/trace/kprobes.html#concepts-kprobes-and-return-probes

Using static kprobes – traditional approaches to probing 123

• Demo 4 - Traditional, semi-automated approach: a helper script generates a
template for both the kernel module C code and the Makefile, enabling attaching
a static kprobe to any function specified via the module parameter; code: ch4/
kprobes/4_kprobe_helper

• Next, we'll take a quick look at what a return probe is – the kretprobe – and how to
use it (static).

• Modern, easier, dynamic event tracing approach: attaching a dynamic kprobe (as
well as a kretprobe) to both the open and the execve system calls, retrieving the
pathname to the file being opened/executed

• Modern, easier, and powerful eBPF approach: tracing the file open and the
execve system calls.

Great – we'll begin with the traditional static kprobes approaches. Let's get going!

Using static kprobes – traditional approaches
to probing
In this section, we'll cover writing kernel modules that can probe a kernel or module
function in the traditional manner – statically. Any modifications will require a recompile
of the source.

Demo 1 – static kprobe – trapping into the file open
the traditional static kprobes way – simplest case
Right, let's see how we can trap into (or intercept) the do_sys_open() kernel routine
by planting a kprobe. This code snippet will typically be within the init function of a kernel
module. You'll find the code for this demo here: ch4/kprobes/1_kprobe:

// ch4/kprobes/1_kprobe/1_kprobe.c

#include "<...>/convenient.h"

#include <linux/kprobes.h>

[...]

static struct kprobe kpb;

[...]

/* Register the kprobe handler */

kpb.pre_handler = handler_pre;

124 Debug via Instrumentation – Kprobes

kpb.post_handler = handler_post;

kpb.fault_handler = handler_fault;

kpb.symbol_name = "do_sys_open";

if (register_kprobe(&kpb)) {

 pr_alert("register_kprobe on do_sys_open() failed!\n");

 return -EINVAL;

}

pr_info("registering kernel probe @ 'do_sys_open()'\n");

An interesting use of kprobes is to figure out (approximately) how long a kernel/module
function takes to execute. To figure this out… come on, you don't need me to tell you!:

1. Take a timestamp in the pre-handler routine (call it tm_start). We can use the
ktime_get_real_ns() routine to do so.

2. As the first thing in the post-handler routine, take another timestamp
(call it tm_end).

3. (tm_end – tm_start) is the time taken (do peek at our
convenient.h:SHOW_DELTA() macro to see how to correctly perform the
calculation).

The pre- and post-handler routines follow. Let's begin with the pre-handler routine:

static int handler_pre(struct kprobe *p, struct pt_regs *regs)

{

 PRINT_CTX(); // uses pr_debug()

 spin_lock(&lock);

 tm_start = ktime_get_real_ns();

 spin_unlock(&lock);

 return 0;

}

Here's our post-handler:

static void handler_post(struct kprobe *p, struct pt_regs
*regs, unsigned long flags)

{

 spin_lock(&lock);

 tm_end = ktime_get_real_ns();

 PRINT_CTX(); // uses pr_debug()

Using static kprobes – traditional approaches to probing 125

 SHOW_DELTA(tm_end, tm_start);

 spin_unlock(&lock);

}

It's pretty straightforward, right? We grab the timestamps and the SHOW_DELTA() macro
calculates the difference. Where is it? In our convenience header file (named – surprise,
surprise! – convenient.h). Similarly, the PRINT_CTX() macro defined there gives
us a nice one-line summary of the state of the process/interrupt context in the kernel that
executed the macro (details on interpreting this follows). The spinlock is used, of course,
for concurrency control – as we're operating on shared writable data items.

As the comment next to the PRINT_CTX() macro says, it internally uses pr_debug()
to emit output to the kernel log. Hence, it will only appear if either of the following apply:

• The symbol DEBUG is defined.

• More usefully, DEBUG is deliberately left undefined (as is typical in production) and
you make use of the kernel's dynamic debug facility to turn on/off these prints (as
discussed in detail in Chapter 3, Debug via Instrumentation – printk and Friends in
the Using the kernel's powerful dynamic debug feature section).

A sample fault handler is defined too. We don't do anything much here, merely emit a
printk specifying which fault occurred, leaving the actual fault handling – a complex task
– to the core kernel (here, we simply copy the fault handler code from the kernel tree:
samples/kprobes/kprobe_example.c):

static int handler_fault(struct kprobe *p, struct pt_regs
*regs, int trapnr)

{

 pr_info("fault_handler: p->addr = 0x%p, trap #%dn",

 p->addr, trapnr);

 /* Return 0 because we don't handle the fault. */

 return 0;

}

NOKPROBE_SYMBOL(handler_fault);

Notice a couple of things here:

• The third parameter to the fault handler callback, trapnr, is the numerical value of
the trap that occurred; it's very arch-specific. For example, on x86, 14 implies it's a
page fault (similarly, you can always look up the manual for other processor families
to see their values and the meaning).

126 Debug via Instrumentation – Kprobes

• The NOKPROBE_SYMBOL(foo) macro is used to specify that the function
foo cannot be probed. Here, it's specified so that recursive or double faults
are prevented.

Now that we've seen the code, let's give it a spin!

Trying it out
The test.sh and run bash scripts (within the same directory) are simple wrappers (run
is a wrapper over the wrapper test.sh!) to ease testing these demo kernel modules. I'll
leave it to you to check out how they work:

$ cd <lkd-src-tree>/ch4/kprobes/1_kprobe ; ls

1_kprobe.c Makefile run test.sh

$ cat run

KMOD=1_kprobe

echo "sudo dmesg -C && make && ./test.sh && sleep 5 && sudo
rmmod ${KMOD} 2>/dev/null ; sudo dmesg"

sudo dmesg -C && make && ./test.sh && sleep 5 && sudo rmmod
${KMOD} 2>/dev/null ; sudo dmesg

$

The run wrapper script invokes the test.sh wrapper script (which performs insmod
and sets up the dynamic debug control file to enable our debug printks). We allow the
probe to remain active for 5 seconds – plenty of file open system calls, resulting in the
invocation of do_sys_open() and our resulting pre- and post- handlers running, can
happen in that time span.

Let's give our first demo a spin on our x86_64 Ubuntu VM running our custom
production kernel:

Figure 4.1 – Kprobes demo 1 – invoking the run script

Using static kprobes – traditional approaches to probing 127

You can see that the run script (invoking the test.sh script) sets things up... About 5
seconds later, here's a snippet of the output seen via sudo dmesg:

Figure 4.2 – Kprobes demo 1 – partial dmesg output

Great! Our static kprobe, being hit both before and after entering the do_sys_call()
kernel function, executes the pre- and post-handlers in our module and produces the
prints you see in the preceding screenshot. We need to interpret the PINT_CTX()
macro's output.

Interpreting the PRINT_CTX() macro's output
In Figure 4.2, notice the useful output we obtain from our PRINT_CTX() macro (defined
within our convenient.h header). I reproduce three of the relevant lines here, color-
coding them to help you clearly understand them:

Figure 4.3 – Kprobes demo 1 – pre- and post-handler sample kernel printk output

Let's get into what these three lines of output are:

• First line: Output from the pre-handler routine's PRINT_CTX() macro.

• Second line: Output from the post-handler routine's PRINT_CTX() macro.

• Third line: The delta – the (approximate, usually pretty accurate) time it took for
do_sys_open() to run – is seen in the post-handler as well. It's fast, isn't it?!

128 Debug via Instrumentation – Kprobes

• Also notice: The dmesg timestamp (the time from boot in seconds.
microseconds – don't completely trust its absolute value though!) and – due
to our enabling the debug printks and the fact that it employs the pr_fmt()
overriding macro – the module name:function_name() is also prefixed. For
example, here, the latter two lines are prefixed with the following:

1_kprobe:handler_post():
Further, the following screenshot shows you how to fully interpret the output from our
useful PRINT_CTX() macro:

Figure 4.4 – Interpreting the PRINT_CTX() macro output

Using static kprobes – traditional approaches to probing 129

Do ensure you carefully study and understand this. It can be very useful in deep debug
situations. (In fact, I've mostly mimicked this well-known format from the kernel's ftrace
infrastructure's latency format display. It's explained in the ftrace documentation here as
well: https://www.kernel.org/doc/Documentation/trace/ftrace.txt,
under the heading Output format.)

Ftrace and the latency trace info fields
Worry not, we'll tackle ftrace in detail in Chapter 9, Tracing the Kernel Flow.
Within it, the Delving deeper into the latency trace info section covers the
interpretation of the so-called latency trace info fields in great detail. As a
point of interest, ask yourself: what if the PRINT_CTX() macro runs in
an interrupt context? What will be the values for the process context name
and Process Identifier (PID) fields in that case? The short answer – it will
be whichever process (or thread) happened to be caught in (preempted/
interrupted by) the interrupt!

Importantly, actually try this out yourself – and the following demo modules! It will go a
long way in helping you experiment and learn how to use kprobes effectively.

The kprobes Blacklist – You Can't Trap This!
A few kernel functions cannot be trapped into via the kprobes interfaces
(mainly because they're used internally within the kprobe implementation).
You can quickly check which these are – they're available in the blacklist
pseudofile here: <debugfs-mount>/kprobes/blacklist (the
debug filesystem (debugfs) is typically mounted under /sys/kernel/
debug, of course). The kernel documentation discusses this and other
kprobe limitations here: https://www.kernel.org/doc/html/
latest/trace/kprobes.html#kprobes-features-and-
limitations. Do check it out.

You can even do cool (read dangerous) things such as modify parameters in the
pre-handler! Careful though – it can result in freezes or even outright kernel panic if
done incorrectly. This could be a useful thing for testing – a way to, for example, inject
deliberate faults... While on this, FYI, the kernel has a sophisticated fault injection
framework; more on this in a later chapter.

https://www.kernel.org/doc/Documentation/trace/ftrace.txt
https://www.kernel.org/doc/html/latest/trace/kprobes.html#kprobes-features-and-limitations
https://www.kernel.org/doc/html/latest/trace/kprobes.html#kprobes-features-and-limitations
https://www.kernel.org/doc/html/latest/trace/kprobes.html#kprobes-features-and-limitations

130 Debug via Instrumentation – Kprobes

Demo 2 – static kprobe – specifying the function to
probe via a module parameter
Our second kprobes demo is quite similar to the first, but it differs as follows.

One, we now add and make use of two module parameters – a string one for the name of
the function to probe, and an integer determining verbosity:

// ch4/kprobes/2_kprobe/2_kprobe.c

#define MAX_FUNCNAME_LEN 64

static char kprobe_func[MAX_FUNCNAME_LEN];

module_param_string(kprobe_func, kprobe_func, sizeof(kprobe_
func), 0);

MODULE_PARM_DESC(kprobe_func, "function name to attach a kprobe
to");

static int verbose;

module_param(verbose, int, 0644);

MODULE_PARM_DESC(verbose, "Set to 1 to get verbose printks
(defaults to 0).");

The kprobe_func module parameter is useful! It allows us to pass any (valid) function
as the probe target, avoiding hardcoding it. Of course, we now set the symbol_name
member of the kprobe structure to the parameter:

kpb.symbol_name = kprobe_func;

In addition, the module's init code checks that the kprobe_func string is non-null.

The verbose parameter, if set, has the post-handler routine invoke the PRINT_CTX()
macro. In this demo, we have our test.sh wrapper set the module parameters
as follows:

// ch4/kprobes/2_kprobe/test.sh

FUNC_TO_KPROBE=do_sys_open

VERBOSE=1

[...]

sudo insmod ./${KMOD}.ko kprobe_func=${FUNC_TO_KPROBE}
verbose=${VERBOSE} || exit 1

Using static kprobes – traditional approaches to probing 131

One issue you'll quickly notice with kprobes instrumentation (indeed, it's quite common
to many kinds of instrumentation and tracing) is the sheer volume of printks that can get
generated! With a view to limiting it (thus trying to mitigate the overflow of the kernel
ring buffer), we introduce a macro named SKIP_IF_NOT_VI. If defined, we only log
information in the pre- and post-handlers when the process context is the vi process (of
course, it's just a demo; feel free to change it to whatever's suitable or undefine it):

#ifdef SKIP_IF_NOT_VI

/* For the purpose of this demo, we only log information when
the process context is 'vi' */

 if (strncmp(current->comm, "vi", 2))

 return 0;

#endif

That's pretty much it. I leave it to you to try it out. (Don't forget to run vi so that some
output's captured!).

Exercise
As a small exercise:

a) Try passing other functions to probe via the module parameter kprobe_
func.

b) Convert the hardcoded SKIP_IF_NOT_VI macro into a module
parameter.

Well, great, you now know how to write (simple) kernel modules that leverage the
kernel's kprobes framework. To be able to go deeper within a typical debugging
context, it is necessary to understand more in-depth things... Things such as how the
processor's General Purpose Registers (GPRs) are typically used, how the processor
interprets a stack frame and passes function parameters, and so on... This is the domain
of the Application Binary Interface, the ABI! The following section helps you gain an
introduction to it, information that can prove extremely valuable during a deep debug
session. Read on!

132 Debug via Instrumentation – Kprobes

Understanding the basics of the Application
Binary Interface (ABI)
In order to gain access to the parameters of a function, you have to first understand at
least the basics of how the compiler arranges for the parameters to be passed. At the level
of the assembly (assuming the programming language is C), you'll realize that it's really
the compiler that generates the required assembly that actually implements the function
call, parameter passing, local variable instantiation, and return!

But how does the compiler manage to do this? Compiler authors need to understand
how the machine works... Obviously, all of this is very arch-specific; the precise
specification as to how exactly function calling conventions, return value placement,
stack and register usage, and so on, is provided by the microprocessor documentation
called the ABI document.

Briefly, the ABI conveys the underlying details at the level of the machine concerning
the following:

• CPU register usage

• Function procedure calling and return conventions

• Precise stack frame layout in memory

• The details regarding data representation, linkage, object file formats, and so on

For example, x86-32 processors always use the stack to store the parameters to a function
before issuing the CALL machine instruction. On the other hand, ARM-32 processors use
both CPU GPRs as well as the stack (details follow).

Here, we shall only focus on one primary aspect of the ABI – the function calling
conventions (and related register usage) on a few key architectures:

Understanding the basics of the Application Binary Interface (ABI) 133

Table 4.1 – Summary of function call and register usage ABI information for a few processor families

134 Debug via Instrumentation – Kprobes

A couple of additional points:

• Pretty much all modern processors have a downward-growing stack – the stack
grows from higher virtual addresses to lower virtual addresses. If interested (and
I recommend you to be!), do look up more details in the blog article mentioned
just after these points. Things are not always simple: in the presence of compiler
optimization, the details seen in Table 4.1 might not hold (for example, on the
x86-32, gcc and Windows FASTCALL piggyback the first two function
parameters into registers ECX and EDX). So, do check and recheck – Your
Mileage May Vary (YMMV)...

• The ABI details mentioned here apply to how the C compiler (gcc/clang)
typically works, thus for the C language, using integer or pointer parameters (not
floating-point arguments or returns). Also, we won't go into more detail here
(callee/caller-saved registers, the so-called red zone optimization, exception cases,
and so on). Refer to the Further reading section for further links.

Links to the ABI documentation for various processor families and its basic details can
be found in this (my) blog article: APPLICATION BINARY INTERFACE (ABI) DOCS
AND THEIR MEANING: https://kaiwantech.wordpress.com/2018/05/07/
application-binary-interface-abi-docs-and-their-meaning/.

Now that we have at least basic knowledge of the processor ABI and how the compiler
(gcc/clang) uses it on Linux, let's put our newfound know-how to use. In the following
section, we'll learn how to do something pretty useful – determine the pathname of the
file being opened via our kprobe-based open system call trap. More generally, we'll learn
in effect how to retrieve the parameters of the trapped (probed) function!

Using static kprobes – demo 3 and demo 4
Continuing to work via the traditional static kprobes approach (recall: the word static
implies any change will require a code recompile), let's learn to do more with kprobes –
useful and practical stuff that really helps when debugging. Retrieving the parameters of
the probed function certainly qualifies as being a very useful skill!

The two demo programs that follow (demos 3 and 4), will show you how to do precisely
this, with demo 4 using an interesting approach – we'll generate our kprobe C code (and
Makefile file) via a bash script. Let's work on and understand these demos!

https://kaiwantech.wordpress.com/2018/05/07/application-binary-interface-abi-docs-and-their-meaning/
https://kaiwantech.wordpress.com/2018/05/07/application-binary-interface-abi-docs-and-their-meaning/

Using static kprobes – demo 3 and demo 4 135

Demo 3 – static kprobe – probing the file open syscall
and retrieving the filename parameter
You'll agree, I think, that the second demo is better than the first – it allows the passing of
any function to be probed (as a module parameter). Now, continuing with our example
of probing do_sys_open(), you've seen (from the first two demos) that we can indeed
probe it. In a typical debugging/troubleshooting scenario, though, this isn't nearly enough:
being able to retrieve the parameters of the probed function can be really important,
and can prove to be the difference between figuring out the root cause of the issue or not.

Tip
The underlying cause of many bugs is the incorrect passing of parameters
(often an invalid or corrupted pointer). Take care – check and recheck your
assumptions!

In line with our demos, this is the signature of the to-be-probed routine, do_sys_open():

long do_sys_open(int dfd, const char __user *filename, int
flags, umode_t mode);

Gaining access to its parameters within the pre-handler can be tremendously helpful! The
previous section on the basics of the ABI focused on how precisely to do this. We'll end
up demonstrating that we can gain access to and print the pathname to the file being
opened – the second parameter, filename.

Jumper probes (jprobes)
There's a set of kernel interfaces that enable direct access to any probed
function's parameters – it's called a jumper probe (jprobe). However, the
jprobe interfaces were deprecated in the 4.15 kernel, the rationale being that
you could gain access to a probed (or traced) function's parameters in other,
simpler ways – essentially by leveraging the kernel's tracing infrastructure.

We do cover the basics of using the kernel tracing infrastructure to do various
useful things at different points in this book. Here, look out for capturing
parameters the manual way in the material that follows, and a much simpler
automated way in the section on kernel event tracing within this chapter:
The easier way – dynamic kprobes or kprobe-based event tracing. It's worth
mentioning that, if your project or product uses a kernel version below 4.15,
leveraging the jprobes interfaces can be a useful thing indeed!. Here's the kernel
doc on this: https://www.kernel.org/doc/html/latest/
trace/kprobes.html?highlight=kretprobes#deprecat
ed-features.

https://www.kernel.org/doc/html/latest/trace/kprobes.html?highlight=kretprobes#deprecated-features
https://www.kernel.org/doc/html/latest/trace/kprobes.html?highlight=kretprobes#deprecated-features
https://www.kernel.org/doc/html/latest/trace/kprobes.html?highlight=kretprobes#deprecated-features

136 Debug via Instrumentation – Kprobes

So, let's leverage our knowledge of the processor ABI, and now, in this, our third kprobes
demo, gain access to the probed function's second parameter, the file being opened.
Interesting stuff, right? Read on!

Retrieving the filename
Here's a few snippets from the code of our third demo (obviously, I won't show everything
here due to space constraints – please install and look it up from the book's GitHub repo).
Let's pick up the action at a key portion of the code, the kernel module's pre-handler
code path:

// ch4/kprobes/3_kprobe/3_kprobe.c

static int handler_pre(struct kprobe *p, struct pt_regs *regs)

{

 char *param_fname_reg;

Notice the parameters to the pre-handler:

• First, a pointer to the kprobe structure

• Second, a pointer to a structure named pt_regs

Now, this struct pt_regs structure is of interest to us: it encapsulates – obviously
in an arch-specific manner – the CPU registers. Its definition is thus within an arch-
specific header file. Let's consider, as an example, that you're going to run this kernel
module on an ARM-32 (AArch32) based system (for example, on a Raspberry Pi 0W
or the BeagleBone Black). The pt_regs structure for ARM-32 is defined here: arch/
arm/include/asm/ptrace.h (and/or in arch/arm/include/uapi/asm/
ptrace.h). For ARM (AArch32), the processor's CPU registers are held in the array
member named uregs. The ptrace.h header has a macro:

#define ARM_r1 uregs[1]

From the ABI for ARM-32 (refer to Table 4.1), we know that the first four parameters
(arguments) to a function are passed in CPU GPRs r0 to r3. The second parameter is
thus piggy-backed into the register r1; hence, our code to gain access to it is this:

#ifdef CONFIG_ARM

/* ARM-32 ABI:

* First four parameters to a function are in the foll GPRs: r0,
r1, r2, r3

Using static kprobes – demo 3 and demo 4 137

* See the kernel's pt_regs structure - rendition of the CPU
registers here:

https://elixir.bootlin.com/linux/v5.10.60/source/arch/arm/
include/asm/ptrace.h#L135

*/

param_fname_reg = (char __user *)regs->ARM_r1;

#endif

In a completely analogous fashion, for the x86 and AArch64, we use conditional
compilation based on the CPU architecture to retrieve the value for the second parameter
into our local variable param_fname_reg as follows:

#ifdef CONFIG_X86

 param_fname_reg = (char __user *)regs->si;

#endif

[...]

#ifdef CONFIG_ARM64

/* AArch64 ABI:

* First eight parameters to a function (and return val) are in
the foll GPRs: x0 to x7 (64-bit GPRs)

* See the kernel's pt_regs structure - rendition of the CPU
registers here:

https://elixir.bootlin.com/linux/v5.10.60/source/arch/arm64/
include/asm/ptrace.h#L173

*/

 param_fname_reg = (char __user *)regs->regs[1];

#endif

Clearly (as Table 4.1 reveals), on the x86_64, the second parameter is held in the [R]SI
register, and in the register X1 on the ARM64 (AArch64); our code retrieves it per the ABI!

138 Debug via Instrumentation – Kprobes

Now it's simply a matter of emitting a printk to reveal the name of the file being opened.
But hang on... the intricacies of programming in the kernel imply that you cannot simply
retrieve the memory at the pointer referred to by our local variable param_fname_reg.
Why not? Careful, it's a pointer to userspace memory (and we're running in kernel space),
hence, we employ the strncpy_from_user() kernel API to bring it (copy it) into
kernel memory space in our already-allocated kernel buffer fname (which we allocate in
the module's init code path via kzalloc()):

if (!strncpy_from_user(fname, param_fname_reg, PATH_MAX))

 return -EFAULT;

pr_info("FILE being opened: reg:0x%px fname:%s\n",

(void *)param_fname_reg, fname);

As an interesting aside, only when we test this kernel module on our debug kernel does the
strncpy_from_user() function throw a warning printk:

BUG: sleeping function called from invalid context at lib/
strncpy_from_user.c:117

The line of code at this point (lib/strncpy_from_user.c:117 in the 5.10.60 kernel,
as seen) is the might_fault() function. A bit simplistically, this function checks if the
kernel config CONFIG_PROVE_LOCKING or CONFIG_DEBUG_ATOMIC_SLEEP is
enabled, it calls the might_sleep() routine; the comments for this routine (include/
linux/kernel.h) clearly tell the story – it's a debug aid, checking that a sleep does not
occur in any kind of atomic context:

/**

 * might_sleep - annotation for functions that can sleep

 * this macro will print a stack trace if it is executed in an
atomic

 * context (spinlock, irq-handler, ...). Additional sections
where blocking is

 * not allowed can be annotated with non_block_start() and non_
block_end()

 * pairs.

 * This is a useful debugging help to be able to catch problems
early and not be bitten later when the calling function happens
to sleep when it is not supposed to.

 */

Using static kprobes – demo 3 and demo 4 139

I've highlighted the key part of the comment. We find that both CONFIG_PROVE_
LOCKING and CONFIG_DEBUG_ATOMIC_SLEEP are enabled in our debug kernel; that's
why this warning is emitted. Well, here and now, we can't do much about it; we simply
leave it at that – a warning to be acknowledged, a "To Do" on our list.

There, it's done; the remainder of the module code is mostly identical to that of our 2_
kprobe module, so we'll skip showing it here. Let's perform a sample run by executing
our wrapper run script. As before (in the 2_kprobe demo), to cut down on the volume,
we only emit printks when the process context is vi. The final sudo dmesg from our
wrapper script reveals the kernel log buffer content. The screenshot here (Figure 6.5)
shows the trailing portion of the output:

Figure 4.5 – Trailing portion of the dmesg kernel log buffer output from the 3_kprobe demo on an
x86_64 VM (filtered to show only vi process context)

Look at the preceding screenshot. The pathname of the file being opened – the second
parameter to the probed function do_sys_open() – is clearly displayed!

Trying it out on a Raspberry Pi 4 (AArch64)
For a bit of variety and fun, I also ran this kernel module on a Raspberry Pi 4 running
a 64-bit Ubuntu system (thus fully configured to exploit its AArch64 – arm64 –
architecture). We build the module and then insmod it:

rpi4 # sudo dmesg –C; insmod ./3_kprobe.ko kprobe_func=do_sys_
open ; sleep 1 ; dmesg|tail -n5

[3893.514219] 3_kprobe:kprobe_lkm_init(): FYI, skip_if_not_vi
is on, verbose=0

[3893.525200] 3_kprobe:kprobe_lkm_init(): registering kernel
probe @ 'do_sys_open'

140 Debug via Instrumentation – Kprobes

The printks clearly show that the (new) module parameter skip_if_not_vi is on
by default, implying that only the vi process context – when it opens files – will be
captured by our module. Okay, let's do an experiment: let's change it by modifying the
parameter on the fly, a useful thing. First, though, don't forget to dynamically turn on all
our debug prints:

rpi4 # echo -n "module 3_kprobe +p" > /sys/kernel/debug/
dynamic_debug/control

rpi4 # grep 3_kprobe /sys/kernel/debug/dynamic_debug/control

<...>/3_kprobe.c:98 [3_kprobe]handler_pre =p "%03d) %c%s%c:%d
| %c%c%c%u /* %s() */\012"

<...>/3_kprobe.c:158 [3_kprobe]handler_post =p "%03d) %c%s%c:%d
| %c%c%c%u /* %s() */\012"

rpi4 #

Now we query and then modify the module parameter skip_if_not_vi to the value 0:

rpi4 # cat /sys/module/3_kprobe/parameters/skip_if_not_vi

1

rpi4 # echo –n 0 > /sys/module/3_kprobe/parameters/skip_if_not_
vi

Now, all file open system calls are trapped via our module. The following screenshot
reveals this (you can clearly see both the dmesg and the systemd-journal processes
opening various files):

Figure 4.6 – Partial screenshot showing our 3_kprobe running on a Raspberry Pi 4 (AArch64),
displaying all files being opened

Using static kprobes – demo 3 and demo 4 141

Good, it runs flawlessly here as well – thanks to our taking the AArch64 architecture into
account in our module code (recall the #ifdef CONFIG_ARM64 ... lines within the
3_kprobe.c module code)!

Voilà! We have the names of all files being opened. Make sure you try this out yourself
(at least on your x86_64 Linux VM).

Demo 4 – semi-automated static kprobe via
our helper script
This time, we'll make it more interesting! A shell (bash) script (kp_load.sh) takes
parameters – including the name of the function we'd like to probe and, optionally, the
kernel module that contains it (if the to-be-probed function lives within a kernel module).
It then generates a template for both the kernel module C code and the Makefile,
enabling attaching a kprobe to a given function via a module parameter.

Due to a scarcity of space, I won't attempt to show the code of the script and the kernel
module (helper_kp.c) here; just its usage. Of course, I'd expect you to browse through
the code (ch4/kprobes/4_kprobe_helper) and try it out.

The helper script will first perform a few sanity checks – it first verifies that kprobes is
indeed supported on the current kernel. Running it (as root) without parameters has it
display its usage or help screen:

$ cd ch4/kprobes/4_kprobe_helper

$ sudo ./kp_load.sh

[sudo] password for letsdebug: xxxxxxxxxxxx

[+] Performing basic sanity checks for kprobes support... OK

kp_load.sh: minimally, a function to be kprobe'd has to be
specified (via the --probe=func option)

Usage: kp_load.sh [--verbose] [--help] [--mod=module-pathname]
--probe=function-to-probe

 --probe=probe-this-function : if module-pathname

 is not passed, then we assume the function to be

 kprobed is in the kernel itself.

 [--mod=module-pathname] : pathname of kernel

 module that has the function-to-probe

 [--verbose] : run in verbose mode;

 shows PRINT_CTX() o/p, etc

142 Debug via Instrumentation – Kprobes

 [--showstack] : display kernel-mode

 stack, see how we got here!

 [--help] : show this help

 screen

$

Let's do something interesting – probe the system's network adapter's hardware interrupt
handler. The steps that follow perform this, using our kp_load.sh helper script to
actually get things done (Platform: Ubuntu 20.04 LTS running our custom production
kernel (5.10.60-prod01) on an x86_64 guest VM):

1. Identify the network driver on the device (on my system, its the enp0s8 interface).
The ethtool utility can interrogate a lot of low-level details on the network
adapter. Here, we use it to query the driver that's driving the Network Interface
Card (NIC) or adapter for the enp0s8 interface:

ethtool -i enp0s8 |grep -w driver

driver: e1000

The -i parameter to ethtool specifies the network interface. Further, lsmod
verifies the e1000 device driver is indeed present in kernel memory (as it's been
configured as a module):

lsmod |grep -w e1000

e1000 135168 0

2. Find the e1000 driver's code location within the kernel and identify the hardware
interrupt handler function. Most (if not all) Ethernet Original Equipment
Manufacturers' (OEMs') NIC device driver code is within the drivers/net/
ethernet folder. The e1000 network driver resides here as well: drivers/net/
ethernet/intel/e1000/.

Using static kprobes – demo 3 and demo 4 143

Okay, here's the code that sets up the network adapter's hardware interrupt:
// drivers/net/ethernet/intel/e1000/e1000_main.c

static int e1000_request_irq(struct e1000_adapter
*adapter)

{

 struct net_device *netdev = adapter->netdev;

 irq_handler_t handler = e1000_intr;

 […]

 err = request_irq(adapter->pdev->irq, handler,

 irq_flags, netdev->name, netdev);

 […]

(FYI, here's the convenient link to the code online: https://elixir.bootlin.
com/linux/v5.10.60/source/drivers/net/ethernet/intel/
e1000/e1000_main.c#L253. Bootlin's online kernel code browser tooling can
be a life saver!)

We can see that the hardware interrupt (hardirq) handler routine is named
e1000_intr(); this is its signature:

static irqreturn_t e1000_intr(int irq, void *data);

Its code is here: https://elixir.bootlin.com/linux/v5.10.60/source/
drivers/net/ethernet/intel/e1000/e1000_main.c#L3745). Cool!

3. Let's probe it via our helper script:

./kp_load.sh --mod=/lib/modules/5.10.60-prod01/kernel/
drivers/net/ethernet/intel/e1000/e1000.ko --probe=e1000_
intr --verbose --showstack

https://elixir.bootlin.com/linux/v5.10.60/source/drivers/net/ethernet/intel/e1000/e1000_main.c#L253
https://elixir.bootlin.com/linux/v5.10.60/source/drivers/net/ethernet/intel/e1000/e1000_main.c#L253
https://elixir.bootlin.com/linux/v5.10.60/source/drivers/net/ethernet/intel/e1000/e1000_main.c#L253
https://elixir.bootlin.com/linux/v5.10.60/source/drivers/net/ethernet/intel/e1000/e1000_main.c#L3745
https://elixir.bootlin.com/linux/v5.10.60/source/drivers/net/ethernet/intel/e1000/e1000_main.c#L3745

144 Debug via Instrumentation – Kprobes

Do carefully check and note the parameters we've passed to our kp_load.sh
helper script. It runs... In the following screenshot, you can see how our helper
script performs its sanity checks, validates the function to probe (and even shows its
kernel virtual address via its /proc/kallsyms entry). It then creates a temporary
folder (tmp/), copies in the C LKM template file (helper_kp.c), renaming it
appropriately within there, generates the Makefile file (using a shell scripting
technique called a HERE document), switches to the tmp/ folder, builds the kernel
module, and then loads it into kernel memory (via insmod). Whew!:

Figure 4.7 – Screenshot showing the kp_load.sh helper script executing and loading up the custom
kprobe LKM

Using static kprobes – demo 3 and demo 4 145

4. I save the kernel log to a file (journalctl –k > myklog), remove the LKM
from kernel memory, and open the log file in the vi editor; the output is pretty large.
Here's a partial screenshot (Figure 4.8), capturing our custom kprobe's pre-handler
routine's printk, the output from our PRINT_CTX() macro, and mostly, the
output from the dump_stack() routine! The last two lines of output are from the
kprobe's post handler routine:

Figure 4.8 – (Partial) screenshot showing output from the kernel log as emitted by our helper script's
custom kprobe within the pre-handler routine; the last two lines are from the post handler

Interesting! Our custom autogenerated kprobe has achieved this!

146 Debug via Instrumentation – Kprobes

Don't fret regarding how exactly to interpret the kernel-mode stack right now; we shall
cover all this in detail in the coming chapters. For now, I'll point out the following key
things with regard to Figure 4.8 (ignoring the line number and the first five columns on
the left):

• Line 24873: Output from our custom generated kprobe: as the verbose
flag is set, a debug printk shows the call site – helper_kp_e1000_
intr_11Oct21:handler_pre():Pre 'e1000_intr'.

• Line 24874: Output from our PRINT_CTX() macro – 003)
[kworker/3:3]:2086 | d.h1 /* handler_pre() */. The four-
character d.h1 sequence is interpreted per Figure 4.4: hardware interrupts are
disabled (off), we're currently running in the hardirq context (of course we are, the
probe is on the NIC's interrupt handler) and a (spin)lock is currently held.

• Lines 24875 to 24921: Output from the dump_stack() routine; useful
information indeed! For now, just read it bottom-up, ignoring all lines that begin
with a ?. Well, one key point: in this particular case, do you notice that there are
actually two kernel-mode stacks on display here?

 � The upper portion is within the <IRQ> and </IRQ> tokens. This tells us it's the
IRQ stack – a special stack region used to hold stack frames when a hardware
interrupt is being processed (this is an arch-specific feature known as interrupt
(or IRQ) stacks; most modern processors use it).

 � The lower portion of the stack, after the </IRQ>, is the regular kernel-mode stack.
It's typically the (kernel) stack of the process context that happened to get rudely
interrupted by the hardware interrupt (here, it happens to be a kernel thread
named kworker/3:3).

Interpreting kthread names
By the way, how do you interpret kernel thread names (such as the
kworker/3:3 kthread seen here)? They're essentially cast in this format:
kworker/%u:%d[%s] (kworker/cpu:id[priority]).

Refer to this link for more details: https://www.kernel.org/doc/
Documentation/kernel-per-CPU-kthreads.txt.

https://www.kernel.org/doc/Documentation/kernel-per-CPU-kthreads.txt
https://www.kernel.org/doc/Documentation/kernel-per-CPU-kthreads.txt

Getting started with kretprobes 147

Nice, using the helper script does make things easier. There's a price to pay, of course
– there's always a trade-off (as with life): our helper_kp.c LKM's C code template
remains hardcoded for any and every probe we set up using it.

Now you know how to code static kprobes; more so, how you can leverage this technology
to help you carefully instrument – and thus debug – kernel/module code, even on
production systems! The other side of the coin is the kretprobe. Let's jump into learning
how to use it.

Getting started with kretprobes
At the outset of this chapter, you learned how to use the basic kprobes APIs to set up a
static kprobe (or two). Let's now cover an interesting counterpart to the kprobe – the
kretprobe, allowing us to gain access to any (well, most) kernel or module function's return
value! This – being able to dynamically look up a given function's return value – can be a
gamechanger in a debug scenario.

Pro Dev Tip
Don't assume: If a function returns a value, always check for the failure
case. One day it could fail – yes, even the malloc() or the kmalloc()
APIs! Fail to catch the possible failure and you'll be flailing to figure out what
happened!

The relevant kretprobe APIs are straightforward:

#include <linux/kprobes.h>

int register_kretprobe(struct kretprobe *rp);

void unregister_kretprobe(struct kretprobe *rp);

The register_kretprobe() function returns 0 on success and, in the usual kernel
style (the 0/-E convention), a negative errno value on failure.

148 Debug via Instrumentation – Kprobes

Tip – errno Values and Their Meaning
As you'll know, errno is an integer found in every process's uninitialized
data segment (more recently, it's constructed to be thread-safe by employing
the powerful Thread Local Storage (TLS) Pthreads feature, implemented
via the compiler and the usage of the __thread keyword in the variable
declaration). When a system call fails (typically returning –1), the programmer
can query the error diagnostic by looking up errno. The kernel (or
underlying driver) will return the appropriate negative errno integer. glibc
glue code will set it to positive by multiplying it by –1. It serves as an index
into a 2D array of English error messages, which can be conveniently looked up
via the [p]error(3) or strerror(3) glibc APIs.

I often find it useful to be able to quickly look up a given errno value. Use the
userspace headers /usr/include/asm-generic/errno-base.h
(covers errno values 1 to 34) and /usr/include/asm-generic/
errno.h (covers errno values 35 to 133), as of this writing.

For example, if you notice that a kernel/module function's return value is
–101 in a log file, the corresponding positive errno value can be looked
up; here, it's: #define ENETUNREACH 101 /* Network is
unreachable */

The kretprobe structure internally contains the kprobe structure, allowing you to set
up the probe point (the function to return the probe) via it. In effect, the probe point will
be rp->kp.addr (where rp is the pointer to the kretprobe structure, kp the pointer
to the kprobe structure, with the address being typically figured out via rp->kp.
symbol_name – set to the name of the function to be probed). The rp->handler is the
kretprobe handler function; its signature is this:

int kretprobe_handler(struct kretprobe_instance *ri, struct
pt_regs *regs);

Just as with kprobes, you will receive all CPU registers within the handler function via
the second parameter, the pt_regs structure. The first parameter, the kretprobe_
instance structure, holds (among other housekeeping fields), the following:

• ri->ret_addr: The return address

• ri->task: The pointer to the process context's task structure (which encapsulates
all attributes of the executing task)

• ri->data: A means to gain access to a per-instance private data item

Getting started with kretprobes 149

But what about the main feature, the return value from the probed function? Ah, recall
our discussion on the processor ABI (in the Understanding the basics of the Application
Binary Interface (ABI) section): the return value is again placed into a processor register,
the particular register being of course very arch-specific. Table 4.1 shows you the relevant
details. But hang on, you don't have to manually look it up. There's an elegant, simpler way
– a macro:

regs_return_value(regs);

This macro is a hardware-agnostic abstraction, separately defined for each processor
family, that provides the return value from the appropriate register (the registers being
passed via struct pt_regs *regs of course)! For example, here's the essential
implementation of regs_return_value() on the following architectures (CPUs):

• ARM (AArch32) is: return regs->ARM_r0;

• A64 (AArch64) is: regs->regs[0]

• x86 is: return regs->ax;

It just works.

The kernel community has provided sample source code for some select kernel features;
this includes the kprobe and kretprobe. Here are some relevant snippets from the sample
code for the kretprobe (found here within the kernel code base: samples/kprobes/
kretprobe_example.c) via the following bullet points:

• A module parameter func enables us to pass any function to probe (ultimately, for
obtaining its return value, the whole point here):

static char func_name[NAME_MAX] = "kernel_clone";

module_param_string(func, func_name, NAME_MAX, S_IRUGO);

MODULE_PARM_DESC(func, "Function to kretprobe; this
module will report the function's execution time");

• The kretprobe structure definition:

static struct kretprobe my_kretprobe = {

 .handler = ret_handler,

 .entry_handler = entry_handler,

 .data_size = sizeof(struct my_data),

 /* Probe up to 20 instances concurrently. */

 .maxactive = 20,

};

150 Debug via Instrumentation – Kprobes

Let's now delve into this kretprobe structure:

 � handler: The member that specifies the function to run when the function we're
probing completes, enabling us to fetch the return value; it's the return handler.

 � entry_handler: The member that specifies the function to run when the
function we're probing is entered; it gives you a chance to determine whether the
return will be collected:

 � If you return 0 (implying success), the return function – handler – will be
called upon the return of the probed function.

 � If you return non-zero, the k[ret]probe does not even happen; in effect, it
gets disabled for this particular function instance (the official kernel doc here
gives you the in-depth details on the entry handler and private data fields:
https://www.kernel.org/doc/html/latest/trace/kprobes.
html?highlight=kretprobes#kretprobe-entry-handler).

 � maxactive: Used to specify how many instances of the probed function
can be simultaneously probed; the default is the number of CPU cores on
the box (NR_CPUS). If the nmissed field of the kretprobe structure is
positive, it implies you missed that many instances (you can then increase
maxactive). Again, the kernel doc here gives you the in-depth details:
https://www.kernel.org/doc/html/latest/trace/kprobes.
html?highlight=kretprobes#how-does-a-return-probe-work.

• In the module initialization code path, plant the return probe:

my_kretprobe.kp.symbol_name = func_name;

ret = register_kretprobe(&my_kretprobe);

• Here's the actual return handler code (skipping details):

static int ret_handler(struct kretprobe_instance *ri,
struct pt_regs *regs)

{

 unsigned long retval = regs_return_value(regs);

 struct my_data *data = (struct my_data *)ri->data;

 [...]

 delta = ktime_to_ns(ktime_sub(now, data->entry_
stamp));

 pr_info("%s returned %lu and took %lld ns to
execute\n", func_name, retval, (long long)delta);

https://www.kernel.org/doc/html/latest/trace/kprobes.html?highlight=kretprobes#kretprobe-entry-handler
https://www.kernel.org/doc/html/latest/trace/kprobes.html?highlight=kretprobes#kretprobe-entry-handler
https://www.kernel.org/doc/html/latest/trace/kprobes.html?highlight=kretprobes#how-does-a-return-probe-work
https://www.kernel.org/doc/html/latest/trace/kprobes.html?highlight=kretprobes#how-does-a-return-probe-work

Getting started with kretprobes 151

 return 0;

}

I've highlighted (in bold) the key lines – where the return address is obtained and
printed.

• In the module cleanup code path, the kretprobe is unregistered (and the missed
instances count is displayed):

unregister_kretprobe(&my_kretprobe);

pr_info("kretprobe at %p unregistered\n", my_kretprobe.
kp.addr);

/* nmissed > 0 suggests that maxactive was set too low.
*/

pr_info("Missed probing %d instances of %s\n", my_
kretprobe.nmissed, my_kretprobe.kp.symbol_name);

Do try it out...

Kprobes miscellany
A couple of remaining things to mention while on this topic of k[ret]probes:

• One, you can even set up multiple kprobes or kretprobes with a single API call, as
follows:

#include <linux/kprobes.h>

int register_kprobes(struct kprobe **kps, int num);

int register_kretprobes(struct kretprobe **rps, int num);

As you might expect, these are convenience wrappers calling the underlying
registration routine in a loop. The unregister_k[ret]probes() routine
counterparts are used to unregister the probes. We won't delve further into those
here.

• Two, a kprobe or kretprobe can be temporarily disabled via the following:

int disable_kprobe(struct kprobe *kp);

int disable_kretprobe(struct kretprobe *rp);

And later re-enabled via the corresponding and analogous enable_k[ret]probe()
APIs. This can be useful: a way to throttle the amount of debug telemetry being logged.

152 Debug via Instrumentation – Kprobes

Inner Workings
If you'd like to delve into the inner workings of how kprobes and kretprobes
are internally implemented, the official kernel documentation covers it here:
https://www.kernel.org/doc/Documentation/kprobes.
txt. Check out the Concepts: Kprobes and Return Probes section.

Now that you know how to use both kprobes and kretprobes, it's also important to
understand that they have some inherent limitations, even downsides. The following
section covers just this.

Kprobes – limitations and downsides
We do realize that no single feature can do anything and everything – in the words of
Frederick J Brooks (in his incomparable book The Mythical Man Month): "there is no
silver bullet".

As we've seen, certain kernel/module functions cannot be probed, including the following:

• Functions marked with the __kprobes or nokprobe_inline annotation.

• Functions marked via the NOKPROBE_SYMBOL() macro.

• The pseudofile /sys/kernel/debug/kprobes/blacklist holds the names
of functions that can't be probed. (Incidentally, our ch4/kprobes/4_kprobe_
helper/kp_load.sh script checks this against the function attempting to be
probed). Also, some inline functions might not be able to be probed.

There's more to note on the point of using k[ret]probes on production systems due to the
possibility of stability issues; the next section throws some light on this.

Interface stability
We know that kernel APIs can change at any point (this is a given with kernel
development and maintenance in any case). So, you can imagine a situation where your
kernel module sets up kprobes for some functions, say, x() and y(). In a later kernel
release though, there's no telling what will happen – these functions might be deprecated,
or their signatures (and thus parameters and return type) might change, leading to your
k[ret]probe kernel module requiring constant maintenance. (Honestly, this is pretty much
a given.)

https://www.kernel.org/doc/Documentation/kprobes.txt
https://www.kernel.org/doc/Documentation/kprobes.txt

The easier way – dynamic kprobes or kprobe-based event tracing 153

A bit more on this last point. An important word of caution: it can be dangerous – from
a stability and security viewpoint – to include third-party kernel modules on production
systems, especially (and obviously), on mission-critical ones. Their presence can also void
the warranty given by the OS vendors (such as Red Hat, SUSE Linux Enterprise Server
(SLES), Canonical, and so on). DevOps people are in general extremely wary of letting
untested code into production systems, let alone kernel modules; they won't exactly be
thrilled when you insert them.

Also, kprobes can cause kernel instability when attached to high-volume code paths (such
as scheduling, interrupt/timer, or networking code). Avoid them, if possible. If not, at least
mitigate the risk by reducing printk usage and using printk rate-limiting APIs (we covered
rate-limiting the printk in the previous chapter).

How will I know if a certain kernel (or module) function runs very often? The funccount
utility – via either the perf-tools[-unstable] package or the more recent eBPF
tools packages – can profile and show you high-volume code paths within the kernel. (The
utility script is typically named funccount-perf or funccount-bpfcc, depending
on what you have installed.)

A modern, cleaner, and far more efficient approach to the static kprobe (or kretprobe) is
to employ tracing mechanisms that are already built into the kernel fabric, and are thus
tested and production-ready. These include using dynamic kprobes or kprobe-based event
tracing (frontends such as kprobe-perf take advantage of these), kernel trace points
(provided via ftrace), perf and eBPF frontends, and so on. They're also simply a lot easier
to use; they don't require C coding and deep knowledge of kernel internals, and they're
DevOps/sysad friendly as well! Let's get started exploring them!

The easier way – dynamic kprobes or kprobe-
based event tracing
Similar, but much superior, to how I built a small script in demo 4, to make it easier for us
to hook into any kernel function via kprobes, there is a package called perf-tools (or
perf-tools-unstable). The creator and lead author is Brendan Gregg. Within the
useful tools you'll find in this package, a bash script named kprobe (or kprobe-perf)
is a fantastic wrapper, easily letting us set up kprobes (and kretprobes)!

154 Debug via Instrumentation – Kprobes

Assuming you've installed the package (we specified it back in Chapter 1, A General
Introduction to Debugging Software), let's go ahead and verify it's there and then run the
script (by the way, on my x86_64 Ubuntu 20.04 LTS system, the package name is perf-
tools-unstable and the script is called kprobe-perf):

dpkg -l|grep perf-tools

ii perf-tools-unstable 1.0.1~20200130+git49b8cdf-1ubuntu1
all DTrace-like tools for Linux

file $(which kprobe-perf)

/usr/sbin/kprobe-perf: Bourne-Again shell script, ASCII text
executable

Great; let's run it and see its help screen (you will eventually need to run it as root, so I just
do so here):

Figure 4.9 – Screenshot showing the help screen of the kprobe-perf script

The easier way – dynamic kprobes or kprobe-based event tracing 155

The help screen does a great job of summing up how you can use this useful utility;
do refer to its man page (as well as an online examples page here: https://github.
com/brendangregg/perf-tools/blob/master/examples/kprobe_
example.txt).

I recommend you first try out a few examples similar to those shown in Figure 4.9.

Next, and without further ado, let's leverage this powerful script to very easily do what
we so painstakingly progressed to in the earlier four demos: set up a kprobe on do_sys_
open() and print the pathname of the file being opened (as our earlier example in Figure
4.5 shows!):

kprobe-perf 'p:do_sys_open file=+0(%si):string'

Tracing kprobe do_sys_open. Ctrl-C to end.

 kprobe-perf-8171 [002] ...1 9159.540104: do_sys_open:
(do_sys_open+0x0/0xf0) file="/etc/ld.so.cache"

 kprobe-perf-8171 [002] ...1 9159.540259: do_sys_open:
(do_sys_open+0x0/0xf0) file="/lib/x86_64-linux-gnu/libc.so.6"

 kprobe-perf-8171 [002] ...1 9159.542030: do_sys_open:
(do_sys_open+0x0/0xf0) file=(fault)

 kprobe-perf-8171 [002] ...1 9159.542818: do_sys_open:
(do_sys_open+0x0/0xf0) file="trace_pipe"

 irqbalance-676 [000] ...1 9162.010699: do_sys_open:
(do_sys_open+0x0/0xf0) file="/proc/interrupts"

 irqbalance-676 [000] ...1 9162.011642: do_sys_open:
(do_sys_open+0x0/0xf0) file="/proc/stat"

[...]^C

Notice the syntax:

• The 'p:do_sys_open' sets up a kprobe on the do_sys_open() kernel
function.

• On the x86_64, the ABI tells us that the [R]SI register holds the second parameter
to the function (recall Table 4.1) – in this case, it's the pathname of the file being
opened. The script employs the syntax +0(%si):string to display its content as
a string (prefixed with file=).

https://github.com/brendangregg/perf-tools/blob/master/examples/kprobe_example.txt
https://github.com/brendangregg/perf-tools/blob/master/examples/kprobe_example.txt
https://github.com/brendangregg/perf-tools/blob/master/examples/kprobe_example.txt

156 Debug via Instrumentation – Kprobes

As easy as that! To minimally test it, I ran ps in another terminal window; immediately
the kprobe-perf script dumped lines like this:

ps-8172 [000] ...1 9164.231685: do_sys_open: (do_sys_
open+0x0/0xf0) file="/lib/x86_64-linux-gnu/libdl.so.2"

ps-8172 [000] ...1 9164.232582: do_sys_open: (do_sys_
open+0x0/0xf0) file="/lib/x86_64-linux-gnu/libc.so.6"

ps-8172 [000] ...1 9164.233758: do_sys_open: (do_sys_
open+0x0/0xf0) file="/lib/x86_64-linux-gnu/libsystemd.so.0"

ps-8172 [000] ...1 9164.234776: do_sys_open: (do_sys_
open+0x0/0xf0) file="/lib/x86_64-linux-gnu/librt.so.1"

[...]

ps-8172 [000] ...1 9164.248680: do_sys_open: (do_sys_
open+0x0/0xf0) file="/proc/meminfo"

ps-8172 [000] ...1 9164.249511: do_sys_open: (do_sys_
open+0x0/0xf0) file="/proc"

ps-8172 [000] ...1 9164.260290: do_sys_open: (do_sys_
open+0x0/0xf0) file="/proc/1/stat"

ps-8172 [000] ...1 9164.260854: do_sys_open: (do_sys_
open+0x0/0xf0) file="/proc/1/status"

[...]

...and plenty more... You can literally gain insight into how ps works by doing this! (In
fact, the wonderful strace utility – it traces all system calls issued by a process – can
approach this level of detail as well! Don't ignore it.)

The point here of course is to simply show you how much easier it is to get the same
valuable information – internally leveraging the kernel's kprobes framework and
knowledge of the processor ABI – using this tool.

Further, the output format that the kprobe-perf script uses is as follows:

_-----=> irqs-off

/ _----=> need-resched

| / _---=> hardirq/softirq

|| / _--=> preempt-depth

||| / delay

TASK-PID CPU# |||| TIMESTAMP FUNCTION

| | | |||| | |

 ps-8172 [000] ...1 9164.260854: do_sys_open:
(do_sys_open+0x0/0xf0) file="/proc/1/status"

The easier way – dynamic kprobes or kprobe-based event tracing 157

It's familiar, with good reason: it's again that of ftrace, and very similar to what we did
with our PRINT_CTX() macro (recall Figure 4.4).

As you probably guessed, the kprobe-perf script, to get the job done, somehow sets
up a kprobe; this is indeed easily verified by looking up the kprobes/list pseudo-file
under your debugfs mount point. While the preceding command was running, I ran this
in another terminal window:

cat /sys/kernel/debug/kprobes/list

ffffffff965d1a60 k do_sys_open+0x0 [FTRACE]

Clearly, a kprobe was set up on the do_sys_open() kernel function.

Kprobe-based event tracing – minimal internal details
So, how does the kprobe-perf script set up a kprobe? Ah, here's the really interesting
thing: it does so by leveraging the kernel's ftrace infrastructure, which internally tracks
key events within the kernel. This is known as the kernel's event tracing framework, and
within it, the kprobes events framework. It can be considered to be a subset of the larger
ftrace kernel system; that's why you see [FTRACE] to the right of the kprobes/list
line! (We cover ftrace in depth in Chapter 9, Tracing the Kernel Flow.)

The kprobe events code was introduced into the kernel back in 2009 by Masami
Hiramatsu. Essentially, via it, the kernel can toggle the tracing of select (with a few
limitations) kernel functions.

Internally speaking, here's the bare minimum information on how a kprobe is set up:
within the debugs tracing folder (typically here: /sys/kernel/debug/tracing/),
there will exist a directory named events (this is assuming the kernel config CONFIG_
KPROBE_EVENTS=y; it typically is, even on distro and many production kernels). Under
it, there are folders representing various subsystems and/or well-known event classes that
the kernel's event tracing infrastructure tracks.

Using the event tracing framework to trace built-in functions
The kernel's event tracing infrastructure also mirrors these tracepoints at this location: /
sys/kernel/tracing. This can be particularly useful when, on a production system,
debugfs is kept invisible (as a security measure).

158 Debug via Instrumentation – Kprobes

Let's peek into it:

Figure 4.10 – Screenshot showing the kernel's event tracing - (pseudo) files and folders under /sys/
kernel/tracing/events

All right, a huge number of event classes and subsystems can be easily and readily traced!

Take, for example, the common kernel memory allocator routine, the really popular
kmalloc() slab API. In Figure 4.10, you can see the pseudo-files corresponding to
tracing kmalloc() at the bottom (within the events/kmem/kmalloc directory).

Here, the format pseudofile really has the details on what gets reported (and how it's
internally looked up); it essentially represents a structure that the kernel maintains and
has the ability to look up. (Running kprobe-perf with the –v option switch will show
you this format file and won't perform tracing.)

Writing 1 to the enable pseudo-file enables tracing and it runs under the hood. You can
see the resulting output by reading the pseudo-file named /sys/kernel/[debug]/
tracing/trace (or trace-pipe; reading from trace_pipe keeps a watch on the
file, similar to doing a tail –f on a file – useful indeed).

The easier way – dynamic kprobes or kprobe-based event tracing 159

Let's try this out. We'll give it a quick spin (here, on a Raspberry Pi 0W):

Figure 4.11 – Truncated screenshot showing an example of easily tracing the kmalloc() routine

Voilà; and so easily achieved! Every single kmalloc() invocation – invoked by either
the kernel or a module – is traced. The precise printk format specifier that details the
kmalloc information (the content you see from kmalloc: call site=… onwards)
is specified by the events/kmem/kmalloc/format pseudo-file.

Once done, turn the probe off with the following:

rpi # echo 0 > events/kmem/kmalloc/enable

And empty the kernel trace buffer with the following:

rpi # echo > trace

(By the way, event tracing via the enable pseudo-file is just one way to use the kernel's
powerful event tracing framework; do refer to the official kernel documentation for more
here: Event Tracing: https://www.kernel.org/doc/html/latest/trace/
events.html#event-tracing.)

So, think about this: Figure 4.10 shows us the automatically available tracepoints that
the kernel makes available – in effect, the built-in kernel tracepoints. But what if you
need to trace a function that isn't within there (in effect, that's not present under /sys/
kernel/[debug]/tracing/events)? Well, there's always a way – the coverage of
the next section!

https://www.kernel.org/doc/html/latest/trace/events.html#event-tracing
https://www.kernel.org/doc/html/latest/trace/events.html#event-tracing

160 Debug via Instrumentation – Kprobes

Setting up a dynamic kprobe (via kprobe events) on
any function
To set up a kprobe dynamically on any given kernel (or module) function (with a few
exceptions, as mentioned in the Kprobes – limitations and downsides section), let's learn
how to employ the kernel's dynamic event tracing framework and what's christened the
function-based kprobes feature.

You should realize, though, that the kprobe can only be set up if the function to be probed
is either of the following:

• Present in the kernel global symbol table (can be seen via /proc/kallsyms)

• Present within the ftrace framework's available function list (here: <debugs_
mount>/tracing/available_filter_functions)

What if the function to be probed is within a kernel module? That's no problem: once the
module is loaded into kernel memory, the internal machinery will ensure that all symbols
are by now part of the kernel's symbol table, and will thus be visible within /proc/
kallsyms; view it as root, of course. In fact, the section that follows shows precisely this.

To set up a dynamic kprobe, do as follows:

1. Initialize the dynamic probe point:

cd /sys/kernel/debug/tracing

If, for whatever reason, this doesn't work – typically if debugfs is invisible on a
production kernel (or ftrace is disabled), then change it to the following:

cd /sys/kernel/tracing

Then set up the dynamic kprobe as follows:
echo "p:<kprobe-name> <function-to-kprobe> […]" >>
kprobe_events

The p: specifies you're setting up a (dynamic) kprobe. The name following the :
character is any name you wish to give this probe (it will default to the function
name if you don't pass anything). Then, put a space and the actual function to
probe. Optional arguments can be used to specify more stuff – querying the probed
function's parameter values being typical! We'll learn more as we go along...

The easier way – dynamic kprobes or kprobe-based event tracing 161

Tip
On production systems that are configured with the kernel config option
CONFIG_DEBUG_FS_DISALLOW_MOUNT=y – rendering the debugfs
filesystem effectively invisible – the debugfs filesystem won't even have a mount
point. In cases like this, make use of the /sys/kernel/tracing location
(as shown earlier) and perform the dynamic kprobe work from therein.

Let's set this up with our usual example. Set up a simple kprobe (with no additional
info, such as open file pathname, generated) on the do_sys_open() function:

echo "p:my_sys_open do_sys_open" >> kprobe_events

Now that it's set up, under the /sys/kernel/[debug]/tracing/events
folder, you will now find a (pseudo) folder named kprobes; it – /sys/kernel/
[debug]/tracing/events/kprobes/ – will contain any and all dynamic
kprobes that have been defined:

ls -lR events/kprobes/

events/kprobes/:

total 0

drwxr-xr-x 2 root root 0 Oct 9 18:58 my_sys_open/

-rw-r--r-- 1 root root 0 Oct 9 18:58 enable

-rw-r--r-- 1 root root 0 Oct 9 18:58 filter

events/kprobes/my_sys_open:

total 0

-rw-r--r-- 1 root root 0 Oct 9 18:59 enable

-rw-r--r-- 1 root root 0 Oct 9 18:58 filter

-r--r--r-- 1 root root 0 Oct 9 18:58 format

[…]

2. The probe is disabled by default; let's enable it (as root):

echo 1 > events/kprobes/my_sys_open/enable

Now it's enabled and running, you can look up the trace data by simply doing the
following:

cat trace

[…]

 cat-192796 [001] 392192.698410: my_
sys_open: (do_sys_open+0x0/0x80) file="/usr/lib/locale/
locale-archive"

162 Debug via Instrumentation – Kprobes

 cat-192796 [001] 392192.698650: my_
sys_open: (do_sys_open+0x0/0x80) file="trace"

 gnome-shell-7441 [005] 392192.777608: my_
sys_open: (do_sys_open+0x0/0x80) file="/sys/class/net/
wlo1/statistics/rx_packets"

[…]

Doing a cat trace_pipe allows you to watch the file, feeding data as it becomes
available – a very useful thing while using dynamic kprobe events interactively. Or,
you can perhaps do something like this to save it to a file:

cp /sys/kernel/tracing/trace /tmp/mytrc.txt

3. To finish, first write 0 to the enable file to disable the kprobe and then do this to
destroy it:

echo 0 > events/kprobes/my_sys_open/enable

echo "-: <kprobe-name>" >> kprobe_events

Alternatively, doing the following:
echo > /sys/kernel/tracing/kprobe_events

… clears all probe points.

So, here, let's disable and destroy our custom dynamic kprobe my_sys_open as
follows:

echo 0 > events/kprobes/do_sys_open/enable

echo "-:my_sys_open" >> kprobe_events

Once all dynamic probe points (kprobes) are destroyed, the /sys/kernel/
[debug]/tracing/events/kprobe_events pseudo-file itself disappears.

Further, doing echo > trace empties the kernel trace buffer of all its trace data.

Even more in-depth details on how to use this powerful dynamic kprobes-based
event tracing are beyond the scope of this book; I refer you to the excellent kernel
documentation here: Kprobe-based Event Tracing: https://www.kernel.org/doc/
html/latest/trace/kprobetrace.html#kprobe-based-event-tracing.

It's also very educative to read through the source of the kprobe-perf script itself:
https://github.com/brendangregg/perf-tools/blob/master/kernel/
kprobe.

https://www.kernel.org/doc/html/latest/trace/kprobetrace.html#kprobe-based-event-tracing
https://www.kernel.org/doc/html/latest/trace/kprobetrace.html#kprobe-based-event-tracing
https://github.com/brendangregg/perf-tools/blob/master/kernel/kprobe
https://github.com/brendangregg/perf-tools/blob/master/kernel/kprobe

The easier way – dynamic kprobes or kprobe-based event tracing 163

Taking care not to overflow or overwhelm
Do keep this in mind though! Just as mentioned with regard to our manual usage of
kprobes, the kprobe-perf script has a similar warning within it:

WARNING: This uses dynamic tracing of kernel functions, and
could cause kernel panics or freezes, depending on the function
traced. Test in a lab environment, and know what you are doing,
before use.

Try and mitigate this by only tracing precisely what's required for as small a time window
as is feasible. The kprobe-perf script's -d option – duration specifier – is useful in this
regard. It has the kernel internally buffer the output into a per-CPU buffer; the size is fixed
via /sys/kernel/[debug]/tracing/buffer_size_kb. If you still get overflows,
try increasing its size.

Trying this on an ARM system
As with the x86, doing echo "p:my_sys_open do_sys_open" > /sys/
kernel/debug/tracing/kprobe_events (as root) on an ARM system will work of
course... But what if we'd like to display the filename parameter to the open system call as
well? Well, we (think we) know how to, so let's try it out:

echo "p:my_sys_open do_sys_open file=+0(%si):string" > /sys/
kernel/debug/tracing/kprobe_events

bash: echo: write error: Invalid argument

Whoops; why did it fail?

It should be obvious: the register holding the second argument – the pathname of the file
being opened – is named [R]SI on the x86[_64], but not on the ARM processor! On
ARM-32 the first four parameters to a function are piggy-backed on CPU registers r0,
r1, r2, and r3 (again, do refer to Table 4.1). So, take this arch-dependence into account:

echo "p:my_sys_open do_sys_open file=+0(%r1):string" > /sys/
kernel/debug/tracing/kprobe_events

Now it will work!

We can go further, printing out all arguments to the open call:

echo 'p:my_sys_open do_sys_open dfd=%r0 file=+0(%r1):string
flags=%r2 mode=%r3' > /sys/kernel/debug/tracing/kprobe_events

164 Debug via Instrumentation – Kprobes

(Don't forget to enable the probe.)

It is even simpler to do with the wrapper kprobe[-perf] script (you need the perf-
tools[-unstable] package installed):

rpi # kprobe-perf 'p:my_sys_open do_sys_open dfd=%r0
file=+0(%r1):string flags=%r2 mode=%r3'

Tracing kprobe my_sys_open. Ctrl-C to end.

 cat-1866 [000] d... 8803.206194: my_sys_open:
(do_sys_open+0x0/0xd8) dfd=0xffffff9c file="/etc/ld.so.preload"
flags=0xa0000 mode=0x0

 cat-1866 [000] d... 8803.206548: my_sys_open:
(do_sys_open+0x0/0xd8) dfd=0xffffff9c file="/usr/lib/arm-linux-
gnueabihf/libarmmem-v6l.so" flags=0xa0000 mode=0x0

 cat-1866 [000] d... 8803.207085: my_sys_open:
(do_sys_open+0x0/0xd8) dfd=0xffffff9c file="/etc/ld.so.cache"
flags=0xa0000 mode=0x0

 cat-1866 [000] d... 8803.207235: my_sys_open:
(do_sys_open+0x0/0xd8) dfd=0xffffff9c file="/lib/arm-linux-
gnueabihf/libc.so.6" flags=0xa0000 mode=0x0

 cat-1866 [000] d... 8803.209703: my_sys_open:
(do_sys_open+0x0/0xd8) dfd=0xffffff9c file="/usr/lib/locale/
locale-archive" flags=0xa0000 mode=0x0

 cat-1866 [000] d... 8803.210395: my_sys_
open: (do_sys_open+0x0/0xd8) dfd=0xffffff9c file="trace_pipe"
flags=0x20000 mode=0x0

^C

Ending tracing...

rpi #

Interesting, right? Do try it out yourself.

Exercise
Set up a kprobe to trigger whenever an interrupt handler's tasklet (bottom half) routine is
scheduled to execute. Also display the kernel mode stack leading up to this point.

The easier way – dynamic kprobes or kprobe-based event tracing 165

One solution
With traditional IRQ handling (top/bottom halves, rather than the modern thread-based
IRQ handling), the top half runs with all interrupts disabled across all CPUs (guaranteeing
it runs atomically) while the bottom half – the tasklet – runs with all interrupts enabled
on all processors. In this context, this is what typically occurs. A driver author, within
the hardware interrupt handler (the so-called top half) typically requests the kernel to
schedule its tasklet by invoking the kernel API schedule_tasklet(). Let's look up its
underlying kernel implementation:

grep tasklet_schedule /sys/kernel/debug/tracing/available_
filter_functions

__tasklet_schedule_common

__tasklet_schedule

Okay, this tells us that we should set up a dynamic kprobe on the function named __
tasklet_schedule(). Further, we pass the –s option switch to kprobe-perf,
asking it to also provide a (kernel-mode) stack trace – in effect, telling us how exactly each
instance of this function was invoked! This can be really useful when debugging:

kprobe-perf -s 'p:mytasklets __tasklet_schedule'

Tracing kprobe mytasklets. Ctrl-C to end.

 kworker/0:0-1855 [000] d.h. 9909.886809: mytasklets:
(__tasklet_schedule+0x0/0x28)

 kworker/0:0-1855 [000] d.h. 9909.886829: <stack trace>

 => __tasklet_schedule

 => bcm2835_mmc_irq

 => __handle_irq_event_percpu

 => handle_irq_event_percpu

 => handle_irq_event

 => handle_level_irq

 => generic_handle_irq

 => __handle_domain_irq

 => bcm2835_handle_irq

 => __irq_svc

 => bcm2835_mmc_request

 => __mmc_start_request

 => mmc_start_request

 => mmc_wait_for_req

166 Debug via Instrumentation – Kprobes

 => mmc_wait_for_cmd

 => mmc_io_rw_direct_host

 => mmc_io_rw_direct

 => process_sdio_pending_irqs

 => sdio_irq_work

 => process_one_work

 => worker_thread

 => kthread

 => ret_from_fork

[...]

Figure 4.4 helps us interpret the output of the kworker... lines: we can see from the
d.h. four-character sequence that interrupts are currently disabled (off) and a hardirq (a
hardware interrupt handler) is running.

The remaining output – the kernel mode stack content at the time (the upper
portion being the IRQ stack) shows us how this particular interrupt came up and how
it ended up running a tasklet (which itself internally becomes a softirq of type TASKLET_
SOFTIRQ). Further, the stack trace (always read it bottom up) shows that this interrupt
is likely generated by I/O being performed on the Secure Digital MultiMedia Card (SD
MMC) card.

(Again folks, FYI, the in-depth details regarding interrupts and their handling are covered
in my earlier, freely available e-book, Linux Kernel Programming – Part 2.)

Using dynamic kprobe event tracing on
a kernel module
Note that we're trying this out on our custom production kernel (on our x86_64 Ubuntu
guest) to mimic a production environment:

1. First, load up our test driver, the miscdrv_rdwr kernel module from Chapter 3,
Debug via Instrumentation – printk and Friends:

$ cd <lkd-src-tree>/ch3/miscdrv_rdwr

$../../lkm

Usage: lkm name-of-kernel-module-file (without the .c)

$../../lkm miscdrv_rdwr

Version info:

Distro: Ubuntu 20.04.3 LTS

The easier way – dynamic kprobes or kprobe-based event tracing 167

Kernel: 5.10.60-prod01

[...]

sudo dmesg

[1987.178246] miscdrv_rdwr:miscdrv_rdwr_init(): LLKD
misc driver (major # 10) registered, minor# = 58, dev
node is /dev/llkd_miscdrv_rdwr

$

2. A quick grep shows that its symbols are now part of the kernel global symbol table
(as expected, even on our production kernel):

$ sudo grep miscdrv /proc/kallsyms

ffffffffc0562000 t write_miscdrv_rdwr [miscdrv_rdwr]

ffffffffc0562982 t write_miscdrv_rdwr.cold [miscdrv_
rdwr]

ffffffffc0562290 t open_miscdrv_rdwr [miscdrv_rdwr]

ffffffffc0562480 t close_miscdrv_rdwr [miscdrv_rdwr]

ffffffffc0562650 t read_miscdrv_rdwr [miscdrv_rdwr]

ffffffffc05629b5 t read_miscdrv_rdwr.cold [miscdrv_
rdwr]

[...]

The .cold Compiler Attribute
By the way, why are some functions suffixed with .cold? The short answer
is that it's a compiler attribute specifying that the function is unlikely to be
executed. These so-called cold functions are typically placed in a separate
linker section to improve the code locality of the required-to-be-fast non-cold
sections! It's all about optimization. Also notice that, above, there's both the
normal version and the cold version of some functions (the read and write I/O
routines of our driver).

3. In another terminal window, let's set up a dynamic kprobe on our write_
miscdrv_rdwr() module function, as root:

cd /sys/kernel/tracing

echo "p:mymiscdrv_wr write_miscdrv_rdwr" >> kprobe_events

cat kprobe_events

p:kprobes/mymiscdrv_wr write_miscdrv_rdwr

168 Debug via Instrumentation – Kprobes

We give the probed function a name, mymiscdrv_wr. Now enable it:
echo 1 > events/kprobes/mymiscdrv_wr/enable

4. Run a test:

A. In one terminal window, within the tracing folder (/sys/kernel/tracing),
run the following:

 cat trace_pipe

B. In another terminal window, we run our userspace program to write to our
misc class driver's device file. This will guarantee our probe point (the write_
miscdrv_rdwr() module function) gets invoked:

 $./rdwr_test_secret w /dev/llkd_miscdrv_rdwr "dyn
kprobes event tracing is awesome"

The userspace process executes, writing into our device driver. The following
screenshot shows both the execution of this userspace process as well as the
dynamic kprobe being set up and traced:

Figure 4.12 – Screenshot showing testing a dynamic kprobe via the kprobe events framework on a device
driver module function

The easier way – dynamic kprobes or kprobe-based event tracing 169

Study the preceding screenshot carefully. The terminal window at the bottom is where we
set up our dynamic probe (corresponding to steps 3 and 4A above). The terminal window
on top is where we test by invoking the write functionality of our driver (twice; in effect,
this corresponds to step 4B). You can see how, in the lower terminal, the dynamic kprobe
is set up and enabled. Then it watches for trace data by doing a cat on the trace_pipe
file. When data becomes available, we see it...

Disable the probe point and destroy it with the following:

echo 0 > events/kprobes/mymiscdrv_wr/enable

echo "-:mymiscdrv_wr" >> kprobe_events

cat kprobe_events

echo > trace

The last command empties out the kernel trace buffer.

In effect, you should by now realize that what we've done in this section is pretty much
automated by the kprobe-perf bash script! It even has other interesting options to try.
This makes it a powerful weapon in our debug/observability armory!

Before concluding this section, it's good to know that even userspace application processes
can be traced via the kernel's dynamic event tracing framework – this feature is called
Uprobes (as opposed to kprobes). I refer you to the official kernel documentation on
it here: Uprobe-tracer: Uprobe-based Event Tracing: https://www.kernel.org/
doc/html/latest/trace/uprobetracer.html#uprobe-tracer-uprobe-
based-event-tracing.

Setting up a return probe (kretprobe) with kprobe-perf
With the kprobe-perf wrapper script, you can set up a return probe – a kretprobe – as
well! Using it is simplicity itself. Here's our usual example, fetching the return value of the
do_sys_open() kernel function:

rpi # kprobe-perf 'r:do_sys_open ret=$retval'

Tracing kprobe do_sys_open. Ctrl-C to end.

 kprobe-perf-2287 [000] d... 13013.021003: do_sys_open:
(sys_openat+0x1c/0x20 <- do_sys_open) ret=0x3

 <...>-2289 [000] d... 13013.027167: do_sys_open:
(sys_openat+0x1c/0x20 <- do_sys_open) ret=0x3

 <...>-2289 [000] d... 13013.027504: do_sys_open:
(sys_openat+0x1c/0x20 <- do_sys_open) ret=0x3

https://www.kernel.org/doc/html/latest/trace/uprobetracer.html#uprobe-tracer-uprobe-based-event-tracing
https://www.kernel.org/doc/html/latest/trace/uprobetracer.html#uprobe-tracer-uprobe-based-event-tracing
https://www.kernel.org/doc/html/latest/trace/uprobetracer.html#uprobe-tracer-uprobe-based-event-tracing

170 Debug via Instrumentation – Kprobes

^C

Ending tracing...

rpi #

The key point here is the return value being fetched; it shows up as the following:

ret=0x3

This makes sense; the return to the open API is the file descriptor assigned within the
process context's open file table. Here, it happens to be the value 3 (with 0, 1, and 2
typically being taken up by stdin, stdout, and stderr).

Next, let's examine the notation:

do_sys_open: (sys_openat+0x1c/0x20 <- do_sys_open)

This implies that our probed function do_sys_open() has been called by and is
returning to the sys_openat() function. Further, the notation <func>+0x1c/0x20
following the function name, or generically, the <func>+off/len, is interpreted as
follows:

• off: The offset within the function <func> where the code returns

• len: What the kernel feels is the overall length of the function <func> (it's an
approximation, usually correct)

The remainder of the output is in the usual ftrace format notation that you should be
familiar with by now...

Before concluding this section, we'll mention that even more can be achieved by
leveraging this powerful function-based dynamic kprobes framework within the kernel.
Steven Rostedt's slides show how you can burrow ever deeper and extract pretty much any
arguments to a function being probed and indeed, delve into relevant kernel structures
(via offsets) to reveal their runtime values (https://events19.linuxfoundation.
org/wp-content/uploads/2017/12/oss-eu-2018-fun-with-dynamic-
trace-events_steven-rostedt.pdf). Do check it out.

Well, well, we're almost done! Let's complete this chapter with one more section where
you'll learn something quite practical – briefly understanding and tracing the execution
of processes on the system. This can help as an audit-like facility, allowing you to log
whatever userspace processes executed.

https://events19.linuxfoundation.org/wp-content/uploads/2017/12/oss-eu-2018-fun-with-dynamic-trace-events_steven-rostedt.pdf
https://events19.linuxfoundation.org/wp-content/uploads/2017/12/oss-eu-2018-fun-with-dynamic-trace-events_steven-rostedt.pdf
https://events19.linuxfoundation.org/wp-content/uploads/2017/12/oss-eu-2018-fun-with-dynamic-trace-events_steven-rostedt.pdf

Trapping into the execve() API – via perf and eBPF tooling 171

Trapping into the execve() API – via perf and
eBPF tooling
On Linux (and UNIX), user mode applications – processes – are launched or executed
via a family of so-called exec C library (glibc) APIs: execl(), execlp(), execv(),
execvp(), execle(), execvpe(), and execve().

A quick couple of things to know about these seven APIs: the first six are merely glibc
wrappers that transform their arguments and ultimately invoke the execve() API – it is
the actual system call, the one that causes the process context to switch to kernel mode and
run the kernel code corresponding to the system call. Also, FYI, execvpe() is a GNU
extension (and thus practically only seen on Linux).

The point here is simply this: ultimately, pretty much all processes (and thus apps) are
executed via the kernel code of execve()! Within the kernel, execve() becomes the
sys_execve() function (in a bit of an indirect fashion, via the SYSCALL_DEFINE3()
macro), which invokes the actual worker routine, do_execve().

System calls and where they land in the kernel
This, in fact, is typical of many (but not all) system calls: the user-issued system call
foo() becomes sys_foo(), which, if short enough performs the work itself, else
invokes the actual worker routine, do_foo().

For example, the execve(2) system call becomes fs/exec.c:sys_execve()
in the kernel (technically via the SYSCALL_DEFINE3() macro, 3 being the number
of parameters passed via the syscall), which in turn invokes the worker function fs/
exec.c:do_execve().

Caution though, this isn't always the case... For example, the open(2) system call's code
path within the kernel's a bit different; the following screenshot sums this up:

Figure 4.13 – How user mode system calls map within the kernel

172 Debug via Instrumentation – Kprobes

An aside, but a useful one: how does a non-privileged user mode task (a process or
thread) actually manage to cross the boundary from user mode into privileged kernel
mode (depicted by the vertical red line in Figure 4.13)? The short answer is that every
processor supports one or more machine instructions that allow this to happen – these
are often referred to as call gates or traps (we say that the process traps from user mode to
kernel mode).

For example, the x86 traditionally used software interrupt int 0x80 to perform the trap;
modern versions use the syscall machine instruction; ARM-32 uses the SWI (software
interrupt) machine instruction; and AArch64 (ARM64) uses the SVC (supervisor)
instruction to do so. See the man page on syscall(2) for more details.

Again, FYI, there is an alternate almost equivalent system call to execve() –
execveat(). The difference being that the first parameter to it is a directory relative to
which the program – the second parameter – is executed.

Let's return to the main point: now that we know that processes are executed via
execve(), won't it be cool to trap into it – perhaps via injecting a kprobe into the
sys_execve() or do_execve() kernel APIs? Yes, but... (there's always a but isn't
there?): on modern kernels, it simply doesn't work – trying it via the static kprobe
approach, the register_kprobe() fails. Please try it yourself. Remember, always the
empirical approach!

In fact, on my x86_64 Ubuntu 20.04 LTS VM, even the execsnoop-perf(8) wrapper
tool, built for precisely this purpose, (which internally uses the kernel's ftrace kprobe_
events pseudo-file), fails:

$ sudo execsnoop-perf

Tracing exec()s. Ctrl-C to end.

ERROR: adding a kprobe for execve. Exiting.

The more recent eBPF tooling solves this once and for all; install and employ (as root)
execsnoop-bpfcc(8) and it just works! The following section has us peeking into the
exec via an eBPF frontend.

Trapping into the execve() API – via perf and eBPF tooling 173

Observability with eBPF tools – an introduction
An extension of the well-known Berkeley Packet Filter or BPF, eBPF is the extended
BPF. Very briefly, BPF used to provide the supporting infrastructure within the kernel to
effectively trace network packets. eBPF is a relatively recent kernel innovation – available
only from the Linux 4.1 kernel (June 2015) onward. It extends the BPF notion, allowing
you to trace much more than just the network stack. Also, it works for tracing both kernel
space as well as userspace apps. In effect, eBPF and its frontends are the modern approach
to tracing and performance analysis on a Linux system.

To use eBPF, you will need a system with the following:

• Linux kernel 4.1 or newer

• Kernel support for eBPF (do see https://github.com/iovisor/bcc/
blob/master/INSTALL.md#kernel-configuration)

Using the eBPF kernel feature directly is considered to be very hard, so there are several
easier frontends to use. Among them, the BPF Compiler Collection (BCC), bpftrace,
and libbpf+BPF CO-RE (Compile Once – Run Everywhere) are regarded as being very
useful. It's really simplest to install the bcc binary packages for these frontends. You'll
find instructions regarding this here: https://github.com/iovisor/bcc/blob/
master/INSTALL.md#packages.

Check out the following link to a picture that opens your eyes to just how many
powerful BCC/BPF tools are available to help trace different Linux subsystems and
hardware: https://www.brendangregg.com/BPF/bcc_tracing_tools_
early2019.png.

Here, we don't intend to delve into details; instead, we'll give you a quick flavor of using
a BCC frontend utility to track processes being executed. To try this, I assume you've
installed the BCC frontend package (we did this back in Chapter 1, A General Introduction
to Debugging Software). Quick tip: on Ubuntu, do sudo apt install bpfcc-tools,
but do see the following callout.

https://github.com/iovisor/bcc/blob/master/INSTALL.md#kernel-configuration
https://github.com/iovisor/bcc/blob/master/INSTALL.md#kernel-configuration
https://github.com/iovisor/bcc/blob/master/INSTALL.md#packages
https://github.com/iovisor/bcc/blob/master/INSTALL.md#packages
https://www.brendangregg.com/BPF/bcc_tracing_tools_early2019.png
https://www.brendangregg.com/BPF/bcc_tracing_tools_early2019.png

174 Debug via Instrumentation – Kprobes

eBPF BCC Installation
You can install the BCC tools package for your regular host Linux distro
by reading the installation instructions here: https://github.com/
iovisor/bcc/blob/master/INSTALL.md. Sometimes, though
(especially on older distros, such as Ubuntu 18.04), this approach of installing
the bpfcc-tools package will typically work only on a pre-built Linux
distro (such as Ubuntu/Debian/RedHat, and so on) but may not on a Linux that
has a custom kernel. The reason: the installation of the BCC toolset includes
(and depends upon) the installation of the linux-headers-$(uname
-r) package. This linux-headers package exists only for distro kernels
(and not for our custom 5.10 kernel that we shall often be running on the
guest). With Ubuntu 20.04 LTS, it does seem to work, even when running a
custom kernel.

Once the bpfcc-tools package is installed, you can get a listing (and feel) for all the
frontend utilities by doing the following:

dpkg -L bpfcc-tools |grep "^/usr/sbin.*bpfcc$"

On my x86_64 Ubuntu 20.04 LTS guest VM (running our custom 5.10.60-prod01
kernel), I find there are 112 *-bpfcc utilities installed (they're actually Python scripts).

In the section just prior to this one, we saw that the execve() (or execveat()) system
call is the one that actually executes processes. We attempted to trace its execution via the
perf-tools utilities (execsnoop-perf), but it just failed. Now, with the eBPF BCC
frontends installed, let's retry:

$ uname -r

5.10.60-prod01

$ sudo execsnoop-bpfcc 2>/dev/null

[...]

PCOMM PID PPID RET ARGS

id 7147 7053 0 /usr/bin/id -u

id 7148 7053 0 /usr/bin/id -u

git 7149 7053 0 /usr/bin/git config --global
credential.helper cache --timeout 36000

cut 7151 7053 0 /usr/bin/cut -d= -f2

grep 7150 7053 0 /usr/bin/grep --color=auto
^PRETTY_NAME /etc/os-release

cat 7152 7053 0 /usr/bin/cat /proc/version

https://github.com/iovisor/bcc/blob/master/INSTALL.md
https://github.com/iovisor/bcc/blob/master/INSTALL.md

Trapping into the execve() API – via perf and eBPF tooling 175

ip 7157 7053 0 /usr/bin/ip a

sudo 7159 7053 0 /usr/bin/sudo route -n

route 7160 7159 0 /usr/sbin/route -n

[...]

It just works as processes get executed. The execsnoop-bpfcc script displays a line
of output showing a few details regarding the process that just executed. Notice how
all parameters to the command being executed are displayed as well! The help screen is
definitely worth looking up (just run it with the -h option switch). The man pages should
be installed as well. Both have one-liner example usage; do check it out.

As with the perf-tools utilities, all the *-bpfcc scripts need to be run as root. A
fair amount of noise can be generated initially. We defeat it by redirecting stderr to the
null device.

Our good old example – trapping into and tracing do_sys_open() – right from the
beginning of this chapter, can, once again, be very easily achieved with BCC:

$ sudo opensnoop-bpfcc 2>/dev/null

PID COMM FD ERR PATH

1431 upowerd 9 0 /sys/devices/LNXSYSTM:00/
LNXSYBUS:00/PNP0A03:00/PNP0C0A:00/power_supply/BAT0/voltage_now

1431 upowerd 9 0 /sys/devices/LNXSYSTM:00/
LNXSYBUS:00/PNP0A03:00/PNP0C0A:00/power_supply/BAT0/capacity

1431 upowerd -1 2 /sys/devices/LNXSYSTM:00/
LNXSYBUS:00/PNP0A03:00/PNP0C0A:00/power_supply/BAT0/temp

[...]

431 systemd-udevd 14 0 /sys/fs/cgroup/unified/system.
slice/systemd-udevd.service/cgroup.procs

431 systemd-udevd 14 0 /sys/fs/cgroup/unified/system.
slice/systemd-udevd.service/cgroup.threads

[...] ^C

Again, Brendan Gregg's page on eBPF tracing tools (https://www.brendangregg.
com/ebpf.html) will help you see the depth of tools available and how to begin making
use of them.

https://www.brendangregg.com/ebpf.html
https://www.brendangregg.com/ebpf.html

176 Debug via Instrumentation – Kprobes

Summary
In this chapter, you learned what kprobes and kretprobes are and how to exploit them to
add useful telemetry (instrumentation) to your project or product in a dynamic fashion.
We saw that you can even use them on production systems (though you should be careful
to not overload the system).

We first covered the traditional static approach to using k[ret]probes, one where any
change will require a recompile of the code; we even provided a semi-automated script
to generate a kprobe as required. We then covered the better, efficient, dynamic kprobe
tracing facilities that are built into modern Linux kernels. Using these techniques is not
only a lot easier but has other advantages – they're pretty much always built into the
kernel, no new code is required at the last minute on production systems, and running
them is more efficient under the hood. As a bonus, you learned how to leverage the
kernel's ftrace-based event tracepoints – a large number of kernel subsystems and their
APIs can be very easily traced.

We finished this large-ish chapter by delving a bit into a practical consideration – how
to trace the execution of a process (as an example). You found that tracing or tracking
process execution, the opening of files (and in a similar fashion, most other things), can
be very easily done via the modern eBPF tooling (bpfcc-tools BCC frontends) and, to
some extent, via the perf-tools frontend.

Just of June 2022, the very recent 5.18 kernel has a new feature: fprobes. The fprobe is
similar in intent to the k[ret]probe, but faster and is based on ftrace (https://www.
kernel.org/doc/html/latest/trace/fprobe.html#fprobe-function-
entry-exit-probe).

The next chapter is bound to be very useful; we'll delve into kernel memory issues and
how to find and debug them! I highly recommend you first take the time to practice
(do the suggested exercises mentioned during the course of this chapter), get comfortable
with the content of this and earlier chapters, and then, after a quick break, jump into the
next one!

Further reading
• Official kernel documentation: Kernel Probes (Kprobes): https://www.kernel.

org/doc/html/latest/trace/kprobes.html#kernel-probes-
kprobes

• [Kernel] Kprobe, Brian Pan, November 2020: https://ppan-brian.medium.
com/kernel-kprobe-5036d7a8455f

https://www.kernel.org/doc/html/latest/trace/fprobe.html#fprobe-function-entry-exit-probe
https://www.kernel.org/doc/html/latest/trace/fprobe.html#fprobe-function-entry-exit-probe
https://www.kernel.org/doc/html/latest/trace/fprobe.html#fprobe-function-entry-exit-probe
https://www.kernel.org/doc/html/latest/trace/kprobes.html#kernel-probes-kprobes
https://www.kernel.org/doc/html/latest/trace/kprobes.html#kernel-probes-kprobes
https://www.kernel.org/doc/html/latest/trace/kprobes.html#kernel-probes-kprobes
https://ppan-brian.medium.com/kernel-kprobe-5036d7a8455f
https://ppan-brian.medium.com/kernel-kprobe-5036d7a8455f

Further reading 177

• Kprobes via modern ftrace tracing, kprobe events:

 � Taming Tracepoints in the Linux Kernel, Keenan, Mar 2020: https://blogs.
oracle.com/linux/post/taming-tracepoints-in-the-linux-
kernel

 � Fun with Dynamic Kernel Tracing Events, The things you just shouldn't be able to
do! Steven Rostedt, Oct 2018: https://events19.linuxfoundation.
org/wp-content/uploads/2017/12/oss-eu-2018-fun-with-
dynamic-trace-events_steven-rostedt.pdf

 � Dynamic tracing in Linux user and kernel space, Pratyush Anand, July 2017:
https://opensource.com/article/17/7/dynamic-tracing-
linux-user-and-kernel-space (includes coverage on userspace probing
with uprobe as well)

• Brendan Gregg's perf-tools page: https://github.com/brendangregg/
perf-tools

• Specific to kprobes: kprobes-perf examples: https://github.com/
brendangregg/perf-tools/blob/master/examples/kprobe_
example.txt

• Specific to kprobes: kprobes-perf and related tooling code: https://github.
com/brendangregg/perf-tools/tree/master/kernel

• Traps, Handlers (x86 specific): https://www.cse.iitd.ernet.
in/~sbansal/os/lec/l8.html

• CPU ABI, function calling, and register usage conventions:

 � APPLICATION BINARY INTERFACE (ABI) DOCS AND THEIR MEANING:
https://kaiwantech.wordpress.com/2018/05/07/application-
binary-interface-abi-docs-and-their-meaning/

 � X86_64:

 � x64 Cheat Sheet: https://cs.brown.edu/courses/cs033/docs/
guides/x64_cheatsheet.pdf

 � X86 64 Register and Instruction Quick Start: https://wiki.cdot.
senecacollege.ca/wiki/X86_64_Register_and_Instruction_
Quick_Start

 � ARM32 / Aarch32: Overview of ARM32 ABI Conventions, Microsoft, July 2018:
https://docs.microsoft.com/en-us/cpp/build/overview-of-
arm-abi-conventions?view=msvc-160

https://blogs.oracle.com/linux/post/taming-tracepoints-in-the-linux-kernel
https://blogs.oracle.com/linux/post/taming-tracepoints-in-the-linux-kernel
https://blogs.oracle.com/linux/post/taming-tracepoints-in-the-linux-kernel
https://events19.linuxfoundation.org/wp-content/uploads/2017/12/oss-eu-2018-fun-with-dynamic-trace-events_steven-rostedt.pdf
https://events19.linuxfoundation.org/wp-content/uploads/2017/12/oss-eu-2018-fun-with-dynamic-trace-events_steven-rostedt.pdf
https://events19.linuxfoundation.org/wp-content/uploads/2017/12/oss-eu-2018-fun-with-dynamic-trace-events_steven-rostedt.pdf
https://opensource.com/article/17/7/dynamic-tracing-linux-user-and-kernel-space
https://opensource.com/article/17/7/dynamic-tracing-linux-user-and-kernel-space
https://github.com/brendangregg/perf-tools
https://github.com/brendangregg/perf-tools
https://github.com/brendangregg/perf-tools/blob/master/examples/kprobe_example.txt
https://github.com/brendangregg/perf-tools/blob/master/examples/kprobe_example.txt
https://github.com/brendangregg/perf-tools/blob/master/examples/kprobe_example.txt
https://github.com/brendangregg/perf-tools/tree/master/kernel
https://github.com/brendangregg/perf-tools/tree/master/kernel
https://www.cse.iitd.ernet.in/~sbansal/os/lec/l8.html
https://www.cse.iitd.ernet.in/~sbansal/os/lec/l8.html
https://kaiwantech.wordpress.com/2018/05/07/application-binary-interface-abi-docs-and-their-meaning/
https://kaiwantech.wordpress.com/2018/05/07/application-binary-interface-abi-docs-and-their-meaning/
https://cs.brown.edu/courses/cs033/docs/guides/x64_cheatsheet.pdf
https://cs.brown.edu/courses/cs033/docs/guides/x64_cheatsheet.pdf
https://wiki.cdot.senecacollege.ca/wiki/X86_64_Register_and_Instruction_Quick_Start
https://wiki.cdot.senecacollege.ca/wiki/X86_64_Register_and_Instruction_Quick_Start
https://wiki.cdot.senecacollege.ca/wiki/X86_64_Register_and_Instruction_Quick_Start
https://docs.microsoft.com/en-us/cpp/build/overview-of-arm-abi-conventions?view=msvc-160
https://docs.microsoft.com/en-us/cpp/build/overview-of-arm-abi-conventions?view=msvc-160

178 Debug via Instrumentation – Kprobes

 � ARM64 / Aarch64:

 � ARMv8-A64-bit Android on ARM, Campus London, September 2015,
Architecture Overview presentation: https://armkeil.blob.
core.windows.net/developer/Files/pdf/graphics-and-
multimedia/ARMv8_Overview.pdf (do check out the ARMv8
terminology reference on page 32)

 � Overview of ARM64 ABI conventions, Microsoft, Mar 2019: https://
docs.microsoft.com/en-us/cpp/build/arm64-windows-abi-
conventions?view=msvc-160

 � ARM Cortex-A Series Programmer's Guide for ARMv8-A / Fundamentals-
of-ARMv8: https://developer.arm.com/documentation/
den0024/a/Fundamentals-of-ARMv8

 � ARMv8 Registers: https://developer.arm.com/documentation/
den0024/a/ARMv8-Registers

 � ARM64 Reversing and Exploitation Part 1 - ARM Instruction Set +
Simple Heap Overflow, Sept 2020: http://highaltitudehacks.
com/2020/09/05/arm64-reversing-and-exploitation-part-1-
arm-instruction-set-heap-overflow/

• How Linux kprobes works, Dec 2016: https://vjordan.info/log/fpga/
how-linux-kprobes-works.html

• eBPF:

 � Installing eBPF: https://github.com/iovisor/bcc/blob/master/
INSTALL.md

 � BCC tutorial: https://github.com/iovisor/bcc/blob/master/
docs/tutorial.md

 � Linux Extended BPF (eBPF) Tracing Tools, Brendan Gregg (see the pics as well!):
https://www.brendangregg.com/ebpf.html

 � How eBPF Turns Linux into a Programmable Kernel, Jackson, October 2020:
https://thenewstack.io/how-ebpf-turnslinux-into-a-
programmable-kernel/

 � A Gentle Introduction to eBPF, InfoQ, May 2021: https://www.infoq.com/
articles/gentle-linux-ebpf-introduction/

https://armkeil.blob.core.windows.net/developer/Files/pdf/graphics-and-multimedia/ARMv8_Overview.pdf
https://armkeil.blob.core.windows.net/developer/Files/pdf/graphics-and-multimedia/ARMv8_Overview.pdf
https://armkeil.blob.core.windows.net/developer/Files/pdf/graphics-and-multimedia/ARMv8_Overview.pdf
https://docs.microsoft.com/en-us/cpp/build/arm64-windows-abi-conventions?view=msvc-160
https://docs.microsoft.com/en-us/cpp/build/arm64-windows-abi-conventions?view=msvc-160
https://docs.microsoft.com/en-us/cpp/build/arm64-windows-abi-conventions?view=msvc-160
https://developer.arm.com/documentation/den0024/a/Fundamentals-of-ARMv8
https://developer.arm.com/documentation/den0024/a/Fundamentals-of-ARMv8
https://developer.arm.com/documentation/den0024/a/ARMv8-Registers
https://developer.arm.com/documentation/den0024/a/ARMv8-Registers
http://highaltitudehacks.com/2020/09/05/arm64-reversing-and-exploitation-part-1-arm-instruction-set-heap-overflow/
http://highaltitudehacks.com/2020/09/05/arm64-reversing-and-exploitation-part-1-arm-instruction-set-heap-overflow/
http://highaltitudehacks.com/2020/09/05/arm64-reversing-and-exploitation-part-1-arm-instruction-set-heap-overflow/
https://vjordan.info/log/fpga/how-linux-kprobes-works.html
https://vjordan.info/log/fpga/how-linux-kprobes-works.html
https://github.com/iovisor/bcc/blob/master/INSTALL.md
https://github.com/iovisor/bcc/blob/master/INSTALL.md
https://github.com/iovisor/bcc/blob/master/docs/tutorial.md
https://github.com/iovisor/bcc/blob/master/docs/tutorial.md
https://www.brendangregg.com/ebpf.html
https://thenewstack.io/how-ebpf-turnslinux-into-a-programmable-kernel/
https://thenewstack.io/how-ebpf-turnslinux-into-a-programmable-kernel/
https://www.infoq.com/articles/gentle-linux-ebpf-introduction/
https://www.infoq.com/articles/gentle-linux-ebpf-introduction/

Further reading 179

 � (Kernel-level) A thorough introduction to eBPF, Matt Fleming, LWN, December
2017: https://lwn.net/Articles/740157/

 � How io_uring and eBPF Will Revolutionize Programming in Linux, Glauber Costa,
April 2020: https://thenewstack.io/how-io_uring-and-ebpf-
will-revolutionizeprogramming-in-linux/

• Miscellaneous:

 � Old but interesting, mostly on using SystemTap: Locating System Problems Using
Dynamic Instrumentation, Prasad, Cohen, et al, 2005: https://sourceware.
org/systemtap/systemtap-ols.pdf

 � Different Approaches to Linux Host Monitoring, Kelly Shortridge, capsule8:
https://capsule8.com/blog/different-approaches-to-linux-
monitoring/

https://lwn.net/Articles/740157/
https://thenewstack.io/how-io_uring-and-ebpf-will-revolutionizeprogramming-in-linux/
https://thenewstack.io/how-io_uring-and-ebpf-will-revolutionizeprogramming-in-linux/
https://sourceware.org/systemtap/systemtap-ols.pdf
https://sourceware.org/systemtap/systemtap-ols.pdf
https://capsule8.com/blog/different-approaches-to-linux-monitoring/
https://capsule8.com/blog/different-approaches-to-linux-monitoring/

5
Debugging

Kernel Memory
Issues – Part 1

There's no doubt about it, C (and C++) is a really powerful programming language, one
that allows the developer to straddle both high-level layered abstractions (after all, object-
oriented languages such as Java and Python are written in C) as well as to work upon the
bare metal, as it were. This is fantastic. Of course, there's a price to pay: the compiler will
do only so much. You want to overflow a memory buffer? Go ahead, it doesn't care. Want
to peek at or poke an unmapped memory region? No problem.

Well, no problem for the compiler, but big problems for us! This is nothing new really.
We mentioned just this in Chapter 2, Approaches to Kernel Debugging. C being a
procedural and non-managed programming language (in memory terms), it's
ultimately the programmer's responsibility to ensure that runtime memory usage is
correct and well behaved.

182 Debugging Kernel Memory Issues – Part 1

The Linux kernel is almost entirely written in C (over 98% of the code is in C, as of the
time of this writing). You see the potential for problems, right? (In fact, there's a slowly
growing effort to begin porting the kernel, or portions of it, to a more memory-safe
language such as Rust. See the Further reading section for links on this). In a similar
vein, compilers are getting smarter. The Clang/Low Level Virtual Machine (LLVM)
compiler – with which you can certainly build the kernel and modules – seems superior
to the well-known GNU Compiler Collection or GCC compiler in terms of intelligent
code generation, avoiding Out Of Bounds (OOB) accesses, and more. We cover some
introductory material on using Clang as well here, though the focus is on the most
commonly used GCC compiler. Here, we'll attempt to tackle this all-too-common
and stubborn bug source – memory issues! The goal, after all, is to make your code
memory safe.

Due to the vast scope of material to be covered on kernel memory debugging, we've split
the discussion into two chapters, this one and the next.

In this chapter, we shall focus on and cover the following main topics (look out for
detailed coverage of the kernel's SLUB debug framework and catching memory leakage in
the next one):

• What's the problem with memory anyway?

• Using KASAN and UBSAN to find memory bugs

• Building your kernel and modules with Clang

• Catching memory defects in the kernel – comparison and notes (Part 1)

Technical requirements
The technical requirements and workspace remain identical to what's described in Chapter
1, A General Introduction to Debugging Software. The code examples can be found within
the book's GitHub repository here: https://github.com/PacktPublishing/
Linux-Kernel-Debugging. The only thing new in terms of software installation is the
usage of the powerful Clang compiler. We cover the details in the Building your kernel and
modules with Clang section.

https://github.com/PacktPublishing/Linux-Kernel-Debugging
https://github.com/PacktPublishing/Linux-Kernel-Debugging

What's the problem with memory anyway? 183

What's the problem with memory anyway?
The introductory paragraphs at the start of this chapter informed you of the annoying fact
that though programming in C is like having a superpower (at least for your typical OS/
driver/embedded domains), it's a double-edged sword: we humans inadvertently create
defects and bugs. Memory bugs, especially, are simply all too common.

In fact, in Chapter 2, Approaches to Kernel Debugging, in the Types of bugs – the memory
view section, we mentioned that among the different ways of classifying bug types is the
memory view. For easy recollection – and to stress its importance here – I reproduce the
short list of common memory corruption bug types:

• Incorrect memory accesses:

 � Using variables uninitialized, aka Uninitalized Memory Read (UMR) bugs

 � Out-Of-Bounds (OOB) memory accesses (read/write underflow/overflow bugs)

 � Use-After-Free (UAF) and Use-After-Return (UAR) (aka out-of-scope) bugs

 � Double-free bugs

• Memory leakage

• Data races

• (Internal) Fragmentation

These (except the last) are among the well-understood Undefined Behavior (UB) issues
that a process, or even the OS, can blunder into. In this chapter, you'll learn about these
issues – with the emphasis being within the kernel/driver code – and, more importantly,
how to use various tools and approaches to catch them.

More precisely, within this chapter, we shall focus on the first two: incorrect memory
accesses – which include all kinds of common memory bugs: UMR, OOB, UAF/UAR,
and double-free. In the following chapter, we'll focus on catching memory defects in
slab memory via the SLUB debug framework as well as detecting memory leaks. We'll
cover data races and their complexities in Chapter 8, Lock Debugging, (as they are most
commonly caused by incorrectly working with locks), and (internal) fragmentation, or
wastage, will be mentioned in the next chapter, in the Learning to use the slabinfo and
related utilities section.

184 Debugging Kernel Memory Issues – Part 1

It's Not Only about Bugs but Also about Security
Human error and C (and C++) create an unfortunate mix at times – bugs!
But – and here's a key point – security issues very often tend to be bugs or defects
at heart. This is why getting it right in the first place, and/or later hunting
down and fixing bugs, is so critical to today's modern production systems
and, indeed, the cloud (a huge portion of which is powered via the Linux
kernel and its built-in hypervisor component – Kernel Virtual Machine
(KVM)). Hackers currently have a pretty wide choice of OS-level exploits
to choose from; this is especially true for older kernels. To see what I mean,
take a peek here: https://github.com/xairy/linux-kernel-
exploitation.

If nothing else, remember: unless you're running the latest stable kernel (which
will have the latest bugfix and security patches), and have configured it with
security in mind as well, you're asking for trouble! Again, see (much) more on
Linux kernel security via a link in the Further reading section.

The goal is to have your project or product achieve memory safety.

Tools to catch kernel memory
issues – a quick summary
Let's get to the important thing: what tools and/or approaches are available to you when
debugging kernel memory issues? Several exist; among them are the following:

• Directly with dynamic (runtime) analysis, specifically, memory checker tooling:

 � Kernel Address Sanitizer (KASAN)

 � Undefined Behavior Sanitizer (UBSAN)

 � SLUB debug techniques

 � Kernel memory leak detector (kmemleak)

• Indirectly with the following:

 � Static analysis tools: checkpatch.pl, sparse, smatch, Coccinelle, cppcheck,
flawfinder, and GCC

 � Tracing techniques

 � K[ret]probes instrumentation

 � Post-mortem analysis tooling (logs, Oops analysis, kdump/crash, [and K]GDB)

https://github.com/xairy/linux-kernel-exploitation
https://github.com/xairy/linux-kernel-exploitation

What's the problem with memory anyway? 185

The first bullet point above – the one using which you can more or less directly catch
kernel memory defects – is of course what we shall primarily focus on here. Subsequent
chapters in this book will cover the indirect techniques mentioned in the second bullet
point. So, patience – you'll get there. Also, as implied by the indirect wording, these may or
may not help you catch memory bugs.

Okay. I'll attempt to summarize this information with specifics on the tools you can use in
the following table. More detailed tables will be presented later in this chapter.

Table 5.1 – A summary of tools (and techniques) you can use to detect kernel memory issues

A few notes to match the numbers in square brackets in the second column:

• [1]: Modern GCC/Clang compilers definitely emit a warning for UMR, with recent
ones even being able to auto-initialize local variables (if so configured).

• [2]: KASAN catches (almost!) all of them – wonderful. The SLUB debug approach
can catch a couple of these, but not all. Vanilla kernels don't seem to catch any.

• [3]: By vanilla kernel, I mean that this defect was caught on a regular distro kernel
(with no special config set for memory checking).

All right! Now you know – in theory – how to catch memory bugs in the kernel or your
driver, but in practice? Well, that requires you to learn to use the tool(s) mentioned above
and practice! As mentioned already, understanding, configuring, and learning to leverage
KASAN and UBSAN (along with using Clang) is the focus of this chapter (SLUB debug
and kmemleak will be that of the next one). So, let's get on with it.

186 Debugging Kernel Memory Issues – Part 1

Using KASAN and UBSAN to find memory bugs
The Kernel Address Sanitizer (KASAN) is a port of the Address Sanitizer (ASAN)
tooling of the Linux kernel. The ASAN project proved to be so useful in detecting
memory-related defects that having similar abilities within the kernel was a no-brainer.
ASAN is one of the few tools that could detect the buffer overread defect that was at
the root of the (in)famous so-called Heartbleed exploit! See the Further reading
section for a very interesting XKCD comic link that superbly illustrates the bug at the
heart of Heartbleed.

Understanding KASAN – the basics
A few points on KASAN will help you understand more:

• KASAN is a dynamic – runtime – analysis tool; it works while the code runs. This
should have you realize that unless the code actually runs (executes), KASAN will
not catch any bugs. This underlines the importance of writing really good test cases
(both positive and negative), and the use of fuzzing tools to catch rarely-run code
paths! More on this in later chapters, but it's such a key point that I am stressing it
here as well.

• The technology behind KASAN is called Compile-Time Instrumentation (CTI)
(aka static instrumentation). Here, we don't intend to go into the internals of how
it works; please see the Further reading section for more on this. Very briefly, when
the kernel is built with the GCC or Clang -fsanitize=kernel-address
option switch, the compiler inserts assembly-level instructions to validate every
memory access. Further, every byte of memory is shadowed (tracked) using 1 byte
of shadow memory to track 8 bytes of actual memory.

• Overhead is relatively low (a factor of around 2x to 4x). This is low, especially when
compared with dynamic instrumentation approaches such as Valgrind's, where the
overhead can easily be 20x to 50x.

Well, in terms of overhead from KASAN, it's really the RAM (more than CPU) overheads
that can hurt. It does all depend on where you're coming from. For an enterprise-
class server system, using several megabytes of RAM as overhead for KASAN can be
considered tolerable. This is likely not the case for a resource-constrained embedded
system (your typical Android smartphone, TV, wearable devices, low-end routers, and
similar products being good examples). For this key reason, the modern Linux kernel
supports three types, or modes, of KASAN implementations:

• Generic KASAN (the one we're referring to and using here, unless mentioned
otherwise): High overhead and debug-only.

Using KASAN and UBSAN to find memory bugs 187

• Software tag-based KASAN: Medium-to-low overhead on actual workloads.
Currently ARM64 only.

• Hardware tag-based KASAN: Low overhead and production-capable. Currently,
ARM64 only.

The first is the default and the one to use when actively debugging (or bug hunting). It has
the largest relative overhead among the three, but is very effective at bug catching! The
software tag-based approach has significantly lower overhead; it's appropriate for testing
actual workloads. The third hardware tag-based version has the lowest overhead and is
even suitable for production use!

Memory Checking on User-Mode Apps
The ASAN tooling was in fact first implemented (by Google engineers) as a
GCC (and soon, Clang) patch for userspace applications. The suite includes
ASAN, Leak Sanitizer (LSAN), Memory Sanitizer (MSAN), Thread Sanitizer
(TSAN), and Undefined Behavior Sanitizer (UBSAN). They – especially
ASAN – are really powerful and are simply a must-use for userspace app
memory checking! My earlier book Hands-On System Programming with Linux
does cover using ASAN (and Valgrind) in some detail.

In the discussion that follows, I assume that the Generic KASAN mode is being employed,
primarily for the purpose of (memory) debugging. Actually, as you'll see in the following
section, this is a bit of a moot point as the other tag-based modes are currently only
supported on ARM64.

Requirements to use KASAN
Firstly, as KASAN (as well as UBSAN) are compiler-based technologies, which
compiler should you use? Both GCC and Clang are supported. You will require
a relatively recent version of the compiler to be able to leverage KASAN – as of this
writing, you'll need the following:

• GCC version: 8.3.0 or later

• Clang version: Any. For detecting OOB accesses on global variables, Clang version
11 or later is required.

188 Debugging Kernel Memory Issues – Part 1

The following table neatly summarizes some key information about KASAN:

Table 5.2 – Types of KASAN and compiler/hardware support requirements

The Kernel and Compilers
Traditionally, the Linux kernel has been very tightly coupled to the GCC
compiler; that's slowly changing. Clang is now almost fully supported, and Rust
is making an entry. In fact, FYI, Clang is typically used to compile Android
Open Source Project (AOSP) kernels. We cover using Clang in the Building
your kernel and modules with Clang section.

Next, hardware-wise, KASAN traditionally requires a 64-bit processor. Why? Recall that it
uses a shadow memory region whose size is one-eighth of the kernel virtual address space.
On an x86_64, the kernel VAS region is 128 TB (as is the user-mode Virtual Address
Space (VAS) region). An eighth of this is significant – it's 16 terabytes. So, what platforms
does KASAN actually work on? Quoting directly from the official kernel documentation:
Currently, Generic KASAN is supported for the x86_64, arm, arm64, xtensa, s390, and riscv
architectures, and tag-based KASAN modes are supported only for arm64.

Did you notice? Even ARM – the ARM 32-bit processor – is supported! This is a recent
thing, as of the 5.11 kernel. Not only that, as of this writing at least, the lower overhead
tag-based KASAN type is supported only for ARM64. Did you pause to wonder, why
ARM64? Clearly, it's due to the incredible popularity of Android. Many, if not most,
Android devices are powered via an ARM64 core(s) within a System on Chip (SoC).
Detecting memory defects on Android – both in userspace and within the kernel – is
critical in today's information economy. Thus, tag-based KASAN modes work on this
key platform!

In Table 5.2, I highlight Generic KASAN in bold as it's the one we're going to work
with here.

Using KASAN and UBSAN to find memory bugs 189

Configuring the kernel for Generic KASAN mode
Of course, you need to configure your kernel to support Generic KASAN mode.
It's straightforward: enable it by setting CONFIG_KASAN=y. When performing the
kernel config (via the usual method, the make menuconfig UI), you'll find the
menu option here:

Kernel hacking | Memory Debugging | KASAN: runtime memory
debugger

To make it a bit more interesting, let's configure the kernel for KASAN for ARM64:

make ARCH=arm64 menuconfig

The screenshot shows you how it looks (here, we've navigated to the KASAN sub-menu):

Figure 5.1 – Screenshot of kernel config enabling KASAN

Keep the mode as Generic mode. The < Help > button will show you that this
corresponds to the kernel config CONFIG_KASAN_GENERIC=y. In fact, this Help
display reveals some interesting information:

This mode consumes about 1/8th of available memory at kernel
start and introduces an overhead of ~x1.5 for the rest of the
allocations. The performance slowdown is ~x3.

190 Debugging Kernel Memory Issues – Part 1

Also, here, only because it's the ARM64 architecture, does the kernel config option
CONFIG_HAVE_ARCH_KASAN_SW_TAGS get initialized to y:

$ grep KASAN .config

CONFIG_KASAN_SHADOW_OFFSET=0xdfffffd000000000

CONFIG_HAVE_ARCH_KASAN=y

CONFIG_HAVE_ARCH_KASAN_SW_TAGS=y

CONFIG_CC_HAS_KASAN_GENERIC=y

CONFIG_KASAN=y

CONFIG_KASAN_GENERIC=y

[...]

In addition, you can see how the kernel configures the shadow memory region start offset
via the value allotted to the kernel config CONFIG_KASAN_SHADOW_OFFSET (it's a
kernel virtual address of course) and other configs.

KASAN – Effect on the Build
With CONFIG_KASAN=y, building the kernel source tree by passing the V=1
parameter will show the details: the GCC flags being passed, and more. Here's a
snippet of what you'd typically see, focused on the GCC flags passed during the
build due to KASAN being enabled:

make V=1

gcc -Wp,-MMD,[...] -fsanitize=kernel-address
-fasan-shadow-offset=0xdffffc0000000000 --param
asan-globals=1 --param asan-instrumentation-with-
call-threshold=0 --param asan-stack=1 --param
asan-instrument-allocas=1 [...]

KASAN works essentially by being able to check every single memory access; it does
this by using a technique called Compile Time Instrumentation (CTI). Put very
simplistically, the compiler inserts function calls (__asan_load*() and __asan_
store*()) before every 1-, 2-, 4-, 8-, or 16-byte memory access. Thus, the runtime
can figure out whether the access is valid or not (by checking the corresponding
shadow memory bytes). Now, there are two broad ways the compiler can perform this
instrumentation: outline and inline. Outline instrumentation has the compiler inserting
actual function calls (as just mentioned); inline instrumentation achieves the same thing
but in a time-optimized manner by directly inserting the code (and not having the
overhead of a function call)!

Using KASAN and UBSAN to find memory bugs 191

You can set the kernel config option Instrumentation type to either CONFIG_
KASAN_OUTLINE (the default) or CONFIG_KASAN_INLINE. It's the typical trade-off:
the outline type, the default, will result in a smaller kernel image while the inline type will
result in a larger image but is faster (by a factor of 1.1x to 2x).

Also, (especially for your debug kernel), it's worth enabling the kernel config CONFIG_
STACKTRACE, so that you also obtain stack traces of the allocation and freeing of affected
slab objects in the report when a bug is detected. Similarly, turning on CONFIG_PAGE_
OWNER – here within the menu Kernel hacking | Memory Debugging | Track
page owner – will get you the stack traces of the allocation and freeing of affected
physical pages. It's off by default; you have to boot with the parameter page_owner=on.

Also, when configuring an x86_64 for KASAN, you'll find an additional kernel config
regarding vmalloc memory corruption detection. The option shows up like this:

[*] Back mappings in vmalloc space with real shadow memory

This helps detect vmalloc-related memory corruption issues (at the cost of higher memory
usage during runtime).

So much for the theory and KASAN kernel config. Do configure and (re)build your
(debug) kernel and we're good to give it a spin!

Bug hunting with KASAN
I'll assume that by now you've configured, built, and booted into your (debug) kernel that's
enabled with KASAN (as the previous section has described in detail). On my setup – an
x86_64 Ubuntu 20.04 LTS guest VM – this has been done.

To test whether KASAN works, we'll need to execute code that has memory bugs (I can
almost hear some of you old-timers say "Yeah? That shouldn't be too hard"). We can always
write our own test cases but why reinvent the wheel? This is a good opportunity to look
at a part of the kernel's test infrastructure! The following section shows you how we'll
leverage the kernel's KUnit unit testing framework to run KASAN test cases.

Using the kernel's KUnit test infrastructure to run KASAN test cases
Why take the trouble to write our own test cases to test KASAN when the community has
already done the work for us? Ah, the beauty of open source.

The Linux kernel has by now evolved sufficiently to have many kinds of test infrastructure,
including full-fledged test suites, built into it; testing various aspects of the kernel is now a
matter of configuring the kernel appropriately and running the tests!

192 Debugging Kernel Memory Issues – Part 1

With regard to possible built-in test frameworks within the kernel, the two primary
ones are the KUnit framework and the kselftest framework. FYI, the official kernel
documentation, of course, has all the details. As a start, you can check this one: Kernel
Testing Guide: https://www.kernel.org/doc/html/latest/dev-tools/
testing-overview.html#kernel-testing-guide – it provides a rough
overview of available testing frameworks and tooling (including dynamic analysis) within
the kernel.

Again, FYI, there are several other related and useful frameworks: kernel fault injection,
notifier error injection, the Linux Kernel Dump Test Module (LKDTM), and so on.
You'll find them under the kernel config here: Kernel hacking | Kernel Testing
and Coverage.

Again, we don't intend to delve into the details of how KUnit works here; the idea is to
merely use KUnit to test KASAN as a practical example at this point. For details on using
these test frameworks – it will probably prove useful! – do see the links within the Further
reading section.

As a pragmatic thing to do, and to begin getting familiar with it, let's leverage the kernel's
KUnit – Unit Testing for the Linux kernel – framework to execute KASAN test cases!

It's really very simple to do. First, ensure your debug kernel is configured to use KUnit:
CONFIG_KUNIT=y (or CONFIG_KUNIT=m).

We intend to run KASAN test cases, thus, we must have the KASAN test module
configured as well:

CONFIG_KASAN_KUNIT_TEST=m

The kernel's module code for the KASAN test cases we're going to run is here: lib/
test_kasan.c. A quick peek will show you the various test cases (there are many of
them – 38 as of this writing):

// lib/test_kasan.c

static struct kunit_suite kasan_kunit_test_suite = {

 .name = "kasan",

 .init = kasan_test_init,

 .test_cases = kasan_kunit_test_cases,

 .exit = kasan_test_exit,

};

kunit_test_suite(kasan_kunit_test_suite);

https://www.kernel.org/doc/html/latest/dev-tools/testing-overview.html#kernel-testing-guide
https://www.kernel.org/doc/html/latest/dev-tools/testing-overview.html#kernel-testing-guide

Using KASAN and UBSAN to find memory bugs 193

This sets up the suite of test cases to execute. The actual test cases are in the kunit_
suite structure's member named test_cases. It's a pointer to an array of kunit_
case structures:

static struct kunit_case kasan_kunit_test_cases[] = {

 KUNIT_CASE(kmalloc_oob_right),

 KUNIT_CASE(kmalloc_oob_left),

 [...]

 KUNIT_CASE(kmalloc_double_kzfree),

 KUNIT_CASE(vmalloc_oob),

 {}

};

The KUNIT_CASE() macro sets up the test case. To help understand how it works, here's
the code for the first of the test cases:

// lib/test_kasan.c

static void kmalloc_oob_right(struct kunit *test)

{

 char *ptr;

 size_t size = 123;

 ptr = kmalloc(size, GFP_KERNEL);

 KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);

 KUNIT_EXPECT_KASAN_FAIL(test, ptr[size + OOB_TAG_OFF] =
'x');

 kfree(ptr);

}

Quite intuitively, the actual checking occurs within the KUNIT_ASSERT|EXPECT_*()
macros seen above. The first macro asserts that the return from the kmalloc() API
doesn't result in an error and isn't null. The second macro, KUNIT_EXPECT_KASAN_
FAIL(), has the KUnit code expect failure – a negative test case. This is indeed what
should be done here: we expect that writing beyond the right side of the buffer (a write
overflow defect) should trigger KASAN to report a failure! I'll leave it to you to study the
implementation of these macros if interested.

194 Debugging Kernel Memory Issues – Part 1

Furthermore, and quite interestingly, the name and exit members of the kunit_suite
structure specify functions to execute before and after each test case is run, respectively.
The module leverages this to ensure that the kernel sysctl kasan_multi_shot is
temporarily enabled and to set panic_on_warn to 0 (else, only the first invalid memory
access would trigger a report and a possible kernel panic!).

Finally, let's try it out:

$ uname –r

5.10.60-dbg01

$ sudo modprobe test_kasan

This will cause all test cases within the KASAN test module to execute! Looking up the
kernel log (via journalctl –k or dmesg) will show you the detailed KASAN reports
for each of the test cases. As they're voluminous, I show a sampling of the output. The very
first test case – KUNIT_CASE(kmalloc_oob_right) – causes KASAN to generate this
report (its output is truncated – see more of it below):

Figure 5.2 – First part of the KUnit KASAN bug-catching example

Using KASAN and UBSAN to find memory bugs 195

Notice the following in the preceding screenshot:

• In the first two lines, KUnit shows the test title (as # Subtest: kasan) and that
it will run test cases 1..38.

• KASAN successfully, as expected of it, detected the memory defect, the write
overflow, and generated a report. The report begins with BUG: KASAN: [...]
and the details follow.

• The following lines reveal the root cause: the format that KASAN displays the
offending function in is func()+0xoff_from_func/0xsize_of_func,
where, within the function named func(), the error occurred at an offset of
0xoff_from_func bytes from the start of the function, and the kernel estimates
the function length to be 0xsize_of_func bytes. So here, the code in the
kmalloc_oob_right() function, at an offset of 0x159 bytes from the start of it
(followed by an educated guess of the function's length as 0x260 bytes), within the
kernel module test_kasan (shown within square brackets on the extreme right),
attempted to illegally write at the specified address. The defect, the bug, is an OOB
write to a slab memory buffer, as seen by the slab-out-of-bounds token:

BUG: KASAN: slab-out-of-bounds in kmalloc_oob_
right+0x159/0x260 [test_kasan]

Write of size 1 at addr ffff8880316a45fb by task kunit_
try_catch/1206

• The following line reveals the process context within which this occurred (we'll
cover the meaning of the tainted flags in the following chapter):

CPU: 2 PID: 1206 Comm: kunit_try_catch Tainted: G
O 5.10.60-dbg01 #6

• The next line shows the hardware detail (you can see it's a VM, VirtualBox).

• The majority of the output is the call stack (labeled Call Trace:). By reading
it bottom up (and ignoring any lines prefixed with a ?), you can literally see how
control came to this, the buggy code!

• The line Allocated by task 1206: and the following output reveals the call
trace of the memory allocation code path. This can be very helpful, showing by
whom and where the memory buffer was allocated to begin with.

196 Debugging Kernel Memory Issues – Part 1

The remainder of the output can be seen in the following screenshot:

Figure 5.3 – Second part of the KUnit KASAN bug-catching example

As CONFIG_PAGE_OWNER=y (as we suggested in the Configuring the kernel for Generic
KASAN mode section), the following output turns up as well. It gives you insight into
where the faulty-accessed page(s) is located and its ownership:

Figure 5.4 – Third (and final) part of the KUnit KASAN bug-catching example

In the preceding screenshot, you can see KASAN justifying itself. It shows the actual
memory region where the defect occurred and even points out the precise byte where it
did (via the > for the row and ^ for the column symbols)! As a side effect of this bug, the
kernel now disables all lock debugging. Further, KUnit says that running this first test case
went well: ok 1 - kmalloc_oob_right.

Interpreting this information is important. It helps you drill down to what actually
triggered the bug. We do just this in the section that follows!

Interpreting the KASAN shadow memory output
In Figure 5.4, you can see the KASAN shadow memory revealing the defect's cause. We
print the key line – the one prefixed with a right arrow symbol >:

>ffff8880318ad980: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
03

^

Using KASAN and UBSAN to find memory bugs 197

These are the KASAN shadow memory bytes, each one represents 8 bytes of actual
memory. The byte 03 is pointed at (by the symbol ^) telling us where the issue lies. What
do the bytes 00, 03, and so on, mean? The details follow:

• Generic KASAN assigns one shadow byte to track 8 bytes of kernel memory (think
of an 8-byte chunk as a memory granule).

• A granule (an 8-byte region) is encoded as being accessible, partially accessible, part
of a red zone, or free.

• The encoding of a memory granule (8-byte region) by shadow byte tracking is done
as follows:

 � Shadow memory = 00: All 8 bytes are accessible (no error).

 � Shadow memory = N (where N can be a value between 1 and 7): The first N
bytes are accessible (fine); the remaining (8-N) bytes aren't legally accessible.

 � Shadow memory < 0: A negative value implies the entire granule (8 bytes) is
inaccessible. The particular (negative) values and their meaning (already freed-up
memory, red zone region, and so on) are encoded in a header file (mm/kasan/
kasan.h).

So, now you'll realize that the shadow byte 03 implies that the memory was partially
accessible. The first 3 bytes (as here, N = 3) were legally accessible; the remaining 5 (8 – 3
= 5) bytes weren't. Let's take the trouble to verify this in detail. This is the line of code that
triggers the bug, of course (it's here within the kernel code base):

// lib/test_kasan.c

static void kmalloc_oob_right(struct kunit *test)

 [...]

 size_t size = 123;

 ptr = kmalloc(size, GFP_KERNEL);

 [...]

 KUNIT_EXPECT_KASAN_FAIL(test, ptr[size + OOB_TAG_OFF] =
'x');

Now, the variable size is set to the value 123 and OOB_TAG_OFF is 0 when CONFIG_
KASAN_GENERIC is enabled. So, in effect, the (buggy) code is this:

ptr[123] = 'x';

198 Debugging Kernel Memory Issues – Part 1

Now, Generic KASAN's memory granule size is 8 bytes. So, among the 123 bytes allocated,
the fifteenth memory granule is the one being written to (as 8 * 15 = 120). The diagram
that follows clearly shows the memory buffer and how it's been overflowed:

Figure 5.5 – The kmalloc'ed memory (slab) buffer that was overflowed

Check it out: Towards the right end, byte positions 120, 121, and 122 are valid and legal
to read/write, but our KUnit KASAN test case deliberately wrote to byte position 123 – 1
byte beyond the end of the slab buffer, a clear OOB write overflow violation, and KASAN
caught it! Not only that, as Figure 5.4 and Figure 5.5 clearly show, the kernel is intelligent
enough to show the shadow value of 03 here, implying that the first 3 bytes are valid but
the remaining 5 aren't – that's precisely the case!

Further, the surrounding bytes are set to the value 0xfc (see Figure 5.4). What does it
mean? It's clear from the header – it's a red zone within the kernel SLUB object:

// mm/kasan/kasan.h

#ifdef CONFIG_KASAN_GENERIC

#define KASAN_FREE_PAGE 0xFF /* page was freed */

#define KASAN_PAGE_REDZONE 0xFE /* redzone for kmalloc_
large allocations */

#define KASAN_KMALLOC_REDZONE 0xFC /* redzone inside slub
object */

#define KASAN_KMALLOC_FREE 0xFB /* object was freed
(kmem_cache_free/kfree) */

#define KASAN_KMALLOC_FREETRACK 0xFA /* object was freed and
has free track set */

Using KASAN and UBSAN to find memory bugs 199

Back to our interpretation of Figure 5.4: The next line (BUG: KASAN: [...]) is just to
show you that this continues with the next test case... KASAN has now caught the second
test case's bug (KUNIT_CASE(kmalloc_oob_left)). The kernel log contains the same
info as for the first defect: the bug summary by KASAN, the output of dump_stack() –
the stack(s) call frames, who performed the allocation, the page-ownership info, and the
memory state around the buggy access. This continues all the way to the thirty-eighth test
case – fantastic!

A quick check of the kernel log shows what we expect – how the kernel's KUnit KASAN
test case module has caught all 38 test cases with memory defects:

Figure 5.6 – Screenshot showing how the kernel's KUnit KASAN test case module has caught all 38 test
cases with memory defects

200 Debugging Kernel Memory Issues – Part 1

As can be clearly seen from the preceding screenshot, all 38 test cases are reported as
ok (passed).

Exercise
Do perform what we've just done – running the kernel's KUnit KASAN test
cases – on your box. Note, from the kernel log, the various KASAN test cases
and verify that all ran correctly.

By the way, notice this:

$ lsmod |egrep "kunit|kasan"

test_kasan 81920 0

kunit 49152 1 test_kasan

In my particular case, you can see from the lsmod output that KUnit has been configured
as a kernel module.

You can learn how to write your own suite of KUnit test cases. Do see the Further reading
section for more on using KUnit!

Remaining tests with our custom buggy kernel module
Did you notice, in spite of having run all the KASAN KUnit test cases, there appear to
be a few remaining generic memory defects (as we identified both in Chapter 4, Debug
via Instrumentation – Using Kprobes, as well as in the What's the problem with memory
anyway? section of this chapter) that the KUnit test cases don't cover?

• The uninitialized memory read (UMR) bug

• The use-after-return (UAR) bug

• Simple memory leakage bugs (we'll discuss memory leakage in more detail later in
this chapter)

So, I wrote a kernel module to exercise these test cases (when running the Generic
KASAN-enabled debug kernel of course), along with some more interesting ones. To test
against KASAN, remember to boot via your custom debug kernel, one that (obviously)
has CONFIG_KASAN=y.

Using KASAN and UBSAN to find memory bugs 201

Due to space constraints, I won't show the entire code of our test module here (do refer
to it on the book's GitHub repo and read the comments therein – you'll find it under the
ch5/kmembugs_test folder). To get a flavor of it, let's take a peek at one of the test
cases and how it's invoked. Here's the code of the UAR test case:

// ch5/kmembugs_test/kmembugs_test.c

/* The UAR - Use After Return - testcase */

static void *uar(void)

{

 volatile char name[NUM_ALLOC];

 volatile int i;

 pr_info("testcase 2: UAR:\n");

 for (i=0; i<NUM_ALLOC-1; i++)

 name[i] = 'x';

 name[i] = '\0';

 return name;

}

The module is designed to be loaded up via a bash script named load_testmod and the
test cases are run interactively (via a bash wrapper script named run_tests). The run_
tests script (which you must run as root) displays a menu of available tests and asks you
to select any one by typing in its assigned number. You can see a screenshot of the menu –
and thus all the test cases you can try out – in Figure 5.8, in the section that follows.

The script then writes this number to our debugfs pseudofile here: /sys/kernel/
debug/test_kmembugs/lkd_dbgfs_run_testcase. The debugfs write hook
function then receives this data from userspace, validates it, and invokes the appropriate
test case routine (via a rather long if-else ladder). This design allows you to test
interactively and execute any test case(s) as many times as you wish to.

Here's a code snippet showing how our debugfs module code invokes the preceding
uar() test case:

// ch5/kmembugs_test/debugfs_kmembugs.c

static ssize_t dbgfs_run_testcase(struct file *filp, const char
__user *ubuf, size_t count, loff_t *fpos)

{

 char udata[MAXUPASS];

 volatile char *res1 = NULL, *res2 = NULL;

 [...]

202 Debugging Kernel Memory Issues – Part 1

 if (copy_from_user(udata, ubuf, count))

 return -EIO;

 udata[count-1]='\0';

 pr_debug("testcase to run: %s\n", udata);

 /* Now udata contains the data passed from userspace -
the testcase # to run (as a string) */

 if (!strncmp(udata, "1", 2))

 umr();

 else if (!strncmp(udata, "2", 2)) {

 res1 = uar();

 pr_info("testcase 2: UAR: res1 = \"%s\"\n",

res1 == NULL ? "<whoops, it's NULL; UAR!>" : (char *)res1);

 } else if (!strncmp(udata, "3.1", 4))

...

Clearly, this – test case #2 – is a defect, a bug. You know that local variables are valid only
for their lifetime – while the function's executing. This, of course, is because local (or
automatic) variables are allocated on the (kernel mode) stack frame of the process context
in execution. Thus, you must stop referencing a local variable once outside the scope of
its containing function. We (deliberately) don't! We attempt to fetch it as a return. The
trouble is, by that time, it's gone...

Right, before diving into running the test cases (though there's no reason you can't run
them right now), we divert into an interesting dilemma: how a known bug (like our UAR
one) can at times appear to work perfectly fine.

Stale frames – trouble in paradise
The amazing (or crazy) thing about bugs like this one – the UAR defect – is that the code
will sometimes seem to work! How come? It's like this: the memory holding the content
of the local (automatic) variable is on the stack. Now, though we colloquially say that
the stack frames are allocated on function entry and destroyed on function return (the
so-called function prologue and epilogue), the reality isn't quite so dramatic.

Using KASAN and UBSAN to find memory bugs 203

The reality is that memory is typically allocated at page-level granularity. This includes
the memory for stack pages. Thus, once a page of memory for the stack is allocated,
there's usually enough for several frames (this, of course, depends on the circumstances).
Then, when more memory for the stack is needed, it's grown (by allocating more pages,
downwards, as it's the stack). The system knows where the top of the stack is by having
the Stack Pointer (SP) register track this memory location. Also, you'll realize that the
so-called "top of the stack" is typically the lowest legal address. Thus, when frames are
allocated and/or a function is invoked, the SP register value reduces. When a function
returns, the stack shrinks by adding to the SP register (remember, it's a downward-
growing stack!). The following diagram is a representation of a typical kernel-mode stack
on a (32-bit) Linux system:

Figure 5.7 – A diagram of a typical kernel-mode stack on 32-bit Linux; function call chain: foo1() ->
bar1() -> foo2() -> bar2()

204 Debugging Kernel Memory Issues – Part 1

So, it could well happen at some point that stale stack frames (and the corresponding data
within them) exist underneath valid frames and could possibly be successfully referenced
– without the system throwing a memory fault! – even later.

Carefully study Figure 5.7. As an example, we've shown the kernel-mode stack on a 32-bit
Linux system, thus the size of the kernel stack will be 2 pages, typically 8 KB. Now, let's say
the process context in execution (within the kernel) invoked these functions in this order
(this is the call chain, shown as the circled steps 1 to 4 in the figure):

foo1() bar1() --> foo2() --> bar2()

Imagine we're at the leaf node, function bar2() in this example. It returns (circled step 5
above). This causes the SP register to get incremented back to the address of the call frame
representing the function foo2(). So, though it remains intact on the stack, the stack
memory of the call frame for function bar2() is now actually invalid! But an incorrect
(read buggy) access to it might still succeed.

This should ideally not happen, but hey, it's an imperfect world, right?! The moral here: we
require tools – and clear thinking is the best one – to catch tricky bugs such as UAS ones!

Right, back to our test cases! To run the tests, follow these steps:

1. Run the following command:

cd <book_src>/ch5/kmembugs_test

2. Load it up:

./load_testmod

[...]

This should have the kernel module built and loaded into memory with dmesg
showing that the debugfs pseudofile here – <debugfs_mountpt>/test_
kmembugs/lkd_dbgfs_run_testcase – has been created.

3. Run our bash script to test:

sudo ./run_tests

Using KASAN and UBSAN to find memory bugs 205

Following is a screenshot showing that our test_kmembugs module is indeed
loaded up (this was done via our load_testmod script), the menu shown via our
run_tests script, and our running test case #2 – the UAR bug:

Figure 5.8 – Partial screenshot showing both the build and output of our kmembugs_test LKM

206 Debugging Kernel Memory Issues – Part 1

Here's an example screenshot of our test case framework catching the left OOB write
buggy access via KASAN:

Figure 5.9 – Partial screenshot showing KASAN catching a buggy left OOB on write to global memory

A few things to realize:

• Firstly, the compilers, both GCC and Clang, are clever enough to warn us regarding
the (here, pretty obvious) bugs. Both the UAR and UMR defects are indeed caught
by them (at the precise place in the code where they occur), albeit as warnings!
Here's one of the warnings emitted by GCC, clearly with regard to our UAR bug:

<...>/ch5/kmembugs_test/kmembugs_test.c:115:9: warning:
function returns address of local variable [-Wreturn-
local-addr]

 115 | return (void *)name;

 | ^~~~~~~~~~~~

This Is Important
It is your job as the programmer to carefully heed all compiler warnings and –
as far as is humanely possible! – fix them.

Using KASAN and UBSAN to find memory bugs 207

• The script interrogates the kernel config file to see whether your current kernel is
configured for KASAN, UBSAN, and KMEMLEAK and displays what it finds. It
also shows the path to the debugfs pseudofile where the test case number will be
written (in order to invoke that test).

Here's a sample run of the UAR test case:
$ sudo ./run_tests

[...]

(Type in the testcase number to run):

2

Running testcase""2" via test module now...

[144.313592] testcase to run: 2

[144.313597] test_kmembugs:uar(): testcase 2: UAR:

[144.313600] testcase 2: UAR: res1 = "<whoops,'it's
NULL; UAR!>"

$

• The output in the kernel log (seen via dmesg above) clearly tells the story: we've
executed the UAR test case, and neither the kernel nor KASAN has caught it (if it
had, we'd see plenty of complaints in the log!). Our own code checks for the variable
res1 being NULL and concludes that a UAR bug occurred. We can do this as we
specifically initialized it to NULL and check after it's supposedly set to the string
returned by the function uar(); else, we'd have not caught it.

All right, we're now done with several test cases with KASAN enabled. What's KASAN's
scorecard like? The following section shows you just this.

208 Debugging Kernel Memory Issues – Part 1

KASAN – tabulating the results
What memory corruption bugs (defects) does KASAN actually manage to, and not manage
to, catch? From our test runs, we tabulated the results in the table that follows. Do study it
carefully, along with the notes that go with it:

Using KASAN and UBSAN to find memory bugs 209

Table 5.3 – Summary of memory defect and arithmetic UB test cases caught (or not) by KASAN

You'll find the explanations for the footnote notations seen in the table (such as [C1],
[U1], and so on) below.

Test environment
• [1] The test case number: do refer to the source of the test kernel module to see it

– ch5/kmembugs_test/kmembugs_test.c, the debugfs entry creation and
usage in debugfs_kmembugs.c, and the bash scripts load_testmod and
run_tests, all within the same folder.

• [2] The compiler used here is GCC version 9.3.0 on x86_64 Ubuntu Linux. A later
section - Using Clang 13 on Ubuntu 21.10 - covers using the Clang 13 compiler.

• [3] To test with KASAN, I had to boot via our custom debug kernel (5.10.60-dbg01)
with CONFIG_KASAN=y and CONFIG_KASAN_GENERIC=y. We assume the
Generic KASAN variant is being used.

• Test cases 4.1 through 4.4 work both upon static (compile-time allocated)
global memory as well as stack local memory. That's why the test case numbers
are 4.x in both.

210 Debugging Kernel Memory Issues – Part 1

Compiler warnings
• Version: this is for GCC version 9.3.0 on x86_64 Ubuntu:

 � [C1] The GCC compiler reports the UMR as a warning:

warning: '<var>' is used uninitialized in this function
[-Wuninitialized]

 � [C2] GCC reports the potential UAF defect as a warning:

warning: function returns address of local variable
[-Wreturn-local-addr]

 � [C3] GCC (quite cleverly!) catches the illegal copy_[to|from]_user() here.
It figures out that the destination size is too small:

 * In function 'check_copy_size',

 inlined from 'copy_from_user' at ./include/linux/
uaccess.h:191:6,

 inlined from 'copy_user_test' at <...>/ch5/kmembugs_
test/kmembugs_test.c:482:14:

./include/linux/thread_info.h:160:4: error: call to
'__bad_copy_to' declared with attribute error: copy
destination size is too small

 160 | __bad_copy_to();

 | ^~~~~~~~~~~~~~~

• With the Clang 13 compiler (we cover using Clang to build the kernel and modules
in the Building your kernel and modules with Clang section), the warnings are pretty
much identical as with GCC. In addition, it emits variable 'xxx' set but
not used [-Wunused-but-set-variable].

The following section delves into the details – don't miss out!

Using KASAN and UBSAN to find memory bugs 211

KASAN – detailed notes on the tabulated results
The footnote notations for KASAN ([K1], [K2], and so on) are explained in detail here.
It's really important to read through all the notes, as we've mentioned certain caveats and
corner cases as well:

• [K1] KASAN catches and reports the OOB access on global static memory
as follows:

global-out-of-bounds in <func>+0xstart/0xlen [modname]

Read/Write of size <n> at addr <addr> by task <taskname/
PID>

The report will contain one of Read or Write depending upon whether a read or
write buggy access occurred.

• [K2] Here, there are a number of caveats to note:

 � The Out-Of-Bounds (OOB) read/write left underflow on the global memory test
case is caught only when compiled with Clang version 11 or greater. It isn't even
caught by GCC 10 or 11, due to the way its red zoning works.

 � KASAN only catches global memory OOB accesses when compiled with Clang 11
and later! Thus, in my test runs with GCC 9.3 and Clang 10, I see it fails to catch
the read/write underflow (left OOB) accesses on a global buffer (test cases 4.3 and
4.4)! Here, it does seem to catch the overflow defects on global memory, though
you shouldn't take this for granted... (By the way, Clang is pronounced "clang"
not "see-lang"). Also, though it's documented as supporting GCC from version
8.3.0 onward, this failed to catch (only) the read/write underflow bug test cases on
global memory. Be sure to read the upcoming Compiling your kernel and module
with Clang section!

 � However, even with GCC 9.3, the way the internal red zoning and padding
seems to work, it appears that the first declared global (which variable exactly
depends on how the linker sets it up) may not have a left red zone, causing left
OOB buggy accesses to be missed... This is why – as a silly workaround for now,
until GCC's fixed – we use three global arrays. We pass the middle one as the test
buffer to work upon (any but the first) in the test cases. Hopefully, GCC will be
fixed - properly red zoned – and any and all OOB accesses are caught. With our
particular test runs, the buggy left OOB accesses are caught on global memory,
even when compiled with GCC 9.3!

212 Debugging Kernel Memory Issues – Part 1

 � These observations, caveats, and what-have-you are by their very nature at times a
bit iffy. They can end up working in one way on one system and quite another on a
differently configured system or architecture. Thus, we heartily recommend you test
your workload using an appropriately configured debug kernel with all tools at your
disposal, including the usage of more recent compiler technology such as Clang, and
the various tools and techniques covered in this book. Yes, it's a lot of work and yes,
it's worth it!

• [K3] KASAN catches and reports the OOB access on stack local memory as follows:

stack-out-of-bounds in <func>+0xstart/0xlen [modname]

Read/Write of size <n> at addr <addr> by task <taskname/
PID>

• [K4] KASAN catches and reports the OOB access on dynamic slab memory
as follows:

BUG: KASAN: slab-out-of-bounds in <func>+0xstart/0xlen
[modname]

Read/Write of size <n> at addr <addr> by task <taskname/
PID>

• [K5] KASAN catches and reports the UAF defect as follows:

BUG: KASAN: use-after-free in <func>+0xstart/0xlen
[modname]

Read/Write of size <n> at addr <addr> by task <taskname/
PID>

• [K6] KASAN catches and reports the double-free as follows:

BUG: KASAN: double-free or invalid-free in
<func>+0xstart/0xlen [modname]

• In all the above cases, KASAN's report also shows the actual violation in detail
along with the process context, (kernel-mode stack) call trace, and the shadow
memory map, showing which variable the OOB memory access belongs to (if
applicable) as well as the memory state around the buggy address.

Using KASAN and UBSAN to find memory bugs 213

Tip – the All-Results-in-One-Place Table
For your ready reference, in Part 2 of this key topic (the next chapter), in the
Catching memory defects in the kernel – comparisons and notes (Part 2) section,
Table 6.4 tabulates our test case results for our test runs with all the tooling
technologies – vanilla/distro kernel, compiler warnings, with KASAN, with
UBSAN, and with SLUB debug – we employ in this chapter. In effect, it's a
compilation of all the findings in one place, thus allowing you to make quick
(and hopefully helpful) comparisons.

Did you notice regarding the kernel's built-in KUnit-based test cases on KASAN that the
test_kasan kernel module does not have test cases for these three memory defects –
the UMR, UAR, and memory leaks. Why? Simple: KASAN does not catch these bugs! Okay,
so now what can we conclude? Well, the KUnit (and other) test suites are often run in an
automated fashion where the expected end result is that all viable test cases are passed; in
fact, they must pass. This wouldn't have happened had they contained these three defects,
so they don't. Now, don't read it wrong – this is simply the way the test suites are designed.
There certainly exist other means besides KASAN by which these defects will be caught.
Relax – we'll get there and catch them.

Here and now, we're showing that KASAN itself doesn't catch these particular nasty
bugs. Later in the book, we'll see which tools do.

FYI, KASAN is a key component to catching difficult-to-find bugs via the fuzzing
approach. Syzkaller (aka syzbot) – the de facto powerful Linux kernel fuzzer – requires
KASAN to be configured in the kernel! We cover fuzzing briefly in Chapter 12, A few More
Kernel Debug Approaches, in the What is fuzzing? section. Be sure to check it out.

Good going – you now know how to leverage the power of KASAN to help catch those
tricky memory bugs! Let's now move on to using UBSAN.

214 Debugging Kernel Memory Issues – Part 1

Using the UBSAN kernel checker to find
Undefined Behavior
One of the serious issues with a language such as C is that the compiler produces code
for the correct case, but when the source code does something unexpected or just plain
wrong, the compiler often does not understand what to do – it simply and blithely ignores
such cases. This actually helps in the generation of highly optimized code at the cost of
(possible security) bugs! Examples of this are common: overflowing/underflowing an
array, arithmetic defects (such as dividing by zero or overflowing/underflowing a signed
integer), and so on. Even worse, at times the buggy code seems to work (as we saw with
accessing stale stack memory in the Stale frames – trouble in paradise section). Similarly,
bad code might work in the presence of optimization, or not. Thus, cases such as these
cannot be predicted and are called Undefined Behavior (UB).

The kernel's Undefined Behavior Sanitizer (UBSAN) catches several types of runtime
UB. As with KASAN, it uses Compile Time Instrumentation (CTI) to do so. With
UBSAN enabled fully, the kernel code is compiled with the –fsanitize=undefined
option switch. The UB caught by UBSAN includes the following:

• Arithmetic-related UB:

 � Arithmetic overflow / underflow / divide by zero / and so on...

 � OOB accesses while bit shifting

• Memory-related UB:

 � OOB accesses on arrays

 � NULL pointer dereferences

 � Misaligned memory accesses

 � Object size mismatches

Using KASAN and UBSAN to find memory bugs 215

Some of these defects in fact overlap with what Generic KASAN catches as well. UBSAN
instrumented code is certainly larger and slower (by a factor of 2 or 3 times). Still, it's
very useful – especially during development and unit testing – to catch UB defects. In
fact, enabling UBSAN on production systems is feasible if you can afford the larger kernel
text size and processor overheads (on everything besides tiny embedded systems, you
probably can).

Configuring the kernel for UBSAN
Within the make menuconfig UI, you'll find the menu system for UBSAN at
Kernel hacking | Generic Kernel Debugging Instruments | Undefined
behaviour sanity checker.

A screenshot of the relevant menu is seen here:

Figure 5.10 – Partial screenshot of the UBSAN menu for the Linux kernel config

To work with it, you should turn on the following kernel configs: CONFIG_UBSAN,
CONFIG_UBSAN_BOUNDS (performs bound checking on array indices for static arrays
– very useful!), CONFIG_UBSAN_MISC, and CONFIG_UBSAN_SANITIZE_ALL (you
can look up the details for each here: lib/Kconfig.ubsan). Setting CONFIG_TEST_
UBSAN=m has the lib/test_ubsan.c code built as a module.

216 Debugging Kernel Memory Issues – Part 1

UBSAN – Effect on the Build
With CONFIG_UBSAN=y, building the kernel source tree by passing the
V=1 parameter will show the details, the GCC flags being passed, and more.
Here's a snippet of what you see focused on the GCC flags passed during the
build due to UBSAN being enabled:

make V=1

gcc -Wp,-MMD,[...] -fsanitize=bounds
-fsanitize=shift -fsanitize=integer-divide-by-zero
-fsanitize=unreachable -fsanitize=signed-integer-
overflow -fsanitize=object-size -fsanitize=bool
-fsanitize=enum [...]

Hunting down UB with UBSAN
Detecting UB on OOB (static) array accesses (and the like) is where UBSAN shines. Take,
for example, our test case #4.4. We define a few static global arrays like this:

static char global_arr1[10], global_arr2[10], global_arr3[10];

Why Declare Three Global Arrays and Not Just One?
Well, as of this writing, there seems to be an issue with the way that the GCC
compiler (at least as of version 9.3) sets up red zoning for global data. We
observe that the red zone for the first global in a module may not have its left
red zone correctly set up, causing the left OOB (underflow) buggy accesses to
be missed as a side effect! So, by setting up three global arrays and passing the
pointer to any but the first (we set up our test cases to pass the pointer to the
second one), KASAN and UBSAN should be able to catch the buggy access!
(Do note that the ordering of global variables within a module depends on the
linker). This issue does not seem to occur with Clang 11+.

Interestingly, our efforts on this will eventually pay off: due to my reporting
the issue – left OOB failing with GCC – as well as pointing out that the
kernel's test_kasan module doesn't test for it, Marco Elver (the current
KCSAN maintainer) has investigated this and added a patch to include
this test case – add globals left-out-of-bounds test – to the test_kasan
module (17 Nov 2021 – see here: https://lore.kernel.org/
all/20211117110916.97944-1-elver@google.com/T/#u).
Further, this book's very able technical reviewer, Chi-Thanh Hoang, has figured
out that this is essentially due to GCC's lack of a left red zone (as mentioned
above) and added this information to the kernel Bugzilla (https://
bugzilla.kernel.org/show_bug.cgi?id=215051). The hope
is that GCC maintainers will pick this up and suggest or implement a fix.

https://lore.kernel.org/all/20211117110916.97944-1-elver@google.com/T/#u
https://lore.kernel.org/all/20211117110916.97944-1-elver@google.com/T/#u
https://bugzilla.kernel.org/show_bug.cgi?id=215051
https://bugzilla.kernel.org/show_bug.cgi?id=215051

Using KASAN and UBSAN to find memory bugs 217

Below, we show one of our buggy test cases – the right OOB accesses on global memory –
accessing one of these global arrays, incorrectly of course, for both read and write (I only
show a portion of its code here). Note that the parameter p is a pointer to a piece of global
memory within this module, typically the second one, global_arr2[]:

Here's its invocation via our debugfs hook:

[...] else if (!strncmp(udata, "4.4", 4))

 global_mem_oob_left(WRITE, global_arr2);

Here's the (partial) code (note that the // style comments might spill over a line here; in
the code they're fine):

int global_mem_oob_right(int mode, char *p)

{

 volatile char w, x, y, z;

 volatile char local_arr[20];

 char *volatile ptr = p + ARRSZ + 3; // OOB right

 [...]

 } else if (mode == WRITE) {

 *(volatile char *)ptr = 'x'; // invalid, OOB right
write

 p[ARRSZ - 3] = 'w'; // valid and within bounds

 p[ARRSZ + 3] = 'x'; // invalid, OOB right write

 local_arr[ARRAY_SIZE(local_arr) - 5] = 'y'; // valid
and within bounds

 local_arr[ARRAY_SIZE(local_arr) + 5] = 'z'; // invalid,
OOB right write

 } [...]

Once it detects a buggy access to memory (like the ones above), UBAN displays an error
report like this to the kernel log:

array-index-out-of-bounds in <C-source-pathname.c>:<line#>

index <index> is out of range for type '<var-type> [<size>]'

218 Debugging Kernel Memory Issues – Part 1

Here's a screenshot showing just this. The right window shows the kernel log. For this
case, ignore the top portion of the log – it's part of the error report from KASAN. The
remainder – what we're interested in – is from UBSAN:

Figure 5.11 – Partial screenshot 1 of 3 showing UBSAN catching the right OOB write
to a stack local variable

Here you can see how UBSAN has precisely caught the UB on line 194 – the attempt
to write after the end legal index of the local (stack-based) array! Of course, it's
entirely possible the line number you see here might change over time due to
modifications to the code.

After this, test case # 4.3 intentionally, adventurously – and disastrously – now attempts a
read underflow on a local stack memory variable. This too is cleanly caught by UBSAN!
The following partial screenshot shows you the juicy bit:

Figure 5.12 – Partial screenshot 2 of 3 showing UBSAN catching the left OOB read on a stack
local variable

Again, UBSAN even shows the source filename and line number where the buggy access
was attempted!

Using KASAN and UBSAN to find memory bugs 219

It's more generic: UBSAN catches memory accesses when the variable in question indexes
the static memory array incorrectly – when the index is out of bounds in any manner (left
or right, underflow or overflow). It does appear, though, to miss buggy accesses made
purely via pointers! KASAN has no issue with this and catches them all.

Just as we saw with KASAN (in the Remaining tests with our custom buggy kernel module
section), UBSAN also cannot catch all memory defects. To prove this, we again run our
custom buggy kernel module (in ch5/kmembugs_test), with pretty much identical
results: even on a UBSAN-enabled kernel, these three bugs – the UMR, UAR, and memory
leakage bugs – aren't caught! The following screenshot tells the story (to capture this, I
(first) ran the run_tests script for the first three test cases with the --no-clear
parameter, in order to preserve the kernel log content):

Figure 5.13 – Screenshot 3 of 3: executing the first three – UMR, UAR, and leakage – test cases with our
test module reveals that both KASAN and UBSAN (enabled in kernel) don't catch them

Also, don't forget: UBSAN is quite adept at catching arithmetic-related UB too – things
such as overflowing or underflowing arithmetic calculations, the well-known Integer
OverFlow (IoF) defect, and the divide-by-zero bugs being common and dangerous ones
indeed! We mentioned the arithmetic UB that UBSAN can catch at the beginning of this
section on UBSAN. We don't delve further into it as our topic is memory defects. To
see more of UBSAN in action, you can always read the code of the UBSAN test module
within the kernel (lib/test_ubsan.c) and try it out – I encourage you to do so. On
a somewhat related note, understanding what unaligned memory access is, how it can
cause issues, and how to avoid it is the topic of this kernel documentation page: Unaligned
Memory Accesses: https://www.kernel.org/doc/html/latest/core-api/
unaligned-memory-access.html#unaligned-memory-accesses.

https://www.kernel.org/doc/html/latest/core-api/unaligned-memory-access.html#unaligned-memory-accesses
https://www.kernel.org/doc/html/latest/core-api/unaligned-memory-access.html#unaligned-memory-accesses

220 Debugging Kernel Memory Issues – Part 1

Okay, let's tabulate the result of our experiments by running various test cases with
UBSAN enabled within the kernel. Refer to the following table:

Using KASAN and UBSAN to find memory bugs 221

Table 5.4 – Summary of memory defect and arithmetic UB test cases caught (or not) by UBSAN

The following is with respect to the numeric footnotes in the preceding table:

• [1] The test case number: do refer to the source of the test kernel module to see it
– ch5/kmembugs_test/kmembugs_test.c, the debugfs entry creation and
usage in debugfs_kmembugs.c, and the bash scripts load_testmod and run_
tests, all within the same folder.

• [2] The compiler used here is GCC version 9.3.0 on x86_64 Ubuntu Linux. A later
section covers using the Clang 13 compiler.

• [3] To test with UBSAN, I booted via our custom production kernel (5.10.60-
prod01) with CONFIG_UBSAN=y and CONFIG_UBSAN_SANITIZE_ALL=y.

• Test cases 4.1 through 4.4 work both upon static (compile-time allocated) global
memory as well as stack local memory. That's why the test case numbers are 4.x
in both.

The following section delves into the details. Don't miss out!

222 Debugging Kernel Memory Issues – Part 1

UBSAN – detailed notes on the tabulated results
The footnote notations in the preceding table (such as [U1], [U2], and so on) are
explained in detail here. It's important to read through all the notes, as we've mentioned
certain caveats and corner cases as well:

• [U1] UBSAN catches and reports the OOB access on global static memory:

array-index-out-of-bounds in <C-source-pathname.
c>:<line#>

index <index> is out of range for type '<var-type>
[<size>]'

• [U2] When relevant, UBSAN also reports an object size mismatch for [U1] as
follows:

object-size-mismatch in <C-source-pathname.c>:<line#>

store to address <addr> with insufficient space for an
object of type '<var-type>'

In the preceding cases, UBSAN also reports the actual violation in some detail along with
the process context and kernel-mode stack call trace.

Note though, that with KASAN turned off (I rebuilt a test debug kernel with CONFIG_
KASAN=n) and UBSAN turned on, the semantics seem a bit different: in this case, I got
a segfault only, with, of course, the kernel log clearly showing the source of the bug (by
looking up what the instruction pointer register, here, RIP, was pointing to at the time of
the fault).

Note
As mentioned earlier, don't forget to look up Table 6.4 in the following chapter,
effectively, an all-results-in-one-place comparison table.

Great, now you're much better armed to catch memory bugs with both KASAN and
UBSAN! I suggest you first take the time to absorb all this information, read the relevant
detailed notes in the later Catching memory defects in the kernel – comparisons and notes
(Part 1) section (pertaining to KASAN and UBSAN, at least for now), and practice trying
out these test cases on your own. But wait: we saw that some OOB defects are only caught
when compiled with Clang 11 or later. This is a key thing. So, let's now learn how to use
the modern Clang compiler.

Building your kernel and modules with Clang 223

Building your kernel and modules with Clang
Low Level Virtual Machine (LLVM) is the original name given to this modular compiler
tooling project. It now doesn't have much to do with traditional virtual machines and is
instead a powerful backend for several compilers and toolchains.

Clang (the pronunciation rhymes with "slang") is a modern compiler frontend technology
for C-type languages (includes support for C, C++, CUDA, Objective C/C++, and more)
and is based on the LLVM compiler. It's considered a drop-in replacement for GCC. Clang
currently seems to have a significant advantage over GCC – especially from our point of
view – generating superior diagnostics as well as being able to intelligently generate code
avoiding OOB accesses. This is critical. It paves the way to superior code. We saw (in the
previous section on KASAN) that faulty left-OOB accesses on global memory, not reliably
caught by GCC (versions 9.3, 10, and 11), are caught with Clang! The Android project is a
key user of Clang, among many others.

Attempting to build your kernel module with Clang while the target kernel itself is
compiled via GCC is simply not good enough! You'll have to use the same compiler for both
– the underlying ABI needs to be completely consistent (this was one of the many things
pointed out to me by Marco Elver when I was puzzled and asked why KASAN failed to
catch certain test cases – again, the beauty of open source development). So, the upshot of
it all is that we'll have to compile both our kernel and module with Clang 11.

Installing Clang and associated binaries in order to successfully compile your kernel
module involves running the following command (on our Ubuntu 20.04 LTS guest):

sudo apt install clang-11 --install-suggests

Further, we seem to require setting up a soft link to llvm-objdump-11 named llvm-
objdump (this is likely as I have both Clang 10 and Clang 11 installed simultaneously):

sudo ln -s /usr/bin/llvm-objdump-11 /usr/bin/llvm-objdump

Hang on, a simpler approach follows...

Using Clang 13 on Ubuntu 21.10
For the purpose of using Clang on the kernel and module builds, instead of installing
Clang 11 (or later) on Ubuntu 20.04 LTS, it might just be simpler to install Ubuntu 21.10
(I've done so as an x86_64 VM) as it ships with Clang 13 preinstalled. I then built the very
same 5.10.60 kernel as a debug kernel, applying a similar debug config as was discussed
back in Chapter 1, A General Introduction to Debugging Software, but this time with Clang.

224 Debugging Kernel Memory Issues – Part 1

Importantly, to specify using Clang (and not GCC) as the compiler, when building the
kernel, set the CC variable to it:

$ time make -j8 CC=clang

 SYNC include/config/auto.conf.cmd

*

* Restart config...

* Memory initialization

*

The first time you run this command, the kbuild system detects that with the Clang
compiler, certain add-ons now become available and viable to use (that couldn't be used
with GCC) and prompts us to configure it:

Initialize kernel stack variables at function entry

> 1. no automatic initialization (weakest) (INIT_STACK_NONE)

 2. 0xAA-init everything on the stack (strongest) (INIT_STACK_
ALL_PATTERN) (NEW)

 3. zero-init everything on the stack (strongest and safest)
(INIT_STACK_ALL_ZERO) (NEW)

choice[1-3?]:

Though it would be very useful to take advantage of this auto-initialization of kernel stack
variables, I deliberately left it at the default (option 1) in order to check our tooling to
catch the UMR defect. Similarly, the build asked the following. Here, I kept the defaults by
simply pressing the Enter key. You could change them if you wish to:

Enable heap memory zeroing on allocation by default (INIT_ON_
ALLOC_DEFAULT_ON) [Y/n/?] y

Enable heap memory zeroing on free by default (INIT_ON_FREE_
DEFAULT_ON) [Y/n/?] y

*

* KASAN: runtime memory debugger

*

KASAN: runtime memory debugger (KASAN) [Y/n/?] y

 KASAN mode

 > 1. Generic mode (KASAN_GENERIC)

 choice[1]: 1

 [...]

 Back mappings in vmalloc space with real shadow memory

Building your kernel and modules with Clang 225

(KASAN_VMALLOC) [Y/n/?] y

 KUnit-compatible tests of KASAN bug detection capabilities
(KASAN_KUNIT_TEST) [M/n/?] m

 [...]

Once built, perform the usual remaining steps, not forgetting to add the CC=clang
environment variable to the command line:

sudo make CC=clang modules_install && sudo make CC=clang
install

When done, reboot and ensure you boot into your spanking new Clang-built debug
kernel! Verify with the following:

$ cat /proc/version

Linux version 5.10.60-dbg02 (letsdebug@letsdebug-VirtualBox)
(Ubuntu clang version 13.0.0-2, GNU ld (GNU Binutils for
Ubuntu) 2.37) #4 SMP PREEMPT Wed ...

Now, let's move on to building our kernel module with Clang:

cd <book_src>/ch5/kmembugs_test

make CC=clang

That's it – I've conditionally embedded this setting of the CC variable into our load_
testmod bash script, based on which compiler was used to build the current kernel.
Also, FYI, to distinguish between our custom debug kernel built with Clang and GCC,
the former's uname -r output shows up as seen here, 5.10.60-dbg02, whereas the latter's
name shows up as 5.10.60-dbg02-gcc.

Exercise
I'll leave it as an exercise to you to build both a (debug) kernel as well as our
test_kmembugs.ko kernel module with Clang and run the test cases.

With this, we complete the first part of our detailed coverage on understanding and
catching memory defects within the kernel! Great going. Let's complete this chapter with
a kind of summarization of the many tools and techniques we've used so far.

226 Debugging Kernel Memory Issues – Part 1

Catching memory defects in the kernel –
comparisons and notes (Part 1)
As we've already mentioned in this chapter, the following table tabulates our test case
results for our test runs with all the tooling technologies/kernels – vanilla/distro kernel,
compiler warnings, and with KASAN and UBSAN with our debug kernel – we employed
in this chapter. In effect, it's a compilation of all our findings so far in one place, thus
allowing you to make quick (and hopefully helpful) comparisons:

Catching memory defects in the kernel – comparisons and notes (Part 1) 227

Table 5.5 – Summary of various common memory defects and how various technologies react in
catching them (or not)

Of course, the explanations of the footnotes within this table (such as [C1], [K1], [U1],
and so on) can be found in the earlier relevant section.

So, here's a very brief summary:

• KASAN catches pretty much all OOB buggy memory accesses on global (static),
stack local, and dynamic (slab) memory. UBSAN doesn't catch the dynamic slab
memory OOB accesses (test cases 4.x and 5.x).

• KASAN does not catch the UB defects (test cases 8.x); UBSAN does catch
(most of) them.

• Neither KASAN nor UBSAN catch the first three test cases – UMR, UAR, and
leakage bugs, but the compiler(s) generate warnings and static analyzers (cppcheck)
can catch some of them. (We in fact cover using a static analyzer to catch this tricky
UAR bug in Chapter 12, A few more kernel debugging approaches in the Examples –
using cppcheck, checkpatch.pl for static analysis section).

• The kernel kmemleak infrastructure catches kernel memory leaks allocated
by any of k{m|z}alloc(), vmalloc(), or kmem_cache_alloc() (and
friends) interfaces.

Regarding the preceding table, a few remaining notes now follow...

228 Debugging Kernel Memory Issues – Part 1

Miscellaneous notes
A few more points regarding Table 5.5:

• [V1]: The system could simply Oops, hang here, or even appear to remain
unscathed, but that's not really the case... Once the kernel is buggy, the system
is buggy.

• [V2]: Please see the explanation for this detailed in the following chapter, in the
Running SLUB debug test cases on a kernel with slub_debug turned off section

A quick note on a KASAN alternative, especially for production systems, follows.

Introducing KFENCE – Kernel Electric-Fence
The Linux kernel has recent tooling named Kernel Electric-Fence (KFENCE). It's
available from kernel version 5.12 onward (very recent, as of this writing).

KFENCE is described as a low-overhead sampling-based memory safety error detector of
heap use-after-free, invalid-free, and out-of-bounds access errors.

It has recently added support for both x86 and ARM64 architectures with hooks to both
the SLAB and SLUB memory allocators within the kernel. Why is KFENCE useful when
we already have KASAN (which seems to overlap in function with it)? Here are a few
points to help differentiate between them:

• KFENCE has been designed for use in production systems; KASAN's overhead
would be too high for typical production systems and is suitable only on debug /
development systems. KFENCE's performance overhead is minimal – close to zero.

• KFENCE works on a sampling-based design. It trades precision for performance,
thus, with sufficiently lengthy uptime, KFENCE is almost certain to catch bugs! One
way to have a really long total uptime is by deploying it across a fleet of machines.

• In effect, KASAN will catch all memory defects, but at a rather high performance
cost. KFENCE also can catch all memory defects, at virtually no performance cost,
but it takes time (very long uptimes are required, as it's a sampling-based approach).
Thus, to catch memory defects on debug and development systems, use KASAN
(and KFENCE, perhaps); to do the same on production systems, use KFENCE.

To enable KFENCE, set CONFIG_KFENCE=y (note, though, that as it's very recent, this
config option isn't present in the 5.10 kernel series we work upon in this book). You can
see more options and fine-tune them based on options present in the lib/Kconfig.
kfence file.

Summary 229

We refer you to the details (including setup, tuning, interpreting error reports, internal
implementation, and more) in the official kernel documentation page on KFENCE
here: https://www.kernel.org/doc/html/latest/dev-tools/kfence.
html#kernel-electric-fence-kfence.

A final point: with the 5.18 kernel (the latest stable one as of this writing), a new stricter
memcpy() API family (covering the memcpy(), memmove() and memset() APIs),
compile-time bounds checking kernel feature, has been introduced. It internally uses the
compiler fortification feature (the kernel config is called CONFIG_FORTIFY_SOURCE).
This being turned on helps catch a large class of typical buffer overflow defects within the
kernel! Read more in LWN article here: Strict memcpy() bounds checking for the kernel:
https://lwn.net/Articles/864521/.

Summary
With a non-managed programming language such as C, a trade-off exists: high power
and the ability to code virtually anything you can imagine but at a significant cost. With
memory being managed directly by the programmer, slipping in memory defects – bugs!
– of all kinds, is rather easy to do, even for experienced folk.

In this chapter, we covered many tools, techniques, and approaches in this regard. First,
you learned about the different (scary) types of memory defects. Then, we delved into how
to use various tools and techniques to identify them and thus be able to fix them.

One of the most powerful tools in your arsenal for detecting memory bugs is KASAN.
You learned how to configure and use it. We first learned how to use the kernel's built-in
KUnit test framework to run memory test cases for KASAN to catch. We then developed
our own custom module with test cases and even a neat way to test, via a debugfs
pseudofile and custom scripts.

Catching UB with UBSAN came next. You learned how to configure it and leverage it to
catch these kinds of defects, often overlooked, leading to not only buggy headaches but
even security holes in production systems!

We learned that while GCC is solid and has been around for decades, a newer compiler,
Clang, is in fact proving more adept at generating useful diagnostics (on our C code) and
catching bugs that even GCC can miss! You saw how to use Clang to build the kernel and
your modules, helping create more robust software, in effect.

https://www.kernel.org/doc/html/latest/dev-tools/kfence.html#kernel-electric-fence-kfence
https://www.kernel.org/doc/html/latest/dev-tools/kfence.html#kernel-electric-fence-kfence
https://lwn.net/Articles/864521/

230 Debugging Kernel Memory Issues – Part 1

As we covered these tools and frameworks, we tabulated the results, showing you the bugs
a given tool can (or cannot) catch. To then summarize the whole thing, we built a larger
table with columns covering all the test cases and all the tools – a quick and useful way for
you to see and compare them (Table 5.5)! Note that we'll add to this table in the following
chapter! Finally, we mentioned that the (very recent) KFENCE framework can (should)
be used on production systems, in lieu of KASAN. The 5.18 kernel's CONFIG_FORTIFY_
SOURCE config will likely be a big help as well.

So, congrats on completing this rather long – and really important – first chapter on
catching memory bugs in kernel space! Do take the time to digest it and practice all you've
learned. When set, I encourage you to move on to the next chapter where we'll complete
our coverage on catching kernel memory defects.

Further reading
• Rust in the Linux kernel?

 � Rust in the Linux kernel, Apr 2021, Google security blog: https://security.
googleblog.com/2021/04/rust-in-linux-kernel.html

 � Let the Linux kernel Rust, J Wallen, July 2021, TechRepublic: https://www.
techrepublic.com/article/let-the-linux-kernel-rust/

 � Linus Torvalds weighs in on Rust language in the Linux kernel, ars technica,
Mar 2021: https://arstechnica.com/gadgets/2021/03/linus-
torvalds-weighs-in-on-rust-language-in-the-linux-kernel/

• Linux kernel security:

 � Several links and info here, from my Linux Kernel Programming book's
Further reading section: https://github.com/PacktPublishing/
Linux-Kernel-Programming/blob/master/Further_Reading.
md#kernel_sec

 � How a simple Linux kernel memory corruption bug can lead to complete
system compromise, Jann Horn, Project Zero, Oct 2021: https://
googleprojectzero.blogspot.com/2021/10/how-simple-linux-
kernel-memory.html

https://security.googleblog.com/2021/04/rust-in-linux-kernel.html
https://security.googleblog.com/2021/04/rust-in-linux-kernel.html
https://www.techrepublic.com/article/let-the-linux-kernel-rust/
https://www.techrepublic.com/article/let-the-linux-kernel-rust/
https://arstechnica.com/gadgets/2021/03/linus-torvalds-weighs-in-on-rust-language-in-the-linux-kernel/
https://arstechnica.com/gadgets/2021/03/linus-torvalds-weighs-in-on-rust-language-in-the-linux-kernel/
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md#kernel_sec
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md#kernel_sec
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md#kernel_sec
https://googleprojectzero.blogspot.com/2021/10/how-simple-linux-kernel-memory.html
https://googleprojectzero.blogspot.com/2021/10/how-simple-linux-kernel-memory.html
https://googleprojectzero.blogspot.com/2021/10/how-simple-linux-kernel-memory.html

Further reading 231

• Undefined Behavior (UB) – what is it?

 � Very comprehensive: A Guide to Undefined Behavior in C and C++, Part 1, John
Regehr, July 2010: https://blog.regehr.org/archives/213

 � What Every C Programmer Should Know About Undefined Behavior #1/3, LLVM
blog, May 2011: http://blog.llvm.org/2011/05/what-every-c-
programmer-should-know.html

• KASAN – the Kernel Address Sanitizer:

 � Official kernel documentation: The Kernel Address Sanitizer (KASAN): https://
www.kernel.org/doc/html/latest/dev-tools/kasan.html#the-
kernel-address-sanitizer-kasan

 � [K]ASAN internal working: https://github.com/google/sanitizers/
wiki/AddressSanitizerAlgorithm

 � The ARM64 memory tagging extension in Linux, Jon Corbet, LWN, Oct 2020:
https://lwn.net/Articles/834289/

 � How to use KASAN to debug memory corruption in an OpenStack environment:
https://www.slideshare.net/GavinGuo3/how-to-use-kasan-to-
debug-memory-corruption-in-openstack-environment-2

 � Android AOSP: Building a pixel kernel with KASAN+KCOV: https://
source.android.com/devices/tech/debug/kasan-kcov

 � FYI, the original V2 KASAN patch post: [RFC/PATCH v2 00/10] Kernel address
sainitzer (KASan) - dynamic memory error deetector., LWN, Sept 2014: https://
lwn.net/Articles/611410/

• UBSAN:

 � The Undefined Behavior Sanitizer – UBSAN: https://www.kernel.org/
doc/html/latest/dev-tools/ubsan.html#the-undefined-
behavior-sanitizer-ubsan

 � Improving Application Security with UndefinedBehaviorSanitizer (UBSan)
and GCC, Meirowitz, May 2021: https://blogs.oracle.com/
linux/post/improving-application-security-with-
undefinedbehaviorsanitizer-ubsan-and-gcc

https://blog.regehr.org/archives/213
http://blog.llvm.org/2011/05/what-every-c-programmer-should-know.html
http://blog.llvm.org/2011/05/what-every-c-programmer-should-know.html
https://www.kernel.org/doc/html/latest/dev-tools/kasan.html#the-kernel-address-sanitizer-kasan
https://www.kernel.org/doc/html/latest/dev-tools/kasan.html#the-kernel-address-sanitizer-kasan
https://www.kernel.org/doc/html/latest/dev-tools/kasan.html#the-kernel-address-sanitizer-kasan
https://github.com/google/sanitizers/wiki/AddressSanitizerAlgorithm
https://github.com/google/sanitizers/wiki/AddressSanitizerAlgorithm
https://lwn.net/Articles/834289/
https://www.slideshare.net/GavinGuo3/how-to-use-kasan-to-debug-memory-corruption-in-openstack-environment-2
https://www.slideshare.net/GavinGuo3/how-to-use-kasan-to-debug-memory-corruption-in-openstack-environment-2
https://source.android.com/devices/tech/debug/kasan-kcov
https://source.android.com/devices/tech/debug/kasan-kcov
https://lwn.net/Articles/611410/
https://lwn.net/Articles/611410/
https://www.kernel.org/doc/html/latest/dev-tools/ubsan.html#the-undefined-behavior-sanitizer-ubsan
https://www.kernel.org/doc/html/latest/dev-tools/ubsan.html#the-undefined-behavior-sanitizer-ubsan
https://www.kernel.org/doc/html/latest/dev-tools/ubsan.html#the-undefined-behavior-sanitizer-ubsan
https://blogs.oracle.com/linux/post/improving-application-security-with-undefinedbehaviorsanitizer-ubsan-and-gcc
https://blogs.oracle.com/linux/post/improving-application-security-with-undefinedbehaviorsanitizer-ubsan-and-gcc
https://blogs.oracle.com/linux/post/improving-application-security-with-undefinedbehaviorsanitizer-ubsan-and-gcc

232 Debugging Kernel Memory Issues – Part 1

 � Clang 13 documentation: UndefinedBehaviorSanitizer: https://clang.
llvm.org/docs/UndefinedBehaviorSanitizer.html

 � Android AOSP: Integer Overflow Sanitization: https://source.android.
com/devices/tech/debug/intsan

• Kernel built-in test frameworks:

 � KUnit – Unit Testing for the Linux Kernel: https://www.kernel.org/
doc/html/latest/dev-tools/kunit/index.html#kunit-unit-
testing-for-the-linux-kernel

 � Linux Kernel Selftests: https://www.kernel.org/doc/html/latest/
dev-tools/kselftest.html#linux-kernel-selftests

• KFENCE: official kernel documentation (only from ver 5.12): https://www.
kernel.org/doc/html/latest/dev-tools/kfence.html#kernel-
electric-fence-kfence

With regard to the 5.18 mainline kernel: Strict memcpy() bounds checking for the
kernel, Jon Corbet, July 2021: https://lwn.net/Articles/864521/

• Though it's with respect to userspace, useful: Memory error checking in C and C++:
Comparing Sanitizers and Valgrind, Red Hat Developer, May 2021: https://
developers.redhat.com/blog/2021/05/05/memory-error-
checking-in-c-and-c-comparing-sanitizers-and-valgrind.

https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://source.android.com/devices/tech/debug/intsan
https://source.android.com/devices/tech/debug/intsan
https://www.kernel.org/doc/html/latest/dev-tools/kunit/index.html#kunit-unit-testing-for-the-linux-kernel
https://www.kernel.org/doc/html/latest/dev-tools/kunit/index.html#kunit-unit-testing-for-the-linux-kernel
https://www.kernel.org/doc/html/latest/dev-tools/kunit/index.html#kunit-unit-testing-for-the-linux-kernel
https://www.kernel.org/doc/html/latest/dev-tools/kselftest.html#linux-kernel-selftests
https://www.kernel.org/doc/html/latest/dev-tools/kselftest.html#linux-kernel-selftests
https://www.kernel.org/doc/html/latest/dev-tools/kfence.html#kernel-electric-fence-kfence
https://www.kernel.org/doc/html/latest/dev-tools/kfence.html#kernel-electric-fence-kfence
https://www.kernel.org/doc/html/latest/dev-tools/kfence.html#kernel-electric-fence-kfence
https://lwn.net/Articles/864521/
https://developers.redhat.com/blog/2021/05/05/memory-error-checking-in-c-and-c-comparing-sanitizers-and-valgrind
https://developers.redhat.com/blog/2021/05/05/memory-error-checking-in-c-and-c-comparing-sanitizers-and-valgrind
https://developers.redhat.com/blog/2021/05/05/memory-error-checking-in-c-and-c-comparing-sanitizers-and-valgrind

6
Debugging

Kernel Memory
Issues – Part 2

Welcome to the second portion of our detailed discussions on a really key topic –
understanding and learning how to detect kernel memory corruption defects. In the
preceding chapter, we introduced the reason why memory bugs are common and
challenging and went on to cover some really important tools and technologies to help
catch and defeat them – KASAN and UBSAN (along the way, covering the usage of the
newer Clang compiler).

In this chapter, we continue this discussion. Here, we will focus on the following
main topics:

• Detecting slab memory corruption via SLUB debug

• Finding memory leakage issues with kmemleak

• Catching memory defects in the kernel – comparison and notes (Part 2)

234 Debugging Kernel Memory Issues – Part 2

Technical requirements
The technical requirements and workspace remain identical to what's described in Chapter
1, A General Introduction to Debugging Software. The code examples can be found within
the book's GitHub repository here: https://github.com/PacktPublishing/
Linux-Kernel-Debugging.

Detecting slab memory corruption
via SLUB debug
Memory corruption can occur due to various bugs or defects: Uninitialized Memory
Reads (UMR), Use After Free (UAF), Use After Return (UAR), double-free, memory
leakage, or illegal Out Of Bounds (OOB) accesses that attempt to work upon (read/write/
execute) illegal memory regions. They're unfortunately a very common root cause of bugs.
Being able to debug them is a key skill. Having already checked out a few ways to catch
them (the detailed coverage of setting up and using KASAN and UBSAN in the previous
chapter), let's now leverage the kernel's built-in SLUB debug features to catch these bugs!

As you will know, memory is dynamically allocated and freed via the kernel's engine – the
page (or Buddy System) allocator. To mitigate serious wastage (internal fragmentation)
issues that it can face, the slab allocator (or slab cache) is layered upon it, serving two
primary tasks – providing fragments of pages efficiently (within the kernel, allocation
requests for small pieces of memory, from a few bytes to a couple of kilobytes, tend to be
very common), and serving as a cache for commonly used data structures.

Current Linux kernels typically have three mutually exclusive implementations of the slab
layer – the original SLAB, the newer and superior SLUB implementation, and the seldom-
used SLOB implementation. It's key to realize that the following discussion is with respect
to only the SLUB (unqueued allocator) implementation of the slab layer. It's typically the
default in most Linux installations (the config option is named CONFIG_SLUB. It's found
in the menuconfig UI here: General setup | Choose SLAB allocator).

Tip
Basic knowledge of the kernel memory management system, the page, slab
allocator, and the various APIs to actually allocate (and free) kernel memory
are a prerequisite for these materials. I've covered this (and much more) in the
Linux Kernel Programming book (published by Packt in March 2021).

Let's quickly check out configuring the kernel for SLUB debug.

https://github.com/PacktPublishing/Linux-Kernel-Debugging
https://github.com/PacktPublishing/Linux-Kernel-Debugging

Detecting slab memory corruption via SLUB debug 235

Configuring the kernel for SLUB debug
The kernel provides a good deal of support to help debug slab (SLUB, really) memory
corruption issues. Within the kernel config UI, you'll find the following:

• General Setup | Enable SLUB debugging support (CONFIG_SLUB_
DEBUG):

 � Turning this on buys you plenty of built-in SLUB debug support, the ability to
view all slab caches via /sys/slab, and runtime cache validation support.

 � This config is automatically turned on (auto-selected) when Generic KASAN
is on.

• Memory Debugging | SLUB debugging on by default (CONFIG_
SLUB_DEBUG_ON is explained later).

Let's look up the kernel config for SLUB on my x86_64 Ubuntu guest running our custom
debug kernel:

$ grep SLUB_DEBUG /boot/config-5.10.60-dbg02

CONFIG_SLUB_DEBUG=y

CONFIG_SLUB_DEBUG_ON is not set

This config implies that SLUB debugging is available but disabled by default (as CONFIG_
SLUB_DEBUG_ON is off). While always enabling it is perhaps useful for catching memory
corruption, it can have quite a large (and adverse) performance impact. To mitigate this,
you can – should, really – configure your debug kernel with CONFIG_SLUB_DEBUG_ON
turned off by default (as seen here) and use the kernel command-line parameter slub_
debug to fine-tune SLUB debugging as and when required.

The official kernel documentation here covers the usage of slub_debug in detail:
https://www.kernel.org/doc/html/latest/vm/slub.html. We'll
summarize it along with some examples to demonstrate how to use this powerful feature.

https://www.kernel.org/doc/html/latest/vm/slub.html

236 Debugging Kernel Memory Issues – Part 2

Leveraging SLUB debug features via the slub_debug
kernel parameter
So, you'd like to leverage the slub_debug kernel command-line parameter! To do so,
let's first understand the various option flags you can pass via it at boot time:

 Table 6.1 – The slub_debug=<NNN> flags and corresponding sysfs entries if any

Detecting slab memory corruption via SLUB debug 237

A brief description of pretty much every (pseudo) file under /sys/kernel/
slab/<slabname> can be found in the kernel documentation here (a word of caution:
it seems to be quite aged): https://www.kernel.org/doc/Documentation/
ABI/testing/sysfs-kernel-slab.

Understanding the SLUB layer's poison flags
The poison flags defined by the kernel are defined as follows:

// include/linux/poison.h

#define POISON_INUSE 0x5a /* for use-uninitialised poisoning */

#define POISON_FREE 0x6b /* for use-after-free poisoning */

#define POISON_END 0xa5 /* end-byte of poisoning */

Here's the nitty-gritty on these poison values:

• When you use the SLAB_POISON flag when creating a slab cache (typically via
the kmem_cache_create() kernel API) or set poisoning to on via the kernel
parameter slub_debug=P, the slab memory gets auto-initialized to the value
0x6b (which is ASCII k, corresponding to the POISON_FREE macro). In effect,
when this flag is enabled, this (0x6b) is the value that valid but uninitialized slab
memory regions are set to on creation.

• The POISON_INUSE value (0x5a equals ASCII Z) is used to denote padding
zones, before or after red zones.

• The last legal byte of the slab memory object is set to POISON_END, 0xa5.

(You'll come across a nice example of seeing these poison values in action a bit later in this
section, in Figure 6.4.)

Our ch5/kmembugs_test.c code has the function umr_slub(). It employs the
kmalloc() API to dynamically allocate 32 bytes and then reads the just allocated
memory to test the UMR defect on slab (SLUB) memory. Here's the output when we run
this test case (10 UMR on slab (SLUB) memory) on a regular kernel with no slub
debug flags enabled:

[6845.100813] testcase to run: 10

[6845.101126] test_kmembugs:umr_slub(): testcase 10: simple
UMR on slab memory

[6845.101771] test_kmembugs:umr_slub(): q[3] is 0x0

https://www.kernel.org/doc/Documentation/ABI/testing/sysfs-kernel-slab
https://www.kernel.org/doc/Documentation/ABI/testing/sysfs-kernel-slab

238 Debugging Kernel Memory Issues – Part 2

[6845.102203] q: 00000000: 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00

[6845.102946] q: 00000010: 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00

With no slub debug flags or features enabled, the uninitialized memory region (all 32
bytes of it) shows up as the value 0x0. You'll soon find that, when run with slub_debug
turned ON, though no error report is generated, a dump of the memory region shows the
poison value 0x6b, denoting that its a valid but uninitialized memory region!

Passing the SLUB debug flags
Any and all SLUB debug flags – those seen in the earlier table – can be passed to a kernel
configured with CONFIG_SLUB_DEBUG=y (as ours are, both the custom production and
debug kernels) via the slub_debug kernel parameter. The format is as follows:

slub_debug=<flag1flag2...>,<slab1>,<slab2>,...

As can be seen, you can pass various slub debug flags. Don't leave any spaces between them;
just concatenate them together. To set all flags on, set slub_debug to NULL; to turn all off,
set it to -. Any combination is possible; for example, passing the kernel parameter slub_
debug=FZPU enables, for all slab cache memory, the following SLUB features:

• Sanity checks (F)

• Red zoning (Z)

• Poisoning (P)

• User tracking (U)

Confirm this after boot with the following:

$ cat /proc/cmdline

BOOT_IMAGE=/boot/vmlinuz-5.10.60-dbg02-gcc root=UUID=<...> ro
quiet splash 3 slub_debug=FZPU

Detecting slab memory corruption via SLUB debug 239

This is also reflected within the sysfs entry for the slab cache(s). Let's look up the slab
cache kmalloc-32, which of course provides generic 32-byte memory fragments to any
requester, as an example:

$ export SLAB=/sys/kernel/slab/kmalloc-32

$ sudo cat ${SLAB}/sanity_checks ${SLAB}/red_zone ${SLAB}/
poison ${SLAB}/store_user

1

1

1

1

$

They're all set to 1, indicating they're all on (the default is typically 0 – off).

All right, no dawdling. Let's run our (relevant) test cases to see where the kernel's SLUB
debug infrastructure can help us.

Running and tabulating the SLUB debug test cases
All test cases are in the (same) module here: ch5/kmembugs_test/kmembugs_
test.c (as well as the companion debugfs_kmembugs.c). Here, as we're testing
SLUB debug, we only run the test cases that pertain to slab memory. We'll test on our
custom production kernel as well as the distro kernel itself. Why? This is because most
distros (including the one I'm using here, Ubuntu 20.04 LTS) configure the kernel with
CONFIG_SLUB_DEBUG=y. This is also the default choice within the init/Kconfig file
where it's defined. (Another reason we don't test with our debug kernel is obvious – with
KASAN and UBSAN turned on, they tend to catch bugs first.)

Importantly, to test, we'll boot the system by passing the kernel parameter as follows:

• slub_debug=-, implying it's off.

• slub_debug=FZPU, implying these four flags and the SLUB debug features
pertaining to them are turned on for all slabs on the system.

240 Debugging Kernel Memory Issues – Part 2

Then run the relevant test cases via the test_kmembugs.ko kernel module and
associated run_tests script for each of these scenarios. The following table summarizes
the results.

Table 6.2 – Summary of findings when running relevant memory defect test cases against both our
production kernel without slub_debug features and with slub_debug=FZPU

As mentioned earlier, don't forget to also look at Table 6.4, effectively, an all-in-one-place
comparison table.

Okay, now let's dive into the details of running our test cases seen in the previous table.

Test environment: x86_64 guest running Ubuntu 20.04 LTS with our custom 5.10.60-
prod01 production kernel (configured as mentioned earlier).

Running SLUB debug test cases on a kernel with slub_debug
turned off
First, let's look at what occurs when we run our test cases without SLUB debug features
enabled (corresponding to column 3 and points [V1], [V2], and [V3] in Table 6.2):

• No memory bugs are caught when slub_debug=-, that is, is off (FYI, our first
three test cases – the UMR, UAR, and memory leakage – fail to be detected as well).

Detecting slab memory corruption via SLUB debug 241

• [V1]: The system could simply Oops or hang here or even appear to remain
unscathed, but that's not really the case... Once the kernel is buggy, the system
is buggy.

• [V2]: A segfault might occur on the double-free defect. The vanilla or production
5.x kernel indicates it like this:

kernel BUG at mm/slub.c:305!

And the instruction pointer register (RIP on the x86_64) will be pointing at the
kfree() API. The report, of course, has the usual details – the process context the
bug occurred in and the kernel call trace.

Interestingly, what's at line 305 in mm/slub.c? I checked on the mainline kernel
version 5.10.60, here: https://elixir.bootlin.com/linux/v5.10.60/
source/mm/slub.c.

Figure 6.1 – Partial screenshot of the excellent Bootlin kernel source browser
You can see we're bang on target: line 305 is what triggered the double-free bug. The
vanilla kernel has the intelligence to detect this (naïve) case of a double-free, which
is a form of memory corruption.

• [V3]: The UMR on slab memory with our production kernel and slub_debug
flags set to - – implying it's off – isn't caught. The kmalloc-ed memory region
appears to be initialized to 0x0.

Okay, let's move on now to testing with the kernel SLUB debug feature(s) turned on.

https://elixir.bootlin.com/linux/v5.10.60/source/mm/slub.c
https://elixir.bootlin.com/linux/v5.10.60/source/mm/slub.c

242 Debugging Kernel Memory Issues – Part 2

Running SLUB debug test cases on a kernel with slub_debug
turned on
Now, let's rerun our test cases, this time with the kernel's SLUB debug features enabled
by passing along the slub_debug=FZPU kernel parameter. Here's a screenshot showing
setting the slub_debug=FZPU kernel parameter in the GRUB bootloader on the
production kernel (as seen on VirtualBox):

Figure 6.2 – The GRUB menu for editing the distro kernel parameters with the slub_debug=FZPU
kernel parameter added

Detecting slab memory corruption via SLUB debug 243

Verify that the kernel command line we edited via the bootloader has made it intact:

$ dmesg |grep "Kernel command line"

[0.094445] Kernel command line: BOOT_IMAGE=/boot/vmlinuz-
5.11.0-40-generic root=UUID=<...> ro quiet splash 3 slub_
debug=FZPU

It's fine; running cat /proc/cmdline will reveal the same. We run our test cases
again, this time with SLUB debug enabled. The results are as seen in Table 6.2, in the
fourth column.

Refer back to Table 6.2, noticing the places marked with [V4]. SLUB debug catches both
the write over - and underflow (right and left) OOB accesses on slab memory. However, as
we saw with UBSAN, it only seems able to catch it when the buggy access is via incorrect
indices to the memory region, not when the OOB access is via a pointer! Also, the OOB
reads do not seem to be caught.

Let's now learn a key skill: how to interpret the SLUB debug error report in detail.

Interpreting the kernel's SLUB debug error report
Let's look in detail at catching a few of our buggy test cases. We load up and use our run_
tests script to execute them.

Interpreting the right OOB write overflow on slab memory
We begin with test case #5.2. The right OOB access, here the write overflow (right) on the
slab object (marked as [V4] in the table), has the kernel's SLUB debug framework leap
into action and complain quite loudly as follows:

Figure 6.3 – Partial screenshot, 1 of 3, showing SLUB debug catching the right OOB while writing

First off, following the word BUG is the name of the affected slab cache (here, it's the
kmalloc-32 one, as our test case code performed a dynamic memory allocation of, in
fact, exactly 32 bytes).

244 Debugging Kernel Memory Issues – Part 2

Next, the kernel taint flags are followed by the issue at hand – the OOB access defect
that caused the SLUB debug code to say Right Redzone overwritten. This
is pretty self-explanatory – it's what actually did occur. Within our kmembugs_
test.c:dynamic_mem_oob_right() test case function, we did just this: performed
a write at byte 32 (the legal range is bytes 0 to 31, of course).

Next, the first INFO line spits out the start and end of the corrupted memory region. Note
that these kernel virtual addresses are hashed here, for security, preventing info leaks.
Recall that we ran this test case on our production kernel, after all.

Next, the second INFO line shows where the buggy access took place in the code – via the
usual <func>+0xoff_from_func/0xlen_of_func [modname] notation. (Here,
it happens to be dynamic_mem_oob_right+0x39/0x9c [test_kmembugs].) This
implies that the defect occurred in the function named dynamic_mem_oob_right()
at an offset of 0x39 bytes from the start of this function, and the kernel estimates the
function's length to be 0x9c bytes. (In the next chapter, we'll see how we can leverage this
key information!)

Further, the process context running – its PID and the CPU core it ran upon – is displayed
to the right.

This is followed by a (kernel-mode) stack trace:

kmem_cache_alloc_trace+0x40b/0x450

dynamic_mem_oob_right+0x39/0x9c [test_kmembugs]

dbgfs_run_testcase+0x4d9/0x59a [test_kmembugs]

full_proxy_write+0x5c/0x90

vfs_write+0xca/0x2c0

 [...]

We haven't shown the full stack call trace here. Read it bottom-up, ignoring any lines that
begin with a ? . So, here, it's quite clear – the dynamic_mem_oob_right() function,
located in the kernel module test_kmembugs, is where the trouble seems to be...

Next, the third INFO line provides information on which task performed the free. This can
be useful, helping us identify the culprit as, typically, the task that frees the slab is the one
that allocated it in the first place:

INFO:Freed in kvfree+0x28/0x30 [...]

The call stack leading to the free is displayed under this INFO: line as well. Note that this
who-freed information may not always be available or accurate though.

Detecting slab memory corruption via SLUB debug 245

More information follows: a couple more INFO lines that display a few statistics on the
slab and the particular object within it that got corrupted, the content of the left and right
red zones, any padding, and the actual memory region content.

Figure 6.4 – Partial screenshot, 2 of 3, of the SLUB debug interpretation of corrupted slab memory, the
red zones, object memory, and padding with faulty writes circled

Take a look at a snippet of our buggy test case code, the one that ran here:

// ch5/kmembugs_test.c

int dynamic_mem_oob_right(int mode)

{

volatile char *kptr, ch = 0;

char *volatile ptr;

size_t sz = 32;

kptr = (char *)kmalloc(sz, GFP_KERNEL);

 [...]

ptr = (char *)kptr + sz + 3; // right OOB

 [...]

} else if (mode == WRITE) {

/* Interesting: this OOB access isn't caught by UBSAN but is
caught by KASAN! */

*(volatile char *)ptr = 'x'; // invalid, OOB right write

/* ... but these below OOB accesses are caught by KASAN/UBSAN.
We conclude that only the index-based accesses are caught by
UBSAN. */

kptr[sz] = 'x'; // invalid, OOB right write

 }

As you can see highlighted, in two places, we (deliberately) perform an invalid right OOB
access – writing the character x. Both are caught by the kernel SLUB debug infrastructure!

246 Debugging Kernel Memory Issues – Part 2

Do notice in Figure 6.4 the value 0x78 is our x character being (wrongly) written by the
test case code – I've circled the incorrect writes in the figure! Next, the poison values are
used if the poison flag (P) is set for the slab, as is the case here. Here, the poison value
0x6b denotes the value that's used to initialize the valid slab memory region, 0xa5
denotes the end poisoning marker byte, and 0x5a denotes use-uninitialized poisoning –
useful indeed.

Further, the typical output when most kinds of kernel bugs occur follows: a detailed Call
Trace (the kernel-mode stack being unwound – read it bottom-up, ignoring lines that
begin with ?), and some of the CPU registers and their values:

Figure 6.5 – Partial screenshot, 3 of 3, of the SLUB debug error report (continued) showing the process
context, hardware, kernel stack trace, CPU register values, and FIX info

Detecting slab memory corruption via SLUB debug 247

Finally, the kernel SLUB debug framework even informs us what it restores and what's to
fix – see the last two lines of the preceding screenshot (beginning with FIX kmalloc-
32:). With the F flag – the SLUB sanity checks feature – enabled, the kernel attempts to
clean up the mess and restore the slab object state to what would be deemed the correct
form. Of course, this may not always be possible to do. Also, this SLUB debug error
report is generated before the slab object in question has been freed, hence the ... not
freed message (our code does free it).

For more info, do refer to the official kernel documentation here: SLUB Debug output:
https://www.kernel.org/doc/html/latest/vm/slub.html#slub-
debug-output.

Interpreting the UAF bug on slab memory
Now let's interpret the Use After Free (UAF) bug being caught (marked as [V5] in Table
6.2). The UAF bug is caught by the slub debug framework. The error report (within the
syslog) looks like this:

BUG kmalloc-32 (Tainted: G B OE): Poison
overwritten

[3747.701588] --

[3747.707061] INFO: 0x00000000d969b0bf-0x00000000d969b0bf @
offset=872. First byte 0x79 instead of 0x6b

[3747.710110] INFO: Allocated in uaf+0x20/0x47 [test_kmembugs]
age=5 cpu=5 pid=2306

The format remains the same as described earlier. This time, the UAF defect caused the
SLUB debug code to say Poison overwritten. Why? In our uaf() test case, we did
just this, freed the slab object and then performed a write to a byte within it!

Next, the INFO line spits out the start and end of the corrupted memory region. Note that
these kernel virtual addresses are hashed here, for security, preventing info-leaks. Recall
that we ran this test case on our production kernel, after all.

The PID of the task performing the allocation (the process context) is seen – along with
the kernel module name in square brackets, if applicable, as well as the function within it
where the allocation took place.

https://www.kernel.org/doc/html/latest/vm/slub.html#slub-debug-output
https://www.kernel.org/doc/html/latest/vm/slub.html#slub-debug-output

248 Debugging Kernel Memory Issues – Part 2

This is followed by a stack trace (we don't show this here) and then information on which
task performed the free. This can be useful, helping us identify the culprit as, typically, the
task that frees the slab is the one that allocated it in the first place.

INFO: Freed in uaf+0x34/0x47 [test_kmembugs] age=5 cpu=5
pid=2306

Let's move along to the next test case, the double-free...

Interpreting the double-free on slab memory
Finally, a quick note on the double-free defect, successfully caught again (marked as [V6]
in Table 6.2). Here, the kernel reports it as follows:

BUG kmalloc-32 (Tainted: G B OE): Object already
free

[3997.543154] --

[3997.544129] INFO: Allocated in double_free+0x20/0x4b [test_
kmembugs] age=1 cpu=5 pid=2330

The very same template as described earlier follows this output... Do try it out for yourself,
both reading and interpreting it.

By the way, we've already seen how the SLUB debug framework deals with uninitialized
memory reads (the UMR defect) on slab cache memory (test case #10, marked as [V3]
and [V7] in Table 6.2). When run with slub_debug on, though no error report is
generated, a dump of the memory region shows the poison value 0x6b, denoting the fact
that this memory region is in an uninitialized state.

So, going by our experiments, while the kernel SLUB debug framework seems to catch
most of the memory corruption issues on slab memory, it doesn't seem to catch the read
OOB accesses on slab memory. Note that KASAN does (see Table 6.4)!

Learning how to use the slabinfo and related utilities
Another utility program that can prove to be very useful for understanding and helping
debug the slab caches is one named slabinfo. Though a user-mode app, its code is in
fact part of the kernel source tree, here:

tools/vm/slabinfo.c

Detecting slab memory corruption via SLUB debug 249

Build it by simply changing directory to the tools/vm folder within your kernel source
tree and typing make. Running it does require root access. Once built, for convenience,
I like to create a soft or symbolic link to the binary executable named /usr/bin/
slabinfo. Here it is on my system:

$ ls -l $(which slabinfo)

lrwxrwxrwx 1 root root 71 Nov 20 16:26 /usr/bin/slabinfo ->
<...>/linux-5.10.60/tools/vm/slabinfo

Display its help screen by passing the -h (or--help) option switch. This reveals a large
number of possible option switches. The following screenshot shows them all (for the
5.10.60 kernel):

Figure 6.6 – The help screen of the kernel slabinfo utility

250 Debugging Kernel Memory Issues – Part 2

A few things to note when running slabinfo:

• By default, this tool will only display slabs that have data within them (the same as
with the -l switch, in effect). You can change this by running slabinfo -e. It
displays only the empty caches – there can be quite a few!

• All options may not work straight away. Most require that the kernel is compiled
with SLUB debug on (CONFIG_SLUB_DEBUG=y). Typically, this is the case, even
for distro kernels. Some options require the SLUB flags to be passed on the kernel
command line (via the usual slub_debug parameter).

• You need to run it as root.

Let's begin by doing a quick run (with no parameters), seeing the header line and a line of
sample output, that of the kmalloc-32 slab cache – I've spaced the lines to fit):

$ sudo slabinfo |head -n1

Name Objects Objsize Space Slabs/Part/Cpu O/S O %Fr %Ef Flg

$ sudo slabinfo | grep "^kmalloc-32"

kmalloc-32 35072 32 1.1M 224/0/50 128 0 0 100

$

A quick roundup of the header line columns is as follows:

• The name of the slab cache (Name).

• The number of objects currently allocated (Objects).

• The size of each object is then shown (here, its 32 bytes, of course) (Objsize).

• The total space taken up in kernel memory by these objects (essentially, it's
Objects * Objsize) (Space).

• The slab cache memory distribution for this cache: number of full slabs, partial
slabs, and per-CPU slabs (Slabs/Part/Cpu).

• The number of objects per slab (O/S).

• The order of the page allocator from where memory is carved out for this cache (the
order is from 0 to MAX_ORDER). Typically, MAX_ORDER is the value 11, to give us
a total of 12 orders. 2^order is the size of free memory chunks (in pages) on the
page allocator free list for that order (O).

• The amount of cache memory free in percentage terms (%Fr).

• The effective memory usage as a percentage (%Ef).

• The slab flags (can be empty) (Flg).

Detecting slab memory corruption via SLUB debug 251

Want to see the actual printf() that emits these slab cache stats? It's right here:
https://elixir.bootlin.com/linux/v5.10.60/source/tools/vm/
slabinfo.c#L640.

All possible values for the slab flags and their meaning are as follows (pertain to the
column named Flg on the extreme right of slabinfo normal output):

• *: Aliases present

• d: For DMA memory slabs

• A: Hardware cache line (hwcache) aligned

• P: Slab is poisoned

• a: Reclaim accounting active

• Z: Slab is red zoned

• F: Slab has sanity checking on

• U: Slab stores user

• T: Slab is being traced

Note that the columns change when the -D (display active) option switch is passed.

An FAQ, perhaps: Of the many slab caches that are currently allocated (and have some data
content), which takes up the most kernel memory? This is easily answered by slabinfo:
one way is to run it with the -B switch, to display the space taken in bytes, allowing you
to easily sort on this column. Even simpler, the -S option switch has slabinfo sort
the slab caches by size (largest first) with nice, human-readable size units displayed. The
following screenshot shows us doing so for the top 10 highest kernel memory consuming
slab caches:

Figure 6.7 – The top 10 slab caches sorted by total kernel memory space taken (fourth column)

https://elixir.bootlin.com/linux/v5.10.60/source/tools/vm/slabinfo.c#L640
https://elixir.bootlin.com/linux/v5.10.60/source/tools/vm/slabinfo.c#L640

252 Debugging Kernel Memory Issues – Part 2

Interestingly (as often happens with software), the -U 'Show unreclaimable
slabs only' option of slabinfo came into being due to a system getting panicked.
This occurred when the unreclaimable slab memory usage went too close to 100%
and the Out Of Memory (OOM) killer was unable to find any candidate to kill! The
patch has the utility – as well as the OOM kill code paths – display all unreclaimable
slabs, to help with troubleshooting. This patch got mainlined in the 4.15 kernel. Here's
the commit – do take a peek at it: https://github.com/torvalds/linux/
commit/7ad3f188aac15772c97523dc4ca3e8e5b6294b9c. Along with the -U
switch, the -S option (sort by size), makes troubleshooting these corner cases easier!

The sort-by-loss (-L) option switch has slabinfo sort the slab caches by the amount
of kernel memory lost. A better word than lost, perhaps, is wasted. This is the usual
well-known internal fragmentation issue: when memory is allocated via the slab layer, it
internally does so via a best-fit model. This often results in a (hopefully small) amount
of memory being wasted or lost. For example, attempting to allocate 100 bytes via the
kmalloc() API will have the kernel actually allocate memory from the kmalloc-128
slab cache (as it can't possibly give you less via the kmalloc-96 cache), with the result
that your slab object actually consumes 128 bytes of kernel memory. Thus, the loss or
wastage in this case is 28 bytes. Running sudo slabinfo –L |head will quickly show
you (in descending order) the slabs with maximum wastage (or loss – look at the fourth
column, labeled Loss).

Once you've identified a slab cache that you'd like to further investigate, the -r (report)
option will have slabinfo emit detailed statistics. By default, this is on all slabs. You can
always pass a regular expression specifying which slabs you're interested in! For example,
sudo slabinfo –r vm.* will display details on all slabs matching the regex pattern
vm.*. With the SLUB debug flags enabled, it even shows the origin (and number) of
allocs and frees for each cache; it can be useful!

At times, you might see a slab cache with a name that's unfamiliar. Trying the -a (or
--aliases) option to show aliases can be useful to reveal what kernel object(s) it's being
used to cache.

The -T option has slabinfo display overall totals, a summary snapshot of all slab
caches. This is useful to get a quick overview of how many slab caches exist, how many are
active, how much kernel memory in all is being used, and so on. This kind of information
is extended when you use the -X option switch. It now shows even more detail. The
following screenshot is an example of running sudo slabinfo –X on my x86_64
Ubuntu guest:

https://github.com/torvalds/linux/commit/7ad3f188aac15772c97523dc4ca3e8e5b6294b9c
https://github.com/torvalds/linux/commit/7ad3f188aac15772c97523dc4ca3e8e5b6294b9c

Detecting slab memory corruption via SLUB debug 253

Figure 6.8 – Screenshot showing extended summary information via slabinfo -X

These can serve as useful diagnostics when troubleshooting a system (you'll find more in a
similar vein in the later section entitled Practical stuff – what's eating my memory?).

Running slabinfo with the -z (zero) option switch has it show all slab caches, both the
ones with data as well as the empty ones.

Debug-related options for slabinfo
For debug purposes, slabinfo has a -d and a -v option switch, allowing you to pass
debug flags and validate slabs, respectively. Note that both these option switches will only
work when the system is booted with the slub_debug kernel parameter set to some
non-null value.

254 Debugging Kernel Memory Issues – Part 2

It's interesting to see: when booted with slub_debug=FZPU, all the slab caches show up
with (at least) these flags set!

Figure 6.9 – Partial screenshot – the focus is on the SLUB debug flags being set as we booted with
slub_debug=FZPU

Notice how, for all slabs, the flags minimally contain PZFU.

Regarding the -d option switch, passing it by itself turns debugging off . (Quite
non-intuitively, right? Then again, this is consistent with the way the kernel parameter
slub_debug behaves.) When you want the kernel's SLUB debugging options on,
pass along the usual SLUB debug flags, like so: --debug=<flag1flag2...>. The
slabinfo help screen shows all of this clearly. Look at Figure 6.6, specifically the last few
lines – the ones that describe the --debug option switch.

What really happens under the hood when you do pass, say, --debug=fzput (or, if 'a'
is passed, all these SLUB debug flags are set), as a parameter to slabinfo is this: the
utility opens (as root, of course) the underlying /sys/kernel/slab/<slabname>
pseudofile for that slab cache (if you passed one or more of them as a parameter), else for
all slabs, and arranges to set these to 1, meaning enabled:

• If f|F is passed in --debug=<...>, /sys/kernel/slab/<slabname>/
sanity_checks is set to 1.

• If z|Z is passed in --debug=<...>, /sys/kernel/slab/<slabname>/
red_zone is set to 1.

• And similarly for the rest...

FYI, the code that does this is here: https://elixir.bootlin.com/linux/
v5.10.60/source/tools/vm/slabinfo.c#L717.

https://elixir.bootlin.com/linux/v5.10.60/source/tools/vm/slabinfo.c#L717
https://elixir.bootlin.com/linux/v5.10.60/source/tools/vm/slabinfo.c#L717

Detecting slab memory corruption via SLUB debug 255

The -v option switch to slabinfo can again be useful for debugging: it validates all
slabs, and on any errors being detected, it spews out diagnostics/error reports to the kernel
log. The format of the report is in fact identical to the error report format that the kernel's
SLUB debug infrastructure produces (we covered this in detail here: Interpreting the
kernel's SLUB debug error report).

As with the debug option switch, the –v causes slabinfo to write 1 into the pseudofile
/sys/kernel/slab/<slabcache>/validate. The kernel documents this as
follows: Writing to the validate file causes SLUB to traverse all of its cache's objects and check
the validity of metadata. All slab objects will be checked. The detailed output is written
to the kernel log. This can be useful when troubleshooting a live system that you suspect
might suffer from slab (SLUB) memory corruption.

Finally, we'll just mention the fact that there's even a utility script, slabinfo-gnuplot.
sh, to plot graphs to help visualize slab (SLUB) functioning over time! I'll leave it to you to
browse the kernel documentation that explains how to leverage it, here: https://www.
kernel.org/doc/Documentation/vm/slub.txt, in the section named Extended
slabinfo mode and plotting.

The /proc/slabinfo pseudofile
Also, the kernel of course exposes all this useful information on live slabs on the system
via procfs, particularly, the pseudofile /proc/slabinfo (again, you'll require root
access to view it). Here's a sampling of the large data available (internally, for each slab, it
breaks the data into three types: statistics, tunables, slabdata). First, the header
shows the version number and the columns:

$ sudo head -n2 /proc/slabinfo

slabinfo - version: 2.1

name <active_objs> <num_objs> <objsize>
<objperslab> <pagesperslab> : tunables <limit> <batchcount>
<sharedfactor> : slabdata <active_slabs> <num_slabs>
<sharedavail>

And here's some data from it:

Figure 6.10 – A screenshot showing some data from /proc/slabinfo the slabdata columns being pertinent

https://www.kernel.org/doc/Documentation/vm/slub.txt
https://www.kernel.org/doc/Documentation/vm/slub.txt

256 Debugging Kernel Memory Issues – Part 2

The man page on slabinfo(5) covers interpreting this data, in effect, all slab caches
exposed via /proc/slabinfo. We'll leave it to you to check it out. (Unfortunately, it
seems a bit dated in the sense that both the statistics and tunables information –
the first two columns – pertain to only the older SLAB implementation.)

By the way, the vmstat utility also has the ability to display the kernel slab caches
and some statistics (via its -m option switch). It essentially does so by reading /proc/
slabinfo, and thus implies you must run it as root. Try this on your box:

sudo vmstat -m

Check out the man page on vmstat(8) for more information.

The slabtop utility
As with top (and the more modern htop and the cool btop utilities), to see who's
consuming CPU in real time, we have the slabtop(1) utility to see live, real-time kernel
slab cache usage, sorted by the maximum number of slab objects by default (the sort
field can always be changed via the -s or --sort option switch). It too is based on data
obtained from /proc/slabinfo and thus, as usual, you'll require root access to run it.
Using slabtop, you can see for yourself how, besides the caches for specific kernel data
structures, the small-sized generic caches (typically the ones named kmalloc-*) are
often the ones being employed the most. Do try it and check out its man page for details.

eBPF's slabratetop utility
Finally, and a recent addition, is the eBPF slabratetop utility (it could be named
slabratetop-bpfcc, as is the case on my system). It displays, in real time, the
kernel's SLAB/SLUB memory cache allocation rate in a manner like the top utility does,
refreshing it once a second by default. It internally tracks the kmem_cache_alloc()
API to track the rate and total bytes allocated via this commonly used interface to allocate
slab objects within the kernel. Via option switches, you can control the output interval (in
seconds) and the number of times to show it (along with a couple of other switches).

So, entering the following will have the utility display the active caches (allocation rate and
the number of bytes allocated) in 5-second interval summaries, thrice:

sudo slabratetop-bpfcc 5 3

Do refer to its man page and/or pass the -h option switch to see a brief help screen.

Detecting slab memory corruption via SLUB debug 257

Practical stuff – what's eating my memory?
So, knowing about these utilities, how can they practically help? Well, one common case is
needing to know what's eating up memory (RAM) and from where exactly it is being eaten up.

The first question is very wide-ranging. In terms of user-mode processes and threads,
utilities such as smem, ps, and so on, can help. On a raw level, peeking at memory
statistics under procfs can really help as well. For example, you can track memory usage of
all threads by looking through procfs with something such as the following:

grep "^Vm.*:" /proc/*/status

Within this output, the VmRSS number is a reasonable measure of physical memory usage
(with the unit being kilobytes). So, doing the following can quickly show you the PIDs of
the top 10 processes or threads consuming the most RAM:

grep -r "^VmRSS" /proc/*/status |sed 's/kB$//'|sort -t: -k3n
|tail

Here, rather than userspace, you're perhaps more interested in who or what is eating
kernel dynamic – slab cache – memory, right? Here's one investigative scenario:

• First, use slabratetop (or slabratetop-bpfcc) to figure out which slab
cache, among the many present within the kernel, is being consumed the most.

• Second, use dynamic kprobes to look up the kernel-mode stack in real time to see
who or what within the kernel is eating into this cache!

We can easily achieve the first step like this:

sudo slabratetop-bpfcc

[...]

CACHE ALLOCS BYTES

names_cache 18 78336

vm_area_struct 176 46464

...

Okay, based on this sample output, there's a slab cache on my (guest) system named
names_cache that is consuming the greatest number of bytes. Also, you can see that the
vm_area_struct slab cache is currently seeing the greatest number of allocations, all
within the given time interval (a second by default).

258 Debugging Kernel Memory Issues – Part 2

Let's say we want to dig deeper and investigate what code paths within the kernel are
allocating memory from the vm_area_struct slab cache (pretty often, 176 times per
second, as of right now). In other words, how can you figure out who or what within the
kernel is performing these allocations? Okay, let's see: we know that most specific slab
cache objects are allocated via the kmem_cache_alloc() kernel interface. Thus, seeing
the (kernel) stack of kmem_cache_alloc() in real time will help you pinpoint who the
allocation is being performed by, or where from!

So how do we do that? That's the second part. Recall what you learned in the chapter on
Kprobes, specifically using dynamic kprobes (we covered this in Chapter 4, Debugging via
Instrumentation – Kprobes, in the Setting up a dynamic kprobe (via kprobe events) on any
function) section. Let's leverage that knowledge and look deeper into this. We'll begin by
using the kprobe[-perf] command (Bash script, really) to probe all running instances
of the kmem_cache_alloc() API in real time and reveal the internal kernel mode
stack (by passing along the -s option switch):

sudo kprobe-perf -s 'p:kmem_cache_alloc
name=+0(+96(%di)):string'

Also, do recall from Chapter 4, Debugging via Instrumentation – Kprobes, in the
Understanding the basics of the Application Binary Interface (ABI) section, that on x86_64,
the RDI register holds the first parameter. Here, for the kmem_cache_alloc() API, the
first parameter is a pointer to struct kmem_cache. Within this structure, at an offset
of 96 bytes, is the thing we're after, the member named name – the name of the slab cache
being allocated from!

On to the next point. The preceding command will probe for and show you all the slab
cache allocations currently being performed by the popular kmem_cache_alloc()
API. Let's filter its output to see only the one of interest to us right now, the one for the
vm_area_struct slab cache:

sudo kprobe-perf -s 'p:kmem_cache_alloc

name=+0(+96(%di)):string' | grep -A10

"name=.*vm_area_struct"

Detecting slab memory corruption via SLUB debug 259

A small portion of the output is seen in the following screenshot:

Figure 6.11 – Partial screenshot showing output from the kprobe-perf script with the kernel-mode stack
showing the lead up to the kmem_cache_alloc() API for the VMA structure alloc

You might need to adjust the grep –An (I've kept n as 10 here) parameter to show a
certain number of lines after the match). Quite clearly, this particular call chain shows us
that the kmem_cache_alloc() API has been invoked via a system call, sys_brk().
FYI, this system call (named brk() in userspace) is typically the one issued when a
memory region of a process needs to be created, or an existing one grown or shrunk.

Now, internally, the kernel manages the memory regions (technically, the mappings) of a
process via the Virtual Memory Area (VMA) metadata structure. Thus, when creating
a new mapping of a process – as is the case here – the VMA object will naturally need to
be allocated. As the VMA is a frequently used kernel structure, it's kept on a custom slab
cache and allocated from it – the one named vm_area_struct! This is the call chain
from before that allocates a VMA object from this very slab cache:

sys_brk() --> do_brk() --> do_brk_flags() --> vm_area_alloc()
--> kmem_cache_alloc()

Here's the actual line of code where the vm_area_alloc() routine is invoked:
https://elixir.bootlin.com/linux/v5.10.60/source/mm/
mmap.c#L3110, which in turn issues the kmem_cache_alloc() API, allocating an
instance of a VMA object from its slab cache and then initializing it. Interesting.

Security Tip
Though unrelated to this topic, I think security is important. To guarantee
that slab memory is always wiped, both at the time of allocation and freeing,
pass these on the kernel command line: init_on_alloc=1 init_
on_free=1. Of course, doing this can result in performance impact; do
test and ascertain whether to use one, both, or none on your project. More
information in a similar vein can be found here: https://kernsec.
org/wiki/index.php/Kernel_Self_Protection_Project/
Recommended_Settings.

https://elixir.bootlin.com/linux/v5.10.60/source/mm/mmap.c#L3110
https://elixir.bootlin.com/linux/v5.10.60/source/mm/mmap.c#L3110
https://kernsec.org/wiki/index.php/Kernel_Self_Protection_Project/Recommended_Settings
https://kernsec.org/wiki/index.php/Kernel_Self_Protection_Project/Recommended_Settings
https://kernsec.org/wiki/index.php/Kernel_Self_Protection_Project/Recommended_Settings

260 Debugging Kernel Memory Issues – Part 2

Good job on covering this section on SLUB debug and its offshoots. Now let's finish
this large topic on kernel memory debugging by – finally! – learning how to catch those
dangerous leakage bugs. Read on!

Finding memory leakage issues with
kmemleak
What is a memory leak and why does it matter? A memory leak is a situation where
you have allocated memory dynamically but failed to free it. Well, you think you have
succeeded in freeing it but the reality is that it hasn't been freed. The classic pedagogical
case is a simple one like this (let's just make it a userspace example for simplicity):

static foo(void) {

 char *ptr = malloc(1024);

 /* ... work with it ... */

 // forget to free it

}

Now, once you return from the function foo(), it's basically impossible to free the
memory pointed to by the variable ptr. Why? You know it, ptr is a local variable and is
out of scope once you've returned from foo(). Now, the 1,024 bytes of allocated memory
is, in effect, locked up, inaccessible, wasted – we call this a leak. Of course, once the user
process dies, it's freed back to the system.

Catching Memory Leaks in Userspace Apps
This book focuses purely on kernel debugging. Userspace app memory issues
and debugging them are covered in a lot of detail in my earlier book, Hands-On
System Programming with Linux, Packt, October 2018 (see chapters 5 and 6). In
a word, using the newer Sanitizer toolset (especially the all-powerful Address
Sanitizer (ASAN), as well as the older Valgrind suite of tools will certainly help
in userspace debug.

This can certainly happen within the kernel too (just substitute the preceding user code
for a kernel module and the malloc() function with a kmalloc() or a similar API!).
Even a small leakage of a few bytes can become a huge issue when the code that causes
the leak runs often (in a loop, perhaps). Not just that, unlike userspace, the kernel isn't
expected to die... the leaked memory is thus lost forever (yes, even when a module has a
leak and is unloaded, the dynamic kernel memory allocated isn't within the module; it's
typically slab or page allocator memory!).

Finding memory leakage issues with kmemleak 261

Now, you might say Hey, I know, but come on, if I allocate memory, I'll certainly free it.
True, but when the project is large and complex, believe me, you can miss it. As a simple
example, check out this pseudocode snippet:

static int kfoo_leaky(void) {

 char *ptr1 = kmalloc(GFP_KERNEL, 1024), *ptr2;

 /* ... work with ptr1 ... */

 // ...

 if (bar() < 0)

 return –EINVAL;

 // ...

 ptr2 = vmalloc(5120); [...]

 // ... work with ptr2 ...

 if (kbar() < 0)

 return –EIO;

 // ...

 vfree(ptr2);

 kfree(ptr1);

 return 0;

}

You see it, don't you? At both the error return call sites before the final return, we've
returned without freeing the memory buffers previously allocated – classic memory
leaks! This kind of thing is in fact a pretty common pattern, so much so that the kernel
community has evolved a set of helpful coding style guidelines, one of which will certainly
have helped avoid a disaster of this sort: using the (controversial) goto to perform
cleanup (like freeing memory buffers!) before returning. Don't knock it till you try it –
it works really well when used correctly. (This technique is formally called Centralized
exiting of functions – read all about it here: https://www.kernel.org/doc/
html/latest/process/coding-style.html#centralized-exiting-of-
functions).

Here's a fix (via the centralized exiting of functions route):

static int kfoo(void) {

 char *ptr1 = kmalloc(GFP_KERNEL, 1024), *ptr2;

 int ret = 0;

 /* ... work with ptr1 ... */

 // ...

https://www.kernel.org/doc/html/latest/process/coding-style.html#centralized-exiting-of-functions)
https://www.kernel.org/doc/html/latest/process/coding-style.html#centralized-exiting-of-functions)
https://www.kernel.org/doc/html/latest/process/coding-style.html#centralized-exiting-of-functions)

262 Debugging Kernel Memory Issues – Part 2

 if (bar() < 0) {

 ret = -EINVAL;

 goto bar_failed;

 }

 // ...

 ptr2 = vmalloc(5120); [...]

 // ... work with ptr2 ...

 if (kbar() < 0){

 ret = -EIO;

 goto kbar_failed;

 }

 // ...

kbar_failed:

 vfree(ptr2);

bar_failed:

 kfree(ptr1);

 return ret;

}

Quite elegant, right? The later you fail, the higher/the earlier (in the code) you jump, so
as to perform all the required cleanup. So here, if the function kbar() fails, it goes to the
kbar_failed label, performing the required free via the vfree()API, and then neatly
falls through performing the next required free via the kfree() API as well. I'm betting
you've seen code like this all over the kernel; it's a very common and useful technique.
(Again, a random example: see the code of a function belonging to the Cadence MACB/
GEM Ethernet Controller network driver here: https://elixir.bootlin.com/
linux/v5.10.60/source/drivers/net/ethernet/cadence/macb_
main.c#L3578).

Here's another common root cause of leakage bugs: an interface is designed in such a way
that it allocates memory, usually to a pointer passed by reference to it as a parameter. It's
often deliberately designed such that the caller is responsible for freeing the memory buffer
(after using it). But what happens when the caller fails to do so? A leakage bug, of course!
Typically, this will be well documented, but then who reads documentation... (hey, that
means read it!).

https://elixir.bootlin.com/linux/v5.10.60/source/drivers/net/ethernet/cadence/macb_main.c#L3578)
https://elixir.bootlin.com/linux/v5.10.60/source/drivers/net/ethernet/cadence/macb_main.c#L3578)
https://elixir.bootlin.com/linux/v5.10.60/source/drivers/net/ethernet/cadence/macb_main.c#L3578)

Finding memory leakage issues with kmemleak 263

Can I see some real kernel memory leakage bugs?
Sure. First, head over to the kernel.org Bugzilla site, https://bugzilla.kernel.
org/. Go to the Search | Advanced Search tab there. Fill in some search criteria – in
the Summary tab, perhaps you'd want to type in something (such as memory leak).
You can filter down by Product (or subsystem), Component (within Product), and even
Status and Resolution! Then, click on the Search button. Here's a screenshot of the search
screen for an example search I did, for your reference:

Figure 6.12 – kernel.org Bugzilla, searching for "memory leak" within bugs submitted under Drivers

(This particular search, at the time I made it, yielded 11 results.)

https://bugzilla.kernel.org/
https://bugzilla.kernel.org/

264 Debugging Kernel Memory Issues – Part 2

Again, as an example, here's one memory leak bug report from the kernel Bugzilla:
backport-iwlwifi: memory leak when changing channels (https://bugzilla.
kernel.org/show_bug.cgi?id=206811). Look at it and download the attachment
labeled dmesg.log after reboot. The kernel log output shows that none other
than kmemleak detected the leakage! We cover the interpretation of the report in the
Interpreting kmemleak's report section.

The real challenge is this: without explicitly employing powerful tools – such as
kmemleak for the kernel (for userspace, there's ASAN, MSAN, Valgrind's memcheck,
and so on) – memory leaks often go unnoticed in development and even in testing and
in the field. But when they strike one fine day, the symptoms can appear random – the
system might run perfectly for a long while (even several months), when all of a sudden,
it experiences random failures or even abruptly crashes. Debugging such situations can,
at times, be next to impossible – the team blames power variances/outages, lightning,
anything convenient to explain away the inexplicable random crash! How often have you
heard support say Just reboot and try it again – it'll likely work? And the unfortunate thing
is that it often does, thus, the real issue is glossed over. Unfortunately, this will simply not
do on mission-critical projects or products; it will eventually cause customer confidence to
deteriorate and could ultimately result in failure.

It's a serious problem. Don't let it become one on your project! Take the trouble to
perform long-spanning coverage testing (and for long durations – a week or more).

Configuring the kernel for kmemleak
Before going further, do realize that kmemleak is, again, not a magic bullet: it's designed
to track and catch memory leakage for dynamic kernel memory allocations performed via
the kmalloc(), vmalloc(), kmem_cache_alloc(), and friends APIs only. These
being the interfaces via which memory is typically allocated, it does serve an extremely
useful purpose.

The key kernel config option, the one we need to enable, is CONFIG_DEBUG_
KMEMLEAK=y (several related ones are mentioned here as well). Of course, there's the
usual trade-off: being able to catch leakage bugs is a tremendous thing, but can cause a
pretty high overhead on memory allocations and freeing. Thus, of course, we recommend
setting this up in your custom debug kernel (and/or in your production kernel during
intense testing, where performance isn't what matters and catching defects does).

The usual make menuconfig UI can be used to set up the kernel config; the relevant
menu is here: Kernel hacking | Memory Debugging | Kernel memory leak detector.
Turn it on.

https://bugzilla.kernel.org/show_bug.cgi?id=206811
https://bugzilla.kernel.org/show_bug.cgi?id=206811

Finding memory leakage issues with kmemleak 265

Tip
You can edit the kernel config file non-interactively by leveraging the kernel's
built-in config script here: scripts/config (it's a Bash script). Just run it
and it will display a help screen.

Once configured for kmemleak, a quick grep for DEBUG_KMEMLEAK on our debug
kernel's config file (/boot/config-5.10.60-dbg02 on my system) reveals that it's
indeed all set and ready to go; see the following screenshot:

Figure 6.13 – Our debug kernel configured for kmemleak

 A one-liner regarding each of the configs seen in the preceding screenshot is shown here:

• Does the architecture support kmemleak? Yes, as CONFIG_HAVE_DEBUG_
KMEMLEAK=y (implies that kmemleak is supported on this CPU).

• Is the kmemleak config on? Yes, as CONFIG_DEBUG_KMEMLEAK=y.

• For allocations that might occur before kmemleak is fully initialized, a memory
pool of this size (in bytes) is used to hold metadata: CONFIG_DEBUG_KMEMLEAK_
MEM_POOL_SIZE=16000

• Build a module for testing kmemleak? Yes, as CONFIG_DEBUG_KMEMLEAK_
TEST=m.

• Is kmemleak disabled by default? Yes, as CONFIG_DEBUG_KMEMLEAK_DEFAULT_
OFF=y. Enable it by passing kmemleak=on on the kernel command line.

• Is scanning memory for leaks enabled (every 10 minutes) by default? Yes, as
CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN=y. This is considered reasonable for
most systems, except perhaps low-end embedded systems.

Better chances of finding leaks with kmemleak are gained by enabling SLUB debug
features on the kernel (CONFIG_SLUB_DEBUG=y). This is mainly due to the poisoning
of slabs, which helps the leak detector as well. (As you'll realize from the previous section,
this config option is typically on by default in any case!)

266 Debugging Kernel Memory Issues – Part 2

Using kmemleak
Using kmemleak is straightforward. Here's a basic five-step checklist and steps to follow:

1. First, verify the following:

A. The debug filesystem (debugfs) is mounted and visible: we'll assume it is and
mounted in the usual location, /sys/kernel/debug.

B. Kmemleak's enabled and running: for now, we assume it's fine. What if it isn't?
More on this in the Addressing the issue – unable to write to the kmemleak
pseudofile section that follows...

2. Run your (possibly buggy) code or test cases, or just let the system run...
3. Initiate a memory scan. As root, do the following:

echo scan > /sys/kernel/debug/kmemleak

This kicks a kernel thread (no prizes for guessing that it's named kmemleak) into
action, actively scanning memory for leaks... Once done, if a leak (or the suspicion
of one) is found, a message in this format is sent to the kernel log:

kmemleak: 1 new suspected memory leaks (see /sys/kernel/
debug/kmemleak)

4. View the result of the scan by looking up the kmemleak debugfs pseudofile:

cat /sys/kernel/debug/kmemleak

5. (Optional) Clear all the current memory leak results. As root, do the following:

echo clear > /sys/kernel/debug/kmemleak

Note that as long as kmemleak memory scanning is active (it is by default), new leaks could
come up. They can be seen by again simply reading the kmemleak debugfs pseudofile.

Before going any further, it's quite possible that Step 1.B will come up – kmemleak may not
be enabled in the first place! The following section will help you troubleshoot and figure it
out. Once you've read it, we'll move on to trying out kmemleak with our leaky test cases!

Addressing the issue – unable to write to the kmemleak pseudofile
A common issue could turn up: when attempting to write to the kmemleak debugfs file,
often, you get an error like this:

echo scan > /sys/kernel/debug/kmemleak

bash: echo: write error: Operation not permitted

Finding memory leakage issues with kmemleak 267

Search the kernel log (via dmesg or journalctl -k) for a message like this:

kmemleak: Kernel memory leak detector disabled

If it does show up, it obviously shows that kmemleak, though configured, is still disabled
at runtime. How come? It usually implies that kmemleak hasn't been correctly or fully
enabled yet.

Here's a simple yet interesting way to debug what went wrong at boot (we certainly
mentioned this technique in Chapter 3, Debug via Instrumentation – printk and Friends):
at boot, ensure you pass the debug and initcall_debug parameters on the kernel
command line, in order to enable debug printks and see details of all kernel init hooks.
Now, once booted and running, do this:

$ cat /proc/cmdline

BOOT_IMAGE=/boot/vmlinuz-5.10.60-dbg02-gcc root=UUID=<...> ro
quiet splash 3 debug initcall_debug

Look up the kernel log, searching for kmemleak:

Figure 6.14 – Screenshot showing how kmemleak failed at boot

We can see the following:

• The init function kmemleak_late_init() failed, returning the value -12. This
is the negative errno value, of course (recall the kernel's 0/-E return convention).

• errno value 12 is ENOMEM, implying it failed as it ran out of memory.

• The error perhaps occurred here, in the initialization code of kmemleak:

// mm/kmemleak.c

static int __init kmemleak_late_init(void)

{

 kmemleak_initialized = 1;

268 Debugging Kernel Memory Issues – Part 2

 debugfs_create_file("kmemleak", 0644, NULL, NULL,

 &kmemleak_fops);

 if (kmemleak_error) {

 /* Some error occurred and kmemleak was disabled.

 *There is a [...] */

 schedule_work(&cleanup_work);

 return -ENOMEM;

 } [...]

One possible reason that the kmemleak_error variable gets set is that the early log
buffer used by kmemleak at boot isn't quite large enough. The size is a kernel config,
CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE, and typically defaults to 16,000 bytes
(as you can see above). So, let's try changing it to a larger value and retry (by the way,
this config was earlier named CONFIG_DEBUG_KMEMLEAK_EARLY_LOG_SIZE; it was
renamed to CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE in the 5.5 kernel):

$ scripts/config -s CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE

16000

$ scripts/config --set-val CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE
32000

$ scripts/config -s CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE

32000

(The –s option switch to the config script is to show the current value of the kernel
config supplied as a parameter; the --set-val switch is to set a kernel config). We now
build the reconfigured (debug) kernel, reboot, and test.

Guess what? We get the very same error: dmesg again shows that kmemleak is disabled!

A dollop of thought will reveal the actual – and rather silly – issue: to enable kmemleak,
we must pass kmemleak=on via the kernel command line. In fact, we already mentioned
this very point in the section on configuring kmemleak: Is kmemleak disabled by default?
Yes, as CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF=y).

Important
Want to use kmemleak to detect kernel-space memory leaks? Then, after
configuring the kernel for it, you have to explicitly enable it by passing
kmemleak=on on the kernel command line.

Finding memory leakage issues with kmemleak 269

Once this is done, all seems well (to verify, I even set the value of CONFIG_DEBUG_
KMEMLEAK_MEM_POOL_SIZE back to its default of 16,000, rebuilt the kernel,
and rebooted):

$ dmesg |grep "kmemleak"

[0.000000] Command line: BOOT_IMAGE=/boot/vmlinuz-5.10.60-
dbg02-gcc root=UUID=<...> ro quiet splash 3 kmemleak=on

[...]

[6.743927] kmemleak: Kernel memory leak detector
initialized (mem pool available: 14090)

[6.743956] kmemleak: Automatic memory scanning thread
started

All good! Here's the kmemleak kernel thread:

$ ps -e|grep kmemleak

144 ? 00:00:07 kmemleak

It, in fact, is deliberately run at a lower priority (a nice value of 10), thus only running
when most other threads yield (recall that on Linux, the nice value ranges from -20 to
+19, with -20 being the highest priority). By the way, you can check the nice value by
running ps -el instead of just ps -e.

The Nature of Debugging
So, this particular debug session turned out to be a bit of a non-event. That's
okay – we eventually figured it out and got kmemleak enabled, and that's what
matters. It also shows a truth about the nature of debugging – quite often, we'll
chase down a path (or several) that really doesn't lead anywhere (so-called red
herrings). Worry not, it's all part of the experience! In fact, it helps – you will
always learn something!

For the curious: passing kmemleak=on as a kernel parameter caused the mm/
kmemleak.c:kmemleak_boot_config() function to set the kmemleak_skip_
disable variable to 1, which skips disabling it at boot, which is what occurs otherwise.

Running our test cases and catching leakage defects
Now that kmemleak's enabled and running, let's get to the interesting bit – running
our buggy, leaky as heck test cases! We have three of them: without further ado, let's get
started with the first one.

270 Debugging Kernel Memory Issues – Part 2

Running test case 3.1 – simple memory leakage
The code of our first memory leakage test case is as follows:

// ch5/kmembugs_test/kmembugs_test.c

void leak_simple1(void)

{

 volatile char *p = NULL;

 pr_info("testcase 3.1: simple memory leak testcase 1\n");

 p = kzalloc(1520, GFP_KERNEL);

 if (unlikely(!p))

 return;

 pr_info("kzalloc(1520) = 0x%px\n", p);

 if (0) // test: ensure it isn't freed

 kfree((char *)p);

#ifndef CONFIG_MODULES

 pr_info("kmem_cache_alloc(task_struct) = 0x%px\n",

 kmem_cache_alloc(task_struct, GFP_KERNEL));

#endif

 pr_info("vmalloc(5*1024) = 0x%px\n", vmalloc(5*1024));

}

Clearly, this code has three memory leaks – the allocation of 1,520 bytes via the
kzalloc() API, the allocation of a task_struct object from its slab cache via the
kmem_cache_alloc() API , and the allocation of 5 kilobytes via the vmalloc() API.
Notice though, that due to CONFIG_MODULES being set, the second case doesn't actually
run, leaving us with two leaks. (Here, I haven't shown explicit code to check for the failure
case for the latter two allocation APIs; you should check, of course.)

As mentioned at the beginning of this section, Using kmemleak, let's now perform steps 1
to 5 (1 to 4 actually, as step 5 is optional – it's shown later):

1. Verify kmemleak's enabled, running, and its kthread is alive and well.
2. Run the test case:

cd <booksrc>/ch5/kmembugs_test

./load_testmod

[...]

sudo ./run_tests --no-clear

Finding memory leakage issues with kmemleak 271

--no_clear: will not clear kernel log buffer after
running a testcase

Debugfs file: /sys/kernel/debug/test_kmembugs/lkd_dbgfs_
run_testcase

Generic KASAN: enabled

UBSAN: enabled

KMEMLEAK: enabled

Select testcase to run:

1 Uninitialized Memory Read - UMR

[...]

Memory leakage

3.1 simple memory leakage testcase1

3.2 simple memory leakage testcase2 - caller to free
memory

3.3 simple memory leakage testcase3 - memleak in
interrupt ctx

[...]

(Type in the testcase number to run):

3.1

Running testcase "3.1" via test module now...

[...]

[4053.909155] testcase to run: 3.1

[4053.909169] test_kmembugs:leak_simple1(): testcase
3.1: simple memory leak testcase 1

[4053.909212] test_kmembugs:leak_simple1():
kzalloc(1520) = 0xffff888003f17000

[4053.909390] test_kmembugs:leak_simple1():
vmalloc(5*1024) = 0xffffc9000005c000

You can see from the output that the run_tests bash script first does a few quick
config checks and determines that KASAN, UBSAN, and KMEMLEAK are all
enabled (do browse through the script's code on the book's GitHub repo). It then
displays the menu of available test cases and has us select one. We type in 3.1.
The debugfs write hook, upon seeing this, invokes the test function – in this case,
leak_simple1(). It executes and you can see its printk output. Of course, it's
buggy, leaking memory twice, as expected.

272 Debugging Kernel Memory Issues – Part 2

3. Here's the key part! Initiate a kmemleak memory scan, as root:

sudo sh -c "echo scan > /sys/kernel/debug/kmemleak"

Hang on tight, the memory scan can take some time (on my x86_64 Ubuntu VM
running our custom debug kernel, it takes approximately 8 to 9 seconds)...

4. We read the content within the kmemleak pseudofile (in the section immediately
following this). Once done, and a potential leak(s) is found, the kernel log will show
something like this:

dmesg | tail -n1

kmemleak: 2 new suspected memory leaks (see /sys/kernel/
debug/kmemleak)

It even prompts you to now look up the kmemleak pseudofile, /sys/kernel/
debug/kmemleak. (You could always rig up a script to poll for a line like this
within the kernel log and only then read the scan report; I'll leave stuff like this to
you as an exercise.)

Interpreting kmemleak's report: So, let's look up the details, as kmemleak's urging
us to:

Figure 6.15 – kmemleak showing the memory leakage report for our test case #3.1

Finding memory leakage issues with kmemleak 273

Aha, the screenshot shows that both leakage bugs have indeed been caught! Bravo.

Let's interpret in detail the first of kmemleak's reports:

 � unreferenced object 0xffff8880127f8000 (size 2048):: The
KVA – the kernel virtual address – of the unreferenced object, the orphaned
memory chunk, the one that was allocated but not freed, is displayed, followed by
it's size in bytes.

 � Our test code issued a call: kzalloc(1520, GFP_KERNEL); asking for 1,520
bytes whereas the report shows the allocated size as 2,048 bytes. We know why this
is: the slab layer allocates memory on a best-fit basis; the closest slab cache greater
than or equal to the size we want is the kmalloc-2k one, thus the size shows up
as 2,048 bytes.

 � comm "run_tests", pid 5498, jiffies 4296684850 (age
84.737s): This line shows the (process) context in which the leak occurred, the
value of the jiffies variable when it occurred, and the age – this is the time
elapsed from when the process context (the one that ran the leaky kernel code) ran
to now... (doing sudo cat /sys/kernel/debug/kmemleak a little later will
show that the age has increased!). Keeping an eye on the age field can be useful:
it allows you to see if a detected leak is an old one (you can then clear the list by
writing clear to the kmemleak pseudofile).

 � Next, a hex dump of the first 32 bytes of the affected memory chunk is displayed
(as we issued the kzalloc() API here, the memory is initialized to all zeros).

 � This is followed by the crucial information – a stack backtrace, which of course
you read bottom-up. In this particular first leak test case, you can see from the
trace that a write system call was issued (showing up as the frame __x64_sys_
write here; this originates from the echo command we issued, of course). It, as
expected, ended up in our debugfs write routine.

 � Next, we see dbgfs_run_testcase+0x1c7/0x51a [test_kmembugs].
As mentioned earlier, this implies that the code that ran was at an offset of 0x1c7
bytes from the start of this function and the length of the function is 0x51a bytes.
The module name is in square brackets, showing that this function lives within
that module.

 � It called the function leak_simple1(), again, within our module.

 � This function, as we know, issued the kzalloc() API, which is a simple
wrapper around the kmalloc() API, which works by allocating memory from
an existing slab cache (one of the kmalloc-*() slab caches – as mentioned
earlier, it will be the one named kmalloc-2k).

274 Debugging Kernel Memory Issues – Part 2

 � This allocation is internally done via the kmem_cache_alloc() API, which
kmemleak tracks (thus it shows up in the stack backtrace as kmem_cache_
alloc_trace()).

So, there we are – we can see that our test case indeed caused the leak! The
interpretation of the second leak is completely analogous. This time, the stack
backtrace clearly shows that the leak_simple1() function in the test_
kmembugs module allocated a memory buffer by invoking the vmalloc() API,
which we quite deliberately didn't subsequently free, causing the leak.

5. Optionally (and step 5 of this procedure), we can clear (as root) all the current
memory leak results:

$ sudo sh -c "echo clear > /sys/kernel/debug/kmemleak"

$ sudo cat /sys/kernel/debug/kmemleak

Done. Clearing the previous results is useful, allowing you to de-clutter the report output;
this is especially true when running development code (or test cases) over and over.

Running test case 3.2 – the "caller-must-free" case
Our second memory leakage test case is interesting: here, we invoke a function (named
leak_simple2()) that allocates a small 8-byte piece of memory via the kmalloc()
API and sets it content to the string literal, leaky!!. It then returns the pointer to this
memory object to the caller. This is fine. The caller then collects the result in another
pointer and prints its value – it's as expected. Here's the code of the caller:

// ch5/kmembugs_test/debugfs_kmembugs.c

[...]

else if (!strncmp(udata, "3.2", 4)) {

 res2 = (char *)leak_simple2();

 // caller's expected to free the memory!

 pr_info(" res2 = \"%s\"\n", res2 == NULL ? "<whoops, it's
NULL>" : (char *)res2);

 if (0) /* test: ensure it isn't freed by us, the caller */

 kfree((char *)res2);

}

Run it (via our run_tests script), then perform the usual:

$ sudo sh -c "echo scan > /sys/kernel/debug/kmemleak"

$ sudo cat /sys/kernel/debug/kmemleak

Finding memory leakage issues with kmemleak 275

unreferenced object 0xffff8880074b5d20 (size 8):

comm "run_tests", pid 5779, jiffies 4298012622 (age 181.044s)

hex dump (first 8 bytes):

6c 65 61 6b 79 21 21 00 leaky!!.

backtrace:

[<00000000c0b84cb6>] slab_post_alloc_hook+0x78/0x5b0

[<00000000f76c1d8d>] kmem_cache_alloc_trace+0x16b/0x370

[<000000009f614545>] leak_simple2+0xc0/0x19b [test_kmembugs]

[<00000000747f9f09>] dbgfs_run_testcase+0x1e6/0x51a [test_
kmembugs]

 [...]

Great, it's caught. Interestingly, the first time I ran the scan, nothing seemed to be detected.
Running it again after a minute or so yielded the expected result – it reported one new
suspected memory leak. Also, having the address of the unreferenced (or orphaned)
memory buffer lets you investigate more about it via the kmemleak dump command. We
cover it and related stuff in the upcoming section, Controlling the kmemleak scanner.

Running test case 3.3 – memory leak in interrupt context
Until now, we've been pretty much exclusively running our test cases by having a process
run through our (buggy) kernel module code. This, of course, implies that the kernel code
was run in process context. The other context in which kernel code can possibly run is
interrupt context, literally, within the context of an interrupt.

Types of Interrupt Contexts
More precisely, within interrupt context, we can have a hardirq (the actual
hardware interrupt handler), the so-called softirq, and the tasklet (the common
way in which bottom halves are implemented – the tasklet is in fact a type of
softirq). These details (and a lot more!) are covered in depth in my earlier book
Linux Kernel Programming – Part 2 (hey, it's freely downloadable too).

So, what if we have a memory leak in code that runs in interrupt context? Will kmemleak
detect it? The only way to know is to try – the empirical approach!

The code of our third – interrupt-context – memory leakage test case is as follows:

// ch5/kmembugs_test/kmembugs_test.c

void leak_simple3(void)

{

276 Debugging Kernel Memory Issues – Part 2

 pr_info("testcase 3.3: simple memory leak testcase 3\n");

 irq_work_queue(&irqwork);

}

To achieve running in interrupt context without an actual device that generates interrupts,
we make use of a kernel feature – the irq_work* functionality. It allows the ability to
run code in interrupt (hardirq) context. Without going into details, to set this up, in the
init code of our module, we called the init_irq_work() API. It registers the fact that
our function named irq_work_leaky() will be invoked in hardirq context. But when
will this happen? Whenever the irq_work_queue() function triggers it! This is the
code of the actual interrupt context function:

/* This function runs in (hardirq) interrupt context */

void irq_work_leaky(struct irq_work *irqwk)

{

 int want_sleep_in_atomic_bug = 0;

 PRINT_CTX();

 if (want_sleep_in_atomic_bug == 1)

 pr_debug("kzalloc(129) = 0x%px\n",

 kzalloc(129, GFP_KERNEL));

 else

 pr_debug("kzalloc(129) = 0x%px\n",

 kzalloc(129, GFP_ATOMIC));

}

The leakage bug is obvious. Did you see the sneaky bug that we can cause to surface (if
you set the variable want_sleep_in_atomic_bug to 1?) This leads to an allocation
with the GFP_KERNEL flag in an atomic context – a bug! Okay, we'll ignore that for now
as it won't trigger as the variable is set to 0 (try it out and see, though).

We execute the test case (via our trusty run_tests wrapper script). To be safe, let's clear
the kmemleak internal state first:

sudo sh -c "echo clear > /sys/kernel/debug/kmemleak"

Finding memory leakage issues with kmemleak 277

Then, run the relevant test case:

$ sudo ./run_tests

[...]

(Type in the testcase number to run):

3.3

[...]

Now, let's have kmemleak scan kernel memory for any suspected leaks, and dump its report:

Figure 6.16 – kmemleak catches the leak in interrupt context

278 Debugging Kernel Memory Issues – Part 2

Notice the following:

• Test case 3.3 runs. The custom convenient.h:PRINT_CTX() macro shows
the context: you can see the d.h1 token within, showing that the irq_work_
leaky() function ran in the hardirq interrupt context (we covered interpreting the
PRINT_CTX() macro's output in Chapter 4, Debug via Instrumentation – Kprobes,
in the Interpreting the PRINT_CTX() macro's output section).

• The top line shows we ran the kmemleak scan command, getting it to check for
any leakage.

• The read of the kmemleak pseudofile tells the story: the orphaned or unreferenced
object, the memory buffer we allocated but didn't free. This time, the context is
"hardirq" – perfect, the leak did indeed occur in an interrupt, not process,
context. This is followed by the hex dump of the first 32 bytes and then the stack
backtrace (whose output verifies the situation).

Next, let's check out the kernel's built-in kmemleak test module.

The kernel's kmemleak test module
While configuring the kernel for kmemleak, we set CONFIG_DEBUG_KMEMLEAK_
TEST=m. This has the build generate the kmemleak test kernel module, for my (guest)
system, here: /lib/modules/$(uname –r)/kernel/samples/kmemleak/
kmemleak-test.ko.

This module's code is present within the samples folder of the kernel source tree, here:
samples/kmemleak/kmemleak-test.c. Please do take a peek; though short and
sweet (and full of leaks), it quite comprehensively runs memory leakage tests! I inserted it
into kernel memory with the command:

sudo modprobe kmemleak-test

The dmesg output is seen below. I also did the usual kmemleak scan and dumped it's
report; it caught all 13 memory leaks (!). The first of its reports (catching the first leak) is
visible here as well:

Finding memory leakage issues with kmemleak 279

Figure 6.17 – Output from trying out the kernel's kmemleak-test module; the first kmemleak report is
seen at the bottom

Notice that the addresses of the allocated memory buffers are printed with the %p
specifier, leading to the kernel hashing it (info leak prevention, security), but the
kmemleak report shows the actual kernel virtual address. Do try it out yourself and read
the full report.

280 Debugging Kernel Memory Issues – Part 2

Controlling the kmemleak scanner
This is the kmemleak debugfs pseudofile, our means to work with kmemleak:

$ sudo ls -l /sys/kernel/debug/kmemleak

rw-r—r-- 1 root 0 Nov 26 11:34 /sys/kernel/debug/kmemleak

As you know by now, reading from it has the underlying kernel callback display the last
memory leakage report, if any. We've also seen a few values that can be written to it, in order
to control and modify kmemleak's actions at runtime. There are a few more; we summarize
all values you can write (you'll need root access, of course) in the following table:

Table 6.3 – Values to write to the kmemleak pseudofile to control it

The code that governs the action to be taken on these writes can be seen here: mm/
kmemleak.c:kmemleak_write().

Finding memory leakage issues with kmemleak 281

A quick tip: If you need to test something specific and want a clean slate, as such, it's easy
to: first clean the kmemleak internal list, run your module or test(s), and run the scan
command, followed by the read to the kmemleak pseudofile. So, something like this:

echo clean > /sys/kernel/debug/kmemleak

//... run your module / test cases(s) / kernel code / ...

// wait a bit ...

echo scan > /sys/kernel/debug/kmemleak

// check dmesg last line to see if new leak(s) have been found
by kmemleak

// If so, get the report

cat /sys/kernel/debug/kmemleak

As with any such tool, the possibility of false positives is present. The official kernel
documentation provides some tips on how you could deal with it (if required):
https://www.kernel.org/doc/html/latest/dev-tools/kmemleak.
html#dealing-with-false-positives-negatives. This document also covers
some details about the internal algorithm used by kmemleak to detect memory leakage.
Do check it out (https://www.kernel.org/doc/html/latest/dev-tools/
kmemleak.html#basic-algorithm).

A few tips for developers regarding dynamic kernel
memory allocation
Though not directly related to debugging, we feel it's well worth mentioning a few
tips with respect to dynamic kernel memory allocation and freeing, for a modern
driver or module author. This is in line with the age-old principle that prevention is
better than cure!

Preventing leakage with the modern devres memory allocation APIs
Modern driver authors should definitely exploit the kernel's resource-managed (or
devres) devm_k{m,z}alloc() APIs. The key point: they allow you to allocate
memory and not worry about freeing it! Though there are several (they all are of the form
devm_*()), let's focus on the common case, the following dynamic memory allocation
APIs for you, the typical driver author:

void *devm_kmalloc(struct device *dev, size_t size, gfp_t gfp);

void *devm_kzalloc(struct device *dev, size_t size, gfp_t gfp);

https://www.kernel.org/doc/html/latest/dev-tools/kmemleak.html#dealing-with-false-positives-negatives
https://www.kernel.org/doc/html/latest/dev-tools/kmemleak.html#dealing-with-false-positives-negatives
https://www.kernel.org/doc/html/latest/dev-tools/kmemleak.html#basic-algorithm
https://www.kernel.org/doc/html/latest/dev-tools/kmemleak.html#basic-algorithm

282 Debugging Kernel Memory Issues – Part 2

Why do we stress that only driver authors are to use them? Simple: the first, mandatory
parameter is a pointer to the device structure, typical in all kinds of device drivers.

The reason why these resource-managed APIs are useful is that there is no need for
the developer to explicitly free the memory allocated by them. The kernel resource
management framework guarantees that it will automatically free the memory buffer upon
driver detach, and/or, if a kernel module, when the module is removed (or the device is
detached, whichever occurs first).

As you'll surely realize, this feature immediately enhances code robustness. Why? Simple,
we're all human and make mistakes. Leaking memory (especially on error code paths) is
indeed a fairly common bug!

A few relevant points regarding the usage of these devres APIs:

• A key point – don't attempt to blindly replace k[m|z]alloc() with the
corresponding devm_k[m|z]alloc() APIs! These resource-managed allocations
are really designed to be used only in the init and/or probe() methods of a device
driver (all drivers that work with the kernel's unified device model will typically
supply the probe() and remove() (or disconnect()) methods. We will not
delve into these aspects here.

• devm_kzalloc() is usually preferred as it initializes the buffer as well, thus
eclipsing the, again all too common, uninitialized memory read (UMR) types
of defects. Internally (as with kzalloc()), it is merely a thin wrapper over
the devm_kmalloc() API. (It's popular: the 5.10.60 kernel has the devm_
kzalloc() function being invoked well over 5,000 times.)

• The second and third parameters are the usual ones, as with the k[m|z]alloc()
APIs – the number of bytes to allocate and the Get Free Page (GFP) flags to use.
The first parameter, though, is a pointer to struct device. Quite obviously, it
represents the device that your driver is driving.

• As the memory allocated by these APIs is auto-freed (on driver detach or module
removal), you don't have to do anything after allocation. It can, though, be freed
via the devm_kfree() API. Doing this, however, is usually an indication that the
managed APIs are the wrong ones to use...

• The managed APIs are exported (and thus available) only to modules licensed under
the GNU General Public License (GPL) (ah, the sweet revenge of the
kernel community).

A few more tips on memory-related issues for developers follow...

Finding memory leakage issues with kmemleak 283

Other (more developer-biased) common memory-related bugs
Studies have shown that <insert anything you'd like here>. Okay, jokes aside, there's
evidence to suggest that preventing bugs during the development cycle (and/or early
unit testing) itself causes the least impact on the product (both cost-wise and otherwise).
Good, solid coding practices are skills one continually hones as a developer. As we've seen,
when it comes to working directly with memory, a non-managed language such as C can
be a nightmare, both bug- and security-wise. Thus, here's a hopefully useful quick list
with regard to common development-time defects that can occur when using the kernel's
memory allocation/free slab APIs:

• Performing a kernel slab allocation with the wrong GFP flag(s); for example, with
GFP_KERNEL when in an atomic context (such as an interrupt context of any sort,
or when holding a spinlock), here, you should use the GFP_ATOMIC flag, of course!

For instance, here's the patch to one such bug: https://lore.kernel.org/
lkml/1420845382-25815-1-git-send-email-khoroshilov@ispras.
ru/.

• Memory allocated via k{m|z}alloc() but freed with vfree(), and vice versa.

• Not checking the failure case (NULL, of course, for memory allocations). This might
seem pedantic, but it can and does happen! Using the if (unlikely(!p)) {
[…] kind of semantic is fine.

• Doing things such as the following:

if (p)

 kfree(p);

It's not required but quite harmless – still, don't. The reverse isn't: only
performing some action after a free conditionally, if the pointer is NULL. In other
words, assuming that the free interface sets the pointer variable to NULL! It does
not (though that would be quite intuitive).

• Failing to realize the wastage (internal fragmentation) that can occur when
allocating memory via the slab layer. Use the ksize() API to see the
actual number of bytes allocated. For example, in this pseudocode, p =
kmalloc(4097); n = ksize(p);, you'll find the value of n – the actual
memory allocated – is 8,192, implying a wastage of 8,192-4,097 = 4,095 bytes,
or almost 100%! Ask yourself: could I not redesign to allocate 4,096 bytes via
kmalloc(), instead of 4,097? Also, recall, you can leverage using slabinfo with
the –L option switch to see losses/wastage in all slab caches.

mailto:https://lore.kernel.org/lkml/1420845382-25815-1-git-send-email-khoroshilov@ispras.ru/
mailto:https://lore.kernel.org/lkml/1420845382-25815-1-git-send-email-khoroshilov@ispras.ru/
mailto:https://lore.kernel.org/lkml/1420845382-25815-1-git-send-email-khoroshilov@ispras.ru/

284 Debugging Kernel Memory Issues – Part 2

With this, we complete our detailed coverage on understanding and catching dangerous
memory leakage defects within the kernel! Great going. Let's complete this long chapter
with a kind of summarization of the many tools and techniques we've used.

Catching memory defects in the kernel –
comparisons and notes (Part 2)
The table that follows is an extension of the one in the previous chapter (Table 5.5), adding
the rightmost column, that of employing the kernel's SLUB debug framework. Here, we
tabulate and hence summarize our test case results for our test runs with all the tooling
technologies/kernels – vanilla/distro kernel, compiler warnings, with KASAN, with
UBSAN, and with SLUB debug with our debug kernel – we employed in the preceding
and this chapter. In effect, it's a compilation of all the findings in one place, thus allowing
you to make quick (and hopefully helpful) comparisons.

Catching memory defects in the kernel – comparisons and notes (Part 2) 285

Table 6.4 – Summary of various common memory defects and how various technologies react in
catching them (or not)

286 Debugging Kernel Memory Issues – Part 2

As mentioned in the previous chapter, an explanation of the footnotes within this table
(such as [C1], [K1], [U1], and so on) can be found in earlier relevant section. (For the
footnotes within the third to sixth columns, refer to the previous chapter).

So, again, a very brief summary:

• KASAN catches pretty much all OOB buggy memory accesses on global (static),
stack local, and dynamic (slab) memory. UBSAN doesn't catch the dynamic slab
memory OOB accesses (test cases 4.x, 5.x).

• KASAN does not catch the UB defects (test cases 8.x). UBSAN does catch (most of)
them.

• Neither KASAN nor UBSAN catch the first three test cases – UMR, UAR, and
leakage bugs, but the compiler(s) generate warnings and static analyzers (cppcheck,
others) can catch some of them.

• The kernel's SLUB debug framework is adept at catching most of the slab memory
corruption defects, but no others.

• The kernel kmemleak infrastructure catches kernel memory leaks allocated by any
of the k{m|z}alloc(), vmalloc(), or kmem_cache_alloc() (and friends)
interfaces.

Miscellaneous notes
Again, a few more points on the footnotes regarding Table 6.4:

• [V1]: The system could simply Oops or hang here or even appear to remain
unscathed, but that's not really the case... Once the kernel is buggy, the system
is buggy.

• [V2]: Please see the explanation of this detailed note in the section Running SLUB
debug test cases on a kernel with slub_debug turned off.

• [S1]: The kernel's SLUB debug infrastructure – when slub_debug=FZPU is passed
as a kernel parameter – catches both write over and underflow (right and left) OOB
accesses on slab memory. However, just as we saw with UBSAN, it only seems able
to catch it when the buggy access is via incorrect indices to the memory region,
not when the OOB access is via a pointer! Also, the OOB reads do not seem to be
caught, only the writes.

So, there we are! We (finally) went through our single summary table (Table 6.4) for pretty
much all the common memory defects and how they're caught, or not, by the tooling
we've discussed in some depth.

Summary 287

Summary
Most dynamic memory allocation (and freeing) in the kernel is done via the kernel's
powerful slab (internally, SLUB) interfaces. To debug them, the kernel provides a strong
SLUB debug framework and several associated utilities (slabtop, slabratetop
[-bpfcc], vmstat, and so on). Here, you learned how to catch SLUB bugs via the
kernel's SLUB debug framework as well as how to leverage these utilities.

Among memory bugs, the very mention of the leakage defect raises dread and fear, even
in very experienced developers! It's a deadly one indeed, as we (hopefully) showed you
in the Can I see some real kernel memory leakage bugs? section! The kernel's powerful
kmemleak framework can catch these dangerous leakage bugs. Be sure to test your
product (for long durations) with it running!

As we covered these tools and frameworks, we tabulated the results, showing you the bugs
a given tool can (or cannot) catch. To then summarize the whole thing, we built a larger
table with columns covering all the test cases and all the tools (Table 6.4) – a quick and
useful way for you to see and compare tooling and the memory defects they do and do not
catch (this table's a superset of a similar table, Table 5.5, in the previous chapter)!

Good job! You've now completed the long but really important chapters on catching
memory bugs in kernel space! Whew, plenty to chew on, right?! I'd definitely recommend
you take the time to think about and digest these topics, practicing as you go (please do
the few exercises suggested as well!). Then, when you've done so, take a break and let's
meet in the next, very interesting chapter, where we'll tackle head-on the topic of what a
kernel Oops is and how we diagnose it. See you there!

Further reading
• SLUB debug:

 � Kernel documentation: Short users guide for SLUB: https://www.kernel.
org/doc/html/latest/vm/slub.html#short-users-guide-for-
slub

 � slub_debug: Detect kernel heap memory corruption, TechVolve, Mar 2014:
http://techvolve.blogspot.com/2014/04/slubdebug-detect-
kernel-heap-memory.html

 � slabratetop example by Brendan Gregg: https://github.com/
iovisor/bcc/blob/master/tools/slabratetop_example.txt

https://www.kernel.org/doc/html/latest/vm/slub.html#short-users-guide-for-slub
https://www.kernel.org/doc/html/latest/vm/slub.html#short-users-guide-for-slub
https://www.kernel.org/doc/html/latest/vm/slub.html#short-users-guide-for-slub
http://techvolve.blogspot.com/2014/04/slubdebug-detect-kernel-heap-memory.html
http://techvolve.blogspot.com/2014/04/slubdebug-detect-kernel-heap-memory.html
https://github.com/iovisor/bcc/blob/master/tools/slabratetop_example.txt
https://github.com/iovisor/bcc/blob/master/tools/slabratetop_example.txt

288 Debugging Kernel Memory Issues – Part 2

 � Interesting: Network Jitter: An In-Depth Case Study, Alibaba Cloud, Jan 2020,
Medium: https://alibaba-cloud.medium.com/network-jitter-
an-in-depth-case-study-cb42102aa928

 � LLVM/Clang: LLVM FAQs, omnisci: https://www.omnisci.com/
technical-glossary/llvm

• Kmemleak: Kernel Memory Leak Detector: https://www.kernel.org/doc/
html/latest/dev-tools/kmemleak.html#kernel-memory-leak-
detector

• Linux Kernel Memory Leak Detection, Catalin Marinas, 2011: https://events.
static.linuxfound.org/images/stories/pdf/lceu11_marinas.
pdf

• GRUB bootloader:

 � How To Configure GRUB2 Boot Loader Settings In Ubuntu, Sk, Sept 2019:
https://ostechnix.com/configure-grub-2-boot-loader-
settings-ubuntu-16-04/

 � GRUB: How do I change the default boot kernel: https://askubuntu.com/
questions/216398/set-older-kernel-as-default-grub-entry

• The Heartbleed OpenSSL (TLS) vulnerability

 � https://heartbleed.com/

 � https://xkcd.com/1354/ (Brilliantly illustrated here)

https://alibaba-cloud.medium.com/network-jitter-an-in-depth-case-study-cb42102aa928
https://alibaba-cloud.medium.com/network-jitter-an-in-depth-case-study-cb42102aa928
https://www.omnisci.com/technical-glossary/llvm
https://www.omnisci.com/technical-glossary/llvm
https://www.kernel.org/doc/html/latest/dev-tools/kmemleak.html#kernel-memory-leak-detector
https://www.kernel.org/doc/html/latest/dev-tools/kmemleak.html#kernel-memory-leak-detector
https://www.kernel.org/doc/html/latest/dev-tools/kmemleak.html#kernel-memory-leak-detector
https://events.static.linuxfound.org/images/stories/pdf/lceu11_marinas.pdf
https://events.static.linuxfound.org/images/stories/pdf/lceu11_marinas.pdf
https://events.static.linuxfound.org/images/stories/pdf/lceu11_marinas.pdf
https://ostechnix.com/configure-grub-2-boot-loader-settings-ubuntu-16-04/
https://ostechnix.com/configure-grub-2-boot-loader-settings-ubuntu-16-04/
https://askubuntu.com/questions/216398/set-older-kernel-as-default-grub-entry
https://askubuntu.com/questions/216398/set-older-kernel-as-default-grub-entry
https://heartbleed.com/
https://xkcd.com/1354/

7
Oops! Interpreting

the Kernel Bug
Diagnostic

Kernel code is supposed to be perfect. It mustn't ever crash. But, of course, it does on
occasion... Welcome to the real world.

When userspace code hits a (typical) bug – an invalid memory access, say – the
processor's Memory Management Unit (MMU), upon failing to translate the invalid
userspace virtual address to a physical one (via the process context's paging tables), raises
a fault. The fault handler within the kernel then takes control. It ultimately (and typically)
results in a fatal signal (often, SIGSEGV) being sent to the faulting process (or thread).
This, of course, has the process possibly handle the signal and terminate.

Now take exactly the same case – except that this time, the invalid memory access occurs
in kernel space (in kernel mode)! Hey, that's not supposed to happen, right? True, but
bugs do happen, within kernel space too. This time, the kernel fault handler, on realizing
that it's kernel-mode code that triggered the fault, runs code to generate an Oops – a
kernel diagnostic that details what happened. The unfortunate process context can die as
well, as a side effect.

290 Oops! Interpreting the Kernel Bug Diagnostic

Here, you will learn about a key topic – what exactly a kernel Oops diagnostic message
is, and more importantly, how to interpret it in detail. Along the way, you will generate
a simple kernel Oops and understand exactly how to interpret it. Further along, several
tools and techniques to help with this task will be shown. Getting to the bottom of the
Oops often helps pinpoint the root cause of the kernel bug! To help you understand more
– and better spot – typical issues, a few actual kernel Oopses will also be discussed and/or
pointed to.

In this chapter, we will focus on the following main topics:

• Generating a simple kernel bug and Oops

• A kernel Oops and what it signifies

• The devil is in the details – decoding the Oops

• Tools and techniques to help determine the location of the Oops

• An Oops on an ARM Linux system and using netconsole

• A few actual Oops

Technical requirements
The technical requirements and workspace remain identical to what's described in Chapter
1, A General Introduction to Debugging Software. The code examples can be found within
the book's GitHub repository here: https://github.com/PacktPublishing/
Linux-Kernel-Debugging. The only thing new is we'll show you how to clone and
use the useful procmap utility as well.

Generating a simple kernel bug and Oops
You've heard the quote It takes a thief to catch a thief. So, let's first learn how to generate a
kernel bug (it shouldn't be too much of a challenge).

As you'll know, the classic pedagogical bug is the (in)famous NULL pointer
dereference (the upcoming section, What's this NULL trap page anyway? elaborates
on it). So, here's the plan:

• We'll first write a very simple kernel module that performs the cardinal sin of
dereferencing the NULL pointer (the address 0x0). We'll call it our version 1
oops_tryv1 module.

• Once you try it out, we'll move on to a slightly more sophisticated version 2 oops_
tryv2 module. Within it, we'll provide three distinct ways to generate an Oops!

https://github.com/PacktPublishing/Linux-Kernel-Debugging
https://github.com/PacktPublishing/Linux-Kernel-Debugging

Generating a simple kernel bug and Oops 291

Before embarking on our generate-an-Oops quest, let's better understand what the
procmap utility does and what the NULL trap page is. First, let's go with the utility.

The procmap utility
Being able to visualize the complete memory map of the kernel Virtual Address Space
(VAS) as well as any given process's user VAS is what the procmap utility is designed to
do. (Full disclosure: I'm the original author.)

The description on its GitHub page (https://github.com/kaiwan/procmap)
sums it up:

procmap is designed to be a console/CLI utility to visualize the complete
memory map of a Linux process, in effect, to visualize the memory

mappings of both the kernel and usermode Virtual Address Spaces (VAS).

It outputs a simple visualization of the complete memory map of a given
process in a vertically-tiled format ordered by descending virtual address
(see screenshots below). The script has the intelligence to show kernel and

userspace mappings as well as calculate and show the sparse memory
regions that will be present. Also, each segment or mapping is (very

approximately) scaled by relative size and color-coded for readability. On
64-bit systems, it also shows the so-called non-canonical sparse region or

'hole' (typically close to a whopping 16,384 PB on the x86_64).
The utility includes options to see only kernel space or userspace, verbose and debug
modes, the ability to export its output in convenient CSV format to a specified file, as well
as other options. It has a kernel component as well (a module) and currently works on
(auto-detects) x86_64, AArch32, and AArch64 CPUs.

Do note, though, that it's not complete in any real sense; development is ongoing. There
are several caveats. Feedback and contributions are most appreciated!

Download/clone it from here: https://github.com/kaiwan/procmap.

What's this NULL trap page anyway?
On all Linux-based systems (indeed, pretty much on all modern virtual memory-
based operating systems), the kernel splits the virtual memory region available to a
process into two portions – user and kernel VAS (we call it the VM split – there's a very
detailed discussion in the Linux Kernel Programming, Packt book, in Chapter 7, Memory
Management Internals - Essentials).

https://github.com/kaiwan/procmap
https://github.com/kaiwan/procmap

292 Oops! Interpreting the Kernel Bug Diagnostic

On the x86_64, the size of the complete VAS per process is of course 2^64 bytes. Now,
that's a phenomenally huge number. It's 16 EB (EB stands for exabytes – 1 exabyte = 1,024
petabytes = 1 million terabytes = 1 billion gigabytes!). The VAS is simply far too large. So,
the kernel, by default on the x86_64, is designed to split it like this:

• Kernel VAS of size 128 TB anchored to the top of the VAS (from the kernel virtual
address (KVA) 0xffffffffffffffff at the very top of the VAS to KVA
0xffff800000000000)

• User VAS of size 128 TB anchored to the bottom of the VAS (from the user
virtual address (UVA) 0x00007fffffffffff to UVA 0x0 at the very bottom
of the VAS)

Think about This
The 64-bit VAS is so big that, in this case, we end up using just a tiny fraction of
the available address space. 16 EB is 16,384 PB. Of that – on the x86_64 - we're
using 128 TB + 128 TB = 256 TB (which is 256/1024 = 0.25 PB). This implies
that about 0.0015% of the available VAS is being used.

Now, to the point of interest here: at the low end of the user VAS, the very first virtual page
– from byte 0 to byte 4095 – is called the NULL trap page. Let's quickly run the procmap
utility (we assume you've installed it by now) on our shell process (which happens to have
PID 1076) to see it display the NULL trap page:

$ </path/to/>procmap

 --pid=1076

[...]

Generating a simple kernel bug and Oops 293

We can see the NULL trap page in the following screenshot:

Figure 7.1 – Partial screenshot of the lower portion of the user VAS from the procmap utility

294 Oops! Interpreting the Kernel Bug Diagnostic

You can spot the NULL trap page right at the bottom of the preceding screenshot (some
mappings of the bash process are visible higher up). The NULL trap page works by
having all permissions – rwx – set to --- so that no process (or thread) can read, write,
or execute anything therein! This is why, when a process attempts to read or write the
NULL byte at address 0x0, it doesn't work. Briefly, what actually happens is this:

• A process attempts to access (read/write/execute) or dereference the NULL byte.

• In fact, accessing any byte within this page will lead to this same sequence of events,
as the --- mode applies to all bytes within the page, which is why it's called the
NULL trap page! It traps access to any bytes within it.

• The permissions for all bytes in the page are zero: no read, no write, no execute.
Now (unless cached), all virtual addresses end up at the MMU. The MMU does
its checks and then performs runtime address translation, translating the virtual
address to a physical one. Here, the MMU detects the fact that all bytes in the
page have no permissions and thus raises a fault (typically on x86, a general
protection fault).

• The OS has fault (and trap/exception) handlers preinstalled. Control is passed on to
the appropriate fault handling function.

• This function – the fault handler – runs in the process context of the process that
caused the fault. It, via a rather elaborate algorithm, figures out what the issue is.

• Here, the fault handler will conclude that a process executing in user mode
attempted a buggy access. It thus sends it a fatal signal (SIGSEGV) to it. This is
what can ultimately lead to the process dying and the Segmentation fault
[(core dumped)] message showing on the console. Of course, the process
could install a signal handler to handle this signal. Ultimately though, after
cleanup, it must terminate.

Now that you understand what exactly the NULL trap page is and its workings, let's do
what we're not supposed to: try and read/write the NULL address in kernel mode, causing
a kernel bug!

A simple Oops v1 – dereferencing the NULL pointer
In this, our first simple version of a buggy kernel module, we simply read or write the
NULL address. As you just learned in the previous section, any access – read, write, or
execute – on any byte within the NULL trap page will cause the MMU to jump up and
trigger a fault. This remains true in kernel mode as well.

Generating a simple kernel bug and Oops 295

Here's the relevant code snippet for the buggy module (please do clone this book's GitHub
repo, browse through, and try things yourself!):

// ch7/oops_tryv1/oops_tryv1.c

[…]

static bool try_reading;

module_param(try_reading, bool, 0644);

MODULE_PARM_DESC(try_reading,

"Trigger an Oops-generating bug when reading from NULL; else,
do so by writing to NULL");

We keep a Boolean module parameter named try_reading. It's 0 (or off) by default. If
set to 1 (or the value yes), the module code will attempt to read the content of the NULL
address. If left as 0, the code, detecting this, will instead try to write a byte ('x') to the
NULL address. Here's the code of the initialization function where this is done:

static int __init try_oops_init(void)

{

 size_t val = 0x0;

 pr_info("Lets Oops!\nNow attempting to %s something

 %s the NULL address 0x%p\n",

 !!try_reading ? "read" : "write",

 !!try_reading ? "from" : "to", // pedantic, huh

 NULL);

 if (!!try_reading) {

 val = *(int *)0x0;

 /* Interesting! If we leave the code at this, the
compiler actually optimizes it away, as we're not working with
the result of the read. This makes it appear that the read does
NOT cause an Oops; this ISN'T the case, it does, of course. So,
to prove it, we try and printk the variable, thus forcing the
compiler to generate the code, and voila, we're rewarded with a
nice Oops ! */

 pr_info("val = 0x%lx\n", val);

 } else // try writing to NULL

 *(int *)val = 'x';

 return 0; /* success */

}

296 Oops! Interpreting the Kernel Bug Diagnostic

It's pretty straightforward. Do read the detailed comment above regarding compiler
optimization in the read case and how we can sidestep this.

The key point here, of course, is that both the read and write accesses are buggy – as
described in detail in the previous section, What's this NULL trap page anyway?. Any
attempt to read/write/execute any byte in the NULL trap page is disallowed and results
in a fault! Here and now, the kernel module code, running in the process context of the
insmod process, will perform the buggy access.

Now, think about this: the kernel isn't a process. The fault handler code, upon detecting
that a buggy access was made in kernel mode (yes, it can and does happen!), realizes that
something's dramatically wrong – the kernel is buggy. It thus triggers an Oops! (We also
mention that there are exceptions to this; handling vmalloc faults and interrupts are some
of them.)

What's with the !!<boolean> Syntax?
It's one of the C coding features being taken advantage of: using
!!<boolean_expression> guarantees the expression evaluates to
either 0 or 1, no matter what value is passed (for example, passing 5 makes it
!!(5). Now, !5 is 0 and !0 is 1). Clever.

The following partial screenshot shows just the initial portion of the Oops messages
written to the kernel log. Worry not – we'll definitely cover the rest and learn how to
interpret it in detail. For now, just take a look at it. Here, in the example shown, we
attempted to write into the NULL byte, triggering the Oops:

Figure 7.2 – A partial screenshot showing the classic Oops that results when attempting to write to the
NULL address (via our oops_tryv1 module)

The Oops: at the beginning of a line in the kernel log messages (spot it above) denotes
the kernel printks that follow are the Oops diagnostic message.

Generating a simple kernel bug and Oops 297

A perhaps useful (silly) workaround to rebooting
Did you notice, once buggy, the kernel module can't be unloaded (via rmmod) as the
reference count is non-zero? lsmod verifies this:

$ lsmod |grep oops

oops_tryv1 16384 1

This is typically as the Oops occurred prior to the process context (insmod, in our case)
exiting and thus having the module reference count being decremented down to 0. The
1 at the extreme right of the preceding output shows that the current module reference
count is 1, preventing the unloading of this module.

Now, if you can't unload the module, you can't load it up again (to retry it after editing
the source file(s)). The correct approach is to reboot the box and start over. A very silly
workaround to this annoying problem is to simply clean up (make clean), rename the
source file, edit the Makefile to use the new name, and build it. Now it will load up,
under the new name! Very silly, but effective when you're in development and in a hurry
to try things out.

Doing a bit more of an Oops – our buggy module v2
As mentioned at the beginning of this chapter, in our version 2 buggy module, we'll do
a few more slightly (and hopefully) more realistic things to trigger a kernel Oops. This
module has three distinct ways to trigger an Oops:

• One, by writing to a randomly generated KVA within the NULL trap page.

• Two, by allowing the user to pass a (random) invalid KVA and attempting to write
something there (you can leverage the procmap utility to find an invalid KVA).

• Three, we spin up a simple workqueue function. This will have a kernel worker
thread run its code when it's scheduled. Within the workqueue function, we'll
trigger an Oops by attempting to write something to a member of a structure where
the structure pointer is NULL (as this scenario can be quite realistic, we'll make it a
use case pretty much throughout this chapter).

Let's begin by using the first approach mentioned above to trigger an Oops!

298 Oops! Interpreting the Kernel Bug Diagnostic

Case 1 – Oops by writing to a random location within
the NULL trap page
Being very similar to the first v1 module, I won't delve much into this. It suffices to say
that we use a kernel interface (the get_random_bytes() API) to generate a random
number and scale it down to numbers between 0 and 4,095 (by using the modulo
operator). The relevant code in the module's init function is seen here:

// ch7/oops_tryv2/oops_tryv2.c

[...]

static int __init try_oops_init(void)

{

 unsigned int page0_randptr = 0x0;

 [...]

} else { // no module param passed, write to random kva in NULL

trap

 pr_info("Generating Oops by attempting to write to a
random invalid kernel address in NULL trap page\n");

 get_random_bytes(&page0_randptr, sizeof(unsigned
int));

 bad_kva = (page0_randptr %= PAGE_SIZE);

 }

 pr_info("bad_kva = 0x%lx; now writing to it...\n", bad_
kva);

 *(unsigned long *)bad_kva = 0xdead;

[...]

The last line seen here is where we attempt to write into this bad KVA. This, of course,
triggers an Oops. To try this out, simply insmod the module without passing any
parameters. This will have the code go to this use case (I'll leave it to you to try it out for
yourself and see the kernel log).

Generating a simple kernel bug and Oops 299

Case 2 – Oops by writing to an invalid unmapped location
within the kernel VAS
For this second use case, we have a module parameter named mp_randaddr. To run this
case, you're to pass it to the module the usual way, setting it to an invalid kernel address
(or KVA):

// ch7/oops_tryv2/oops_tryv2.c

[...]

static unsigned long mp_randaddr;

module_param(mp_randaddr, ulong, 0644);

MODULE_PARM_DESC(mp_randaddr, "Random non-zero kernel virtual
address; deliberately invalid, to cause an Oops!");

Now, when the module's init function detects that you've passed a non-zero value in this
parameter, it invokes the following code:

} else if (mp_randaddr) {

 pr_info("Generating Oops by attempting to write to the
invalid kernel address passed\n");

 bad_kva = mp_randaddr;

 } else {

 [... << code of the first case above >> ...]

 }

 pr_info("bad_kva = 0x%lx; now writing to it...\n", bad_
kva);

 *(unsigned long *)bad_kva = 0xdead;

The approach is pretty much identical to the first case; what makes it interesting is this:
how will I know which kernel address (or KVA) to pass? How will I know it's an invalid
(or unmapped) location in the kernel VAS?

Ah, this is where the procmap utility comes into play! Simply run procmap (passing
any PID and specifying the --only-kernel option switch, as we're not interested in
the user VAS now). Here's how I invoked it, for example, on my x86_64 guest VM (you
will need to update the PATH environment variable to include the directory where you
installed procmap):

$ procmap --pid=1 --only-kernel

...

300 Oops! Interpreting the Kernel Bug Diagnostic

Here's a partial screenshot of the output it displays, focused on the upper portion of the
kernel VAS:

Figure 7.3 – Partial screenshot showing the procmap utility's output focused on the upper portion of the
kernel VAS; some sparse (unmapped) regions are clearly visible

Generating a simple kernel bug and Oops 301

Okay, look carefully at the preceding screenshot. The regions marked <... K sparse
region ...> are empty holes in the kernel VAS. There's nothing mapped here. This
is quite common. Memory like this is often referred to as a sparse region or a hole in the
address space.

The point is this: sparse regions are unmapped regions, thus, if you attempt to access any
of these locations in any manner – read, write, or execute – it's a bug! So, let's pick a KVA
within a sparse region. I'll pick one between the module region (where kernel modules
live) and the kernel vmalloc region (where the vmalloc() allocates memory from), that
is, any address between 0xffffffffc0000000 and 0xffffda377fffffff. So, I'll
take the KVA 0xffffffffc000dead as the value for my invalid kernel address and run
with it.

Right, ensure you've built the oops_tryv2 module, then load it up passing the
parameter as just discussed:

$ modinfo -p ./oops_tryv2.ko

mp_randaddr:Random non-zero kernel virtual address;
deliberately invalid, to cause an Oops! (ulong)

bug_in_workq:Trigger an Oops-generating bug in our workqueue
function (bool)

$

We use the modinfo utility to show that our module accepts two parameters (please
ignore the second one for now – it's our next topic). Let's (finally!) get going:

$ sudo insmod ./oops_tryv2.ko mp_randaddr=0xffffffffc000dead

Killed

$

302 Oops! Interpreting the Kernel Bug Diagnostic

Aha! Our module (deliberately) attempting to write to the invalid kernel address
0xffffffffc000dead (passed via the module parameter) has it run headlong into
a buggy ending. We got what we wanted – an Oops has hit. The following (partial)
screenshot shows you a good portion of it:

Figure 7.4 – Screenshot showing the Oops generated by attempting to write to an invalid/unmapped
kernel address

I hope the key point is clear: of course, we're going to have a bug – an Oops. We wrote
to an invalid unmapped kernel address within a sparse region of the kernel VAS, which
procmap literally helped us see.

Why does attempting to access an invalid address cause the Oops? The answer's
very similar to what we discussed regarding the NULL trap page. Here's what
essentially occurs:

1. The virtual address being worked upon (read, written, or executed) goes to
the MMU.

Generating a simple kernel bug and Oops 303

2. The MMU, knowing where the current process context's paging tables are (for x86,
the physical address of the base of the paging tables is in the CR3 register), proceeds
to now translate this virtual address (KVA) to a physical address (here, we'll ignore
hardware optimizations such as the CPU caches and the Translation Lookaside
Buffers (TLBs) that might already hold the physical address, thus short-circuiting
the lengthy translation and providing a speed-up).

3. Normally, it will find a mapping and perform the translation, placing the physical
address on the bus. The CPU takes over and the work gets done. In this case,
though, the kernel address passed along is invalid (deliberately so) – it's literally
part of a hole in the kernel VAS! So, the address translation fails. The MMU, being
hardware, does the best it can: it informs the OS that something's wrong by raising a
(page) fault.

4. The OS's page fault handler takes over (running in the context of the process that
caused the fault – here, it's insmod of course). It figures that an invalid write was
attempted while in kernel mode – it thus triggers an Oops!

What about understanding and interpreting this messy Oops thing in detail? That's
precisely what we do in the coming section, The devil is in the details – decoding the Oops.
Hang tight – we'll get there!

Case 3 – Oops by writing to a structure member when the structure
pointer's NULL
This use (or test) case is a bit more involved, helping make it a bit more realistic as
well. The end result's the same as the prior two cases though – we get the kernel to
trigger an Oops.

This time, we'd like the buggy code path to not run in the insmod process context. To
arrange for this to happen, we initialize a (kernel default) workqueue and schedule it,
having its code execute. The execution of the kernel default workqueue is done in the
context of a kernel worker thread. We arrange for the work function to have a bug – a
write to an invalid memory location, a pointer (to a structure) that hasn't been assigned
any memory. This of course causes an Oops to trigger. Here are the relevant code snippets
(as usual, I urge you to browse the full code and try these things out yourself as well):

// ch7/oops_tryv2/oops_tryv2.c

[...]

static bool bug_in_workq;

module_param(bug_in_workq, bool, 0644);

MODULE_PARM_DESC(bug_in_workq, "Trigger an Oops-generating bug
in our workqueue function");

304 Oops! Interpreting the Kernel Bug Diagnostic

This time we have a module parameter named bug_in_workq, with data type Boolean.
It's false by default. Set it to 1 (or yes) to have this use case get underway:

static struct st_ctx {

 int x, y, z;

 struct work_struct work;

 u8 data;

} *gctx, *oopsie; /* careful, pointers have no memory! */

The preceding is the structure we use – notice the pointers to it. In our module's init
function, if the bug_in_workq parameter is set, we call the function setup_work(),
which sets up some work on the kernel-default workqueue:

if (!!bug_in_workq) {

[...]

 setup_work();

 return 0;

}

The function allocates memory to the gctx pointer, calls the INIT_WORK() macro
to set up work – the function do_the_work() – on the kernel's default (or events)
workqueue (it's the default workqueue):

static int setup_work(void)

{

 gctx = kzalloc(sizeof(struct st_ctx), GFP_KERNEL);

 [...]

 gctx->data = 'C';

 /* Initialize our workqueue */

 INIT_WORK(&gctx->work, do_the_work);

Generating a simple kernel bug and Oops 305

Next, we call schedule_work() on our workqueue to have the kernel actually run the
code of our work function:

 // Do it!

 schedule_work(&gctx->work); [...]

}

Finally, here's the actual workqueue function that's run (by a kernel worker thread) when
the schedule_work() API triggers. It's buggy, of course (quick – spot the bug!):

static void do_the_work(struct work_struct *work)

{

 struct st_ctx *priv = container_of(

 work, struct st_ctx, work);

 [...]

 if (!!bug_in_workq) {

 pr_info("Generating Oops by attempting to

 write to an invalid kernel

 memory pointer\n");

 oopsie->data = 'x';

 }

 kfree(gctx);

}

Well, it's obvious in retrospect: the pointer to our structure named oopsie (appropriate,
huh?) has no memory (its value is NULL as it's a global static variable within our module).
Yet, we attempt to try and write into a member of the structure via it. This triggers the
Oops. Here's how I invoke it:

sudo insmod ./oops_tryv2.ko bug_in_workq=yes

Did you notice? This time the Killed message does not appear. This is because the
insmod process isn't killed. Instead, the kernel worker thread that consumes our
workqueue function will suffer the consequences of the bug.

306 Oops! Interpreting the Kernel Bug Diagnostic

Here's a partial screenshot:

Figure 7.5 – Partial screenshot of the Oops triggered by our oops_tryv2 module due to a bug in our
workqueue function

By the way, if required, you can read the details of setting up and using kernel
workqueues, timers, and kernel threads in Chapter 5, Working with Kernel Timers,
Threads, and Workqueues of my earlier Linux Kernel Programming, Part 2 book (the
e-book is freely downloadable).

Of course, here we always assume that you do have access to the kernel log (via dmesg,
journalctl, on a safe place on a flash chip, and so on). What if you don't know where
the Oops message is in the first place? Well, the kernel community has documented
what you can do about this here: Where is the Oops message located? (https://www.
kernel.org/doc/html/latest/admin-guide/bug-hunting.html#where-
is-the-oops-message-is-located). Also, we shall cover some of the techniques
mentioned therein later. Netconsole is covered in the section, An Oops on an ARM Linux
system and using netconsole, and kdump/crash is briefly covered in Chapter 12, A Few
More Kernel Debug Approaches.

Okay, you now know how to trigger a kernel bug, an Oops, in several ways! A quick look
at what a kernel Oops is and isn't follows.

https://www.kernel.org/doc/html/latest/admin-guide/bug-hunting.html#where-is-the-oops-message-is-located
https://www.kernel.org/doc/html/latest/admin-guide/bug-hunting.html#where-is-the-oops-message-is-located
https://www.kernel.org/doc/html/latest/admin-guide/bug-hunting.html#where-is-the-oops-message-is-located

A kernel Oops and what it signifies 307

A kernel Oops and what it signifies
Here are a quick few things to realize regarding a kernel Oops.

First off, an Oops is not the same as a segfault – a segmentation fault... It might, as a
side effect, cause a segfault to occur, and thus the process context might receive the fatal
SIGSEGV signal. This, of course, has the poor process caught in the crossfire.

Next, an Oops is not the same thing as a full-fledged kernel panic. A panic implies the
system is in an unusable state. It might lead up to this, especially on production systems
(we cover kernel panic in Chapter 10, Kernel Panic, Lockups and Hangs). Note though,
that the kernel provides several sysctl tunables (editable by root, of course) regarding what
circumstances can lead to the kernel panicking. We can check them out – on my x86_64
Ubuntu 20.04 guest running our custom production kernel, here they are:

$ cd /proc/sys/kernel/

$ ls panic_on_*

panic_on_io_nmi panic_on_oops panic_on_rcu_stall panic_on_
unrecovered_nmi panic_on_warn

And, as you can see, if you cat them, all of their values are zero by default, implying that
a kernel panic will not be triggered. It also shows us that setting, for example, the panic_
on_oops tunable to 1 will cause the kernel to panic on any Oops, no matter how trivial it
might seem.

It's important to understand that this can be the right thing to do on many installations.
When a system suffers an Oops, we usually want a bright red flag to show up – a
showstopper, a way to understand that the system's in (or was in) an unhealthy state! This
does depend on the nature of the project or product: a deeply embedded system might
not afford to remain down due to a kernel panic. There, a watchdog will typically detect
that the system's in an unhealthy state and reboot it. We shall cover using watchdogs and
whatnot in Chapter 10, Kernel Panic, Lockups and Hangs).

Even though an Oops isn't a kernel panic, depending on the circumstances and the
severity of the bug, the kernel can be rendered unresponsive, unstable, or both. Or it
might continue to work as though nothing alarming has occurred! Whatever the case, an
Oops is, ultimately, a kernel-level bug; it must be detected, interpreted, and fixed!

Right, let's get to the juicy bit: learning how to interpret, in detail, the Oops kernel output.
Let's go!

308 Oops! Interpreting the Kernel Bug Diagnostic

The devil is in the details – decoding the Oops
We'll use the third scenario (or use/test case), covered in the section, Case 3 – Oops by
writing to a structure member when the structure pointer's NULL. To quickly recap, this is
what we did to trigger this particular kernel Oops (case #3):

cd ch7/oops_tryv2

make

sudo insmod ./oops_tryv2.ko bug_in_workq=yes

As seen earlier, it triggers an Oops. Now we get to the interesting part – deciphering the
Oops, step by step, line by line.

Before starting, it's important to realize that the detailed discussion below is necessarily
arch-specific, here and now pertaining to the x86_64 platform (as portions of the Oops
output are, of course, very arch-specific). We shall also show how a typical Oops appears
on the ARM platform in a later section.

Line-by-line interpretation of an Oops
The initial, and really key, portion of the Oops we get is seen in Figure 7.5. Now, to help
refer to it line by line, here's an annotated diagram of the same screenshot (zoomed in a
bit more, for clarity):

The devil is in the details – decoding the Oops 309

Figure 7.6 – Annotated (full) screenshot of the Oops output from our oops_tryv2 workqueue (case 3)
function bug

310 Oops! Interpreting the Kernel Bug Diagnostic

Now, for clarity and to make it more approachable, we'll split up this diagram and the
discussion into several parts (you can see how we intend the splitting via the rectangles in
Figure 7.6). Let's begin with the first of them – here it is:

Figure 7.7 – Annotated screenshot 1 of 3: Oops output from our oops_tryv2 workqueue function bug

Okay, let's delve into the details! The material shown from here on is arch-specific and
applies only to the x86 platform.

Interpreting Oops line(s) 1
The brightly visible lines (within the rectangle labeled 1 in Figure 7.7) with a red
background emanate from this code (it's arch-specific – this is for the x86_64). It's a
portion of the code of the OS fault handler, the code that, when it's detected, an abnormal
condition within the kernel, a bug, begins to write the Oops diagnostic message. Here's a
portion of the actual x86 fault handling code:

// arch/x86/mm/fault.c

static void

show_fault_oops(struct pt_regs *regs,

 unsigned long error_code,

 unsigned long address)

{

[...]

if (address < PAGE_SIZE && !user_mode(regs))

 pr_alert("BUG: kernel NULL pointer

 dereference, address: %px\n",

 (void *)address);

 else

 pr_alert("BUG: unable to handle page fault

 for address: %px\n", (void *)address);

The devil is in the details – decoding the Oops 311

Check out the preceding if condition – it's now amply clear why we got this output:

BUG: kernel NULL pointer dereference, address: 0000000000000030

It's emitted when the faulting address is within the first page and we're running in kernel
mode. Recall that the very first page of the user VAS is the NULL trap page, one where
all addresses are within PAGE_SIZE (typically 4,096 bytes). If the condition is false, the
kernel prints an alternate message. Further, here, the address that caused the fault – the
one within the first NULL trap page – is then printed (it's always in hexadecimal). Here,
it's the value 0x30.

Now, this too is important: why 0x30 and not 0x0? Think back to the code that generated
this particular Oops (you can refer back to the section, Case 3 – Oops by writing to a
structure member when the structure pointer's NULL to see this). The buggy line of code
is here:

ch7/oops_tryv2/oops_tryv2.c:do_the_work():oopsie->data = 'x';

Now, oopsie is a pointer to the st_ctx structure in our code, but its value is NULL
(recall, it was never allocated). So, the value of 0x30 is the offset from the beginning of
the structure to the member being referenced! A key point we thus learn is that when
the faulting address shows up as a small integer value within the size of a page (as is the
case here), it's very likely that the structure (or other) pointer was NULL and the number
displayed is the offset from the beginning of the structure (or possibly array, or whatever) to
the member being referenced.

The next line of output in the Oops is this:

#PF: supervisor write access in kernel mode

This is generated from the code that continues, in the same show_fault_oops()
function (by the way, PF stands for Page Fault):

pr_alert("#PF: %s %s in %s mode\n",

 (error_code & X86_PF_USER) ?

 "user" : "supervisor",

 (error_code & X86_PF_INSTR) ?

 "instruction fetch" :

 (error_code & X86_PF_WRITE) ? "write access" :

 "read access",

 user_mode(regs) ? "user" : "kernel");

312 Oops! Interpreting the Kernel Bug Diagnostic

Take the trouble to read the code and match it with the output we obtained. It
clearly shows us that the kernel figured a lot out: the code was executed in supervisor
mode (which means kernel mode), and there was a write attempt, again executing in
kernel mode.

Here's the line after that:

#PF: error_code(0x0002) - not-present page

We'll cover what exactly this means shortly. This is from the code within the show_
fault_oops() function that immediately follows the preceding code:

 pr_alert("#PF: error_code(0x%04lx) –

 %s\n", error_code,

 !(error_code & X86_PF_PROT) ? "not-present page" :

 (error_code & X86_PF_RSVD) ? "reserved bit violation" :

 (error_code & X86_PF_PK) ? "protection keys violation" :
"permissions violation");

So, there, we figured out how each of these three lines of output came to be. How did
the color show up with a red background? Ah, that's easy: dmesg interprets the pr_
alert() log level and colors it accordingly.

We'll skip the details on the Page Global Directory (PGD) and P4D (a level inserted
between the PGD and Page Upper Directory (PUD) in 4.11 Linux). These are references
to the paging tables of the process context the process was running in. See the code of the
dump_pagetable() kernel function if you're interested.

Interpreting Oops line(s) 2
For your convenience, the following portion of the screenshot is duplicated from Figure
7.7. The next line of output (line 2) in the Oops is this:

Figure 7.8 – Line(s) 2 of the Oops output from our buggy oops_tryv2 module, test case 3

Clearly, this tells us that an Oops has occurred (it's not so ridiculous – grepping for the
string Oops: can be useful). The number immediately following this string – here, it's
0002 – is important. It's the arch-specific Oops bitmask. Learning how to interpret it will
definitely help.

The devil is in the details – decoding the Oops 313

Interpreting the (arch-specific) Oops bitmask
The overall function responsible for displaying the Oops content from here on is named
arch/x86/kernel/dumpstack.c:__die(). It's split into two portions – the __
die_header() and the __die_body() functions. The Oops bitmask and remaining
tokens on that line (such as PREEMPT SMP …) are displayed from the header function.
To give you a sampling of how the actual Oops-diagnostic-display kernel code works,
here's a screenshot of the __die_header() function (for the 5.10.60 kernel). It's within
the source file arch/x86/kernel/dumpstack.c:

Figure 7.9 – Screenshot of a part of the kernel's Oops output functionality on the x86_64

As mentioned above, the arch-specific Oops bitmask is actually very meaningful, further
clueing us in as to why the kernel bug occurred!

You can see it being emitted from the preceding printk() (it's the second part of the
printk format string %04lx, corresponding to the err & 0xffff code). How do
we interpret this bitmask? Here's how – but, again remember: it's arch-specific – this
interpretation applies only to the x86 platform.

314 Oops! Interpreting the Kernel Bug Diagnostic

The MMU sets up a page fault error as an encoded value. On the x86 platform, this is how
the encoding of the page fault error code bits is done:

bit 0 == 0: no page found 1: protection fault

bit 1 == 0: read access 1: write access

bit 2 == 0: kernel-mode access 1: user-mode access

bit 3 == 1: use of reserved bit detected

bit 4 == 1: fault was an instruction fetch

This information in fact used to be a comment in the code base in earlier kernel versions.

A nicer way, perhaps, to more easily visualize and thus interpret the particular error – the
reason why the Oops occurred – is to examine the five Least Significant Bit (LSB) bits of
the page fault error code in a tabular format:

Table 7.1 – The meaning of the LSB 5 bits of the page fault error code on the x86 platform

So, now it's easy! We got the Oops bitmask as 0002 (it's in hexadecimal – see the
printk: the format specifier is %04lx). This translates to 00010 in binary.
According to the preceding table, this implies the following (here, as bits 3 and 4
are zero, they don't matter):

Bit 2 is 0 : kernel mode

Bit 1 is 1 : write attempt

Bit 0 is 0 : no page found

Well, well, no surprise there – this is exactly what the Oops diagnostic tells us (point 1 in
Figure 7.7):

#PF: supervisor write access in kernel mode

#PF: error_code(0x0002) - not-present page

The remainder of the line is as follows:

... [#1] PREEMPT SMP PTI

The devil is in the details – decoding the Oops 315

This line is easy to interpret:

• [#1]: This is the number of the Oops that has occurred during this system session.
[#1] tells us it's the first Oops (it's a session value – a power cycle resets it).

• PREEMPT: The code was running on a kernel configured for preemption
(CONFIG_PREEMPT=y).

• SMP: The kernel has Symmetric Multi-Processing (SMP) enabled. It
supports multicore.

• PTI: PTI is short for Page Table Isolation. The Meltdown/Spectre hardware
bugs circa early 2018 had the kernel community build a protection mechanism
against this serious vulnerability called PTI (see the Further reading section for
more on this).

Let's move on to interpreting the following two lines within the Oops diagnostic.

Interpreting Oops line(s) 3
For your convenience, this portion of the screenshot is duplicated from Figure 7.7:

Figure 7.10 – Line(s) 3 of the Oops output from our buggy oops_tryv2 module, test case 3

The first of these lines essentially informs us of the process context – the process or thread
that executed the buggy code in kernel mode that caused the fault (along with a few other
details). We'll take it a token at a time:

• CPU: Denotes the CPU core the code was running on at the time of the Oops (here
it's CPU 0).

• PID: The PID of the process or thread that was executing the code at the time of
the Oops.

• Comm: The name of the process or thread that was executing the code at the time of
the Oops.

• Tainted: The kernel tainted flags bitmask – we cover this shortly.

• The output of uname -r, the kernel release, followed by a number prefixed with
the # symbol. This is the number of times this kernel has been built (here, it's 6).

316 Oops! Interpreting the Kernel Bug Diagnostic

It's important to note, though, that when the Oops is triggered from an interrupt context,
parts of the data seen here become suspect (see more on this in the upcoming section,
Leveraging the console device to get the kernel log after Oopsing in IRQ context where we
examine an Oops triggered in interrupt context).

Interpreting the kernel tainted flags
The Linux kernel community likes to know whether the running kernel is clean or dirty.
A dirtied kernel or a tainted kernel (the word tainted means polluted) is one that isn't in a
pristine state. This state information is kept as bits within a bitmask. The entire bitmask,
currently consisting of a total of 18 bits or flags, is called the tainted flags.

In our particular use case, the tainted flags show up like so, following the string
Tainted: (highlighted here):

CPU: 0 PID: 16 Comm: kworker/0:1 Tainted: G OE
5.10.60-prod01 #6

You can interpret the letters – the tainted flags, as they're called – as shown here:

The devil is in the details – decoding the Oops 317

Table 7.2 – Interpreting the kernel tainted flags

The _ symbol in the second column implies a blank, a space to indicate that that particular
taint bit is cleared (notice how the tainted flags are printed in the Oops with blank spaces
as required, to show that a particular bit(s) is/are unset: Tainted: G OE).

So, in our use case, the G|O|E tainted flags imply all GPL'ed modules were loaded (G),
one or more externally-built (out-of-tree) modules were loaded (O), and (one or more)
unsigned modules were loaded (E). Indeed, our oops_tryv2 module has a dual license
that includes GPL, is an out-of-tree one, and is unsigned.

So, it's easy to look up the table and figure out what the tainted flags imply. It's even easier
to employ a helper script that does the work for you! – that's exactly what the tools/
debugging/kernel-chktaint script (within the kernel source tree) is designed to
do. We cover using this script in the section, Are we clean? The kernel-chktaint script.

The official kernel documentation covers these flags (along with more in-depth details)
here: https://www.kernel.org/doc/html/latest/admin-guide/tainted-
kernels.html.

The second line (as seen in Figure 7.10) is simply some hardware platform details – useful.

Interpreting Oops line(s) 4
For your convenience, this portion of the screenshot is duplicated from Figure 7.7:

Figure 7.11 – Line4 of the Oops output from our buggy oops_tryv2 module, test case 3

In this particular case, let's begin with interpreting the second of the two preceding lines
first – the one beginning with RIP:.

https://www.kernel.org/doc/html/latest/admin-guide/tainted-kernels.html
https://www.kernel.org/doc/html/latest/admin-guide/tainted-kernels.html

318 Oops! Interpreting the Kernel Bug Diagnostic

Finding the code where the Oops occurred
Perhaps the key line in the Oops output is this:

RIP: 0010:do_the_work+0x124/0x15e [oops_tryv2]

Let's interpret it a token at a time. Again, I remind you, much of this is very arch-specific
(here, for the x86_64 platform/CPU):

• RIP:: This, of course, is the name of the CPU register that holds the address of
the text (code) to execute. On the x86 platform, it's called the Instruction Pointer
register. On the x86_64, it's a 64-bit register (in order to hold 64-bit virtual
addresses) and is named RIP. So, what is it holding? Read on!

• 0010:: On the x86, the notion of a hardware segment still exists (it's mostly
historical and continues in a vestigial form even on the modern 64-bit x86 today).
This value, 0010, represents the code segment. This makes sense – the CPU core's
RIP register should be pointing to code.

• do_the_work+0x124/0x15e [oops_tryv2]: Perhaps the most important
thing here, this is the format being employed above:

function_name+off_from_func/size_of_func [module-name]

It identifies which function was being executed on the processor at the time of the
Oops. Following it is a + sign followed by two numeric (hexadecimal) values (so, in
the form +x/y):

 � The first number (x) is the offset (in bytes) from the beginning of the function. In
other words, it references the actual byte of machine code that was being executed
at the time of the Oops!

 � The second number (y) is (the kernel's best guess of) the size of the function
(in bytes).

Next, if this string – funcname+x/y – is followed by a name in square brackets (of
the form [modulename]), that is the kernel module where this function (funcname)
resides! If not, the function is part of the kernel image itself.

So, for our particular Oops, we can now conclude that the bug (likely) occurred in the
function do_the_work(), which belongs to the module oops_tryv2. Further, the
instruction pointer was 0x124 (decimal 292) bytes from the start of this function. The
size of the function, as estimated by the kernel (and it's typically dead right), is 0x15e
(decimal 350) bytes.

The devil is in the details – decoding the Oops 319

This information – the precise location of the CPU Instructor Pointer register – can be, and
often is, critical in figuring out exactly where in the code the bug occurred!

So, now that we know more or less the exact location in the code where the Oops
occurred, how exactly do we leverage this information – 292 bytes from the start of
oops_tryv2:do_the_work() – to find the C source line where the issue, and likely
the root cause, lies?

Ah, that's the crux of it, isn't it?! We cover precisely this in depth in the upcoming section,
Tools and techniques to help determine the location of the Oops. It's very important to read
the detailed discussion there on the usage of various tools, technologies, and indeed,
kernel helper scripts to literally pinpoint the buggy code's location in the (module or
kernel) source.

Is this code location (the funcname+x/y) always guaranteed to be the root cause of the
defect, the bug? No. There are no guarantees! With the more difficult, subtle bugs, the root
cause can be miles away. The symptoms have shown up here perhaps. Debugging these is
where you really earn your money. With the really wide breadth of tools, techniques, and
internal details that this book covers, you'll be in a much better position to do so.

In fact, this use case (our oops_tryv3 case 3 bug) is itself a bit involved. The bug
occurred not in the context of the insmod process but rather, within the kernel's default
events workqueue's kthread (kernel thread) worker. This information is in fact revealed
by the first line in Figure 7.11:

Workqueue: events do_the_work [oops_tryv2]

The word events in the preceding line is significant. It's the name of the workqueue:
events is the name of the kernel's default workqueue. And do_the_work() is our
workqueue function that was consumed by the kthread worker.

By the way, the kernel has printk format specifiers to print function pointer symbols in
this common and useful format: func+x/y. The format specifiers include %pF, %pS[R],
and %pB (do refer to the kernel documentation here for the gory details: https://www.
kernel.org/doc/Documentation/printk-formats.txt).

Let's continue with the line-by-line exploration of the Oops output.

https://www.kernel.org/doc/Documentation/printk-formats.txt
https://www.kernel.org/doc/Documentation/printk-formats.txt

320 Oops! Interpreting the Kernel Bug Diagnostic

Interpreting Oops line(s) 5
For your convenience, this portion of the screenshot is duplicated from Figure 7.7:

Figure 7.12 – Line(s) 5 of the Oops output from our buggy oops_tryv2 module, test case 3

The bytes following the string Code: are indeed just that – the machine code that was
running on the CPU core at the time of the Oops! Decoding this machine code is now
automated via kernel helper scripts (both scripts/decodecode and scripts/
decode_stacktrace.sh). Please refer to our coverage in the section, Interpreting
machine code with the decodecode script.

We now move on to the next portion of our Oops test case interpretation.

Interpreting Oops line(s) 6
The lines of printk output at position 6 (see Figure 7.6) are the processor registers and
their runtime values at the time of the Oops.

CPU registers and the Oops
The Oops diagnostic includes the value of all general-purpose CPU registers on the
processor core that ran the buggy code at the time the Oops occurred.

How is this useful? Recall our quite detailed discussion on the processor Application
Binary Interface (ABI) (if you're hazy on it, do refer back to Chapter 4, Debug via
Instrumentation – Kprobes, in the section, Understanding the basics of the Application
Binary Interface (ABI)). This can be crucial to understanding what happened at the level of
bare metal.

For your convenience, this portion of the screenshot is duplicated from Figure 7.7:

Figure 7.13 – Line6 of the Oops output from our buggy oops_tryv2 module, case 3, showing the x86_64
CPU register values (in hex) at the time of the Oops

The devil is in the details – decoding the Oops 321

The first register to be shown is RSP – obviously, it's the stack pointer register. Being
able to access the (kernel) stack and interpret the frames therein is crucial, again, to
understanding why and where the Oops occurred. Here, the top of the kernel-mode stack
happens to be the kernel virtual address 0xffffb6e1c008be48. Remember, pretty
much all architectures (CPUs) follow the stack-grows-down semantic, so the top of the
stack is really the lowest legal virtual address on it.

The EFLAGS register content follows. It contains the value of various state flags on the
processor, for example, the sign flag, carry flag, irq-enable flag, and so on. See a link in the
Further reading section for a detailed look at the x86 registers. Also, look at the value of
the Code Segment (CS) register – it's 0x0010. As we saw, this is the value prefixed to the
instruction pointer.

As an example, for our particular Oops, some of the x86 control registers are (perhaps)
useful to look up. Let's check them out.

The control registers on the x86_64
The x86_64 has 16 control registers, named CR0 through CR15. Of these, 11 are reserved
(CR1, CR5-CR7, CR9-CR15). We mention the few that the x86_64 kernel Oops
diagnostic is designed to reveal (and are thus meaningful here):

• CR0: Can be programmed (only in kernel mode). Contains control bits such as
protected mode enable, emulation, write protect, alignment mask, cache disable,
paging, and so on.

• CR2: Contains the KVA, which when accessed, caused the MMU to raise the page
fault that led to the Oops. Hence, the CR2 content is a key value! Look it up in
Figure 7.13. Here, CR2 contains the value 0x30, which, as you'll recall, is the offset
from the beginning of the structure we looked up – in the line of code that caused
this Oops: oopsie->data = 'x';.

• CR3: A bitmask; holds (among other stuff) the physical address of the base of
paging tables (called PML4) for the process context running at the time of
the Oops. In effect, it tells the MMU how to get to the paging tables for the
running context.

• CR4: Various control bits (for example, the V86 mode extension, debug extensions,
page size extension, Physical Address Extension (PAE) bit, Performance
Monitoring Counter Enable (PCE) bit, security feature bits such as Supervisor
Mode Executions Protection Enable (SMEP), Supervisor Mode Access
Protection Enable (SMAP), and so on).

322 Oops! Interpreting the Kernel Bug Diagnostic

What about CPU register values earlier in the execution path? Read the following callout
for more on this...

CPU Register Values on Other Call Frames and Other Details
So, think about this: The CPU register values we saw above (Figure 7.13) are
those that were on the CPU at the time the Oops occurred. But what about the
CPU register values on all the other call frames (on the kernel-mode stack) that
led up to the crash or Oops? Aren't they important? Yes, indeed. In fact, their
values might be just what's required to decipher the really deep details of how
the bug occurred, the root cause. But the Oops diagnostic doesn't reveal them
– it's limited to the top of the stack: the function and register values in place at
the instant the Oops occurred. So, is there any way to get to the deeper details,
to be able to examine all the call frames and register values? Yes: one way is by
leveraging the kdump kernel feature, which when enabled, allows saving all
pertinent data (in fact, it lets you access a snapshot of the entire kernel memory
segment taken at the time of the crash!). Along with the powerful userspace
crash app to investigate the dump, you're in business! We briefly cover kdump/
crash in Chapter 12, A few more kernel debugging approaches. Another powerful
way to get details leading up to the crash (or panic) is to be able to trace the
kernel in depth – ftrace provides just such functionality. We cover using ftrace
(and its many frontends) in detail in Chapter 9, Tracing the Kernel Flow.

Right, let's move on to interpreting the last portion of the Oops diagnostic.

Interpreting Oops lines 7, 8, and 9
For your convenience, this portion of the screenshot is duplicated from Figure 7.6:

Figure 7.14 – Lines 7, 8, and 9 of the Oops output from our buggy oops_tryv2 module, case 3, showing
the call (stack) trace, modules, and CR2 value

The devil is in the details – decoding the Oops 323

The really key thing to see and interpret here is the call (or stack) trace. Let's get to it!

Interpreting the call stack within the Oops
The lines that are below the string Call Trace: and slightly indented to the right
represent the call or stack trace. This, of course, is the kernel mode stack of the process
context (though it could also be that of an interrupt – more on this follows shortly...) that
caused the Oops.

This call trace is very valuable to the development team, to you, debugging an Oops. Why?
It literally shows you the history – how we got to where we did – of the bug. So, how do
you interpret it? A few key points follow:

• Firstly, each (slightly right indented) line below Call Trace: represents a
function in the call path, abstracted by a call frame.

• Each frame has the same notation as we saw earlier, funcname+x/y, where x is
the distance from the start of the function in bytes (the start offset), and y is the size
(length) of the function in bytes.

• Read the call trace bottom-up, of course (the vertical arrow in Figure 7.14 points up
to show this). Recall that pretty much all modern processors follow the stack-grows-
down semantic.

• Ignore any line that begins with a question mark symbol (?). This implies the
call frame is very likely invalid, a stale leftover from earlier stack memory usage,
perhaps. The kernel's stack unwind algorithm (there are several – they're even
configurable!) is smart enough to pretty much guarantee getting this right, so
trust it.

Putting together what we learned, this is the call sequence that led to our Oops:

ret_from_fork() --> kthread() --> worker_thread() --> process_
one_work()

324 Oops! Interpreting the Kernel Bug Diagnostic

Now, of course, understanding this properly requires at least a basic understanding
of what our code was doing when the Oops occurred. We do know that the Oops
was actually triggered in the function do_the_work(). Refer back to our notes in
the section, Finding the code where the Oops occurred. This function was our custom
workqueue routine. Now how did it get invoked? Ah, indirectly, when our module
invoked the schedule_work() API passing the pointer to our work structure (glance
back at the code, ch7/oops_tryv2/oops_tryv2.c, if you need to). This work
function was serviced by the kernel's default events workqueue. The servicing – which
really means the consuming or execution of our work function – is done by spinning
up (or using an existing) kernel worker thread (that belongs to the kernel's default
events workqueue).

The kthread() routine – that you see in the call sequence just above – is an internal
kernel interface that performs this task, spinning up a kernel thread. It invokes the kernel
workqueue function worker_thread() whose job it is to process all work items on the
workqueue. This is in turn done by calling each work item in a loop, by within it calling
the function process_one_work(), whose sole job is to process the one work item it's
given – ours!

So there we are – the kernel stack does indeed reveal exactly how we got to our worker
routine do_the_work(). Whew – it can be painstaking work! But, then again, you're
the forensic detective at work. No one said it's easy!

Tip – Seeing the Kernel-Mode Stack of All CPU Cores
The kernel has a tunable, /proc/sys/kernel/oops_all_cpu_
backtrace, whose default value is 0, off. Turning it on (by writing 1 to it
as root), will have the call stacks for all CPU cores on the system displayed as
part of the Oops diagnostic. This can be very useful in a deep debug scenario.
(Internally, the call tracing on other CPU cores is done via the Non-Maskable
Interrupt (NMI) backtrace facility.)

The line following the call trace – the one starting with the string Modules linked
in: – displays all modules loaded in the kernel at the time of the Oops. Why? Modules
are very often third-party code (for device drivers, custom network firewall rules, custom
filesystems, and so on), hence they are highly suspect when the kernel encounters a bug!
Hence the list of all modules. Indeed, our very own buggy module, oops_trv2, stands
proudly first in this list, as it's the last one loaded. Also, the tainted flags OE denote that it's
an out-of-tree unsigned module.

Finally, the last line in the Oops diagnostic is what the kernel developers call the executive
summary – the value of the CR2 register! By now you should realize why: it's the faulting
(virtual) address, access to which caused the Oops.

Tools and techniques to help determine the location of the Oops 325

Tip – Forcing a Pause to Read the Oops Diagnostic
Printing the detailed Oops diagnostic when an Oops occurs is all well and
good, but what if it scrolls off the console window? Or, there are additional
secondary Oopses that follow, causing the primary one's content to scroll away?
For such cases, pass the pause_on_oops=n kernel parameter. It will have
all CPUs halt for n seconds after the first kernel Oops is printed.

Finally, we're done interpreting our Oops in great detail, literally line by line, learning
aplenty along the journey (hey, it's the journey that matters, not the destination).

We'd like to also mention (in passing) that there are several frameworks to help capture
a kernel Oops and report it back to the vendor (or distributor). Among these is the
kerneloops(8) program (man page: https://linux.die.net/man/8/
kerneloops). Many modern distributions use the kdump feature to collect the entire
kernel memory image when an Oops or panic occurs, for later analysis (typically via the
crash app).

Exercise
Run this same Oops-ing test case (ch7/try_oopsv2) by passing the
module parameter bug_in_workq=yes on your custom debug kernel and
see what happens. On mine, with KASAN enabled, the kernel does Oops but
not before KASAN catches the bug!

Great – now, it's important to continue on to the following section, where we cover how
exactly you can use various tools and techniques to uncover the buggy line(s) of code!

Tools and techniques to help determine the
location of the Oops
While analyzing a kernel Oops, we can certainly use all the help we can get, right?! There
are several tools and helper scripts that can be leveraged. Among them, and part of the
(cross) toolchain, are the objdump, the GNU DeBugger (GDB), and addr2line
programs. Besides them, a few kernel helper scripts (found within the kernel source tree)
can prove very useful as well.

https://linux.die.net/man/8/kerneloops
https://linux.die.net/man/8/kerneloops

326 Oops! Interpreting the Kernel Bug Diagnostic

In this section, we'll start learning how to exploit these tools to help interpret an Oops.

Tip – Getting the Unstripped vmlinux Kernel Image with Debug Symbols
Many, if not most, of the tools and techniques to help debug kernel issues do
depend on your having an unstripped uncompressed vmlinux kernel image with
debug symbols. Now, if you've built both a debug and production kernel, as
we've recommended from literally the outset of this book, you'll of course have
the debug vmlinux kernel image file (which fulfills this requirement).

And if not? Well, pretty much all enterprise (and desktop) Linux distros
provide a package – separate ones for the commonly used kernel versions that
get integrated into the distro – which will provide it (and more). Often, the
package is named linux-devel* or linux-headers*. It's essentially
just a compressed archive that contains the kernel headers, the unstripped
vmlinux with debug symbols, and possibly more goodies within it.
Download the package, install it, and see for yourself.

For example, a note on the kernel-* RPMs for Red Hat RHEL 8 can be
found here: https://access.redhat.com/documentation/
en-us/red_hat_enterprise_linux/8/html/
managing_monitoring_and_updating_the_kernel/
the-linux-kernel-rpm_managing-monitoring-and-
updating-the-kernel#the-linux-kernel-rpm-package-
overview_the-linux-kernel-rpm. Also, as another example,
here's a link to download RPM packages for the kernel-devel Linux
packages for the following Linux distros – AlmaLinux, ALT Linux, CentOS,
Fedora, Mageia, OpenMandriva, openSUSE, PCLinuxOS, and Rocky Linux:
https://pkgs.org/download/kernel-devel.

Next, it's important to realize that, when debugging an Oops on a non-native arch (for
example, ARM, ARM64, PowerPC, and so on), you'll need to run the cross-toolchain
version of the tools we examine and use below. As a concrete example, if you're debugging
an Oops that occurred on an ARM-32, compiled with the arm-linux-gnueabihf-
toolchain prefix (this would be the value of the environment variable CROSS_COMPILE),
then you'll need to run not objdump but ${CROSS_COMPILE}objdump, that is,
arm-linux-gnueabihf-objdump. The same goes for the other tools in the toolchain
(such as GDB, readelf, addr2line, and so on).

Okay, let's begin using these tools!

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_monitoring_and_updating_the_kernel/the-linux-kernel-rpm_managing-monitoring-and-updating-the-kernel#the-linux-kernel-rpm-package-overview_the-linux-kernel-rpm
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_monitoring_and_updating_the_kernel/the-linux-kernel-rpm_managing-monitoring-and-updating-the-kernel#the-linux-kernel-rpm-package-overview_the-linux-kernel-rpm
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_monitoring_and_updating_the_kernel/the-linux-kernel-rpm_managing-monitoring-and-updating-the-kernel#the-linux-kernel-rpm-package-overview_the-linux-kernel-rpm
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_monitoring_and_updating_the_kernel/the-linux-kernel-rpm_managing-monitoring-and-updating-the-kernel#the-linux-kernel-rpm-package-overview_the-linux-kernel-rpm
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_monitoring_and_updating_the_kernel/the-linux-kernel-rpm_managing-monitoring-and-updating-the-kernel#the-linux-kernel-rpm-package-overview_the-linux-kernel-rpm
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_monitoring_and_updating_the_kernel/the-linux-kernel-rpm_managing-monitoring-and-updating-the-kernel#the-linux-kernel-rpm-package-overview_the-linux-kernel-rpm
https://pkgs.org/download/kernel-devel

Tools and techniques to help determine the location of the Oops 327

Using objdump to help pinpoint the Oops
code location
First off, you'll gain the maximum benefit from these tools by (re)building your buggy
kernel, or kernel module, with CONFIG_DEBUG_INFO=y. In other words, boot from a
debug kernel and build your module(s) there.

In our so-called better Makefile, set the following variable:

MYDEBUG := y

It's left as n by default. Now rebuild the module. Due to debug symbols and information
embedded within it, its size is typically (much) larger than for the non-debug or
production variant.

The objdump utility has the intelligence to deeply examine and interpret an Executable
and Linker Format (ELF) object file (which includes the kernel vmlinux uncompressed
image as well as a kernel module image, the .ko file). We'll typically run objdump
with the -dS option switches to disassemble the module and intermix source code with
assembly wherever possible (which is possible when it's compiled with -g)! If you're
running live (that is, the module is still loaded in kernel memory), you can try this:

$ grep oops_tryv2 /proc/modules

oops_tryv2 16384 0 - Live 0x0000000000000000 (OE)

Due to security reasons, to prevent info leaks, the address isn't revealed. Run as root to
see it:

$ sudo grep oops_tryv2 /proc/modules

oops_tryv2 16384 0 - Live 0xffffffffc0604000 (OE)

$ objdump -dS --adjust-vma=0xffffffffc0604000 ./oops_tryv2.ko >
oops_tryv2.disas

With the correct VMA object address of our module specified, objdump is able to display
the full kernel virtual address on the left extreme of its output.

The objdump option switches we use are as follows:

• -d or --disassemble: Display assembler content of executable sections.

• -S or --source: Display a source code assembly intermix wherever possible
(implies -d).

328 Oops! Interpreting the Kernel Bug Diagnostic

Of course, there are many other options. Do have a look at the man page of objdump.
Here's some sample output from the objdump command just issued:

static void do_the_work(struct work_struct *work)

{

ffffffffc0604000: e8 00 00 00 00 callq ffffffffc0604005 <do_
the_work+0x5>

ffffffffc0604005: 55 push %rbp

[...]

Here's the analysis procedure:

1. In the preceding output from objdump, you can see that the start address of our
do_the_work() function – the function where the Oops occurred (via the RIP
value – see Figure 7.6) – is 0xffffffffc0604000.

2. Add the offset as shown by the first RIP line in the Oops diagnostic message:

0xffffffffc0604000 + 0x124 = 0xffffffffc0604124

3. Look for the closest match to this address within the objdump output:

Figure 7.15 – Screenshot showing the output of objdump -dS -adjust-vma=… for our buggy module

Tools and techniques to help determine the location of the Oops 329

We've annotated the same screenshot here, highlighting it so that you can see the relevant
address – 0xffffffffc0604124 – highlighted by the blue rectangle and the relevant
code region by the red rectangle:

Figure 7.16 – The same screenshot annotated to show the portion where the module
code caused the Oops!

The C source line is just before the machine and assembly, showing that this is precisely
where the fault – and thus the Oops – occurred!

If you aren't doing a live run, no matter, just run objdump in the same way, leaving out
the --adjust-vma= parameter (see an example of this in the upcoming section, On
ARM with objdump).

Also, objdump can be very useful when analyzing an Oops where the culprit is likely
in-kernel code (as opposed to module code). In these cases, you'll require to generate
the kernel code with source code and assembly intermixed, using the uncompressed
vmlinux kernel image file as input to objdump:

${CROSS_COMPILE}objdump -dS <path/to/kernel-src/>/vmlinux >
vmlinux.disas

We assume the vmlinux image used here has been compiled with debug symbols. In fact,
this is a one-time thing to do (unless the kernel itself is updated, of course).

330 Oops! Interpreting the Kernel Bug Diagnostic

Using GDB to help debug the Oops
The powerful GDB debugger can also be exploited to help with pinpointing the line of
source code that triggered the Oops. GDB's list command can really help here. To use
it though, you'll need to (re)build your module with debug symbols (that is, with the -g
and other useful option switches). You can see, within our better Makefile, if we set the
variable MYDEBUG to y (the default being n), how it employs compiler option switches
that are important for debugging purposes:

MYDEBUG := y

ifeq (${MYDEBUG}, y)

EXTRA_CFLAGS deprecated; use ccflags-y

 ccflags-y += -DDEBUG -g -ggdb -gdwarf-4 -Og -Wall
-fno-omit-frame-pointer -fvar-tracking-assignments

After building it for debug, let's have GDB have a go:

$ gdb -q ./oops_tryv2.ko

Reading symbols from ./oops_tryv2.ko...

(gdb) list *do_the_work+0x124

0x160 is in do_the_work (<...>/ch7/oops_tryv2/oops_tryv2.c:62).

 [...]

61 pr_info("Generating Oops by attempting to write
to an invalid kernel memory pointer\n");

62 oopsie->data = 'x';

63 }

64 kfree(gctx);

(gdb)

Check it out: line 62 in the source is precisely where our bug is – GDB is bang on target!

More on using GDB for kernel/module debug is available on the official kernel
documentation site: https://www.kernel.org/doc/html/latest/admin-
guide/bug-hunting.html#gdb.

https://www.kernel.org/doc/html/latest/admin-guide/bug-hunting.html#gdb
https://www.kernel.org/doc/html/latest/admin-guide/bug-hunting.html#gdb

Tools and techniques to help determine the location of the Oops 331

Using addr2line to help pinpoint the Oops
code location
The addr2line utility has the ability to translate (virtual) addresses into their
corresponding pathname(s) and line number(s)! It can be immensely useful to quickly
pinpoint the place in the source code where the bug was triggered.

The address (or even multiple addresses) can be specified to addr2line via the -e
(executable) option switch. (The utility takes several other optional parameters as well –
do a quick addr2line -h to see them.)

For our module, let's invoke addr2line as follows, passing the offset from the start of
the function reported by the Oops diagnostic as the RIP register value (the value 0x124 –
see Figure 7.6):

$ addr2line -e ./oops_tryv2.o -p -f 0x124

do_the_work at <...>/ch7/oops_tryv2/oops_tryv2.c:62

Again, perfect and so easy to use! The optional parameter -p pretty prints the output,
while -f displays the function name as well.

The addr2line utility is also useful when you have a kernel (not module) crash and the
kernel virtual address. In these cases, supply the uncompressed vmlinux file (which has
all debug symbols) to addr2line via the -e option switch:

addr2line -e </path/to/>vmlinux -p -f <faulting_kernel_
address>

Note that addr2line will not work correctly on addresses generated on a system with
Kernel Address Space Layout Randomization (KASLR), a kernel security/hardening
feature, configured (from kernel version 3.14). In this case (and it's usually the case due
to security), use the faddr2line script instead (we cover it in the following section).
Alternatively, you can disable KASLR at boot by passing the kernel command-line option
nokaslr via the bootloader. For more on KASLR, see the Further reading section.

Let's now check out some kernel helper scripts.

332 Oops! Interpreting the Kernel Bug Diagnostic

Taking advantage of kernel scripts to help debug
kernel issues
The modern Linux kernel has many helper scripts, helping you to debug kernel bugs.
Here's a quick table summarizing them. A bit of a more detailed take on how to practically
use them follows:

Table 7.3 – A summary table of several useful kernel helper scripts

The list isn't exhaustive but is plenty to work with. Let's get going!

Tools and techniques to help determine the location of the Oops 333

Using the checkstack.pl script
As you should be aware, every user-mode thread alive has two stacks – a user-mode stack
and a kernel-mode stack. The former is dynamic and can grow pretty large (up to 8 MB
by default on your typical Linux); the latter is used when execution enters kernel space.
The kernel-mode stack is fixed in size and small, typically two pages on 32-bit and four
pages on 64-bit systems – in effect, just 8 KB or 16 KB, with a typical 4 KB page size (also,
don't assume the page size that the MMU's using – the kernel macro PAGE_SIZE has the
correct value).

Overflowing the kernel-mode stack is thus relatively easy to do. The kernel maintainers
consider it worthwhile to have a Perl script handy. It parses the kernel functions and
reports the largest possible stack size required by it. This script outputs the stack size used
by functions passed to it (often via objdump across a pipe, as seen here), in descending
order by size:

$ objdump -d <...>/linux-5.10.60/vmlinux | <...>/linux-5.10.60/
scripts/checkstack.pl

0xffffffff810002100 sev_verify_cbit [vmlinux]: 4096

0xffffffff81a554300 od_set_powersave_bias [vmlinux]: 2064

0xffffffff817b24100 update_balloon_stats [vmlinux]: 1776

[...]

There's no reason you can't run it on a kernel module, for example:

$ objdump -d /lib/modules/5.10.60-dbg02-gcc/kernel/drivers/net/
netconsole.ko | <...>/scripts/checkstack.pl

0x00000000000013800 enabled_store [netconsole]: 224

0x00000000000000000 init_module [netconsole]: 224

0x0000000000000c300 remote_ip_store [netconsole]: 208

[...]

Overflowing the stack, especially a kernel-mode stack, is no joking matter. The resulting
stack corruption can result in an abrupt and dramatic system hang, with no real way to
debug what exactly occurred. It's better to be prepared than sorry!

A quick kernel internals note: precisely because kernel stack overflows can simply and
immediately hang the system, recent kernels have shifted to enabling an arch-specific
kernel config called CONFIG_VMAP_STACK (the x86_64 has it enabled from the 4.9
kernel and ARM64 from 4.14). Very briefly, the vmalloc() interface is used to allocate
(task and IRQ) stack memory. This ensures that a later bad page fault (perhaps from an
overflow) on these pages can be handled by the kernel's fault/Oops handling code.

334 Oops! Interpreting the Kernel Bug Diagnostic

Leveraging the decode_stacktrace.sh script
A raw (kernel) stack dump is of limited usefulness when the text – the function names – is
all that's seen. The decode_stacktrace.sh script attempts to remedy this situation by
showing, for each function name on the stack call trace, its source code location and line
number within the kernel and/or module!

In effect, it's a kind of combination of the raw stack trace along with the information that
the addr2line utility provides (just that it's done for every call frame on the stack. In
fact, this script is at some level a wrapper over the addr2line utility, internally invoking
${CROSS_COMPILE}addr2line). Its usage is as follows:

$ </path/to/>/linux-5.10.60/scripts/decode_stacktrace.sh

Usage:

<...>/linux-5.10.60/scripts/decode_stacktrace.sh -r <release> |
<vmlinux> [base path] [modules path]

You can see that, to be effective, this script requires the pathname of the uncompressed
kernel vmlinux image with debug symbols. Next, the base-path parameter is
the pathname of the directory where this file is available. We provide the path to our
vmlinux image file within the 5.10.60 kernel source tree (where we built it). Alternately,
you can specify the kernel release via the –r option switch. The script will attempt to
retrieve the vmlinux image (with debug symbols) based on this value. The modules
path parameter is the location where the defective kernel module lives. Here, it's the
current directory (as we're working from there), so we specify it as ./.

Again using our usual bug-in-workqueue module example (on an x86_64 guest system),
we've saved the dmesg output into a file named dmesg_oops_buginworkq.txt.
Just as the vmlinux file with debug symbols must be passed, you should ensure you (re)
compile the module with debug flags on (set the MYDEBUG variable in the Makefile to y
and rebuild it).

Here's what the decode_stacktrace.sh script buys us when we run it through the
saved dmesg output:

$ ~/lkd_kernels/productionk/linux-5.10.60/scripts/decode_
stacktrace.sh ~/lkd_kernels/debugk/linux-5.10.60/vmlinux ~/lkd_
kernels/debugk/linux-5.10.60 ./ < dmesg_oops_buginworkq.txt

[...]

[448.049414] BUG: kernel NULL pointer dereference, address:
0000000000000030

[...]

[448.049547] Workqueue: events do_the_work [oops_tryv2]

Tools and techniques to help determine the location of the Oops 335

[448.049562] RIP: 0010:do_the_work (/home/letsdebug/Linux-
Kernel-Debugging/ch7/oops_tryv2/oops_tryv2.c:62) oops_tryv2

<< ... output of the decodecode script ... >>

[...]

[448.049934] Call Trace:

[448.049949] process_one_work (kernel/workqueue.c:1031
(discriminator 19) kernel/workqueue.c:2194 (discriminator 19))

[448.049967] worker_thread (./arch/x86/include/asm/
current.h:15 kernel/workqueue.c:979 kernel/workqueue.c:1815
kernel/workqueue.c:2381)

[448.049984] ? process_one_work (kernel/workqueue.c:2222)

[448.050002] kthread (kernel/kthread.c:277)

[...]

[448.050937] CR2: 0000000000000030

[448.051593] ---[end trace cc44ad6c5fd2bc79]---

This script also interprets the machine code running on the processor at the time of
the fault – this work is actually performed by yet another helper script, the scripts/
decodecode one (which we show next). Here, you can see the bash function that
invokes it:

$ cat <...>/linux-5.10.60/scripts/decode_stacktrace.sh

[...]

decode_code() {

local scripts=`dirname "${BASH_SOURCE[0]}"`

echo "$1" | $scripts/decodecode

}

The original commit of the decode_stacktrace.sh script into the
kernel source tree (in version 3.16), is interesting to browse through. Check
it out here: https://github.com/torvalds/linux/commit/
dbd1abb209715544bf37ffa0a3798108e140e3ec.

https://github.com/torvalds/linux/commit/dbd1abb209715544bf37ffa0a3798108e140e3ec
https://github.com/torvalds/linux/commit/dbd1abb209715544bf37ffa0a3798108e140e3ec

336 Oops! Interpreting the Kernel Bug Diagnostic

Interpreting machine code with the decodecode script
As with the decode_stacktrace.sh script, this script reads from standard input,
thus, passing it the dmesg Oops output via a file or across a pipe is typical. It attempts to
decode the machine code that was running on the processor core at the time of the bug
(or crash) and displays useful output. It's even able to identify the particular instruction
that caused the fault (or trap) to be raised by the MMU and shows it by printing <--
trapping instruction to the right of that line. Check out the example following
screenshot showing running this script on our oops_tryv2 module's printks when it
triggered an Oops:

Figure 7.17 – Screenshot showing the output of the decodecode script

It has indeed shown the trap at the precise place in the machine code/assembly line where
it occurred (notice the operand of 0x30 – the offset we're working with – to the movb
machine instruction where the trap occurred).

The original commit of this script into the kernel source tree happened many years back
(in July 2007, kernel version 2.6.23) and can be found here: https://github.com/
torvalds/linux/commit/dcecc6c70013e3a5fa81b3081480c03e10670a23.

https://github.com/torvalds/linux/commit/dcecc6c70013e3a5fa81b3081480c03e10670a23
https://github.com/torvalds/linux/commit/dcecc6c70013e3a5fa81b3081480c03e10670a23

Tools and techniques to help determine the location of the Oops 337

As mentioned already, this script is itself invoked by the decode_stacktrace.sh
script to better interpret the machine code bytes, thus the decode_stacktrace.sh
script is a superset of this one.

Exploiting the faddr2line script on KASLR systems
Are you running on a KASLR-enabled kernel? Let's check:

$ grep CONFIG_RANDOMIZE_BASE /boot/config-$(uname -r)

CONFIG_RANDOMIZE_BASE=y

Yes – here, we are. In cases like this (as mentioned already), the addr2line script may
not work as expected. In such cases, use the faddr2line script instead (as you'll guess,
it is a wrapper over the addr2line utility):

<...>/linux-5.10.60/scripts/faddr2line

usage: faddr2line [--list] <object file> <func+offset>
<func+offset>...

So, let's appropriately invoke the faddr2line script:

$ ~/lkd_kernels/productionk/linux-5.10.60/scripts/faddr2line ./
oops_tryv2.ko do_the_work+0x124

bad symbol size: base: 0x0000000000000000 end:
0x0000000000000000

Hey, that's really not what we expected!

Tip – Patch the faddr2line Script or Use a Newer Fixed Version
Upon encountering this issue with faddr2line, I reported it to
the maintainer, Josh Poimboeuf (link: https://lkml.org/
lkml/2022/1/16/305). By May 2022, Josh had fixed it (the underlying
issue was that the nm utility wasn't good enough; he switched to using
readelf – you'll find the details in the patch: https://lore.kernel.
org/lkml/29ff99f86e3da965b6e46c1cc2d72ce6
528c17c3.1652382321.git.jpoimboe@kernel.org/). So,
until this fix hits the upcoming mainline kernel (it will, and I am hoping it
happens soon – as of this writing, the process is just getting started), you'll have
to manually apply this patch to the existing scripts/faddr2line script.
(The fixed faddr2line should make it into the 5.19 kernel.)

https://lkml.org/lkml/2022/1/16/305
https://lkml.org/lkml/2022/1/16/305
https://lore.kernel.org/lkml/29ff99f86e3da965b6e46c1cc2d72ce6 528c17c3.1652382321.git.jpoimboe@kerne
https://lore.kernel.org/lkml/29ff99f86e3da965b6e46c1cc2d72ce6 528c17c3.1652382321.git.jpoimboe@kerne
https://lore.kernel.org/lkml/29ff99f86e3da965b6e46c1cc2d72ce6 528c17c3.1652382321.git.jpoimboe@kerne

338 Oops! Interpreting the Kernel Bug Diagnostic

Once the patch (mentioned just above) is applied, or, you have a fixed version of the
faddr2line script from a later kernel source tree (this should definitely be the case
soon enough), let's retry:

$ <...>/scripts/faddr2line ./oops_tryv2.ko do_the_
work+0x124/0x15e

do_the_work at <...>/Linux-Kernel-Debugging/ch7/oops_tryv2/
oops_tryv2.c:62

Ah, that's perfect! Line 62 (oopsie->data = 'x';) is indeed the buggy one.

Are we clean? The kernel-chktaint script
We covered the interpretation of the kernel's tainted flags in the previous section,
Interpreting the kernel tainted flags.

The kernel-chktaint script is a simple helper script that interprets the kernel's
tainted bitmask and prints its report. Here's an example when I ran it on my x86_64
Ubuntu guest that our oops_tryv2 buggy module caused an Oops upon:

Figure 7.18 – Screenshot showing output from the kernel-chktaint helper script

If you don't pass a parameter, the script looks up the proc pseudofile, /proc/sys/
kernel/tainted, and interprets its value. Note that this script lives in the tools/
debugging directory under the kernel source tree, not the scripts/ one.

Locating our saviors – the get_maintainer.pl script
Heard this one? When you fail, try, try again; if you fail non-stop, deny you ever tried. Ha
ha, very funny. We prefer this: when all else fails, contact the maintainer(s)!

It's easy to do with the scripts/get_maintainer.pl script. Typically, provide the
file or directory via the -f option switch and the details are revealed (do see its pretty
verbose help screen though for more options).

Tools and techniques to help determine the location of the Oops 339

Here's an example: say you're having trouble with the kernel's Kernel GDB (KGDB)
feature and want to ask someone pertinent questions regarding your troubles. Who do
you ask? The maintainers, and/or the mailing list if there's one, of course. Well, who
maintains it? The following screenshot shows how this question is easily answered, via the
get_maintainer.pl Perl script:

Figure 7.19 – Screenshot showing output from the kernel get_maintainer.pl helper script

The last few lines provide the key portion of the answer – the KGDB maintainers, their
email, and more importantly, the email address of the KGDB mailing list. Note that you
need to run it from the root of the kernel source tree. Also, running this script within a
Git-based kernel source tree can produce superior results.

Do realize that this script searches the MAINTAINERS file in the root of the kernel source
tree to provide its results. There's no reason you can't do the same with a simple grep:

$ grep -A15 –w "KGDB" MAINTAINERS

KGDB / KDB /debug_core

M: Jason Wessel <jason.wessel@windriver.com>

M: Daniel Thompson <daniel.thompson@linaro.org>

R: Douglas Anderson <dianders@chromium.org>

L: kgdb-bugreport@lists.sourceforge.net

S: Maintained

W: http://kgdb.wiki.kernel.org/

T: git git://git.kernel.org/pub/scm/linux/kernel/git/jwessel/
kgdb.git

F: Documentation/dev-tools/kgdb.rst

[...]

F: kernel/debug/

340 Oops! Interpreting the Kernel Bug Diagnostic

In the preceding, L denotes the mailing list. So, fire off your well-thought-out email to the
mailing list!

To report the bug I found in the faddr2line script (see the section, Exploiting the
faddr2line script on KASLR systems), I used this technique to find the maintainer:

5.10.60 $ grep -i -w -A1 faddr2line MAINTAINERS

FADDR2LINE

M: Josh Poimboeuf <jpoimboe@redhat.com>

--

F: scripts/faddr2line

Then, you ask, what happens when you (and/or your team) are the maintainer(s)? You got
it – keep reading this book and learning (tongue-in-cheek grin).

With that, we'll close this section. Any other kernel helper scripts? Oh, there are plenty.
Here's a sampling of the check* ones (from the root of the kernel source tree):

ls scripts/check*

scripts/check-sysctl-docs scripts/checkkconfigsymbols.
py scripts/checksyscalls.sh scripts/check_extable.sh
scripts/checkpatch.pl scripts/checkversion.pl scripts/
checkincludes.pl scripts/checkstack.pl

We've seen a couple of these already (recall, the checkpatch.pl Perl script is invoked
by our better Makefile!).

On this note, there's a helper script, scripts/extract-vmlinux. It's used to extract
an uncompressed vmlinux image from an existing kernel image file. In a similar vein,
the kdress utility attempts to extract an uncompressed debug-symbols vmlinux file
from an existing vmlinuz image (and /proc/kcore) – see kdress here: https://
github.com/elfmaster/kdress. Of course, with these, it's often a case of Your
Mileage May Vary (YMMV), though!

We'll leave it to you now, intrepid explorer, to check them out!

Leveraging the console device to get the kernel log
after Oopsing in IRQ context
When you tried out the first two versions of our trivial Oops-generating buggy modules
(ch7/oops_tryv1 and ch7/oops_tryv2), you'd have typically found that, though
the kernel has a bug and generated an Oops diagnostic, the system is still usable (of
course, no guarantees on this!).

https://github.com/elfmaster/kdress
https://github.com/elfmaster/kdress

Tools and techniques to help determine the location of the Oops 341

These two modules generated the Oops while running kernel (module) code in process
context (often, it's the insmod process, but our workqueue test case had the Oops occur
in the context of a kernel worker thread). Now, what if we do the same thing – generate an
Oops by, say, attempting to read an address within the NULL trap page (as we did earlier),
but this time while running in interrupt context!

Well, our ch7/oops_inirqv3 module does precisely this: it sets up a function that
will run in (hard) interrupt context by leveraging the kernel's irq_work* functionality
(we in fact used this same feature for running one of the memory leakage test cases in
interrupt context in the previous chapter). Here's the relevant code snippet – the interrupt
context work function that generates a simple Oops:

// ch7/oops_inirqv3/oops_inirqv3.c

void irq_work(struct irq_work *irqwk)

{

 int want_oops = 1;

 PRINT_CTX();

 if (!!want_oops) // okay, let's Oops in irq context!

 // a fatal hang can happen here!

 *(int *)0x100 = 'x';

}

Simple enough. Try running this module on your system. In my case at least, running
my Ubuntu 20.04 guest VM (with our custom production 5.10.60-prod01 kernel) on
Oracle VirtualBox 6.1, it has the VM simply freeze! No printks are seen, the login shell is
unusable, and the system appears to be hung.

Now what? How do you debug when even dmesg can't be run?

Setting up Oracle VirtualBox with a virtual serial port
Ah, welcome to the real world. For now, here's what we'll do: leveraging the kernel console
device concept, we can set up an additional serial console (pseudo) device on our guest
VM that actually backs onto a log file on our host system. (Do realize that this case is
very specific to using an x86_64 guest with Oracle VirtualBox as the hypervisor app. The
general concept, though, is applicable pretty much everywhere.)

342 Oops! Interpreting the Kernel Bug Diagnostic

Follow these steps to set up your hypervisor and guest system to log all kernel printks
from guest to host in a file on the host:

1. If already running, shut down your x86_64 guest Linux VM.
2. On your host system, go to your Oracle VirtualBox app GUI, select your guest VM

(typically seen in the column on the left side) and open your guest VM settings (by
clicking on the settings gearwheel).

3. The Settings dialog box opens. Here's a screenshot as it appears on my host system:

Figure 7.20 – Screenshot of the Oracle VirtualBox Settings dialog for our guest VM

Tools and techniques to help determine the location of the Oops 343

4. Now navigate to the Serial Ports option. Enable Port 1 (by clicking its toggle
button). Set Port Number to COM1 (equivalent to ttyS0 on Linux), Port Mode
to Raw File (via the drop-down menu), and within the Path/Address textbox, enter
the pathname to the console log file (the path is with respect to your host system):

Figure 7.21 – Screenshot of the Oracle VirtualBox Settings / Serial Port setup dialog for our guest VM,
setting up a serial console to log to a file on the host

(My host system is Linux too, hence the pathname follows the usual Unix/Linux
conventions. On a Windows/Mac host, provide the pathname to the file on your
host in accordance with its naming conventions.) Click the OK button when done.

5. Start the guest system. Press a key (usually Shift) to interrupt the GRUB bootloader
and enter its menu interface screen. Navigate to the Advanced options for Ubuntu
menu. Within it, highlight the appropriate kernel (I'm selecting our custom 5.10.60-
prod01 kernel) via the up/down arrow keys.

6. Type e to edit this kernel entry. Scroll down to the line beginning with linux
/boot/vmlinux-5.10.60-prod01 root=UUID=... ro quiet splash
....

344 Oops! Interpreting the Kernel Bug Diagnostic

Most importantly, edit the kernel command line, adding the new serial
console(s). Take the cursor to the end of this entry and type console=ttyS0
console=tty0 ignore_loglevel:

Figure 7.22 – Screenshot of the GRUB CLI, showing how we've edited the kernel command line to add
additional serial console(s)

On boot, this has the target kernel understand there are additional serial console devices
to send kernel printks to. The ignore_loglevel directive (as we saw before), has the
kernel send all printks to the consoles, irrespective of their log level (good for debugging
scenarios). When done editing, press Ctrl + X to boot.

Tools and techniques to help determine the location of the Oops 345

Retrying oops_inirqv3 with the serial console enabled
All right, by now, I assume you've followed the preceding detailed steps and are logged
into your guest VM with the new serial console(s) enabled. Check this with the following:

$ cat /proc/cmdline

BOOT_IMAGE=/boot/vmlinuz-5.10.60-prod01 root=UUID=<...> ro
quiet splash 3 console=ttyS0 console=tty0 ignore_loglevel

As mentioned back in Chapter 3, Debug via Instrumentation – printk and Friends, in the
section, Emitting a printk from userspace, a quick test to see if the (pseudo) serial console
works as expected is to do this, on the guest, as root:

echo "testing serial console 1 2 3" > /dev/kmsg

On the host, look up your console file (by the pathname you provided earlier). The
message sent above should be appended to it. Here it is on my Linux host:

$ tail -n1 ~/console_lkd.txt

[646.403129] testing serial console 1 2 3

It's fine. Let's proceed, running our buggy-in-irq module again:

cd <...>/ch7/oops_inirqv3

make

sudo insmod ./oops_inirqv3.ko ; sudo dmesg

[... <hangs> ...]

346 Oops! Interpreting the Kernel Bug Diagnostic

Again, the system seems to be hung. But this time, the Oops diagnostic printks would
have made it across the (pseudo) serial line to the file on the host! Check it. On my host,
this is what I see within the serial console file:

Figure 7.23 – Partial screenshot showing the content of the serial console raw file on the host; we can
clearly see (and thus analyze) the Oops diagnostic!

Fantastic – this time we can see the Oops diagnostic in all its glory and therefore
analyze it.

Tools and techniques to help determine the location of the Oops 347

Take a closer look – it's interesting: here, we know that the bug occurred in an interrupt
context. The RIP register points to the correct IRQ work function (irq_work()).
Further verifying this, the call (stack) trace now has two distinct parts – the IRQ stack
(delimited by the <IRQ> ... </IRQ> tokens) and, further down, the non-IRQ
process-mode kernel stack trace. Together, reading them bottom-up (ignoring the frames
prefixed with ?), they paint a pretty clear picture of what happened.

Several Stacks
The reality is that there can be several stacks in existence simultaneously; it
depends on the arch (CPU) and on what happened, on the code paths taken.
On modern architectures, for example, interrupt processing occurs on a
separate stack, the IRQ stack. On the x86_64, there can be regular stacks – the
user-mode and the kernel-mode stack (which are called the task stacks), an
IRQ stack, a hardware exception stack (for handling double faults, NMI, debug,
and the machine-check exception (mce)), and an entry stack. Starting with the
current stack pointer, the stacks' frames are unwound. Each stack has a pointer
to the next one.

Of course, the line at the top also clearly indicates the NULL pointer page dereference that
is the root cause of this Oops (where it occurred is what the call trace(s) reveal):

BUG: kernel NULL pointer dereference, address: 0000000000000100

The Oops output contains the process context in play at the time of the Oops:

CPU: 1 PID: 1699 Comm: insmod Tainted: G OE
5.10.60-prod01 #6

Now, this might have you think that the insmod process was the one executing kernel
code at the time of the crash and that it's the culprit. Well, not this time! This is because –
as you'll recall – this time, the bug occurred while the kernel was executing our IRQ work
function, in interrupt context. The presence of the IRQ call stack gives us that information
as well...

So, an important thing to realize is the insmod process was merely the value that the
current macro happened to point to at the time the Oops occurred. In other words, the
insmod process was actually interrupted by the interrupt (a work IRQ here)! That's why it
shows up; it doesn't necessarily mean it was running the code that triggered the Oops.

348 Oops! Interpreting the Kernel Bug Diagnostic

Quite often, when analyzing Oopses, you might find the process context is swapper
(PID 0). That, of course, is the kernel thread that runs on the processor when that core
is idle (it's the so-called idle thread – there's one per CPU core, of the form swapper/n,
where n is the core number starting with 0). So, the point here is that when this shows up
as the process context, it's perhaps more likely that it was interrupted by some interrupt
(or softirq) that is actually the one that ran the buggy code.

The last line of output (not seen in the preceding truncated screenshot) shows why the
system hung – it's considered a fatal error, the kernel did actually panic:

[770.483105] ---[end Kernel panic - not syncing: Fatal
exception in interrupt]---

A word of caution: unfortunately, the serial console log file seemed to get truncated. (This
seems to be a known issue with VirtualBox – see the link in the Further reading section.)

This general approach here has us specifying a serial console device to log kernel printks
to. Extending this approach, the netconsole facility allows you to log kernel printks
across a network! In effect, it's a remote printk facility. We shall shortly cover the basic
usage of netconsole.

An Oops on an ARM Linux system
and using netconsole
To get the most out of this section, I'd definitely recommend you be at least a little
conversant with the processor ABI conventions (especially stuff such as function calls,
parameter passing, and return values) for the processor your code's running upon. So,
here, it's for the ARM32. Again, do review the basics that we covered in Chapter 4, Debug
via Instrumentation – Kprobes, in the section, Understanding the basics of the Application
Binary Interface (ABI).

Here, our test environment is a Raspberry Pi 0W running Raspbian 10 (Buster) with
the standard 5.10.17+ kernel. This popular prototyping (and product) board has the
Broadcom BCM2835 System on Chip (SoC), which internally sports a single ARM32
CPU core for this board.

We cross-compile and run our usual test case on the device: our oops_tryv2 module
case 3 (passing the bug_in_workq=yes parameter). It does cause an Oops, of course,
but the bug was severe enough to hang the board entirely! So how do we get to see the
kernel log?

An Oops on an ARM Linux system and using netconsole 349

Ah, the kernel's netconsole facility turns out to be the answer. Well, at least one way.
Another way is to use the Raspberry Pi's serial UART along with a USB-to-serial converter
and to see the console output on a terminal – minicom / Hyperterminal – window! Of
course, we assume you have the target kernel – in our case, the (embedded ARM) target
system kernel configured for netconsole. The kernel config CONFIG_NETCONSOLE
should be set to either y or m (here, we assume it's built as a module, the typical case).

When loading the netconsole driver as a module, this is the format of the key parameter,
named netconsole, the means to specify the sender system's source address and the
receiver system's destination addresses:

netconsole=[+][src-port]@[src-ip]/[<dev>],[tgt-port]@<tgt-ip>/
[tgt-macaddr]

Please read the official kernel doc for completeness here: https://www.kernel.org/
doc/Documentation/networking/netconsole.txt. We leave the source and
destination ports as the defaults.

Netconsole works by configuring a sender and sending all kernel printks to a receiver
system across a network. Quite obviously, the sender is the one that sends data – the
kernel printk content – across the network (over UDP) to the receiver system. Very briefly,
I set up netconsole as follows:

• Set the Raspberry Pi 0W as the sender system. Strictly speaking, the sender should
have a static IP address so that the receiver can reliably specify it. Here, to test, we
don't bother setting it up. It does work (of course, the IP addresses and interface
names that follow are examples, change them to suit your systems' addresses – do
type this on one line):

sudo modprobe netconsole netconsole=@192.168.1.24/
wlan0,@192.168.1.101/

• Set the Linux host system (it could be your x86_64 guest VM) as the receiver (you
can also set up a Win/Mac host as the receiver system, but I won't delve into that
here). On the receiver system, you don't actually require the netconsole module
to be installed. Simply run the netcat utility as follows to capture the incoming
network stream (from the sender system) and log the data it receives to a file:

netcat -d -u -l 6666 | tee -a dmesg_arm.txt

https://www.kernel.org/doc/Documentation/networking/netconsole.txt
https://www.kernel.org/doc/Documentation/networking/netconsole.txt

350 Oops! Interpreting the Kernel Bug Diagnostic

The options passed to netcat are as follows:

• -d: Won't attempt to read from standard input.

• -u: Use UDP (not TCP) as the transport layer protocol.

• -l 6666: Listens for an incoming connection on port number 6666 (the default
target port for netconsole).

Now run the buggy module on the embedded board, while running netcat on the
host receiver system (to capture the kernel log being sent by netconsole from the
embedded system).

A Practical Consideration – ARM (Cross) Compiler Fails
I find that, quite often, when building the module for ARM (using the x86_64-
to-ARM32 cross compiler, arm-linux-gnueabihf-gcc), it fails with an
error of this sort:

ERROR: modpost: "__aeabi_ldivmod" [<...>/ch7/oops_
tryv2/oops_tryv2.ko] undefined!

This seems to be an issue with the way division is carried out for ARM.
A silly workaround is to just comment out code that performs division.
Here, the convenient.h:SHOW_DELTA() macro. Once removed, it
compiles correctly.

An Oops on an ARM Linux system and using netconsole 351

The following screenshot captures these steps being carried out (the top window with the
light background is the embedded sender system, where we load netconsole and then our
buggy module; the lower window with the darker background is the receiver host system
where netcat is running):

Figure 7.24 – Screenshot showing netconsole in action; the left, lighter window is the embedded sender;
the right, darker window is the host running netcat

Voila. We capture the kernel log on the receiver system, and can now analyze it at leisure.

352 Oops! Interpreting the Kernel Bug Diagnostic

Though we don't delve into the details here, I'll point this out: the Oops bitmask here,
the value 817 (it's in the line Internal error: Oops: 817 [#1] ARM – in
hexadecimal), is definitely not interpreted the same way as we did for the x86. So how
do you interpret it? You'll need to refer to the Technical Reference Manual (TRM)
of the particular ARM core in question – here it's the core on the BCM2835, the
ARM1176JZF-S. Interpreting its Fault Status Register (FSR) encoding is what needs to
be done to see what it means. Here, it's a bit pedantic as the line PC is at do_the_
work+0x68/0x94 [oops_tryv2] is the giveaway; moreover, using [f]addr2line
will pinpoint the source line as well! This is what follows.

Figuring out the actual buggy code location (on ARM)
The key lines in the Oops diagnostic (from the ARM system's kernel, sent over netconsole
to our receiver system) are the following:

Workqueue: events do_the_work [oops_tryv2]

PC is at do_the_work+0x68/0x94 [oops_tryv2]

LR is at irq_work_queue+0x6c/0x90

In this particular case, the system seems to have hard-hung before the call stack can
even be shown! No matter: the line with Program Counter (PC) – the equivalent of the
RIP register on the x86_64 – clearly tells us what occurred: the bug seems to have been
triggered at the function do_the_work(), within the oops_tryv2 module, at an offset
of 0x68 (decimal 104) bytes from the start of this function; the length of this function
is 0x94 (decimal 148) bytes. Interestingly, the Link Register (LR) on ARM specifies the
return address. In effect, we can tell that the function irq_work_queue() called our
workqueue routine do_the_work()! (Note that this info doesn't show up in Figure 7.22
though. Also, as with the x86_64, the Workqueue: line tells us that the kernel's default
events workqueue functionality was invoked to run our work routine.)

Okay, let's make good use of what we learned in the previous section and use some of the
tooling at our disposal to actually identify the buggy line of code that triggered this Oops!
We shall do so using three of these tools – addr2line, GDB, and objdump. Read on to
see the magic!

An Oops on an ARM Linux system and using netconsole 353

On ARM with addr2line
On the device, let's run the powerful addr2line utility on our module, providing the
start offset that the Oops reported (the value 0x68, as you saw above) and, hey, the rpi
oops_tryv2 $ prefix is simply our shell prompt, as the environment variable PS1=rpi
\W $:

rpi oops_tryv2 $ addr2line -e ./oops_tryv2.ko 0x68

</path/

to/>Linux-Kernel-Debugging/ch7/oops_tryv2/oops_tryv2.c:62

Here's a relevant snippet of the source file with line numbers prefixed:

61 pr_info("Generating Oops by attempting to write to
an invalid kernel memory pointer\n");

62 oopsie->data = 'x';

63 }

The offending buggy line is highlighted. The addr2line utility (this time running on
ARM) has nailed it!

On ARM with GDB
On the device, let's now run GDB on our module, using its powerful list command to
get the job done:

Figure 7.25 – Screenshot showing how ARM GDB's list command caught the offending source line

Look carefully at the output of the list *do_the_work+0x68 command in the
preceding screenshot. Again, exactly right!

354 Oops! Interpreting the Kernel Bug Diagnostic

On ARM with objdump
On the device, let's now run the objdump utility on our module (I've removed some
empty lines from the following output):

rpi oops_tryv2 $ objdump -dS ./oops_tryv2.ko

./oops_tryv2.ko: file format elf32-littlearm

Disassembly of section .text:

00000000 <do_the_work>:

/* Our workqueue callback function */

static void do_the_work(struct work_struct *work)

{

 0: e1a0c00d mov ip, sp

 4: e92dd800 push {fp, ip, lr, pc}

 8: e24cb004 sub fp, ip, #4

[...]

Scroll down to the nearest match to the start offset (as seen in the usual funcname+x/y
format). Here, the x (offset) value is 0x68:

 5c: ebfffffe bl 0 <printk>

oopsie->data = 'x';

 60: e3a03000 mov r3, #0

 64: e3a02078 mov r2, #120 ; 0x78

 68: e5c3201c strb r2, [r3, #28]

}

kfree(gctx);

Clearly, the offending source line that generated this (ARM) assembler is highlighted.
Again, bang on target!

As mentioned earlier, a practical consideration is what if you can't run these tools on the
embedded device? Then, you'll need to have the following:

• The unstripped debug kernel (vmlinux kernel image) with debug
symbols available

• The cross toolchain with all tools/utilities used to generate the bootloader, kernel,
and root filesystem images for your target

Again, this is why we highly recommend you always build and keep a debug kernel in
addition to the production one.

An Oops on an ARM Linux system and using netconsole 355

When running other kernel helper scripts on an Oops generated on a non-x86 platform,
don't forget to set the ARCH and CROSS_COMPILE environment variables appropriately
(just as we do when cross-compiling). For example, to run the decode_stacktrace.
sh script for Oops output generated on an ARM machine, do something like this:

ARCH=arm CROSS_COMPILE=arm-linux-gnueabihf- scripts/decode_
stacktrace.sh < oops_from_arm.txt

One last thing: for a bit of variety, here's the same bug (and Oops) being triggered on
another popular ARM development/prototyping board – the BeagleBone Black (from
Texas Instruments)!

Figure 7.26 – Screenshot showing the same Oops on a TI BeagleBone Black running Debian Linux with
a custom 4.19.94 kernel

356 Oops! Interpreting the Kernel Bug Diagnostic

I'll leave it an exercise for you to carefully browse this screenshot and spot all the key
points that we've spent so many pages discussing!

A tip: as mentioned earlier, interpreting the Oops bitmask on a system other than the x86
involves looking up the TRM for that processor. Here, the Oops bitmask shows up in this
line (highlighted):

Internal error: Oops: 805 [#2] PREEMPT SMP ARM

So, we need to look up the TRM for the TI Sitara AM335x SoC (it's a Cortex-A8 core –
that's the one this board's running on). Within it, the Memory Protection Fault Status
Register (MPFSR) holds the error code, which shows up as the Oops bitmask! The
relevant TRM document is available here as a PDF document: https://www.ti.com/
lit/ug/spruh73q/spruh73q.pdf. The details on the internal encoding of the
MPFSR register are available in section 11.4.1.87 (as of this writing, the relevant MPFSR
register details can be found on page 1735 of this PDF document).

A few actual Oopses
Here are a few actual Oopses (that I've very arbitrarily searched for via the keyword Oops,
from the Linux Kernel Mailing List (LKML) archives):

• A kernel NULL pointer dereference (on 4.14-rc2): https://groups.google.
com/g/linux.kernel/c/rG2uYWdoteo/m/6RacvsJ6BwAJ?hl=en

• An Oops on 4.9.33 (read the email): https://groups.google.com/g/
linux.kernel/c/t4IRjnxo2Kc/m/7Me5AEVIBwAJ

• An Oops flagged by Intel's superb kernel test robot (this has been reproduced on a
QEMU-based x86-32, so look for the EIP register, not RIP!): https://lkml.
org/lkml/2020/8/10/1390

• A recent one (as of this writing) – an Oops on 5.14.19: https://lkml.org/
lkml/2021/11/18/1116

• An Oops on ARM64 while booting 5.8.0-rc5 (read the analysis): https://lkml.
org/lkml/2020/7/20/139

https://www.ti.com/lit/ug/spruh73q/spruh73q.pdf
https://www.ti.com/lit/ug/spruh73q/spruh73q.pdf
https://groups.google.com/g/linux.kernel/c/rG2uYWdoteo/m/6RacvsJ6BwAJ?hl=en
https://groups.google.com/g/linux.kernel/c/rG2uYWdoteo/m/6RacvsJ6BwAJ?hl=en
https://groups.google.com/g/linux.kernel/c/t4IRjnxo2Kc/m/7Me5AEVIBwAJ
https://groups.google.com/g/linux.kernel/c/t4IRjnxo2Kc/m/7Me5AEVIBwAJ
https://lkml.org/lkml/2020/8/10/1390
https://lkml.org/lkml/2020/8/10/1390
https://lkml.org/lkml/2021/11/18/1116
https://lkml.org/lkml/2021/11/18/1116
https://lkml.org/lkml/2020/7/20/139
https://lkml.org/lkml/2020/7/20/139

A few actual Oopses 357

Then there's the interesting Linux Driver Verification (LDV) project. They have a set of
rules that are validated via their static and dynamic analysis frameworks, as well as other
tooling. As far as kernel bugs go, this project has found several. They're documented
here, under the heading Problems in Linux Kernel: http://linuxtesting.org/
results/ldv. Do take a look!

Of course, you can always simply search the kernel Bugzilla site (https://bugzilla.
kernel.org/query.cgi) for Oopses. Do note, though, that the kernel community
really wants you to write your bug report directly to the appropriate mailing list (recall the
get_maintainer.pl script) and copied to the LKML, not this site.

A key concern, of course, is being able to obtain the kernel log in the first place, else, how
can you analyze and interpret the Oops or panic that possibly occurred. With a severe-
enough bug, the saving of the kernel log to disk (or flash memory) may be compromised.
For this reason, there are alternatives. Here's a short list:

• Serial console: The kernel printks are saved on another system across a
physical serial console; it can also be a virtual serial console, as we saw in
the previous section.

• Netconsole: A facility to enable the transfer of kernel printks across a network.

• Employing persistent RAM to save the kernel log buffer; for example, the kernel
Ramoops framework has the kernel continually save kernel printks into a circular
buffer in a persistent memory region (allowing the content to be accessed after a
reboot). See the details in the official kernel doc here: https://www.kernel.
org/doc/html/latest/admin-guide/ramoops.html.

• The kernel's elaborate kdump framework to capture the entire kernel memory
image. This, along with the crash app to analyze it can be very powerful. We'll
provide an introduction in Chapter 12, A few more kernel debugging approaches.

Many similar (to the ones mentioned above) independent implementations have been
done by both individuals and organizations. You may come across some while working on
projects or products.

http://linuxtesting.org/results/ldv
http://linuxtesting.org/results/ldv
https://bugzilla.kernel.org/query.cgi
https://bugzilla.kernel.org/query.cgi
https://www.kernel.org/doc/html/latest/admin-guide/ramoops.html
https://www.kernel.org/doc/html/latest/admin-guide/ramoops.html

358 Oops! Interpreting the Kernel Bug Diagnostic

Summary
Awesome! Great job on completing this really important chapter!

Here, you first learned what a kernel Oops is. You can perhaps think of it as the equivalent
to a user-mode segfault, but as it's the kernel that's buggy, all guarantees are off. We began
by showing you how to generate a simple NULL pointer dereference bug, triggering an
Oops (though it may sound silly and obvious, these bugs still do occur – the last portion
of this chapter points you to some actual Oopses, some of which are NULL pointer
dereference bugs). We then went a bit further, triggering bugs in the NULL trap page and
then in a random sparse region of kernel VAS (recall the useful procmap utility, which
allows you to see the entire memory map of any process). Still further, more realistically,
we used the kernel's default events workqueue to have a kernel worker thread illegally
access an invalid pointer, causing an Oops (case 3)! We used this as a useful test case
throughout the remainder of the chapter.

The meat of this topic – actually interpreting the detailed Oops diagnostic – was then
covered in a lot of detail, with many screenshots to show you how it looks. Of course,
being arch-specific, we covered it mainly from the viewpoint of the x86_64. We also
covered generating and interpreting an Oops on ARM (32-bit) systems, using the
Raspberry Pi 0W (and a quick look at the BeagleBone Black Oops screenshot) as a test
board. Learning how to use various toolchain utilities and kernel helper scripts to help you
debug the Oops was critical learning here. We even covered using the powerful netconsole
facility along the way.

The chapter closed by pointing you to a few actual Oopses that are interesting to see.
Importantly, we mentioned a few techniques to help capture the kernel log in situations
where it can get problematic.

Needless to say (but I'll say it!), please do take the trouble to look at (and even generate!)
actual Oopses, and practice using the various available tools and techniques to try and
interpret them.

With this behind you, I'll see you in the following chapter where we'll look at another key
topic – figuring out locking bugs.

Further reading
• My earlier book: Linux Kernel Programming, Part 2 – Char Device Drivers and

Kernel Synchronization is freely downloadable as an e-book here: https://
github.com/PacktPublishing/Linux-Kernel-Programming/blob/
master/Linux-Kernel-Programming-(Part-2)/Linux%20Kernel%20
Programming%20Part%202%20-%20Char%20Device%20Drivers%20
and%20Kernel%20Synchronization_eBook.pdf

https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Linux-Kernel-Programming-(Part-2)/Linux%20Kernel%20Programming%20Part%202%20-%20Char%20Device%20Drivers%20and%20Kernel%20Synchronization_eBook.pdf
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Linux-Kernel-Programming-(Part-2)/Linux%20Kernel%20Programming%20Part%202%20-%20Char%20Device%20Drivers%20and%20Kernel%20Synchronization_eBook.pdf
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Linux-Kernel-Programming-(Part-2)/Linux%20Kernel%20Programming%20Part%202%20-%20Char%20Device%20Drivers%20and%20Kernel%20Synchronization_eBook.pdf
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Linux-Kernel-Programming-(Part-2)/Linux%20Kernel%20Programming%20Part%202%20-%20Char%20Device%20Drivers%20and%20Kernel%20Synchronization_eBook.pdf
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Linux-Kernel-Programming-(Part-2)/Linux%20Kernel%20Programming%20Part%202%20-%20Char%20Device%20Drivers%20and%20Kernel%20Synchronization_eBook.pdf

Further reading 359

• VirtualBox serial console log file getting truncated? This Q&A seems related:
[Solved] How to create unique path for serial port log file: https://forums.
virtualbox.org/viewtopic.php?f=1&t=86254

• CPU Registers on the x86_64: https://wiki.osdev.org/CPU_Registers_
x86-64

• Official kernel documentation: Bug hunting: https://www.kernel.org/doc/
html/latest/admin-guide/bug-hunting.html

• KASLR:

 � Kernel address space layout randomization, LWN, Oct 2013: https://lwn.
net/Articles/569635/

 � A brief description of ASLR and KASLR, Sep 2019: https://dev.to/
satorutakeuchi/a-brief-description-of-aslr-and-kaslr-2bbp

• The Meltdown/Spectre hardware bugs:

 � Meltdown and Spectre: https://meltdownattack.com/

 � Spectre and Meltdown explained: A comprehensive guide for professionals,
Tech Republic, May 2019: https://www.techrepublic.com/article/
spectre-and-meltdown-explained-a-comprehensive-guide-for-
professionals/

 � KPTI/KAISER Meltdown Initial Performance Regressions, B Gregg, Feb 2018:
https://www.brendangregg.com/blog/2018-02-09/kpti-kaiser-
meltdown-performance.html

• Netconsole:

 � Official kernel doc: https://www.kernel.org/doc/Documentation/
networking/netconsole.txt

 � Also briefly covered here: Debugging by printing, eLinux: https://elinux.
org/Debugging_by_printing#NetConsole

• Article: Much ado about NULL: Exploiting a kernel NULL dereference, Oracle
Linux Blog, Apr 2010: https://blogs.oracle.com/linux/post/much-
ado-about-null-exploiting-a-kernel-null-dereference

https://forums.virtualbox.org/viewtopic.php?f=1&t=86254
https://forums.virtualbox.org/viewtopic.php?f=1&t=86254
https://wiki.osdev.org/CPU_Registers_x86-64
https://wiki.osdev.org/CPU_Registers_x86-64
https://www.kernel.org/doc/html/latest/admin-guide/bug-hunting.html
https://www.kernel.org/doc/html/latest/admin-guide/bug-hunting.html
https://lwn.net/Articles/569635/
https://lwn.net/Articles/569635/
https://dev.to/satorutakeuchi/a-brief-description-of-aslr-and-kaslr-2bbp
https://dev.to/satorutakeuchi/a-brief-description-of-aslr-and-kaslr-2bbp
https://meltdownattack.com/
https://www.techrepublic.com/article/spectre-and-meltdown-explained-a-comprehensive-guide-for-professionals/
https://www.techrepublic.com/article/spectre-and-meltdown-explained-a-comprehensive-guide-for-professionals/
https://www.techrepublic.com/article/spectre-and-meltdown-explained-a-comprehensive-guide-for-professionals/
https://www.brendangregg.com/blog/2018-02-09/kpti-kaiser-meltdown-performance.html
https://www.brendangregg.com/blog/2018-02-09/kpti-kaiser-meltdown-performance.html
https://www.kernel.org/doc/Documentation/networking/netconsole.txt
https://www.kernel.org/doc/Documentation/networking/netconsole.txt
https://elinux.org/Debugging_by_printing#NetConsole
https://elinux.org/Debugging_by_printing#NetConsole
https://blogs.oracle.com/linux/post/much-ado-about-null-exploiting-a-kernel-null-dereference
https://blogs.oracle.com/linux/post/much-ado-about-null-exploiting-a-kernel-null-dereference

8
Lock Debugging

Imagine this: two threads, T1 and T2, running on different CPU cores, concurrently work
upon a shared (global) writable data item. If one (or both) of these memory accesses is
a write (a store), then congratulations, you've just witnessed a wily difficult-to-spot-and-
catch bug or defect: a data race. This can happen in both user as well as kernel space. In
the latter, the possibility of racing with both process (thread) and interrupt contexts arises
as well.

A data race is a bug of course. What's worse, it's often a clue, or symptom, to the fact
that there's often a higher-level issue or defect (like the proverbial tip of the iceberg).
Untangling buggy code, finding the data race, fixing it (and finding any higher-level root
defect) is necessary! As will be covered in detail, data races occur when a critical section
in the code path is left unprotected. So how do you protect the critical section? Locking
is one common way to do so (the Linux kernel provides several locking primitives:
the mutex, the spinlock, and atomic and refcount-based locking on integers). Locking
does cause performance issues – bottlenecks. Thus, the kernel also provides lock-free
mechanisms to help overcome this. These include the usage of per-CPU data, lock-free
data structures by design, and the powerful Read Copy Update (RCU) mechanism.

362 Lock Debugging

The Linux kernel is a complex beast indeed. With literally thousands of shared writable
data items, the possibility of data races is very real. Correctly employing locking (or lock-
free mechanisms) will ensure correctness. But of course, human programmers being,
well, human, mistakes can and do occur (with somewhat alarming frequency at times).
To be fair, concurrency is a really complex topic for our human minds. It's very hard to
fully comprehend all its possible side effects. Marco Elver (currently the maintainer of
Kernel Concurrency Sanitizer (KCSAN)), shows us in Data-race detection in the Linux
kernel: https://linuxplumbersconf.org/event/7/contributions/647/
attachments/549/972/LPC2020-KCSAN.pdf how several commits to the Linux
kernel are to do with fixing or avoiding data races. Within the root of a recent (here,
5.15.0) Git-based kernel source tree, do the following:

git log-format=oneline v5.3..v5.15 |grep -iE '(Fix|avoid) .*[
-]race[-]'|wc -l

197

Not just that, reliably reproducing, or even realizing, that a bug's root cause is a
concurrency issue – a data race – can be very hard to do. They tend to be delicate timing
coincidences. Further, these classes of defects are often called Heisenbugs: they subtly
change or even disappear when being observed! (The name is inspired, of course, by the
well-known Heisenberg uncertainty principle in quantum mechanics, the classic case
being that the better an observer can predict an electron's position, the less they can figure
out its momentum, and vice versa.) Adding instrumentation to a concurrency issue can
cause Heisenbugs – the result: confusion in the mind of a developer new to this.

On a similar note, do realize that in the long run, for the product or project you're
working on, detecting and fixing kernel data races is not sufficient; even userspace data
races have to be detected and fixed! Tooling exists to do so: helgrind, Thread Sanitizer
(TSAN), and even lockdep. Though we don't cover them here (we do point you to
lockdep's coverage), I'd urge you to familiarize yourself with their usage!

In this chapter, we shall focus on and cover the following main topics:

• Locking and lock debugging

• Locking – a quick summarization of key points

• Catching concurrency bugs with KCSAN

• A few actual use cases of kernel bugs due to locking defects

https://linuxplumbersconf.org/event/7/contributions/647/attachments/549/972/LPC2020-KCSAN.pdf
https://linuxplumbersconf.org/event/7/contributions/647/attachments/549/972/LPC2020-KCSAN.pdf

Technical requirements 363

Technical requirements
The technical requirements and workspace remain identical to what's described in Chapter
1, A General Introduction to Debugging Software. The code examples can be found within
the book's GitHub repository here: https://github.com/PacktPublishing/
Linux-Kernel-Debugging.

We also make reference to the last two chapters of my earlier (free!) eBook, Linux Kernel
Programming – Part 2. Its GitHub repository is available here: https://github.com/
PacktPublishing/Linux-Kernel-Programming-Part-2.

Locking and lock debugging
As this book is explicitly meant for the subject matter of Linux kernel debugging, we
don't even attempt to cover the basics of locking, why it's required, and the various kernel
technologies that provide locking (which includes the mutex lock, the spinlock, atomic
and refcount-based locking for integers, lock-free technologies such as per-CPU variables,
RCU, and so on). Much, in fact, pretty much most, of this content, is covered in my earlier
book (referred to below).

Further, a lot of material regarding the debugging of kernel-level locking issues, typically
deadlock (of different types), and the tools to catch them (including lockdep, one of the
most powerful!), is also covered in detail in this earlier book. If you're new to these topics,
I urge you to refer to the Linux Kernel Programming – Part 2 book (it's free to download as
an eBook), for our purposes here, particularly these sections:

• Chapter 6, Kernel Synchronization – Part 1, covers the basics regarding locking
in a lot of detail: what a critical section is, locking concepts and terminology,
concurrency concerns in kernel space, how to actually use the mutex lock and
spinlock APIs, and more (including using locks in both process and interrupt
contexts). Also, I provide a summarization of important points in the next
Locking – a quick summarization of key points section.

• Chapter 7, Kernel Synchronization – Part 2, in the Lock debugging within the
kernel section.

• This chapter also has coverage of more advanced locking, including
lock-free techniques.

https://github.com/PacktPublishing/Linux-Kernel-Debugging
https://github.com/PacktPublishing/Linux-Kernel-Debugging
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2

364 Lock Debugging

The cool thing is that the LKP-2 e-book is free to download! Here's the link: https://
github.com/PacktPublishing/Linux-Kernel-Programming/blob/
master/Linux-Kernel-Programming-(Part-2)/Linux%20Kernel%20
Programming%20Part%202%20-%20Char%20Device%20Drivers%20and%20
Kernel%20Synchronization_eBook.pdf. You can also download the Kindle
edition from Amazon for free. Quick, grab it!

Locking – a quick summarization of key points
As mentioned just above, do refer to the Linux Kernel Programming – Part 2 book to brush
up on the basics of locking within the Linux kernel (if you need to) – more importantly,
on kernel-level debug techniques as well as guidelines on preventing and detecting
dangerous locking bugs such as the deadly deadlock.

Nevertheless, I'd like to summarize some really key points with respect to locking here as
well. Here they are:

• A critical section is a code path that can execute in parallel and that works on
(reads and/or writes) shared writeable data (also known as shared state).

• Because it works on shared writable data, the critical section requires protection from
the following:

 � Parallelism (that is, it must run alone, serialized, in a mutually exclusive fashion)

 � When running in an atomic (for example, interrupt) non-blocking context, it must
run atomically: indivisibly, to completion, without interruption. To do so, every
critical section in the code path needs to be first identified and then protected
from concurrent access; how? The point that follows covers this. Every critical
section in the code base must be identified and protected:

 � Identifying critical sections is critical! Carefully review your code and make
sure you don't miss them.

 � Protecting them can be achieved via various technologies. One very common
technique is locking (there's also a more efficient technology, lock-free
programming).

 � A common mistake is only protecting critical sections that write to global
writeable data. You are required to also protect critical sections that read global
writeable data; otherwise, you risk a torn or dirty read!

https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Linux-Kernel-Programming-(Part-2)/Linux%20Kernel%20Programming%20Part%202%20-%20Char%20Device%20Drivers%20and%20Kernel%20Synchronization_eBook.pdf
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Linux-Kernel-Programming-(Part-2)/Linux%20Kernel%20Programming%20Part%202%20-%20Char%20Device%20Drivers%20and%20Kernel%20Synchronization_eBook.pdf
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Linux-Kernel-Programming-(Part-2)/Linux%20Kernel%20Programming%20Part%202%20-%20Char%20Device%20Drivers%20and%20Kernel%20Synchronization_eBook.pdf
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Linux-Kernel-Programming-(Part-2)/Linux%20Kernel%20Programming%20Part%202%20-%20Char%20Device%20Drivers%20and%20Kernel%20Synchronization_eBook.pdf
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Linux-Kernel-Programming-(Part-2)/Linux%20Kernel%20Programming%20Part%202%20-%20Char%20Device%20Drivers%20and%20Kernel%20Synchronization_eBook.pdf

Locking – a quick summarization of key points 365

 � Another deadly mistake is not using the same lock to protect a given data item.
Alternatively, using the incorrect lock variable, in effect, the wrong lock.

 � Failing to protect critical sections leads to a data race, a situation where the
outcome – the actual value of the data being read/written – is racy, which
means it varies, depending on runtime circumstances and timing. This is a
bug – a bug that, once in "the field," is extremely difficult to see, reproduce,
determine its root cause, and fix. Also, there's more to a data race; do see the
section that follows, What exactly is a data race?.

• Exceptions: You are safe (implicitly, without explicit protection) in the
following situations:

 � When you are working on local variables. They're allocated on the private (kernel)
stack of the process/thread context (or, in the interrupt context, on the local IRQ
stack) and are thus, by definition, safe.

 � When you are working on shared writeable data in code that cannot possibly run
in another context; that is, it's serialized by nature. In our context, the init and
cleanup methods of an LKM qualify (they run exactly once, serially, on insmod
(or modprobe) and rmmod only).

 � When you are working on shared data that is truly constant and read-only (don't
let C's const keyword fool you, though!).

 � Places where the use of plain C memory accesses are fine are documented here:
MARKING SHARED-MEMORY ACCESSES in the Use of Plain C-Language
Accesses section: https://git.kernel.org/pub/scm/linux/
kernel/git/torvalds/linux.git/tree/tools/memory-model/
Documentation/access-marking.txt.

Locking is inherently complex. You must very carefully think about, design, and
implement your code to avoid deadlocks. Again, do refer to the Linux Kernel Programming
– Part 2 book, Chapter 6, Kernel Synchronization – Part 1, in the Locking guidelines and
deadlocks section, for details. Also, do check out some useful links on locking in the
Further reading section of this chapter.

Understanding data races – delving deeper
As you dig deeper into this complex topic, you'll discover there's a lot more to learn!

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/tools/memory-model/Documentation/access-marking.txt
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/tools/memory-model/Documentation/access-marking.txt
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/tools/memory-model/Documentation/access-marking.txt

366 Lock Debugging

What exactly is a data race?
The Linux kernel has its own memory model called the Linux Kernel's Memory
(Consistency) Model (LKMM). With this model, there's a more precise way to define
a data race – it's a situation where two (or more) memory accesses occur so that the
following applies:

• Both access the same memory location (address).

• Both occur concurrently (in parallel).

• (At least) one access is a write (or store) operation.

• (At least) one access is a plain C-language access.

• They run on different CPU cores (or within different threads on the same core).

The screenshot that follows makes it clear:

Figure 8.2 – Screenshot from M Elver's presentation on data race detection in the kernel

(Credit: the above slide is from Marco Elver's presentation Data-race detection
in the Linux kernel, at the Linux Plumbers Conference, August 2020: https://
linuxplumbersconf.org/event/7/contributions/647/
attachments/549/972/LPC2020-KCSAN.pdf.)

In the preceding screenshot, an X implies a (red color) data race and a (green) check mark
implies there's none. Here's a highly abbreviated set of key points:

• In Figure 8.2, the first row in the table is an obvious data race: Thread 0 is
reading the shared writable variable x while Thread 1 is concurrently writing
to (updating) it.

https://linuxplumbersconf.org/event/7/contributions/647/attachments/549/972/LPC2020-KCSAN.pdf
https://linuxplumbersconf.org/event/7/contributions/647/attachments/549/972/LPC2020-KCSAN.pdf
https://linuxplumbersconf.org/event/7/contributions/647/attachments/549/972/LPC2020-KCSAN.pdf

Catching concurrency bugs with KCSAN 367

• A normal C statement accessing a variable is termed a plain access. Memory
accesses wrapped via the READ_ONCE(), WRITE_ONCE(), and similar macros
are termed marked accesses. Such accesses are designed to be inherently atomic
(thus safe from concurrency) and follow the LKMM. See the Further reading section
for links to more on this. (In fact, it's not just these macros; the atomic_*(),
refcount_*(), smp_load_acquire(), and similar macros fall into the class
of marked accesses.)

• See the second row; it's a data race as – as already explained – at least one of the
threads is performing a plain access at the same location, in parallel, and one of
them is a write access.

• Rows 3, 4, and 5 have a similar explanation to row 2.

• Rows 6 and 7 (the last two) are fine (no data races) as they use only marked
accesses, resulting in code that is atomic with memory-ordering guarantees.

A Lot to Read and Learn!
These details should have you thinking harder about concurrency and its
myriad (and complex!) related areas: concurrency general concepts, memory
ordering and memory barriers, the LKMM, marked accesses, lock-free
programming and how it works, and so on. We have neither the scope nor
space to cover these in detail here; some have been covered in my earlier book
Linux Kernel Programming – Part 2 (a freely downloadable eBook). Do refer to
the Further reading section in this chapter for links to articles to help sate your
thirst for knowledge in these areas!

With all this complexity, we could surely do with some help! The next section covers a
powerful kernel framework that does indeed help.

Catching concurrency bugs with KCSAN
The Kernel Concurrency Sanitizer (KCSAN) is a powerful kernel framework for helping
catch data races within the Linux kernel (and modules). It was merged into the kernel
in the 5.8 series (Aug 2020). It currently works on the x86_64 platform with support for
ARM64 being very recent (the 5.17 kernel, March 2022).

368 Lock Debugging

What KCSAN does, in a nutshell
KCSAN figures out data races (if you haven't already, please first read this section:
What exactly is a data race?) and reports them. In a nutshell, KCSAN treats all aligned
writes up to the processor word size as atomic (regardless of whether they're plain or
marked accesses). In effect, KCSAN works by checking for unmarked (or plain) reads
that race with these writes (that is, any write to the same address where the unmarked
read occurred)!

KCSAN is essentially a robot that (with the help of a syzbot instance), continuously scans
the kernel's main branches, setting up watchpoints on memory locations that are accessed,
teasing out patterns that will result in a data race and reporting them to the kernel log.
Given that it scans pretty much all kernel memory locations, it uses a statistical approach
to this (see more on this below, as well as in the Enabling KCSAN section, especially the
tunable named CONFIG_KCSAN_SKIP_WATCH), in the hope that it will catch many, if
not most, data races. (As a rule of thumb, KCSAN will by default only check a memory
access once every 2,000 times it occurs; else, the system would be effectively unusable.)
The default config tuning does work very well indeed (see the section just mentioned for
some details) and thus, so does KCSAN. This scanning has been going on since October
2019! Here's where you can peek at the results being generated: https://syzkaller.
appspot.com/upstream?manager=ci2-upstream-kcsan-gce.

What the Heck is a Syzbot?
A syzbot (short for syzkaller robot) is essentially a fuzzing technology that
continually fuzzes the main branches of the Linux kernel, teasing out bugs
and reporting them to a dashboard (a web interface). They're also copied
to a syzkaller-bugs mailing list. Details here: https://github.com/
google/syzkaller/blob/master/docs/syzbot.md.

(We cover a bit more on fuzzing in Chapter 12, A few more kernel debugging approaches, in
the What is fuzzing? section).

Concurrency bugs are by definition hard to observe, as they depend on delicate timing
coincidences. In order for KCSAN to detect them, it has to introduce deliberate (small)
delays into code paths and set up various watchpoints (via compiler instrumentation
and so-called soft watchpoints). It's like this: KCSAN sets up a (soft) watchpoint on a
given memory address. Then, when memory accesses are made to this address, they're
deliberately stalled for a short tunable duration. This delay is the value of the kernel
config KCSAN_UDELAY_TASK for task delays and defaults to 80 microseconds (whereas
interrupt delays are just 20 microseconds by default).

https://syzkaller.appspot.com/upstream?manager=ci2-upstream-kcsan-gce
https://syzkaller.appspot.com/upstream?manager=ci2-upstream-kcsan-gce
https://github.com/google/syzkaller/blob/master/docs/syzbot.md
https://github.com/google/syzkaller/blob/master/docs/syzbot.md

Catching concurrency bugs with KCSAN 369

Now, if two threads (or interrupt contexts, or one of each) access the same memory
location, both read/write watchpoints are triggered, and we have a race! KCSAN then
checks, and if the conditions for a data race are fulfilled (see the What exactly is a
data race? section), it reports it as a defect. If the content at that address changes, it
reports the old and the new data values. It also shows a stack trace of both the racing
threads or interrupt contexts (to help you see how they landed up here). If the memory
accesses are marked, no watchpoint is set up. The explanation below on plain and
marked accesses is deliberately kept brief; you can learn more about the inner workings
here: https://www.kernel.org/doc/html/latest/dev-tools/kcsan.
html#implementation-details. The article Finding race conditions with KCSAN,
Jonathan Corbet, LWN, 14 Oct 2019: https://lwn.net/Articles/802128/, does
a stellar job of explaining how KCSAN works – do look it up!

As mentioned above, KCSAN works by checking for unmarked (plain) reads that race
with any write (marked or plain) to the same address. A marked access is a racy access
being marked as legal. This isn't right according to the strict LKMM definition: there, any
unmarked write that's concurrent with any read to the same address constitutes a race. If
this is what's required (tip: it usually isn't; it's a very strict way to use KCSAN), then set
the following like this in your kernel config (worry not, we cover configuring KCSAN in
the very next section):

CONFIG_KCSAN_ASSUME_PLAIN_WRITES_ATOMIC=n

CONFIG_KCSAN_REPORT_VALUE_CHANGE_ONLY=n

CONFIG_KCSAN_INTERRUPT_WATCHER=y

KCSAN does incur significant overhead; the most significant tunable that affects the
performance overhead is CONFIG_KCSAN_SKIP_WATCH. It specifies the number of
per-CPU memory operations to skip before it sets up another watchpoint; the default
is 4,000. The smaller this value is, the more precise and aggressive KCSAN will be in
catching data races. This will be at the cost of larger system overhead (there's always a
trade-off, right?).

Also realize that KCSAN, precisely because it works by using a statistical approach (that
is, it only actually checks memory accesses once in a while), can indeed miss many data
races. This is why you should run your test cases with KCSAN enabled over a long period
of time, thus increasing the chances of races being caught.

Configuring the kernel for KCSAN
To enable KCSAN, simply set the kernel config CONFIG_KCSAN=y. This config has
non-trivial dependencies though, which need to be fulfilled.

https://www.kernel.org/doc/html/latest/dev-tools/kcsan.html#implementation-details
https://www.kernel.org/doc/html/latest/dev-tools/kcsan.html#implementation-details
https://lwn.net/Articles/802128/

370 Lock Debugging

Dependencies for enabling KCSAN
The dependencies for enabling KCSAN are summarized here:

• Arch: currently supported only on x86_64, with support for ARM64 coming in very
recently (the 5.17 kernel, March 2022.)

• Kernel version: x86_64: 5.8 (Aug 2020) or later; ARM64: 5.17 or later.

• Compiler-wise, KCSAN requires GCC or Clang version 11 or later. The CONFIG_
HAVE_KCSAN_COMPILER config directive encodes these requirements by
checking for specific features being supported (this is within the lib/Kconfig.
kcsan file).

• Further, you'll need to turn on kernel debug (via the CONFIG_DEBUG_KERNEL
option). Note though, that CONFIG_DEBUG_KERNEL=y merely makes kernel
debug features – within the Kernel Hacking menu – available for config; it
doesn't automatically enable anything by itself. So, in your custom debug kernel,
ensure you enable KCSAN.

• The KCSAN dependencies can be seen via its config file, lib/Kconfig.kcsan:

menuconfig KCSAN

bool "KCSAN: dynamic data race detector"

depends on HAVE_ARCH_KCSAN && HAVE_KCSAN_COMPILER

depends on DEBUG_KERNEL && !KASAN

depends on !KCSAN_KCOV_BROKEN

select STACKTRACE

Interestingly, KASAN (we covered KASAN in depth in Chapter 5, Debugging Kernel
Memory Issues – Part 1) and KCSAN don't get along; you can enable either or neither
but not both at the same time.

The config directive CONFIG_KCSAN_KCOV_BROKEN tells us that Clang can
support either KCSAN or KCOV (the kernel coverage tool) but not both together.

Finally, selecting KCSAN also turns on CONFIG_STACKTRACE (via the select
STACKTRACE directive), enabling detailed call traces (as part of its data race
reports).

Catching concurrency bugs with KCSAN 371

Right, assuming your x64 system has all these dependencies fulfilled, let's enable it.

Enabling KCSAN
To enable KCSAN with the usual make menuconfig UI, look for it here: Kernel
hacking | Generic Kernel Debugging Instruments | KCSAN: dynamic
data race detector. Note that if KCSAN doesn't even show up in the menu, it's
likely that your system doesn't fulfill all the dependencies (see the Further reading section
for a link on installing GCC-11 on Ubuntu). Quick tip: to ensure the basic dependencies
are fulfilled, I simply worked on an x86_64 Ubuntu 21.10 VM.

Click (press Enter) on it; a screenshot of the x86_64 KCSAN sub-menu (with its config
values all set to defaults) follows:

Figure 8.3 – Screenshot showing KCSAN's kernel config sub-menu

372 Lock Debugging

The default values for KCSAN tunables are deliberately set to be conservative. A few
(four) of them can be overridden by updating them at runtime as they're treated as kernel
module parameters as well, here: /sys/module/kcsan/parameters/. We show
them in the following table by mentioning the module parameter name in the leftmost
column in parentheses (as kcsan.<foo>). You can find these tunables and their
details in the kernel config file lib/Kconfig.kcsan. The following table summarizes
some of them:

Catching concurrency bugs with KCSAN 373

Table 8.1 – Summary of some of the KCSAN kernel config tunables

Getting the Details on KCSAN Internal Configs
More details (in increasing verbosity) on each of the KCSAN configs
(mentioned in the preceding table) can be found here:

lib/Kconfig.kcsan

KCSAN official kernel doc: https://www.kernel.org/doc/html/
latest/dev-tools/kcsan.html

Concurrency bugs should fear the big bad data-race detector (part 1), LWN, Apr
2020: https://lwn.net/Articles/816850/

https://www.kernel.org/doc/html/latest/dev-tools/kcsan.html
https://www.kernel.org/doc/html/latest/dev-tools/kcsan.html
https://lwn.net/Articles/816850/

374 Lock Debugging

Once configured, build and boot from your shiny new KCSAN-enabled kernel in the
usual manner. (I've configured, built, and booted from a debug 5.10.60 kernel with
KCSAN enabled. To ensure am using GCC >= 11, I did this on my x86_64 Ubuntu 21.10
VM.) Now, let's get going using KCSAN to catch those naughty data races.

Using KCSAN
Once you're all set up to run KCSAN, you can start catching these dangerous data
races (bugs!) with KCSAN. I'll assume that by now you're running a debug kernel
with KCSAN enabled.

A simple data race test case
We write a simple test case within a module (it's based on our earlier ch7/oops_tryv2
code, in fact). You'll find the code here: ch8/kcsan_datarace. To set up a data race,
we'll need (at least) two contexts that do actually race on a piece of global data. So, this
time, we have our setup_work() function initialize and schedule work on two (kernel-
default) events work queues. Thus, we'll have two kernel worker threads that consume
the work functions, do_the_work1() and do_the_work2(). Within these functions,
provided a Boolean module parameter (named race_2plain_w) is set to y, we race on
a global data variable! Next, we parametrize the number of times we loop in each of the
work queue functions, operating upon the shared global gctx->data, via the module
parameters iter1 and iter2 respectively. The reason is so that we can test with different
values to see when KCSAN – with its statistical approach, setting up watchpoints after
every CONFIG_KCSAN_SKIP_WATCH per-CPU memory accesses – actually catches our
data race!

Here's the relevant code, showing the actual data race:

// ch8/kcsan_datarace.c

[...]

static void do_the_work1(struct work_struct *work1)

{

 int i; u64 bogus = 32000;

 PRINT_CTX();

 if (race_2plain_w) {

 pr_info("data race: 2 plain writes:\n");

 for (i=0; i<iter1; i++)

 gctx->data = (u64)bogus + i;

 /* unprotected plain write on global */

Catching concurrency bugs with KCSAN 375

 }

}

static void do_the_work2(struct work_struct *work2)

{

 int i; u64 bogus = 98000;

 PRINT_CTX();

 if (race_2plain_w) {

 pr_info("data race: 2 plain writes:\n");

 for (i=0; i<iter2; i++)

 gctx->data = (u64)gctx->y + i;

 /* unprotected plain write on global */

 }

}

As you can see, each work function performs a C language plain write. It races as they're
concurrent, unprotected, and the plain write is upon the same address.

But guess what? KCSAN doesn't catch this (pretty glaring) data race. How come? The
kernel config CONFIG_KCSAN_ASSUME_PLAIN_WRITES_ATOMIC is set to y by default
(see Table 8.1). It turns out that this is the issue. Here's a (truncated) screenshot of its help
screen. Do scan it carefully (you'll find this help text is in lib/Kconfig.kcsan):

Figure 8.4 – Truncated screenshot of the Help screen for the CONFIG_KCSAN_ASSUME_PLAIN_
WRITES_ATOMIC kernel config option

So, if this is the case for you, go back to your debug kernel source tree, use make
menuconfig and toggle the KCSAN_ASSUME_PLAIN_WRITES_ATOMIC config to off.
Now, KCSAN no longer assumes that plain writes up to word size are atomic.

376 Lock Debugging

Rebuild and reboot; insmod our test module (passing the module parameters as
appropriate) and now KCSAN indeed catches our simple data race! The following
screenshot shows its report in all its glory:

Figure 8.5 – Screenshot showing KCSAN catching our 2 plain writes data race

The preceding screenshot shows the actual (kernel virtual) address of our chosen
global shared writable data item (gctx->data; it happens to be the value
0xffff9fc3cc9e3238 here). This is confirmed by KCSAN's report as well. Also, you
can see the output from our PRINT_CTX() macro showing the context when the kernel
worker threads (belonging to the kernel-default events work queue) execute. This is
followed by KCSAN's report. How do you interpret it? Read on!

Interpreting KCSAN's report
KCSAN's typical report format is as follows:

BUG: KCSAN: data-race in func_x / func_y

Catching concurrency bugs with KCSAN 377

This line (in red) implies that the functions func_x() and func_y() are involved in
a data race! Above, it's the process_one_work() function for both threads as this is
the underlying kernel routine that has both our (events work queues') kernel worker
threads consume their work function.

Next, you'll see lines in the format (and in red):

read/write [(marked)] to <kernel-virt-addr> of <n> bytes by
task <PID> on cpu <CPU#>

This is followed by the kernel stack trace for func_x(), with func_x() as the topmost
frame, showing, in effect, how we got here:

[... kernel stack call frames for func_x()]

This is followed by the same format for the other function involved in the data race (with
the first line in red):

read/write [(marked)] to <kernel-virt-addr> of <n> bytes by
task <PID> on cpu <CPU#>

[... kernel stack call frames for func_y()]

These lines – and the fact that in both conflicting threads it's a (plain) write, as well as the
kernel stack frames leading up to the race – are clearly seen in Figure 8.5.

The report indicates whether it was a read or write operation that was involved; further,
if the token (marked) is seen after the word read or write, it indicates a marked
read or write access; else, it was a plain access. The location – kernel virtual address –
where the data race occurred is then seen, along with the number of bytes actually being
read or written, followed by the CPU core on which the racy accesses ran. Next, follows
these lines:

Reported by Kernel Concurrency Sanitizer on:

[...]

This is essentially a summary paragraph where KCSAN shows a few more details: the
process/interrupt context details as well as the hardware details along with any other
relevant information (in our test case, the fact that it occurred on the kernel-default
events work queue is recorded; again, see Figure 8.5). That's it for the KCSAN report –
brief and to the point.

378 Lock Debugging

This isn't the only manner in which KCSAN reports data races. If the concerned data
item's value change has been seen, KCSAN will report it with both the old and new values.
Further, if the kernel config CONFIG_KCSAN_REPORT_RACE_UNKNOWN_ORIGIN is y
(it is by default), then KCSAN reports data races even where it cannot determine one or
both of the racing threads (or entities). Do refer to the official kernel documentation on
KCSAN for more on these aspects: https://www.kernel.org/doc/html/v5.10/
dev-tools/kcsan.html.

You can see reports of plenty of actual data races caught (and subsequently fixed) by
KCSAN here: https://github.com/google/kernel-sanitizers/blob/
master/KCSAN.md#upstream-fixes-of-data-races-found-by-kcsan.

Running our data race test case with a wrapper script
We write a simple wrapper script over the test case in order to test, in this particular case,
how many loop iterations are required in the racy code paths before KCSAN catches the
(two plain writes) data race. The bash script is located here: ch8/kcsan_datarace/
tester.sh. Its code is simple, please check it out. These are the results I obtained when I
ran the script in this manner:

sudo ./tester.sh 1 10000 5000

The parameters to this script are (in order) the number of trial runs to execute, the
number of times to loop in work function 1, and the number of times to loop in work
function 2 respectively (the latter two values become the value of the iter1 and iter2
module parameters respectively). Here are my (limited) findings:

Table 8.2 – Effect of differing loop iterations via our tester.sh script wrapper over the
kcsan_datarace module

I deliberately ran it with only one trial due to how the config CONFIG_KCSAN_REPORT_
ONCE_IN_MS works. It's set to the value 3000 by default; this is a rate-limiting construct.
In effect, KCSAN reports data races once within a 3-second interval. This is why, when
I run the module via my test script more than once in quick succession, KCSAN only
reports the data race once, on the first trial run. To counter this, the script is programmed
to perform a sleep of just over 3 seconds on every loop iteration.

https://www.kernel.org/doc/html/v5.10/dev-tools/kcsan.html
https://www.kernel.org/doc/html/v5.10/dev-tools/kcsan.html
https://github.com/google/kernel-sanitizers/blob/master/KCSAN.md#upstream-fixes-of-data-races-found-by-kcsan
https://github.com/google/kernel-sanitizers/blob/master/KCSAN.md#upstream-fixes-of-data-races-found-by-kcsan

Catching concurrency bugs with KCSAN 379

So, in Table 8.2, the middle row represents the (approximate) minimum number of loop
iterations before KCSAN catches this data race. You will realize that this isn't a general
conclusion and is very particular to this specific test case. Its results will almost certainly
vary on different systems. Don't read too much into this; our wrapper script is simply a
means to let you more easily test, that's all. (Quick tip: if you're not getting the data race
caught by KCSAN, try using large values for the 'number of loops' parameters).

Moving along, the kernel has a module to test KCSAN in depth; if you set CONFIG_
KCSAN_TEST=m, the kcsan-test.ko module gets installed. It employs both the kernel
KUnit and Torture test frameworks to conduct a large number of test cases (literally
torturing the system with concurrency bugs). Running it can take a while (close to 7
minutes on my x86_64 VM) and you'll have plenty of KCSAN data race reports to
look through. The source of this test module is here: kernel/kcsan/kcsan-test.c.
I'll leave it to you to browse through its source and try it out on your KCSAN-enabled
Linux system.

Runtime control via debugfs
KCSAN makes the /sys/kernel/debug/kcsan pseudofile available (under debugfs);
reading or writing to it has an effect. The following table summarizes just this (you'll need
root access):

Table 8.3 – Summary of action and effect on the KCSAN debugfs pseudofile /sys/kernel/debug/kcsan

380 Lock Debugging

Let's complete our coverage of KCSAN with a really key point – learning more on how to,
or rather, how not to, react to its data race reports!

Knee-jerk reactions to KCSAN reports – please don't!
A key point: don't react in a knee-jerk fashion to a KCSAN error report, blindly
attempting to fix the issue by using the READ_ONCE(), WRITE_ONCE(), and/or data_
race() macros – them making the racy accesses legal as they're now deemed marked
accesses – in your code.

Why not? The premise is that reads and writes to shared variables are not supposed to
race. If you mark every (or almost every) shared variable memory access with the READ_
ONCE() or WRITE_ONCE() macros, this in effect prevents KCSAN from detecting buggy
races that they may encounter! Thus it's important that they not be protected via these
macros and that the reads/writes they perform should be in plain C language. Instead, we
expect that your memory accesses are correctly protected by design and via your code-
level implementation (perhaps by using a mutex, spinlock, or atomic_t / refcount_t
primitive, a lock-free technique such as RCU or per-CPU variables, whatever). Moreover,
KCSAN reporting a data race is often a precursor, a hint, to the fact that a (severe) logic
bug exists in the code. Simply turning it off by using the READ_ONCE() or WRITE_
ONCE() macros would do everybody a grave injustice.

Sometimes, on the other hand, you know there's a data race in the code but either it's
benign or doesn't really matter (for example, statistics/diagnostic code paths performing
racy reads on shared variables being referenced within a sysfs or procfs pseudofile). In
cases like this, it's better that KCSAN is made aware of the fact and ignores them. This is
achieved by using the data_race() macro, marking the racy code as being intentional
(lockdep uses it in places as well). Here's an example of usage from the process/thread
creation code path in the kernel:

// kernel/fork.c:

/* If multiple threads are within copy_process(), then this
check triggers too late. This doesn't hurt, the check is only
there to stop root fork bombs. */

retval = -EAGAIN;

if (data_race(nr_threads >= max_threads))

 goto bad_fork_cleanup_count;

Catching concurrency bugs with KCSAN 381

A list of bugs found by KCSAN (link: https://github.com/google/kernel-
sanitizers/blob/master/kcsan/FOUND_BUGS.md) includes several including
the phrase "annotate data race" in their commit header. These tend to be done by using the
techniques mentioned just above.

Another way is to mark an entire function as not being a candidate for race detection
by KCSAN by prefixing the function with the __no_kcsan compiler attribute. There
are several ways to selectively enable/disable code from KCSAN detection. Please refer
to this link for more: https://www.kernel.org/doc/html/v5.10/dev-tools/
kcsan.html#selective-analysis. Of course, you're expected to not abuse
these features!

For completeness, I'd definitely recommend you read the detailed documentation in these
LWN articles: Concurrency bugs should fear the big bad data-race detector (part 1), LWN,
Apr 2020: https://lwn.net/Articles/816850/ (the section entitled How to use
KCSAN in this first part shows an example of catching a deemed data race with the strict
settings on). More in-depth details on various strategies to practically use KCSAN (for
kernel maintainers and developers) are covered in the second part of this LWN article
series: Concurrency bugs should fear the big bad data-race detector (part 2), LWN, Apr
2020: https://lwn.net/Articles/816854/.

Another point: we all understand the usage of a lock to protect a critical section. It is key
to realize, of course, that the entire safety aspect is based on the premise that the two (or
more) parties (processes/threads/interrupt contexts) accessing the shared memory region
concurrently actually perform the access while the very same lock is being held. This is
obvious. But, what if one party does not hold the lock and performs the shared memory
access? These locks are all advisory of course; the access would go through. The result is
a data race! Now, traditional tooling that depends on dynamic runtime checking (such
as lockdep) can't detect this. What about KCSAN? This is where KCSAN shines (as well):
it can catch these too! How? Without delving into details, a class of macros, ASSERT_
EXCLUSIVE*(), can determine whether an access actually occurs exclusively or not. For
critical sections, exclusive access is just what the doctor ordered! It's what prevents data
races, after all. This also has us understand that KCSAN itself works without using locks,
via compiler instrumentation (like KASAN).

Great – with this, we complete our coverage of the really powerful kernel concurrency
sanitizer, KCSAN. Let's move on to something interesting and practical: we'll explore a
few actual kernel defects whose root causes lie in – guess what – locking issues.

https://github.com/google/kernel-sanitizers/blob/master/kcsan/FOUND_BUGS.md
https://github.com/google/kernel-sanitizers/blob/master/kcsan/FOUND_BUGS.md
https://www.kernel.org/doc/html/v5.10/dev-tools/kcsan.html#selective-analysis
https://www.kernel.org/doc/html/v5.10/dev-tools/kcsan.html#selective-analysis
https://lwn.net/Articles/816850/
https://lwn.net/Articles/816854/

382 Lock Debugging

A few actual use cases of kernel bugs due to
locking defects
Looking up existing, fixed bugs helps us better understand their root cause, and thus
helps when we design and implement code. Here are a few instances of actual kernel bugs
related to locking. We don't delve into the details of each (just a few); that's left to you!
Quite clearly, the kernel bugs identified here aren't in the least bit exhaustive, merely an
attempt to get you started on exploring kernel bugs – caused primarily by locking defects
– faced by others and how they were tackled.

Defects identified by KCSAN
As was just covered in detail in the previous section, from the 5.8 kernel (Aug 2020), we
have a really powerful weapon to catch kernel concurrency issues – KCSAN. Bugs found
by KCSAN include those seen here: https://github.com/google/kernel-
sanitizers/blob/master/kcsan/FOUND_BUGS.md.

Identifying locking rules and bugs from
the LDV project
The Linux Driver Verification (LDV) project is an interesting one; among other stuff,
it encompasses a set of rules to be followed by developers working on Linux drivers
(which of course apply to pretty much any kernel code actually). The relevant
site link, showing the LDV Rules, is http://linuxtesting.org/ldv/
online?action=rules. The following screenshot highlights the point of
interest to us here – the rules that apply to locking!

https://github.com/google/kernel-sanitizers/blob/master/kcsan/FOUND_BUGS.md
https://github.com/google/kernel-sanitizers/blob/master/kcsan/FOUND_BUGS.md
http://linuxtesting.org/ldv/online?action=rules
http://linuxtesting.org/ldv/online?action=rules

A few actual use cases of kernel bugs due to locking defects 383

Figure 8.6 – Screenshot of the LDV project's Rules section with the rules applying to locking highlighted

Let's quickly check out the LDV rules relevant to locking:

• Rule (corresponding to the Mutex lock/unlock link in Figure 8.6): Locking
a mutex twice or unlocking without prior locking (link: http://linuxtesting.
org/ldv/online?action=show_rule&rule_id=0032). It's straightforward
– doing, or attempting to do, the following is illegal and results in a locking defect,
a bug:

 � Attempting to lock a mutex twice; aka double-locking. Interestingly, the kernel
simply disallows this type of recursive locking (as it often leads to problems). The
userspace POSIX Threads (Pthreads) implementation, on the other hand, allows
it via a special mutex type, PTHREAD_MUTEX_RECURSIVE. Within the kernel
though, any attempt to double-lock causes a serious defect – (self) deadlock!

 � Attempting to unlock a mutex that you haven't locked; in other words, you can
only unlock a mutex that you have locked, that you currently hold or "own."

http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0032
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0032

384 Lock Debugging

 � Exiting without unlocking your mutex(es).

An example of one of these bugs, an attempt to double-lock, and the subsequent
fix (the commit) can be found here: https://www.mail-archive.com/
git-commits-head@vger.kernel.org/msg18392.html. Here, the code
first grabbed a mutex lock (see the function edac_device_reset_delay_
period()) and then invoked another function, edac_device_workq_
teardown(). The problem, the bug, is that this latter function also attempts to
take the same mutex lock, resulting in a (self) deadlock defect! The fix essentially
has the order of the functions reversed, so that the teardown function runs without
the mutex lock held.

Let's move on to the next LDV rule with regard to locking.
• Rule (corresponding to the Memory allocation inside spinlocks link in Figure

8.6): Using a blocking memory allocation when spinlock is held (http://
linuxtesting.org/ldv/online?action=show_rule&rule_id=0043).
Again, it's simple (but can be quite easily forgotten in the heat of the moment!):
when allocating memory while holding a spinlock, you must use the GFP_ATOMIC
(not GFP_KERNEL) flag.

Again, here's an example of this very defect (within a wireless
network driver) as well as the fix: https://git.kernel.org/
pub/scm/linux/kernel/git/torvalds/linux.git/
commit/?id=5b0691508aa99d309101a49b4b084dc16b3d7019 (check
out the call trace, context info, and so on, provided the warning that got triggered
when a kzalloc() was performed with GFP_KERNEL within an atomic context).

The final LDV rule is here.
• Rule (corresponding to the Spinlocks lock/unlock link in Figure 8.6): Usage

of spinlock and unlock functions (link: http://linuxtesting.org/ldv/
online?action=show_rule&rule_id=0039). This rule essentially mirrors
the first one above, which is with respect to the mutex lock; here, it's with respect to
spinlocks. So, the following are defects/bugs:

 � Attempting to acquire the same spinlock more than once/double-locking (results
in self deadlock).

 � Attempting to unlock a spinlock that you haven't locked; in other words, you can
only unlock a spinlock that you have locked, that you currently hold or own.

 � Exiting without unlocking your spinlock(s).

mailto:https://www.mail-archive.com/git-commits-head@vger.kernel.org/msg18392.html
mailto:https://www.mail-archive.com/git-commits-head@vger.kernel.org/msg18392.html
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0043
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0043
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=5b0691508aa99d309101a49b4b084dc16b3d7019
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=5b0691508aa99d309101a49b4b084dc16b3d7019
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=5b0691508aa99d309101a49b4b084dc16b3d7019
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0039
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0039

A few actual use cases of kernel bugs due to locking defects 385

Though basic, these rules are easy to break unless you're careful!

Local Locks
A new synchronization primitive was added to the 5.8 kernel from the Real-
Time Linux (RTL) project (earlier called the PREEMPT_RT project), which
deserves a quick mention: local locks. These locks simply enable a clear context
when "locking" is done by disabling interrupts and/or preemption; a use case
is per-CPU locking. Earlier, it wasn't clear what exactly was being protected;
local locks solve this issue. In effect, a local lock is a wrapper over preemption
and interrupt enabling/disabling primitives. It is a necessary construct,
especially for debug kernels where using lockdep and static analysis is key
to finding bugs. This LWN article has the details: https://lwn.net/
Articles/828477/.

Right, let's move on to looking up a few locking bugs from the kernel Bugzilla.

Identifying locking bugs from the Linux kernel Bugzilla
Quite obviously, the kernel Bugzilla site tends to be quite a rich source of bugs, including
some related to locking. One way to reveal some reported locking bugs is to search by the
string emanated by the kernel when it feels there's an issue.

Lockdep
Do read up on using the powerful lockdep infrastructure within the kernel to
catch kernel deadlocks and defects here: Linux Kernel Programming – Part 2,
Chapter 7, Kernel Synchronization – Part 2, in the The lock validator lockdep –
catching locking issues early section.

When lockdep detects a typical deadlock (or even a potential one), it emits a
warning message containing the string possible circular locking
dependency detected.

https://lwn.net/Articles/828477/
https://lwn.net/Articles/828477/

386 Lock Debugging

Figure 8.7 is a screenshot showing some results (of course, by the time you try this, it
could change). Simply searching for the string locking bug reveals a few as well...

Figure 8.7 – Screenshot showing kernel Bugzilla search results for the string possible circular locking
dependency detected

Tip – Catching Those Sleep-in-Atomic Defects
On a related note, turning on the kernel config CONFIG_DEBUG_ATOMIC_
SLEEP as well as CONFIG_DEBUG_KERNEL (as the former depends on this
one; in other words, running within a debug kernel) helps catch bugs where
code sleeps in an atomic section (which isn't allowed of course).

A few actual use cases of kernel bugs due to locking defects 387

Do note though, that you're expected to report Linux kernel bugs to the kernel mailing list
(and associated subsystem maintainer(s)/subsystem lists).

Identifying some locking defects from various blog
articles and the like
This section is an attempt to try and give you a broader view, taking others' experiences
into account – people who've clearly learned from their experiences debugging kernel
code and have taken the trouble to write good blog articles about it! Obviously, this isn't in
the least exhaustive (just as the previous section on some actual kernel bugs wasn't), even
with the fact that it's primarily about bugs due to locking defects; it's simply here to give
you a broader perspective.

Exploiting an incorrect spinlock usage bug to gain complete control
Article: How a simple Linux kernel memory corruption bug can lead to complete
system compromise, Jann Horn, Google Project Zero, Oct 2021: https://
googleprojectzero.blogspot.com/2021/10/how-simple-linux-
kernel-memory.html.

Without getting into too many details, Jann Horn, a security researcher at Google's Project
Zero, found a bug within the kernel's pseudoterminal tty driver code (here: drivers/
tty/tty_jobctrl.c:tiocspgrp()). Basically, the bug – which boiled down to the
use of an incorrect spinlock – allowed one to set up data races between struct pid
structures that can skew its reference count. By itself, this may not buy you much, but
clever (white hat) security researchers such as Horn use it to set up a chain, an exploit,
which ultimately leads to the complete compromising of a Debian Linux system (running
the relatively recent 4.19 kernel), even getting a root shell, thus making it a Privilege
Escalation (privesc) attack! Do read the details at the link provided. Once the exploit
description is done, he also shows several possible defensive measures that can be taken.

https://googleprojectzero.blogspot.com/2021/10/how-simple-linux-kernel-memory.html
https://googleprojectzero.blogspot.com/2021/10/how-simple-linux-kernel-memory.html
https://googleprojectzero.blogspot.com/2021/10/how-simple-linux-kernel-memory.html

388 Lock Debugging

We're concerned about correctly using locks and finding incorrect usage of them. The
incorrect usage of a particular spinlock, a more or less humdrum bug, ultimately led to
this exploit. The fix involves using the appropriate spinlock variable (instead of how it
was being done before, using a spinlock belonging to a structure that could be arbitrarily
specified). The following screenshot of the commit (the fix) shows this:

Figure 8.7 – Screenshot showing the actual fix applied to the tty layer code

The preceding commit's clear: the fix is to use the correct spinlock! (Recall, we mentioned
this in the Locking – a quick summarization of key points. section) This fix was in fact very
recent (as of this writing), in kernel version 5.16.

Long delays due to interrupts being disabled while holding a lock
In general, a rule of thumb, a heuristic, to always follow is this: disable interrupts only
when absolutely essential, and then, for as short a time as is possible.

Why is this so important? It's quite obvious: hardware interrupts are the means by which
peripheral devices interrupt the processor and muscle their way onto the core, running
their (allegedly) urgent code paths, getting stuff done.

Let's consider a (very simplified) case where hardware interrupt handling plays a critical
role: think of a typical Ethernet adapter. When it detects a network packet with the
MAC address being equal to its MAC ID, it pulls it into an internal buffer. When full, it
interrupts the processor (run the command cat /proc/interrupts on the console
to see all registered Interrupt Requests (IRQs)). We expect the system – the network
driver, really – to then react. The kernel pretty much immediately redirects control to
the network driver's interrupt handler code. It executes, pulling in the packet (often
via DMA). The driver performs some basic processing on it and finally hands it off to
higher layers of the network protocol stack to process. They send the packet up to its final
destination, typically a userspace process.

A few actual use cases of kernel bugs due to locking defects 389

Now, imagine disabling this network interrupt for a rather long time! The system literally
suffers... network throughput drops. So, how do you disable hardware interrupts? Being in
kernel mode, it's entirely possible. APIs such as local_irq_disable(), local_irq_
save(), and disable_[hard]irq() can all achieve this (of course, their enabling
counterparts are used to reenable interrupts). But, you say, why would I deliberately do
that, especially for a long time?! Ah, this is where it gets interesting: a spinlock internally
disables interrupts (and kernel preemption) on the local processor while it's held!

This is certainly the case with the pretty common spin_lock_irq() and spin_
lock_irqsave() APIs. Check out the pseudo-code here:

spin_lock_irq[save](&mylock[, flags]); /* disables interrupts
*/

// time t1

/* ... do the work ... */

// time t2

spin_unlock_irq[restore](&mylock[, flags]); /* enables
interrupts */

The scenarios we're interested in are with regard to the time delta, the time spent running
code while the spinlock's held, (t2-t1). In effect, the time spent running code while
interrupts (and kernel preemption) are disabled:

• If (t2-t1) is small (a few microseconds or up to single-digit milliseconds), it's
generally okay (of course, this is a very generic statement; the actual affordable
latency really depends on your project and its worst-case response time
characteristics).

• If (t2-t1) is large (in the order of tens of milliseconds or more), it's generally not
okay and can cause all kinds of latency issues, even livelock, on the system.

The latter case is of course the bad one, the dangerous one. This is at the crux of what
happened in this actual use case (the following). Do read the article and see for yourself!

Article: Network Jitter: An In-Depth Case Study, Alibaba Cloud, Jan 2020: https://
www.alibabacloud.com/blog/network-jitter-an-in-depth-case-
study_595742.

390 Lock Debugging

Executive summary: Network jitter is caused here due to very long latencies in the
system. Investigating it, engineers find it boils down to latencies introduced when slab
statistics look up code calling spin_lock_irq() – which, as we know, internally
disables hardware interrupts – for a pretty long while as this code runs in a loop! It locks
up networking! Why does the loop run for a long while? It was iterating over dentry
objects in a linked list. It so happened that there were a huge number of these objects,
causing this (O(n) time-complexity, non-scalable code path) to take a long time...

This is a pretty typical issue: iterating over a list that's larger than expected, causing
unexpected latencies! Keep a keen eye out!

You just learned that, because the spin_lock_irq[save]() APIs disable both
hardware IRQs and kernel preemption, we must reenable them as soon as possible (by
invoking the complementary APIs, spin_unlock_irq[restore]()). Anything
more than a few tens of milliseconds spent with a spinlock held is considered too long.
Okay, but how can I measure this?

One way to find critical sections that take a long time to complete is by leveraging
the powerful eBPF infrastructure (we briefly covered eBPF in Chapter 4, Debug via
Instrumentation – Kprobes, in the Observability with eBPF tools – an introduction
section). Among the many eBPF tools available, for our purposes here, you can leverage
the criticalstat[-bpfcc] one – it's used to measure the length of atomic critical
sections – and you can filter based on duration. So, as an example, to measure which code
paths where kernel preemption is disabled are taking longer than, say, 5 ms (the time unit
for the tool is microseconds), run this command:

sudo criticalstat-bpfcc -p -d 5000 2>/dev/null

It even generates a stack trace showing the origins of lengthy critical sections – very useful
(see its man page for details)! Another way to measure the duration for which hardware
interrupts (and kernel preemption) is off is mentioned in Chapter 9, Tracing the Kernel
Flow, in the Ftrace - miscellaneous remaining points via FAQs section.

How blocking while atomic and failing to take references can be
your downfall
Working at the level of the kernel can certainly be more than you bargained for! The
complexity can get pretty high. This article illustrates this really well. Though long, it's
worth reading through fully.

Article: My First Kernel Module: A Debugging Nightmare, Ryan Eberhardt, Nov
2020: https://reberhardt.com/blog/2020/11/18/my-first-kernel-
module.html.

https://reberhardt.com/blog/2020/11/18/my-first-kernel-module.html
https://reberhardt.com/blog/2020/11/18/my-first-kernel-module.html

A few actual use cases of kernel bugs due to locking defects 391

Here's a very brief summary of the issues faced and lessons learned:

• Don't sleep (block) in any kind of atomic context, in critical sections! Relevant to
this particular use case, here's one of the bugs (the comments are self-explanatory):

rcu_read_lock(); // begin RCU read critical section

[...]

msleep(10); /* bug! *sleep() helpers all block; if
you must, use the *delay() helpers instead (they're
non-blocking) */

rcu_read_unlock(); // end RCU read critical section

Recall our earlier advice: turning on the kernel configs CONFIG_DEBUG_ATOMIC_
SLEEP and CONFIG_DEBUG (the former depends on this being enabled; in other
words, testing with a debug kernel) helps catch bugs – like this one – where code
sleeps in an atomic section!

• When using (even reading) several kernel global data structures, ensure you take a
reference to it so that it's not freed "under" you! Release the reference when done. A
couple of typical examples are the following:

 � For the task structure (struct task_struct):

 get_task_struct();

 /* ... use it ... */

 put_task_struct();

 � For the open file structure (struct file):

 get_file(file);

 /* ... use the file ... */

 fput(file);

FYI, this is the commit (appropriately labeled Fix race conditions in kernel
module) on the preceding project's GitHub repo where the racy bugs are
fixed: https://github.com/reberhardt7/cplayground/commit/
e14b9eb9d9ed616d9c030b8dd99c09b85349da28.

https://github.com/reberhardt7/cplayground/commit/e14b9eb9d9ed616d9c030b8dd99c09b85349da28
https://github.com/reberhardt7/cplayground/commit/e14b9eb9d9ed616d9c030b8dd99c09b85349da28

392 Lock Debugging

Interestingly, Ryan mentions how the on-the-surface-ridiculous technique of
simply commenting out a bunch of code, running it and checking if it works, then
uncommenting some statements, running it and checking if it works, over and over,
until it doesn't, is actually the way he made real progress with these bugs! It reminds
me of what was mentioned back in Chapter 1, A General Introduction to Debugging
Software, in the Debugging – a few quick tips: "Think small" section (reread the section
and see for yourself).

Summary
Good going! I think you'll agree with me that this chapter was a really key one. Locking
and concurrency are inherently complex topics, with all kinds of bad side effects (such
as unexplained hangs, deadlock, performance issues, and even livelock) when used
incorrectly. In this chapter, you began by refreshing the basics on several key points with
regard to locking.

We mentioned – and again emphasize – that detailed coverage on locking technologies
within the kernel (mutex, spinlock, atomic_t, refcount_t, per-CPU, and so on)
are covered in detail in my earlier Linux Kernel Programming – Part 2 book's last two
chapters. The eBook is freely downloadable (as both a PDF as well as a Kindle edition).
The last chapter in the Linux Kernel Programming – Part 2 book covers key information
on lock debugging techniques (especially lockdep) that are important.

This chapter then delved into what actually constitutes a data race (as defined by
the LKMM). You then learned what KCSAN is – a really powerful means to detect
concurrency-related bugs, and how to enable and use it. Don't blindly attempt to paper
over issues with indiscriminate use of the {READ|WRITE}_ONCE() and data_race()
helpers! When KCSAN has detected a data race, unless it's intentional, it's your job to
investigate and fix it.

The last section in this chapter showed you a few actual cases of concurrency/locking
related bugs in the kernel (and drivers). It's very interesting and educational to learn
from them!

So, do take the time to digest these key areas. With this, we complete part 2 of this book!
In the last part of this book (part 3), we'll begin with the next chapter, covering how you
can trace the flow of kernel (and driver) code – interesting and useful stuff to learn!

Further reading 393

Further reading
• My earlier book: Linux Kernel Programming – Part 2, Kaiwan N Billimoria,

Packt, Mar 2021. Freely downloadable as an eBook: https://github.com/
PacktPublishing/Linux-Kernel-Programming/blob/master/
Linux-Kernel-Programming-(Part-2)/Linux%20Kernel%20
Programming%20Part%202%20-%20Char%20Device%20Drivers%20
and%20Kernel%20Synchronization_eBook.pdf

(Its last two chapters are relevant to the coverage in this chapter.)
• A number of very useful links (a few might get repeated below) from my earlier

Linux Kernel Programming book:

 � Chapter 12, Kernel Synchronization, Part 1 – Further reading: https://github.
com/PacktPublishing/Linux-Kernel-Programming/blob/master/
Further_Reading.md#chapter-12-kernel-synchronization-
part-1---further-reading

 � Chapter 13, Kernel Synchronization, Part 2 – Further reading: https://github.
com/PacktPublishing/Linux-Kernel-Programming/blob/master/
Further_Reading.md#chapter-13-kernel-synchronization-
part-2---further-reading

• What every systems programmer should know about concurrency, Matt Kline,
April 2020: https://assets.bitbashing.io/papers/concurrency-
primer.pdf

• An Introduction to Lock-Free Programming, Preshing on Programming blog, June
2012: https://preshing.com/20120612/an-introduction-to-lock-
free-programming/

• Memory Barriers Are Like Source Control Operations, Preshing on Programming
blog, July 2012: https://preshing.com/20120710/memory-barriers-
are-like-source-control-operations/

• The Linux-Kernel Memory Consistency Model (LKMM):

 � Explanation of the Linux-Kernel Memory Consistency Model: https://git.
kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/
tree/tools/memory-model/Documentation/explanation.txt

 � Linux-Kernel Memory Model, Paul E. McKenney, Apr 2015: http://www.open-
std.org/jtc1/sc22/wg21/docs/papers/2015/n4444.html

https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Linux-Kernel-Programming-(Part-2)/Linux%20Kernel%20Programming%20Part%202%20-%20Char%20Device%20Drivers%20and%20Kernel%20Synchronization_eBook.pdf
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Linux-Kernel-Programming-(Part-2)/Linux%20Kernel%20Programming%20Part%202%20-%20Char%20Device%20Drivers%20and%20Kernel%20Synchronization_eBook.pdf
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Linux-Kernel-Programming-(Part-2)/Linux%20Kernel%20Programming%20Part%202%20-%20Char%20Device%20Drivers%20and%20Kernel%20Synchronization_eBook.pdf
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Linux-Kernel-Programming-(Part-2)/Linux%20Kernel%20Programming%20Part%202%20-%20Char%20Device%20Drivers%20and%20Kernel%20Synchronization_eBook.pdf
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Linux-Kernel-Programming-(Part-2)/Linux%20Kernel%20Programming%20Part%202%20-%20Char%20Device%20Drivers%20and%20Kernel%20Synchronization_eBook.pdf
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md#chapter-12-kernel-synchronization-part-1---further-reading
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md#chapter-12-kernel-synchronization-part-1---further-reading
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md#chapter-12-kernel-synchronization-part-1---further-reading
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md#chapter-12-kernel-synchronization-part-1---further-reading
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md#chapter-13-kernel-synchronization-part-2---further-reading
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md#chapter-13-kernel-synchronization-part-2---further-reading
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md#chapter-13-kernel-synchronization-part-2---further-reading
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md#chapter-13-kernel-synchronization-part-2---further-reading
https://assets.bitbashing.io/papers/concurrency-primer.pdf
https://assets.bitbashing.io/papers/concurrency-primer.pdf
https://preshing.com/20120612/an-introduction-to-lock-free-programming/
https://preshing.com/20120612/an-introduction-to-lock-free-programming/
https://preshing.com/20120710/memory-barriers-are-like-source-control-operations/
https://preshing.com/20120710/memory-barriers-are-like-source-control-operations/
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/tools/memory-model/Documentation/explanation.txt
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/tools/memory-model/Documentation/explanation.txt
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/tools/memory-model/Documentation/explanation.txt
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4444.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4444.html

394 Lock Debugging

 � Why kernel code should use READ_ONCE and WRITE_ONCE for shared memory
accesses, Andrey Konovalov, Google Sanitizers: https://github.com/
google/kernel-sanitizers/blob/master/other/READ_WRITE_
ONCE.md

• The Kernel Concurrency Sanitizer (KCSAN):

 � Official kernel documentation: The Kernel Concurrency Sanitizer (KCSAN):
https://www.kernel.org/doc/html/latest/dev-tools/kcsan.
html#the-kernel-concurrency-sanitizer-kcsan

 � Finding race conditions with KCSAN, Jonathan Corbet, LWN, 14 Oct 2019:
https://lwn.net/Articles/802128/. Also explains how KCSAN works.

 � Data-race detection in the Linux kernel, Marco Elver, Linux Plumbers Conference,
Aug 2020; PDF slides: https://linuxplumbersconf.org/event/7/
contributions/647/attachments/549/972/LPC2020-KCSAN.pdf

 � LWN's "big bad" series:

 � Who's afraid of a big bad optimizing compiler? Jade Alglave, Paul E. McKenney,
et al, LWN, July 2019: https://lwn.net/Articles/793253/

 � Concurrency bugs should fear the big bad data-race detector (part 1), Marco
Elver, Paul E. McKenney, et al, LWN, Apr 2020: https://lwn.net/
Articles/816850/

 � Concurrency bugs should fear the big bad data-race detector (part 2), Marco
Elver, Paul E. McKenney, et al, LWN, Apr 2020: https://lwn.net/
Articles/816854/

 � The KCSAN Google Wiki site: https://github.com/google/kernel-
sanitizers/blob/master/KCSAN.md

 � Installing GCC-11 on Ubuntu: StackOverflow, Apr/May 2021: https://
stackoverflow.com/questions/67298443/when-gcc-11-will-
appear-in-ubuntu-repositories

• The Android Open Source Project (AOSP) uses the kernel lockstat to solve
some performance issues by figuring out where exactly kernel lock contention is
occurring. See the case study as well within this section: https://source.
android.com/devices/tech/debug/ftrace#lock_stat.

https://github.com/google/kernel-sanitizers/blob/master/other/READ_WRITE_ONCE.md
https://github.com/google/kernel-sanitizers/blob/master/other/READ_WRITE_ONCE.md
https://github.com/google/kernel-sanitizers/blob/master/other/READ_WRITE_ONCE.md
https://www.kernel.org/doc/html/latest/dev-tools/kcsan.html#the-kernel-concurrency-sanitizer-kcsan
https://www.kernel.org/doc/html/latest/dev-tools/kcsan.html#the-kernel-concurrency-sanitizer-kcsan
https://lwn.net/Articles/802128/
https://linuxplumbersconf.org/event/7/contributions/647/attachments/549/972/LPC2020-KCSAN.pdf
https://linuxplumbersconf.org/event/7/contributions/647/attachments/549/972/LPC2020-KCSAN.pdf
https://lwn.net/Articles/793253/
https://lwn.net/Articles/816850/
https://lwn.net/Articles/816850/
 https://lwn.net/Articles/816854/
 https://lwn.net/Articles/816854/
https://github.com/google/kernel-sanitizers/blob/master/KCSAN.md
https://github.com/google/kernel-sanitizers/blob/master/KCSAN.md
https://stackoverflow.com/questions/67298443/when-gcc-11-will-appear-in-ubuntu-repositories
https://stackoverflow.com/questions/67298443/when-gcc-11-will-appear-in-ubuntu-repositories
https://stackoverflow.com/questions/67298443/when-gcc-11-will-appear-in-ubuntu-repositories
https://source.android.com/devices/tech/debug/ftrace#lock_stat
https://source.android.com/devices/tech/debug/ftrace#lock_stat

Further reading 395

• The blog articles covered in this chapter (in the Identifying locking defects from
various blog articles and the like section):

 � How a simple Linux kernel memory corruption bug can lead to complete
system compromise, Jann Horn, Google Project Zero, Oct 2021: https://
googleprojectzero.blogspot.com/2021/10/how-simple-linux-
kernel-memory.html

 � Network Jitter: An In-Depth Case Study, Alibaba Cloud, Jan 2020: https://www.
alibabacloud.com/blog/network-jitter-an-in-depth-case-
study_595742

• My First Kernel Module: A Debugging Nightmare, Ryan Eberhardt, Nov 2020:
https://reberhardt.com/blog/2020/11/18/my-first-kernel-
module.html. FYI, Ryan introduces the complex subject of Read-Copy-Update
(RCU) lock-free synchronization concepts superbly in this (above-mentioned)
article. I especially mention this as I didn't cover this key topic in the Linux Kernel
Programming – Part 2 book. A very brief introduction to RCU is given in Chapter
10, Kernel Panic, Lockups, and Hangs, in the Conceptually understanding RCU in a
nutshell section.

https://googleprojectzero.blogspot.com/2021/10/how-simple-linux-kernel-memory.html
https://googleprojectzero.blogspot.com/2021/10/how-simple-linux-kernel-memory.html
https://googleprojectzero.blogspot.com/2021/10/how-simple-linux-kernel-memory.html
https://www.alibabacloud.com/blog/network-jitter-an-in-depth-case-study_595742
https://www.alibabacloud.com/blog/network-jitter-an-in-depth-case-study_595742
https://www.alibabacloud.com/blog/network-jitter-an-in-depth-case-study_595742
https://reberhardt.com/blog/2020/11/18/my-first-kernel-module.html
https://reberhardt.com/blog/2020/11/18/my-first-kernel-module.html

Part 3:
Additional Kernel

Debugging Tools and
Techniques

In this section, you will begin by learning about powerful technologies that allow you to
trace the flow of kernel code in detail. Then, you'll move on to learning all about kernel
panic and what you can do if it ever occurs! Next, you'll use KGDB within the kernel and
modules to single-step through their source. The section – and the book – winds up with
an introduction to even more approaches to debugging the Linux kernel.

The following chapters will be covered in this section:

• Chapter 9, Tracing the Kernel Flow

• Chapter 10, Kernel Panic, Lockups, and Hangs

• Chapter 11, Using Kernel GDB (KGDB)

• Chapter 12, A Few More Kernel Debugging Approaches

9
Tracing the
Kernel Flow

Tracing is the ability to collect relevant details as code executes. Typically, data collected
will include function names (and perhaps parameters and return values) of function calls
made along the code path being followed, the context that issued the call, when the call
was made (a timestamp), the duration of the function call, and so on. Tracing allows you
to study and understand the detailed flow of a system or a component within it. It's akin to
the black box in an aircraft – it simply collects data, allowing you to interpret and analyze
it later. (You can also consider tracing to be loosely analogous to logging.)

Profiling is different from tracing in that it typically works by taking samples (of various
interesting events/counters) at periodic points in time. It won't capture everything; it
(usually) captures just enough to help with runtime performance analysis. A profile of
code execution, a report, can usually be generated, allowing you to catch outliers. So,
profiling is statistical by nature, while tracing isn't. It captures literally everything.

Tracing can be, and certainly often is, a debugging technique well worth understanding
and using; profiling, on the other hand, is meant for performance monitoring and
analysis. This book is about kernel debugging; hence, in this chapter, we keep the focus
on a few tracing technologies (among the many available) and their frontends, which
can prove useful. (To be honest, there will be overlap at times – some tools serve as both
tracers as well as profilers, depending on how they're invoked.)

400 Tracing the Kernel Flow

In this chapter, we're going to cover the following main topics:

• Kernel tracing technology – an overview

• Using the ftrace kernel tracer

• Using the trace-cmd, KernelShark, and perf-tools ftrace frontends

• An introduction to kernel tracing with LTTng and Trace Compass

Technical requirements
The technical requirements and workspace remain identical to what's described in Chapter
1, A General Introduction to Debugging Software. The code examples can be found within
the book's GitHub repository here: https://github.com/PacktPublishing/
Linux-Kernel-Debugging. The only new requirements are installing LTTng and
Trace Compass for your Ubuntu 20.04 LTS system.

Kernel tracing technology – an overview
In order to trace or profile, a data source (or several) are required; the Linux kernel
provides them, of course. Tracepoints are a primary data source within a kernel (in
fact, we covered using the kernel's dynamic event tracing in Chapter 4, Debug via
Instrumentation – Kprobes in the The easier way – dynamic kprobes or kprobe-based event
tracing section). The kernel has several predefined tracepoints; you can see them here: /
sys/kernel/tracing/events/. Many tracing tools rely on them. You can even set
up tracepoints dynamically by writing to /sys/kernel/tracing/kprobe_events
(we covered this too in Chapter 4, Debug via Instrumentation – Kprobes via dynamic
kprobes, as just mentioned).

Other data sources include kprobes, uprobes (the equivalent of kprobes for userspace),
USDT/dprobes and LTTng-ust (these latter two are for user mode tracing; also, LTTng
has several kernel modules that it inserts into the kernel for kernel tracing – there will be
more on LTTng later in this chapter).

https://github.com/PacktPublishing/Linux-Kernel-Debugging
https://github.com/PacktPublishing/Linux-Kernel-Debugging

Kernel tracing technology – an overview 401

A well-known look at the state of Linux tracing (and the many tools and technologies
encompassed within it) is this blog article by Julia Evans (@b0rk): Linux tracing
systems & how they fit together, Julia Evans, July 2017: https://jvns.ca/
blog/2017/07/05/linux-tracing-systems/. Do check it out. Here, I use the
same methodology to organize the rather large Linux tracing infrastructure; we divide it
up into data sources (as mentioned previously), infrastructure technologies that collect or
extract data from them, and finally, frontends, enabling you to use them more easily and
effectively. The following diagram is my attempt to sum this up in one place:

Figure 9.1 – The Linux tracing infrastructure

https://jvns.ca/blog/2017/07/05/linux-tracing-systems/
https://jvns.ca/blog/2017/07/05/linux-tracing-systems/

402 Tracing the Kernel Flow

Steven Rostedt is the original developer of ftrace and, I dare say, is intimately familiar
with much of Linux's vast tracing landscape. A slide from one of his many presentations
on Linux tracing goes a long way toward summing up the state of the system (as of 2019
at least):

Figure 9.2 – The rich Linux tracing ecosystem, one where the underlying tech is shared

Here is the credit for the previous slide: Unified Tracing Platform, Bringing tracing together,
Steven Rostedt, VMware 2019: https://static.sched.com/hosted_files/
osseu19/5f/unified-tracing-platform-oss-eu-2019.pdf.

As you can see (Figure 9.1 and Figure 9.2), there's a pretty vast plethora of technologies
here; taking into account the fact that this book is about kernel debugging (and the space
constraints within the book), we will only cover a few key kernel tracing technologies,
focusing on their usage rather than on their internals. Again, the point Rostedt
convincingly makes (which is echoed in this article: Unifying kernel tracing, Jack Edge,
Oct 2019: https://lwn.net/Articles/803347/) is that in today's world, Linux
tracing technologies aren't really competing with each other; rather, they're building
off each other, as sharing ideas and code is not only allowed, it's encouraged! Thus, he
visualizes a common userspace library that unifies all the disparate (yet powerful) kernel
tracing technology in such a way that anyone can take advantage of all of it.

https://static.sched.com/hosted_files/osseu19/5f/unified-tracing-platform-oss-eu-2019.pdf
https://static.sched.com/hosted_files/osseu19/5f/unified-tracing-platform-oss-eu-2019.pdf
https://lwn.net/Articles/803347/

Using the ftrace kernel tracer 403

Do refer to the Further reading section for links to the other tracing technologies (as well
as to what's covered here). Also, we've already covered kprobes and the related event
tracing tooling, the usage of the kprobe[-perf] script, and the basics of using eBPF
tooling back in Chapter 4, Debug via Instrumentation – Kprobes.

So, buckle up, and let's dive into kernel tracing with ftrace!

Using the ftrace kernel tracer
Ftrace is an inbuilt kernel feature; its code is deeply ingrained into that of the kernel itself.
It provides developers (anyone with root access, really) with a way to look deep within the
kernel, perform detailed traces to see exactly what's going on inside, and to even get help
with performance/latency issues that may crop up.

A simple way to think about ftrace's functionality is this – if you'd like to see what a
process is up to, performing strace on it can be very useful indeed; it will display
every system call that the process invokes in a meaningful way, with parameters, return
values, and so on. Thus, strace is useful and interesting, as it shows what occurs at the
interesting system call point – the boundary between user and kernel space. But that's it;
strace cannot show you anything beyond the system call; what does the system call code
do within the kernel? What kernel APIs does it invoke, and thus which kernel subsystems
does it touch? Does it move into a driver? Ftrace can answer these questions (and more)!

Tip
Don't knock the sheer usefulness of strace (and even ltrace – a library
call tracer) in helping to understand and solve issues, obviously more so at the
userspace layers. I highly recommend you learn to leverage them; read their
man pages and search for tutorials.

404 Tracing the Kernel Flow

Ftrace works essentially by setting up function hooks via compiler instrumentation (a
bit simplistically, by enabling the compiler's -pg profiler option, which adds a special
mcount call), ensuring that the kernel is aware of the entry (prologue) and possibly the
exit/return (epilogue) of (almost) every single function in kernel space. (The reality is
more complex; this would be too slow. For performance, there's a sophisticated dynamic
ftrace kernel option – more on this is mentioned in the Ftrace and system overhead
section.) In this way, ftrace is more like the Kernel Address Sanitizer (KASAN), which
uses compiler instrumentation to check for memory issues, and less like the Kernel
Concurrency Sanitizer (KCSAN), which works using a statistical sampling-based
approach. (We covered KASAN in Chapter 5, Debugging Kernel Memory Issues – Part 1,
and KCSAN in Chapter 8, Lock Debugging.) But by virtue of the dynamic ftrace option, it
runs with native performance for the vast majority of the time, making it a superb debug
tool on even production systems.

Accessing ftrace via the filesystem
Modern ftrace (kernel 4.1 onward) is implemented as a virtual (API) filesystem named
tracefs; this is how you're expected to work with it. The default mount point is a leaf
directory under the debugfs mount point named tracing; it's also made available under
sysfs:

mount | grep "^tracefs"

tracefs on /sys/kernel/tracing type tracefs
(rw,nosuid,nodev,noexec,relatime)

tracefs on /sys/kernel/debug/tracing type tracefs
(rw,nosuid,nodev,noexec,relatime)

As mentioned earlier, it's possible – especially on a production kernel – that the CONFIG_
DEBUG_FS_DISALLOW_MOUNT kernel config is set to y, implying that although debugfs
is available, it isn't visible. In cases like this, having access to kernel tracepoints via sysfs
(/sys/kernel/tracing) becomes important. Until Linux 4.1, only the traditional
mount point – /sys/kernel/debug/tracing – was present. From 4.1 onward,
mounting debugfs (typically done at boot, as systemd is configured to mount it) will also
result in the sys/kernel/tracing mount being automatically set up. As the kernel
version we typically work with here is a much later one (5.10), we'll assume from now on
that you'll work within the /sys/kernel/tracing directory.

Using the ftrace kernel tracer 405

Configuring the kernel for ftrace
Most modern Linux distributions are preconfigured to support ftrace out of the box.
The relevant config is CONFIG_FTRACE, which should be set to y. Using the familiar
make menuconfig UI, you'll find ftrace (along with its sub-menus) here: Kernel
hacking | Tracers.

The key dependency is the TRACING_SUPPORT config; it's arch-dependent and must be
y. Realistically, most architectures (CPU types) will have this dependency satisfied. Here's
a screenshot of the default sub-menu for ftrace on x86:

Figure 9.3 – A screenshot of the Tracers sub-menu (defaults) on x86_64 (5.10.60)

Also, if you want to enable the Interrupts-off Latency Tracer (CONFIG_IRQSOFF_
TRACER), it depends on TRACE_IRQFLAGS_SUPPORT=y (which is usually the case; we
will briefly cover the interrupt (IRQ) and preempt-off latency tracers within the Ftrace
– miscellaneous remaining points via FAQs section). In addition, several options depend
upon the ability to figure out and display (kernel) stack traces (CONFIG_STACKTRACE_
SUPPORT=y), which, again, is typically on by default.

406 Tracing the Kernel Flow

All the sub-menus and further configs belonging to ftrace are defined (and described) in
the Kconfig file here: kernel/trace/Kconfig; you can look it up for details on any
particular ftrace config directive.

So, practically speaking, on a common distro kernel (such as that of Ubuntu 20.04.3 LTS),
is ftrace enabled or not? Let's check:

$ grep -w CONFIG_FTRACE /boot/config-5.11.0-46-generic

CONFIG_FTRACE=y

It is. What about the embedded system on your project? I wouldn't know; check it out
(run grep on your project's kernel config file). On our custom 5.10.60 production kernel,
we have ftrace enabled. As an aside, this book's technical reviewer, Chi Thahn Hoang, has
vast experience on embedded Linux projects; he mentions that, in his experience, ftrace
is always configured into a project, as it's very useful and can be used on demand, with
virtually zero overhead when off.

Ftrace and system overhead
If tracing is enabled by default, you would indeed imagine that the system overheads
would be pretty high. The good news is that although tracing is enabled, it's not turned on
by default. Let's begin to check it out:

cd /sys/kernel/tracing

(As this is the first time we're using it, I explicitly show the cd to the directory. Also, the #
prompt hints that we're running as root; you do need to.)

Using the ftrace kernel tracer 407

The tracefs filesystem has many control knobs (pseudofiles, of course, just as with
procfs, sysfs, and other API-based filesystems); one of them, named tracing_on,
toggles the actual tracing functionality on or off; here it is:

ls -l tracing_on

-rw-r--r-- 1 root root 0 Jan 19 19:00 tracing_on

Let's query its current value:

cat tracing_on

1

It's quite intuitive – 0 means it's off, and 1 means it's on. So, ftrace is on by default? Isn't
that risky performance-wise? No, it's actually/practically off – as the current_tracer
pseudofile's value (soon explained) is nop, implying it's not tracing.

Back to the question of performance – even with the ability to toggle ftrace on/off,
performance will still be an issue. Think about this – pretty much every function entry
and return point (if not more fine-grained) will have to perform an if clause, something
akin to the pseudocode: if tracing's enabled, trace.... This if clause itself
constitutes far too much overhead; remember, this is the OS we're talking about; every
nanosecond saved is a nanosecond earned!

The brilliant solution to this situation is to enable a config option called dynamic ftrace –
CONFIG_DYNAMIC_FTRACE. When set to y, the kernel performs something amazing
(and, in truth, scary); it can (and does!) modify kernel machine instructions on the fly in
RAM, patching kernel functions to jump into ftrace or not, as required (this is often called
a trampoline)! This config option is turned on by default, resulting in native performance
of the kernel when tracing is disabled and near-native performance when tracing for only
some functions is enabled.

408 Tracing the Kernel Flow

Using ftrace to trace the flow of the kernel
By now, you'll begin to realize that, as with tracing_on, there are several pseudofiles
under tracefs (that is, within the /sys/kernel/tracing directory) that are
considered to be the "control knobs" of ftrace! (By the way, now that you know that the
files under tracefs are pseudofiles, we'll mostly refer to them as simply files from now
on.) The following screenshot shows us that there are indeed plenty of them:

Figure 9.4 – A screenshot showing the content within the tracefs pseudo-filesystem

Don't stress regarding the meaning of all of them; we'll consider just a few key ones
for now. Understanding what they're for and how to use them will have you using ftrace
in a jiffy.

Ftrace uses the notion of a tracer (sometimes referred to as a plugin) to determine the
kind of tracing that will be done under the hood. The tracers need to be configured
(enabled) within the kernel; several are by default, but not all of them. The ones that are
already enabled can be easily seen (here we assume you're running as root within the /
sys/kernel/tracing directory):

cat available_tracers

hwlat blk function_graph wakeup_dl wakeup_rt wakeup function
nop

Using the ftrace kernel tracer 409

So, among the ones seen in the preceding snippet, which one will be used when tracing?
Can you change it? The tracer (plugin) to be used is the content of the file named
current_tracer; and yes, you can modify it as root. Let's look it up:

cat current_tracer

nop

The default tracer is called nop; it's an abbreviation for No Operation (No-Op), implying
that nothing will actually be done. Another tracer's named function; when tracing's
enabled (toggled on) and the function tracer's selected, it will show every function
that's executed within the kernel! Shouldn't we use it? Sure we can; there's an even better
one though – function_graph. It will also have the trace display every kernel function
executed during the trace session; in addition, it has the intelligence to indent the function
name output in such a manner that it becomes almost like reading code – like a call graph!

Documentation on All the ftrace Tracers
As seen just previously, ftrace makes several tracers or plugins available.
Here, we focus on using the function_graph tracer. Some of them are
latency-related (hwlat, wakeup*, irqsoff, and preempt*off).
How come the irqsoff and preempt[irqs]off tracers didn't
show up previously? They're kernel configurables. The ones that show
under available_tracers are the ones configured in; you'll have to
reconfigure (enable) and rebuild the kernel to get any others! (Tip – execute
grep "CONFIG_.*_TRACER" on your kernel config file to see which are
enabled/disabled.)

Do refer to the official kernel docs for details on all ftrace tracers: https://
www.kernel.org/doc/html/v5.10/trace/ftrace.
html#the-tracers.

The following table enumerates a few key files under tracefs; do check it out carefully:

Table 9.1 – A few key files under tracefs (/sys/kernel/tracing)

https://www.kernel.org/doc/html/v5.10/trace/ftrace.html#the-tracers
https://www.kernel.org/doc/html/v5.10/trace/ftrace.html#the-tracers
https://www.kernel.org/doc/html/v5.10/trace/ftrace.html#the-tracers

410 Tracing the Kernel Flow

The file named trace is a key one; it contains the actual report – the output from the
trace. We use this knowledge to save this output to a regular file.

Trying it out – a first trial (run one)
Here, we'll keep things as simple as possible – just getting ftrace enabled and running,
tracing everything that occurs within the kernel for just a second then we turn tracing off.
Ready? Let's do it; before that:

cat tracing_on

1

Surprised? It appears that tracing's currently on (by default)! It's not actually tracing
anything though; this is because the current tracer is set to the nop value by default,
which of course means that it isn't really tracing anything:

cat current_tracer

nop

So, we'll have to change the current tracer. What's available? Check by seeing the content
of the available_tracers pseudofile:

cat available_tracers

hwlat blk function_graph wakeup_dl wakeup_rt wakeup function
nop

#

You'll realize that the list of available tracers depends on your kernel configuration. Great,
let's use one of them, the function graph tracer:

echo function_graphix > current_tracer

bash: echo: write error: Invalid argument

Oops, we made a typo; it isn't accepted. That's good; tracefs internally validates the
input passed to it. Now, let's do it correctly. Realize though that setting a valid tracer will
have the kernel immediately start tracing! So, we first turn tracing off and then set up a
valid tracer:

echo 0 > tracing_on

echo function_graph > current_tracer

Using the ftrace kernel tracer 411

Done. Now, let's begin tracing the kernel – for just a second – and then turn it off:

echo 1 > tracing_on ; sleep 1; echo 0 > tracing_on

Tracing done, for 1 second. Where's the report? It's within the file named trace:

ls -l trace

-rw-r--r-- 1 root root 0 Jan 19 17:25 trace

The trace file is empty (with a size of 0 bytes). Well, as you'll realize, this is a pseudofile
(not a physical disk file) under tracefs; the majority of these pseudofiles have their
size deliberately set to 0 as a hint that it's not a real file. It's a callback-based technology
– reading it will cause the underlying kernel filesystem code to dynamically generate the
data (or do whatever's appropriate). So let's copy the trace pseudofile's content to a
regular file:

cp trace /tmp/trc.txt

ls -lh /tmp/trc.txt

-rw-r--r-- 1 root root 4.8M Jan 19 19:39 /tmp/trc.txt

Aha! It seems to have worked. The trace report file is quite large, yes? In this particular
instance, in literally 1 second, we got 98,376 lines of tracing output (I checked with wc).
Well, this is the kernel; whatever code ran within the kernel in that 1 second is now in the
trace report. This includes code that ran in that second on any and all CPU cores in kernel
mode, including interrupt contexts. This is great, but also illustrates one of the problems
with ftrace (and tracing in general, especially within something as large and complex as
the kernel!) – the output can be enormous. Learning to filter the functions traced is a key
skill; worry not, we will!

Let's look up a few lines from the report; to make it a bit more interesting, I've shown
you the actual trace data I got from line 24 onward... (you'll realize, of course, that the
following output is from one sample run on my setup; it could, and very likely would,
vary on your system):

head -n40 /tmp/trc.txt

tracer: function_graph

#

CPU DURATION FUNCTION CALLS

| | | | | | |

[...]

412 Tracing the Kernel Flow

5) 1.156 us | tcp_update_skb_after_send();

5) 1.034 us | tcp_rate_skb_sent();

5) | tcp_event_new_data_sent() {

5) 1.107 us | tcp_rbtree_insert();

5) | tcp_rearm_rto() {

5) | sk_reset_timer() {

5) | mod_timer() {

5) | lock_timer_base() {

5) | _raw_spin_lock_irqsave() {

5) 0.855 us | preempt_count_add();

5) 2.754 us | }

5) 4.820 us | }

[...]

#

Also, do realize that, having saved the report under /tmp, it's volatile and won't survive a
reboot. Remember to save your most important ftrace reports to a non-volatile location.

Interpreting the ftrace report output seen previously is easy; clearly, the first line tells
us that the tracer employed is function_graph. The output is column-formatted
and the header line clearly indicates the content of each of them. In this particular trace
session (for at least the first portion), the kernel functions (seen on the extreme right)
have executed on CPU core 5 (the first column; CPU core numbering begins at 0).
The duration of each function's execution is shown in microseconds (yes, it's fast, even
on a VM). Note the careful indentation of the function names; it allows us to literally
understand the control flow, which is the whole idea behind using this tracer!

Trying it out – function_graph options plus latency-format (run two)
Our first trial run with ftrace was interesting but missing some key details. You can see the
kernel code that ran (in that single second of time), which CPU core it ran on, and how
long each function took, but think about this – who ran it?

Using the ftrace kernel tracer 413

Monolithic Design
There's no such concept as the kernel runs the code within it. As you will
understand, one of the key aspects of a monolithic kernel design like Linux's
is that kernel code executes in one of two contexts – process or interrupt.
Process context is one where a process (or thread) issues a system call; now,
the process itself switches into kernel mode and runs the code of the system
call within the kernel (and possibly a driver). Interrupt context is the situation
where a hardware interrupt causes a processor to immediately switch to a
designated code path (the interrupt handler routine) – kernel/driver code that
runs in the context of the interrupt (well, there's more to it – the so-called
bottom-half mechanisms – tasklets and softirqs – run in an interrupt context as
well). We covered system calls briefly in Chapter 4, Debug via Instrumentation –
Kprobes in the System calls and where they land in the kernel section.

So, guess what? Ftrace can show you the context the kernel code ran in; you simply have
to enable one of the many options ftrace provides. Several useful options to render the
output can be found under the options directory under the tracefs mount point, as
shown in the following screenshot:

Figure 9.5 – A screenshot showing the content of the options directory under /sys/kernel/tracing

Again, we cover using some of these soon...

Resetting ftrace
If the ftrace system is in any kind of transient (or in-between) state, it's a good idea to
reset everything to defaults, clear its internal trace (ring) buffers (thus freeing up memory
as well), and so on. This can be done manually by writing a value (typically 0 or null)
into several relevant tuning files within it. The perf-tools project has a script named
reset-ftrace that resets ftrace to a known sane state: https://github.com/
brendangregg/perf-tools/blob/master/tools/reset-ftrace.

https://github.com/brendangregg/perf-tools/blob/master/tools/reset-ftrace
https://github.com/brendangregg/perf-tools/blob/master/tools/reset-ftrace

414 Tracing the Kernel Flow

We specified installing the perf-tools[-unstable] (and the trace-cmd) packages
back in Chapter 1, A General Introduction to Debugging Software, in the Installing required
software packages section.

So, let's make use of it now to help reset ftrace to reasonable defaults:

reset-ftrace-perf

Reseting ftrace state...

current_tracer, before:

 1 nop

current_tracer, after:

 1 nop

[...]

It displays the before-and-after values of all the ftrace files it resets. There's a caveat – it
doesn't reset every ftrace file (you'll see the ones it does at the bottom of the script). So, as
an example, we'll manually reset one of them for now:

echo 0 > options/funcgraph-proc

As well, it's also useful to leverage a really powerful (and simple) frontend to ftrace named
trace-cmd, to help achieve a reset of the ftrace system. Internally, it turns tracing off and
brings the system performance back to its native state. (It does take a bit of time to reset;
there are option switches to reset internal buffers as well):

trace-cmd reset

(We will cover trace-cmd in an upcoming section within this chapter.) Also, we've
provided a pretty comprehensive reset_ftrace() function as part of this convenience
script – ch9/ftrace/ftrace_common.sh.

Tip
Once reset, note that the ftrace system has the tracing_on file set to 1 (it's
on) and current_tracer set to nop, thus effectively rendering tracing
off. This implies that setting up a valid tracer plugin (such as function_
graph) in the current_tracer file will cause tracing to begin
immediately. Further, you can wipe out the current content of the trace buffer
by doing echo > trace (as root).

Using the ftrace kernel tracer 415

Okay, back to the main point – now that ftrace is reset, how do we enable showing
the context that runs kernel code? The relevant option file is this one – options/
funcgraph-proc (proc is usually an abbreviation for process). Write 1 into it to enable
ftrace to print the process context info:

Figure 9.6 – A screenshot of our ftrace trial run with the funcgraph-proc option enabled

The figure makes it clear by highlighting the new option and the effect it has on the trace
output. Here, in this instance, you can see that it happens to be the idle thread on CPU
core 2 (with PID 0, seen as <idle>-0), and the bash process with PID 1153 on CPU
core 4, which is executing the functions seen on the extreme right! (Yes, we can literally
see the parallelism on two CPU cores here as a bonus!)

Several other function graph-related options exist; they're the files under the options
directory that are prefixed with funcgraph-. Here, they are alongside their default
values (a bit of bash foo is also helpful!):

for f in options/funcgraph-* ; do echo -n "${f##*/}: "; cat
$f; done

funcgraph-abstime: 0

funcgraph-cpu: 1

funcgraph-duration: 1

funcgraph-irqs: 1

416 Tracing the Kernel Flow

funcgraph-overhead: 1

funcgraph-overrun: 0

funcgraph-proc: 0

funcgraph-tail: 0

Do refer to the official kernel docs to get the details on what each of these means: trace_
options, under Options for function tracer: https://www.kernel.org/doc/html/
v5.10/trace/ftrace.html#trace-options.

Delving deeper into the latency trace info
This small example (in Figure 9.6) actually brings up a really interesting point! The CPU
idle thread is scheduled to run when no other thread wants the processor; it might well be
the case here. But don't take things for granted; it could also happen that the idle thread
– or any other thread for that matter – gets interrupted by a hardware interrupt that then
executes, but the context information (the column labeled TASK/PID) will still show the
original context – the thread that got interrupted by the interrupt! So, how do we know
for sure whether this code ran in a process or an interrupt context?

To know for sure, we must enable another really useful ftrace option – the latency-
format one; the file is options/latency-format. Writing 1 into this file enables the
latency format; what effect does this have? It causes an additional column (typically, after
the CPU and TASK/PID ones) to appear that provides pretty deep insight into the state of
the system when this kernel code executed (even helping you see why latencies occurred).
Let's actually use it and then analyze the output. We first reset ftrace and then enable the
function_graph tracer, along with both the funcgraph-proc and latency-
format options:

Figure 9.7 – A screenshot showing resetting ftrace and then focused on turning on the useful latency-
format option for a sample 1-second trace

https://www.kernel.org/doc/html/v5.10/trace/ftrace.html#trace-options
https://www.kernel.org/doc/html/v5.10/trace/ftrace.html#trace-options

Using the ftrace kernel tracer 417

Here's the (truncated) ftrace report obtained (to make it interesting, I am showing a few
different parts of the trace report):

Figure 9.8 – Screenshots showing the effect of turning on the latency-format option; the latency format
trace info column is highlighted

418 Tracing the Kernel Flow

You may have noticed that the new output column (highlighted in the figure, the one
between the TASK/PID and DURATION columns) looks familiar. We used pretty much
precisely this format to encode information in our code base's PRINT_CTX() macro,
defined within our convenient.h header. (Do note that here, as we use pr_debug()
to emit output, it only shows up if you define the DEBUG symbol or employ the kernel's
powerful dynamic debug framework to see the debug prints. We covered using dynamic
debug and a lot more back in Chapter 3, Debug via Instrumentation – printk and Friends.)

To interpret this latency trace info (and the rest of the line), let's just consider a single line
of output from Figure 9.8 (the line – # 15,111 – is highlighted by a green horizontal bar in
the middle screenshot in the figure); we reproduce it here:

0) <idle>-0 | d.h2 | 0.957 us | ktime_
get_update_offsets_now();

Let's interpret the preceding line column-wise, from left to right (it's one line, the function
name on the extreme right might wrap around to the next line):

• First column – 0): The CPU core that the kernel function ran on (remember that
CPU core numbering starts at 0).

• Second column – <idle-0>: The process context running the kernel function; do
note that it could have run in the interrupt context (as we'll see in the next column).
In cases like this, this second column shows the process context that was interrupted
by the interrupt!

• Third column – d.h2: What we're really after here is the latency trace information
(enabled via the options/latency-format option being set to 1). This
information allows us to figure out in detail exactly what context the kernel
function ran in – was it normal process context or an interrupt? Within the latter,
was it a hardware interrupt (a hardirq), a softirq (bottom-half), a Non Maskable
Interrupt (NMI), or a hardirq preempting a softirq? Moreover, were interrupts
enabled or disabled, was a reschedule pending at the time, and was the kernel in
a non-preemptible state? It's really very detailed and precise! This column itself
consists of four columns – here, their value happens to be d.h2, whose output is
interpreted as follows:

 � First (latency trace info) column – IRQ (hardware interrupts) state – d:

 � d implies that IRQ's (hardware interrupts) are disabled.

 � . implies that IRQ's (hardware interrupts) are enabled.

Using the ftrace kernel tracer 419

 � Second (latency trace info) column – the "need-resched" bit (does the kernel need
to reschedule?):

 � N implies that both the TIF_NEED_RESCHED and PREEMPT_NEED_RESCHED
bits are set (in effect, implying that a reschedule is needed on this preemptible
kernel).

 � n implies that only the TIF_NEED_RESCHED bit is set.

 � p implies that only the PREEMPT_NEED_RESCHED bit is set.

 � . implies that both bits are cleared (the normal case, no reschedule is needed).

FYI
The TIF_NEED_RESCHED bit when set implies that a schedule is pending
(and will run soon – the N and n cases).

The PREEMPT_NEED_RESCHED bit is explained in the x86 arch code,
as follows. "We use the PREEMPT_NEED_RESCHED bit as an inverted
NEED_RESCHED, such that a decrement hitting 0 means we can and
should reschedule."

 � Third (latency trace info) column – more on the running context (interestingly,
the following list is sorted by execution priority):

 � Z implies that a NMI occurred inside – and thus preempted – a hard irq
(hardware interrupt).

 � z implies that a NMI is running.

 � H implies that a hardirq occurred inside – and thus preempted – a softirq (a
softirq is the internal kernel underlying implementation of an interrupt bottom-
half mechanism)

 � h implies that a hardirq is running.

 � s implies that a softirq is running.

 � . implies a normal (process/thread) context is running.

420 Tracing the Kernel Flow

 � Fourth (latency trace info) column – the preempt-depth: This is also known
as the preempt_disabled level. In effect, if positive, it implies that the kernel
is in a non-preemptible state (when 0, the kernel is in a preemptible state).
This matters when you're running a preemptible kernel (implying that even a
kernel thread or kernel process context can be preempted!). As a simple case,
consider a preemptible kernel and a thread context holding a spinlock. This is to
be an atomic section; it shouldn't be preempted before it unlocks. To guarantee
this, the preempt counter (in effect, what we're seeing here as preempt-
depth) is incremented every time a spinlock is taken and decremented every
time one of them is unlocked. Thus, while one or more spinlocks are held – in
effect, while preempt-depth is positive – the context holding it shouldn't be
preempted. You can see more on this here: https://www.kernel.org/doc/
Documentation/preempt-locking.txt.

So, let's quickly interpret the latency trace info we're seeing here and now – d.h2:

 � d: Hardware interrupts are disabled.

 � .: Both the TIF_NEED_RESCHED and PREEMPT_NEED_RESCHED bits are
cleared. This is the normal case, with no pending reschedule.

 � h: The running context (here, the <idle-0> idle thread running on CPU 0) has
been interrupted by a hardware interrupt, and its hardirq handler (or the so-called
top-half, or Interrupt Service Routine (ISR)) is currently executing code on the
processor core.

 � 2: The preempt-depth counter value is 2, implying that the kernel is currently
marked as being in a non-preemptible state.

• Fourth column – 0.957 us: This is the duration of the function call (in
microseconds). When a function terminates (shown as a single close brace, }, in
the last column), the duration is that of the entire function. Further, ftrace gives
us a visual clue as to how long the function took by employing the notion of a
delay marker (covered in detail in the upcoming Viewing the context switch and
delay markers section). Also, the options/graph-time option (on by default)
has, for the function graph tracer, the cumulative time spent in all nested
functions displayed. Setting it to 0 will cause only individual function durations
to be displayed.

https://www.kernel.org/doc/Documentation/preempt-locking.txt
https://www.kernel.org/doc/Documentation/preempt-locking.txt

Using the ftrace kernel tracer 421

• Fifth column – ktime_get_update_offsets_now();: This is the kernel
function being executed. If only a single close brace, }, shows up here, it implies the
termination of the overarching function. Setting this option switch – options/
funcgraph-tail – to 1 will show the terminating function name as well (in
the } /* function name */ format). You can also try using the % operator
in vi[m] to jump to the function's start and thus see which function it represents
(note, though, that this simple trick doesn't always work).

All this is very valuable information indeed!

The (upward and right-pointing) ASCII-art arrows at the header portion (see the top
portion of Figure 9.8) briefly explain the latency trace info columns as well. In addition,
the header portion of the ftrace report shows this line:

latency: 0 us, #166281/358344, CPU#0 | (M:preempt VP:0, KP:0,
SP:0 HP:0 #P:6)

The code that generates the preceding header line is here: https://elixir.
bootlin.com/linux/v5.10.60/source/kernel/trace/trace.c#L3887.
So, interpreting it via the code, we find the following.

If a latency tracer is being used to measure latency (delay) – for example, the irqsoff
tracer – in those cases, the maximum latency seen during the trace session will be shown
(here, it's 0, as we aren't running a latency tracer). It then shows the number of trace
entries displayed in this report (166,281) and the total number of entries (358,344).
Obviously, there were too many entries to hold. Increasing the size of the memory
buffers is indicated (we will cover this in the Other useful ftrace tuning knobs to be aware
of section). Also, the trace-cmd record frontend to ftrace allows us to use the -b
<buffer-size-in-KB-per-cpu> option switch (we'll cover trace-cmd in detail
in the Using the trace-cmd, KernelShark, and perf-tools ftrace frontends section). The next
set of entries (in parentheses) begins with M for model – one of server, desktop,
preempt, preemp_rt, or unknown. The next four entries – VP, KP, SP, and HP – are
always 0 (they're reserved for later use). P specifies the number of online processor cores.

Figure 9.8 shows some portions of the ftrace report. These portions clearly indicate
how kernel code ran with interrupts disabled, in a hardirq context, followed by switching
into a softirq context (of course, it did many other things as well; we just can't show
everything here).

Exercise
Let's say that the latency trace info field's value is dNs5. What does this mean?

https://elixir.bootlin.com/linux/v5.10.60/source/kernel/trace/trace.c#L3887
https://elixir.bootlin.com/linux/v5.10.60/source/kernel/trace/trace.c#L3887

422 Tracing the Kernel Flow

So, this section also (more than) effectively answers our earlier puzzle – knowing whether
code is executing in a process or interrupt context. Note that the latency trace format
column also appears when you use any of the tracers related to latency measurement.

A quick aside – hardware interrupts aren't typically load-balanced by the kernel across
all available CPU cores. Ftrace can help you understand on which core they execute,
and thus you can load-balance them yourself (also look up /proc/irq/<irq#> and
the irqbalance[-ui] utility). Note, though, that arbitrarily distributing an interrupt
across CPU cores can cause CPU caching and thus performance issues! (You can find out
more on hardware interrupt processing on Linux in my earlier Linux Kernel Programming
– Part 2 book in the chapter on hardware interrupt handling.)

Interpreting the delay markers
The first line of the third partial screenshot in Figure 9.8 shows an ellipse surrounding the
duration column. The line is reproduced here; check it out:

0) <idle>-0 | d.h1 | ! 100.461 us | }

The DURATION column (its default unit is microseconds) has an interesting annotation
displayed at certain times to the left of the actual time duration. Here, for example, you
can see the ! symbol to the immediate left of the time duration. This is one among the
delay markers that can be shown, indicating that the function in question has taken a
rather long time to execute! Here's how you interpret these delay markers (us, of course,
means microseconds):

Table 9.2 – The ftrace delay markers

As indicated by the last row in the preceding table, the absence of a delay marker (or
simply white space) to the immediate left of the duration indicates that the function's
execution took less than 10 us (which is considered to be the normal case).

Using the ftrace kernel tracer 423

There's one last thing regarding the delay markers. When the tracer is function-
graph (as was the case here), the function graph-specific option named options/
funcgraph-overhead plays a role – the delay markers are only displayed if this is
enabled (which is the default). To disable delay markers, write 0 into this file.

You might come across an arrow marker, =>, in the ftrace report. It's quite intuitive – it
displays the fact that a context switch occurred.

As you'll have by now no doubt realized, in order to test ftrace, you can certainly put the
commands we ran (such as those in Figure 9.7) into a script to avoid having to retype
them and in effect have a custom tool at your service! Again, the Unix philosophy at work.
(Actually, we've already done this for your convenience; you'll find, among others, very
simple wrapper scripts here: ch9/ftrace; this particular one, tracing the kernel for 1
second with the function_graph tracer, is named ftrc_1s.sh)

Again, the really large number of ftrace options preclude our reproducing them
individually here. You really must refer to the official kernel documentation on ftrace to
view all options, their meaning, and possible values: https://www.kernel.org/
doc/html/v5.10/trace/ftrace.html. Having said that, a few useful options to be
aware of follows.

Other useful ftrace tuning knobs to be aware of
It is necessary to be aware of a few of the ftrace options. The following table is an attempt
at a quick summarization:

https://www.kernel.org/doc/html/v5.10/trace/ftrace.html
https://www.kernel.org/doc/html/v5.10/trace/ftrace.html

424 Tracing the Kernel Flow

Table 9.3 – A summary of a few more ftrace (tracefs) files

The following notes flesh out some details.

Using the ftrace kernel tracer 425

Checking out trace_options
Reading the content of the trace_options tracefs pseudofile shows several
ftrace options and their current values. Here are the default values on our 5.10.60
production kernel:

Figure 9.9 – A look at the trace_options pseudofile content under tracefs (with default values
on x86_64 5.10.60)

The format works like this – the option name by itself implies that that option is
enabled, and the option name prefixed with the word no implies that it's disabled. In
effect, it's like this:

echo no<option-name> > trace_options : disable it

echo <option-name> > trace_options : enable it

426 Tracing the Kernel Flow

For example, you can see in Figure 9.9 the trace option called nofunction-fork. It
specifies whether the children of a process will be traced as well. Clearly, the default is no.
To trace all children, do this:

echo function-fork > trace_options

You'll recall from our detailed discussions on interpreting an Oops (Chapter 7, Oops!
Interpreting the Kernel Bug Diagnostic, in the Finding the code where the Oops occurred
section), one of the big clues as to where the issue is the format in which the instruction
pointer content is displayed, as shown in the following example:

RIP: 0010:do_the_work+0x124/0x15e [oops_tryv2]

As we learned, the hex numbers following the + sign specify the offset from the beginning
of the function and the length of the function (in bytes). In this example, it shows we're
at an offset of 0x124 bytes from the beginning of the do_the_work()function, whose
length is 0x15e bytes. As Chapter 7, Oops! Interpreting the Kernel Bug Diagnostic, showed
us, this format can be really useful. You can specify that all functions in the trace report
are shown in this manner by doing the following:

echo sym-offset > trace_options

The default is nosym-offset, implying that it won't be shown this way.

A Caveat
The sym-offset and sym-addr options seem to apply to only the
function tracer (and not function_graph). By the way, the printk
format specifier, %pF, (and friends) also prints a function pointer in this
manner! (See the useful printk format specifiers documented here:
https://www.kernel.org/doc/Documentation/printk-
formats.txt.)

Again, there are just too many trace_options options to cover individually here.
I urge you to refer to the official kernel docs for details regarding trace_options:
https://www.kernel.org/doc/html/v5.10/trace/ftrace.html#trace-
options.

Useful ftrace filtering options
As you've surely noticed by now, the sheer volume of report data that ftrace can pump out
can easily overwhelm you. Learning how to filter out stuff that's not required or secondary
to your investigation is key!

https://www.kernel.org/doc/Documentation/printk-formats.txt
https://www.kernel.org/doc/Documentation/printk-formats.txt
https://www.kernel.org/doc/html/v5.10/trace/ftrace.html#trace-options
https://www.kernel.org/doc/html/v5.10/trace/ftrace.html#trace-options

Using the ftrace kernel tracer 427

Ftrace keeps all functions that it can trace in a file named available_filter_
functions. On x86_64 and the 5.10 kernel, it's really pretty large. There are well over
48,000 functions within the kernel that can be traced!

wc -l available_filter_functions

48660 available_filter_functions

Several powerful filters can be enabled via various tracefs files. The following table
attempts to summarize some key ones; do study it carefully:

428 Tracing the Kernel Flow

Table 9.4 – A summary of some key ftrace filter options

The following sections help to flesh out this discussion. Please check them out, as they
have some valuable details.

Using the ftrace kernel tracer 429

More on the set_ftrace_filter file
For function-based filtering, glob matching (commonly called globbing) can be very
useful! You can specify a subset of functions (which must be present within available_
filter_functions, of course) using wildcards, like so:

• 'foo*': All function names that start with foo

• '*foo': All function names that end with foo

• '*foo*': All function names that contain the foo substring

• 'foo*bar': All function names that start with foo and end with bar

For example, to trace the ksys_write() and ksys_read() functions, we can do this:

echo "ksys_write" > set_ftrace_filter

echo "ksys_read" >> set_ftrace_filter

This also illustrates that you can employ the >> append notation with the usual semantics;
here, both these functions (and their nested code by default) get traced.

There's actually a lot more control you can exert with the set_ftrace_filter file;
instead of simply duplicating it here, you can view this (and a lot more!) by reading the
content of the /sys/kernel/tracing/README file – a nice mini-HOWTO on ftrace!
Here's the portion relevant to the set_ftrace_filter file:

cat /sys/kernel/tracing/README

tracing mini-HOWTO:

[...]

430 Tracing the Kernel Flow

The following shows the relevant portion of the output:

Figure 9.10 – A partial screenshot of the content of the README mini-HOWTO file

So, here's another interesting thing – you can disable tracing when a certain function is hit
(see the traceoff examples in Figure 9.10).

Index-based function filtering
String processing (as seen in the preceding section) can dramatically slow things down!
So, an alternative is index-based filtering. The index is the numerical position of the
function you want (or don't want, depending on the filter) in the available_filter_
functions file. For example, let's use sed to look up the line numbers of all kernel
functions that have the tcp string within them:

grep -n tcp available_filter_functions |cut -f1 -d':'|tr '\n'
' '

Using the ftrace kernel tracer 431

3504 3505 30425 30426 30427 30428 30429 30430 30431 30432 30433
30434 30435 38537 38540 38541 38542 39133 39134 39198 [...]
43589 43590 43591 43593 #

It's a long list of line numbers (584 on 5.10.60):

grep -n tcp available_filter_functions |cut -f1 -d':'|tr '\n'
' ' |wc -w

584

We use the tr utility to replace the newline with a space. Why? Because this is the format
expected by the filter file. So, to set ftrace to trace only these functions (the ones with tcp
in their name), we do the following:

grep -n tcp available_filter_functions | cut -f1 -d':' | tr
'\n' ' ' >> set_ftrace_filter

We use this very technique for function filtering in one of our scripts (which we'll use in
a later section) – ch9/ftrace/ping_ftrace.sh. Here's a bash function to do this
generically (the parameter(s) are the substring or regular expression that the function
name contains):

filterfunc_idx()

{

 [$# -lt 1] && return

 local func

 for func in "$@"

 do

 echo $(grep -i -n ${func} available_filter_functions |cut
-f1 -d':'|tr '\n' ' ') >> set_ftrace_filter

 done

}

Here's a sample invocation:

filterfunc_idx read write net packet_ sock sk_ tcp udp \

 skb netdev netif_ napi icmp "^ip_" "xmit$" dev_ qdisc

Now, all kernel functions containing these substrings (or regular expressions) will be
traced! Cool, huh?

432 Tracing the Kernel Flow

How about the reverse? We'd perhaps like to filter out some functions, telling ftrace to not
trace them. In the same script that we just referred to (ch9/ftrace/ping_ftrace.
sh), we write this bash function to achieve this:

filterfunc_remove()

{

 [$# -lt 1] && return

 local func

 for func in "$@"

 do

 echo "!${func}" >> set_ftrace_filter

 echo "${func}" >> set_graph_notrace

 done

}

Note the ! character prefixing the function string; this tells ftrace to not trace the
matching functions. Similarly, writing the parameter into the set_graph_notrace file
achieves the same (when the tracer is function_graph, as is the case here). Here's a
sample invocation:

filterfunc_remove "*idle*" "tick_nohz_idle_stop_tick" "*__
rcu_*" "*down_write*" "*up_write*" [...]

These techniques not only achieve function filtering but are also fast; useful.

Module-based filtering
Write a string of the :mod:<module-name> form into set_ftrace_filter to allow
functions from this module to be traced, as shown in the following example:

echo :mod:ext4 > set_ftrace_filter

This traces all functions within the ext4 kernel module. This example, and the usage of
the mod keyword, is one case of using something called filter commands.

Filter commands
More powerfully, you can even employ so-called filter commands by writing in a certain
format into the set_ftrace_filter file. The format is as follows:

echo '<function>:<command>:<parameter>' > set_ftrace_filter

Using the ftrace kernel tracer 433

Using the >> append form is also supported. A few commands are supported – mod,
traceon/traceoff, snapshot, enable_event/disable_event, dump,
cpudump, and stacktrace. Do refer to the official kernel docs for more details and
examples of filter commands: https://www.kernel.org/doc/html/v5.10/
trace/ftrace.html#filter-commands.

Note that filter commands being set do not affect ftrace filters! For example, setting a filter
command to trace some module's functions or to toggle tracing on some condition does
not affect the functions being traced via the set_ftrace_filter file.

Okay, you've seen a lot on how to set up and use ftrace – configuring the kernel, simple
tracing, and plenty of the more powerful filtering maneuvers. Let's put this knowledge to
practical use, leveraging ftrace to trace the kernel code paths taken when the following
command – a single ping – is issued:

ping –c1 packtpub.com

Now, that would be interesting! Let's get this going.

Case 1 – tracing a single ping with raw ftrace
We'll employ the function_graph tracer throughout. The filtering of functions can be
done in one of two broad ways here:

• Via the regular available_filter_functions file interface

• Via the set_event file interface

They're mutually exclusive; if we set our script's (ch9/ftrace/ping_ftrace.sh)
FILTER_VIA_AVAIL_FUNCS variable to 1 (which is the default), then we filter via
method 1, else via method 2. The first gives a much more detailed trace, showing all
relevant functions (here, the networking-related ones), but it takes a bit more work – via
index-based filtering – to set up and keep it quick. In our script, we keep filtering via the
first method as the default:

// ch9/ftrace/ping_ftrace.sh

[...]

FILTER_VIA_AVAIL_FUNCS=1

echo "[+] Function filtering:"

if [${FILTER_VIA_AVAIL_FUNCS} -eq 1] ; then

 [...]

 # This is pretty FAST and yields good detail!

 filterfunc_idx read write net packet_ sock sk_ tcp udp skb

https://www.kernel.org/doc/html/v5.10/trace/ftrace.html#filter-commands
https://www.kernel.org/doc/html/v5.10/trace/ftrace.html#filter-commands

434 Tracing the Kernel Flow

netdev \

 netif_ napi icmp "^ip_" "xmit$" dev_ qdisc [...]

 [...]

The usage and implementation of our filterfunc_idx() function was explained in
the preceding Index-based function filtering section. Also, we use our filterfunc_
remove() function to ensure that certain patterns of functions within the kernel aren't
traced. Further, the script turns on tracing for any functions from the e1000 module (the
network driver, really):

KMOD=e1000

echo "[+] module filtering (for ${KMOD})"

if lsmod|grep ${KMOD} ; then

 echo "[+] setting filter command: :mod:${KMOD}"

 echo ":mod:${KMOD}" >> set_ftrace_filter

fi

A bit of complexity in the script occurs when implementing the code to run the ping.
Why? Well, as far as is possible, we'd like to only trace the ping process on the CPU core
on which it runs. To do so, we assign it to a specific CPU core by leveraging the taskset
utility. We then tell ftrace the following:

• Which process to trace by setting set_event_pid to the PID of the ping process

• Which CPU core(s) to trace by setting the tracing_cpumask filter to a specified
value, the one we set taskset to use.

Okay, now, let's think about this. To set the PID correctly, we first need the ping process
running, but if it's running, it will execute (at least some) code before our script can set
up and trace it. However, we can't obtain its PID until it's alive and running. A bit of a
chicken-and-egg problem, isn't it?

So, we employ a wrapper script (named runner) to run the ping process. This script
will synchronize with our main script (ping_ftrace.sh). It does so like this – the
main script will run the runner script in the background and grab its PID, saving it in
a variable (named PID). Then, the runner script will execute – via the shell's exec
keyword – the ping process, thus ensuring that the PID of our ping process will be the
same as it's PID (this is because, when an exec operation is performed, the successor
process ends up with the same PID as that of the predecessor)!

Using the ftrace kernel tracer 435

Hang on, though. To properly synchronize, the runner script won't perform the
exec operation until a so-called "trigger file" is created by the main script. It will then
understand that only now tracing has become ready, and it will exec the ping process.
The main script thus, once ready, creates the trigger file and then turns tracing on, tracing
the target process.

When the process is done, it saves the report (I'll leave it to you to browse through the
code of these scripts). If you (quite rightly) feel that this is a rather laborious way to trace a
given task (process/thread), you'd be right. Our coverage on the trace-cmd frontend to
ftrace will clearly reveal this!

Here's a sample run of our ping_ftrace.sh script:

Figure 9.11 – A screenshot showing our raw ftrace script tracing a single ping

You can see from the preceding screenshot that our scripts ran, that the ping process
did its job and was traced, and the report was generated. The report obtained has a very
decent size – just 272 KB here – implying that our filtering has indeed paid off.

436 Tracing the Kernel Flow

FYI, this sample report is available here: ch9/ftrace/ping_ftrace_report.txt.
(You will realize, though, that this report represents just one sample run on my setup; the
results you see will likely vary, at least slightly.) It's still quite big; a few good places to start
looking within this trace report are as follows:

• The call to __sys_socket() by the ping process.

• The transmit path (often called tx; more details follow). See the sock_
sendmsg() API initiating the transmit path (you'll find it – among other instances
– in our saved ping_ftrace_report.txt file at about 86% of the way down).

• The receive path (often called rx; more details follow).

The (very approximate) transmit path functionality (shown in a top-down fashion)
includes these kernel functions – sock_sendmsg(), inet_sendmsg() (you can
see these functions highlighted in the upper portion of Figure 9.12), udp_sendmsg(),
udp_send_skb() (you can see the functions that follow them highlighted in the lower
portion of Figure 9.13), ip_send_skb(), ip_output(), dev_queue_xmit(), dev_
hard_start_xmit() (the last call leads to the e1000 network driver's transmit code
routine; here, it's named e1000_xmit_frame()), and so on. The transmit and receive
function lists here are certainly not exhaustive, just an indication of what you can expect
to see.

Figure 9.12 shows a portion of the filtered report showing some of the transmit paths,
where the ping process context is running this code within the kernel. (The leftmost
column is merely the line number. Of course, this is what I got on one sample run. What
you see may not precisely match this output):

Figure 9.12 – A portion of the transmit portion of the ping trace via the raw ftrace
regular filtering interface

Using the ftrace kernel tracer 437

Here is some more ftrace output from the transmit path:

Figure 9.13 – Partial screenshots – a portion of the transmit portion of the ping trace via the raw ftrace
regular filtering interface

Interesting, isn't it? This simple exercise shows us that ftrace is (also) literally a means to
see the kernel in action (here, of course, we're seeing a portion of the kernel network stack
in action), to be empirical, and to test theory.

438 Tracing the Kernel Flow

In a similar fashion, on the network receive path functionality, we'll see some of the
typical kernel routines that are invoked. You can see some of the following functions
highlighted in the upper portion of Figure 9.14 – net_rx_action() (this, in fact, is the
kernel softirq – NET_RX_SOFTIRQ – that handles network packets on the receive path,
pushing them up the protocol stack), __netif_receive_skb(), ip_rcv(), and
udp_rcv(). You can also see some of the following functions highlighted in the lower
portion of Figure 9.15 – sock_recvmsg() and inet_recvmsg():

Figure 9.14 – Partial screenshots – a portion of the receive portion of the ping trace via the raw ftrace
regular filtering interface

Using the ftrace kernel tracer 439

Here is some more ftrace output from the receive path:

Figure 9.15 – Partial screenshots – a portion of the receive portion of the ping trace via the raw ftrace
regular filtering interface

I enjoy seeing the ftrace function_graph tracer report's function indentation
dramatically move from left to right (as functions are invoked) and vice versa (as the
functions return). This is great. At the very least, you can see how ftrace has allowed us to
look deep into the kernel's network protocol stack!

Case 2 – tracing a single ping with raw ftrace via the
set_event interface
Here, we change the way ftrace grabs (and even presents) information by employing
an alternate means to specify what functions to trace – via the set_event interface.
To use this method, you write the function(s) to trace into the set_event pseudofile.
This won't be very different from what we just did in the previous section, using the
available_filter_functions pseudofile, will it? The trick here is that we can
specify a whole class of functions to trace by enabling a set of events; the events fall into
classes such as net, sock, skb, and so on. How do we do this? Hang on a second...

440 Tracing the Kernel Flow

Where do these events come from? Ah, they're the kernel tracepoints! You can see them all
under the events directory within the tracefs mount point. The following screenshot
makes this apparent:

Figure 9.16 – A screenshot showing the content of the events directory – all kernel tracepoints

We have, in fact, covered using kernel tracepoints in some detail with regard to dynamic
kprobes in Chapter 4, Debug via Instrumentation – Kprobes, in the Using the event tracing
framework to trace built-in functions section.

To illustrate the usage of a class of events, let's consider the one named net. (You can
see it as a directory in Figure 9.16. Peeking within the /sys/kernel/tracing/
events/net directory will reveal (again, as directories) all the kernel functions that
can be traced via this class of tracepoints.) So, to tell ftrace that we want to trace all
these network-related functions, we simply have to echo the net:* string into the
set_event pseudofile!

Using the ftrace kernel tracer 441

The relevant code – where we set up to use the set_event interface to ftrace – from our
script follows. Also, the only change required in the script is setting the FILTER_VIA_
AVAIL_FUNCS variable to 0 (to try this case out, you'll have to manually make this edit in
the script):

// ch9/ftrace/ping_ftrace.sh

[...]

FILTER_VIA_AVAIL_FUNCS=0

echo "[+] Function filtering:"

if [${FILTER_VIA_AVAIL_FUNCS} -eq 1] ; then

 [... already seen above ...]

else # filter via the set_event interface

 # This is FAST but doesn't yield as much detail!

 # We also seem to lose the function graph indentation (but do
gain seeing function parameters!)

 echo " Alternate event-based filtering (via set_event):"

 echo 'net:* sock:* skb:* tcp:* udp:* napi:* qdisc:* neigh:*
syscalls:*' >> set_event

 fi

Note how we try and trace only network-related kernel code (as well as all system calls, to
lend context to the trace report). The remainder of the script's code is identical to what we
saw in the previous section.

442 Tracing the Kernel Flow

Here's a sampling of the output report (filtered to see only the ping process's work within
the kernel) with this set_event-based approach:

Figure 9.17 – A partial screenshot of the (filtered) ftrace report for ping via the set_event interface

With this approach, it's interesting and useful to be able to see each function's parameters
along with their current value! This is at the cost of not being able to see the call graph
indentation, nor the level of detail regarding the trace (as compared with tracing the
previous way, via the regular available_filter_functions interface). You can
find this ftrace set_event-based report (a sample run) in the ch9/ftrace/ping_
ftrace_set_event_report.txt file.

From a debugging perspective, being able to see function parameters can be really
useful (as, quite often, incorrect parameters might be the underlying defect or contribute
to it). Further, with the trace-cmd frontend as well (which we will cover in the next
main section), not using the function_graph plugin auto-enables the printing of
function parameters.

Using the ftrace kernel tracer 443

Using trace_printk() for debugging
The trace_printk() API is used to emit a string into the ftrace buffer. The syntax is
identical to printf(). Here is an example:

trace_printk("myprj: at %s:%s():%d\n",__FILE__, __func__, __
LINE__);

Thus, it's typically used as a debugging aid, an instrumentation technique. But then why
not simply employ printk() (or the pr_foo() wrapper or dev_foo() macros)?
trace_printk() is much faster, writing only to RAM, and never to the console device.
Thus, it's really useful for debugging fast code paths (interrupt code, for example), where
printk() might be too slow (recall that we briefly talked about Heisenbugs in the
introduction to Chapter 8, Lock Debugging). Also, the printk() buffer can be far too
small at times; the ftrace buffers are (much) larger and tunable.

It's recommended that you use trace_printk() only for debug purposes. Now, if
trace_printk() writes only to the ftrace buffer, how do you look up the content? Easy
– simply read from the trace or trace_pipe files (not via dmesg or journalctl).
The trace_printk() output is valid in all tracer plugins and works (like printk())
from any context – process or interrupt, and even NMIs. (By the way, it appears as a
comment in the function_graph tracer report.)

Also, the kernel documentation mentions optimizations – for example, using trace_
puts(). This only emits a literal string (which is often sufficient), as well as other
optimization with trace_printk(): https://www.kernel.org/doc/html/
latest/driver-api/basics.html#c.trace_printk.

trace_printk() can be disabled from writing into the trace buffer by writing
notrace_printk into the trace_options file (it's enabled by default). Alternatively,
it can be toggled by writing 0 / 1 into options/trace_printk.

Ftrace – miscellaneous remaining points via FAQs
Let's wrap up this content on kernel ftrace in a useful and familiar FAQ format:

• Is there a documented quick way to get started with ftrace?

The ftrace subsystem includes a nice quick summary of using ftrace via a tracing
mini-HOWTO; you can read it by doing the following:

sudo cat /sys/kernel/tracing/README

https://www.kernel.org/doc/html/latest/driver-api/basics.html#c.trace_printk
https://www.kernel.org/doc/html/latest/driver-api/basics.html#c.trace_printk

444 Tracing the Kernel Flow

• I can't find some ftrace options or tracefs files on my system.

Remember that the tracefs pseudofiles and directories are an integral part of the
kernel and thus there will be variances in what you see, based on the following:

 � The CPU architecture (typically x86_64 is the most rich and updated one)

 � The kernel version (here, it's based on the x86_64 arch and the 5.10.60 kernel)

• How can I obtain trace data from the kernel as it's generated – that is, in a
streaming fashion?

You can stream in ftrace data by reading from the trace_pipe pseudofile; you
can simply read from it using tail -f or a custom script, or even filter it "live" by
simply filtering the incoming trace data from trace_pipe via standard utilities
such as awk and grep.

• Within a tracing session with ftrace, can I toggle tracing on/off?

Toggling ftrace programmatically within a kernel (or a module for that matter) is
easily done. Simply call these APIs (note that they're GPL-exported only):

 � tracing_on(): Turns tracing on

 � tracing_off(): Turns tracing off

This is the programming equivalent of writing 1 or 0 into the tracing_on file,
which you can use to toggle tracing via a script (running as root).

Note that the entire ftrace system can be turned off by writing 0 to the /proc/
sys/kernel/ftrace_enabled sysctl. This is obviously not to be done trivially.
The kernel documentation (https://www.kernel.org/doc/html/latest/
trace/ftrace.html#ftrace-enabled) has more details on this aspect.

• Can ftrace help when a kernel Oops or panic occurs? How?

The powerful kdump/kexec infrastructure allows us to capture a snapshot of
the entire kernel memory space when a crash – an Oops or panic – occurs.
Subsequently, the crash tool allows you to perform post-mortem analysis
of the kernel dump image (we will mention this technology briefly in this
book's last chapter).

However, even though this can be very helpful to debug a kernel crash, it doesn't
actually provide any details on what occurred before the kernel crashed. This is
where ftrace can, again, be very useful – we can set up ftrace to perform tracing
prior to a known crash point. But once the system crashes, it could well be in an
unusable state (completely frozen/hung); thus, you may not be able to even save the
trace data to a file.

https://www.kernel.org/doc/html/latest/trace/ftrace.html#ftrace-enabled
https://www.kernel.org/doc/html/latest/trace/ftrace.html#ftrace-enabled

Using the ftrace kernel tracer 445

This is where the ftrace_dump_on_oops facility comes in. Enable it by writing
1 to the proc pseudofile,/proc/sys/kernel/ftrace_dump_on_oops (it's
always 0 by default). This will have the kernel write the current content of the ftrace
buffer(s) to the console device and the kernel log! Kdump will thus capture it along
with the kernel dump image, and you'll now have not only the entire kernel state at
the time of the crash but also the events leading up to the crash, as evidenced by the
ftrace output. This can help in debugging the root cause of the crash.

The facility is also invokable at boot time via a kernel command-line parameter
(which you can pass at boot time via the bootloader). The following screenshot from
the kernel documentation on kernel parameters (https://www.kernel.org/
doc/html/latest/admin-guide/kernel-parameters.html) makes its
purpose amply clear:

Figure 9.18 – A partial screenshot of kernel parameters showing the ftrace_dump_on_oops one
This is interesting. Using ftrace_dump_on_oops=orig_cpu can often be very
useful. Only the relevant ftrace buffer – the one for the CPU where the Oops got
triggered – will get dumped to the kernel log (and console).

Tip – Kernel Parameters Relevant to Ftrace
Ftrace can be programmed to start collecting trace data as early as possible
after boot by passing the ftrace=[tracer] kernel parameter (where
[tracer] is the name of the tracer plugin to employ) to help you debug
early boot issues. Similarly, several other ftrace-related kernel parameters are
available. To see them, navigate to the official kernel docs on kernel command-
line parameters (https://www.kernel.org/doc/html/latest/
admin-guide/kernel-parameters.html) and search for the
[FTRACE] string.

https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html

446 Tracing the Kernel Flow

• What's the irqsoff and the other latency-measurement tracers for?

It's best to not disable hardware interrupts; sometimes though, it becomes necessary
to. For example, the critical section of a spinlock – the code between the spinlock
being taken and released – has interrupts disabled (in order to guarantee its correct
functioning). Keeping interrupts disabled for long-ish periods of time though –
anything more than, say, 100 microseconds – can certainly contribute to system
latencies and lags. The irqsoff tracer can measure the longest time for which
hardware interrupts are turned off; even better, it allows you to see where exactly
this occurred as well.

Usage details regarding the irqsoff tracer have already been covered in my
earlier (free) ebook Linux Kernel Programming – Part 2, in Chapter 4, Handling
Hardware Interrupts, in the Using Ftrace to get a handle on system latencies section.
Do check it out.

The official kernel documentation on ftrace (https://www.kernel.org/doc/
html/latest/trace/ftrace.html#irqsoff) does indeed cover
the meaning and specifics of measuring latencies via these latency-measurement-
related tracers. Please do check it out. Here are the latency measurement-related
ftrace tracers:

 � irqsoff: Measures and reports the maximum duration for which hardware
interrupts (IRQs) are turned off (disabled).

 � preemptoff: Measures and reports the maximum duration for which kernel
preemption is turned off.

 � preemptirqsoff: Measures and reports the maximum duration for which
hardware IRQs and/or kernel preemption are turned off. In effect, that is the
maximum of both of the preceding tracers, and, in actuality, the total time during
which the kernel cannot schedule anything!

 � wakeup: Measures and reports the schedule latency – the time that elapses
between a task being awoken and the time to which it actually runs. It's measured
for the highest priority non-real-time task only.

 � wakeup_rt: Same as the previous, except that it measures and reports the
schedule latency for the highest priority real-time task currently on the system.
This is an important metric for real time.

As mentioned (in the following section), the first three tracers listed previously
are often used to check whether drivers have left hardware interrupts or kernel
preemption on for too long.

https://www.kernel.org/doc/html/latest/trace/ftrace.html#irqsoff
https://www.kernel.org/doc/html/latest/trace/ftrace.html#irqsoff

Using the ftrace kernel tracer 447

IRQs Off/Kernel Preemption Off – How Long Is Too Long?
In general, anything in the range of tens of milliseconds – in effect, anything
over 10 milliseconds – is considered too long for hardware interrupts and/or
kernel preemption to be turned off.

Here's a quick pro tip – monitor your project's irqqsoff and preemptoff
worst-case times with the above mentioned latency measurement tracers.

• Can I perform more than one ftrace recording/reporting session simultaneously on the
same kernel?

Ftrace has an instances model. It allows for more than one trace to be done at a time!
Simply create a directory under the /sys/kernel/tracing/instances/
directory (with mkdir) and proceed to use it, just as you would with normal ftrace.
Each instance has its own set of buffers, tracers, filters, and so on, allowing multiple
simultaneous tracing when required. For more information, this presentation by
Steven Rostedt covers using ftrace instances: Tracing with ftrace – Critical tooling
for Linux Development, June 2021: https://linuxfoundation.org/
wp-content/uploads/ftrace-mentorship-2021.pdf.

Ftrace use cases
Here, we will mention a few of the many ways that ftrace has been (or can be) leveraged,
with a focus on debugging.

Checking kernel stack utilization and possible overflow with ftrace
As you'll know, every (user-mode) thread alive has two stacks – a user-mode stack and a
kernel-mode stack. The user-mode stack is dynamic and large. (The maximum size it can
grow to is a resource limit, RLIMIT_STACK, typically 8 MB on vanilla Linux. Also, kernel
threads only have a kernel-mode stack, of course.) The kernel-mode stack, however,
is fixed in size and is small – typically, just 8 KB on 32-bit systems and 16 KB on 64-bit
systems. Overflowing the kernel-mode stack is, of course, a memory-related bug and will
usually cause a system to abruptly lock up or even panic. It's a dangerous thing.

Tip
Enabling CONFIG_VMAP_STACK (essentially, using the kernel vmalloc
region for kernel stacks) can be useful. It enables the kernel to set up a guard
page to catch any overflow gracefully and report it via an Oops; the offending
process context is killed as well. Also, enabling CONFIG_THREAD_INFO_
IN_TASK helps mitigate the problems that a stack overflow bug can cause. See
the Further reading section for more info on these kernel configs.

https://linuxfoundation.org/wp-content/uploads/ftrace-mentorship-2021.pdf
https://linuxfoundation.org/wp-content/uploads/ftrace-mentorship-2021.pdf

448 Tracing the Kernel Flow

So, monitoring/instrumenting a kernel-mode stack size at runtime can be a useful task
to carry out, to flag any outliers! Ftrace has a way to do so – the so-called stack tracing
(or stack tracer) functionality. Enable it by setting CONFIG_STACK_TRACER=y in the
kernel config (it's typically set by default). The tracer is controlled via the proc pseudofile
/proc/sys/kernel/stack_tracer_enabled, and is turned off by default.

Here's a quick sample run where we'll turn on ftrace's stack tracer, do a sample tracing
session, and see which kernel functions had the highest kernel-mode stack utilization
(note that we're running as root):

1. Turn the ftrace stack tracer on:

echo 1 > /proc/sys/kernel/stack_tracer_enabled

2. Perform a tracing session. We make use of our very simple script, ch9/ftrace/
ftrc_1s.sh, which traces whatever executes within the kernel for 1 second:

cd /sys/kernel/tracing

<...>/ch9/ftrace/ftrc_1s.sh

[...]

3. Look up the maximum kernel stack utilization and the details:

cat stack_max_size

cat stack_trace

The following screenshot displays a sample run. Here, the maximum kernel stack
size utilization turned out to be over 4,000 bytes:

Using the ftrace kernel tracer 449

Figure 9.19 – A partial screenshot showing a sample kernel stack utilization via ftrace's stack tracer

The official kernel documentation has information on the stack tracer: https://www.
kernel.org/doc/html/v5.10/trace/ftrace.html#stack-trace.

How the AOSP uses ftrace
The Android Open Source Project (AOSP) indeed uses ftrace to help debug kernel/
driver issues. (Internally, it uses what is essentially wrapper tooling – atrace, systrace, and
Catapult – over ftrace, though ftrace can be used directly as well.)

https://www.kernel.org/doc/html/v5.10/trace/ftrace.html#stack-trace
https://www.kernel.org/doc/html/v5.10/trace/ftrace.html#stack-trace

450 Tracing the Kernel Flow

The AOSP describes using dynamic ftrace (just as we have been doing) to debug and find
the root cause of difficult-to-figure performance-related defects. A brief quote – from
https://source.android.com/devices/tech/debug/ftrace – is in order:

"However, every single difficult performance bug in 2015 and 2016 was
ultimately root-caused using dynamic ftrace. It is especially powerful for
debugging uninterruptible sleeps because you can get a stack trace in the
kernel every time you hit the function triggering uninterruptible sleep.
You can also debug sections with interrupts and preemptions disabled,

which can be very useful for proving issues. [...] irqsoff and preemptoff are
primarily useful for confirming that drivers may be leaving interrupts or

preemption turned off for too long."
We, in fact, just talked about using the irqsoff, preemptoff, and preemptirqsoff
tracers in the previous section.

An actual use case – an Android smartphone, a Pixel XL, after taking a High Dynamic
Range (HDR) photo and immediately rotating the viewfinder, resulted in jank – was root-
caused using ftrace: https://source.android.com/devices/tech/debug/
ftrace#expandable-1.

Similarly, the AOSP documentation also refers to actual cases where the following occurs:

• Drivers can leave hardware IRQs and/or preemption disabled for too long, causing
performance issues (https://source.android.com/devices/tech/
debug/jank_jitter#drivers).

• Drivers can have long softirqs, again causing performance issues (why? As softirqs
disable kernel preemption (https://source.android.com/devices/
tech/debug/jank_jitter#long-softirqs).

This is interesting stuff.

We mention one more interesting use case – that of using the powerful and user-friendly
perf-tools scripts (another frontend to ftrace) – to help debug performance issues
on Netflix Linux (Ubuntu) cloud instances. We will discuss this in a later section –
Investigating a database disk I/O issue on Netflix cloud instances with perf-tools.

https://source.android.com/devices/tech/debug/ftrace
https://source.android.com/devices/tech/debug/ftrace#expandable-1
https://source.android.com/devices/tech/debug/ftrace#expandable-1

Using the trace-cmd, KernelShark, and perf-tools ftrace frontends 451

On an unrelated note, perhaps you'll find by studying an ftrace report several – perhaps
too many – calls to security-related interfaces, typically enforced via Linux Security
Modules (LSMs), such as SELinux, AppArmor, Smack, TOMOYO, and so on. In a highly
performance-sensitive app (or project – for example, a near real-time system), this might
indicate the need to disable these security interfaces (via kernel configuration – if possible,
at least during the time-critical code paths). This can be especially true when several LSMs
are enabled.

Using the trace-cmd, KernelShark, and perf-
tools ftrace frontends
There's no doubt that the Linux kernel ftrace infrastructure is immensely powerful,
enabling you to look deep inside the kernel, throwing light into the dark corners of the
system, as it were. This power does come at the cost of a somewhat steep learning curve –
lots of sysfs-based tuning and options knobs that you need to be intimately aware of, plus
the burden of filtering a possibly huge amount of noise in the resulting traces (as you'd
have already learned from the previous sections of this chapter!). Steven Rostedt thus built
a powerful and elegant command-line-based frontend to ftrace, trace-cmd. What's
more, there's a true GUI frontend to trace-cmd itself, the KernelShark program. It
parses the trace data recorded (trace.dat by default) by trace-cmd and displays it in
a more human-digestible GUI. In a similar manner, Brendan Gregg has built the perf-
tools script-based frontend project to ftrace as well.

An introduction to using trace-cmd
The trace-cmd utility – in the style of modern Linux console software such as git – has
several sub-commands. They allow you to easily record a tracing session, for the entire
system or a particular process only (optionally, as well as its descendants), and generate a
report. It can do a lot more – control ftrace config parameters, clear and reset ftrace, see
the current status, and list all available events, plugins, and options. It can even perform
profiling, show a histogram of the trace, take a snapshot, listen on a network socket for
clients, and more. As trace-cmd works upon the underlying ftrace kernel subsystem,
you typically need root access when running its sub-commands. Here, we're working
with the trace-cmd version, available as an Ubuntu 20.04 LTS package at the time of
writing – version 2.8.3.

452 Tracing the Kernel Flow

Getting help
The trace-cmd utility is well documented. A few ways to get help include the following:

• Every trace-cmd sub-command has its very own man page – for example, to read
the man page on the record sub-command, type man trace-cmd-record. Of
course, man trace-cmd gives an overview of the tool and every sub-command.

• To get a quick help screen, type the command followed by -h – for example,
trace-cmd record -h.

• Several excellent tutorials are available. Refer to the Further reading section of this
chapter for some.

Running trace-cmd and checking for available man pages related to it (by using bash
auto-complete) are shown in the following screenshot:

Figure 9.20 – A screenshot showing trace-cmd's brief help screen and available man pages

Using the trace-cmd, KernelShark, and perf-tools ftrace frontends 453

A simple first tracing session with trace-cmd
Here, we present steps to carry out a very simple tracing session via trace-cmd. As
space is limited, we won't repeat what the man pages (and other docs) already explain in
depth. We will leave it to you to read through the deeper details. Let's jump right into it:

1. Reset the ftrace tracing subsystem (optional):

sudo trace-cmd reset

2. Record a trace. Let's record everything that goes on in the kernel for 1 second,
using the powerful function_graph plugin (or tracer) , specified via the –p
option switch. The -F <command> option switch has trace-cmd trace only that
command (adding -c before the -F switch will also trace its descendants, if there
are any):

sudo trace-cmd record -p function_graph -F sleep 1

3. Save the trace report (in ASCII text format). The -l option adds a column showing
the really useful latency output format (we covered this in the Delving deeper into
the latency trace info section). In addition to the four latency info columns we
already saw, trace-cmd prefixes an additional column – the CPU core that the
function ran upon:

sudo trace-cmd report -l > sleep1.txt

Alternatively, trace-cmd show will show you the current content of the ftrace buffers.
Also, note that in step 2, instead of specifying a command to trace (via the -F switch), you
can specify a process to trace via the -P <PID> option.

It's also worth noting that the second step produces a binary trace file named, by default,
trace.dat (you'll find we use it with the KernelShark GUI frontend). Do try out these
simple steps and trace the kernel easily! You'll quickly realize how much easier this is
compared with directly working with raw ftrace. Of course, on constrained embedded
systems, setting up frontends such as trace-cmd may not be viable at all (it really
does depend on your project/product); thus, knowing how to leverage raw ftrace is
indeed still important!

Tip
It's advisable to not run trace-cmd from within the tracefs (/sys/
kernel/[debug]/tracing) directory. It can fail as it attempts to
write the trace data (you'll have to override this with the -o option switch,
and so on).

454 Tracing the Kernel Flow

Viewing and leveraging all available events
It gets a lot more powerful. trace-cmd list shows you all available events (as well
as plugins and other options) that can be leveraged while recording a trace. While doing
this reveals all possible events that can be traced, the list is huge – over 1,400 of them at
the time of writing (with the 5.10 kernel series – try it out and see for yourself). Here's a
truncated view:

$ sudo trace-cmd list

events:

drm:drm_vblank_event

drm:drm_vblank_event_queued

drm:drm_vblank_event_delivered

initcall:initcall_finish

initcall:initcall_start

initcall:initcall_level

vsyscall:emulate_vsyscall

xen:xen_cpu_set_ldt

[...]

tracers:

hwlat blk mmiotrace function_graph wakeup_dl wakeup_rt wakeup
function nop

options:

print-parent

nosym-offset

[...]

To see a sorted list of just the event labels – which are similar to event classes – and not
each and every function associated with each event, in an abbreviated format, we firstly
employ the -e option to trace-cmd list (show only events) and perform some quick
bash magic:

$ sudo trace-cmd list -e | awk -F':' 'NF==2 {print $1}' | sort
| uniq | tr '\n' ' '

alarmtimer asoc avc block bpf_test_run bpf_trace bridge
cfg80211 cgroup clk compaction cpuhp cros_ec devfreq devlink
dma_fence drm error_report exceptions ext4 fib fib6 filelock
filemap fs_dax gpio gvt hda hda_controller hda_intel huge_
memory hwmon hyperv i2c i915 initcall intel_iommu intel_ish
interconnect iocost iomap iommu io_uring irq irq_matrix irq_
vectors iwlwifi iwlwifi_data iwlwifi_io iwlwifi_msg iwlwifi_

Using the trace-cmd, KernelShark, and perf-tools ftrace frontends 455

ucode jbd2 kmem kvm kvmmmu libata mac80211 mac80211_msg mce
mdio mei migrate mmap mmap_lock mmc module mptcp msr napi
neigh net netlink nmi nvme oom page_isolation pagemap page_
pool percpu power printk pwm qdisc random ras raw_syscalls rcu
regmap regulator resctrl rpm rseq rtc sched scsi signal skb
smbus sock spi swiotlb sync_trace syscalls task tcp thermal
thermal_power_allocator timer tlb ucsi udp v4l2 vb2 vmscan
vsyscall wbt workqueue writeback x86_fpu xdp xen xhci-hcd $

The precise event classes seen depend on the architecture, the kernel version, and
the kernel config. Now, the wonderful thing is that you can pick one or more of these
event classes and have trace-cmd record only trace and report the functionality
corresponding to them by using the -e option switch. Here's an example:

trace-cmd record <...> -e net -e sock -e syscalls

As you'll guess, this has trace-cmd record all network, socket, and system call-related
tracing events (functions) only, that occur within the kernel during its recording run.

The trace-cmd list sub-command can show interesting stuff – for example, trace-
cmd list –t shows all available tracers (completely equivalent to cat /sys/
kernel/tracing/available_tracers). To see all that it can show, display the
list sub-command help screen as follows:

trace-cmd list -h

trace-cmd version 2.8.3

usage:

trace-cmd list [-e [regex]][-t][-o][-f [regex]]

 -e list available events

 -F show event format

 -R show event triggers

 -l show event filters

 -t list available tracers

 -o list available options

 -f [regex] list available functions to filter on

 -P list loaded plugin files (by path)

 -O list plugin options

 -B list defined buffer instances

 -C list the defined clocks (and active one)

456 Tracing the Kernel Flow

Do look up man trace-cmd-list to understand the details. Also, if you want to trace
particular functions (and not all ones that correspond to an encompassing event, which
we did with the -e <event1> -e <event2> option to trace-cmd record), then
execute trace-cmd record [...] -l <func1> -l <func2> [...].

Case 3.1 – tracing a single ping with trace-cmd
Performing a trace of a single ping, in a manner very similar to what we achieved with
ftrace-ing via the set_event interface (we covered this in the section Case 2 – tracing
a single ping with raw ftrace via the set_event interface), with function parameters being
revealed, can be easily done in simply two steps with trace-cmd:

1. The recording of data:

sudo trace-cmd record -q -e net -e sock -e skb -e tcp -e
udp -F ping -c1 packtpub.com

2. The reporting of the trace:

sudo trace-cmd report -l -q > reportfile.txt

If, in the recording step, you add the -p function_graph parameter, you'll get the
report with function call graph indentation but without any function parameters (as you
will now realize, both ways are useful).

This single ping trace via trace-cmd has been encapsulated via a simple bash script –
ch9/tracecmd/trccmd_1ping.sh. When running, the script requires, via an option
switch, a decision on whether to trace so that a function graph-style report or function
parameters (and their current values) are displayed in the trace report. Do try it out!

Using the trace-cmd, KernelShark, and perf-tools ftrace frontends 457

Kernel modules and trace-cmd
Ftrace has the ability to automatically recognize any and all functions within kernel
modules! This is excellent; thus, trace-cmd – being a frontend to ftrace – also
automatically recognizes them. To test this, I simply loaded up a module we used earlier
(ch5/kmembugs_test/test_kmembugs.ko). Then, we use trace-cmd list -f,
grepping for the presence of this module's functions. They do indeed show up:

Figure 9.21 – A screenshot showing how trace-cmd automatically recognizes module functions available
to it for tracing

Now, to trace a particular module's functions, do the following:

trace-cmd record [...] --module <module-name> [...]

Also, as an aside, I'm working upon a wrapper script over the trace-cmd utility
called trccmd. Please see the GitHub repository of this small project here: https://
github.com/kaiwan/trccmd. As an example, here's this utility being used to trace
the flow of a single ping packet:

./trccmd -F 'ping -c1 packtpub.com' -e 'net sock skb tcp udp'

Right, let's move on to graphically visualizing our hard work!

Using the KernelShark GUI
KernelShark is an excellent GUI frontend to the output produced by trace-cmd. More
specifically, it parses the binary trace.dat file produced by either the trace-cmd
record or trace-cmd extract sub-commands.

https://github.com/kaiwan/trccmd
https://github.com/kaiwan/trccmd

458 Tracing the Kernel Flow

Getting a trace.dat type output from raw ftrace
This might leave you wondering – what if you're using raw ftrace to trace (not trace-
cmd) and still want to visualize the trace with KernelShark? It's easy – you simply have to
use trace-cmd extract to extract the raw trace buffer content to a file – it will be in
the expected binary format! Follow along with this example (as root):

cd /sys/kernel/tracing

trace-cmd reset ; echo > trace

echo function_graph > current_tracer

echo 1 > tracing_on ; sleep .5 ; echo 0 > tracing_on

trace-cmd extract -o </path/to/>trc.dat

Now, the trc.dat file can be provided as input to KernelShark.

Moving along, the latest version of KernelShark (at the time of writing, in March 2022)
is 2.1.0. It's moved on from GTK+ 2.0 to Qt 5. (The 1.0 release got an LWN article for
itself: KernelShark releases version 1.0, Jake Edge, July 2019: https://lwn.net/
Articles/794846/.)

Being pretty new, the combination of the latest trace-cmd version (3.0.-dev, at the time
of writing) and KernelShark 2.1.0 gave me some trouble; hence, I am just going with the
older distro-package (Ubuntu 20.04 LTS) releases here – trace-cmd version 2.8.3 and
KernelShark version 0.9.8.

Very useful and detailed documentation for KernelShark is available here: https://
kernelshark.org/Documentation.html.

Case 3.2 – viewing the single ping with KernelShark
We come back to our favorite trace test – that of tracing a single ping! Of course, the
whole idea is that this time, we'll visualize the trace report via KernelShark. To do so, we
first execute our simple bash script (ch9/tracecmd/trccmd_1ping.sh) that will
capture the trace data and write it to the trace.dat file:

cd <booksrc>/ch9/tracecmd

./trccmd_1ping.sh -f

[...]

https://lwn.net/Articles/794846/
https://lwn.net/Articles/794846/
https://kernelshark.org/Documentation.html
https://kernelshark.org/Documentation.html

Using the trace-cmd, KernelShark, and perf-tools ftrace frontends 459

(We covered the basics on this in the earlier Case 3.1 – tracing a single ping with trace-cmd
section; the -f option provided here has the recording done via the function_graph
tracer plugin). The ASCII text report file we generate (ping_trccmd.txt, here) is of
no use to KernelShark. It instead uses the binary trace.dat report file (which also gets
generated by trace-cmd).

KernelShark is essentially a trace reader. It parses and displays the content of the trace.
dat file in a useful GUI. The picking up of the trace.dat file is automatic when you
run KernelShark from the directory where a trace.dat file is present. Alternatively,
you can always override this and pass the relevant binary trace file via the -i parameter,
or even open it from the GUI's File | Open menu. Here's a screenshot of the KernelShark
GUI, visualizing our single ping trace:

Figure 9.22 – A screenshot of the KernelShark GUI visualizing the single ping; the Events filter dialog is
seen as well

460 Tracing the Kernel Flow

Note how usefully we can filter the output. Here, I've applied a few filters:

• CPU: Set to CPU 1 only (or whichever are appropriate). Access it via Plots | CPUs.

• Tasks: Set to the ping-[PID] task only. Access it via Plots | Tasks.

• Events: This is very useful. It's set to filter events of interest – we eliminate all ftrace
events except funcgraph_entry; this one allows us to see the names of kernel
functions as they're entered in the list view. Access it via Filter | Show events.
(Here's a quick tip – as you probably know, all kernel events can be seen under
/sys/kernel/tracing/events/.)

Very powerful indeed!

There are two major tiled widgets – the graph and list views. The former – the upper
portion of the GUI – shows the kernel flow graphically, with vertical tick marks indicating
events. The list widget (the lower pane) is literally a list of the events – essentially, it's the
raw ftrace/trace-cmd output. Above the graph region is the "Pointer", navigation/zoom,
and two Marker widgets. Between the graph and list regions is a widget, allowing you to
search and filter on any of the available columns. Again, it's very intuitive, so do try it out.
The KernelShark doc clearly explains the GUI layout. Here's a few elements of the GUI
(note that this screenshot is a different session from the previous one):

Figure 9.23 – A partial screenshot showing the upper portion of the KernelShark GUI

Here's a quick run-through of some key elements of Figure 9.23:

• The so-called "Pointer" – this shows the current location in the timeline. As you
move the mouse over events, the information pertaining to that event – in effect, the
last column in the list view (labeled Info) – is seen to the right of the Pointer. (You
can see the mouse pointer on the graph and the corresponding event info to the
right of the Pointer: widget – it shows that the mouse pointer is currently on the
ping process, on entry to the write() system call.)

Using the trace-cmd, KernelShark, and perf-tools ftrace frontends 461

• The buttons to zoom and move (<, +, -, and >):

 � The < button moves the graph left.

 � The + button zooms in and the – button zooms out (as does scrolling the mouse).

 � The > button moves the graph right.

• The ++ button zooms into the graph to the maximum extent, and the -- button
zooms out to the full timeline width.

• The two Marker widgets can be very helpful, allowing you to focus on a particular
section of the code path and to see the time delta between the two. Using them
is easy – for example, to set Marker B, click on it first, and then double-click
anywhere on the graph or list. This sets it (do the same for Marker A), and when
both are set, the time delta also shows up!

A few interesting gems turn up while reading the KernelShark HTML doc; Here's one:

"The hollow green bar that is shown in front of some events in the task plot
represents when the task was woken up from a sleeping state to when it

actually ran. The hollow red bar between some events shows that the task
was preempted by another task even though that task was still runnable.

Since the hollow green bar shows the wake up latency of the task, the A,B
markers can be used to measure that time."

Also, detailed custom filtering can be done via the Filters | TEP Advance Filtering (or
Advanced Filtering, in older versions) menu; documentation on this can be found in the
KernelShark HTML doc in the Advanced Event Filter section.

As we saw with ftrace, KernelShark too is used professionally to debug both performance
issues as well as help root-cause defects. Here's an article by (who else?) Steven Rostedt:
Using KernelShark to analyze the real-time scheduler, Feb 2011: https://lwn.net/
Articles/425583/. As with ftrace's (and perf 's) other frontends, KernelShark is
moving away from being "the one GUI" solution to being merely one of any number
of frontends that can take advantage of a framework where libraries will provide
interfaces to access raw trace data (as Figure 9.2 hints at – although it doesn't explicitly
include KernelShark).

https://lwn.net/Articles/425583/
https://lwn.net/Articles/425583/

462 Tracing the Kernel Flow

An introduction to using perf-tools
The perf-tools project is a collection of (mostly bash) scripts that are essentially
wrappers over the kernel's ftrace and the perf_events (perf) infrastructure. They
help automate much of the work when performing performance analysis/observability/
debugging at the level of the kernel (and userspace, to an extent). The primary author is
Brendan Gregg. This is the GitHub repository of the project: https://github.com/
brendangregg/perf-tools.

It's not new to us – we covered, pretty in depth, the usage of the kprobe[-perf] tool
within the perf-tools collection in Chapter 4, Debug via Instrumentation – Kprobes, in
the The easier way – dynamic kprobes or kprobe-based event tracing section.

Once you've installed the perf-tools[-unstable] package, the scripts are typically
installed in /usr/sbin. Let's check it out:

$ (cd /usr/sbin; ls *-perf)

bitesize-perf execsnoop-perf funcgraph-perf

functrace-perf iosnoop-perf kprobe-perf

perf-stat-hist-perf

syscount-perf tpoint-perf cachestat-perf

funccount-perf funcslower-perf iolatency-perf

killsnoop-perf opensnoop-perf reset-ftrace-perf

tcpretrans-perf uprobe-perf

$

These tools tend to help with performance observability (and debug) at various
portions of the Linux stack. A picture is, of course, worth a thousand words; thus,
I reproduce this useful diagram from the perf-tools GitHub repository here:
https://github.com/brendangregg/perf-tools/raw/master/images/
perf-tools_2016.png:

https://github.com/brendangregg/perf-tools
https://github.com/brendangregg/perf-tools
https://github.com/brendangregg/perf-tools/raw/master/images/perf-tools_2016.png
https://github.com/brendangregg/perf-tools/raw/master/images/perf-tools_2016.png

Using the trace-cmd, KernelShark, and perf-tools ftrace frontends 463

Figure 9.24 – The perf-tools collection of scripts (pic credit – the perf-tools GitHub repository)

Glancing at the diagram, you can see how these tools can be employed at various portions
of the stack!

A big plus is that these tools are documented really well. Each has its own man
page. Further, when any of these tools is run on the command line with the -h
option switch, they shows a brief summary, often with very helpful one-line example
usage (see the upper portion of Figure 9.25 as an example). Due to limited space, we'll
check out just a couple of examples (again, we covered using the kprobe[-perf]
script in an earlier chapter).

464 Tracing the Kernel Flow

Tracing all open()s via perf-tool's opensnoop
You'll recall how, back in Chapter 4, Debug via Instrumentation – Kprobes, via a multitude
of ways, we worked hard to figure out which files were being opened (via the open()
system call, which becomes the do_sys_open() function within the kernel). Let's
revisit this, this time using ftrace! We could use raw ftrace or trace-cmd to quite easily
do this, but let's use the (even easier to use) perf-tools wrapper script, opensnoop[-
perf]! It does the job handily. Needless to say, run it as root:

Figure 9.25 – A screenshot showing the help screen – with examples! – of opensnoop[-perf], along with
a quick example, tracing the open system call of all files ending in conf system-wide

Using the trace-cmd, KernelShark, and perf-tools ftrace frontends 465

Tip – Digging In
I suggest you look at the code of some of these perf-tools scripts.
funcgraph[-perf] is a good one: https://github.com/
brendangregg/perf-tools/blob/master/kernel/
funcgraph. It's a useful bash script wrapper over precisely what we
learned to do earlier in this chapter – use raw ftrace via the function_
graph tracer.

Also, recall how in Chapter 4, Debug via Instrumentation – Kprobes, in the Observability
with eBPF tools – an introduction section, we used one of the powerful BPF Compiler
Collection (BCC) frontends, opensnoop-bpfcc, to figure out which files are being
opened by which process/thread.

Tracing functions that are latency outliers via perf-tool's funcslower
Here's one more quick perf-tools example – finding functions that are latency outliers
with the funcslower[-perf] tool! To try this, I check for the mutex_lock() kernel
function, taking longer than 50 microseconds to complete (I ran this on my native x86_64
laptop, running Ubuntu 20.04 LTS):

Figure 9.26 – A partial screenshot showing how the funcslower[-perf] tool catches function outliers

https://github.com/brendangregg/perf-tools/blob/master/kernel/funcgraph
https://github.com/brendangregg/perf-tools/blob/master/kernel/funcgraph
https://github.com/brendangregg/perf-tools/blob/master/kernel/funcgraph

466 Tracing the Kernel Flow

Note the big fat outlier here – a kworker thread taking over 32 milliseconds, a likely
corner case! Again, this shows that vanilla Linux is by no means a Real-Time Operating
System (RTOS). This has me unable to resist pointing out that Linux can indeed run as an
RTOS – look up the Real-Time Linux (RTL) wiki site and patches.

The perf-tools GitHub site has example content on most, if not all, the perf tools –
you can check out interesting examples using funcslower[-perf] here: https://
github.com/brendangregg/perf-tools/blob/master/examples/
funcslower_example.txt. Several more interesting screenshots and links with
respect to other tools can also be found here, so do check it out.

Don't forget eBPF and its frontends
Note that many of these perf-tools wrapper scripts are now superseded by the more
recent and powerful eBPF technology. Brendan Gregg's answer to this is his newer
frontend to eBPF – the *-bpfcc toolset! (You can read more on it here: https://
www.brendangregg.com/ebpf.html.) Recall how, in Chapter 4, Debug via
Instrumentation – Kprobes, in the Observability with eBPF tools – an introduction section,
when we tried to figure out who was issuing the execve() system call to execute a
process, the perf-tools execsnoop-perf wrapper script didn't quite cut it. The
execsnoop-bpfcc BCC frontend wrapper script worked well instead.

Investigating a disk I/O issue on Netflix cloud instances
with perf-tools
Brendan Gregg describes using ftrace via his powerful and user-friendly perf-tools
scripts to help debug performance issues on Netflix Linux (Ubuntu) cloud instances. An
article by him on this topic (you'll find the link to it shortly), although pretty old (August
2014), clearly illustrates how powerful ftrace – and the perf-tools frontend – can be at
digging deep into and figuring out performance issues.

In this article, he shows how exactly he figured out an issue with a Cassandra database
that was experiencing abnormally heavy disk I/O. It was caused by an initially incorrect
disk readahead setting. At first, it seemed that even after tuning the readahead values to
saner ones, it had no effect on the disk I/O. Digging deeper with the perf-tools scripts
(he uses many interesting ones – iosnoop[-perf], tpoint[-perf], funccount[-
perf], funcslower[-perf], kprobe[-perf], and funcgraph[-perf]), he
found that the tuning had no effect, as the initialization of the disk readahead setting took
place within the context of the open() system call (but Cassandra was still running).
Restarting Cassandra on the instance had the readahead value initialized to the correct
value, the disk I/O dropped, and all was good again.

https://github.com/brendangregg/perf-tools/blob/master/examples/funcslower_example.txt
https://github.com/brendangregg/perf-tools/blob/master/examples/funcslower_example.txt
https://github.com/brendangregg/perf-tools/blob/master/examples/funcslower_example.txt
https://www.brendangregg.com/ebpf.html
https://www.brendangregg.com/ebpf.html

An introduction to kernel tracing with LTTng and Trace Compass 467

The article can be found here: ftrace: The Hidden Light Switch, Brendan Gregg, August
2014: https://lwn.net/Articles/608497/.

An introduction to kernel tracing with LTTng
and Trace Compass
The Linux Trace Toolkit – next generation (LTTng) is a powerful and popular tracing
system for the Linux kernel as well as userspace apps and libraries; it's open source,
released under the Lesser GPL (modules and libraries), the GPL (tooling), and some
components under the MIT license. Its original version (LTT) dates back to 2005,
and LTTng is actively maintained. It has made a name for itself in helping track down
performance and debug issues on multicore parallel and real-time systems. (Here, we're
using the latest stable version at the time of writing – v2.13.)

The LTTng website (https://lttng.org/) does an excellent job documenting all
aspects (learn what exactly tracing is at https://lttng.org/docs/v2.13/#doc-
what-is-tracing). Due to space constraints, we shall simply refer you to the
appropriate links. To install LTTng, please see this link: https://lttng.org/docs/
v2.13/#doc-installing-lttng.

Tip – LTTng Package Installation for Ubuntu 20.04
Though you won't get the latest version, it's easy to simply install these LTTng
packages like this – sudo apt install lttng-tools lttng-
modules-dkms -y. (Using this technique, at the time of writing, I got
LTTng version 2.11 and 2.12 for the modules.)

A quick introduction to recording a kernel
tracing session with LTTng
Once installed, please do read the Quick start guide on the LTTng website: https://
lttng.org/docs/v2.13/#doc-getting-started. As this is a book on kernel
debugging, we will only make use of LTTng for kernel tracing (it has the capability to
perform user mode tracing as well). Thus, I suggest you read these sections – at least to
begin with:

• Record Linux kernel events: https://lttng.org/docs/v2.13/#doc-
tracing-the-linux-kernel

• View and analyze the recorded events: https://lttng.org/docs/
v2.13/#doc-viewing-and-analyzing-your-traces

https://lwn.net/Articles/608497/
https://lttng.org/
https://lttng.org/docs/v2.13/#doc-what-is-tracing
https://lttng.org/docs/v2.13/#doc-what-is-tracing
https://lttng.org/docs/v2.13/#doc-installing-lttng
https://lttng.org/docs/v2.13/#doc-installing-lttng
https://lttng.org/docs/v2.13/#doc-getting-started
https://lttng.org/docs/v2.13/#doc-getting-started
https://lttng.org/docs/v2.13/#doc-tracing-the-linux-kernel
https://lttng.org/docs/v2.13/#doc-tracing-the-linux-kernel
https://lttng.org/docs/v2.13/#doc-viewing-and-analyzing-your-traces
https://lttng.org/docs/v2.13/#doc-viewing-and-analyzing-your-traces

468 Tracing the Kernel Flow

To very briefly summarize recording a kernel tracing session with LTTng, perform the
following steps (all performed as root):

1. Create a session:

lttng create <session-name> --output=~/my_lttng_traces/

If the --output parameter isn't provided, it defaults to saving it in ~/lttng_
traces/.

2. Set up kernel events to trace. Here, we'll be simplistic and simply trace all kernel
events (which could result in large raw data files being saved though):

lttng enable-event --kernel --all

3. Perform the recording:

lttng start

Do whatever's necessary on the system to reproduce your issue (or simply do
something for now).

4. Stop recording (optional):

lttng stop

5. Destroy the recording session. Relax – this doesn't delete the raw trace data (also,
this step implicitly stops the recording session):

lttng destroy

6. Make the raw trace data accessible to other users (optional):

sudo chown -R $(whoami):$(whoami) ~/my_lttng_traces

I've made a small (lightly tested, so no promises!) attempt at these steps via a wrapper
bash script (ch9/lttng/lttng_trc.sh). It's just to get you started quickly. It expects
a session name followed by either 0, implying the entire kernel gets traced, or the name of
a program to execute, and it traces all kernel events as it executes (of course, it's simplistic
– the trace isn't exclusive to the process):

$ cd <lkd_src>/ch9/lttng ; sudo ./lttng_trc.sh

Usage: lttng_trc.sh session-name program-to-trace-with-LTTng|0

 1st parameter: name of the session

 2nd parameter, ...:

An introduction to kernel tracing with LTTng and Trace Compass 469

 If '0' is passed, we just do a trace of the entire system
(all kevents),

 else we do a trace of the particular process (all kevents).

Eg. sudo ./lttng_trc.sh ps1 ps -LA

[NOTE: other stuff running _also_ gets traced (this is
non-exclusive)].

$

As a quick usage example, let's trace a single ping packet using LTTng (what a surprise)!
The following screenshot shows its execution:

Figure 9.27 – A screenshot showing the execution of our simple LTTng kernel trace wrapper script

470 Tracing the Kernel Flow

The script makes a few validity checks and then performs kernel-level tracing – while
the user app (here, ping) executes – with all the kernel events enabled. It sets up so that
the actual trace data is saved under /tmp/lttng_<sessionname>_<timestamp>.
Further, once done, it archives and compresses this data – you can see the file at the end
of the screenshot (here, it's named lttng_ping1_08Mar22_1104.tar.gz). This
enables you to transfer and analyze the trace on a different system.

Analyzing LTTng traces on the command line – a mention
LTTng includes a set of libraries and tools to analyze its raw trace data. The primary tool
is called Babeltrace 2, which is a command-line-based utility. I refer you to this link on
the LTTng website to delve into how exactly to use it: Use the babeltrace2 command-line
tool: https://lttng.org/docs/v2.13/#doc-viewing-and-analyzing-
your-traces-bt. Being console-based, the output can be overwhelming. (The
babeltrace output from the single ping trace just performed yielded over 123,000
lines of information!)

LTTng has another set of powerful tools to interpret and analyze its raw trace data called
the LTTng analyses project. Though command-line-based, it provides intuitive Python-
based interfaces to help visualize the trace session. You can learn more on this here:
https://github.com/lttng/lttng-analyses.

Using the Trace Compass GUI to visualize the single
ping LTTng trace
A very visually appealing and popular GUI interface for interpreting and analyzing LTTng
traces is via the superb Trace Compass GUI. Trace Compass is an Eclipse-based project.
Do look up its excellent site, for installation, documentation, and even screenshots:
https://www.eclipse.org/tracecompass/. Here, we only introduce the usage
of the Trace Compass GUI.

https://lttng.org/docs/v2.13/#doc-viewing-and-analyzing-your-traces-bt
https://lttng.org/docs/v2.13/#doc-viewing-and-analyzing-your-traces-bt
https://github.com/lttng/lttng-analyses
https://www.eclipse.org/tracecompass/

An introduction to kernel tracing with LTTng and Trace Compass 471

Once installed, simply run Trace Compass, go to the File | Open Trace... menu, and select
the directory where your LTTng tracing session was saved. Trace Compass parses and
displays it – here's a portion of the GUI (I also popped up the Legend dialog so that you
can understand the color-coding applied in the upper pane, the graph area):

Figure 9.28 – A truncated screenshot of the superb Trace Compass GUI

There's a lot of customization possible with Trace Compass's views and perspectives – try
and spend some time with it. In this particular case, to help zoom into the relevant region
of the trace, I filtered in the following manner. Type 6 into the CPU column search widget
(as that's the CPU core that ping happened to run upon in this particular section). Also,
type the icmp string into the Contents column search widget – now lines containing
it get matched. Here, there's only one – the net_dev_queue kernel event seen in the
screenshot. This may not always work, though; if not, try searching the Contents column
for known events, such as net_dev_xmit. (Here's a quick tip – as you know, all kernel
events can be seen under /sys/kernel/tracing/events/).

472 Tracing the Kernel Flow

Right-click on the line item or event of choice. Here, I clicked on the item seen highlighted
in the screenshot – net_dev_queue. Select the Copy to Clipboard menu item. Pasting
it, this is what I see (the text has wrapped):

Timestamp Channel CPU Event type Contents TID
Prio PID Source

18:39:11.274 970 channel0_6 6 net_dev_queue
skbaddr=0xffff8a4c30fb5c00, len=98, name=eno2, network_header_
type=_ipv4, network_header=ipv4=[version=4, ihl=5, tos=0,
tot_len=84, id=0x2950, frag_off=16384, ttl=64, protocol=_
icmp, checksum=0xe6db, saddr_padding=[], saddr=[192, 168, 1,
16], daddr_padding=[], daddr=[104, 22, 0, 175], transport_
header_type=_icmp, transport_header=icmp=[type=8, code=0,
checksum=393, gateway=720897]] 3932722 20 3932722

As mentioned before, knowing the value of parameters at runtime can be crucial to
debugging a given scenario. In addition, other information is provided (this is due to how
the kernel events subsystem works).

To help see (a part of) the ping process's execution timeline more clearly, here's a
zoomed (and truncated) screenshot of the (interesting!) graph area:

Figure 9.29 – A screenshot showing a part of the ping process's timeline

You can see we've filtered down to the ping process (on the left side). Its timeline and the
functions in its execution code path are seen to its right. Note the very useful color coding
– blue represents a system call, green, userspace code (the Legend dialog seen in Figure
9.28 displays the current color-coding settings). Placing the mouse over any part of the
graph shows more information on it (including its duration).

Summary 473

With LTTng and Trace Compass, we find that it makes the state of the concerned
thread (as well as all others) very clear, by appropriately color-coding it. This helps you
understand the overall context visually. You can literally see what is happening – is it
blocking on I/O, is it running user/kernel code paths, or is a softirq or hardirq running?
All is clear. For example, the left extreme of ping in the preceding figure has a brown
color bar representing it, waiting for the CPU (in a non-blocking manner; clicking on it, I
can see that it's in the sched_switch event for 48.6 us). The lemon yellow color bar on
the extreme right shows that it's blocked on I/O here. Again, clicking on it, I can see that
it happens to be blocked on the power_cpu_idle event for 14.6 us). On the other
hand, KernelShark (and thus ftrace and trace-cmd) clearly detail the context – via the
super useful latency format info columns – which is missing in Trace Compass's (and
LTTng's) information.

Exercises
Trace the kernel flow of the following:

- The classic K&R "Hello, world" app

- A simple "Hello, world" kernel module

Do this using (raw) ftrace, the trace-cmd frontend, and (possibly) my
trccmd frontend. (I could provide solutions but it's pointless. The end result
here isn't the thing that really matters; it's the process.). Visualize your traces
with KernelShark. You can also try exporting the trace into the Common Trace
Format (CTF) employed by Trace Compass and visualize it there as well.

Summary
Well done on completing this long and useful topic on tracing within the Linux kernel.
We began this chapter with an overview of the many available tracing mechanisms on the
Linux kernel – the first couple of figures nicely summarized this. A large portion of this
chapter dealt with how you can leverage the powerful ftrace kernel infrastructure. It is
high-performance and minimally invasive, with pretty much no dependencies, making it
ideal for even constrained embedded systems!

To make it easier though, several useful frontends for ftrace exist. We covered using
trace-cmd, the KernelShark GUI, and the perf-tools project. We finished the
chapter with an introduction to using LTTng for kernel tracing and the Trace Compass
GUI for visualizing the trace.

474 Tracing the Kernel Flow

You'll tend to find that one tracing/visualization tool may be superior to another in some
respects but is inferior in others. This, of course, is very typical (of pretty much everything
– trade-offs, right). Remember, as Fred Brooks has told us back in 1975 (in his timeless
book The Mythical Man Month) there's no silver bullet! Learning to use several powerful
tools will stand you in good stead.

Do try working with all this technology on your own (and try the few specified exercises)!
Then, the next chapter awaits – kernel panic and more. Don't panic! We'll get through it.

Further reading
• Unified Tracing Platform – Bringing tracing together, Steven Rostedt, VMware, 2019:

https://static.sched.com/hosted_files/osseu19/5f/unified-
tracing-platform-oss-eu-2019.pdf

• Unifying kernel tracing, Jack Edge, Oct 2019: https://lwn.net/
Articles/803347/

• Linux tracing systems & how they fit together, Julia Evans (@b0rk), July 2017:
https://jvns.ca/blog/2017/07/05/linux-tracing-systems/

• Using the Linux Tracing Infrastructure, Jan Altenberg, Linutronix GmbH, Nov 2017:
https://events.static.linuxfound.org/sites/events/files/
slides/praesentation_0.pdf

• The comprehensive kernel index – all articles on tracing on LWN: https://lwn.
net/Kernel/Index/#Tracing

• Ftrace:

 � Official kernel documentation – very detailed and comprehensive: ftrace -
Function Tracer: https://www.kernel.org/doc/html/v5.10/trace/
ftrace.html#ftrace-function-tracer

 � The LWN kernel index and ftrace: https://lwn.net/Kernel/
Index/#Ftrace

 � Ftrace: The hidden light switch, Brendan Gregg, August 2014: https://lwn.
net/Articles/608497/

 � Ftrace internals: Two kernel mysteries and the most technical talk I've ever seen,
Brendan Gregg, Oct 2019: https://www.brendangregg.com/blog/2019-
10-15/kernelrecipes-kernel-ftrace-internals.html

https://static.sched.com/hosted_files/osseu19/5f/unified-tracing-platform-oss-eu-2019.pdf
https://static.sched.com/hosted_files/osseu19/5f/unified-tracing-platform-oss-eu-2019.pdf
https://lwn.net/Articles/803347/
https://lwn.net/Articles/803347/
https://jvns.ca/blog/2017/07/05/linux-tracing-systems/
https://events.static.linuxfound.org/sites/events/files/slides/praesentation_0.pdf
https://events.static.linuxfound.org/sites/events/files/slides/praesentation_0.pdf
https://www.kernel.org/doc/html/v5.10/trace/ftrace.html#ftrace-function-tracer
https://www.kernel.org/doc/html/v5.10/trace/ftrace.html#ftrace-function-tracer
https://lwn.net/Kernel/Index/#Ftrace
https://lwn.net/Kernel/Index/#Ftrace
https://lwn.net/Articles/608497/
https://lwn.net/Articles/608497/
https://www.brendangregg.com/blog/2019-10-15/kernelrecipes-kernel-ftrace-internals.html
https://www.brendangregg.com/blog/2019-10-15/kernelrecipes-kernel-ftrace-internals.html

Further reading 475

• Older but definitely useful:

 � Debugging the kernel using Ftrace - part 1, Steven Rostedt, December 2009:
https://lwn.net/Articles/365835/

 � Debugging the kernel using Ftrace - part 2, Steven Rostedt, December 2009:
https://lwn.net/Articles/366796/

 � Secrets of the Ftrace function tracer, Steven Rostedt, January 2010: https://
lwn.net/Articles/370423/

• Welcome to ftrace & the Start of Your Journey to Understanding the Linux
Kernel!, Steven Rostedt, November 2019: https://blogs.vmware.com/
opensource/2019/11/12/ftrace-linux-kernel/

• Debugging the kernel using Ftrace, Programmer Group, November 2021: https://
programmer.group/debugging-the-kernel-using-ftrace.html

• ftrace: trace your kernel functions!, Julia Evans, March 2017: https://jvns.ca/
blog/2017/03/19/getting-started-with-ftrace/

• Ftrace cheat sheets:

 � Ftrace Favorites Cheat Sheet - Fun Commands to Try with Ftrace: http://
linux-tipps.blogspot.com/2011/05/ftrace-favorites-cheat-
sheet-fun.html

 � Kernel Tracing Cheat Sheet: https://lzone.de/cheat-sheet/Kernel%20
Tracing

 � Linux Tracing Workshops Materials: https://github.com/goldshtn/
linux-tracing-workshop

• Virtually mapped kernel stacks, Jon Corbet, June 2016, LWN: https://lwn.net/
Articles/692208/

• Virtually mapped stacks 2: thread_info strikes back, Jon Corbet, June 2016, LWN:
https://lwn.net/Articles/692953/

• The trace-cmd frontend:

 � trace-cmd: A front-end for Ftrace, Steven Rostedt, LWN, October 2010: https://
lwn.net/Articles/410200/

 � Kernel tracing with trace-cmd, G Kamathe, RedHat, July 2021: https://
opensource.com/article/21/7/linux-kernel-trace-cmd

https://lwn.net/Articles/365835/
https://lwn.net/Articles/366796/
https://lwn.net/Articles/370423/
https://lwn.net/Articles/370423/
https://blogs.vmware.com/opensource/2019/11/12/ftrace-linux-kernel/
https://blogs.vmware.com/opensource/2019/11/12/ftrace-linux-kernel/
https://programmer.group/debugging-the-kernel-using-ftrace.html
https://programmer.group/debugging-the-kernel-using-ftrace.html
https://jvns.ca/blog/2017/03/19/getting-started-with-ftrace/
https://jvns.ca/blog/2017/03/19/getting-started-with-ftrace/
http://linux-tipps.blogspot.com/2011/05/ftrace-favorites-cheat-sheet-fun.html
http://linux-tipps.blogspot.com/2011/05/ftrace-favorites-cheat-sheet-fun.html
http://linux-tipps.blogspot.com/2011/05/ftrace-favorites-cheat-sheet-fun.html
https://lzone.de/cheat-sheet/Kernel%20Tracing
https://lzone.de/cheat-sheet/Kernel%20Tracing
https://github.com/goldshtn/linux-tracing-workshop
https://github.com/goldshtn/linux-tracing-workshop
https://lwn.net/Articles/692208/
https://lwn.net/Articles/692208/
https://lwn.net/Articles/692953/
https://lwn.net/Articles/410200/
https://lwn.net/Articles/410200/
https://opensource.com/article/21/7/linux-kernel-trace-cmd
https://opensource.com/article/21/7/linux-kernel-trace-cmd

476 Tracing the Kernel Flow

• The KernelShark GUI:

 � Useful – the "official" KernelShark HTML documentation page: https://www.
kernelshark.org/Documentation.html

 � A colorful presentation – Swimming with the New KernelShark, Yordan
Karadzhov, VMware, 2018: https://events19.linuxfoundation.
org/wp-content/uploads/2017/12/Swimming-with-the-New-
KernelShark-Yordan-Karadzhov-VMware.pdf

 � KernelShark (quick tutorial), Steven Rostedt, ELC 2011: https://elinux.
org/images/6/64/Elc2011_rostedt.pdf

• The perf-tools wrapper scripts over ftrace and perf[_events]:

 � GitHub repository: https://github.com/brendangregg/perf-tools/

 � Examples of most perf-tools scripts: https://github.com/
brendangregg/perf-tools/tree/master/examples

• Linux Performance Analysis: New Tools and Old Secrets, November 2014, Brendan
Gregg, at USENIX LISA14:

 � Video presentation: https://www.usenix.org/conference/lisa14/
conference-program/presentation/gregg

 � Slides: https://www.slideshare.net/brendangregg/linux-
performance-analysis-new-tools-and-old-secrets

• You can find useful links to eBPF and its frontends in Chapter 4, Debug via
Instrumentation – Kprobes, in the Further reading section

• LTTng:

 � The LTTng main website: https://lttng.org/

 � The LTTng site's Quick start guide: https://lttng.org/docs/
v2.13/#doc-getting-started

 � Babeltrace 2: The command-line interface (CLI): https://lttng.org/
blog/2020/06/01/bt2-cli/

 � The LTTng analyses project: https://github.com/lttng/lttng-
analyses#lttng-analyses

 � Finding the Root Cause of a Web Request Latency, Julien Desfossez, February 2015:
https://lttng.org/blog/2015/02/04/web-request-latency-
root-cause/

https://www.kernelshark.org/Documentation.html
https://www.kernelshark.org/Documentation.html
https://events19.linuxfoundation.org/wp-content/uploads/2017/12/Swimming-with-the-New-KernelShark-Yordan-Karadzhov-VMware.pdf
https://events19.linuxfoundation.org/wp-content/uploads/2017/12/Swimming-with-the-New-KernelShark-Yordan-Karadzhov-VMware.pdf
https://events19.linuxfoundation.org/wp-content/uploads/2017/12/Swimming-with-the-New-KernelShark-Yordan-Karadzhov-VMware.pdf
https://elinux.org/images/6/64/Elc2011_rostedt.pdf
https://elinux.org/images/6/64/Elc2011_rostedt.pdf
https://github.com/brendangregg/perf-tools/
https://github.com/brendangregg/perf-tools/tree/master/examples
https://github.com/brendangregg/perf-tools/tree/master/examples
https://www.usenix.org/conference/lisa14/conference-program/presentation/gregg
https://www.usenix.org/conference/lisa14/conference-program/presentation/gregg
https://lttng.org/
https://lttng.org/docs/v2.13/#doc-getting-started
https://lttng.org/docs/v2.13/#doc-getting-started
https://lttng.org/blog/2020/06/01/bt2-cli/
https://lttng.org/blog/2020/06/01/bt2-cli/
https://github.com/lttng/lttng-analyses#lttng-analyses
https://github.com/lttng/lttng-analyses#lttng-analyses
https://lttng.org/blog/2015/02/04/web-request-latency-root-cause/
https://lttng.org/blog/2015/02/04/web-request-latency-root-cause/

Further reading 477

 � Tutorial: Remotely tracing an embedded Linux system, C Babeux, March 2016:
https://lttng.org/blog/2016/03/07/tutorial-remote-
tracing/

 � LTTng: The Linux Trace Toolkit Next Generation – A Comprehensive User's
Guide (version 2.3 edition), Daniel U. Thibault, DRDC Valcartier Research
Centre: https://cradpdf.drdc-rddc.gc.ca/PDFS/unc246/
p804561_A1b.pdf

• Trace Compass GUI:

 � Trace Compass website: https://www.eclipse.org/
tracecompass/#home

 � Alternate tracing tools: https://lttng.org/docs/v2.13/#doc-lttng-
alternatives

• Miscellaneous:

 � Boot-time tracing via ftrace: https://www.kernel.org/doc/html/
latest/trace/boottime-trace.html

 � Trace Linux System Calls with Least Impact on Performance in Production,
December 2020: https://en.pingcap.com/blog/how-to-trace-
linux-system-calls-in-production-with-minimal-impact-on-
performance/

https://cradpdf.drdc-rddc.gc.ca/PDFS/unc246/p804561_A1b.pdf
https://cradpdf.drdc-rddc.gc.ca/PDFS/unc246/p804561_A1b.pdf
https://www.eclipse.org/tracecompass/#home
https://www.eclipse.org/tracecompass/#home
https://lttng.org/docs/v2.13/#doc-lttng-alternatives
https://lttng.org/docs/v2.13/#doc-lttng-alternatives
https://www.kernel.org/doc/html/latest/trace/boottime-trace.html
https://www.kernel.org/doc/html/latest/trace/boottime-trace.html
https://en.pingcap.com/blog/how-to-trace-linux-system-calls-in-production-with-minimal-impact-on-performance/
https://en.pingcap.com/blog/how-to-trace-linux-system-calls-in-production-with-minimal-impact-on-performance/
https://en.pingcap.com/blog/how-to-trace-linux-system-calls-in-production-with-minimal-impact-on-performance/

10
Kernel Panic,

Lockups, and Hangs
It's unpleasant – that queasy feeling deep in the pit of your stomach, the cold sweat
forming on your brow – when you get that dreaded kernel panic message on the console,
and those absolute, unforgiving pixels, with the hard cold eye of a god, tell you that the
system is effectively dead:

Kernel panic - not syncing: [...]

Why, oh why? – your lamentations are futile. Unless, unless... you don't panic (pun
intended), read this chapter, figure out what's going on (by writing your own custom panic
handler to help with that), and get on with your life, dude!

In addition to understanding and dealing with kernel panics, we also delve into the causes
of kernel lockups, hung tasks, stalls, and how to configure a kernel to detect them. In this
chapter, we're going to cover the following main topics:

• Panic! – what happens when a kernel panics

• Writing a custom kernel panic handler routine

• Detecting lockups and CPU stalls in the kernel

• Employing the kernel's hung task and workqueue stall detectors

480 Kernel Panic, Lockups, and Hangs

Technical requirements
The technical requirements and workspace remain identical to what's described in Chapter
1, A General Introduction to Debugging Software. The code examples can be found within
the book's GitHub repository here: https://github.com/PacktPublishing/
Linux-Kernel-Debugging.

Panic! – what happens when a kernel panics
To conquer the beast, you must first understand it. In that spirit, let's panic!

The primary panic handling code in the kernel lies here: kernel/panic.c:panic().
The panic() function – the heart of it – receives, as parameters, a variable argument list
– a printf-style format specifier and associated variables (whose values will be printed):

// kernel/panic.c

/**

* panic - halt the system

* @fmt: The text string to print

*

* Display a message, then perform cleanups.

* This function never returns.

*/

void panic(const char *fmt, ...)

{ [...]

This function should (quite obviously) never be lightly invoked; calling it implies that
the kernel is in an unusable, unusable state; once called, the system effectively comes to a
grinding halt.

Let's panic
Here, with a view to being empirical and experimenting (on our test VM, of course), let's
just call panic() and see what happens. Our enviously simple module does so; here's its
code (besides the boilerplate #include and module macros):

// ch10/letspanic/letspanic.c

static int myglobalstate = 0xeee;

static int __init letspanic_init(void)

{

 pr_warn("Hello, panic world\n");

https://github.com/PacktPublishing/Linux-Kernel-Debugging
https://github.com/PacktPublishing/Linux-Kernel-Debugging

Panic! – what happens when a kernel panics 481

 panic("whoa, a kernel panic! myglobalstate = 0x%x",

 myglobalstate);

 return 0; /* success */

}

module_init(letspanic_init);

There's no need for a cleanup handler in this module, so we don't register one. Great, I
build and insmod it on my trusty x86_64 Ubuntu 20.04 LTS (which I've logged into over
ssh) running our custom production 5.10.60-prod01 kernel:

$ sudo insmod ./letspanic.ko

[... <panicked, and hung> ...]

Immediately upon insmod, the system simply hung; no printks appeared on the console
(on which I had SSHed in), nor on the graphical VirtualBox interface! It has obviously
panicked, yes, but in order to debug why, we need to – at the very least – be able to see the
details emitted by the kernel code within the panic code path. You'll very soon see what
details it prints (hint – it's much like the details seen in a kernel Oops diagnostic, which
we covered in depth in Chapter 7, Oops! Interpreting the Kernel Bug Diagnostic). So, what
do we do now? The short answer – we use netconsole! Before that though, let's quickly
mention the kernel's SysRq feature.

Creating a panic via the command line
There's an alternate easy non-programming way to generate a kernel panic – we take
advantage of the kernel's Magic SysRq facility and the kernel.panic_on_oops sysctl,
like so (as root):

echo 1 > /proc/sys/kernel/panic_on_oops

echo 1 > /proc/sys/kernel/sysrq

echo c > /proc/sysrq-trigger

It's simple – the first command sets up the kernel to panic on an Oops. The second
command is to play safe and enable the kernel's Magic SysRq features (in case it isn't
already enabled – for security, perhaps). The third command has the kernel's Magic SysRq
feature trigger a crash!

482 Kernel Panic, Lockups, and Hangs

What's this Magic SysRq thingy anyway?
In a nutshell, the kernel Magic SysRq facility is a keyboard-enabled hotkey interface
allowing users (typically the sysad or developer) to force the kernel to take certain code
paths. These effectively become similar to backdoors into the kernel, useful for debugging
system hangs and such.

It must first be enabled (CONFIG_MAGIC_SYSRQ=y). For security, it can be turned off or
tuned to allow only certain functionality; to do so, as root, do the following:

• To turn it off, write 0 into the /proc/sys/kernel/sysrq pseudofile.

• To enable all features, write 1 into it.

• A combination via a bitmask can be written as well.

The default value of the bitmask is the value of the kernel config CONFIG_MAGIC_
SYSRQ_DEFAULT_ENABLE (typically, 1).

It allows you to do pretty radical things – force a crash (c), a cold reboot (b), a power off
(o), forcibly invoke the Out Of Memory (OOM)-killer (f), force an emergency sync (s),
unmount all filesystems (u), and so on. It can really help with debugging – it allows you
to see all active task backtraces on all CPU cores (l), show CPU registers (p), show kernel
timers (q), show blocked tasks (w), dump all ftrace buffers (z), and so on. The letter in
parentheses is the one to use for that functionality. It can be used in two ways:

• Interactively, by pressing the particular key combination for your system (on x86,
it's Alt + SysRq + <letter>; note that on some keyboards, the SysRq key is the
same as the Prt Sc key).

• Non-interactively, by echoing the letter to the /proc/sysrq-trigger pseudofile
(see the simple demo in the following figure). Echoing the ? letter results in a help
screen of sorts being written via the kernel printk:

Figure 10.1 – A screenshot showing how the kernel Magic SysRq feature can be enabled and queried

Panic! – what happens when a kernel panics 483

The official kernel documentation can be found here: Linux Magic System Request Key
Hacks: https://www.kernel.org/doc/html/latest/admin-guide/sysrq.
html#linux-magic-system-request-key-hacks. It's comprehensive, so do
check it out!

Magic SysRq and the kernel panic_on_oops sysctl does indeed let us panic the kernel,
but we'd like to do so in code, via a module. Hence, we did so previously (a demo of doing
it this way, via kernel panic_on_oops and Magic SysRq, is shown in the Trying it out –
our custom panic handler module section).

To the rescue with netconsole
Hopefully you recall that the kernel netconsole code (often deployed as a module)
transmits all kernel printks over the network to a receiver system (both source and
destination being specified via the usual IP:port# style addresses). We won't repeat
the how-to part of it, as we already covered how to use netconsole in Chapter 7, Oops!
Interpreting the Kernel Bug Diagnostic in the An oops on an ARM Linux system and using
netconsole section.

So, I set up my VM (where I am running our letspanic module) as the sender
(of course, I need to have netconsole configured here, and it is) and my host
system (a native x86_64 Ubuntu system) as the receiver. For your convenience,
when loading the netconsole driver as a module, this is the format of the key
parameter, named netconsole:

netconsole=[+][src-port]@[src-ip]/[<dev>],[tgt-port]@<tgt-ip>/
[tgt-macaddr]

Here's the very brief setup detail (we leave the source and destination ports to their
default values):

• Sender: an x86_64 Ubuntu 20.04 LTS VM running our custom 5.10.60-prod01
kernel (type this on one line):

sudo modprobe netconsole netconsole=@192.168.1.20/
enp0s8,@192.168.1.101/

• Receiver: a native x86_64 Ubuntu 20.04 LTS system running the standard Ubuntu
kernel:

netcat -d -u -l 6666 | tee -a klog_from_vm.txt

https://www.kernel.org/doc/html/latest/admin-guide/sysrq.html#linux-magic-system-request-key-hacks
https://www.kernel.org/doc/html/latest/admin-guide/sysrq.html#linux-magic-system-request-key-hacks

484 Kernel Panic, Lockups, and Hangs

Of course, these are IP addresses and network interface names I encountered. Please
replace them appropriately on your system. The netcat process blocks on receiving the
incoming packets from the sender system and displays them (also writing them into the
log file over tee). Here's a screenshot that clearly shows their interplay:

Figure 10.2 – A screenshot showing the receiver window on top (netcat receiving the kernel printks)
from the sender system (below), which has insmoded our letspanic module

This is fantastic! Now, we can clearly see the kernel printks emitted by the panic handler
routine deep within the kernel.

Interpreting the panic output
As already mentioned, interpreting it is easy, as it pretty much follows the Oops diagnostic
output format. Following along with Figure 10.2, you can see the dreaded Kernel
panic - not syncing message at the very top, followed by our message – the
parameter to panic() – which is sent out at the KERN_EMERG printk log level, the
highest possible (remember that this will cause the panic message to be immediately
broadcast on all console devices). Thus, the line looks like this:

Kernel panic - not syncing: whoa, a kernel panic! myglobalstate
= 0xeee

Panic! – what happens when a kernel panics 485

This is followed by the usual stuff:

• The process context (here, it's insmod, of course), the tainted flags, and the
kernel version.

• A hardware detail line.

• If enabled (if CONFIG_DEBUG_BUGVERBOSE is on, it typically is), display the call
stack (via the kernel's dump_stack() routine). This, of course, becomes one of
the big clues as to how we got here, how we panicked – reading the kernel-mode
stack in a bottom-up fashion shows us how we got here (as usual, ignore call frames
prefixed with a ? symbol).

• This is followed by the instruction pointer (RIP) value, and both the machine code
on the processor and the CPU register values at this point in time.

• In kernels from 3.14 onward that use the Kernel Address Space Layout
Randomization (KASLR) feature as a security measure, the kernel offset is
displayed (via an arch-specific function, dump_kernel_offset(), which, very
interestingly, is invoked via something called the chain notifier mechanism, which
we'll delve into in the following main section).

• The panic is capped with an end message, pretty much the same as the start one:

---[end Kernel panic - not syncing: whoa, a kernel
panic! myglobalstate = 0xeee]---

Remember that we covered the detailed interpretation of the first four preceding bullet
points in Chapter 7, Oops! Interpreting the Kernel Bug Diagnostic, in the Devil in the details
– decoding the oops section.

So, where exactly within the kernel code does the sinister Kernel panic - not
syncing:... message come from? Here's the beginning portion of the panic()
code on the 5.10.60 kernel (https://elixir.bootlin.com/linux/v5.10.60/
source/kernel/panic.c#L177):

void panic(const char *fmt, ...)

{

 static char buf[1024];

 va_list args;

 [...]

 pr_emerg("Kernel panic - not syncing: %s\n", buf);

 [...]

}

https://elixir.bootlin.com/linux/v5.10.60/source/kernel/panic.c#L177
https://elixir.bootlin.com/linux/v5.10.60/source/kernel/panic.c#L177

486 Kernel Panic, Lockups, and Hangs

It's an exported function, so it's callable by modules. Also, quite clearly, after performing
some tasks (not shown here) early on, it emits an emergency log-level (KERN_EMERG)
printk message to the kernel logs and console device(s) (if configured), proclaiming the
fact that the kernel has panicked! It appends any message passed to it, then performs what
cleanup it can, and dumps useful system state information to all registered console devices
(as we just saw).

Why Is the Phrase "not syncing" in the Kernel Panic Message?
The not syncing phrase means precisely that – buffers containing device
data are deliberately not flushed – or synchronized (synced) – to disk (or flash,
or whatever). This action, if performed, can actually make a bad situation
worse, even corrupting data; thus, it's avoided.

You've realized that the system is now in an undefined unstable state; thus, the panic
code does what it can with the ever-present possibility of an inadvertent complete lockup
or failure. Again, this is why we can only do the bare minimum. Pretty much the entire
kernel panic code path is run on a single CPU core. Again, this is to avoid complexity
and possible deadlocks; in a similar fashion, local interrupts are disabled and kernel
preemption is turned off (the code has pretty detailed comments – take a look).

When possible – and especially when the CONFIG_DEBUG_BUGVERBOSE config is on
– the panic function tries to emit as much relevant system information as possible (as we
saw – refer to Figure 10.2 and the related notes). To this end, a function named panic_
print_sys_info() is invoked; it uses a bitmask (which you can set via the panic_
print kernel parameter) to determine and show more system information – things such
as all tasks info, memory, timer, lock, ftrace info, and all kernel printks. However, the
default value of the bitmask is 0, implying that it doesn't show any of these. This extra
information could indeed prove very useful; in the following section, we show how to set
this bitmask.

Panic! – what happens when a kernel panics 487

Within panic(), once this critical info dump is done, the last thing the function does
is loop infinitely on the single enabled processor core; within this loop, it resets the
Non-Maskable Interrupt (NMI) watchdog (as interrupts are now disabled) and then
periodically invokes an arch-dependent function called panic_blink(). On the x86, if
enabled, this hooks into the keyboard/mouse driver here – drivers/input/serio/
i8042.c:i8042_panic_blink(). This code causes the keyboard LEDs to blink,
alerting a user running a GUI (such as X) to realize that the system isn't just soft hung but
panicked. Here's the last code paragraph in the kernel panic() function, just after the
end message:

 pr_emerg("---[end Kernel panic - not syncing: %s]---\n",
buf);

 /* Do not scroll important messages printed above */

 suppress_printk = 1;

 local_irq_enable();

 for (i = 0; ; i += PANIC_TIMER_STEP) {

 touch_softlockup_watchdog();

 if (i >= i_next) {

 i += panic_blink(state ^= 1);

 i_next = i + 3600 / PANIC_BLINK_SPD;

 }

 mdelay(PANIC_TIMER_STEP);

 }

This, again, is completely deliberate – we want to ensure that the critical and precious
debug info printed on the console(s) doesn't simply scroll away and disappear from
view (as, of course, you can't scroll up, down, or do anything; the system is effectively
dead now).

488 Kernel Panic, Lockups, and Hangs

More Ways to Collect Panic Messages
Many Android devices make use of the Linux kernel's upstream pstore and
ramoops support to enable you to collect the kernel log on a kernel panic. Of
course, this implies a system containing persistent RAM and/or block devices
that the pstore abstraction layer can use. Thus, pstore and ramoops
can be viewed as being somewhat analogous to kexec/kdump in terms of
being able to collect system information upon a kernel crash or panic and store
it for later retrieval and analysis.

Also, the Intelligent Platform Management Interface (IPMI) is a
standardized way to monitor and control a system's sensors. It includes
panic and watchdog tuning. See the Further reading section for more links on
all these.

Hang on, though – the panic code can take other code paths from what we saw
just previously:

• When the kernel kexec/kdump feature is enabled, and the kernel has panicked
or Oops'ed, to warm-boot into a secondary so-called dump-capture kernel (thus
allowing the content of the kernel RAM to be saved to a snapshot and examined
later!). In other words, the panic() function is a trigger point for invoking this
functionality, which will (ultimately) invoke the kexec facility within the kernel to
warm-boot the system into the dump-capture kernel (we'll briefly talk about this in
the book's last chapter).

• When a custom panic handler is installed via the panic notifier chain mechanism, it
gets called in addition to the regular panic handling code. Interesting! We will cover
how you can do just this in the section that follows.

When the panic=n kernel parameter is set, it implies a panic timeout and reboot
(more on this follows). Right, now that we can interpret the kernel's panic diagnostic, let's
move along.

Panic! – what happens when a kernel panics 489

Kernel parameters, tunables, and configs that affect
kernel panic
Here, we present in a convenient summary format a few kernel parameters (passed via the
bootloader) as well as some possible sysctl tunables and kernel config macros that affect
the kernel panic code path (a few more regarding lockups and hung tasks will be covered
in an upcoming section):

490 Kernel Panic, Lockups, and Hangs

Table 10.1 – A summary table of the kernel parameters, sysctl tuning knobs, and config macros related
to kernel panic handling

For sysctl knobs, the kernel.foo syntax implies that you'll find the tuning pseudofile,
foo, in the /proc/sys/kernel directory.

Panic! – what happens when a kernel panics 491

The interpretation of the bits within the panic_print kernel parameter's bitmask
(mentioned previously) is as follows:

Table 10.2 – Use the panic_print kernel parameter to set bits to get additional system info on
kernel panic

The default value of the panic_print bitmask is 0, implying that no additional system
info is printed during panic. Set the bits appropriately to display whatever details you'd
like. So, for example, to show all the preceding details, we append panic_print=0x3f
to the kernel parameter list when booting. Depending on your project, these additional
details can prove very useful when debugging a kernel panic!

FYI, the official kernel documentation very clearly documents all kernel sysctl knobs
(tunables) here: https://www.kernel.org/doc/html/latest/admin-guide/
sysctl/kernel.html.

Exercise
Pass the panic_print=n kernel parameter setting n to an appropriate
value (see Table 10.2). Then, run the letsdebug kernel module. The kernel
will panic. Verify that you get (perhaps via netconsole) the additional system
information details you requested via the panic_print bitmask.

All right, now that you understand what happens within the kernel on panic, let's move on
to doing our own thing if and when it occurs.

https://www.kernel.org/doc/html/latest/admin-guide/sysctl/kernel.html
https://www.kernel.org/doc/html/latest/admin-guide/sysctl/kernel.html

492 Kernel Panic, Lockups, and Hangs

Writing a custom kernel panic handler routine
The Linux kernel has a powerful feature named notifier chains (the word chains implying
the usage of linked lists). It's essentially based upon a publish-and-subscribe model. The
subscriber is the component that wants to know when a given asynchronous event
occurs; the publisher is the one that pushes the notification that the event did occur.
Quite obviously, the subscriber(s) register interest in a given event and supply a callback
function. When the event occurs, the notification mechanism invokes the callback. When
someone registers itself with a notifier chain, they have subscribed to it and specified a
callback function. When the relevant event occurs, all subscribers' callback functions for
that notifier chain are invoked (there's even a way to specify your priority and pass some
data along, which we'll get to soon enough). We shall make use of one of the kernel's
predefined notifier chains – the panic notifier chain – to register our custom panic handler.

Linux kernel panic notifier chains – the basics
First, though, we should understand some basics regarding the notifier chains. The Linux
kernel supports four different types. The classification is based on the context in which the
callback function executes (process or interrupt) and, thus, whether it can be blocking in
nature or not (atomic). These are the four types of notifier chains:

• Atomic: Chain callbacks run in atomic context and cannot block (internally uses
a spinlock for critical region protection).

• Blocking: Chain callbacks run in process context and can block (internally uses a
read-write semaphore locking primitive to implement blocking behavior).

• Sleepable RCU (SRCU): Chain callbacks run in process context and can block
(internally uses the more sophisticated Read-Copy-Update (RCU) mechanism to
implement lock-free semantics; here, the read-side critical section can block/sleep).
This type is good for cases where the callbacks occur often and the removal of the
notifier block is rare.

• Raw: Chain callbacks can run in any context, and may or may not block. No
restrictions are enforced. It's all left to the caller, who must provide locking/
protection as required.

The include/linux/notifier.h header contains very useful comments regarding
notifier chain types and more. Do check it out. For example, it mentions current (and
potential future) users of this powerful mechanism. I can't resist showing you via a
screenshot taken from here: https://elixir.bootlin.com/linux/v5.10.60/
source/include/linux/notifier.h:

https://elixir.bootlin.com/linux/v5.10.60/source/include/linux/notifier.h
https://elixir.bootlin.com/linux/v5.10.60/source/include/linux/notifier.h

Writing a custom kernel panic handler routine 493

Figure 10.3 – A partial screenshot of the notifier.h header, showing the current and potential users of the
notifier chains mechanism

Users (subscribers) are expected to use the registration APIs provided to register and,
when done, unregister (although there are restrictions on when you can unregister in
some cases – see the notifier.h header). For example, a network driver can elect to
subscribe to the netdevice notifier chain in order to be notified whenever interesting
events on a network device occur (stuff such as the network device coming up or going
down, changing its name, and so on). You can see available netdevice events within
the enum here: include/linux/netdevice.h:netdev_cmd. For example, the
netconsole driver uses this facility to be notified of netdevice events. This is its netdevice
chain callback function: drivers/net/netconsole.c:netconsole_netdev_
event(). Another interesting use case of notifier chains is the reboot notifier chain (set
up via the register_reboot_notifier() function). It can be used, for example,
to properly shut down a Direct Memory Access (DMA) operation when an unexpected
reboot occurs.

We don't propose covering more on the internals or other uses of notifier chains, instead
choosing to focus on what matters here – setting up our own panic handler via this
mechanism. Do refer to links within the Further reading section for more on notifier
chains in general. Now, let's get on to the key part of this section.

Setting up our custom panic handler within a module
We will get hands-on here, first understanding the relevant data structures and APIs,
and then writing and running module code to set up our very own custom kernel
panic handler!

494 Kernel Panic, Lockups, and Hangs

Understanding the atomic notifier chain APIs and
the notifier_block structure
We will develop a kernel module that will employ the kernel's predefined panic notifier
chain, named panic_notifier_list, in order to hook into the kernel panic. It's
declared here:

// kernel/panic.c

ATOMIC_NOTIFIER_HEAD(panic_notifier_list);

EXPORT_SYMBOL(panic_notifier_list);

Clearly, it belongs to the atomic variety of notifier chains, implying that our callback
cannot block in any manner.

Registering with an atomic notifier chain
To hook into it, we must register with it. This is achieved via the API:

int atomic_notifier_chain_register(struct atomic_notifier_head
*, struct notifier_block *);

It's actually a simple wrapper over the generic notifier_chain_register() API,
which it invokes within a spin_lock_irqsave()/spin_unlock_irqrestore()
pair of locking primitives. The first parameter to atomic_notifier_chain_
register() specifies the notifier chain you want to register with – in our case, we'll
specify it as panic_notifier_list – and the second parameter is a pointer to a
notifier_block structure.

Understanding the notifier_block data structure and the callback handler
The notifier_block structure is the centerpiece structure of the notifier chain
framework. It's defined as follows:

// include/linux/notifier.h

struct notifier_block {

 notifier_fn_t notifier_call;

 struct notifier_block __rcu *next;

 int priority;

};

Writing a custom kernel panic handler routine 495

The first member is the really key one, a function pointer. It's the callback function, the
function that will be invoked via the framework when the asynchronous event occurs!
Here's its signature:

typedef int (*notifier_fn_t)(struct notifier_block *nb,
unsigned long action, void *data);

Thus, the parameters you'll receive in the callback handler are as follows:

• struct notifier_block *nb: The pointer to the same notifier_block
data structure used to set up the notifier.

• unsigned long action: This is actually a value specifying how or why we got
here, a clue as to what caused the kernel panic. It's an enum named die_val and is
arch-specific:

// arch/x86/include/asm/kdebug.h

enum die_val {

 DIE_OOPS = 1,

 DIE_INT3, DIE_DEBUG, DIE_PANIC, DIE_NMI,

 DIE_DIE, DIE_KERNELDEBUG, DIE_TRAP, DIE_GPF,

 DIE_CALL, DIE_PAGE_FAULT, DIE_NMIUNKNOWN,

};

Note that most driver authors, in their callback handler, seem to name this
parameter either val or event. (Also note that the INT 3 software interrupt is the
classic breakpoint instruction on the x86.)

• void *data: This is actually an interesting structure, struct die_args,
passed via a pointer here. Here's its definition:

// include/linux/kdebug.h

struct die_args {

 struct pt_regs *regs;

 const char *str;

 long err;

 int trapnr;

 int signr;

};

496 Kernel Panic, Lockups, and Hangs

Among its members is the string passed to the panic() function, which is usually
what the data parameter evaluates to. You can look up its definition in include/
linux/kdebug.h and its setup via the notifier framework here: kernel/
notifier.c:notify_die(). Example usage of this structure within a panic
callback is within this Hyper-V driver from Microsoft: drivers/hv/vmbus_
drv.c:hyperv_die_event(). It retrieves the CPU registers (via the familiar
struct pt_regs *) from here, and employs the previous action parameter (it
names it val) to verify that it's in the panic handler due to an Oops.

Let's get back to the notifier_block data structure. The second member is the usual
next pointer to the next node in the notifier chain. Leaving it as NULL has the kernel
notifier framework handle it appropriately.

The third and final member, priority, is clearly a prioritization. Setting it to INT_MAX
informs the framework to invoke your callback as early as possible. We usually leave
it undefined, though. Note that the kernel uprobes framework sets the priority of its
exception notifier callback to INT_MAX-1:

// kernel/events/uprobes.c

static struct notifier_block uprobe_exception_nb = {

 .notifier_call = arch_uprobe_exception_notify,

 .priority = INT_MAX-1, /* notified after kprobes, kgdb */

};

Note though that uprobes registers to the kernel die chain (via the register_die_
notifier() API) – an interesting notifier chain, where callbacks are invoked when
a CPU exception occurs in kernel mode. This can be another useful way to get relevant
details when your system receives unexpected CPU exceptions in kernel mode!

Finally, after your callback function – the subscriber – performs its work, it returns a
specific value, indicating whether all is well or not. These are the possible return values
(you must use one of them):

• NOTIFY_OK: The handler is done – notification correctly handled. This is the
typical one to return when all goes well.

• NOTIFY_DONE: The handler is done – don't want any further notifications.

• NOTIFY_STOP: The handler is done – stop any further callbacks.

• NOTIFY_BAD: The handler signals that something went wrong – don't want
any further notifications (the kernel mentions this as being considered a
bad/veto action).

Writing a custom kernel panic handler routine 497

Of course, you have to pair the notifier chain registration with a corresponding unregister.
This is the API to use:

int atomic_notifier_chain_unregister(struct atomic_notifier_
head *nh, struct notifier_block *n);

For a kernel panic, it won't be invoked. As good coding practice, we do this for our panic
handler in the module cleanup method.

Our custom panic handler module – viewing the code
So, here it is – the relevant code from our custom kernel panic handler module! (Do
browse through the complete code from the book's GitHub repo.) Let's begin by seeing
the registration of the custom handler with the kernel panic notifier list in the module's
init method:

// ch10/panic_notifier/panic_notifier_lkm.c

/* The atomic_notifier_chain_[un]register() api's are GPL-
exported! */

MODULE_LICENSE("Dual MIT/GPL"); [...]

static struct notifier_block mypanic_nb = {

 .notifier_call = mypanic_handler,

/* .priority = INT_MAX */

};

static int __init panic_notifier_lkm_init(void)

{

 atomic_notifier_chain_register(&panic_notifier_list,
&mypanic_nb);

Next, we have the actual panic handler routine(s):

/* Do what's required here for the product/project,

 * but keep it simple. Left essentially empty here.. */

static void dev_ring_alarm(void)

{

 pr_emerg("!!! ALARM !!!\n");

}

static int mypanic_handler(struct notifier_block *nb, unsigned
long val, void *data)

{

498 Kernel Panic, Lockups, and Hangs

 pr_emerg("\n************ Panic : SOUNDING ALARM
************\n\

val = %lu\n\

data(str) = \"%s\"\n", val, (char *)data);

 dev_ring_alarm();

 return NOTIFY_OK;

}

Do note the following:

• Our custom panic handler emits a printk at KERN_EMERG, ensuring as much as
possible that it's seen.

• The data parameter evaluates to the message passed to the panic() function.
In this case, as we trigger the panic via it, it's the SysRq crash triggering the code's
message (sysrq triggered crash).

• We call a dev_ring_alarm() function. Note that it's simply a dummy
placeholder – in your actual project or product, do what's (minimally) required
here. For example, an embedded device controlling a laser on a factory floor might
want to switch off the laser end and sound a physical alarm of some sort to indicate
that the system is unusable, or whatever makes sense, constrained by the key fact
that the system is in an unstable precarious state!

• We return NOTIFY_OK, signaling that all is well (as can be).

Okay, let's just do it!

Trying it out – our custom panic handler module
We have a simple script to trigger an oops – via the kernel Magic SysRq c option – and
set the kernel.oops_on_panic to 1 to convert this Oops into a kernel panic! Here's
the script:

$ cat ../cause_oops_panic.sh

sudo sh -c "echo 1 > /proc/sys/kernel/panic_on_oops"

sudo sh -c "echo 1 > /proc/sys/kernel/sysrq"

sync; sleep .5

sudo sh -c "echo c > /proc/sysrq-trigger"

$

Writing a custom kernel panic handler routine 499

Careful, though – don't run it until you've set up netconsole (to capture kernel printks
from this system onto a receiver system). For this too, we employ a simple wrapper script,
ch10/netcon (I'll leave you to browse through it). We run it first, passing the receiver
system's IP address as a parameter. It sets up netconsole accordingly:

$../netcon 192.168.1.8

[...]

You can see the dmesg output regarding netconsole in the following screenshot:

Figure 10.4 – A screenshot showing the guest VM where netconsole is set up

Also, do ensure that you're running netcat on the receiver system (in the usual manner;
I use netcat -d -u -l 6666).

500 Kernel Panic, Lockups, and Hangs

Once triggered via our ../cause_panic_oops.sh script, the kernel panic causes our
custom panic handler – registered to the panic notifier list – to be invoked. The netcat
utility spews out the remote kernel printks on panic:

Figure 10.5 – A partial screenshot – the host, where netcat receives and prints to stdout the kernel
printks from the guest VM's kernel panic; note the output from our custom panic handler!

Clearly, you can see (Figure 10.5) that this time, as we used the Magic SysRq crash
triggering feature, this is what is reflected in the kernel panic message and the kernel stack
backtrace. The interesting thing, though, highlighted toward the bottom of Figure 10.5, is
the output from our custom panic handler – it's clearly visible! – followed by the capped
end message (---[end Kernel panic - ...]---) from the kernel.

Writing a custom kernel panic handler routine 501

Again, a reminder – be careful what you do within your panic handler routine. Keep it to a
bare minimum and test it. This kernel comment emphasizes the point:

// kernel/panic.c:panic()

* Note: since some panic_notifiers can make crashed kernel

* more unstable, it can increase risks of the kdump failure
too.

The kernel tree has several instances of the panic notifier chain being employed (mostly by
various drivers and watchdogs). As a quick experiment, I used cscope to search for the
atomic_notifier_chain_register(&panic_notifier_list string, within
the 5.10.60 kernel source tree. This partial screenshot shows that it obtained 29 matches
(with the left column revealing the source filename):

Figure 10.6 – A partial screenshot showing various users of the panic notifier chain within the kernel

Now, armed with your custom kernel panic handler, let's tackle how we detect lockups
within the kernel!

502 Kernel Panic, Lockups, and Hangs

Detecting lockups and CPU stalls in the kernel
The meaning of lockup is obvious. The system, and one or more CPU cores, remain in an
unresponsive state for a significant period of time. In this section, we'll first briefly learn
about watchdogs and move on to learn how to leverage the kernel to detect both hard and
soft lockups.

A short note on watchdogs
A watchdog or watchdog timer (WDT) is essentially a program that monitors a system's
health and, on finding it lacking in some way, has the ability to reboot the system.
Hardware watchdogs latch into the board circuitry and thus have the ability to reset the
system when required. Their drivers tend to be very board-specific.

The Linux kernel provides a generic watchdog driver framework, allowing driver authors
to fairly easily implement watchdog drivers for specific hardware watchdog chipsets. You
can find the framework explained in some detail in the official kernel documentation
here: The Linux WatchDog Timer Driver Core kernel API: https://www.kernel.org/
doc/html/latest/watchdog/watchdog-kernel-api.html#the-linux-
watchdog-timer-driver-core-kernel-api. As this isn't a book on writing
Linux device drivers, we won't go into more detail.

There is a facility to employ a userspace watchdog daemon process as well. (On Ubuntu
at least, the package and utility are simply named watchdog. You'll have to configure
and run it.) Its job is to monitor various system parameters, perform the heartbeat ping
functionality (typically, by writing something at least once a minute into the device file for
the kernel watchdog driver, /dev/watchdog), and communicate with it using various
predefined ioctls. The kernel documentation on this is here: The Linux Watchdog driver
API: https://www.kernel.org/doc/html/latest/watchdog/watchdog-
api.html#the-linux-watchdog-driver-api.

You can configure and tune several system parameters to values appropriate to your
system. Details on the user mode watchdog daemon can be found in these man pages:
watchdog(8) and watchdog.conf(5). These help configure the watchdog to trigger
– and thus reboot the system – based on various system parameters (for example, setting
a bare minimum number of free RAM pages, a maximum heartbeat interval between
two writes to the device file, a process – specified by a PID file – that must always be
alive, the maximum load allowed on the system, and system temperature thresholds). It's
very interesting to peruse the man page; all parameters that can possibly be monitored
are shown. Watchdog-based monitoring can indeed prove very useful for many types of
products, especially ones that aren't human-interactive (remote servers, deeply embedded
systems, many kinds of IoT edge devices, and so on).

https://www.kernel.org/doc/html/latest/watchdog/watchdog-kernel-api.html#the-linux-watchdog-timer-driver-core-kernel-api
https://www.kernel.org/doc/html/latest/watchdog/watchdog-kernel-api.html#the-linux-watchdog-timer-driver-core-kernel-api
https://www.kernel.org/doc/html/latest/watchdog/watchdog-kernel-api.html#the-linux-watchdog-timer-driver-core-kernel-api
https://www.kernel.org/doc/html/latest/watchdog/watchdog-api.html#the-linux-watchdog-driver-api
https://www.kernel.org/doc/html/latest/watchdog/watchdog-api.html#the-linux-watchdog-driver-api

Detecting lockups and CPU stalls in the kernel 503

We enable the software watchdog in our custom production kernel (CONFIG_SOFT_
WATCHDOG=m; look for it and many available hardware watchdogs under Device
Drivers | Watchdog Timer Support within the make menuconfig kernel UI).
As we selected it as a module, it gets built, and the module is named, quite appropriately,
softdog. Do note though that being a pure software watchdog, it may not reboot the
system in some situations. (If interested, look up the official kernel documentation on the
various module control parameters you can specify for the softdog software watchdog,
as well as known hardware ones, in the kernel here: WatchDog Module Parameters:
https://www.kernel.org/doc/html/latest/watchdog/watchdog-
parameters.html#watchdog-module-parameters.)

Running the softdog watchdog and the user watchdog daemon
As an experiment, we will load the softdog software watchdog driver (all defaults)
on my x86_64 Ubuntu VM and then (manually) run the watchdog service daemon in
verbose mode (I did tweak a few parameters in its config file, /etc/watchdog.conf):

$ sudo modprobe softdog

$ sudo watchdog --verbose &

[...]

watchdog: String 'watchdog-device' found as '/dev/watchdog'

watchdog: Variable 'realtime' found as 'yes' = 1

watchdog: Integer 'priority' found = 1

[1]+ Done watchdog --verbose

Right, let's verify that it's running:

ps -e | grep watch

 111 ? 00:00:00 watchdogd

 10106 ? 00:00:00 watchdog

https://www.kernel.org/doc/html/latest/watchdog/watchdog-parameters.html#watchdog-module-parameters
https://www.kernel.org/doc/html/latest/watchdog/watchdog-parameters.html#watchdog-module-parameters

504 Kernel Panic, Lockups, and Hangs

The first line in the ps output is actually the watchdogd kernel thread. The second one
is the software userspace watchdog daemon process we just ran. Here's some of the initial
output from the user-mode watchdog daemon process:

Figure 10.7 – A partial screenshot showing the initial output from the watchdog daemon process when
run in verbose mode

In a similar fashion, systemd-based systems can also perform watchdog monitoring
(see the watchdog-related entries within /etc/systemd/system.conf). Also, it's
important to note that while watchdogs are useful in production, they might need to be
turned off during debug (for example, when running an interactive kernel debugger);
otherwise, they might trigger and cause a system reboot. Okay, I'll leave it to you to
explore further with this. Let's move on to learning about an interesting application of
watchdogs – the kernel lockup detectors!

Employing the kernel's hard and soft lockup detector
Software (hardware too) isn't perfect. I am betting you've experienced a system that
mysteriously hangs. The system probably isn't completely dead or panicked; it's simply
hung and become unresponsive. This, in general, is termed a lockup. The Linux kernel has
the ability to detect lockups, and we aim to examine this.

Detecting lockups and CPU stalls in the kernel 505

The reason I mentioned the watchdog (in the prior section) is that the Linux kernel
leverages the NMI watchdog facility (as well as the perf subsystem) to detect both hard
and soft lockups (we'll cover what these mean very soon). The kernel can be configured to
detect both hard and soft lockups. The relevant menu (via the usual make menuconfig
UI) is here: Kernel hacking | Debug Oops, Lockups and Hangs. Here's a screenshot of
the same (on our custom 5.10.60 production kernel):

Figure 10.8 – A partial screenshot showing the kernel config UI for debugging Oops, lockups, and hangs

Glancing at the kernel config in Figure 10.8, you may wonder why, this being a so-called
production kernel, we haven't enabled things such as panic on oops and panic on soft
and hard lockup? Good question! I leave the panic options off as, although we claim
that this is a production kernel, it isn't really in the sense that we use it throughout the
book to demonstrate things. On an actual project or product, enabling them is definitely
something to consider. Does the system need to be auto-rebooted in case it locks up,
hangs, Oops'es, or panics? If yes, then enable the panic-on configs and pass the panic=n
kernel parameter to have the system reboot n seconds after panicking.

506 Kernel Panic, Lockups, and Hangs

The kernel config to detect both hard and soft lockups as well as hung tasks and
workqueue stalls is indeed enabled. The relevant kernel config options, boot parameters,
and kernel sysctl knobs are summarized in Table 10.3 (it may be useful to refer back to the
table as you cover more of the material):

Table 10.3 – A summary of the watchdog settings affecting kernel hard/soft lockup detection

Detecting lockups and CPU stalls in the kernel 507

The settings on your box regarding the watchdog can be verified using the sysctl utility
(note that nmi_watchdog refers to hard lockup and soft_watchdog to soft lockup
detection, not to the softdog module):

$ sudo sysctl -a | grep watchdog

kernel.nmi_watchdog = 0

kernel.soft_watchdog = 1

kernel.watchdog = 1

kernel.watchdog_cpumask = 0-5

kernel.watchdog_thresh = 10

$

The nmi_watchdog value shows as 0 as there's no hardware watchdog chip available.
soft_watchdog is always available (as is the kernel's built-in watchdog support). Let's
get to what exactly all of this means!

What's a soft lockup bug?
A soft lockup is a bug wherein a task running in kernel mode remains in a tight loop
or is somehow stuck to the processor, for a long time, not allowing other tasks to get
scheduled on that core. The default timeout for a hard lockup is the value of the kernel.
watchdog_thresh sysctl – it's 10 seconds by default – and that of a soft lockup is twice
this (that is, 20 seconds). This, of course, is tunable (as root). Let's look up the value on my
Ubuntu 20.04 LTS VM:

$ cat /proc/sys/kernel/watchdog_thresh

10

Thus, the actual soft lockup timeout value is 2*10 – 20 seconds. Writing an integer into
the watchdog_thresh kernel sysctl modifies the threshold to that value (in seconds).
Writing 0 disables checking.

When a soft lockup's detected, what happens?

Panic – if the softlockup_panic kernel (boot-time) parameter is set to 1, the
kernel.softlockup_panic sysctl is 1, or if the kernel config is BOOTPARAM_
SOFTLOCKUP_PANIC=1, then the kernel panics! The typical default is 0.

If the preceding isn't true – that is, the kernel doesn't panic on soft lockup – it emits a
warning message to the kernel log, showing details of the hung task. The kernel stack trace
is dumped as well (allowing us to see how it got to this point!)

508 Kernel Panic, Lockups, and Hangs

It's important to note that in the latter case (where it doesn't panic), the buggy task
continues to hang the affected CPU core.

Triggering a soft lockup on the x86_64
Can we trigger a soft lockup? Of course. Simply do something to wreak havoc on a poor
CPU core, causing it to spin for a long while in kernel mode! As an example, I added a few
lines of code to do just this to a kernel thread demo module, created for my earlier Linux
Kernel Programming Part 2 book (the original code is here: https://github.com/
PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/ch5/
kthread_simple).

To save space, we just run the module with the (slightly) modified code. You can see the
added buggy code (the full code is here: ch10/kthread_stuck) and the visible effect
it has. After over 20 seconds, the kernel watchdog detects the soft lockup and jumps in,
emitting a BUG() message! Running it with no module parameter specified has it use the
default – the test for the soft lockup (we'll test the hard lockup shortly):

Figure 10.9 – A partial screenshot showing deliberately buggy CPU-intensive code to cause a soft lockup
bug; see – at the bottom – the BUG() message at KERN_EMERG overwriting the console

https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/ch5/kthread_simple
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/ch5/kthread_simple
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/ch5/kthread_simple

Detecting lockups and CPU stalls in the kernel 509

In addition to the kernel watchdog's BUG: soft lockup ... message at KERN_
EMERG, the watchdog also emits the usual diagnostics by invoking dump_stack() and
related routines. (You'll see the modules in the kernel memory, the context info, the kernel
status information, the hardware info, the CPU register dump, the machine code running
on core, and – a key portion – in the kernel mode stack backtrace, the call stack.) Our
useful convenient.h:PRINT_CTX() macro helps reveal the system state. Here's an
example of output from it while the soft lockup was taking place:

002) [lkd/kt_stuck]:3530 | .N.1 /* simple_kthread() */

The .N.1 ftrace latency format-like string reveals that, as the first of these four columns is
a period, it's running with hardware interrupts enabled. This is because, when we test the
soft lockup, we invoke spin_lock() and not the IRQ-disabling spin_lock_irq()
routine (along with their unlock counterpart, of course). Great!

Don't Forget the Spinlock!
A key point to remember is that we perform the CPU-intensive code path in
a loop, around which we take a spinlock. Why? Remember that the spinlock,
particularly the spin_lock_irq[save]() variants, besides having
a loser context spin, while the lock owner runs the code of the critical
section (here, the body of the while loop), also disables hardware interrupts.
Disabling interrupts has the nice side effect of disabling kernel preemption; thus,
the code runs pretty much guaranteed without preemption of any sort, not
even by hardware interrupts! In other words, automatically.

For emulating a hard lockup, this is exactly what we want. But, then, think
about this – how will the kernel watchdog detect it? Ah, that's because it traps
into the NMI and checks for lockup in the NMI handler! And, of course, the
NMI does preempt and interrupt the code, as it's by definition a non-maskable
interrupt.

(Again, what we're doing here as an experiment is the exact opposite of what's
recommended – keep the critical section within the spinlock as short as
possible, as we discussed in Chapter 8, Lock Debugging, in the Identifying some
locking defects from various blog articles and the like section. We do so here to
deliberately cause a soft or hard lockup, as a learning exercise.)

If interested, you'll find the kernel code implementation of the soft lockup detection here:
kernel/watchdog.c:watchdog_timer_fn().

510 Kernel Panic, Lockups, and Hangs

Also, interestingly, attempting rmmod (without first sending the SIGINT or SIGQUIT
signals to our kthread to have it die, as we've programmed it that way) in our buggy
module can, in about 2 minutes, have the rmmod process detected as being a hung task!
We will discuss hung task detection in the next major section of this chapter. Now, let's
move on to the next type of lockup...

What's a hard lockup bug?
A hard lockup is a bug wherein a CPU core running in kernel mode remains in a tight
loop, or somehow stuck, for a long time, not allowing other hardware interrupts to run on
that core. As already mentioned, the default timeout for a hard lockup is the value of the
kernel.watchdog_thresh kernel sysctl, set to 10 seconds by default. This, of course,
is tunable (as root).

When a hard lockup's detected, what happens?

Panic – if the nmi_watchdog=1 kernel boot parameter (and if the system supports a
hardware watchdog), the kernel.hardlockup_panic sysctl is set to 1, or the kernel
config is BOOTPARAM_HARDLOCKUP_PANIC=y, then the kernel panics! The typical
default is that panic is off.

If the preceding isn't true – that is, the kernel doesn't panic on hard lockup (default) –
it emits a warning message to the kernel log, showing details of the system state. The
kernel stack trace is dumped as well (allowing us to see how it got to this point). If the
hardlockup_all_cpu_backtrace=1 kernel boot parameter is passed, the kernel
generates a kernel stack backtrace on all CPUs.

It's important to note that in the latter case (where it doesn't panic), the buggy code
continues to (hard) hang the affected CPU core.

There's more to this – the kernel RCU lock-free feature can result in CPU stalls as well.

RCU and RCU CPU stalls
The Linux kernel's Read-Copy-Update (RCU) infrastructure is a powerful way to
perform lock-free work within the kernel. It's important to realize that, similar to hard
lockup, warnings can occur due to RCU CPU stalls as well. The RCU_CPU_STALL_
TIMEOUT kernel config determines the RCU grace period. On 5.10, it's 60 seconds by
default, with a range of 3 to 300. If the RCU grace period exceeds the number of seconds
specified by this config, a CPU RCU stall warning is emitted, with the possibility of more
occurring when the problem persists. A very brief conceptual introduction to RCU
follows, so do check it out.

Detecting lockups and CPU stalls in the kernel 511

Conceptually understanding RCU in a nutshell
The RCU implementation works by essentially having readers work upon shared data
simultaneously without using locking, atomic operators, increments to a variable, or
even (with the exception of the Alpha processor) memory barriers! Thus, in mostly read
situations, performance remains high – the main benefit of using RCU. How does it work?

Imagine several readers (say, threads R1, R2, and R3) enter a section of code where they
work upon shared data in parallel – an RCU read-side critical section. When a writer
thread comes along, realizing it's an RCU critical section, the writer makes a copy of the
data item being referenced and modifies it. The existing readers continue to work upon
the original item. Then, the writer atomically updates the original pointer to refer to the
new (just modified) data item (while R1, R2, and R3 continue to work upon the original
one). The writer must then free (destroy) the original data item. This, of course, can't be
done until all readers currently accessing it finish.

How will it know? The RCU implementation has the writer wait for all current readers
to cycle off the CPU by checking when they yield the processor – that is, invoke the
scheduler and thus move off the CPU core! Now, the writer allows a grace period (as long
as a minute!) to elapse – allowing any sluggish readers to complete – and then destroys
(frees) the original data item, and all is well. (Note that in an uncommon case, that of
parallel RCU writers, they can avoid stepping on each others toes by using some sort of
locking primitive, typically spinlocks.)

The official kernel documentation, Using RCU's CPU Stall Detector (https://www.
kernel.org/doc/html/latest/RCU/stallwarn.html#using-rcu-s-cpu-
stall-detector), mentions the several causes that can result in an RCU CPU stall
warning. Among them is looping on a CPU for a long while with interrupts, preemption,
or bottom halves disabled (there are many more reasons; do look up the kernel
documentation). That's why we got into RCU CPU stalls here. Among the conditions that
make them occur is the one we're dealing with – disabling interrupts for a long while!

Triggering a hard lockup/RCU CPU stalls on a native x86_64
Can we trigger a hard lockup and/or an RCU CPU stall bug? Indeed we can, but even on
an x86_64, there's at least a few pre-conditions:

• The hard lockup can only be detected by the NMI on a native x86_64, so you should
be running Linux on one (a guest VM won't do).

• The NMI and the NMI watchdog must be enabled by adding the nmi_
watchdog=1 string to your kernel boot parameter list.

https://www.kernel.org/doc/html/latest/RCU/stallwarn.html#using-rcu-s-cpu-stall-detector
https://www.kernel.org/doc/html/latest/RCU/stallwarn.html#using-rcu-s-cpu-stall-detector
https://www.kernel.org/doc/html/latest/RCU/stallwarn.html#using-rcu-s-cpu-stall-detector

512 Kernel Panic, Lockups, and Hangs

• Explicitly enable the NMI watchdog in the kernel by writing 1 to the kernel.
nmi_watchdog sysctl.

• The CONFIG_RCU_CPU_STALL_TIMEOUT kernel config should have a value
in the range of 3 to 300 – the number of seconds after which an RCP CPU stall is
deemed to have occurred.

Once these are satisfied, sysctl should reflect it:

sysctl -a | grep watchdog

kernel.nmi_watchdog = 1

kernel.soft_watchdog = 1

kernel.watchdog = 1

kernel.watchdog_cpumask = 0-11

kernel.watchdog_thresh = 10

Additionally, on my system, I have CONFIG_RCU_STALL_COMMON=y and CONFIG_
RCU_CPU_STALL_TIMEOUT=60.

To test for hard lockup/RCU CPU stalls, fire up our demo module (ch10/kthread_
stuck), this time passing the lockup_type=2 module parameter. This parameter value
has our kthread spin on the CPU in a tight loop while holding a spinlock with IRQs and
preemption disabled (the spin_lock_irq() variant). After some time elapses, the
kernel log should reveal the NMI interrupt (and indeed the NMI backtrace) having fired
due to the hard lockup or RCU CPU stall bug our module causes.

It's entirely possible that the actual warning is due to the fact that RCU CPU stalls are
detected (which happened when I tested it)! This is because the kernel's RCU stall detection
code deems that an RCU CPU stall has occurred (among several other reasons) when
code spins on a CPU core for a long while with interrupts, preemption, or bottom halves
disabled. Our code does indeed spin for a long while with interrupts and preemption
disabled (as we employ the IRQ/preempt-disabling version of the spinlock). The kernel
log reveals the RCU stall being detected:

rcu: INFO: rcu_sched detected stalls on CPUs/tasks:

rcu: 3-...0: (1 GPs behind)
idle=462/1/0x4000000000000000 softirq=60126/60127 fqs=6463

(detected by 2, t=15003 jiffies, g=127897, q=1345272)

Sending NMI from CPU 2 to CPUs 3:

NMI backtrace for cpu 3

Detecting lockups and CPU stalls in the kernel 513

CPU: 3 PID: 16351 Comm: lkd/kt_stuck Tainted: P W OEL
5.13.0-37-generic #42~20.04.1-Ubuntu

[...]

More information on interpreting the kernel's RCU stall warnings is documented in the
official kernel documentation article on RCU CPU stall detection mentioned earlier. Also,
the kernel.panic_on_rcu_stall kernel sysctl can be set to 1 to enable panic on
the RCU stall. It's off by default. The kernel.panic_on_rcu_stall sysctl (available
from 5.11 only) allows configuring the number of times the RCU stall must occur before
the kernel panics.

To round off this topic, note the following:

• The kernel provides a much more sophisticated module to help test watchdogs,
lockups, hangs, RCU CPU stalls, and more. Enable it by setting CONFIG_TEST_
LOCKUP=m (or y). The module will be named test_lockup (its code is here:
lib/test_lockup.c).

• Specifically for deep RCU testing, the kernel also has an RCU torture facility. The
official kernel doc regarding it is here: https://www.kernel.org/doc/
html/latest/RCU/torture.html#rcu-torture-test-operation.

• The official kernel documentation goes into details regarding the implementation
of the hard/soft lockup detection: Softlockup detector and hardlockup detector (aka
nmi_watchdog): https://www.kernel.org/doc/html/v5.10/admin-
guide/lockup-watchdogs.html#implementation. Also, the kernel code
implementing it is here: kernel/watchdog.c.

https://www.kernel.org/doc/html/latest/RCU/torture.html#rcu-torture-test-operation
https://www.kernel.org/doc/html/latest/RCU/torture.html#rcu-torture-test-operation
https://www.kernel.org/doc/html/v5.10/admin-guide/lockup-watchdogs.html#implementation
https://www.kernel.org/doc/html/v5.10/admin-guide/lockup-watchdogs.html#implementation

514 Kernel Panic, Lockups, and Hangs

Check out this table summarizing the various boot parameters, kernel sysctl knobs, and
kernel configs relevant to hard/soft lockup:

Table 10.4 – A summary of the boot parameters, kernel sysctl knobs, and kernel configs relevant
to hard/soft lockup

Detecting lockups and CPU stalls in the kernel 515

Note the following citations in the table:

• [1] – For both the soft lockup and hung task cases, the kernel's config specifies
the following:

// lib/Kconfig.debug

[...]

The panic can be used in combination with panic_timeout
to cause the system to reboot automatically after a hung
task has been detected. This feature is useful for high-
availability systems that have uptime guarantees and
where hung tasks must be resolved ASAP.

• [2] – A simple bit of bash magic can help us see all threads whose state is D –
uninterruptible sleep (TASK_UNINTERRUPTIBLE):

ps –leL | awk '{printf("%s %s\n", $2, $14)}' | grep "^D"

A side effect of watchdogs being able to reboot a system when necessary is, of course, the
fact that, when debugging, you don't get a chance to capture key information before the
reboot occurs. To this end, disabling watchdog(s) (and even RCU CPU stall detection)
during debug might be a good idea. Some (x86/ARM-based) systems even provide
pre-timeout notifications, enabling you to save key state information before reboot!

Practically speaking, there are a few things you can check. The nowatchdog kernel
parameter turns off both the hardware NMI watchdog as well as soft-lockup functionality
at boot. The kernel documentation on watchdog parameters gives insight into various
options you can play with for real-world hardware watchdog drivers: https://www.
kernel.org/doc/Documentation/watchdog/watchdog-parameters.rst.

Another possibly useful thing to keep in mind when working on a device driver is that
the kernel typically provides callback mechanisms for power management events such as
suspend and shutdown. Take advantage of them to perhaps save state info when a certain
abnormal condition is detected, perform necessary tasks such as aborting a DMA transfer,
and so on.

Great! Now, let's complete this chapter by learning how to leverage a kernel's hung task
and workqueue stall detectors.

https://www.kernel.org/doc/Documentation/watchdog/watchdog-parameters.rst
https://www.kernel.org/doc/Documentation/watchdog/watchdog-parameters.rst

516 Kernel Panic, Lockups, and Hangs

Employing the kernel's hung task and
workqueue stall detectors
A hung task is one that's become unresponsive. Similarly, the kernel can also, on occasion,
suffer from some types of stalls (workqueue and RCU). In this section, we will examine
how we can leverage these features, allowing us to detect them so that an action – such as
triggering a panic or emitting a warning with stack backtraces – can be taken. Obviously,
the warnings logged can then help you, the developer, understand what occurred and
work to fix it.

Leveraging the kernel hung task detector
Configuring the kernel via the usual make menuconfig UI, under the Kernel hacking
| Debug Oops, Lockups and Hangs menu (refer to Figure 10.8), you'll find entries labeled
as follows:

[*] Detect Hung Tasks

(120) Default timeout for hung task detection (in seconds)

[] Panic (Reboot) On Hung Tasks

These are what we discuss here. The whole idea, when enabled, is to allow the kernel to be
able to detect tasks (processes and/or threads) that have become non-responsive and stuck
in an uninterruptible sleep for a long while. The state of the task (within its task structure's
state member) is named TASK_UNINTERRUPTIBLE, which implies that it can't be
disturbed by any signal from userspace. As seen, the default timeout to consider it as hung
is 120 seconds. This is tunable, of course, by either of the following:

• Changing the value of CONFIG_DEFAULT_HUNG_TASK_TIMEOUT
(corresponding to the menu's second line shown previously).

• Modifying the value in the kernel.hung_task_timeout_secs sysctl. Setting
it to 0 disables the check.

The CONFIG_DETECT_HUNG_TASK kernel config option is turned on for a debug
kernel by default. It can be very useful in detecting hung non-responsive tasks even on
production systems, as the overhead is considered minimal.

The third line in the menu seen previously corresponds to whether the kernel should
panic when a hung task is detected. It's the CONFIG_BOOTPARAM_HUNG_TASK_PANIC
config and is set to off by default. This behavior is also settable via the kernel.hung_
task_panic sysctl.

Employing the kernel's hung task and workqueue stall detectors 517

Note that the detection of hung tasks is implemented by having a kernel thread,
khungtaskd, continually scan for them.

We will round off this topic by showing the meaning of various kernel sysctl tunables
relevant to hung task detection (all of which depend on CONFIG_DETECT_HUNG_TASK
being enabled):

• hung_task_all_cpu_backtrace: If set to 1 (the default is 0), the kernel
sends the NMI interrupt to all cores, triggering a stack backtrace when a hung
task is detected. This requires CONFIG_DETECT_HUNG_TASK and CONFIG_SMP
to be enabled.

• hung_task_check_count: The upper bound on the number of tasks checked. It
can be useful to dampen this value on a resource-constrained (embedded) system.
Interestingly, the value does tend to be arch-specific (on an ARM-32 compiled
Raspberry Pi, for example, the value is 32,768, while on an x86_64, it's 4,194,304).

• hung_task_check_interval_secs: Typically, 0, implying that the timeout
value for hung tasks is the kernel.hung_task_timeout_secs sysctl. If
positive, then it overrides it and checks for hung tasks at this interval (seconds). The
legal range is {0:LONG_MAX/HZ}.

• hung_task_timeout_secs: The essential hung task facility – when a task
remains in an uninterruptible sleep (the D state, as seen by ps -l) for more than
this amount of time (in seconds), it triggers a kernel warning (and possibly panic –
see the following). The legal range is {0:LONG_MAX/HZ}.

• hung_task_panic: If set to 1 (the default is 0), the kernel panics when a hung
task is detected. If 0, the task remains in the hung (D) state.

• hung_task_warnings: The maximum number of warnings to report (defaults to
10). Once a hung task is detected, it's decremented by 1. A value of -1 implies that
infinite warnings can occur.

Here is an example of the same, looking up these (default) values on my x86_64 guest VM:

$ sudo sysctl -a|grep hung_task

kernel.hung_task_all_cpu_backtrace = 0

kernel.hung_task_check_count = 4194304

kernel.hung_task_check_interval_secs = 0

kernel.hung_task_panic = 0

kernel.hung_task_timeout_secs = 120

kernel.hung_task_warnings = 10

$

518 Kernel Panic, Lockups, and Hangs

All right, let's now move on to the final portion of this topic!

Detecting workqueue stalls
The kernel workqueue infrastructure can be of immense help to a driver (and other)
authors, allowing them to have work consumed in a process (blocking) context very easily
(it internally manages pools of kernel worker threads to achieve this). One of the issues
with using them, however, is the fact that work can get stalled (delayed) on occasion to
unacceptable levels, and thus significantly affect performance. Thus, the kernel provides a
means of detecting workqueue stalls.

This feature is enabled by selecting the CONFIG_WQ_WATCHDOG=y kernel config
(you'll find it within the make menuconfig UI under Kernel hacking | Debug Oops,
Lockups and Hangs | Detect Workqueue Stalls (refer to Figure 10.8)). Once set to y, if a
workqueue's worker pool fails to progress on a work item, a warning message (at KERN_
WARN) is emitted to the kernel log, along with the workqueue internal state information.

The time beyond which the workqueue stall detection occurs is governed by
the workqueue.watchdog_thresh kernel boot parameter as well as the
corresponding sysfs file. It's 30 seconds by default. Writing (or setting) 0 here
disables workqueue stall checks.

Triggering a workqueue stall
A simple experiment to test workqueue lockup is by inserting a couple of lines of
CPU-intensive code in our kernel-default workqueue's work function (the original code
is from my earlier Linux Kernel Programming – Part 2 book and the relevant code (copied
here) is from here: https://github.com/PacktPublishing/Linux-Kernel-
Programming-Part-2/tree/main/ch5/workq_simple. Do remember to test
stuff like this on a multicore system!). The added buggy code is clear in Figure 10.10 – it's
the few lines from line number 96 to line number 101 (the source is in ch10/workq_
stall, as it's possible that exact line numbers can vary):

https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/ch5/workq_simple
https://github.com/PacktPublishing/Linux-Kernel-Programming-Part-2/tree/main/ch5/workq_simple

Employing the kernel's hung task and workqueue stall detectors 519

Figure 10.10 – A partial screenshot showing how our buggy code – deliberately locking up the CPU –
causes the BUG: workqueue lockup, overwriting the console display

Clearly, the kernel's workqueue stall detection code senses the issue and emits emergency
level printks (the code detecting this is here: https://elixir.bootlin.com/
linux/v5.10.60/source/kernel/workqueue.c#L5806). Additionally, while
this is going on, running a utility such as top -i will reveal how pretty much 100% of
the CPU is being consumed by a kernel worker thread (typically, belonging to the kernel-
default worker pool).

https://elixir.bootlin.com/linux/v5.10.60/source/kernel/workqueue.c#L5806
https://elixir.bootlin.com/linux/v5.10.60/source/kernel/workqueue.c#L5806

520 Kernel Panic, Lockups, and Hangs

Summary
Congratulations on completing this chapter! By now, you should have your own custom
panic handler reading and raring to go!

To quickly summarize, in this chapter, we covered what a kernel panic is, interpreted its
log output, and importantly, learned how to leverage the kernel's powerful notifier chain
infrastructure to develop our own custom kernel panic handler.

We then moved on to what kernel lockup – hard, soft, and RCU CPU stalls – means and
how to configure the kernel to detect it (with small examples to show what it looks like
when it locks up!). The final section covered how to detect hung tasks (unresponsive tasks
that remain in the D state for a long while) and workqueue stalls.

Once issues like this are detected, examining the kernel log (where, typically, you'll have
the kernel warning and CPU backtraces) can provide you with valuable clues as to where
an issue lies, thus helping you fix it.

I'll see you in the next chapter, where we will learn to leverage kernel GDB tooling to
interactively debug kernel code.

Further reading
• Official kernel documentation on collecting kernel logs via the kernel ramoops and

pstore facilities:

 � Ramoops oops/panic logger: https://www.kernel.org/doc/html/
latest/admin-guide/ramoops.html#ramoops-oops-panic-logger

 � pstore block oops/panic logger: https://www.kernel.
org/doc/html/latest/admin-guide/pstore-blk.
html?highlight=pstore#pstore-block-oops-panic-logger

 � Persistent storage for a kernel's "dying breath", Jake Edge, LWN, Mar 2011:
https://lwn.net/Articles/434821/

• Use ramoops for logging under Linux, embear blog: https://embear.ch/blog/
using-ramoops

• XDA Basics: How to take logs on Android, July 2021, G. Shukla: https://www.
xda-developers.com/how-to-take-logs-android/

• Official kernel docs: Linux Magic System Request Key Hacks: https://www.
kernel.org/doc/html/latest/admin-guide/sysrq.html

https://www.kernel.org/doc/html/latest/admin-guide/ramoops.html#ramoops-oops-panic-logger
https://www.kernel.org/doc/html/latest/admin-guide/ramoops.html#ramoops-oops-panic-logger
https://www.kernel.org/doc/html/latest/admin-guide/pstore-blk.html?highlight=pstore#pstore-block-oops-panic-logger
https://www.kernel.org/doc/html/latest/admin-guide/pstore-blk.html?highlight=pstore#pstore-block-oops-panic-logger
https://www.kernel.org/doc/html/latest/admin-guide/pstore-blk.html?highlight=pstore#pstore-block-oops-panic-logger
https://lwn.net/Articles/434821/
https://embear.ch/blog/using-ramoops
https://embear.ch/blog/using-ramoops
https://www.xda-developers.com/how-to-take-logs-android/
https://www.xda-developers.com/how-to-take-logs-android/
https://www.kernel.org/doc/html/latest/admin-guide/sysrq.html
https://www.kernel.org/doc/html/latest/admin-guide/sysrq.html

Further reading 521

• Notifier chains:

 � Notification Chains in Linux Kernel: https://0xax.gitbooks.io/linux-
insides/content/Concepts/linux-cpu-4.html

 � The Crux of Linux Notifier Chains, R. Raghupathy, January 2009: https://www.
opensourceforu.com/2009/01/the-crux-of-linux-notifier-
chains/

• Watchdogs and lockups:

 � Linux Kernel Watchdog Explained, 2018, Zak H: https://linuxhint.com/
linux-kernel-watchdog-explained/

 � IT log book: Linux – what are "CPU lockups"?, January 2018: https://blog.
seibert-media.com/2018/01/04/log-book-linux-cpu-lockups/

 � Official kernel documentation: Using RCU's CPU Stall Detector: https://www.
kernel.org/doc/html/latest/RCU/stallwarn.html#using-rcu-
s-cpu-stall-detector

 � RUNNING FOREVER WITH THE RASPBERRY PI HARDWARE WATCHDOG,
D. Letz, July 2020: https://diode.io/raspberry%20pi/running-
forever-with-the-raspberry-pi-hardware-watchdog-20202/

https://0xax.gitbooks.io/linux-insides/content/Concepts/linux-cpu-4.html
https://0xax.gitbooks.io/linux-insides/content/Concepts/linux-cpu-4.html
https://www.opensourceforu.com/2009/01/the-crux-of-linux-notifier-chains/
https://www.opensourceforu.com/2009/01/the-crux-of-linux-notifier-chains/
https://www.opensourceforu.com/2009/01/the-crux-of-linux-notifier-chains/
https://linuxhint.com/linux-kernel-watchdog-explained/
https://linuxhint.com/linux-kernel-watchdog-explained/
https://blog.seibert-media.com/2018/01/04/log-book-linux-cpu-lockups/
https://blog.seibert-media.com/2018/01/04/log-book-linux-cpu-lockups/
https://www.kernel.org/doc/html/latest/RCU/stallwarn.html#using-rcu-s-cpu-stall-detector
https://www.kernel.org/doc/html/latest/RCU/stallwarn.html#using-rcu-s-cpu-stall-detector
https://www.kernel.org/doc/html/latest/RCU/stallwarn.html#using-rcu-s-cpu-stall-detector
https://diode.io/raspberry%20pi/running-forever-with-the-raspberry-pi-hardware-watchdog-20202/
https://diode.io/raspberry%20pi/running-forever-with-the-raspberry-pi-hardware-watchdog-20202/

11
Using Kernel
GDB (KGDB)

What if we could set breakpoints (even hardware break/watchpoints) on the kernel's or a
module's code, single-stepping through it, viewing variables, and examining memory, as
we easily do for application-space processes with the really well-known debugger GNU
Debugger (GDB)? Well, that's exactly what Kernel GDB (KGDB) allows – it's a source-
level debug tool for the Linux kernel (and modules)!

In this chapter, we're going to cover the following main topics:

• Conceptually understanding how KGDB works

• Setting up an ARM target system and kernel for KGDB

• Debugging the kernel with KGDB

• Debugging kernel modules with KGDB

• [K]GDB – a few tips and tricks

524 Using Kernel GDB (KGDB)

Technical requirements
With a few additions (which follow), the technical requirements and workspace remain
identical to what's described in Chapter 1, A General Introduction to Debugging Software.
The code examples can be found within the book's GitHub repository here: https://
github.com/PacktPublishing/Linux-Kernel-Debugging.

In addition to the usual, you'll also need to install a few packages as well as a compressed
root filesystem image we'll make use of later in the chapter:

1. The QEMU ARM and x86 emulator apps and a few miscellaneous packages (all in,
they take up close to 400 MB of disk space):

sudo apt install qemu-system-arm qemu-system-x86 lzop
libncursesw5 libncursesw5-dev p7zip-full

• Navigate to the book's GitHub repo's ch11/ directory and download a compressed
root filesystem image that we'll make use of later (in the Debugging kernel modules
with KGDB section):

cd <book_src>/ch11

wget https://github.com/PacktPublishing/Linux-Kernel-
Debugging/raw/main/ch11/rootfs_deb.img.7z

It gets downloaded (note that this particular file's rather large, weighing in at around
178 MB). However, as a meta-version of the rootfs_deb.img.7z file already
exists, the actual downloaded file will be automatically named rootfs_deb.
img.7z.1. So, after downloading, we need to now delete the original (dummy) file
and rename the actual one to the proper name:

rm rootfs_deb.img.7z

mv rootfs_deb.img.7z.1 rootfs_deb.img.7z

(FYI, Figure 11.8 reveals what the ch11/ directory should ultimately look like; it
will match when we later extract this image.)

For this chapter, we'll assume that you're familiar with basic GDB commands and running
GDB in userspace (quick tip: Google "GDB cheat sheet"). Right, let's get started!

https://github.com/PacktPublishing/Linux-Kernel-Debugging
https://github.com/PacktPublishing/Linux-Kernel-Debugging

Conceptually understanding how KGDB works 525

Conceptually understanding how KGDB works
KGDB is a source-level debugger, allowing you to debug kernel (and module) code at the
level of the C source file(s)!

Hang on a moment though. In order for an application process such as GDB to debug the
kernel, it will need to halt the kernel's execution upon it hitting a breakpoint and while
single-stepping code paths within the kernel. How is that possible? What will run the
GDB process (and the rest of the system) then?

The reality is that GDB, supporting a client-server architecture, is used with two machines:
one, a host system where the client GDB program runs (the one we're used to working
with); the other, the target system, where the GDB server component is embedded into
the kernel itself! (Unlike typical client/server apps, the GDB server component is the
smaller of the two, and the GDB client is the relatively large one – the regular GDB
program you're used to using.)

Figure 11.1 – Conceptual diagram showing how GDB works via a client-server architecture

The GDB client and server typically communicate over TCP/IP (using port 1234 by
default), though communication across a serial port and other mechanisms are supported.
The client sends the GDB command typed in by the user to the server. The server executes
it on the target system, sending back the results to the client, which then displays them.
The end result: we can remote debug a target system's kernel and modules, just as we
debug user-mode apps, with GDB! We need to enable this support for the GDB server
component within the kernel, of course – in effect, by enabling KGDB support.

526 Using Kernel GDB (KGDB)

FYI: JTAG Debuggers
JTAG debuggers (like the popular BDI2000/3000) also use a gdb-server
component. Having a JTAG debugger with an embedded GDB server typically
makes it easier and more stable to debug the kernel. Another advantage is you
avoid multiplexing the serial port between the kernel debug session and the
Linux console.

Great – let's move on to setting up KGDB on a target system.

Setting up an ARM target system and kernel
for KGDB
When a Linux kernel is built, a couple of arch-specific kernel image files are generated:
the uncompressed kernel image file, vmlinux, along with the compressed kernel image,
found within the arch/<your-arch>/boot directory and named bzImage or
zImage, and so on. The latter is always the image with which the Linux OS is booted.
Both these kernel image files are rendered in the usual Executable and Linker Format
(ELF), thus they're amenable to being used with a variety of tooling on Linux, including
GDB. So, if we use GDB to interpret the kernel's uncompressed vmlinux file, it should
work. Practically speaking, though, without debug symbolic information embedded
within this file, it's a lot less useful. What we really require for kernel debug purposes
using KGDB is the target's uncompressed vmlinux kernel image along with debug
symbolic information and the kernel symbols within it. This is achieved by enabling the
CONFIG_DEBUG_INFO kernel config option.

Building a minimal custom ARM Linux target system
with SEALS
To try KGDB out, we'll need two machines. They don't have to be physical machines
though; we can quite easily use a Linux VM as the target (or as the host)! Let's make
it interesting, using our usual x86_64 Ubuntu guest (VM) as the host, and a QEMU
emulated ARM32 Linux system (configured for KGDB) as the target!

Setting up an ARM target system and kernel for KGDB 527

You do realize though, that this will require a custom build of the target system.
Any working Linux system requires a minimum of three (or four, depending on the
CPU) components:

• A bootloader (here, QEMU serves as the bootloader, so we don't require anything
else; Das U-Boot is a popular bootloader on many typical (ARM/PPC) embedded
Linux systems, with GRUB being the preferred bootloader on x86).

• In the case of an ARM32/AArch64/PPC system, a Device Tree Blob (DTB) binary
image (to pass onto the kernel at boot; used to interpret the hardware platform and
load up appropriate drivers).

• A kernel image (this refers to the compressed kernel image); we shall soon configure
and build it.

• A root filesystem.

We'll need to configure and build a custom kernel of course, as we'll require it configured
for KGDB, along with debug symbols. Building the root filesystem (or rootfs), though, is
a non-trivial task. Thus, to make it easier to build a custom ARM Linux system, I propose
leveraging my Simple Embedded ARM Linux System (SEALS) project – it generates
a very simplistic embedded Linux system indeed. The GitHub repo's here: https://
github.com/kaiwan/seals. In a nutshell, this project allows you to configure the
platform and the kernel, build the kernel, DTB, and (skeleton, bare minimum) BusyBox-
based root filesystem images for an ARM platform that QEMU supports. (We default
SEALS to use the ARM Versatile Express (VExpress) platform, based on an ARMv7
Cortex A9 multicore, with 512 MB RAM.) QEMU will run the system as a guest VM. You
can run this QEMU-emulated ARM target VM within your x86_64 Ubuntu guest running
on VirtualBox on a Windows/Linux/macOS host - nested virtualization, in effect!

Of course, there are umpteen ways to build yourself an embedded Linux system – the
Yocto and Buildroot projects tend to be the de facto, much more powerful, and complete
approaches. Also, you could always use an existing hardware/software platform (the
popular Raspberry Pi and BeagleBone Black boards come to mind). For our purposes
here, and to allow you to try it out without the need for specific hardware, I chose to use
the much simpler SEALS project, to keep it simple.

https://github.com/kaiwan/seals
https://github.com/kaiwan/seals

528 Using Kernel GDB (KGDB)

Using the SEALS project requires a number of prerequisites. Most importantly, you'll need
to install the QEMU emulator for ARM, a full-fledged x86_64-to-ARM32 toolchain, and
a few miscellaneous packages. We don't have the bandwidth here to go into the details
of configuring the SEALS project, choosing to focus instead on the topic of interest –
configuring and building a kernel for KGDB. To better understand how to configure and
use the SEALS project, I refer you to its wiki pages:

• Welcome to the SEALS wiki: https://github.com/kaiwan/seals/wiki

• HOWTO Install required packages on the Host for SEALS: https://github.
com/kaiwan/seals/wiki/HOWTO-Install-required-packages-on-
the-Host-for-SEALS

• Detailed step-by-step instructions to use SEALS: SEALs HOWTO: https://
github.com/kaiwan/seals/wiki/SEALs-HOWTO

To get a sneak peek at how it looks when running, check out Figure 11.4 and Figure 11.5
and return here!

Configuring the kernel for KGDB
When configuring the kernel, you'd typically configure it as a debug kernel. We've covered
this and the typical kernel debug options to employ right from the first chapter! Refer
back if you need to.

Mandatory configs for KGDB support
Minimally, via the usual ARCH=arm CROSS_COMPILE=<...> make menuconfig UI,
you'll require these kernel configs enabled (we are omitting the CONFIG_ prefix):

• DEBUG_KERNEL=y: Selected when you select the Kernel Hacking | Kernel
debugging Boolean menu option (this option could be auto-selected by default).

• DEBUG_INFO=y: The Kernel Hacking | Compile-time checks and
compiler options | Compile the kernel with debug info
option. This enables embedding kernel symbols and debug symbolic information
(by compiling the kernel and modules with the -g compiler switch) in the
uncompressed kernel image, vmlinux. Well, technically, this config option's not
mandatory, but practically speaking, without debug symbols, GDB's not going to be
very effective in helping you debug things.

https://github.com/kaiwan/seals/wiki
https://github.com/kaiwan/seals/wiki/HOWTO-Install-required-packages-on-the-Host-for-SEALS
https://github.com/kaiwan/seals/wiki/HOWTO-Install-required-packages-on-the-Host-for-SEALS
https://github.com/kaiwan/seals/wiki/HOWTO-Install-required-packages-on-the-Host-for-SEALS
https://github.com/kaiwan/seals/wiki/SEALs-HOWTO
https://github.com/kaiwan/seals/wiki/SEALs-HOWTO

Setting up an ARM target system and kernel for KGDB 529

• MAGIC_SYSRQ=y: Kernel Hacking | Generic Kernel Debugging
Instruments | Magic SysRq key. Not strictly mandatory in all circumstances
but often used in the KGDB/kdb context to, within a running system, issue a break
into debugger command by writing g into /proc/sysrq-trigger. We
recommend that all magic SysRq functionality is enabled by writing 1 into /proc/
sys/kernel/sysrq.

Figure 11.2 – Truncated screenshot showing the Kernel Hacking | Compile-time checks and compiler
options kernel configuration menu

530 Using Kernel GDB (KGDB)

• In addition, turn on the relevant kernel config options pertaining to KGDB,
whose menu falls here: Kernel hacking | Generic Kernel Debugging
Instruments | KGDB: kernel debugger:

Figure 11.3 – Truncated screenshot showing the KGDB: kernel debugger submenu

Among the kernel configs just discussed, here are a few more to explicitly mention:

• CONFIG_KGDB=y: Enables support for debugging the kernel with GDB. Internally,
the kernel will now contain the server-side GDB (aka gdbserver) code, allowing
a GDB client to remotely connect to it (typically over Ethernet, though serial and
other modes are supported) and send GDB commands to it, which it will execute
and send the data back to the client, which displays it – remote debugging, in effect!

• KGDB_SERIAL_CONSOLE=y: Enables sharing the serial console with KGDB.
This is actually one way by which you can connect from the remote GDB client to
the server (the target kernel). To understand the various ways in which you can
connect, do read through the official kernel doc here, focusing on the kgdboc
kernel parameter: Kernel parameter: kgdboc: https://www.kernel.org/doc/
html/v5.10/dev-tools/kgdb.html#kernel-parameter-kgdboc

• KGDB_HONOUR_BLOCKLIST=y: It is recommended this config is kept on. It
prevents recursive traps by disallowing certain routines (the ones that can't be
kprobed) from being set as breakpoints.

https://www.kernel.org/doc/html/v5.10/dev-tools/kgdb.html#kernel-parameter-kgdboc
https://www.kernel.org/doc/html/v5.10/dev-tools/kgdb.html#kernel-parameter-kgdboc

Setting up an ARM target system and kernel for KGDB 531

What's Kdb?
Kdb is a simple command-line-based debugger that you can employ on a serial
console to break into the kernel and debug it in a limited way. You can inspect
memory, CPU registers, variables, kernel log content, and so on... But you can't
do source-level debugging with it. It has the advantage of not requiring two
machines for debugging, but the downside of no source-level debugging either.
The official kernel doc here covers it: Using kdb: https://www.kernel.
org/doc/html/v5.10/dev-tools/kgdb.html#using-kdb.

What else? It can be useful to turn off the following kernel configs under the General
architecture-dependent options menu:

• CONFIG_STRICT_KERNEL_RWX

• CONFIG_STRICT_MODULE_RWX

These being turned off enables GDB to be able to set software breakpoints on kernel
and module functions (these configs only appear in the menu system when the kernel's
configured in a certain way, so ignore this if they don't even appear in the menu – see
their entries in arch/Kconfig for details). Further, using hardware breakpoints (we
recommend using them) alleviate the need to set these configs.

Optional kernel configs for KGDB
In addition to the mandatory kernel config options just discussed, you can optionally set
options such as the following:

• FRAME_POINTER=y: Kernel hacking | Compile-time checks and
compiler options | Compile the kernel with frame pointers:
Though marked as optional, it's really very useful – do select it if your platform
provides it (interestingly, on the SEALS-generated ARM VExpress platform, it's
not selected as a good alternate as Kernel hacking | arm Debugging |
ARM EABI stack unwinder (CONFIG_UNWINDER_ARM=y) is selected as the
default config for this platform).

• DEBUG_INFO_SPLIT=y: Helps significantly reduce the size by splitting and
reusing .dwo debug info files.

• DEBUG_INFO_BTF=y: This generates de-duped BPF Type Information (BTF).
This could be useful for running eBPF in the future (requires pahole v1.16 or
later installed).

https://www.kernel.org/doc/html/v5.10/dev-tools/kgdb.html#using-kdb
https://www.kernel.org/doc/html/v5.10/dev-tools/kgdb.html#using-kdb

532 Using Kernel GDB (KGDB)

• GDB_SCRIPTS=y: Sets up links to Python-based GDB helper scripts (the
lx-<foo> ones), when loading vmlinux into GDB. This can greatly help when
debugging the kernel or modules (see more in the official kernel doc: Debugging
kernel and modules via gdb: https://docs.kernel.org/dev-tools/
gdb-kernel-debugging.html#debugging-kernel-and-modules-
via-gdb). We also cover using them briefly in the later Setting up and using GDB
scripts with CONFIG_GDB_SCRIPTS section.

• DEBUG_FS=y: It's usually useful to have the debugfs pseudo filesystem present.

• The remaining of the other "usual" kernel debug infrastructure, much of which
we've already covered, and has nothing to do directly with KGDB (or kdb).

• A quick (often useful) tip: When debugging the kernel (or modules) with KGDB,
we really don't want hardware or software watchdogs interfering and tripping us up!
Ensure they're disabled during your kernel debug sessions.

Now, enable the appropriate kernel configs for your KGDB-powered debug kernel and
build it. If you're using SEALS, it employs a menu-driven system that will allow you to
configure your chosen kernel – it will build and even run it (under QEMU of course). As a
bonus, you can even turn on a KGDB mode option in your SEAL project board's build.
config file. It's off by default (note that the source files regarding SEALS aren't in this
book's GitHub repo; please clone SEALS from its GitHub repo mentioned previously):

$ grep KGDB build.config

KGDB_MODE=0 # make '1' to have qemu run with the '-s -S'

 # switch (waits for client GDB to 'connect')

Tip
I find that for our purposes, when building the kernel, if asked to enable GCC
plugins, it's best to answer no.

https://docs.kernel.org/dev-tools/gdb-kernel-debugging.html#debugging-kernel-and-modules-via-gdb
https://docs.kernel.org/dev-tools/gdb-kernel-debugging.html#debugging-kernel-and-modules-via-gdb
https://docs.kernel.org/dev-tools/gdb-kernel-debugging.html#debugging-kernel-and-modules-via-gdb

Setting up an ARM target system and kernel for KGDB 533

Okay, let's actually test that it works (remember: be empirical – make no assumptions!).

Testing the target system
I shall be making use of the ARM32 virtual Linux platform generated via my SEALS
project, which uses the QEMU emulator (qemu-system-arm). The SEALS project script
generates all the required components to run and test an embedded Linux system (all
components are in the SEALS VExpress board's staging region, a folder that the user sets
in the board config file):

• Kernel images (in the staging folder, under the kernel source tree). Here, I've used
the 5.10.109 kernel:

 � The compressed zImage file, meant for booting (location: <staging>/linux-
5.10.109/arch/arm/boot/zImage).

 � The uncompressed vmlinux image with kernel and debug symbols present
(location: <staging>/linux-5.10.109/vmlinux). This is meant for kernel
debugging – we'll use it soon enough!

• The DTB image (required for boot). Here, it's the file <staging>/linux-
5.10.109/arch/arm/boot/dts/vexpress-v2p-ca9.dtb. Modern ARM,
ARM64, and PPC boards typically require a DTB image to correctly boot up.

• A very minimal (skeleton) root filesystem image (location: <staging>/
images/rfs.img). In fact, the compressed kernel image and the DTB are also
kept in the same images folder for convenience.

• As mentioned before, what about the bootloader? Don't we require one? Of course!
Here, the QEMU emulator serves the role of the bootloader as well (in typical
embedded Linux projects, Das U-Boot often tends to be the bootloader).

534 Using Kernel GDB (KGDB)

The powerful QEMU emulator ties all the pieces together. Here's a quick demo to show
you how we can run the ARM32 VExpress board under QEMU. Once the SEALS build
process is successfully done, this is the QEMU command I issue to have it run:

qemu-system-arm \

 -m 512 \

 -M vexpress-a9 -smp 4,sockets=2 \

 -kernel <…>/seals_staging_vexpress/images/zImage \

 -drive file=/<…>/seals_staging_vexpress/images/rfs.
img,if=sd,format=raw \

 -append "console=ttyAMA0 rootfstype=ext4 root=/dev/mmcblk0
init=/sbin/init" \

 -nographic -no-reboot -audiodev id=none,driver=none \

 -dtb /<...>/seals_staging_vexpress/images/vexpress-v2p-ca9.dtb

Very briefly, here's how you interpret the arguments to qemu-system-arm:

• -m <MB>: Configure the amount of RAM available to the emulated machine.

• -M <machine-name>: Select the machine (or platform) to emulate. Run the
command qemu-system-arm -M help to see all available machine/platform
choices that QEMU can emulate.

• -kernel <path/to/kernel-img>: Use the specified image file as the
(compressed, boot-time) kernel.

• -drive file=<path/to/rootfs-img>: Use the specified image file as the
drive image. The if=sd option further specifies the interface as an SD card.

• -append "<kernel command-line parameters>": Pass the specified
string as the boot parameters to the Linux kernel (after boot, doing cat /proc/
cmdline reveals them).

• -dtb <path/to/DTB-file>: Use the specified file as the DTB (it's interpreted
or "flattened" by the kernel at boot).

Setting up an ARM target system and kernel for KGDB 535

Of course, we're just scratching the surface here. QEMU is a powerful product with many
more options available.

FYI, the SEALS code base has a bash script named run-qemu.sh that will run QEMU
for you, allowing you to specify a regular or a kgdb-mode run. To get an idea of how
it looks, check out the following (discontinuous) screenshots of my QEMU-emulated
VExpress Cortex-A9 board booting up (as a guest VM) on the x86_64 host (which itself
runs as a guest on my native host!). The first one shows the QEMU-emulated ARM Linux
system booting up.

Figure 11.4 – Partial screenshot showing the QEMU command line highlighted and the printks from the
emulated ARM32 kernel as it boots up

536 Using Kernel GDB (KGDB)

Next, a screenshot showing the target system boot being completed and we're on the shell:

Figure 11.5 – Partial screenshot showing the continuation and completion of the boot and then the
(BusyBox) shell prompt; the kernel version and some CPU information are shown

Cool – it works. Now that you've understood how to configure, build, and test drive
a QEMU emulated ARM-based Linux system for KGDB, let's move on to the more
interesting KGDB part of it – actually trying it out!

Debugging the kernel with KGDB
By now, I'll assume that you've configured and built a Linux target system suitable for
KGDB (as described in detail in the previous section). It could be for any machine,
including a guest system... Here, we'll continue to use the SEALS-generated ARM32
VExpress platform that we just set up as the target.

Debugging the kernel with KGDB 537

The intention here is to demo debugging the kernel early in the boot process with KGDB.
To do so, the GDB server component within the target kernel will have to make it wait
early in the boot process. This is so that the remote GDB client can connect to it. Linux
supplies a boot parameter to do precisely this – it's named kgdbwait. To use it, you
need to have a KGDB I/O driver built into the kernel image and specify which one via the
kgdboc boot parameter (for example, kgdboc=/dev/ttyS0). You can also set it up
later (on the console) by echoing the device name into the pseudofile /sys/module/
kgdboc/parameters/kgdboc.

Here, we shan't delve into these details, mainly as they're very well documented in the
official kernel documentation: Kernel Debugger Boot Arguments: https://www.
kernel.org/doc/html/v5.10/dev-tools/kgdb.html#kernel-debugger-
boot-arguments. Let's get onto running our target!

Running our target (emulated) ARM32 system
QEMU makes it easier. It provides a couple of parameters to deal with having the kernel
wait for the GDB client to connect at early boot (effectively side-stepping the need to use
the kgdboc boot parameter), from the --help option to qemu-system-arm:

-S freeze CPU at startup (use 'c' to start execution)

-s shorthand for -gdb tcp::1234

So, we run the QEMU target instance supplying these parameters. The guest target system
then waits early in boot, waiting for a remote GDB client to connect to it. Let's begin. In
one terminal window, run the target:

qemu-system-arm -m 512 \

 -M vexpress-a9 -smp 4,sockets=2 \

 -kernel <...>/seals_staging_vexpress/images/zImage \

 -drive file=<...>/seals_staging_vexpress/images/rfs.
img,if=sd,format=raw \

 -append "console=ttyAMA0 rootfstype=ext4 root=/dev/mmcblk0
init=/sbin/init nokaslr" \

 -nographic -no-reboot -audiodev id=none,driver=none \

 -dtb <...>/seals_staging_vexpress/images/vexpress-v2p-ca9.dtb
-S -s

< ... >

https://www.kernel.org/doc/html/v5.10/dev-tools/kgdb.html#kernel-debugger-boot-arguments
https://www.kernel.org/doc/html/v5.10/dev-tools/kgdb.html#kernel-debugger-boot-arguments
https://www.kernel.org/doc/html/v5.10/dev-tools/kgdb.html#kernel-debugger-boot-arguments

538 Using Kernel GDB (KGDB)

A Quick Tip
Within your seals directory, the show_curr_config.sh script will
reveal detailed information about the current build, including the staging
directory path, the toolchain, the kernel and BusyBox versions, and so on.

Due to the effect of the -S -s option switches, QEMU has the emulated target system
patiently waiting... As you can see, it's pretty much the same QEMU command line as we
employed when we tested our target system (in the Testing the target system section) except
that we've now added the -S -s QEMU options as well as the nokaslr boot parameter
to the kernel command line (kernel address space layout randomization (KASLR)).
The random offsetting of the kernel base address in memory, an added kernel hardening
measure, can further mess with kernel function identification, so it's best to disable it by
passing nokaslr on the kernel command line. Another thing to mention: it's likely that
QEMU won't work correctly if another QEMU instance is already running and also using
the same hypervisor (typically KVM). Running a QEMU-emulated ARM (on x86_64)
should pose no issue as it's pure software emulation being performed.

Running and working with the remote GDB client on
the host system
Recall that the host system here is actually our x86_64 Ubuntu guest! No issues. In a new
terminal window, run the following to have GDB - the "remote" client - execute:

$ arm-none-linux-gnueabihf-gdb -q <...>/seals_staging_vexpress/
linux-5.10.109/vmlinux

Reading symbols from <...>/seals_staging_vexpress/linux-
5.10.109/vmlinux...

Debugging the kernel with KGDB 539

Notice the following:

• We use the cross-compile toolchain version of GDB, not the native one!

• We pass the uncompressed kernel vmlinux image (the one with debug and
symbolic info) as the parameter. GDB will read in all the symbols!

Next, connect to the target system (hey, we're remote debugging in effect!):

(gdb) target remote :1234

Remote debugging using :1234

0x60000000 in ?? ()

(gdb)

This is a key point in the process: once this command is successful, we're all set to debug
the kernel in the normal fashion (pretty much as you'd debug an app). Let's test drive kernel
debugging a bit, by first setting up a couple of breakpoints:

(gdb) b panic

Breakpoint 1 at 0x80859840: file kernel/panic.c, line 178.

(gdb) b register_netdev

Breakpoint 2 at 0x80754bc8: file net/core/dev.c, line 10238.

Tip
Setting a breakpoint on a function that's executed very early during boot (for
example, start_kernel()) can be problematic with the usual break
command. Instead, try using GDB's hbreak command to set a hardware-
assisted breakpoint. We'll be mostly doing just this from now on with GDB's
hbreak command – that's short for hardware-breakpoint, not heartbreak.

540 Using Kernel GDB (KGDB)

Now issue GDB's continue command twice – by typing continue (or simply c)
at the prompt once or twice. Very soon (assuming we're tracking the emulated
VExpress ARM kernel), we should hit the register_netdev() function of the
SMSC911x network driver. The situation after the second c command has taken effect
is seen in this screenshot:

Figure 11.6 – Screenshot – the stack backtrace showing we've hit the register_netdev() function of the
SMSC911x network driver

Of course, you'll realize that this demo – entering a particular network driver – is very
specific to this target board. Check out the fairly lengthy number of call frames on the
kernel stack (seen via GDB's really useful backtrace (or bt) command)! The list
(or l for short) command reveals a few source code lines of the register_netdev()
function. Guess what: you can now simply issue the next (or step) command to single-
step through kernel code! Have a go at it.

As short examples, let's now examine the parameter to register_netdev():

(gdb) p dev

$1 = (struct net_device *) 0x818a0800

Debugging the kernel with KGDB 541

Let's dump this (large) structure, the content of struct net_device:

(gdb) p *dev

$2 = {name = "eth%d\000\000\000\000\000\000\000\000\000\000",
name_node = 0x0, ifalias = 0x0, mem_end = 0, mem_start = 0,
base_addr = 0, irq = 30, state = 4,

 dev_list = {next = 0x0, prev = 0x0}, napi_list = {next
= 0x818a0e50, prev = 0x818a0e50}, unreg_list = {next =
0x818a083c, prev = 0x818a083c},

[...]

It works but can be difficult to read due to its sheer size. Make it better with the following:

(gdb) set print pretty

(gdb) p *dev

$3 = {

 name = "eth%d\000\000\000\000\000\000\000\000\000\000",

 name_node = 0x0,

 ifalias = 0x0,

 mem_end = 0,

 mem_start = 0,

 base_addr = 0,

 irq = 30,

 [...]

Now, issuing the continue command yet again has the ARM system run and complete
booting (provided it doesn't hit any breakpoints or watchpoints, of course). To break back
into the remote system, simply issue the SIGINT signal within GDB by typing ^C (that's
Ctrl + C). You'll get the (gdb) prompt and can go ahead. The remote system will, if idle,
typically be in the CPU idle state. Use the backtrace (bt) command to see the kernel-
mode stack. A quick demo of this follows:

(gdb) c

Continuing.

^C

Program received signal SIGINT, Interrupt.

cpu_v7_do_idle () at arch/arm/mm/proc-v7.S:78

78 ret lr

(gdb)

542 Using Kernel GDB (KGDB)

Awesome – you can see the power of source-level remote debugging with KGDB.

Tip
When done with the ARM QEMU VM, don't merely kill the QEMU process
(or even just do Ctrl + A then X to have it exit); it's always better to
correctly shut down a Linux system. Use the [sudo] poweroff (or
equivalent) command to do so.

Good stuff! Let's now move on to the next major portion of this chapter – covering how
you can debug your (buggy) kernel modules.

Debugging kernel modules with KGDB
To debug a kernel module under KGDB, pretty much everything remains the same as
with debugging in-tree kernel code with GDB. The main difference is this: GDB can't
automatically see where the target kernel module's ELF code and data sections are in
(virtual) memory, as modules can be loaded and unloaded on demand – we need to tell it.
Let's get to how exactly we do so.

Informing the GDB client about the target module's
locations in memory
The kernel makes the ELF section information of every kernel module available under
sysfs here: /sys/module/<module-name>/sections/.*. Do an ls -a on this
directory to see the so-called hidden files as well. For example, and assuming that the
usbhid kernel module is loaded up (you can run lsmod to check, of course), we can see
its sections (output truncated) with the following:

ls -a /sys/module/usbhid/sections/

./ [...] .rodata .symtab [...] .bss .init.
text [...] .text [...] .data [...] .text.exit [...]
.exit.text [...]

Looking at the content of the files (as root, of course) beginning with a period (.), you'll
see the (kernel virtual) address where that section of the module is loaded into (kernel
virtual) memory. For example, a few of the sections of the usbhid module follow (this is
on my x86_64 Ubuntu 20.04 guest – I've reformatted the output a bit for readability):

cd /sys/module/usbhid/sections

cat .text .rodata .data .bss

Debugging kernel modules with KGDB 543

0xffffffffc033b000 0xffffffffc0348060 0xffffffffc034e000
0xffffffffc0354f00

Now, we can feed this information to GDB via its add-symbol-file command! Specify
the module's text section address first (the content of the .text pseudofile), followed by
each individual section in the format -s <section-name> <address>. For example,
with respect to the usbhid module example, we do this:

(gdb) add-symbol-file </path/to/>usbhid.ko 0xffffffffc033b000
\

 -s .rodata 0xffffffffc0348060 \

 -s .data 0xffffffffc034e000 \ [...]

To more or less automate this (it's a bit tedious to type it all in manually, right?), I make
use of a cool script (slightly modified) from the venerable LDD3 book! Our copy's here:
ch11/gdbline.sh. It works essentially by looping over most of the . files in /sys/
module/<module>/section, printing out a GDB command string that we can simply
copy-paste into GDB!

add-symbol-file <module-name> <text-addr> \

 -s <section> <section-addr> \

 -s <section> <section-addr> \ [...]

Do check it out (we'll cover using it with an example soon enough – read on!).

Step by step – debugging a buggy module with KGDB
As a demo, let's debug via KGDB a slightly modified – and very simple – version of
our earlier ch7/oops_tryv2 module. We call it ch11/kgdb_try. It uses a delayed
workqueue (a workqueue whose worker thread begins execution only after a specified
delay has elapsed). In the work function, we (very deliberately – very contrived) cause a
kernel panic by performing an out-of-bounds write overflow to a stack memory buffer.
Here are the relevant code paths. First, the init function, where the delayed workqueue is
initialized and scheduled to run:

// ch11/kgdb_try/kgdb_try.c

static int __init kgdb_try_init(void)

{

 pr_info("Generating Oops via kernel bug in a delayed
workqueue function\n");

 INIT_DELAYED_WORK(&my_work, do_the_work);

544 Using Kernel GDB (KGDB)

 schedule_delayed_work(&my_work, msecs_to_jiffies(2500));

 return 0; /* success */

}

Why do we use a delayed workqueue, with, as you can see, the delay set to 2.5 seconds?
This is done just so you have sufficient time to add the module's symbols to GDB before
the kernel Oops'es (you'll soon see us doing this)! The actual – and very contrived – bug is
here, within the worker routine:

static void do_the_work(struct work_struct *work)

{

 u8 buf[10];

 int i;

 pr_info("In our workq function\n");

 for (i=0; i <=10; i++)

 buf[i] = (u8)i;

 print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, 10);

 [...]

The bug – the local buffer overflow that will occur when i reaches the value 10 (as, of
course, the array has 10 elements only, 0 through 9, and we're attempting to access the
non-existent eleventh element at buf[10]!) – though seemingly trivial, caused my
entire target system to simply freeze when run without KGDB! This is because, internally,
the kernel panicked! Try it out and you'll see... Of course, recollect that kernel memory
checkers – remember KASAN! – will certainly catch bugs like this.

This time, to try something a little different from last time (debugging the kernel at
early boot), we'll use an x86_64 QEMU guest system as the target kernel (instead of the
ARM one we used previously). To do so, we'll set up a vanilla 5.10.109 kernel for KGDB,
of course (as covered in the Configuring the kernel for KGDB section), and reuse (open
source) code from here to set up the root filesystem (it's Debian Stretch): [Linux Kernel
Exploitation 0x0] Debugging the Kernel with QEMU, K Makan, Nov 2020 (http://
blog.k3170makan.com/2020/11/linux-kernel-exploitation-0x0-
debugging.html). This blog article itself generates the rootfs using the Google
syzkaller project! Do read through the article for details.

Here are the detailed steps to be carried out – read along and try it out for yourself.

http://blog.k3170makan.com/2020/11/linux-kernel-exploitation-0x0-debugging.html
http://blog.k3170makan.com/2020/11/linux-kernel-exploitation-0x0-debugging.html
http://blog.k3170makan.com/2020/11/linux-kernel-exploitation-0x0-debugging.html

Debugging kernel modules with KGDB 545

Step 1 – preparing the target system's kernel, root filesystem, and
test module on the host
This step involves a bit of work:

1. Configuring and building a (debug, KGDB-enabled) kernel for the target system
(QEMU emulated x86_64)

2. Having a working root filesystem image for the target (so that we can store our
module(s), log in, and so on)

3. Building the test module against the target kernel

Let's proceed!

Step 1.1 – configuring and building the target kernel
We'll keep it brief:

1. Download and extract the kernel source tree for an appropriate kernel. Let's use the
5.10.109 kernel (as it's within the 5.10 LTS series and matches the one we used for
the ARM target). Keep the source tree in any convenient location on your system
and note it (for the purposes of this demo, let's say you've installed the kernel source
tree here: ~/linux-5.10.109).

2. Configure the kernel in the usual manner (via the make menuconfig UI), taking
into account the fact that you must enable support for KGDB and related items –
we've covered this in detail in the Configuring the kernel for KGDB section. For your
reference, I've kept my kernel config file here: ch11/kconfig_x86-64_target.

Tip
With recent 5.10 (or newer) kernels, the build could fail with an error such
as this:

make[1]: *** No rule to make target 'debian/
canonical-revoked-certs.pem' , needed by certs/
x509_revocation_list'

A quick fix is to do this:

scripts/config --disable SYSTEM_REVOCATION_KEYS

scripts/config --disable SYSTEM_TRUSTED_KEYS

Then, retry the kernel build.

546 Using Kernel GDB (KGDB)

• Build the kernel via make -j[n] all. The compressed kernel image (arch/
x86/boot/bzImage) as well as the uncompressed kernel image with symbols
(vmlinux) is generated. As this is all we require for this demo, we skip the (typical)
remaining steps of modules and kernel/bootloader installation.

Here's my custom KGDB-enabled kernel images:

$ ls -lh arch/x86/boot/bzImage vmlinux

-rw-rw-r-- 1 osboxes osboxes 7.9M May 3 13:29 arch/x86/boot/
bzImage

-rwxrwxr-x 1 osboxes osboxes 240M May 3 13:29 vmlinux*

Let's move along...

Step 1.2 – obtaining a working root filesystem image for the target
We'll of course require a target root filesystem (or rootfs). Further, it will require having
our test kernel module (compiled with the same target kernel) plus the gdbline.sh
and doit wrapper scripts on it (we explain the purpose of the last one shortly). Now,
building a rootfs from scratch isn't a trivial task, thus, to ease the effort, we provide a fully
functional root filesystem image based on the Debian Stretch distro.

We covered downloading the compressed rootfs image file in the Technical requirements
section (if you haven't yet done so, please ensure you download it now). Now extract it:

7z x rootfs_deb.img.7z

It will get extracted into a directory named images/. You now have the uncompressed
and ready-to-use target rootfs binary image (of size 512 MB) here: ch11/images/
rootfs_deb.img.

FYI, you can always edit the rootfs image by, on the host, loop mounting it (when it's not
in use!), editing its content, then unmounting it (see Figure 11.7). Here, you don't need to
do this yourself; it's been done and the target rootfs has been supplied to you.

Debugging kernel modules with KGDB 547

We've kept all required files for the module debug demo on the target rootfs under
the /myprj directory. As a quick sanity check, let's loop mount the target root
filesystem image file and peek into it (ensure you create the mount point directory
first, /mnt/tmp, here):

Figure 11.7 – Loop mounting and viewing content under our target root filesystem

Don't forget: only loop mount and edit the target rootfs when it's not in use via QEMU
(or another hypervisor). Unmount it when done!

On our host system, here's what the directory tree structure under ch11/ should now
look like:

Figure 11.8 – Screenshot showing the directory tree on the host Linux under ch11/

548 Using Kernel GDB (KGDB)

Right, let's continue.

Step 1.3 – building the module for the target kernel
One more step's required here: the test module (under ch11/kgdb_try) needs to be
built and deployed on both the target and host systems. (Actually, it's already deployed
on the target rootfs; we need to build it on our host.) So, cd to the ch11/kgdb_try
directory and issue the make command to build it.

Importantly, the Makefile must take into account the fact that this module's built
against the target 5.10.109 kernel (and not the native one)! So, we've changed the KDIR
variable within the Makefile to reflect this location:

// ch11/kgdb_try/Makefile

#@@@@@@@@@@@@ NOTE! SPECIAL CASE @@@@@@@@@@@@@@@@@

 # We specify the build dir as the linux-5.10.109 kernel src
tree; this is as

 # we're using this as the target x86_64 kernel and debugging
this module over KGDB

 KDIR ?= ~/linux-5.10.109

If the kernel's in a different location on your system, update the Makefile's KDIR
variable first and then build the module.

Note
If you make any changes in the kgdb_try.c source and rebuild, you'll need
to update the module within the target rootfs as well, by loop mounting the
rootfs image file, copying the new kgdb_try.ko module into its /myprj
directory, and doing the unmount.

Good job! Let's move on to the next step...

Step 2 – target startup and wait at early boot
Start the x86_64 target (via QEMU). We expect you've installed qemu-system-x86_64
by now (as advised in the Technical requirements section):

cd <book_src>/ch11

qemu-system-x86_64 \

 -kernel ~/linux-5.10.109/arch/x86/boot/bzImage \

 -append "console=ttyS0 root=/dev/sda earlyprintk=serial
rootfstype=ext4 rootwait nokaslr" \

Debugging kernel modules with KGDB 549

 -hda images/rootfs_deb.img \

 -nographic -m 1G -smp 2 \

 -S -s

For your convenience, the same command's available within a wrapper script here: ch11/
run_target.sh. Simply run it, passing the kernel and rootfs image files as parameters.

Tip
Running QEMU with the -enable-kvm option switch can make guest
execution (much!) faster. This requires hardware-level virtualization support
of course (implying that CPU virtualization is enabled at the firmware/BIOS
level). On the x86, you can check with egrep "^flags.*(vmx|svm)"
/proc/cpuinfo. If there's no output, it isn't enabled and won't work. Also,
this could fail if any other hypervisor is running and making use of KVM (your
Ubuntu guest on VirtualBox perhaps); in effect, if nested virtualization isn't
supported by KVM.

Right, the guest kernel starts and pretty much immediately waits, due to the effect of
QEMU's -S option switch (see Figure 11.9).

Step 3 – host system remote GDB startup
On the host (which in our case is the Ubuntu x86_64 guest), let's set up the GDB client
to debug the target system. So, cd into the target kernel source tree (here, we're taking it
as being in ~/linux-5.10.109). Run GDB, passing along the uncompressed 5.10.109
kernel image (vmlinux) as a parameter (see Figure 11.10), enabling GDB to read in all
symbols. In addition, we employ the GDB initialization/startup file ~/.gdbinit to
define a simple macro (we cover GDB macros in the GDB custom macros in its startup file
section). Here's the connect_qemu macro definition:

cat ~/.gdbinit

[...]

set auto-load safe-path /

define connect_qemu

 target remote :1234

 hbreak start_kernel

 hbreak panic

 #hbreak do_init_module

end

550 Using Kernel GDB (KGDB)

On startup, GDB will parse in its content, thus allowing us to run our custom macro
connect_qemu, allowing us to connect to the target and set up a couple of hardware
breakpoints (via GDB's hbreak command). Here are a few points regarding the GDB
startup file content:

• The set auto-load safe-path / directive is to allow GDB to parse in and
use various Python-based GDB helper scripts. We cover the details in the Setting up
and using GDB scripts with CONFIG_GDB_SCRIPTS section.

• A tip, useful at times: adding the kernel function do_fsync() as a breakpoint
is a convenience, allowing you to break into GDB by typing sync on the target
command line.

• We add the start_kernel() hardware breakpoint here simply as a demo, for no
other reason... It's pretty much the first C function hit as the kernel boots up!

• We have a commented-out hardware breakpoint on the function do_init_
module(). This can be very helpful, allowing you to debug any module's init code
path straight away (details follow in the Debugging a module's init function section).

Tip
Ensure you use hardware breakpoints (via GDB's hbreak command)
for your key breakpoints, and not software watchpoints! The info
breakpoints command (abbreviated as simply i b) will reveal all
currently defined breakpoints and watchpoints.

Debugging kernel modules with KGDB 551

A couple of screenshots will help clarify things. First, the state of the target kernel just
after boot:

Figure 11.9 – Target kernel waiting for the remote GDB client to connect to it

552 Using Kernel GDB (KGDB)

Here's a screenshot of running the GDB client on the host (from the kernel source tree
location) and issuing our connect_qemu macro:

Figure 11.10 – Host: within the kernel source tree, the remote GDB client connects to the target and sets
up breakpoints

Fantastic – let's continue...

Step 4 – target system: install the module and add symbols to GDB
When debugging with KGDB, you'll need to insmod the (possibly buggy) module and
add its symbols (as explained in the Informing the GDB client about the target module's
locations in memory section). But – in this demo at least! – you need to do all this quickly,
before it actually crashes! So, on the target rootfs, we have a simple wrapper script (/
myprj/doit) to do the following:

1. Set the (target) kernel to panic on Oops.
2. insmod the module on the target system (the one running with the GDB server

component, that is, with KGDB enabled, of course).
3. Execute our gdbline.sh script. It generates the key add-symbol-file GDB

command! Quickly now...

Debugging kernel modules with KGDB 553

4. We – quickly, before the kernel Oops'es and panics! – switch to the host
system GDB and press ^C, interrupting (and stopping) the target kernel. (Whew,
now we're safe.) We then copy-paste the GDB add-symbol-file command that
was generated on the target, informing GDB about the module's symbols.

5. Add a hardware breakpoint for the routine of interest. Here, we run hbreak
on our workqueue function do_the_work().

Here's the code of the target rootfs /myprj/doit script (which is itself already
embedded within the target rootfs image):

echo 1 > /proc/sys/kernel/panic_on_oops

sudo insmod ./kgdb_try.ko

sudo ./gdbline.sh kgdb_try ./kgdb_try.ko

So, let's get going. First, have the target continue (type c) to boot up, log in to it (as
required), and run this helper script to set things up. Of course, the target first hits the
start_kernel() hardware breakpoint. Great – you can look around, then type c to
have GDB continue the target. It boots up fully... (it can take a moment – be patient). The
target kernel now asks you to log in. Here, simply pressing the Enter key is sufficient as we
simply enter the Debian maintenance mode and work there – it's fine to do so:

Figure 11.11 – On the left is the target; in the right window is the GDB client process running on the
host; we log in to the target kernel by pressing Enter

554 Using Kernel GDB (KGDB)

Now, a key part of this exercise: on the target root filesystem, cd to the /myprj directory
and run our wrapper doit script. It runs, generating the output – the add-symbol-
file command we must issue within GDB! You'll realize, of course, that the (buggy)
kgdb_try.ko module is right now executing its code paths. As we're using a delayed
workqueue, we've bought some time (2.5 s here) before the buggy do_the_work()
code runs.

Quickly now! Switch to the host window where our client GDB process is running and
press ^C (Ctrl + C). This has GDB break in - the target's execution is stopped, it's now
frozen (whew!). This is important, as otherwise, the bug can trigger before we set up the
breakpoint on our buggy module. In Figure 11.12, you can see our typing of ^C in the
right-side host window. The following screenshot reveals the action:

Figure 11.12 – (Truncated) screenshot: 1. run the doit script on the target (left window); 2. quickly
switch to the right host window and interrupt (stop) the target with ^C

Debugging kernel modules with KGDB 555

Great job! Now do the following:

1. From the target window (the left-side one in Figure 11.12), copy the output of
our gdbline.sh script – the GDB add-symbol-file command and
whatever follows (in effect, the content between the ---snip--- delimiters) –
into the clipboard.

2. Switch back to the host window running the client GDB (the right-side one in
Figure 11.12).

3. Important! cd to the directory where the kernel module's code is (GDB needs to be
able to see it).

4. Paste the clipboard content – the complete add-symbol-file <...> command
– into GDB. It prompts whether to accept this. Answer yes (y). GDB reads in the
module symbols! See this in the (truncated) screenshot:

Figure 11.13 – (Truncated) screenshot showing how we cd and copy-paste the add-symbol-file
command into the GDB process

556 Using Kernel GDB (KGDB)

Super! Now that GDB understands the module memory layout and has its symbols,
simply add (hardware) breakpoints as required! Here, we just add the relevant one, the
workqueue function:

(gdb) hbreak do_the_work

Hardware assisted breakpoint 3 at 0xffffffffc004a000: file /
home/osboxes/Linux-Kernel-Debugging/ch11/kgdb_try/kgdb_try.c,
line 43.

(gdb)

By the way, you'll recall we earlier enabled the kernel config GDB_SCRIPTS. This has
several useful Python-based helper scripts become available during a GDB session kernel
debug session (we cover this topic in more detail in the Setting up and using GDB scripts
with CONFIG_GDB_SCRIPTS section). As an example, we issue the lx-lsmod helper to
show all modules currently loaded (on the target kernel's memory):

(gdb) lx-lsmod

Address Module Size Used by

0xffffffffc004a000 kgdb_try 20480 0

(gdb)

Cool – its output is as expected. Notice how the kernel virtual address of where the
module is loaded in memory (0xffffffffc004a000 here) perfectly matches the first
parameter to the add-symbol-file command – it's the address of the module's .text
(code) section!

Step 5 – debugging the module with [K]GDB
So, finally: we're all set up. We can now go ahead and debug the target module in the usual
manner, setting breakpoints, examining data, and stepping through its code!

Debugging kernel modules with KGDB 557

Within the host (client) GDB process, type c to continue. The target system resumes
execution... Soon enough, the delay that we specified (2.5 s) before the workqueue
function – do_the_work() – must run will elapse. The function will begin to execute,
and immediately get trapped into via GDB (don't forget, we set up a hardware breakpoint
on it in the previous step!):

Figure 11.14 – We continue: the hardware breakpoint's hit; we're in our do_the_work() function, single-
stepping through its source; the buggy line 49 is highlighted

558 Using Kernel GDB (KGDB)

Looking at Figure 11.14, we examine the (kernel) stack with the bt (backtrace) GDB
command – it's as expected. Next, let's do something interesting: we know the bug's in the
loop when the local variable i reaches the value 10 (needless to say, in the C array, indices
begin at 0, not 1). Now instead of single-stepping through the loop 10 times, we can set
up a conditional breakpoint, telling GDB to stop execution when the value of i is, say, 8.
This is easily achieved with the GDB command:

(gdb) b 49 if i==8

FYI, we cover more on this in the Conditional breakpoints section. So, let's proceed:

Figure 11.15 – Screenshot showing how we set up a conditional breakpoint on line 49 and single-step
through the module's code

Debugging kernel modules with KGDB 559

We have GDB continue. The conditional breakpoint is hit... It works: the value of i is 8
(to begin with). Notice how I used the display i GDB command to have GDB always
display the value of the variable i (after every step (s) or next (n) GDB command).
Look at Figure 11.15 carefully: we find that, though the bug's hit (when i reaches the value
10), execution seems to continue. Yes, for just a short while. The kernel's built-in stack
overflow detection code paths do kick in soon enough – and guess what: the kernel panics
quite spectacularly! The parameter to panic() is a string – the reason for the panic.
Clearly, it's due to kernel stack corruption! The following figure shows all this clearly:

Figure 11.16 – Screenshot revealing the actual bug and the subsequent kernel panic; the panic message
reveals it's kernel stack corruption

560 Using Kernel GDB (KGDB)

When we have GDB continue the target's execution (by typing c); the panic message
details are now seen in the target system console window:

Figure 11.17 – Target system: the kernel panic message on the console

Great going!

There's a nagging issue though: how do you debug a module's early init code in KGDB?
That's what we cover next!

Debugging a module's init function
Here, for the purpose of a simple-yet-interesting demo, we used a delayed workqueue.
Once the delay elapsed (2.5 s here), the buggy workqueue function executed and resulted
in an Oops (and a subsequent panic). We could debug it with KGDB! But, think about
this: in a project, what if the module's init function doesn't use a delayed workqueue, just
a regular workqueue? Then, the workqueue function will run almost immediately, before
you have time to set up a breakpoint on it! How do we debug such situations?

The key, is to be able to debug the early module initialization code itself, allowing you
to then single-step through it. This can be achieved by setting up a breakpoint on the
module's init function itself. Hang on – this may not work out. Think: the setting of the
breakpoint has to happen after the insmod command is issued but by the time you type
hbreak kgdb_try_init (or whatever), the bug could trigger!

[K]GDB – a few tips and tricks 561

So, here's a workable solution: set a (hardware) breakpoint on the kernel infrastructure code
that performs the actual work when invoking a module's init function – the do_init_
module(struct module *mod) function. This can be done at any time, even as part
of the connect_qemu (or equivalent) macro that we set up! Then, once the breakpoint's
hit, proceed debugging the code from when the breakpoint's hit. You can even check
which module's being loaded by looking up the pointer to the module structure (it's the
single parameter passed to the do_init_module() function), then running the set
print pretty gdb command, followed by p *mod. Then, look for the structure
member named name. What a surprise – it reveals the name of the module! I also found
the module name this way:

(gdb) x/s mod.mkobj.kobj.name

0xffff8880036eb770: "kgdb_try"

Neat.

Exercise
Debug a kernel module's init function using the method just described.

On a project, this whole process – debugging a module via KGDB – can be very powerful:
you saw how we can single-step through the module's code, employ the backtrace
command to see the (kernel) stack in detail, and examine memory (with GDB's x
command) and variable values (and even change variables with GDB's set variable
command!). In a later section (Using GDB's TUI mode), we even show how you can
single-step through assembly code! All this can result in getting valuable insight into
the code's behavior, ultimately (fingers crossed!) helping you find the root cause of that
annoying bug.

Awesome going – let's wind up this chapter with a few useful tips and tricks.

[K]GDB – a few tips and tricks
GDB is a large and powerful program with many features. We'll describe a few top-of-
mind tips and tricks here that can prove useful when using GDB (and KGDB).

Setting up and using GDB scripts with
CONFIG_GDB_SCRIPTS
Dating back to the 4.0 kernel, Linux provides several Python-based helper scripts – seen
as additional GDB commands – to help debug the kernel (and kernel modules). Their
code's within the kernel source in scripts/gdb.

562 Using Kernel GDB (KGDB)

Enable them by setting CONFIG_GDB_SCRIPTS=y. Once enabled, it's advisable to put
the following line in your GDB startup file ~/.gdbinit:

add-auto-load-safe-path <...>/scripts/gdb/vmlinux-gdb.py

Or, simpler but more permissive, add-auto-load-safe-path /. This has GDB parse
this Python script within the kernel source tree (scripts/gdb/vmlinux-gdb.py)
and thus recognize the Python-based GDB helper scripts – a very useful thing! All the
helper scripts are prefixed with lx- whereas the helper functions are prefixed with lx_.
Once set up, we can see them and a one-line explanation of what they're for by employing
the apropos lx command (the word apropos means with reference to or concerning –
it's a GDB keyword):

Figure 11.18 – Screenshot showing the output from the GDB apropos lx command – kernel Python-
based helper scripts made available, when CONFIG_GDB_SCRIPTS=y

[K]GDB – a few tips and tricks 563

These helper scripts certainly make mundane debugging tasks – such as looking up the
kernel log (lx-dmesg), looking up the kernel command line (lx-cmdline) or the
modules currently loaded (lx-lsmod), defined I/O memory locations (lx-iomem),
and so on – a lot easier. (We mention just a few here explicitly; Figure 11.18 shows
the complete list on the installation.) To get brief help on a helper script, type help
lx-<scriptname> in GDB.

Note that this facility requires GDB 7.2 or later. The official kernel documentation
provides some help and examples of using them here: https://docs.kernel.org/
dev-tools/gdb-kernel-debugging.html#examples-of-using-the-
linux-provided-gdb-helpers. Do check it out and try them out yourself.

KGDB target remote :1234 command doesn't work
on physical systems
This can and does happen – the target remote :1234 GDB command fails to have
the GDB client connect to the target system. Setting up KGDB between physical hardware
can be frustrating at times! Check and recheck the connection between the host and the
target! First of all, without worrying about the low-level details of setting up KGDB,
ensure that you can send and receive packets (a simple message will suffice) from the host
to the target system and vice versa. For example, you can do the following (as root, and
assuming the serial connection is on /dev/ttyUSB0):

[Host] echo "hello, target" > /dev/ttyUSB0

[Target] cat /dev/ttyUSB0

You should see the hello, target message on the target. Test the other way around
as well; both must work. If the connection isn't okay, the target remote :<port#>
command will fail or return quirky error/warning messages (stuff such as warning:
unrecognized item "timeout" in "qSupported" response).

Also (and as mentioned here: https://stackoverflow.
com/a/36861909/779269), the USB-to-serial type of connection is fine to have on the
host system but not necessarily on the target. The target system must have a direct serial
(COM) port interface (or Ethernet/wireless interfaces). See the Further reading section for
more on this topic.

https://docs.kernel.org/dev-tools/gdb-kernel-debugging.html#examples-of-using-the-linux-provided-gdb-helpers
https://docs.kernel.org/dev-tools/gdb-kernel-debugging.html#examples-of-using-the-linux-provided-gdb-helpers
https://docs.kernel.org/dev-tools/gdb-kernel-debugging.html#examples-of-using-the-linux-provided-gdb-helpers
https://stackoverflow.com/a/36861909/779269
https://stackoverflow.com/a/36861909/779269

564 Using Kernel GDB (KGDB)

Setting the system root with sysroot
When debugging foreign binaries and kernels, which can happen either when performing
remote debugging or using KGDB, keep in mind the following points:

• Use the toolchain-specific GDB and not the native one; for example,
running arm-none-linux-gnueabihf-gdb -q <…>/vmlinux and
not gdb -q vmlinux.

• Setting GDB's sysroot variable (and/or the solib-search-path variable) to
correctly point to the root of the filesystem upon which the binaries and libraries for
the target reside. This is important when you're on a host system performing remote
debugging and you need to correctly reference the target root filesystem which will
be on the host (as well).

Aside from the kernel support provided via KGDB, GDB natively provides several useful
features. We discuss a few of them in the following sections.

Using GDB's TUI mode
GDB has a Text User Interface (TUI) mode, where, instead of just the usual command-
line interface, the terminal window is split into two or three horizontally tiled panes
(it internally uses curses-based libraries and APIs to achieve its somewhat graphic-like
capabilities – peek at Figure 11.19).

The point here is that using GDB in TUI mode can be quite empowering for the
developer/debug session! To see why let's do a quick GDB TUI session. We'll debug the
kernel in much the same way as in the Debugging the kernel with GDB section, except that
here, we run GDB with the -tui option switch (also, FYI, we're running it on our x86_64
Ubuntu guest with a custom 5.10.53 debug kernel):

gdb –tui –q linux-5.10.53/vmlinux

[...]

[K]GDB – a few tips and tricks 565

Initially, only two horizontally tiled window panes show up. To enable the third, as well
as to cycle between the various displays, press Ctrl-x-2 (that is, press Ctrl + X followed
by pressing 2)! The supported window displays are the CPU registers view (with changing
registers being highlighted) pane, the source/assembly code pane, and the GDB command
prompt window pane. Do try this out yourself!

Figure 11.19 – Screenshot showing GDB running in TUI mode; note the horizontally tiled panes – the
CPU registers, source code, and GDB command window pane (in this instance)

566 Using Kernel GDB (KGDB)

Viewing the source code, the corresponding assembly, as well as CPU registers
simultaneously – and in sync – can be very powerful when in a debug session! GDB's TUI
mode makes it behave almost like an IDE (typically a GUI-driven one familiar to most
developers)...

Tip – Single-Stepping at the Level of Assembly, Disassembling Code
Sometimes, when debugging something in depth, we might need to resort to
working at the level of the machine, single-stepping through assembly code.
How? GDB provides the stepi (si) command to single-step exactly one
machine instruction! (You can also specify si N to tell GDB to step through N
assembly-level instructions.)

Further, GDB is powerful – it also has a separate disassemble (disas)
command, even allowing for mixed assembly-source output (via the /m or
/s modifier; note that using the -s option is recommended). Reference:
https://sourceware.org/gdb/onlinedocs/gdb/Machine-
Code.html.

Here's a GDB TUI mode quick-reference table for your convenience:

Table 11.1 – Summary of various GDB TUI mode commands and shortcuts

https://sourceware.org/gdb/onlinedocs/gdb/Machine-Code.html
https://sourceware.org/gdb/onlinedocs/gdb/Machine-Code.html

[K]GDB – a few tips and tricks 567

Do ensure you try GDB in the powerful TUI mode – you won't regret it!

What to do when the <value optimized out> GDB
response occurs
What do you do when, upon attempting to print a variable's value (for example, (gdb)
p i), GDB responds with a cryptic <value optimized out> message? This often
happens with local variables and function parameters. It's usually a symptom of compiler
optimization with the compiler avoiding the use of stack memory to store locals and/
or parameters, using appropriate CPU General Purpose Registers (GPRs) instead.
So, if you know enough about the CPU ABI, you can hopefully figure out where it
stored the variable's value! How do we come to know this? By studying the CPU ABI
for your processor! We've already covered this in some detail back in Chapter 4, Debug
via Instrumentation – Kprobes, in the Understanding the basics of the Application Binary
Interface (ABI) section. Do take another look.

Tip
Additionally, enabling the CONFIG_DEBUG_INFO_DWARF4 kernel config
can have a positive effect. The kernel documents the fact that using this option
significantly improves the success of resolving variables in gdb on optimized code.

Also, running GDB in TUI mode (as just described) can help you see things more clearly
and thus help resolve variable/parameter values.

GDB convenience routines
GDB provides some built-in convenience routines. Some of them require GDB to have
Python support:

• $_memeq(): Check whether two buffers are the same for a given length.

• $_regex(): A (Python-based) regular expression matching function.

• $_strlen(str): Returns the length of the string str.

There are several more – look them up here: https://sourceware.org/gdb/
current/onlinedocs/gdb/Convenience-Funs.html#Convenience-Funs.

https://sourceware.org/gdb/current/onlinedocs/gdb/Convenience-Funs.html#Convenience-Funs
https://sourceware.org/gdb/current/onlinedocs/gdb/Convenience-Funs.html#Convenience-Funs

568 Using Kernel GDB (KGDB)

GDB custom macros in its startup file
When you're deep in a debug session, life outside pretty much ceases to matter (smiley!).
Often, we repeatedly type in the same commands over and over, (easily) several dozen
times a day. Isn't there a shortcut? Yes, indeed: GDB macros – effectively your custom-
built GDB commands or shortcuts – really help here! They're very easy to set up – just
put whatever GDB commands you'd like executed between define <macro-name>
[...] end. Simply define them within your GDB startup file, ~/.gdbinit. This
ensures they're auto-parsed in at GDB startup and available to you. A couple of
examples follow:

// ~/.gdbinit

connect and set up breakpoints

define connect_qemu

 target remote :1234

 hbreak start_kernel

 hb panic

 hb do_init_module

 b do_fsync

end

xs – examine stack

define xs

 printf "x/8x $sp\n"

 x/8x $sp

 printf "x/8x $sp-12\n"

 x/8x $sp-12

end

So, for example, in GDB, simply typing connect_qemu (as we've already seen) at the
prompt will have GDB execute all the commands under this macro (somewhat analogous
to running GDB in batch mode – another useful thing for you to look up!). Also, more
sophisticated GDB (sample) macros can be found here: https://www.kernel.org/
doc/Documentation/admin-guide/kdump/gdbmacros.txt

Fancy breakpoints and hardware watchpoints
Besides the "usual" hardware/software breakpoints, GDB supports conditional
breakpoints, temporary breakpoints, and hardware watchpoints. All of these can be
really useful!

https://www.kernel.org/doc/Documentation/admin-guide/kdump/gdbmacros.txt
https://www.kernel.org/doc/Documentation/admin-guide/kdump/gdbmacros.txt

[K]GDB – a few tips and tricks 569

Conditional breakpoints
As an example, say you're debugging the code in a loop. The loop executes, shall we say,
100,000 times. You suspect the bug lies in the last or second-last loop iteration (your
typical off-by-one bugs!). What are you to do? Single-stepping through the loop thousands
of times won't be very productive, right? Set up a conditional breakpoint! GDB's
condition command is the way to go:

(gdb) help condition

Specify breakpoint number N to break only if COND is true.

Usage is 'condition N COND', where N is an integer and COND is
an expression to be evaluated whenever breakpoint N is reached.

Alternatively, you can use this syntax:

[h]break <loc> if COND

We showed an example of using a conditional breakpoint with our kgdb_try module (in
the previous section).

Temporary breakpoints
Sometimes, you just want a breakpoint set up temporarily. The tbreak command sets up
a breakpoint that will work only once. After that, it's automatically cleaned up. You don't
have to remember to use the disable N or delete N GDB commands – useful when
in a hurry.

Hardware watchpoints
Hardware watchpoints are a means to have GDB stop the execution of the target when
something happens to a variable or expression you specify (it internally makes use of
special CPU debug registers, making it a lot faster than traditional software (conditional)
breakpoints). What can or should occur to trigger a hardware watchpoint? The changing
(write to) of a given variable, or even the reading of a given variable - in effect, the read/
write of any valid memory - can trigger them! Hardware watchpoints do require processor
support (typically, all modern processors do support them). Find out with the following:

(gdb) show can-use-hw-watchpoints

Debugger's willingness to use watchpoint hardware is 1.

570 Using Kernel GDB (KGDB)

Ah, it's supported. There are essentially three hardware watchpoint GDB commands:

• watch <var/expression>: Sets up a hardware watchpoint that triggers when
the variable/expression changes (is written to).

• rwatch <var/expression>: Sets up a hardware watchpoint that triggers when
the variable/expression is read.

• awatch <var/expression>: Sets up a hardware watchpoint that triggers when
there is either a read or a write on the variable/expression.

On being triggered, GDB will immediately stop execution and show details: which
thread hit the watchpoint, the hardware watchpoint number, name, and, if the value has
changed, the old and new value of the variable/expression being watched (or, if it's a read
watchpoint, the current value is displayed).

For example, let's set up a hardware watchpoint on the kernel variable jiffies_64 (an
unsigned 64-bit quantity that's incremented on every timer interrupt – in code, we usually
employ the jiffies macro to look it up safely). Let's try it out:

Figure 11.20 – Demo of setting a hardware watchpoint on the kernel jiffies_64 variable

[K]GDB – a few tips and tricks 571

Glance at the preceding figure: we show the output of help watch, add the hardware
watchpoint on the jiffies_64 variable, then show the current breakpoints (which
includes this hardware watchpoint). Then, we continue the execution of the kernel. The
watchpoint triggers soon enough, displaying the old and new value of jiffies_64
(as a timer interrupt fired, it increments by 1)! We're at the location in the code where
the variable underwent a change. We can easily examine how we got there by using the
backtrace (bt) command, seeing the kernel stack (it's truncated in the screenshot).

Think about these [K]GDB debug features – they can be precious! Often, we have a
hunch that a particular variable being changed is what's leading to the bug. Hardware
watchpoints can help you verify your hunch.

Miscellaneous GDB tips
Here are a few more quick tips:

• At the GDB prompt, you can type the first few letters of a keyword – or even
when specifying a variable or function name – and press the Tab key twice. GDB
will attempt to autocomplete it (if there are multiple matches, it will show all and
you can repeat typing in a few more characters). Note, though, that this can slow
GDB down.

• Recall what we learned back in Chapter 7, Oops! Interpreting the Kernel Bug
Diagnostic, in the Using GDB to help debug the Oops section: given a function name
and an offset into it (as is reported when an Oops triggers), GDB's list command
can be leveraged to show a particular line of source code. The syntax is: list
*<function>+<offset>.

• You can run shell commands from within GDB; for example, to run ls -l within
it, issue the command shell ls -l at the GDB prompt.

• There's plenty more for you to read up on and try out: GDB's record /
reverse* command set, pretty printers, setting breakpoints on machine code (b
*<addr>), and so on...

And we're done!

572 Using Kernel GDB (KGDB)

Summary
Good going on completing this very hands-on chapter (I really hope you went through it
in a hands-on manner)!

We began with a brief conceptual understanding of how KGDB works; it's down to
GDB employing a client/server architecture (the target kernel imbibes the GDB server
component, with the remote GDB client running on the host system). Next, we set up and
tested a full-fledged ARM32 target (via the SEALS project and QEMU). We used it as the
target system when demonstrating how to use KGDB to debug in-tree kernel code, right
from early boot.

We then moved on to understanding how you can use KGDB to debug kernel modules,
often what driver developers (and similar) have to do on projects and products. This time
we demonstrated it using a QEMU-emulated x86_64 as the target system.

We rounded off this chapter with a few useful [K]GDB tips and tricks!

Admittedly, getting KGDB set up for remote debugging on actual hardware can be a bit
tedious! Ensuring that the serial connection (often over USB via an RS232 TTL UART
adapter on the host) is working in both directions is key... see the Further reading section
for links on helping fix these (pretty annoying) issues and more on this topic.

Take the time to work on KGDB in a hands-on fashion... When done, guess what? We're
down to the wire now – the last chapter awaits! There, we'll wrap up this book by peeking
into a few more kernel debugging approaches and techniques. I'll see you there!

Further reading
• (Humor!) The GDB Song: https://www.gnu.org/music/gdb-song.

en.html

• Official kernel doc: Using kgdb, kdb and the kernel debugger internals: https://
www.kernel.org/doc/html/v5.10/dev-tools/kgdb.html

• How to use KGDB, Timesys: https://linuxlink.timesys.com/docs/
how_to_use_kgdb

• Excellent material (covers muxing the serial port for GDB and the console): Using
Serial kdb / kgdb to Debug the Linux Kernel - Douglas Anderson, Google, Oct 2019,
YouTube: https://www.youtube.com/watch?v=HBOwoSyRmys

• Linux Kernel Exploitation 0x0] Debugging the Kernel with QEMU, K Makan,
Nov 2020: http://blog.k3170makan.com/2020/11/linux-kernel-
exploitation-0x0-debugging.html

https://www.gnu.org/music/gdb-song.en.html
https://www.gnu.org/music/gdb-song.en.html
https://www.kernel.org/doc/html/v5.10/dev-tools/kgdb.html
https://www.kernel.org/doc/html/v5.10/dev-tools/kgdb.html
https://linuxlink.timesys.com/docs/how_to_use_kgdb
https://linuxlink.timesys.com/docs/how_to_use_kgdb
https://www.youtube.com/watch?v=HBOwoSyRmys
http://blog.k3170makan.com/2020/11/linux-kernel-exploitation-0x0-debugging.html
http://blog.k3170makan.com/2020/11/linux-kernel-exploitation-0x0-debugging.html

Further reading 573

• KGDB/KDB over serial with Raspberry Pi, B Kannan, May 2018; Yocto-biased:
https://eastrivervillage.com/KGDB-KDB-over-serial-with-
RaspberryPi/

• Blog article; also shows setting up KGDB for libvirt and Vagrant: USING 'GDB'
TO DEBUG THE LINUX KERNEL, D Robertson, Nov 2019: https://www.
starlab.io/blog/using-gdb-to-debug-the-linux-kernel

• Blog article: A KDB / KGDB SESSION ON THE POPULAR RASPBERRY PI
EMBEDDED LINUX BOARD, kaiwanTECH, July 2013: https://kaiwantech.
wordpress.com/2013/07/04/a-kdb-kgdb-session-on-the-
popular-raspberry-pi-embedded-linux-board/

• 5 Easy Ways to Reduce Your Debugging Hours, Dr G Law, Dec 2021: https://
undo.io/resources/gdb-watchpoint/5-ways-reduce-debugging-
hours/

• Man page on kdb(8) Built-in Kernel Debugger for Linux: https://manpages.
org/kdb/8

• Merging kdb and kgdb, Jake Edge, LWN, Feb 2010: https://lwn.net/
Articles/374633/

• Debugging KGDB-serial connection and other issues:

 � KGDB remote debugging connection issue via USB and Serial connection:
https://stackoverflow.com/a/36861909/779269

 � Breakpoints not being hit in remote Linux kernel debugging using GDB: https://
stackoverflow.com/questions/28165812/breakpoints-not-
being-hit-in-remote-linux-kernel-debugging-using-gdb

 � Breakpoints not working for GDB while debugging remote arm target on
qemu: https://stackoverflow.com/questions/70874764/
breakpoints-not-working-for-gdb-while-debugging-remote-
arm-target-on-qemu

 � Debugging ARM kernels using fast interrupts, Daniel Thompson, LWN, May 2014:
https://lwn.net/Articles/600359/

• Red Hat Developer series on GDB:

 � The GDB developer's GNU Debugger tutorial, Part 1: Getting started with
the debugger, Seitz, RedHat Developer, Apr 2021: https://developers.
redhat.com/blog/2021/04/30/the-gdb-developers-gnu-
debugger-tutorial-part-1-getting-started-with-the-
debugger

https://eastrivervillage.com/KGDB-KDB-over-serial-with-RaspberryPi/
https://eastrivervillage.com/KGDB-KDB-over-serial-with-RaspberryPi/
https://www.starlab.io/blog/using-gdb-to-debug-the-linux-kernel
https://www.starlab.io/blog/using-gdb-to-debug-the-linux-kernel
https://kaiwantech.wordpress.com/2013/07/04/a-kdb-kgdb-session-on-the-popular-raspberry-pi-embedded-linux-board/
https://kaiwantech.wordpress.com/2013/07/04/a-kdb-kgdb-session-on-the-popular-raspberry-pi-embedded-linux-board/
https://kaiwantech.wordpress.com/2013/07/04/a-kdb-kgdb-session-on-the-popular-raspberry-pi-embedded-linux-board/
https://undo.io/resources/gdb-watchpoint/5-ways-reduce-debugging-hours/
https://undo.io/resources/gdb-watchpoint/5-ways-reduce-debugging-hours/
https://undo.io/resources/gdb-watchpoint/5-ways-reduce-debugging-hours/
https://manpages.org/kdb/8
https://manpages.org/kdb/8
https://lwn.net/Articles/374633/
https://lwn.net/Articles/374633/
https://stackoverflow.com/a/36861909/779269
https://stackoverflow.com/questions/28165812/breakpoints-not-being-hit-in-remote-linux-kernel-debugging-using-gdb
https://stackoverflow.com/questions/28165812/breakpoints-not-being-hit-in-remote-linux-kernel-debugging-using-gdb
https://stackoverflow.com/questions/28165812/breakpoints-not-being-hit-in-remote-linux-kernel-debugging-using-gdb
https://stackoverflow.com/questions/70874764/breakpoints-not-working-for-gdb-while-debugging-remote-arm-target-on-qemu
https://stackoverflow.com/questions/70874764/breakpoints-not-working-for-gdb-while-debugging-remote-arm-target-on-qemu
https://stackoverflow.com/questions/70874764/breakpoints-not-working-for-gdb-while-debugging-remote-arm-target-on-qemu
https://lwn.net/Articles/600359/
https://developers.redhat.com/blog/2021/04/30/the-gdb-developers-gnu-debugger-tutorial-part-1-getting-started-with-the-debugger
https://developers.redhat.com/blog/2021/04/30/the-gdb-developers-gnu-debugger-tutorial-part-1-getting-started-with-the-debugger
https://developers.redhat.com/blog/2021/04/30/the-gdb-developers-gnu-debugger-tutorial-part-1-getting-started-with-the-debugger
https://developers.redhat.com/blog/2021/04/30/the-gdb-developers-gnu-debugger-tutorial-part-1-getting-started-with-the-debugger

574 Using Kernel GDB (KGDB)

 � The GDB developer's GNU Debugger tutorial, Part 2: All about debuginfo, Seitz,
RedHat Developer, Jan 2022: https://developers.redhat.com/
articles/2022/01/10/gdb-developers-gnu-debugger-tutorial-
part-2-all-about-debuginfo

 � Printf-style debugging using GDB, Part 3, Beutnner, RedHat Developer, Dec 2021:
https://developers.redhat.com/articles/2021/12/09/printf-
style-debugging-using-gdb-part-3

• Using GDB in TUI mode:

 � From the GDB manual: GDB Text User Interface: https://sourceware.org/
gdb/onlinedocs/gdb/TUI.html

 � Debug faster with gdb layouts (TUI), YouTube video: https://www.youtube.
com/watch?v=mm0b_H0KIRw

• FYI, interesting: A kernel debugger in Python: drgn, Jake Edge, LWN, May 2019:
https://lwn.net/Articles/789641/.

https://developers.redhat.com/articles/2022/01/10/gdb-developers-gnu-debugger-tutorial-part-2-all-about-debuginfo
https://developers.redhat.com/articles/2022/01/10/gdb-developers-gnu-debugger-tutorial-part-2-all-about-debuginfo
https://developers.redhat.com/articles/2022/01/10/gdb-developers-gnu-debugger-tutorial-part-2-all-about-debuginfo
https://developers.redhat.com/articles/2021/12/09/printf-style-debugging-using-gdb-part-3
https://developers.redhat.com/articles/2021/12/09/printf-style-debugging-using-gdb-part-3
https://sourceware.org/gdb/onlinedocs/gdb/TUI.html
https://sourceware.org/gdb/onlinedocs/gdb/TUI.html
https://www.youtube.com/watch?v=mm0b_H0KIRw
https://www.youtube.com/watch?v=mm0b_H0KIRw
https://lwn.net/Articles/789641/

12
A Few More

Kernel Debugging
Approaches

At the outset, back in Chapter 2, Approaches to Kernel and Driver Debugging, we covered
various approaches to kernel debugging. (In that chapter, Table 2.5 provides a quick
summary of kernel debug tools and techniques versus the various types of kernel defects;
take another look.) The previous chapters of this book have covered many (if not most) of
the tools and techniques mentioned, but certainly not all of them.

Here, we intend to merely introduce ideas and frameworks not covered so far (or just
briefly mentioned) that you might find useful when debugging Linux at the level of the
OS/drivers. We have neither the intent nor the bandwidth (space/pages) to go into these
topics in depth, but feel free to use the links in the Further reading section to go deeper!
Nevertheless, there are important topics covered in this chapter.

576 A Few More Kernel Debugging Approaches

In this chapter, we're going to cover the following main topics:

• An introduction to the kdump/crash framework

• A mention on performing static analysis on kernel code

• An introduction to kernel code coverage tools and testing frameworks

• Miscellaneous – using journalctl, assertions, and warnings

An introduction to the kdump/crash
framework
When a userspace application (a process) crashes, it's often feasible to enable the kernel
core dump feature; this allows the kernel to capture relevant segments (mappings) of the
process virtual address space (VAS), and write them to a file that is traditionally named
core. On Linux, the name – and indeed various features – are now settable (look up
the man page on core(5) for details). How does this help? You can later examine and
analyze the core dump using the GNU debugger (GDB) (the syntax is gdb -c core-
dump-file original-binary-executable); it can help to find the root cause
of the issue! This is called post-mortem analysis, as it's done upon the dead body of the
process, which is the core dump image file.

That's great, but wouldn't it be useful to be able to do the same with the kernel? This is
precisely what the kernel dump (kdump) infrastructure provides – the ability to collect
and capture the entire kernel memory segment (the kernel VAS) when the kernel crashes!
Furthermore, a powerful userspace open source app (tool), crash, allows you to perform
post-mortem analysis upon the kdump image, helping to find the root cause of the issue!

Why use kdump/crash?
Why use kdump/crash when we know how to analyze an Oops and kernel panic, use
KGDB, KASAN, KCSAN, and so on? There are several reasons:

• Tooling such as debug instrumentation (printk), KASAN, UBSAN, KCSAN, and
KGDB are typically effective and enabled on a debug kernel. When your software is
running in production and fails with a kernel-level issue, they are usually disabled
and so don't help much.

An introduction to the kdump/crash framework 577

• Even having the Oops/panic diagnostic (the complete kernel log when the Oops
occurred) might not be sufficient to find the root cause of a deep kernel bug. For
example, you might require all frames of the kernel-mode stack(s) in question, not
just the one where the crash occurred, as well as the content of kernel memory – in
effect, the state of all kernel data.

• Only kdump enables capturing all of this, in production. And crash lets you
analyze it.

There's a downside to using kdump: it implies reserving some fairly significant amounts
of system RAM and even possibly flash/disk memory space; this can be impractical,
especially on some types of embedded systems.

Understanding the kdump/crash basic framework
Still interested? There are essentially two parts to using kdump/crash:

1. Setting up the kernel to capture the kernel memory image if it does crash (Oops or
panic); this involves configuring the primary kernel to enable kdump, and the setup
to launch a so-called dump-capture kernel via a special kexec mechanism if a
crash/Oops/panic does occur.

2. Installing the crash utility on the dev/debug/host system; it takes the
kdump image as one of its parameters. Learn how to use it to help debug
the kernel/module issue(s).

Setting up and using kdump to capture the kernel image on crash
We won't attempt to go into details here as we lack the space to do so and as it's well-
documented in the official kernel documentation, Documentation for Kdump - The
kexec-based Crash Dumping Solution, here: https://www.kernel.org/doc/html/
latest/admin-guide/kdump/kdump.html#documentation-for-kdump-
the-kexec-based-crash-dumping-solution. If you are setting up kdump,
I'd urge you to check this document out in detail. Do note, though, that many Linux
distributions – especially the enterprise-class ones such as Red Hat, CentOS, SUSE,
and Ubuntu – have their own wrappers around setting up kdump (special config
files, packages, and modes, for example); look up the documentation for your
distribution as required.

 https://www.kernel.org/doc/html/latest/admin-guide/kdump/kdump.html#documentation-for-kdump-the-kexec-based-crash-dumping-solution
 https://www.kernel.org/doc/html/latest/admin-guide/kdump/kdump.html#documentation-for-kdump-the-kexec-based-crash-dumping-solution
 https://www.kernel.org/doc/html/latest/admin-guide/kdump/kdump.html#documentation-for-kdump-the-kexec-based-crash-dumping-solution

578 A Few More Kernel Debugging Approaches

Distilled down, the kdump setup process goes like this:

• Install the kexec-tools (via source or distribution package).

• Configure one or two kernels:

 � The primary kernel (configured for kdump; runs in the usual manner)

 � A dump-capture kernel

In architectures that support relocatable kernels (i386, x86_64, arm, arm64, ppc64,
and ia64, as of this writing), the primary kernel can also work as the dump-capture
kernel (yay!). Look up the kernel configuration details here: https://www.kernel.
org/doc/html/latest/admin-guide/kdump/kdump.html#system-
kernel-config-options.

Right, continuing with the kdump activation process, follow these steps:

• When booting, pass the crashkernel=size@offset kernel command-
line parameter appropriately to the primary kernel; this reserves a portion
of RAM (details can be found in the kernel documentation here: https://
www.kernel.org/doc/html/latest/admin-guide/kdump/kdump.
html#crashkernel-syntax).

• The primary kernel, as part of the startup, employs an architecture-specific way to
load the dump-capture kernel into the reserved memory region, via the kexec
utility; details can be found at https://www.kernel.org/doc/html/
latest/admin-guide/kdump/kdump.html#load-the-dump-capture-
kernel.

That's it! The primary kernel will quite literally warm-boot (preserving RAM content)
into the dump-capture kernel when a trigger point is hit; as of writing, these include
the following:

• panic(): Setting the kernel.panic_on_oops sysctl to 1 ensures that
the dump-capture kernel is booted into when the kernel Oops'es (recommended
in production).

• die() and die_nmi()

• Magic SysRq's c command (when enabled, of course): This allows you to test the
kdump feature by forcing a NULL pointer dereference and therefore, a kernel Oops
by doing this: echo c > /proc/sysrq-trigger, as root.

Do note, though, that kdump is essentially useless if the reboot into the dump-capture
kernel can't happen, perhaps due to hardware issues.

https://www.kernel.org/doc/html/latest/admin-guide/kdump/kdump.html#system-kernel-config-options
https://www.kernel.org/doc/html/latest/admin-guide/kdump/kdump.html#system-kernel-config-options
https://www.kernel.org/doc/html/latest/admin-guide/kdump/kdump.html#system-kernel-config-options
https://www.kernel.org/doc/html/latest/admin-guide/kdump/kdump.html#crashkernel-syntax
https://www.kernel.org/doc/html/latest/admin-guide/kdump/kdump.html#crashkernel-syntax
https://www.kernel.org/doc/html/latest/admin-guide/kdump/kdump.html#crashkernel-syntax
https://www.kernel.org/doc/html/latest/admin-guide/kdump/kdump.html#load-the-dump-capture-kernel
https://www.kernel.org/doc/html/latest/admin-guide/kdump/kdump.html#load-the-dump-capture-kernel
https://www.kernel.org/doc/html/latest/admin-guide/kdump/kdump.html#load-the-dump-capture-kernel

A mention on performing static analysis on kernel code 579

Good, kdump is now set up. But, how does this help? Upon a kernel crash or panic, how
exactly do you capture the kernel memory image? It's like this: the kernel makes the dump
image available via the /proc/vmcore pseudofile; so, if the dump-capture kernel drops
you to a shell, simply use the cp command to write it out to disk, for example, [sudo]
cp /proc/vmcore </path/to/dump-file>. Alternately, you can scp it to a
remote server, or use a utility named makedumpfile to write out the content to disk/
flash. Of course, you can always have a script do this non-interactively...

(This might be useful: Slide 14 of the Linux Kernel Crashdump presentation has a simple
diagram showing the previous; this can be found at https://www.slideshare.
net/azilian/linux-kernel-crashdump.)

Great. So, let's say the kdump-enabled kernel crashed and we now have the kernel dump
image. Now what? The developer now learns to use the pretty powerful crash utility to
interpret the dump file, helping to find the root cause of the actual issue! (I've provided
several links to tutorials on using crash in the Further reading section; do look them up.)

kdump/crash is quite often used in industry; this is because, ultimately, kernel
debugging is a difficult and painstaking job, put mildly. We can certainly appreciate
having the entire kernel memory image available at the time of the crash, along with
a tool to analyze it!

A mention on performing static analysis
on kernel code
Broadly, there are two kinds of analysis tools – static and dynamic. Dynamic analysis
tools are those that operate at runtime while the code executes. We've covered (most) of
them in previous chapters – they include kernel memory checkers (KASAN, SLUB debug,
kmemleak, and KFENCE), undefined behavior checkers (UBSAN), and locking-related
dynamic analysis tools (lockdep and KCSAN).

Static analysis tools are those that operate upon the source code itself. Static
analyzers (for C) uncover common bugs such as Uninitialized Memory Reads
(UMRs), Use-After-Return (UAR), also known as use-after-scope), bad array
accesses, and simply code smells.

For the Linux kernel, static analysis tools include Coccinelle, checkpatch.pl, sparse,
and smatch. There are other, more general but still useful static analyzers as well; among
them are cppcheck, flawfinder, and even the compilers (GCC and clang; FYI, GCC
10 onward has a new –fanalyzer option switch). There are many more static analyzers;
several are high-quality commercial tools that require a license, such as Coverity,
Klocwork, SonarQube, and plenty more.

https://www.slideshare.net/azilian/linux-kernel-crashdump
https://www.slideshare.net/azilian/linux-kernel-crashdump

580 A Few More Kernel Debugging Approaches

Besides finding potential bugs, static analyzers are often used to expose security
vulnerabilities (if you think about it, most code-related security vulnerabilities are nothing
but bugs at heart).

The sparse and smatch static analyzers are specific to Linux. Coccinelle (French for
ladybug) used to be in this bracket but is now quite generic (not just for the Linux kernel);
it's a really powerful framework for code transformation as well as static analysis (with a
bit of a learning curve). Coccinelle has four modes in which you can run it; to mention
two of them, the report mode is of course to report potential code issues, whereas the
patch mode can be used to propose a fix (by it generating a patch in the usual unified
diff format). The official Linux kernel documentation provides the details for Coccinelle
and sparse. It's important to read through them and try them out, so check them out here:

• Coccinelle: https://www.kernel.org/doc/html/latest/dev-tools/
coccinelle.html#coccinelle

• Sparse: https://www.kernel.org/doc/html/latest/dev-tools/
sparse.html#sparse

• Smatch: pluggable static analysis for C, Neil Brown, LWN, June 2016: https://
lwn.net/Articles/691882/

Examples using cppcheck and checkpatch.pl
for static analysis
Due to space constraints, I can't show many examples of static analysis here but will
show a couple. First, I'd like to remind you of something we saw clearly back in Chapter
5, Debugging Kernel Memory Issues – Part 1, in the Catching memory defects in the kernel
– comparisons and notes (Part 1) section, when bug hunting using the Linux kernel's
powerful memory checkers:

"Neither KASAN nor UBSAN catch the first three testcases – UMR,
UAR and leakage bugs, but the compiler(s) generate warnings and static

analyzers (cppcheck) can catch some of them."
The source file in question is this one: ch5/kmembugs_test/kmembugs_test.c.
The first three test cases within it are the UMR, UAR, and the memory leakage bugs! Let's
run cppcheck via our so-called better Makefile's sa_cppcheck target (look up ch5/
kmembugs_test/Makefile to see the exact way in which we invoke cppcheck):

cd <lkd_src>/ch5/kmembugs_test

make sa_cppcheck

[...]

https://www.kernel.org/doc/html/latest/dev-tools/coccinelle.html#coccinelle
https://www.kernel.org/doc/html/latest/dev-tools/coccinelle.html#coccinelle
https://www.kernel.org/doc/html/latest/dev-tools/sparse.html#sparse
https://www.kernel.org/doc/html/latest/dev-tools/sparse.html#sparse
https://lwn.net/Articles/691882/
https://lwn.net/Articles/691882/

A mention on performing static analysis on kernel code 581

kmembugs_test.c:113:9: error: Returning pointer to local
variable 'name' that will be invalid when returning.
[returnDanglingLifetime]

return (void *)name;

 ^

kmembugs_test.c:113:17: note: Array decayed to pointer here.

return (void *)name;

 ^

kmembugs_test.c:105:16: note: Variable created here.

volatile char name[NUM_ALLOC];

[...]

Bang on target (do reread the code to see for yourself)!

As another example of how static analyzers can help, the kernel's checkpatch.pl
Perl script is, in many ways, very specific to the Linux kernel and attempts to enforce the
Linux kernel code style guidelines, which is very important to follow when submitting a
patch (the guidelines are here: https://www.kernel.org/doc/html/latest/
process/coding-style.html). A couple of quick examples to show you the value
of running checkpatch.pl on your module's source code; here, I run it on our ch5/
kmembugs_test/kmembugs_test.c source file, by leveraging our Makefile,
invoking the appropriate target via make:

make checkpatch

[...]

WARNING: Using vsprintf specifier '%px' potentially exposes
the kernel memory layout, if you don't really need the address
please consider using '%p'.

#134: FILE: kmembugs_test.c:134:

+#ifndef CONFIG_MODULES

+ pr_info("kmem_cache_alloc(task_struct) = 0x%px\n",

+ kmem_cache_alloc(task_struct, GFP_KERNEL));

[...]

WARNING: unnecessary cast may hide bugs, see http://c-faq.com/
malloc/mallocnocast.html

#312: FILE: kmembugs_test.c:312:

+ kptr = (char *)kmalloc(sz, GFP_KERNEL);

These warnings are valuable (the first one, on a security aspect, while the second is of the
usual type); do pay attention to them!

https://www.kernel.org/doc/html/latest/process/coding-style.html
https://www.kernel.org/doc/html/latest/process/coding-style.html

582 A Few More Kernel Debugging Approaches

A significant issue with many static analysis tools is the problem of false positives – issues
raised by the tool that turn out to be non-issues for the developer; it is a thorn in the side.
Nevertheless, using static analysis as part of the development workflow is critical and must
be incorporated by the team.

An introduction to kernel code coverage tools
and testing frameworks
Code coverage is tooling that can identify which lines of code get executed during a
run and which lines of code don't. Tools such as GNU coverage (gcov), and kcov and
frontend tools such as lcov can be very valuable in gleaning this key information.

Why is code coverage important?
Here are a few typical reasons why you should (I'd go so far as to say must) perform
code coverage:

• Debugging: To help identify code paths that are never executed (error paths are
pretty typical), thereby making it clear that you need test cases for them (to then
catch bugs that lurk in such regions).

• Testing/QA: Identify test cases that work and, more to the point, ones that need to
be written in order to cover lines of code that never get executed, as, after all, 100%
code coverage is the objective!

• They can help with (minimal) kernel configuration. Seeing that certain code
paths are never taken perhaps implies you don't require the configuration that
uses them (this can be off the mark; take care to ensure it's really not required
before disabling it).

Let's dig deeper into the area of interest here – the first point, debugging. To illustrate the
point, we take a simple pseudocode example of an error code path within regular code:

p = kzalloc(n, GFP_KERNEL);

if (unlikely(!p)) { [...] } // let's assume this alloc is fine

foo(); // assume it all goes well here

q = kzalloc(m, GFP_KERNEL);

if (unlikely(!q)) { // if this allocation fails ...

 ret = do_cleanup_one();

 if (!ret) /* ... and if this is true, then we end up with a
memory leak!!! */

An introduction to kernel code coverage tools and testing frameworks 583

 return -ENOSPC;

 kfree(p);

 return -ENOMEM;

}

If you don't have a (negative) test case where the value ret is NULL, then that code path
– the one where we return an error value but fail to free the previously allocated memory
buffer first – never gets run; therefore, it never gets tested. Then, even powerful dynamic
analysis tools, such as KASAN, SLUB debug, kmemleak, and so on, cannot catch the
leakage bug, as they never run the code path! This illustrates why 100% code coverage is key
to a successful product or project.

Tip – Fault Injection
So, how exactly do we create a (negative) test case to test error paths (such as
in the previous simple example)? Also, kernel-level allocations via the slab
cache (kmalloc(), kzalloc(), and similar), pretty much never fail,
yet we're taught to always check and write code for the failure case (there are
corner cases where they can fail; please, always check for the failure case!); but
how do we test that code? The kernel has a fault-injection framework to help
with precisely this! It's important as only when you run the code can you catch
potential bugs (except for static analyzers). The official kernel documentation
covers the kernel fault-injection framework in detail (Fault injection capabilities
infrastructure: https://www.kernel.org/doc/html/latest/
fault-injection/fault-injection.html#fault-
injection-capabilities-infrastructure); do check it out,
and look in the Further reading section for more on this topic.

Although gcov is a userspace tool, it's also used for Linux kernel (and module) coverage
analysis. When used in the context of the Linux kernel, the gcov coverage data is read
off debugfs pseudofiles (under /sys/kernel/debug/gcov). The mechanics of
using gcov to perform kernel-level code coverage are definitively covered in the official
kernel documentation here: https://www.kernel.org/doc/html/latest/
dev-tools/gcov.html#using-gcov-with-the-linux-kernel. Tools such
as lcov are frontends to gcov; they provide useful features such as generating HTML-
based code coverage reports (they work in the usual manner, whether used for user or
kernel-space reporting).

As experienced folk in the industry know, many customers' service level agreements
(SLAs) or contracts will mandate 100% (or close to it) code coverage being documented
and signed off.

https://www.kernel.org/doc/html/latest/fault-injection/fault-injection.html#fault-injection-capabilities-infrastructure
https://www.kernel.org/doc/html/latest/fault-injection/fault-injection.html#fault-injection-capabilities-infrastructure
https://www.kernel.org/doc/html/latest/fault-injection/fault-injection.html#fault-injection-capabilities-infrastructure
https://www.kernel.org/doc/html/latest/dev-tools/gcov.html#using-gcov-with-the-linux-kernel
https://www.kernel.org/doc/html/latest/dev-tools/gcov.html#using-gcov-with-the-linux-kernel

584 A Few More Kernel Debugging Approaches

A brief note on kernel testing
Testing/QA is a key part of the software process. Although the aphorism testing can reveal
the presence of bugs but not their absence is, unfortunately, true, giving testing its due, by
using state-of-the-art Linux kernel testing tools and frameworks, you can indeed root out
(and thus let you subsequently fix) many, if not most, OS- and driver-level bugs. It's a key
thing to do; ignore testing at your peril!

As explained in the official kernel documentation (Kernel Testing Guide: https://
www.kernel.org/doc/html/latest/dev-tools/testing-overview.
html#kernel-testing-guide), there are two major types of test infrastructure
within the Linux kernel, which differ in how they're used. Besides them, a technique
called fuzzing turns out to be a key and powerful means to catch those difficult-to-tease-
out bugs; read on!

Linux kernel selftests (kselftest)
This is a collection of user-mode scripts and programs (with a few modules thrown
in as well); you'll find them within the kernel source tree under tools/testing/
selftests. The approach here is more of a black box one; kselftest is appropriate when
testing or verifying large-ish features of the kernel, using well-defined user-to-kernel
interfaces (system calls, device nodes, pseudofiles, and such). To see how to use kselftest
and run it, refer to the official kernel documentation here: https://www.kernel.
org/doc/html/latest/dev-tools/kselftest.html#linux-kernel-
selftests.

Linux kernel unit testing (KUnit)
These tend to be smaller self-contained test cases that are part of the kernel code and so
understand internal kernel data structures and functions (therefore, more in line with
unit testing). We've already covered using KUnit test cases to test the powerful KASAN
memory checker; refer back to Chapter 5, Debugging Kernel Memory Issues – Part 1,
and the Using the kernel's KUnit test infrastructure to run KASAN test cases section.
KUnit is covered in depth (including how to write your own test cases) in the official
kernel documentation here: https://www.kernel.org/doc/html/latest/
dev-tools/kunit/index.html#kunit-linux-kernel-unit-testing.

Test results are often generated in a well-known form – the Test Anything Protocol
(TAP) format is used by apps and the kernel. There are going to be cases, though,
where the original protocol doesn't align well with kernel requirements; so, the kernel
community has evolved a kernel TAP (KTAP) format for reporting. The official kernel
documentation has the details: https://docs.kernel.org/dev-tools/ktap.
html#the-kernel-test-anything-protocol-ktap-version-1.

https://www.kernel.org/doc/html/latest/dev-tools/testing-overview.html#kernel-testing-guide
https://www.kernel.org/doc/html/latest/dev-tools/testing-overview.html#kernel-testing-guide
https://www.kernel.org/doc/html/latest/dev-tools/testing-overview.html#kernel-testing-guide
https://www.kernel.org/doc/html/latest/dev-tools/kselftest.html#linux-kernel-selftests
https://www.kernel.org/doc/html/latest/dev-tools/kselftest.html#linux-kernel-selftests
https://www.kernel.org/doc/html/latest/dev-tools/kselftest.html#linux-kernel-selftests
https://www.kernel.org/doc/html/latest/dev-tools/kunit/index.html#kunit-linux-kernel-unit-testing
https://www.kernel.org/doc/html/latest/dev-tools/kunit/index.html#kunit-linux-kernel-unit-testing
https://docs.kernel.org/dev-tools/ktap.html#the-kernel-test-anything-protocol-ktap-version-1
https://docs.kernel.org/dev-tools/ktap.html#the-kernel-test-anything-protocol-ktap-version-1

An introduction to kernel code coverage tools and testing frameworks 585

What is fuzzing?
There are other means by which both apps and kernel code can be (very effectively!) tested
– a powerful one is called fuzzing. Essentially, fuzzing is a test technique, a framework,
where the program under test (PUT) is fed (semi) randomized input (the monkey-on-
the-keyboard technique!); this often leads to it failing and/or triggering bugs in subtle
ways, not commonly caught by more traditional testing techniques. Fuzzing can be
especially helpful in catching security vulnerabilities, which tend to be the typical memory
bugs. (We covered these in some detail in Chapter 5, Debugging Kernel Memory Issues –
Part 1, and Chapter 6, Debugging Kernel Memory Issues – Part 2).

There are many well-known fuzzers; among them are American Fuzzy Lop (AFL),
Trinity, and syzkaller. For the Linux kernel, syzkaller (also known as syzbot or syzkaller
robot) is perhaps the best-known de facto continuously running (unsupervised) fuzzer
on the kernel codebase; it has already found and reported hundreds of bugs (https://
github.com/google/syzkaller#documentation). The syzkaller web dashboard,
showing reported bugs of the upstream kernel and other interesting statistics, is available
here: https://syzkaller.appspot.com/upstream. Do check it out.

Where Does kcov Fit In?
Fuzzers internally mutate interesting test cases into many more test cases. To
do their job well, they require good code coverage tooling so that they can
prioritize which mutated test cases will likely yield the most interesting results.
For the Linux kernel, this is where kcov comes in – it's a code coverage tool
that "exposes kernel code coverage information in a form suitable for coverage-
guided fuzzing (randomized testing)."

Would you like to learn more and even try some hands-on kernel fuzzing? Check out the
following (quite non-trivial) exercise.

Exercise
Try out fuzzing a portion of the Linux kernel with AFL! To do so, read the
excellent A gentle introduction to Linux Kernel fuzzing tutorial and follow along:
https://blog.cloudflare.com/a-gentle-introduction-
to-linux-kernel-fuzzing/. (Also see https://github.com/
cloudflare/cloudflare-blog/blob/master/2019-07-
kernel-fuzzing/README.md.)

Well, almost there! Let's round off this chapter with a few miscellaneous areas.

https://syzkaller.appspot.com/upstream
https://blog.cloudflare.com/a-gentle-introduction-to-linux-kernel-fuzzing/
https://blog.cloudflare.com/a-gentle-introduction-to-linux-kernel-fuzzing/
https://github.com/cloudflare/cloudflare-blog/blob/master/2019-07-kernel-fuzzing/README.md
https://github.com/cloudflare/cloudflare-blog/blob/master/2019-07-kernel-fuzzing/README.md
https://github.com/cloudflare/cloudflare-blog/blob/master/2019-07-kernel-fuzzing/README.md

586 A Few More Kernel Debugging Approaches

Miscellaneous – using journalctl, assertions,
and warnings
The modern framework for system initialization on Linux is considered to be systemd
(although, by now, it's been in use on Linux for over a decade). It's a very powerful
framework, although it does have its share of detractors as well. One thing you'll
notice regarding systemd is that it's a pretty invasive system! On many (if not most)
Linux distributions, besides providing a robust initialization framework (via service
units, targets, and such), systemd takes over many activities, replacing their original
counterparts, such as system logging, the udevd userspace daemon service, network
services startup/shutdown, core dump management, watchdog, and so on. Also, with
systemd, apps can be carefully tuned to operate within specified system resource limits by
leveraging the powerful kernel control groups (cgroups) framework.

Looking up system logs with journalctl
As our central topic is debugging, we'll briefly look at only the logging aspect of systemd.
Logging is often a straightforward way to get insight into what exactly was happening on
the system before a bug occurred (and, if lucky, even during and after).

A feature of systemd logging is that it maintains the logs of both userspace app
(and system daemon) processes as well as the kernel log. By using its frontend to view
and filter log messages – journalctl – we can pretty intuitively gain insight into what's
going on at any moment. This is largely because journalctl automatically, and by
default, displays all logs in chronological order – those of user-mode processes as well as
those of all kernel components (the core kernel itself and drivers/modules), in short, all
printk-type messages.

Miscellaneous – using journalctl, assertions, and warnings 587

A quick, simple example of using journalctl is seen in Figure 12.1; this is on a
BeagleBone Black running a custom Yocto-based (Poky) Linux:

Figure 12.1 – Truncated screenshot showing journalctl executing on a BeagleBone Black embedded
Linux system (in a minicom Terminal window)

By default, journalctl shows the entire log it has saved so far; therefore, the kernel
messages right from when it was installed (on this particular system, you can see from the
first line in Figure 12.1 that it's November 19, 2021).

Okay, so how do we see messages from this, the current boot? Easy:

$ journalctl –b

[...]

-- Journal begins at Fri 2021-11-19 17:19:31 UTC, ends at Mon
2022-05-09 05:00:09 UTC. --

Nov 19 17:19:31 mybbb kernel: Booting Linux on physical CPU 0x0

588 A Few More Kernel Debugging Approaches

Nov 19 17:19:31 mybbb kernel: Linux version 5.14.6-yocto-
standard (oe-user@oe-host) (arm-poky-linux-gnueabi-gcc (GCC)
11.2.0, GNU >

Nov 19 17:19:31 mybbb kernel: CPU: ARMv7 Processor [413fc082]
revision 2 (ARMv7), cr=10c5387d

[...]

In this example, the dates happen to be the same; try this on your x86_64 Linux system;
it'll probably differ! The log message format is intuitive:

<timestamp> <hostname> <logger_id>: <... log message ...>

Here's another truncated, partial screenshot (the messages from journalctl showing
the transition from kernel to userspace during bootup):

Figure 12.2 – Partial screenshot showing handover from the kernel to the systemd process PID 1

Due to space constraints, we will skim over the details; I urge you to look up the man page
on journalctl for all possible option switches and even some examples. It's very useful:
https://man7.org/linux/man-pages/man1/journalctl.1.html.

As one more interesting example, how do we know how often this system has been
rebooted or shutdown/restarted? The journalctl frontend makes it easy with the
--list-boots option; here's some sample truncated output from our x86_64 Ubuntu
virtual machine (VM):

$ journalctl --list-boots |head -n2

-82 cd5<...>37a Tue [...] IST—Tue 2022-01-25 ... IST

-81 6ea<...>0a1 Tue [...] IST—Tue 2022-01-25 ... IST

$ journalctl --list-boots |tail -n2

https://man7.org/linux/man-pages/man1/journalctl.1.html

Miscellaneous – using journalctl, assertions, and warnings 589

-1 093<...>cb3 Fri [...] IST—Fri 2022-05-06 ... IST

 0 d72<...>a8b Fri [...] IST—Mon 2022-05-09 ... IST

This output informs us that this particular system has been booted 83 times. The integer
value in the left-most column is how many boots ago, so the last boot (the current session)
is the left column value 0 (the negative numbers imply earlier boots, in chronological
order; so, -1 implies the boot before this one). Nice.

journalctl – a few useful aliases
There are just too many option switches to journalctl to discuss here. To keep it
short but still useful, here are a few aliases to journalctl that you might find useful. I
typically put these into a startup script and source them at login:

jlog: current boot only, everything

alias jlog='journalctl -b --all --catalog --no-pager'

jlogr: current boot only, everything, *reverse* chronological
order

alias jlogr='journalctl -b --all --catalog --no-pager
--reverse'

jlogall: *everything*, all time; --merge => _all_ logs merged

alias jlogall='journalctl --all --catalog --merge --no-pager'

jlogf: *watch* log, 'tail -f' mode

alias jlogf='journalctl -f'

jlogk: only kernel messages, this boot

alias jlogk='journalctl -b -k --no-pager'

Using the journalctl -f variant can be particularly useful to literally watch logs as
they appear in real time. Also, simply use the -k option switch to show kernel printks.

You can do more with journalctl; filtering logs based on flexibly stated since and/or
until-type keywords. For example, let's say you want to see all logs since 11 a.m. today
but only until an hour ago (let's say it's 1 p.m. now, lunch right?). You could do so like this:

journalctl –b --since 11:00 --until "1 hour ago"

There are several variations too; powerful stuff, indeed!

590 A Few More Kernel Debugging Approaches

Assertions, warnings, and BUG() macros
Assertions are a way to test assumptions. In userspace, the assert() macro serves
the purpose. The parameter to assert() is the Boolean expression to test – if true,
execution continues as usual (within the calling process or thread); if false, the
assertion fails. This makes it invoke the abort() function, causing the process to die
accompanied by a noisy printf message conveying the fact that the assertion failed (it
will display the filename and line number as well as the failing assertion's expression).

Assertions are in effect a code-level debug tool, helping us achieve something very
important (that I have tried to emphasize throughout the book): do not make assumptions;
be empirical. Assertions allow us to test those assumptions. As a silly example, let's say
a signal handler within a process sets an integer x to the value 3; in another function,
foo(), we're assuming it's set to 3. Hey, that can be dangerous! Instead, we test our
assumption with an assertion and then proceed on our merry way:

static int foo(void) {

 assert(x == 3);

 bar(); [...]

}

Now, you can see that an assertion is a way to say what you expect; if what's expected
doesn't actually happen at runtime, you'll be notified! That's very useful.

So, why don't we use the same idea within the kernel? Wouldn't that be useful? It would,
but there's a problem: we can't realistically have the kernel abort if the assertion fails, can
we? Well, actually, we can: it's what macros such as BUG_ON() (and friends) do. So, some
kernel/driver authors write their own version, in effect, a custom assert macro; here's
an example (from a block driver named sx8):

// drivers/block/sx8.c

#define assert(expr) \

 if(unlikely(!(expr))) {
\

 printk(KERN_ERR "Assertion failed! %s,%s,%s,line=%d\n",
\

 #expr, __FILE__, __func__, __LINE__); \

 }

Summary 591

Nice and simple, and an effective way to check assumptions! This driver invokes its
custom assert macro a few times; here's one example:

assert(host->state == HST_PORT_SCAN);

Exercise
Look up the kernel code for the definition of BUG_ON(). You'll see it's a
macro that invokes the BUG() macro when the condition comes true.
Guess what? The (arch-specific) BUG() macro typically invokes a printk
specifying the location of the code and then calls panic("BUG!").

Don't lightly invoke any of the BUG*() macros; you only call them when you have
an unrecoverable situation, when there's no way out, when you must panic. A better
alternative, perhaps, is using one of the many WARN*() type macros found within
the kernel; they cause a warning-level printk to be emitted to the kernel log when the
condition (passed as a parameter) is true! Thus, the WARN*() macros are perhaps the
closest built-in kernel equivalent to the user-mode assert() macro. Do realize, though,
that even the WARN*() macros spell out that a significant situation exists within the
kernel – again, don't invoke them unnecessarily!

Summary
How awesome! Congratulations on completing this, the final chapter, and this book!

Here, you got an introduction to some remaining kernel debugging approaches – things
we perhaps mentioned but hadn't covered elsewhere. We began by mentioning the
powerful kdump/crash framework. Kdump allows capturing the complete kernel image
(the trigger typically being a kernel crash/Oops /panic), and the crash userspace utility
helps you (post-mortem) analyze it.

Static analyzers can play a really useful role in discovering potential bugs and security
vulnerabilities. Don't ignore them; learn to leverage them!

The importance of code coverage was then delved into for a bit (along with a brief
mention of how the kernel's fault-injection framework helps in setting up negative test
cases, having control actually going to those pesky and possibly buggy error code paths).
We briefly examined the kernel testing framework landscape; you saw that the kernel
selftests and KUnit frameworks are the typical ones used to cover a lot of ground. Don't
forget the powerful fuzzing technique though – Google's syzbot (syzkaller robot) uses
it to its advantage to automatically and continually fuzz the Linux kernel, teasing out
many bugs!

592 A Few More Kernel Debugging Approaches

We finished the chapter with a quick mention of how system (and app) logs can
be examined and filtered using the powerful journalctl frontend. Testing your
assumptions by employing a custom kernel-space assert macro, and a mention of using
the WARN*() and BUG*() macros, completed the discussion here.

A key point I'd like to (re)emphasize upon completion of this book is one of Fred Brook's
well-known aphorisms: there is no silver bullet. In effect, what's meant is that one tool or
debugging technique or analysis type cannot and will not catch all possible bugs; use several.
These include compiler warnings (-Wall and -Wextra), static and dynamic analyzers
(KASAN and others), dynamic debug printks, kprobes, lockdep, KCSAN, ftrace and
trace-cmd, KGDB/kdb, and custom panic handlers. Our so-called better Makefile
(for example, https://github.com/PacktPublishing/Linux-Kernel-
Debugging/blob/main/ch3/printk_loglevels/Makefile) tries to enforce
exactly this discipline by having several targets. Take the trouble to use them!

So, you're at the end? No, it's really more like the beginning, but armed with precious,
useful, and practical tools, techniques, tips, and knowledge (this is our sincere hope!). Go
forth, my friend!

Further reading
• Kdump:

 � Documentation for Kdump - The kexec-based Crash Dumping Solution: https://
www.kernel.org/doc/html/latest/admin-guide/kdump/kdump.
html

 � Marian Marinov - Analyzing Linux kernel crash dumps, YouTube presentation,
December 2016: https://www.youtube.com/watch?v=wcId2Y9bM-M

 � (Biased to the Fedora distribution) Using Kdump for examining Linux Kernel
crashes, Pratyush Anand, June 2017: https://opensource.com/
article/17/6/kdump-usage-and-internals

 � Linux Kernel Debugging, Kdump, Crash Tool Basics Part-1, Linux Kernel
Foundation, YouTube video tutorial: https://www.youtube.com/
watch?v=6l0ulgv1OJ4

 � How to use kdump to debug kernel crashes, January 2022: https://
fedoraproject.org/wiki/How_to_use_kdump_to_debug_kernel_
crashes

https://github.com/PacktPublishing/Linux-Kernel-Debugging/blob/main/ch3/printk_loglevels/Makefile
https://github.com/PacktPublishing/Linux-Kernel-Debugging/blob/main/ch3/printk_loglevels/Makefile
https://www.kernel.org/doc/html/latest/admin-guide/kdump/kdump.html
https://www.kernel.org/doc/html/latest/admin-guide/kdump/kdump.html
https://www.kernel.org/doc/html/latest/admin-guide/kdump/kdump.html
https://www.youtube.com/watch?v=wcId2Y9bM-M
https://opensource.com/article/17/6/kdump-usage-and-internals
https://opensource.com/article/17/6/kdump-usage-and-internals
https://www.youtube.com/watch?v=6l0ulgv1OJ4
https://www.youtube.com/watch?v=6l0ulgv1OJ4
https://fedoraproject.org/wiki/How_to_use_kdump_to_debug_kernel_crashes
https://fedoraproject.org/wiki/How_to_use_kdump_to_debug_kernel_crashes
https://fedoraproject.org/wiki/How_to_use_kdump_to_debug_kernel_crashes

Further reading 593

• Using the crash app to interpret and debug the kdump image:

 � Probably the best, a white paper on crash by its lead developer and maintainer,
David Anderson: https://crash-utility.github.io/crash_
whitepaper.html; this even includes a pretty deep case study: https://
crash-utility.github.io/crash_whitepaper.html#EXAMPLES

 � Introduction to Linux Kernel Crash Analysis – Alex Juncu, YouTube video,
February 2016: https://www.youtube.com/watch?v=w8XnnG68rqE

 � Analysing Linux kernel crash dumps with crash - The one tutorial that has it all,
Dedoimedo, June 2010: https://www.dedoimedo.com/computers/
crash-analyze.html

• Static analysis tools:

 � Checking the Linux Kernel with Static Analysis Tools, Steven J. Vaughan-Nichols,
The New Stack, June 2021: https://thenewstack.io/checking-
linuxs-code-with-static-analysis-tools/

 � Static analysis in GCC 10, Red Hat Developer, March 2020: https://
developers.redhat.com/blog/2020/03/26/static-analysis-in-
gcc-10

 � List of tools for static code analysis: https://en.wikipedia.org/wiki/
List_of_tools_for_static_code_analysis

 � Smatch Static Analysis Tool Overview, Dan Carpenter, Oracle blog, December
2015: https://blogs.oracle.com/linux/post/smatch-static-
analysis-tool-overview-by-dan-carpenter

• Fuzzing:

 � A gentle introduction to Linux Kernel fuzzing, Marek Majkowski, Cloudflare
blog, October 2019: https://blog.cloudflare.com/a-gentle-
introduction-to-linux-kernel-fuzzing/

 � Also see: https://github.com/cloudflare/cloudflare-blog/
blob/master/2019-07-kernel-fuzzing/README.md

 � Fuzzing Linux Kernel, Andrey Konovalov, Senior Software Engineer, Google;
video presentation, March 2021: https://www.linuxfoundation.org/
webinars/fuzzing-linux-kernel/

https://crash-utility.github.io/crash_whitepaper.html
https://crash-utility.github.io/crash_whitepaper.html
https://crash-utility.github.io/crash_whitepaper.html#EXAMPLES
https://crash-utility.github.io/crash_whitepaper.html#EXAMPLES
https://www.youtube.com/watch?v=w8XnnG68rqE
https://www.dedoimedo.com/computers/crash-analyze.html
https://www.dedoimedo.com/computers/crash-analyze.html
https://thenewstack.io/checking-linuxs-code-with-static-analysis-tools/
https://thenewstack.io/checking-linuxs-code-with-static-analysis-tools/
https://developers.redhat.com/blog/2020/03/26/static-analysis-in-gcc-10
https://developers.redhat.com/blog/2020/03/26/static-analysis-in-gcc-10
https://developers.redhat.com/blog/2020/03/26/static-analysis-in-gcc-10
https://en.wikipedia.org/wiki/List_of_tools_for_static_code_analysis
https://en.wikipedia.org/wiki/List_of_tools_for_static_code_analysis
https://blogs.oracle.com/linux/post/smatch-static-analysis-tool-overview-by-dan-carpenter
https://blogs.oracle.com/linux/post/smatch-static-analysis-tool-overview-by-dan-carpenter
https://blog.cloudflare.com/a-gentle-introduction-to-linux-kernel-fuzzing/
https://blog.cloudflare.com/a-gentle-introduction-to-linux-kernel-fuzzing/
https://github.com/cloudflare/cloudflare-blog/blob/master/2019-07-kernel-fuzzing/README.md
https://github.com/cloudflare/cloudflare-blog/blob/master/2019-07-kernel-fuzzing/README.md
https://www.linuxfoundation.org/webinars/fuzzing-linux-kernel/
https://www.linuxfoundation.org/webinars/fuzzing-linux-kernel/

594 A Few More Kernel Debugging Approaches

 � Fuzzing Applications with American Fuzzy Lop (AFL), A Priya, medium,
June 2020: https://medium.com/@ayushpriya10/fuzzing-
applications-with-american-fuzzy-lop-afl-54facc65d102

• Fault injection:

 � Fault injection capabilities infrastructure: https://www.kernel.org/doc/
html/latest/fault-injection/fault-injection.html#fault-
injection-capabilities-infrastructure

 � Old but a useful introduction: Injecting faults into the kernel, Jon Corbet, LWN,
November 2006: https://lwn.net/Articles/209257/

 � A modern approach with BPF: BPF-based error injection for the kernel, Jon Corbet,
November 2017: https://lwn.net/Articles/740146/

 � FIFA: A Kernel-Level Fault Injection Framework for ARM-Based Embedded Linux
System, Eunjin Jeong, et al, IEEE, March 2017: https://ieeexplore.ieee.
org/abstract/document/7927960

• Logs with systemd's journalctl:

 � journalctl(1) — Linux manual page: https://man7.org/linux/
man-pages/man1/journalctl.1.html

 � How to Check Logs Using journalctl, F Civaner, March 2021: https://www.
baeldung.com/linux/journalctl-check-logs

• Finally, the LWN Kernel Index (precious! Be sure to bookmark it): https://lwn.
net/Kernel/Index/

mailto:https://medium.com/@ayushpriya10/fuzzing-applications-with-american-fuzzy-lop-afl-54facc65d102
mailto:https://medium.com/@ayushpriya10/fuzzing-applications-with-american-fuzzy-lop-afl-54facc65d102
https://www.kernel.org/doc/html/latest/fault-injection/fault-injection.html#fault-injection-capabilities-infrastructure
https://www.kernel.org/doc/html/latest/fault-injection/fault-injection.html#fault-injection-capabilities-infrastructure
https://www.kernel.org/doc/html/latest/fault-injection/fault-injection.html#fault-injection-capabilities-infrastructure
https://lwn.net/Articles/209257/
https://lwn.net/Articles/740146/
https://ieeexplore.ieee.org/abstract/document/7927960
https://ieeexplore.ieee.org/abstract/document/7927960
https://man7.org/linux/man-pages/man1/journalctl.1.html
https://man7.org/linux/man-pages/man1/journalctl.1.html
https://www.baeldung.com/linux/journalctl-check-logs
https://www.baeldung.com/linux/journalctl-check-logs
https://lwn.net/Kernel/Index/
https://lwn.net/Kernel/Index/

Index

Symbols
!!<boolean> Syntax 296
<value optimized out> GDB response

occurring 567
/proc/slabinfo pseudofile 255

A
Ada 8
addr2line

used, for finding buggy code
location on ARM 353

using, to pinpoint Oops
code location 331

Address Sanitizer (ASAN) 186, 260
AM335x and AMIC110 Sitara

TM Processors
reference link 356

American Fuzzy Lop (AFL) 585
Android Open Source Project

(AOSP) 188
using, ftrace 449-451

angle of attack (AoA) 9
Application Binary Interface (ABI) 320

basics 132, 134

arch-specific Oops bitmask
interpreting 313-315

ARM cross compiler
failing 350

ARM Procedure Call Standard
(APCS) 134

ARM target system
setting up 526

assertions 590

B
Babeltrace 2 470
babeltrace2 command-line tool

reference link 470
Base Pointer (BP) 132
BeagleBone Black

reference link 11
Berkeley Packet Filter (BPF) 173
Board Support Package (BSP) 16
Boeing 737 MAX aircraft 9
BPF Compiler Collection (BCC) 173, 465
bpftrace 173
BPF Type Information (BTF) 531

596 Index

Buffer Overflow (BoF)
about 49
reference link 49

buggy code location, on ARM
finding 352
finding, with addr2line 353
finding, with GDB 353
finding, with objdump 354, 356

buggy module
debugging, with KGDB 543, 544

buggy module v2
triggering, Oops 297

bug hunting
with KASAN 191

BUG() macro 591
bugs 184
bug types

classic view 46, 47
classifying 46
CVE/CWE security-related view 48
Linux kernel 49, 50
memory view 48

C
call gates 172
call stack

interpreting, within Oops 323-325
chain notifier mechanism 485
checkpatch.pl script

about 579
using, for static analysis 580-582

Clang
about 13
kernel modules, building with 223
using, on Ubuntu 21.10 223, 224, 225

Clang 13 compiler 209

classic view, bugs
data races 47
generic defects, on resources 46
logic/implementation errors 46
performance defects 47
resource leakage 46

Coccinelle
about 579
reference link 580

code
searching, where Oops

occurred 318, 319
code coverage

about 582
analysis 52
significance 582, 583

Code Segment (CS) register 321
Common Trace Format (CTF) 473
Common Vulnerabilities and

Exposures (CVE) 48
Common Weaknesses and

Enumeration (CWE) 48
Compile Time Instrumentation

(CTI) 190, 214
Complex Instruction Set

Computing (CISC) 121
concurrency bugs

catching, with KCSAN 367
conditional breakpoints 568, 569
CONFIG_GDB_SCRIPTS

used, for setting up GDB
scripts 561, 563

console device
about 105
issue 105
leveraging, to obtain kernel log 340, 341
solution 106

Index 597

control file 90
control groups (cgroups) framework 586
convenience functions

reference link 567
cppcheck

about 579
using, for static analysis 580-582

CPU register values 322
crash app 322
crashkernel

reference link 578
crash tool 444
cscope 66
ctags 66
current kernel config

viewing 33-35
custom buggy kernel module

tests, exercising with 200-202
custom debug kernel

setting up 26-28, 33
custom kernel panic handler

atomic notifier chain APIs 494
atomic notifier chain, registering 494
callback handler 494-496
Linux kernel panic notifier

chains 492, 493
notifier_block data structure 494-496
notifier_block structure 494
setting up, within module 493
writing 492

custom kernel panic handler module
code, viewing 497, 498
implementing 501

custom production kernel
setting up 19-21

CVE/CWE security-related view, bugs 48
CVE Details

URL 49

D
Das U-Boot 115
data races 365-367
debug filesystem (debugfs) 129
debugging

instrumentation approach 86
tips 38-40

debug kernel config
versus production kernel config 35-37

debug symbols
used, for unstripped vmlinux

kernel image 326
decodecode script

used for, interpreting machine
code 336, 337

decode_stacktrace.sh script
leveraging 334, 335

delay markers
interpreting 422, 423

development phase 50, 51
Device Tree Blob (DTB) 15, 527
devres 281
Direct Memory Access (DMA) 493
disk I/O issue, on Netflix cloud instances

investigating, with perf-tools 466
double-free

interpreting, on slab memory 248
dropbear lightweight SSH server 25
dump-capture kernel

about 488, 577
reference link 578

dynamic analysis 52, 579
dynamic debugging

about 87
match-spec specifiers, with examples 95
messages, specifying and printing 90-95

598 Index

reference link 96
via module parameters 87-89

dynamic debugging, on kernel module
in production environment

debug prints, activating at boot
and module init 103

demonstrating, on simple
misc driver 97-102

kernel boot-time parameters 104
kernel lockdown, disabling 96, 97
performing 96

dynamic debug option 75
dynamic ftrace 407
dynamic kernel memory allocation

developers, tips 281
dynamic kprobe event tracing

using, on kernel module 166-169
dynamic kprobe, setting up

via kprobe events
about 160-162
exercise 165, 166
overflow or overwhelm, avoiding 163
trying, on ARM system 163, 164

dynamic probing 122

E
early printk

about 106
configuring 106-109
reference link 109

eBPF tools
observability 173-175
reference link 175

epilogue function 202
European Space Agency's (ESA's)

unmanned Ariane 5 rocket 8
event tracing framework 157

Executable and Linker Format
(ELF) 327, 526

execve() API
trapping, via eBPF tooling 171
trapping, via perf 171

extended Berkeley Packet Filter (eBPF)
about 173
slabratetop utility 256

F
faddr2line script

exploiting, on KASLR systems 337, 338
false positives 582
fault injection capabilities infrastructure

reference link 583
fault-injection framework 583
Fault Status Register (FSR) 352
filesystem

ftrace, accessing via 404
filter commands

about 432, 433
reference link 433

flawfinder 579
Frame Pointer (FP) 132
ftrace

about 402, 403
accessing, via filesystem 404
AOSP, using 449-451
delay markers, interpreting 422, 423
function_graph options and latency-

format, running 412, 413
kernel, configuring 405
kernel parameters 445
miscellaneous points, via FAQ
format 443- 447
reference link 450
resetting 413- 416

Index 599

running 410-412
system overhead 406
use cases 447
used, for checking kernel stack

utilization and overflow 447, 448
used, for kernel tracing 403, 404
using, to trace flow of kernel 408-410

ftrace_enabled
reference link 444

ftrace filtering options
about 426
index-based function filtering 430-432
module-based filtering 432
set_ftrace_filter file 429, 430
summarizing 427, 428

ftrace options
summarizing 423, 424

ftrace trace_printk() API 86
ftrace tracers

documentation 409
reference link 409

Function Tracer
reference link 423

fuzzers
about 585
American Fuzzy Lop (AFL) 585
syzkaller 585
Trinity 585

fuzzing 584, 585

G
gcov

about 52
reference link 583

GDB client
informing, target module's locations

in memory 542, 543

GDB scripts
setting up, with CONFIG_

GDB_SCRIPTS 561, 563
General Public License (GPL) 282
General Purpose Registers

(GPRs) 131, 567
Get Free Page (GFP) 282
get_maintainer.pl script 338, 340
globbing 429
GNU coverage (gcov) 582
GNU DeBugger (GDB)

about 325
convenience routines 567
custom macros, in startup file 568
reference link 330
Text User Interface (TUI)

mode, using 564, 566
tips and tricks 561
used, for finding buggy code

location on ARM 353
using, to debug Oops 330

GNU libc 64
guest OS

Linux, running as 11, 12
working, over SSH 25

H
hard lockup bug

about 510
detecting 510
triggering, on native x86_64 511-515

hardware breakpoints 550, 569, 571
hardware interrupt (hardirq) 143
hardware watchpoints 568
Heartbleed exploit 186
Heisenberg uncertainty principle 362

600 Index

Heisenbugs 362
High Availability (HA) 28
High Dynamic Range (HDR) 450
hole 301
host system

remote GDB client, working 538-541
hung task detector

leveraging 516-518

I
ibbpf+BPF CO-RE (Compile

Once-Run Everywhere) 173
idle thread 348
incorrect memory accesses 183
index-based function filtering 430-432
Inertial Reference Systems (IRS) 8
in-field or production analysis 50-53
Instruction Pointer register 318
Integer overFlow (IoF) defect 52, 219
Intelligent Platform Management

Interface (IPMI) 488
Inter-Integrated Circuit (I2C) bus 78
internal fragmentation 252
interrupt context 413
Interrupt Requests (IRQs) 388
Interrupt Service Routine (ISR) 420
irqsoff tracer

about 446
reference link 446

J
Jet Propulsion Laboratory (JPL) team 9
journalctl

system logs, looking up 586-589
using 589

JTAG debuggers 526
jumper probe (jprobe) 135

K
KASAN shadow memory output

interpreting 196-200
KASLR systems

faddr2line script, exploiting 337, 338
kconfig-hardened-check Python script

reference link 21
kcov 582, 585
Kdb

about 531
reference link 531

kdump/crash framework
about 576, 577
downside 577
usage reasons 576, 577

kdump feature 322, 325
kdump/kexec infrastructure 444
kernel

configuring, for ftrace 405
configuring, for KGDB 528
configuring, for kmemleak 264, 265
configuring, for SLUB debug 235
CPU stalls, detecting 502
cross compiling 22
debugging, with KGDB 536, 537
flow, tracing with ftrace 408-410
hard/soft lockup detector,

employing 504-507
hung task, employing 516
lockups, detecting 502
Magic SysRq facility 481
memory defects, identifying 226, 227
panic, creating via command line 481
panic() function, calling 480, 481

Index 601

panic () function, handling 480
rescuing, with netconsole 483, 484
SLUB debug test cases, running

with slub_debug turned
off and on 240-243

tracing, with ftrace 403
tracing, with LTTng 467
tracing, with TraceCompass 467

Kernel Address Sanitizer (KASAN)
about 184, 186, 404
basics 186
compiler warnings 210
generic KASAN 186
hardware tag-based KASAN 187
kernel configuration, for generic

KASAN mode 189-191
software tag-based KASAN 187
tabulated results 211-213
test environment 209
test results, tabulating 209
UBSAN kernel checker, for finding

Undefined Behavior 214
usage requirements 187, 188
used, for bug hunting 191

Kernel Address Space Layout
Randomization (KASLR) 331, 485

kernel and modules, debugging via gdb
reference link 532, 563

kernel bug
generating 290
due to locking defects, use cases 382

kernel Bugzilla
URL 357

kernel-chktaint script 338
kernel code

static analysis, performing on 579

Kernel Concurrency Sanitizer (KCSAN)
about 404
concurrency bugs, catching with 367
data race test case 374-376
data race test case, running with

wrapper script 378, 379
defects identified 382
enabling 371-374
enabling, dependencies 370
kee-jerk reactions, avoiding 380, 381
kernel, configuring 369
locking rules and bugs, identifying

from LDV project 382-385
report, interpreting 376-378
runtime control via debugfs 379, 380
tasks, performing 368, 369
using 374

kernel config macros 489, 491
kernel configuration

mandatory configs, for KGDB
support 528-531

optional configs options,
for KGDB 531-533

reference link 578
kernel core dump feature 576
kernel coverage (KCOV)

about 370
tools 582

Kernel Debugger Boot Arguments
reference link 537

kernel debugging
need for, different approaches 50
scenarios 50

kernel debugging approaches
development phase 51
scenarios, categorizing 54-58
summarizing 51
unit testing and/or QA phases 52

602 Index

kernel-devel download, for Linux
reference link 326

kernel dump (kdump)
about 576
activation process 578
kernel image, capturing on

crash 578, 579
setup process 578

Kernel Electric-Fence (KFENCE)
about 228
enabling 228
versus KASAN 228

Kernel GDB (KGDB)
about 339, 525
kernel 526
kernel, configuring 528
kernel modules, debugging 542
optional kernel configs options 531-533
setting up, on ARM target system 526
used, for debugging buggy

module 543, 544
used, for debugging kernel 536, 537
working 525

kernel helper scripts
summarizing 332

kernel lockdown mode
about 81
reference link 82

kernel log
console device, leveraging

to obtain 340, 341
kernel memory

leakage bugs,viewing 263, 264
tools, for identifying issues 184, 185

Kernel memory leak detector
(kmemleak) 184

Kernel-Mode Stack
viewing, of CPU cores 324

kernel modules
about 17
building, with Clang 223
debugging, with KGDB 542
function, recognizing within 457
rebooting 297

kernel module signing facility
reference link 81
call stack, interpreting within 323-325
debugging, with GNU

Debugger (GDB) 330
decoding 308
diagnosing, CPU registers 320, 321
examples 356, 357
example, x86 control registers 321, 322
generating 290
line-by-line interpretation 308-322
test case interpretation 320
trigger, by writing to invalid unmapped

location within kernel VAS 299-303
trigger, by writing to random location

within NULL trap page 298
trigger, by writing to structure

member when structure
pointer's NULL 303-306

kernel panic 50, 307, 576
kernel parameters 489-491
kernel printk

about 64, 65
output location 72-74
pr_<foo> convenience macros,

leveraging 68, 69
kernel probes. See kprobes
kernel release

selecting 17, 18
kernel's command-line parameters

reference link 445

Index 603

KernelShark GUI
trace.dat type output, obtaining

from raw ftrace 458
used for, viewing single

ping 458, 460, 461
using 451, 457

KernelShark, using to analyze
real-time scheduler

reference link 461
kernel's kmemleak test module 278, 279
kernel stack utilization and overflow

checking, with ftrace 447, 448
kernel tainted flags

interpreting 316, 317
reference link 317

kernel TAP (KTAP) format
reference link 584

kernel testing
about 584
reference link 584

kernel tracing
session recording, with LTTng 467-470
technology, overview 400-403

kernel tracing, unifying
reference link 402

kernel VAS
Oops trigger, by writing invalid

unmapped location within 299-303
kernel virtual address (KVA) 121, 292
Kernel Virtual Machine (KVM) 184
Kernighan and Ritchie (K&R) 64
kexec-based Crash Dumping Solution

reference link 577
kexec mechanism 577
kgdboc

reference link 530

KGDB support
mandatory configs 528-531

KGDB target remote 563
kmemleak

about 264
kernel, configuring 264, 265
used, for finding memory

leakage issues 260-262
using 266

kmemleak scanner
controlling 280, 281

kprobe-based event tracing
about 153-157
dynamic kprobe, setting up via 160-162
minimal internal details 157
using, to trace built-in

functions 157, 159
kprobe-perf

used, for setting up return probe
(kretprobe) 169, 170

kprobes
basics 120-122
demo, for setting up 122, 123
fault-handler routine, setting up 120
interface stability 152, 153
limitations and downsides 152
post-handler routine, setting up 120
pre-handler routine, setting up 120
regular kprobe 121
return probe or kretprobe 121
setting up 122, 123

kprobes events 157
kretprobes

about 123, 147-151
Kprobes miscellany 151

kselftest framework 192
kthread (kernel thread) worker 319

604 Index

KUnit
about 191
leveraging 192
used, for running KASAN

test cases 191-196

L
latency-measurement tracers 446
latency trace info

delving 416-421
lcov 582, 583
leak 260
Leak Sanitizer (LSAN) 187
Least Significant Bit (LSB) 314
Link Register (LR) 352
Linux

running, as guest OS 11, 12
running, as native OS 11

Linux distribution
installation, verifying 12, 13

Linux Driver Verification
(LDV) project 357

Linux Extended BPF (eBPF) Tracing Tools
reference link 466

Linux kernel, bugs 49
Linux kernel Bugzilla

locking bugs, identifying 385, 387
Linux Kernel Dump Test Module

(LKDTM) 192
Linux Kernel fuzzing tutorial

reference link 585
Linux Kernel Mailing List (LKML) 356
Linux kernel panic notifier chains

atomic 492
blocking 492
raw 492
sleepable RCU (SRCU) 492

Linux kernel RPM package
reference link 326

Linux kernel selftests (kselftest)
about 584
reference link 584

Linux Kernel's Memory (Consistency)
Model (LKMM) 366

Linux kernel unit testing (KUnit)
about 584
reference link 584

linux-kernel.vger.kernel.org archive mirror
reference link 337

Linux Security Modules (LSMs) 451
Linux Trace Toolkit - next

generation (LTTng)
installation link 467
URL 467
used, for kernel tracing 467
used, for recording kernel

tracing session 467-470
Linux tracing systems

reference link 401
Loadable Kernel Module (LKM) 65
lock debugging 363
lockdep 363
locking

about 363, 364
critical section 364
exceptions 365
key points 364

locking defects
blocking scenario 390-392
identifying, from various blog

articles and like 387
incorrect spinlock usage,

exploiting 387, 388

Index 605

long delays, due to disabled
defects 388-390

logging 586
Long Term Stable (LTS) kernel release 18
Low Level Virtual Machine (LLVM) 223
LTTng analyses 470
LTTng traces

analyzing, on command line 470

M
machine-check exception (mce) 347
machine code

interpreting, with decodecode
script 336, 337

Magic SysRq facility 481-483
maneuvering characteristics

augmentation system (MCAS) 9
marked accesses 367
Mars Pathfinder reset issue 8
Meltdown hardware bugs 315
memory

corruption bug types 183
GDB client, informing target

module's locations 542, 543
issues 183

memory corruption 48, 234
memory defects, in kernel

catching 284, 286
identifying 226, 227
miscellaneous notes 286

memory leakage
issues, finding with kmemleak 260-262
issues, addressing with

kmemleak 266-269
preventing, with modern devres

memory allocation APIs 281, 282

memory leakage testcase
catching 269
running 269-278

memory leaks 183
Memory Protection Fault Status

Register (MPFSR) 356
memory-related issues

developers, tips 283, 284
Memory Sanitizer (MSAN) 187
memory view, bugs 48
minimal custom ARM Linux target system

building, with SEALS 526-528
modern devres memory allocation APIs

used, for preventing memory
leakage 281, 282

module
building, for target kernel 548

module-based filtering
about 432
filter commands 432, 433

module, debugging with KGDB
about 556-560
host system remote GDB

startup 549-552
init function, debugging 560, 561
module, installing to GDB 552-556
root filesystem, preparing 545
symbols, adding to GDB 552-556
target startup 548, 549
target system's kernel, preparing 545
test module, preparing 545
wait at early boot 548, 549

module stacking approach 65
monitoring and tracing tools 52

606 Index

N
National Vulnerability Database

(NVD), CVEs listing
reference link 49

native OS
Linux, running as 11

netconsole
about 357
reference link 349
using 348-484

Network Block Device (nbd) driver 80
New API (NAPI) 47
Non-Maskable Interrupt (NMI) 324, 487
No Operation (No-Op) 409
NULL pointer

dereferencing 294-296
NULL trap page

about 291, 292
Oops trigger, by writing to random

location within 298
working 294

O
objdump

used, for finding buggy code
location on ARM 354, 356

using, to pinpoint Oops code
location 327-329

onboard computer (OBC) 8
online binary calculator

reference link 7
OOB write overflow

interpreting, on slab memory 243-247
Oops 576

Oops code location
pinpointing, with addr2line 331
pinpointing, with objdump 327-329

oops_inirqv3
retrying with serial console

enabled 345-348
Oops location

determining, tools and techniques 325
Oops message location

reference link 306
Oops, on ARM Linux 348-352
Oops v1

NULL pointer, dereferencing 294-296
open()s

tracing, via perf-tool
opensnoop 464, 465

Open Source Software (OSS) 12
Operand Error 8
Oracle VirtualBox

guest additions, installing 13, 14
setting up, with virtual

serial port 341-344
Oracle VirtualBox guest additions,

installing in Ubuntu
reference link 14

Organic Light-Emitting Diode (OLED) 78
Original Equipment Manufacturers'

(OEMs) 142
OSBoxes project 13
Out Of Bounds (OOB) 234
Out Of Memory (OOM) 252

P
Page Global Directory (PGD) 312
Page Table Isolation (PTI) 315
Page Upper Directory (PUD) 312

Index 607

panic
output, interpreting 484-488

Patriot missile failure 7
percpu 47
perf-tools

eBPF and frontends 466
funcslower 465, 466
opensnoop 464, 465
used for, investigating disk I/O issue

on Netflix cloud instances 466
using 462, 463

perf-tools ftrace
using 451

plain access 367
plugin 408
PML4 321
pointer 460
post-mortem analysis 50, 53, 576
pr_<foo> convenience macros

leveraging 68, 69
prefix, fixing 69-72

Prebuilt VirtualBox Images
using 13

prebuilt x86_64 Ubuntu 20.04.3
download link 13

preempt_disabled level 420
Preemptible Kernel

reference link 420
printk

bootloader log peeking 114
buffer content, dumping 113, 114
designating, to known presets 109, 110
emiting, exactly once 110, 111
emiting, from userspace 112, 113
LED flashing 115
printing, before console init 105
warm reset 114

printk API
logging levels 66, 67

printk Default Log Level 67
printk, for debug purposes

debug messages, writing to
kernel log 75-79

debug prints, generating 79, 80
dev_dbg() macro, using 80
device drivers 80
kernel module, experimenting on

custom production kernel 81
rate limiting 82-86
using 75

printk format
reference link 319

printk format specifiers
reference link 426
usage tips 74, 75

priority inheritance 9
priority inversion 8
Privilege Escalation (privesc) 387
probe 120
problems, in Linux Kernel

reference link 357
process context 413
Process Identifier (PID) 129
process (proc) 415
procmap utility 291
production kernel

about 16
securing 21-26

production kernel config
versus debug kernel config 35-37

production system 16
profiling 399
Program Counter (PC) 352

608 Index

programmer's checklist
rules 41

program under test (PUT) 585
prologue function 202
putty 25

Q
Quality Assurance (QA) 5

R
Ramoops oops/panic logger

reference link 357
Raspberry Pi, for documentation pages

reference link 11
Raspberry Pi ARM-Based Systems

using 11
raw ftrace

trace.dat type output,
obtaining from 458

used, for tracing single ping 433-439
used, for tracing single ping via

set_event interface 439-442
RCU CPU stalls

triggering, on native x86_64 511-515
Read-Copy-Update (RCU)

about 492, 510
working 511

Real Time Clock (RTC) 111
Real-Time Linux (RTL) 385, 466
Real-Time Operating System (RTOS) 466
recorded events, viewing and analyzing

reference link 467
Record Linux kernel events

reference link 467
red herrings 269

remote GDB client
running, on host system 538-541
working, on host system 538-541

resource-managed 281
return probe (kretprobe)

setting up, with kprobe-perf 169, 170
reuse error 8
root filesystem (rootfs)

about 527
preparing, on host 545

S
Secure Digital MultiMedia

Card (SD MMC) 166
segfault 307
semi-automated static kprobe

via helper script 141-147
serial console 357
serial console enabled

used, for retrying oops_inirqv3 345-348
service level agreements (SLAs) 583
set_event interface

raw ftrace, used for tracing
single ping via 439-442

set_ftrace_filter file 429, 430
shared state 364
Simple Embedded Arm Linux

System (SEALS)
about 527
used, for building minimal custom

ARM Linux target system 526-528
single ping

tracing, with raw ftrace 433-439
tracing, with raw ftrace via set_

event interface 439-442

Index 609

tracing, with trace-cmd 456
viewing, with KernelShark 458-461

single ping LTTng trace
visualizing, with TraceCompass

GUI 470-473
slabinfo

debug-related options 253, 255
usage, considerations 248-253

slabinfo, debug-related options
/proc/slabinfo pseudofile 255
eBPF's slabratetop utility 256
practical stuff 257-260
slabtop utility 256

slab memory
double-free, interpreting on 248
OOB write overflow,

interpreting on 243-247
UAF bug, interpreting on 248

slab memory corruption
detecting, via SLUB debug 234

slabtop utility 256
SLUB debug

error report, interpreting 24
features, leveraging via slub_debug

kernel parameter 236, 237
flags, passing 238, 239
kernel, configuring 235
slab memory corruption,

detecting via 234
slub_debug kernel parameter

SLUB debug features,
leveraging via 236, 237

SLUB debug test cases
running 239, 240
running, on kernel with slub_debug

turned off and on 240-243
tabulating 239, 240

SLUB layer's poison flags 237, 238
smatch

about 579
reference link 580

softdog watchdog
running 503

softirqs 413
soft lockup bug

about 507, 508
triggering, on x86_64 508-510

software bugs, cases
about 7
Boeing 737 MAX aircraft 9
ESA's unmanned Ariane 5 rocket 8
Mars Pathfinder reset issue 8
other cases 10
Patriot missile failure 7

software debugging
about 5
myths 6
origins 5

software packages
installing 14, 15

soft watchpoints 368
Source and Machine Code

reference link 566
Source Lines Of Code (SLOCs) 66
sparse

about 579
reference link 580

Spectre hardware bugs 315
spinlock 509
Stack Pointer (SP) 132
stacks 347
stack trace

reference link 449
stack tracing 448

610 Index

stale frames
working 202-207

Start Of Header (SOH) 67
static analysis

about 52
performing, checkpatch.pl

script used 580-582
performing, cppcheck used 580-582
performing on kernel code 579
tools 579

static instrumentation 186
static kprobes

about 122
filename parameter, retrieving 135-139
file open syscall, probing 135
function, specifying to probe via

module parameter 130, 131
PRINT_CTX() macro's output,

interpreting 127-129
Raspberry Pi 4 (AArch64),

implementing 139-141
traditional approaches 123
trapping, into open system call 123-127
using 123

statistical approach 368
stepi (si) command 566
Symmetric Multi-Processing (SMP) 315
sysctl documentation

reference link 83
sysroot

used, for setting system root 564
system calls 171, 172
system daemon (systemd) 73, 586
systemd logging 586
system logs

looking up, with journalctl 586-589
System on Chip (SoC) 188, 348

system root
setting, with sysroot 564

syzbot 368
syzkaller robot

reference link 585

T
tainted flags 316
target

working root filesystem image,
obtaining 546, 547

target emulated ARM32 system
running 537, 538

target kernel
building 545
configuring 545
module, building 548

target system
preparing, kernel on host 545
testing 533-536

tasklets 413
task stacks 347
Technical Reference Manual

(TRM) 115, 352
teletype terminal (tty) window 105
temporary breakpoints 568, 569
Test Anything Protocol (TAP) format 584
testing 5
test module, on host

preparing 545
Text User Interface (TUI) mode 564
The Ten Commandments for

C Programmers
reference link 41

Thread Sanitizer (TSAN) 187, 362
top-half 420

Index 611

trace-cmd
available events, leveraging 454-456
available events, viewing 454-456
functions, recognizing within

kernel modules 457
help, obtaining 452
tracing session with 453
used, for tracing single ping 456
using 451

TraceCompass
used, for kernel tracing 467

TraceCompass GUI
using, to visualize single ping

LTTng trace 470-473
trace.dat type output

obtaining, from raw ftrace 458
tracefs

key files 409
trace_options

checking 425, 426
reference link 416, 426

tracepoints 400
trace_printk()

reference link 443
used, for debugging 443

tracer 408
tracing 399
tracing, with ftrace

reference link 447
trampoline 407
Translation Lookaside Buffers (TLBs) 303
traps 172
trigger file 435
Trinity 585
tunables

about 489, 491
reference link 491

U
Ubuntu 20.04 LTS 12
Undefined Behavior (UB) 48, 52, 183, 214
Undefined Behavior Sanitizer (UBSAN)

about 184, 187, 214
kernel, configuring for 215
tabulated results 222
Undefined Behavior (UB),

identifying with 216-221
Unified Tracing Platform

reference link 402
Uninitialized Memory Reads (UMR) 234
unit testing and/or QA phases

about 50, 52, 56
code coverage analysis 52
dynamic analysis 52
hardware constraints 54
in production in-field runtime 53
monitoring and tracing tools 52
post-mortem analysis 53
software constraints 54
static analysis 52

unstripped vmlinux kernel image
obtaining, with debug symbols 326

Uprobes 169
Use After Free (UAF) bug

about 247
interpreting, on slab memory 247, 248

Use After Return (UAR) 234
use-after-scope 579
user virtual address (UVA) 292
user watchdog daemon

running 504

612 Index

V
Virtual Address Space (VAS) 188, 291
VirtualBox

references 12
VirtualBox Images

reference link 13
Virtual Memory Area (VMA) 259
virtual serial port

used, for setting up Oracle
VirtualBox 341-344

W
warm-boot 578
warm reset, of printk 115
WARN*() type macros 591
watchdogs 502
watchdog timer (WDT) 502
working root filesystem image

obtaining, for target 546, 547
workqueue stalls

detecting 518
triggering 518, 519

workspace
setting up 10

X
x86 control registers 321, 322

Y
Your Mileage May Vary (YMMV) 134

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
• Spend less time learning and more time coding with practical eBooks and Videos

from over 4,000 industry professionals

• Improve your learning with Skill Plans built especially for you

• Get a free eBook or video every month

• Fully searchable for easy access to vital information

• Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for
a range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

http://Packt.com
http://packt.com
mailto:customercare@packtpub.com
http://www.packt.com

614 Other Books You May Enjoy

Other Books You
May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Linux Kernel Programming Part 2 - Char Device Drivers and Kernel Synchronization

Kaiwan N Billimoria

ISBN: 9781801079518

• Get to grips with the basics of the modern Linux Device Model (LDM)

• Write a simple yet complete misc class character device driver

• Perform user-kernel interfacing using popular methods

• Understand and handle hardware interrupts confidently

• Perform I/O on peripheral hardware chip memory

• Explore kernel APIs to work with delays, timers, kthreads, and workqueues

• Understand kernel concurrency issues

• Work with key kernel synchronization primitives and discover how to detect and
avoid deadlock

https://packt.link/9781801079518

Other Books You May Enjoy 615

Mastering Linux Device Driver Development

John Madieu

ISBN: 9781789342048

• Explore and adopt Linux kernel helpers for locking, work deferral, and interrupt
management

• Understand the Regmap subsystem to manage memory accesses and work with the
IRQ subsystem

• Get to grips with the PCI subsystem and write reliable drivers for PCI devices

• Write full multimedia device drivers using ALSA SoC and the V4L2 framework

• Build power-aware device drivers using the kernel power management framework

• Find out how to get the most out of miscellaneous kernel subsystems such as
NVMEM and Watchdog

https://packt.link/9781789342048

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.
packtpub.com and apply today. We have worked with thousands of developers and
tech professionals, just like you, to help them share their insight with the global tech
community. You can make a general application, apply for a specific hot topic that we are
recruiting an author for, or submit your own idea.

Share Your Thoughts
Now you've finished Linux Kernel Debugging, we'd love to hear your thoughts! If you
purchased the book from Amazon, please click here to go straight to the Amazon
review page for this book and share your feedback or leave a review on the site that you
purchased it from.

Your review is important to us and the tech community and will help us make sure we're
delivering excellent quality content.

http://authors.packtpub.com
http://authors.packtpub.com
https://packt.link/r/1801075034
https://packt.link/r/1801075034

	Cover
	Title Page
	Copyright and Credits
	Contributors
	Table of Contents
	Preface
	Part 1:
A General Introduction and Approaches to Kernel Debugging
	Chapter 1: A General Introduction to Debugging Software
	Technical requirements
	Cloning this book's code repository

	Software debugging – what it is, origins,
and myths
	Software bugs – a few actual cases
	Patriot missile failure
	The ESA's unmanned Ariane 5 rocket
	Mars Pathfinder reset issue
	The Boeing 737 MAX aircraft – the MCAS and lack of training of the flight crew
	Other cases

	Setting up the workspace
	Running Linux as a native or guest OS
	Running Linux as a guest OS
	Installing the Oracle VirtualBox guest additions
	Installing required software packages

	A tale of two kernels
	A production and a debug kernel
	Setting up our custom production kernel
	Setting up our custom debug kernel
	Seeing the difference – production and debug
kernel config

	Debugging – a few quick tips
	A programmer's checklist – seven rules

	Summary
	Further reading

	Chapter 2: Approaches to Kernel Debugging
	Technical requirements
	Classifying bug types
	Types of bugs – the classic view
	Types of bugs – the memory view
	Types of bugs – the CVE/CWE security-related view
	Types of bugs – the Linux kernel

	Kernel debugging – why there are different approaches to it
	Summarizing the different approaches to kernel debugging
	The development phase
	Unit testing and/or QA phases
	Categorizing into different scenarios

	Summary
	Further reading

	Part 2:
Kernel and Driver Debugging Tools and Techniques
	Chapter 3: Debug via Instrumentation – printk and Friends
	Technical requirements
	The ubiquitous kernel printk
	Using the printk API's logging levels
	Leveraging the pr_<foo> convenience macros
	Understanding where the printk output goes
	Practically using the printk format specifiers – a few quick tips

	Leveraging the printk for debug purposes
	Writing debug messages to the kernel log
	Debug printing – quick and useful tips
	Device drivers – using the dev_dbg() macro
	Trying our kernel module on the custom
production kernel
	Rate limiting the printk

	Using the kernel's powerful dynamic
debug feature
	Dynamic debugging via module parameters
	Specifying what and how to print debug messages
	Exercising dynamic debugging on a kernel module on a production kernel

	Remaining printk miscellany
	Printing before console init – the early printk
	Designating the printk to some known presets
	Printing exactly once
	Emitting a printk from userspace
	Easily dumping buffer content
	Remaining points – bootloader log peeking, LED flashing, and more

	Summary
	Further reading

	Chapter 4: Debug via Instrumentation – Kprobes
	Understanding kprobes basics
	What we intend to do

	Using static kprobes – traditional approaches to probing
	Demo 1 – static kprobe – trapping into the file open the traditional static kprobes way – simplest case
	Demo 2 – static kprobe – specifying the function to probe via a module parameter

	Understanding the basics of the Application Binary Interface (ABI)
	Using static kprobes – demo 3 and demo 4
	Demo 3 – static kprobe – probing the file open syscall and retrieving the filename parameter
	Demo 4 – semi-automated static kprobe via
our helper script

	Getting started with kretprobes
	Kprobes miscellany

	Kprobes – limitations and downsides
	Interface stability

	The easier way – dynamic kprobes or kprobe-based event tracing
	Kprobe-based event tracing – minimal internal details
	Setting up a dynamic kprobe (via kprobe events) on any function
	Using dynamic kprobe event tracing on
a kernel module
	Setting up a return probe (kretprobe) with kprobe-perf

	Trapping into the execve() API – via perf and eBPF tooling
	System calls and where they land in the kernel
	Observability with eBPF tools – an introduction

	Summary
	Further reading

	Chapter 5: Debugging
Kernel Memory Issues – Part 1
	Technical requirements
	What's the problem with memory anyway?
	Tools to catch kernel memory
issues – a quick summary

	Using KASAN and UBSAN to find memory bugs
	Understanding KASAN – the basics
	Requirements to use KASAN
	Configuring the kernel for Generic KASAN mode
	Bug hunting with KASAN
	Using the UBSAN kernel checker to find
Undefined Behaviour

	Building your kernel and modules with Clang
	Using Clang 13 on Ubuntu 21.10

	Catching memory defects in the kernel – comparisons and notes (Part 1)
	Miscellaneous notes

	Summary
	Further reading

	Chapter 6: Debugging
Kernel Memory Issues – Part 2
	Technical requirements
	Detecting slab memory corruption
via SLUB debug
	Configuring the kernel for SLUB debug
	Leveraging SLUB debug features via the slub_debug kernel parameter
	Running and tabulating the SLUB debug test cases
	Interpreting the kernel's SLUB debug error report
	Learning how to use the slabinfo and related utilities

	Finding memory leakage issues with kmemleak
	Configuring the kernel for kmemleak
	Using kmemleak
	A few tips for developers regarding dynamic kernel memory allocation

	Catching memory defects in the kernel – comparisons and notes (Part 2)
	Miscellaneous notes

	Summary
	Further reading

	Chapter 7: Oops! Interpreting the Kernel Bug Diagnostic
	Technical requirements
	Generating a simple kernel bug and Oops
	The procmap utility
	What's this NULL trap page anyway?
	A simple Oops v1 – dereferencing the NULL pointer
	Doing a bit more of an Oops – our buggy module v2

	A kernel Oops and what it signifies
	The devil is in the details – decoding the Oops
	Line-by-line interpretation of an Oops

	Tools and techniques to help determine the location of the Oops
	Using objdump to help pinpoint the Oops
code location
	Using GDB to help debug the Oops
	Using addr2line to help pinpoint the Oops
code location
	Taking advantage of kernel scripts to help debug kernel issues
	Leveraging the console device to get the kernel log after Oopsing in IRQ context

	An Oops on an ARM Linux system
and using netconsole
	Figuring out the actual buggy code location (on ARM)

	A few actual Oopses
	Summary
	Further reading

	Chapter 8: Lock Debugging
	Technical requirements
	Locking and lock debugging
	Locking – a quick summarization of key points
	Understanding data races – delving deeper

	Catching concurrency bugs with KCSAN
	What KCSAN does, in a nutshell
	Configuring the kernel for KCSAN
	Using KCSAN
	Knee-jerk reactions to KCSAN reports – please don't!

	A few actual use cases of kernel bugs due to locking defects
	Defects identified by KCSAN
	Identifying locking rules and bugs from
the LDV project
	Identifying locking bugs from the Linux kernel Bugzilla
	Identifying some locking defects from various blog articles and the like

	Summary
	Further reading

	Part 3:
Additional Kernel Debugging Tools and Techniques
	Chapter 9: Tracing the
Kernel Flow
	Technical requirements
	Kernel tracing technology – an overview
	Using the ftrace kernel tracer
	Accessing ftrace via the filesystem
	Configuring the kernel for ftrace
	Using ftrace to trace the flow of the kernel
	Useful ftrace filtering options
	Case 1 – tracing a single ping with raw ftrace
	Case 2 – tracing a single ping with raw ftrace via the set_event interface
	Using trace_printk() for debugging
	Ftrace – miscellaneous remaining points via FAQs
	Ftrace use cases

	Using the trace-cmd, KernelShark, and perf-tools ftrace frontends
	An introduction to using trace-cmd
	Using the KernelShark GUI
	An introduction to using perf-tools

	An introduction to kernel tracing with LTTng and Trace Compass
	A quick introduction to recording a kernel tracing session with LTTng
	Using the Trace Compass GUI to visualize the single ping LTTng trace

	Summary
	Further reading

	Chapter 10: Kernel Panic, Lockups, and Hangs
	Technical requirements
	Panic! – what happens when a kernel panics
	Let's panic
	To the rescue with netconsole
	Interpreting the panic output
	Kernel parameters, tunables, and configs that affect kernel panic

	Writing a custom kernel panic handler routine
	Linux kernel panic notifier chains – the basics
	Setting up our custom panic handler within a module

	Detecting lockups and CPU stalls in the kernel
	A short note on watchdogs
	Employing the kernel's hard and soft lockup detector

	Employing the kernel's hung task and workqueue stall detectors
	Leveraging the kernel hung task detector
	Detecting workqueue stalls

	Summary
	Further reading

	Chapter 11: Using Kernel GDB (KGDB)
	Technical requirements
	Conceptually understanding how KGDB works
	Setting up an ARM target system and kernel for KGDB
	Building a minimal custom ARM Linux target system with SEALS
	Configuring the kernel for KGDB
	Testing the target system

	Debugging the kernel with KGDB
	Running our target (emulated) ARM32 system
	Running and working with the remote GDB client on the host system

	Debugging kernel modules with KGDB
	Informing the GDB client about the target module's locations in memory
	Step by step – debugging a buggy module with KGDB

	[K]GDB – a few tips and tricks
	Setting up and using GDB scripts with
CONFIG_GDB_SCRIPTS
	KGDB target remote :1234 command doesn't work
on physical systems
	Setting the system root with sysroot
	Using GDB's TUI mode
	What to do when the <value optimized out> GDB response occurs
	GDB convenience routines
	GDB custom macros in its startup file
	Fancy breakpoints and hardware watchpoints
	Miscellaneous GDB tips

	Summary
	Further reading

	Chapter 12: A Few More Kernel Debugging Approaches
	An introduction to the kdump/crash framework
	Why use kdump/crash?
	Understanding the kdump/crash basic framework

	A mention on performing static analysis
on kernel code
	Examples using cppcheck and checkpatch.pl
for static analysis

	An introduction to kernel code coverage tools and testing frameworks
	Why is code coverage important?
	A brief note on kernel testing

	Miscellaneous – using journalctl, assertions, and warnings
	Looking up system logs with journalctl
	Assertions, warnings, and BUG() macros

	Summary
	Further reading

	Index
	Other Books You May Enjoy

