

Linux Command Line
and Shell Scripting
Techniques

Master practical aspects of the Linux command line
and then use it as a part of the shell scripting process

Vedran Dakic

Jasmin Redzepagic

BIRMINGHAM—MUMBAI

Linux Command Line and Shell Scripting
Techniques
Copyright © 2022 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means, without the prior written permission of the publisher, except in the case of brief
quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express
or implied. Neither the authors, nor Packt Publishing or its dealers and distributors, will be held liable
for any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the
accuracy of this information.

Group Product Manager: Vijin Boricha
Publishing Product Manager: Shrilekha Malpani
Senior Editor: Shazeen Iqbal
Content Development Editor: Rafiaa Khan
Technical Editor: Shruthi Shetty
Copy Editor: Safis Editing
Project Coordinator: Shagun Saini
Proofreader: Safis Editing
Indexer: Subalakshmi Govindhan
Production Designer: Vijay Kamble
Marketing Coordinator: Hemangi Lotlikar

First published: April 2022

Production reference: 1150222

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-80020-519-2

www.packt.com

http://www.packt.com

Writing this book was quite a journey for me. It was a very busy year,
compounded by a lot of weird situations – earthquakes, COVID-19, health
issues in the family – basically, this year threw everything that it possibly
could at me. Often, I found myself pondering the fact that writing a book

is as much therapeutic as it is potentially useful. Writing a book is as
much about talking to your inner self as it is about talking to your future

audience, especially when knowledge sharing is involved. And, as an ex-IT
journalist/editor who used to write IT magazine articles for a living, I was

constantly reminded of that fact.

To my co-workers, for offering valuable insight and for being a whiteboard
to bounce ideas off (Jasmin, Zlatan, and Andrej). Your coherent

and random "in passing" thoughts helped a lot.

To my Packt crew, for putting up with the extreme, parallel universe-level
randomness that was my year 2021 – thank you.

To my partner, Sanja, for pushing me forward and kicking my derrière,
when it needs to be kicked.

– Vedran Dakic

My first Linux, Slackware, came on 50+ floppy disks. Installing it was
a pain, and somewhere in the middle of the process, a floppy disk was faulty

so I started my Linux journey on a machine that was unable to install
a GUI. Being confined to a text-only terminal for a few weeks got

me hooked.

The nice thing about scripting is that I rarely have any need to leave the
terminal even now, 25+ years later, while still being able to do almost

anything on any machine I encounter.

Having said that, running scripts would not be possible if it weren't for
a few special people in my life, so here goes:

To Filip, my son, who is learning to spell while I try to teach
him how to type.

To Dinka, my wife, who keeps us all together through the sun and the rain.

And to all the SysAdmins and SysOps I have encountered during this
quarter of a century, exchanging ideas and solutions.

Remember, it's usually DNS.

– Jasmin Redzepagic

Contributors

About the authors
Vedran Dakic is a master of electrical engineering and computing and an IT trainer,
covering system administration, cloud, automatization, and orchestration courses. He is
a certified Red Hat, VMware, and Microsoft trainer. He's currently employed as head of
department of operating systems at Algebra University College in Zagreb. As part of this
job, he's a lecturer for 3- and 5-year study programs in system engineering, programming,
and multimedia tracks. Also, he does a lot of consulting and systems integration for his
clients' projects – something he has been doing for the past 25 years. His approach is
simple – bring real-world experience to all the courses that he teaches as it brings added
value to his students and customers.

Jasmin Redzepagic is a professional master in computer engineering, with
a sub-specialization in system engineering, but is a person with many hats worn
over the years. Having worked in IT as long as he has, he has been a sound technician,
SysOps, DevOps, hardware tester, editor-in-chief of a major magazine, writer, IT
support lead, and head of IT at a couple of companies. He is currently employed by
Algebra University College in Zagreb. This enables him to have a very wide overview of
different technologies while still maintaining his focus – implementing and teaching the
implementation of open source technologies in the field.

Right now, his main interest is trying to teach his students and clients to understand
the immense expanse of tools available for any conceivable task, with his goal being
to get people to understand computers as something that is the most formidable tool
we, as humanity, have ever had.

About the reviewers
Sergio Guidi Tabosa Pessoa is a software engineer with more than 30 years of experience
with software development and maintenance, from complex enterprise software projects
to modern mobile applications. In the early days, he was working primarily with the
Microsoft stack, but soon discovered the power of the Unix and Linux operating systems.
Even though he has worked with many languages over the years, C and C++ remain
his favorite languages on account of their power and speed.

He has a bachelor's degree in computer science and an MBA in IT management, and
is always hungry to learn new technologies, break code, and learn from his mistakes.
He currently lives in Brazil with his wife, two Yorkshire terriers, and two cockatiels.

First and foremost, I would like to thank all the people involved in this project, including the
author, for such a great piece of work, and those from Packt Publishing for giving me this
opportunity. I also would like to thank my beautiful wife, Lucia, and my children, Touché
and Lion, for their patience and for allowing me the time needed to help with this book.

Nicholas Cross was born in the UK and educated in New Zealand. He is a distinguished
engineer at a tier-1 technology company and has 20 years' experience in Linux. He was
working with Linux and Bash scripting a long time before the cloud, automation, and
DRY were cool.

Nicholas is passionate about infrastructure automation, DevOps culture, SRE, automation,
containerization, and security, and everything else associated with these broad topics.

When not at his computer hacking code for work or pleasure, he enjoys running, walking
his dogs, and watching his sons play rugby.

Jason Willson has been working in IT for 17 years since his first job at the help desk
at his alma mater, Grove City College. He was first introduced to Linux in 2007 at
a start-up in Boston and has worked with it professionally and personally ever since.
He has used command-line and shell scripting techniques for a variety of tasks relating to
data analysis, systems administration, and DevOps. He currently works as a Linux systems
administrator at the Software Engineering Institute of Carnegie Mellon University.

I'd like to thank the incredible LinkedIn community for making this connection possible with
Packt Publishing. I'd also like to thank all my coworkers, classmates, and mentors (personal,
professional, and academic) who have helped to shape me into the person I am today.

Table of Contents

Preface

1
Basics of Shell and Text Terminal

Technical requirements � 2
Accessing the shell� 2
Getting ready� 3
How to do it…� 4
How it works…� 7
See also� 8

Setting up the user shell� 8
Getting ready� 8
How to do it…� 8
How it works…� 10

Setting up the Bash shell � 11
Getting ready� 11
How to do it…� 11

How it works…� 12
There's more…� 13

Using the most common
shell commands� 13
Getting ready� 13
How to do it…� 13
How it works...� 23

Using screen � 26
Getting ready� 26
How to do it…� 26
How it works…� 28
There's more…� 28

2
Using Text Editors

Technical requirements � 30
Learning the basics of
the Vi(m) Editor � 30
Getting ready� 31
How to do it…� 32
How it works…� 40

See also� 41

Learning the basics of
the nano editor� 41
Getting ready� 41
How to do it…� 41
There's more…� 46

viii Table of Contents

Going through the advanced
Vi(m) settings� 46
Getting ready� 46

How to do it…� 46
How it works…� 53
There's more…� 53

3
Using Commands and Services for Process Management

Technical requirements � 56
Process management tools� 56
Getting ready� 56
How to do it…� 56
How it works…� 63
See also� 66

Managing background jobs� 67
Getting ready� 67
How to do it…� 67
How it works…� 73
There's more…� 74

Managing process priorities� 74
Getting ready� 74
How to do it…� 74
How it works…� 76
There's more…� 78

Configuring crond� 79
Getting ready� 79
How to do it…� 79
How it works…� 83
There's more…� 85

4
Using Shell to Configure and Troubleshoot
a Network

Technical requirements � 88
Using nmcli and netplan� 88
Getting ready� 88
How to do it� 89
How it works� 92
There's more� 93

Using firewall-cmd and ufw� 93
Getting ready� 94
How to do it� 94
How it works� 102
There's more� 103

Working with open ports
and connections� 103
Getting ready� 103
How to do it� 104
How it works� 108
There's more� 109

Configuring /etc/hosts
and DNS resolving� 109
Getting ready� 110
How to do it� 110
How it works� 117

Table of Contents ix

There's more� 119

Using network diagnostic tools� 120
Getting ready� 120

How to do it� 120
How it works� 131
There's more� 133

5
Using Commands for File, Directory, and Service
Management

Technical requirements � 136
Basic file and directory-based
commands� 136
Getting ready� 136
How to do it…� 136
How it works…� 142
See also� 144

Additional commands for
manipulating file/directory
security aspects� 144
Getting ready� 145
How to do it…� 145
How it works…� 152
See also� 158

Manipulating text files
by using commands� 159
Getting ready� 159
How to do it…� 159

How it works…� 163
There's more…� 163

Finding files and folders� 164
Getting ready� 164
How to do it…� 164
How it works…� 165
There's more…� 165

Archiving and compressing
files and folders� 166
Getting ready� 166
How to do it…� 166
How it works…� 168
There's more…� 169

Managing services and targets� 169
Getting ready� 169
How to do it…� 169
How it works…� 175
There's more…� 176

6
Shell-Based Software Management

Technical requirements � 178
Using dnf and apt for
package management� 178
Getting ready� 178
How to do it…� 178

How it works…� 194
There's more…� 195

Using additional repositories,
streams, and profiles� 195
Getting ready� 196

x Table of Contents

How to do it…� 196
How it works…� 196

Creating custom repositories� 202
Getting ready� 202
How to do it…� 202
How it works…� 205

There's more…� 207

Compiling third-party software� 207
Getting ready� 208
How to do it…� 208
How it works…� 213
There's more…� 214

7
Network-Based File Synchronization

Technical requirements � 216
Learning how to use SSH
and SCP� 216
Getting ready� 216
How to do it…� 216
How it works…� 221
There's more…� 222

Learning how to use rsync� 222
Getting ready� 222

How to do it…� 222
How it works…� 227
There's more…� 227

Using vsftpd� 228
Getting ready� 228
How to do it…� 229
How it works…� 233
There's more� 234

8
Using the Command Line to Find, Extract, and Manipulate
Text Content

Technical requirements � 236
Using text commands to merge
file content� 236
Getting ready� 236
How to do it…� 236
How it works…� 239
There's more…� 239

Converting DOS text to Linux
text and vice versa� 240
Getting ready� 240
How to do it…� 240
How it works…� 242

There's more…� 242

Using cut� 242
Getting ready� 243
How to do it…� 243
How it works…� 244
There's more…� 245

Using egrep� 245
Getting ready� 246
How to do it…� 246
How it works…� 256
There's more…� 257

Table of Contents xi

Using sed� 258
Getting ready� 258

How to do it…� 258
How it works…� 262
There's more…� 264

9
An Introduction to Shell Scripting

Technical requirements � 266
Writing your first Bash
shell script� 266
Getting ready� 267
How to do it…� 269
How it works…� 271

Serializing basic commands –
from simple to complex� 271
Getting ready� 272
How to do it…� 273
How it works…� 275

There's more…� 278

Manipulating shell script
input, output, and errors � 278
Getting ready� 279
How to do it…� 280
How it works…� 284

Shell script hygiene� 285
Getting ready� 286
How to do it…� 286
There's more…� 290

10
Using Loops

The for loop� 292
Getting ready� 292
How to do it…� 293
How it works…� 296
See also� 297

break and continue� 298
Getting ready� 298
How to do it…� 298
How it works…� 299
See also� 302

The while loop� 302
Getting ready� 302
How to do it…� 303

How it works…� 303
See also� 305

The test-if loop� 305
Getting ready� 305
How to do it…� 306
How it works…� 309
See also� 313

The case loop� 314
Getting ready� 314
How to do it…� 314
How it works…� 316
See also� 319

xii Table of Contents

Logical looping with and,
or, and not � 319
Getting ready� 319

How to do it…� 319
How it works…� 321
See also� 322

11
Working with Variables

Technical requirements � 324
Using shell variables � 324
Getting ready� 324
How to do it…� 325
How it works…� 328
See also� 331

Using variables in
shell scripting � 331
Getting ready� 331
How to do it…� 332
How it works…� 335
See also� 337

Quoting in the shell � 337
Getting ready� 337
How to do it…� 338

How it works…� 340
See also� 340

Performing operations
on variables � 340
Getting ready� 341
How to do it…� 341
How it works…� 343
See also� 345

Variables via external
commands � 345
Getting ready� 345
How to do it…� 345
How it works…� 348
See also� 348

12
Using Arguments and Functions

Technical requirements � 350
Using custom functions
in shell script code� 350
Getting ready� 350
How to do it…� 351
How it works… � 353
See also� 353

Passing arguments
to a function � 354

Getting ready� 354
How to do it…� 354
How it works…� 357
See also� 357

Local and global variables� 357
Getting ready� 357
How to do it…� 358
How it works…� 360
See also� 361

Table of Contents xiii

Working with returns
from a function� 361
Getting ready� 361
How to do it…� 362
How it works…� 364
See also� 364

Loading an external
function to a shell script� 365
Getting ready� 365

How to do it…� 366
How it works…� 369
See also� 370

Implementing commonly
used procedures via functions� 370
Getting ready� 370
How to do it…� 370
How it works…� 373
See also� 376

13
Using Arrays

Technical requirements � 377
Basic array manipulation� 378
Getting ready� 378
How to do it…� 378
How it works…� 385
See also� 386

Advanced array manipulation� 386
Getting ready� 386
How to do it…� 387
How it works…� 394
See also� 396

14
Interacting with Shell Scripts

Technical requirements � 398
Creating text-based
interactive scripts� 398
Getting ready� 398
How to do it…� 399
How it works…� 403
See also� 405

Using expect to automate
repetitive tasks based on text
output� 405
Getting ready� 405

How to do it…� 406
How it works…� 409
See also� 412

Using dialog for menu-driven
interactive scripts� 412
Getting ready� 413
How to do it…� 413
How it works…� 415
See also� 419

xiv Table of Contents

15
Troubleshooting Shell Scripts

Technical requirements � 422
Common scripting mistakes� 422
Getting ready� 423
How to do it…� 430
How it works…� 433
See also…� 441

Simple debugging approach –
echoing values during script
execution� 441
Getting ready� 441
How to do it…� 444
How it works…� 446
See also� 446

Using the bash -x and
-v options� 447
Getting ready� 447
How to do it…� 447
How it works…� 449
See also…� 450

Using set to debug a part
of the script� 450
Getting ready� 450
How to do it…� 451
How it works…� 452
See also…� 453

16
Shell Script Examples for Server Management, Network
Configuration, and Backups

Technical requirements � 456
Creating a file and folder
inventory� 456
How to do it…� 457
See also� 460

Checking if you're running
as root� 460
Getting ready� 460
How to do it…� 460
See also� 461

Displaying server stats� 461
Getting ready� 462
How to do it…� 462
There's more…� 465

Finding files by name,
ownership, or content type and
copying them to a specified
directory� 465
Getting ready� 465
How to do it…� 465
There's more…� 468

Parsing date and time data� 469
Getting ready� 469
How to do it…� 469

Configuring the most common
firewall settings interactively� 470
Getting ready� 470
How to do it…� 471

Table of Contents xv

There's more…� 479

Configuring network
settings interactively� 480
Getting ready� 480
How to do it…� 480
There's more…� 484

Backing up the current
directory with shell script
arguments and variables� 484

Getting ready� 484
How to do it…� 484
There's more…� 487

Creating a current backup
based on the user input
for the backup source
and destination� 487
Getting ready� 487
How to do it…� 487
There's more…� 488

17
Shell Script Examples

Technical requirements � 490
Implementing a web server
service and security settings� 490
Getting ready� 491
How to do it…� 492
See also� 495

Creating users and groups and
forcing users to change them
on the next login� 495
Getting ready� 495
How to do it…� 496
See also� 498

Creating users and groups
from a standardized input file
and a random password for
each user� 498
Getting ready� 498

How to do it…� 498
See also� 502

Scripted VM installation
on KVM� 502
Getting ready� 503
How to do it…� 503
See also� 504

Using a shell script to
provision SSH keys� 504
Getting ready� 504
How to do it…� 504
See also� 507

A shell script for VM
administration� 507
Getting ready� 508
How to do it…� 508
See also� 513

Index

Other Books You May Enjoy

Preface
Linux Command-Line and Shell Scripting Techniques is a book that will help you learn how
to use the Command-Line Interface (CLI) and to further expand your CLI knowledge
with the ability to do scripting. It looks at a big collection of CLI commands, shell
scripting basics (loops, variables, and functions), and advanced scripting topics – such as
troubleshooting. It also includes two chapters with script examples that should get you
further ahead in your understanding of scripting while also offering good insight into how
the shell scripting process works.

Who this book is for
This book is for beginners and professionals alike, as it doesn't necessarily need a lot of
prior Linux knowledge. That's partially what this book is for – to get to grips with using
the command line and to further that usage model to shell scripting. For more advanced
users, there's a bulk of content about shell scripting and corresponding examples that will
help you to organize and improve your knowledge about shell scripting.

What this book covers
Chapter 1, Basics of the Shell and Text Terminal, discusses the concept of the shell and text
terminal, configuration of the Bash shell, using some basic shell commands, and using the
screen to get access to multiple virtual terminals in text mode.

Chapter 2, Using Text Editors, takes us to the highly subjective world of text editors, where
discussions have been happening for the past 30-40 years on the topic of best editor.
As a part of this chapter, we're going to use vi(m), nano, and some more advanced
vi(m) settings.

Chapter 3, Using Commands and Services for Process Management, is about using files,
folders, and services, specifically, how to administer them, how to secure them (files and
folders), and how to manage them (services). A big chunk of this chapter is related to
ACLs and systemctl, essential tools for system administrators.

xviii Preface

Chapter 4, Using Shell to Configure and Troubleshoot Network, is all about working
with files, folders, and services – working with permissions, manipulating file content,
archiving and compressing files, and managing services. Throughout this chapter, there
will be a lot of simple commands that we will be using later when we go on to scripting,
as well.

Chapter 5, Using Commands for File, Directory, and Service Management, is about
making sure that we know the basics of fundamental networking configuration – nmcli
and netplan, FirewallD and ufw, DNS resolving, and diagnostics. These are some of the
settings that we most commonly re-configure post-deployment, so deep insight into them
is a necessity.

Chapter 6, Shell-Based Software Management, takes us through two of the most commonly
used packaging systems (dnf/yum and apt), as well as some more advanced concepts,
such as using additional repositories, streams, and profiles, creating custom repositories,
and third-party software. Every Linux deployment needs us to have knowledge about
package management, so this chapter is all about that.

Chapter 7, Network-Based File Synchronization, teaches us about the most commonly
used tools to send and receive files and connect to remote destinations via a network –
ssh and scp, rsync, and vsftpd. For anything ranging from hosting
a Linux distribution mirror all the way to synchronizing files and backups, this is
mandatory knowledge.

Chapter 8, Using the Command Line to Find, Extract, and Manipulate Text Content, is all
about using basic and more advanced ways of manipulating text files and content. We start
off by doing simple things such as paste and dos2unix, and then move on to some
of the most used commands in the IT world – cut, (e)grep, and sed.

Chapter 9, An Introduction to Shell Scripting, is the starting point for the second part of
this book, which is all about shell scripting and using previously mentioned tools and
commands to create shell scripts. This chapter is about the basics of shell scripting and
working with general concepts, such as input, output, error, and shell script hygiene.

Chapter 10, Using Loops, goes deep into the concept of loops. We cover all the most used
loops here – the for loop, break and continue, the while loop, the test-if loop,
the case loop, and logical looping with conditions such as and, or, and not. This will
further enhance our ability to do more things in shell scripts.

Chapter 11, Working with Variables, is about using variables in our shell script code – shell
variables, quoting and special characters in variable values, assigning external variables via
commands, as well as some logical operations on variables. Variables are the spine of shell
scripting, and all permanent and temporary data gets stored in them, so, for whatever
purpose we're developing a shell script, variables are a must-have.

Preface xix

Chapter 12, Using Arguments and Functions, is about further customizing and
modularizing the shell script code, as we can use functions to do that. For that purpose,
we are going to use external and shell arguments, to do away with the static nature of most
of our previous shell script examples.

Chapter 13, Using Arrays, is about using arrays to store and manipulate data. Arrays
are just one of those structures – we need them, we learn to not necessarily like them,
but we can't live without them, especially as we venture into the world of working with
their many different capabilities, such as indexing, adding and removing members, and
working with files as a de facto array source.

Chapter 14, Interacting with Shell Scripts, is about moving from the idea of shell script
code as a purely text-driven principle, and going in the opposite direction – to create
a TUI-based interface to interact with a script. We are also going to have a play with
expect script, which makes it easier for us to create a script that's waiting for specific
output and then doing something based on that output, which can be useful for the
configuration of third-party systems at times.

Chapter 15, Troubleshooting Shell Scripts, deals with shell script troubleshooting –
common mistakes, debugging output via echoing values during script execution, Bash
-xv, and other concepts. This is the last chapter before we start dealing with the many
script examples that we prepared for you to use both as a learning tool and to work with
them in production, if you so desire.

Chapter 16, Shell Script Examples for Server Management, Network Configuration, and
Backups, sets us off in the direction of simple shell scripts – nine different examples to be
exact. Topics vary from simple, modular code that can be implemented in any shell script
(for example, how to check if we're executing a script as root), to more complex examples
such as dealing with date and time, the interactive configuration of network settings and
firewalls, as well as some backup script examples.

Chapter 17, Advanced Shell Script Examples, deals with more complex examples, such as
a script to modify web server and security settings, bulk-creating users and groups with
random passwords, scripted KVM virtual machine installation, and scripted KVM virtual
machine administration (start, stop, getting info, manipulating snapshots, and so on).
These are examples that we use in everyday life to drive the point of shell scripting home,
which is all about automating boring, repetitive tasks and offloading them to a script that
can do all of that for us.

xx Preface

To get the most out of this book

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used
in this book. You can download it here: https://static.packt-cdn.com/
downloads/9781800205192_ColorImages.pdf.

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles.
Here is an example: To configure the host side of the network, you need the tunctl command
from the User Mode Linux (UML) project.

A block of code is set as follows:

#include <stdio.h>

#include <stdlib.h>

int main (int argc, char *argv[])

{

 printf ("Hello, world!\n");

 return 0;

}

Any command-line input or output is written as follows:

$ sudo tunctl -u $(whoami) -t tap0

https://static.packt-cdn.com/downloads/9781800205192_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781800205192_ColorImages.pdf

Preface xxi

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
Click Flash from Etcher to write the image.

Tips or Important Notes	
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata, selecting your
book, clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet,
we would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit authors.
packtpub.com.

Share Your Thoughts
Once you've read Linux Command Line and Shell Scripting Cookbook, we'd love to hear
your thoughts! Please click here to go straight to the Amazon review page for this book
and share your feedback.

Your review is important to us and the tech community and will help us make sure we're
delivering excellent quality content.

mailto:customercare@packtpub.com
https://www.packtpub.com/support/errata
mailto:copyright@packt.com
https://authors.packtpub.com
https://authors.packtpub.com
https://packt.link/r/1-800-20519-8

1
Basics of Shell and

Text Terminal
An ancient Chinese proverb states that A journey of a thousand miles begins with a single
step. This chapter is going to be that single, first step on our journey to mastering the
Linux command-line interface (CLI) and shell scripting. Specifically, we're going to
learn how to use Terminal, the shell, some basic commands, and one very handy utility
to work on many things at once, called screen.

As you progress further through the book, you'll notice that we will be using these
concepts a lot, as they're the basis for what we're going to do in the later chapters. When
dealing with systems administration, we can usually do a lot more in some kind of CLI
than in any kind of graphical user interface (GUI). This stems from the idea of the
programmability of a CLI versus the static nature of most GUIs in IT. Furthermore,
a utility such as screen will make our life in the CLI a lot easier, as we're going to be able
to deal with multiple virtual screens at the same time, thus enhancing our productivity.

So, in short, we're going to deal with the following recipes:

•	 Accessing the shell

•	 Setting up the user shell

•	 Setting up the Bash shell

2 Basics of Shell and Text Terminal

•	 Using the most common shell commands

•	 Using screen

Technical requirements
For these recipes, we're going to use two Linux machines – in our case, it's going to be
two VMware virtual machines with Ubuntu (20.04 Focal Fossa). Let's call them cli1 and
gui1, and as the book progresses, we're going to add some more, as our topics grow in
complexity. So, all in all, we need the following:

•	 VMware Player, Workstation, Fusion, or ESXi

•	 Ubuntu 20.04 Focal Fossa installation ISO file

•	 A bit of time to install these two virtual machines without the GUI (the cli1
machine) and with the GUI (gui1)

After the installation process is finished, we're going to start with shell basics – our very
next topic.

Accessing the shell
First, let's briefly discuss various shell access methods. It can be as simple as just installing
a virtual machine with Linux that's running text mode only, but it could also be a virtual
machine with the GUI. That would require us doing something to have access to text
mode; so, let's learn about these different ways of getting access to the shell.

It's also important to understand why accessing the shell is so important. The reasoning
behind this is simple, which is that we can do a lot more in the shell than in the GUI. In
the second part of this book, we're going to dig deeper into the concept of shell scripting,
and then it's going to become obvious how that applies to our statement about being able
to do a lot more in the shell.

Accessing the shell 3

Getting ready
For starters, we need to deploy our two virtual machines. We can actually install both of
these machines as text-mode machines with the OpenSSH server (the installation process
asks about OpenSSH at one point). Then, we could add the GUI to the gui1 machine
so that we can work with that, too. We do that by typing a couple of commands into the
gui1 machine after logging in as student (which is the username we came up with for
this example):

sudo apt-get -y install tasksel

tasksel

sudo is going to ask us for the student user password (it can be any user that you
created during the installation process; student is just something that we used in
our example). When the tasksel TUI interface starts, we will select the Ubuntu desktop
package set, as shown in the following screenshot:

Figure 1.1 – Ubuntu desktop package

4 Basics of Shell and Text Terminal

As you can see from Figure 1.1, you need to select Ubuntu desktop by using the arrow
keys and spacebar to select from the menu, then use Tab or the arrow keys to select Ok
and press Enter.

Let's now discuss how to access the shell.

How to do it…
If we deployed our Ubuntu machine with default options, we're going to be faced with
text mode by default. To access the shell and have the capability to do something with
our Linux virtual machine, we need to type in our username and password. It needs to
be the username or password that we typed in during the installation process. In our
virtual machine, the user named student was created, with the preassigned student
password. When we successfully log in, we're faced with the regular text mode and
associated shell, as in the following screenshot:

Figure 1.2 – Accessing the CLI from text mode after logging in

Accessing the shell 5

If, however, we did a GUI installation, there are three different ways of accessing the shell:

1.	 We could start a text Terminal in GNOME (GNOME Terminal) and use the shell
from there. On the plus side, it gives us a GUI-like look and feel that might be a bit
more user-friendly to a lot of people. On the downside, we're rarely going to find
a GUI on Linux servers in production environments, so it might be a case of
learning bad habits. To start GNOME Terminal, we can either use the built-in
GNOME search function (by pressing the WIN key) or just right-click on the
desktop and open Terminal. The result will look like this:

Figure 1.3 – Finding Terminal in the GNOME GUI by using
the WIN key to search for the Terminal keyword

6 Basics of Shell and Text Terminal

2.	 We could just switch to a text-based text console, as Linux doesn't stop us from
using text consoles when we deploy the GUI. For that, we need to press a dedicated
key combination that is going to get us to one of those text consoles. For example,
we can press the Ctrl + Alt + F3 key combination. That is going to take us to text
mode, specifically, to the text console number.

There, we can log in and start typing our commands. The result will look like this:

Figure 1.4 – Switching to the text Terminal from the GUI
We're in the shell again. We can now start using any commands we want to.

Accessing the shell 7

3.	 We could use the systemctl command to switch to text mode as a default mode
for the current session (until the next reboot). We could even use it to make the
text mode permanent, regardless of the fact that we have full GUI installation. To
achieve that, in our GUI, we need to log in and then type the following sequence of
commands into GNOME Terminal:

systemctl set-default multi-user.target

systemctl isolate multi-user.target

We can use the first command if we want to set our Linux virtual machine to boot to text
mode by default. We can use the second command to re-configure our Linux machine to
switch to text mode immediately.

How it works…
There are a couple of sets of commands that we used in the previous recipe, so let's explain
what these commands do so that we can have a clear picture of what we were doing.

The first set of commands is as follows:

sudo -i

apt-get -y install tasksel

tasksel

These three commands are going to do the following:

•	 sudo -i is going to ask us for the current user's password. If that user has been
added to the sudoers system (/etc/sudoers), that means that we can use the
current user's password to log in as root and use administrative privileges.

•	 apt-get -y install tasksel will install the tasksel application. The
main purpose of this application is to simplify package deployment. Specifically,
we are going to use it in the next step to deploy an Ubuntu desktop set of packages
(multiple hundreds of packages). Imagine typing all the apt-get commands for
that deployment procedure manually!

•	 The tasksel command is going to start the tasksel application, which will be used
to deploy the necessary packages.

8 Basics of Shell and Text Terminal

The second set of commands do the following things:

•	 systemctl set-default multi-user.target will set text mode as the
default boot target. The translation of this is that our Linux machine will boot in
text mode by default only when it becomes valid after the next reboot.

•	 systemctl isolate multi-user.target will switch us to text mode
immediately. It's completely different from the set-default procedure, as it has
nothing to do with the state of our Linux machine post-reboot.

See also
If you need more information about apt-get, tasksel, or systemctl, we suggest
that you visit these links:

•	 apt-get: https://help.ubuntu.com/community/AptGet/Howto

•	 tasksel: https://help.ubuntu.com/community/Tasksel

•	 systemctl: https://www.liquidweb.com/kb/what-is-systemctl-
an-in-depth-overview/

Setting up the user shell
Now that we have learned about how to access the shell, let's configure it for our
comfortable use. We're going to see a couple of examples so that we can understand how
customizable the Linux shell is. Specifically, we're going to customize the look and feel of
our prompt.

Getting ready
We just need to keep our virtual machines up and running.

How to do it…
We're going to edit a file called /home/student/.bashrc. Before we do that,
let's create a backup copy of the .bashrc file, just in case we make some mistakes:

cp /home/student/.bashrc /home/student/.bashrc.tmp

https://help.ubuntu.com/community/AptGet/Howto
https://help.ubuntu.com/community/Tasksel
https://www.liquidweb.com/kb/what-is-systemctl-an-in-depth-overview/
https://www.liquidweb.com/kb/what-is-systemctl-an-in-depth-overview/

Setting up the user shell 9

Before we edit this file, make sure that you take note of how the prompt looks at this point.
If you're logged in as student to the cli1 machine, your prompt should look like this:

student@cli1:~$

Let's edit the .bashrc file by using nano. Type in the following command:

nano /home/student/.bashrc

When we type in this command, we're going to open .bashrc in the nano editor.
Let's scroll all the way to the end of this file, which should look like this:

Figure 1.5 – .bashrc default content

Let's go all the way below the last fi and add the following statement:

PS1="MyCustomPrompt> "

Next, use Ctrl + X to save the file. Then, when we're back in the shell, let's type in the
following command:

source .bashrc

10 Basics of Shell and Text Terminal

If we did everything correctly, our prompt should look like this now:

MyCustomPrompt>

This can be further customized by using PS1 parameters. Let's locate the following:

PS1="MyCustomPrompt> "

We'll change it to the following:

PS1="\u@\H> \A "

The \u@\H part represents the username@host part of the prompt. The \A part is for
24-hour time. So, when we do the following:

source .bashrc

Again, we should get the following state of our prompt:

[student@cli1> 19:30]

19:30 represents time. We could also customize things such as the type of font
(underlined, normal, dim, bold) and color (black, red, green, and so on). Let's do that
now. For example, let's edit .bashrc again and set PS1 like this:

PS1="\e[0;31m[\u@\H \A] \e[0m"

Our prompt should now look like this:

[student@cli1 19:39]

In this particular example, \e[tells the PS1 variable that we want to change the color of
our prompt. 0;31m means red (30 is black, 34 is blue, and so on). The [] enclosed part
is our regular prompt, as previously discussed. The last bit, \e[0m, tells the PS1 variable
that we're done with color modification for our PS1 output.

As we can see, touching just one shell variable (PS1) can drastically change the way
we consume text mode in our Linux virtual machine.

How it works…
As a shell variable, PS1 can be used to customize the look and feel of our shell. Think of
it in the way that most users customize their GUI using different wallpapers, text sizes,
colors, and so on, and it's a natural thing that we do because we like what we like. PS1 is
often called a primary prompt display variable, as described in the previous section.

Setting up the Bash shell 11

The source command that we used executes .bashrc, in the sense that it will apply the
settings from .bashrc. That's why we didn't need to log off and log in again, as it would
be a waste of time, and the source command can help us with that.

Let's now add some more settings to our .bashrc file, as there are many more things
that we can customize.

Setting up the Bash shell
We played with the PS1 variable and configured it so that it's more to our liking. Let's now
use more .bashrc settings to configure our Bash shell even further.

Getting ready
We need to leave our virtual machines running. If they are not powered on, we need to
power them back on.

How to do it…
Let's discuss how to change the following shell parameters:

1.	 Add some custom aliases.

If we open the .bashrc file again, we can do some additional magic with it. First,
let's add a couple of aliases. Close to the end of the .bashrc file, there's a section
with a couple of aliases (ll, la, and l). Let's add the following lines to that part of
the .bashrc file:

alias proc="ps auwwx"

alias pfilter="ps auwwx | grep "

alias start="systemctl start "

alias stop="systemctl stop "

alias ena="systemctl enable "

This code will introduce five new aliases:
•	 To see a list of processes

•	 To filter processes according to the keyword to be typed in after pfilter

•	 To start the service; service name to be typed after start

•	 To stop the service; service name to be typed after stop

•	 To enable the service; service name to be typed after ena

12 Basics of Shell and Text Terminal

As we can see, using aliases can make our typing shorter and the administration
process simpler.

2.	 Adjust the size of the Bash history.

At the top of the .bashrc file, there's a section similar to this:
HISTSIZE = 1000

HISTFILESIZE = 1000

If we want the Bash shell to remember more than the last 1,000 typed commands
in the current session (HISTSIZE), and to save more than 1,000 commands in the
history file (called .bash_history), we can change the values of these variables,
let's say to 2000 and 2000.

3.	 Adjust the PATH variable.

Let's say that we want to add a custom path to our existing PATH variable. For
example, we installed our custom application in the /opt/bin directory, and
we don't want to call that application by using the full path every single time.

We need to edit the .profile file for this, as the PATH variable for our current
user is set there. So, open the .profile file in the editor and add the following
line to the end of this file:

PATH=$PATH:/opt/bin

4.	 Set our default editor.

Let's add the following two lines to the .bashrc file, at the end of the file:
export VISUAL=nano

export EDITOR=nano

This would set nano as our preferred default editor.

How it works…
The Bash shell has a set of reserved variables that we can use solely for Bash purposes.
Some of these reserved variables include the following:

•	 PS1, PS2, PS3, and PS4

•	 HISTFILESIZE and HISTSIZE

•	 VISUAL and EDITOR

•	 OLDPWD

•	 PWD

Using the most common shell commands 13

These are reserved for specific Bash functions, so we shouldn't create custom variables
with these names. You can learn more about these reserved variables from the link
provided in the There's more… section.

As far as PS variables are concerned, we can consider them to be our entry into
customization of the Bash shell. That especially goes for the PS1 variable, as it's the
variable that's most commonly used. We can use all of these variables to set Bash to suit
our own needs as we don't have to use predefined global configuration only. As time
goes by, more and more Linux system administrators create their own, customized
configurations for Bash as it increases the convenience of using the Bash shell and
their own productivity.

There's more…
If we need to learn more about Bash reserved variables and PS variables, we can check the
following links:

•	 https://tldp.org/LDP/Bash-Beginners-Guide/html/sect_03_02.
html

•	 https://access.redhat.com/solutions/505983

Using the most common shell commands
Let's now switch our attention to learning a basic set of Linux shell commands.
We're going to discuss commands to manipulate files and folders, processes, archives,
and links. We'll do that via a scenario that is going to involve many steps.

Getting ready
We still need the same virtual machines as with our previous recipes.

How to do it…
In order for us to be able to use shell commands, we have to start the shell. If we're using
the CLI, we just need to log in and we're going to enter the shell session. If we're using
a GUI approach, we have to find a GUI Terminal in our application menu. After that,
we can start typing commands:

1.	 For starters, let's use a basic set of commands to work with files and directories.

Let's list the content of the current directory:
ls -al

14 Basics of Shell and Text Terminal

The output will look similar to this:

Figure 1.6 – Standard output for the ls -al command with all the pertinent information

2.	 Now, let's create a directory called directory1 and a stack of five files called
test1 to test5. That's what the touch command does – it creates empty files.
Then, let's copy these files to that directory:

mkdir directory1

touch test1

touch test2

touch test3

touch test4

touch test5

cp test* directory1

3.	 After that, let's create a directory called directory2 and move files 1-5
to directory2:

mkdir directory2

mv test* directory2

Using the most common shell commands 15

4.	 Let's check the amount of used disk space in directory1 and directory2:

[student@cli1 21:47] du directory1

4 directory1

[student@cli1 21:47] du -hs directory2

4.0K directory2

[student@cli1 21:48]

5.	 Let's check the capacity of our current disk (the -h switch provides us with a nice,
human-readable output):

df -h .

Filesystem Size Used Avail Use%
Mounted on

/dev/mapper/ubuntu--vg-ubuntu--lv 19G 4.5G 14G 26%
/

The next stack of commands is related to links known as hard links and soft links.
6.	 For creating hard and soft links, let's log in to our cli1 virtual machine and log in

as root. The overall concept of hard and soft links will be explained a bit later in
this chapter. So, create a temporary directory and use some files. We'll just use an
existing file as it's more than enough for this scenario (the .bashrc file):

mkdir links

cd links

cp /root/.bashrc content.cfg

ln content.cfg hardlink.cfg

ln -s content.cfg softlink.cfg

ls -al

cd /root

ln -s links links2

ln links links3

ln: links: hard link not allowed for directory

cp .bashrc /tmp

cd /tmp

ln .bashrc /root/notworking

ln: failed to create hard link '/root/notworking' =>
'.bashrc': invalid cross-device link

ln -s .bashrc /root/working.cfg

ls /root/working.cfg

/root/working.cfg

16 Basics of Shell and Text Terminal

7.	 Let's now check the beginning and end of one of these files. For example, let's use /
tmp/.bashrc:

head /tmp/.bashrc

[student@cli1 22:28] head /tmp/.bashrc

~/.bashrc: executed by bash(1) for non-login shells.

see /usr/share/doc/bash/examples/startup-files (in the
package bash-doc)

for examples

If not running interactively, don't do anything

case $- in

 i) ;;

 *) return;;

esac

Let's now check the tail end of the same file:
[student@cli1 22:29] tail /tmp/.bashrc

 if [-f /usr/share/bash-completion/bash_completion];
then

 . /usr/share/bash-completion/bash_completion

 elif [-f /etc/bash_completion]; then

 . /etc/bash_completion

 fi

fi

PS1="\e[0;31m[\u@\H \A] \e[0m"

export VISUAL=nano

export EDITOR=nano

8.	 The next step is going to involve checking running processes and the system state.

Let's now use commands to check the load our system currently has, find some
processes, and kill some of them for fun.

First, let's check the load (uptime command) and find the top 20 most
time-consuming processes (the ps command):

uptime

22:35:48 up 3:16, 2 users, load average: 0.00, 0.00,
0.00

ps auwwx | head -20

Using the most common shell commands 17

[student@cli1 22:35] ps auwwx | head -20

USER PID %CPU %MEM VSZ RSS TTY STAT
START TIME COMMAND

root 1 0.0 0.5 103252 11844 ? Ss
19:18 0:02 /sbin/init

root 2 0.0 0.0 0 0 ? S
19:18 0:00 [kthreadd]

root 3 0.0 0.0 0 0 ? I<
19:18 0:00 [rcu_gp]

root 4 0.0 0.0 0 0 ? I<
19:18 0:00 [rcu_par_gp]

root 6 0.0 0.0 0 0 ? I<
19:18 0:00 [kworker/0:0H-kblockd]

root 9 0.0 0.0 0 0 ? I<
19:18 0:00 [mm_percpu_wq]

root 10 0.0 0.0 0 0 ? S
19:18 0:00 [ksoftirqd/0]

root 11 0.0 0.0 0 0 ? I
19:18 0:04 [rcu_sched]

root 12 0.0 0.0 0 0 ? S
19:18 0:00 [migration/0]

Next, let's find a specific process by name and kill it:
student@gui1:~$ ps auwwx | grep -i firefox

student 47198 22.1 21.3 2825436 426736 ? Rl
22:38 0:12 /usr/lib/firefox/firefox -new-window

student 47253 1.5 6.8 2427560 137988 ? Sl
22:38 0:00 /usr/lib/firefox/firefox -contentproc
-childID 1 -isForBrowser -prefsLen 1 -prefMapSize 223938
-parentBuildID 20210222142601 -appdir /usr/lib/firefox/
browser 47198 true tab

student 47266 1.0 5.5 2402216 110116 ? Sl
22:38 0:00 /usr/lib/firefox/firefox -contentproc
-childID 2 -isForBrowser -prefsLen 85 -prefMapSize 223938
-parentBuildID 20210222142601 -appdir /usr/lib/firefox/
browser 47198 true tab

student 47304 1.3 6.6 2468136 133340 ? Sl
22:38 0:00 /usr/lib/firefox/firefox -contentproc
-childID 3 -isForBrowser -prefsLen 1246 -prefMapSize
223938 -parentBuildID 20210222142601 -appdir /usr/lib/
firefox/browser 47198 true tab

18 Basics of Shell and Text Terminal

student 47363 0.6 4.1 2386184 83588 ? Sl
22:38 0:00 /usr/lib/firefox/firefox -contentproc
-childID 4 -isForBrowser -prefsLen 10270 -prefMapSize
223938 -parentBuildID 20210222142601 -appdir /usr/lib/
firefox/browser 47198 true tab

student 48047 0.0 0.0 5168 880 pts/1 S+
22:39 0:00 grep --color=auto -i firefox

student@gui1:~$ killall firefox

student@gui1:~$ ps auwwx | grep -i firefox

student 48323 0.0 0.0 5168 884 pts/1 S+
22:40 0:00 grep --color=auto -i firefox

We're done with this part of the recipe. Let's now discuss the next part of this recipe,
which is about administering users and groups.

9.	 Using shell commands for user and group administration, let's first go through the
list of commands that we're going to use in this recipe:

•	 useradd: Command that's used to create a local user account

•	 usermod: Command that's used to modify a local user account

•	 userdel: Command that's used to delete a local user account

•	 groupadd: Command that's used to create a local group

•	 groupmod: Command that's used to modify a local group

•	 groupdel: Command that's used to delete a local group

•	 passwd: Command that's most often used to assign passwords to user accounts,
but it can be used for some other scenarios (for example, locking user accounts)

•	 chage: Command that's used to manage user password expiry.

So, let's create our first users and groups by using the useradd and groupadd
commands with a scenario. Let's say that our task is as follows:

•	 Create four users called jack, joe, jill, and sarah.

•	 Create two user groups called profs and pupils.

•	 Re-configure the jack and jill user accounts to be members of the
profs group.

•	 Re-configure the joe and sarah user accounts to be members of the
pupils group.

Using the most common shell commands 19

•	 Assign a standard password to all the accounts (we're going to use P@ckT2021 for
this purpose).

•	 Configure user accounts so that they have to change their password on the
next login.

•	 Set a specific expiry data for the profs users group – the minimum number
of days before password change set to 15, the maximum number of days before
forced password change set to 30, the warning for password change needs to start
a week before it expires, and set the expiry date for accounts to 2022/01/01
(January 1st, 2022).

•	 Set a specific expiry data for the pupils users group – the minimum number
of days before password change set to 7, the maximum number of days before
forced password change set to 30, the warning for password change needs to
start 10 days before it expires, and set the expiry date for accounts to 2021/09/01
(September 1st, 2021).

•	 Modify the profs group to be called professors and the pupils group to be
called students.

10.	 The first task is to create the user accounts:

useradd jack

useradd joe

useradd jill

useradd sarah

This will create entries for these four users in the /etc/passwd file (where most
of the users' information is stored – username, user ID, group ID, default home
directory, and default shell) and the /etc/shadow file (where users' passwords
and aging information are stored).

11.	 Then, we need to create the groups:

groupadd profs

groupadd pupils

This will create entries for these groups in the /etc/group file, where the system
keeps all the system groups.

20 Basics of Shell and Text Terminal

12.	 The next step is to manage users' group membership, for both the professors
and students user groups.

Before we do that, we need to be aware of one fact. There are two distinctive local
group types, a primary group and a supplementary group. A primary group is
important in terms of being the key parameter used when creating new files and
directories, as the users primary group will be used by default for that (there are
exceptions, as we'll mention in the Setting up the Bash shell recipe in this chapter,
about umask, permissions, and ACLs). A supplementary group is important when
dealing with sharing files and folders and related scenarios and exceptions. This
is what's usually used for some additional settings for more advanced scenarios.
These scenarios are going to be explained partially in the aforementioned Setting up
the Bash shell recipe in this chapter, as well as in recipes about NFS and Samba
in Chapter 9, An Introduction to Shell Scripting.

Primary and supplementary groups are stored in the /etc/group file.
13.	 Now that we've gotten that out of the way, let's modify our users' settings so that

they belong to supplementary groups as assigned by the scenario:

usermod -G profs jack

usermod -G profs jill

usermod -G pupils joe

usermod -G pupils sarah

Let's now check how that changes the /etc/group file:

Figure 1.7 – Entries in the /etc/group file
The first four entries in the /etc/group file were actually created when we used
the useradd command to create these user accounts. The next two entries (except
for the last part, after the : sign) were created by the groupadd commands. Entries
after the : sign were created after the usermod commands.

Using the most common shell commands 21

14.	 Let's now set their initial password and set a forced password change on the
next login. We can do this in a couple of different ways, but let's learn the more
programmatic approach to doing this, by echoing a string and using it as the
plain-text password for a user account:

echo "jack:P@ckT2021" | chpasswd

echo "joe:P@ckT2021" | chpasswd

echo "jill:P@ckT2021" | chpasswd

echo "sarah:P@ckT2021" | chpasswd

The echo part, without the rest of the command, would just mean typing
P@ckT2021 in to a Terminal, like this:

echo "P@ckT2021"

P@ckT2021

In CentOS and similar distributions, we could use the passwd command with the
--stdin parameter, which would mean that we want to add a password for the
user account via standard input (keyboard, variables, and so on). In Ubuntu, this is
not available. So, we can echo the username:P@ckT2021 string to the shell and
pipe that to the chpasswd command, which achieves just that purpose; instead of
outputting the string to our Terminal, the chpasswd command uses it as standard
input into itself.

15.	 Let's set the expiry date for professors and students. For this purpose, we need to
learn how to use the chage command and some of its parameters (-m, -M, -W,
and -E). In short, they mean the following:

•	 If we use the -m parameter, that means that we want to assign the minimum
number of days before the password change is allowed.

•	 If we use the -M parameter, that means that we want to assign the maximum
number of days before the password change is forced.

•	 If we use the -W parameter, that means that we want to set the number of warning
days before password expiration, which in turn means that the shell is going to start
throwing us messages about needing to change our password before it expires.

•	 If we use the -E parameter, that means that we want to set account expiration to
a certain date (YYYY-MM-DD format).

22 Basics of Shell and Text Terminal

Let's now translate that into commands:
chage -m 15 -M 30 -W 7 -E 2022-01-01 jack

chage -m 15 -M 30 -W 7 -E 2022-01-01 jill

chage -m 7 -M 30 -W 10 -E 2021-09-01 joe

chage -m 7 -M 30 -W 10 -E 2021-09-01 sarah

16.	 Finally, let's modify the groups to their final settings:

groupmod -n professors profs

groupmod -n students pupils

These commands will only change group names, not their other data (such as
group ID), which is going to be reflected in our users' information, as well:

Figure 1.8 – Checking created users' settings
As we can see, jack and jill are members of a group that's now called
professors, while joe and sarah are now members of a group
called students.

We deliberately left the userdel and groupdel commands for last, as these come
with some caveats and shouldn't be used lightly. Let's create a user called temp and
a group called temporary, and then let's delete them:

useradd temp

groupadd temporary

userdel temp

groupdel temporary

Using the most common shell commands 23

This will work just fine. The thing is, because we used the userdel command
without any parameters, it will leave the user's home directory intact. Since users'
home directories are usually stored in the /home directory, by default that means
that the /home/temp directory is still going to be there. When deleting users,
we sometimes want to delete a user but not their files. If you specifically want to
delete a user account and all the data from that user account, then use the userdel
-r username command. But think twice before doing it!

How it works...
Let's now discuss the more complex part of the previous recipe, which is symbolic links
and hard links.

Using the ln command without extra parameters tries to create a hard link. Using ln
with the -s parameter tries to create a soft link. We can clearly see that there are some
errors in that part of our recipe. Let's discuss them now by going back from the top.

When we've finished typing in the first six commands from the recipe (ending with ls
-al), which we're using to list the folder contents, the end result should look similar
to this:

Figure 1.9 – Original file, hard link and soft link

There are some conclusions that can be reached just by interpreting this
previous screenshot:

•	 The content file and the hardlink file have the same size (1,349 bytes,
in our case).

•	 The content file and the softlink file don't have the same file size (1,349 bytes
versus 11 bytes here).

•	 Soft links are marked differently by default (usually, a different color in
the Terminal).

24 Basics of Shell and Text Terminal

Now, for the purposes of building up this explanation, let's delete the original
content file:
r m content.cfg

The end result will look like this:

Figure 1.10 – Removing the original file leaves interesting consequences

We can see that the original file is gone, while the hard link is still here and has the same
size. On the other hand, the soft link changed color (from green to red), indicating that
there's some kind of problem. Interesting, isn't it?

If we open the hardlink.cfg file in the vi editor, the content is definitely there:

Figure 1.11 – The hardlink.cfg file still has the original content

Using the most common shell commands 25

The reason why this happens comes from the way in which filesystems work. When
we delete a file, we don't delete the content of the file, we just delete an entry in the
filesystem table (filename) that points to the content of the file. The reason for this is
simple in that it's about speed and convenience. If the operating system actually removed
the file content, it would need to free its blocks and write zeros to them. That would take
a lot of time. Furthermore, it would complicate file recovery.

This is where hard links and soft links come into play. The main difference between them
is something that we can easily deduce from the scenario. It's the fact that hard links point
to the actual file content, while soft links point to the original filename. That also explains
the size difference. Hard links must be the same size as the original file (as the original
file and hard link point to the content of the same content, therefore the same size). The
reason why softlink.cfg only consumes 11 bytes on the filesystem is simple; it's that
the content.cfg string needs 11 bytes to be saved to the filesystem table.

This is also the reason why there are two other major differences between hard links and
soft links:

•	 Hard links cannot point to a directory and they have to point to a file.

•	 Hard links cannot go across partitions. We can't reference/see data from the first
mounted partition if we look from the perspective of the second partition. The
second partition has its own filesystem table (which contains entries pointing to
the actual content on that partition) that's completely independent of the filesystem
table of the first partition.

The cool thing, going back to our recipe, is that we can easily recover the original file.
If we go back to the /root/links directory, we can just copy the hardlink.cfg file
to content.cfg and our original file and the corresponding symbolic link are back:

cd /root/links

cp hardlink.cfg content.cfg

26 Basics of Shell and Text Terminal

The end result will be just like earlier, when we created the content.cfg file and the
hard link and soft link pointing to it:

Figure 1.12 – Our original file and soft link are back

We will use these commands throughout this book, so we need to make sure that
we master using them before we move on to the next chapters. But for the time being,
we'll add just one more command to the stack. It's the subject of our next recipe, known
as screen.

Using screen
screen is one of those text utilities that was incredibly popular in the 1990s and 2000s,
with its popularity shrinking after that. System administrators often have to open multiple
consoles on the same machine or use any of those multiple consoles to connect to external
machines. Let's see how screen fits into this scenario.

Getting ready
Before starting with this recipe, we need to make sure that we have screen on our Linux
machine. So, we need to use the following command:

apt-get -y install screen

After that, we're ready to follow our recipe.

How to do it…
We need to start a regular text Terminal (this can be done in the GUI as well, but it can be
considered as a bit of a less-effective way to use screen real estate). Then, we just need to
type in the following command:

screen

Using screen 27

When we start screen, it is going to throw us a long piece of text about licensing and other
less-than-interesting subjects, with a couple of important pieces of information at the
bottom of the screen. It will look similar to this:

Figure 1.13 – Basic screen information

The only part of this output that's really interesting to us is Capabilities. It tells us that
with screen, we can do some cool stuff, such as copy, detach, and work with fonts.
But even without most of these advanced features, screen enables us to open multiple
virtual text Terminals, within the limits of one text Terminal. Then, it enables us to detach
(something like putting the screen process in the background), log off, come back later,
log in, and re-attach our session to screen. That enables some cool things, such as
leaving a permanent set of virtual text consoles open for the most common, mostly
used use cases.

After we press the Enter key on the screen shown in the previous screenshot, we're going
to be thrown into the text mode again. This is screen's first virtual text console. If we want
to use additional virtual text consoles, we can create them by using the Ctrl + A + C key
combination. Every one of these virtual text consoles is numbered from 0 onward.
If we create five virtual text consoles in screen (numbered 0-4) and we're in screen 4 and
want to jump to screen 0, we can easily do that in two ways. The first one involves absolute
addressing, in other words, we can tell screen that we want to go specifically to screen
0 (by using Ctrl + A + 0). The second way to go from screen 4 to 0 is to use a circular
approach. When we use the Ctrl + A + spacebar key combination, we're circling through
screens in a subsequent fashion – 0, then 1, then 2, and so on. If we're on screen 4 and
we want to go to 0, because we don't have a screen 5, we can just circle from 4 to 0 by
using Ctrl + A + spacebar.

28 Basics of Shell and Text Terminal

If we need to log off, we can detach our screen. The key combination for that is Ctrl + A +
D (detach screen). If sometime later we want to go back to our screens, we need to type in
the following command:

screen -R

We can also copy-paste in screen by using the Ctrl + A +] key combination, then scroll
and find the bit of text that we want to start copying, use the spacebar to start copying and
to end the copying process, and then the Ctrl + A +] combination if we want to paste text
somewhere. It takes a bit of practice, but it's also very usable. Just imagine doing stuff like
that in 1996!

Important Note
When working with screen, we suggest that you first press Ctrl + A, let those
keys go, and then press whichever key you need to go wherever you want to go
on the screen.

How it works…
screen works by creating multiple detachable virtual text consoles. These consoles remain
active until there's a process that kills screen, or until the system reboots. Keeping in mind
that most production environments based on Linux servers don't have a GUI, having
the capability to connect to a server once and then open multiple screens comes
in handy.

There's more…
screen requires a bit of trial and error and getting used to. We recommend that you check
the following link to learn more:

https://www.howtogeek.com/662422/how-to-use-linuxs-screen-
command/

2
Using Text Editors

There's just no way around the topic of this chapter, as system administrators edit text
files daily. Therefore, we decided to cover three commonly used editors – vi, Vim, and
nano. If you're more into GUI tools, make sure that you check gedit, although we won't
cover that editor here as it's practically the same as using Notepad on Microsoft Windows.
There are various reasons why these editors were chosen, but most importantly, they are
installed out of the box on almost all Linux distributions, so they're the most common
pre-installed editors. There are situations where additional software installation is not an
option, such as air-gapped environments.

We will cover the following recipes in this chapter:

•	 Learning the basics of the Vi(m) editor

•	 Learning the basics of the nano editor

•	 Going through the advanced Vi(m) settings

30 Using Text Editors

Technical requirements
For these recipes, we're going to use a Linux machine. We can use any virtual machine
from our previous recipe. For example, let's say that we're going to use a cli1 virtual
machine as it's the most convenient to use, seeing as it's a command-line-interface-only
machine. So, all in all, we need the following:

•	 A virtual machine with any distribution of Linux installed (in our case, it's going to
be Ubuntu 20.10).

•	 A bit of time to digest the complexities of using the Vi(m) editor. nano is less
complex; therefore, it's going to be easier to learn about that one.

So, start your virtual machine and let's get cracking!

Learning the basics of the Vi(m) Editor
Vi and Vim are the text editors of choice for many system administrators and engineers.
In a nutshell, the difference between them is that vim (vi improved) has many more
capabilities than the original vi (visual editor). You can find these editors everywhere
– from all the Unixes and Linuxes to the commercial Linux- or Unix-based software of
today. For example, VMware's vSphere Hypervisor has a version of the vi editor built in.
The rationale for this is simple – you need to have some sort of standardized editor that
can be used to edit various text files available on a filesystem. Over the years, you'll surely
find some cutdown version of vi or Vim on various network devices such as switches and
routers, and even more complex devices like firewalls. It's just the way it is. If something's
Unix- or Linux-based, chances are it's using text configuration files, and text configuration
files need a text editor. Pretty straightforward logic, isn't it?

Just as an example – the Vim editor has spinoffs that can be used in a variety of different
ways, including vim-athena (created with Athena GUI support), vim-gtk, and vim-gtk3
(created with GTK/GTK3 support), vim-tiny (a slimmed-down version of Vim), and
vim-nox. But still, most people that we know of prefer using the good old-fashioned vi
or Vim in a CLI.

For this first part of our recipe, we're going to explain the way vi and Vim work and use
them to do some most common things, such as the following:

•	 Three vi(m) modes – insert, command, and ex mode

•	 Moving around a text file that we want to edit by moving the cursor

•	 Deleting text (we could refer to it as cutting and deleting at the same time)

Learning the basics of the Vi(m) Editor 31

•	 Inserting additional content into a text file

•	 Saving and exiting in the vi(m) editors

•	 Finding content in a text file

•	 Copying and pasting text (what vi and Vim refer to as yank and paste)

That's going to be enough for this first recipe. We're going to go back to the advanced
vim capabilities in the last recipe of this chapter, where we're going to dig much deeper
into Vim and learn how to use much more advanced concepts, such as using regular
expressions, line marking, buffers, and sorting.

Getting ready
We just need to check whether vi and Vim are installed on our system. The simplest way
to do it is to just go brute-force and issue the following command:

sudo apt-get -y install Vim-tiny busybox Vim dictionaries-
common wamerican

Ubuntu doesn't have or use the vi editor by default, so we can just install the Vim-tiny
package to kind of emulate the same thing. Another way to use the vi editor in Ubuntu
would be to use the following command:

busybox vi

Seeing that busybox is a command-line tool that embeds multiple Linux command-line
utilities into one, this command is something that we need to be aware of. But also,
we need to remember that the intent of busybox is to have a way to embed multiple
popular CLI tools into one, which in turn means that none of these tools are completely
the same as their standalone versions.

After installation is done (if needed at all), we're going to start using Vim and learn how
to use it via examples. Let's issue the following commands as root:

cp /etc/passwd /root

cp /usr/share/dict/words /root

Take note of the fact that between cp, /etc/passwd, and /root (the same thing
applies to cp, /usr/share/dict/words, and /root in the second command),
we need to hit the spacebar on our keyboard. We're effectively copying the passwd and
words files to the /root directory to have some source files to play with.

32 Using Text Editors

When we have successfully finished copying these files, we'll start the Vim editor and start
editing. First, we're going to use the passwd file. Type in the following:

Vim /root/passwd

Let's start learning!

How to do it…
Now that we have the /root/passwd file opened in our Vim editor, let's play with it
a bit. Moving around in normal mode is straightforward. Let's just start by using the arrow
keys on our keyboard to move up and down and left and right. After we're done with that,
let's just jump to the top of our file by using the gg sequence (by pressing the g key twice).

First, we're going to delete the first line. Vi(m) starts in something called normal mode,
and if we press the d key twice, we're going to delete the first line. Let's check the
before state:

Figure 2.1 – The top section of the /root/passwd file

Learning the basics of the Vi(m) Editor 33

And now, after we have pressed the d key twice, it should look like this (if we are still
positioned at the first line, the root line):

Figure 2.2 – After pressing the d key twice, the first line is gone

Let's now expand this use case further by pressing (just as an example) the 5dd key
sequence. The result should look something like this:

Figure 2.3 – After the 5dd operation (deleting five lines), we deleted five lines after the cursor

34 Using Text Editors

As we can see, the first five lines after our cursor (the lines starting with daemon, bin,
sys, sync, and games) are gone.

Let's now jump to the last line in our /root/passwd file, and copy and paste it behind
the last line. First, we need to go to the end of our file, which can be achieved by using the
Shift + g sequence (basically, the capital letter G). After that, if we want to copy the line
after the cursor (in effect, complete the last line in the file), we need to first yank it (copy)
and then paste it to a correct spot. Yanking can be achieved by using the yy sequence
(pressing the y key twice). That puts the line after our cursor in a copy and paste buffer.
If we want to paste it after our last line, we need to press the p key. Our copied line will
automatically be pasted after the last line. The end result, if we used the same virtual
machine as in Chapter 1, Basics of Shell and Text Terminal, should be something like this:

Figure 2.4 – The yank and paste of a single line

Now, let's select three lines beginning with sshd (so, the sshd, systemd-coredump,
and student lines) and copy and paste them after the line beginning with joe. First,
we're going to use cursor keys to position at the beginning of the sshd line. Then,
we're going to type the y3y key sequence. This will start yanking (copying) from the
cursor, copy the next three lines in the copy and paste buffer, and then end yanking. If
we did that successfully, Vim is going to throw us a message at the bottom of the screen,
saying 3 lines yanked.

Learning the basics of the Vi(m) Editor 35

After we have these lines in the copy and paste buffer, we need to paste them. Let's use the
cursor keys to move to the line beginning with joe, and then press the p key. The result
should look like this:

Figure 2.5 – Yank and paste, and multiple lines of text

Now that we have played with yank and paste and delete, it's time to add some content to
this file. In order to do that, we need to enter insert mode. That can be achieved by typing
the i key. So, let's add a bit of text after our cursor – press the i key and start typing.
Let's add the following:

something:x:1400:1400::/home/something:/bin/bash

After we're done with inserting, press the Esc key (to go back to normal mode). The end
result should look like this:

Figure 2.6 – Inserting additional text with insert mode

36 Using Text Editors

Now that we've done that successfully, the next logical step will be to save the file if
we're happy with its contents. Let's say that we are and we're ready to save the file. In order
for us to do that, we need to enter ex mode and tell Vim that we want to exit and save.
There are several different key sequences that will make this happen for us. The first one
is :wq! (write and quit – don't ask us for confirmation), and the second one is :x. There are
other ways, such as using the ZZ key sequence, but let's stick to the more commonly used
ones (wq and x). We need to make sure that we type these key sequences with a colon sign
(:). As we will explain in a bit, using the colon sign means that we want to enter ex mode
and do some final operations with our edited file. If we use this key sequence successfully,
we should end up in shell, with our original file saved with all the changes that we made
to it.

In truth, Vim has a spectacular number of key sequences that can be used for a variety
of operations on text files. Feel free to translate this spectacular as either a very good
or very bad thing, as it's all subjective – some of us like it a lot, some of us will hate it.
Here are some commonly used key sequences:

•	 dw – delete a word

•	 2dw – delete two words

•	 yw – yank one word

•	 u – undo the last change

•	 U – undo changes made to the current line

•	 a – append text after the cursor

•	 A – append text to the end of the current line

•	 Ctrl + f – scroll the file forward by one screen

•	 n Ctrl + f – scroll the file forward by n screens

•	 Shift + m – move the cursor to the middle of the page

•	 :50 – move the cursor to line 50 of the current file

•	 $ – move the cursor to the end of the line

•	 x – delete the character at the cursor

•	 X – delete the character before the cursor

•	 ^ – go to the first character of the line

•	 o – insert a line after the current one

•	 Ctrl + g – print the file info

Learning the basics of the Vi(m) Editor 37

There are literally hundreds of other commands, and we deliberately selected only some
of them that we feel are useful and commonly used. Let's now do some more complex
things by using a built-in Vim teaching tool called Vimtutor. In the command line,
start Vimtutor by typing the following:

Vimtutor

After that, Vimtutor is going to ask us about the intended output file for practice, and
we can just press the Enter key here. We should have the following content on our screen:

Figure 2.7 – The Vimtutor start page

Let's now use this file to practice a bit. The first thing that we're going to do is copy the
first paragraph (starting with Vim and ending with editor.) before the paragraph starting
with The approximate time.

38 Using Text Editors

Let's position our cursor at the beginning of the Vim line by using the arrow keys. After
we have done that, we need to use the y} key sequence to instruct Vim to yank the
paragraph starting at the cursor. Then, we need to move to the empty line between the
first and second paragraphs by using the cursor keys and pressing the p key to paste the
copied paragraph after the cursor. The result should look like this:

Figure 2.8 – Yanking and pasting a text paragraph

Let's say that we want to convert the complete file to lowercase characters. Of course, this
operation involves several other operations:

•	 We need to move to the beginning of our file (gg).

•	 We need to turn on visual mode (more about this a bit later), achieved by pressing
the Shift + v key sequence (uppercase V).

•	 We need to mark the text all the way to the end of our file, achieved by pressing the
Shift + g key sequence (uppercase G).

•	 We need to make the text lowercase, achieved by pressing the u key.

Learning the basics of the Vi(m) Editor 39

So, the key sequence we're looking for is ggVGu. The result of our operation should look
like this:

Figure 2.9 – Our Vimtutor file, with all lowercase characters

If we wanted to do the opposite (uppercase all the characters), we'd use the ggVGU key
sequence (U is for uppercase and u is for lowercase characters).

We're going to take a short break from all of these key sequences by explaining how Vim
works – specifically, we're going to focus on commonly used modes and briefly mention
some of the lesser-used ones. Let's start with normal mode and work our way toward
visual and replace modes.

40 Using Text Editors

How it works…
The Vim editor has more than 10 different modes, which roughly translates into the
different ways in which it works. The most used modes are as follows:

•	 Normal mode

•	 Insert mode

•	 Ex mode

•	 Visual mode

•	 Replace mode

When we start Vim, we're in normal mode; we can sniff around in it by using the cursor,
we can do a bit of yank and paste, and we can delete. So, it's used for general operations
such as navigating through an edited file, a bit of rough-cut editing, and that's that.

If we want to add additional content to our text file, we usually switch to insert mode by
using the i key. In insert mode, we can easily add a bit of text after our cursor and move
around in our edited file. When we're ready to go back to normal mode, we can do that
by pressing the Esc key. If, however, we're done with file editing and we just want to save
the file and exit, we need to go to normal mode and then to ex mode. This is achieved by
pressing the Esc key, followed by the colon (:). That puts us in ex mode, and then we can
proceed to do wq!, x, or ZZ.

Visual and replace modes are quite a bit different. Visual mode has sub-modes (character,
line, and block), and can be used to select (highlight) parts of the text that we want
to work with and manipulate. For example, line and block modes can be useful for
modifying YAML files when working with Ansible. Character mode can be used to
highlight a part of code. YAML syntax is sensitive to indenting, so by using line mode,
we can highlight portions of our playbooks and indent them left or right (by using the >
and < keys) so that we don't have to do it manually. Block mode can be used efficiently to
check indentation that was created by using line mode. These modes can be entered by
using Shift + V (line mode) and Ctrl + v (block mode). Character mode can be entered by
using the v key.

Learning the basics of the nano editor 41

Replace mode allows us to type in our content in a text file over existing content. We can
use the R key to enter replace mode (from normal mode).

See also
If you need more information about the basics of Vim, we suggest that you check out
this content:

•	 Vim: https://www.Vim.org/

•	 Mastering Vim: https://www.amazon.com/exec/obidos/
ASIN/1789341094/stichtingiccfhol

•	 An interactive Vim tutorial: https://www.openVim.com/

Learning the basics of the nano editor
If you feel that the Vim editor is too complicated for you, we can feel your pain. That's
why choosing the editor you're going to work with is a subjective choice. We'd like to offer
another much simpler editor to the table, called nano.

Getting ready
Keep the CLI1 virtual machine powered on and let's continue editing our files.

How to do it…
We're going to edit the words file that we copied in the previous recipe. Before that,
let's just make sure that nano is installed by typing in the following command:

sudo apt-get -y install nano

Let's now open the file called words from the root directory by typing in the
following command:

nano /root/words

https://www.Vim.org/
https://www.amazon.com/exec/obidos/ASIN/1789341094/stichtingiccfhol
https://www.amazon.com/exec/obidos/ASIN/1789341094/stichtingiccfhol
https://www.openVim.com/

42 Using Text Editors

Our file should be opened in the nano editor, as shown in the following screenshot:

Figure 2.10 – Starting editing with the nano editor

For those of us who are more prone to using text editors such as Notepad or Wordpad,
nano should be a bit more familiar territory. It doesn't have the scope of capabilities
or advanced functionality that Vim has, but for the most part, that might not be so
important, at least not for most text file editing operations. Or is it really that simple?
Let's check it out.

Learning the basics of the nano editor 43

Editing in nano works in the same fashion as with other regular editors – we just need to
explain the lower part of the screenshot (the part where we can see Help, Exit, and so
on). In nano, if we need help, we need to press Ctrl + g. This is the result that we'll get:

Figure 2.11 – nano help

We can spend our time scrolling through this help window if we want to. But, for starters,
let's just say that this ^ character means press the Ctrl key.

So, on our first nano screenshot, ^G means Ctrl + G, ^X means Ctrl + X, and so on.
It still isn't as easy as using some text editors that a lot of people use on Microsoft
Windows, but it's a bit more user-friendly than Vim. If nothing else, some of the
commonly used commands are right at the bottom of our screen so that we don't have to
learn all of the key sequences or research them online before we consider using the editor.

44 Using Text Editors

If we want to close our help window from the second nano screenshot, we just need to
press Ctrl + X. This will get us back to the state shown in the first nano screenshot.

If we want to delete a line, we need to use Ctrl + K. If we need to delete multiple lines,
things start to get a bit more complex. We first need to select the content that we want to
delete (Ctrl + Shift + 6), use the cursor to move to the place that we want to delete to, and
then press Ctrl + K. Let's say that we want to delete five lines. So, selecting content that
we want to delete looks like this:

Figure 2.12 – After pressing Ctrl + Shift + 6 and using the cursor keys to
go down five lines, we're ready for Ctrl + K

Learning the basics of the nano editor 45

After we have selected the correct text, we just need to press Ctrl + K to delete it. The
result will look like this:

Figure 2.13 – Five lines successfully deleted – result!

The same idea applies to doing a copy and paste operation on a paragraph. We'd use Ctrl
+ Shift + 6 and the cursor to mark the text, Alt + 6 to put the copied text in the copy and
paste buffer, and then use Ctrl + U to paste it wherever it needs to be pasted in nano.
Saving the file is equivalent to using Ctrl + X to exit, and then confirming that we want the
changes to be saved to a file.

46 Using Text Editors

There's more…
If you need to learn more about nano, check out the following links:

•	 The nano editor cheat sheet: https://www.nano-editor.org/dist/
latest/cheatsheet.html

•	 How to use nano: https://linuxize.com/post/how-to-use-nano-
text-editor/

Going through the advanced Vi(m) settings
In the first part of this chapter, we learned some basic Vim operations, which were
moving around, copying and pasting, saving, and exiting. Let's take care of some more
advanced operations, such as working with find and replace, regular expressions, and
similar concepts.

Getting ready
We need to leave our CLI virtual machine running. If it's not powered on, we need to
power it back on.

How to do it…
Finding content in Vim is a multi-step process, and it depends on a couple of things.
First, it depends on the direction that we want to take, forward or backward, as there are
different key sequences for these operations. Let's open the /root/words file again to
find some text:

Vim /root/words

https://www.nano-editor.org/dist/latest/cheatsheet.html
https://www.nano-editor.org/dist/latest/cheatsheet.html
https://linuxize.com/post/how-to-use-nano-text-editor/
https://linuxize.com/post/how-to-use-nano-text-editor/

Going through the advanced Vi(m) settings 47

Let's start by finding the word fast. For that to work, we need to use the / character
from normal mode, as it tells Vim that we're about to use the search function.
So, /fast will search for the words fast forward from our cursor. This is the
expected result:

Figure 2.14 – Finding a word in Vim

48 Using Text Editors

If we now press Enter and then the n key, we will search for the next appearance of the
word fast. This is the expected result:

Figure 2.15 – The next appearance of the word fast

Going through the advanced Vi(m) settings 49

However, if we want to find the 10th appearance of the word fast, we need to either
press the correct key sequence or use a regular expression. Let's start with a key sequence,
which is going to be (again from normal mode) 10/fast. This is the expected result:

Figure 2.16 – Finding the n-th appearance of a word

50 Using Text Editors

If we want to find the previous appearance of our word (basically, search backward),
we need to press the N key (capital N). This is the expected result:

Figure 2.17 – Finding a word backward from the previous cursor

Going through the advanced Vi(m) settings 51

Let's now do a bit of search and replace. Let's say that we want to find all appearances of
the word airplane and change them to metro, starting from the beginning of our file.
The key sequence used for that would be gg (to go back to the file beginning) and then
:%s/airplane/metro/g, followed by the Enter key. This is the expected result:

Figure 2.18 – Replacing all appearances of a word with another word

52 Using Text Editors

This syntax presumes the automatic replacement of all occurrences of the word
airplane with the word metro placed anywhere in the file. If we just wanted to replace
the first appearance of a string in any line, we need to first find that word by using the /
word key sequence. Then, we need to use the :s/word1/word2/ key sequence to only
change the first appearance of word1 with word2. Let's use the word airship for that
example and change that word to ship. If we type in /airship, followed by the Enter
key, Vim will position us to the first next appearance of the word airship. If we then
use the :s/airship/ship/ key sequence followed by the Enter key, we should get
this result:

Figure 2.19 – Replacing one appearance of a word in a specific line with another word

It's a subtle difference, but an important one.

Going through the advanced Vi(m) settings 53

We could also use many more commands in vi – for example, using a dot sign (.). That
can be used to repeat the last change made in normal mode, which you might also find to
be very useful.

We're going to stop here, as we will cover more advanced text search patterns by using
regular expressions in Chapter 7, Network-Based File Synchronization.

How it works…
String replacement in Vim works by using an external command called sed, a stream
editor. This command is regularly used by system engineers all over the world to quickly
replace simple or complex text patterns of any given file (or multiple files) to another
complex text pattern. It uses regular expressions as a basis (explained in Chapter 7,
Network-Based File Synchronization), which means that, by default, doing search and
replace in Vim is quite powerful, albeit a bit complex, as we need to learn the ins and outs
of sed and the way Vim treats it as a plugin.

That being said, most of us focus on the quite powerful part of the last paragraph, as using
a Vim/sed combination to quickly replace complex text patterns yields fast and precise
results – as long as we know what we're doing, of course.

There's more…
Using these concepts requires a bit of extra reading. So, we need to make sure that
we check the following additional links:

•	 Vim Tips Wiki – search and replace: https://Vim.fandom.com/wiki/
Search_and_replace

•	 Vim tips: the basics of search and replace: https://www.linux.com/
training-tutorials/Vim-tips-basics-search-and-replace/

https://Vim.fandom.com/wiki/Search_and_replace
https://Vim.fandom.com/wiki/Search_and_replace
https://www.linux.com/training-tutorials/Vim-tips-basics-search-and-replace/
https://www.linux.com/training-tutorials/Vim-tips-basics-search-and-replace/

3
Using Commands

and Services
for Process

Management
Managing processes is an important job of a Linux system administrator. That can be
for a variety of reasons – maybe some processes got stuck and we need to finish them,
or we want to set some process(es) to work in the background or even to be started
periodically or at a later date. Whatever the scenario is, it's important to know how to
administer processes and make them do the work that needs to be done efficiently and
with regard to other processes running on the system.

In this chapter, we are going to learn about the following recipes:

•	 Process management tools

•	 Managing background jobs

•	 Managing process priorities

•	 Configuring crond

56 Using Commands and Services for Process Management

Technical requirements
For these recipes, we're going to use a Linux machine – we can use any virtual machine
from our previous recipes. Again, we can just continue using the cli1 machine that
we used in the previous chapter. So, to sum this up, we need the following:

•	 A virtual machine with Linux installed, any distribution (in our case, it's going to be
Ubuntu 20.10)

So, start your virtual machine and let's get cracking!

Process management tools
Managing processes means learning about the ways in which processes work and the
specific text-mode tools that we can use to manage them. We are going to start by
introducing some simple concepts – explain what processes are and which states they can
be in – and then we're going to move on to commands and how to use them to manage
processes from an administrative standpoint. That means that we are going to learn 10+
new commands/concepts that are necessary to understand how all of this works.

Getting ready
The vast majority of commands and utilities that we are going to use in this recipe come
pre-installed with our Linux distribution. That being said, there are a couple of cool
additional tools we can use to further drive the point of managing processes and system
resources home. So, let's install one more utility as it's capable of being used as a tool to
monitor system resources along with low-level stuff, such as working with processes.
It's called glances; let's install it by typing the following:

apt-get -y install glances

That should cover everything that we need in this recipe, so let's get cracking!

How to do it…
The first two commands that we must cover are ps and top. These are commands that
Linux system administrators use dozens of times on a daily basis if they're managing
a Linux server. Both of these commands are very valuable, as we can get a lot of
information about our system if we know how to use them properly, especially ps.

Process management tools 57

So, let's first use ps as a command without any additional options (of which there
are many):

Figure 3.1 – Default ps command output

By default, ps gives us a report about currently running processes. By starting it in
a shell without any additional options, we can get a list of processes running in our current
shell. We can already see some interesting information in this output. For starters, we can
see five processes and their IDs (the PID field on the left side). Then, we can see where
they're running, which is what the TTY field is all about. The TIME field tells us how much
accumulated CPU time the process has used so far. Furthest to the right, we can see the
CMD field, which tells us the name of an actual process that was started.

To fully appreciate the power of the ps command, we really need to look to its man page.
There's a really nice EXAMPLES section in it. Here's an excerpt from that section:

Figure 3.2 – Example for using the ps command

58 Using Commands and Services for Process Management

Let's use an extreme derivative of one of these examples. Let's type the following command:

ps auwwx | less

We used the | less part of this command to output just the first page of the ps
command output. The output should look something like this:

Figure 3.3 – ps auwwx command output (much more verbose)

As we can clearly see, there's a lot more detail in this output sorted by PID. Some of the
newly added fields include the following:

•	 USER: This field tells us the name of the user who started the process.

•	 %CPU: This field tells us how much CPU time the process uses.

•	 %MEM: This field tells us how much memory the process uses.

•	 VSZ: This field tells us how much virtual memory the process uses.

•	 RSS: Resident Set Size, the amount of non-swapped memory used by the process.

•	 STAT: Process status code.

•	 START: Time when the process was started.

Just as an example, a lot of system administrators use the %CPU and %MEM fields to find
processes that are using too much CPU or memory.

Process management tools 59

Let's say that we need to find a process by name. There are multiple ways of doing this, the
most common two being using either the ps command or the pgrep command. Let's see
how that would work:

Figure 3.4 – Using pgrep or ps to find a process by name

As a command, we tend to use grep to create a filter that will find a text sample by going
through text output. We can see that both commands gave us the result that we needed
– it's just formatted differently and with a different level of detail. We can also use the
pidof command to find a PID for any given process, similar to pgrep:

Figure 3.5 – Using the pidof command

Let's now explain the idea of the top command. After we start the top command,
we should get something similar to this:

Figure 3.6 – Using the top command

60 Using Commands and Services for Process Management

There are multiple things happening in this interactive output at the same time:

1.	 The top line is actually output from the uptime command. If we add the next four
lines (beginning with Tasks, %Cpu(s), Mib Mem, and MiB Swap), that is what
we call the top summary area.

2.	 After that, we can clearly see that top acts as a frontend to the ps command but is
implemented in an interactive sense.

The interactive part of the top command stems from the fact that it actually refreshes
regularly – by default, every 3 seconds. We can change that default refresh interval by
pressing the S key, which will make top ask us to change the delay from 3.0 to any
number. If we want to change the refresh interval to 1 second, we just press 1 and Enter.

We can ask top to show us processes by a single user (by pressing U and typing in the
user's login name) and to kill processes (by pressing K and typing in the PID and the
signal we want to send to that PID). We can also manipulate process priority, which
we will cover in our third recipe of this chapter. All in all, top is a very useful and
often-used command to do process management. It acts as a frontend to many different
commands, such as nice, renice, and kill.

The next set of commands that we need to learn about is kill and killall.
We shouldn't use the literal translation of these utilities to try to instinctively understand
what they do as we'll be surprised that that translation doesn't apply. Specifically, the kill
command is used when we want to kill a process by its corresponding PID. killall,
in contrast, is used to kill processes by name. There are – of course – viable use cases for
both. To show an example for both of these commands, we are going to use the following
top output:

Figure 3.7 – top output – notice the top command being started twice by the student user

Process management tools 61

Let's kill both of these top processes in a separate shell. If we want to kill the first one by
using the kill command, we need to type the following:

kill 41246

If we want to kill all of the started top commands by name, we can type the following:

killall top

When using the kill command, we're killing a single PID. When using the killall
command, we are killing all the started top processes. Of course, in order for us to be
able to kill a process by using either of these commands, we have to log in as either root
or student. Only the user that started the process and root can kill a user process.
We need to remember that the default signal of both of these commands is the SIGTERM
signal (signal number 15). If we want to kill a process by using a custom signal, we can
achieve that by adding that number to any of these two commands preceded by a minus
sign. Here's an example:

kill -9 41246

This will send the SIGKILL signal to the process. Both of these signals are explained in
the How it works… section of this recipe.

It's also good to note the fact that sometimes we need to find the PID of a currently
running shell or a parent PID of a shell. We can do that by using the following
two commands:

Figure 3.8 – PID of our current shell process, the parent process

62 Using Commands and Services for Process Management

Let's now check how glances can help us check what's happening with our system.
If we just start the command, we're going to get the following output:

Figure 3.9 – glances default output

It's easy to see the level of detail, as well as the different formats, that glances uses.
Furthermore, we really appreciate the fact that it uses color output as default, which
makes the information a bit easier to read. We can go into different methods of displaying
data. For example, we can type 1 to switch between per-CPU core versus aggregated
statistics. We can also use it in server mode (by starting it with the -s switch) so that
we can monitor remote hosts. So, from the server perspective, we would start it with
the following:

glances -s

From the client perspective, we would start glances with the following:

glances -c @servermachine

Process management tools 63

glances is cross-platform (it's Python-based), as it supports Linux, OS X, Windows,
and FreeBSD. It also has a built-in web UI that can be used via a web browser if we're
more into using the GUI than the CLI. But one of the most convenient features that it has
is the ability to export data in various different formats – CSV, Elasticsearch, RabbitMQ,
Cassandra, and others.

How it works…
A process is a unit of command execution that an operating system initializes so that
it can be managed both from the operating system standpoint and from our standpoint
as system administrators. That means that a process acts like an instance of any given
program, and it has some common properties (state, PID, and many others that we will
describe in this chapter), as well as some tasks that it needs to do. For example, after
we start a command (process), that command can open and read from the file, user
input, or other programs, do something with that input, and then terminate after the
work is done.

It is important to note that processes aren't paused if we reboot a machine – they get
stopped and then start as our Linux machine boots or we start it manually after the
reboot. So, there's no process persistence across reboots. Most of the time (except for most
of the processes that are a part of the operating system startup procedure), they don't even
keep the same PID across a reboot.

In terms of process types, we have five different types:

•	 Parent and child processes: In simple terms, a parent process is a process that
creates additional processes that we call child processes. Child processes exit when
the parent process exits. A parent process doesn't exit if a child process exits.

•	 Zombie and orphan processes: There are situations where the parent process gets
killed before the child process exits. The remaining child process is called an orphan
process. On the other hand, a zombie process is a situation where a process is killed
but still exists in the process table.

•	 Daemons: Daemons are usually related to some system tasks that usually involve
working with other processes and servicing them. They also don't use a terminal
as they run in the background.

64 Using Commands and Services for Process Management

In terms of states, we have these:

•	 Running/runnable: Running state refers to a state where a process is being executed
by a CPU. Runnable state, on the other hand, means that a process is ready to be
executed but is currently not consuming CPU or queued to be executed by a CPU.

•	 Interruptible/uninterruptible sleep: In an interruptible sleep state, a process can
be awakened and it can accept signals aimed at it. In an uninterruptible sleep state,
that doesn't happen, and the process remains asleep. This scenario often includes
a system call – a process can't do a system call and can't be paused or killed until
it finishes its job.

•	 Stopped: A process is often stopped when it receives a signal and when
we're debugging a process.

•	 Zombie: A dead process that's been halted but still exists in the process table is in
a zombie state.

From the operating system perspective, processes are units of execution – for a program
or service. Processes get scheduled by the operating system and that means assigning
them resources so that they can run from a programmatic perspective (context), and some
basic attributes so that they can be managed from the system administrative perspective.
That includes creating an entry in a process table with a PID (number of the process) and
other types of attribute data. We are going to explain these attributes and how to notice
process states a bit later in this chapter, when we start discussing practical aspects of
working with commands such as top and ps.

We mentioned the concept of a signal. When we're dealing with different ways of
establishing communication between a kernel and userspace program, there are two ways
of achieving that – via either a system call or a signal. Usually, we use commands such as
kill or killall if we want to send a signal to a process by assigning a signal number
or name along with the command. Let's take a look at an excerpt from the signal list:

Process management tools 65

Figure 3.10 – Excerpt from the signal man page

As we can see, there are many of them, and approximately 30 of these signals have
been implemented by the Linux kernel. Also, there are two types of signals from the
process perspective:

•	 Signals that can be handled by processes: For example, the SIGHUP
signal (number 1)

•	 Signals that cannot be handled by processes, but directly by the kernel:
For example, the SIGKILL signal (number 9)

66 Using Commands and Services for Process Management

The word handled is used in a programmatic sense here – handling something means
using some kind of handler to write a piece of code that's going to intercept the signal
message and redirect it to something, such as a function or subroutine.

There are major differences between these two types. Let's use an example of a daemon
process such as an Apache web server. If a daemon process receives the SIGHUP signal and
it supports it (it has a routine in its source code handling the SIGHUP signal, like Apache
does), the most common thing that it will do after receiving SIGHUP is to refresh its state
by re-reading its configuration. To quote the Apache manual:

Sending the HUP or restart signal to the parent causes it to kill off its children like in TERM,
but the parent doesn't exit. It re-reads its configuration files, and re-opens any log files. Then
it spawns a new set of children and continues serving hits.

Unlike this scenario, when you send the SIGKILL signal to Apache, it will be terminated
without giving any regard to refreshing its configuration, content, or anything of the sort.
We can't write a handle to redirect this signal to anything other than the process being
killed. We can think of it as a kernel sucking the life out of a process type of scenario,
as the process can't get access to resources to run and is effectively eradicated by the
system (kernel).

The third commonly used signal is SIGTERM (number 15). It's also used to terminate the
process (such as SIGKILL), but it does it in a graceful way. We can think of it as a Hello,
Mr. Process, would you please be so kind as to terminate yourself gracefully? Thank you very
much! message from the kernel. Then the process does what it needs to do and shuts
itself down.

Now that we've had a brief primer on how processes and signals work, let's continue
our quest for knowledge about processes by learning about the management of
background processes. As we already explained the basics of background processes,
that shouldn't be a difficult task.

See also
If you need more information about processes, signals, and similar concepts, make sure
that you check out the following:

•	 Basics of Linux processes: http://www.science.unitn.it/~fiorella/
guidelinux/tlk/node45.html

•	 Linux command basics – Seven commands for process management: https://
www.redhat.com/sysadmin/linux-command-basics-7-commands-
process-management

http://www.science.unitn.it/~fiorella/guidelinux/tlk/node45.html

http://www.science.unitn.it/~fiorella/guidelinux/tlk/node45.html

https://www.redhat.com/sysadmin/linux-command-basics-7-commands-process-management

https://www.redhat.com/sysadmin/linux-command-basics-7-commands-process-management

https://www.redhat.com/sysadmin/linux-command-basics-7-commands-process-management

Managing background jobs 67

•	 Signal man page: https://man7.org/linux/man-pages/man7/
signal.7.html

•	 Basics of glances: https://www.tecmint.com/glances-an-advanced-
real-time-system-monitoring-tool-for-linux/

•	 TLDP Chapter 4: Processes: https://tldp.org/LDP/tlk/kernel/
processes.html

Managing background jobs
There are various types of situations where we would like to start a process and run it in
the background. For example, let's say that we want to start a process, log off, and then
come back tomorrow and check the result of that process. Let's learn how this works by
using an example.

Getting ready
Keep the cli1 virtual machine powered on and let's use the shell to explain how the idea
of a background process works, as opposed to a foreground process. We will make sure
that we also explain the concept in the How it works… section.

How to do it…
Let's imagine a scenario in which we want to download a large file by using shell tools.
The usual suspect that we'd use for this kind of task in Linux is a program called wget.
We want to start a wget session (wget is a shell command that enables us to download
files from the http and ftp URIs) to download a large ISO file, but we want to log off
(or do something else) while the download is taking place. This is achieved by putting the
wget process in the background. This is just one common example of using a background
process to our advantage.

First, we need to install wget. Let's do that by using the following command:
apt-get -y install wget

wget is a common utility, and it's mostly installed by default. But either way, by using this
command, we'll make sure that it's installed.

Let's use the Ubuntu 20.04 ISO file as the file that we want to download by using
two examples. The first one is going to be running wget as a foreground process, and the
second one is going to be running wget as a background process. The second example
can actually be done in two different ways as wget has a built-in option that can be used
to put it in the background. Of course, as we're trying to explain the system-wide concept,
not a specific utility, let's make sure that we do both.

https://man7.org/linux/man-pages/man7/signal.7.html

https://man7.org/linux/man-pages/man7/signal.7.html

https://www.tecmint.com/glances-an-advanced-real-time-system-monitoring-tool-for-linux/

https://www.tecmint.com/glances-an-advanced-real-time-system-monitoring-tool-for-linux/

https://tldp.org/LDP/tlk/kernel/processes.html

https://tldp.org/LDP/tlk/kernel/processes.html

68 Using Commands and Services for Process Management

At the time of writing, the Ubuntu 20.04 ISO file can be found here:

https://releases.ubuntu.com/20.04/ubuntu-20.04.3-live-server-
amd64.iso

Let's use wget to download it as a foreground process, by typing in the
following command:

wget https://releases.ubuntu.com/20.04/ubuntu-20.04.3-live-
server-amd64.iso

The result should look something like this:

Figure 3.11 – Foreground process – exclusively locks the shell access

As we can clearly see, the download is working, but the problem is the fact that for the
next 12+ minutes, we can't do anything in this shell, as the underlying shell session
is being exclusively used by wget. We can't write commands, get command results
– nothing. The only thing that we could do to prevent that would be to use a Ctrl + C
sequence to quit the download and be thrown into the shell. But that's not what we want
to do. What we want to do is the following:

1.	 Start the download.
2.	 Be thrown back into the shell with the download still working.

This is a situation in which running a process as a background task can be very helpful.
So, let's add one additional parameter to the previous command:

wget https://releases.ubuntu.com/20.04/ubuntu-20.04.2-live-
server-amd64.iso&

The & sign at the end of this command tells the kernel to put this process in the
background. Let's see what the end result is:

Figure 3.12 – Starting the process in the background

https://releases.ubuntu.com/20.04/ubuntu-20.04.3-live-server-amd64.iso

https://releases.ubuntu.com/20.04/ubuntu-20.04.3-live-server-amd64.iso

Managing background jobs 69

We can clearly see that we've been thrown back into the shell (root@cli1 prompt) and
that we can keep writing additional commands. We can also see that a wget process was
started with PID 43787, which we could use to issue a kill command if we so choose.

Obviously, we can issue multiple commands with & at the end, and then we'd have
multiple processes running in the background. This is where the [1] part of the previous
output comes in handy. This number represents an index number assigned to the
background process. In other words, the wget that we started with PID 43787 is the
first background process. If we were to start multiple background processes, each new
background process would get the next number – 2, 3, and so on.

Obviously, we need to learn how to manage multiple background jobs. This is what the
jobs command is all about. Let's see how that works. First, we are going to start multiple
background jobs:

Figure 3.13 – Starting multiple background processes

Then, let's use the jobs and kill commands to work out which background jobs
we have and kill them by index (not by using their PID). This is the way to do it:

Figure 3.14 – Checking and killing multiple background processes

70 Using Commands and Services for Process Management

By using the kill %index_number syntax, we were able to kill background jobs
by their index number, instead of their PIDs. This syntax is shorter and shouldn't be
discounted in everyday life as it makes a lot of things easier – as long as we don't log off.
If we log off, the whole idea changes a bit as we can't access these processes by using their
index numbers, but we can definitely manage them by using PIDs. So, let's imagine for
a second that we started two wget sessions as background processes, and then logged off
and logged back on. Let's try to list these processes as background processes, then as just
regular, general processes, and kill them by PID. This is what happens after that:

Figure 3.15 – jobs provides no output, but the ps command does

We can clearly see that the jobs command provides no output (can't find index numbers
of background jobs), but our processes are still running. Why? Well, background
processes that we started were created in the shell that's no longer active. After we logged
off, we started a new shell, and, because of the way in which the jobs command works,
we can't see those background jobs anymore. But we can definitely see them as processes
running on the system, and, if we want to do so, we can kill them successfully by using
their PIDs, as we did with the kill command. We used the ps command here and
filtered its output by using grep – a command that is able to search specific pieces of
text from a text-based output (in our case, we were searching through the whole table of
processes by using ps auwwx, created a serial pipeline by using the pipe sign (|), and
then threw the output from the ps command in the grep command.

We mentioned that the wget command has the capability to start itself in the background
by using a command-line option (-b). This is not all that common, but it's definitely
useful. So, say we were to use the following command:

wget -b https://releases.ubuntu.com/20.04/ubuntu-20.04.2-live-
server-amd64.iso

Managing background jobs 71

This should be the end result:

Figure 3.16 – wget can be started in the background by using the -b switch

What's really interesting about this procedure is the following:

•	 wget clearly states that it's starting itself in the background, but it doesn't give us an
index number.

•	 If we use the jobs command, we can't see it as a background process.

•	 We can kill it by using regular means, a kill command.

This is a bit of a different concept, as wget effectively achieves this jobs command
invisibility by creating a wget child process and terminating the parent process. Since
the parent process is no longer there, it's no longer associated with a specific shell, and
therefore not indexed. The result is that it's not visible in the jobs table for the current
shell. We can achieve something similar by using the disown command. Let's start
a process in the current shell, and then do the thing that wget basically does:

Figure 3.17 – Disowning a background process

72 Using Commands and Services for Process Management

There are other ways of making sure that a process goes to the background. The most
common scenario is we want to start a process in the background, we forget to put the
& sign at the end of our command, and we're stuck with the foreground process. What to
do then?

The answer is simple – we press Ctrl + Z (to put the process in the suspended state),
and then type in the bg command. It's going to put the process in the background, as if
we started it with the & sign from the start. Combining all of that with jobs, disown and
kill would look like this:

Figure 3.18 – Using Ctrl + Z and bg to put a process in the background

We started wget in the foreground and put it in a suspended state by typing Ctrl + Z.
Then, we moved that process to the background by using the bg command. Since it's job
number 1 in our shell, we disowned it, used ps to find its PID, and killed it.

If, for some reason, we wanted to go from the background to the foreground with
a process (providing that it has an index number and was started in the current shell),
we can do that by using the fg command. So, if we use the previous procedure as an
example, it would look like this:

Managing background jobs 73

Figure 3.19 – Using Ctrl + Z, bg, and fg to move a process to the background and back to the foreground

We can clearly see that the wget process went to the background (Ctrl + Z and bg
commands), then went to the foreground (the fg command), and was terminated at the
end by using Ctrl + C. If we have multiple background processes in our current shell,
we can also use indexing with the fg command (fg index_number).

How it works…
Processes can run in two different ways:

•	 Foreground: If we start a process from the shell, that process is going to occupy
our current shell and will not allow us to type in additional commands. A kind
of exception to that rule is a scenario in which the started process requires
additional user input, but that input needs to be baked into the core of the process
that we're executing (a part of the programming code). In this scenario, the shell is
exclusively used by the started process until either the process finishes, we put it in
the background, or it gets killed by other external factors (such as other processes
or the kernel, or if it crashes for some reason).

•	 Background: If we start a process in the background, it runs and frees up our shell
so that we can continue using it to type other commands.

74 Using Commands and Services for Process Management

When a process goes to the background in the current shell, it gets an index number so
that we have the capability to manage it by using its index number. We can use fg, kill,
and similar commands by using this index number (for example, kill %1 would kill the
first job in the job index table).

As we saw in our practical demonstration, there are multiple ways of making sure that
processes are started in the background – either when they are started or after they are
started. What makes this concept plausible is the fact that we can easily put processes in
the background, to be handled by the operating system, while we're away from it, which
sometimes means freeing our precious time.

There's more…
If we need to learn more about foreground and background processes, we can check the
following links:

•	 Linux commands – jobs, bg, and fg: https://www.redhat.com/
sysadmin/jobs-bg-fg

•	 Linux command basics – seven commands for process management: https://
www.redhat.com/sysadmin/linux-command-basics-7-commands-
process-management

Managing process priorities
When we were explaining how to work with the top command, we intentionally omitted
some details to give them their own time and place to discuss them later on in this
chapter. We'll discuss one of these details here: the difference between the PR and NI fields
in the top output. Let's do that now.

Getting ready
Keep the cli1 virtual machine powered on and let's continue using our shell.

How to do it…
We are going to learn how to use the top, nice, and renice commands to manage
process scheduling in accordance with our wishes. First, let's use the top command.
Let's renice a running process to a more negative value and a more positive value.
Let's use the following top output for that:

https://www.redhat.com/sysadmin/jobs-bg-fg

https://www.redhat.com/sysadmin/jobs-bg-fg

https://www.redhat.com/sysadmin/linux-command-basics-7-commands-process-management
https://www.redhat.com/sysadmin/linux-command-basics-7-commands-process-management
https://www.redhat.com/sysadmin/linux-command-basics-7-commands-process-management

Managing process priorities 75

Figure 3.20 – Starting point – processes started by the student user

Let's now change the priority of the process with PID 47160 (top). Press the R key and
the top output will change this output to something such as the following:

Figure 3.21 – Let's renice a PID

Then, again, type in the number 47160 and press Enter, followed by the niceness
level – let's say, -10. We should get something like this as a result:

Figure 3.22 – End result – more negative niceness level, higher priority

We can clearly see that the NI field of our PID changed from 0 to -10. Since we gave
it a more negative niceness level, that means higher priority.

This example explains how to renice an already running process. But clearly, we can't
use that to set the niceness level before we start the process. That's why we have the nice
command. Here's an example of using the nice command:

nice -n -10 top

76 Using Commands and Services for Process Management

If we start this command as root and check the output, after we give it a bit of time,
we should see something like this:

Figure 3.23 – Using nice to pre-assign priority to a process at process start

Obviously, there's a caveat here – if we tried to start this command as a regular user, that
wouldn't work. Regular users don't have a right to use the nice command – imagine how
many different possibilities of abusing the system and/or crashing it would be given to
any user if they did have that right. There are ways around this if we want to give the right
to use the nice command to some users – we can do it via PAM modules or the sudo
system. But for the time being, let's agree that this is not something that needs to be urbi et
orbi, just as an exception.

Let's now explain how these concepts work.

How it works…
Let's start by executing the top command and checking the important part of its output:

Figure 3.24 – top output related to process priority

Managing process priorities 77

Let's briefly explain the difference between these two fields:

•	 PR (priority field): Real, kernel-scheduled priority at the moment of looking,
assigned by the kernel. The rt mark means real time; it ranges between 0 and 139,
although it can have negative static values for real-time processes.

•	 NI (niceness field): The process priority that it should have, assigned in user space
(not kernel space) by default or by additional commands (nice and renice). The
lower the number, the higher the priority, on a scale from -20 to +19.

Obviously, there's a big difference between these two numbers, seeing that one of them
is the real deal (PR) and the other one is like advice (NI). Explaining process priorities is
relatively easy in theory, but it becomes a bit more challenging to put into practice because
of some architectural reasons. So, we'll try to explain this with an example that used to be
possible but is not anymore as the speed of modern CPUs and memory is many times over
what it used to be 10 years ago. So, let's first discuss the theoretical concept and then use
an example.

Theoretically speaking, when we use the nice and renice commands, what we're doing
is assigning a specific amount of CPU context to a process – a running one (renice)
or a soon-to-be-running one (nice). We use the word context here in a programmatic
sense from a CPU perspective. Translation – if we want to run a process, the kernel needs
to assign it some CPU. If we have a running process and we renice it to a more negative
value, that is going to tell the kernel and its scheduler to pay more attention to that specific
process, therefore giving it more access to the CPU. If we renice it to a more positive
value, that's going to tell the kernel to pay less attention to giving CPU resources to that
process. By assigning more CPU to a process, there's a chance that that process is going to
work faster and do its job faster as a result.

Obviously, this is a bit of a simplification as there are other factors at play here. For
example, every process needs some memory to work, and the busier the memory is
with other processes, the less speed the process has to access memory content, therefore
lowering the memory bandwidth and increasing the latency of memory access. So,
assigning a more negative value to niceness doesn't always directly translate to more
performance out of a process. Also, what if the process doesn't need more CPU as
it's currently idling and not doing anything of significance? There can be many more
factors here – Non-Unified Memory Access (NUMA) operating system/application
compatibility, effective usage of multiple threads/cores, locking mechanisms, and others.
So, this is more of a general, academic discussion that can have exceptions that can
happen for a variety of reasons, the state of the system being one of the most
common ones.

78 Using Commands and Services for Process Management

Now that we've taken care of the theoretical background, let's use an example that used to
be very easy to demonstrate as a lot of people had these sorts of experiences in the past,
when CPU and memory were much, much less capable than they are today.

10 years ago, if we were to use an average computer of the day to display a high-resolution
Flash video from YouTube, we had a problem. CPUs were kind of strong enough to do
that, but only just. So, in order for us to be able to watch them in Linux by using a web
browser (for example, Firefox), we had to tune the system to do it. So, we started the
web browser, found a video that we wanted to watch, and pressed the play button, and
it would work for a couple of seconds and then stutter. Then, it would work again, then
stutter again. This was a frustrating experience. In those days, we didn't have GPU
acceleration for Flash, so the CPU was the only device that could be of any assistance
in these scenarios.

But if we knew how to set process priority, we could've solved that problem in most
cases, depending on the CPU speed. We could go to the shell, find the PID of the Firefox
process, and renice it to a much more negative value. All of a sudden, the kernel would
instruct its scheduler to pay more attention to Firefox as a process, and lo and behold
– our video would stop stuttering. Why? Because the kernel – by virtue of us using the
renice command – realized that we wanted to give that process more priority and
therefore ordered the CPU scheduler to make it happen.

There are many more aspects of tuning CPU performance. Modern Linux distributions
have many options for this as the kernel gets more and more programmatic in terms of its
approach to CPU scheduling. That's why various Linux distributions introduced concepts
such as tuned, a profile-driven system that's able to tune our system performance based
on pre-assigned or manually created profiles, and tuna, a utility that enables deep
application-specific tuning. We always need to have the capability to go deep with tuning
so that our system can have optimized performance for any specific use case.

There's more…
If we need to learn more about these concepts, we can check the following links:

•	 A guide to the Linux top command: https://www.booleanworld.com/
guide-linux-top-command/

•	 CPU scheduling: https://access.redhat.com/documentation/en-us/
red_hat_enterprise_linux/6/html/performance_tuning_guide/
s-cpu-scheduler

•	 top man page: https://man7.org/linux/man-pages/man1/top.1.html

https://www.booleanworld.com/guide-linux-top-command/
https://www.booleanworld.com/guide-linux-top-command/
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/performance_tuning_guide/s-cpu-scheduler
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/performance_tuning_guide/s-cpu-scheduler
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/performance_tuning_guide/s-cpu-scheduler
https://man7.org/linux/man-pages/man1/top.1.html

Configuring crond 79

•	 nice man page: https://man7.org/linux/man-pages/man1/
nice.1.html

•	 renice man page: https://man7.org/linux/man-pages/man1/
renice.1.html

•	 Getting started with tuned: https://access.redhat.com/
documentation/en-us/red_hat_enterprise_linux/8/html/
monitoring_and_managing_system_status_and_performance/
getting-started-with-tuned_monitoring-and-managing-system-
status-and-performance

•	 Reviewing a system using the tuna interface: https://access.redhat.
com/documentation/en-us/red_hat_enterprise_linux/8/html/
monitoring_and_managing_system_status_and_performance/
reviewing-a-system-using-tuna-interface_monitoring-and-
managing-system-status-and-performance

Configuring crond
Having the capability to run jobs on a schedule is very important for everyday system
administration. We schedule backups, run cleanup procedures, send reports, do antivirus
checks, and do other tasks that business procedures need. Scheduling them means
a certain level of automation and getting rid of the manual approach to things, which
in turn again gives us more time to focus on more important tasks. Generally speaking,
we use either commands or scripts as a way to do these scheduled tasks, and to execute
them, we use cron daemon (crond). Let's learn how to use crond to schedule jobs in
accordance with our needs.

Getting ready
Keep the cli1 virtual machine powered on and let's create some scheduled jobs
via crond.

How to do it…
Let's start by using root to create a cron job. We are going to achieve that by typing in the
following command as root:

crontab -e

https://man7.org/linux/man-pages/man1/nice.1.html
https://man7.org/linux/man-pages/man1/nice.1.html
https://man7.org/linux/man-pages/man1/renice.1.html
https://man7.org/linux/man-pages/man1/renice.1.html
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/getting-started-with-tuned_monitoring-and-managing-system-status-and-performance
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/getting-started-with-tuned_monitoring-and-managing-system-status-and-performance
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/getting-started-with-tuned_monitoring-and-managing-system-status-and-performance
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/getting-started-with-tuned_monitoring-and-managing-system-status-and-performance
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/getting-started-with-tuned_monitoring-and-managing-system-status-and-performance
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/reviewing-a-system-using-tuna-interface_monitoring-and-managing-system-status-and-performance
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/reviewing-a-system-using-tuna-interface_monitoring-and-managing-system-status-and-performance
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/reviewing-a-system-using-tuna-interface_monitoring-and-managing-system-status-and-performance
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/reviewing-a-system-using-tuna-interface_monitoring-and-managing-system-status-and-performance
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/reviewing-a-system-using-tuna-interface_monitoring-and-managing-system-status-and-performance

80 Using Commands and Services for Process Management

In Ubuntu, we are going to be asked to select which editor we want to use. For continuity
reasons, let's say that we choose the vi editor (vi.basic). Let's add the following entry to
the end of the file that we're editing in vi:

* * * * * ls -al /root > /tmp/root.txt

If we save the file as is, we just created the first root cron job – the one that's going to
execute every minute. The * signs are actually frequency fields in these crontab files. Look
at the following:

man 5 crontab

Now scroll a bit lower on the man page; we're going to find the following examples:

Figure 3.25 – Excerpt from man 5 crontab page

The first part explains the fields, as there are six of them. The first five are related to
the frequency of executing the six fields. We can use space or Tab as delimiters between
these fields.

Configuring crond 81

The first five fields are as follows:

•	 The minute field: At which minute the job should be executed

•	 The hour field: At which hour the job should be executed

•	 The day of month field: On which day of the month the job should be executed

•	 The month field: On which month the job should be executed

•	 The day of week field: On which day of the week the job should be executed

All of these fields support various types of syntax:

•	 Number: We can type any number that makes sense for a given field. For example,
if we type the number 75 in the minute field, that doesn't make any sense as single
numbers in the minute field go from 0 to 59.

•	 Range: We can type any range that makes sense for a given field. For example,
if we type a range of 3-47 in the hour field, that won't work as the number range
for hours is 0-23.

•	 Step values: We can type things such as 0-10/2 in the first field, which cron
translates to from the 0th to 10th minute, every second minute.

•	 Lists: If we use the previous example, we could've configured that so that we type
0,2,4,6,8,10.

•	 Combination thereof: Any combination of previously mentioned syntaxes.

All of these syntaxes give us many different options to configure which jobs we want to
execute and when, down to the minute. We also need to remember that cron doesn't
allow frequency smaller than a minute. If we need to do something like that, we need to
work around that fact (using the sleep function, the at command, and others).

If we are logged in as root, that gives us the capability to manage a user's cron jobs as well.
For example, say we type in the following command:

crontab -e -u student

We are going to be editing crontab for the student user.

Furthermore, if we want to remove student's cron jobs, we can do it like this:

crontab -r -u student

82 Using Commands and Services for Process Management

If we just need to list cron jobs from the student user, we can use the
following command:

crontab -l -u student

Let's go back to system cron jobs, the second most common type of cron jobs. These are
configured in system folders under the /etc directory, such as /etc/cron.daily and
/etc/cron.hourly. The keyword that follows cron. in the directory name tells us
the frequency for all of the jobs configured in that folder. For example, let's take a look
at the cron.daily folder:

Figure 3.26 – Daily system cron jobs

Some of these filenames probably sound familiar. logrotate does log rotation, the
mlocate job updates the file/folder database used by the updatedb command, and so
on. At any given moment, there can be dozens of these system-wide cron jobs in those
directories, depending on which packages we installed on our Linux server and how many
additional system jobs we created ourselves. Let's use the logrotate file as an example:

Figure 3.27 – logrotate cron.daily job, which actually executes a simple shell script

Configuring crond 83

As we can see, this cron job actually executes a shell script, and its configuration is the
polar opposite of what we saw in user cron jobs where crontab files have a very strict
syntax. Here, we have much more freedom and the fact that we can just write outright
shell script code in these files makes our job easier. We have a lot of additional content
about shell scripting coming up later in this book, from Chapter 9, An Introduction to Shell
Scripting, all the way to the end of the book. So, let's table that discussion for a later time
when we introduce all the necessary concepts – variables, loops, functions, arrays, and
so on. It is going to be a lot of fun indeed.

How it works…
crond is a spooling type of service – it creates queues of tasks that it needs to do and
then executes them in accordance with specified criteria. In larger enterprises, we might
consider crond criteria to be a part of a bigger picture that we usually call policy.
Businesses rely on IT-related policies to implement standards and levels of service, and in
that sense, IT policies are nothing more than objects describing a certain need. A need to
do scheduled, daily backups, a need to run regular security checks by using an intrusion
detection system (IDS) or antivirus, you name it. It doesn't really matter if we're talking
about some general policies or security-related policies – policies are a standardized way
of bringing IT chaos to order in a streamlined, compliance-oriented fashion. When
we take a look at crond, it's one of those essential tools to deliver those policies.

crond takes care of different types of scheduled jobs:

•	 System-related scheduled jobs: Daily, hourly, weekly, and other jobs that are
executed in order for the system to work properly.

•	 Delayed or deferred jobs: If a server has been turned off at the time when
scheduled jobs should've been started, then it's up to crond to make sure to
execute them later if we install the anacron package, which takes care of scenarios
such as constant server shutdowns that would lead to periodic tasks not being
executed regularly.

•	 User-based crond jobs: These are per-user jobs that regular system users can create
so that they can execute a job at a given moment.

First and foremost, we need to learn how user-based cron jobs work, as these are the most
common jobs on multi-user servers.

84 Using Commands and Services for Process Management

When we use the crontab -e command for any given user, a crontab file gets created
in one of the crond directories. These files are nothing special in terms of complexity –
there's obviously a bit of syntax involved, but they're really well documented even when
starting from scratch so that most users won't have problems with figuring this out. In
Ubuntu, crontab files are created in the /var/spool/cron/crontabs directory,
where all user cron jobs get saved as a text file per user. If a file in that directory is named
as root, that means that the root user has a cron job. If there's a file named student, that
means that the user called student has a cron job scheduled. This makes it easier to
debug if it ever comes to that. Also, we need to take note of the fact that there are people
who prefer to edit those files rather than using the crontab command. At the end of
the day, whichever way we solve the IT problem that we need to solve is good, as long as
it works properly. Let's take a look at one of those files – in this case, it's going to be an
excerpt from the root user's crontab file:

Figure 3.28 – Root's crontab file

We can clearly see that root scheduled a job to be executed every minute here. That
job lists the content of the /root directory and saves it to a file in the /tmp directory
called root.txt. It's simple enough, but it clearly shows the way in which crontab
configuration files are created.

crond regularly checks these files and executes configuration stored in them at the
scheduled time. This is the reason why it's very important to be careful what we put in
these files. We really shouldn't put plain-text passwords, login information, or anything
similar to these concepts in crontab files. By using the first five fields in the user's
crontab file, crond determines the frequency for any given scheduled job. It parses
these files line by line, which means that we can easily schedule multiple cron jobs as
users, without any problems.

Configuring crond 85

If we run into problems with users scheduling too many cron jobs eating away at the
performance of our server, we can always ban them from using crontab. For example,
if we want to deny the student user the capability of creating user cron jobs, we just
need to edit the /etc/cron.deny file and add a user name per line, like this:

student

If we do that, and the user called student tries to create a cron job by using crontab
-e, this is the expected result:

Figure 3.29 – Using cron.deny to disable a user's right to use crontab

That's a wrap for this chapter. The next chapter is going to be all about using the shell
to configure network settings, which includes both network interfaces and firewalls.
Stay tuned!

There's more…
If we need to learn more about these concepts, we can check the following links:

•	 Automating system tasks: https://access.redhat.com/
documentation/en-us/red_hat_enterprise_linux/7/html/
system_administrators_guide/ch-automating_system_tasks

•	 Crontab man page, chapter 5: https://man7.org/linux/man-pages/
man5/crontab.5.html

•	 How I use cron in Linux: https://opensource.com/article/17/11/
how-use-cron-linux

•	 Use anacron for a better crontab: https://opensource.com/
article/21/2/linux-automation

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/system_administrators_guide/ch-automating_system_tasks
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/system_administrators_guide/ch-automating_system_tasks
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/system_administrators_guide/ch-automating_system_tasks
https://man7.org/linux/man-pages/man5/crontab.5.html
https://man7.org/linux/man-pages/man5/crontab.5.html
https://opensource.com/article/17/11/how-use-cron-linux
https://opensource.com/article/17/11/how-use-cron-linux
https://opensource.com/article/21/2/linux-automation
https://opensource.com/article/21/2/linux-automation

4
Using Shell to

Configure and
Troubleshoot

a Network
Managing processes is an important job of a Linux system administrator. That can be for
a variety of reasons – maybe some processes got stuck and we need to finish them, or we
want to put some process(es) to work in the background, or even to be started periodically
or at a later date. Whatever the scenario is, it's important to know how to administer
processes and make them do the work that needs to be done efficiently and with regards
to other processes running on the system.

In this chapter, we are going to learn about the following recipes:

•	 Using nmcli and netplan

•	 Using firewall-cmd and ufw

•	 Working with open ports and connections

88 Using Shell to Configure and Troubleshoot a Network

•	 Configuring /etc/hosts and DNS resolving

•	 Using network diagnostic tools

Technical requirements
For these recipes, we're going to use two Linux machines. We can use the client1 virtual
machine from our previous recipes. We'll also use another two virtual machines running
CentOS 8 2105 to cover CentOS-based scenarios (nmcli and firewall-cmd). Let's
call them server1 and client2. All in all, we need the following:

•	 A virtual machine running Ubuntu 20.10

•	 Two virtual machines with CentOS 8 2105

So, let's start our virtual machines and let's get cracking!

Using nmcli and netplan
Network configuration has changed significantly in the past couple of releases – for
all Linux distributions. It doesn't really matter whether we are discussing Red Hat and
its clones or Debian and its clones – these changes happened across all of them. For
example, Red Hat and its clones went from a network service to a mixture of network and
NetworkManager services to a fully NetworkManager-based configuration. Ubuntu was
using a networking service until recently when it switched to netplan. Let's explain all of
these concepts so that we can have a full overview of these configuration methods and
cover any situations you might end up in. We will also cover a scenario in which someone
might want to turn off netplan and go back to using the networking service on Ubuntu.

Getting ready
We just need one Ubuntu and one CentOS machine for this recipe. Let's say we are
going to use server1 and client1 to master nmcli and netplan. Furthermore,
on CentOS, we need to deploy the net-tools package to get access to some of the
commands used in this recipe (for example, the ifconfig command). Let's do that by
using the following command:

dnf install net-tools

After that, we're ready to go.

Using nmcli and netplan 89

How to do it
Let's first work with the two most common CentOS scenarios – implementing network
configuration via nmcli for both static IP address and Dynamic Host Configuration
Protocol (DHCP) scenarios. Let's just say that we are going to use network interface
ens39 to create a network connection called static (for the static IP address, for
example, 192.168.2.2/24 with gateway 192.168.2.254 and DNS servers
8.8.8.8 and 8.8.4.4) and, later on, a network connection called dynamic
(for DHCP configuration). We just need to run a few commands as root per scenario
for that:

nmcli connection add con-name static ifname ens39 type
ethernet ipv4.address 192.168.2.2/24 ipv4.gateway
192.168.2.254 ipv4.dns 8.8.8.8,8.8.4.4

nmcli connection reload

systemctl restart NetworkManager

The expected result should look like this:

Figure 4.1 – Adding a static IP configuration via nmcli

Let's now remove that connection and define a DHCP-based configuration. For that, we
need to have a DHCP server available on our network, so that it can assign the necessary
network configuration information to client2 (IP address, netmask, gateway, DNS server
addresses, and so on). We need to type in the following commands:

nmcli connection delete static

nmcli connection add con-name dynamic ifname ens39 type
ethernet

nmcli connection reload

systemctl restart NetworkManager

90 Using Shell to Configure and Troubleshoot a Network

 This is our expected result:

Figure 4.2 – Adding a DHCP configuration via nmcli

If everything is configured correctly on our network, we should've gotten an IP address
and other networking information and have internet access.

In terms of netplan on Ubuntu, this configuration method is more in line with the
currently popular infrastructure as code paradigm, so it's all about configuration files. So,
we will again implement two of the most common scenarios – a static IP address and
DHCP, but we will also cover a scenario with multiple network interfaces so that we can
see what the syntax looks like.

First, let's start with the netplan static networking configuration. Let's say that we need
to assign IP address 192.168.1.1/24 to network interface ens33, with the default
gateway being 192.168.1.254 and DNS servers 8.8.8.8, and 8.8.4.4. We can just
change the existing YAML configuration file that's already there, called 00-installer-
config.yaml:

Figure 4.3 – Adding a static configuration via netplan

Using nmcli and netplan 91

That covers our static IP address scenario. It's relatively obvious what we need to do in
terms of a netplan DHCP scenario, so the configuration file needs to look like this for
that specific scenario:

Figure 4.4 – Adding a dynamic configuration via netplan

The last part of our recipe, as we mentioned, is about having multiple network interfaces
and configuring them properly. Let's say that we have a network interface called ens33
that needs to be DHCP-configured, and an interface called ens38 that needs to be
assigned an IP address, 192.168.1.1/24, with the same config data for gateway and
DNS servers as before. The configuration file would look like this:

Figure 4.5 – Configuring multiple network interfaces via netplan

For some of the latest versions of Ubuntu, this yes/no configuration will be changed to
true/false, so if you get an error here, you just need to make that change. Basically, it
looks like a merge of the previous two files, with a couple of lines stripped so that we don't
have unnecessary repetitions.

Let's now see how these two concepts work. It's simple enough, but still, it requires a bit of
background knowledge, so let's dive in.

92 Using Shell to Configure and Troubleshoot a Network

How it works
Now that we've done a brief primer on how processes and signals work, let's continue our
quest for knowledge about processes by learning about the management of background
processes. As we've already explained the basics of background processes, that shouldn't
be a difficult task.

In terms of NetworkManager and its command-line configuration interface (nmcli),
NetworkManager does its configuration via configuration files in the /etc/
sysconfig/network-scripts directory. Let's show an example from our previous
CentOS session – where we created an interface called dynamic. In that directory, there's
a file called ifcfg-dynamic, with the following content:

Figure 4.6 – Regular NetworkManager configuration file

That's quite a big configuration file for a simple configuration. Actually, if we were to
polish this file a bit, we could make it at least two thirds shorter, and it would still work,
for example, like this:

Figure 4.7 – Shortened configuration file

These configuration options aren't all that difficult to understand, as well as some other
configuration options that are needed for static IP configuration (IPADDR, PREFIX
or NETMASK, GATEWAY – these are all pretty self-explanatory). But the fact remains that –
at least in part – NetworkManager still uses this bulky syntax as a history leftover, as we've
been using this /etc/sysconfig/network-scripts directory and files in that
directory to configure network interfaces for years and years now.

Using firewall-cmd and ufw 93

When comparing that to netplan, we can clearly see that netplan puts much more
importance on declarative syntax with all of the structured code and indentation that it
needs to have, which is what YAML is known for. It will frustrate you at the beginning, at
least until you learn how to use the vim editor for editing YAML files, as it then becomes
much easier. Check out the link in the There's more section to learn how to set up vim to
help you with YAML syntax.

Both of these services – when the system gets booted up – read the aforementioned
configuration files and set the network interfaces in accordance to the settings in them.
A pretty straightforward process, as long as we understand the syntax. But we'd still
recommend using nmcli for NetworkManager configuration as its syntax gets under
your fingers quickly.

The next stop is firewalling, by using firewalld and ufw.

There's more
If you need more information about networking in CentOS and Ubuntu, make sure that
you check the following:

•	 Configuring and managing networking: https://access.redhat.com/
documentation/en-us/red_hat_enterprise_linux/8/html-
single/configuring_and_managing_networking/index

•	 Netplan reference: https://netplan.io/reference/

•	 nmcli: https://developer-old.gnome.org/NetworkManager/
stable/nmcli.html

•	 Setting up vim for YAML editing: https://www.arthurkoziel.com/
setting-up-vim-for-yaml/

Using firewall-cmd and ufw
Using built-in firewalls has been a de facto standard in Linux for more than two decades
now. Ever since the invention of ipfwadm (kernel v2.0), Linux kernel developers have
been piling up functionality and a firewall has been one of those things. ipfwadm was
followed by ipchains (kernel v2.2), iptables (kernel v2.4), and today it's all about
firewalld (CentOS) and ufw (Ubuntu). Let's go through both of these concepts so
that we can use them when we need them regardless of the Linux distribution we're
working on.

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/configuring_and_managing_networking/index

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/configuring_and_managing_networking/index

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/configuring_and_managing_networking/index

https://netplan.io/reference/

https://developer-old.gnome.org/NetworkManager/stable/nmcli.html

https://developer-old.gnome.org/NetworkManager/stable/nmcli.html

https://www.arthurkoziel.com/setting-up-vim-for-yaml/

https://www.arthurkoziel.com/setting-up-vim-for-yaml/

94 Using Shell to Configure and Troubleshoot a Network

Getting ready
As a part of this recipe, we are going to go through a list of dozens of different scenarios
covering firewalld and ufw. In other words, we are going to introduce the necessary
commands to do configuration changes for some of the most commonly used scenarios.
First, let's install the necessary packages for CentOS (on our client2 machine) and Ubuntu
(client1 machine). So, for CentOS, we need to type the following command:

yum -y install firewalld

Also, use this command for Ubuntu:

apt-get -y install ufw

In terms of services, for CentOS, we have these – just in case we used iptables
previously, as iptables firewall is supported in CentOS 8:

systemctl stop iptables

systemctl disable iptables

systemctl mask iptables

systemctl enable firewalld

systemctl start firewalld

For Ubuntu, it's the same idea:

systemctl stop iptables

systemctl disable iptables

systemctl mask iptables

systemctl enable ufw

systemctl start ufw

ufw enable

Now that the services are configured, let's start!

How to do it
For firewalld, we are going to use its default command, which is firewall-cmd.
For ufw, the command has the same name – ufw. First, let's take care of some basic
commands. Let's first list all the rules:

firewall-cmd --list-all

Using firewall-cmd and ufw 95

Depending on how many rules we added previously, we should get an output similar
to this:

Figure 4.8 – firewall-cmd --list-all output

Let's now add and delete a couple of rules. This is what we are going to do:

•	 Add a rule that allows 192.168.2.254/24 to access everything on our client2
machine.

•	 Add a rule that allows network subnet 192.168.1.0/24 to access the SSH service
on our client2 machine.

•	 Block the 192.168.3.0/24 network from accessing HTTP/HTTPS services.

•	 Allow the same subnet to access the DNS service.

•	 Forward port 900 to port 9090.

•	 Configure masquerade so that client1 can be used as a router/gateway.

As the last step, we are going to delete every single one of these rules, one by one.

Now that we're clear on what we are trying to do, let's punch in all of the necessary
commands to make this happen. First, let's start by using the default configuration and
default zone, which means that we need to check which zone it is. We can see in the
previous screenshot that the public zone is active, so – for the time being – we are going to
add all of the rules to that zone and explain zones and rich rules a bit later:

firewall-cmd --permanent --zone=public --add-
source=192.168.2.254/32

firewall-cmd --permanent --zone=public --add-rich-
rule='rule family="ipv4" source address="192.168.1.0/24" port
protocol="tcp" port="22" accept'

96 Using Shell to Configure and Troubleshoot a Network

firewall-cmd --permanent --zone=public --add-rich-
rule='rule family="ipv4" source address="192.168.3.0/24" port
protocol="tcp" port="80" reject'

firewall-cmd --permanent --zone=public --add-rich-
rule='rule family="ipv4" source address="192.168.3.0/24" port
protocol="tcp" port="443" reject'

firewall-cmd --permanent --zone=public --add-rich-
rule='rule family="ipv4" source address="192.168.3.0/24" port
protocol="udp" port="53" accept'

firewall-cmd --permanent --zone=public --add-forward-port=port=
900:proto=tcp:toport=9090

firewall-cmd --permanent --zone=public --add-masquerade

echo "1" > /proc/sys/net/ipv4/ip_forward

echo "net.ipv4.ip_forward = 1" > /etc/sysctl.d/50-forward.conf

firewall-cmd --reload

Echo commands are used to enable IP forwarding right now (first echo), and to enable
it permanently (second echo), by using a sysctl configuration file that's going to be
loaded as our system boots up. The last command is to apply these settings to the current
running state of firewalld. When we now type in the firewall-cmd --list-all
command, we should get output like this:

Figure 4.9 – End result of our configuration in firewalld

It's very important to learn how to remove these rules, as well. So, let's now remove these
rules, one by one, going in the opposite direction:

firewall-cmd --permanent --zone=public --remove-masquerade

firewall-cmd --permanent --zone=public --remove-forward-port=po

Using firewall-cmd and ufw 97

rt=900:proto=tcp:toport=9090

firewall-cmd --permanent --zone=public --remove-rich-
rule='rule family="ipv4" source address="192.168.1.0/24" port
protocol="tcp" port="22" accept'

firewall-cmd --permanent --zone=public --remove-rich-
rule='rule family="ipv4" source address="192.168.3.0/24" port
protocol="udp" port="53" accept'

firewall-cmd --permanent --zone=public --remove-rich-
rule='rule family="ipv4" source address="192.168.3.0/24" port
protocol="tcp" port="443" reject'

firewall-cmd --permanent --zone=public --add-rich-
rule='rule family="ipv4" source address="192.168.3.0/24" port
protocol="tcp" port="80" reject'

firewall-cmd --permanent --zone=public --remove-
source=192.168.2.254/24

firewall-cmd --reload

That should remove all of the rules and apply the starting state as the current state.
Let's check:

Figure 4.10 – The firewalld rule set after rule removal

Everything is back to its original state, so we can call this a success. Let's now apply the same
ruleset to the Ubuntu virtual machine called client1 by using ufw. Let's first check the status
by using the ufw status verbose command. We should get a result like this:

Figure 4.11 – ufw configuration starting point

98 Using Shell to Configure and Troubleshoot a Network

Let's now add the same set of rules that we added in firewalld, to see how it's done via
ufw and to be able to check the syntax differences:

ufw allow from 192.168.2.254/32

ufw allow from 192.168.1.0/24 proto tcp to any port 22

ufw deny from 192.168.3.0/24 proto tcp to any port 80

ufw deny from 192.168.3.0/24 proto tcp to any port 443

ufw allow from 192.168.3.0/24 proto udp to any port 53

For port forwarding, we need to edit the /etc/ufw/before.rules file and add the
following configuration options before the *filter section:

*nat

:PREROUTING ACCEPT [0:0]

-A PREROUTING -p tcp --dport 900 -j REDIRECT --to-port 9090

COMMIT

We can now check the status of our work by using the ufw and iptables commands:

Figure 4.12 – ufw status verbose after all the added rules

Using firewall-cmd and ufw 99

We need to add two configuration options to ufw configuration for masquerading to
work. First, we need to change the default policy for forwarding in the /etc/default/
ufw file. It's set to DROP by default. We just need to change it to ACCEPT. It's at the
beginning of this file, so the end result should look like this:

DEFAULT_FORWARD_POLICY="ACCEPT"

This is rather than looking like this:

DEFAULT_FORWARD_POLICY="DROP"

The next configuration option is actually in the same file that we previously edited, /etc/
ufw/before.rules. We need to add one additional part to the *nat section called
the POSTROUTING subsection, to the same place that we used before. So, similar to the
previous example, we need to add the following configuration options, again before the
*filter section:

*nat

:POSTROUTING ACCEPT [0:0]

-A POSTROUTING -o ens33 -j MASQUERADE

COMMIT

The last part of the ufw configuration is making sure that the kernel knows that it needs
to turn on ip forwarding. For that to happen, we need to edit a file called /etc/ufw/
sysctl.conf and uncomment the following configuration option by removing the
comment mark (#) before it:

net/ipv4/ip_forward=1

This changes a value in the /proc filesystem, in a file called /proc/sys/net/ipv4/
ip_forward. If we want to make sure that it works even without rebooting the machine,
we need to issue the following command, as well:

echo "1" > /proc/sys/net/ipv4/ip_forward

100 Using Shell to Configure and Troubleshoot a Network

That will enable IP forwarding on the kernel level and enable us to use masquerading in
ufw. Let's now check the end result:

Figure 4.13 – ufw ruleset after configuring masquerading

If we need to remove any of these configuration options, it's going to be done in two parts:

•	 Configuration options that we added to files directly via the editor will need to be
removed via the editor.

•	 Configuration options that we added by using the ufw command can be easily
reversed by using ufw's rule indexing.

Let's type in the command ufw status numbered. This is the expected result:

Using firewall-cmd and ufw 101

Figure 4.14 – ufw ruleset indexed by number

We can see that every rule that we punched in has a number attached to it. Rules 8 and
9 are rules for ports 900 and 9090 that were automatically added for the IPv4 and IPv6
stack. We can remove all of these rules easily by using the numbers attached to them.
The thing is, ufw doesn't have a mechanism for deleting multiple rules one by one, so we
would need to delete them one by one, something like this:

ufw delete 9

<confirm by pressing y>

ufw delete 8

<confirm by pressing y>

....

ufw delete 1

<confirm by pressing y>

Yes, we could've simplified this with a for loop, something like this:

for i in {9..1};do yes|ufw delete $i;done

But shell scripting and using loops is yet to come in this book so... let's treat this as an
example in advance.

Let's now explain how all of this works – firewalld zones, rich rules, ufw syntax – so
that we can get an understanding of the background services and capabilities making
it happen.

Note
Firewalld is available on Ubuntu, as well. It just needs to be installed,
enabled, started, and configured, and the opposite needs to be done to ufw. If
you're more prone to using firewalld, we suggest that you try doing that as
it's easy and won't take much of your time.

102 Using Shell to Configure and Troubleshoot a Network

How it works
There's a fundamental difference between ufw and firewalld, with ufw basically
being just a frontend to iptables, while firewalld is much more dynamic, having
the capability to work with zones to which we can assign various trust levels. The syntax
is also different, ufw being a bit more namespace-based while firewalld requires a
bit more effort in terms of rule typing. But, at the same time, firewalld has a D-Bus
interface, which makes configuration easier in terms of applications, services, and users
making configuration changes, on top of the fact that we don't have to restart the firewall
for every change to take effect. It also interacts well with NetworkManager and nmcli,
libvirt, Docker, and Podman, and other utilities such as fail2ban (although fail2ban
works with iptables just as well). Sometimes it's a matter of preference; sometimes
it's habits. Generally speaking, if you're more of an Ubuntu/Debian user, you're probably
going to be more inclined to use ufw. By the same token, if you're more of a CentOS/Red
Hat/Fedora/*SuSe user, you'll definitely be more inclined to use firewalld.

Firewalld's concept of using zones, to which we can assign network interfaces or IP
addresses, is certainly useful, as it gives us much more freedom in terms of configuration.
If we type in the firewall-cmd --get-zones command, we'll see the list of
available zones at that point in time:

Figure 4.15 – Default firewalld zones

By default, firewalld is configured in the deny everything, add exceptions manner,
again, for ease of use. We can use it to allow or deny connections based on ports, IP
addresses, subnets, and services, which enables us to do everything we need to do, in
terms of host-based firewall functionality. It also has a concept called rich rules (as shown
in our examples in this recipe), that enables us to create complex rules with intricate levels
of granularity. These rules can be based on source address, destination address, ports,
protocols, services, port forwarding, and masquerade per subnet. They can be used for
rate limiting, which allows us to set the number of accepted SSH connections to 5 or 10
per minute to make it much harder to do SSH brute force attacks on our Linux servers. All
in all, it's a very well-thought-out and feature-rich firewall that's free for us to use. We just
need to configure it.

ufw, being just a frontend of iptables – or, as people usually describe it, a command-
line interface for iptables – is less feature-packed, but is definitely easier to configure,
at least for the most commonly used scenarios. Its command-line interface is more
human-readable (less complex) and easier to learn. Seeing that it's just a frontend for
iptables, it's basically a user-space utility that manages Linux kernel filtering rules
provided by the netfilter module stack.

Working with open ports and connections 103

Now that we have discussed some key concepts in Linux firewalling, it's time to move on
to our next recipe, which is about checking open ports and connections. Let's see what
that's all about.

There's more
If you need to learn more about firewalld and ufw, we recommend the following links:

•	 firewall-cmd: https://firewalld.org/documentation/
man-pages/firewall-cmd.html

•	 A beginner's guide to firewalld in Linux: https://www.redhat.com/
sysadmin/beginners-guide-firewalld

•	 firewalld rich language: https://firewalld.org/documentation/
man-pages/firewalld.richlanguage.html

•	 ufw: https://help.ubuntu.com/community/UFW

Working with open ports and connections
Checking open ports on our local and/or remote machine is often part of security and
configuration auditing processes. It's something that we use to check if we can connect to
some remote ports to verify that a service works, whether a firewall is configured properly,
or whether routing works – just regular, everyday tasks. Of course, it can also be a part of
some hacking processes, which often start by using nmap and similar utilities to check for
open ports and OS fingerprints. But, let's check how we can use utilities such as netstat,
lsof, ss, and nmap to do good for our network and security.

Getting ready
Keep the client1 virtual machine powered on and let's continue using our shell. Generally
speaking, if we're doing this on Ubuntu, we need to install some packages such as
traceroute and nmap using apt-get:

apt-get -y install traceroute nmap

If, however, we are using CentOS, we need to use yum or dnf:

yum -y install traceroute nmap

After that, we are ready for our recipe.

https://firewalld.org/documentation/man-pages/firewall-cmd.html

https://firewalld.org/documentation/man-pages/firewall-cmd.html

https://www.redhat.com/sysadmin/beginners-guide-firewalld

https://www.redhat.com/sysadmin/beginners-guide-firewalld

https://firewalld.org/documentation/man-pages/firewalld.richlanguage.html

https://firewalld.org/documentation/man-pages/firewalld.richlanguage.html

https://help.ubuntu.com/community/UFW

104 Using Shell to Configure and Troubleshoot a Network

How to do it
Let's first learn the usual ways of checking which ports and sockets are opened on our local
Linux machine, starting with the netstat command. Yes, it's a common thing to check the
routing table with netstat (the netstat -rn command), but we can also learn many
more interesting details about our local Linux machine by using it in a different way. First,
let's check all opened connections and ports by using the netstat -a command:

Figure 4.16 – A part of the netstat -a output – the result is much longer so we stripped it a bit for
formatting reasons

A lot of details are here. Let's see if we can format that a bit better. First, let's show all
opened TCP ports by using the netstat -atp command:

Figure 4.17 – netstat with the TCP port list

Then, let's show the same thing, but for opened UDP ports, by using the netstat -aup
command:

Figure 4.18 – netstat with the UDP port list

Working with open ports and connections 105

We can also show a subset of the information above in terms of listening ports (a port
that an application or process is listening on). That's what the netstat -l command
is all about:

Figure 4.19 – Checking listening ports via netstat

We can do similar things with ss and lsof. Let's first use ss:

Figure 4.20 – Checking active connections via ss

106 Using Shell to Configure and Troubleshoot a Network

Next on our list is lsof, a command that can be used to determine which files are being
opened by their corresponding processes:

Figure 4.21 – The same idea as ss, but with more details about actual commands/services using ports

The options that we used are as follows:

•	 -n for using port numbers, not port names

•	 -P for using numerical addresses, without DNS resolving

•	 -iTCP -sTCP:LISTEN to show only files that have an opened port in the TCP
state LISTEN

Then, if we wanted to narrow that down to a specific TCP port – for example, port
22 – we could use a command such as lsof -nP -iTCP:22 -sTCP:LISTEN:

Figure 4.22 – Narrowing the lsof output to TCP port 22 only

If we need to check opened ports specified by port range, lsof allows that, by using the
lsof -i option. For example, let's use that on port range 22 to 1000:

Figure 4.23 – lsof by port range

Now that we've used some commands on our local machine, let's turn our attention
to remote machines and discuss how to find open ports on them, as well as other
information that might be necessary. For that, we are going to use the nmap command.
Let's first use client1 (IP address 192.168.1.1) to scan server1 (IP address
192.168.1.254). server1 is just a vanilla CentOS 8 installation, as explained in the
last recipe of this chapter.

Working with open ports and connections 107

First, let's do a general scan, by using the nmap 192.168.1.254 command:

Figure 4.24 – Using nmap on a single IP address

If we wanted a bit more verbosity, we could've added the -v option before or after
the IP address, as well. Still, we can see that the remote IP address has a couple of open
TCP ports. Let's try to find some more information, by initiating nmap with the -A option
(OS information scan):

Figure 4.25 – More detailed version of the previous nmap session

108 Using Shell to Configure and Troubleshoot a Network

We can see even more details on this output. If we just wanted to do OS fingerprinting,
we could've used the -O option:

Figure 4.26 – nmap OS fingerprinting

We could also scan for various other things, such as the following:

•	 Specific TCP ports – nmap -p T:9090,22 192.168.1.254

•	 Specific UDP ports – nmap -sU 53 192.168.1.254

•	 Scan port range – nmap -p 22-2000 192.168.1.254

•	 Find remote host service versions – nmap -sV 192.168.1.254

•	 Scan a subnet – nmap 192.168.1.*

•	 Scan multiple hosts – nmap 192.168.1.252,253,254

•	 Scan a complete IP range – nmap 192.168.1.1-254

Let's now discuss how these four utilities work and wrap this recipe up.

How it works
netstat, ss, and lsof are kind of similar, yet have their differences. The usual way in
which people use netstat is just to check their routing table. But, having said that, by
default, netstat is a tool that gives us a list of opened TCP sockets/UDP connections
on the network layer. lsof, on the other hand, lists open files (kernel-level functionality),
but it's also capable of determining which processes are using those opened files. Keep
in mind that, in Unix operating systems, almost everything is a file, which also includes
objects such as network sockets. As such, lsof is often used when dealing with security
aspects of our Linux systems, as it obviously gives many more technical details when
compared to netstat.

Configuring /etc/hosts and DNS resolving 109

ss, as an alternative to netstat, can be used to work with network information and
statistics, which makes it kind of similar to netstat. It can be used to get details about
network connections, sockets, statistical data, TCP state filtering, connections to and from
specific IP addresses, and so on. And, not to be forgotten, ss is quite a bit simpler to use,
and when you compare man page sizes of netstat and ss, you'll see the difference there
as well.

nmap, on the other hand, is completely different from all of these commands. It's a tool
that's aimed much more broadly in terms of functionality – it can scan both local and
remote hosts, domains, IP ranges, and ports. It's a regular network scanner, with all the
good and the bad that comes with it, as people both love and dislike it – love using it,
dislike being the target of it. It works by establishing connections to remote IP addresses
and ports, sending them information and gathering output from them to get information.
Therefore, it's a perfect tool to do security scanning and auditing as it's able to find open
ports and report the fact that there are open ports. It's also heavily used to search for
certain security issues.

There's more
If you need to learn more about netstat, lsof, ss, and nmap, make sure that you
check the following links:

•	 nmap documentation: https://nmap.org/docs.html

•	 netstat man page: https://man7.org/linux/man-pages/man8/
netstat.8.html

•	 lsof man page: https://man7.org/linux/man-pages/man8/
lsof.8.html

•	 ss man page: https://man7.org/linux/man-pages/man8/ss.8.html

Configuring /etc/hosts and DNS resolving
Name resolution is an essential part of any operating system, specifically its networking
stack. Generally speaking, operating systems have multiple different ways of making DNS
queries – usually, it involves some kind of hosts file, caches, and – of course – network
interface configuration. Let's go through the configuration capabilities of /etc/hosts
and see how that fits in the grand scheme of name resolution.

https://nmap.org/docs.html

https://man7.org/linux/man-pages/man8/netstat.8.html

https://man7.org/linux/man-pages/man8/netstat.8.html

https://man7.org/linux/man-pages/man8/lsof.8.html

https://man7.org/linux/man-pages/man8/lsof.8.html

https://man7.org/linux/man-pages/man8/ss.8.html

110 Using Shell to Configure and Troubleshoot a Network

Getting ready
Keep the CLI1 virtual machine powered on and let's discuss how to work with name
resolution in general, using /etc/hosts (a file that we can fill with hostnames and IP
addresses for local resolving) and /etc/resolv.conf (a file that determines which
DNS servers are being used for network resolving, and which domain is the Linux server a
part of) as integral parts of that process. When editing /etc/hosts or /etc/resolv.
conf, we have to be logged in as root or use sudo, as this is a system-wide operation
that's only allowed to administrative users. The way in which the name resolution
process works changed years ago as systemd took over from init and upstart, and
introduced a service called systemd-resolved. On top of this, the configuration is
different on Ubuntu when compared to CentOS. So, let's dig into all of that and explain
what's going on.

How to do it
Let's first take care of Ubuntu, then we'll switch to CentOS. This is the default /etc/
resolv.conf file from our Ubuntu CLI1 machine:

Figure 4.27 – Default /etc/resolv.conf file

As we can see, this file is mostly commented out (the # sign in config files equals a Unix
shell-style comment, so these lines are omitted in terms of configuration). We only have
two configuration lines, which are a by-product of running the systemd-resolved service
(a local service that provides resolving capabilities for DNS, DNS over TLS, DNSSEC,
mDNS, and so on), as well as using the netplan service by default:

nameserver 127.0.0.53

options edns0 trust-ad

Configuring /etc/hosts and DNS resolving 111

There are two approaches to resolv.conf configuration:

•	 We say that we want to stick with systemd-resolved and configure our system that
way (and 127.0.0.53 is actually the loopback IP address that systemd-resolved
binds to).

•	 We say that we don't want systemd-resolved and we want to go back to the old way
of configuring our system, which means installing a package called resolvconf.
That will give us the capability to configure /etc/resolv.conf and /etc/
hosts as they were always configured and not rely on systemd-resolved making
changes to /etc/resolv.conf on the fly (most of us usually don't want this).

Let's start with the first approach and then move to the second approach as a lot of us
Linux administrators are more prone to using our old-school ways and we find it easier
for things to be configured the way they have always been configured since the dawn of
Unix time.

If we are using systemd-resolved, we need to mention a couple of files. The first file that
we need to mention is /run/systemd/resolve/stub-resolv.conf – this is a file
that's actually linked to /etc/resolv.conf when systemd-resolved is being used. This
file is used for maintaining compatibility with old Linux programs that were exclusively
using the old way (/etc/resolv.conf, /etc/hosts) to get access to name
resolution information. If we want to permanently set DNS servers to be used, we need to
do it via systemd. So, let's go to the second file that we need to discuss. It's located in the
/etc/systemd directory, and it's called resolved.conf. At the beginning of this file,
there's a [Resolve] section that's completely commented out. Let's change it to this:

[Resolve]

DNS = 8.8.8.8 8.8.4.4

FallBackDNS = 1.1.1.1

Domains =domain.local

The first and second lines set the main and fallback DNS addresses, while the third line
sets the default domain that we're querying.

After we do this change, we need to restart the systemd-resolved service, which we
can do with the following command:

systemctl restart systemd-resolved

112 Using Shell to Configure and Troubleshoot a Network

We can check if our changes have been applied by using systemd-resolve --status,
which should, in accordance with our changes, give us output similar to this one:

Figure 4.28 – Checking the systemd-resolved status

Let's now check how the DNS cache works – for example, we type in the following
commands:

nslookup index.hr

nslookup planetf1.com

We did this so that we can check the DNS cache, as the DNS cache first needs to be filled
with some data at least. If we want to check the state of the systemd-resolved cache,
we can do it with two commands:

killall -USR1 systemd-resolved

journalctl -u systemd-resolved > cache.txt

The first command doesn't kill systemd-resolved but tells it to write available entries
in the DNS cache. The second command exports entries to a file called cache.txt
(it can be called whatever we want). When we check the content of that file for the string
CACHE, we're going to see entries similar to this:

Configuring /etc/hosts and DNS resolving 113

Figure 4.29 – Checking the DNS cache

This is correct – on our testing system, those are two entries that we searched for by using
nslookup. If we want to flush the DNS cache, we can use the following command:

resolvectl flush-caches

If you notice errors with DNS violations in the file, there was a problem during the system
installation or upgrade – one that didn't set a symbolic link to resolv.conf properly.
As a result of that problem, the symbolic link was created to the wrong file (stub-
resolv.conf) instead of the actual file (/run/systemd/resolve/resolv.conf).
We can mitigate that issue by using the following commands:

mv /etc/resolv.conf /etc/resolv.conf.old

ln -s /run/systemd/resolve/resolv.conf /etc/resolv.conf

systemctl restart systemd-resolved

Now, let's try the second approach, which is quite a bit more simple. So, if we wanted
to get rid of all of this systemd-resolved configuration and just use a good old
administration process via resolv.conf without all of this additional hassle, we could
do that easily. So, let's first install the necessary package:

apt-get -y install resolvconf

systemctl stop systemd-resolved

systemctl disable systemd-resolved

systemctl mask systemd-resolved

114 Using Shell to Configure and Troubleshoot a Network

Next, let's do a bit of configuration. Let's open the /etc/resolv.conf file and make it
look like this (the commented part is not important, start with the nameserver part):

Figure 4.30 – The resolv.conf configuration

Let's check if this configuration works:

Figure 4.31 – Checking if DNS resolution works

No problem whatsoever, right? Of course, we used 8.8.8.8, 8.8.4.4, and 1.1.1.1
as examples for DNS servers here – this needs to be configured so that it's valid for the
environment where our Linux server is actually running.

Working with the DNS cache requires a bit of extra effort. First, we need to deploy
two additional packages – nscd (the service that does the caching), and binutils
(this package contains a command called strings, which we'll use to check string
content in a binary file):

apt-get -y install nscd binutils

strings /var/cache/nscd/hosts

Configuring /etc/hosts and DNS resolving 115

The output of the second command should look similar to this:

Figure 4.32 – Checking the nscd cache

If we need to clear the nscd hosts cache, we can use the following commands:

nscd -i hosts

or

systemctl restart nscd

The first one just clears the hosts table, while the second one restarts the nscd service
and, as a part of the process, clears the hosts table.

And that brings us to the hosts table, and – luckily – it works the same on all Linux
distributions. If we're in a situation where we just need to add some resolving capabilities
without actually building up a DNS server via BIND, dnsmasq, or anything similar to
that, using the hosts table seems like a reasonably simple thing to do. Let's say that we
need to use temporary resolution for the following two hosts:

server1.domain.local

server2.domain.local

Let's assume that these two servers' IP addresses are 192.168.0.101 and
192.168.0.102. We'd add these entries to the /etc/hosts file by editing it and
adding these entries to the bottom of the file:

192.168.0.101 server1.domain.local

192.168.0.102 server2.domain.local

116 Using Shell to Configure and Troubleshoot a Network

So, our /etc/hosts file should look like this:

Figure 4.33 – /etc/hosts file with additions

If we now use a command such as ping to check if these hosts are alive, we will get the
following result:

Figure 4.34 – ping not working

The ^C character visible in this output is due to the fact that we used Ctrl + C to stop the
ping process as these hosts don't actually exist on our network. But that's beside the point
– the point of this was to test whether the name resolution works. In other words, does
server1 and server2.domain.local resolution work? And it does – we can clearly
see that the ping command is trying to ping their IP addresses.

We need to briefly discuss the way in which CentOS does these things, as it's a bit
different from what Ubuntu does. By default, the latest couple of generations of CentOS
use NetworkManager as the default service to configure a network. As a result, /etc/
resolv.conf gets configured by NetworkManager by default, which is very important
to note, especially in the most common use case – when our CentOS machine gets its
IP address from the DHCP server. What happens if we need to configure custom DNS
servers and we don't want to use the DNS servers that we got from our DHCP server?

Configuring /etc/hosts and DNS resolving 117

There are two basic ways to make sure that everything's configured correctly in CentOS:

•	 To configure everything via interface files

•	 To configure everything after the fact, by using the nmcli command

Using configuration files is a hassle here, so let's just do the second thing – configure our
DNS entries by using the nmcli command. Let's say that we want to assign 8.8.8.8,
8.8.4.4, and 1.1.1.1 as DNS servers for our CentOS server. Let's check our network
interface name first:

nmcli con show

Our system tells us that it's using the ens33 network interface. Let's modify its settings
by typing in the following commands:

nmcli con mod ens33 ipv4.ignore-auto-dns yes

nmcli con mod ens33 ipv4.dns "8.8.8.8 8.8.4.4 1.1.1.1"

systemctl restart NetworkManager

The key aspect of this configuration is the first line – we're basically telling
NetworkManager to quit automatically using the DNS server that it gets from the
DHCP server. If we didn't want that, we could've just omitted that specific line.

If we check the contents of our /etc/resolv.conf file, it should now look like this:

Figure 4.35 – /etc/resolv.conf configured correctly

And that's a wrap in terms of configuration – using both Ubuntu and CentOS. Let's now
focus on how all of this works under the hood.

How it works
There are two concepts that we need to dig into and explain. We need to understand how
systemd-resolved works, and, of course, the opposite – how everything works when
we remove systemd-resolved from the administrative equation, if you will. Having
in mind that there was Linux before systemd and name resolution before systemd-
resolved, let's start by explaining how the old method (pre-systemd-resolved) worked.

118 Using Shell to Configure and Troubleshoot a Network

The core concept was called the Name Service Switch (NSS). The basic idea behind
NSS was to connect to various mechanisms – databases, files, services – to provide
various services. Services such as authentication (/etc/passwd, /etc/shadow, and
/etc/group), network configuration, and, of course, services such as name resolution
(/etc/hosts and so on). Our focus will be solely on name resolution, which is why
we need to discuss a configuration file, /etc/nsswitch.conf. Specifically, we will
ignore all of the configuration options in that file and focus on one configuration line,
which is usually similar to this:

hosts: files dns

This configuration line tells our name resolution system how to do its job. The files
option means check file /etc/hosts, while the dns option means just that – use other
network name resolution methods. But the important thing about this line is the order,
which clearly states files first, dns second. This is the reason why – by default – Linux
first checks the contents of the /etc/hosts file, and then starts issuing network name
resolution calls (for example, nslookup) to get to the IP address of some server that
we're trying to communicate with. We also have capabilities to store these entries in
a database, and we can force NSS to access it to read the necessary data. For example, 20
years ago, when Active Directory and other LDAP-based directories weren't used so often,
we used to use NIS/NIS+ a lot – to store user and similar data. We were also able to store
host data in NIS/NIS+ databases (hosts.byname and hosts.byaddr). These maps
were basically forward and reverse DNS tables, stored within an external service. That's
why we can use the configuration option db in nsswitch.conf, although pretty much
nobody uses that nowadays.

When systemd took over name resolution (systemd-resolved), things changed,
as we described in our last recipe. The whole point of systemd-resolved is to be
able to better integrate with systemd and to offer support for some use cases that were –
realistically – complicated without it. Stuff such as VPN connections, especially corporate
ones, were a constant source of problems when using the old-style configuration.
systemd-resolved tries to get around that stack of problems (and others) by
introducing the capability to do split DNS, which is implemented by using DNS routing
domains as a way of determining which DNS requests we're actually making. Please
don't mistake this for IP-based ideas of subnet routing, VLAN routing, or anything of
the sort – those are completely different concepts, based on completely different ideas.
We're specifically talking about the DNS routing domain, which is nothing more than
a term saying let's determine which DNS server should be contacted for correct information
about your DNS query. This has nothing to do with the IP aspect of it, which is handled by
using standard routing methods.

Configuring /etc/hosts and DNS resolving 119

Having split DNS is nothing new – it's something that a lot of us have been using for
a decade or two. In short, split DNS means having some DNS servers assigned to internal
connections and other DNS servers assigned to external connections. From an enterprise
standpoint, if we connect via VPN connection to our workplace, a part of our DNS
queries is aimed at internal infrastructure, while the other part should be headed to the
external DNS servers hosted on the internet. Being able to implement this scenario in
Linux also isn't something new – we could've easily done this with BIND more than
a decade ago. But a way to do this as tightly integrated and as automatically as possible,
especially on the client side – which is what systemd-resolved does – is actually
something new.

Let's imagine for a second that we have a Linux VPN server that we're connecting to
by using a Linux machine as a VPN client. Let's say that these two systems both have
multiple network interfaces in different subnets (a couple of physical network cards
and a wireless network adapter for the VPN client). When we connect from our
VPN client to the VPN server, how is the VPN client going to determine where to
send DNS queries? Yes, it's going to use resolv.conf, but still, resolv.conf and
systemd-resolved need to be configured correctly so that a name resolution request
gets sent to the correct DNS server. If we have multiple subnets, and multiple domains
(a larger enterprise, for example), things can get messy very quickly. This situation gets
taken care of via NetworkManager/netplan's interaction with systemd-resolved.
By using this interaction, we can have different DNS servers assigned to different network
interfaces, that are assigned to multiple different domains. And that's a pretty smart way
of dealing with potential VPN client problems.

There's more
If we need to learn more about network name resolution, we can check the
following links:

•	 What is DNS?: https://www.cloudflare.com/learning/dns/what-
is-dns/

•	 What is DNS?: https://aws.amazon.com/route53/what-is-dns/

•	 NSCD man page, chapter 8: https://linux.die.net/man/8/nscd

•	 systemd-resolved man page: http://manpages.ubuntu.com/
manpages/bionic/man8/systemd-resolved.service.8.html

•	 resolved.conf man page: https://www.freedesktop.org/software/
systemd/man/resolved.conf.html

https://www.cloudflare.com/learning/dns/what-is-dns/

https://www.cloudflare.com/learning/dns/what-is-dns/

https://aws.amazon.com/route53/what-is-dns/

https://linux.die.net/man/8/nscd

http://manpages.ubuntu.com/manpages/bionic/man8/systemd-resolved.service.8.html

http://manpages.ubuntu.com/manpages/bionic/man8/systemd-resolved.service.8.html

https://www.freedesktop.org/software/systemd/man/resolved.conf.html

https://www.freedesktop.org/software/systemd/man/resolved.conf.html

120 Using Shell to Configure and Troubleshoot a Network

Using network diagnostic tools
Diagnosing problems with network connections is an everyday job for a seasoned system
engineer. It doesn't necessarily happen because we have problems in our own network, it
can be other factors. For example, sometimes our local network works, while the internet
connection doesn't. Or, even worse, customers report that some of them are able to access
the internet, while some others can't. How do we approach these situations and which
tools should we use? That's what we will talk about in this recipe. So, get ready to talk
about ping, route, netstat, tracepath, and similar commands – that's what
they're there for!

Getting ready
Let's install a CentOS virtual machine called server1 and use our existing clients
(an Ubuntu virtual machine called client1 and a CentOS virtual machine called client2)
to work on this recipe. We are going to use client1 to simulate a situation where the server
on our local network wants to access internal resources and/or the internet by using
server1 as a default gateway. We are going to use client2 to simulate a situation where
our local client or wireless client wants to access internal resources and/or the internet by
using server1 as a default gateway. In order for us to be able to do that, we'll temporarily
add another network interface to client2, so that we can have two network interfaces in
two different subnets to simulate problems in our scenario. The server1 virtual machine
is just going to be a standard CentOS installation, but with four network interfaces. In
our scenario, server1's ens33 network interface is going to be an external network
interface, while network interfaces ens37, ens38, and ens39 are going to be internal
network interfaces.

How to do it
Let's create a scenario here so that we can go through the whole process. For example,
our colleagues from the company that we work for are reporting that they have problems
accessing both internal resources (the company network) and external resources
(the internet). The company that we're discussing has multiple network subnets:

•	 192.168.1.0/24 – This one is used for all of the server machines; we'll call this
connection profile network1 when we configure it via nmcli.

•	 192.168.2.0/24 – This one is used for all of the client machines; we'll call this
connection profile network2 when we configure it via nmcli.

•	 192.168.3.0/24 – This one is used for company wireless; we'll call this
connection profile network3 when we configure it via nmcli.

Using network diagnostic tools 121

The fourth network interface of our machine is going to act as our internet connection.
As we mentioned in our second recipe in this chapter (Using firewalld and ufw), let's
configure that virtual machine so that it allows connectivity for all three of these subnets
to the internet and work from there.

The first step will obviously be to allow internet access for these three subnets. Let's do
that in the simplest fashion, by using firewalld. Specifically, we'll do that by adding
these interfaces to the public zone. So, we need a couple of standard commands and
configuration steps on server1:

echo "1" > /proc/sys/net/ipv4/ip_forward

nmcli connection add con-name network1 ifname ens37 type
ethernet ip4 192.168.1.254/24

nmcli connection add con-name network2 ifname ens38 type
ethernet ip4 192.168.2.254/24

nmcli connection add con-name network3 ifname ens39 type
ethernet ip4 192.168.3.254/24

If our configuration is correct, when we type in the nmcli con show command, we
should have something like this (depending on how we configured our external network
on ens33 – and in our virtual machine, it's using the 192.168.159.0/24 network):

Figure 4.36 – Checking our NM connection setup

Also, if we check routing information by using the ip route command, we should get
something similar to this:

Figure 4.37 – Checking our routes

122 Using Shell to Configure and Troubleshoot a Network

So, we have our three subnets, the routes are configured accordingly, now we need to
configure server1 to act as a router. Let's type in the following commands to set our
interfaces to specific zones:

nmcli connection modify ens33 connection.zone public

nmcli connection modify network1 connection.zone public

nmcli connection modify network2 connection.zone public

nmcli connection modify network3 connection.zone public

firewall-cmd --zone=public --add-masquerade --permanent

firewall-cmd --reload

firewall-cmd --list-all

When we type in the last command, we should get output similar to this:

Figure 4.38 – The firewall-cmd --list-all output

On client1, we need to do a bit of reconfiguration as well, as it was initially set up to use
DHCP to get the IP address. First, let's install the traceroute package by typing in the
following command:

apt-get -y install traceroute

After that, let's configure this Linux virtual machine so that its IP address is
192.168.1.1/24 and apply that configuration. First, we need to edit netplan's
configuration file. For simplicity reasons, let's just use the default configuration file,
/etc/netplan/00-installer-config.yaml. It needs to have the following
content applied via the netplan apply command:

Using network diagnostic tools 123

``

Figure 4.39 – The netplan configuration file

Let's now test if internet access from this machine works. As noted on the screenshot
shown previously, we're using server1 as the default gateway (192.168.1.254):

Figure 4.40 – Checking the configuration works

So, connectivity works. Let's now configure client2. Our CentOS virtual machine called
client2 has a network interface called ens39. Let's set it up so that it's a part of the
network2 subnet (we defined that subnet on server1). Let's say client2 is going to
temporarily use 192.168.2.2/24 as its IP address:

nmcli connection add con-name network2 ifname ens39 type
ethernet ipv4.address 192.168.2.2/24 gateway 192.168.2.254
ipv4.dns 8.8.8.8,8.8.4.4

nmcli con reload network2

124 Using Shell to Configure and Troubleshoot a Network

We previously configured server1 to act as a default gateway, and, as a result, client1
and client2 can happily use it as a default gateway and access the external network.
We can easily test that by using ping. Let's use client2 as an example:

Figure 4.41 – Checking the configuration works after configuration changes

Now that we have verified that everything is configured correctly, let's now check a few
different scenarios that might require additional network troubleshooting:

•	 ping to an external host is not working, but external network access works.

•	 External network access is not working.

•	 Can't route between two subnets.

•	 Name resolution not working properly.

Let's start with the first scenario. Usually, this is a firewall configuration setting (we're not
calling it a problem on purpose). Let's first ping a site that we want to access:

Figure 4.42 – Scenario start – ping doesn't work

Using network diagnostic tools 125

At the same time, if we try to browse packtpub.com from our web browser, that works
without any problems:

Figure 4.43 – It works in the browser

This type of problem is common – and from the output of ping, we can see that the
firewall that we're passing on the way from our client2 to packtpub.com is filtering
ping (ICMP, or Internet Control Message Protocol) traffic. This is nothing to be
worried about, although it might be confusing. We need to keep in mind that ping/ICMP
traffic has nothing to do with HTTP(S)/TCP traffic and that these protocols can be filtered
separately. This is exactly what was done here – ping/ICMP traffic was filtered, while
HTTP(S)/TCP traffic wasn't.

126 Using Shell to Configure and Troubleshoot a Network

Let's pile up additional complexity now and go through a scenario where external network
access isn't available. Let's try pinging one of Google's DNSes from client2 and server1,
just to see the symptoms:

Figure 4.44 – External network access doesn't work

It's one thing if the network client (client2) can't get to the external network. It's
a completely different thing if the default gateway (in our case, server1) can't get to
the external network. That points to a bigger problem, and if we didn't touch the firewall
configuration and other network devices, it's probably some kind of a problem either with
connectivity to the Internet Service Provider (ISP), or something on the ISP's end.

We could do a bit more detective work by using additional tools, such as traceroute
or tracepath:

Figure 4.45 – Further verification that external network access doesn't work

Using network diagnostic tools 127

If we are using external DNS servers, we could even use the nslookup, host, or dig
commands to almost conclusively determine that the problem lies with internet access,
not our client or server:

Figure 4.46 – resolv.conf is configured correctly; DNS name resolution doesn't work

Let's say that the problem was that a cable connecting from our server1 to the ISP router
broke down. When we change that cable, ping should work perfectly, as shown here:

Figure 4.47 – The connection works again

Let's now check a scenario where we can't go from one subnet to another subnet.
We're going to use network1 and network2 as an example – so, we're going to use client2
(192.168.2.2/24) to try to access client1 (192.168.1.1/24). As these two hosts are
not a part of the same Layer 2 network, we have to have some kind of mechanism to route
traffic between them. Let's check if that routing configuration works properly:

Figure 4.48 – Routing across subnets working

128 Using Shell to Configure and Troubleshoot a Network

As previously configured, we allowed the forwarding of traffic between all of the networks
on server1. We achieved that by allowing masquerading and putting all interfaces in the
public firewalld zone. Sometimes when we configure our routing devices, we make
mistakes. The results of our mistakes might be that two networks can't communicate with
each other anymore (usually two VLANs, as we are discussing an internal networking
scenario here). Let's see the symptoms:

Figure 4.49 – Routing doesn't work anymore

If we check our routing table by using the netstat -rn command, we can see the
following information:

Figure 4.50 – Checking that routing on our Linux machine is set up properly, which it is

Using network diagnostic tools 129

So, our gateway works (we can ping it), but it doesn't forward us correctly to the
192.168.1.0/24 network. Seeing that we configured the 192.168.1.0/24 network to
be a local network for server1, it's clear that we have some kind of routing problem here.
It could be a firewalld misconfiguration, stopping firewalld as a service, a routing
table misconfiguration, or maybe someone played with the /proc filesystem and set the
ip_forward flag back to 0. Whatever the case may be, the source of our problem is our
default gateway. In larger enterprises, we usually have a networking team taking care of these
things, so showing them output from ping, traceroute, and netstat should tell them
where the problem is (in their own backyard). We'd usually tell them that they have a VLAN
routing problem between VLAN X (subnet 1) and VLAN Y (subnet 2), send them outputs
of these previously mentioned commands, and let them work from there.

Let's finish this recipe by talking about a few name resolution issues. These issues can
happen because of a service misconfiguration (systemd-resolved, for example),
a wrong /etc/resolv.conf configuration, and even an /etc/hosts configuration
that we did ourselves. Let's go through a couple of common problems.

First, we are going to edit /etc/resolv.conf on client1 and put some custom DNS
servers there. Then, we are going to reboot our client1 Linux virtual machine and see
what happens when we check the content of /etc/resolv.conf. This screenshot
is pre-reboot (we added two name servers, 8.8.8.8 and 8.8.4.4):

Figure 4.51 – Editing /etc/resolv.conf manually

This next screenshot was taken post-reboot. We can clearly see that the content of this file
has been changed:

Figure 4.52 – /etc/resolv.conf after reboot

This was to be expected – as we described in our previous recipe, changing /etc/
resolv.conf on a Linux machine that's running systemd-resolved is always going
to end like this. If we want to change DNS settings, we need to do it properly. That means
using nmcli in CentOS and, in this case, using netplan configuration on Ubuntu. This
might only be a local issue, but it can still have a big impact in various scenarios where
split-dns is involved.

130 Using Shell to Configure and Troubleshoot a Network

The next problem is going to be about the opposite – let's say that we installed the
resolvconf package on our Ubuntu machine, disabled systemd-resolved, and
configured /etc/resolv.conf like this:

Figure 4.53 – Putting a wrong config option in /etc/resolv.conf

And when we try to resolve something by using the nslookup, host, or dig
commands, it ends up nowhere, although our internet connection works, as shown with
our manual DNS server configuration in nslookup:

Figure 4.54 – The network obviously works, but DNS name resolution doesn't,
which points us in the right direction

This clearly points to a wrong DNS server configuration as the internet access works, but
we can't resolve a host. It's obvious that the option that we used (namserver) is wrong
– it has to be nameserver. This brings us to the point: we always have to make sure that
the syntax of our configuration files – in this case, resolv.conf – is correct. Mistakes
are easily made if we are making changes by using a text editor, especially when we, for
example, ignore red, highlighted fields in vi. If we were using commands to configure
this and made an error in the syntax (nmcli or netplan), we would have an error
somewhere, which would be easy to debug.

Using network diagnostic tools 131

The last scenario that we are going to work on is a common one for those of us dealing
with a public website migration from one provider to another, thus changing the public
IP address. When we are configuring these scenarios, oftentimes we need to have the old
website running while we test the new website. We could have two IP address entries in
our public DNS servers pointing to two different web servers, but that's not what we're
after, ever. It would confuse our website visitors and us as well. So, we want to have a quick
way of testing the new website until it's fully debugged while offering the general public
access to the old one.

Obviously, the simplest thing to do would be to add an entry to /etc/hosts, so that it
points to the new website. Then, on the same machine where we made that change, we can
debug our new website as much as we need – the public DNS entry still points to the old
website, while our local machine goes to the new one.

After the debugging process is done, we need to do a switchover – we need to change
the public DNS entries and remove the /etc/hosts entry on our debugging machine.
That's an ideal scenario where we can make some mistakes. So, we go to our public DNS
provider, change the IP address of our website so that it points to the new IP, and save the
configuration. Then, we go to our local debugging machine and remove the /etc/hosts
entry pointing to the new website, start a web browser, point it to our website URL, and –
lo and behold – we are still being presented with the old website. What is going on here?

The simple fact is public DNS records need a bit of time to become active. It could be
a minute, 15 minutes, an hour, a day – depending on how it's configured, but still, it
needs time. Also, from various parts of the world – if our website is for an international
audience – it could take different amounts of time to synchronize, which is why we have
to be armed with patience when dealing with scenarios like these as we are probably going
to get some emails about this scenario. We just need to do these types of configuration
changes over the weekend when the amount of website visitors is at its lowest, and then
sit and wait it out for all of the DNS entries to sync. From the time when we changed the
DNS entry until everything is working, it's out of our hands. It's just the way it works.

As you can clearly see from these examples, there are quite a few different scenarios that
might come into play as you're administering your Linux servers, clients, and networks.

How it works
All of the commands that we covered in this recipe work on the same idea – we have
a networking stack that is either configured correctly or not. If it is, we mostly don't need
them, but if something is misconfigured and/or not working properly, which can happen
for a variety of external reasons as well, then we need to know how these commands work.

132 Using Shell to Configure and Troubleshoot a Network

If we are discussing networking generally, there are a few well-known concepts: the
configured IP address, netmask, gateway, DNS server(s), and a fully qualified domain
name of any given Linux server. Keeping in mind that networks are isolated into multiple
subnets and that DNS is a hierarchical structure, if any of these concepts aren't configured
correctly, we will have issues with network communication. That's why most of us system
engineers take extra care to configure all of these settings correctly, as it's a basis for us to
not get permanent headaches, if you will.

When we do ping, traceroute, and tracepath, all of the traffic that we generate
by using those utilities either goes to our local network or to non-local networks, which
requires routing. On top of routing, firewalls might get in the way – sometimes people
configure firewalls with ICMP traffic denied.

Then, even if all of that works as it should, there's the DNS, sitting on top of it like a Jedi
master trying to balance the Force. And sometimes, it just seems a bit evil and as if it's
bugging us for no reason whatsoever. That's where utilities such as nslookup, host,
and dig come in handy – so that we can find out if it's something lower in the networking
stack, or if it's the DNS. As we discussed in our previous recipe, using systemd-
resolved changed quite a few things in terms of DNS configuration. We must be extra
careful to configure things properly when we're using it – so, using nmcli and netplan's
config files. We shouldn't just go and start editing files more often than not. That's just
going to make more problems.

That being said, when we configure everything correctly and some other device on the
network (our network or an external network) is at fault, things can get complicated very
quickly. If a device doing network routing (a switch, router, Linux server, firewall,
or whatever it might be) isn't configured correctly, we won't be able to communicate
between multiple subnets. Imagine trying to go from Paris to Barcelona without knowing
the way. There are so many possible ways of going from Paris to Barcelona (which we
can equate to routing) that we wouldn't know which way to go. Usually, we start our
debugging process by pinging some addresses on our networks (to check that the local
network is working properly), then the default gateway, and checking if DNS is available
as a service. On a more personal note, over the years, I have seen students and course
attendees becoming painfully aware of just how complex DNS is as a system, especially at
scale. We have a saying here at our college that students repeat over and over again – It's
always DNS. So, we need to make sure that we have strong foundations in terms of DNS
knowledge and understanding of how routing works. Then everything becomes much,
much easier, as combining these two concepts can get insanely complicated. Especially
when there are dynamic routing protocols such as BGP, EIGRP, and OSPF involved with
split DNS and multiple locations.

Using network diagnostic tools 133

And that's a wrap for this chapter. The next chapter is going to be all about using the shell
to manage software packages on our Linux systems. We are going to discuss how to use
apt and apt-get, yum, and dnf, software repositories, and other subjects related to
software management. Until then, we bid you adieu!

There's more
If you need to learn more about network debugging, you can check the following links:

•	 A beginner's guide to network troubleshooting in Linux: https://www.redhat.
com/sysadmin/beginners-guide-network-troubleshooting-linux

•	 Five Linux network troubleshooting commands: https://www.redhat.com/
sysadmin/five-network-commands

https://www.redhat.com/sysadmin/beginners-guide-network-troubleshooting-linux

https://www.redhat.com/sysadmin/beginners-guide-network-troubleshooting-linux

https://www.redhat.com/sysadmin/five-network-commands

https://www.redhat.com/sysadmin/five-network-commands

5
Using Commands for

File, Directory, and
Service Management
When working with files and folders, CLI is the most common way. It doesn't really
matter if we're copying or moving content around, finding content, configuring file and
folder security, or doing some basic text-based work – it's all about the command line.
When we expand on that model, we usually start using archiving and compression to be
more space-efficient. In terms of services, we need to learn some basics of how to manage
them, which is commonly done by using the systemctl command. This is exactly what
we're going to cover in this chapter, by covering the following recipes:

•	 Basic file and directory-based commands

•	 Additional commands for manipulating file/directory security aspects

•	 Finding files and folders

•	 Manipulating text files by using commands

•	 Archiving and compressing files and folders

•	 Managing services and targets

136 Using Commands for File, Directory, and Service Management

Technical requirements
For these recipes, we're going to use one Linux machine – in our case, let's use cli1.
We just need to make sure that it's powered on.

Basic file and directory-based commands
Let's discuss various shell commands that can be used to work with files and directories.
In a nutshell, what we're interested in are these commands:

•	 ls – for listing folder contents

•	 touch – for creating an empty text file

•	 cd – for changing directories, both in absolute and relative terms

•	 pwd – for showing the current directory

•	 mkdir and rm – for creating and deleting a file or directory

•	 cp and mv – for copying or moving a file or a directory

•	 ln – for working with soft and hard links

These commands are some of the most frequently used commands in the everyday life
of a system administrator/engineer. Let's see what they are all about.

Getting ready
We need to go through these commands to really understand what happens on the
filesystem as we execute them. So, let's make sure that our cli1 machine is running and
let's do it!

How to do it…
Starting with the simplest command of them all, ls, it's all about checking the content
of a folder. So, if we want to check the content of a directory in a nice, readable format,
we can do it like this:

Basic file and directory-based commands 137

Figure 5.1 – Using ls with the most common options

The nice, readable part is achieved by using -la options, where the l option stands for
long listing, and the a option stands for all files (including the ones starting with a dot).
We can also see that, by default, the ls command colors its output. For example, folders
are colored blue, while files marked in red are archive files (in this case, the tar.gz file).
We will go into more detail regarding archive files a bit later, when we start dealing with
archiving and compressing files and folders later in this chapter. There are other colors
that ls uses in its default output. Here are a couple of examples:

•	 Green – executable file

•	 Cyan – symbolic link

•	 Red with black background – broken link

138 Using Commands for File, Directory, and Service Management

The ls command can be used in a recursive mode, which means starting to list the
content of a folder from that folder onward and going into all its subfolders. Here's an
example of that, by using a common system directory in Ubuntu called /etc/network,
and its recursive option (capital letter R):

Figure 5.2 – Using ls in recursive mode

By using the R option, we instructed the ls command to do its job in recursive mode.

We can also use ls to display the content of the folder and sort the output by using the
last modified time:

Basic file and directory-based commands 139

Figure 5.3 – Sorting the ls output according to the last modification time

The next command on our list is touch, and it's a simple one. We use the touch
command to create an empty file, like this:

Figure 5.4 – Touching a file in Linux means creating an empty file

Following that, it's time to explain two commands that are closely related – cd and pwd.
cd, or the change directory command, is there so that we can leave one directory in the
shell and go to another. In contrast, pwd is a command that tells us what our current
directory is. Let's try that out by again using /etc/network as an example:

Figure 5.5 – Using cd and pwd to get our bearings in terms of directories

140 Using Commands for File, Directory, and Service Management

The next two commands that we're going to deal with are mkdir and rm. We use mkdir
to create a directory, while we use the rm command to remove a file or a folder. So, let's
show how these commands are used by means of an example. First, we are going to create
a directory called temporary. Then, we're going to create two files in that directory
called tempfile and tempfile2. After that, we're going to remove tempfile2,
and then remove the entire temporary directory with all its contents, recursively. Let's do
that now:

Figure 5.6 – Working with mkdir and rm

The next topic of our discussion is the cp and mv commands – they enable us to copy
or move files and/or folders where we want to move them. So, let's copy a file and folder
(recursively), and then let's move them someplace else. We're going to use the same
example as with mkdir and rm, but we're going to adjust the example slightly to fit the
purpose. Specifically, we're going to create a directory with two files, but this time these
files are going to be in a subdirectory. Then, we're going to add additional files to the first
folder, after which we're going to copy and move a single file to a new location, and then
a folder to another location. Let's see how that's going to work:

Basic file and directory-based commands 141

Figure 5.7 – Copying and moving files and folders

The first two commands can be aggregated into one by executing mkdir -p
temporary/tempdir2.

This will create both of these directories in one command.

And finally, let's discuss the ln command, which can be used to create hard links
(pointers to the file content) and soft links (pointers to the file/directory name, usually
referred to as shortcuts). For hard links, we just use the ln command without any
additional options, while soft links require us to use the ln command with the -s option.
Let's create an example to drive the point of this home, and we'll explain how it works as
soon as we're done with this example. The scenario is going to include the following:

•	 Copying a file with a bit of content to a new location so that we have a source file
that's going to be used for hard and soft links

•	 Creating a hard link

•	 Creating a soft link

•	 Deleting the original file, and then checking what happens with the soft link and the
hard link

•	 Copying the hard link to the original file, then checking what happens with soft link
and hard link

142 Using Commands for File, Directory, and Service Management

This is how it's done:

Figure 5.8 – Hard link and soft link operations

Now that we have gone through all the predetermined scenarios, let's explain some of
the concepts behind these commands so that we can understand what happens on the
filesystem as we execute them.

How it works…
Some of these commands are very straightforward and don't necessarily require further
explanation, such as ls, touch, cd, mkdir, and pwd. But others do require a bit of
background and technical explanation, especially ln. So, let's build on that premise and
go through how rm, cp, mv, and ln work.

First, to cover basic file-related commands that we use the most often – rm, cp, and mv.
These commands are straightforward, as we use them to remove files or folders (rm), copy
files or folders (cp), or move files or folders (mv). Please note remove and move in our
description of rm and mv, as those two things are different – removing is about deleting,
while moving is about placing something someplace else. This sometimes confuses novice
users, although it shouldn't.

However, the most technically demanding command from the bunch is ln, which
requires us to explain what soft links are, and what hard links are. So, let's do that first.

Basic file and directory-based commands 143

Soft links are what we usually refer to as shortcuts, similarly to what we can do in
Windows – create a shortcut to a file or a folder. As it's obvious from the picture of our
scenario, when we removed the original file, the soft link stopped working. The reason for
this is simple – soft links point to a file or folder name. If we delete a file or folder to which
a soft link is pointing, that effectively means that the soft link points to nothing. And that's
the reason why, in our scenario, we had a soft link turning red in color.

Hard links are a completely different concept. They don't point to a filename – they point
to file content. When using hard links, try to think of them as two files pointing to the
same content. If we delete the original file, the file content is still there, as that's the way
modern filesystems work – they don't waste time deleting content, especially if another
file is pointing to the same content. That would introduce a lot of latency into the process
of deleting files if the files are big. A file delete operation therefore just deletes a pointer
(filename) to the file content from a filesystem table. The filesystem takes care of the rest –
when the time comes, if that file content is no longer used, the filesystem is going to use it
to write new content over it.

We could've deduced this much from checking the original scenario, where we can
clearly see the difference in size between soft and hard links – the soft link points to
a filename and is therefore related to the size of a filename (the number of characters in
the filename). As we explained, the hard link points to the file content, which is why the
hard link has the same size as the file that it's pointing to.

There are two fundamental differences between these two concepts. Having in mind
that the hard links point to file content, it's logical that they have two limitations – they
can't point to a directory (just a file), and they can't go across partitions. So, if we have
a disk partition mounted to /directory and another disk partition mounted to /home
directory. We can't go to /home directory and create a hard link that points
to a file that's located in /partition. One partition can't see the content of another
partition, which is an important security concept. It also precludes any chance that hard
links across partitions are going to work.

The next recipe is going to go much deeper into file-directory security concepts, as
we're going to discuss permissions, special permissions, and Access Control Lists (ACLs).
These concepts are core concepts of IT security and something that we deal with daily.
So, let's go through a scenario related to that next.

144 Using Commands for File, Directory, and Service Management

See also
If you need more information about these commands, we suggest that you visit these links:

•	 ls man page: https://man7.org/linux/man-pages/man1/ls.1.html

•	 touch man page: https://man7.org/linux/man-pages/man1/
touch.1.html

•	 cd man page: https://linuxcommand.org/lc3_man_pages/cdh.html

•	 pwd man page: https://man7.org/linux/man-pages/man1/
pwd.1.html

•	 mkdir man page: https://man7.org/linux/man-pages/man1/
mkdir.1.html

•	 rm man page: https://man7.org/linux/man-pages/man1/rm.1.html

•	 cp man page: https://man7.org/linux/man-pages/man1/cp.1.html

•	 mv man page: https://linux.die.net/man/1/mv

•	 ln man page: https://man7.org/linux/man-pages/man1/ln.1.html

Additional commands for manipulating file/
directory security aspects
In this recipe, we're going to use our users – Jack, Joe, Jill, and Sarah – to create a specific
scenario to explain permissions, ACLs, and umask usage. A short explanation of these
concepts is as follows: permissions are used to control access to files and folders in
read, write, and execute mode. As they're limited in granularity, a concept of ACL was
developed, to be able to manage permissions on a more finely grained level. Umask is
a variable that pre-determines which permissions are going to be assigned to a newly
created file or directory.

The recipe will go like this:

•	 We need to create a collaborative directory for our students located at /share/
students

•	 We need to create a collaborative directory for our professors located at /share/
professors

•	 Members of the student group need to have access to /share/students to
collaborate on project files

Additional commands for manipulating file/directory security aspects 145

•	 Members of the student group can create new files, which need to be group-owned
by group students, in their /share/students folder

•	 One member of the student group can't use the rm command to delete other
members' files in their /share/students folder

•	 One member of the student group must have permission to edit other members'
files in their /share/students folder

•	 Professors need to have read-write access to all the student files, and all of the newly
created student files

•	 Only professors have access to their shared folder, /share/professors,
where they can delete each other's files, read them, and edit them.

Let's make this recipe happen.

Getting ready
Let's use our cli2 machine (CentOS) for this recipe, so make sure that it's powered on.

How to do it…
We're going to first create our users and groups by using the useradd and groupadd
commands by using a scenario. Let's say that our task is as follows:

•	 Create four users called jack, joe, jill, and sarah

•	 Create two user groups called profs and pupils

•	 Reconfigure the jack and jill user accounts to be members of the profs group

•	 Reconfigure the joe and sarah user accounts to be members of the students
group

•	 Assign a standard password to all the accounts (we're going to use P@ckT2021 for
this purpose)

•	 Configure user accounts so that they must change their password when next
logging in

•	 Set specific expiry data for the professors' user group – the minimum days before
the password change should be set to 15, the maximum days before a forced
password change should be set to 30, the warning regarding a password change
needs to start a week before it expires, and the expiry date for accounts should be set
to 2023/01/01 (January 1, 2023)

146 Using Commands for File, Directory, and Service Management

•	 Set specific expiry data for the students' user group – the minimum days before the
password change should be set to 7, the maximum days before a forced password
change should be set to 30, the warning regarding a password change needs to
start 10 days before it expires, and the expiry date for accounts should be set to
2022/09/01 (September 1, 2022)

•	 Modify the profs group to be called professors, and the pupils group to be
called students

Note
There are a lot of commands in this recipe, so make sure that you refer to the
How it works… section of the recipe to understand everything about the new
commands that we haven't used before.

The first task is to create user accounts, with their unique home directories and the Bash
shell as the default shell:

useradd -m -s /bin/bash jack

useradd -m -s /bin/bash joe

useradd -m -s /bin/bash jill

useradd -m -s /bin/bash sarah

This will create entries for these four users in the /etc/passwd file (where most of the
users' information is stored – username, user ID, group ID, default home directory, and
default shell), and the /etc/shadow file (where users' passwords and aging information
are stored).

Then, we need to create groups:

groupadd profs

groupadd pupils

This will create entries for these groups in the/etc/group file, where the system keeps
all of the system groups.

The next step is to manage the membership of the user groups, for both the professors
and student user groups. Before we do that, we need to be aware of one fact. There are
two distinctive local group types – primary group and supplementary group. The primary
group is important in terms of being the key parameter used when creating new files and
directories, as the users' primary group will be used by default for that (there are exceptions,
as we'll mention in recipe #4 in this chapter, about umask, permissions, and ACLs).

Additional commands for manipulating file/directory security aspects 147

The supplementary group is important when dealing with sharing files and folders and
related scenarios and exceptions. This is what's usually used for some additional settings
for more advanced scenarios. These scenarios are going to be explained partially in the
aforementioned recipe #4 in this chapter, as well as in recipes regarding NFS and Samba in
Chapter 9, An Introduction to Shell Scripting.

Primary and supplementary groups are stored in /etc/group file.

Now that we've gotten that out of the way, let's modify our users' settings so that they
belong to the supplementary groups as assigned by the scenario:

usermod -G profs jack

usermod -G profs jill

usermod -G pupils joe

usermod -G pupils sarah

Let's now check how that changes the /etc/group file:

Figure 5.9 – Entries in the /etc/group file

The first four entries in the /etc/group file were actually created when we used the
useradd command to create these user accounts. The next two entries (except for the
last part, after the : sign), were created by groupadd commands, while entries after the :
sign were created after the usermod commands.

Let's now set their initial password and set a forced password change when next logging
in. We can do it in a couple of different ways, but let's learn the more programmatic
approach to doing this by echoing a string and using it as the plaintext password for
a user account:

echo "jack:P@ckT2021" | chpasswd

echo "joe:P@ckT2021" | chpasswd

echo "jill:P@ckT2021" | chpasswd

echo "sarah:P@ckT2021" | chpasswd

148 Using Commands for File, Directory, and Service Management

This is not necessarily something that we should recommend doing as it would leave these
commands in the command history. We're just using this as an example.

The echo part – without the rest of the command – would just type P@ckT2021 to
a terminal, like this:

echo "P@ckT2021"

P@ckT2021

In CentOS and similar distributions, we could use the passwd command with the
--stdin parameter, which would mean that we want to add a password for the user
account via standard input (keyboard, variable, ...). In Ubuntu, this is not available.
So, we can echo the username:P@ckT2021 string to shell and pipe that to the
chpasswd command, which achieves just that purpose – instead of outputting the
string to our terminal, the chpasswd command uses it as standard input into itself.

Let's set the expiry data for professors and students. For this purpose, we need to learn
how to use the chage command and some of its parameters (-m, -M, -W, -E):

•	 If we use the -m parameter, this means that we want to assign the minimum number
of days before a password change is allowed

•	 If we use the -M parameter, this means that we want to assign the maximum
number of days before a password change is forced

•	 If we use the -W parameter, this means that we want to set the number of warning
days prior to password expiration, which, in turn, means that the shell is going to
start throwing us messages about needing to change our password before it expires

•	 If we use the -E parameter, this means that we want to set account expiration to
a certain date (in YYYY-MM-DD format)

Let's now translate that into commands:

chage -m 15 -M 30 -W 7 -E 2023-01-01 jack

chage -m 15 -M 30 -W 7 -E 2023-01-01 jill

chage -m 7 -M 30 -W 10 -E 2022-09-01 joe

chage -m 7 -M 30 -W 10 -E 2022-09-01 sarah

And finally, let's modify the groups to their final settings by modifying the group name
from professors to profs and from students to pupils:

groupmod -n professors profs

groupmod -n students pupils

Additional commands for manipulating file/directory security aspects 149

These commands will only change group names, not their other data (such as group ID),
which is going to be reflected in our users' information as well:

Figure 5.10 – Checking created users' settings

As we can see, jack and jill are members of a group that's now called professors,
while joe and sarah are now members of a group called students.

We deliberately left the userdel and groupdel commands for last, as they come with
some caveats and shouldn't be used lightly. Let's create a user called temp and a group
called temporary, and then let's delete them:

useradd temp

groupadd temporary

userdel temp

groupdel temporary

This will work just fine. The thing is, because we used the userdel command without
any parameters, it will leave the user's home directory intact. Since users' home directories
are usually stored in the /home directory, by default, this means that the /home/temp
directory is still going to be there. When deleting users, this is sometimes something
we want – to delete a user, but not to delete their files. If you specifically want to delete
a user account and all the data from that user account, use the userdel -r username
command. But think twice before doing it!

Furthermore, we obviously need to create a bunch of directories and files and change
a whole stack of permissions and ACLs. As a general note, the chmod command changes
permissions, while the setfacl command modifies ACLs. This is the correct way to do it:

mkdir -p /share/students

mkdir /share/professors

chgrp students /share/students

chmod 3775 /share/students

150 Using Commands for File, Directory, and Service Management

setfacl -m g:professors:rwx /share/students

chgrp professors /share/professors

chmod 2770 /share/professors/

setfacl -m d:g:professors:rwx /share/students/

Let's now test this to check whether it works. First, we're going to log in as our two
students from the first recipe (joe and sarah) and create a couple of files. Then we're
going to use joe's account to try to delete Sarah's files, and vice versa, so we should first
use su to log in as joe, su - joe, and type in the root password.

Let's see how that works out:

Figure 5.11 – The scenario works flawlessly from the students' perspective

Part of our scenario required us to be able to edit each other's files, while not being able to
delete them outright. Let's test that now:

Additional commands for manipulating file/directory security aspects 151

Figure 5.12 – Changing the content of the file works, while removing the file doesn't

There's a reason why we picked this type of scenario – this is a real-life scenario that file
server administrators often encounter. It's basically the best of both worlds – collaboration
works, but users can't delete each other's files by accident. Therefore, this recipe covers
some of the most common things that happen on a file server, such as one user deleting
another user's file by accident (the key point here being the lack of intention to delete a
file). It has happened to all of us. On the other hand, changing a file's content is something
that we can only do intentionally, consciously. This is also something that we can easily
track by using filesystem auditing and file attributes, if we set up our system that way.

Let's now review things from the professor's perspective. We'll use the jill account for
this purpose:

Figure 5.13 – Checking whether our configuration works for Jill

152 Using Commands for File, Directory, and Service Management

We also need to check whether the professors' share works. Let's test it:

Figure 5.14 – From the professors' standpoint, their share works as requested

Let's try to use a student's account to get into the professors' shared folder:

Figure 5.15 – A student tries to get to the professors' share and is denied access

We can also see that these files created by users get the 664 default permission. That's what
umask is all about. Check how umask works in the How it works… section of this recipe.

So, the whole scenario works, but how exactly does it work? Let's check that out now.

How it works…
Before we get to the detailed explanations of these commands, let's just cover the basics
and describe the commands that we have used:

•	 useradd – the command that's used to create a local user account

•	 usermod – the command that's used to modify a local user account

Additional commands for manipulating file/directory security aspects 153

•	 userdel – the command that's used to delete a local user account

•	 groupadd – the command that's used to create a local group

•	 groupmod – the command that's used to modify a local group

•	 groupdel – the command that's used to delete a local group

•	 passwd – the command that's most often used to assign passwords to user accounts,
but it can be used for some other scenarios (for example, locking user accounts)

•	 chage – the command that's used to manage user password expiry

•	 chgrp – the command that changes the group ownership of a file or folder

•	 chmod – the command that changes the permission of a file or folder

•	 setfacl – the command that changes the ACL of a file or folder

Now that we have discussed these commands, let's explain the details.

Every file or directory on a Linux filesystem has a number of attributes:

•	 Permissions

•	 Ownership

•	 File size

•	 Date of creation

•	 File/directory name

We will focus on permissions and ownership in this recipe as that's the core of this specific
recipe. When we issue a command such as ls -al in the /share/students directory,
this is what we get:

[root@localhost students]# ls -al

total 4

drwxrwsr-t+ 2 root students 66 Dec 6 21:12 .

drwxr-xr-x. 4 root root 40 Dec 6 20:51 ..

-rw-rw-r--+ 1 joe students 0 Dec 6 20:58 myfile1

-rw-rw-r--+ 1 joe students 0 Dec 6 20:58 myfile2

-rw-rw-r--+ 1 sarah students 76 Dec 6 21:16 myfile3

-rw-rw-r--+ 1 sarah students 0 Dec 6 20:58 myfile4

Let's now use the myfile1 output as an example. Reading from left to right, the
-rw-rw-r--+ part is related to permissions on that specific file. The second part (joe,
followed by students) is related to ownership of that specific file.

154 Using Commands for File, Directory, and Service Management

Let's parse through this a bit, going with permissions first:

•	 The first – means that this is a file – this field is used for the type of content.

•	 The first rw- means that we have read and write permission for the file owner
(joe) – which we refer to as the user class (u).

•	 The second rw- means that we have read and write permission for the group owner
(students) – which we refer to as the group class (g).

•	 R—means that all the other users have just read permissions – we refer to this class
as others (o).

•	 + at the end means that we have an active ACL on this specific file (to be discussed
|a bit later in this explanation).

We can assign numerical values (weights) to these permissions. The read permission has
a weight of 4 (22), the write permission has a weight of 2 (21), and the execute permission
has a weight of 1 (20).

So, if we wanted to assign all permissions to all classes of users (user owner, group owner,
others), we'd use the following:

chmod 777 file_name

Why? If we add 4+2+1, that equals 7. That means read + write + execute. And we can use
that on all three classes – u, g, and o – so that gives us 777. The first 7 refers to u (user
owner), the second one to g (group owner), and the third one to everyone else (others).
That simplifies the management of permissions significantly.

If we're talking about files, the meaning of these permissions is straightforward – read
means read, write means write, delete, and modify, and execute means the ability to start
the file.

With directories, it gets a bit trickier. Default permissions that we need in order to be
able to read directory content and pass through it (folder traverse) are read and execute
permissions. Write permission on a directory and read permission is needed to list the
contents of the directory, while x permission is needed to traverse the directory (being
able to go into subfolders of that directory). Write permission means write, delete, and
modify on the folder level for the files in that folder (unless there are explicit denies,
for example, set by ACL).

As you can clearly see in the command output, files have two types of ownership:

•	 user owner – in this specific example, joe

•	 group owner – in this specific example, students

Additional commands for manipulating file/directory security aspects 155

What does that mean?

It means that a user called Joe owns that file. At the same time, it means that a group called
students own that file from the group perspective.

Let's now add to that discussion by talking about the second line of this output, specifically:

drwxrwsr-t+ 2 root students 66 Dec 6 21:12 .

The same principles apply, it's just that we need to discuss a couple of new settings.
We can clearly see a couple of letters that we didn't mention previously – s in the group
ownership class, and t in the others class. What is that all about?

The thing is, there are additional, special permissions on top of r(ead), w(rite), and (e)
x(ecute). These are used for special use cases:

•	 sticky bit – we set this special permission on a folder level. When enabled on
a folder level, it's there to protect from accidental file deletion from our scenario.
For example, myfile1 is owned by the user joe. Although sarah is the member
of the same group (students), which group-owns the file, she still can't delete that
file. That's what the sticky bit is all about.

•	 setgid – we set this special permission on the folder level as well. When set on the
folder level, this special permission means that all of the newly created files (after
setgid was set) are going to take their group ownership from the parent folder.
In our scenario, that means that all of the newly created files are group-owned by
the student group, as requested by the scenario. This is why we used the chgrp
command on the folder level to set folder ownership to students.

•	 setuid – almost never used now, as it's a security risk. It used to be used on files
a bit, specifically, so that when files are started by a non-owner user, it seems that
the user owning the file started it (similar to Run As IDEA in Windows).

These permissions are also set by the chmod command, like the first number. That's why
our chmod command had four numbers instead of three – the first number is all about
special permissions. In general, when we use a three-digit number with chmod, it expands
that to include a zero from the left side.

Going back to our recipe, we issued the following command:

chmod 3775 /share/students

That means that we used chmod to set the sticky bit and setgid (1+2 equals 3 on
the first digit) on the folder, as well as rwx for user and group owners (77) and rx for
others (5).

156 Using Commands for File, Directory, and Service Management

The next, more complicated part relates to ACLs. ACLs are most commonly used to take
care of exceptions (regular ACLs) or permission inheritance (default ACLs). Let's describe
them in a bit more detail. We used the following command:

setfacl -m g:professors:rwx /share/students

This means that we want to modify (the -m parameter) the ACL on the directory called
/share/students. And we want to modify it so that the group called professors
gets rwx (read-write-execute) permissions on that directory. You can clearly see why we
said that ACLs are most commonly used to treat exceptions. Our scenario required that
the /share/students folder has group ownership of students. We can't assign two
users to be owners of a directory (there can be only one, (c) according to the Highlander
movie). So, there's no direct way for us to do that, which means we have to use something
else to create an exception. That's where ACL comes in.

We could've done this differently (not that we should have). We could have issued two
user-based ACLs for both members of our professors' group. Those two commands would
be as follows:

setfacl -m u:jack:rwx /share/students

setfacl -m u:jill:rwx /share/students

The trouble with that approach is really simple to understand. Let's say that we add five
more professors to our system. We then need to issue five more setfacl commands to
set the same ACLs to them. It's just easier to use a group and add users to a group. It's
a well-known concept that everyone uses on all of the operating systems used today.

If we wanted to set explicit deny ACL for others, we could have used this command:

setfacl -m o:--- /share/students

This way, we make sure that all of the members of that others class don't get access to
the folder.

The second setfacl command that we used was as follows:

setfacl -m d:g:professors:rwx /share/students/

This command sets a default ACL, which is a completely different concept to regular
ACL we described just before this. Default ACLs are used so that every newly created file
or folder under a directory (in this case, /share/students) automatically inherits
permissions from the parent folder as set by the default ACL. In our scenario, this
command means that every single file or folder that gets created after we set this default
ACL is going to have an ACL set to g:professors:rwx.

Additional commands for manipulating file/directory security aspects 157

Clearly, you can see how ACLs and default ACLs are useful, as without them, we'd have
way less scope to configure more advanced, finely-grained scenarios for data access.

Let's now discuss the last important aspect of this scenario – default file permissions.
We mentioned in the recipe that we need to cover the subject of umask. Let's do that now.

If we check the output from one of the previous screenshots, we can see this:

-rw-rw-r--. 1 jill professors 0 Dec 6 21:22 prof2

-rw-rw-r--. 1 jack professors 36 Dec 6 21:23 prof3

The question is, why are default permissions rw-rw-r--?

The answer to this question is called umask (user mask).

As a concept, umask is used specifically for that – to set default permissions for newly
created files and directories. It can be set by shell configuration files, by a user profile,
or by a command. Let's use the umask command to explain how it does what it does:

[jill@localhost professors]$ umask

0002

[jill@localhost professors]$ touch prof4

[jill@localhost professors]$ umask 0022

[jill@localhost professors]$ touch prof5

[jill@localhost professors]$ umask 0222

[jill@localhost professors]$ touch prof6

[jill@localhost professors]$ ls -al

total 8

drwxrws---. 2 root professors 84 Dec 6 22:32 .

drwxr-xr-x. 4 root root 40 Dec 6 20:51 ..

-rw-rw-r--. 1 jill professors 36 Dec 6 21:23 prof1

-rw-rw-r--. 1 jill professors 0 Dec 6 21:22 prof2

-rw-rw-r--. 1 jack professors 36 Dec 6 21:23 prof3

-rw-rw-r--. 1 jill professors 0 Dec 6 22:32 prof4

-rw-r--r--. 1 jill professors 0 Dec 6 22:32 prof5

-r--r--r--. 1 jill professors 0 Dec 6 22:32 prof6

158 Using Commands for File, Directory, and Service Management

You can clearly see that as we change the umask variable for a user, the default permissions
for newly created files change. When we used an umask value of 0002, the prof4 file
was created with permission 664. When we used an umask value of 0022, the prof5
file was created with permission 644. Lastly, when we used an umask value of 0222, the
prof6 file was created with permission 444. We could also ignore the leading zero when
assigning umask in accordance with the same principle we used for the chmod command.

Mask for files is set to 666, and for directories, it's set to 777. So, if we want to calculate
default permissions for newly created files or folders, we just need to subtract the umask
value from these values (666 or 777) and get default permissions for files (or folders).

If we don't resort to manual configuration, all users' umask values are set by the /etc/
profile file, which is loaded by default when a user logs in. In that file, there's an if
statement that looks like this:

if [$UID -gt 199] && ["'/usr/bin/id -gn'" = "'/usr/bin/id
-un'"]; then

 umask 002

else

 umask 022

fi

Basically, what this if-then-else structure does is, for all the UIDs that are greater than
199, umask is set to 002, otherwise, it's set to 022. That's why regular users have umask
002, while the root user has umask 022 (the root's UID is 0).

Let's now move to our next recipe, which is all about using commands to manipulate text
files – commands including cat, cut, more, less, head, and tail.

See also
If you need more information about file permissions, special permissions, or ACLs,
we suggest that you visit these links:

•	 Managing file permissions: https://access.redhat.com/
documentation/en-us/red_hat_enterprise_linux/8/html/
configuring_basic_system_settings/assembly_managing-file-
permissions_configuring-basic-system-settings

Manipulating text files by using commands 159

•	 Linux permissions – SUID, SGID, and sticky bit: https://www.redhat.com/
sysadmin/suid-sgid-sticky-bit

•	 An introduction to Linux ACLs: https://www.redhat.com/sysadmin/
linux-access-control-lists

Manipulating text files by using commands
Let's now switch our attention to learning about commands that enable us to manipulate
text files – just for output reasons head, tail, more, less, cat. Some other commands
related to the same concepts are going to be covered in later chapters, such as Chapter 8,
Using the Command Line to Find, Extract, and Manipulate Text Content, where we discuss
more advanced scenarios with text files, such as merging, cutting, and using regular
expressions with grep and sed to manipulate text content.

Getting ready
We still need the same virtual machines as with our previous recipes.

How to do it…
Let's start by using head and tail command, commands that can be used to show the
beginning and end of a text file. For example, let's use the /root/.bashrc file:

[student@cli1 22:28] head /root/.bashrc

~/.bashrc: executed by bash(1) for non-login shells.

see /usr/share/doc/bash/examples/startup-files (in the
package bash-doc)

for examples

If not running interactively, don't do anything

case $- in

 i) ;;

 *) return;;

esac

160 Using Commands for File, Directory, and Service Management

Let's now check the tail end of the same file:

[student@cli1 22:29] tail /root/.bashrc

 if [-f /usr/share/bash-completion/bash_completion]; then

 . /usr/share/bash-completion/bash_completion

 elif [-f /etc/bash_completion]; then

 . /etc/bash_completion

 fi

fi

PS1="\e[0;31m[\u@\H \A] \e[0m"

export VISUAL=nano

export EDITOR=nano

Unlike that, more and less are used to just display output, but in a page-by-page
formatted fashion, making a long output much more humanly readable. So, when
we execute the following command:

less /root/.bashrc

Or we can execute this command:

more /root/.bashrc

The expected output from these commands is something like this:

Manipulating text files by using commands 161

Figure 5.16 – Using the more and less commands looks very similar
to this – page-by-page viewing of text content

162 Using Commands for File, Directory, and Service Management

Cat (the command, not a feline) is completely opposite to the discipline of more or less
– it just displays the whole file content, without any stoppages. This is cool when a text file
is short, but mostly useless if that file is long, and is one of the most common reasons why
we use more or less commands. So, let's pick a short file and cat it, for example, the
/root/.profile file:

Figure 5.17 – Using the cat command on an appropriate file – a text file
that's not too big to fit on one terminal page

Cat can be used for one more thing, which is to combine multiple text files into one. This
operation is often used when combining multiple log files into one to concatenate them.
We're going to discuss this scenario later in this book, in Chapter 8, Using the Command
Line to Find, Extract, and Manipulate Text Content.

Manipulating text files by using commands 163

How it works…
more and less are page viewers – they enable us to display content page by page. As
we can see in the last line of our example, using these commands didn't finish – the
command stopped showing the file content after displaying one page of that file. Now
it's interactively waiting for us to either continue listing file content page by page, do
something else (for example, searching by using the / sign), or quit by using the q key.

The head and tail commands are named appropriately – they show the head
(beginning) and the tail (end) of a text file. They can also be used with a variety of
options to further parametrize the output that we want. For example, if we execute the
following command:

tail -n 15 /root/.bashrc

We're going to get the last 15 lines of that file. The same can be done with the
head command.

Our next topic of discussion is using the find command to find files and folders.
Let's deal with that first and then move on to the next recipes, which are going to involve
archiving, compression, and dealing with services via systemctl.

There's more…
If we need to learn more about these commands, we can check the following links:

•	 head man page: https://man7.org/linux/man-pages/man1/
head.1.html

•	 tail man page: https://man7.org/linux/man-pages/man1/
tail.1.html

•	 more man page: https://man7.org/linux/man-pages/man1/
more.1.html

•	 less man page: https://man7.org/linux/man-pages/man1/
less.1.html

•	 cat man page: https://man7.org/linux/man-pages/man1/
cat.1.html

https://man7.org/linux/man-pages/man1/head.1.html
https://man7.org/linux/man-pages/man1/head.1.html
https://man7.org/linux/man-pages/man1/tail.1.html
https://man7.org/linux/man-pages/man1/tail.1.html
https://man7.org/linux/man-pages/man1/more.1.html
https://man7.org/linux/man-pages/man1/more.1.html
https://man7.org/linux/man-pages/man1/less.1.html
https://man7.org/linux/man-pages/man1/less.1.html
https://man7.org/linux/man-pages/man1/cat.1.html
https://man7.org/linux/man-pages/man1/cat.1.html

164 Using Commands for File, Directory, and Service Management

Finding files and folders
Our next topic of the day is to learn to use the find command, an incredibly useful
command. It can be used in a variety of different ways – to find files and folders according
to specific criteria (permissions, ownership, modified date, and others), but also to prepare
data to be further manipulated after the find command. We'll go through some examples
of both principles in this recipe.

Getting ready
We need to leave our cli1 virtual machine running. If it's not powered on, we need to
power it back on.

How to do it…
Let's use a couple of examples to explain how the find command works. Here are some
examples that we're going to use:

•	 Finding files in the / directory that have permission 2755

•	 Finding files in the / directory owned by the user jill

•	 Finding files in the / directory owned by a group student

•	 Finding files in the / directory with a specific name (for example, network)

•	 Finding files of a specific type (for example, all files with the php extension)

•	 Finding all empty directories

•	 Finding files that have been modified in the past two hours (120 minutes)

•	 Finding files that are 100-200 MB in size

Let's make these scenarios happen:

find / -type f -perm 2755

find / -type f -user jill

find / -type f -group student

find / -type f -name network

find / -type f -name "*.php"

find / -type d -empty

find / -mmin -120

find / -size +100M -size -200M

Finding files and folders 165

To further drive home the importance of this command, let's use it, as we mentioned
previously, to prepare data to do something after we find the necessary content. For
example, let's find all files that have the .avi extension on the whole filesystem and
remove them:

find / -type f -name "*.avi" -exec rm -f {} \;

This command finds all files with the .avi extension, puts them in an array, and removes
them, one by one, by using the rm -f command. This is very useful if you have users who
are abusing corporate resources for unnecessary content.

How it works…
Finding files and folders by name is something that we often do. For example, let's say that
we have a rudimentary shell script that performs a backup and that it uses specific criteria
to create a list of files that it's going to copy to a pre-determined backup folder. If we're
doing this kind of operation on a large production server with hundreds of users, chances
are that there will be a lot of new files daily. Using the find command makes a lot of
sense in these sorts of scenarios.

Most commonly, we use the find command to locate files (-type f option) or folders
(-type d option), and then we narrow our search by using more criteria. Criteria such
as modification date, user or group ownership, permissions – there are a lot of options
available. If we look at the find command man page, we'll quickly become painfully
aware of how many options and advanced scenarios can be covered by using the find
command. This is why there's a common way of using find, which is to start with
something such as a file type or extension, and then narrow it down further by using other
options that we mentioned. If we start with that in mind, we'll get to our results quickly.

The next recipe on our plate is related to archiving and compressing files and folders. So,
let's learn how to use tar and its sidekicks, gzip, bzip, xzip, and commands alike.

There's more…
If you need to learn more about Bash reserved variables and PS variables, refer to the
Find command man page: https://man7.org/linux/man-pages/man1/
find.1.html.

166 Using Commands for File, Directory, and Service Management

Archiving and compressing files and folders
Being efficient in terms of how we use disk space is nothing new – it's always been
around. Yes, we're at a point in history where large capacity hard drives and other media
is available, but that doesn't mean we can be reckless about it. This is the reason why
we've been using archiving and compressing for decades, and it's a topic that we're going
to cover now as well.

Getting ready
We need to make sure that our cli1 machine is ready to be used, which will make our
work on this recipe easy.

How to do it…
Let's go through another scenario-based example to cover all the necessary topics. So, this
is what we're going to do in the first part of our recipe:

•	 Create a tar archive with the current folder content

•	 Create a tar.gz compressed archive with the current folder content

•	 Create a tar.bz2 compressed archive with the current folder content

•	 Create a tar.xz compressed archive with the current folder content

In the second part of our recipe, we're going to extract these archives:

•	 Extract a tar, tar.gz, tar.bz2, or tar.xz archive

•	 Extract a tar, tar.gz, tar.bz2, or tar.xz archive to a specific folder (let's say
/tmp/extract)

Let's say that we're located in the /root directory, and that we want to save all of our
archives to the /tmp directory. This is how we'd do the first part of our scenario:

cd /root

tar cfp /tmp/root.tar .

If we were creating the tar.gz archive, we'd do this:

tar cfpz /tmp/root.tar.gz .

If we were creating the tar.bz2 archive, we'd do this:

tar cfpj /tmp/root.tar.bz2 .

Archiving and compressing files and folders 167

If we were creating the tar.xz archive, we'd do this:

tar cfpJ /tmp/root.tar.xz .

The second part of our scenario begins by opening an archive. We just need to change one
tar parameter when compared to the first set of examples in our scenario and ditch the
last part of our command (. for the current directory). So, we'd need to do this (don't do
this in the real world; this is merely for illustration purposes):

tar fpx /tmp/root.tar

Alternatively, we could need to do this:

tar zfpx /tmp/root.tar.gz

Or we could do this:

tar jfpx /tmp/root.tar.bz2

Or we could do this:

tar Jfpx /tmp/root.tar.xz

The problem with this is the location of the output – where's the output of this extraction
process going to go? So, the correct way to do this would be as follows:

cd /tmp

mkdir /tmp/extract

tar fpx /tmp/root.tar -C /tmp/extract

Alternatively, we could do this:

tar zfpx /tmp/root.tar.gz -C /tmp/extract

Or we could do this:

tar jfpx /tmp/root.tar.bz2 -C /tmp/extract

Or we could do this:

tar Jfpx /tmp/root.tar.xz -C /tmp/extract

Again, this depends on the archive type.

168 Using Commands for File, Directory, and Service Management

Tar has a myriad of other available options, for example, for manipulating ACLs and
SELinux contexts such as the following:

•	 --acls – Use ACLs when creating an archive

•	 --no-acls – Ignore ACLs when creating an archive

•	 --selinux – Use SELinux contexts when creating an archive

•	 --noselinux – Ignore SELinux contexts when creating an archive

We cannot stress how important it is to check the corresponding man page if we're
looking for something specific. So, we need to make sure that we do.

How it works…
tar, or Tape ARchiver, has been around for decades now. Its original use case
included archiving content on tape, which is how it got its name. Archiving, as the
manual states, means storing multiple files in a single file. All the other options that
we use are additional options that have been added over the past 40+ years, given that it
was introduced way back in 1979.

In terms of the parameters used in our examples, we have the following:

•	 c – Create an archive

•	 x – Extract an archive

•	 f – Or --file, to select an output archive filename

•	 p – Option to preserve permissions

•	 C – Select an output folder

•	 z – Use gzip to compress the tar archive

•	 j – Use bzip2 to compress the tar archive

•	 J – Use xzip to compress the tar archive

These are the most frequently used tar parameters, which is why we specifically selected
those for our recipe.

This concludes our tar recipe, and we're ready to move on to the final recipe in this
chapter, which is all about managing services by using the systemctl command.
Let's work on that for a bit.

Managing services and targets 169

There's more…
If you want to learn more about the tar command, make sure that you refer to the
tar command man page: https://man7.org/linux/man-pages/man1/
tar.1.html.

Managing services and targets
Managing services tends to be something that we need to do at times. For example,
when we install a new piece of software that comes bundled as a service, we need to be
able to manage it so that it can work properly. This is what we're going to work on as we
go through this recipe. We're also going to give a short description of how systemctl
configuration files work, but without going on a 100 mile-long journey, as it's the recipe
that's the focus. However, we will make sure that we provide you with additional links
where you can learn a whole lot more about systemd as it's a big topic and an
important one.

Getting ready
We're going to use our cli2 CentOS for this recipe, just so that it doesn't feel left out.

How to do it…
The basic idea behind managing services in practical terms is to have services start either
at the point in time when we want them to be started, or to have them available after
we boot our Linux server.

The management of services and targets became quite a bit easier over the past couple of
releases of any Linux distribution. If you've been using CentOS for an extended period,
you will probably remember upstart, init, and all those beautiful things that will remain
buried deep in our not-so-fond memories. In terms of the management of services, both
from the administrative and development perspective (we'll get to that in a sec), things
became much easier with CentOS 7. CentOS 8 follows the same path. There are, and
always will be, differing opinions regarding the whole idea of systemd, but that's not the
subject at hand here. So, let's focus on services and targets. First, we'll log in as root and
type some commands, starting with the following:

systemctl set-default multi-user.target

https://man7.org/linux/man-pages/man1/tar.1.html
https://man7.org/linux/man-pages/man1/tar.1.html

170 Using Commands for File, Directory, and Service Management

This is going to switch our default boot target to multi-user, which means that our CentOS
machine is going to be booted to text mode by default. So, after we reboot the machine, it's
going to be started in text mode. Then, we're going to switch to using text mode instantly:

systemctl isolate multi-user.target

This is going to kill all the GUI processes, check the service delta between graphical.
target and multi-user.target, and do its magic.

The next thing that we're going to do is, we're going to pick a service (for example, sshd),
and use the systemctl command to manage it – both momentarily (manage its state at
the time of command execution) and permanently (manage what happens with the sshd
service during system boot). Let's type in these commands:

systemctl stop sshd.service

systemctl status sshd.service

The result of these two commands is going to be as follows:

Figure 5.18 – Using systemctl to manage a service – in this case, the SSH service

It's telling us that sshd.service is disabled – Active: inactive (dead). We will enable it
and check its state by typing the following command:

systemctl start sshd.service

systemctl status sshd.service

Let's check the result of these last two commands:

Managing services and targets 171

Figure 5.19 – Checking the state of the SSH service following a configuration change

We can see that sshd.service is now active and ready to accept network connections.

There's another aspect of this, which is to configure a service so that it's enabled on system
boot. If we use sshd.service as an example:

systemctl enable sshd.service

Also, if we don't want sshd.service to be enabled on system boot, we can do
the opposite:

systemctl disable sshd.service

When we deploy a new service, we can start and enable it at the same time. For example,
let's say that we just installed the sshd service from a package. Let's enable and start it by
using one command:

systemctl enable --now sshd.service

Of course, that pre-supposes that we know the name of any given service, which isn't
always the case. Let's learn how to overcome this problem in a text mode-driven way
before we wrap this scenario up with a summary table to make things easier.

If we want to list all of the available services, we can use the following command, as
systemd and systemctl know more objects than just services (not the topic of
this scenario):

systemctl list-units --type=service

.......

172 Using Commands for File, Directory, and Service Management

.... part of the output ommited

systemd-journal-flush.service loaded active exited Flush
Journal to Persistent Storage

systemd-journald.service loaded active running Journal
Service

systemd-logind.service loaded active running Login
Service

systemd-machined.service loaded active running Virtual
Machine and Container Registration Service

systemd-modules-load.service loaded active exited Load Kernel
Modules

systemd-random-seed.service loaded active exited Load/Save
Random Seed

systemd-remount-fs.service loaded active exited Remount
Root and Kernel File Systems

systemd-sysctl.service loaded active exited Apply
Kernel Variables

systemd-sysusers.service loaded active exited Create
System Users

systemd-tmpfiles-setup-dev.service loaded active exited
Create Static Device Nodes in /dev

systemd-tmpfiles-setup.service loaded active exited
Create Volatile Files and Directories

systemd-udev-settle.service loaded active exited udev Wait
for Complete Device Initialization

systemd-udev-trigger.service loaded active exited udev
Coldplug all Devices

systemd-udevd.service loaded active running udev Kernel
Device Manager

systemd-update-done.service loaded active exited Update is
Completed

systemd-update-utmp.service loaded active exited Update UTMP
about System Boot/Shutdown

systemd-user-sessions.service loaded active exited Permit User
Sessions

tuned.service loaded active running Dynamic
System Tuning Daemon

udisks2.service loaded active running Disk
Manager

Managing services and targets 173

upower.service loaded active running Daemon for
power management

user-runtime-dir@0.service loaded active exited /run/user/0
mount wrapper

user-runtime-dir@42.service loaded active exited /run/
user/42 mount wrapper

user@0.service loaded active running User
Manager for UID 0

user@42.service loaded active running User
Manager for UID 42

vdo.service loaded active exited VDO volume
services

vgauthd.service loaded active running VGAuth
Service for open-vm-tools

vmtoolsd.service loaded active running Service for
virtual machines hosted on VMware

wpa_supplicant.service loaded active running WPA
supplicant

When we were going through one of our previous recipes, we discussed vdo. We
can clearly see the vdo service listed here. Remember that we started it by using the
systemctl command?

If we want to check the list of all enabled services, we can use the following command:

systemctl list-units --type=service --state=enabled

If we need a list of services running currently, execute the following command:

systemctl list-units --type=service --state=running

The systemctl command – because of how it works and the related config files (covered
in the How it works… section a bit later) – can also list service dependencies. For example,
the sshd service needs some other services to be started so that it can work. Let's list the
sshd dependencies:

systemctl list-dependencies sshd

174 Using Commands for File, Directory, and Service Management

Therefore, let's just create a table with some of the most common service names so that we
can manage this problem more efficiently:

Table 5.1 – A table with details about services and systemd service names

We can use the short names of these services (without .service) as well as the Tab key
to use Bash shell completion to scroll through options and service names in systemctl.
We can also mask systemd services, and therefore make them invisible to the system, by
linking them from the service start up perspective to /dev/null:

systemctl mask cups.service

Created symlink /etc/systemd/system/cups.service → /dev/null.

Here, we can get an idea of how all of this works. The systemctl command obviously
uses some configuration files to do its job. Let's now discuss how and what's done.

We could write books about systemd, but having this specific scenario in mind, we need to
stick to the job at hand. We used the systemctl command to manage a service – right
now (start/stop/restart), and permanently (enable/disable).

Managing services and targets 175

How it works…
From the perspective of purely managing services, the systemctl command looks
by checking into its configuration files. So, let's check the anatomy of a service file for
systemd, again, using sshd as an example:

Figure 5.20 – Systemd configuration file – in this example, SSHD

It's almost readable without a lot of explanation, which is one of the big differences
between these service files and what was used in the past.

The first part, which starts with the [Unit] section, is related to the general settings of
the service – with a description and man pages for documentation being the first part of
that. Then a statement tells us the order; that is, after which services should this specific
service be started. Wants is related to dependencies – in this case, which targets need to
be enabled for this service to be successfully started.

The [Service] section is a bit trickier, as it tells us basic configuration details and
start up options (the EnvironmentFile option), which commands should be used for
starting and reloading the service, how to kill the service, and details related to restarting.
Restarting is for selecting if the service will be restarted when there's a timeout, kill, or exit
from the process service. RestartSec is about sleep time before the service restart.

The [Install] section is a bit more global and related to how systemd works with
this unit. WantedBy is used in the sense of creating additional dependencies between this
specific service and other services, completely opposite to what [Unit] statements do.

176 Using Commands for File, Directory, and Service Management

This is why, when we change or create new systemd unit/service/whatever files, we have
to use the systemctl daemon-reload command. That command specifies that
systemctl goes through all the config files and treats them as yes, the administrator
might have changed something in any of these files, but this is on purpose and OK.

There's more…
Bearing in mind the importance of systemd and its internals, as promised, let's provide
our readers with some additional content related to systemd:

•	 Introduction to systemd: https://access.redhat.com/documentation/
en-us/red_hat_enterprise_linux/8/html/configuring_basic_
system_settings/introduction-to-systemd_configuring-basic-
system-settings

•	 Managing system services with systemctl: https://access.redhat.
com/documentation/en-us/red_hat_enterprise_linux/8/
html/configuring_basic_system_settings/managing-system-
services-with-systemctl_configuring-basic-system-settings

•	 Working with systemd targets: https://access.redhat.com/
documentation/en-us/red_hat_enterprise_linux/8/html/
configuring_basic_system_settings/working-with-systemd-
targets_configuring-basic-system-settings

•	 Working with systemd unit files: https://access.redhat.com/
documentation/en-us/red_hat_enterprise_linux/8/html/
configuring_basic_system_settings/assembly_working-with-
systemd-unit-files_configuring-basic-system-settings

•	 Optimizing systemd to shorten the boot time: https://access.redhat.
com/documentation/en-us/red_hat_enterprise_linux/8/html/
configuring_basic_system_settings/optimizing-systemd-to-
shorten-the-boot-time_configuring-basic-system-settings

•	 Demystifying systemd: https://www.youtube.com/
watch?v=tY9GYsoxeLg

6
Shell-Based Software

Management
Copying content over a network is usually done as a manual process – for example,
we just use scp or FTP to transfer a file and that's that. But what happens if we need to
make this process a permanent one? We then need to figure out a way to perform file/
directory synchronization, which is what rsync is all about. That being said, with all of
the security-related incidents in the past 5+ years, it's always a good idea to implement
some kind of encryption, so using ssh and scp seems like a reasonable approach. And
that's exactly what we are going to do.

In this chapter, we are going to learn about the following topics:

•	 Using dnf and apt for package management

•	 Using additional repositories, streams, and profiles

•	 Creating custom repositories

•	 Compiling third-party software

178 Shell-Based Software Management

Technical requirements
For these recipes, we're going to use two Linux machines – we can use the cli1 and cli2
virtual machines from our previous recipes. These recipes are doable both on CentOS
and/or Ubuntu, so there is no reason to use separate virtual machines for these scenarios.

So, let's start our virtual machines, and let's get cracking!

Using dnf and apt for package management
Packages and package groups are different ways of deploying software to our CentOS
and Ubuntu virtual machines. A package is nothing more than a stack of files that can be
installed on our machine in an automated fashion, without our manual input. Package
groups are more of a RedHat/CentOS concept. Just like the term suggests, they are a way
of grouping packages into larger groups so that we can use these groups to install multiple
packages without manually specifying every single package from the group. Let's learn
how to use them to our benefit, specifically, for deployment purposes.

Getting ready
Let's continue using our cli1 and cli2 machines for this one, so make sure that they're
powered on and ready to go. We are going to use cli1 for the apt part of this recipe, and
cli2 for the yum/dnf part, as cli1 is Ubuntu-based and cli2 is CentOS-based.

How to do it…
Let's start with the basics of yum and dnf for CentOS on cli2. Let's list all the available
packages on the system:

yum list

Using dnf and apt for package management 179

The output should look like this (abbreviated):

Figure 6.1 – Shortened yum list output

180 Shell-Based Software Management

We've shortened this screenshot in Figure 6.1 as it contains thousands of packages.
There are three columns in this output. Going from left to right, the first column is the
package name, the second column is the package version, and the third one is the package
repository where that specific package is located.

If we want to find out more details about a package, we can use yum info (or dnf
info), for example:

Figure 6.2 – Getting information regarding a package

By using this command, we get much more information about the package. Also, please
note that we didn't use x86_64 in the package name, as it's not necessary. Bearing in
mind the fact that we're using a 64-bit distribution, it becomes understandable that using
architecture in the package name is almost always unnecessary.

Let's now install a package, for example, mc (Midnight Commander):

Using dnf and apt for package management 181

Figure 6.3 – Installing a package

The beauty of Linux package systems is evident here. It's not only about the fact that
a package gets installed without hassle – dependencies get installed by default, as well,
and that's really useful. Back in the days when we only had the rpm command to install
packages in CentOS, it was much more difficult to resolve dependencies. We had to deploy
them before deploying the package that we wanted to deploy, and in a specific order,
which complicated the deployment process.

We can remove that package by using the following command:

dnf -y remove mc

182 Shell-Based Software Management

If we want to find which package installed a specific file, we can use the yum provides
or dnf provides command:

Figure 6.4 – Checking which package installed a specific file

If we need to find package dependencies (which package depends on which package),
we can use the following command:

Figure 6.5 – Checking package dependencies

Using dnf and apt for package management 183

We used bash in this example, but we could have used any package name for this query.

We can also use dnf and yum to download and install packages locally. Let's say that
we want to download and install the joe editor locally. This is how we'd do it:

Figure 6.6 – Downloading and installing a package manually from a local disk

184 Shell-Based Software Management

We can, of course, search for packages by using the yum search or dnf
search command:

Figure 6.7 – Using the yum/dnf search command

Sometimes, the list of these packages is going to be quite long, so additional filtering
might be required.

Using dnf and apt for package management 185

Let's now talk a bit about package groups, starting with the dnf grouplist command:

Figure 6.8 – Using dnf group list commands gives us a list of package groups

The output of that command is going to give us the names of package groups that we can
use for much larger package deployments. For example, let's check what's going to happen
if we install the Development Tools package group by issuing the following command:

dnf groupinstall "Development Tools"

186 Shell-Based Software Management

This command will ask us whether we want to download and deploy more than 100
packages. If we answer yes, that's exactly what's going to happen (the screenshot is
rendered smaller on purpose, just to show the end of the command output):

Figure 6.9 – Installing a package group

As we can see, having the ability to deploy package groups greatly increases the speed of
package deployment.

The next step in our process is to cover everything that we've covered in this recipe, but to
deliver it on Ubuntu. So, let's switch to our cli1 machine and start from scratch. First,
let's describe a couple of commands that we're interested in:

•	 apt-get or apt: Commands used to install, remove, upgrade, and update
packages

•	 apt-cache: Mostly used to search and find information about packages

Let's now learn to use them. First, we are going to discuss regular operations – installing,
removing, purging, updating, and upgrading. Let's install a package, for example, mc:

Using dnf and apt for package management 187

Figure 6.10 – Using apt-get to install a package

Now, let's remove it:

Figure 6.11 – Using apt-get to remove a package

188 Shell-Based Software Management

We can see that we have a standard situation – the package was removed, but some
of its dependencies weren't. We can do that, as well, by using the apt-get
autoremove command:

Figure 6.12 – Removing packages that are no longer needed

This is very useful as we're reducing the attack surface of our server (for security breaches)
by removing unnecessary software packages.

Now let's check what happens if we use the update option:

Figure 6.13 – Updating repository and package info

As we can see, apt refreshed its package list before the upgrade process could happen –
these steps are mostly used in sequence – update followed by upgrade:

Using dnf and apt for package management 189

Figure 6.14 – Upgrading available packages – this time, no upgrades are necessary

Interestingly enough, no packages were installed, which is a very rare situation, to be
honest. Usually, we'd have at least a few packages to be upgraded.

Note
Before we get into the topic of doing dist-upgrade, we are absolutely NOT
recommending this for a production server. Using dist-upgrade and
do-release-upgrade is something that we can do, but shouldn't.
Migration is always a better idea, however much time it might take.

Let's now push this situation to the extreme by trying to do dist-upgrade, followed
by do-release-upgrade. What the dist-upgrade apt option does is simple in
theory – it tries to prepare our current distribution so that it's possible to upgrade it to the
latest one in the branch. At first, it might just be getting a couple of new packages. Usually,
these packages contain new repositories and information about locations, from which
apt will upgrade our distribution to the latest one. Here's an example:

Figure 6.15 – Using dist-upgrade to get information about new distribution versions

190 Shell-Based Software Management

The next step after that one is to use do-release-upgrade, a standalone command
that's not an apt subcommand. We need to remember that this is not an apt option
(there's no apt do-release-upgrade, it's just do-release-upgrade). After
executing it, our system is going to ask us whether we want to continue with the
distribution release upgrade:

Figure 6.16 – Using do-release-upgrade, not to be recommended in production environments

If we confirm, the process is going to start, and it's going to take a while. The end result
should be an Ubuntu machine that's fully updated to the latest version, with all of the
latest package versions. Remember, we specifically mentioned that this shouldn't be done
in production – it's just an extreme example of using apt capabilities to do a system-wide
package upgrade. Hundreds, perhaps thousands of packages, will get updated if we do
something like that, and the process isn't reversible, so it carries a lot of risk. Try it out on
some test virtual machine just for practice. If successful, this procedure will upgrade to the
latest Ubuntu version. The end result, at the time of writing, looks like this:

Using dnf and apt for package management 191

Figure 6.17 – The end result of do-release-upgrade, and in our experience, we got lucky this time!

Notice that our Ubuntu machine was upgraded to the latest (21.04) version.

192 Shell-Based Software Management

There are a few more important apt commands – for example, for a package search,
we can use the apt-cache showpkg package_name command. Let's use it, for
example, on mc, a package we installed previously:

Figure 6.18 – Using apt-get to get package info

There is a somewhat shorter version of the same thing if we use the apt command:

Using dnf and apt for package management 193

Figure 6.19 – Using apt to get package info – somewhat shorter and more concise

If we need to add repositories, we can use the add-apt-repository command. Let's
say that we want to add an unofficial repository, such as Personal Package Archives
(PPA), that is hosted on Launchpad. Generally speaking, we should only add reputable
repositories, and not just any repository just because it has a certain package that we
might need. We are going to use an example here – let's say that we need to install the
latest PHP 7.4 version on our Ubuntu machine. We can do it like this:

apt-get install software-properties-common

add-apt-repository ppa:ondrej/php

apt-get update

apt-get install -y php7.4

This should be the result if we started php from the shell:

Figure 6.20 – The end result of us using the ppa repository to deploy the latest release of PHP 7.4

194 Shell-Based Software Management

This covers all the necessary commands we need for both Ubuntu and CentOS. Let's
now explain some background information about where some of the more important
information is stored – for both CentOS (dnf/yum) and Ubuntu (apt/apt-get).

How it works…
yum and dnf work in tandem with files located in /etc/yum.repos.d repository files,
as well as the /etc/yum.conf configuration file. We covered repository files, so let's
now discuss /etc/yum.conf and a couple of important configuration options that
we can use from it. This is a global configuration file for dnf and yum commands.

There are a couple of really useful configuration items that we can manage in it. Let's just
illustrate that point by using two commonly used examples. Let's add these two options to it:

exclude: kernel* open-vm*

gpgcheck=0

By using these two commands, we instructed yum/dnf to exclude all kernel and
open-vm packages (by name) in any kind of operation, such as a yum update (which
updates all packages on the machine). gpgcheck=0 sets a global policy that tells yum
and dnf not to use GPG key checking when working with packages. This can also be
managed in /etc/yum.repos.d, as discussed in our recipe.

Ubuntu has a very similar principle; it's just that directories are different as well as the file
structure, somewhat. The most important information regarding the software repository
location is kept in the /etc/apt directory, specifically, in the /etc/apt/sources.
list file. Here's an excerpt:

Figure 6.21 – Main apt configuration file called sources.list

Using additional repositories, streams, and profiles 195

The general structure is simple enough. The second part of our apt equation is located in
the /etc/apt/sources.list.d directory. A couple of steps ago, we added the PPA
repository, and, sure enough, we have a configuration file for that repository configuration
file there, called ondrej-ubuntu-php-groovy.list:

Figure 6.22 – Additional apt configuration file located at /etc/apt/sources.list.d

That covers our package and package groups recipe. Let's now move on to the next recipe,
which is about using modules and module streams.

There's more…
If you need more information about networking in CentOS and Ubuntu, make sure that
you check out the following resources:

•	 Yum cheat sheet: https://access.redhat.com/sites/default/files/
attachments/rh_yum_cheatsheet_1214_jcs_print-1.pdf

•	 Yum to DNF cheat sheet: https://fedoraproject.org/wiki/Yum_to_
DNF_Cheatsheet

•	 Apt cheat sheet: https://packagecloud.io/blog/apt-cheat-sheet/

Using additional repositories, streams, and
profiles
Repositories are the most important objects/locations to manage as they provide us with
packages and package groups that we can install on our CentOS machine. Let's now learn
how to manage repositories by using yum-config-manager and dnf. Also, let's get to
know some configuration files that are key for this process.

Adding to the idea of package groups, which group packages into larger groups, dnf
introduced the idea of additional modularity. It's all about package organization – we
want to have simple ways of deploying software – runtimes, applications, bits and pieces
of software. These concepts also enable us to have control over versions of software that
we want to install, which is really handy. For example, let's say that you need to deploy
PHP 7.2 and 7.3 on the machine. Doing that manually isn't going to be much fun. As
we're going to demonstrate by using an example, this is much more easily done if we use a
module stream.

196 Shell-Based Software Management

Profiles act as quasi-repositories, without actually being repositories, within the
AppStream repository. This concept enables us to additionally filter what we install. Just
as an example, the httpd module has a couple of profiles (minimal, devel, common).
The minimal profile means just the minimum number of packages that need to be
installed for httpd to work. Unlike that, common is a default profile that's ready for
production and additionally treated in terms of security (hardened).

Getting ready
Start the cli2 virtual machine created in the previous recipes. We're going to use it to
work with streams and profiles on our CentOS machine.

How to do it…
To manage repositories, we have to learn to use two commands – yum-config-
manager and dnf. Also, we need to look into the /etc/yum.conf file, as well as the /
etc/yum.repos.d directory. Yum.conf gives us global yum command configuration
options, and the /etc/yum.repos.d directory contains configuration files with
repository locations.

How it works…
Let's look at yum-config-manager first. This command was introduced in Red
Hat Enterprise Linux/CentOS 7 to easily add additional repositories to your Red Hat
Enterprise Linux or CentOS machine. And it does just that – it lets us skip the whole
manual repository configuration and get straight to business. If we didn't have this
command, we would need to learn the configuration file options for /etc/yum.
repos.d directory files.

If we go to the first virtual machine that we installed (source), and list the content of the
/etc/yum.repos.d directory, this is what we'll get:

Using additional repositories, streams, and profiles 197

Figure 6.23 – /etc/yum.repos.d directory content

Let's say that we want to add a custom repository, url, to our machine. We can do this
in three different ways. The first approach involves using yum-package-manager, and
that tool requires the yum-utils package (url is the location of the repository that
we want to use):

yum -y install yum-utils

yum-config-manager --add-repo url

yum-config-manager --enable repo

We can also check the list of currently configured repositories by using the
following command:

yum repolist all

If we need to find the list of currently disabled (unused) repositories, we can use the
following command:

yum repolist enabled

If we need to enable a disabled repository, we can use the following (repository_id is
a parameter that you can get from the yum repolist all command):

yum-config-manager --enable repository_id

198 Shell-Based Software Management

The most obvious problem with using yum-config-manager is the fact that there are
some parameters that we can't assign via that command itself. This is where the manual
editing of /etc/yum.repos.d configuration files comes in handy.

This command is being phased out little by little and redirected to its new dnf
counterparts (dnf config-manager), just like yum is being used in parallel with the
dnf command. If we want to do the same job by using dnf tools, we can do this:

dnf config-manager --add-repo url

That will create a new configuration file in the /etc/yum.repos.d directory with the
repository definition and enable it by default.

Our next step is going to be to learn a bit about these configuration files, as they're really
not all that difficult to understand. Let's use a repository configuration file to explain their
concept, for example, /etc/yum.repos.d/CentOS-Sources.repo:

Figure 6.24 – Part of the /etc/yum.repos.d/CentOS-Sources.repo file

Let's explain these configuration parameters:

•	 [BaseOS-Source]is the repository ID. This is what we use in yum-config-
manager or dnf to reference repositories.

•	 The name parameter is a description of that repository.

•	 The baseurl parameter describes where the location of this repository is, and it
can use a variety of different options – http, https, ftp, or file. If we create
a local repository (mount it somewhere on our CentOS machine), then the file
statement will be used to access it.

•	 The gpgcheck parameter tells yum/dnf whether or not to check the gpg key
against the package signatures. If it's 1, that means that checking is mandatory.

•	 The enabled parameter tells yum/dnf whether this repository is enabled,
which means whether dnf/yum can use it to get packages. We can also use
yum --enablerepo to enable a certain defined repository by name, or yum
--disablerepo to do the opposite.

•	 The gpgkey parameter tells yum/dnf where the gpg key for gpgcheck
is located.

Using additional repositories, streams, and profiles 199

Let's now move on to the idea of streams and profiles, the logical next step in our recipe.

After we log in to the source machine, let's use an example to describe what streams and
profiles are all about. So, let's use a module stream and profile to remove and re-deploy
httpd. In the first step, we're going to use the following command:

dnf -y remove @httpd

After the process is complete, let's do the opposite:

dnf -y install @httpd

Let's now check the output of the second command:

Figure 6.25 – Using streams and profiles

200 Shell-Based Software Management

We can see that the deployment process automatically defaulted to using the httpd/
common profile and the default stream (AppStream) repository.

Let's do another example. We can check the list of all available modules by using the
following command:

dnf module list

This will give us the following result:

Figure 6.26 – dnf module list, with versions and profiles; abridged output

Let's say that we want to install container-tools version 2.0. We can do it this way:

Using additional repositories, streams, and profiles 201

Figure 6.27 – Deploying a specific module version by using the dnf command

As you can see, the result of this action is going to be quite extensive. Sometimes, when
we deploy a set of packages from modules and streams, our machine is going to deploy
hundreds of packages. So, be prepared to wait for a bit of time to see whether it happens.

In one of our examples, we deployed the httpd package by using the default profile and
stream. Every one of these streams can have multiple profiles for our convenience. If the
stream has multiple profiles, one of them can be used as the default one (and marked as
such). This is not mandatory, but it's a good practice.

In terms of modules, there are 60+ modules available already, with various versions of
Python, PHP, PostgreSQL, nginx, and so on, to name a few commonly used services.
We can use a module from that list to deploy it. Also, the output of the command gives
us details about profiles, which we can then use to deploy a specific module profile.

By using these capabilities, we can modularize our approach to deploy specific packages.
The overall idea of modularization via streams and profiles is a good one, although it's a bit
clunky and unfinished in terms of upgrades. That being said, it's something that is going to
be around in the future, so it's a worthwhile investment of our time to learn about it.

We're done with advanced repository management for the time being. Let's now learn how
to create custom repositories.

202 Shell-Based Software Management

Creating custom repositories
Sometimes, it's necessary to create your own private repository of packages. Whatever the
reason might be – no internet access, low deployment speed – it's a completely normal
usage model that's often used all over the world. We are going to show examples for both
CentOS and Ubuntu so that we cover everything necessary for most Linux administrators.
Let's roll up our sleeves and start!

Getting ready
Keep the cli1 virtual machine powered on and let's continue using our shell. Let's make
sure that the necessary packages are installed by using our standard commands. So, let's
use this command:

dnf -y install vsftpd createrepo lftp

That should be all in terms of preparation, so let's do it.

How to do it…
Setting up a custom CentOS repository is actually quite a simple affair. The first step
involves downloading some packages. We are going to download a few of them and place
them in the same directory. Then, we are going to make that directory available via the
network by using vsftpd. A more detailed explanation of vsftpd can be found in the
next chapter of this book, which is about network-based file synchronization. Here, we are
just going to do a Formula 1 qualifying lap through vsftpd to create a repository.

Let's say that we want to create a local repository (hosted on our cli2 machine) that's
going to have two packages in it – the joe editor and desktop-backgrounds-basic.
We need to put them in a directory, /var/ftp/pub/repository, so that they're nice
and handy inside the vsftpd folder structure. We could do it like this:

Creating custom repositories 203

Figure 6.28 – Downloading a few packages and getting ready for repository configuration

Since we already installed the createrepo package in the introduction to this recipe, we
just need to use the createrepo command to create the necessary inventory information:

Figure 6.29 – Creating a repository out of a directory with RPM packages

The next step is to allow this directory to be used via vsftpd. Again, we have already
installed vsftpd and, by default, we just need to change one option in its configuration
file to allow anonymous FTP. Let's open the configuration file, /etc/vsftpd/vsftpd.
conf, and locate the offending option:

anonymous_enable=NO

And change it to the following:

anonymous_enable=YES

204 Shell-Based Software Management

We can now start and enable the service:

systemctl restart vsftpd

systemctl enable vsftpd

Then, let's try to log in to it to verify whether everything is ready:

Figure 6.30 – Checking whether the vsftpd configuration works

Everything is now ready from the service perspective. Now we just need to explain to
yum/dnf that they need to use this as a repository. So, let's head to the /etc/yum.
repos.d directory and create a repository configuration file there. Let's say we'll call
it localrepo.repo. The name is irrelevant, it's just that it needs to have the .repo
extension. Let's add the following options to it and save it:

[MyLocalRepo]

name=My Local Package Repository

baseurl=ftp://localhost/pub/repository

enabled=yes

gpgcheck=no

Let's verify whether this repository definition now works. We need to use yum or dnf for
that, with the repolist keyword:

Figure 6.31 – Checking whether our repository is correctly configured via its repo config file

As we can see, MyLocalRepo is defined and ready to be used. Let's test it by trying to
install the desktop-backgrounds-basic package:

yum -y install desktop-backgrounds-basic

Creating custom repositories 205

This should be the result:

Figure 6.32 – Installing a package from our custom repository

We can clearly see the relevant information here – the repository used was called
MyLocalRepo, so both vsftpd and our repository configuration file work without
any problems.

Note
Ubuntu tends to be much, much richer in terms of custom repositories; for
example, repositories that are hosted on launchpad.net, and so on. It also tends
to be a bit more internet-reliant than CentOS, but, that being said, it's easy
enough to create repositories on either one of these distributions.

Let's dive into a short explanation about how this all works in CentOS, and then it's time
for another recipe!

How it works…
There are two aspects to this recipe:

•	 Understanding how creating a repository works

•	 Understanding how using a custom-created repository works from the service and
yum/dnf perspective

206 Shell-Based Software Management

As always, we need to understand both of these concepts so that we can make them work
for us. Let's start with the repository creation part.

Obviously, when creating a repository, we have to have some packages for that repository.
So, a logical first step would always be to either create some packages or download them.
There's just one key point to be made here – there might be problems if you download
some packages without their dependencies. We deliberately chose two packages that
don't have any dependencies so that we can have something to start our work with. That
problem can be solved in either of the following two ways:

•	 We download all of the necessary dependencies for the packages that we're creating
a repository for.

•	 We set up our repositories so that some other repository has all of the necessary
dependencies for the packages we're creating our repository for.

Generally speaking, we'll go a long way in solving this problem by just enabling the EPEL
repository for our CentOS version, so, generally speaking, we should install the EPEL rpm
as it's going to help us with dependencies for almost anything:

yum -y install epel-release

Then, it all just becomes a matter of creating a directory, placing packages there, and using
createrepo to create the necessary XML files so that the directory with packages can
be used as a repository. Without createrepo, we are going to get an error, so we should
always install it and use it prior to using our custom repository.

The second aspect is related to a wider picture – that is, how to make this repository
available to other machines on the network and how to configure those machines to use it.
That's why we strategically selected vsftpd as a delivery service, as its configuration for
this scenario is really easy. We could have used the Apache web server as well, but seeing
that our next chapter is related to vsftpd, we thought it would be a fun way to get an
introduction to vsftpd out of the way by seeing it in action.

A part of this process is to work on repo files from the repository client perspective – that
is, all of the machines that are going to be using our custom repository. It's just a couple of
configuration lines that cover the repository's unique name and description, location, and
some general settings, such as whether that repository is enabled on a client and if we're
using signed packages and verifying their signature. Usually, people tend to skip over this,
although it's quite important. If we enable the gpgcheck option, we need to install a gpg
key that a repository is using to sign its packages, as well. We can do that with the gpg
--import file_name.gpg command, after we download the gpg file.

Compiling third-party software 207

Let's now get ready for the last part of this chapter, which is all about compiling software
from the source code. We're going to use some familiar, usual suspects to do that and
learn how to do it along the way.

There's more…
If we need to learn more about vsftpd, make sure that you check the following links:

•	 yum: https://access.redhat.com/documentation/en-us/red_hat_
enterprise_linux/6/html/deployment_guide/ch-yum

•	 Install Anonymous FTP server on CentOS 8: https://www.centlinux.
com/2020/02/install-anonymous-ftp-server-on-centos-8.html

•	 Create Local Repos: https://wiki.centos.org/HowTos/
CreateLocalRepos

•	 Configuring yum and yum repositories: https://access.redhat.com/
documentation/en-us/red_hat_enterprise_linux/6/html/
deployment_guide/sec-configuring_yum_and_yum_repositories

Compiling third-party software
Sometimes, a package for a certain application is just not available – either nobody
bothered to create it, or that application is so old that it's obsolete and nobody wants to do
it. Either way, if an application is useful to us, there's no reason why we shouldn't try to
find its source code and compile it.

Compiling software from source code can sometimes be like dark magic, and we have
a good example coming up very soon. Sometimes it works without any real effort, and
we are going to show you an example of that, too. The main distinction between those two
scenarios seems to be the all-important dependencies and their version. Also, there's a lot
of software for Linux that needs to be compiled in a specific sequence. A perfect example
of that is the LAMP stack. After installing Linux, if you want to compile Apache, MySQL,
and PHP, you had better do it in the correct order. Otherwise, your keyboard might find
its way to the garbage can sooner than you planned. Let's see what we can do about this so
that it doesn't happen.

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/deployment_guide/ch-yum

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/deployment_guide/ch-yum

https://www.centlinux.com/2020/02/install-anonymous-ftp-server-on-centos-8.html

https://www.centlinux.com/2020/02/install-anonymous-ftp-server-on-centos-8.html

https://wiki.centos.org/HowTos/CreateLocalRepos

https://wiki.centos.org/HowTos/CreateLocalRepos

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/deployment_guide/sec-configuring_yum_and_yum_repositories

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/deployment_guide/sec-configuring_yum_and_yum_repositories

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/deployment_guide/sec-configuring_yum_and_yum_repositories

208 Shell-Based Software Management

Getting ready
We can use any machine for this recipe, but the most common scenario is a default
installation of some Linux distribution with a lot of packages missing. So, let's install
a fresh Ubuntu machine, and let's call it compile1, just for fun. So, this one is going to
be just a Vanilla Ubuntu installation that will need all of the configurations in order for
the compilation process to work.

How to do it…
We'll start with an easy example of a package that's very easy to compile and won't give us
a massive headache. Let's compile the joe editor and show you what we're talking about.
We'll start with the usual procedure:

apt-get -y update

apt-get -y upgrade

Just to be on the safe side, to get our machine ready for the compilation process, let's use
this command to install a large selection of packages:

apt-get -y install autoconf g++ subversion linux-source linux-
headers-'uname -r' build-essential tofrodos git-core subversion
dos2unix make gcc automake cmake checkinstall git-core dpkg-
dev fakeroot pbuilder dh-make debhelper devscripts patchutils
quilt git-buildpackage pristine-tar git yasm checkinstall cvs
mercurial

As a result, our Ubuntu machine should now be ready for any compilation effort. Let's
now download joe source:

wget https://kumisystems.dl.sourceforge.net/project/joe-editor/
JOE%20sources/joe-4.6/joe-4.6.tar.gz

Compiling third-party software 209

We prefer to keep things tidy in the root's home directory, so let's just create a folder for
compilation purposes. Let's call it source and move joe source there, and then open its
tar.gz file with the source code:

mkdir source

mv joe-4.6.tar.gz source

cd source

tar zfpx joe-4.6.tar.gz

The last command (tar) is going to open another subfolder (joe-4.6) with all the
necessary files for the compilation process located there. So, let's change the directory to
joe-4.6 and start the configuration process:

cd joe-4.6

./configure

If everything goes well, we should have something like this as a result (shortened for
formatting reasons):

Figure 6.33 – Configuration step concluded successfully

210 Shell-Based Software Management

The configuration process has finished successfully. Let's now continue with the actual
compilation process, for which we need the make command (hence the reason why we
installed all of those packages, make being one of them), and we can use some additional
options to speed the process up. My Ubuntu machine has four processors, so we can
use make -j4 to speed the process up (so that the compilation process takes all of the
available cores, not just one). After a couple of seconds, the compilation process should
finish similar to this:

Figure 6.34 – Compilation process also concluded successfully

The final step in this process is to install our compiled application. We do that by using the
following command:

make install

After this command finishes its job and installs joe system-wide, we should be able to
start joe from the command line and edit our files. We can also create a deb package
out of this installation by using the checkinstall package. When we run it, it's going
to ask us for a package description. We can type in something like Joe editor v4.6
and be done with it. At the end of this process, we're going to get a deb package with
installation files that are required to deploy joe on other Ubuntu servers.

That wasn't so bad, was it? Yes, we had a couple of steps to do, but overall, it was a very
simple process.

Compiling third-party software 211

Now let's do another example that's the complete opposite of what we'd call a very simple
process. Let's try to compile the Apache web server. We're going to use the latest version
at the time of writing (2.4.49), located at https://dlcdn.apache.org//httpd/
httpd-2.4.49.tar.gz, by using the same procedure – download the source to our
source directory, open the source archive, and start with the configuration process. Let's
see what happens:

Figure 6.35 – configure script in action – Missing dependencies – Example 1

Oops! Not going to happen. So then, we go to Dr. Google and check what to do if the
message received is APR is not found. We'll end up finding some articles that state that
we should install some additional packages, so let's do that:

apt-get -y install libapr1-dev libaprutil1-dev

Try to run the configure script again, and check the results:

Figure 6.36 – configure script in action – Missing dependencies – Example 2

212 Shell-Based Software Management

Another package seems to be missing. And when we – just as an example – try to find
a package such as libpcre in the apt cache, this is what we're going to get:

Figure 6.37 – Trying to figure out which package is missing

Now the question becomes how to know which packages to install from this list? What
usually happens is that people lose patience and write a command such as this:

apt-get -y install *pcre*

And that's going to install more than 200 packages on our machine. If we're security-
conscious, that's really not the way to go. It's easy for people like us as we've done this
a thousand times, but for normal people, this gets really frustrating really quick. So, let's
now install the required package and its dependencies:

apt-get -y install libpcre3-dev

Before we do the actual configuration/compiling, we do have to mention one thing.
Nowadays, a lot of the app code is shared via concepts such as Git. Most of these
repositories are hosted by app coders, and usually have additional instructions for
dependencies and how to deploy them. However, if we download a source code from
a non-Git-like resource, we usually get more information about compiling that source
code in files such as INSTALL after we extract the source archive. So, we need to make
sure that we check these resources prior to trying to compile an app from some
source code.

Run the rest of our procedure in a serial fashion:

./configure; make; make install

Compiling third-party software 213

Luckily, there will be no more questions, as we can see in the following screenshot:

Figure 6.38 – Compilation and installation completed successfully

We deliberately chose a package that's a bit annoying, but not over-the-top annoying.
There are applications out there that can make us spend hours and hours figuring out all
of the dependencies so that we can compile a single package.

How it works…
Now that we have got the step-by-step process out of the way, let's discuss the specifics
of how all of this works and fits together. It's pretty obvious that there are multiple steps
to the process and that each and every one of them is significant. And it is – one can't
be done without the other. So, let's now discuss all of the commands that we used and
describe how they work.

214 Shell-Based Software Management

The first phase in our compilation process starts with the ./configure command. It's
actually not a command per se; it's a shell script that almost all source code packages
have. This script is there to make sure that the environment is ready for the compilation
process – check included files, libraries, dependencies, everything needed for the source
code compilation process. It checks for the necessary compiler and its libraries to make
sure that the stage is set up for the next part of the process. It also writes down some
configuration files that are going to be used by make when the build process starts.

The next part of the process involves using the make command. By using the
configuration files created by the configure script and other files, it starts compiling
source code. One of these files is called Makefile, and it contains a lot of information
about what make needs to do – which files to compile and how, which compiler flags to
use, how to link all of the compiled code into the resulting binaries, and more besides.

The last part of the process is not compiling a source code per se – it's about installing the
compiled code on our Linux machine. By using relevant information in the configuration
files, make install installs all of the files necessary for our command to work –
libraries, binaries, man pages, documentation, and so on. If the compilation process from
the previous part concludes successfully, installation is just about making sure that the
compiled application is available to be used.

That was the last recipe in this chapter. The next chapter is about network-based file
synchronization, and as part of those recipes, we are going to go much deeper into the
inner workings of vsftpd, which we just kind of touched on in this chapter without
giving it much time or space. Also, we are going to discuss ssh and scp, two ways of
securely connecting to servers and transferring files between servers, and rsync, a file
synchronization methodology. Stay tuned for the next chapter.

There's more…
If you need to learn more about vsftpd, make sure that you check out the
following links:

•	 How to compile and run C/C++ code in Linux: https://www.cyberciti.
biz/faq/howto-compile-and-run-c-cplusplus-code-in-linux/

•	 Compiling things on Ubuntu the easy way: https://help.ubuntu.com/
community/CompilingEasyHowTo

https://www.cyberciti.biz/faq/howto-compile-and-run-c-cplusplus-code-in-linux/

https://www.cyberciti.biz/faq/howto-compile-and-run-c-cplusplus-code-in-linux/

https://help.ubuntu.com/community/CompilingEasyHowTo

https://help.ubuntu.com/community/CompilingEasyHowTo

7
Network-Based File

Synchronization
Copying content over a network is usually done manually. For example, we just use SCP
or FTP to transfer a file and that's that. But what happens if we need to make this process
a permanent one? We then need to figure out a way to do file/directory synchronization,
which is what rsync is all about. That being said, with all of the security-related incidents
in the past few years, it's always a good idea to implement some kind of encryption, so
using SSH and SCP seems like a reasonable approach, and that's exactly what we are
going to do.

In this chapter, we are going to cover the following topics:

•	 Learning how to use SSH and SCP

•	 Learning how to use rsync

•	 Using vsftpd

216 Network-Based File Synchronization

Technical requirements
For these recipes, we're going to use two Linux machines – we can use the client1
and gui1 virtual machines from our previous chapters. These recipes will work on
both CentOS and Ubuntu, so there is no reason to use separate virtual machines for
these scenarios.

So, let's start our virtual machines and let's get cracking!

Learning how to use SSH and SCP
Back in the 1990s, it was a pretty natural thing to use the Telnet, rlogin, and FTP
protocols. Come to think of it, using (anonymous) FTP is still done a lot. Bearing in mind
that most local networks in the 1990s were based around network hubs (not switches)
and the fact that all of these protocols are plain-text protocols that are easy to eavesdrop
on via network sniffers, it really isn't all that strange that we're not using these devices
and/or protocols as much anymore. As book authors, we haven't heard of anyone using
rlogin since the late 1990s, although Telnet is still widely used to configure network
devices (mostly switches and routers). This is the reason why SSH was developed (as
a Telnet/rlogin replacement), and, along with SSH, SCP was developed (as a replacement
for FTP). To put things into perspective, the first version of SSH was released in the
mid-1990s. Let's see how it works.

Getting ready
We just need one Ubuntu and one CentOS machine for this recipe. Let's say we are going
to use cli1 and cli2 to master these commands.

How to do it…
Our first scenario is going to be connecting from one machine to another by using SSH.
We are going to presume that we don't have all of the necessary packages installed – just
enough to cover our bases. We know that there are a lot of IT people out there who try to
install the smallest number of packages possible on their servers/containers, so these extra
steps shouldn't be much of a problem.

On an Ubuntu-based machine, we can do it like this:

apt-get -y install libssh-4 openssh-client openssh-server
openssh-sftp-server ssh-import-id

Learning how to use SSH and SCP 217

On a CentOS machine, we can do it like this:

dnf install openssh-server

For both of them, we need to start the service and enable it if we want to use
it permanently:

systemctl start sshd

systemctl enable sshd

As a replacement for insecure technologies such as Telnet, rlogin, and FTP, SSH is pretty
straightforward to use. We just need to learn the basic syntax. Let's say that we want to
log in from a user called student on Linux machine cli1 to a user called student on
Linux machine cli2. As we're logging in from a user called student to a user called
student, there are two ways to do that. Here's the first:

student@cli1:~$ ssh student@cli2

And here's the second:

student@cli1:~$ ssh cli2

The reason is simple: if we're logging in to the same user that we're using on our source
Linux machine, we don't need to explicitly say which account we're logging in to.

If we, however, wanted to go from the student user on cli1 to some other user on
cli2, then we have to use the remote username as a parameter. Again, we can do it in
two ways. Here's the first:

student@cli1:~$ ssh remoteuser@cli2

And here's the second:

student@cli1:~$ ssh -l remoteuser cli2

We can generalize that to cover any remote user on any remote machine. Commands for
that scenario would look like this:

ssh remoteuser@remotemachine

Or this:

ssh -l remoteuser remotemachine

218 Network-Based File Synchronization

Another part of the SSH stack is a command called SCP. We use SCP to copy files from
one machine to another machine by using SSH as a backend (secure copy). So, let's use
an example. Let's say that we want to copy a file called source.txt from the student
user's home directory on cli1 to the student user's home directory on cli2.
We would use the following command to do that:

scp /home/student/source.txt student@cli2:/home/student

Or, if we were already in the /home/student directory on the source machine,
we would use this:

scp source.txt student@cli2:/home/student

Generally speaking, SCP has a simple syntax:

scp source destination

It's just that the source and destination can have a lot of letters that need to be typed.
Let's explain that point by using another interesting use case for SCP. We can use it to
download files from remote machines to local machines as well. The syntax is similar
but can be a bit confusing when we're doing it the first couple of times. So, let's say that
we want to copy a file called source.txt from the home directory of the student user
on cli2 to the /tmp directory on cli1, logged in as the student user on cli1.
We would use the following command to do that:

scp cli2:/home/student/source.txt /tmp

The syntax follows the same rule (scp source destination), it's just that the source is
now a remote file, and the destination is a local directory. It makes sense, when we think
about it.

The next step in our process is going to be installing secure shell keys. This means that – in
our example – we will enable passwordless login from one server to the other.
We can avoid that, but let's forget about that for the time being; we are going to cover it in
a second as we are not discussing security implications here. We are only trying to get the
environment ready for SSH and SCP from a local user (let's say, student) to a remote
user (let's say, student). So, let's do that:

Learning how to use SSH and SCP 219

Figure 7.1 – Creating an SSH key with an empty private key

Let's now copy this key to the remote machine (cli2) and test if the SSH key copying
process worked by trying to log in as that user. For the first part, we are going to use the
command called ssh-copy-id (to copy the key to the remote machine), and then use
SSH to try to log in to test if the SSH key was properly copied:

Figure 7.2 – Copying the SSH key to the remote machine and testing if it works

220 Network-Based File Synchronization

As we can see, everything works from cli1 to cli2. Let's now repeat the same process
in the opposite direction, because we are going to need that a bit later for another part of
this recipe. First, let's create an SSH key:

Figure 7.3 – Creating an SSH key for student@cli2

Then, let's copy it to the remote server:

Figure 7.4 – Copying the SSH key from cli2 to cli1 and testing if it works

Learning how to use SSH and SCP 221

We can see that in both of these examples, the remote server that we're connecting to
doesn't ask us for a password. The reason for that is simple: when we were creating an SSH
key, ssh-keygen gave us two very important things to input:

Enter passphrase (empty for no passphrase) :

Enter same passphrase again:

If we pressed the Enter key on the first question and confirmed it by pressing Enter again
on the second one, that means that we created an SSH key that has an empty private key.
And that's exactly what we did in our example. We didn't select any specific passphrase,
therefore leaving it empty. If we wanted to use a custom private key, we just needed to type
it in those two steps.

How it works…
As a protocol, SSH is an encrypted answer to the non-existent security of Telnet, rlogin,
and FTP. These three plain-text protocols were easy to hack, especially in the good old
days before we started using network switches (while we were still mostly using network
hubs). Its first implementation goes way back to 1995. It can also be used as a tunneling
protocol, and it was heavily used for that back in the day – for example, for proxying
FTP and HTTP traffic. Nowadays, it's used more for tunneling for remote X applications
(XDMCP) or even connections to SSH to servers behind an SSH-based tunneling host.

In simple terms, SSH works like this:

1.	 The SSH client connects to the SSH server, therefore starting the connection.
2.	 The server responds and gives the client its public key.
3.	 The server and client then try to negotiate the necessary encryption parameters,

followed by a secure channel being opened between the server and client.
4.	 The application or user logs in the server.

For those of us familiar with SSL/TLS, it's kind of similar to both of these protocols as all
of these protocols are TCP-based; they have a negotiating mechanism and are generally
used for security purposes. Yes, they go about it in a slightly different way and their use
cases are a bit different, but that still doesn't mean that they're vastly different in terms
of the general principle.

The next stop on our journey is rsync, and we are going to explicitly use SSH as
a backend to rsync. That's the reason why we made our SSH keys, especially the ones
without an additional private key (passphrase). Let's now learn how to work with rsync.

222 Network-Based File Synchronization

There's more…
If you need more information about networking in CentOS and Ubuntu, make sure that
you check out the following:

•	 How does SSH work: https://www.hostinger.com/tutorials/
ssh-tutorial-how-does-ssh-work

•	 What is the Secure Shell (SSH) protocol: https://www.sdxcentral.
com/security/definitions/what-is-the-secure-shell-ssh-
protocol/

Learning how to use rsync
In our previous recipe, we worked with SSH from the client standpoint. We used SSH and
SCP to both log in and copy files from source to destination. We discussed how to use
a username/password combination to log in to a remote system, as well as how to use SSH
key-based authentication. If we focus on SCP for a second, there's one thing that
we didn't discuss, and that is how to synchronize the local source to the local destination,
or, even better, how to create a scenario in which we synchronize the local source to
a remote destination and vice versa between two Linux servers in place. This is where
it's best to use rsync, a tool that's meant to do just that. Let's get cracking.

Getting ready
We will continue using our cli1 and cli2 machines, running Ubuntu and CentOS.
Let's get ready by making sure that the necessary packages are installed. We need to use
this command for Ubuntu:

apt -y install rsync

We use the following command for CentOS:

dnf -y install rsync

After that, we are ready to start.

How to do it…
We are going to talk about a couple of scenarios:

•	 Synchronization between local source and local destination

•	 Synchronization between local source and remote destination, or vice versa

https://www.hostinger.com/tutorials/ssh-tutorial-how-does-ssh-work
https://www.hostinger.com/tutorials/ssh-tutorial-how-does-ssh-work
https://www.sdxcentral.com/security/definitions/what-is-the-secure-shell-ssh-protocol/
https://www.sdxcentral.com/security/definitions/what-is-the-secure-shell-ssh-protocol/
https://www.sdxcentral.com/security/definitions/what-is-the-secure-shell-ssh-protocol/

Learning how to use rsync 223

There could be a number of other sub-scenarios, such as dealing with one-way sync and
deleting files on source, rsync is just one subdirectory, and so on. We are just going
to deal with these two in detail, and then add a couple of bits and pieces from these
sub-scenarios.

Let's deal with the simple scenario first: how to synchronize a folder that's placed locally
to another locally placed folder. Let's say that we want to synchronize (basically, create
a backup of) the /etc folder, and that we want to synchronize it to the /root/etc
folder. We can do that by using the following commands as root (using the cli1
machine as an example):

rsync -av /etc /root

The two options used, a and v, are there to use archiving mode (preserve permissions
and ownerships) and verbose mode so that we can see the output of every copy operation.
We don't need to create the /etc folder in the /root directory up front or put /
root/etc as the destination folder because a folder named etc is going to be created
automatically in /root upon command execution.

If we wanted to exclude some files from copying (for example, all files that have the
.conf extension), we can do it like this:

rsync -av --exclude="*.conf" /etc /root

There are other cool options available in rsync that could make certain scenarios
possible. Let's say that we want to copy files that are a maximum of 5 MB in size,
or a minimum of 3 MB in size. We could do that by using the following syntax:

rsync -av --max-size=5M source destination

rsync -av --min-size=3M source destination

For example, if the source directory has a lot of large files in the second example
(minimum size), we might want to add a --progress option to the rsync command
so that we can have interactive output telling us about the progress being made.

224 Network-Based File Synchronization

Now let's work on one-way sync from a remote to a local destination. The opposite
direction is almost the same, we just need to change the source and destination fields in
rsync. So, let's say that we have a source directory on cli2 called /home/student/
source. That directory has files and subfolders; it has a hierarchy of files and folders.
We want to synchronize that content to cli1, specifically, to the /tmp directory.
Here's the content of our source directory:

Figure 7.5 – Source directory on cli2, located at /home/student/source

Learning how to use rsync 225

This is what we should do, provided that we have the source material ready:

Figure 7.6 – rsync from the remote source directory

So, we just used one simple command, rsync -rt (-r means recursive, -t is to
preserve times), with the source and destination as parameters, and the source directory
was successfully transferred to our local directory. This is because we copied the SSH
keys in the previous recipe, so we didn't need to do any authentication, which makes the
overall process very easy and straightforward.

226 Network-Based File Synchronization

The next scenario is going to be about syncing the source and destination and then
deleting source files. Specifically, we're syncing files, not folders, as there are different
options for those scenarios. Let's see how that's done:

Figure 7.7 – rsync from the remote server using SSH keys,
and deleting source files after the download is done

Now, if we wanted to run the same scenario but delete all of the files and folders from
cli2 after the transfer is done, we'd need to separate that into two commands. Here's
how it works:

Figure 7.8 – Removing source files from the remote source directory,
and then all subdirectories in the source directory

Learning how to use rsync 227

Now that we've shown this, we can also note a couple of other projects that will make
it easier to do two-way sync. Projects such as Unison (https://www.cis.upenn.
edu/~bcpierce/unison/) and bsync (https://github.com/dooblem/
bsync) have implemented two-way sync methods that are very difficult to achieve by
using rsync. Make sure that you check them out if you need two-way sync.

How it works…
rsync is a source-destination type of command, and that covers its syntax and mode of
operation if we're using it interactively (no destination rsync service is involved). There
can also be an rsync service involved, which usually changes the mode of operation
significantly. It's important to point out that using rsync as a command (in combination
with SSH) is most commonly done for backups. We've been using it in this fashion for 15
or more years in some of our environments, and it works perfectly.

rsyncd (the rsync service) is usually aimed at a completely different usage
model – most commonly, software mirrors. If we want to create a local CentOS or Ubuntu
mirror, the rule of the thumb is that we'll use rsyncd, as it allows us to do much more
finely grained configuration in terms of what needs to be done as part of the rsync
process. There might be other reasons to do it – for example, we can configure rsyncd
to not use SSH and gain a bit of speed in doing so.

Now that we have discussed some of the key concepts of SSH, SCP, and rsync, it's time
to move on to their – at least by default – much more insecure cousin, called vsftpd.
We are going to make sure that we make it more secure, though, as there's absolutely no
reason not to. So, let's get ready to configure vsftpd.

There's more…
If you need to learn more about rsync, we recommend the following links:

•	 How to set up an rsync daemon on your Linux server: https://www.
atlantic.net/vps-hosting/how-to-setup-rsync-daemon-linux-
server/

•	 10 practical examples of the rsync command in Linux: https://www.
tecmint.com/rsync-local-remote-file-synchronization-
commands/

•	 17 useful rsync (remote sync) command examples in Linux: https://www.
linuxtechi.com/rsync-command-examples-linux/

https://www.cis.upenn.edu/~bcpierce/unison/
https://www.cis.upenn.edu/~bcpierce/unison/
https://github.com/dooblem/bsync
https://github.com/dooblem/bsync
https://www.atlantic.net/vps-hosting/how-to-setup-rsync-daemon-linux-server/
https://www.atlantic.net/vps-hosting/how-to-setup-rsync-daemon-linux-server/
https://www.atlantic.net/vps-hosting/how-to-setup-rsync-daemon-linux-server/
https://www.tecmint.com/rsync-local-remote-file-synchronization-commands/
https://www.tecmint.com/rsync-local-remote-file-synchronization-commands/
https://www.tecmint.com/rsync-local-remote-file-synchronization-commands/
https://www.linuxtechi.com/rsync-command-examples-linux/
https://www.linuxtechi.com/rsync-command-examples-linux/

228 Network-Based File Synchronization

Using vsftpd
The FTP service has been around for decades. Back in the mid-1990s, FTP was actually
the vast majority of internet traffic. Yes, its importance in terms of traffic volume
decreased over time, but it's not only that. FTP, all by itself, is a completely open,
plain-text protocol. The latest revision that's been included in all major distributions is
called vsftpd, and it's been there for more than a decade now. We are going to focus
on three scenarios in this recipe: getting vsftpd to work, getting vsftpd to work
with a user's home directories, and – last but not least – making vsftpd secure by
implementing TLS and certificates. Let's start!

Getting ready
Keep the cli1 and cli2 virtual machines powered on and let's continue using our
shell. Let's make sure that the necessary packages are installed by using our standard
commands. So, for Ubuntu, use this command:

apt -y install vsftpd

For CentOS, let's use this command:

dnf -y install vsftpd

Then, let's enable them and start it. We're going to use the Ubuntu machine to show how
vsftpd configuration should be done, but it's almost 100% the same on CentOS. So
cli1 (Ubuntu) is going to act as a vsftpd server, and cli2 (CentOS) is going to act
as an FTP client. So, let's run these commands on cli1:

systemctl start vsftpd

systemctl enable vsftpd

It would be prudent to configure firewalls to allow connections to necessary FTP ports
(20, 21). So, on cli1, we need to do this:

ufw allow ftp

ufw allow ftp-data

On the client side (cli2), let's install lftp, a nice and simple-to-use ftp client, by using
the following command:

dnf -y install lftp

Let's now configure vsftpd in accordance with the three scenarios that we mentioned.

Using vsftpd 229

How to do it…
Now that we have installed our packages, it's time to start configuring vsftpd on cli1.
That means we need to go through some of the options in /etc/vsftpd.conf (usually,
it's /etc/vsftpd/vsftpd.conf on CentOS).

Generally speaking, this configuration file is very well documented all by itself,
so we should have no trouble configuring it to suit our needs. By default, it should let
us use the FTP client to connect to it, but let's make a couple of changes from the very
start. Let's allow anonymous FTP and not allow local users to log in. If we check the
configuration file, that means that we need to configure the anon_root, anonymous_
enable, and local_enable configuration options, so let's do that. Let's make sure that
those two configuration lines look like this:

anonymous_enable=YES

local_enable=NO

anon_root=/var/ftp

We also need to create some directories for this configuration to work:

mkdir -p /var/ftp/pub

chown nobody:nogroup /var/ftp/pub

Restart the vsftpd service so that it works with the latest configuration:

systemctl restart vsftpd

On cli2, we have already installed lftp, and it is going to try to log in to the remote
FTP server (cli1) anonymously by default. Let's see how that works:

Figure 7.9 – Testing the FTP connection by using lftp

230 Network-Based File Synchronization

We can see that we have no errors, but we also don't have any content in the directory
that the anonymous FTP service uses. On Ubuntu, that directory is located at /srv/ftp,
but we already changed the anonymous root directory to /var/ftp. Let's add a couple of
files there and try to list the directory content in lftp:

Figure 7.10 – Checking if we can see the files we created on cli1 by using the touch command

Let's now try to download these files. To do that, FTP has a command called get (similar
to how HTTP has a get command). Let's now download these four files that we used the
touch command on:

Figure 7.11 – Using FTP's get command to retrieve multiple files from the FTP server

If we wanted to upload files, we would need to use the put command but, of course,
that wouldn't work as anonymous upload is forbidden by default (as it should be).

The next part of our scenario is to allow the user to log in to the user's home directory.
That shouldn't be too hard, as we already mentioned the first option that we need to
change, local_enable, and it needs to be set to YES. After that, we need to restart the
vsftpd service. After we do that, we need to log in to the FTP server as a local user on
the FTP server. Bearing in mind that we have a user called student there, let's log in to
that one:

Using vsftpd 231

Figure 7.12 – Logging in as the student user via lftp (by using the -u option)

No problems so far. But all of these recipes were done on the premise that we're doing all
this within the limits of our internal, secure network. What happens if our FTP server
needs to be exposed to the internet? We don't want to use just regular, plain-text FTP as
it would lead to disaster. So, the next step in our recipe is going to be to configure FTP
with TLS.

We need to configure a couple of options in vsftpd.conf, and we can freely put these
options at the end of that file:

rsa_cert_file=/etc/ssl/certs/ssl-cert-snakeoil.pem

rsa_private_key_file=/etc/ssl/private/ssl-cert-snakeoil.key

ssl_enable=Yes

ssl_tlsv1=YES

ssl_sslv2=NO

ssl_sslv3=NO

ssl_ciphers=HIGH

force_local_data_ssl=YES

force_local_logins_ssl=YES

ssl_request_cert=NO

allow_anon_ssl=YES

We need to configure these options in accordance with our security requirements. Most
commonly, we want to enable TLS 1.2 or 1.3 (ssl_ciphers=HIGH, SSLv2, and
v3=no). We can always not allow anonymous users to use SSL, and if we don't want
to run client certificate-based authentication, we have to make sure to use the ssl_
request_cert=NO option.

232 Network-Based File Synchronization

At the beginning of this configuration, we can see the cert file and the corresponding
private key configuration options. We just used the built-in, self-signed certificates. Of
course, we can create Let's Encrypt certificates or buy commercial ones instead and put
them in the configuration here. It's all about the corporate security policy where we want
to run this sort of configuration.

A quick note on FTP clients on Windows: a lot of people are using WinSCP to upload and
download files and directories by using SCP, SFTP, FTP, WebDav, and Amazon S3 sources.
If we use WinSCP, we have to use FTP configuration, TLS/SSL explicit encryption, and
other relevant parameters accordingly. There are also other options available if we click
on the Advanced button. For example, we can choose a minimum TLS level and similar
options. As TLS v1.2 is the minimum that's recommended at this point in time, we could
set those options to 1.2 for both the minimum and maximum versions. But if we've set
up our vsftpd.conf as we recommended, there's no need to touch those options
as TLS v1.2 will be the only option available. We just wanted to mention these advanced
options in case you need them.

That being said, here's a screenshot that will help in terms of basic options:

Figure 7.13 – How to connect to vsftpd with TLS 1.2 enabled

Using vsftpd 233

192.168.0.16 is the IP address of the cli1 machine. By using all of the options
mentioned previously, we're able to log in anonymously to our vsftpd server and
use it, just as we used it before we did the TLS configuration. But, bearing in mind that
there were dozens and dozens of various types of attacks on the SSL protocol in the
past couple of years (POODLE, BEAST, CRIME, BREACH, Heartbleed, SSL Stripping,
using untrusted and fake certificate authorities, and so on), it's absolutely crucial that
we pay close attention to every new attack and take all the necessary steps to mitigate
those threats.

How it works…
vsftpd is an implementation of FTP, which means it's a TCP-based service that's used
to upload and download files. Seeing as it's a TCP-based service, that means socket
connections and reliable data transfer, which are essential to this service. Imagine if our
file download or upload were to be unreliable; we definitely wouldn't like that. If we were
to add an additional layer of security to it by using TLS, we'd still be using the same basic
service, it's just that it'd be way more protected.

FTP uses ports 20 (ftp-data) and 21 (ftp). Both of these ports need to be allowed
through the firewall for the FTP service to work. Port 21 is used as the command
communication channel, while port 20 is used for data transfer, although there are
implementations where port 21 can be used for both. There are some other options when
using the FTP service (active FTP and passive FTP) but they are way beyond the scope
of this book. Generally speaking, there's a reason why almost everybody uses SCP for
file upload and download nowadays. Also, there's a reason why most of the distribution
repositories and mirrors switched to using HTTPS-based delivery methods instead of
FTP-based methods. There are exceptions, but they are more the exception to the rule
types of situations, definitely not the standard.

FTP uses put and get commands to do two of its basic functions: upload (put) and
download (get). These are two basic commands/methods that FTP uses, although
we can create and delete content via FTP as well.

234 Network-Based File Synchronization

There's more
If you want to learn more about vsftpd, make sure that you check the following links:

•	 vsftpd home page: https://security.appspot.com/vsftpd.html

•	 vsftpd.conf man page: https://security.appspot.com/vsftpd/
vsftpd_conf.html

•	 How does an FTP server work and what are its benefits: https://www.
ftptoday.com/blog/how-does-an-ftp-server-work-the-benefits

•	 How to set up vsftpd for anonymous downloads on Ubuntu 16.04: https://
www.digitalocean.com/community/tutorials/how-to-set-up-
vsftpd-for-anonymous-downloads-on-ubuntu-16-04

https://security.appspot.com/vsftpd.html
https://security.appspot.com/vsftpd/vsftpd_conf.html
https://security.appspot.com/vsftpd/vsftpd_conf.html
https://www.ftptoday.com/blog/how-does-an-ftp-server-work-the-benefits
https://www.ftptoday.com/blog/how-does-an-ftp-server-work-the-benefits

8
Using the Command
Line to Find, Extract,

and Manipulate
Text Content

Manipulating text is an everyday job for a full-time system administrator. It can happen
for a variety of reasons – for example, you could just be trying to find a service option that
you saw somewhere in some configuration file, without remembering what the name of
the configuration file is. You know, those moments on Monday morning when you haven't
had two cups of your favorite pick-me-up drink and your CPU hasn't booted properly yet?
Or, maybe, when you're working with a text file that has a lot of content, but needs specific
changes to be made, such as changing some configuration options from off to on, true to
false, 0 to 1, and so on. This chapter is going to act as a prequel to one of the later chapters
discussing shell scripting examples.

236 Using the Command Line to Find, Extract, and Manipulate Text Content

In this chapter, we are going to learn about the following:

•	 Using text commands to merge file content

•	 Converting DOS text to Linux text and vice versa

•	 Using cut

•	 Using egrep

•	 Using sed

Technical requirements
For these recipes, we're going to use one Linux machine – we can use client1 from
our previous recipes. It doesn't really matter which virtual machine gets used as all the
commands that we are going to discuss in these recipes work the same way on all
Linux distributions.

Using text commands to merge file content
Let's start with something simple – which is merging file content. Of course, we are
only discussing text content here as merging binary files would be pointless. Our goal
is to learn how to use two commands – paste and cat – to do simple things, such as
concatenation and merging line by line. Let's start!

Getting ready
We just need one Ubuntu and one CentOS machine for this recipe. Here, we are going to
use cli1 and cli2 to master these commands.

How to do it…
Starting with the simplest command for this chapter – cat – let's see some examples of
what it does. If we type in a command such as cat filename.txt – if a file named
filename.txt exists – we are going to get the content of that file on display. Let's check
an example of this:

Using text commands to merge file content 237

Figure 8.1 – Using the cat command on a text file

So, we used the cat command to show the content of an auth.log file located in the /
var/log directory. If we have been using this machine for a while, there will be other
files with auth.log as a prefix, then a number, and the gz extension. Let's check:

Figure 8.2 – Finding content that we are going to use

238 Using the Command Line to Find, Extract, and Manipulate Text Content

So, for the purpose of this recipe, let's use the auth.log and auth.log.1 files. What
happens if we want to have one file that contains both auth.log and auth.log.1
content? We'd either open a text editor and do a bit of copy-pasting, or we can use cat to
do that for us. The cat command can be used with multiple files at the same time, such
as cat auth.log auth.log.1, which would show us the content of the first file
followed by the content of the second file. The only thing that we need to do is to redirect
the text output from that command to a new file, which we can easily do by using the
> sign. Let's say that we want to save the output of this command to a file in the /root
directory called auth-full.log. Here's how we'd do that:

Figure 8.3 – Using the cat command to concatenate files

cat actually displays text files line by line, which is a property that we will heavily use in
our chapters relating to shell script examples.

If for some reason we wanted to merge files line by line, we could've used the paste
command. Let's see how that would work. Seeing that these files are just way too big,
we are going to create two files. Let's say that the first file (named first.txt) will have
the following content:

1 today

2 tomorrow

3 someday

The second file (named second.txt) will have this content:

may be good

may be even better

will be excellent

Using text commands to merge file content 239

Now, let's use the paste command and check the result:

Figure 8.4 – Using the paste command to combine text files line by line

As we can see, the paste command combines two files line by line, by putting them one
next to the other.

How it works…
These two commands are rather simple in operation:

•	 By default, cat displays the complete content of a file or set of files, line by line.

•	 By default, paste combines files line by line, side by side.

These are two very different approaches to text manipulation, both with real-life use cases.

Our next recipe is a simple one as well – how to deal with a situation when we transfer
text files from Microsoft OSs to Linux in terms of making them usable in Linux. As
we are going to see, there are some fundamental differences with .txt formats between
Microsoft OSs and Linux, which makes the next recipe a necessity. Stay tuned for it!

There's more…
If you need more information about using cat or paste, make sure that you check out
the following:

•	 Basic cat command examples in Linux: https://www.tecmint.com/13-
basic-cat-command-examples-in-linux/

•	 The paste command in Linux (merge lines): https://linuxize.com/post/
paste-command-in-linux/

https://www.tecmint.com/13-basic-cat-command-examples-in-linux/

https://www.tecmint.com/13-basic-cat-command-examples-in-linux/

https://linuxize.com/post/paste-command-in-linux/

https://linuxize.com/post/paste-command-in-linux/

240 Using the Command Line to Find, Extract, and Manipulate Text Content

Converting DOS text to Linux text and
vice versa
This is a strange idea – you might have thought a .txt file is a .txt file, right? Wrong.

There are subtle differences between .txt file formats in DOS/Windows and Linux.
Sometimes, those differences can make you mad in a matter of seconds. We've had our
fair share of experiences of that – scripts not working as input files were prepared on
Windows, not on Linux; different treatment of CSV files in Excel by design... sometimes
it's just too funny when, after hours of deliberation, you realize that something as simple
as a .txt file created on another OS can make such a mess. Let's explain what the
problem is and work through it.

Getting ready
We just need one Ubuntu machine for this recipe. Let's say we are going to continue
using cli1 to master these commands. Furthermore, we need to install one package,
called dos2unix. So, if we are using cli1 (Ubuntu), we need to type in the
following command:

apt-get -y install dos2unix

After this package is installed, we are ready to do our recipe.

How to do it…
Let's say that we created a .txt file called txtsample.txt in Notepad on Windows,
which has the following content:

My first line in a file

My second line in a file

My third line in a file

My fourth line in a file

Then, we upload this file to our cli1 machine and open it in vi or vim to check its
content. This is what it looks like:

Figure 8.5 – What our file seems to look like

Converting DOS text to Linux text and vice versa 241

Everything seems fine, right? Now, let's do the same thing all over again, but this time,
start vi or vim with the -b option. For example, use the vi -b txtsample.txt
command and check the file content now. It should look like this:

Figure 8.6 – What our file actually looks like

We can see carriage returns (CRs, those ^M characters) in the vi/vim editor now. This
is one of those subtle differences between the way Notepad and Linux text editors treat
.txt files. Linux shell commands aren't necessarily going to treat this type of text in
a friendly manner, and sometimes scripts will not work properly because of these extra
characters that Linux commands don't need.

The solution to this problem is a simple package and command called dos2unix that
we installed in the Getting ready step of this recipe. After that, it's a simple procedure of
typing in the following command:

dos2unix txtsample.txt

Let's open this file in vi with the same -b option now and check the file content:

Figure 8.7 – End result – a file that's stripped of CRs

Now that's much better.

There are other examples of this approach – end-of-file characters, invisible characters that
sometimes appear out of nowhere in Excel-exported CSV files. So, we have to make sure
that we are aware of this problem and its simple solution.

We could also use tools such as tr, awk, and perl to do the same thing. Let's use tr as
an example:

tr -d '\15\32' < input_dos_file.txt > output_linux_file.txt

Let's now explain how this works and why it's such a problem.

242 Using the Command Line to Find, Extract, and Manipulate Text Content

How it works…
A CR is a character that has been used through the years as a control mechanism to set
the end of a line, and, as a result, start a new line of text. For those of us old enough to
remember the old typewriter machines, the CR on a mechanical typewriter machine
would be that funny lever that we had to pull to get to a new line. By extension, this is
a part of ASCII code that helps with cursor positioning (beginning of the next line).

If we don't clear our .txt files of these characters (and others), we might have problems
with scripting. In our last two chapters of this book with shell script examples, we're going
to have multiple example scripts that use the cat command to input something from
a .txt file into a loop. These characters might mess that procedure up, and we don't
want that.

dos2unix and the mentioned tr command strip the input file of CRs. We might debate
which method is better, but at the end of the day, it's about results, and both methods work.
We prefer the dos2unix method; but, of course, you might prefer the tr way.

There's more…
If you need more information about converting DOS .txt files to Linux, refer to the
following links:

•	 dos2unix man page: https://linux.die.net/man/1/dos2unix

•	 yr man page: https://linux.die.net/man/1/tr

Using cut
There are tools in IT that get elevated to greatness by the simple fact that they are great
tools. The next three tools that we are going to use are tools that fit the description of some
of the greatest CLI tools ever invented. For us, cut is the second greatest CLI command of
all time; if you want to find out which command takes the coveted #1 spot, stay tuned for
the next recipes.

cut is a tool that can make our lives a lot easier if we're working with preformatted input.
For example, it will easily work with CSV, as that's a formatted type of content that can be
easily digested by cut. Let's learn about cut by doing some examples next.

https://linux.die.net/man/1/dos2unix

https://linux.die.net/man/1/tr

Using cut 243

Getting ready
We just need one Ubuntu machine for this recipe, so let's keep using cli1. The cut
command is a standard part of any Linux distribution and that's how it should be, as it's
more important than other commands, such as ls, mkdir, and ps.

How to do it…
Let's first create a sample CSV file. For example, we are going to create a CSV file with user
data, and use cut on top of that file. Here's what we used for this recipe (CSV file content):

Figure 8.8 – Sample input CSV file

We are now going to check what we can do with this file and the cut command. Let's start
with some simple things. For example, first we are going to extract just names from this
file, which translates to the first field (before the first comma sign):

Figure 8.9 – Extracting the first field from a standard-format file

By using the cut command and two switches, we were able to easily extract names from
the CSV file. Now, let's add a bit more to the process. Let's extract the name and login
(first and third fields):

Figure 8.10 – Extracting the first and third fields from our sample file

244 Using the Command Line to Find, Extract, and Manipulate Text Content

Furthermore, let's now extract the first three fields – name, surname, and login:

Figure 8.11 – Extracting a range of fields from our sample file

We could also choose to sort that output alphabetically:

Figure 8.12 – Sorting output from a cut file

One other classic example is using cut to output fields from one specific field onward –
for example, from the second field to the last field:

Figure 8.13 – Extracting fields from the second field onward

If you're heavily into Microsoft PowerShell, this will kind of remind you of the Import-
Csv PowerShell cmdlet, although the similarities end there, seeing as PowerShell is an
object-based shell language.

As you can see from these examples, the cut command is very useful for situations where
we have an input file that's in some sort of standard format that uses some character as
a delimiter between fields. We can easily use it to extract content from our text files and to
prepare text-based input for other actions that might follow using cut in a shell script.

How it works…
cut is a straightforward command that has only one prerequisite – we need to have an
input file that's formatted in some sort of standard format. That translates to having a file
with fields delimited by the same character. If that criterion is met, we can easily use cut
to do wonders in one-liner commands and shell scripts.

Using egrep 245

Most commonly, we use two parameters with the cut command:

•	 The -f parameter is used to select which field(s) or field range we are going to use
to be extracted by using the cut command.

•	 The -d parameter is used to select a delimiter, a character that separates
our text strings.

We can also use it in conjunction with other commands, such as sort, tr, and uniq, to
do further manipulation of the output extracted by using the cut command. We can even
use its parameter called --output-delimiter to change the input delimiter to some
other output delimiter.

This was a warmup exercise before the big star of the show – the egrep command – as its
significance can't be overstated. Let's talk about egrep next.

There's more…
If you need more information about networking in CentOS and Ubuntu, make sure that
you check out the following:

•	 The cut man page: https://man7.org/linux/man-pages/man1/
cut.1.html

•	 Bash cut command examples: https://linuxhint.com/bash-cut-
command-examples/

Using egrep
Using egrep, and regular expressions in general, is something like page one, chapter
one stuff from the never-written How to be both cool and incredibly useful IT manual.
It is, without a shadow of a doubt, the most useful command that was ever invented
in the UNIX/Linux world for system administration. It doesn't really matter whether
we're looking for a specific string in a file or set of directories, whether we're trying to
find a line in a big text file where a specific string is located, or whether we're trying to
find where a specific string isn't, egrep can do all of that for us. We are focusing on
egrep specifically, as it supports both concepts that are behind this command – regular
expressions and extended regular expressions. That's where we are going to start – first,
by explaining the merits of using regular expressions, and then moving on from that to
explain why egrep is such an important command. So, buckle up and get ready to go!

https://man7.org/linux/man-pages/man1/cut.1.html

https://man7.org/linux/man-pages/man1/cut.1.html

https://linuxhint.com/bash-cut-command-examples/

https://linuxhint.com/bash-cut-command-examples/

246 Using the Command Line to Find, Extract, and Manipulate Text Content

Getting ready
We are going to use two virtual machines for this recipe – the Ubuntu-based cli1
and CentOS-based cli2. That's going to enable us to have more examples as logging
configuration on Ubuntu is a bit different from CentOS, and CentOS's logging
configuration makes it easier to drive some points home. So, start both of these virtual
machines and let's get going.

How to do it…
Using regular expressions comes naturally to everyone if we take some time to get to know
how to use them. By extension, our first frontend to regular expressions is using the grep
or egrep command. These commands enable us to find a text string inside a text file
or text input.

Let's use a simple example. In Chapter 4, Using Shell to Configure and Troubleshoot
Network, we used the ps command to display running processes. Let's say that we want
to do this now, but by using regular expressions. For example, we need to list all the
processes on our Linux server that were started by user student.

If we start with the ps command first – for example, if we use the ps auwwx
command – we are going to get an output like this:

Figure 8.14 – ps auwwx input, cut short for formatting reasons

Now, let's discuss the fact that this is a text output for just a second – it has a lot of letters
and numbers. Also, let's focus on the fact that all processes running on our system are
represented by a line in the ps command output – a line that, as seen in the figure, starts
with the root, www-data string, or some other string that represents the user that
owns the process. How about if we figure out a way of using that as a property to filter the
ps command output as text, by using the idea of line starts with student for it?

Using egrep 247

If we wanted to do that, we would use a simple command: ps auwwx | grep
^student. As we discussed previously, the | sign means we want to send the output
of the first command to the second command. Furthermore, grep means we want to
filter something out. And this ^student thing? That's what we call a regular expression
pattern, with the ^ character being a regular expression symbol. Specifically, it's an anchor,
which when used with grep or some other regular expression-aware command means
line starts with the character, or a set of characters that follow. Let's put that theory
into practice:

Figure 8.15 – Using our first regular expression

So, here we go, we filtered our output by using the student string as a filter. We can
also see that each appearance of that string is marked in red. This comes from the fact
that grep commands use the --color option by default – an option that highlights the
string that we were using as a condition for filtering.

Let's say that now we want to find all lines in our ps auwwx output that end with the
bash string. We can easily use regular expressions for that. Here's how we'd do that:

Figure 8.16 – Using a regular expression to find a string at the end of a line

So far, we've used the ps command as it's convenient and familiar. Let's now move on to
other examples that are going to use text files as a basis. The first one that comes to mind
is /usr/share/dict/words, a dictionary text file that contains more than 100,000
words. The format of that file is one word per line, so more than 100,000 words equals
more than 100,000 lines. Let's try to find all the lines that have the parrot string in them.
Here's the command and result:

Figure 8.17 – Using grep directly on a text file

So, the grep command can also be directly used on a text file, which is very useful when
dealing with scripts, input files into scripts, and so on.

248 Using the Command Line to Find, Extract, and Manipulate Text Content

So far, so good. Let's make things a bit more complicated. Let's say that we need to find all
lines in the same file (/usr/share/dict/words) that contain a string conforming to
these rules:

•	 The line needs to start with p.

•	 The letter p needs to be followed by a vowel.

•	 A vowel needs to be followed by the ta string.

All of a sudden, things get much more complicated. Imagine having to find these words
using a regular text editor. Writing down all these combinations would lead us to the
following words that we're looking for:

•	 pata, followed by anything

•	 peta, followed by anything

•	 pita, followed by anything

•	 pota, followed by anything

•	 puta, followed by anything

In a regular text editor, it would take us five different sequential finds to find all the words,
and even then, we'd have to press next-next-next for all the next appearances in case one
of these string samples can be matched multiple times.

This is where regular expressions can be of great help. We could do this:

Figure 8.18 – Finding a more complex string sample

Using egrep 249

By using the ^p[aeiou]ta regular expression, we were able to find all of the words
matching that criterion easily. When using these square brackets to input a regular
expression sample, we are basically saying to the regular expression-aware command to
search for either a, or e, or i, or o, or u as a character inside the regular expression string.

As we can see, getting to know regular expressions can be quite useful. Let's add some
more of them with a short explanation:

Table 8.1 – Commonly used regular expression symbols and their meaning

There are many more regular expressions that we can use, but let's just start with these and
then move on to more complex examples – for example, extended regular expressions.

How about matching numbers? Matching numbers with regular expressions is, let's say,
fun. Especially if we need to find a number range – things get really complicated real soon
if that's the case. Let's discuss this by using three examples – one for a single-digit number
range, one for a simple double-digit number range, and one for a more complex double-
digit number range. We can extrapolate how this logic would work on larger numbers.
Let's start with a simpler example – for example, a number range from 0 to 5 – and just
work with regular expressions, forgetting the grep command for a second. In regular
expression terms, that would be [0-5].

250 Using the Command Line to Find, Extract, and Manipulate Text Content

For our next example, let's use a simple double-digit number range – let's say, 14-19. In
regular expression terms, we'd write that as 1[4-9].

This means 1 as a leading number (tens), and then the number range from 4 to 9, which
equals 14-19.

So far, we specifically chose to use the grep command to do these first examples
as it works with basic regular expressions. We need to add a -E switch to the grep
command or start using the egrep command if we want to move on to extended
regular expressions. So far, we've covered some basics, so it's time to make things a bit
more complicated. Everything that we've discussed so far is what we call Basic Regular
Expressions (BREs). When talking about Extended Regular Expressions (ERE), we need
to keep in mind that, by using them, we are trying to match a specific set of strings, not
just one specific string. Also, there are some differences in syntax, as they make a couple of
things easier – we don't have to escape some characters. For example, BRE constructs such
as \? and \| get replaced in EREs with ? and |. That makes the syntax cleaner and easier
on the eye, so to speak. Let's work on some examples, first by continuing our using regular
expressions to match numbers discussion.

What happens if we need to find a number range, for example, 37-94? Regular expressions
can't work with multiple-digit numbers in ranges – we need to slice that into ones, tens,
hundreds, and so on. And then, we need to use a very well-known concept called the
union of a set (of ranges) to combine all of the ranges into one range that fits the regular
expression that we wanted to find. Keeping in mind that we are going to need a set – a set
of numbers, in this example – we are going to do this by using EREs. Let's see how that
works with minimization in mind – we want to have a regular expression that's as short as
possible. Knowing the fact that we need to use the union of a set, the simplest way to do
this number range would be as follows:

•	 37-39

•	 40-89

•	 90-94

In regular expression terms, those sets would be as follows:

•	 3[7-9] for 37-39

•	 [4-8][0-9] for 40-89

•	 9[0-4] for 90-94

As a regular expression, we'd write it like this:

3[7-9]|[4-8][0-9]|9[0-4]

Using egrep 251

Here, the | sign basically stands for or. This is a way of implementing a union set when
using regular expressions.

Keeping in mind that Ubuntu's version of the /usr/share/dict/words file doesn't
have a single number in it, we added a couple of numbers to the top of this file just so that
we have something to test with. For example, we added the following to the top of this file:

•	 41

•	 58

•	 36

•	 95

•	 94

We deliberately chose these numbers as they contain both numbers that are conformant
to the regular expression that we made (41, 58, and 94 will be a match) and numbers that
aren't (36 and 95). If we use grep with our regular expression on this file with added
numbers, we will get the following output:

Figure 8.19 – Using a union set works and we found our matches

As we grow the number of digits that we're looking for, regular expressions get more and
more complex. We should always minimize as much as we can, but there will be situations
where we must make a lot of union sets to find something that we are looking for.
That's just the name of the game, nothing to be scoffed at.

Our next example is going to find words (non-numbered only) that are 19 to 20
characters long, made of letters only. We're still using the same file as before, so let's see
how we do that:

Figure 8.20 – Finding words of specific length

252 Using the Command Line to Find, Extract, and Manipulate Text Content

Easy, right? We matched all the lowercase and uppercase characters and then said words
need to have 19 to 20 of those.

Things tend to get even more complicated when you're trying to create a regular
expression for some words that are common, yet different, especially if word length is
variable, and even more so if number ranges are involved. But all of that doesn't bring
us closer to explaining what the practical point, the real value of regular expressions, is.
Everything that we did so far seems like general hocus pocus, trying to find some text –
why should we care about that? Generally speaking, we were only describing the principle,
as using generic examples helps. Realistically, there's absolutely no way to learn regular
expressions by reading 10-15 pages of text. But we are now going to make an educated
effort to move this story along to real-life, practical uses of regular expressions.

There are some common services that use grep and/or regular expressions constantly.
We have to keep in mind that this recipe is about grep as a command, not about regular
expressions only.

For example, regular expressions are heavily used for mail filtering. Checking the body
of an email – basically text content – is easy if you have a regular expression-enabled
mail filter. From an everyday system administrator standpoint, regular expressions are
constantly used for parsing through log files and finding valuable information in them.
Let's make that point now by using regular expressions on log files, as that's one of the
most commonly used practices that's been happening for decades now.

Let's now switch to cli2, our CentOS-based system, and use /var/log/messages
for the next examples. This file contains the main system log on CentOS, so it's perfectly
suitable to use regular expressions to find something in it. Let's start with the simple stuff.
For example, let's say that we need to find all log entries in /var/log/messages that
were made on October 6, and even more specifically, at the ninth hour, by a service called
PackageKit. Let's first check the structure of this log file – it looks like this:

Using egrep 253

Figure 8.21 – Format of a file that we're going to use grep on

As we were discussing in our previous recipe about the cut command, we can see that
this file kind of has a standard format. There's a timestamp at the beginning, the hostname
after that, the service and PID after that, and then some kind of text message. Also, notice
the fact that the timestamp part has a very cool addition – its format is not Oct 6 with
a single space between; it has two spaces. This is very important as it keeps the date format
a fixed length when we get to double-digit dates, such as Oct 15. It just makes everything
formatted nicely, which is cool.

So, the simple fact is that we can easily output this by using grep. Let's do it:

Figure 8.22 – Filtering out data that we wanted to filter out

254 Using the Command Line to Find, Extract, and Manipulate Text Content

The first part of the command greps out all messages from Oct 6 that starts with 09 in
the hour part of the timestamp; then, we piped that out to another grep command that
searches for the PackageKit string.

The next example – and this one becomes more common as we get older – is, let's say that
we can't remember the name of a file where the firewall string is used. We remember
that it was somewhere in the /etc/sysconfig folder, but we can't seem to remember
what the filename was – one of those it's early Monday morning, I haven't had time to wake
up moments. This is what we could do by using grep:

Figure 8.23 – Using grep on a stack of files all at once

The grep option -r means recursive and the -i option means case insensitive. Also, the
-r option ignores any symbolic links as it recursively moves through subdirectories. If
we want that behavior to change, we can use the -r option, which will take symbolic links
into account. As we have the capability to use recursive search through file contents, that
means grep is going to dive into subdirectories and go through all files. That means we
must add one caveat to our discussion – we really, really shouldn't use this on binary files,
for obvious reasons. It would make a big mess on our terminal output, if nothing else.

Let's end this recipe by using egrep for a much more complex scenario involving EREs
and different text patterns on text input, the caveat being that we want to see a bit of
context around our text pattern matches. Let's say that we're trying to go through our
dmesg boot log, and we are searching for all the hard disks – all the /dev/hd* and /
dev/sd devices. We could use the following command for that purpose:

dmesg | egrep -C2 '(h|s)d[a-z]'

Using egrep 255

Let's check what the output would look like:

[root@cli2 sysconfig]# dmesg | egrep '(s|h)d[a-z]' -C2

[0.000000] Linux version 4.18.0-305.17.1.el8_4.x86_64
(mockbuild@kbuilder.bsys.centos.org) (gcc version 8.4.1
20200928 (Red Hat 8.4.1-1) (GCC)) #1 SMP Wed Sep 8 14:00:07 UTC
2021

[0.000000] Command line: BOOT_IMAGE=(hd0,msdos1)/vmlinuz-
4.18.0-305.17.1.el8_4.x86_64 root=/dev/mapper/cl-root ro
resume=/dev/mapper/cl-swap rd.lvm.lv=cl/root rd.lvm.lv=cl/swap
rhgb quiet

[0.000000] Disabled fast string operations

[0.000000] x86/fpu: Supporting XSAVE feature 0x001: 'x87
floating point registers'

--

[0.000000] Built 1 zonelists, mobility grouping on. Total
pages: 1032024

[0.000000] Policy zone: Normal

[0.000000] Kernel command line: BOOT_IMAGE=(hd0,msdos1)/
vmlinuz-4.18.0-305.17.1.el8_4.x86_64 root=/dev/mapper/cl-root
ro resume=/dev/mapper/cl-swap rd.lvm.lv=cl/root rd.lvm.lv=cl/
swap rhgb quiet

[0.000000] Specific versions of hardware are certified with
Red Hat Enterprise Linux 8. Please see the list of hardware
certified with Red Hat Enterprise Linux 8 at https://catalog.
redhat.com.

[0.000000] Memory: 3113700K/4193716K available (12293K
kernel code, 2225K rwdata, 7712K rodata, 2476K init, 14048K
bss, 256384K reserved, 0K cma-reserved)

--

[0.023000] ... event mask: 000000000000000f

[0.023000] rcu: Hierarchical SRCU implementation.

[0.023375] NMI watchdog: Perf NMI watchdog permanently
disabled

[0.037028] smp: Bringing up secondary CPUs ...

[0.037823] x86: Booting SMP configuration:

--

[2.384538] scsi 2:0:0:0: Attached scsi generic sg0 type 0

[2.384599] scsi 1:0:0:0: Attached scsi generic sg1 type 5

[2.391073] sd 2:0:0:0: [sda] 41943040 512-byte logical

256 Using the Command Line to Find, Extract, and Manipulate Text Content

blocks: (21.5 GB/20.0 GiB)

[2.391149] sd 2:0:0:0: [sda] Write Protect is off

[2.391150] sd 2:0:0:0: [sda] Mode Sense: 61 00 00 00

[2.391304] sd 2:0:0:0: [sda] Cache data unavailable

[2.391305] sd 2:0:0:0: [sda] Assuming drive cache: write
through

[2.401493] sda: sda1 sda2

[2.404998] sr 1:0:0:0: [sr0] scsi3-mmc drive: 1x/1x writer
dvd-ram cd/rw xa/form2 cdda tray

[2.405000] cdrom: Uniform CD-ROM driver Revision: 3.20

[2.406103] sd 2:0:0:0: [sda] Attached SCSI disk

[2.413125] usb 2-2.1: new full-speed USB device number 4
using uhci_hcd

[2.417859] sr 1:0:0:0: Attached scsi CD-ROM sr0

--

[4.345611] usbcore: registered new interface driver btusb

[4.396658] intel_pmc_core intel_pmc_core.0: initialized

[4.421252] XFS (sda1): Mounting V5 Filesystem

[4.596411] XFS (sda1): Ending clean mount

[4.706702] RPC: Registered named UNIX socket transport
module.

[4.706703] RPC: Registered udp transport module.

If we take a look at the end of this output, we can see that the last two lines don't match
our regular expression used to filter data. That's because we used the -C2 parameter
with egrep, and that option enables egrep to show two lines preceding and two lines
following our pattern match. We can divide that option into options -A and -B (after and
before the match, respectively) if we want to specify a custom number of lines to appear
after and before our pattern match. There are many more grep options available, but these
are enough to get us started. We will add some more examples of using regular expressions
and some topics we didn't cover here in the next recipe, about the sed command.

How it works…
grep is a pattern-matching command that can work in a variety of different ways – either
as a standalone command that takes text files as input or as something that we pipe input
to in a command set. Its purpose is clear – find specific text patterns in a large set of text.
A couple of years ago, its default output changed a little bit as it used to show the lines
matching our search pattern, while now it does that and it does it in color, by marking the
found search pattern in red.

Using egrep 257

grep works by implementing the idea of text pattern search into a programmable
command that's a regular part of shell scripts, as we'll explain in the last two chapters
with practical examples of scripting. As such, it's an irreplaceable part of a system
administrator's toolkit as it enables us to find important text data from one or many files,
therefore bringing a sort of chaos into order.

The most commonly used options are as follows:

•	 -E (or egrep): By default, grep recognizes BREs only. If we use the -E parameter,
it works with EREs.

•	 -i: Case-insensitive search.

•	 -v: Invert match, find the opposite of our search pattern: A, -B, -C – options
providing context to our output, by showing A number of lines after, B number of
lines before, or C number of lines before and after our pattern match.

•	 -n: Show the line number where the pattern match appears.

Let's continue our quest to use CLI-based utilities that can do important things on text
content by moving on to look at the sed command in our next recipe. That will also give
us some more scope to further our knowledge about regular expressions, as sed can use
them to be even more useful than its usual, vanilla self.

There's more…
If you need more information about grep in Linux, you can check out the following links:

•	 grep man page: https://man7.org/linux/man-pages/man1/grep.1p.
html

•	 20 useful grep command examples in Linux: https://www.linuxbuzz.com/
grep-command-examples-linux/

•	 Regular expressions in grep: https://linuxize.com/post/regular-
expressions-in-grep/

•	 Stanford's regular expression cheat sheet: http://stanford.
edu/~wpmarble/webscraping_tutorial/regex_cheatsheet.pdf

https://man7.org/linux/man-pages/man1/grep.1p.html

https://man7.org/linux/man-pages/man1/grep.1p.html

https://www.linuxbuzz.com/grep-command-examples-linux/

https://www.linuxbuzz.com/grep-command-examples-linux/

https://linuxize.com/post/regular-expressions-in-grep/

https://linuxize.com/post/regular-expressions-in-grep/

http://stanford.edu/~wpmarble/webscraping_tutorial/regex_cheatsheet.pdf

http://stanford.edu/~wpmarble/webscraping_tutorial/regex_cheatsheet.pdf

258 Using the Command Line to Find, Extract, and Manipulate Text Content

Using sed
In addition to our discussion about manipulating text, we absolutely must discuss sed. It's
a go-to tool to solve so many problems where quick solutions are needed and a lot of text
is involved. I can list more than a few examples just from the past couple of years where it
saved my skin. For example, I had a couple of projects that required migrating WordPress
sites from one domain to another. As it was something that needed to be done in a flash,
testing migration modules wasn't an option. The simpler way was to just export the
MySQL database, change domain1 to domain2, and check whether it worked. Later, I had
a couple more projects like that where it wasn't just a domain name change; subdomain
name changes were needed too, and so on. Keeping in mind that it would take me weeks
to do this manually on a database that was gigabytes in size – yes, sed really helped me
out in those jams. Let's discuss the merits of using sed and learn by working on a couple
of examples. In the last two chapters of this book, we're also going to go through some of
these WordPress-based examples so that we can see how that's done in a jiffy.

Getting ready
Let's continue using the cli2 machine from the previous recipe. If it's shut down, turn it
back on so that we can learn about using sed.

How to do it…
When we're using cut, we are working with standard-formatted input that needs to be
transformed in some way. When we're using grep, we are looking to find a text sample
just for the purpose of finding that text sample. What happens if we need to find some text
sample and change it to something else?

For most users, the answer is, I'm going to open my favorite editor and do a search
and replace.

Precisely. And that's what sed is mostly about, especially if we have a file that's really big,
gigabytes and more in size. It's about having the capability to do a search and replace,
based on text patterns and regular expressions, without having to open an editor.

Have you ever tried to open a 1 GB text file in Notepad or Wordpad to do search and
replace, and if so, how did that work out for you? Let alone having to read multiple large
files on multiple systems, especially non-Windows systems?

Let's do some simple, a bit complicated, and more complicated scenarios with sed. The
first scenario is going to be related to inserting and appending a bit of text:

echo "This should be first line" | sed 'i\THIS will be the
first line '

Using sed 259

Let's check the result of this command:

Figure 8.24 – First example of using the sed command

The -i switch in this command does inline replacement. Keeping in mind that we used
sed without any additional options, it didn't replace anything with anything, just inserted
the line before the echo command, although logic suggests that the echo command's
output should've been first.

Generally speaking, sed has the following syntax:

sed -parameter 'option/sourcetext/destinationtext/
anotheroption' sourcetextfile

As we can see, in our previous example, we didn't use any options at the beginning or end
of the sed quotes; we only used source text. sed can also be used to extract specific lines
from a file. For example, let's say that we want to extract lines 5-10 from the /var/log/
messages file in our cli2 CentOS machine:

Figure 8.25 – Using sed to extract a specific part of a text file

The default way of operation for sed is to print every line, and if there is a substitution
being made by our source/destination text configuration, it will print the substituted text
instead of printing the original one. That's why we have -n, as we don't want to print any
new lines as we're not doing any kind of substitution. '5,10p' means print from lines
5 to 10.

260 Using the Command Line to Find, Extract, and Manipulate Text Content

We can also do the opposite of that – let's say, we want to print all lines from a file, and
delete lines 5 to 10. We can use the following command to do that:

sed '5,10d' somefile.txt

We can also use sed to display some lines that are not successive in a text file, for
example, display lines 20-25 and 40-100 in somefile.txt (-e used per expression):

sed -n -e '20,25p' -e '40,100p' somefile.txt

But that's all just using sed for some very pedestrian stuff. Let's now start using it for what
we'd mostly use it for, which is string replacement.

Let's say that we have a text file called sample.txt with the following content:

This camera produces some weird sounds. Sometimes it buzzes, sometimes it squeals, and
always manages to somehow produce un-camera-like high-pitched squeal that should only
be audible to dolphins and whales. As a camera, it's good. As a camera with ability to record
sound, it's useless. So, we need a camera.

Our first sed-based task is going to be to replace all instances of camera with
microphone. For that, we need to use the following command:

sed 's/camera/microphone/g' sample.txt

As expected, the word camera gets replaced with the word microphone in the console,
and the end result looks like this:

Figure 8.26 – Using sed to replace words without saving these changes to our original file

If we want to replace camera with microphone and for these changes to be saved to the
original file, we need to use the following command:

sed -i 's/camera/microphone/g' sample.txt

Using sed 261

As expected, this is the end result:

Figure 8.27 – Using sed to replace words and saving those changes to the original file

The sed options s and g are for searching for a word or regular expression and then
replacing it globally. By using the -i switch, we made that replacement operation in place,
which means saving replacement changes to the original file.

Some more examples are as follows:

a) Insert blank lines for each non-empty line in the original file:

sed G somefile.txt

b) �Keep the original file content by creating a backup file and do an inline replacement in
the original file:

sed -i'.backup' 's/somethingtochange/somethingtobechangedto/g'
somefile.txt

c) �Replace the word somethingtochange with somethingtobechangedto when
the practice string appears in the line:

 sed '/practice/s/somethingtochange/somethingtochangeto/g'
somefile.txt

d) �Negation of the previous statement: Replace somethingtochange with
somethingtochangeto and only replace it if the practice string does not appear
in the line:

 sed '/practice/!s/somethingtochange/somethingtochangeto/g'
somefile.txt

e) We can delete the line that matches some pattern:

 sed '/somepattern/d'

262 Using the Command Line to Find, Extract, and Manipulate Text Content

f) �Let's search for a number inline and append a currency symbol before the number
(regular expression for finding numbers used, as well as a backslash for proper quoting):

sed 's/\([0-9]\)/EUR\1/g' somefile.txt

g) �Let's replace /bin/bash with /bin/tcsh in /etc/password (a regular expression
isn't needed here, but we have to use the \ character for correct interpretation of the /
character as the / character is a special character):

sed 's/\/bin\/bash/\/bin\/tcsh/' /etc/passwd

As we can see, sed is a very powerful tool that can be used to do a lot of changes on the
fly. We are going to show some more examples of using sed in scripts later in this book,
specifically in the last two chapters with shell script examples. That will give us further
insight into sed and its usefulness in everyday work.

How it works…
As a command-line text replacement utility, sed requires us to explain what we want to
do to it. That's the reason why the structure of sed commands seems a bit descriptive –
that's just because it is. It also has a lot of options and switches, which add to the overall
usability and possible usage scenarios.

The basic command structure is usually something like this:

sed (-i) 's/something/tosomething/g' filename.txt

Or, it might be like this:

sed -someoption filename.txt

Of course, sed is often used in scripts, either standalone or as a part of a serial pipeline,
something like this:

command1 |(command2 |) sed …..

Whichever way we use sed, it's essential to learn at least some of its switches and settings,
starting with the most commonly used ones – s and g inside sed expressions and -i as
a command-line parameter.

Using sed 263

Say we have a command such as the following:

sed (-i) 's/something/tosomething/g' filename.txt

Obviously, this has multiple important options. The -i option, as we mentioned, is all
about interactive change that's going to implement our search-and-replace criteria in the
original file. Without it, we are going to get results from our sed command to the screen,
basically results written to the console. Options inside the quotes – s and g – are the most-
used sed options, and they mean search and globally replace, that is, in the whole file.

We could do the same thing without the -i option, by doing this:

sed 's/something/tosomething/g' inputfile.txt > outputfile.txt

But, as you might imagine, this requires more typing and is generally more complicated.

The sed command-line option -n can be used to suppress output to the terminal, and
that's the reason why it's used often. If we have a large text file that we're modifying and
we aren't using the -i option, this might be the go-to option to use if we don't want our
console filled with text data.

One more very useful option is the -f option, as it allows us to use an input sed file with
replacement definitions. Say we run the following command:

sed -f seddefinitionfile.sed inputfile.txt > outputfile.txt

We create a seddefinitionfile.sed file that contains this:

#!/usr/bin/sed -f

s/something/tosomething/g

s/somethingelse/tosomethingelse/g

We can use these options to do multiple sed transformations in one command. We just
need to create sed definitions in the file and use it.

The next chapter in this book is going to introduce us to the world of shell scripting – and
the whole second half of the book is about shell scripting. We will get to use all the tools
that we discussed up to now there, and combine them to create shell scripts, some of the
most used programming-based administration tools ever. Take a short break and get
ready to shell script!

264 Using the Command Line to Find, Extract, and Manipulate Text Content

There's more…
If you need more information about networking in CentOS and Ubuntu, make sure that
you check out the following:

•	 sed manual page: https://man7.org/linux/man-pages/man1/sed.1p.
html

•	 50 sed command examples: https://linuxhint.com/50_sed_command_
examples/

•	 sed quick reference guide: https://kwiki.kryptsec.com/books/
sed-editor/page/sed-quick-reference-guide

https://man7.org/linux/man-pages/man1/sed.1p.html

https://man7.org/linux/man-pages/man1/sed.1p.html

https://linuxhint.com/50_sed_command_examples/

https://linuxhint.com/50_sed_command_examples/

9
An Introduction to

Shell Scripting
We have come to the part that defines one of the things that Unix (or Linux) is known
for – its scripting. When it comes to the so-called Unix philosophy, being able not only to
use tools that the command line offers to you but also being able to create your own is an
amazing ability, using shell tools that do one thing really well.

Scripting is exactly that – the ability to create simple (and complex) tools that, at their
core, are a set of commands performing a certain task. We need to clear one thing
up before everything else – there is a distinction that some people make between
programming and scripting. Strictly speaking, all scripting is programming, but not all
programming is scripting. We are talking about disciplines that follow the exact same
premises, logic, and ways of thinking, but at the same time, there are major differences
between the two. When we talk about scripting, we are in reality creating files that are
going to get interpreted when running, and that means that the shell (or some other
interpreter) is going to read the file line by line and then run the commands. There is
another option, and that is to create text files that are compiled before being run. Usually,
this is faster than interpreting them, but at the same time, it both requires a few extra steps
and is not as flexible as scripting.

We are not going to waste our time on anything connected to compiled applications; in
this book, we'll be strictly dealing with scripts.

266 An Introduction to Shell Scripting

We will cover the following recipes in this chapter:

•	 Writing your first Bash shell script

•	 Serializing basic commands – from simple to complex

•	 Manipulating shell script input, output, and errors

•	 Shell script hygiene

Technical requirements
For this recipe, we're going to use a Linux machine. We are using the same setup as in
other chapters:

•	 A virtual machine with Linux installed, any distribution (in our case, it's going to be
Ubuntu 20.04)

•	 Bash – the default shell for every major distribution out there

Scripts in this chapter, and in all the other chapters covering scripting, will probably run
in any distribution using Bash. The power of scripting is exactly in this compatibility; if
a machine runs Linux, it will run almost any script, and the only problems are going to
come from what the script itself expects on the server.

Writing your first Bash shell script
Before we do a simple Hello World! shell script, let's quickly talk about the shell itself
and what does it do on a normal Linux machine. The simplest way of describing it is that
the shell is the connection between the user (us) and the kernel (the part of the operating
system in charge of everything). We have already talked about that before, but we need to
make some points here to make it easier to explain some concepts.

The shell is an application that usually displays a prompt and finds and runs whatever
command we give it. This is called the interactive shell and is the most-used way of
working in Linux. This is what all the Command-Line Interface (CLI) business is about –
having an interface that enables us to execute whatever we need:

Writing your first Bash shell script 267

Figure 9.1 – A typical root shell

There is, however, another mode of operation for a shell called non-interactive mode.
This covers all the instances of the shell when it is not acting based on our commands
from the command line but instead by reading a file (our script) line by line and executing
the commands. Obviously, we cannot interact with the commands directly, so the mode is
aptly called non-interactive.

Bear in mind that we can interact with the script during execution if we wish (and plan)
to; the name refers only to the lack of direct interaction with the shell or having no CLI
available. At the same time, this interaction limit means that we get to see our script run as
fast as possible, at any time that we need it. Pair that with a myriad of tools at our disposal
in a normal Linux system, and we have an extremely powerful feature available to finish
our tasks.

Getting ready
Let's quickly run a few commands and find out about our current shell:

demo@ubuntu:~$ ps -p $$

 PID TTY TIME CMD

 5329 pts/0 00:00:00 bash

demo@ubuntu:~$ echo $SHELL

/bin/bash

What happened here? The first command we used was ps, and it gave us information
about which shell is currently running or, to be precise, which shell is responsible for the
current execution of commands that we issue. Using $$ as the process number, we are
asking the ps command to give us the number of the process assigned to our current
shell. We performed a small trick here – $$ is a Bash internal variable that gives us the
running PID of a process.

The other command that we used is echo, and we used its $SHELL variable that
automatically resolves to whatever the user's current shell is.

268 An Introduction to Shell Scripting

However, there is a big difference between these two commands. Depending on the
circumstances, they can give us completely different results, since they are referring to
completely different things. Let's explain – each user has their assigned shell, which is
going to be executed when the user logs in. The result of the echo command is going
to give you that, and the shell itself is defined in the /etc/passwd file, in the line that
describes a particular user. So basically, the output of the command is going to provide the
name of your default shell.

At the same time, every user can run any shell available on the system as a command, and
automatically get this shell as their current shell. By that, we mean that this shell is going
to process whatever the user is typing into the command line. This is important, since
your script can be run from the command line using a different shell than the one you are
supposed to be using, based on information in the /etc/passwd file.

Your shell doesn't have to be bash. You can also choose any shell that is available on your
system, or you can even install shells that are not currently available on the system you are
using but are available as packages.

With that in mind, when it comes to scripting, bash is the shell of choice, even for users
running other shells, since bash will run on most, if not all, Linux machines.

Now, let's talk a little bit about the editors used for scripting.

For chapters dealing with scripting in this book, we are going to use vim or vi; however,
the script examples are going to be displayed as text without any color. We already covered
a lot of editors in a separate chapter. Since the topic of text editors tends to be pretty
divisive, and we are a bit pragmatic on this, our suggestion is to use whatever works for
you.

Vim, JOE, nano, vi, Emacs, gedit, Sublime Text, Atom, Notepadqq, Visual Studio Code,
and so on are what's available, but it's up to you to choose. For simple scripts, any editor
will work, and more often than not, you will choose something that already exists on the
system you are working on, just because you need to make a small change in a script.

When developing scripts on your own machine, you are probably going to go with
something more complicated, simply because it makes working much easier. Vim is
a good example, since it provides syntax highlighting and formatting for bash. Advanced
editors are going to provide you with more functions, but our opinion is that you
shouldn't rely on too many bells and whistles, since this will make you dependent on
a certain application that may or may not be available to you at all times:

Writing your first Bash shell script 269

Figure 9.2 – A script opened in Vim – note the color highlights and indentation

In the end, you will end up using two editors, one for developing your scripts and one
on servers you are deploying your scripts to. Remember that you will inevitably have to
do some debugging on the systems you are deploying your scripts to, so be prepared that
some of your normal tools will be missing. Don't become dependent on them.

How to do it…
Let's create our first script and see what it is about the shell that we are so concerned with:

#!/bin/bash

Hello world script, V1.0 2021/8/1

echo "Hello World!

First, what does the script actually do? It simply writes Hello World! to the standard
output and exits. Although we have three lines in the script itself, only one of them does
something, while the other two have different purposes.

What we are going to do is first unpack the meaning behind the first two lines and then
pay attention to the echo command.

Note that we are not counting empty lines in the script, although your editor might. In
scripting, empty lines are meaningless to the interpreter, so we are using them to make the
script more human-readable and ignoring them when talking about the script – Bash does
the same thing when executing the script.

270 An Introduction to Shell Scripting

As a rule, if we use the # character anywhere in the script, an interpreter is going to treat
everything that comes after that character in the same line as a comment. Our first two
lines are comments, but the first line in the script is special – it defines the shell that is
going to run commands in the scripts while also being a comment. This sequence is called
a shebang. We need to explain that.

Under Linux, scripting is not confined to using bash only or even using any other Bash-
compatible shell. In your script, you can actually use whatever scripting language you
want. Other than being Bash, it can be Python or Perl – you can use whatever language is
available on the system and that you know how to write scripts in.

Normally a script is run by an interpreter. The interpreter is basically an application that
is able to understand what's inside the file and then is able to run the commands that are
inside the file, one by one. All the interpreters that we mentioned (Python, Bash, and Perl)
use simple plaintext files as inputs, so there needs to be a way of telling what kind of script
is in a particular file to let the system know how to run it.

This can be done in two different ways – one way is to actually call the script directly using
the right interpreter, such as the following:

demo@ubuntu:~/scripting$ bash helloworld.sh

Hello World!

This simply makes sure we are using the right interpreter for the script; it doesn't make
our script any more readable to the system or another user.

Now, consider another way of doing this. Let's make the script executable, and then run it
directly:

demo@ubuntu:~/scripting$ chmod u+x helloworld.sh

demo@ubuntu:~/scripting$./helloworld.sh

Hello World!

The difference between these two is subtle but important, although the end result is going
to be the same, since we are running the same script.

In the first example, we are explicitly telling the system to use a particular interpreter and
run our script. In the second example, we are telling the system to run the script using
whatever interpreter it needs, and this is when the first line of the script plays its crucial
role. What the current shell is going to do is take the first line (the shebang) and try and
find the interpreter that this line points to. If it finds it, the system is going to use this
interpreter to run whatever is in the rest of the file. The end result is simple – if we follow
the convention and put our interpreter as the first-line comment, the system is going to be
able to run our script even if we don't mention it explicitly.

Serializing basic commands – from simple to complex 271

If the first line is something other than the name of the interpreter, our script will work
only if we call it by explicitly using the name of the interpreter – if we try to run it directly,
the system is going to throw an error.

How it works…
Linux does not use extensions as a way of identifying files, so a script can have any name
that is possible on the filesystem; the extension does not have to be .sh. All this means
is that in order to have our script work universally, we need to think about the right
formatting for the first line.

The next line in the script is our comment, which identifies the name of the script and the
version. Of course, any script will function without comments such as these or, in general,
without any comments at all, but comments are extremely important in scripting. We will
pay much more attention to the comments later in this chapter.

The third line is the one actually doing the work, and it simply displays the string to the
standard output that is assigned to the script. Standard input, output, and error handling
are things that we will also deal with a little bit later.

This is our first script. We explained a lot in this part of the chapter, and we focused on
everything other than the actual command that performs the script task, but we had to
deal with a lot of other things.

There's more…
We are going to be dealing with scripts a lot more in this chapter and the next few, but we
have links to get you started:

•	 The Bash manual – containing everything about the Bash shell: https://www.
gnu.org/savannah-checkouts/gnu/bash/manual/bash.html

•	 Bash scripting cheat sheets: https://devhints.io/bash

•	 How to get a shell script to actually work: https://linuxcommand.org/lc3_
wss0010.php

Serializing basic commands – from simple
to complex
Scripts are nothing more than a list of commands that are executed in a particular order.
In its most basic structure, the order is completely linear without any decision making,
loops, or conditional branching.

https://www.gnu.org/savannah-checkouts/gnu/bash/manual/bash.html
https://www.gnu.org/savannah-checkouts/gnu/bash/manual/bash.html
https://devhints.io/bash
https://linuxcommand.org/lc3_wss0010.php
https://linuxcommand.org/lc3_wss0010.php

272 An Introduction to Shell Scripting

Commands are executed from first to last, from top to bottom, and from the start of the
line to its end. Even if it sounds simple and not very useful, this way of creating scripts can
have its uses, since it enables us to quickly run a predefined set of commands instead of
repeating them from the command line. In other words, there are problems that require
more than a single one-line command but are not complicated enough to require complex
logic. This is not to devalue complex Bash scripting logic, as there's a lot of automation in
IT that can be implemented by using Bash scripting.

Let's now imagine a simple task like that, something that we will be using as a recurring
example. We are going to create a simple backup script. Our task is as follows:

1.	 Create a directory under /opt/backup that has today's date in its name.
2.	 Copy all the files from the /root folder to this directory.
3.	 Send an empty email to the root user that will simply say that a backup was done.
4.	 Add a line to a file named donebackups.lst in the /root folder that will have

today's date in it.

Getting ready
Before we start – a disclaimer. This is a simple script that does not make too much sense
for a number of reasons. The most important is that it is oblivious to the context it is
running in. We quickly need to talk about this and the other problems first, and then
we'll compose a script that solves this task.

What do we mean by context? No matter which way we choose to run them, scripts
are run by a user, in so-called user space, and they have some things that define their
environment that we usually call context.

Context is the entire environment that is running the script and offers the
following questions:

•	 Which user is running the script?

•	 What permissions does this script have?

•	 Is the script run from the command line as a tool or as a background task?

•	 What directory is the script running from?

Other than these, there are usually several other things that can be relevant for the
running script, and we will talk about those as we progress through this book.

Serializing basic commands – from simple to complex 273

Right now, we need to make clear that context is extremely important and that our scripts
should never in any way or form take for granted any element of it. If we want our scripts
to run correctly, we should presume nothing, and instead, we should check everything
that we expect to be in a certain state.

A script that is able to check and decide what the possible problems are in the
environment that started it requires two things that we haven't yet talked about –
controlling the flow of the script and interacting with the system. Right now, it is obvious
that we still don't know how to do that.

Not being able to test things in a script means that, after all, we are going to presume
a lot when creating this particular script. Be warned – this is usually the first thing that
will lead us into problems.

Not thinking things through before we even type a single letter is usually the source
of all problems; scripts are rarely so simple that they can be created without planning
in advance.

The main reason we are talking about this now is to try and put you in the right mindset
when creating your scripts.

How to do it…
So, how do you create a script? Before you even begin, you should do the following:

•	 Define your tasks.

•	 Research commands that you are going to use.

•	 Check permissions and things required for the individual commands to succeed.

•	 Try individual commands before using them in the script.

Think about things that you are presuming:

•	 If you are reading from or writing to any files, do you expect the files to be there,
or do you need to create them?

•	 If you are referencing some file or directory, does it even exist, and do you have the
right permissions?

•	 Are you using some command that needs to be installed or configured beforehand?

•	 Are you referencing files by an absolute or relative path?

274 An Introduction to Shell Scripting

This is only the tip of the iceberg that is usually called sanity checks, and the term sanity,
in this case, refers to the state your script operates in. Sane state is what we say when we
mean that everything is okay. Any deviation from this, or any error or problem that makes
your script behave in an unexpected way, is a problem. This is why we need to think in
advance. And that's also the reason why sanity-checked code can take much more effort
than regular code that just does the basics.

But believe us – these kinds of checks will help keep not only the sanity of the
environment but also your own sanity intact when dealing with complex tasks.

Right now, we are bravely ignoring all this and dealing with the basics. For our backup
script, we are going to presume that both the /root and /opt directories exist and are
accessible to whatever user is running the script. In our particular case, this means that
our script is going to work ONLY if run by a superuser, since this user is required to be
able to access files under /root.

Also, we are going to presume that an email system of some kind exists and is running
on the local computer. We will also presume that the log file mentioned in the last step is
writeable to our script.

Important Note
When running a script, you are making a lot of presumptions like these, and if
any of them is not correct, your script is going to fail in some way. Your main
job as a script creator is to prevent this.

What commands are we going to use?

Our first task is going to be to create a directory using today's date in its name. Here,
we are going to presume that this directory does not exist, and we are going to create
it no matter what. This is a significant deviation from the logic that we are going to use
later – a command like this would usually check at least if the directory existed, and if the
command itself succeeded. A script should fail in some graceful way if any of these are not
true, or it should create directories that it needs.

Before you say, But wait – I can already do that; I know how to do testing in a single
command line, let's go back and talk again about how a script is run.

At this moment, we are trying to create something that has no logic to control the flow of
the script so that commands are run one line at a time. We could try to cheat and do some
checks in each individual line, but since we are not controlling the flow of the entire script,
this can be even more dangerous than doing no checks at all.

Serializing basic commands – from simple to complex 275

An interpreter is going to run all the commands no matter what, and even if we are
checking for problems and spot them, we will end up running all the commands in the
script. The right thing to do if something is not right is to control how the script behaves,
not how a single command behaves. No matter how simple or complex a scripting task is,
you should always think about the aforementioned context and what your script is doing
to it. If something fails, your script needs to decide – is the failure something that can be
dealt with, or do you need to abort the execution of the entire script?

If you are aborting execution in the middle of the script, is there something you need
to do before your script ends? Usually, when something that forces you to abort a task
happens, you will have some way of notifying the system and the user that there was a
problem. Sometimes, that will not be enough – your script will have to clean up after itself.

It could be a matter of deleting some files, but it could be that you need to revert
a change or even hundreds of changes that you made to the system. Every failure should
be evaluated not only on its severity but also on how it affects the system and the state that
your script created on that system.

How it works…
After creating what is probably the world's largest disclaimer on why our script is so basic,
let's get down to work.

Task by task, how are we going to solve this?

Creating a directory is simple; we are going to avoid using Bash shell expansion, and
we will use the date system command. We are cheating a little bit here, since we are
referencing the system environment, but the task is simply impossible to accomplish
without it, and we are not relying on something that is inherent to Bash itself. Note here
that this also demonstrates that there are usually multiple ways to do any one thing in
scripting. The only difference is your creativity.

The first command will be something like the following:

root@ubuntu:/home/demo/# mkdir /opt/backup/backup$ (date \
+%m%d%Y)

Please note that we are running this as the root user. Let's quickly check what happened:

root@ubuntu:/home/demo/scripting# ls /opt/backup/

backup08202021

276 An Introduction to Shell Scripting

We can see that our directory has been created. Now, let's deal with the copy operation:

root@ubuntu:/home/demo/scripting# ls /opt/backup/
backup08202021/

root@ubuntu:/home/demo/scripting# touch /root/testfile

root@ubuntu:/home/demo/scripting# cp /root/* /opt/backup/
backup'date +%m%d%Y'

cp: -r not specified; omitting directory '/root/snap'

root@ubuntu:/home/demo/scripting# ls /root

snap testfile

root@ubuntu:/home/demo/scripting# ls /opt/backup/
backup08202021/

testfile

We were able to create a test file and copy it to our directory. Pay attention to the way
we are referencing the directory that we are copying to – since we don't know when this
script is going to run, there is no way for us to know what the current directory we need to
copy to is.

To avoid the hassle of having to read and parse directories, we are simply recreating the
directory name the same way we did when we created the directory itself. There is
a possible bug here – if, by some freak chance, your script is run exactly at midnight, it is
possible that the part where the directory is created is run before midnight and the part
we are using to copy the files is run after midnight. This can create an error, since the
names will not match. The chance of this happening is slim, and we are not going to
plan for it.

In a large script, things like this can and will create big problems if not addressed correctly.

Now, let's do mail functionality:

root@ubuntu:/home/demo# mail -s "Backup done!" root@localhost

Command 'mail' not found, but can be installed with:

apt install mailutils

root@ubuntu:/home/demo/scripting# apt install mailutils

Reading package lists... Done

Building dependency tree……………………………

The error here is important. We did it to show the importance of testing commands. In
this case, we tried sending mail, and it made us realize that the command we are expecting
to use is not installed by default.

Serializing basic commands – from simple to complex 277

In order to run this script, we actually need to have the mail command installed. It is going
to be there on servers that have mail service configured but is going to be absent on normal
workstations. Since our backup script should work on any server, we need to solve that.

Blindly installing a package using a package manager is usually safe; the system will either
install the package or update it if it was already installed.

Now, we are going to try that command again, and once again, it is going to fail:

root@ubuntu:/# mail -s "Backup was done!" root@localhost

Cc:

Null message body; hope that's ok

root@ubuntu:/# man mail

You have mail in /var/mail/root

root@ubuntu:/# mail -s "Backup was done!" root@localhost < /
dev/null

mail: Null message body; hope that's ok

We didn't actually fail, but when we invoked the first command, it required us to input
some data. It was asking us for the Cc address, and we had to press Ctrl + D to finish the
body of the email.

This is another reason to test commands before using them in a script.

After realizing that we need to do something to make this command run unattended and
reading the manual, we can see it is a matter of simply providing no inputs by redirecting
/dev/null into the command.

Now, for the last command that we need to do, we implement the actual reporting of
the backup:

root@ubuntu:/home/demo# date +%m%d%Y >> /root/donebackups.lst

Remember, we need to append to a file. Additionally, what we want to do is reference
the file directly using an absolute path; after all, we have no idea where we will be when
running this script.

Okay, we have tried and tested all the commands. How does our script actually look? It's
not complicated:

#!/bin/bash

mkdir /opt/backup/backup'date +%m%d%Y'

cp /root/* /opt/backup/backup'date +%m%d%Y'

278 An Introduction to Shell Scripting

mail -s "Backup was done!" root@localhost < /dev/null

date +%m%d%Y >> /root/donebackups.lst

Now, let's run it.

root@ubuntu:/home/demo/scripting# bash backupexample.sh

cp: -r not specified; omitting directory '/root/snap'

mail: Null message body; hope that's ok

There are a few things that need our attention. First, note that we have some output from
the script that we didn't expect. This is normal and is a direct result of what we saw when
we tested our command – some commands threw errors. The reason we are seeing this
error is going to be explained in the next part of this chapter. Another thing that we need
to note is that other than the errors, we have no other output. The only way we have to tell
whether our script was successful or not will be by having the script itself report it – we
need to check the mail and the file mentioned in the script to check whether everything is
correct. That points us to another thing we are going to need – the logging. We are going
to deal with logs and debugging in later chapters.

Now, let's elaborate a little on how your script communicates with the environment.

There's more…
•	 Different operators for chaining in Bash: https://www.thegeekdiary.

com/6-bash-shell-command-line-chaining-operators-in-linux/

•	 Formatting dates in Bash: https://www.cyberciti.biz/faq/linux-
unix-formatting-dates-for-display/

Manipulating shell script input, output,
and errors
There are only a few things that are as pragmatic as the idea behind the concept of
standard input and standard output on Linux.

Since the start of Unix, the idea of interoperability between different applications and
tools installed on a system was one of the primary prerequisites that every script, tool,
and application had to follow.

https://www.thegeekdiary.com/6-bash-shell-command-line-chaining-operators-in-linux/

https://www.thegeekdiary.com/6-bash-shell-command-line-chaining-operators-in-linux/

https://www.cyberciti.biz/faq/linux-unix-formatting-dates-for-display/
https://www.cyberciti.biz/faq/linux-unix-formatting-dates-for-display/

Manipulating shell script input, output, and errors 279

Simply put, if you wrote any tool on a system, you could count on three separate channels
of communication to your surroundings. Based on the concept of ANSI C input/output
streams called standard output and standard input, everything that runs in a shell can
communicate in three ways – it can receive inputs from standard input, it can output
results and information to standard output, and it can report errors to a separate output
that is marked just for this task as error output.

Pair this idea with the concept that every tool should output text-only information with
minimal formatting, and should be ready to accept text input if it is required, and you
have a framework that is simple but amazingly robust and portable.

Getting ready
When we create scripts, we are going to use these concepts a lot, in a myriad of different
ways. Before we can do that, we need to make sure that we understand what inputs and
outputs actually exist and are available to us, and what is the usual way of using them
when scripting. After that, we will deal with some recommendations and how to conform
to certain well-established best practices when it comes to user interaction.

Even before that, we need to define some things. Standard input, output, and error are just
special cases of something called file descriptors. To simplify things a bit, we will not be
spending too much time on what a file descriptor actually is; for the sake of this chapter,
let's just say that it is a way of referencing an open file.

Since in Linux everything is considered to be a file, we are basically just assigning
a number to something we can write to, read from, or both read and write to, depending
on the context. Obviously, our options on reading and writing depend on what the actual
device referenced is.

By default, your script will open communication with three files that it can use. Standard
input is going to be connected to a keyboard; your script is going to accept information
from the keyboard unless you change it to something else, such as some other file
or output of another script or application.

Standard output is, by default, set to the console or the screen you are running your script
from. In some circumstances, we will also call a screen connected physically to your server
a console, but that is not part of what we are dealing with right now. The reason we are
mentioning this is to avoid unnecessary confusion.

We cannot read from a screen or write to a keyboard, and this is why we are usually
referring to them as consoles, which is a common name that more or less describes both
the keyboard and the screen. There is a lot more to learn here, but for now, we are going
to leave it at this.

280 An Introduction to Shell Scripting

How to do it…
To better explain these two things, you can do something simple – run a command called
cat without any arguments. When executed like this, any command including cat will
accept standard input and then output the result to the standard output. In this particular
case, cat is going to do it one line at a time, since it waits for a line separator before it
outputs information.

In reality, this means that cat is going to echo whatever you type in, line by line, until you
use Ctrl + D to signal a special character called End of Transmission (EOT), which tells
the system that you decided to end typing.

This will end the execution of the application. In the screenshot, it looks like we typed
each line twice; in fact, one is our input, and the other one is the output from
the command:

Figure 9.3 – cat – the simplest command to demonstrate standard input and output

There is also standard error, which also defaults to the screen but is a separate stream of
data; if we output something to standard error, it will be displayed in a way that looks
exactly the same as standard output, but that can be redirected if we need to.

The reason why there are two separate streams handling output is simple – we usually
want to have some data as the result of our script, but we do not want errors to be part of
it. In this case, we can redirect data into some file and redirect errors to the screen, or even
to another file, and then deal with them later.

Now, remember when we mentioned that standard input, output, and error are special
instances of a file descriptor? Bash can actually have nine file descriptors open at the same
time, so there are many more things we can do when writing out something in our scripts.
This is, however, rarely done, since almost everything can be accomplished by using only
the default ones. For now, just remember the following:

•	 Standard input is file descriptor number 0.

•	 Standard output is file descriptor number 1.

•	 Standard error is file descriptor number 2.

Manipulating shell script input, output, and errors 281

Why do these numbers matter? By using some special characters in the command line and
in our scripts, we can do a lot if we know only these three numbers. First, how do we stop
a script displaying something on the screen, and how do we output it to a file instead? By
simple use of the > character.

Sometimes, you will see a command line containing 1> instead of just >. This is exactly
the same as using a single > character, but it is sometimes written like this to make sure
you understand that you are redirecting standard output.

You are probably familiar with this form of redirection, since this is one of the first things
you learn when dealing with the command line. An important thing to note is that we can
redirect to a file in two different ways, depending on what do we want to do with the file if
it already exists.

By using > filename, we are going to redirect whatever the script outputted to the
standard output to the file named filename. If the file does not exist, it will be created,
and if the file exists, it will be overwritten.

By using just one more bracket, the >> filename redirection will be different in the way
it treats files that already exist. If we redirect using this symbol, we are going to append
data into an already existing file; data is going to go to the end of the file.

Having mentioned 1>, we need to deal with the way more popular 2> symbol that
represents standard error. When something wrong happens in our script, it is going to
output it as an error. Usually, you will notice it if you just redirect the script output to
a file; if you fail to mention 2>, you will see that only errors are going to appear on the
screen, while everything else is going to end up in the file.

If we actually want to output the result of errors in a particular file, we can do that
by using 2> errorfilename, and the script will write its errors into a file called
errorfilename.

There is also the possibility that we want to output everything into a single file, and there
are two ways to do this. One is to do both redirections in one command line separately,
using the same filename for both redirects. This has its own advantage of being easy to
read when we are trying to understand where the outputs are going.

282 An Introduction to Shell Scripting

The main disadvantage is that this redirection is probably the most used one when it
comes to dealing with scripts, especially when we run them unattended, and this makes it
harder to read in most environments. Of course, there is a simple solution to this – instead
of using two separate redirects, we can use a single one by using the &> filename. In
the Bash environment, this means that we want to redirect both standard error and output
to the same file:

demo@ubuntu:~/scripting$ bash helloworld.sh 1> outputfile \
2>errorfile

demo@ubuntu:~/scripting$ bash helloworld.sh &>outputfile

Please note that this trick works only if redirecting both the output and errors to one file;
if the output files are different, we need to specify them explicitly one by one.

When we started discussing outputs, we said that there can be more than just the three
predefined ones, and the way to handle them is logical. If we decide to redirect something
outputted to file descriptor number 5, the way to handle it in the command line would
be to just redirect 5> filename. This is something you will not see every day, but it can
be extremely useful if you need to create more than one log file or need to create different
outputs to different destinations from the same script. This approach is seldom used, since
it is much easier to handle redirection directly from the script, and by using variables in
the script, anyone debugging your scripts is going to have a much easier job.

Up to this point, we were dealing with redirection from outside of our scripts. It is time to
move on to how to use this in our everyday work.

The main thing that we are going to do using redirection is to log things. There are a
couple of approaches here. One is to simply use the echo command in the script and then
do the redirection for the whole script – for example, we can create a simple script that
just prints four lines of text:

#!/usr/bin/bash

echo "First line of text!"

echo "Second line of text!"

echo "Third line of text!"

echo "Fourth line of text!"

Let's name it simpleecho.sh and run it using Bash:

demo@ubuntu:~/scripting$ bash simpleecho.sh

First line of text!

Second line of text!

Manipulating shell script input, output, and errors 283

Third line of text!

Fourth line of text!

demo@ubuntu:~/scripting$

Now, we are going to redirect it to a file:

demo@ubuntu:~/scripting$ bash simpleecho.sh > testfile

demo@ubuntu:~/scripting$ cat testfile

First line of text!

Second line of text!

Third line of text!

Fourth line of text!

Okay, we can see that our file now contains output for the echo commands. For the sake
of showing how errors work, we are going to insert an intentional error into our script:

#!/usr/bin/bash

echo "First line of text!"

echo "Second line of text!"

echo "Third line of text!"

bad_command

echo "Fourth line of text!"

Now, we are going to do the same procedure again, first starting the script and then
redirecting it to see what happened:

demo@ubuntu:~/scripting$ bash simpleecho.sh

First line of text!

Second line of text!

Third line of text!

simpleecho.sh: line 5: bad_command: command not found

Fourth line of text!

demo@ubuntu:~/scripting$ bash simpleecho.sh > testfile

simpleecho.sh: line 5: bad_command: command not found

demo@ubuntu:~/scripting$ bash simpleecho.sh &> testfile

demo@ubuntu:~/scripting$ cat testfile

First line of text!

Second line of text!

Third line of text!

284 An Introduction to Shell Scripting

simpleecho.sh: line 5: bad_command: command not found

Fourth line of text!

The main thing to take away here is that error output is always separate from standard
output, so we are not going to see errors in our file unless we specifically redirect them.

Everything up to this point was simple, since our script was using just standard output.
Often, communicating with users is not so simple because we want to have our script to
be able to provide some information on screen and to a special log file. Things are similar
when working with unattended scripts; having the ability to redirect script output to a
certain file is nice, but more often, we are going to make our script use a particular log file
by itself, without the need for the user or the administrator to do any redirection when
executing the script.

The process required to do this is remarkably simple – we can use the redirection at
the command level to redirect our output to a file. There is only one thing you have to
remember here. Redirection into a file is limited to a single command; if you redirect
anything, the file is going to be closed as soon as the command finishes. This is important
primarily because you will always need to append to a file; if you forget to do so, that file is
going to get rewritten with new data, making it useless as a log. Since a log is usually used
to track multiple executions of a script or service, you will almost universally append
to files.

How it works…
Let's now expand our initial script, adding a little bit of logging. What we are going to do
is write separate logs that will contain information about the actions that the script took
while running. We are going to write this information to a log file located in the directory
that the script was invoked from. This means that our script will at any one time be able to
use three separate channels for output; in addition to standard output and standard error,
we are also using our log file. The big difference between log files and standard output is
that our log is hardcoded, and there is no way of redirecting it to another file. Of course,
a solution for this problem exists, but we are not going to spend too much time on it;
we already said it is possible to use one of the other file descriptors and map output to
it, forwarding the output to whatever stream we need later. This is seldom used, since it
requires additional attention when running a script:

#!/usr/bin/bash

echo "We are adding four lines of text!" >> simplelog.txt

echo "First line of text!"

echo "Second line of text!"

echo "Third line of text!"

Shell script hygiene 285

echo "Fourth line of text!"

echo "Exiting, end of script!" >> simplelog.txt

This approach gives us additional flexibility, since we do not have to forward standard
output in order to have logs; our script already does that. This means that we can start the
script either from the command line or as an unattended task and get the same results
in the logs. Of course, we can always use redirection and make sure that every output is
written and saved.

There's more…
•	 Standard input and output (in C): https://www.technologyuk.net/

computing/software-development/computer-programming/c-
programming/basic-io.shtml

•	 Standard input and output (in Bash, with examples): https://tldp.org/LDP/
abs/html/io-redirection.html

Shell script hygiene
Commenting is not just something you can do; it's an art by itself. In this part of the
chapter, we are going to deal with comments in order to make your life easier when
writing scripts, but the advice and best practices that are given here are easily used in any
programming language that we can think of. Really understanding how to comment in
a useful way is something that you're going to need to learn, since it will help anybody
going to use your scripts after you are done writing them.

So, what are comments? Possibly the easiest way to describe them is to say that they are
documentation on what the script is intended to do, how the script works, and who has
created the script, and they provide more information on technical details of the script,
such as when it was created.

Commenting is something that you should automatically want to do. Nobody is perfect
and nobody has a perfect memory. Comments are there to help you remember what you
did inside some script and to provide anybody else with guidance on how the script works
and what the different things are that they need to know if they need to change anything
in the script.

https://tldp.org/LDP/abs/html/io-redirection.html

https://tldp.org/LDP/abs/html/io-redirection.html

286 An Introduction to Shell Scripting

One more important point is that commenting is not the same as providing
documentation. Sometimes, people are going to say that they don't need documentation
because they already have comments in their code, but this is completely wrong.
Unless you're talking about a script that has only 10 lines of code or so, comments are
going to help you to understand what the script is doing without looking up the whole
documentation, which saves you a lot of time.

Getting ready
So, let's now talk about different types of comments. When writing code, there is always
a part that involves commenting on individual procedures or parts of the script, expected
input and output, data types, and data in general.

In Bash, comments are universally started by the # sign. Bash does not recognize multiline
comments, unlike some other programming languages. What this means is that
we need to pay attention so that every line that contains a comment starts with #. The
only exception of sorts is the first line in the script, which contains the interpreter that
is going to run the script, but the interpreter continues working after that line, so we can
say that every line that starts with # is actually a comment. The shell is going to ignore
everything inside the comment or, to be more precise, it is going to completely ignore
the lines that contain the comment. So, understand that the comments are written for
you and for other people that are going to be dealing with your scripts. Try to make them
easy to understand, precise, and avoid repeating what can actually be deduced from the
command itself. For example, if you have a command that is echoing something, try not
saying, Okay, this command is going to echo… whatever text you're trying to output to
a user, but try to explain why. This is especially useful when commenting on cryptic
output that contains a lot of variables.

You can and should write comments in front of every block of code in your script, but you
should also comment at the start and the end of the script.

How to do it…
Let's start with the beginning of the script. What should be the first comment? The first
line should, of course, be the name of the interpreter, and after that, we usually give
information about the script itself. Generally, the script should start with a comment that
gives information on who wrote it, when, and if it is part of the project that is responsible
for the script itself.

This part should also state technical things such as licensing distribution, limitation on
warranties, and who is and is not allowed to use the script.

Shell script hygiene 287

Having done the header, we should also deal with the arguments and information on how
a script should be run and what to expect in terms of input. If there is something special
about the input, such as expected types, the number of arguments, or some prerequisites
that need to exist or run before the script is running, they should be stated somewhere at
the beginning of the script.

Now, we come to the functions. We are going to deal with the concept of functions later,
but we do need to talk about how to comment on them, since this also applies to any
other block of code. This is because functions are, by themselves, modular and written as
a separate block of code.

Sharing something separated inside a function gives us the opportunity to comment.
We should use this part of the comments to describe what the function or the module
does, what variables we are going to change and need, the arguments that your function
is going to take, what the function is going to do, and what the output to the function is
going to be. If we are dealing with some sort of nonstandard output – for example, if
we are dealing with logging to a separate file – we should state that in the function header.
We should also note all the return codes that the function outputs if it changes the exit
status of the script.

There are useful ways of using comments to create reminders for yourself and for others to
inform what still needs to be done in a script, which are called to do comments. They are
usually written in capital letters – TODO.

We should also note that there is something called a heredoc notation that is sometimes
used when we need to create large blocks of comments. This notation uses shell
redirection in a very specific way so that it can provide the header and the footer for the
comment block without using common signs. We're going to provide you with an example
of this notation, since you will run into it when you analyze other people's scripts, but
we're not going to use it in our scripts. The main reason for that is that it tends to make
scripts less readable.

For example, this is a perfectly valid way of creating a comment:

#!/bin/bash

echo "Comment block starts after this!"

<<COMMENTBLOCK

 Comment line

 Another comment line

 Third one

COMMENTBLOCK

echo "This is going to get executed"

288 An Introduction to Shell Scripting

Now, what do we actually comment?

Let's start with some general things:

•	 State clearly who wrote the script and when was it created.

•	 Version your script – if there are any changes, update the version so that you can
track which script you are using on different computers.

•	 Explain any complicated part of the code – things such as regular expressions,
calling outside sources, and general references to anything outside of your script
should be commented.

•	 Comment on individual blocks of code.

•	 Clearly note all the old parts of code that you commented out and left in your script.

We'll talk a bit about all these points.

Clearly marking the script author and creation date is crucial. Your scripts are probably
going to end up being maintained by people other than you. The worst thing that can
happen to you when you open a script with a couple of hundred lines of code is not
knowing who to talk to when something goes wrong. Some people think that they are
going to avoid being constantly pestered by other admins by not signing the script, but
this is simply wrong. You wrote that script; be proud of it.

After you mention the author, always note when the script was created. This helps people
prioritize possible changes, especially to some outside resources that you may be using in
the script itself. Also, write when the last change was made, since it is relevant information
for everybody maintaining the script, including you.

After mentioning changes, learn to version. Versioning is a way of keeping track of
different changes that you make in a script and making sure you know which version you
are using at any given moment. Versioning itself is a simple concept of using a scheme that
enables you to track how your script progresses and what has changed.

There are a couple of ways this can be done, since there is no official standard on how to
write down versions, although a lot of people tend to use semantic versioning (https://
semver.org/). Usually, versions more or less strictly follow either changes in the source
code or the time when a particular version was created. Both schemes have their merits,
but when writing scripts, we think that tracking changes is a much better idea, since
we can deduce very little from versions using dates as a reference.

Shell script hygiene 289

Before we commit to any versioning scheme, we will quickly go over some examples. The
way we handle versions in different software is directly related to the type of software we
are dealing with and the number of changes between versions.

General-purpose applications usually stick to a normal versioning scheme that has a
structure using two numbers representing major and minor versions of the application.
For example, we can have App v1.0, then App v1.1, then App v2.0, and so on. The first
number represents major changes made to the applications; the second number usually
represents minor changes or bug fixes. This is practically the norm for large applications
on the market today.

In our scripts, we are going to use the same scheme, but we are going to implement
semantic versioning, so a version will be 1.0.0 or 3.2.4. The third number represents
small changes and makes sense when the number of changes is small, but changes are
significant. Note that some applications take this approach to the extreme, so you will
inevitably run into things such as Version 2.1.2.1-33.PL2. When dealing with scripts,
this will just complicate your work, so don't do it.

Another way of dealing with versions is by referencing time, as most operating systems
do now. So, for example, there is Ubuntu 20.04 and 20.10, representing releases that came
out in April and October of 2020 respectively. The reason for this is the enormous number
of changes. Releasing a new version of an entire operating system each time something
changes is simply impossible; you would need to release a new version practically every
few hours.

There is also a sequential numbering scheme that is usually paired with one of the two
approaches we mentioned. Microsoft uses this versioning style, having major releases with
names such as Windows 10, update releases named something such as 20.04 or 21H1 that
represent the time of the release, and then using build versions to denote minor changes
in the operating systems.

All of these schemes have their good and bad sides, but whatever you choose, we have
only one recommendation – stick to it. Don't mix different versioning schemes, since it
will confuse people.

290 An Introduction to Shell Scripting

While talking about versioning, we should also talk about change tracking. When creating
a new version of a script, most of the time, you will make many changes to the script itself.
It can be that you will fix bugs, or make your code quicker or more reliable. Some of these
changes will have to be documented in some way other than by increasing the version
number. This is important in order to remember what you did to the script. There are
a couple of ways to do that. One is to keep track of all the changes in a separate file
(usually, we use a ChangeLog file for that purpose). This makes your comments and the
script itself much more legible, but now you have another file whose updates you need to
care about. It also makes it easier for everyone else to read the code, as it gets developed
and changed with each new version. Another way is to keep a list of all the changes in the
script itself. A benefit of that is that you can quickly check what has changed, but your
script now has extra text that you need to skip through. There is also a version that keeps
the changes in line with the place where they were created, usually before the line of code
that contains the changes.

Let's see how all this looks in practice:

#!/bin/bash

V1.2 by Author, under GPLV2 licence

V1.0 - Hello world script, V1.0 1/8/2021

V1.1 - Added changes to comments on 2/8/2021

V1.2 - Added more changes to comments 3/8/2021

echo "Hello World!"

We are going to stop here, since we will cover this and a lot more in further chapters,
learning as we go along.

There's more…
•	 Commenting in Bash – examples: https://git.savannah.gnu.org/cgit/

bash.git/tree/examples

•	 Identifying files in Linux: https://man7.org/linux/man-pages/man4/
magic.4.html

https://man7.org/linux/man-pages/man4/magic.4.html
https://man7.org/linux/man-pages/man4/magic.4.html

10
Using Loops

In the previous chapter, we started dealing with scripting, and we did a lot of learning
about how scripts work and how they are structured. However, we missed a huge topic in
scripting – influencing the order in which commands are executed when a script is run.
There are a couple of things that we need to cover here, since there are multiple ways
we can influence what is going to be the next command executed in a script.

We are going to start with a concept we call iterators or, more commonly, loops. There are
a lot of things in everyday tasks that need to be done repeatedly, usually changing just one
small thing in every iteration. This is where looping comes in.

We will cover the following recipes in this chapter:

•	 The for loop

•	 break and continue

•	 The while loop

•	 The test-if loop

•	 The case loop

•	 Logical looping with and, or, and not

292 Using Loops

The for loop
When we talk about loops, we usually make a distinction based on the place in the
execution where the variable we are using changes its value. for loops, in that respect,
belong to the group where a variable is set before each iteration and keeps its value until
the next iteration is run. The most common task that we are going to perform by using
a for loop is going to be using the loop to iterate through sets of things, usually either
numbers or names.

Getting ready
Before we begin introducing different ways of using a for loop, we need to address its
abstract form:

for item in [LIST]

Do

 [COMMANDS]

done

What do we have here? The first thing to note is that we have some reserved keywords that
make Bash understand that we want to use a for loop. In this particular example, item
is actually the name of the variable that will hold one value from the list in each loop
iteration. The word in is a keyword that further helps us understand that we are going to
use a set of values that we currently call a list, although it can be different things.

After the list, there is a block that defines what commands we intend to run each time
a loop is performed. Currently, we are going to work with this block as a single entity,
containing commands that will be executed one after another without interruptions.
Later in this chapter, we are going to introduce some conditional branching that
will enable us to cover more possible workflow solutions, but for now, a block is
uninterruptable.

What will probably surprise you is that a for loop is often used directly from the
command line, even more often than in scripts. The reason is simple – there are a lot of
tasks we can accomplish by using a simple for loop, and complicating them by creating
scripts is to be avoided. A for loop in this form looks a little different than in the one
we showed as our first example, the main difference being the semicolon that separates
the keywords when we are using a single line to write out the loop.

The for loop 293

How to do it…
Let's start with a simple example. We are going to run through a list of servers and echo
one in each iteration of the loop. Note that the shell takes our command from the prompt
and repeats it before executing it:

root@cli1:~# for name in srv1 srv2 srv3 ;do echo $name; \
done;

Srv1

Srv2

srv3

Using echo as a placeholder for commands when testing a loop is common. We are going
to use this style of debugging a lot in our examples. echo as a command is probably the
most useful one in this context since it changes nothing and, at the same time, enables
us to see what the actual output is going to be.

When creating a list of objects, we don't have to use any special characters to separate
individual entries; bash is going to treat space as a delimiter, and as long as we separate
our values by a space, bash is going to understand our intentions. A little later, we are
going to show you how to change the character that separates a value in the list, but
a space will work in almost all the circumstances.

The list we are using in the iterations can be explicitly defined, but more often than not,
we are going to need to create it when we run our loop, in the command line or the script.

A typical example of this is running a loop on a set of files in a directory. The way to do
this is to use shell expansion. This means letting the shell run a command and then using
its output as the list for the for loop. We can do this either by specifying a command in
backticks (`) or using bash notation of $(command). Both ways have the same result –
a command is run and then piped to a list.

Our example is going to be a loop that iterates through the current directory and runs the
file command on each individual file, giving us information on what this particular file
actually is. We are still on the command line:

root@cli1:~# for name in `ls`; do file $name; done;

donebackups.lst: ASCII text

snap: directory

testfile: empty

294 Using Loops

Now, let's deal with something more interesting. Often, we need to use numbers in our
loops, either to count something or to create other objects. Almost all programming
languages have some sort of loop that enables this. Bash is a sort of an exception to this
rule, since it can do it in a couple of different ways. One is to use the echo command and
a little bit of shell expansion to accomplish this task.

If you are unfamiliar with this, giving echo an argument that consists of a number
formatted in curly brackets will make it output all the numbers in the interval that
you specified:

demo@cli1:~/scripting$ echo {0..9}

0 1 2 3 4 5 6 7 8 9

To use this in a loop, we simply do the same trick as we did in the previous example:

root@cli1:~# for number in `echo {0..9}`; do echo $number; \
done;

for number in `echo {0..9}`; do echo $number; done;

0

1

2

3

4

5

6

7

8

9

We are not limited to using a fixed step in the interval; if we simply mention an interval
followed by a number, this number will be considered as a step value. A step value is
basically a number that your variable is going to be incremented with in each loop iteration.

We are going to try a simple loop using multipliers of 20:

root@cli1:~# for number in `echo {0..100..20}`; do echo \
$number; done;

for number in `echo {0..100..20}`; do echo $number; done;

0

20

40

The for loop 295

60

80

100

We can combine shell expansion the same way that we normally do in the command line
and create different values for our loop. For example, in order to create server names for
three groups of servers, each containing six servers, we can use a simple one-line loop:

root@cli1:~# for name in srv{l,w,m}-{1..6}; do echo $name; \
done;

srvl-1

srvl-2

srvl-3

srvl-4

srvl-5

srvl-6

srvw-1

srvw-2

srvw-3

srvw-4

srvw-5

srvw-6

srvm-1

srvm-2

srvm-3

srvm-4

srvm-5

srvm-6

Of course, loops can be embedded within each other by simply placing the inner loop
into the do-done block of the outer loop. In this particular example, we are using shell
expansion to loop through a list of values in both loops:

root@cli1:~# for name in {user1,user2,user3,user4}; do \
for server in {srv1,srv2,srv3,srv4}; do echo "Trying to ssh \
$name@$server"; done;done;

Trying to ssh user1@srv1

Trying to ssh user1@srv2

Trying to ssh user1@srv3

296 Using Loops

Trying to ssh user1@srv4

Trying to ssh user2@srv1

Trying to ssh user2@srv2

Trying to ssh user2@srv3

Trying to ssh user2@srv4

Trying to ssh user3@srv1

Trying to ssh user3@srv2

Trying to ssh user3@srv3

Trying to ssh user3@srv4

Trying to ssh user4@srv1

Trying to ssh user4@srv2

Trying to ssh user4@srv3

Trying to ssh user4@srv4

How it works…
Now is the time to slowly switch from the command line to how we can use these loops
in scripts. The biggest difference here is that for loops are way easier to read when
formatted in a script.

For our first example, we are going to mention another way of creating a set of numbers
in a loop, a so-called C-style loop. As the name suggests, this loop takes its syntax from the
C language. Each loop has three separate values. Of these, the first two are compulsory;
the third is not. The first value is called either the initialization value or the start value. It
gives us the value of the variable in the first loop iteration. One thing to note here is that
we need to assign the initial value explicitly, which significantly differs from the usual style
used in the normal for loop.

The second value in this loop variation is the test condition, occasionally known as
the boundary condition. This represents the last valid value that our loop iterator
will have before we finish the loop or, to put it more simply, the largest number
if we count incrementally.

The third value can be omitted; it will default to 1. If we use it, this is going to be the
default step or increment that our loop is going to use.

The for loop 297

Theoretically, this C-style for loop will look like this:

for ((INITIALIZATION; TEST; STEP))

Do

 [COMMANDS]

done

In reality, it has a more complex syntax, but it will look very familiar to all of you with
experience in programming in C, as the name suggests:

for ((i = 0 ; i <= 100 ; i=i+20)); do

 echo "Counter: $i"

done

Before we go on, let's look at an example of a loop that we have already used but formatted
as it would be in a script:

#!/usr/bin/bash

for loop test script 1

for name in {user1,user2,user3,user4}; do

 for server in {srv1,srv2,srv3,srv4}; do

 echo "Trying to ssh $name@$server"

 Done

done

As we can see, the only real difference here is the formatting and the omission of
semicolons that directly stems from not having to parse the entire script in one line.

See also
In order to understand looping, you will probably need quite a few examples. Start with
these links:

•	 https://linuxhint.com/30_bash_loop_examples/

•	 https://tldp.org/HOWTO/Bash-Prog-Intro-HOWTO-7.html

https://linuxhint.com/30_bash_loop_examples
https://tldp.org/HOWTO/Bash-Prog-Intro-HOWTO-7.html

298 Using Loops

break and continue
Up until now, we haven't really done any conditional branching in our scripts. Everything
we did was linear, even loops. Our script was able to execute commands line by line,
starting from the first one, and if we had a loop, it was running until our conditions
that we stated at the loop start were met. This means that our loops have a fixed,
predetermined number of iterations. Sometimes, or to be more precise often, we need to
do something that breaks this idea.

Getting ready
Imagine this example – you have a loop that has to iterate a number of times unless
a condition is met. We said that our loops have the number of iterations fixed at the start
of the loop, so we obviously need a way to end the loop prematurely.

This is why we have a command called break. As the name suggests, this command
breaks the loop by escaping from the command block it is included in and finishing the
loop, regardless of the conditions that were used in the definition of the loop. The main
reason why this is important is to establish control over the loop and handle any possible
state that requires you to not finish the job you started in your loop. One more thing to
note is that the break command is not limited only to for loops; it can be used in any
other block of code, a thing that will become more useful later when we learn other ways
to structure our scripts into blocks.

How to do it…
It is always easy to start with an example, but in this particular case, we are going to start
with an overall view of how this command works. We are going to use abstract commands
instead of actual ones to help you understand the structure of this loop. After this, we are
going to create some real-world examples:

for I in 1 2 3 4 5

do

#main part of the loop, will execute each time loop is started

 command1

 command2

#condition to meet if we need to break the loop

 if (break-condition)

 then

#Leave the loop

 break

break and continue 299

 fi

#This command will execute if the condition is not met

 statements3

done

command4

What is going on here? The for loop by itself is a normal loop that gets executed using 1,
2, 3, 4, and 5 as values. command1 and command2 are going to get executed the way
we expect them to be at least once, since they are the first thing after the start of the loop.

The if statement is where things get interesting. We will talk a lot more about if
statements, but we need to mention them here in their most basic form. Here, we have
something called a break condition. This can be anything that can be resolved to a logical
value. That means the result of our condition has to be either true or false. If the
result is false, our condition is not met, and the loop continues by executing command3,
looping back to the beginning of the loop, and assigning the next value to our variable.

We are more interested in what happens if the break condition evaluates to true. This
means that we have met our condition and need to run the block of code that follows.
A simple break statement is here, and it has no arguments. What will happen next is that
the script will immediately exit the loop and go to execute command4 and whatever is
after it. The important thing is that command3 will not be run in this case, and the loop
will not repeat, regardless of the value of the loop variable.

There is another statement called continue that can also be useful, although it is not
used as much as break. Continue also breaks the loop in a way, but not permanently.
Once you use continue in the loop, the program flow is going to immediately go to the
start of the loop block without executing the remaining statements.

How it works…
Having talked about the abstract structure, it is time to create an example.

Imagine we are counting using a for loop, but we want to break out of it as soon as
we hit the number 4 as the value of our variable. Of course, we could do this by simply
specifying number 5 as the upper value that we are counting, but we need to show how
the loop works, so we are going to break out of it using the break statement:

#!/usr/bin/bash

testing the break command

for number in 1 2 3 4 5

do

300 Using Loops

echo running command1, number is $number

echo running command2, number is $number

if [$number -eq 4]

 Then

 echo breaking out of loop, number is $number

 Break

fi

echo running command3, number is $number

done

It's time to break down our script, but we are going to run it before we do that:

demo@cli1:~/scripting$ bash forbreak.sh

running command1, number is 1

running command2, number is 1

running command3, number is 1

running command1, number is 2

running command2, number is 2

running command3, number is 2

running command1, number is 3

running command2, number is 3

running command3, number is 3

running command1, number is 4

running command2, number is 4

breaking out of loop, number is 4

Our sample script looks a lot like our abstract example, but we used actual the echo
command to emulate something that should happen. The most important part that we need
to talk about is the if command; everything else is as we said in the first part of this recipe.

We mentioned that we need to have a condition for our break statement to make any
sense. In this particular case, we are using if with a test condition; basically, we are
telling bash to compare two values and let us know whether they are the same or not.
In bash, there are two ways to do this – one is to use the = operator we are used to, and
another is to use the -eq or equals operator. The difference between these two is
that = compares strings, while -eq compares integers. We will go into much more
detail in later recipes, since they are important in scripting.

break and continue 301

Now, let's see how the continue command works. We are going to slightly modify our
script so that it skips over the third command once it hits 3 as the value of the variable:

#!/usr/bin/bash

testing the continue command

for number in 1 2 3 4 5

do

echo running command1, number is $number

echo running command2, number is $number

if [$number -eq 3]

 Then

 echo skipping over a statement, number is \
$number

 Continue

fi

echo running command3, number is $number

done

What we did is a simple change in the if statement; we changed the condition so that it
checks whether the variable value is equal to 3, and then we created a command block
that skips over the rest of the loop when our condition is satisfied. Running it is simple:

demo@cli1:~/scripting$ bash forcontinue.sh

running command1, number is 1

running command2, number is 1

running command3, number is 1

running command1, number is 2

running command2, number is 2

running command3, number is 2

running command1, number is 3

running command2, number is 3

skipping over a statement, number is 3

running command1, number is 4

running command2, number is 4

running command3, number is 4

running command1, number is 5

running command2, number is 5

running command3, number is 5

302 Using Loops

The only real point here is noting that we finished all our iterations; the only thing
we skipped was one instance of running the third command in the script. Also, note that
the continue command in the loop is going to skip over everything up to the end of the
current loop and go back to the beginning, while a break statement is going to skip the
entire loop and not repeat it.

See also
Interrupting command flow can be a problem at first. More information is available at
these links:

•	 https://tldp.org/LDP/abs/html/loopcontrol.html

•	 https://linuxize.com/post/bash-break-continue/

The while loop
Up until now, we have dealt with loops that have a fixed number of iterations. The reason
is simple – if you are using a for loop, you need to specify for what values your loop is
going to run, or what values your variable is going to have while in the loop.

The problem with this approach to looping is that sometimes you don't know in advance
how many iterations you are going to need to do something. This is where the while loop
comes into play.

Getting ready
The most important thing you need to know about the while loop is that it does its
testing at the start of the loop. This means that we need to structure our script to run while
something is true. This also means that we can make a loop that will never get executed;
if we create a while loop that has a condition that is not met, bash is not going to run it
at all. This has a number of great advantages, since it gives us the flexibility to use our loop
as many times as we need without thinking about boundaries, and we can still use break
when we need to get out of the loop before our condition is met.

https://tldp.org/LDP/abs/html/loopcontrol.html
https://linuxize.com/post/bash-break-continue/

The while loop 303

How to do it…
A while loop looks even simpler than a standard for loop; we have a condition that
must be met, and a command block that is going to get executed. If the condition is not
met, commands will not run and bash is going to skip over the block and continue
running whatever is after the end of the done statement that terminates the block:

while [condition]; do commands; done

Condition, in this case, is the same logical condition that we mentioned earlier. There
is also another way of using the while loop by having something called control-
command, a command that runs and directly provides information for the loop to start.
We are going to use this one a lot, since it enables us to, for example, read a file line by line,
without specifying how many lines it has beforehand:

while control-command; do COMMANDS; done

How it works…
As usual, we are going to give a few examples. First, we are going to repeat the task
we already accomplished using the for loops. The idea is to loop until our value reaches 4
and then finish the loop. Note that the value can be a string, not necessarily a number:

#!/bin/bash

x=0

while [$x -le 4]

do

 echo number is $number

 x=$(($x + 1))

done

There are a few little things we need to emphasize. The first one is the condition we used.
In our for loop, we compared whether the value is 4 and then used break to get out of
our loop. In this case, we cannot do that; if we check whether the value of our x variable is
4, the loop will never run, since the initial value is 1.

In a while loop, we need to check for the opposite – we want our loop to run until the
value becomes 4, so the condition has to be true in all cases except when our variable
is exactly 4.

304 Using Loops

Thankfully, the very same while keyword helps in creating the condition.

We mentioned that instead of a condition, we can have a command. A typical example
that you are going to use often is reading a file. We can do this using a for loop, but it
would be needlessly complicated. for loops need to know the number of iterations before
we even start a loop. In order to solve this problem using a for loop, we would need to
count the lines in a file before we can start looping, and this would be both complicated
and slow, since it requires us to open the file twice – first to count the lines and then to
read them in the loop.

A much simpler way is to use a while loop. We simply run the loop while our command
gives us some output – in this case, while it reads from a file. As soon as the command
fails, the loop is over:

#!/bin/bash

FILE=testfile.txt

read testfile and display it one line at a time

while read line

do

 # just write out the line prefixed by >

 echo "> $line"

done < $FILE

You will notice that there are a few things we haven't yet seen in the scripts. The first one
is the use of the variables. We sort of already did that when we were dealing with the for
statements, but here you can see both how a variable is declared and how it is used. We'll
talk a lot more about this later. Another thing is how we actually read the file. The read
command has no arguments; it is intended to be used with standard input. Since we know
how to redirect inputs and outputs, we are going to just redirect whatever is in the file as
the input of the read command. This is why we used redirection in the last line of the
script. It may look awkward, but it is the way to do it.

Sometimes, we have a reason to use a loop that never finishes, a so-called infinite loop.
It looks counterintuitive, but this kind of loop is extremely common in scripts when we
need to run the script over and over again and have no idea how many iterations we need.
Sometimes, we may even want our script to run continuously and then use the break
statement to stop it if something happens. An infinite while loop is simple; just use : as
the condition:

#!/bin/bash

while :

The test-if loop 305

do

 echo "infinite loops [hit CTRL+C to stop]"

done

See also
•	 https://linuxize.com/post/bash-while-loop/

•	 https://tldp.org/LDP/Bash-Beginners-Guide/html/sect_09_02.
html

•	 https://www.redhat.com/sysadmin/bash-scripting-while-loops

The test-if loop
When strictly talking about loops, we usually divide them into for and while loops.
There are some other structures that we sometimes call loops, even though they are more
structured like a block of commands. Other names for these could be decision loops
or decision blocks, but for legacy reasons, they are usually referred to as test-if
loops, case loops, or logical loops.

The primary idea behind this is that any decision-making part of the code actually
branches the code into different paths containing blocks of commands. Since branching
and decision-making is probably the most important thing you will do in your scripts,
we are going to show you some of the most commonly used structures that will find their
way, more or less, into any script you make.

Getting ready
For this recipe, the most important thing is to understand that for any conditional
branching, or for that matter, any conditions that you put in your code, you will use
logical expressions. Logical expressions are, simply put, statements that can be either
true or false.

Take, for example, statements such as the following:

•	 The something.txt file exists.

•	 The number 2 is greater than the number 0.

•	 The somedir directory exists and is readable by the user Joe.

•	 The unreadable.txt file is not readable by any user.

https://linuxize.com/post/bash-while-loop/
https://tldp.org/LDP/Bash-Beginners-Guide/html/sect_09_02.html
https://tldp.org/LDP/Bash-Beginners-Guide/html/sect_09_02.html
https://www.redhat.com/sysadmin/bash-scripting-while-loops

306 Using Loops

Every statement here is something that can be either true or false. The most important
thing here is that there are no other logical states that we can define about any of the
statements. Another thing is that every statement here refers to a particular object, a file,
a directory, or a number, and gives us some attribute or state of that object.

Having this in mind, we are going to introduce shell testing as a concept and then use it to
help us work on our scripts.

How to do it…
We already introduced the concept of the if statement using condition to branch to
one of the evaluated blocks of code. This condition has to be met, which means it needs
to be resolved into a true or false statement. The if command is then going to decide
which part of the code is going to run.

This evaluation is also called testing, and there are two ways of doing it in shell. The bash
shell has a command called test that is sometimes used in scripts. This command takes
an expression and evaluates it to see whether the result is true or false. The result of the
command is not printed in the output, but instead, the command assigns its exit status to
the appropriate value.

Exit status is a value that each command will set after finishing, and we can check it
from inside the command line, or from our script. This status is usually used to either
see whether there were any errors executing a particular command or to pass some
information, such as a logical value of a tested expression.

In order to test exit status, we can use a simple echo command. Let's do a few examples
using a simple expression and the test command.

The first example uses the echo command to write out what the exit status was of the
test command. In all the examples, 0 means true and 1 means false:

demo@cli1:~/$ test "1"="0" ; echo $?

0

So, how come we got a result that says that 1=0 is true? We made a syntax error (on
purpose) to show you probably the most common mistake in scripting. All commands
will usually use a very strict syntax, and test is not an exception. The problem with this
particular command is that it will not show an error; instead, it is going to just treat
our expression like it is one single argument and then decide it is true.

The test-if loop 307

We can check this by using a completely nonsensical argument, such as a single word:

demo@cli1:~/$ test whatever ; echo $?

0

As you can see, the result is logically true, even if it does not make any real sense. In
reality, test requires spaces to understand which part of the expression is the operator
and what are the operands. The right way to write our previous example is as follows:

demo@cli1:~/$ test "1" = "0" ; echo $?

1

This is the result we expected. To check, we are going to try evaluating another expression:

demo@cli1:~/$ test "0" = "0" ; echo $?

0

So, this one is true. This is completely what we expected. The reason we are using
quotation marks here is that we are not actually evaluating numbers; we are comparing
strings. What if we remove the quotation marks?

demo@cli1:~/$ test 0 = 0 ; echo $?

0

This also works okay; just to check, we are going to retry with something that should
be false:

demo@cli1:~/$ test 0 = 1 ; echo $?

1

The result is also completely what we expected to see. Let's now try something else.
We said there is a difference between comparing numbers and strings. A number has the
same value regardless of the number of zeroes preceding it:

demo@cli1:~/$ test 01 = 1 ; echo $?

1

308 Using Loops

Our command now states that these two are not equal. Why? Because the strings are
not equal. Bash uses different operators to compare strings and numbers, and since we
used the 1 for the strings, these values are not the same. The same goes for using them in
quotation marks, just to show how quotes are handled:

demo@cli1:~/$ test "01" = "1" ; echo $?

1

The operator that we should have used for integer comparison is -eq; it will understand
that we are comparing numbers and compare them accordingly:

demo@cli1:~/$ test "01" -eq "1" ; echo $?

0

Regardless of whether we are using quotes or not, the result should be the same:

demo@cli1:~/$ test 01 -eq 1 ; echo $?

0

For the last example, we are going to see what happens when we confuse the operators the
other way around and try to compare strings using the integer comparison:

demo@cli1:~/scripting$ test 0a -eq 0a ; echo $?

bash: test: 0a: integer expression expected

2

What does this result mean? First, our test tried to evaluate the condition and realized
there is an error in comparison, since it cannot compare a string and an integer or, to be
more precise, that an integer cannot contain letters. We got the error in our output, so the
command exited with the 2 status, which signifies an error. The result logically makes no
sense, so the result is neither 0 nor 1.

The test-if loop 309

The next thing we need to do is implement what we learned in actual scripting, but before
that, we need to address one more thing. There are two ways to create our tests. One is by
explicitly using the test command. Another is by using square brackets ([]). While
we are going to use test a lot when we need to run something in the command line
depending on some condition, when using the if statement, we are going to use square
brackets most of the time, since they are easier to write and look better when glancing
over the script. Just to make sure, here is one of the expressions we used, written in
a different way. Please pay attention to the spaces inside the brackets; there needs to be
a single space between the brackets and the expression we are using:

demo@cli1:~/$ [01 -eq 1] ; echo $?

0

How it works…
We are going to write a small script that is going to test whether a file exists in the
directory the script was run from. For that, we need to talk a little about some other
operators that we can use.

If you take a look at the man page for the test command or at a bash manual, you will
see that there are many different tests we can do, depending on what we want to check; the
most common ones we are going to use are probably the following (taken directly from
the man pages for test(1)):

•	 The -d file: The file exists and is a directory.

•	 The -e file: The file exists.

•	 The -f file: The file exists and is a regular file.

•	 The -r file: The file exists and read permission is granted.

•	 The -s file: The file exists and has a size greater than zero.

•	 The -w file: The file exists and write permission is granted.

•	 The -x file: The file exists and execute (or search) permission is granted.

310 Using Loops

Let's create a script using this:

#!/usr/bin/bash

testing if a file exists

if [-f testfile.txt]

 then

 echo testfile.txt exists in the current directory

 else

 echo File does not exist in the current directory!

fi

Probably the most important thing to learn here is the structure and the use of the else
statement. There are two blocks or parts of code we define in an if statement – one is
called then and the other else. They do as their names suggest; if the condition we used
in the statement evaluates as true, then the then code block is going to get executed.
If the condition is not met, then the else block will be run. These blocks are mutually
exclusive; only one of them is going to get run.

Now, we are going to deal with a topic that will sometimes confuse you. We already
mentioned that a script has a context it is running in. Among other things, there are two
things you need to know every time your script is running – where it was run from and
which user ran the script.

These two pieces of information are crucial, since they define how we are going to
reference the files we need and what permissions we will have from inside of the script.

Our next task is going to be to create a script that will show us how to deal with all of this.
What we are going to do is test whether the script can read and write the root directory
and whether the directory even exists. The reference we are going to make to this
directory is going to be relative, so we are going to presume that our script is being run
from the / directory, which is usually false. Then, we are going to try and run the script in
different directories and under different users, comparing the results:

#!/usr/bin/bash

testing permissions and paths

if [-d root]

 then

The test-if loop 311

 echo root directory exists!

 else

 echo root directory does NOT exist!

fi

if [-r root]

 then

 echo Script can read from the directory!

 else

 echo Script can NOT read from the directory!

fi

if [-w root]

 then

 echo Script can write to the directory!

 else

 echo Script can not write to the directory!

fi

As you can see, we are basically testing for three different conditions. First, we are trying
to see whether the directory exists at all and, after that, whether the script has read and
write permissions.

First, we are going to try and run this as the current user in the directory that the script is
created in. Then, we are going to go to the / directory and run it from there:

demo@cli1:~/scripting$ bash testif2.sh

root directory does NOT exists!

Script can NOT read from the directory!

Script can not write to the directory!

demo@cli1:~/scripting$ cd /

demo@cli1:/$ bash home/demo/scripting/testif2.sh

root directory exists!

Script can NOT read from the directory!

Script can not write to the directory!

What does all this tell us? Our first run was unable to find the directory since we were using
a relative path in the script. This makes the directory that the script is run from important.

312 Using Loops

Another thing we learned is how our checks work. We can independently check whether
a file or directory exists, and different permissions that the current user has on a particular
file. We are going to show that by running the script under a root user using the
sudo command:

demo@cli1:~/scripting$ cd /

demo@cli1:/$ sudo bash home/demo/scripting/testif2.sh

[sudo] password for demo:

root directory exists!

Script can read from the directory!

Script can write to the directory!

As soon as we change the context, we can see that the same script is not only able to see
that the directory is there but also has full rights to use it.

Now, we are going to completely change our script to demonstrate how we can embed our
checks into one another. Our script will once again test whether the root directory is in
the current directory, but this time, the script is going to check whether it has read and
write rights only if the directory exists. After all, it makes no sense to see whether you can
read a directory that isn't there:

#!/usr/bin/bash

testing permissions and paths

if [-d root]

 then

 echo root directory exists!

 if [-r root]

 then

 echo Script can read from the \
directory!

 else

 echo Script can NOT read from the \
directory!

 fi

 if [-w root]

 then

 echo Script can write to the directory!

 else

The test-if loop 313

 echo Script can not write to the \
directory!

 fi

 else

 echo root directory does NOT exists!

fi

Now, we are going to run it in two directories to see if our script works; the main
difference should be the output. Also, when you have a nested structure such as this one,
always try to keep your indentation consistent. This means that you always should try to
keep commands in the same block indented in such a way that it is immediately obvious
where each command belongs:

demo@cli1:~/scripting$ bash testif3.sh

root directory does NOT exists!

demo@cli1:~/scripting$ cd /

demo@cli1:/$ bash home/demo/scripting/testif3.sh

root directory exists!

Script can NOT read from the directory!

Script can not write to the directory!

We have now seen what can be done with different tests and conditions in bash. The next
topic is similar to this one – the case statement or case loop.

See also
•	 https://www.thegeekdiary.com/bash-if-loop-examples-if-

then-fi-if-then-elif-fi-if-then-else-fi/

•	 https://tldp.org/LDP/Bash-Beginners-Guide/html/sect_07_01.
html

•	 https://ryanstutorials.net/bash-scripting-tutorial/bash-
if-statements.php

https://www.thegeekdiary.com/bash-if-loop-examples-if-then-fi-if-then-elif-fi-if-then-else-fi/
https://www.thegeekdiary.com/bash-if-loop-examples-if-then-fi-if-then-elif-fi-if-then-else-fi/
https://tldp.org/LDP/Bash-Beginners-Guide/html/sect_07_01.html
https://tldp.org/LDP/Bash-Beginners-Guide/html/sect_07_01.html
https://ryanstutorials.net/bash-scripting-tutorial/bash-if-statements.php
https://ryanstutorials.net/bash-scripting-tutorial/bash-if-statements.php

314 Using Loops

The case loop
Up until now, we have dealt with basic commands that allow us to do things we need
when trying to write a script, such as looping, branching, breaking, and continuing
program flow. A case loop, the topic of this recipe, is not strictly necessary, since the
logic behind it can be created using a multi-nested group of individual if commands.
The reason we are even mentioning this is simply because case is something that we are
going to use a lot in our scripts, and the alternative of using if statements is both difficult
to write and read, and complicated to debug.

Getting ready
One could simply say that a case loop or case statement is just another way of writing
multiple if then else tests. Case is not something that can be used in place of
a normal if statement, but there is a common situation in which a case statement makes
our lives a lot less complicated and our scripts much easier to debug and understand. But
before we go into that, we need to understand a little bit about variables and branching.
Once we start using if statements, we are quickly going to realize that they can be used,
more or less, in two distinct ways. The first is the one everyone thinks about when thinking
about an if statement – we have a variable and we compare it to another variable or a value.
This is common and often done in a script. Something a little less common is when we
have to compare a variable to a list of values. This happens most often when we need to sort
things into groups or run a block of code depending on the user input.

User input is probably the most popular reason a case statement is used. In scripts, this
is often used once we start using arguments. Our scripts will have to reconfigure things
based on what arguments the user chose when running the script. We will take a look at
that a little bit later when we start dealing with passing arguments to a script, which will
exclusively use case statements to run appropriate commands.

User menus are another thing that is solved by using case statements; to generalize, each
time a user has a multiple-choice answer to a question, this is going to get handled by
a case statement.

How to do it…
The best way to explain a case statement is by creating an example. Let's say that a user
starts a script, and they have four choices of what they want the script to do. Right now,
we are not prepared to deal with how they will input their choice, so let's just presume that
there is a variable called $1 that contains one of these values – copy, delete, move, and
help. Our script will have to run the appropriate part of the code based on user input.
In fact, this is the way arguments are handled, but we will talk about that later.

The case loop 315

Our first version is going to use the if – then – elif loop:

#!/usr/bin/bash

$1 contains either copy, delete, move or help

if [$1 = "copy"]

 then

 echo you chose to copy!

 elif [$1 = "delete"]

 then

 echo you chose to delete!

 elif [$1 = "move"]

 then

 echo you chose to move!

 elif [$1 = "help"]

 then

 echo you chose help!

else

 echo please make a choice!

fi

This works, but it has two problems. One is that it throws errors if there are no arguments
given, since this means we are comparing a value to a variable without a value. The other
problem is that this is complicated to read, even if we pay extra attention to using the right
indentation. We are going to redo this using a case statement:

#!/usr/bin/bash

$1 contains either copy, delete, move or help

case $1 in

 copy) echo you chose to copy! ;;

 delete) echo you chose to delete! ;;

 move) echo you chose to move! ;;

 help) echo you chose help! ;;

 *) echo please make a choice!

esac

316 Using Loops

The first thing you will notice is how simple and clean this looks. As well as being easier to
write, the code is much easier to read and debug if we need to. There are just two simple
things to pay attention to – the end of the statement block is defined as esac, which is
case spelled backward, similar to how the if statement is terminated by fi. Another
thing is that you have to use ;; to terminate a line, since that's what's used to delimit
choices in the case loop.

When matching values, you can also use limited regular expressions; this is the reason that
the * glob is used to symbolize zero or more characters.

How it works…
Now that we know a lot more about scripting, we are going to do a simple script that
searches for a string in a directory and lets us know what happened. We don't care about
where the text is; we just want to know whether there is text that we used somewhere in
the directory we ran our script in.

The things we need to know before we even start are as follows:

•	 $1 is going to hold a string value that is going to be the text we are searching for.

•	 $? holds the exit value of a command that was just completed in the script.

•	 grep as a command returns either 0 if it found something, 1 if it didn't, or 2 if
there was an error.

•	 There is a special device called /dev/null that can be used if we need to silence
some output.

Thanks to the case statement, this is a trivial task:

#!/usr/bin/bash

$1 contains string we are searching for

grep $1 * &> /dev/null

case $? In

 0) echo Something was found! ;;

 1) echo Nothing was found! ;;

 2) echo grep reported an error! ;;

esac

The case loop 317

For the last script, we are going to use case to combine another script from this chapter
that was testing a directory and put it into a larger script. We are going to create a script
that will be given a command and a filename as arguments. The command is going to be
either check, copy, delete, or help. If we specify either copy or delete, the script
will check whether it has the permissions to do the task and then the echo command that
it would normally call.

If we specify check, the script is going to check for permissions on a given file:

#!/usr/bin/bash

$1 contains either check, copy, delete or help

#script expects two arguments: a command and a file name

case $1 in

 copy)

 echo you chose to copy!

 if [-r $2]

 then

 echo Script can read the file use cp $2 ~ to copy to \
your home Directory!

 else

 echo Script can NOT read the file!

 fi

 ;;

 delete)

 echo you chose to delete!

 if [-w $2]

 then

 echo Script can write the file, use rm $2 to \
remove it!

 else

 echo Script can NOT read the file!

 fi

 ;;

 check)

318 Using Loops

 if [-f $2]

 then

 echo File $2 exists!

 if [-r $2]

 then

 echo Script can read $2!

 else

 echo Script can NOT read $2!

 fi

 if [-w $2]

 then

 echo Script can write to $2!

 else

 echo Script can not write to
$2!

 fi

 else

 echo File $2 does NOT exist!

 fi ;;

 help)

 echo you chose help, please choose from check, copy or \
delete! ;;

 *) echo please make a choice, available are copy \
check delete and help!

esac

What we have done here is combine everything that we have done so far into a script that
actually does something. The only thing we haven't mentioned before is $2 as the second
argument in the script. In this case, we use it to get the filename we need to run the
commands. This is how it all looks when run from the command line:

demo@cli1:~/scripting$ bash testcas4.sh check testfile.txt

File testfile.txt exists!

Script can read testfile.txt!

Script can write to testfile.txt!

demo@cli1:~/scripting$ bash testcas4.sh check testfile.tx

File testfile.tx does NOT exist!

Logical looping with and, or, and not 319

See also
When it comes to using case in your scripts, you will soon realize that a lot of examples
are copied and pasted between sites. The following links are two good sources:

•	 https://tldp.org/LDP/Bash-Beginners-Guide/html/sect_07_03.
html

•	 https://www.shellhacks.com/case-statement-bash-example/

Logical looping with and, or, and not
There is no way to escape logic when it comes to computers. We already dealt with some
things you can do with evaluating conditions, but there is a lot more that can be done
in bash.

In this recipe, we are going to deal with different logical operators that help us with
scripting in general. First, we are going to deal with what can be done on the command
line, and then we are going to use that in scripts.

Getting ready
First, let's quickly talk about logic operators. So far, we mentioned expressions that have
a value of true and false. We also mentioned a lot of different expressions that are built
into bash, since they provide functionality crucial for everyday work on the command
line. Now is the time to talk about logical operators that help us combine expressions and
create complex solutions. We are going to start with the usual operators:

•	 && (the logical AND)

•	 || (the logical OR)

The interesting thing about these is that they can be used directly on the command line.
The command line in bash basically has four ways of executing commands. One is to run
them one by one on each line. This is the usual way we work in interactive mode.

How to do it…
Sometimes, we need (or want) to run multiple commands on one line. This is mostly done
by using ; to separate commands, such as the following:

demo@cli1:~/scripting$ pwd ; ls

/home/demo/scripting

320 Using Loops

backupexample.sh errorfile forbreak.sh forcontinue.
sh forloop1.sh helloworld.sh helloworldv1.sh outputfile
readfile.sh testcas1.sh

As we can see, it is exactly the same as if we ran each command by itself, but shell just
executes them in a row. We already used this when we tested different expressions using
the test command. We needed to check what the exit status was of that command,
so we always used echo directly after running the test.

Sometimes, however, we can use a little logic to create shortcuts. This is where logical
operators come into play. The remaining two ways to run multiple commands use them
to not only run the command but also to run them conditionally.

Imagine we want to perform a command after we make some kind of test – for example,
we want to open a file but only if the file actually exists. We could write an if statement
here, but it would make absolutely no sense to complicate things like that. This is where
we can use the logical AND:

demo@cli1:~/scripting$ [-f outputfile] && cat outputfile

Hello World!

demo@cli1:~/scripting$ [-f idonotexist] && cat outputfile

demo@cli1:~/scripting$

In general, using && between commands tells bash to run the command on the right
only if the command on the left succeeded. In our example, this means that we have a file
named output in our directory. On the left, we are doing a quick test if this file exists.
Once this is successful, we run cat to output the file contents.

In the second example, we intentionally used the wrong filename, and the cat command
hasn't been run, since the file is not there.

Another logical operand we can use is the logical OR. The operator to use is || in the
same way as before. This operator instructs bash to run the command on the right only if
the command on the left failed:

demo@cli1:~/scripting$ [-f idonotexist] || cat outputfile

Hello World!

demo@cli1:~/scripting$ [-f outputfile] || cat outputfile

demo@cli1:~/scripting$

This is the exact opposite of the previous example. Our cat command ran only when the
test failed. A structure such as this is sometimes used in scripts to create fail-safes or to
quickly run things such as updates.

Logical looping with and, or, and not 321

What is nice is that this enables us to immediately do something, depending on the test:

demo@cli1:~/$[-f outputfile] && echo exists || echo not \
exists

Exists

demo@cli1:~/$[-f idonotexist] && echo exists || echo exists \
not

exists not

These operators also exist in test expressions, allowing us to create different conditions
that would otherwise require multiple if statements.

How it works…
Testing a condition is hopefully now completely familiar to you. We are going to try and
combine a few of them to explain what different operators can do. For example, if
we want to quickly check whether a file exists and is readable, we can do it by either
testing whether it is readable or explicitly combining those two things into one statement:

demo@cli1:~/$ [-f outputfile] && [-r outputfile] ; echo \
$?

0

These tests are going to be most useful when dealing with strings and numbers. For
instance, we can try and find whether a number is within an interval in a script, as follows:

#!/usr/bin/bash

testing if a number is in an interval

if [$1 -gt 1]

 then

 if [$1 -lt 10]

 then

 echo Number is between 1 and 10

 else

 echo Number is not between 1 and 10

 fi

 else

 echo number is not between 1 and 10!

fi

322 Using Loops

We are going to run this script, but before we even do that, we can see that it looks
complicated, more than it should be. It is not just the fact that we have to use two if
statements to make sure that we handle both parts of the outside interval; this script
demands a lot of explanations, even though it is only a couple of lines long. Does it work?
Yes, as we can see here:

demo@cli1:~/scripting$ bash testmultiple.sh 42

Number is not between 1 and 10

demo@cli1:~/scripting$ bash testmultiple.sh 2

Number is between 1 and 10

demo@cli1:~/scripting$ bash testmultiple.sh -1

number is not between 1 and 10!

Now, we are going to use logical operators to optimize our script:

#!/usr/bin/bash

testing if a number is in an interval

if [[$1 -gt 1 && $1 -lt 10]]

 then

 echo Number is between 1 and 10

 else

 echo Number is not between 1 and 10

fi

We are using double brackets here because we have to. There are multiple ways to achieve
the same goal, and there are some older versions of the syntax, but it is best practice to use
double brackets when dealing with multiple expressions.

See also
Dealing with logical operators is, in part, complicated because there are so many of them.
You can find much more information here:

•	 https://linuxhint.com/bash_operator_examples/#o23

•	 https://opensource.com/article/19/10/programming-bash-
logical-operators-shell-expansions

https://linuxhint.com/bash_operator_examples/#o23
https://opensource.com/article/19/10/programming-bash-logical-operators-shell-expansions
https://opensource.com/article/19/10/programming-bash-logical-operators-shell-expansions

11
Working with

Variables
Variables are one of the most important things in programming. Being able to store and
then use values in our code is as important as being able to make decisions in our scripts
using if statements.

We will cover the following recipes in this chapter:

•	 Using shell variables

•	 Using variables in shell scripting

•	 Quoting in the shell

•	 Performing operations on variables

•	 Variables via external commands

We are going to cover the most important things you need to know about variables,
but as with almost everything else, this chapter will require you to practice.

324 Working with Variables

Technical requirements
The machine you can use for these recipes is the same as in the previous chapters on
scripting—basically, anything that can run bash is going to work. In our case, we are using
a virtual machine (VM) with Linux and Ubuntu 20.10 installed.

So, start your VM, and let's get cracking!

Using shell variables
Variables are something that you probably understand, even if only conceptually. We are
not talking about programming here; our everyday life is full of variables. Basically,
a variable is something that holds a value and that can provide us with that value once
we need it.

Getting ready
In everyday language, we could say an activity such as driving is full of variables. This
means that the weather temperature, the amount of ambient light, the quality of the road
surface, and many other things are going to change as you move along. Even though
they are changing all the time, it is important that at any given point, we are able to see
what the actual value of the weather is, what is the actual value of the temperature,
how much light we have, and how the road behaves or how it is structured.

This is what we mean by variables and looking variables up.

As soon as we establish what the weather is actually like, it stops being a variable since it
has an actual value. Variables work the same way when we're talking about programming.
What we do is we give a name to a space that we are going to use to store some value.
In our code, we refer to this space to store and read values from it. Depending on the
language, this space can hold different things, but right now, we just refer to the variable
as something that can hold a value.

In bash, variables are a lot simpler than in many other languages, and they can basically
hold two different types of values. One is a string; it can be any sequence of numbers and
letters, and it can include special characters.

Another one is a number, and the only reason that there is a difference between those two
types of variables is that some operators and some operations are different when we are
dealing with strings or dealing with numbers.

Using shell variables 325

How to do it…
When you start to work with variables, there are two things that you need to learn.

First, you need to know how to assign a value to a variable. This is usually called assigning
a variable or instancing a variable. A variable has a name and a value. In bash, when
we want to create a variable, we are simply going to choose a name and assign a value to it.
After that, our shell knows that this is a variable, and it keeps track of the value or values
we assign to it. Before we assign a value, a variable simply does not exist, and any reference
to it will be invalid.

So, how do you choose a name for a variable?

Every variable has its own name, which is used to reference a variable inside the script
or inside your working environment in the shell. The choice of name is completely up to
you. The name should be something that you can easily remember and something that
you will not confuse with other variables. A good choice is usually either something that
identifies what purpose the variable has or a completely abstract name that will hint at
what the meaning is of the variable.

One thing that you should always avoid using when naming variables are keywords,
especially those that already have a meaning in bash. For example, we cannot use
continue as a variable name since this is the name of a command. This will inevitably
generate an error since the shell is going to get confused about what to do with the
variable itself.

We mentioned environment variables. In an interactive shell, there are quite a few
variables that are used to store information about your environment. This information
describes different things that are required by different applications—things such as the
username, your shell, and so on.

Let's do a few quick examples. We assign a variable exactly as we mentioned, by giving
a value to a name. In our case, we are going to assign a value string value to a variable
called VAR1:

demo@cli1:~$ VAR1=value

That was easy. Now, let's read from the variable we just created:

demo@cli1:~$ echo $VAR1

value

As we can see, in order to read the variable, we need to prefix the variable name with the
$ character. Also, we need to use the same case in the variable name that we used when
creating the variable itself, as names are case-sensitive.

326 Working with Variables

If we don't do that, we are not going to get any useful value out of our echo command,
but be very aware that neither of these examples gave us any errors:

demo@cli1:~$ echo var1

Var1

demo@cli1:~$ echo $var1

demo@cli1:~$ echo VAR1

VAR1

We made these errors on purpose to make a few small points. When using an echo
command, we tell it to display a string. If the string contains a variable name, it has to be
prefixed; otherwise, the echo command is just going to output it directly as it was written,
without the variable value.

As we said, names are case-sensitive, but if we make a mistake, there won't be any errors
displayed—we will simply get an empty line. This can be changed, and we will deal with
this behavior later when we start using variables in scripts.

Let's now do something else—we'll try to use our variable in a script. Remember that
we assigned a variable in the shell, but now, we are going to reference it in a script.

The script is going to be the simplest possible—create a file, name it referencing.sh,
and enter the following code:

#!/bin/bash

#referencing variable VAR1

echo $VAR1

What happens when we run it? Let's have a look:

demo@cli1:~$ bash referencing.sh

demo@cli1:~$ echo $VAR1

value

We see we have a problem. When we are reading the variable from the command line,
everything is fine, but this variable does not exist inside our scripts. The reason is not as
simple as it seems, though. We mentioned contexts and environment variables before.
Each variable exists in the current environment and is not implicitly inherited by any
command. When we start a script, we are actually creating a new environment and a new
context that inherits all the variables that are marked as inheritable. Since we just assigned
a value to our variable and didn't do anything else to it, this variable will remain visible
only to our shell, and not to any commands or scripts that we run from it.

Using shell variables 327

To fix this, we will need to export a variable. Exporting means flagging our variable to tell
the environment that we want the value of the variable to be available to the commands
and scripts that are running as its child processes. To do that, we need to use a command
called export. The syntax couldn't be simpler:

demo@cli1:~$ export VAR1

demo@cli1:~$ bash referencing.sh

value

demo@cli1:~$

As we can see, our script now knows the value of our variable, and it got inherited from
the bash shell.

If we just type in export, we will see a list of all the variables that are exported and
available to our scripts:

Figure 11.1 – Different exported variables exist for every user

328 Working with Variables

Notice one important thing: every line starts with the declare -x command,
followed by a variable name and value. This points us to another extremely useful
command: declare.

When we are creating a variable and giving it a value, we are using only part of what can
be done with variables in bash. Remember how we exported the variable? Variables have
attributes that are additional information about how the variable should behave. Having
a variable being exported is one of the attributes, but we can also make a variable
read-only, change the variable name case, and even change the type of information
that the variable holds. For all that, we use declare.

How it works…
The only thing left to do is to give you more information about environment variables.

The environment can be, depending on your system and its configuration, huge.
It contains a lot of things, and it is different from system to system because variables
in the environment and their values are dependent on different programs and options
installed on your particular system. For example, if you use a shell other than bash, you
may have different variables specific to that shell. If you use GNU Network Model Object
Environment (GNOME) or K Desktop Environment (KDE) as your graphical user
interface (GUI), there are different variables that each have a specific meaning. To see
what your environment looks like, you can use either declare -p or env.

The difference between those two is very important. The declare statement is a bash
built-in command. It will read every variable there is in the environment and show you all
of them. env, on the other hand, is an application. It will run, create its own environment
to run in, and then show you all the variables in that environment:

Using shell variables 329

Figure 11.2 – The environment can be checked at least two ways, but we usually use the env command

We are going to mention some of those most important:

•	 USER—Holds the username of the current user. This is extremely important if you
need to check under which user the script is running. An alternative to this is to run
the whoami command.

•	 PWD—Holds the absolute path to the current directory. This is also important to any
script since it can help you find which running directory the script was called from.
An alternative to this command is pwd.

•	 LOGNAME—Provides the same information as USER, specifically the username of
the logged-on user, hence the name.

•	 SHELL—Contains the entire path to the current user's login shell. This is not the
same as the running shell; we can run any shell and work from it, and this variable
returns what our login shell is set to. This value comes from the /etc/passwd file.

330 Working with Variables

•	 SHLVL—When you run your shell initially, you are one level into your
environment. What this means is that there is nothing else running above your
shell—or, to be more precise, your shell was started by your system directly. As you
work, you can run other shells, scripts, and even shells inside shells. Each time you
run a shell inside your shell, you increase your SHLVL. This is useful when trying to
find out whether your script was run from another shell or directly by the system.

•	 PATH—PATH contains a list of directories that your shell is going to look in when
trying to find any command that you try to execute. Since almost everything on
Linux is a command, this piece of information is crucial—if a certain path is not
in the PATH variable, it won't be searched, and commands from it can only be
executed if you reference them directly. This is useful if you don't want to reference
commands directly all the time, or you have some reasons to prefer a command in
one directory over another.

Before we go on to the next recipe, there is another way to get variables listed, and that is
by using set without any parameter:

Figure 11.3 – set not only shows you variables but is also capable of configuring the shell

Of course, since there is a lot of variables active at any given time, it is much better to use
some sort of filtering:

Using variables in shell scripting 331

Figure 11.4 – The only way to quickly find things is to use grep

See also
We are going to give you just the place to start since this topic is massive:

•	 https://tldp.org/HOWTO/Bash-Prog-Intro-HOWTO-5.html

•	 https://ryanstutorials.net/bash-scripting-tutorial/bash-
variables.php

Using variables in shell scripting
Variables sometimes look simple enough—they are there to enable you to put a changing
value in your code. The problem is that in this simplicity, there are a couple of things you
should know about where you actually place a variable—in something called a context.
We are going to deal with that in this chapter.

Getting ready
When we're talking about scripting, things are a little different than they are when
we are working in an interactive environment. Every environment variable that is available
to you when you use the interactive shell is also available to you in the script. There is,
however, one important thing you must always remember. As we said earlier, your script is
running in a certain context. This context is defined by the user that has run the script. In
a previous chapter, we wanted you to make sure that you have appropriate permissions to
do tasks that you need in the script.

https://tldp.org/HOWTO/Bash-Prog-Intro-HOWTO-5.html
https://ryanstutorials.net/bash-scripting-tutorial/bash-variables.php
https://ryanstutorials.net/bash-scripting-tutorial/bash-variables.php

332 Working with Variables

In this recipe, we are going to make sure you understand this also applies to variables.
Unless we have explicitly set the variable in our script, we need to make sure that the one
we got from the environment is something that we expect. Also, a lot of times, we will
simply check if the variable is there in the first place since it may not be exported from the
shell and will hence be invisible to us.

There is also a special class of variables that are set right at the moment the script is run and
contain a certain amount of information very important to successfully running a script.

What we are going to do is to start with how the script interacts with the shell
using variables.

How to do it…
We are, as always, going to start simple. First, we are going to do the most basic thing
we can do—Hello World, but with variables:

#!/bin/bash

define a variable

STRING="Hello World!"

output the variable

echo $STRING

This is basically what we mentioned before but in a script. We have created a variable,
assigned it a value, and then used that value to output text.

Now, let's try something more useful. When writing scripts, there are things that we need
to calculate or prepare in some way so that we can use them in different parts of the script.
Variables are a good way to do this clearly so that they can be reused in the code.

For example, we can create a string that will contain today's date. We can then use
a variable instead of running the appropriate command every time to create a date in
a given format over and over again:

#!/bin/bash

we are using variable TodaysDate to store date

TodaysDate=$(date +%Y%m%d)

now lets create an archive that will have todays date in \
the name.

tar cfz Backup-$TodaysDate.tgz .

Using variables in shell scripting 333

After we run this one, the output is going to be interesting:

demo@cli1:~/variables$ bash varinname.sh

tar: .: file changed as we read it

demo@cli1:~/variables$ ls

Backup-20210920.tgz varinname.sh

We can see that the file was created correctly and that our date looks OK. What we didn't
expect was the error. The reason for the error is simple—tar starts creating files by first
creating an output file and then reading the directory it must archive. If the archive file
is created in the directory it is trying to archive, this means that the tar command will
try to run on the archive itself, creating this error. This is normal in these circumstances
but try to avoid doing this archive loop. The solution is to archive to a place outside of the
directory we are archiving.

Now for the fun part—passing arguments to your scripts. Up to this point, we have made
scripts that were completely unaware of their surroundings. We need to change that since
we need to be able to both pass information to our script and make our script report back
what has happened.

Any script, regardless of the way it was executed, can have arguments. This is so common
that we usually don't even think about it. Arguments are basically strings that come after
the script name when we execute the script.

This is precisely how arguments work in scripts—the shell takes whatever is in the
command line that started the script and passes it along using a variable that has
a number as the name. Here's an example:

#!/bin/bash

we are going to read first three parameters

and just echo them

echo $1 $2 $3

we will also use $# to echo number of arguments

echo Number of arguments passed: $#

Now, here's how we can run it in a few different ways:

demo@cli1:~/variables$ bash parameters.sh

Number of arguments passed: 0

334 Working with Variables

If we don't give it any parameters, everything works as well as if we give it three
parameters we expect:

demo@cli1:~/variables$ bash parameters.sh one two 3

one two 3

Number of arguments passed: 3

But let's try to use more than three:

demo@cli1:~/variables$ bash parameters.sh one two 3 four

one two 3

Number of arguments passed: 4

demo@cli1:~/variables$ bash parameters.sh one two 3 four five

one two 3

Number of arguments passed: 5

We see a problem here. Variables that hold the parameter value are positional, and it
is up to us to correctly reference everything in the parameter line. The way to do it is to
read the number of arguments variable, and then create a loop of some kind to read
the arguments.

You may be wondering: What about $0? Programmers tend to count from zero, not from
one, and this is no exception—there is a variable called $0 and it contains the name of
the script itself. This is extremely convenient for scripting. We are creating a script called
parameters1.sh and running it:

#!/bin/bash

reading the script name

and just echo

echo $0

As we can see, this script could not be simpler. But in this simplicity is one neat trick:

demo@cli1:~/variables$ bash parameters1.sh

parameters1.sh

demo@cli1:~/variables$ cd ..

demo@cli1:~$ bash variables/parameters1.sh

Variables/parameters1.sh

demo@cli1:~$ bash /home/demo/variables/parameters1.sh

Using variables in shell scripting 335

/home/demo/variables/parameters1.sh

demo@cli1:~$

The point we are trying to make here is that the variable holds a value that contains
not only the name of the script but also the entire path that was used to run the script.
This can be used to determine how the script was run if we are running from crontab
or another script.

To continue, we need to learn about a new concept—the shift statement.

There are two ways to parse arguments to a script—one is by using a loop that is going
to run for $# iterations, which means that we are going to run for each argument that
the script has once. This is a completely valid way, but there is also another, rather more
elegant way to deal with this problem. shift is an in-built statement that enables you to
parse your arguments one at a time without knowing how many of them there are.

How it works…
The way shifting works is completely intuitive once you understand what it does.
Let's quote from the help page:

demo@cli1:~/variables$ help shift

shift: shift [n]

 Shift positional parameters.

 Rename the positional parameters $N+1,$N+2 ... to $1,$2 ...
If N is

 not given, it is assumed to be 1.

 Exit Status:

 Returns success unless N is negative or greater than $#.

Basically, we only need to read the $1 parameter and then invoke shift. The command
is going to delete this parameter and shift all of them to the left, making the next one $1,
and so on.

This enables us to do these kinds of things:

#!/bin/bash

while ["$1" != ""]; do

 case $1 in

 -n | --name)

 shift

336 Working with Variables

 echo Parameter is Name: $1

 ;;

 -s | --surname)

 shift

 echo Parameter is Surname: $1,

 ;;

 -h | --help) echo usage is -n or -s followed by a \
string

 exit

 ;;

 *) echo usage is -n or -s followed by a \
string

 exit 1

 esac

 shift

done

We need to explain a few things here. The reason we are using shift instead of a for
loop is that we are parsing arguments that can be different options. Our script has three
possible switches: -n that can be written down as —name, -s that can also be used as
-surname, and -h or —help. After the first two arguments, our script expects to have
some string. If none of the arguments is used or we choose -h, our script is going to write
a small reminder on the usage parameters.

If you tried to do this in a for loop, you would have a problem—we would need to read
the option, store it somewhere, read the option parameters in the next loop, and then
loop again, trying to decide if what follows is an option or an argument.

By using shift, things are much simpler—we read an argument, and if we find any option
we shift it; the parameters then become stored in $1 and we can print and use them.

If we don't find an option, we simply ignore what is inside the variable.

Quoting in the shell 337

See also
The topic of using arguments is very complicated and is needed in almost every script.
So, there are open source solutions for that, such as these:

•	 https://dev.to/unfor19/parsing-command-line-arguments-in-
bash-3b51

•	 https://www.baeldung.com/linux/use-command-line-arguments-
in-bash-script

Quoting in the shell
Quotes are something that we take for granted, not only in Linux but also in a lot of other
applications. In this recipe, we are going to deal with how quotes work, which quotes to
use, and how to make sure that your quoted part of the script behaves as you intended.

Getting ready
Using quotes is incredibly important in Linux, not only in shell scripts but also in
any other application that uses text. In this context, quotes behave pretty much the same
way as brackets do in mathematical expressions—they offer us the way to change how
an expression is evaluated. Almost all command-line tools use a space as a delimiter that
tells the tool where one string ends and another one begins. You probably ran into this
when you tried to use a file or a directory that has a space in its name. Usually, we solve
this problem by using an escape character (\), but it makes it much easier to read if
we apply quotes.

This is not the only reason we use quotes, so we are going to pay much more attention to
them right now.

First, we must define different quotation symbols that we can use and outline what
they mean:

•	 Double quotation marks: """"

Used to quote strings and stop a shell from using a space as a delimiter. This
quotation style will use shell expansion characters such as $, `, \, and ! as
expansion characters, not quoting them but instead replacing them in the normal
way. You will use this quotation style all the time.

https://dev.to/unfor19/parsing-command-line-arguments-in-bash-3b51
https://dev.to/unfor19/parsing-command-line-arguments-in-bash-3b51
https://www.baeldung.com/linux/use-command-line-arguments-in-bash-script
https://www.baeldung.com/linux/use-command-line-arguments-in-bash-script

338 Working with Variables

•	 Single quotation marks: '

These behave almost exactly the same as double quotes, but with an important twist.
Everything inside single quotation marks is treated as is and will not be changed
in any way. Even if you use special characters, this will have no influence—they are
going to be used as part of a string.

•	 Backticks: "`"

The backtick character is sometimes considered a quote and often mistaken for
a single quote.Note that this is a completely separate character—on a standard
United States (US) keyboard, you can find it in the upper row, on the key left of
the number 1 key, furthest to the left. The difference is in the slope of the character,
so the name backtick really means that it is oriented differently than the quote
character. In the shell, it is used to run a command—or, to be more precise,
to run a command and then use its output in its place.

Even though backticks are not strictly quotes, in most learning materials you may find
them mentioned as such. This is either because they look like quotes, or because they are
the most probable character to get changed automatically to a quote in any text editor.

How to do it…
To understand quotes, we are going to make a few script examples, starting with a simple
if statement, just to remind you what it looks like. We are going to create a file called
quotes1.sh using this code:

#!/bin/bash

directory="scripting"

does the directory exist?

If [-d $directory]; then

 echo "Directory $directory exists!"

else

 echo "Directory $directory does not exist!"

fi

Once we run this, the results are as we expected:

demo@cli1:~/variables$ bash quotes1.sh

Directory scripting does not exist!

Quoting in the shell 339

Now, let's just make one small change in quotes1.sh and save it as quotes2.sh:

#!/bin/bash

directory='scripting'

does the directory exist?

if [-d $directory]; then

 echo 'Directory $directory exists!'

else

 echo 'Directory $directory does not exist!'

fi

In this case, when we run the command, the result is going to be quite different. Since
we used single quotes, the shell is not displaying our variable, and instead, we are seeing
our actual variable name with its prefix:

demo@cli1:~/variables$ bash quotes2.sh

Directory $directory does not exist!

There is also a special case that we need to mention, and that is when we use double
quotes inside single quotes and the other way around. In the case of double quotes being
outside, they will negate the single quotes, so we get the usual expansion of variables.
This time, create a file called undeterdouble.sh and get this code typed into it:

#!/bin/bash

directory='scripting'

does the directory exist?

echo "'Directory $directory is undetermined since we have no \
logic in this script'"

When we run it, we get this:

demo@cli1:~/variables$ bash undeterdouble.sh

'Directory 'scripting' is undetermined since we have no logic
in this script'

Notice that the shell inserted another set of quotes to separate the variable value and the
rest of the string.

340 Working with Variables

If we turn it the other way around, we are going to end up with everything being quoted,
since the single quotes mean just that:

#!/bin/bash

directory='scripting'

does the directory exist?

echo '"Directory $directory is undetermined since we have no \
logic in this script"'

Notice there are no additional quotes in the string:

demo@cli1:~/variables$ bash undetersingle.sh

"Directory $directory is undetermined since we have no logic in
this script"

How it works…
The shell needs to know when to expand variables and when not to do this. Spaces are also
a big problem in scripting—more often than not, your script is going to completely miss
some part of the string because it will cut it up into single words divided by spaces.

Both quotes have their uses, but you are going to be using double quotes most of the
time. The reason is that you will usually have a string with spaces but also with different
variables in it. By using double quotes, you will have your variables expanded while
keeping the text.

See also
When it comes to single and double quotes, there are only a couple of resources since
they are straightforward:

•	 https://bash.cyberciti.biz/guide/Quoting

•	 https://www.gnu.org/software/bash/manual/html_node/
Quoting.html

Performing operations on variables
Variables are great since they can hold any value that we can think of. Often, we need
more than just holding a value inside a variable. In this recipe, we are going to deal with
a lot of different things that we can do to a variable, sometimes changing it and sometimes
completely replacing it.

https://bash.cyberciti.biz/guide/Quoting
https://www.gnu.org/software/bash/manual/html_node/Quoting.html
https://www.gnu.org/software/bash/manual/html_node/Quoting.html

Performing operations on variables 341

Getting ready
In order to be able to change variables, you will need to understand one simple concept.
bash cannot change the variable itself; we are going to mention this a little later, but if you
need to change something in a variable, you will have to reassign it.

How to do it…
There is a lot of things that can be done to a variable. Sometimes, we want to know more
about what it contains; sometimes, we need to change something in order to use it later;
or, we may simply want to know if the variable even has a value.

In this recipe, we are going to use the command line a lot since it makes explaining things
much easier.

Before we begin, we are going to introduce one thing we haven't mentioned yet: arrays.

An array is a variable that holds separate strings divided by spaces. You could say
it's a string itself, but for a lot of reasons to do with flexibility, bash is able to address
different parts of the array individually, keeping the values in one variable.

We are going to define an array that will have four strings in it. The way to define
a variable is by using brackets and enclosing strings inside them:

demo@cli1:~/variables$ TestArray=(first second third fourth)

Now, we can see how many elements there are in our array. This is where things get a little
strange. Remember when we said that counting in bash starts at zero?

demo@cli1:~/variables$ echo ${#TestArray[@]}

4

We see that we got the right information—our array has exactly four elements. The way
we got this was by using curly brackets together with some special characters. Our
expression starts with $ {, which tells bash that we are going to do something with an
array. Then comes the # sign, which means that we are expecting a count of something,
either the length or number of elements. After that, we have our array name followed
by square brackets and the @ sign inside brackets. In shell syntax, this tells bash that
we want all elements in the array.

Translated into plain English, this command says: show me the count of how many
elements there are in the TestArray array.

342 Working with Variables

But beware—things are extremely sensitive when it comes to syntax. For example, if you
omit the [@] part, this is a completely valid command, but it gives you also completely
different information:

demo@cli1:~/variables$ echo ${#TestArray}

5

The number we get is actually the length of the first string in the array, not the array itself.
This is because if we try to just use the array name, we are going to get only the first string
as a result:

demo@cli1:~/variables$ echo ${TestArray}

first

To avoid this, we should always use square brackets and a number inside them. This is the
right way of referencing the positions of strings in our array. Have in mind that the first
string has an index of 0:

demo@cli1:~/variables$ echo ${TestArray[2]}

third

demo@cli1:~/variables$ echo ${TestArray[0]}

first

demo@cli1:~/variables$ echo ${TestArray[1]}

second

demo@cli1:~/variables$ echo ${TestArray[@]}

first second third fourth

Now that we have seen how to reference arrays and their parts, let's see if a variable even
exists and what is the way to check its length. We already know how to do that—we just
need to use ${#variablename} to have the shell output the length:

demo@cli1:~/variables$ TestVar="Very Long Variable Contains \
Lots Of Characters"

demo@cli1:~/variables$ echo $TestVar

Very Long Variable Contains Lots Of Characters

demo@cli1:~/variables$ echo ${#TestVar}

46

As we can see, since we put a string in the quotes, our variable contains all the spaces
and characters in a single string. The length is then correctly calculated.

Performing operations on variables 343

What about checking if a variable exists by looking at its length?

demo@cli1:~/variables$ echo $VariableThatDoesNotExist

demo@cli1:~/variables$ echo ${#VariableThatDoesNotExist}

0

The length is in this particular case 0. If you are not used to this kind of calculation, you
will probably expect not to get a valid number but to have the shell report that the variable
is not defined, but bash does it differently.

The next thing we can do is do substitutions of variables. An extremely useful thing is
being able to check if a variable has a value, and if it doesn't have a value, just substitute
another value in its place. In other words, before you use a variable, always make sure
it has a value since bash is by default going to return an empty result if the variable is
not defined. Here's an example:

demo@cli1:~/variables$ echo ${TEST:-empty}

empty

demo@cli1:~/variables$ echo $TEST

demo@cli1:~/variables$ TEST=full

demo@cli1:~/variables$ echo $TEST

full

demo@cli1:~/variables$ echo ${TEST:-empty}

full

What we are doing here is testing if the TEST variable has a value. If not, we are going to
output empty as a string. As soon as our variable is set, the output is going to revert to the
value of the variable.

How it works…
The things we have mentioned up to now were simple substitutions of a whole variable.
What is much more common is having to change something inside a variable. This can
be done using a special syntax. What we can do is extract strings from our variable. This
is not going to change the variable itself; instead, we need to save this string into another
variable if we need it for something later. The syntax we are going to use is shown here:

${VAR:OFFSET:LENGTH}

344 Working with Variables

VAR is the variable name. OFFSET and LENGTH are self-explanatory—they basically mean
take this many characters starting from this exact position. The easiest way to explain this
functionality is to show you a couple of examples:

demo@cli1:~/variables$ echo $TestVar

Very Long Variable Contains Lots Of Characters

demo@cli1:~/variables$ echo ${TestVar:5:4}

Long

demo@cli1:~/variables$ echo ${TestVar:5:13}

Long Variable

demo@cli1:~/variables$ echo ${TestVar:5}

Long Variable Containg Lots Of Characters

demo@cli1:~/variables$ echo ${TestVar:5:}

demo@cli1:~/variables$ echo ${TestVar:5:-4}

Long Variable ContainsLots Of Charac

demo@cli1:~/variables$ echo ${TestVar:5:-10}

Long Variable Contains Lots Of

Notice that we can also use negative numbers. If we do that, we are going to get the part of
the string from the given offset up to the last X characters, X being the negative number
we used.

The last thing we wanted to show you is replacing patterns in variables. For that, we use
this syntax:

${VAR/PATTERN/STRING}

The same things apply as when we talked about extracting parts of the variable—we are
not changing the variable itself, we are just modifying the output:

demo@cli1:~/variables$ echo ${TestVar/Variable/String}

Very Long String Contains Lots Of Characters

demo@cli1:~/variables$ echo $TestVar

Very Long Variable Contains Lots Of Characters

Variables via external commands 345

See also
Variable operations contain a lot more possibilities. Check them out here:

•	 https://tldp.org/LDP/Bash-Beginners-Guide/html/sect_10_03.
html

•	 https://opensource.com/article/18/5/you-dont-know-bash-
intro-bash-arrays

Variables via external commands
Sometimes, while writing a script, you will have to run a certain command and then
use its output to do something in your script. A complicated way to do that is by using
redirection. We say complicated because once you have to use redirection, you are unable
to use it for other things. You could redirect to different file descriptors, but that is going
to complicate things even more.

Getting ready
You will soon notice that it is hard to separate different things related to shell commands
and functions. The reason for this is that there are a few fundamental rules that then
get repeated in a different way. We are going to mention some of them a few times
through this book, not because we like redundancy but because you need to completely
understand those rules to be able to write good scripts.

This is why shell expansion exists, and there are two ways to put it into action to
accomplish our task.

How to do it…
There are two syntaxes we can use for this. One is by enclosing the command with all its
parameters into backticks, like this: command. Another is by using $(command). Both
have the same result—whatever is the output of the command is going to get translated
into a group of strings and used instead of the original command:

demo@cli1:~/variables$ ls

Backup-20210920.tgz parameters.sh quotes2.sh
undetersingle.sh

parameters1.sh quotes1.sh undeterdouble.sh
varinname.sh

demo@cli1:~/variables$ echo $(ls)

https://tldp.org/LDP/Bash-Beginners-Guide/html/sect_10_03.html
https://tldp.org/LDP/Bash-Beginners-Guide/html/sect_10_03.html
https://opensource.com/article/18/5/you-dont-know-bash-intro-bash-arrays
https://opensource.com/article/18/5/you-dont-know-bash-intro-bash-arrays

346 Working with Variables

Backup-20210920.tgz parameters1.sh parameters.sh quotes1.sh
quotes2.sh undeterdouble.sh undetersingle.sh varinname.sh

demo@cli1:~/variables$ echo `ls`

Backup-20210920.tgz parameters1.sh parameters.sh quotes1.sh
quotes2.sh undeterdouble.sh undetersingle.sh varinname.sh

This was just to show you how this sort of expansion behaves. Using a single echo
command makes no sense; we are going to try with something more complicated:

#!/usr/bin/bash

testing extension on list of files

for name in $(ls) ; do

 for exten in .pdf .txt; do

 echo "Trying $name$exten"

 done

done

What we are doing is getting a list of files from the current directory, and then using this
list to try different extensions. This way of working with files is the most common thing
you will use in your scripts. When iterating like this, there are going to be either files
or lines in the file:

demo@cli1:~/variables$ bash forexpand.sh

Trying Backup-20210920.tgz.pdf

Trying Backup-20210920.tgz.txt

Trying forexpand.sh.pdf

Trying forexpand.sh.txt

Trying parameters1.sh.pdf

Trying parameters1.sh.txt

Trying parameters.sh.pdf

Trying parameters.sh.txt

Trying quotes1.sh.pdf

Trying quotes1.sh.txt

Trying quotes2.sh.pdf

Trying quotes2.sh.txt

Trying undeterdouble.sh.pdf

Trying undeterdouble.sh.txt

Trying undetersingle.sh.pdf

Trying undetersingle.sh.txt

Variables via external commands 347

Trying varinname.sh.pdf

Trying varinname.sh.txt

This shell capability is amazing but it has its own limitations, the main one being that
the output of the command inside brackets has to be clean. By cleanliness, we mean that
it has to contain only the information that can be directly used as parameters. Consider
this minuscule change in our script:

demo@cli1:~/variables$ cat forexpand.sh

#!/usr/bin/bash

testing extension on list of files

for name in $(ls -l) ; do

 for exten in .pdf .txt; do

 echo "Trying $name$exten"

 done

done

We changed two characters in the ls command by adding -l to make it output in a long
format. If we now run it, this is not even remotely what we expected:

demo@cli1:~/variables$ bash forexpand.sh

Trying total.pdf

Trying total.txt

Trying 36.pdf

Trying 36.txt

Trying -rw-rw-r--.pdf

Trying -rw-rw-r--.txt

Trying 1.pdf

Trying 1.txt

Trying demo.pdf

Trying demo.txt

Trying demo.pdf

Trying demo.txt

Trying 494.pdf

Trying 494.txt

We stopped the output here.

348 Working with Variables

How it works…
This way of getting information from one command is probably one of the simplest things
to understand in entire bash scripting. What the shell does is execute the command, get
its output, and then behave as if it is a long list of separate strings using a space as a separator.

This is also the reason why we have to pay special attention to what is going to be the
output of the application. The shell is unable to understand what we want out of it;
it simply parses whatever it sees and treats spaces as separators. What will happen then
rests entirely on you—the command that you embedded this expression in can treat the
end result completely differently.

See also
•	 https://tldp.org/HOWTO/Bash-Prompt-HOWTO/x279.html

•	 http://www.compciv.org/topics/bash/variables-and-
substitution/

https://tldp.org/HOWTO/Bash-Prompt-HOWTO/x279.html
http://www.compciv.org/topics/bash/variables-and-substitution/
http://www.compciv.org/topics/bash/variables-and-substitution/

12
Using Arguments

and Functions
Whenever we are trying to program any kind of application or a script in any
programming language, we should always try to make our code modular and easily
maintainable. The thing that is going to help us a lot in this aspect of creating scripts is
a concept known as a function.

We will cover the following recipes in this chapter:

•	 Using custom functions in shell script code

•	 Passing arguments to a function

•	 Local and global variables

•	 Working with returns from a function

•	 Loading an external function to a shell script

•	 Implementing commonly used procedures via functions

350 Using Arguments and Functions

Technical requirements
For these recipes, we're going to use a Linux machine. We can use any virtual machine
(VM) from our previous recipes. For example, let's say that we're going to use a cli1 VM
as it's the most convenient to use, seeing that it's a command-line interface (CLI)-only
machine. So, all in all, we need the following:

•	 A VM with Linux installed—any distribution (in our case, it's going to be
Ubuntu 20.02).

•	 A bit of time to digest the complexities of using the VI(m) editor. Nano is less
complex, therefore it's going to be easier to learn about that one.

So, start your VM, and let's get cracking!

Using custom functions in shell script code
Up to this point, all we did was create very simple scripts that had a few commands at most.
This is going to be most of your scripts since a lot of work that is solved by scripting is the
simple elimination of repetitive tasks. In this chapter, we are going to work with functions as
a way of creating modules of code in your script. Their main purpose is going to be to avoid
repetitive blocks of code in your scripts, further simplifying the scripts themselves.

Getting ready
When it comes to functions, Bash is a little bit strange. Things you may know about
functions from other languages will look similar in bash but at the same time, completely
different. We are going to start with how a function is defined. To make matters confusing
from the very start, bash uses two very similar notations, one that looks more like
something you would find in other languages, and another that is more in line with the
rest of the bash syntax.

Before we even mention them, have in mind that there is no difference in functionality
or anything else in the way functions are defined—we can use either of them with the
exact same results.

The syntax of the first definition looks like something you would see in any programming
language. There are no keywords—we simply specify the name of the function followed
by two normal brackets, and then define a command block that makes up the function
in curly brackets.

Using custom functions in shell script code 351

There is a big difference between bash and almost every programming language out
there, though. Usually, brackets in any language serve to pass arguments or parameters to
the function. In bash, they are always empty—their only purpose is to define a function.
Parameters are passed in a completely different way:

function_name () {

<commands>

}

Another way to define a function is more in line with the way bash usually works. There
is a reserved word, function; so, in order to define a function, we simply do this:

function function_name {

<commands>

}

This version is more likely to remind you that arguments are provided in a different way,
but that is probably the only difference between the two.

A function must be defined before we can use it. This is completely logical since the shell
runs every line one by one and, to understand a command, has to have it defined as either
an internal command, an external command, or a function. Unlike some other languages,
arguments and return values are not defined in advance—or, to be more precise, are not
defined at all.

How to do it…
As always, we are going to start with a hello world script, but with a little twist.
We are going to use our echo command inside a function, and the main part of the
script is going to run this function. We are also going to create an alternative version of
our function just to show that both ways to define a function work the same.

There are a couple of things to notice in this script—when we define a function, there
is no right way to do it; both ways work, but they work differently. We prefer using the
format that explicitly mentions the function keyword since it immediately draws
attention to this being a definition of a function, but this is just our preference—you can
use whichever format you like:

#!/bin/bash

Hello World done by a function

352 Using Arguments and Functions

function HelloWorld {

 echo Hello World!

}

HelloWorld_alternate () {

 echo Hello World!

}

#now we call the functions

HelloWorld

HelloWorld_alternate

When we run the script, we can see that both our functions behave exactly the same:

demo@cli1:~/scripting$ bash functions.sh

Hello World!

Hello World!

Now, we are going to create an example that makes much more sense. There are going to
be a lot of scripts that will require you to output things to the screen or into a file. Some
parts of the output are going to be repeated over and over—a task that is exactly designed
for a function:

#!/bin/bash

function PrintHeader {

 echo -----------------------

 echo Header of some sort

 echo -----------------------

}

echo In order to show how this looks like

echo we are going to print a header

PrintHeader

echo And once again

PrintHeader

Using custom functions in shell script code 353

echo That was it.

demo@cli1:~/scripting$ bash function.sh

In order to show how this looks like

we are going to print a header

Header of some sort

And once again

Header of some sort

That was it.

What our function did is create a header for our output. When we learn to pass arguments
to functions, we are going to use this trick a lot, especially when we need to output
formatted text into logs or when we have a large block of text with a few variables that
we need to fill in.

How it works…
Functions are parts of the code that bash reproduces whenever we reference our function
inside a script. Their purpose is primarily geared toward creating scripts that are easier
to read and debug. There is another reason to use functions: avoiding errors in code. If
we need to reuse parts of the code in different parts of the script, we can always copy and
paste it, but that creates a large possibility that we will introduce bugs into the script.

See also
•	 https://www.shell-tips.com/bash/functions/

•	 https://tldp.org/LDP/abs/html/complexfunct.html

https://www.shell-tips.com/bash/functions/
https://tldp.org/LDP/abs/html/complexfunct.html

354 Using Arguments and Functions

Passing arguments to a function
We started demonstrating what a function looks like by showing you a simple script, the
simplest we could create. We still haven't defined how to talk to your function, and we still
don't know how to give a function some parameters or arguments and get something in
return. In this recipe, we are going to fix that.

Getting ready
Since we mentioned arguments, we need to talk a little about them. bash treats
arguments in functions the same as it does in the script itself—arguments become
local variables inside the function block. To return a value, we also do almost exactly
the same as when we need to deal with the whole script—we simply return a value from
our function block and then read it inside the main script body.

Remember when we said you can reference arguments that were given to your script
when it was initially called, and that we used variables called $1, $2, $3, and so on to get
the first, second, third, and other parameters that were in the command line? The exact
same thing applies to functions. In this case, we use the same variable names as when
referencing arguments given to our function.

How to do it…
In order to send two parameters to a simple function that will display them, we would use
something like this:

#!/bin/bash

#passing arguments to a function

function output {

 echo Parameters you passed are $1 and $2

}

output First Second

What happens when we try to run this script is that our arguments get passed in a way
that we expect, one after the other, and then our function outputs them:

demo@cli1:~/scripting$ bash functionarg.sh

Parameters you passed are First and Second

Passing arguments to a function 355

You may wonder how our scripts are going to handle arguments that are given to the
script, compared to arguments we pass to the function. The short answer is that variables
named $1 and so on have a value that is local to the function and is defined by arguments
we passed to the function. Outside of the function code block, these variables have the
value of the arguments passed to the script. The long version of the answer is going to be
in the next recipe and is called local and global variables. Using arguments is nothing but
a special case of declaring a local variable; arguments that we pass simply become a local
variable in the function:

#!/bin/bash

#passing arguments to a function

function output {

 echo Parameters you passed are $1 and $2

}

#we are going to take input arguments of the script itself and
#reverse them

output $2 $1

The reason we are changing the order of the arguments is to show the order in which
arguments are passed to the function and to make sure that we are not using the
arguments we passed to the script in the function since they have the same name. What
this script will do is get two arguments from the command line, reverse them, and then
give them in reversed order as arguments to our function. The function is simply going to
output them:

demo@cli1:~/scripting$ bash functionarg2.sh First Second

Parameters you passed are Second and First

What happened here is also what we expected. Now, we are going to check one more thing
that can be confusing to some people. Is the function even aware that some arguments
are passed to the script or are the arguments strictly local? In order to check that, we are
going to ignore whatever was in the script command line, and we are going to pass a pair
of hardcoded strings to the function. If bash is behaving like we think it is, our script
will output the hardcoded values. If the variables named $1 and $2 are set to values from
the command line and they persist in the function, we should see that value in our echo
statement. What we are going to do is create a functionarg3.sh file containing the
following code:

#!/bin/bash

#passing arguments to a function

356 Using Arguments and Functions

function output {

 echo Parameters you passed are $1 and $2

}

#we are going to ignore input parameters

output Hardcoded Variables

Now, we are going to run it and check what happened:

demo@cli1:~/scripting$ bash functionarg3sh First Second

Parameters you passed are Hardcoded and Variables

We can see that our assumption was correct and that the arguments given to the function
always take precedence.

The next thing that we are going to do is show you how to handle simple operations using
functions. Operations that can be done on variables is something we covered elsewhere
in this book, but here, we are going to use an example we haven't used yet. We are simply
going to add two arguments from the command line together.

In order to do that, we are passing arguments from the command line into our function
and then using echo to output the result of the calculation. Part of the function used to
get the result is also very interesting since it reminds us that we have to explicitly use
a function to add two numbers in order to do that. If we try to add variables together,
we are going to end up creating a string—something like this:

demo@cli1:~/scripting$ a=1

demo@cli1:~/scripting$ b=2

demo@cli1:~/scripting$ echo $a+$b

1+2

demo@cli1:~/scripting$ echo $(($a+$b))

3

This is the final version incorporated into our script:

#!/bin/bash

#Doing some maths

function simplemath {

add=$(($1+$2))

echo $add is the result of addition

Local and global variables 357

}

#we are going to take input arguments and pass them all the way

simplemath $1 $2

Note that in this example, we are using a new variable inside a function to add the
numbers and then outputting the value of this variable as the result. This is a better way
to do this than directly doing the operation in the output itself—code that uses these
temporary variables is always easier to read and understand than trying to find and
understand variables embedded into output strings.

How it works…
The next thing we want to show is a nifty little feature that is not so common in most
programming languages. Since bash treats arguments in the function the same way
as it treats arguments to the script and uses the same logic to turn these arguments into
variables inside the function, we can actually send multiple arguments to the function
without defining their number in advance. Of course, our function needs to be able to
understand something such as this.

See also
•	 https://linuxize.com/post/bash-functions/

•	 https://linuxhint.com/create-bash-functions-arguments/

Local and global variables
When it comes to declaring any variable in a script—or for that matter, anywhere at
all—one crucial attribute for that variable is its scope. By scope, we mean where the
variable has the value we declared. Scope is very important since not understanding
how it works means that we can get unexpected results in some cases.

Getting ready
Defining a global scope to our variables is something bash does by default, without any
interaction with us. All variables that are defined are global variables; their value is the
same in the entire script. If we change the variable value by reassigning it (remember that
operations on the value do not change the value itself), this value changes globally, and the
old value is lost.

https://linuxize.com/post/bash-functions/
https://linuxhint.com/create-bash-functions-arguments/

358 Using Arguments and Functions

There is another thing we can do when declaring variables, and that is to declare them
locally. In simple terms, this means that we are explicitly telling bash that we will use this
variable in some limited part of the code and that it needs to keep the value just there, not
globally in the entire script.

What are the reasons to declare a local variable? There are a couple of them, the most
important one being to make sure that we don't change the value of any global variable. If
a variable is declared locally with the same name as a global one, bash will create another
instance of the variable with the same name and will keep track of both values, the global
and the local one.

Global and local variables and how they work are something that is best explained by
using an example.

How to do it…
The script that we are going to use to show you how this works is something that you
will find in almost every example on the internet and in any book covering the subject.
The idea is to create a global variable and then create a local variable in the function that
is going to have the same name as the global one. The value that the global variable has
should be different than the local value, and once we display that value, we should see that
the value changes depending on if we are referencing a global or local variable:

#!/bin/bash

First we define global variable

Value of this variable should be visible in the entire script

VAR1="Global variable"

Function func {

Now we define local variable with the same name

as the global one.

local VAR1="Local variable"

#we then output the value inside the function

echo Inside the function variable has the value of: $VAR1 \

}

echo In the main script before function is executed variable \
has the value of: $VAR1

echo Now calling the function

func

Value of the global variable shouldn't change

Local and global variables 359

echo returned from function

echo In the main script after function is executed value is: \
$VAR1

If we execute this script, we are going to see exactly how variables interact:

demo@cli1:~/scripting$ bash funcglobal.sh

In the main script before function is executed variable has the
value of: Global variable

Now calling the function

Inside the function variable has the value of: Local variable

returned from function

In the main script after function is executed value is: Global
variable

This is completely expected—if there are a global variable and a local variable with
the same name, the local variable will have its own values in the block it is defined in;
otherwise, a global value will be used.

We said scripts such as this are common as an example, but what happens if we define
just the local value? bash is different from most other languages since, by default, it will
not show an error if we mistakenly try to reference a variable that is undefined. When
debugging scripts, this can be a big problem since an undefined variable and a defined
variable with no value will, at first, look exactly the same when we try to reference them.

To show this, we are going to make a small modification to our script and just remove the
first variable definition. This will make our global value undefined—only the local value
will have an actual value:

#!/bin/bash

We are not defining the value for our variable in the global
#block

function func {

Now we define local variable that is not defined globally

as the global one.

local VAR1="Local variable"

#we then output the value inside the function

echo Inside the function variable has the value of: $VAR1

}

360 Using Arguments and Functions

echo In the main script before function is executed undefined \
variable has the value of: $VAR1

echo Now calling the function

func

Value of the global variable shouldn't change

echo returned from function

echo In the main script after function is executed undefined \
value is actually: $VAR1

In any strict programming language, something such as this would create an error.
In bash, things are different:

demo@cli1:~/scripting$ bash funcglobal1.sh

In the main script before function is executed undefined
variable has the value of:

Now calling the function

Inside the function variable has the value of: Local variable

returned from function

In the main script after function is executed undefined value
is actually:

We can see that instead of errors, the script just ignores the variable value and replaces it
with nothing. As we mentioned, even though we are expecting this behavior, keep in mind
that this can lead to unexpected consequences. Another important thing in this script is
the local value. We can see that the local variable exists only in the block of code in which
it is defined; defining it will not create a global variable, and the value will be lost as soon
as the function or block of code is executed.

How it works…
Using global variables in scripts can be useful for one more thing—forwarding values
between functions. This feature of variables is something that can be useful, but at the
same time, it is something that is dependent on your personal style of programming.
Using global variables this way is easy—what you do is just declare a variable at the start
of the script and then change its value whenever you need to. Usually, you assign a value
before executing a particular function and then read the same variable after the function is
done. This way, your function only needs to change the variable to give you the value that
you expect.

Working with returns from a function 361

However, there is a big problem in this otherwise perfectly logical way of using global
variables. Since you have no way of knowing if the function behaved correctly and got to the
point where it had to change the value of the variable, you do not have any idea if the value
itself is what you are expecting. If a function fails for any reason, your variable will have the
same value you sent to the function, leaving you with something that could be wrong.

What we are trying to say is that using global variables in this way is to be avoided, even
though you can do it—the right way to work with functions and passing values is by using
arguments and returning values by a mechanism we will look at in the next recipe.

See also
•	 https://www.thegeekstuff.com/2010/05/bash-variables/

•	 https://tldp.org/LDP/abs/html/localvar.html

Working with returns from a function
We mentioned that it is possible to use global variables to pass values to the functions
inside a script and to get results back. This is the worst possible way to do it. If we need to
pass some value to a function, using arguments is the way it should be done. The problem
that we still have is how to get the results back when the function finishes. We are going to
solve that in this recipe.

Getting ready
If nothing else, bash is logical and consistent in the syntax it uses. The reason we are
mentioning this is that when functions return a value, they use the exact same mechanism
that scripts use when returning a variable—the return command. Using this command,
it is possible for a function to return a value when called, but the value can be in the range
of numbers between 0 and 255. There is also a possibility to set a global variable just to
return a function value—for example, if we need to return a string—but try to avoid that
since it creates code that is difficult to debug. When you are browsing the internet for
function return statements, you may also run into a third solution that uses something
called reference passing or nameref. This is a more complex solution that you should be
aware of, but we are deliberately avoiding it in this recipe since it works only on the most
recent versions of bash (from 4.3 up), and that breaks the compatibility and usability of
our scripts.

https://www.thegeekstuff.com/2010/05/bash-variables/
https://tldp.org/LDP/abs/html/localvar.html

362 Using Arguments and Functions

How to do it…
We'll show you both ways to return a function, starting with the one we consider wrong.
The reason that we are even showing you a wrong solution is that you will often run into
this in different scripts downloaded from the internet, and if you are unaware of this
method, you will probably be a little bit puzzled at first because the variable is usually first
defined in the function itself and does not exist before the function is first called:

#!/bin/bash

#Doing some string adding inside a function and returning
#values

#function takes two strings and returns them concatenated

function concatenate {

RESULT=$1$2

}

calling the function with hardcoded strings

concatenate "First " "and second"

echo $RESULT

What we did is just pass two strings to a function that returned them concatenated.
Of course, this is silly—we could do that by simply using the expression we used in the
function. This example is so basic that it doesn't even use any operators.

What's important is the way we returned our value. By just assigning a new value and
therefore creating a global variable named RESULT, we got our string, and we were able to
use echo to write it to the screen. Why is this a problem?

We have already explained this. What we are doing here is dangerous since we have no way
of knowing if the function has done what it had to do. The only thing we have is the variable
called RESULT that probably contains the value we expect. In this trivial example, we could
check the outcome, but that would defeat the purpose of having a dedicated function.
In order to reduce the uncertainty a little bit, there is a small trick that we can do.

Consider this change to the script:

#!/bin/bash

#Doing some string adding inside a function and returning \
values

#function takes two strings and returns them concatenated

function concatenate {

Working with returns from a function 363

RESULT=$1$2

}

concatenate "First " "and second"

[$? -eq 0] && echo $RESULT || echo Function did not finish!

What we did is create a conditional output. The format of the condition itself should be
familiar to you by now—we are using logical functions to either print out the result of
the function or to print out that the function did not work correctly. As a reminder to
when we introduced logical operators, what our script does in the last line is check for
the value of a variable called $?. If the variable value equals 0, we print out the result of
the function. If the value is not zero, we output the error message since we know that our
function had an error somewhere inside its command block.

The reason we can do this is simple—we already said that functions have the same way of
communicating to the script as the script itself does to the rest of the operating system.
This includes passing arguments and being able to use a return statement to return
values, but also it means that bash sets a variable named ? when the function is finished.
When we use it to understand what happened to the script (which we already explained),
if we check this variable and it has a value of 0, this means that the function finished
correctly, or at least that the last command in it finished correctly.

This is a simple solution to a problem that we shouldn't create in the first place; whenever
possible, we should use return to get our values. Here's an example:

#!/bin/bash

#simple adding of two numbers

#function takes two numbers and returns result of addition

function simpleadd {

 local RESULT=$(($1+$2))

 return $RESULT

}

#we are going to hardcode two numbers

simpleadd 4 5

echo $?

This is a much better way if we are sure that our numbers fit into the range from 0 to 255.
We are outputting the result of the function, and this is as easy as referencing the right
variable. We could also check if the value of the variable after the execution of the function
is 0, meaning that the function behaved correctly, and then output the result.

364 Using Arguments and Functions

Another thing you should know is that a function can use the exit command. By using
it, you are telling bash to immediately stop what the function is doing and exit the
function command block. The value that is going to be returned in this instance is going
to be the error level of the last command that was executed before the exit command
was invoked.

Here's an example:

#!/bin/bash

#exiting from a function before function finishes

function never {

echo This function has two statements, one will never be \
printed.

exit

echo This is the message that will never print

}

#here we run the function

never

What is going to get printed is just the first line of output; since we used the exit
statement, the second part of the output will never run:

demo@cli1:~/scripting$ bash funcreturn3.sh

This function has two statements, one will never be printed.

How it works…
The main reason why all of this even exists is to enable you to more tightly control how
functions and, more generally, the order of command execution works in your script. bash
is very basic in the way it approaches this topic, and that at the same time makes it versatile.
In order to use functions, you only need to know how arguments work in scripting—all the
variable names and logic behind it are the same when applied to functions.

See also
•	 https://www.assertnotmagic.com/2020/06/19/bash-return-

multiple/

•	 https://www.linuxjournal.com/content/return-values-bash-
functions

https://www.assertnotmagic.com/2020/06/19/bash-return-multiple/
https://www.assertnotmagic.com/2020/06/19/bash-return-multiple/
https://www.linuxjournal.com/content/return-values-bash-functions
https://www.linuxjournal.com/content/return-values-bash-functions

Loading an external function to a shell script 365

Loading an external function to a shell script
A problem that will often pop up when you need to create more complex shell scripts is
going to be how to include other code into your script. Once you start scripting, you will
often create a couple of common functions that you always use—things such as opening
connections to servers, getting some operations done, and other things like that.

Sometimes, your scripts will have to use a lot of preset variables that are defined by the
user before they even run the script in order to avoid having to type them in each time
a script is called.

Of course, the solution to both of these problems can be to simply copy and paste the
relevant code into your script and to make the user edit the script before running it. The
reason we should never do this is that each time we copy and paste something, we are
creating a new version of our code. If we notice an error in the code, we need to fix it in all
the scripts that reuse it. Luckily, there is a better way to solve this problem, and that is to
split the script into different files and then include them when we need them.

Getting ready
This recipe is going to be useful in two scenarios that are not necessarily mutually
exclusive. We already mentioned both of them briefly.

The first one is when using external functions. Normally, when creating a script,
everything is going to be in one file. All the functions, definitions, variables, and
commands are going to be in one place. This is usually completely fine if we are creating
something that is specially written to accomplish a particular task.

More often than not, we will need to solve something that we already worked on before in
some other solution. In this case, we usually already have some functions ready that can
be considered part of the solution.

In complex scripting solutions, you might even use some common things such as menus,
interfaces, headers, footers, logs, and other things that are exactly the same across every
script that you make.

Another very common problem is settings that require some setup by the user. Large
scripts can have server names, ports, filenames, users, and many different things that are
required for the script to function. You can always put this information as arguments into
the command line, but that will look bad and will make your script prone to errors since
the user will have to type a lot of things by hand each time scripts are executed.

366 Using Arguments and Functions

A common practice in these circumstances is to put everything in one file as variables,
and then have the user edit this file as part of the installation process for the script.
Of course, you can put everything together with the script itself, but that will almost
certainly mean some user will change something they shouldn't have.

As always, there is a solution for that.

How to do it…
bash has built-in functionality that enables including different files into a script. The idea
is pretty simple—there is a master script file that gets executed as the script itself. In that
file are commands that tell bash to include different files and scripts.

As with everything else, even though this is a pretty easy thing to do, there are some
things you need to know. The command we are going to use first is source. Before
we explain everything, we are going to create two scripts. The first one is going to be
the script that the user is going to run, and it is going to look like this. Name the file
main.sh:

#!/bin/bash

#first we are going to output some environment variables and
#define a few of our own

echo Shell level before we include $SHLVL

echo PWD value before include $PWD

TESTVAR='main'

echo Shell level after include $SHLVL

echo PWD value after include $PWD

echo Variable value after include $TESTVAR

We are going to run it just to see how the script behaves:

demo@cli1:~/includes$ bash main.sh

Shell level before include 2

PWD value before include /home/demo/includes

Shell level after include 2

PWD value after include /home/demo/includes

Variable value after include main

Loading an external function to a shell script 367

The results are what we expected—our current directory is the same as the one we ran
the script in, and $SHLVL is 2 since we ran our script in a separate shell (lvl2) from the
command line (lvl1). Our variable is defined as main and it hasn't changed.

Now, we are going to create our second script and name it auxscript.sh:

echo Inside included file Shell level is $SHLVL

echo Inside included PWD is $PWD

echo Before we changed it variable had a value of: $TESTVAR

TESTVAR='AUX'

echo After we changed it variable has a value of: $TESTVAR

The biggest thing here is that we are not using the usual #!/bin/bash notation at the
start of the script. This is intentional, as this file is meant to be included in other scripts,
not run by itself.

After that, we are doing more or less the same things as in the main script, outputting
some text and values, and working with variables.

The reason we are changing the variable is to show what actually happens inside this
included part of the file and how it interacts with the main script body.

Now, we are going to change the main.sh script and add just one line:

#!/bin/bash

#first we are going to output some environment variables and
#define a few of our own

echo Shell level before we include $SHLVL

echo PWD value before include $PWD

TESTVAR='main'

source auxscript.sh

echo Shell level after include $SHLVL

echo PWD value after include $PWD

echo Variable value after include $TESTVAR

The main thing now is to run the main.sh script again:

demo@cli1:~/includes$ bash main.sh

Shell level before include 2

368 Using Arguments and Functions

PWD value before include /home/demo/includes

Inside included file Shell level is 2

Inside included PWD is /home/demo/includes

Before we changed it variable had a value of: main

After we changed it variable has a value of: AUX

Shell level after include 2

PWD value after include /home/demo/includes

Variable value after include AUX

Some interesting things happened here. What we can see is that our environment variables
haven't changed but the test variable did.

We are going to explain that, but we are going to do one more thing before that—we are
going to use another command instead of source. A lot of people new to scripting tend
to confuse the source command that we just showed you with executing a script. After
all, we are including a script inside a script, so those things do look similar. We are going
to try to do it in our example.

We are going to change a single line inside the main script, but our aux script is going to
stay the same. There are multiple ways in which we can do it, but we intentionally chose
to run bash and run our second script explicitly. The reason is simple—other methods
require our script to have the executive bit set (something we haven't done) or depend on
less readable versions of the same thing as just running a command called exec:

#!/bin/bash

#first we are going to output some environment variables and
#define a few of our own

echo Shell level before include $SHLVL

echo PWD value before include $PWD

TESTVAR='main'

bash auxscript.sh

echo Shell level after include $SHLVL

echo PWD value after include $PWD

echo Variable value after include $TESTVAR

Loading an external function to a shell script 369

The only thing we have changed is that we are not including the script—we are executing it:

demo@cli1:~/includes$ bash mainexec.sh

Shell level before include 2

PWD value before include /home/demo/includes

Inside included file Shell level is 3

Inside included PWD is /home/demo/includes

Before we changed it variable had a value of:

After we changed it variable has a value of: AUX

Shell level after include 2

PWD value after include /home/demo/includes

Variable value after include main

We can see, however, that this small change created a huge difference in the way
our script works.

How it works…
The last example we did requires quite a lot of explaining, and we need to start with how
bash works.

Using the source command tells bash to go find a file and use its contents at the place
where we sourced the file. What bash does is straightforward—it just replaces this line
with the entire file we pointed to. All the lines are inserted and then executed as if
we copy-pasted the entire file into our original script.

This is the reason why in our first example nothing changed. Our script started running
from the main file, continued running commands from the auxiliary file, and then
returned to the main file to finish the commands that followed.

When we changed our source for bash, we created a completely different scenario.
By using the bash command inside the script, we are telling the shell to start another
instance and execute the script we are referring to. This means that the entire environment
is created, and unless we explicitly specify that we need some variables in the new
environment, they are not going to get exported.

This is also the reason that our $SHLVL variable incremented—since we called another
shell inside, the shell level had to go up.

370 Using Arguments and Functions

Our test variable vanished because we didn't export it, so it had no value before being set,
and since our environment was created just to run these couple of lines, the same variable
simply disappeared when the script we called ended.

Remember that executing a script and sourcing it are completely different things, and
when in doubt, think about what you are trying to do. If you want to execute something
inside a script such as a regular command, use bash or exec. If you would otherwise
copy-paste code from another script, use source.

Before we finish with this recipe, we also need to mention functions. Including functions
is exactly the same as including any other part of any other script, with one important
difference. In order for your code to work, you must include functions at the start of
the script or immediately before you try to use said functions. If you don't do that, the
resulting error is going to be the same as if you hadn't defined your function at all.

See also
•	 https://bash.cyberciti.biz/guide/Source_command

•	 https://tldp.org/LDP/Bash-Beginners-Guide/html/sect_02_01.
html

Implementing commonly used procedures
via functions
By this point, we have created a lot of different and very simple scripts that more or less
used echo and a few commands just to show how a particular thing in bash works.
In this recipe, we are going to give you a couple of ideas on how to use what we have
learned so far.

Getting ready
We are going to create a small script that is going to show you how to easily automate the
most mundane tasks on any system. The idea here is not to show you every task possible,
but instead to show you how to tackle the most common problems.

How to do it…
Before we even start with the script, we need to go back to the recipes where we were
explaining how to start writing scripts. What we are talking about are the prerequisites
and presumptions we are going to make when we create and run this script.

https://bash.cyberciti.biz/guide/Source_command
https://tldp.org/LDP/Bash-Beginners-Guide/html/sect_02_01.html
https://tldp.org/LDP/Bash-Beginners-Guide/html/sect_02_01.html

Implementing commonly used procedures via functions 371

Every script will have its own prerequisites. These are usually a list of things that your
script needs to run—either it requires different packages or it needs some other condition
that has to be met in order for the script to work, such as a working database or a working
web server.

For this one, we are presuming that you have installed a package called curl and that you
are connected to the internet.

Now, for the presumptions that we are depending on, this script has some commands that
affect users and groups on the system. This means that in order for that part of the script
to work, we absolutely need the script to be run either by the root user or another user
who has administrative privileges.

The script also presumes a lot about users and checks only if we have enough parameters,
not the quality of arguments that were provided. This means that a user can give the script
a number instead of a string, and the script will happily use this as a valid parameter.
We will explain how to deal with that when we start dissecting the script.

As a person responsible for writing scripts, part of your job is to be aware of these
preconditions and to make sure to address them. There are two ways you can do that—the
first is by stating what your script expects in some form of document that will follow
your script.

The other thing you can do (and we highly recommend this) is to check for every possible
condition that you can think of, and if something is wrong, either print an error message
and stop your script or, if you know what the problem is, try to rectify it.

Examples of things you can solve inside the script are administrator privileges—your
script can test if it can run, and ask the user to elevate privileges if the permissions are too
low. You can also test if a particular package is present on the system if you see that some
command that is not standard fails.

In the end, how you solve problems in your script is going to be up to you and your skill
level, but before you do anything, remember that when it comes to scripting, you need to
test everything.

Now, here's the actual script:

#!/bin/bash

#shell script that automates common tasks

function rsyn {

rsync -avzh $1 $2

372 Using Arguments and Functions

}

function usage {

echo In order to use this script you can:

echo "$0 copy <source> <destination> to copy files from source \
to destination"

echo "$0 newuser <name> to createuser with the username \
<username>"

echo "$0 group <username> <group> to add user to a group"

echo "$0 weather to check local weather"

echo "$0 weather <city> to check weather in some city on earth"

echo "$0 help for this help"

}

if ["$1" != ""]

 Then

 case $1 in

 help)

 Usage

 Exit

 ;;

 copy)

 if ["$2" != "" && "$3" != ""]

 then

 rsyn $2 $3

 fi

 ;;

 group)

 if ["$2" != "" && "$3" != ""]

 then

 usermod -a -G $3 $2

 fi

 ;;

Implementing commonly used procedures via functions 373

 newuser)

 if ["$2" != ""]

 then

 useradd $2

 fi

 ;;

 weather)

 if ["$2" != ""]

 then

 curl wttr.in/$2

 else

 curl wttr.in

 fi

 ;;

 *)

 echo "ERROR: unknown parameter $1\""

 usage

 exit 1

 ;;

 esac

 else

 Usage

fi

How it works…
This script requires some explaining, and we intentionally did not comment on any of it
for two reasons. One was that comments would make the script so long it would require
too many print pages, and the other one was to be able to go through it block by block
in this explanation without breaking your flow with short comments. Having said that,
always comment on your scripts!

So, our script starts with a function. Considering this function has only one line, you may
be surprised that we decided to break it into function, but we had a point to make.

374 Using Arguments and Functions

Some commands, such as rsync or tar, for example, have a complicated list of switches
that are often used. When creating a script, it is sometimes easier to put some of those
commands into a function to be able to call the function without having to remember all
the switches every time. This also goes for commands that need a lot of parameters that
are predetermined when the script is configured. Put all of them into a function and then
call the function with only the bare minimum of arguments.

Another thing we put into a function is usage, a block of text that helps the user to run the
script, giving them enough information so they don't need any other type of help.

If you can, please write more verbose help pages for your script. You can even create
a manual (man) or info page, but at the same time, always provide help directly inside
your script. Make your script display help when there is anything wrong with the
command line. There is nothing more annoying than when a script just fails without
any meaningful message, or when a script simply states read the help page for
more information.

In this function, we are using the $0 positional argument in order to output the name of
the script. Use this way of giving the user help when you are giving examples on script
usage. Avoid hardcoding the script name because you don't know if the user changed the
filename of the script, and hardcoded names can then completely puzzle them.

Also, if you are using any special character in your text, use quotation marks; otherwise,
you may run into errors or, worse, completely unexplainable errors.

The next part of our script deals with each individual command. When creating
a command-line utility such as this, decide in advance whether you are going to create
a tool that will use commands such as this one, switches such as -h or —something,
or some sort of simple textual interface. There are pros and cons for all of these, but in
essence, the format that we chose is mostly used for scripts that can do multiple tasks one
at a time. Switches enable you to introduce many parameters to a task, and user interfaces
(UIs) are targeted toward inexperienced users. Also, remember that your script may be
used from inside other scripts, so avoid interfaces that will block that.

In the case statement, we are checking for a couple of things. First, we are testing if the first
argument is a valid command. After that, we are checking if there are enough arguments for
a given command to make sure that we can run it without errors. Even with this, we are not
doing nearly enough testing for the validity of arguments. When reading this, try to add
a few more sanity checks such as are the parameters actually valid, did the user input a valid
parameter containing spaces that got divided into multiple strings, and so on.

Implementing commonly used procedures via functions 375

We are not going into too much detail for individual commands; we are only going to
mention the one that, in all fairness, looks completely out of place. We are, of course,
talking about the weather command that gives you a weather report for your city:

Figure 12.1 – wttr.in is one of many interesting services available online

Internet is full of useful services, and wttr.in is definitely one of those. If you go to
wttr.in or run curl wttr.in, you are going to get a weather report for the city
that the system thinks you are living in. There is some deep magic involved here—the
system is going to try to guess where you are based on your Internet Protocol (IP)
address, and even while having to do that, it is going to give you a pretty accurate
forecast almost immediately.

We chose to show you this example on purpose—if you add a city name to the wttr.
in link, the system is going to show you the weather in that city, while even trying to
guess the exact city name. There are a couple of really useful online services such as this
accessible from the command line, and using some of them means you can extend your
script in the most unusual ways.

http://wttr.in
http://wttr.in
http://wttr.in
http://wttr.in

376 Using Arguments and Functions

At the end of the recipe, note that we are checking for different errors in how the script is
invoked in three different ways. Always try to anticipate errors such as this.

See also
The following web page is a must-see if you do anything in the command line:

•	 https://stackify.com/top-command-line-tools/

https://stackify.com/top-command-line-tools/

13
Using Arrays

In one of the recipes in a previous chapter, we mentioned arrays as one of the possible
compound data types that bash supports. We said that what bash has is two different
data types (strings and numbers), but that there are ways that we can use more than that
if we need to. Arrays are just that—something that we need to be able to use since we need
something a little bit more complex than single-value variables to solve some problems.

In this chapter, we are going to cover two basic recipes connected to arrays:

•	 Basic array manipulation

•	 Advanced array manipulation

You can already see that we are being intentionally broad here; arrays are like that—simple
on the surface, but with quite a few small tricks if we need to use them.

Technical requirements
As with all the chapters that cover scripting, we are using any machine that works, and
things as fundamental as arrays are going to work on all machines that run bash. You will
therefore need the following:

A virtual machine (VM) with any distributuon of Linux (in our case, it's going to be
Ubuntu 20.10)

So, start your VM!

378 Using Arrays

Basic array manipulation
The thing with bash and variables in bash is that they look deceptively simple. There
are no formal declarations of type, or basically declarations of any kind. Typing is done by
the shell itself, and we can do a lot of things implicitly. This is especially true for regular
variables. Arrays are a little bit more complex, and they offer a few syntactic peculiarities
when used, but they are an extremely useful tool. You may wonder why we are even
mentioning them in any context since they are nothing more than one value under the
same variable name. Well, the main reason is that we often actually need exactly this.
A lot of times, we must store multiple values that belong to some set of data. Typically, that
will be something such as an unordered list of values in case it is something that we do not
care about having in a particular order, or an ordered list of values if we do.

Getting ready
Usually, arrays are defined as one-dimensional indexed arrays, since they have an
explicit order embedded in the very definition of an array. In essence, when we have any
multi-value variable, it can be ordered and unordered. The difference is in whether we can
define in which order the values are declared in the variable. If we can store values but
are unable to get the order in which they are stored, that is called an unordered set. In
bash, we only have ordered lists, which we call arrays. This means that every value in the
variable has not only the value itself but a defined index or place. Not only can we add or
remove values from an array, but we can also directly read any of them and we can reorder
them if we need to.

We have two types of arrays at our disposal. Both are ordered but one is indexed, which
means that we have a numerical value that defines a particular element of the array.
We also have something named associative arrays, sometimes also called hash tables.
This type of array is useful because it doesn't use a numeric value but instead uses a string
key to define a particular array element. We will talk a lot about both.

How to do it…
The first thing we need to do is to declare a variable:

demo@ubuntu:~/includes$ TEST=(first second third fourth fifth)

demo@ubuntu:~/includes$ echo $TEST

first

Basic array manipulation 379

We are off to a bad start. Obviously, we declared our variable correctly since there were no
errors, but as soon as we tried to print it, we ran into problems. We had those before when
we tried to print arrays. The solution is to use a special character to denote the index and
tell bash that we want to print not only the first value but all values in the array:

demo@ubuntu:~/includes$ echo ${TEST[@]}

first second third fourth fifth

This works as intended since bash understands it needs to do a quick loop and go
through every index in the array, printing all the values. An alternative to that is to use
the following:

demo@ubuntu:~/includes$ echo ${TEST[*]}

first second third fourth fifth

This has the exact same output as the previous command.

This should get you thinking: Is there another way to use indexing? Of course there is—we
can use it to directly access a single value in the array:

demo@ubuntu:~/includes$ echo ${TEST[2]}

third

demo@ubuntu:~/includes$ echo ${TEST[4]}

fifth

Make a note we are off by one in this example since the first element in an array has an
index of 0. There is one more very interesting property rarely mentioned in terms of
arrays. Before we show it, we need to explain another way of declaring an array.

Declaring a variable using simple brackets is the most common way to do this, but we can
also do it by directly specifying elements in an array. The interesting thing is that we can
do it in any order we want to:

demo@ubuntu:~/includes$ ORDER[2]=second

demo@ubuntu:~/includes$ ORDER[3]=third

If we now try to print our array, the result is going to be more dangerous than surprising:

demo@ubuntu:~/includes$ echo ${ORDER[*]}

second third

380 Using Arrays

Our array has two values stored under indexes. We intentionally made an error in
indexing—the value of second is stored under index number 2, making it the third array
element. What we didn't do is declare the first element of our array. The reason we said
that the result of the previous command is dangerous is that from its output, you cannot
see the index of a particular element, so you have no idea what the actual index of
a particular value is. This makes it easy to confuse the values—or, to make it more
obvious, something such as this will not return a value, although we might think it should:

demo@ubuntu:~/includes$ echo ${ORDER[0]}

demo@ubuntu:~/includes$ echo ${ORDER[1]}

Things such as these are a common source of errors that we need to troubleshoot, and
they are especially complicated to spot if we use the direct syntax of specifying both
a value and its index.

What we are trying to say is to never use this way of declaring an array, unless you have
a particular reason why you need it. Otherwise, things can become confusing later.

There is a third way to declare an array that is the least commonly used method. Using the
declare statement and the -a switch, you explicitly declare that a particular variable
is going to hold an array of values. The reason we rarely see this in code is that when
we use either of the already mentioned implicit declarations, our variable will become
appropriately typed, so there is simply no reason to do this twice unless you want to do so
to make your code readable.

All of this was just different ways to create and print normal, indexed arrays.
We mentioned that there is another type of array called an associative array, also known
as a hash table, dictionary, or key-value paired array. This type was introduced in bash
4.0 and is still not available on some platforms; most notably, some versions of OS X
require you to upgrade bash to be able to use this type.

Real life contains a lot of things that can be considered pairs of values. Things such
as username/password, name/address, name/telephone number are naturally created pairs
of data that are often used in scripts. Obviously, we could use a normal array to store this,
but to do it in a way that enables us to understand which values are a part of a given pair,
we would need not one but two separate arrays and a little bit of focus on how we declare
indexes for them so that we can use the same index to get the first and the second value:

#!/bin/bash

#we are declaring two arrays, one for the names, one for the
#phone numbers

NAMES=(John Luke "Ivan from work" Ida "That guy")

NUMBERS=(12345 12344 113312 11111 122222)

Basic array manipulation 381

#now we need to pair them up:

for i in {0..4}

do

 echo Name:${NAMES[i]} number:${NUMBERS[i]}

done

This is going to give us an output that looks like this:

demo@ubuntu:~/variable$ bash pairs.sh

Name:John number:12345

Name:Luke number:12344

Name:Ivan from work number:113312

Name:Ida number:11111

Name:That guy number:122222

This looks and works fine if we need to print out all of the data. Imagine now that we have
information that we need to search for—imagine we are looking for a telephone number
of a particular person. If we needed to do this using regular arrays, something like this
could be done:

#!/bin/bash

#we are declaring two arrays, one for the names, one for the
#phone numbers

NAMES=(John Luke "Ivan from work" Ida "That guy")

NUMBERS=(12345 12344 113312 11111 122222)

#now we need to pair them up:

for i in {0..4}

do

 if ["${NAMES[i]}" == "$1"]

 then

 echo Name:${NAMES[i]}
number:${NUMBERS[i]}

 fi

done

In order to check all the values, we need to go through every element of one array and
then print pairs if we find a match. First, we are going to test this:

demo@ubuntu:~/variable$ bash search.sh John

Name:John number:12345

382 Using Arrays

demo@ubuntu:~/variable$ bash search.sh

demo@ubuntu:~/variable$

Although this is working, it is not the right way to do it. Some of the downsides of this
approach are obvious:

•	 An array is indexed, so it can hold the same content at different indexes.

•	 In order to find something, we need to go through all values.

•	 If we mess up any of the arrays, we can create invalid data.

•	 The script is very complicated for a simple task.

That other associative array type we mentioned is the solution to this and many more
problems. While in normal arrays, the values we are using are indexed by numbers. In this
particular array type, we use any value as a key to reference a specific value in an array.

Doing this requires an explicit declaration of the array type that has to be done using the
declare statement and the -A switch. Be very careful about this switch since it uses
a capital letter A, while normal arrays are declared using the same letter in lowercase. While
you may implicitly declare an indexed array in multiple ways, an associative array can be
declared only by using this method and must be declared explicitly. Before we can do a script
to fully demonstrate that, we need to show you how to declare an array of this type. Besides
the fact that we must use the declare statement, we also need to declare the indexes since
they can be any string, not just a number. The output looks something like this:

demo@ubuntu:~/variable$ declare -A NAMES

demo@ubuntu:~/variable$ NAMES["John"]=12345

demo@ubuntu:~/variable$ NAMES["Luke"]=12344

demo@ubuntu:~/variable$ NAMES["Ivan from work"]=113312

There is also a way to declare these arrays in one line, by specifying pairs:

demo@ubuntu:~/variable$ NAMES=([Ida]=11111 ["That guy"]=122222)

Now that we have defined this array in two ways, let's do a small follow-up with other
operations that we can carry out. We should be able to write out the array values. First,
we will try the method we used with regular arrays:

demo@ubuntu:~/variable$ echo ${NAMES[*]}

11111 122222

Basic array manipulation 383

This is, of course, a problem, but we were expecting it. This syntax is designed for arrays
that have a numerical index and is translated into something a human can understand,
which means: print all the values from an array called NAMES by using all possible indices.

The key here is that we are not printing the index of a value, just the value itself. Since
we are using both the key and the value in our arrays, we need to be able to see what the
key for a particular value is. This can be done using a for loop, but before we do that,
we have a point to make—by design, arrays have multiple values, so not only can we
redefine the whole array, but we can also add and remove elements from it. We already
showed an example in which we added elements to a variable, and we did this by creating
a new value under a new index.

All this applies not only to associative arrays but to arrays in general; however, we are
going to use associative arrays just to make you more familiar with this type. We are going
to repeat the example from before, but with a twist:

demo@ubuntu:~/variable$ declare -A NAMES

demo@ubuntu:~/variable$ NAMES["John"]=12345

demo@ubuntu:~/variable$ NAMES["Luke"]=12344

demo@ubuntu:~/variable$ NAMES["Ivan from work"]=113312

demo@ubuntu:~/variable$ echo ${NAMES[*]}

113312 12344 12345

demo@ubuntu:~/variable$ NAMES=([Ida]=11111 ["That guy"]=122222)

demo@ubuntu:~/variable$ echo ${NAMES[*]}

11111 122222

What happened? First, we defined an array that consists of three value pairs. We did this
by declaring every single pair by itself. After that, we used the alternative way of array
declaration, but since we basically redeclared the array, the values we used completely
replaced values that the array had before. What we should have done is add those values.
There are two ways to do this—one is to just define the right values for the pairs again:

demo@ubuntu:~/variable$ NAMES["John"]=12345

demo@ubuntu:~/variable$ NAMES["Ivan from work"]=113312

demo@ubuntu:~/variable$ NAMES["Luke"]=12344

demo@ubuntu:~/variable$ echo ${NAMES[*]}

113312 11111 12344 12345 122222

We can now see our array has the expected number of values, although we still don't know
how to get them printed.

384 Using Arrays

Another way to do this is by using addition. We are going to change only one character in
our example to do this:

demo@ubuntu:~/variable$ declare -A NAMES

demo@ubuntu:~/variable$ NAMES["John"]=12345

demo@ubuntu:~/variable$ NAMES["Luke"]=12344

demo@ubuntu:~/variable$ NAMES["Ivan from work"]=113312

demo@ubuntu:~/variable$ NAMES+=([Ida]=11111 ["That
guy"]=122222)

demo@ubuntu:~/variable$ echo ${NAMES[*]}

113312 11111 12344 12345 122222

Can you even notice the change? What we did is use the plus operator in front of the
equals sign to tell bash that we want these pairs added to our array. This notation is
completely the same as if we had used NAMES=NAMES+([Ida]=11111 ["That
guy"]=122222)—it is just a little shorter.

The last thing we need to know is how to remove a value from an array.

The solution to this is simple—there is a command called unset that simply removes
the value associated with a particular index or a key. More often than not, this is used
on key-value pairs since it makes much more sense there, but you can also do it on
a regular array:

demo@ubuntu:~/variable$ echo ${NAMES[*]}

113312 11111 12344 12345 122222

demo@ubuntu:~/variable$ unset NAMES["John"]

demo@ubuntu:~/variable$ echo ${NAMES[*]}

113312 11111 12344 122222

Now, we are going to tackle the big problem and rewrite our script from before, using
our only associative array.

The idea of how to do this is based on the way bash uses sets of objects. We are going to
create one such set out of all the keys, and then print both the key and the value it points
to. To access keys directly, we can use an exclamation point:

#!/bin/bash

#we are declaring one associative array for pairs of values:

declare -A PAIRS

PAIRS=(["John"]=12345 ["Luke"]=12344 ["Ivan from work"] =113312 \
["Ida"]=11111 ["That guy"]=122222)

Basic array manipulation 385

#now we need to get them printed

for name in "${!PAIRS[@]}"

do

 echo Name:"$name" number:${PAIRS["$name"]}

done

There are some small things you need to notice in this script. For example, quotes are
important since our keys contain spaces. The general rule here is that as soon you are
using any string as a value of anything, it should be enclosed in quotes to get the space
parsed correctly.

The for loop is going to go through keys one by one, and keys are going to be used as an
entire key value, including a space. Some manuals will state that a key must be a single
word, but officially it can be anything. The usage scenario for this type of variable is,
however, that we will be using a word or two in most cases:

demo@ubuntu:~/variable$ bash associative.sh

Name:Ivan from work number:113312

Name:Ida number:11111

Name:Luke number:12344

Name:John number:12345

Name:That guy number:122222

How it works…
We have demonstrated the way arrays work in practice, how to create them, how to read
from them, and how to delete individual elements inside an array. What makes arrays
a little bit different from regular variables is that variables hold one value, so there are
no operations that can modify that value. If we need to change it, we simply redeclare
the entire value. When dealing with arrays, we are dealing with multiple values in one
array, and that still means we must redeclare any that we need to change, but we are then
changing just a single value out of many, not the entire array. This is the main reason
we have operations that add and remove elements.

Some of you already familiar with different programming languages will probably be
a little bit confused by the relaxed way some things are defined, especially when we are
talking about regular arrays and the way they address individual values and print them.
Probably the most confusing part is how you can completely skip a range of indexes and
still get a valid array. We are going to talk a little bit more about this in the next recipe,
but bash is inconsistently vague in some ways, and this is one of them.

386 Using Arrays

Associative arrays are going to be something you will need from time to time, especially
when you need to deal with objects that have some properties. It is not possible to store
more than one property per key, but even this makes for a nice environment since this
single value can, for example, be an indexed value that then points to different arrays
containing everything else that we need to store about a particular object.

See also
Arrays are complicated and, at the same time, very simple in their syntax. Check out these
links for many more examples:

•	 https://www.shell-tips.com/bash/arrays/

•	 https://opensource.com/article/18/5/you-dont-know-bash-
intro-bash-arrays

Advanced array manipulation
Now we have finished dealing with the basics, we need to add much more to your
knowledge of arrays. What we first need to do is to give you some ideas on how to make
the arrays you create in your scripts more persistent, so we need to deal with storing and
restoring them.

The reason why this is important is that arrays can be quite large, depending on the script
you are creating. Dumping and reusing variables in scripts is easy since we can use the
source to declare variables we stored in a file. Arrays make for more complicated work
since they can contain multiple variables, and sometimes we even need to create them
from another data source.

Getting ready
The thing with scripts is that they sometimes need to deal with a lot of data. In a lot of
cases, we can use files to both store data in and load data from. There are, however, some
cases where arrays—especially associative arrays—are a necessity for working with large
amounts of data, and then we need to know how to save that data to the disk and reuse it.
We are going to show you how to solve those problems and advise you when to do it.

https://opensource.com/article/18/5/you-dont-know-bash-intro-bash-arrays
https://opensource.com/article/18/5/you-dont-know-bash-intro-bash-arrays

Advanced array manipulation 387

How to do it…
When talking about all of this, we always need an example where a particular feature
makes sense. Some of the bash features we dealt with were so generic that our examples
also had to be generic. Associative arrays are not like that. Although they can be used for
a number of things, some scenarios are so common that you will automatically start to
declare an array even before you think how and why you are doing it.

The most common scenario is saving user settings.

Any larger script that deals with any task will have to be configurable. We mentioned that
when we said that you can include files, and the most common ones are going to be the
ones containing variables, storing values for different settings.

Most of the time, all the settings in a script look something like this:

USER=demo

CMD=testing

HOSTNAME=demounit

These settings are just an example, but most scripts have a block of these either in
a separate file or at the start of the script.

Notice that all of them have a format of KEY=VALUE and look like they are created to
be used in an associative array. Having said that, we need to make a point about using
any feature of any programming language—do what is best for the performance and
clarity of a given solution and don't use a feature just because you know it is used in
a particular situation.

This is where your experience is required. If a script has a set of settings that never change
after we initially set them while loading and saving them from the disk, this makes no
sense. The same goes for if a script only has a few variables defined when it starts—there
is no point in using arrays here.

But if a script has more than a few things that change between different script executions,
and if you are using them to store some important runtime operations that are needed not
only when the script starts but also during its run, arrays may be a solution.

Our example is going to be a small script that will have a few settings it needs to
remember, and we are going to use arrays to load them from disk, use them, and store
them later back to disk. Working on this, we are also going to perform some tasks on
a given array to demonstrate how to manipulate pairs in a script.

388 Using Arrays

But before we do any of that, we need to go through a few advanced examples to show
you how some things we previously glanced over work.

First, we are going to deal with the difference between using * and @ operators to read
indices and keys in arrays. We said that for a given array, those two operators are different
ways of going through all indices. Here's an example to illustrate this:

demo@ubuntu:~/variable$ SOMEARRAY=(0 1 2 3 4 5)

demo@ubuntu:~/variable$ echo ${!SOMEARRAY[*]}

0 1 2 3 4 5

demo@ubuntu:~/variable$ echo ${!SOMEARRAY[@]}

0 1 2 3 4 5

The same goes for associative arrays:

demo@ubuntu:~/variable$ declare -A PAIRS

demo@ubuntu:~/variable$ PAIRS=(["John"]=12345 ["Luke"]=12344
["Ivan from work"]=113312 ["Ida"]=11111 ["That guy"]=122222)

demo@ubuntu:~/variable$ echo ${!PAIRS[@]}

Ivan from work Ida Luke John That guy

demo@ubuntu:~/variable$ echo ${!PAIRS[*]}

Ivan from work Ida Luke John That guy

So far, the results are at first glance identical. This is one of those things in bash that will
sometimes make you pull your hair out in despair because when we use them for loops,
there will be a big difference that we are going to show by creating a small example script:

#!/bin/bash

declare -A PAIRS

PAIRS=(["John"]=12345 ["Luke"]=12344 ["Ivan from work"] =113312 \
["Ida"]=11111 ["That guy"]=122222)

#now we are going to print keys, once using @ and then using \
#*

echo "for first example we are using @ sign"

for name in "${!PAIRS[@]}"

do

 echo Number: ${PAIRS["$name"]}

 echo Name: "$name"

 echo

done

Advanced array manipulation 389

echo --------------------------

echo "then we are using * sign"

for name in "${!PAIRS[*]}"

do

 echo Number: ${PAIRS["$name"]}

 echo Name: "$name"

 echo

done

If we run this script and both of those expressions return the same set of values, the output
should be identical. But if we actually run it, we get this:

demo@ubuntu:~/variable$ bash arrayops.sh

for first example we are using @ sign

Number: 113312

Name: Ivan from work

Number: 11111

Name: Ida

Number: 12344

Name: Luke

Number: 12345

Name: John

Number: 122222

Name: That guy

then we are using * sign

Number:

Name: Ivan from work Ida Luke John That guy

We see that when we use @, we get what we expected, but as soon as we replace it with *,
we can see the keys (or indices) but get no values in return.

The reason behind this is, as always, the way bash works. Using the @ sign signals to
bash that we are trying to get each index or key separately. Using the * sign, on the other
hand, makes bash return all the indices or keys as a single string divided by spaces. So,
our script in one case reads each element one by one, and the other loop is run only once.
Since the value that we are trying to look up is different from any single key value in our
array, this one run gets no results. In the end, those two expressions are not identical, but
the simple printout is—don't let that fool you.

390 Using Arrays

Now, we are going to create our master script for manipulating arrays and then add a few
elements to it.

The obvious starting point is to create a file containing our array. There are multiple ways
to do that, some more complicated than others, but almost all of them depend on using
some loop to go through the array and either read it or write it to a file.

We are going to do it the canonical Linux way by using the declare statement. If we do
the -p switch, we are telling it to print a particular variable with both its definition and
the values stored in it:

demo@ubuntu:~/variable$ declare -p PAIRS

declare -A PAIRS=(["Ivan from work"]="113312" [Ida]="11111"
[Luke]="12344" [John]="12345" ["That guy"]="122222")

Obviously, this is great since this is the only thing we need to remember to have everything
that is stored in the variable itself. To save it, we just redirect it to a file on disk:

demo@ubuntu:~/variable$ declare -p PAIRS > PAIRS.save

To show that this worked, we are going to unset the variable and verify it was deleted so
that the values only exist in a file:

demo@ubuntu:~/variable$ unset PAIRS

demo@ubuntu:~/variable$ echo ${!PAIRS[@]}

Now, let's look at how to reload the script from a disk. Notice that the output of the
declare statement was an actual declare statement defining the variable. If we load it
from disk and execute it, everything should be fine:

demo@ubuntu:~/variable$ source PAIRS.save

demo@ubuntu:~/variable$ echo ${!PAIRS[@]}

Ivan from work Ida Luke John That guy

The internet is full of more complicated solutions, but for an array of a reasonable size,
this should work great. At the same time, this is easy to read in a script, and the file that
contains the data is in a universal format readable by any other bash version installed on
any system (if it is bash 4.0 since that is when these types of arrays were introduced).

Advanced array manipulation 391

We now know how to read and write an array to disk, but what else can we do with it? In our
example, we are going to switch to a regular array to show you some things you can do:

demo@ubuntu:~/variable$ REGULAR=(zero one two three five four \
)

demo@ubuntu:~/variable$ echo ${REGULAR[@]}

zero one two three five four

So, we have created an array and we made an error. Since the array is already in the wrong
order, we are going to reshuffle it even more (the shuf command randomizes the array):

demo@ubuntu:~/variable$ shuf -e "${REGULAR[@]}"

three

one

zero

five

two

four

Although you could create your own solution for the randomization of values, using an
external command is the simplest solution.

Shuffling is easy but it is not permanent. What the command is doing is taking our array
as its input, shuffling the values, and then printing the result while the original array stays
the same.

We reassigned the array to the result of the command. The main reason we also created
another variable and printed it is that we had to show that shuffling happens in real time,
and the results are different each time the shuf command is started.

Sorting an array is going to be more of a problem since it requires some sorting
mechanism. Either you will create one yourself or you can, with a little care, use the sort
command already included in bash.

The next thing we are going to do is show you how to work with ranges of indices.
We are going to reset our array and then show you some examples. When we declare
ranges, in reality, we are using a mechanism built into bash that enables us to define
a range of numbers. We already used that to create loops and iterators in them, so this will
not be too much of a surprise to you:

demo@ubuntu:~/variable$ REGULAR=(zero one two three four five \
)

demo@ubuntu:~/variable$ echo ${REGULAR[*]}

392 Using Arrays

zero one two three four five

demo@ubuntu:~/variable$ echo ${REGULAR[*]:2:3}

two three four

demo@ubuntu:~/variable$ echo ${REGULAR[*]:0:3}

zero one two

demo@ubuntu:~/variable$ echo ${REGULAR[*]:0:}

demo@ubuntu:~/variable$ echo ${REGULAR[*]:0:2}

zero one

demo@ubuntu:~/variable$ echo ${REGULAR[*]:3}

three four five

demo@ubuntu:~/variable$ echo ${REGULAR[*]:2}

two three four five

demo@ubuntu:~/variable$ echo ${REGULAR[*]:2:-2}

bash: -2: substring expression < 0

We are using standard notation in bash. The first number after the variable is the starting
index we want to print, and the optional number after it is the number of values we need.
Notice that negative numbers do not work here unlike in some other places; we cannot go
back from the end of the array this way.

The next thing we can do is concatenate two arrays.

Depending on what you want to do, the result of that operation will not get you what you
might have been expecting:

demo@ubuntu:~/variable$ ANOTHER=(sixth seventh eighth ninth)

demo@ubuntu:~/variable$ NEW="${REGULAR[*]} ${ANOTHER[*]}"

demo@ubuntu:~/variable$ echo ${NEW[*]}

zero one two three four five sixth seventh eighth ninth

demo@ubuntu:~/variable$ echo ${NEW[@]}

zero one two three four five sixth seventh eighth ninth

Another operation we can do is count the number of values in an array. We also already
did this before, so let's check if our arrays were merged correctly:

demo@ubuntu:~/variable$ echo ${#REGULAR[@]}

6

demo@ubuntu:~/variable$ echo ${#ANOTHER[@]}

Advanced array manipulation 393

4

demo@ubuntu:~/variable$ echo ${#NEW[@]}

1

What happened here?

In our concatenation, we made a huge error. What we wanted to do is create a new array that
will hold the values from both arrays. What we did is create a string variable that contains
one huge string created from all values in the arrays. We need to fix this by using brackets:

demo@ubuntu:~/variable$ NEW=(${REGULAR[*]} ${ANOTHER[*]})

demo@ubuntu:~/variable$ echo ${#NEW[@]}

10

demo@ubuntu:~/variable$ NEW=(${REGULAR[@]} ${ANOTHER[@]})

demo@ubuntu:~/variable$ echo ${#NEW[@]}

10

demo@ubuntu:~/variable$ declare -p NEW

declare -a NEW=([0]="zero" [1]="one" [2]="two" [3]="three"
[4]="four" [5]="five" [6]="sixth" [7]="seventh" [8]="eighth"
[9]="ninth")

So, we created our array and checked how many values it holds. Since we wanted to be
completely sure, we used the declare statement to show all the index/value pairs.

Before we move on, we need to make a small mistake by using a pair of quotation marks:

demo@ubuntu:~/variable$ NEW=("${REGULAR[@]} ${ANOTHER[@]}")

demo@ubuntu:~/variable$ echo ${#NEW[@]}

9

demo@ubuntu:~/variable$ declare -p NEW

declare -a NEW=([0]="zero" [1]="one" [2]="two" [3]="three"
[4]="four" [5]="five sixth" [6]="seventh" [7]="eighth"
[8]="ninth")

What we did is create something extremely similar to our first example, but at the same
time, completely wrong. One of the values is a combination of two strings, not two
separate values. Try all different combinations of quotation marks to try to see how they
work and if using either @ or * makes a difference to the resulting array.

394 Using Arrays

How it works…
We have dealt with different things you can do to an array in detail. What's left is to see
what else is there to know about arrays and how to check if an array contains a value. The
length—or, more precisely, the number of values is something we just looked at, and if
you need to know if an array already exists, you should check if the length of it is longer
than 0. This will tell you that either the array you are testing is not defined or it contains
no elements. If you explicitly want to check if the variable is defined, use the declare
statement and count the results. In our example, we have a variable called TEST1 and an
undefined name, TEST2:

demo@ubuntu:~/variable$ TEST1=()

demo@ubuntu:~/variable$ declare -p TEST1

declare -a TEST1=()

demo@ubuntu:~/variable$ declare -p TEST2

bash: declare: TEST2: not found

demo@ubuntu:~/variable$ echo ${#TEST1[@]}

0

demo@ubuntu:~/variable$ echo ${#TEST2[@]}

0

For most intents and purposes, just checking for the value count is enough, but sometimes
you need to know if a variable is even defined.

Another common thing to do is try to find if there is a particular value inside an array.
You can do this by creating your own loop to check for the values, or you can use the
built-in test that bash already has. For example, you could do something like this:

demo@ubuntu:~/variable$ [[${REGULAR[*]} =~ "one"]] && echo \
yes || echo no

yes

demo@ubuntu:~/variable$ [[${REGULAR[*]} =~ "something"]] && \
echo yes || echo no

no

Once again, we used a one-line logical expression to quickly see the result.

Now, here's a small script that will show some of the things we learned in this recipe:

 #!/bin/bash

 #check if settings exist

Advanced array manipulation 395

 function checkfile {

 if [-f setting.list]

 then

 return 0

 else.

 return 1

 fi

}

function assign_settings {

 echo assigning settings

 SETTINGS=(["USER"]=John ["LOCALDIR"]=$PWD \
["HOSTNAME"]=hostname)

}

declare -A SETTINGS

SETTINGS=()

if checkfile

then

 source setting.list

else

 assign_settings

fi

echo Settings are:

for name in "${!SETTINGS[@]}"

do

 echo "$name"=${SETTINGS["$name"]}

done

declare -p SETTINGS > setting.list

We already know most of this, but we will go through the script.

The first function in that script tests if a file exists. We could have done the same thing
by using the if statement later in the code, but we wanted to remind you how to use
functions and logical checks. The function returns 0 if the file is there, and 1 if it is not.

Next, we have the function we called assign_settings that is used if the file is not
found. What it does is simply create a new associative array that contains some data.

396 Using Arrays

Then, we are in the main body of code in our script, and first, we are declaring our arrays
since they cannot be declared implicitly. Then, we decide if we have our file saved and
if we should load our array from there or whether we need to reassign the defaults.

After that, we are just printing out the values and then saving them to disk.

In a normal script, this would be a part of the script that does the importing and saving
of important settings. The rest of the script would be right before the line that saves
the variables.

We are going to start the script two times in a row. The result should be that it will detect
we have no configuration and make it for us:

demo@ubuntu:~/variable$ bash settings.sh

assigning settings

Settings are:

USER=John

HOSTNAME=hostname

LOCALDIR=/home/demo/variable

demo@ubuntu:~/variable$ bash settings.sh

Settings are:

USER=John

HOSTNAME=hostname

LOCALDIR=/home/demo/variable

When you are doing something such as this, we must also warn you that there may be big
problems with local and global variables. Be very careful if you are declaring any variable
that is supposed to be global in a function or—even worse—if you are sourcing it from
a function since the scope will limit your values from propagating throughout the script.

This is where we will leave arrays and go on to more interesting stuff—starting to create
some interfaces.

See also
•	 How to use bash array in a shell script: https://linuxconfig.org/how-to-

use-arrays-in-bash-script

•	 The Ultimate Bash Array Tutorial with 15 Examples: https://www.
thegeekstuff.com/2010/06/bash-array-tutorial/

https://linuxconfig.org/how-to-use-arrays-in-bash-script
https://linuxconfig.org/how-to-use-arrays-in-bash-script
https://www.thegeekstuff.com/2010/06/bash-array-tutorial/
https://www.thegeekstuff.com/2010/06/bash-array-tutorial/

14
Interacting with

Shell Scripts
We are almost done with explaining the basic concepts of scripting, but before we can say
we are completely done with them, we need to learn how to interact with shell scripts. This
isn't always necessary in shell scripting, but it may apply to most situations. For example,
it's one thing to create a script that does one job and one job only. It's completely different
to create a script that requires us to make some choices as it gets executed. If nothing else,
this second type is a prime candidate for shell script interaction. In this chapter, we are
going to cover three different ways to deal with shell script interaction.

In this chapter, we will cover the following recipes:

•	 Creating text-based interactive scripts

•	 Using expect to automate repetitive tasks based on text output

•	 Using dialog for menu-driven interactive scripts

398 Interacting with Shell Scripts

Technical requirements
As with all the chapters thus far, we are going to use the same virtual machine running the
Bash shell. So, we need a virtual machine with Linux installed – any distribution is fine (in
our case, it's going to be Ubuntu 20.10).

Now, start your virtual machine!

Creating text-based interactive scripts
The one thing that we haven't done so far is put any interaction in our scripts. The reason
for this is simple – at this point, we've only discussed how to output information and not
how to get it from the user or any other source. In the real world, interaction is something
that we need to deal with because it is at the core of creating any script. We could say that
there are two kinds of interaction. First, our script can interact with the system itself. This
means using different variables and other information that we can get from the system –
for example, free space in memory or on mounted disks. You could say that this is not real
interaction but instead just reading real-time data from the system. But, still, it's a very
useful way of making sure that a script does what it needs to do.

Another thing that we can do is interact with the user starting it. If the script is run by
the system, it isn't something that is going to interact with the user in any way, but user
interaction is extremely important when we are creating scripts for day-to-day jobs.
Consider this question – why would we create a script that backs up a folder (one folder
only) when we can create a script that can be told to back up one or more directories?
Isn't that way of designing a script much more usable?

Getting ready
When we start creating our scripts, we must decide on the kind of interaction that
we need in them. Depending on the type of script that's required, we may use interactive
prompts, menus, some sort of pre-configuration, or even some graphical interface. For
now, we are going to stay away from using GUIs for our scripts. However, we can use
them if we need to with the help of some appropriate tools. Remember, scripts are barely
more than some execution control that dictates how different commands and applications
interact, so those commands are what matters most in the first place.

For starters, our first recipe will be a simple interactive script asking the user for input and
then acting on it.

Creating text-based interactive scripts 399

How to do it…
The main commands that we are going to use in this recipe are going to be read
and echo. Before we do anything else, we need to learn a few tricks regarding these
commands. In theory, read is simple to understand – it waits for user input and then
stores that input in some variable. But to show you the different things that are made
possible by this simple command, we need to show you a few examples.

read, in its basic form, accepts one argument – the variable – and then takes whatever
the user types in and puts it into this variable so that we can use it later. Let's consider the
following example:

#!/bin/bash

echo "Input a value: "

read Value1

echo "Your input was: $Value1"

If we quickly test this script, this is what we will get as a result:

demo@cli1:~/interactive$ bash singlevar.sh

Input a value:

test

Your input was: test

demo@cli1:~/interactive$ bash singlevar.sh

Input a value:

test value

Your input was: test value

Sometimes, this is not enough. Sometimes, we need to get more than one value into
our script. The problem here is the way users type in the values. Shell uses space characters
as separators, so a space is going to be what separates the value in the read command.
If we need to get a value that contains spaces, we will have to deal with it differently.
As we saw in the previous example, this will only become a problem if we use more than
one return variable.

400 Interacting with Shell Scripts

If, however, we use values that do not contain spaces, we can simply use the following
code and save it in the doublevar.sh file:

#!/bin/bash

echo -e "Input two numbers "

read num1 num2

echo "Two numbers are $num1 and $num2"

Now, let's try it and see if it works the way we are expecting it to:

demo@cli1:~/interactive$ bash doublevar.sh

Input two numbers

2 3

Two numbers are 2 and 3

We must stop here and do another test to clear a few things up. Bash performs no checks
on what the type of the variable is. In our script, we presumed that the user is going to
input numbers, but nothing stops them from using any string. Another thing would be
how multiple values separated by spaces are going to be handled – the first value is going
to be assigned to the first variable; everything after that is going to be assigned to the
second one. If we use more than two variables to store values, the result is always going to
be that each variable in the sequence will get one variable assigned and the last one will get
whatever was left in the input line:

demo@cli1:~/interactive$ bash doublevar.sh

Input two numbers

First second

Two numbers are First and second

demo@cli1:~/interactive$ bash doublevar.sh

Input two numbers

first second third

Two numbers are first and second third

Another way we can use read is to get the values into a predefined variable called
$REPLY. If we simply omit the variable name, everything you type in is going to be in that
variable, which can then be used in your script:

#!/bin/bash

echo "Input a value: "

Read

echo "Your input was: $REPLY"

Creating text-based interactive scripts 401

A simple test proves that this behaves exactly as if we gave the command a proper
variable name:

demo@cli1:~/interactive$ bash novar.sh

Input a value:

test value no variable

Your input was: test value no variable

Another way of using read is by using the -a switch. By using this, we are saying that
we want to store all the values it got as an array. After this switch, we need to state the
name of the variable we are going to use to store the values, or we can simply use the
default $REPLY variable. What we should not do is use more than one variable name.
This is because we are storing multiple values in one variable, so it makes no sense to try
and reference more than one variable in the first place:

#!/bin/bash

echo "Input multiple values: "

read REGULAR

echo "Your input was: $REGULAR"

echo "This will not work: ${REGULAR[0]}"

echo "Now input multiple values again:"

read -a REGULAR

echo "This will work: ${REGULAR[0]}"

Here, we are reading multiple values into a single variable. Since we didn't ask Bash to
create an array, it is going to store everything into this variable, but there will be no way
of referencing the elements inside this variable. Bash treats all the values in the variable
as a single, first element, so if we try to print it out, we will get everything.

The second time we do this, we are getting the values from the user. Here, we are using
an array. Everything looks the same but if we reference the first element of the variable,
we will only print the first element:

demo@cli1:~/interactive$ bash array.sh

Input multiple values:

first second third

Your input was: first second third

402 Interacting with Shell Scripts

This will not work: first second third

Now input multiple values again:

first second third

This will work: first

Now, we need to experiment a bit with the echo command. In the entire scripting part of
this book, we have been using this command in its most basic form to, well, output text to
screen or, to be more precise, to standard output. This will work for the majority of cases,
but there are some scripts where we need more control over the output. The problem
with the way echo works is that it always terminates the string it outputs with a newline
character, forcing the output into a new line once it's printed whatever was given to it as
a parameter. While this is alright for printing out information, when we try to interact
with the user in our scripts, it will look strange if we always force the user to enter the
values we are looking for in a new line. So, echo offers one additional option that changes
the default behavior (-n). Let's consider this example:

#!/bin/bash

echo -n "Can you please input a word?: "

read word

echo "I got: $word"

What we told echo to do here is that it should print the text inside quotation marks, but
after that, it should stay in the same line. Since our read command naturally continues
wherever the cursor was placed by the previous command, the result will be that the value
we type in will appear most logically on screen:

demo@cli1:~/interactive$ bash echoline.sh

Can you please input a word?: singleword

I got: singleword

There is another way to do this that looks more complicated but behaves the same:

#!/bin/bash

echo -e "Can you please input a word?: \c "

read word

echo "I got: $word"

Creating text-based interactive scripts 403

The reason we are showing you this is because this example uses special characters to
denote the end of the line, but at the same time, there are more characters we can use for
even finer control over the output. By default, the most commonly used are as follows:

•	 \\ backslash: When we need to output the actual \ character.

•	 \a alert (BEL): When we want to warn the user by using a loud sound.

•	 \b backspace: We use this when we need to provide a backspace character,
deleting whatever is on the same line under the cursor.

•	 \c produce no further output: This is used to tell echo to simply
stop the output.

•	 \t horizontal tab: This is used to provide tab and align the output.

Now that we know about some of the basic read and echo syntaxes, let's try to put that
to good use in a script.

How it works…
Now that we know how to deal with everything in the Bash script that can be used
for interaction, we can create a script that will show it all. Here, we are creating
a simple menu:

#!/bin/bash

echo "Your favourite scripting language?"

echo "1) bash"

echo "2) perl"

echo "3) python"

echo "4) c++"

echo "5) Dunno!"

echo -n "Your choice is: "

read choice;

we do a simple case structure

case $choice in

 1) echo "You chose bash";;

 2) echo "You chose perl";;

 3) echo "You chose python";;

 4) echo "You chose c++";;

 5) exit

esac

404 Interacting with Shell Scripts

Try it out!

There is another way to create an interactive menu that we can use in our script – using
the select command. This command is often used to create simple menus, like this:

#!/bin/bash

PS3='Please choose an option: '

options=("Option 1" "Option 2" "Option 3" "Quit")

select opt in "${options[@]}"

do

 case $opt in

 "Option 1")

 echo "you chose Option 1"

 ;;

 "Option 2")

 echo "you chose Option 2"

 ;;

 "Option 3")

 echo "you chose Option $REPLY which is $opt"

 ;;

 "Quit")

 break

 ;;

 *) echo "invalid option $REPLY"

 ;;

 esac

done

select looks a lot like some sort of loop; it requires us to set a few variables in advance.
$PS3 contains the question that the user will see, while $options contains an array of
strings that represent options. When a user runs this script, it will be presented with a list
of numbered options, and they can input any of them as a number. select is going to
then substitute the string from our options list based on the number that the user selected
and run the appropriate command:

demo@cli1:~/interactive$ bash select.sh

1) Option 1

2) Option 2

3) Option 3

Using expect to automate repetitive tasks based on text output 405

4) Quit

Please choose an option: 1

you chose Option 1

Please choose an option: 2

you chose Option 2

Please choose an option: 3

you chose Option 3 which is Option 3

Please choose an option: 4

demo@cli1:~/interactive$

This is a great way to quickly create a script with multiple choices.

See also
A lot more can be found about the echo and read commands at the following links:

•	 https://linuxhint.com/bash_read_command/

•	 https://www.javatpoint.com/bash-read-user-input

Using expect to automate repetitive tasks
based on text output
Bash is a formidable tool but sometimes, we need to do a particular thing that needs
additional tools. In this recipe, we are going to be working with just such a tool called
expect. Before we start, we must note that expect is not part of Bash scripting – it is
a whole separate scripting language, written for a particular purpose, to enable interaction
between your scripts and users and other systems. The idea behind it is to enable your
scripts to not only execute normal commands that provide information when executed
(command output) but to also be able to interact with any application that has
a command-line interface (CLI) and get information from it.

Getting ready
In a simplified way, expect acts as a virtual keyboard that can type in some text and
read what is on the screen. This is a powerful thing that is often needed because several
applications and scripts are created by people who either had no reason to enable scripting
support or just didn't want to do it. This means that without a tool such as expect,
we will not be able to interact with those applications. This sometimes means that
we will not be able to do what we want from inside our scripts.

https://linuxhint.com/bash_read_command/
https://www.javatpoint.com/bash-read-user-input

406 Interacting with Shell Scripts

In this recipe, we will learn how to use expect to interact with another shell on another
computer, how to type in a password and log in, and how to type commands and get
a response from the other side.

But before we even do that, we need to install expect if it isn't installed on the system
since it is not a standard part of the system.

Use the following command and wait for it to finish:

sudo apt install expect

We need to use sudo here. Only an administrator can install packages, so expect to have
to input your user password.

How to do it…
Since expect is not Bash, we must tell our script to use it. The syntax is the same as
when we're creating a script using Bash – we need to make running expect the first line
of our script. Note that this immediately means that our script no longer uses any of the
commands from Bash, but we get many new things we can do.

We are going to start with the simple hello world script:

#!/usr/bin/expect

expect "hello"

send "world"

What the script does is exactly what the commands sound like they do; when we start it,
the script is going to look for a hello string and after it receives it, it is going to reply
with the world string.

Strings are case-sensitive, so nothing else than the exact match will work. Also, expect
has a built-in period during which it expects to get the string. If nothing is matched
during that period, the script is going to continue from the next command. In our
example, even if we give it no input, we are going to get the world string printed.

When we start our script, we must use the expect command; we cannot start this script
using Bash since it is written specifically for expect:

demo@cli1:~/interactive$ expect expect1.exp

HEllo

helo

hello

world

Using expect to automate repetitive tasks based on text output 407

We tried three different ways of spelling the string here, and only the exact match worked.

Let's do something more interesting and explain what we did along the way:

#!/usr/bin/expect

set timeout 20

set host [lindex $argv 0]

set user [lindex $argv 1]

set password [lindex $argv 2]

spawn ssh "$user\@$host"

expect "Password:"

send "$password\r";

interact

This script is intended to enable you to quickly connect to another host using the ssh
protocol. When we run it, we need to provide three things: the name or IP address of
the host, the username to use, and the cleartext password for the user that will log in.
We are aware that using a password in this way is not normal at all, but we are providing
an example here.

At the start of the script, we are setting the timeout for the prompts. As we mentioned
earlier, if the expect command doesn't detect any input, it will continue the script after
the time specified in this timeout value. The next three lines deal with the arguments
we passed to the script. We are assigning each of them to a variable so that we can use
them later.

After that, we are using the spawn command to call the ssh command in a separate
process. We are using the standard ssh client and giving it usernames and hostnames so
that we can start the login process.

After this, our script waits until it detects that we need to type in the password. When
it detects the password: part of the prompt, it sends our password in cleartext.

The last command in the script is interact and it hands over control to us so that
we can use our freshly logged-in session to do what we intend to do. This is what it looks
like when it's run:

demo@cli1:~/interactive$ expect sshlogin.exp localhost demo
demo

spawn ssh demo@localhost

demo@localhost's password:

Welcome to Ubuntu 20.10 (GNU/Linux 5.8.0-63-generic x86_64)

408 Interacting with Shell Scripts

 Documentation: https://help.ubuntu.com

* Management: https://landscape.canonical.com

* Support: https://ubuntu.com/advantage

0 updates can be installed immediately.

0 of these updates are security updates.

demo@cli1:~$

This is a good start if we need to work on a remote system. But how do we run other
commands on the other system and what can we do with that?

There are two ways to continue here; one is to simply wait for the prompt to show
and then send commands, while another one is to script this blindly and just wait for
a predetermined period and then send the commands that we need. So, let's make an
example script for both concepts. Our goal is to have a scenario in which one part of the
script does its job as an answer to command output (in our script, this is the ssh part and
its output). The second part is related to the concept of waiting for a predetermined period
(sleep 5 means waiting for 5 seconds) and then doing something. Let's check out
our example:

#!/usr/bin/expect

set timeout 20

set host [lindex $argv 0]

set user [lindex $argv 1]

set password [lindex $argv 2]

spawn ssh "$user\@$host"

expect "password:"

send "$password\r";

sleep 5

send "clear\r";

send "ip link\r";

expect "$"

puts $expect_out(buffer);

send "exit\r";

Using expect to automate repetitive tasks based on text output 409

We added two things that we haven't mentioned previously. The first one is that we are
using the puts command to print information to the screen. It behaves similar to echo
does in Bash.

The $expect_out (buffer) variable holds data that the script got from running
commands between two matches. So, in our script, this is going to hold information
that was provided by the ip add command. If you are wondering where the login
information disappeared, it is not visible since we issued the clear command to clear the
screen, which, in turn, cleared the buffer.

How it works…
expect is an amazing tool that has even more things up its sleeve. One of its main
purposes is to automate administration tasks using scripts. One of the most common
usages was what we did in the previous example – running commands remotely. The
reason we may use it often is not only to automate logins but also to automate testing.
After running a particular command, we can do whatever we want and then get the results
into our scripts.

In this way, expect is usually used as part of another script. When we need some sort
of data that only expect can provide, we call it and then continue processing the data in
our main script. However, automating scripts can mean one more thing – getting them to
accept information, which enables us to write tests to check if our script works. For this
reason, expect has a tool that is used to create an expect script out of running any
script that contains interaction with the user.

The following is a quick example to demonstrate what we mean, but first, we are going
to create a very simple script where we will use different ways of calling echo and read
in Bash:

#!/bin/bash

#echo -e "Can you please input a word?: \c "

echo -n "Can you please input a word?: "

read word

echo "I got: $word"

echo -e "Now please input two words: "

read word1 word2

echo "I got: \"$word1\" \"$word2\""

echo -e "Any more thoughts? "

read will by default create $REPLY variable

read

410 Interacting with Shell Scripts

echo "$REPLY is not a bad thing "

echo -e "Can you give me three of your favorite colors? "

read -a will read an array of words

read -a colours

echo "Amazing, I also like ${colours[0]}, ${colours[1]} and \n
${colours[2]}:-)"

Now, we are going to start the autoexpect tool to grab both the input and output for
the script:

demo@cli1:~/interactive$ autoexpect bash simpleecho.sh

autoexpect started, file is script.exp

Can you please input a word?: word one

I got: word one

Now please input two words:

two words

I got: "two" "words"

Any more thoughts?

none whatsoever

none whatsoever is not a bad thing

Can you give me three of your favourite colors?

blue yellow cyan

Amazing, I also like blue, yellow and cyan

autoexpect done, file is script.exp

Here, autoexpect was tracking what our script used as prompts, as well as what we gave
as answers. When we finished executing our script, it created an expect script, which
enables us to completely automate running our Bash script. We are going to omit part of
this script since it contains a lot of comments that give us both the information about the
tool and the disclaimer. Here's what the autoexpect output looks like; it is saved in
a file named script.exp:

#!/usr/bin/expect -f

This Expect script was generated by autoexpect on Sun Oct \n
10 13:35:52 2021

set force_conservative 0 ;# set to 1 to force conservative \n
mode even if

 ;# script wasn't run \n

Using expect to automate repetitive tasks based on text output 411

conservatively

 Originally

 if {$force_conservative} {

 set send_slow {1 .1}

 proc send {ignore arg} {

 sleep .1

 exp_send -s -- $arg

 }

}

set timeout -1

spawn bash simpleecho.sh

match_max 100000

expect -exact "Can you please input a word?: "

send -- "word one\r"

expect -exact "word one\r

I got: word one\r

Now please input two words: \r

"

send -- "two rods "

expect -exact "

send -- ""

expect -exact "

send -- ""

expect -exact "

send -- ""

expect -exact "

send -- ""

expect -exact "

send -- "words\r"

expect -exact "words\r

I got: \"two\" \"words\"\r

Any more thoughts? \r

"

send -- "none whatsoever\r"

expect -exact "none whatsoever\r

none whatsoever is not a bad thing \r

412 Interacting with Shell Scripts

Can you give me three of your favorite colors? \r

"

send -- "blue llow and "

expect -exact "

send -- ""

expect -exact "

send -- ""

expect -exact "

send -- ""

expect -exact "

send -- "cz"

expect -exact "

send -- "yan\r"

expect eof

This script is a good starting point for automating our work, but be careful of one fatal
flaw. In the last part that checks the inputs and outputs, it logged every typo and error that
we made during input, but it hasn't saved the entire process of deleting them, so this input
will not work. Before we can use it, we must edit this script and sort all the errors and
inputs out. After that, we can expand on it and use additional arguments to test how
our script is going to behave.

See also
expect is amazing for testing. For more examples, please go to the following links:

•	 Expect command: https://likegeeks.com/expect-command/

•	 Expect man page: https://linux.die.net/man/1/expect

Using dialog for menu-driven interactive scripts
Now that we've used expect, we know how to interact with other applications. The
only thing left to do is learn how to make our scripts more interactive. It will come as no
surprise that this problem is already solved in a standard way. In this recipe, we will use
dialog, a command that may look deceptively simple but enables you to create both
complex and visually interesting interactions with end users.

https://likegeeks.com/expect-command/
https://linux.die.net/man/1/expect

Using dialog for menu-driven interactive scripts 413

Getting ready
By definition, dialog, as with any interaction, makes your scripts unusable in
a non-interactive environment. This can be solved by either not using dialog at all
or detecting if the script is running as a service or as an interactive script.

Like expect, we must install dialog to use it. Simply use the following command:
sudo apt install dialog

Everything that you need is going to be installed as required.

How to do it…
dialog is a whole application that contains not only menus but a lot of other widgets
that are displayed in a GUI under text mode. It will use colors if they are available on your
terminal (they probably are – terminals that are unable to show colors are long gone in
our day and age) and will use cursor keys for navigation. We are going to show you a few
of the most common ones, as well as how to use them.

For a start, try running this command:
dialog --clear --backtitle "Simple menu" --title "Available \n
options" --menu "Choose one:" 16 50 4 1 "First" 2 "Second" 3 \n
"Third"

If everything has gone well, you should see something like this (the size will depend on
your terminal window):

Figure 14.1 – The dialog command enables us to create menus in a single line of our script

414 Interacting with Shell Scripts

dialog acts as a good-looking proxy between your script and the user. Your script is
responsible for the logic of the process you are trying to automate; dialog is responsible
for dealing with user input and output. We need to do something with this menu;
if we just call it from our Bash prompt, we have no use for it. The reason we used it this
way was to show you how to call a widget. A lot of people expect a complicated procedure
when they first see dialog being used in a script, which is just a command in one line
and a couple of arguments. To demonstrate this, let's create an actual menu and save it in
a file named menu.sh:

#!/bin/bash

HEIGHT=16

WIDTH=50

CHOICE_HEIGHT=4

BACKTITLE="Simple menu"

TITLE="Available options"

MENU="Choose one:"

OPTIONS=(1 "First" 2 "Second" 3 "Third")

CHOICE=$(dialog --clear \

 --backtitle "$BACKTITLE" \

 --title "$TITLE" \

 --menu "$MENU" \

 $HEIGHT $WIDTH $CHOICE_HEIGHT \

 "${OPTIONS[@]}" \

 2>&1 >/dev/tty)

clear

case $CHOICE in

 1)

 echo "You chose First"

 ;;

 2)

 echo "You chose Second"

 ;;

 3)

 echo "You chose Third"

 ;;

esac

Using dialog for menu-driven interactive scripts 415

What are we doing here? dialog requires a couple of parameters for every widget it can
display. It needs a lot of values to correctly show whether something comes from your
terminal. These are values such as the width and height of the screen and how to display
the output correctly. As a rule, widgets only require user-defined things – the height and
width of the widget itself, titles and other strings that are used in the widget, and the
choices the user has. They are different from widget to widget, depending on the way it
works and is used. In our first example, we are using a menu widget that requires a list of
options and the size of the menu. We needed this list of options as it helps the user who's
starting this script make a correct choice. We are also providing it with the titles, although
we don't need all of them for our menu to function.

An interesting thing to notice here is the way dialog returns the value that the user
chose. To get that, we are providing indices in our list of possible options. When we run
dialog, we are going to assign the value it got from the user directly to a variable and
then act accordingly.

How it works…
dialog is based on displaying different widgets using different graphical characters to
give the feel of a graphical interface inside the normal terminal. As somebody who uses
dialog, you can change almost all the elements' appearance if you want, but usually, most
scripts simply use dialog to quickly get the user to input the data they require.

Using something like dialog is a great way to enable the user to choose values for
different things in their script while avoiding a lot of input errors.

For another example, let's imagine we need to ask a user to provide us with a date. We can
do this using a simple entry with the read and echo commands. This will work but with
a big risk of the user using the wrong format. You could solve this by explaining to your
users what format you expect, but they will inevitably forget and use the wrong one.

In dialog, you could do something simple, like this:

#!/bin/bash

DATEPROMPT="Choose a date"

CHOSENDATE=$(dialog --stdout --calendar "$DATEPROMPT" 0 0)

echo "Chosen date is $CHOSENDATE"

416 Interacting with Shell Scripts

The following is the output:

Figure 14.2 – Using the calendar widget to display dates is easy

The date we are going to get will be in the right format, depending on the regional setting
of the system running the script, and the user can choose from several good-looking
calendars. dialog helps a lot here since it will even jump to the current date if we do not
specify which specific date is going to be the default. Depending on the type of terminal
emulation, dialog may even support using a computer mouse to select data.

There are more very useful widgets that dialog provides, so we are going to show a few
of them. We are not going to create a script for all of them since they are simple to use.
The simplest way is to use the —stdout option to get the result of dialog into a variable
and then work from there.

If we need to choose a directory, that can be a big problem since the user would usually
forget to write the path correctly or use absolute paths instead of relative ones. By using
a simple dialog command, such as the following, we can avoid a lot of problems:

dialog --dselect ~ 10 39

Using dialog for menu-driven interactive scripts 417

This is the expected result:

Figure 14.3 – Choosing directories using dialog avoids a lot of errors

A simple dialog is useful when we need to get a simple yes or no answer from the user.
We can use the following code to do so:

dialog --yesno "Do you wish to do it?" 0 0

Using this dialog command, we should get the following output:

Figure 14.4 – Sometimes, you need to ask a simple question that will have a simple answer

Then, we have more informative ones. In our scripts, we are often having to present the
user with some information that they need to read. Having it in a formatted box is much
nicer than simply printing it in a terminal:

dialog --msgbox "A lot of text can be displayed here!" 10 30

418 Interacting with Shell Scripts

This example will create the following output:

Figure 14.5 – Displaying text is easy and effective when you're using the right widget

There are a few widgets we will not mention as we are trying to give you a quick glimpse
into what is possible. For the last example, we are going to show you a useful one – this
widget shows the contents of a text file and automatically updates it with changes, enabling
you, for example, to show a log to the user while they're installing something:

dialog --tailbox /var/log/syslog 40 80

This is the expected output:

Figure 14.6 – tailbox is the same as using tail -f on a file but is much better looking

Using dialog for menu-driven interactive scripts 419

This concludes our overview of what dialog can do. Make sure that you read the
documentation to learn about the rest of the widgets that you can use, as well as how
to use them correctly.

Note that there are other implementations of the same idea. One of those is called
whiptail and is the same as dialog but uses a different way to draw objects on the
screen. However, it is not as complete as dialog, and it lacks some widgets compared
to dialog.

See also
•	 dialog man page: https://linux.die.net/man/1/dialog

•	 Menu box guide: https://bash.cyberciti.biz/guide/A_menu_box

https://linux.die.net/man/1/dialog
https://bash.cyberciti.biz/guide/A_menu_box

15
Troubleshooting

Shell Scripts
If you have come this far, you must have a lot of ideas about how to write a shell script,
and even more questions about the ways you can make particular things in scripts
work. This is completely normal. Your scripting journey has just started. No amount of
reading can make up for time spent writing scripts, trying out different solutions, and
understanding how different commands work.

We have some good news and some bad news for you. Being good at scripting takes a long
time and, in scripting, most of that time is going to be spent trying to understand what
your script should be doing and, usually, why it is doing it wrong. The good news is that
scripting is never boring.

In this chapter, we will try to give you the tools needed to debug and troubleshoot scripts
quickly and without a lot of confusion. The tools are going to be in the form of different
methods you can use to maximize your ability to find logical and, sometimes, syntactical
errors in scripts. We are going to start with the basic recipes and go on to more complex
ways to work on scripts.

422 Troubleshooting Shell Scripts

We will cover the following recipes in this chapter:

•	 Common scripting mistakes

•	 Simple debugging approach – echoing values during script execution

•	 Using the bash -x and -v options

•	 Using set to debug a part of the script

Technical requirements
In this chapter, we are going to use the same machine as in all the previous chapters on
scripting in this book. Do not be alarmed that there are a couple of screenshots that are
made in Windows. They are there just to illustrate a point; you don't need Windows to do
anything. Just like earlier, we are using the following:

•	 A virtual machine with Linux installed, any distribution (in our case, it's going to be
Ubuntu 20.10)

Now, let's dive into troubleshooting.

Common scripting mistakes
Writing a script will present many problems, including how to design it, how to find the
right solutions to different problems, and how to make all of this usable in the target
environment. These can be things you can easily solve in a couple of minutes, or things
you will spend days or even weeks trying to solve. All this time will probably just be
a small percentage of the total time you will spend debugging and troubleshooting scripts.
Writing and troubleshooting scripts are two wholly different things – while you usually
write your own scripts from scratch, you will not only debug and troubleshoot your
own code.

Writing requires skill and deep knowledge of your environment, but it can be argued that
to debug and troubleshoot, you need even more understanding of both your task and
the way your script is trying to accomplish it. In this recipe, we are going to work on the
skills you need to understand not only how to troubleshoot scripts you have written, but
also any scripting code you run into, whether it's a part of something you've created
or a separate system created by someone else that you are responsible for getting running.

Common scripting mistakes 423

Getting ready
Troubleshooting and debugging sound and look like the same task, but they are subtly
different. In general, when we are debugging, we are concentrating on finding logical
and other errors in our scripts. When troubleshooting, we are not only debugging but
also trying gain more understanding of what should be done and how your application
is trying to accomplish it. In the recipes in this chapter, we are going to use both these
expressions for one thing – trying to make something that is not working correctly work
as it should, or at least better.

There are a few things you can do to make this as easy as possible, and one of them is
to get as much knowledge as possible about scripting under your belt. Being able to
understand scripts and the specific ways things are done to solve them will enable you
to quickly understand not only what the problem is but also how to solve it.

Sometimes the solution may be to simplify a part of code using a standard solution,
or break code into different, more standardized modules.

When faced with a more complex script, this method of breaking code down into more
manageable and understandable modules can be amazingly successful since even the
greatest script-writers sometimes completely miss the point of what they are doing and
complicate even the simplest tasks.

When talking about debugging, we need to talk about errors. Broadly, we can have four
different outcomes from our script:

•	 The script works as desired.

•	 The script throws an error.

•	 The script works but not completely, making errors.

•	 The script works but sometimes silently breaks something either in the input
or output data.

When we have the time, we can work on any of these possible outcomes and make a script
behave better, even one that works correctly. Sometimes it pays to spend some time
to make your script more beautiful, more commented, and more readable, even if it
works alright.

Another case is scripts throwing an error. Bash has a reputation for having cryptic
and generic error messages. Some of them are too vague to be of much assistance,
and sometimes they make no sense at all and don't help us to understand what is
actually wrong.

424 Troubleshooting Shell Scripts

One common example that you will notice from time to time is not understanding ends
of lines correctly. Windows and Linux treat ends of lines differently. While Windows
terminate text files using both the carriage return and new line characters, Linux only uses
new line characters for line termination. Bash can have a problem with that, and scripts
written on Windows will sometimes break for no apparent reason. This is the same script
on Windows and Linux, with an editor that shows all the characters in a file:

Figure 15.1 – In Linux, lines are terminated by a single character

Common scripting mistakes 425

In Windows, it looks similar, but we can see that line ends have two characters:

Figure 15.2 – In Windows, two characters are used to terminate a line

426 Troubleshooting Shell Scripts

In Linux, if we do not edit the file correctly and forget to strip out extra characters, we will
end up with characters that will be invisible in a normal editor and break the code at the
same time:

Figure 15.3 – In vim, you need to turn on a couple of options to see special characters

Note that there is a utility called dos2unix (and unix2dos if you need conversion the
other way around) that fixes ends of lines when transferring files. This problem is system
wide and more than a couple of programs will behave strangely when they encounter text
files from Windows.

If we do not deal with characters at the ends of lines, the script will break. For example,
we tried running the file that came from Windows in Linux, we get completely cryptic
errors mentioning commands that look like they are not even in the script. We are using
dos.sh as the name of the script that we saved in Linux:

demo@ubuntu:~/Desktop/allscripts$ bash dos.sh

dos.sh: line 2: $'\r': command not found

dos.sh: line 4: $'\r': command not found

dos.sh: line 26: syntax error near unexpected token 'else'

'os.sh: line 26: ' else

Common scripting mistakes 427

Also, we need to make it clear that if you use copy and paste to move files between your
environments, this will fix the problem directly. When you paste a line in a particular
operating system, it will automatically create the right line endings. This does not cover
copying and pasting the entire file; if you do that, you are transferring the entire
file's content.

Another common syntax error that can be difficult to find is using the wrong quote,
either by mixing them up or using a quote instead of a backtick character when executing
commands inside scripts:

Figure 15.4 – Completely normal script, highlighted by syntax in vim

428 Troubleshooting Shell Scripts

If we change one backtick to a quote, this will turn into the following:

Figure 15.5 – Without proper highlighting, an error like this can cause serious problems

We are using vim here, and you will notice the change right away. The editor understands
syntax and highlights the appropriate code block in a different color.

If we try to run this script, it will throw an error:

demo@ubuntu:~/Desktop/allscripts$ bash backupexample.sh

backupexample.sh: line 4: unexpected EOF while looking for
matching '''

backupexample.sh: line 8: syntax error: unexpected end of file

This error is a little confusing. Bash is telling us that it got to the end of the file while
trying to find the closing quote.

Common scripting mistakes 429

One thing all of these errors have in common is using different fonts in different editors.
Sometimes, the difference between characters is so minor that it is extremely hard to spot.
Bash makes it even harder by reporting errors that are sometimes pointing to a completely
different part of the code.

The solution to this is using a font you know is legible and using an editor that is able to
pair characters such as parentheses. Quotes and backticks will probably remain a problem
since most applications are unable to match them. Editors such as vim will, however,
highlight comments and, as we saw in the previous example, this will make errors such
as this visible.

This is an example of highlighted brackets in Notepad++ on Windows, since
we mentioned the multi-platform approach:

Figure 15.6 – Highlighting brackets in Notepad

430 Troubleshooting Shell Scripts

Of course, we also have our standard run-of-the-mill syntax errors that are inevitable.
A good editor will also help with these:

Figure 15.7 – Having an editor that's capable of highlighting braces and parentheses will save you

The error is in the then keyword, and vim highlights that by making the keyword white
instead of the yellow that it uses for regular keywords.

After dealing with syntax, it is time to see how to avoid arguably more complicated and
tougher-to-spot errors in logic.

How to do it…
Mentioning logic in scripting can be deceiving. Logic can, in the very strict definition of
the term, be formal logic in clauses that require logic expressions to work, or can more
broadly mean any decision-making inside the script. When we say error in logic,
we usually think of the latter; problems that are created when our script behaves like
we told it to, not like we thought we told it to. Every unexpected behavior that is not
a result of a syntax error falls into this category.

Common scripting mistakes 431

For example, let's presume that we want to sort a couple of numbers using the sort
command. This may look easy but has a small flaw. sort, by default, sorts alphabetically,
and not numerically:

demo@ubuntu:~/Desktop/allscripts$ du -a | sort

0 ./errorfile

0 ./settings

264 .

4 ./arrayops.sh

4 ./array.sh

4 ./associative.sh

4 ./auxscript.sh

4 ./backupexample.sh

4 ./dialogdate.sh

4 ./dos.sh

4 ./doublevar.sh

4 ./echoline1.sh

4 ./echoline.sh

We end up having value of 264 being larger than 0 but smaller than 4, which is wrong.
If we want to sort something as we intended to, we should be using the appropriate switch:

demo@ubuntu:~/Desktop/allscripts$ du -a | sort -n

0 ./errorfile

0 ./settings

4 ./arrayops.sh

4 ./array.sh

4 ./associative.sh

4 ./auxscript.sh

.

.

.

264 .

This is much better. Errors like this are not strictly a problem with Bash but instead
happen when we are unsure of how a command is used, the result of which is that our
script will misbehave.

432 Troubleshooting Shell Scripts

Another thing you are going to see frequently is invalid index referencing. In arrays,
indices start from 0, but people usually count from 1:

Figure 15.8 – Misnumbering indices is common when programming in any language

When we try and run this, we are going to lose one pair of variables in our output since
we missed the first element in the array:

demo@ubuntu:~/Desktop/allscripts$ bash errpairs.sh

Name:Luke number:12344

Name:Ivan from work number:113312

Name:Ida number:11111

Name:That guy number:122222

Name: number:

Common scripting mistakes 433

The errors that doing this creates are sometimes easy to spot when the script is run, but
some use cases, especially those that deal with only a part of an array, may create strange
problems. The same problem can and will happen in loops using arguments, like in this
example, and if we do not print the values straight away, we may not notice that we are
processing only part of the array.

Fundamentally, the problem is that definition of the number we are counting from is
pretty arbitrary. Usually, we use 0 as the first index, but there are some exceptions to this.
If you're not completely sure, check.

All of these problems are mentioned here very broadly. You need to know them, but the
way you are going to deal with them in your scripts is going to be different for every script
you create. Our intention here is to make you aware that the problem exists, so you can
spot it before it becomes dangerous.

The last big problem we mentioned was with scripts that work correctly most of the time,
failing only in some cases and then failing only partially. This is the worst kind of problem,
one that is dangerous since you cannot fully trust the output of the script, and hard to find
since the output will be completely fine most of the time. The only way to deal with these
problems is to carefully go through all the edge cases of your problem and test them on
the script itself.

How it works…
In this recipe, we were annoyingly vague when describing possible problems, and we did
it on purpose. As with all things that are directly connected with making errors while
working on some problem, we would like to avoid all of them, but it is impossible to
define what to avoid until we make an error. Most problems we see will be the result of
a poor presumption or a false understanding of a fact. Sometimes, it is going to be
a simple typing error that will go unnoticed.

There is also one more thing you can do to make things better when writing scripts.
In order to avoid the most common problems with syntax and logic, primarily syntax,
you can use automated tools.

434 Troubleshooting Shell Scripts

There are two types of tools you can use. We have already mentioned one, although
we didn't explicitly mention that it is an actual tool. We instead said that your editor is
going to take care of most of your problems. Editors that are currently available usually
include functionality that enables them to understand the syntax of the language you are
using and to offer help if they notice something wrong. Support of this kind in editors
is usually rudimentary and limits itself to being able to understand keywords and the
lexical structure of a particular language. It is not uncommon for an editor to switch this
functionality on as soon as it is able to identify the file and to autodetect the language
you are trying to use. We have already seen examples of this. For more, please review
Chapter 2, Using Text Editors.

There is, however, another set of tools you can use. We are talking about completely
automated tools that are not only able to find errors in your scripts but are also able to find
potential problems in your commands, and to even advise you how to improve your code.

You may wonder if it makes any sense to run an application on a script that will report the
same errors as Bash would, and your question is valid. Bash is by itself completely capable
of reporting any syntax errors, but it includes only a minimal set of messages to help
you solve the problem. In essence, Bash reports only those errors that stop your code
from working.

A good tool for code analysis, and this is the term used when talking about these
applications, will find problems in your code and will give you suggestions to improve the
code you have written. Things that are going to be reported may be obvious at first glance,
but some of them are also errors that can lead to problems, such as missing quotes
or misplaced variable assignment.

One such tool is ShellCheck, which is available both online and offline in the form of
a package. In order to use it offline, you must install it using this command:

sudo apt install shellcheck

After that, it's only a matter of running it on your script. We will do that later when
we touch upon how you can also run this tool online in a browser, and it will give you the
same results as the offline version. The only difference is the interface and the simplicity
of clicking on a link inside a browser. Both versions report exactly the same errors and
behave the same when it comes to recommendations.

Common scripting mistakes 435

We are going to run this tool on a couple of our scripts to see what it has to say about
the quality of our code. First, we are going to see what happens when we make a simple
syntax error. We are using the script we used when we introduced the if statement.
The script is named testif3.sh, and we have simply removed one line containing
the then keyword:

Figure 15.9 – ShellCheck provides much better warnings about syntax errors than Bash does

We can see that the tool has found the problem immediately and has not only reported it,
but has also given us a suggestion about what to do next. The interesting thing is that
it has marked the if statement that has the error in it, while Bash gave us an error that
was comparatively misdirected, pointing to a piece of code that comes in much later in
the script.

If we fix the error, we can rerun the tool, as shown here:

demo@ubuntu:~/Desktop/allscripts$ shellcheck testif3.sh

demo@ubuntu:~/Desktop/allscripts$

If there is no output from the tool, this means that no errors were detected.

436 Troubleshooting Shell Scripts

Now, let's do it on a more complex script. In this case, we are working with a script named
funcglobal.sh from Chapter 12, Using Arguments and Functions:

Figure 15.10 – Using variables in this way is not an error as such but it can lead to problems

The output does not look pretty because of the large font size in the terminal, but it gives
us an idea of what to do better in our script. As we mentioned earlier, spaces are a big
problem and so by using double quotes, we will prevent a space character completely
messing up our script.

We are going to do one more example, a modified version of a script we used earlier
and saved under the name functions.sh:

#!/bin/bash

#shell script that automates common tasks

function rsyn {

Common scripting mistakes 437

 rsync -avzh $1 $2

}

function usage {

echo In order to use this script you can:

echo "$0 copy <source> <destination> to copy files from source\
to destination"

echo "$0 newuser <name> to createuser with the username\
<username>"

echo "$0 group <username> <group> to add user to a group"

echo "$0 weather to check local weather"

echo "$0 weather <city> to check weather in some city on earth"

echo "$0 help for this help"

}

if ["$1" != ""]

 then

 case $1 in

 help)

 usage

 exit

 ;;

 copy)

 if ["$2" != "" && "$3" != ""]

 then

 rsyn $2 $3

 fi

 ;;

 group)

 if ["$2" != "" && "$3" != ""]

 then

 usermod -a -G $3 $2

 fi

438 Troubleshooting Shell Scripts

 ;;

 newuser)

 if ["$2" != ""]

 then

 useradd $2

 fi

 ;;

 weather)

 if ["$2" != ""]

 then

 curl wttr.in/$2

 else

 curl wttr.in

 fi

 ;;

 *)

 echo "ERROR: unknown parameter $1\""

 usage

 exit 1

 ;;

 esac

 else

 usage

fi

Common scripting mistakes 439

If we run ShellCheck on this, we are going to end up with a long output, part of which
looks like the following:

Figure 15.11 – Output of ShellCheck is going to warn you if it sees logical errors

440 Troubleshooting Shell Scripts

If we click on the link that ShellCheck provides as the last line of the output, we are taken
to a detailed explanation of why this is a problem, as can be seen in this screenshot:

Figure 15.12 – Links that ShellCheck provides give you detailed information about the error

Simple debugging approach – echoing values during script execution 441

This explanation is not only useful, but it also contains more links for when we want to
understand what actually went wrong, why it went wrong, and what is the reason for this
being an issue to look at in the first place. Sometimes, the problems that the tool detects
are going to have limited scope and will be solved in some versions of the Bash interpreter
yet misbehave in another.

See also…
Troubleshooting is complicated since we are unable to anticipate all the possible problems.
Some of them as follows are, however, common:

•	 https://mywiki.wooledge.org/BashPitfalls

•	 https://mywiki.wooledge.org/BashGuide

•	 https://www.shellcheck.net/

Simple debugging approach – echoing values
during script execution
The first thing you will learn when using Bash is how to regularly use the echo command
when running any script. This approach is simple as it gives us an opportunity to follow
the workflow of the script and to print the values of the variables as they are in different
points of the script. Being able to understand both those things is going to help us
to follow all the inputs to our script and to see how they transform into outputs that
we expect.

Getting ready
In this recipe, we are going to deal with simple ways we can make our script help
us understand what is happening during its run. There are three ways we can use this
simple method.

https://mywiki.wooledge.org/BashPitfalls
https://mywiki.wooledge.org/BashGuide
https://www.shellcheck.net/

442 Troubleshooting Shell Scripts

The first thing we can do is use the echo command in every place in the script that
we think is helpful. As an example, take a look at one of the scripts from previous chapters
(funcglobal.sh) that is already pretty verbose:

Figure 15.13 – Using echo to debug program flow is useful when dealing with functions

Simple debugging approach – echoing values during script execution 443

We are going to add even more echo statements here to enable us to see exactly what is
happening and in what order:

Figure 15.14 – There are never enough echo commands when debugging

444 Troubleshooting Shell Scripts

If we now run our modified script, we will be able to precisely follow the flow of the script:

demo@ubuntu:~/Desktop/allscripts$ bash funcglobal.sh

Declaring global variable as Global Variable

In the main script before function is executed variable has the
value of: Global variable

Now calling the function

Entered Function

declaring local variable as Local Variable

Inside the function variable has the value of: Local variable

leaving function

returned from function

In the main script after function is executed value is: Global
variable

script end

This is particularly useful when we're dealing with a lot of code blocks, functions, and
conditional statements. The rough idea here is that we can use echo to announce entering
and leaving each code block so that we can see if our script ran correctly.

Another thing we are going to do is to print the values of variables during the script
execution. While doing this, we suggest you always mention the place this particular
command is printing variables from in the code of the script. When debugging this way,
the values of the variables are going to be printed to the output in the order they are
assigned, helping us follow the flow of the script. Our previous example already does that.

How to do it…
There is one more thing you can do to make your scripts provide more information
when you are debugging them. There is a command built into bash called trap. The
main reason it is there is to help you react to interrupts and to ensure that your script
works even if something unexpected happens. The syntax it uses is simple – we need to
tell it what to do and under what circumstances to do it. By circumstances, we mean any
interrupt signal possible under Linux. The most common ones are SIGHUP, SIGKILL,
and SIGQUIT, but a lot of others are used.

Simple debugging approach – echoing values during script execution 445

For example, we can create a script like this:

Figure 15.15 – Using trap inside the script to stop Ctrl + C

What this first line does is that it establishes something considered to be an interrupt
routine. If at any point in our script someone uses Ctrl + C to interrupt it, our script will
detect that and execute two commands inside quotes:

demo@ubuntu:~/Desktop/allscripts$ bash echoline.sh

Can you please input a word?: dsasd^CScript was interrupted

demo@ubuntu:~/Desktop/allscripts$ bash echoline.sh

Can you please input a word?: nointerrupt

I got: nointerrupt

Script cleanly finished executing

446 Troubleshooting Shell Scripts

When we first tried, we pressed the interrupt key and our routine did what we told it to,
which was to exit the script right away and give us a warning about it. This command
can also be very useful to block attempts to stop the script since it will execute whatever
we tell it to and then just continue running the script.

Another thing that you can do is to use EXIT as the keyword in the trap command
like this:

trap "some command" EXIT

This keyword covers any possible way to exit from a script, meaning that this trap is
going to be executed no matter what happens to the script, and it will run right before the
control returns to whatever process ran our script.

When used this way, trap is useful not only for debugging but also for cleaning up after
your script, since it will run as the last command, enabling you to do whatever needs to be
done to close the files and clean things up after your script.

How it works…
No matter which way you choose to debug your scripts, it all boils down to heavily
modifying it. Using echo is useful but at the same time requires adding a lot of
commands to the script we are debugging. Having said that, this is probably going to
be the first thing you will try when debugging any script since it enables you not only
to understand how the values inside the scripts change but also how the entire script
works because you have the exact information of where your command is executed from,
enabling you to understand both the variables and the workflow of the script.

Using trap is a slightly more nuanced way of debugging and can be very useful to gain
knowledge of what is happening when we go outside of the program flow we imagined.
If a script breaks or gets interrupted in any other way, trap will give you information on
what happened and where.

There isn't a particular way of debugging to recommend here as all of them work in
a particular scenario. What we can say is that you should try using all of them and see
which fits a particular scenario.

See also
•	 https://www.linuxjournal.com/content/bash-trap-command

•	 https://tldp.org/LDP/Bash-Beginners-Guide/html/sect_12_02.
html

https://www.linuxjournal.com/content/bash-trap-command
https://tldp.org/LDP/Bash-Beginners-Guide/html/sect_12_02.html
https://tldp.org/LDP/Bash-Beginners-Guide/html/sect_12_02.html

Using the bash -x and -v options 447

Using the bash -x and -v options
Up to this point, we have tried debugging using different methods that involved
commands inserted into our scripts. Regardless of the command we used, this approach
has one drawback – whatever we do, using commands inside the script is either very
localized to a particular part of a given script or too global since it has to cover a good
chunk of code. We are not saying that this is not a valid way of solving problems in scripts,
but we still need more ways to debug.

Getting ready
The only thing we need to know before we start using this is that we will be running
scripts by invoking them as parameters of the interpreter, so something like this:

bash -options <scriptname>

This is important since we can not use any of these options if we invoke scripts in any
other way.

How to do it…
Bash is in this respect pretty complicated since it offers little, in fact almost nothing,
in terms of support for any reasonable systematic debugging, and we have already
mentioned that. There is a glimmer of hope, however, and that comes in the form of two
switches, -x and -v. The first one turns on the printing of every command that is run in
the script and it also prints all the command arguments used. This makes understanding
the workflow of commands easy.

Using -v is arguably less useful. It simply prints all the script lines as they are read.

In order to understand these options, we are going to create a small example using one
of the scripts we used in a different recipe, but this time we are going to use different
switches when running it.

First, we are going to use -v:

demo@ubuntu:~/Desktop/allscripts$ bash -v testif3.sh

#!/usr/bin/bash

testing premissions and paths

if [-d root]

 then

 echo root directory exists!

 if [-r root]

448 Troubleshooting Shell Scripts

 then

 echo Script can read from the directory!

 else

 echo Script can NOT read from the directory!

 fi

 if [-w root]

 then

 echo Script can write to the directory!

 else

 echo Script can not
write to the directory!

 fi

 else

 echo root directory does NOT exists!

fi

root directory exists!

Script can read from the directory!

Script can write to the directory!

Now, we are going to use -x to run the script:

demo@ubuntu:~/Desktop/allscripts$ bash -x testif3.sh

+ '[' -d root ']'

+ echo root directory 'exists!'

root directory exists!

+ '[' -r root ']'

+ echo Script can read from the 'directory!'

Script can read from the directory!

+ '[' -w root ']'

+ echo Script can write to the 'directory!'

Script can write to the directory!

Both switches have their place in debugging. When we said that -v is less useful than
-x, we meant that it only gives us an insight into how Bash interpreted your script, but
nothing more than that.

Using the bash -x and -v options 449

Using -x shows us how Bash executed the script and what commands it ran during
the execution. What you must understand is that this is not going to be the list of all
commands in the script but only those that actually ran. If a particular part of the script
was not used, for example, if it belonged to a block of commands that are in the code only
for a specific condition, this way of running a script will not show that.

How it works…
The most common thing is using both switches together, since it enables us to quickly
understand what the script looks like and what Bash does when executing it. In a large
script, this is going to generate a lot of output, but this is usually what we actually want
to do. Then, we can go through the script step by step and understand the logic
it implements.

On the other hand, we cannot consider this as a universal solution to anything. Although
it gives us a lot of information about the command it runs, it is very limited by what the
variable values are and what is actually going on when processing data. Take, for example,
this loop included in the file forloop1.sh, available as part of the files included with
the book:

demo@ubuntu:~/Desktop/allscripts$ bash -x forloop1.sh

+ for name in {user1,user2,user3,user4}

+ for server in {srv1,srv2,srv3,srv4}

+ echo 'Trying to ssh user1@srv1'

Trying to ssh user1@srv1

+ for server in {srv1,srv2,srv3,srv4}

+ echo 'Trying to ssh user1@srv2'

Trying to ssh user1@srv2

+ for server in {srv1,srv2,srv3,srv4}

+ echo 'Trying to ssh user1@srv3'

Trying to ssh user1@srv3

+ for server in {srv1,srv2,srv3,srv4}

+ echo 'Trying to ssh user1@srv4'

We are not going to copy the entire output since it has no other useful information. Here,
we can see that we are looping in a for loop, and we can see possible values but the actual
value of a particular variable is not seen unless we print it. This means that we will have to
combine this way of debugging with the other ways we presented in this chapter.

450 Troubleshooting Shell Scripts

See also…
•	 https://linux.die.net/man/1/bash

•	 https://tldp.org/LDP/Bash-Beginners-Guide/html/sect_02_03.
html

Using set to debug a part of the script
In the previous recipe, we dealt with globally using two options to tell Bash to include a lot
of useful information in its output. We mentioned that this offers another way to deal with
debugging and troubleshooting how your scripts work. At the same time, we mentioned
that this approach is in stark contrast with using commands in the script itself since
we can deal with things globally without too many changes to the scripts when debugging.

In this recipe, we are going to cover another way to debug, one that shares a lot of
similarities with the ones we introduced before, while also being different.

Getting ready
One very interesting built-in command in Bash is set. What it does is give us the ability
to change the options Bash uses. A lot of things can be changed by using set, and by a lot
we mean almost every option Bash has. In this recipe, we are using only two of them, but
you can turn all of them on or off.

set enables us to set a particular option on in just a small block of code, instead of using
it globally. You also need to know that set can turn an option both on and off. If we use
set with a – sign, we turn the option on. For example, we could use this:

set -x

This is telling Bash to start showing us commands as they are executed.

A slightly confusing way is if we turn off any option that is currently used. To do that,
we have to use the + sign, something that is a little bit counterintuitive since adding is
usually used to turn something on, not off. For example, look at this command:

set +x

This will turn off the output of commands in Bash.

We are going to see a couple of examples of this just to make you comfortable.

https://linux.die.net/man/1/bash
https://tldp.org/LDP/Bash-Beginners-Guide/html/sect_02_03.html
https://tldp.org/LDP/Bash-Beginners-Guide/html/sect_02_03.html

Using set to debug a part of the script 451

How to do it…
Using set is simple. In any script we wish to debug, we are going to insert the set
statement right before the place we are starting our trace from. After we no longer need
to trace our script, we simply unset the option and we are done. We can do this as many
times as we need to.

Here's an example:

Figure 15.16 – How to set and unset options while running the script

In this example, we are starting our trace just before we do the test of our variable. This
means that we are going to start tracing right before we do a test and stop tracing right
before we continue the loop. The result is this:

demo@ubuntu:~/Desktop/allscripts$ bash forbreak.sh

running command1, number is 1

running command2, number is 1

+ '[' 1 -eq 4 ']'

452 Troubleshooting Shell Scripts

+ set +xv

running command3, number is 1

running command1, number is 2

running command2, number is 2

+ '[' 2 -eq 4 ']'

+ set +xv

running command3, number is 2

running command1, number is 3

running command2, number is 3

+ '[' 3 -eq 4 ']'

+ set +xv

running command3, number is 3

running command1, number is 4

running command2, number is 4

+ '[' 4 -eq 4 ']'

+ echo breaking out of loop, number is 4

breaking out of loop, number is 4

+ break

We can even consider this way of debugging as a special case of using options globally.
We are basically doing the same thing as in previous examples where we used set
globally, but this time we are limiting the scope to make the output more readable.
Sometimes that can make working a lot easier since we are not creating much
irrelevant output.

How it works…
The set command can be used for one more thing, and that is to force Bash to do
some things differently than are usually done. For example, we can make scripts fail
if any command inside them fails, we can make scripts fail if they reference a value of
a variable that is not set, or we can even change the way Bash expands characters in the
command line.

All these things can be useful when working but at the same time, can be a little too much
to grasp all at once when you first begin scripting, so we decided to not include them in
these recipes.

Using set to debug a part of the script 453

See also…
•	 https://linuxhint.com/debug-bash-script/

•	 https://www.gnu.org/software/bash/manual/html_node/
The-Set-Builtin.html

https://linuxhint.com/debug-bash-script/
https://www.gnu.org/software/bash/manual/html_node/The-Set-Builtin.html
https://www.gnu.org/software/bash/manual/html_node/The-Set-Builtin.html

16
Shell Script

Examples for Server
Management,

Network
Configuration,

and Backups
Now that we've covered everything that we wanted to cover in terms of various concepts
and structures in Bash shell scripting, let's dig into some examples. This will allow us to
put these last few chapters to good use as shell scripts are the most commonly used tools
in system engineers' daily jobs. Due to this, we are going to go through some shell scripts
to emphasize the point of scripting – to make our lives a lot easier.

456 Shell Script Examples for Server Management, Network Configuration, and Backups

In this chapter, we're going to cover the following recipes:

•	 Creating a file and folder inventory

•	 Checking if you're running as root

•	 Displaying server stats

•	 Finding files by name, ownership, or content type and copying them to
a specified directory

•	 Parsing date and time data

•	 Configuring the most common firewall settings interactively (firewalld
and ufw)

•	 Configuring network settings interactively (nmcli)

•	 Backing up the current directory with shell script arguments and variables

•	 Creating a current backup based on the user input for the backup source
and destination

Technical requirements
Let's continue using our Ubuntu machine, specifically the cli1 machine. If you've not
started it up yet, please start it now so that we can go through our examples. We will use
the cli2 CentOS machine for a few recipes as well, so make sure that you start that one
when the time comes.

Creating a file and folder inventory
Let's start with something basic – a script that reports in terms of folder and file inventory.
As simple as this is, this type of script can use a variety of different tools, including
commands, built-in CLI applications, loops – there are a lot of choices to be made.
We're going to do this in the simplest way possible – by taking advantage of our
knowledge of commands and CLI applications. We're going to create a couple of different
versions of this script as it can be used in a variety of different ways – for example, as input
into future shell scripts or as plain text reporting tools.

Creating a file and folder inventory 457

How to do it…
Let's start by creating a script that's just going to tell us the following:

•	 The number of folders in the current folder and their sizes, sorted by size in
descending order

•	 The number of files in the current folder and their size, sorted by size in
descending order

Here's the first version of our script – we saved it as a file called sscript1.sh:

#!/bin/bash

V1.0 / Jasmin Redzepagic / 01/11/2021 Initial script version

Distribution allowed under GNU Licence V2.0

echo "Number of directories in current directory is:"

find . -type d | wc -l

echo "Directory usage, sorted in descending order, is as
follows:"

find . -type d | du | sort -nr

echo "Number of files in current directory is:"

find . -type f | wc -l

echo "File usage, sorted in descending order, is as follows:"

find . -type f -exec ls -al {} \; | sort -k 5 -nr | sed 's/
\+/\t/g' | cut -f5,9

As we can see, we only used basic commands here, without going into a lot of looping,
actual programming, and so on. Let's treat this as a reporting script and go from there.

458 Shell Script Examples for Server Management, Network Configuration, and Backups

On our cli1 machine, this was the result:

Figure 16.1 – First version of our folder and file inventory script

This is working and can be used for reports – yep, that's all good. But what happens
if we want some more functionality? What if we were to use the first version of this
script to generate a .txt file that contains lists of files in the current directory, modify
it a little bit, and then use this file for something else, such as to copy those files to
a pre-configured location?

Creating a file and folder inventory 459

We would need to make some adjustments, as follows:

#!/bin/bash

V1.0 / Jasmin Redzepagic / 01/11/2021 Initial script version

Distribution allowed under GNU Licence V2.0

First, let's find out if the destination directory exists by

using test function. If it does, go on with the script. If it

doesn't, create that destination directory. In our example,

destination directory is called copylocation.

if [-d "./copylocation"]

then

 echo "Directory ./copylocation exists."

else

 echo "Error: Directory ./copylocation does not
exist."

 mkdir ./copylocation

fi

next step, let's create a friendly file list with all of the
files

in current folder

find . -type f -exec ls -al {} \; | sed 's/ */ /g' | cut -f9
-d" " > filelist.txt

Last step, let's load this file into variable so that we can
loop

over it and copy every file from it to our destination folder

file_list='cat filelist.txt'

for current_file in $file_list

do

 echo "Copying $current_file to destination"

 cp "$current_file" ./copylocation

done

The next script we'll look at is simple but very, very useful – it's about checking if
we're running the script as root. The reasoning is simple – there will be scripts that
we don't want to run as root for fear of messing something up, in which case we'd use
some accessible resources. Let's see how that would work.

460 Shell Script Examples for Server Management, Network Configuration, and Backups

See also
If you need more information about sort, find, wc, cut or sed, we suggest that you
visit these links:

•	 sort command man page: https://man7.org/linux/man-pages/man1/
sort.1.html

•	 find command man page: https://man7.org/linux/man-pages/man1/
find.1.html

•	 wc command man page: https://man7.org/linux/man-pages/man1/
wc.1.html

•	 cut command man page: https://man7.org/linux/man-pages/man1/
cut.1.html

•	 sed command man page: https://man7.org/linux/man-pages/man1/
sed.1.html

Checking if you're running as root
There are different ways of checking if we're running a script as root. We can use
environment variables, just as we can use the whoami or id commands to check if it
equals root/number 0 or not.

Getting ready
We'll continue using the cli1 machine for this recipe, so make sure that it's powered on.

How to do it…
Let's create a short snippet of Bash shell script code that's going to help us find out
whether we're running a script as root or not. It's a rather simple thing to do in Linux,
considering that we have easy access to an environment variable called EUID, and reading
its value is enough to determine whether we're running as root (EUID=0) or not (EUID
value > 1):

#!/bin/bash

V1.0 / Jasmin Redzepagic / 01/11/2021 Initial script version

Distribution allowed under GNU Licence V2.0

First, we need to check if our environment variable UID is
set to

https://man7.org/linux/man-pages/man1/sort.1.html
https://man7.org/linux/man-pages/man1/sort.1.html
https://man7.org/linux/man-pages/man1/find.1.html
https://man7.org/linux/man-pages/man1/find.1.html
https://man7.org/linux/man-pages/man1/wc.1.html
https://man7.org/linux/man-pages/man1/wc.1.html
https://man7.org/linux/man-pages/man1/cut.1.html
https://man7.org/linux/man-pages/man1/cut.1.html
https://man7.org/linux/man-pages/man1/sed.1.html
https://man7.org/linux/man-pages/man1/sed.1.html

Displaying server stats 461

0 or not and branch that out to either yes or no with
appropriate

status messages

if ["$EUID" -eq 0]

 then

 echo "You are running as root user.
Please be careful!"

 else

 echo "You are not root. It's all
sunshine and roses, you can't do much damage!"

fi

exit 0

The next example that we're going to cover is about displaying server stats. We're going to
use the sar command to do so. Let's go!

See also
If you need more information about internal variables, we suggest that you go to
https://tldp.org/LDP/abs/html/internalvariables.html.

Displaying server stats
Let's say that we have to write a shell script that's going to display the following pieces
of information:

•	 Current hostname

•	 Current date

•	 Current kernel version

•	 Current CPU usage

•	 Current memory usage

•	 Current swap space usage

•	 Current disk I/O

•	 Current network bandwidth

https://tldp.org/LDP/abs/html/internalvariables.html

462 Shell Script Examples for Server Management, Network Configuration, and Backups

This is more of an exercise in filtering data and using commands, but there are some
interesting concepts in terms of how to format data to look nice and readable. This is
something we consider to be very important.

Getting ready
We need to leave the cli1 machine running. Also, for this script to work, we need to
deploy the sysstat package, and then enable the necessary service. We can do this by
using the following command for Ubuntu:

sudo apt-get -y install sysstat

We can use the following command for CentOS:

sudo yum -y install sysstat

After that, we need to start the sysstat service:

sudo systemctl enable --now sysstat

Now, we can start working on our script.

How to do it…
We are going to use the sar command to get a lot of information about our Linux
machine. We are also going to filter out some of the unnecessary details. Our script should
look like this:

#!/bin/bash

V1.0 / Jasmin Redzepagic / 01/11/2021 Initial script version

Distribution allowed under GNU Licence V2.0

echo "Hostname: $(hostname)"

echo "Current date: $(date)"

echo "Current kernel version and CPU architecture: $(uname
-rp)"

sar command has a default first line output telling us that
it's

running on Linux, and which kernel we are using. It's
pointless

Displaying server stats 463

to get this information four or five times, so let's filter
that

out from the get-go (grep -v "Linux" part of every command)

echo "Current CPU usage:"

sar -u 1 1| grep -v "Linux"

echo ""

echo "Current memory usage:"

sar -r 1 1| grep -v "Linux"

echo ""

echo "Current swap space usage:"

sar -S 1 1| grep -v "Linux"

echo ""

When sar displays disk I/O info, it displays that info per

device, which isn't all that important. What's important for

us are sd* and vd* devices, as well as the status line
telling

us which specific metrics are shown in the column (DEV).

echo "Current disk I/O:"

sar -d 1 1| grep -E "(DEV|sd|vd)" | grep -v "Linux"

echo ""

When sar displays network information, it shows it per
device.

Having in mind that we have a loopback network device (lo)
and

that its statistics isn't important, let's just filter that
out

so that we can see network bandwidth info per real network
device

echo "Current network bandwidth usage:"

sar -n DEV 1 1| grep -v lo | grep -v "Linux"

464 Shell Script Examples for Server Management, Network Configuration, and Backups

We used echo "" multiple times here so that our output looks clean and readable. The
output should look like this:

Figure 16.2 – Displaying the server stats from our script

The next recipe is about finding content – by name, ownership, or extension – so that
we can copy the content we find to a specific location. Let's get started!

Finding files by name, ownership, or content type and copying them to a specified directory 465

There's more…
If you need to learn more about the sar command, take a look at the sar command's
man page at https://man7.org/linux/man-pages/man1/sar.1.html.

Finding files by name, ownership, or content
type and copying them to a specified directory
Managing files can be a bit of a burden. Usually, we have thousands of them, and if it's
an enterprise-level company that we're discussing, there might be millions. What happens
if we need to find files that follow specific criteria?

We'll start with something simpler – finding by name. Then, we'll move on to
ownership-based searches, and then, the most involved – content type-based searches.

Getting ready
Before you start this recipe, you need to make sure that our cli1 virtual machine is up
and running.

How to do it…
This is a perfect script to do a bit more interaction, so case loops are in store for us.
We're making a conscious effort to use case a lot, with a lot of status/debugging code that
can guide us through script usage.

We want to slice this script into three parts as it's going to do three different things.
Here's what the script will look like:

#!/usr/bin/bash

V1.0 / Jasmin Redzepagic / 01/11/2021 Initial script version

Distribution allowed under GNU Licence V2.0

read -p "Enter directory to move file to: " DESTDIR

echo -e "\n"

Let's first establish a destination directory with a loop
that can test if that directory exists or not

if ["$DESTDIR" == ""];

then

 echo "You must specify a directory."

https://man7.org/linux/man-pages/man1/sar.1.html

466 Shell Script Examples for Server Management, Network Configuration, and Backups

else

 if [! -d "$DESTDIR"]

 then

 echo "Directory $DESTDIR must exist. Exiting!"

 exit

 fi

fi

Directory is ready, let's go to the main part of the script.
First

step is selecting which type of search we want to use.

echo "Enter number denoting criteria for search: "

echo "1 = by name "

echo "2 = by ownership "

echo "3 = by content extension "

echo -e "\n"

read CRIT

Let's start our case loop against CRIT variable.

case $CRIT in

 1)

 read -p "Enter name to search for: " NAME

 echo -e "\n"

 if [! -z $NAME=""]

 then

 find / -name "$NAME" -exec cp
{} $DESTDIR \; 2> /dev/null

 else

 echo You have to enter the
name!

 fi

 ;;

Finding files by name, ownership, or content type and copying them to a specified directory 467

 2)

 read -p "Enter owner to search for: " OWNER

 echo -e "\n"

 if [! -z $OWNER=""]

 then

 find / -user $OWNER -exec cp {}
$DESTDIR \; 2> /dev/null

 else

 echo You have to input an
owner!

 fi

 ;;

 3)

 read -p "Enter content extension: " CEXT

 echo -e "\n"

 if [! -z $CEXT=""]

 then

 read -p "Where are we looking
for files, in which directory?" LOOKUP

 find "$LOOKUP" -type f -name
"$CEXT" -exec cp {} $DESTDIR \; 2> /dev/null

 else

 echo You have to enter the
content type!

 fi

 ;;

 *) echo please make a choice, either 1, 2 or 3!

esac

468 Shell Script Examples for Server Management, Network Configuration, and Backups

Note that when we're asked about the extension, we have to type something like *.txt
for this script to work. Here's what the script execution looks like with that extension
in mind:

Figure 16.3 – Script execution with a file extension as the criteria

In the next recipe, we'll learn how to work with date and time-based data, a concept
that's often used in shell scripting for indexing purposes. While easy to use and
understand, we need to learn how to use this concept programmatically, via variables.
So, let's do that next!

There's more…
If you need more information about the sar command, we recommend that you check
out the following link to learn more: https://www.howtogeek.com/662422/
how-to-use-linuxs-screen-command/.

Parsing date and time data 469

Parsing date and time data
Working with time-based data is often less than fun, especially when you're working
with a lot of time-based content. But for our use cases, we often use date/time information
for indexing; that is, to name our backup files and similar purposes. So, learning how to
get information from the date command and putting that information into variables so
that our code can be as modular as possible is very important. Let's create a shell script
that we are going to be able to use in future scripts as a snippet of code for a lot of our shell
scripts – at least bits and pieces of it.

Getting ready
We don't need any special utilities to be installed, just our Linux machine to be alive and
ready for action.

How to do it…
We are going to go back to the basics and use the date command to extract all of the date
and time pieces that we'll ever need:

•	 Information about the current time in terms of hours, minutes, and seconds

•	 Information about today's date

•	 Information about what day it is today

Let's type the following in our text editor and execute our script:

#!/bin/bash

V1.0 / Jasmin Redzepagic / 01/11/2021 Initial script version

Distribution allowed under GNU Licence V2.0

This part of our script is just plain using date command to
assign

values to "obviously named variables". This further shows two

things - how to assign a variable value from external
command,

and how to use that principle on date and time data.

hour=$(date +%H)

minute=$(date +%M)

second=$(date +%S)

day=$(date +%d)

month=$(date +%m)

year=$(date +%Y)

470 Shell Script Examples for Server Management, Network Configuration, and Backups

Let's print that out

echo "Current time is: $hour:$minute:$second"

echo "Current date is: $day-$month-$year"

Here's an example of the sample output. We called this script sscript2.sh:

Figure 16.4 – Sample output from our date and time script

This can be very useful for backup scripts – for example, when we're indexing backup files
(.tar.gz or something else) by dates. This is a concept that we're going to use later in
this chapter. For now, let's learn how to configure firewall settings via shell scripts.

Configuring the most common firewall
settings interactively
Firewall configuration is just one of those things – we often need to do it, but we don't
necessarily know all of the commands off the top of our heads. Let's do this via shell
scripts, for both CentOS (firewalld) and Ubuntu (ufw).

Getting ready
Before you start this recipe, you need to make sure that you have firewalld on your
CentOS machine and ufw on your Ubuntu machine up. So, first, you need to use the
following command:

systemctl status firewalld

Use the following command for CentOS and Ubuntu:

systemctl status ufw

If they're disabled, we need to turn them on, like so:

systemctl enable --now firewalld

On CentOS and Ubuntu, you can use the following command:

systemctl enable --now ufw

Configuring the most common firewall settings interactively 471

Now, we're ready to get started. Of course, you need to be logged in as an administrator
to be able to change your firewall configuration, so make sure that you're either logged in
as root (or a user with similar capabilities) or use the sudo configuration to change your
firewall configuration.

Furthermore, with firewalld, a lot of people have trouble remembering the service
names that it uses. That's not a problem – we just need to use the following command:

firewall-cmd --get-services

For ufw, we just need to go and look at /etc/service, since all of the service names
are listed there, and ufw uses them for configuration purposes.

How to do it…
First, let's make a CentOS-based script for firewalld. We'll include eight standard
operations – manipulating service configuration, TCP and UDP ports and rich rules, both
adding and removing them, as well as the capability to list current configuration. Here's
what the script should look like:

#!/bin/bash

V1.0 / Jasmin Redzepagic / 01/11/2021 Initial script version

Distribution allowed under GNU Licence V2.0

echo "1 = firewalld (CentOS) - manipulate service configuration
- add"

echo "2 = firewalld (CentOS) - manipulate service configuration
- remove"

echo "3 = firewalld (CentOS) - manipulate TCP ports - add"

echo "4 = firewalld (CentOS) - manipulate TCP ports - remove"

echo "5 = firewalld (CentOS) - manipulate UDP ports - add"

echo "6 = firewalld (CentOS) - manipulate UDP ports - remove"

echo "7 = firewalld (CentOS) - manipulate rich rules - add"

echo "8 = firewalld (CentOS) - manipulate rich rules - remove"

echo "9 = firewalld (CentOS) - list current configuration"

echo -e "Your choice:"

read CRIT

Let's start our case loop against CRIT variable.

case $CRIT in

 1)

 echo "Enter service names, using space as

472 Shell Script Examples for Server Management, Network Configuration, and Backups

separator."

 echo "Hint: ssh http https etc. Get list from
firewall-cmd --get-services"

 echo "Your input:"

 read -a FW1

 for svcs1 in ${FW1[@]}

 do

 firewall-cmd --permanent
--add-service=$svcs1

 done

 firewall-cmd --reload

 ;;

 2)

 echo "Enter service names, using space as
separator."

 echo "Hint: ssh http https etc. Get list from
firewall-cmd --get-services"

 echo "Your input:"

 read -a FW2

 for svcs2 in ${FW2[@]}

 do

 firewall-cmd --permanent --remove-
service=$svcs2

 done

 firewall-cmd --reload

 ;;

 3)

 echo "Enter TCP port numbers, using space as
separator."

 echo "Hint: 22 80 443 etc."

 echo "Your input:"

 read -a FW3

 for svcs3 in ${FW3[@]}

 do

 firewall-cmd --permanent
--add-port=$svcs3/tcp

 done

Configuring the most common firewall settings interactively 473

 firewall-cmd --reload

 ;;

 4)

 echo "Enter TCP port numbers, using space as
separator."

 echo "Hint: 22 80 443 etc."

 echo "Your input:"

 read -a FW4

 for svcs4 in ${FW4[@]}

 do

 firewall-cmd --permanent --remove-
port=$svcs4/tcp

 done

 firewall-cmd --reload

 ;;

 5)

 echo "Enter UDP port numbers, using space as
separator."

 echo "Hint: 22 80 443 etc."

 echo "Your input:"

 read -a FW5

 for svcs5 in ${FW5[@]}

 do

 firewall-cmd --permanent
--add-port=$svcs5/udp

 done

 firewall-cmd --reload

 ;;

 6)

 echo "Enter UDP port numbers, using space as
separator."

 echo "Hint: 22 80 443 etc."

 echo "Your input:"

 read -a FW6

 for svcs6 in ${FW6[@]}

 do

 firewall-cmd --permanent --remove-

474 Shell Script Examples for Server Management, Network Configuration, and Backups

port=$svcs6/udp

 done

 firewall-cmd --reload

 ;;

 7)

 echo "Let's manipulate rich rules - to add
specific IPs access to specific port."

 echo "Hint: first, we need an endpoint IP
address, like 45.67.98.43 "

 echo "Your input (IP address):"

 read -a FW71

 echo "To which TCP port you want to allow
access?"

 echo "Your input (TCP port number):"

 echo "Your input:"

 read -a FW72

 for svcs71 in ${FW71[@]}

 do

 for svcs72 in ${FW72[@]}

 do

 firewall-cmd
--permanent --add-rich-rule='rule family="ipv4" source
address="'$svcs71'/32" port protocol="tcp" port="'$svcs72'"
accept'

 done

 done

 firewall-cmd --reload

 ;;

 8)

 echo "Let's manipulate rich rules - to add
specific IPs access to specific port."

 echo "Hint: first, we need an endpoint IP
address, like 45.67.98.43"

 echo "Your input (IP address):"

 read -a FW81

 echo "To which TCP port you want to allow
access?"

 echo "Your input (TCP port number):"

Configuring the most common firewall settings interactively 475

 echo "Your input:"

 read -a FW82

 for svcs81 in ${FW81[@]}

 do

 for svcs82 in ${FW82[@]}

 do

 firewall-cmd --permanent
--remove-rich-rule='rule family="ipv4" source
address="'$svcs81'/32" port protocol="tcp" port="'$svcs82'"
accept'

 done

 done

 firewall-cmd --reload

 ;;

 9)

 echo "Let's just list the firewalld settings
first:"

 firewall-cmd --list-all

 echo "Let's list all the rich rules, if any:"

 firewall-cmd --list-rich-rules

 ;;

 *) echo "Please make a correct choice, available
choices are 1-9!"

esac

This is a lot of code, but it makes it so much more readable (since we're using a case loop).
We could've done this in a couple of different ways, but this is the easiest code to debug,
and, most importantly, it works well.

Now, let's look at Ubuntu's ufw script, which is going to be very similar – we just need to
get the ufw commands correct. We're also going to look at two different ways of deleting
rules (by an index number and by rule), just so that we know how to get on with both:

#!/bin/bash

echo "1 = ufw (Ubuntu) - manipulate service configuration -
add"

echo "2 = ufw (Ubuntu) - manipulate service configuration -
remove"

echo "3 = ufw (Ubuntu) - manipulate TCP ports - add"

476 Shell Script Examples for Server Management, Network Configuration, and Backups

echo "4 = ufw (Ubuntu) - manipulate TCP ports - remove"

echo "5 = ufw (Ubuntu) - manipulate UDP ports - add"

echo "6 = ufw (Ubuntu) - manipulate UDP ports - remove"

echo "7 = ufw (Ubuntu) - manipulate whitelist IP/port
configuration - add"

echo "8 = ufw (Ubuntu) - manipulate whitelist IP/port
configuration - remove"

echo "9 = ufw (Ubuntu) - list current configuration"

echo -e "Your choice:"

read CRIT

Let's start our case loop against CRIT variable.

case $CRIT in

 1)

 echo "Enter service names, using space as
separator."

 echo "Hint: ssh http https etc. Get list from /
etc/services"

 echo "Your input:"

 read -a FW1

 for svcs1 in ${FW1[@]}

 do

 ufw allow $svcs1

 done

 ;;

 2)

 echo "Enter rule numbers from the list:"

 ufw status numbered

 echo "Your input, single number or multiple
numbers separated by space:"

 echo "Hint: Best way to do it would be
backwards - from top rule number to bottom rule number!"

 read -a FW2

 for svcs2 in ${FW2[@]}

 do

 echo "y" | ufw delete $svcs2

 done

Configuring the most common firewall settings interactively 477

 ;;

 3)

 echo "Enter TCP port numbers, using space as
separator."

 echo "Hint: 22 80 443 etc."

 echo "Your input:"

 read -a FW3

 for svcs3 in ${FW3[@]}

 do

 ufw allow $svcs3/tcp

 done

 ;;

 4)

 echo "Enter TCP port numbers, using space as
separator."

 echo "Hint: 22 80 443 etc."

 echo "Your input:"

 read -a FW4

 for svcs4 in ${FW4[@]}

 do

 ufw delete allow $svcs4/tcp

 done

 ;;

 5)

 echo "Enter UDP port numbers, using space as
separator."

 echo "Hint: 22 80 443 etc."

 echo "Your input:"

 read -a FW5

 for svcs5 in ${FW5[@]}

 do

 ufw allow $svcs5/udp

 done

 ;;

 6)

 echo "Enter UDP port numbers, using space as
separator."

478 Shell Script Examples for Server Management, Network Configuration, and Backups

 echo "Hint: 22 80 443 etc."

 echo "Your input:"

 read -a FW6

 for svcs6 in ${FW6[@]}

 do

 ufw delete allow $svcs6/udp

 done

 ;;

 7)

 echo "Let's manipulate whitelist rules - to add
specific IPs access to specific port."

 echo "Hint: first, we need an endpoint IP
address, like 45.67.98.43"

 echo "Your input (IP address):"

 read -a FW71

 echo "To which port you want to allow access?"

 echo "Your input (port number):"

 echo "Your input:"

 read -a FW72

 for svcs71 in ${FW71[@]}

 do

 for svcs72 in ${FW72[@]}

 do

 ufw allow from $svcs71 to any
port $svcs72

 done

 done

 ;;

 8)

 echo "Let's manipulate whitelist rules - to
remove specific IPs access to specific port."

 echo "Hint: first, we need an endpoint IP
address, like 45.67.98.43"

 echo "Your input (IP address):"

 read -a FW81

 echo "To which port you want to allow access?"

 echo "Your input (port number):"

Configuring the most common firewall settings interactively 479

 echo "Your input:"

 read -a FW82

 for svcs81 in ${FW81[@]}

 do

 for svcs82 in ${FW82[@]}

 do

 ufw delete allow from $svcs81
to any port $svcs82

 done

 done

 ;;

 9)

 echo "Let's list the ufw settings:"

 ufw status

 ;;

 *) echo "Please make a correct choice, available
choices are 1-9!"

esac

There we go – that's another long script done. This should help us when we're using
Ubuntu a lot. Next, we will be going in a different direction – using nmcli in interactive,
scripted mode to configure network settings on CentOS.

There's more…
For additional information about the firewall-cmd and ufw command-line options,
we suggest that you visit the following links:

•	 firewall-cmd man page: https://firewalld.org/documentation/
man-pages/firewall-cmd.html

•	 Configuring complex firewall rules with the rich language syntax: https://
access.redhat.com/documentation/en-us/red_hat_enterprise_
linux/7/html/security_guide/configuring_complex_firewall_
rules_with_the_rich-language_syntax

•	 ufw cheatsheet: https://blog.rtsp.us/ufw-uncomplicated-
firewall-cheat-sheet-a9fe61933330

480 Shell Script Examples for Server Management, Network Configuration, and Backups

Configuring network settings interactively
Often, we don't have access to GUIs and GUI-based configuration tools. If we need
to configure network settings, this can lead to a bunch of problems. Either we need to
learn the syntax of /etc/sysconfig/network-script files (not user-friendly),
or we need to use the tools that are at our disposal to configure network settings from the
CLI. Let's learn how to use nmcli for that purpose.

Getting ready
Before you start this recipe, you need to make sure that you are using our cli2 CentOS
machine as Ubuntu doesn't use nmcli by default. Once you've done that, you're all set!

How to do it…
Configuring network settings via nmcli isn't difficult, but at the same time, it's far from
super user-friendly. There's quite a bit of syntax involved and sometimes, that can get a bit
overwhelming. So, let's create a script that's going to do three things for us:

•	 Configure network settings via nmcli so that we use static IP network configuration.

•	 Configure network settings via nmcli so that we use DHCP network configuration.

•	 Check/output the current network settings

Our script should look like this:

#!/bin/bash

V1.0 / Jasmin Redzepagic / 01/11/2021 Initial script version

Distribution allowed under GNU Licence V2.0

echo "1 = nmcli - static IP address configuration for existing
interface"

echo "2 = nmcli - reconfigure a static IP-based configuration
to DHCP"

echo "3 = nmcli - list current device and connection status"

echo -e "Your choice:"

read CRIT

Let's start our case loop against CRIT variable.

case $CRIT in

 1)

 echo "Let's first check current connection
configuration:"

 nmcli con show

Configuring network settings interactively 481

 echo "Which interface do you want to configure
from this list?"

 echo "HINT: We need to use an entry from NAME
field"

 echo "Type in the interface name: "

 read -a interface1

 echo "Type in the IP address/prefix: "

 read -a address1

 echo "Type in the default gateway IP address: "

 read -a gateway1

 echo "Type in DNS servers, use space to
separate entries: "

 read -a dns1

 echo

 nmcli con mod $interface1 ipv4.address
"$address1" ipv4.gateway "$gateway1"

 nmcli con mod $interface1 ipv4.method manual

 for dnsservers in ${dns1[@]}

 do

 nmcli con mod $interface1 ipv4.dns
$dnsservers

 done

 systemctl restart NetworkManager

 ;;

 2)

 echo "Let's first check current connection
configuration:"

 nmcli con show

 echo "Which interface do you want to configure
from this list?"

 echo "HINT: We need to use an entry from NAME
field"

 echo "Type in the interface name: "

 read -a interface1

 nmcli con mod $interface1 ipv4.method auto

 systemctl restart NetworkManager

 ;;

482 Shell Script Examples for Server Management, Network Configuration, and Backups

 3)

 echo "Current status of network devices: "

 nmcli dev show

 echo "Current status of network connections: "

 nmcli con show

 ;;

 *) echo "Please make a correct choice, available
choices are 1-3!"

esac

Here's what the output will look if we use this script:

Figure 16.5 – Configuring a network interface from a shell script to make it a static IP configuration

Configuring network settings interactively 483

As we can see, all of the network settings get applied. Also, for the second use case – which
is to revert to using DHCP from an existing configuration – the output will look like this:

Figure 16.6 – Reverting to our DHCP configuration with the BOOTPROTO parameter set up correctly

This file also looks good, so we're good to go with this script as well.

The next set of scripts we'll be looking at is about backups – one will use shell script
arguments and variables, while the other will use one very handy tar characteristic.
Let's work on some backup scripts!

484 Shell Script Examples for Server Management, Network Configuration, and Backups

There's more…
Screen requires a bit of trial and error and getting used to. We recommend that you
check out the following links to learn more:

•	 nmcli man page: https://linux.die.net/man/1/nmcli

•	 nmcli examples: https://people.freedesktop.org/~lkundrak/
nm-docs/nmcli-examples.html

Backing up the current directory with shell
script arguments and variables
One of the most common reasons why system engineers use Bash shell scripting is for
backup purposes. There are various tools available, but for shell scripting purposes, we are
going to make a couple of tar-based shell scripts, work with arguments and variables,
and learn how to make our jobs easier by using shell scripting for backup purposes.
Let's take a look!

Getting ready
Before you start this recipe, you need to make sure that you have tar installed on your
Linux machine. For this, you need to use the following command:

sudo apt-get -y install tar

If you're using a CentOS-based machine, use the following command:

sudo yum -y install tar

Now, you're ready to get started.

How to do it…
Our premise for this first backup script, which is based on tar, is simple:

•	 We want to be able to create a backup while using an argument to set the
backup's filename.

•	 We want to be able to easily change our shell script so that it can back up whatever
number of directories we want (this is easy to do by listing the source directories in
the backup_source variable).

Backing up the current directory with shell script arguments and variables 485

Let's see how this would work:

#!/bin/sh

V1.0 / Jasmin Redzepagic / 01/11/2021 Initial script version

Distribution allowed under GNU Licence V2.0

This script contains some pre-defined parameters:

- which directories we want to backup, used as a variable

backup_source

- destination folder, via variable called backup_dest

- indexing according to date, used as a variable date

#

Also, it uses a shell script argument $1 (first argument that
we

use to call on the script) to set value for variable filename

filename=$1

let's set the directory that we want to backup

if we want to backup more of them, we create a space-
separated

list

backup_source="./"

let's set the destination folder

backup_dest="/tmp"

let's set value of the date variable in accordance to current
date

date='date '+%d-%B-%Y''

let's set the value of the hostname variable in accordance to
host

name

hostname=$(hostname -s)

let's start the backup process

echo "Starting backup"

486 Shell Script Examples for Server Management, Network Configuration, and Backups

sleep 2

tar cvpzf $backup_dest/$filename-$hostname-$date.tar.gz
$backup_source

let's announce the end of the backup process

echo "Backup done"

The process should look like this:

Figure 16.7 – Simple backup script with argument

The backup word that we typed as part of the script is our $1 argument in the
script – the first argument that we start the script with. As we can see, the script did its
job properly.

Creating a current backup based on the user input for the backup source and destination 487

There's more…
If you need any more information about the tar command, we suggest that you look at
the following links:

•	 tar command man page: https://man7.org/linux/man-pages/man1/
tar.1.html

•	 18 useful tar examples: https://www.tecmint.com/18-tar-command-
examples-in-linux/

Creating a current backup based on the user
input for the backup source and destination
After making backup scripts via tar, we need to make a completely interactive script
that asks for all of the details from us to be inputted with the keyboard. Let's learn how to
make this happen!

Getting ready
If you followed the previous recipe, then you won't need anything new – the same
requirements apply.

How to do it…
Our premise has changed somewhat this time around. We want a fully functional backup
script, but one that doesn't use any static variables (like the previous one). Also, we want
to be able to call this script at will, which is why we're using multiple questions to set up
the necessary variables. Here's what the script should look like:

#!/bin/bash

V1.0 / Jasmin Redzepagic / 01/11/2021 Initial script version

Distribution allowed under GNU Licence V2.0

This script does a custom backup, based on our arguments

We need to give it a couple of arguments @start:

- backup file name

- list of directories (or a single directory) that we

want to backup

We also added a bit of code to skip standard error

https://man7.org/linux/man-pages/man1/tar.1.html
https://man7.org/linux/man-pages/man1/tar.1.html
https://www.tecmint.com/18-tar-command-examples-in-linux/
https://www.tecmint.com/18-tar-command-examples-in-linux/

488 Shell Script Examples for Server Management, Network Configuration, and Backups

echo -e "Type in the backup file name, use something like file-
date.tar.gz:"

read filename

echo -e "Type in the list or a single directory that you want
to backup:"

read directories

echo "Let's do this thing!"

tar cfvz $filename $directories 2> /dev/null

This is simple, yet effective. Note that we used one very, very cool capability of the tar
command, which is to use a list of directories for backup purposes, but specifically, as the
list that's at the end of the tar command's syntax, which makes things a bit easier.

In the next chapter, things are going to get progressively more complicated. Make sure that
you check out the second part of our shell scripting examples there.

There's more…
If you need any more information about the tar command, we suggest that you visit the
following links:

•	 tar command man page: https://man7.org/linux/man-pages/man1/
tar.1.html

•	 18 useful tar examples: https://www.tecmint.com/18-tar-command-
examples-in-linux/

https://man7.org/linux/man-pages/man1/tar.1.html
https://man7.org/linux/man-pages/man1/tar.1.html
https://www.tecmint.com/18-tar-command-examples-in-linux/
https://www.tecmint.com/18-tar-command-examples-in-linux/

17
Advanced Shell

Script Examples
So far, we have done all we could to show you different ways scripts can be written, and
we went through a lot of examples of how different tasks can be accomplished. In this
chapter, we are going to implement all this in a much more complex way in scripts that
can be used in real life.

The scripts we are going to show you in this chapter solve everyday problems for system
administrators, from dealing with creating new users to working with virtual machines
(VMs). By walking you through these examples, our aim is not only to show you how scripts
should work but also what they should look like and how to approach writing them.

In this chapter, we are going to cover the following shell script examples:

•	 Implementing a web server service and security settings

•	 Creating users and groups from a standardized input file and a standardized
password and forcing users to change them on the next login

•	 Creating users and groups from a standardized input file and a random password
for every user

•	 Scripted VM installation on Kernel-based Virtual Machine (KVM)

490 Advanced Shell Script Examples

•	 A shell script to provision Secure Shell (SSH) keys, create standard users, install
a standardized set of packages for a Linux, Apache, MySQL, PHP/Perl/Python
(LAMP) server, configure basic firewall settings, Security-Enhanced Linux
(SELinux) configuration, and sudo configuration

•	 A shell script for VM administration

Technical requirements
In almost all the other chapters, we were working with a generic setup that simply
required any Linux distribution, as long as it could run a Bash shell. In this chapter,
we are going to change things a bit—by necessity, these scripts will have to run on Ubuntu
or any other Debian-based distribution. We are going to mention the reasons for this
in the following recipes when something has to be done differently in order to make it
happen on any other Linux distribution. So, in order to run scripts in this chapter, you
need the following:

•	 A VM with Linux installed—we are using Ubuntu 20.10, but any Debian-based
distribution will work

•	 Understanding of all the things we did in the previous chapters since we are going
to presume you understand how Bash scripting works

So, start your VM for us to start doing many useful things!

Implementing a web server service and
security settings
In this particular recipe, the idea is to use a small shell script to help us configure an
already installed web server. We are going to enable our script to change where the web
pages served by the server are located, but you will quickly see that changing any other
option is easily added to this script.

By using this script, all users would have to do to get the system running is this:

•	 Install the web server

•	 Run the script to change where website files are located

As always, the main problem when preparing something that will be a simple operation
for the user is understanding and hiding all the complexity while making it reasonably
easy for the administrator to add new features. How do we do this? Read on.

Implementing a web server service and security settings 491

Getting ready
This is our scenario:

A user has installed an Apache web server on their Ubuntu machine. They want to change
the location of files that make up their website.

Before we go into this, we must work on our presumptions for this task, as is usual with
almost any script.

First, we expect the web server to be already installed before we run the script, and
we expect it to be Apache. The simplest way to do it is to use the following command:

sudo apt install apache2 -y

Now, we wait for the package manager to do its job.

Our script will not work with nginx or lighttpd nor any other web server since the
configuration is parsed directly and there is no common way to set the parameters
we require. Having said that, since the parsing we are using to change the configuration is
pretty basic, if you need to modify this script to work with another server, it will probably
take just a few minutes.

Next, we are presuming that the user is changing the default website, one called
000-default.conf in the configuration directory. This value is hardcoded in
our script, which means that if you have multiple websites on the same server,
this script will only change the one configured as default.

Sometimes, administrators just add websites directly into this part of the configuration
instead of creating new files for every site, as it should be done. Our script accomplishes
its task by finding and replacing any mention of the DocumentRoot directive in the file.
If we specify multiple DocumentRoot directives, the script is going to change all of them
to the same value.

Another thing we must think about is error checking. Inside the script itself, we are
trying to catch if there was an error in the configuration, but the way we do it leaves a lot
to be desired. Although our script will try to restore files to the state that it was before
we changed their content, we are not trying to do any real syntax checking in the values
that we are changing. This can prove to be a problem if the user makes an error when
specifying the path they want to use, but there is no easy way to solve this; implementing
a check that will be smart enough to scan for a valid path is too complicated for a task
such as this.

492 Advanced Shell Script Examples

How to do it…
In the recipes in this chapter, we are going to first give you our version of the script and
then explain the details we think are important. All the scripts are going to have plenty of
comments inside them, and we strongly advise you to do the same if possible. Comments
can also be used when creating a script to define a rough outline of all the things you want
to do before you type out a single command.

First, let's start with the script itself:

#!/bin/bash

V1.0 / Jasmin Redzepagic / 01/11/2021

Distribution allowed under GNU Licence V2.0

Script configures apache DocumentRoot with a given path

and sets firewall accordingly

Script is interactive, no arguments are accepted

This script has to be run as root, we need to check that

if [[$(id -u) -ne 0]]

then

 echo "This script needs to be run as root!" >&2

 exit 1

fi

If there are multiple sites configured we will show a warning

if [[$(ls /etc/apache2/sites-enabled/ | wc -l) -gt 1]]

then

echo "Warning: you may have more than one site!" >&2

 exit 1

fi

First we are going to get what the root of the site is now

When checking for DocumentRoot we are only checking

in default web site

Implementing a web server service and security settings 493

HTTPDIR='grep DocumentRoot /etc/apache2/sites-available/000-\
default.conf'

HTTPDIR="/$(cut -d '/' -f 2- <<< "$HTTPDIR")"

We are going to print current directory

that we read from inside the configuration file

echo "Current HTTPDIR is set as $HTTPDIR"

read -p "Press Enter to accept current value or input absolute\
path for new DocumentRoot: " NEWDIR

If user pressed enter we are going to

simply use the value we already read,

otherwise we use the new value

Note: there is absolutely no sanity checking

if the given value is actually a path

NEWDIR=${NEWDIR:-$HTTPDIR}

echo "Directory is going to be set to $NEWDIR"

Since we are dealing with a path we need to

preprocess it before we use it in sed

otherwise this is going to break

There is an alternative, sed allows for

any other character in place of /

but this is going to be a problem

if our path contains any nonstandard character

so we simply escape all the slashes

we need to use the _ character in this

case to be able to search for slash

ESCNEWDIR=$(echo $NEWDIR | sed 's_/_\\/_g')

ESCHTTPDIR=$(echo $HTTPDIR | sed 's_/_\\/_g')

before we change the configuration

we are going to back it up so we can restore if we need to

cp /etc/apache2/sites-available/000-default.conf /etc/apache2/l\
sites-available/000-default.conf.backedup

sed -i "s/$ESCHTTPDIR/$ESCNEWDIR/g" /etc/apache2/sites-

494 Advanced Shell Script Examples

available/000-default.conf

now we need to restart the service

in order to use the new configuration.

systemctl reload apache2

after every command we must check to see if there were any
errors.

In this particular case, we restore from backup if there were

if [$? -ne 0]

 then

 cp /etc/apache2/sites-available/000-default.conf. \
 backedup/etc/apache2/sites-available/000-default.conf

we need to exit if we triggered this condition

since we are finished here, nothing was changed.

before exit we need to reload apache once more

to make sure old configuration is used

we are doing a start and stop here

because reload obviously failed in the step above

 echo "Apache was not reloaded correctly, maybe there was \
 an error in the syntax"

 systemctl stop apache2

 systemctl start apache2

 return 1

fi

if we came this far we need to get our firewall sorted out

we are adding ports 80 and 443 as permitted.

ufw allow http

ufw allow https

alternative to this is ufw allow "Apache Full"

but using exact ports and aliases makes this easier to read.

end of script

Creating users and groups and forcing users to change them on the next login 495

We need to note a few things here. Apache as a web server is right now the most used web
server in all the distributions by default, but nginx is slowly becoming more and more
popular. The thing to remember is that depending on the distribution package containing
apache, this is called either apache2 (on Debian-based distributions such as Ubuntu)
or httpd (on Red Hat-based distributions such as Red Hat Enterprise Linux (RHEL)
or CentOS). Other than the package name, there is a small difference in the placement of
the configuration files for the server itself, although the syntax is exactly the same.

Another thing is the firewall. Ubuntu uses ufw while CentOS uses firewalld. The third
big thing to note is apparmor (Ubuntu) and SELinux (CentOS).

Our version of the script works on Debian-based machines. Slight modifications are
needed if we want to use it on, for example, CentOS.

See also
•	 https://www.digitalocean.com/community/questions/which-

ufw-service-to-use-for-apache2

•	 https://www.tecmint.com/setup-ufw-firewall-on-ubuntu-and-
debian/

Creating users and groups and forcing users to
change them on the next login
One of the most common things you are going to do on Linux machines is create a lot of
users. There is a way to avoid this by using a centralized database for user authentication,
but in reality, this is used only on machines in large deployments, so local users are still
prevalent in most cases.

Having a way to deploy users and assign them passwords is something every admin needs
whenever deploying a new server or desktop.

Getting ready
This recipe calls for two things.

The script has to be used with administrative privileges since it changes users on the
system. Also, we need to prepare a file containing a user list in advance.

496 Advanced Shell Script Examples

Before we show you our script, we must also mention that there is more than one way
to read and parse a file when getting values for our scripts. It makes sense to try to
understand different ways of doing this in order to up your scripting game. For this exact
reason, in this recipe and the next one, we decided to avoid using a for loop but instead
opted to parse a file using arrays and delimiters.

How to do it…
As we have become accustomed to, we are starting with our script before we note things
to remember:

#!/bin/bash

V1.0 / Jasmin Redzepagic / 01/11/2021

Distribution allowed under GNU Licence V2.0

script creates users from a csv file, and makes the user

change his password at next logon

argument for the script is csv file name

csv file is structured as follows:

user1,password1

user2,password2

....

First thing to do is check if we have any arguments supplied

if [$# -eq 0]

 then

 echo "No arguments, proper usage is $0 <CSV file>"

fi

next we need to get our information from the file

here we are doing it one line at a time

and to do that we need to adjust the delimeter

that shell uses to understand how values are

separated.

IFS=$'\n'

Creating users and groups and forcing users to change them on the next login 497

Read the lines into an array

read -d '' -ra USRCREDS < $1

Now we are going to deal with individual lines

since right now our array contains both the user

and the appropriate password in one value

separated by a , character

we chose to do this by telling the shell

we want to use , as a value separator

IFS=','

Iterate over the lines

for USER in "${USRCREDS[@]}"

do

Split values into separate variables

 read usr pass <<< "$USER"

Create the user

 useradd -m $usr

Set the password, we need to do this using passwd command

alternative would be to use a hashing function

passwd asks for password twice!

 echo "$pass"$'\n'"$pass" | passwd $usr

then we expire the user password

 passwd --expire $usr

done

There are a couple of concepts that we need to mention here. The first is dealing with
passwords. Having any password readable in plaintext for any amount of time is a security
risk, so the idea of making the user change their password as soon as possible is wise.

When creating passwords for new users, we basically have two choices—one is to create
a list of users and passwords in advance, as we did in this example, and the other is
to create a list of users and then assign them random passwords, as we will do in the
next recipe.

498 Advanced Shell Script Examples

Whenever you are dealing with any password, always remember that once a single user
is compromised, you have a big security problem because a lot of ways to break into
the system are depending on being able to run an application locally. Minimize the
time anybody other than the user knows the password for the account, and never store
passwords in a plain, readable format.

See also
•	 https://linuxconfig.org/linux-reset-password-expiration-

age-and-history

•	 https://www.tecmint.com/force-user-to-change-password-
next-login-in-linux/

Creating users and groups from a
standardized input file and a random
password for each user
In the previous recipe, we dealt with a way of creating new users. In this one, we are
going to expand on this using a similar script to not only create new users but also
assign them groups provided with the user, giving the administrator information on new
user passwords.

Getting ready
We are creating users, so this script has to be run under an administrator account. In this
particular case, we also probably want to redirect the output of the script to some file since
passwords for new users are created when the script is run, and passwords are not stored
anywhere. If we don't save them somewhere, they are going to be lost and recreated.

How to do it…
In the previous recipe, we mentioned that passwords should never be stored anywhere,
but when creating new users, this is completely inevitable. We feel that the way we deal
with passwords in this recipe is better than having them ready in advance since passwords
in this script are created while the script is running so that the administrator can establish
more control over them from the start:
#!/bin/bash

V1.0 / Jasmin Redzepagic / 01/11/2021

https://www.tecmint.com/force-user-to-change-password-next-login-in-linux/

https://www.tecmint.com/force-user-to-change-password-next-login-in-linux/

Creating users and groups from a standardized input file and a random password for each user 499

Distribution allowed under GNU Licence V2.0

script creates users from a csv file

creating a group specified for each user

and adding the user to a group

password is generated and printed with the username

argument for the script is csv file name

csv file is structured as follows:

user1,group1

user2,group2

....

output is structured as:

user / password

First thing to do is check if we have any arguments supplied

if [$# -eq 0]

 then

 echo "No arguments, proper usage is $0 <CSV file>"

fi

This script has to be run as root, we need to check that

if [[$(id -u) -ne 0]]

 then

 echo "In order to add users and groups this \
 scripts needs to be run as root!" >&2

 exit 1

fi

500 Advanced Shell Script Examples

next we need to get our information from the file

here we are doing it one line at a time

and to do that we need to adjust the delimeter

that shell uses to understand how values are

separated.

IFS=$'\n'

Read the lines into an array

read -d '' -ra USRCREDS < $1

Now we are going to deal with individual lines

since right now our array contains both the user

and the appropriate password in one value

separated by a , character

we chose to do this by telling the shell

we want to use , as a value separator

IFS=','

Iterate over the lines

for USER in "${USRCREDS[@]}"

do

Split values into separate variables

read usr grp <<< "$USER"

Create the user

Creating users and groups from a standardized input file and a random password for each user 501

useradd -m $usr

if the group does not exist, create it

getent group $grp || groupadd $grp

add the user to a group

usermod -a -G $grp $usr

now we create a random password

pass=$(cat /dev/urandom | tr -dc A-Za-z0-9 | head -c8)

Set the password, we need to do this using passwd command

alternative would be to use a hashing function

passwd asks for password twice!

echo "$pass"$'\n'"$pass" | passwd $usr

in the end we print user and password

echo $usr/$pass

done

502 Advanced Shell Script Examples

One thing to note in this script is that we are relying on a lot of messages from the
commands we are using instead of checking things by ourselves. For example, if the user
is already created, an error message is going to be created by useradd instead of us:

Figure 17.1 – Error messages provided by commands inside the script

See also
•	 https://superuser.com/questions/533126/how-to-execute-

command-and-if-it-fails-execute-another-command-and-
return-1

•	 https://linux.die.net/man/4/urandom

Scripted VM installation on KVM
Another common task done in some environments is creating new VMs from the
command line. The reason we do this is usually flexibility and speed—using a graphical
user interface (GUI) can be an order of magnitude (OOM) slower than using
a command-line interface (CLI).

KVM provides a very simple solution for creating machines in the command line. All the
user needs to know are some basic parameters.

https://superuser.com/questions/533126/how-to-execute-command-and-if-it-fails-execute-another-command-and-return-1
https://superuser.com/questions/533126/how-to-execute-command-and-if-it-fails-execute-another-command-and-return-1
https://superuser.com/questions/533126/how-to-execute-command-and-if-it-fails-execute-another-command-and-return-1
https://linux.die.net/man/4/urandom

Scripted VM installation on KVM 503

Getting ready
We, of course, need a functioning KVM on the server we are running this script on.
Other than that, our script presumes the user understands all the different options that
KVM requires to be able to create a machine. Before trying to understand how the script
works, be sure to go through as much information as possible about creating VMs from
the command line in order to be sure what the different options do. Also, refresh your
knowledge about using the dialog toolkit for graphical interfaces since this script relies
on this for input.

How to do it…
The only big thing in this small script is the way we are assigning values using dialog.
As always, there are a couple of ways to do it. We are using the most logical one, for us
at least:
#!/bin/bash

V1.0 / Jasmin Redzepagic / 01/11/2021

Distribution allowed under GNU Licence V2.0

script creates a virtual machine on the host it is run on

asking the user for parameters of the VM

in this script we are going to use dialog to show

how a script can get values that way

name=$(dialog --inputbox "What is the name of the VM?" 8 25 \
--output-fd 1)

cpus=$(dialog --inputbox "How many VCPUs?" 8 25 --output-fd 1)

mem=$(dialog --inputbox "Enter the amount of memory in MB" 8 25 \
--output-fd 1)

cdrom=$(dialog --inputbox "Path to CDROM:" 8 25 --output-fd 1)

disksize=$(dialog --inputbox "Enter the disk size:" 8 25 \
--output-fd 1)

osv=$(dialog --inputbox "What is the OS variant installed?" 8 \
25 --output-fd 1)

virt-install --name=$name --vcpus=$cpus --memory=$mem \
--cdrom=$cdrom --disk size=$disksize --os-variant=$osv

504 Advanced Shell Script Examples

When using dialog, you must handle the way input from the user is redirected.
In this example, we are using –output-fd 1 in order to tell dialog to get everything
redirected to standard output (stdout) where we can directly assign the values
to variables.

See also
•	 https://linux.die.net/man/1/dialog

•	 https://www.geeksforgeeks.org/creating-dialog-boxes-with-
the-dialog-tool-in-linux/

Using a shell script to provision SSH keys
The safest way to deal with passwords is to not use them at all. Using SSH keys is a great
way of avoiding passwords completely if we are able to get a public key connected to
a user account that the user can log in to without using the password, and since only
their private key enables login, this makes the whole transaction much safer.

This recipe deals with just such a task, installing a new machine that is going to serve as
a LAMP server and that will enable users to log in using no passwords at all.

Getting ready
In reality, a script such as this will be used if we have a few servers to install and not too
much time. An alternative to something like this would be to use a proper orchestration
tool such as Ansible, but although it is an enormously powerful tool, Ansible is too
complicated for small deployments.

In any case, this script presumes only that our server has a working internet connection
to be able to get the packages that need to be installed and that we have acquired a public
SSH key from the user we plan on creating.

How to do it…
We are transferring the key by using a regular plaintext file. This is completely fine since it
actually contains no information that can pose a security problem—in order to use SSH to
connect, a user has to have a private key that corresponds to the public key we are using.

https://linux.die.net/man/1/dialog
https://www.geeksforgeeks.org/creating-dialog-boxes-with-the-dialog-tool-in-linux/
https://www.geeksforgeeks.org/creating-dialog-boxes-with-the-dialog-tool-in-linux/

Using a shell script to provision SSH keys 505

Since this key is—or should be—controlled by only one particular user, we are not
worried about safety here:

#!/bin/bash

V1.0 / Jasmin Redzepagic / 01/11/2021

Distribution allowed under GNU Licence V2.0

script installs lamp, creates a user and assigns him SSH key

key is provided in a file

script expects filename that contains SSH key

First thing to do is check if we have any arguments supplied

if [$# -eq 0]

 then

 echo "No arguments, proper usage is $0 <file containing SSH \
key>"

fi

This script has to be run as root, we need to check that

if [[$(id -u) -ne 0]]

 then

 echo "In order to add services this \
scripts needs to be run as root!" >&2

 exit 1

fi

now we follow the standard installation procedure for LAMP

first we aquire new updates

apt update

506 Advanced Shell Script Examples

then we install apache server

apt install apache2 –y

we reconfigure the firewall to allow all the traffic in

ufw allow "Apache Full"

then we install mysql server

we could also install mariadb as the alternative

apt install mysql-server –y

then we install php and required modules

apt install php libapache2-mod-php php-mysql –y

we create our user

useradd lampuser

we create directory for the ssh keys

mkdir /home/lampuser/.ssh

we copy the key directly, allowing login without password

note that user has no password by default, only ssh works

cp $1 /home/lampuser/.ssh/authorized_keys

apply permissions to files in directory

chown -R lampuser:lampuser /home/lampuser/.ssh

chmod 700 /home/lampuser/.ssh

A shell script for VM administration 507

chmod 600 /home/lampuser/.ssh/authorized_keys

add user to sudo group enabling sudo command

usermod -a -G sudo lampuser

finally we run the secure installation to finish setting up \
mysql

mysql_secure_installation

See also
•	 https://www.hostinger.com/tutorials/ssh-tutorial-how-does-

ssh-work

•	 https://www.digitalocean.com/community/tutorials/how-to-
install-linux-apache-mysql-php-lamp-stack-on-ubuntu-20-04

A shell script for VM administration
Some tasks are complicated to do from the command line, simply because we have a lot
of commands that we have to repeat over and over again and then reuse the values that
we got in one step in the step that follows it.

In this recipe, we are going to deal with such a task, doing basic maintenance on a VM.
What we plan to do is create a script that will enable the user to do a couple of standard
tasks on VMs running on the local server, simplifying administration tasks and removing
the need to remember long commands. Our plan is to enable the user to start, stop, check
status, and revert a VM running on the local server. The script is going to provide the user
with the list of machines and give them the opportunity to choose any available machines
or apply the command to all of them.

Let's see what is needed for this task.

https://www.hostinger.com/tutorials/ssh-tutorial-how-does-ssh-work
https://www.hostinger.com/tutorials/ssh-tutorial-how-does-ssh-work
https://www.digitalocean.com/community/tutorials/how-to-install-linux-apache-mysql-php-lamp-stack-on-ubuntu-20-04
https://www.digitalocean.com/community/tutorials/how-to-install-linux-apache-mysql-php-lamp-stack-on-ubuntu-20-04

508 Advanced Shell Script Examples

Getting ready
By this point, you have become accustomed to our disclaimers and requirements that
we have to enable our script to run. This one is no different. First, this script requires one
important thing—the server has to have support for KVM installed on it before we even
begin to do anything. In the script itself, we are using a single command to accomplish all
the tasks, but in reality, all of KVM needs to be installed and configured.

Another option is that this script can be, with minor modifications, used to perform tasks
on other KVM hosts, but we will leave this as an exercise for you.

So, before you start the script, do a small check if everything works, with
a simple command:

virsh list –all

This should return a list of all the VMs running on your server. If there is any error,
it needs to be sorted out before you even try to run the script itself since the script is based
on this command working.

How to do it…
First, we are going to start with the script itself:

#!/bin/bash

V1.0 / Jasmin Redzepagic / 01/11/2021

Distribution allowed under GNU Licence V2.0

Simple interface to virsh command

this script enumerates all machines on this KVM host

and enables user to perform basic commands

script is interactive and has no command line arguments

in this script we are going to create a simple two level menu

that will first ask user what virtual machine he wants to \
 perform commands on.

User has to specify the machine from a list or type ALL

if he wants to run the command on all the machines on the

A shell script for VM administration 509

host

we need to get the list of virtual

Machines

notice we are not redirecting errors in order for the user

to be able to see what actually happened

virsh list --all

then we do some rudimentary error checking to make sure

we are at least able to use virsh

if [$? -ne 0]

 then

 echo "Something is wrong with your KVM instance, exiting!"

 return 1

fi

if we come this far our script can talk to the user

read -p "Choose VM you want to change state of or type ALL for \
all machines:" HOSTN

echo -e "\n"

if [$HOSTN == "ALL"];

then

 echo "You chose all machines."

else

 echo "You chose: " $HOSTN "."

fi

echo "What do you want to do"

echo "1 = START"

510 Advanced Shell Script Examples

echo "2 = STOP"

echo "3 = RESET"

echo "4 = STATUS"

echo -e "\n"

read CHOSENOP

if [$HOSTN == "ALL"]; # we are running the commands on all
the machines

every command is run in a loop on all the machines

then

 if [$CHOSENOP -eq 1]; # user chose start

 then

 for i in $(virsh list --name --all);

 do

 echo "Starting $i"

 virsh start $i;

 done

 exit 0

 elif [$CHOSENOP -eq 2]; # user chose stop

 then

 for i in $(virsh list --name --all);

 do

 echo "Stopping $i"
virsh shutdown $i

done

 exit 0

 elif [$CHOSENOP -eq 3]; # user chose to revert \
to snapshot

 then

 for i in $(virsh list --name --all);

 do

 echo "Reverting $i to latest
snapshot: "

 virsh snapshot-revert $i start;

 done

A shell script for VM administration 511

 exit 0

 elif [$CHOSENOP -eq 4]; # user chose to \
 display status of machines

 then

 for i in $(virsh list --name --all);

 do

 echo "Status of $i: "

 virsh dominfo $i;

 done

 exit 0

 else

user made an invalid input

 echo "Input was not valid!"

 exit 0

 fi

else

we do everything the same way but with a particular VM

 if [$CHOSENOP -eq 1];

 then

 echo "Starting $HOSTN"

 virsh start $HOSTN

 exit 0

 elif [$CHOSENOP -eq 2];

 then

 echo "Stopping $HOSTN"

 virsh shutdown $HOSTN

 exit 0

 elif [$CHOSENOP -eq 3];

512 Advanced Shell Script Examples

 then

 echo "Reverting $HOSTN to last \
 snapshot"

 virsh snapshot-revert $HOSTN

 exit 0

 elif [$CHOSENOP -eq 4];

 then

 echo "Status of $HOSTN: "

 virsh dominfo $HOSTN

 exit 0

 else

user made an invalid input

 echo "Input was not valid!"/ \

 exit 0

 fi

fi

In this particular script, the main thing that we needed to decide on is how to handle two
different conditions. The first condition is: Are we dealing with a particular VM or all of
them? The second condition is: What operation is needed?

There are a couple of ways we can do this—we chose this one because it looks the most
logical. We first give the user a list of all the machines on the host, and after they have
decided which machine they want to run the command on, we ask them to select what
they want to do.

We could have easily done this the other way around and let them choose the command
first and then let them select the VM they want to perform it on.

A shell script for VM administration 513

Another thing that we decided on was how to display the names of the machines. We are
leaving it to the user to get the machine name right, and we are not doing any checks.
One thing that could be done is to try to compare user input to the list of actual machine
names. This way, if a user makes a mistake, we can catch it before the script tries to
perform an operation on the invalid machine.

Another thing that can be done in this, and in pretty much any script that has a lot of
logical decisions and not enough checks, is to do a try-catch loop for the entire script
so that we can deal with any possible errors without the script breaking completely and
leaving us in an unknown state.

See also
•	 https://access.redhat.com/documentation/en-us/red_hat_

enterprise_linux/6/html/virtualization_administration_
guide/chap-virtualization_administration_guide-managing_
guests_with_virsh

•	 https://help.ubuntu.com/community/KVM/Virsh

https://help.ubuntu.com/community/KVM/Virsh

Index

Symbols
/etc/hosts

configuring 109-119

A
Access Control Lists (ACLs) 143
AND operator 320
anonymous FTP server installation

on CentOS 8
reference link 207

AppStream repository 196, 200
apt

using, for package management 178-195
Apt cheat sheet

reference link 195
apt-get

reference link 8
arguments

passing, to function 354-357
array manipulation

advanced array manipulation 386-396
basic array manipulation 378-386

B
background jobs

managing 67-74
background process

about 73
reference link 74

bash command 293
Bash Command Line Arguments

references 337
bash cut command examples

reference link 245
Bash if loop examples

references 313
Bash manual

reference link 271
Bash scripting cheat sheets

reference link 271
Bash shell

setting up 11-13
Bash shell script

writing 266-271
bash -v options

using 447-449
bash -x options

using 447-449

516 Index

basic cat command examples in Linux
reference link 239

Basic Regular Expressions (BREs) 250
block mode 40
boundary condition 296
break command 298-300

C
carriage returns (CR) 241
case loop

about 314-318
references 319

C/C++ code
reference link 214

character mode 40
commands

for manipulating, file/directory
security 144-158

serializing 271-278
text files, manipulating with 159-163

commenting, shell script 285-290
console 279
context 272
continue command 299-302
crond

configuring 79-85
scheduled jobs, types 83

C-style loop 296
current backup

creating, based on user input for backup
source and destination 487, 488

current directory
backing up, with shell script arguments

and variables 484-486
custom functions

using, in shell script code 350-353

custom repositories
creating 202-207

cut
reference link 245
using 242-244

cut command man page
reference link 460

D
date and time data

parsing 469, 470
dates, formatting in Bash

reference link 278
default ACL 156
Development Tools package group 185
dialog

references 419
using, for menu-driven interactive

scripts 412-419
directory-based commands 136-143
dnf

using, for package management 178-195
DNS

reference link 119
resolving 109-119

dos2unix
reference link 242

DOS text
converting, to Linux text 240-242

Dynamic Host Configuration
Protocol (DHCP) 89

E
echo command

about 293
reference link 405

Index 517

egrep
using 245-257

End of Transmission (EOT) 280
environment variables 325, 328
error output 279-285
ex mode 36
expect command

references 412
using, to automate repetitive tasks

based on text output 405-412
Extended Regular Expressions (ERE) 250
external commands

references 348
external function

loading, to shell script 365-370

F
file command 136-143, 293
file content

about 143
merging, with text commands 236-239

file descriptors 279
file/directory security

commands, for manipulating 144-158
file permissions, managing

reference link 158
files

archiving 166-168
compressing 166-168
copying, to specified directory 465
finding 164, 165
finding, by content type 465
finding, by name 465
finding, by ownership 465

files, identifying in Linux
reference link 290

find command
about 164, 165
reference link 165

find command man page
reference link 460

firewall-cmd
reference link 103
using 93-102

Firewalld rich language
reference link 103

firewall settings
configuring, interactively 470- 479

folder and file inventory
creating 456-459

folders
archiving 166-168
compressing 166-168
finding 164, 165

foreground process
about 73
reference link 74

for loop 292-297
FTP server

reference link 234
function

arguments, passing to 354-357
procedures, implementing via 370-376
returns, working with 361-364

G
global variables 357-361
GNU Network Model Object

Environment (GNOME) 328
graphical user interface (GUI) 328, 502
grep

reference link 257

518 Index

group owner 154
groups

creating, from standardized
input file 495-502

creating, from standardized
password 495-498

H
hardlink.cfg file 24, 25
hard links 15, 23-25

I
id command 460
if statement 299
initialization value 296
in keyword 292
insert mode 35, 40
interactive shell 266
internal variables

reference link 461
Internet Protocol (IP) 375
intrusion detection system (IDS) 83

K
K Desktop Environment (KDE) 328
Kernel-based Virtual Machine (KVM)

scripted VM installation 502-504

L
line mode 40
Linux ACLs

reference link 159
Linux network troubleshooting commands

reference link 133

Linux permissions
reference link 159

Linux text
converting, to DOS text 240-242

Local Repos, creating
reference link 207

local variables 357-361
logical looping 319
logical operators

about 319
AND 320
OR 320
references 322
working 321, 322

LOGNAME variable 329
loop control

references 302
looping

references 297
loops

about 291
case loop 314-318
for loop 292-297
test-if loop 305-313
while loop 302-304

lsof
reference link 109

M
manual (man) 374
menu-driven interactive scripts

dialog, using 412-419
mkdir

reference link 144

Index 519

N
Name Service Switch (NSS) 118
nano editor

learning 41-45
nano editor cheat sheet

reference link 46
netplan

reference link 93
using 88-93

netstat
reference link 109

network diagnostic tools
using 120-132

networking, configuring and managing
reference link 93

network settings
configuring, interactively 480-483

nmap
reference link 109

nmcli
reference link 93
using 88-93

non-interactive mode 267
Non-Unified Memory Access (NUMA) 77
normal mode 35
NSCD

reference link 119

O
open connections

working with 103-109
open ports

working with 103-109
operations

performing, on variables 340-344

order of magnitude (OOM) 502
OR operator 320

P
package management

apt, using 178-195
dnf, using 178-195

paste command in Linux
reference link 239

PATH variable 330
Personal Package Archives (PPA) 193
primary group 20
primary prompt display variable 10
procedures

implementing, via function 370-376
process

about 63
background process 73
foreground process 73
interruptible sleep state 64
managing 56-66
priorities, managing 74-78
running state 64
stopped state 64
uninterruptible sleep state 64
zombie state 64

process types
daemons 63
parent and child processes 63
zombie and orphan processes 63

process management tools 56
profiles

using 195-201
PWD variable 329

520 Index

Q
quotes

about 337
references 340
using 337-340

R
read command

reference link 405
Red Hat Enterprise Linux (RHEL) 495
regular expressions 249
regular expressions in grep

reference link 257
repetitive tasks

automating, with expect 405-412
replace mode 41
repositories

using 195-201
resolved.conf

reference link 119
rsync

using 222-227
rsync command, example in Linux

reference link 227
rsync daemon set up on Linux server

reference link 227

S
sane state 274
sanity checks 274
sar command

about 462
reference link 465

scheduled jobs
delayed or deferred jobs 83
system-related scheduled jobs 83
user-based crond jobs 83

SCP
using 216-221

screen command
reference link 468
using 26-28

script
debugging, with set 450-452
running as root, checking 460

scripted VM installation
on KVM 502-504

script execution
values, echoing 441-446

scripting errors 422-441
Secure Shell (SSH)

using 216-221
reference link 222

security settings
implementing 490-495

sed
reference link 264
using 258-263

semantic versioning 288
sequential numbering scheme 289
server stats

displaying 461-464
services

managing 169-175
set

used, for debugging script 450-452
setfacl command 156
shebang 270
shell access

methods 2-8

Index 521

shell commands
chage 18
groupadd 18
groupdel 18
groupmod 18
passwd 18
useradd 18
userdel 18
usermod 18
using 13-22

shell script
commenting 285-290
external function, loading 365-370
firewall settings, configuring with 504
for VM administration 507-512
reference link 271
standardized set of packages,

installing for LAMP server 504
standard users, creating with 504
sudo configuration,

performing with 504
used, for provisioning SSH keys 504

shell script code
custom functions, using 350-353

shell scripting
used, for backing up current

directory 484-486
variables, using 331-336

SHELL variable 329
shell variables

using 324-330
SHLVL variable 330
shortcuts 141, 143
soft links 15, 23, 25, 143
sort command man page

reference link 460

special use cases
setgid 155
setuid 155
sticky bit 155

SSH working
reference link 222

standard input 279-285
standard output 279-285
Stanford's regular expression cheat sheet

reference link 257
start value 296
static IP address 89
stream editor 53
streams

using 195-201
string replacement 53
supplementary group 20
symbolic links 23
syntax, fields support

types 81
systemctl command

about 7, 173
reference link 8

systemd
reference link 176

Systemd-resolved
reference link 119

systemd targets, working with
reference link 176

systemd unit files, working with
reference link 176

system services, managing with systemctl
reference link 176

522 Index

T
tar command

about 168
reference link 169

targets
managing 169-175

tasksel command
about 7
reference link 8

test condition 296
test-if loop 305-313
text-based interactive scripts

creating 398-405
text commands

using, to merge file content 236-239
text files

manipulating, with commands 159-163
third-party software

compiling 207-214
to do comments (TODO) 287
touch

reference link 144
tuna 78
tuned 78

U
Ubuntu, compiling things on easy way

reference link 214
ufw

reference link 103
using 93-102

umask (user mask) 157
union of set 250
user interfaces (UIs) 374
user owner 154

users
creating, from standardized

input file 495, 498, 502
creating, from standardized

password 495
password, modifying on

next login 495, 498
random password, using 498, 502

user shell
setting up 8-10

USER variable 329

V
values

echoing, during script
execution 441-446

variable operations
references 345

variables
about 323
operations, performing on 340-344
references 331
using, in shell scripting 331-336
via external commands 345-348

versioning 288
Vim

reference link 41
vim-athena 30
Vi(m) editor

advanced settings 46-53
learning 30-40

vim-gtk 30
vim-gtk3 30
vim-nox 30
vim, setting up for YAML editing

reference link 93

Index 523

vim-tiny 30
Vim Tips Wiki

reference link 53
Vimtutor 37
visual mode 38-40
VM administration

shell script 507-512
vsftpd

reference link 234
using 228-233

vsftpd.conf
reference link 234

vsftpd, set up for anonymous
downloads on Ubuntu 16.04

reference link 234

W
wc command man page

reference link 460
web server service

implementing 490-495
while loop

about 302-304
references 304

whoami command 460

Y
Yum

reference link 207
Yum cheat sheet

reference link 195

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
•	 Spend less time learning and more time coding with practical eBooks and Videos

from over 4,000 industry professionals

•	 Improve your learning with Skill Plans built especially for you

•	 Get a free eBook or video every month

•	 Fully searchable for easy access to vital information

•	 Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for
a range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

http://Packt.com
http://packt.com
mailto:customercare@packtpub.com
http://www.packt.com

526 Other Books You May Enjoy

Other Books You
May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Linux Kernel Programming

Kaiwan N Billimoria

ISBN: 9781789953435

•	 Write high-quality modular kernel code (LKM framework) for 5.x kernels

•	 Configure and build a kernel from source

•	 Explore the Linux kernel architecture

•	 Get to grips with key internals regarding memory management within the kernel

•	 Understand and work with various dynamic kernel memory alloc/dealloc APIs

•	 Discover key internals aspects regarding CPU scheduling within the kernel

•	 Gain an understanding of kernel concurrency issues

•	 Find out how to work with key kernel synchronization primitives

https://www.packtpub.com/product/linux-kernel-programming/9781789953435

Other Books You May Enjoy 527

Linux System Programming Techniques

Jack-Benny Persson

ISBN: 9781789951288

•	 Discover how to write programs for the Linux system using a wide variety
of system calls

•	 Delve into the working of POSIX functions

•	 Understand and use key concepts such as signals, pipes, IPC, and
process management

•	 Find out how to integrate programs with a Linux system

•	 Explore advanced topics such as filesystem operations, creating shared libraries,
and debugging your programs

•	 Gain an overall understanding of how to debug your programs using Valgrind

https://www.packtpub.com/product/linux-system-programming-techniques/9781789951288

528

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.
packtpub.com and apply today. We have worked with thousands of developers and
tech professionals, just like you, to help them share their insight with the global tech
community. You can make a general application, apply for a specific hot topic that we are
recruiting an author for, or submit your own idea.

Share Your Thoughts
Now you've finished Linux Command Line and Shell Scripting Cookbook, we'd love to hear
your thoughts! If you purchased the book from Amazon, please click here to go straight
to the Amazon review page for this book and share your feedback or leave a review on the
site that you purchased it from.

Your review is important to us and the tech community and will help us make sure
we're delivering excellent quality content.

http://authors.packtpub.com
http://authors.packtpub.com
https://packt.link/r/1-800-20519-8
https://packt.link/r/1-800-20519-8

	Cover
	Title Page
	Copyright and Credits
	Contributors
	Table of Contents
	Preface
	Chapter 1: Basics of Shell and Text Terminal
	Technical requirements
	Accessing the shell
	Getting ready
	How to do it…
	How it works…
	See also

	Setting up the user shell
	Getting ready
	How to do it…
	How it works…

	Setting up the Bash shell
	Getting ready
	How to do it…
	How it works…
	There's more…

	Using the most common shell commands
	Getting ready
	How to do it…
	How it works...

	Using screen
	Getting ready
	How to do it…
	How it works…
	There's more…

	Chapter 2: Using Text Editors
	Technical requirements
	Learning the basics of the Vi(m) Editor
	Getting ready
	How to do it…
	How it works…
	See also

	Learning the basics of the nano editor
	Getting ready
	How to do it…
	There's more…

	Going through the advanced Vi(m) settings
	Getting ready
	How to do it…
	How it works…
	There's more…

	Chapter 3: Using Commands and Services for Process Management
	Technical requirements
	Process management tools
	Getting ready
	How to do it…
	How it works…
	See also

	Managing background jobs
	Getting ready
	How to do it…
	How it works…
	There's more…

	Managing process priorities
	Getting ready
	How to do it…
	How it works…
	There's more…

	Configuring crond
	Getting ready
	How to do it…
	How it works…
	There's more…

	Chapter 4: Using Shell to Configure and Troubleshoot
a Network
	Technical requirements
	Using nmcli and netplan
	Getting ready
	How to do it
	How it works
	There's more

	Using firewall-cmd and ufw
	Getting ready
	How to do it
	How it works
	There's more

	Working with open ports and connections
	Getting ready
	How to do it
	How it works
	There's more

	Configuring /etc/hosts and DNS resolving
	Getting ready
	How to do it
	How it works
	There's more

	Using network diagnostic tools
	Getting ready
	How to do it
	How it works
	There's more

	Chapter 5: Using Commands for File, Directory, and Service Management
	Technical requirements
	Basic file and directory-based commands
	Getting ready
	How to do it…
	How it works…
	See also

	Additional commands for manipulating file/directory security aspects
	Getting ready
	How to do it…
	How it works…
	See also

	Manipulating text files by using commands
	Getting ready
	How to do it…
	How it works…
	There's more…

	Finding files and folders
	Getting ready
	How to do it…
	How it works…
	There's more…

	Archiving and compressing files and folders
	Getting ready
	How to do it…
	How it works…
	There's more…

	Managing services and targets
	Getting ready
	How to do it…
	How it works…
	There's more…

	Chapter 6: Shell-Based Software Management
	Technical requirements
	Using dnf and apt for package management
	Getting ready
	How to do it…
	How it works…
	There's more…

	Using additional repositories, streams, and profiles
	Getting ready
	How to do it…
	How it works…

	Creating custom repositories
	Getting ready
	How to do it…
	How it works…
	There's more…

	Compiling third-party software
	Getting ready
	How to do it…
	How it works…
	There's more…

	Chapter 7: Network-Based File Synchronization
	Technical requirements
	Learning how to use SSH and SCP
	Getting ready
	How to do it…
	How it works…
	There's more…

	Learning how to use rsync
	Getting ready
	How to do it…
	How it works…
	There's more…

	Using vsftpd
	Getting ready
	How to do it…
	How it works…
	There's more

	Chapter 8: Using the Command Line to Find, Extract, and Manipulate Text Content
	Technical requirements
	Using text commands to merge file content
	Getting ready
	How to do it…
	How it works…
	There's more…

	Converting DOS text to Linux text and vice versa
	Getting ready
	How to do it…
	How it works…
	There's more…

	Using cut
	Getting ready
	How to do it…
	How it works…
	There's more…

	Using egrep
	Getting ready
	How to do it…
	How it works…
	There's more…

	Using sed
	Getting ready
	How to do it…
	How it works…
	There's more…

	Chapter 9: An Introduction to Shell Scripting
	Technical requirements
	Writing your first Bash shell script
	Getting ready
	How to do it…
	How it works…

	Serializing basic commands – from simple to complex
	Getting ready
	How to do it…
	How it works…
	There's more…

	Manipulating shell script input, output,
and errors
	Getting ready
	How to do it…
	How it works…

	Shell script hygiene
	Getting ready
	How to do it…
	There's more…

	Chapter 10: Using Loops
	The for loop
	Getting ready
	How to do it…
	How it works…
	See also

	break and continue
	Getting ready
	How to do it…
	How it works…
	See also

	The while loop
	Getting ready
	How to do it…
	How it works…
	See also

	The test-if loop
	Getting ready
	How to do it…
	How it works…
	See also

	The case loop
	Getting ready
	How to do it…
	How it works…
	See also

	Logical looping with and, or, and not
	Getting ready
	How to do it…
	How it works…
	See also

	Chapter 11: Working with Variables
	Technical requirements
	Using shell variables
	Getting ready
	How to do it…
	How it works…
	See also

	Using variables in shell scripting
	Getting ready
	How to do it…
	How it works…
	See also

	Quoting in the shell
	Getting ready
	How to do it…
	How it works…
	See also

	Performing operations on variables
	Getting ready
	How to do it…
	How it works…
	See also

	Variables via external commands
	Getting ready
	How to do it…
	How it works…
	See also

	Chapter 12: Using Arguments and Functions
	Technical requirements
	Using custom functions in shell script code
	Getting ready
	How to do it…
	How it works…
	See also

	Passing arguments to a function
	Getting ready
	How to do it…
	How it works…
	See also

	Local and global variables
	Getting ready
	How to do it…
	How it works…
	See also

	Working with returns from a function
	Getting ready
	How to do it…
	How it works…
	See also

	Loading an external function to a shell script
	Getting ready
	How to do it…
	How it works…
	See also

	Implementing commonly used procedures
via functions
	Getting ready
	How to do it…
	How it works…
	See also

	Chapter 13: Using Arrays
	Technical requirements
	Basic array manipulation
	Getting ready
	How to do it…
	How it works…
	See also

	Advanced array manipulation
	Getting ready
	How to do it…
	How it works…
	See also

	Chapter 14: Interacting with Shell Scripts
	Technical requirements
	Creating text-based interactive scripts
	Getting ready
	How to do it…
	How it works…
	See also

	Using expect to automate repetitive tasks based on text output
	Getting ready
	How to do it…
	How it works…
	See also

	Using dialog for menu-driven interactive scripts
	Getting ready
	How to do it…
	How it works…
	See also

	Chapter 15: Troubleshooting Shell Scripts
	Technical requirements
	Common scripting mistakes
	Getting ready
	How to do it…
	How it works…
	See also…

	Simple debugging approach – echoing values during script execution
	Getting ready
	How to do it…
	How it works…
	See also

	Using the bash -x and -v options
	Getting ready
	How to do it…
	How it works…
	See also…

	Using set to debug a part of the script
	Getting ready
	How to do it…
	How it works…
	See also…

	Chapter 16: Shell Script Examples for Server Management, Network Configuration,
and Backups
	Technical requirements
	Creating a file and folder inventory
	How to do it…
	See also

	Checking if you're running as root
	Getting ready
	How to do it…
	See also

	Displaying server stats
	Getting ready
	How to do it…
	There's more…

	Finding files by name, ownership, or content type and copying them to a specified directory
	Getting ready
	How to do it…
	There's more…

	Parsing date and time data
	Getting ready
	How to do it…

	Configuring the most common firewall settings interactively
	Getting ready
	How to do it…
	There's more…

	Configuring network settings interactively
	Getting ready
	How to do it…
	There's more…

	Backing up the current directory with shell script arguments and variables
	Getting ready
	How to do it…
	There's more…

	Creating a current backup based on the user input for the backup source and destination
	Getting ready
	How to do it…
	There's more…

	Chapter 17: Shell Script Examples
	Technical requirements
	Implementing a web server service and security settings
	Getting ready
	How to do it…
	See also

	Creating users and groups and forcing users to change them on the next login
	Getting ready
	How to do it…
	See also

	Creating users and groups from a standardized input file and a random password for each user
	Getting ready
	How to do it…
	See also

	Scripted VM installation on KVM
	Getting ready
	How to do it…
	See also

	Using a shell script to provision SSH keys
	Getting ready
	How to do it…
	See also

	A shell script for VM administration
	Getting ready
	How to do it…
	See also

	Index
	Other Books You May Enjoy

