
本书版权归Packt Publishing所有

Observability with Grafana

Monitor, control, and visualize your Kubernetes
and cloud platforms using the LGTM stack

Rob Chapman

Peter Holmes

BIRMINGHAM—MUMBAI

Observability with Grafana
Copyright © 2023 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, without the prior written permission of the publisher, except in the case
of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express
or implied. Neither the authors, nor Packt Publishing or its dealers and distributors, will be held liable
for any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and
products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot
guarantee the accuracy of this information.

Group Product Manager: Preet Ahuja
Publishing Product Manager: Surbhi Suman
Book Project Manager: Ashwini Gowda
Senior Editor: Shruti Menon
Technical Editor: Nithik Cheruvakodan
Copy Editor: Safis Editing
Proofreader: Safis Editing
Indexer: Tejal Daruwale Soni
Production Designer: Ponraj Dhandapani
DevRel Marketing Coordinator: Rohan Dobhal
Senior DevRel Marketing Coordinator: Linda Pearlson

First published: December 2023

Production reference: 1141223

Published by Packt Publishing Ltd.

Grosvenor House
11 St Paul’s Square
Birmingham
B3 1RB, UK

ISBN 978-1-80324-800-4

www.packtpub.com

http://www.packtpub.com

To all my children, for making me want to be more. To Heather, for making that possible.

– Rob Chapman

For every little moment that brought me to this point.

– Peter Holmes

Contributors

About the authors
Rob Chapman is a creative IT engineer and founder at The Melt Cafe, with two decades of experience
in the full application life cycle. Working over the years for companies such as the Environment Agency,
BT Global Services, Microsoft, and Grafana, Rob has built a wealth of experience on large complex
systems. More than anything, Rob loves saving energy, time, and money and has a track record for
bringing production-related concerns forward so that they are addressed earlier in the development
cycle, when they are cheaper and easier to solve. In his spare time, Rob is a Scout leader, and he enjoys
hiking, climbing, and, most of all, spending time with his family and six children.

A special thanks to Peter, my co-author/business partner, and to our two reviewers, Flick and Brad –
we did this!

Heather, my best friend – thank you for believing in me and giving me space to grow.

Thank you to my friend and coach, Sam, for guiding me to be all I can be and not being afraid to show
that to the world.

Last but not least, thanks to Phil for the sanctuary over the years – you kept me sane.

Peter Holmes is a senior engineer with a deep interest in digital systems and how to use them to solve
problems. With over 16 years of experience, he has worked in various roles in operations. Working at
organizations such as Boots UK, Fujitsu Services, Anaplan, Thomson Reuters, and the NHS, he has
experience in complex transformational projects, site reliability engineering, platform engineering,
and leadership. Peter has a history of taking time to understand the customer and ensuring Day-2+
operations are as smooth and cost-effective as possible.

A special thanks to Rob, my co-author, for bringing me along on this writing journey, and to our
reviewers.

Rania, my wife – thank you for helping me stay sane while writing this book.

About the reviewers
Felicity (Flick) Ratcliffe has almost 20 years of experience in IT operations. Starting her career in
technical support for an internet service provider, Flick has used her analytical and problem-solving
superpowers to grow her career. She has worked for various companies over the past two decades in
frontline operational positions, such as systems administrator, site reliability engineer, and now, for
Post Office Ltd in the UK, as a cloud platform engineer. Continually developing her strong interest
in emerging technologies, Flick has become a specialist in the area of observability over the past few
years and champions the cause for OpenTelemetry within the organizations she works at or comes
into contact with.

I have done so much with my career in IT, thanks to my colleagues, past and present. Thank you for
your friendship and mentorship. You encouraged me to develop my aptitude for technology, and I
cannot imagine myself in any other type of work now.

Bradley Pettit has over 10 years of experience in the technology industry. His expertise spans a range
of roles, including hands-on engineering and solution architecture. Bradley excels in addressing
complex technical challenges, thanks to his strong foundation in platform and systems engineering,
automation, and DevOps practices. Recently, Bradley has specialized in observability, working as a
senior solutions architect at Grafana Labs. He is a highly analytical, dedicated, and results-oriented
professional. Bradley’s customer-centric delivery approach empowers organizations and the O11y
community to achieve transformative outcomes.

Preface� xv

Part 1: Get Started with Grafana and
Observability

1
Introducing Observability and the Grafana Stack� 3

Observability in a nutshell� 4
Case study – A ship passing through the
Panama Canal� 5

Telemetry types and technologies� 6
Metrics� 7
Logs� 7
Distributed traces� 8
Other telemetry types� 10

Introducing the user personas of
observers� 11
Diego Developer� 13
Ophelia Operator� 14
Steven Service� 15

Pelé Product� 16
Masha Manager� 18

Introducing the Grafana stack� 19
The core Grafana stack� 19
Grafana Enterprise plugins� 21
Grafana incident response and management� 21
Other Grafana tools� 21

Alternatives to the Grafana stack� 22
Data collection� 23
Data storage, processing, and visualization� 23

Deploying the Grafana stack� 24
Summary� 25

2
Instrumenting Applications and Infrastructure� 27

Common log formats� 28 Structured, semi-structured, and
unstructured logging� 28

Table of Contents

Table of Contentsviii

Sample log formats� 30

Exploring metric types and best
practices� 34
Metric types� 35
Comparing metric types� 36
Metric protocols� 38
Best practices for implementing metrics� 39

Tracing protocols and best practices� 40
Spans and traces� 40
Tracing protocols� 41

Best practices for setting up distributed tracing� 42

Using libraries to instrument efficiently�43
Popular libraries for different programming
languages� 44

Infrastructure data technologies� 45
Common infrastructure components� 45
Common standards for infrastructure
components� 47

Summary� 48

3
Setting Up a Learning Environment with Demo Applications� 49

Technical requirements� 49
Introducing Grafana Cloud� 50
Setting up an account� 50
Exploring the Grafana Cloud Portal� 53
Exploring the Grafana instance� 56

Installing the prerequisite tools� 60
Installing WSL2� 61
Installing Homebrew� 61
Installing container orchestration tools� 62
Installing a single-node Kubernetes cluster� 63
Installing Helm� 63

Installing the OpenTelemetry Demo
application� 64
Setting up access credentials� 64
Downloading the repository and adding
credentials and endpoints� 64
Installing the OpenTelemetry Collector� 66

Installing the OpenTelemetry demo application� 67

Exploring telemetry from the demo
application� 68
Logs in Loki� 69
Metrics in Prometheus/Mimir� 72
Traces in Tempo� 73
Adding your own applications� 76

Troubleshooting your
OpenTelemetry Demo installation� 76
Checking Grafana credentials� 76
Reading logs from the OpenTelemetry Collector� 77
Debugging logs from the OpenTelemetry
Collector� 77

Summary� 78

Table of Contents ix

Part 2: Implement Telemetry in Grafana

4
 Looking at Logs with Grafana Loki� 81

Technical requirements� 81
Updating the OpenTelemetry demo
application� 82
Introducing Loki� 82
Understanding LogQL� 84
LogQL query builder� 84
An overview of LogQL features� 86

Log stream selector� 88
Log pipeline� 88
Exploring LogQL metric queries� 95

Exploring Loki’s architecture� 99
Tips, tricks, and best practices� 101
Summary� 103

5
Monitoring with Metrics Using Grafana Mimir and Prometheus� 105

Technical requirements� 105
Updating the OpenTelemetry demo
application� 106
Introducing PromQL� 106
An overview of PromQL features� 108
Writing PromQL� 114

Exploring data collection and metric
protocols� 119
StatsD and DogStatsD� 120
OTLP� 120

Prometheus� 121
SNMP� 121

Understanding data storage
architectures� 121
Graphite architecture� 122
Prometheus architecture� 122
Mimir architecture� 123

Using exemplars in Grafana� 125
Summary� 127

6
Tracing Technicalities with Grafana Tempo� 129

Technical requirements� 129
Updating the OpenTelemetry Demo
application� 129

Introducing Tempo and the TraceQL
query language� 130
Exploring the Tempo features� 131
Exploring the Tempo Query language� 135

Table of Contentsx

Pivoting between data types� 138

Exploring tracing protocols� 139
What are the main tracing protocols?� 139
Context propagation� 140

Understanding the Tempo
architecture� 143
Summary� 145

7
Interrogating Infrastructure with Kubernetes, AWS, GCP, and Azure�147

Technical requirements� 147
Monitoring Kubernetes using Grafana�148
Kubernetes Attributes Processor� 148
Kubeletstats Receiver� 150
Filelog Receiver� 151
Kubernetes Cluster Receiver� 152
Kubernetes Object Receiver� 152
Prometheus Receiver� 153
Host Metrics Receiver� 154

Visualizing AWS telemetry with
Grafana Cloud� 155
Amazon CloudWatch data source� 155

Exploring AWS integration� 157

Monitoring GCP using Grafana� 162
Configuring the data source� 162
Google Cloud Monitoring query editor� 163
Google Cloud Monitoring dashboards� 165

Monitoring Azure using Grafana� 166
Configuring the data source� 166
Using the Azure Monitor query editor� 167
Using Azure Monitor dashboards� 170

Best practices and approaches� 171
Summary� 172

Part 3: Grafana in Practice

8
Displaying Data with Dashboards� 175

Technical requirements� 175
Creating your first dashboard� 176
Developing your dashboard further� 180
Using visualizations in Grafana� 183
Developing a dashboard purpose� 185

Advanced dashboard techniques� 186
Managing and organizing dashboards�189
Case study – an overall system view� 191
Summary� 195

Table of Contents xi

9
Managing Incidents Using Alerts� 197

Technical requirements� 198
Being alerted versus being alarmed� 198
Before an incident� 199
During an incident� 202
After an incident� 207

Writing great alerts using SLIs and
SLOs� 208
Grafana Alerting� 209
Alert rules� 210
Contact points, notification policies, and
silences� 213

Groups and admin� 213

Grafana OnCall� 214
Alert groups� 214
Inbound integrations� 215
Templating� 217
Escalation chains� 218
Outbound integrations� 219
Schedules� 221

Grafana Incident� 222
Summary� 224

10
Automation with Infrastructure as Code� 225

Technical requirements� 225
Benefits of automating Grafana� 226
Introducing the components of
observability systems� 226
Automating collection infrastructure
with Helm or Ansible� 228
Automating the installation of the
OpenTelemetry Collector� 228
Automating the installation of Grafana Agent� 235

Getting to grips with the Grafana API�236
Exploring the Grafana Cloud API� 236
Using Terraform and Ansible for Grafana
Cloud� 237
Exploring the Grafana API� 239

Managing dashboards and alerts with
Terraform or Ansible� 240
Summary� 242

11
Architecting an Observability Platform� 243

Architecting your observability
platform� 243
Defining a data architecture� 244
Establishing system architecture� 246

Management and automation� 253

Developing a proof of concept� 254
Containerization and virtualization� 254

Table of Contentsxii

Data production tools� 255

Setting the right access levels� 256

Sending telemetry to other consumers� 258
Summary� 259

Part 4: Advanced Applications and Best Practices
of Grafana

12
Real User Monitoring with Grafana� 263

Introducing RUM� 263
Setting up Grafana Frontend
Observability� 265
Exploring Web Vitals� 269

Pivoting from frontend to backend
data� 271
Enhancements and custom
configurations� 273
Summary� 274

13
Application Performance with Grafana Pyroscope and k6� 275

Using Pyroscope for continuous
profiling� 276
A brief overview of Pyroscope� 276
Searching Pyroscope data� 276
Continuous profiling client configuration� 279
Understanding the Pyroscope architecture� 282

Using k6 for load testing� 283

A brief overview of k6� 285
Writing a test using checks� 286
Writing a test using thresholds� 286
Adding scenarios to a test to run at scale� 287
Test life cycle� 288
Installing and running k6� 288

Summary� 290

14
Supporting DevOps Processes with Observability� 291

Introducing the DevOps life cycle� 292
Using Grafana for fast feedback
during the development life cycle� 294
Code� 294
Test� 295

Release� 295
Deploy� 296
Operate� 298
Monitor� 298
Plan� 300

Table of Contents xiii

Using Grafana to monitor
infrastructure and platforms� 300
Observability platforms� 300
CI platforms� 301

CD platforms� 302
Resource platforms� 303
Security platforms� 303

Summary� 304

15
Troubleshooting, Implementing Best Practices, and More with Grafana
� 305

Best practices and troubleshooting
for data collection� 305
Preparing for data collection� 306
Data collection decisions� 306
Debugging collector� 307

Best practices and troubleshooting
for the Grafana stack� 308

Preparing the Grafana stack� 308
Grafana stack decisions� 309
Debugging Grafana� 309

Avoiding pitfalls of observability� 311
Future trends in application
monitoring� 312
Summary� 313

Index� 315

Other Books You May Enjoy� 330

Preface

Hello and welcome! Observability with Grafana is a book about the tools offered by Grafana Labs for
observability and monitoring. Grafana Labs is an industry-leading provider of open source tools to
collect, store, and visualize data collected from IT systems. This book is primarily aimed toward IT
engineers who will interact with these systems, whatever discipline they work in.

We have written this book as we have seen some common problems across organizations:

•	 Systems that were designed without a strategy for scaling are being pushed to handle additional
data load or teams using the system

•	 Operational costs are not being attributable correctly in the organization, leading to poor cost
analysis and management

•	 Incident management processes that treat the humans involved as robots without sleep schedules
or parasympathetic nervous systems

In this book, we will use the OpenTelemetry Demo application to simulate a real-world environment
and send the collected data to a free Grafana Cloud account that we will create. This will guide you
through the Grafana tools for collecting telemetry and also give you hands-on experience using the
administration and support tools offered by Grafana. This approach will teach you how to run the
Grafana tools in a way so that anyone can experiment and learn independently.

This is an exciting time for Grafana, identified as a visionary in the 2023 Gartner Magic Quadrant
for Observability (https://www.gartner.com/en/documents/4500499). They recently
delivered change in two trending areas:

•	 Cost reduction: This has seen Grafana as the first vendor in the observability space to release
tools that not only help you understand your costs but also reduce them.

•	 Artificial intelligence (AI): Grafana has introduced generative AI tools that assist daily operations
in simple yet effective ways – for example, writing an incident summary automatically. Grafana
Labs also recently purchased Asserts.ai to simplify root cause analysis and accelerate problem
detection.

We hope you enjoy learning some new things with us and have fun doing it!

https://www.gartner.com/en/documents/4500499

Prefacexvi

Who this book is for
IT engineers, support teams, and leaders can gain practical insights into bringing the huge power of
an observability platform to their organization. The book will focus on engineers in disciplines such
as the following:

•	 Software development: Learn how to quickly instrument applications and produce great
visualizations enabling applications to be easily supported

•	 Operational teams (DevOps, Operations, Site Reliability, Platform, or Infrastructure): Learn
to manage an observability platform or other key infrastructure platform and how to manage
such platforms in the same way as any other application

•	 Support teams: Learn how to work closely with development and operational teams to have
great visualizations and alerting in place to quickly respond to customers’ needs and IT incidents

This book will also clearly establish the role of leadership in incident management, cost management,
and establishing an accurate data model for this powerful dataset.

What this book covers
Chapter 1, Introducing Observability and the Grafana Stack, provides an introduction to the Grafana
product stack in relation to observability as a whole. You will learn about the target audiences and
how that impacts your design. We will take a look at the roadmap for observability tooling and how
Grafana compares to alternative solutions. We will explore architectural deployment models, from
self-hosted to cloud offerings. Inevitably, you will have answers to the question “Why choose Grafana?”.

Chapter 2, Instrumenting Applications and Infrastructure, takes you through the common protocols and
best practices for each telemetry type at a high level. You will be introduced to widely used libraries for
multiple programming languages that make instrumenting an application simple. Common protocols
and strategies for collecting data from infrastructural components will also be discussed. This chapter
provides a high-level overview of the technology space and aims to be valuable for quick reference.

Chapter 3, Setting Up a Learning Environment with Demo Applications, explains how to install and set
up a learning environment that will support you through later sections of the book. You will also learn
how to explore the telemetry produced by the demo app and add monitoring for your own service.

Chapter 4, Looking at Logs with, Loki, takes you through working examples to understand LogQL. You
will then be introduced to common log formats, and their benefits and drawbacks. Finally, you will be
taken through the important architectural designs of Loki, and best practices when working with it.

Chapter 5, Monitoring with Metrics Using Grafana Mimir and Prometheus, discusses working examples
to understand PromQL with real data. Detailed information about the different metric protocols
will be discussed. Finally, you will be taken through important architectural designs backing Mimir,
Prometheus, and Graphite that guide best practices when working with the tools.

Preface xvii

Chapter 6, Tracing Technicalities with Grafana Tempo, shows you working examples to understand
TraceQL with real data. Detailed information about the different tracing protocols will be discussed.
Finally, you will be taken through the important architectural designs of Tempo, and best practices
when working with it.

Chapter 7, Interrogating Infrastructure with Kubernetes, AWS, GCP, and Azure, describes the setup and
configuration used to capture telemetry from infrastructure. You will learn about the different options
available for Kubernetes. Additionally, you will investigate the main plugins that allow Grafana to
query data from cloud vendors such as AWS, GCP, and Azure. You will look at solutions to handle large
volumes of telemetry where direct connections are not scalable. The chapter will also cover options
for filtering and selecting telemetry data before it gets to Grafana for security and cost optimization.

Chapter 8, Displaying Data with Dashboards, explains how you can set up your first dashboard in the
Grafana UI. You will also learn how to present your telemetry data in an effective and meaningful way.
The chapter will also teach you how to manage your Grafana dashboards to be organized and secure.

Chapter 9, Managing Incidents Using Alerts, describes how to set up your first Grafana alert with Alert
Manager. You will learn how to design an alert strategy that prioritizes business-critical alerts over
ordinary notifications. Additionally, you will learn about alert notification policies, different delivery
methods, and what to look for.

Chapter 10, Automation with Infrastructure as Code, gives you the tools and approaches to automate
parts of your Grafana stack deployments while introducing standards and quality checks. You will gain
a deep dive into the Grafana API, working with Terraform, and how to protect changes with validation.

Chapter 11, Architecting an Observability Platform, will show those of you who are responsible for
offering an efficient and easy-to-use observability platform how you can structure your platform so
you can delight your internal customers. In the environment we operate in, it is vital to offer these
platform services as quickly and efficiently as possible, so more time can be dedicated to the production
of customer-facing products. This chapter aims to build on the ideas already covered to get you up
and running quickly.

Chapter 12, Real User Monitoring with Grafana, introduces you to frontend application observability,
using Grafana Faro and Grafana Cloud Frontend Observability for real user monitoring (RUM). This
chapter will discuss instrumenting your frontend browser applications. You will learn how to capture
frontend telemetry and link this with backend telemetry for full stack observability.

Chapter 13, Application Performance with Grafana Pyroscope and k6, introduces you to application
performance and profiling using Grafana Pyroscope and k6. You will obtain a high-level overview that
discusses the various aspects of k6 for smoke, spike, stress, and soak tests, as well as using Pyroscope
to continuously profile an application both in production and test environments.

Prefacexviii

Chapter 14, Supporting DevOps Processes with Observability, takes you through DevOps processes
and how they can be supercharged with observability with Grafana. You will learn how the Grafana
stack can be used in the development stages to speed up the feedback loop for engineers. You will
understand how to prepare engineers to operate the product in production. Finally, You will learn
when and how to implement CLI and automation tools to enhance the development workflow.

Chapter 15, Troubleshooting, Implementing Best Practices, and More with Grafana, closes the book by
taking you through best practices when working with Grafana in production. You will also learn some
valuable troubleshooting tips to support you with high-traffic systems in day-to-day operations. You will
also learn about additional considerations for your telemetry data with security and business intelligence.

To get the most out of this book
The following table presents the operating system requirements for the software that will be used in
this book:

Software/hardware covered in the book Operating system requirements

Kubernetes v1.26 Either Windows, macOS, or Linux with dual CPU
and 4 GB RAM

Docker v23 Either Windows, macOS, or Linux with dual CPU
and 4 GB RAM

If you are using the digital version of this book, we advise you to type the code yourself or access
the code from the book’s GitHub repository (a link is available in the next section). Doing so will
help you avoid any potential errors related to the copying and pasting of code.

Download the example code files
You can download the example code files for this book from GitHub at https://github.com/
PacktPublishing/Observability-with-Grafana. If there’s an update to the code, it
will be updated in the GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at https://
github.com/PacktPublishing/. Check them out!

Code in Action
The Code in Action videos for this book can be viewed at https://packt.link/v59Jp.

Conventions used
There are a number of text conventions used throughout this book.

https://github.com/PacktPublishing/Observability-with-Grafana
https://github.com/PacktPublishing/Observability-with-Grafana
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://packt.link/v59Jp

Preface xix

Code in text: Indicates code words in text, database table names, folder names, filenames, file
extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “The
function used to get this information is the rate() function.”

A block of code is set as follows:

histogram_quantile(
    0.95, sum(
        rate(
            http_server_duration_milliseconds_bucket{}[$__rate_
interval])
        ) by (le)
    )

Any command-line input or output is written as follows:

$ helm upgrade owg open-telemetry/opentelemetry-collector -f OTEL-
Collector.yaml

Bold: Indicates a new term, an important word, or words that you see onscreen. For instance, words
in menus or dialog boxes appear in bold. Here is an example: “From the dashboard’s Settings screen,
you can add or remove tags from individual dashboards.”

Tips or important notes
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at customercare@
packtpub.com and mention the book title in the subject of your message.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you have found a mistake in this book, we would be grateful if you would report this to us. Please
visit www.packtpub.com/support/errata and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would
be grateful if you would provide us with the location address or website name. Please contact us at
copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you
are interested in either writing or contributing to a book, please visit authors.packtpub.com.

http://customercare@packtpub.com
http://customercare@packtpub.com
http://www.packtpub.com/support/errata
http://copyright@packt.com
http://authors.packtpub.com

xx

Share Your Thoughts
Once you’ve read Observability with Grafana, we’d love to hear your thoughts! Please click here to go
straight to the Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we’re delivering
excellent quality content.

https://packt.link/r/1803248009
https://packt.link/r/1803248009

xxi

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical
books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content
in your inbox daily

Follow these simple steps to get the benefits:

1.	 Scan the QR code or visit the link below

https://packt.link/free-ebook/9781803248004

2.	 Submit your proof of purchase

3.	 That’s it! We’ll send your free PDF and other benefits to your email directly

https://packt.link/free-ebook/9781803248004

Part 1: Get Started with
Grafana and Observability

In this part of the book, you will get an introduction to Grafana and observability. You will learn about
the producers and consumers of telemetry data. You will explore how to instrument applications and
infrastructure. Then, you will set up a learning environment that will be enhanced throughout the
chapters to provide comprehensive examples of all parts of observability with Grafana.

This part has the following chapters:

•	 Chapter 1, Introducing Observability and the Grafana Stack

•	 Chapter 2, Instrumenting Applications and Infrastructure

•	 Chapter 3, Setting Up a Learning Environment with Demo Applications

1
Introducing Observability and

the Grafana Stack

The modern computer systems we work with have moved from the realm of complicated into the
realm of complex, where the number of interacting variables make them ultimately unknowable and
uncontrollable. We are using the terms complicated and complex as per system theory. A complicated
system, like an engine, has clear causal relationships between components. A complex system, such
as the flowing of traffic in a city, shows emergent behavior from the interactions of its components.

With the average cost of downtime estimated to be $9,000 per minute by Ponemon Institute in 2016,
this complexity can cause significant financial loss if organizations do not take steps to manage this
risk. Observability offers a way to mitigate these risks, but making systems observable comes with
its own financial risks if implemented poorly or without a clear business goal.

In this book, we will give you a good understanding of what observability is and who the customers
who might use it are. We will explore how to use the tools available from Grafana Labs to gain visibility
of your organization. These tools include Loki, Prometheus, Mimir, Tempo, Frontend Observability,
Pyroscope, and k6. You will learn how to use Service Level Indicators (SLIs) and Service Level
Objectives (SLOs) to obtain clear transparent signals of when a service is operating correctly, and
how to use the Grafana incident response tools to handle incidents. Finally, you will learn about
managing their observability platform using automation tools such as Ansible, Terraform, and Helm.

This chapter aims to introduce observability to all audiences, using examples outside of the computing
world. We’ll introduce the types of telemetry used by observability tools, which will give you an
overview of how to use them to quickly understand the state of your services. The various personas
who might use observability systems will be outlined so that you can explore complex ideas later with
a clear grounding on who will benefit from their correct implementation. Finally, we’ll investigate
Grafana’s Loki, Grafana, Tempo, Mimir (LGTM) stack, how to deploy it, and what alternatives exist.

Introducing Observability and the Grafana Stack4

In this chapter, we’re going to cover the following main topics:

•	 Observability in a nutshell

•	 Telemetry types and technologies

•	 Understanding the customers of observability

•	 Introducing the Grafana stack

•	 Alternatives to the Grafana stack

•	 Deploying the Grafana stack

Observability in a nutshell
The term observability is borrowed from control theory. It’s common to use the term interchangeably
with the term monitoring in IT systems, as the concepts are closely related. Monitoring is the ability
to raise an alarm when something is wrong, while observability is the ability to understand a system
and determine whether something is wrong, and why.

Control theory was formalized in the late 1800s on the topic of centrifugal governors in steam engines.
This diagram shows a simplified view of such a system:

Figure 1.1 – James Watt’s steam engine flyweight governor (source: https://www.mpoweruk.com)

Observability in a nutshell 5

Steam engines use a boiler to boil water in a pressure vessel. The steam pushes a piston backward
and forward, which converts heat energy to reciprocal energy. In steam engines that use centrifugal
governors, this reciprocal energy is converted to rotational energy via a wheel connected to a piston.
The centrifugal governor provides a physical link backward through the system to the throttle. This
means that the speed of rotation controls the throttle, which, in turn, controls the speed of rotation.
Physically, this is observed by the balls on the governor flying outward and dropping inward until
the system reaches equilibrium.

Monitoring defines the metrics or events that are of interest in advance. For instance, the governor
measures the pre-defined metric of drive shaft revolutions. The controllability of the throttle is then
provided by the pivot and actuator rod assembly. Assuming the actuator rod is adjusted correctly, the
governor should control the throttle from fully open to fully closed.

In contrast, observability is achieved by allowing the internal state of the system to be inferred from
its external outputs. If the operating point adjustment is incorrectly set, the governor may spin too
fast or too slowly, rendering the throttle control ineffective. A governor spinning too fast or too slowly
could also indicate that the sliding ring is stuck in place and needs oiling. Importantly, this insight can
be gained without defining in advance what too fast or too slow means. The insight that the governor
is spinning too fast or too slowly also needs very little knowledge of the full steam engine.

Fundamentally, both monitoring and observability are used to improve the reliability and performance
of the system in question.

Now that we have introduced the high-level concepts, let’s explore a practical example outside of the
world of software services.

Case study – A ship passing through the Panama Canal

Let’s imagine a ship traversing the Agua Clara locks on the Panama Canal. This can be illustrated
using the following figure:

Figure 1.2 – The Agua Clara locks on the Panama Canal

Introducing Observability and the Grafana Stack6

There are a few aspects of these locks that we might want to monitor:

•	 The successful opening and closing of each gate

•	 The water level inside each lock

•	 How long it takes for a ship to traverse the locks

Monitoring these aspects may highlight situations that we need to be alerted about:

•	 A gate is stuck open because of a mechanical failure

•	 The water level is rapidly descending because of a leak

•	 A ship is taking too long to exit the locks because it is stuck

There may be situations where the data we are monitoring are within acceptable limits, but we can still
observe a deviation from what is considered normal, which should prompt further action:

•	 A small leak has formed near the top of the lock wall:

	� We would see the water level drop but only when it is above the leak

	� This could prompt maintenance work on the lock wall

•	 A gate in one lock is opening more slowly because it needs maintenance:

	� We would see the time between opening and closing the gate increase

	� This could prompt maintenance on the lock gate

•	 Ships take longer to traverse the locks when the wind is coming from a particular direction:

	� We could compare hourly average traversal rates

	� This could prompt work to reduce the impact of wind from one direction

Now that we’ve seen an example of measuring a real-world system, we can group these types of
measurements into different data types to best suit the application. Let’s introduce those now.

Telemetry types and technologies
The boring but important part of observability tools is telemetry – capturing data that is useful,
shipping it from place to place, and producing visualizations, alerts, and reports that offer value to
the organization.

Three main types of telemetry are used to build monitoring and observability systems – metrics,
logs, and distributed traces. Other telemetry types may be used by some vendors and in particular
circumstances. We will touch on these here, but they will be explored in more detail in Chapters 12
and 13 of this book.

Telemetry types and technologies 7

Metrics

Metrics can be thought of as numeric data that is recorded at a point in time and enriched with labels
or dimensions to enable analysis. Metrics are frequently generated and are easy to search, making them
ideal for determining whether something is wrong or unusual. Let’s look at an example of metrics
showing temporal changes:

Figure 1.3 – Metrics showing changes over time

Taking our example of the Panama Canal, we could represent the water level in each lock as a metric, to
be measured at regular intervals. To be able to use the data effectively, we might add some of these labels:

•	 The lock name: Agua Clara

•	 The lock chamber: Lower lock

•	 The canal: Panama Canal

Logs

Logs are considered to be unstructured string data types. They are recorded at a point in time and
usually contain a huge amount of information about what is happening. While logs can be structured,
there is no guarantee of that structure persisting, because the log producer has control over the structure
of the log. Let’s look at an example:

Jun 26 2016 20:31:01 pc-ac-g1 gate-events no obstructions seen
Jun 26 2016 20:32:01 pc-ac-g1 gate-events starting motors
Jun 26 2016 20:32:30 pc-ac-g1 gate-events motors engaged successfully
Jun 26 2016 20:35:30 pc-ac-g1 gate-events stopping motors
Jun 26 2016 20:35:30 pc-ac-g1 gate-events gate open complete

In our example, the various operations involved in opening or closing a lock gate could be represented
as logs.

Introducing Observability and the Grafana Stack8

Almost every system produces logs, and they often give very detailed information. This is great for
understanding what happened. However, the volume of data presents two problems:

•	 Searching can be inefficient and slow.

•	 As the data is in text format, knowing what to search for can be difficult. For example, error
occurred, process failed, and action did not complete successfully
could all be used to describe a failure, but there are no shared strings to search for.

Let’s consider a real log entry from a computer system to see how log data is usually represented:

Figure 1.4 – Logs showing discrete events in time

We can clearly see that we have a number of fields that have been extracted from the log entry by the
system. These fields detail where the log entry originated from, what time it occurred, and various
other items.

Distributed traces

Distributed traces show the end-to-end journey of an action. They are captured from every step that
is taken to complete the action. Let’s imagine a trace that covers the passage of a ship through the
lock system. We will be interested in the time a ship enters and leaves each lock, and we will want to
be able to compare different ships using the system. A full passage can be given an identifier, usually
called a trace ID. Traces are made up of spans. In our example, a span would cover the entry and exit
for each individual lock. These spans are given a second identifier, called a span ID. To tie these two

Telemetry types and technologies 9

together, each span in a trace references the trace ID for the whole trace. The following screenshot
shows an example of how a distributed trace is represented for a computer application:

Figure 1.5 – Traces showing the relationship of actions over time

Now that we have introduced metrics, logs, and traces, let’s consider a more detailed example of a ship
passing through the locks, and how each telemetry type would be produced in this process:

1.	 Ship enters the first lock:

	� Span ID created

	� Trace ID created

	� Contextual information is added to the span, for example, a ship identification

	� Key events are recorded in the span with time stamps, for example, gates are opened and closed

2.	 Ship exits the first lock:

	� Span closed and submitted to the recording system

	� Second lock notified of trace ID and span ID

Introducing Observability and the Grafana Stack10

3.	 Ship enters the second lock:

	� Span ID created

	� Trace ID added to span

	� Contextual information is added to the span

	� Key events recorded in the span with time stamps

4.	 Ship exits the second lock:

	� Span closed and submitted to the recording system

	� Third lock notified of trace ID and span ID

5.	 Ship enters the third lock:

	� Repeat step 3

6.	 Ship exits the third lock:

	� Span closed and submitted to the recording system

Now let’s look at some other telemetry types.

Other telemetry types

Metrics, logs, and traces are often called the three pillars or the golden triangle of observability. As we
outlined earlier, observability is the ability to understand a system. While metrics, logs, and traces
give us a very good ability to understand a system, they are not the only signals we might need, as
this depends at what abstraction layer we need to observe the system. For instance, when looking at a
very detailed level, we may be very interested in the stack trace of an application’s activity at the CPU
and RAM level. Conversely, if we are interested in the execution of a CI/CD pipeline, we may just be
interested in whether a deployment occurred and nothing more.

Profiling data (stack traces) can give us a very detailed technical view of the system’s use of resources
such as CPU cycles or memory. With cloud services often charged per hour for these resources, this
kind of detailed analysis can easily create cost savings.

Similarly, events can be consumed from a platform, such as CI/CD. These can offer a huge amount
of insight that can reduce the Mean Time to Recovery (MTTR). Imagine responding to an out-of-
hours alert and seeing that a new version of a service was deployed immediately before the issues
started occurring. Even better, imagine not having to wake up because the deployment process could
check for failures and roll back automatically. Events differ from logs only in that an event represents
a whole action. In our earlier example in the Logs section, we created five logs, but all of these referred
to stages of the same event (opening the lock gate). As a relatively generic term, event gets used with
other meanings.

Introducing the user personas of observers 11

Now that we’ve introduced the fundamental concepts of the technology, let’s talk about the customers
who will use observability data.

Introducing the user personas of observers
Observability deals with understanding a system, identifying whether something is wrong with that
system, and understanding why it is wrong. But what do we mean by understanding a system? The
simple answer would be knowing the state of a single application or infrastructure component.

In this section, we will introduce the user personas that we will use throughout this book. These personas
will help to distinguish the different types of questions that people use observability systems to answer.

Let’s take a quick look at the user personas that will be used throughout the book as examples, and
their roles:

Name and role Description

Diego Developer Frontend, backend, full stack, and so on

Ophelia Operator SRE, DevOps, DevSecOps, customer success,
and so on

Introducing Observability and the Grafana Stack12

Steven Service Service manager and other tasks

Pelé Product Product manager, product owner, and so on

Masha Manager Manager, senior leadership, and so on

Table 1.1 – User persona introductions

Now let’s look at each of these users in greater detail.

Introducing the user personas of observers 13

Diego Developer

Diego Developer works on many types of systems, from frontend applications that customers directly
interact with, to backend systems that let his organization store data in ways that delight its customers.
You might even find him working on platforms that other developers use to get their applications
integrated, built, delivered, and deployed safely and speedily.

Goals

He writes great software that is well tested and addresses customers’ actual needs.

Interactions

When he is not writing code, he works with Ophelia Operator to address any questions and issues
that occur.

Pelé Product works in his team and provides insight into the customer’s needs. They work together
closely, taking those needs and turning them into detailed plans on how to deliver software that
addresses them.

Steven Service is keen to ensure that the changes Diego makes are not impacting customer commitments.
He’s also the one who wakes Diego up if there is an incident that needs attention. The data provided to
Masha Manager gives her a breakdown of costs. When Diego is working on developer platforms, he
also collects data that helps her get investment from the business into teams that are not performing
as expected.

Needs

Diego really needs easy-to-use libraries for the languages he uses to instrument the code he produces.
He does not have time to become an expert. He wants to be able to add a few lines of code and get
results quickly.

Having a clear standard for acceptable performance measures makes it easy for him to get the right results.

Introducing Observability and the Grafana Stack14

Pain points

When Diego’s systems produce too much data, he finds it difficult to sort signal from noise. He also
gets frustrated having to change his code because of an upstream decision to change tooling.

Ophelia Operator

Ophelia Operator works in an operations-focused environment. You might find her in a customer-facing
role or as part of a development team as a DevOps engineer. She could be part of a group dedicated
to the reliability of an organization’s systems, or she could be working in security or finance to ensure
the business runs securely and smoothly.

Goals

Ophelia wants to make sure a product is functioning as expected. She also likes it when she is not
woken up early in the morning by an incident.

Interactions

Ophelia will work a lot with Diego Developer; sometimes it’s escalating customer tickets when she
doesn’t have the data available to understand the problem; at other times it’s developing runbooks to
keep the systems running. Sometimes she will need to give Diego clear information on acceptable
performance measures so that her team can make sure systems perform well for customers.

Steven Service works closely with Ophelia. They work together to ensure there are not many incidents,
and that they are quickly resolved. Steven makes sure that business data on changes and incidents is
tracked, and tweaks processes when things aren’t working.

Pelé Product likes to have data showing the problematic areas of his products.

Introducing the user personas of observers 15

Needs

Good data is necessary to do the job effectively. Being able to see that a customer has encountered an
error can make the difference between resolving a problem straight away or having them wait maybe
weeks for a response.

During an incident seeing that a new version of a service was deployed at the time a problem started
can change an hours-long incident into a brief blip, and keep customers happy.

Pain points

Getting continuous alerts but not being empowered to fix the underlying issue is a big problem. Ophelia
has seen colleagues burn out, and it makes her want to leave the organization when this happens.

Steven Service

Steven Service works in service delivery. He is interested in making sure the organization’s services are
delivered smoothly. Jumping in on critical incidents and coordinating actions to get them resolved as
quickly as possible is part of the job. So is ensuring that changes are made using processes that help
others do it as safely as possible. Steven also works with third parties who provide services that are
critical to the running of the organization.

Goals

He wants services to run as smoothly as possible so that the organization can spend more time focused
on customers.

Introducing Observability and the Grafana Stack16

Interactions

Diego Developer and Ophelia Operator work a lot with the change management processes created by
Steven and the support processes he manages. Having accurate data to hand during change management
really helps to make the process as smooth as possible.

Steven works very closely with Masha Manager to make sure she has access to data showing where
processes are working smoothly and where they need to spend time improving them.

Needs

He needs to be able to compare the delivery of different products and provide that data to Masha
and the business.

During incidents, he needs to be able to get the right people on the call as quickly as possible and keep
a record of what happened for the incident post-mortem.

Pain points

Being able to identify the right person to get on a call during an incident is a common problem he
faces. Seeing incidents drag on while different systems are compared and who can fix the problem is
argued about is also a big concern to him.

Pelé Product

Pelé Product works in the product team. You’ll find him working with customers to understand their
needs, keeping product roadmaps in order, and communicating requirements back to developers such
as Diego Developer so they can build them. You might also find him understanding and shaping the
product backlog for the internal platforms used by developers in the organization.

Introducing the user personas of observers 17

Goal

Pelé wants to understand customers, give them products that delight them, and keep them coming back.

Interactions

He spends a lot of time working with Diego when they can look at the same information to really
understand what customers are doing and how they can help them do it better.

Ophelia Operator and Steven Service help Pelé keep products on track. If too many incidents occur,
they ask everyone to refocus on getting stability right. There is no point in providing customers with
lots of features on a system that they can’t trust.

Pelé works closely with Masha Manager to ensure the organization has the right skills in the teams
that build products. The business depends on her leadership to make sure that these developers have
the best tools to help them get their code live in front of customers where it can be used.

Needs

Pelé needs to be able to understand customers’ pain points even when they do not articulate them
clearly during user research.

He needs data that gives him a common language with Diego and Ophelia. Sometimes they can get
too focused on specific numbers such as shaving off a couple of milliseconds from a request, when
improving a poor workflow would improve the customer experience more significantly.

Pain points

Pelé hates not being able to see at a high level what customers are doing. Understanding which bits of
an application have the most usage, and which bits are not used at all, lets him know where to focus
time and resources.

While customers never tell him they want stability, if it’s not there they will lose trust very quickly
and start to look at alternatives.

Introducing Observability and the Grafana Stack18

Masha Manager

Masha works in management. You might find her leading a team and working closely with them
daily. She also represents middle management, setting strategy and making tactical choices, and she is
involved, to some extent, in senior leadership. Much of her role involves managing budgets and people.
If something can make that process easier, then she is usually interested in hearing about it. What
Masha does not want to do is waste the organization’s money, because that can directly impact jobs.

Goals

Her primary goals are to keep the organization running smoothly and ensure the budget is balanced.

Interactions

As a leader, Masha needs accurate data and needs to be able to trust the teams who provide that data.
The data could be the end-to-end cycle time of feature concept to delivery from Pelé Product, the lead
time for changes from Diego Developer, or even the MTTR from Steven Service. Having that data helps
her to understand where focus and resources can have the biggest impact.

Masha works regularly with the financial operations staff and needs to make sure they have accurate
information on the organization’s expenditure and the value that expenditure provides.

Needs

She needs good data in a place where she can view it and make good decisions. This usually means
she consumes information from a business intelligence system. To use such tools effectively, she needs
to be clear on what the organization’s goals are, so that the correct data can be collected to help her
understand how her teams are tracking to that goal.

She also needs to know that the teams she is responsible for have the correct data and tools to excel
in their given areas.

Introducing the Grafana stack 19

Pain points

High failure rates and long recovery time usually result in her having to speak with customers to
apologize. Masha really hates these calls!

Poor visibility of cloud systems is a particular concern. Masha has too many horror stories of huge
overspending caused by a lack of monitoring; she would rather spend that budget on something
more useful.

You now know about the customers who use observability data, and the types of data you will be using
to meet their needs. As the main focus of this book is on Grafana as the underlying technology, let’s
now introduce the tools that make up the Grafana stack.

Introducing the Grafana stack
Grafana was born in 2013 when a developer was looking for a new user interface to display metrics
from Graphite. Initially forked from Kibana, the Grafana project was developed to make it easy to
build quick, interactive dashboards that were valuable to organizations. In 2014, Grafana Labs was
formed with the core value of building a sustainable business with a strong commitment to open
source projects. From that foundation, Grafana has grown into a strong company supporting more
than 1 million active installations. Grafana Labs is a huge contributor to open source projects, from
their own tools to widely adopted technologies such as Prometheus, and recent initiatives with a lot
of traction such as OpenTelemetry.

Grafana offers many tools, which we’ve grouped into the following categories:

•	 The core Grafana stack: LGTM and the Grafana Agent

•	 Grafana enterprise plugins

•	 Incident response tools

•	 Other Grafana tools

Let’s explore these tools in the following sections.

The core Grafana stack

The core Grafana stack consists of Mimir, Loki, Tempo, and Grafana; the acronym LGTM is often
used to refer to this tech stack.

Mimir

Mimir is a Time Series Database (TSDB) for the storage of metric data. It uses low-cost object
storage such as S3, GCS, or Azure Blob Storage. First announced for general availability in March
2022, Mimir is the newest of the four products we’ll discuss here, although it’s worth highlighting
that Mimir initially forked from another project, Cortex, which was started in 2016. Parts of Cortex
also form the core of Loki and Tempo.

Introducing Observability and the Grafana Stack20

Mimir is a fully Prometheus-compatible solution that addresses the common scalability problems
encountered with storing and searching huge quantities of metric data. In 2021 Mimir was load tested
to 1 billion active time series. An active time series is a metric with a value and unique labels that has
reported a sample in the last 20 minutes. We will explore Mimir and Prometheus in much greater
detail in Chapter 5.

Loki

Loki is a set of components that offer a full feature logging stack. Loki uses lower-cost object storage
such as S3 or GCS, and only indexes label metadata. Loki entered general availability in November 2019.

Log aggregation tools typically use two data structures to store log data. An index that contains
references to the location of the raw data paired with searchable metadata, and the raw data itself
stored in a compressed form. Loki differs from a lot of other log aggregation tools by keeping the index
data relatively small and scaling the search functionality by using horizontal scaling of the querying
component. The process of selecting the best index fields is one we will cover in Chapter 4.

Tempo

Tempo is a storage backend for high-scale distributed trace telemetry, with the aim of sampling 100%
of the read path. Like Loki and Mimir, it leverages lower-cost object storage such as S3, GCS, or Azure
Blob Storage. Tempo went into general availability in June 2021.

When Tempo released 1.0, it was tested at a sustained ingestion of >2 million spans per second
(about 350 MB per second). Tempo also offers the ability to generate metrics from spans as they are
ingested; these metrics can be written to any backend that supports Prometheus remote write. Tempo
is explored in detail in Chapter 6.

Grafana

Grafana has been a staple for fantastic visualization of data since 2014. It has targeted the ability to
connect to a huge variety of data sources from TSDBs to relational databases and even other observability
tools. Grafana has over 150 data source plugins available. Grafana has a huge community using it for
many different purposes. This community supports over 6,000 dashboards, which means there is a
starting place for most available technologies with minimal time to value.

Grafana Agent

Collecting telemetry from many places is one of the fundamental aspects of observability. Grafana
Agent is a collection of tools for collecting logs, metrics, and traces. There are many other collection
tools that Grafana integrates well with. Different collection tools offer different advantages and
disadvantages, which is not a topic we will explore in this book. We will highlight other tools in the
space later in this chapter and in Chapter 2 to give you a starting point for learning more about this
topic. We will also briefly discuss architecting a collection infrastructure in Chapter 11.

Introducing the Grafana stack 21

The Grafana stack is a fantastic group of open source software for observability. The commitment of
Grafana Labs to open source is supported by great enterprise plugins. Let’s explore them now.

Grafana Enterprise plugins

As part of their Cloud Pro, Cloud Advanced, and Enterprise license offerings, Grafana offers Enterprise
plugins. These are part of any paid subscription to Grafana.

The Enterprise data source plugins allow organizations to read data from many other storage tools they
may use, from software development tools such as GitLab and Azure DevOps to business intelligence
tools such as Snowflake, Databricks, and Looker. Grafana also offers tools to read data from many
other observability tools, which enables organizations to build comprehensive operational coverage
while offering individual teams a choice of the tools they use.

Alongside the data source plugins, Grafana offers premium tools for logs, metrics, and traces. These
include access policies and tokens for log data to secure sensitive information, in-depth health
monitoring for the ingest and storage of cloud stacks, and management of tenants.

Grafana incident response and management

Grafana offers three products in the incident response and management (IRM) space:

•	 At the foundation of IRM are alerting rules, which can notify via messaging apps, email, or
Grafana OnCall

•	 Grafana OnCall offers an on-call schedule management system that centralizes alert grouping
and escalation routing

•	 Finally, Grafana Incident offers a chatbot functionality that can set up necessary incident
spaces, collect timelines for a post-incident review process, and even manage the incident
directly from a messaging service

These tools are covered in more detail in Chapter 9. Now let’s take a look at some other important
Grafana tools.

Other Grafana tools

Grafana Labs continues to be a leader in observability and has acquired several companies in this
space to release new products that complement the tools we’ve already discussed. Let’s discuss some
of these tools now.

Introducing Observability and the Grafana Stack22

Faro

Grafana Faro is a JavaScript agent that can be added to frontend web applications. The project allows
for real user monitoring (RUM) by collecting telemetry from a browser. By adding RUM into an
environment where backend applications and infrastructure are instrumented, observers gain the
ability to traverse data from the full application stack. Faro supports the collection of the five core
web vitals out of the box, as well as several other signals of interest. Faro entered general availability
in November 2022. We cover Faro in more detail in Chapter 12.

k6

k6 is a load testing tool that provides both a packaged tool to run in your own infrastructure and
a cloud Software as a Service (SaaS) offering. Load testing, especially as part of a CI/CD pipeline,
really enables teams to see how their application will perform under load, and evaluate optimizations
and refactoring. Paired with other detailed analysis tools such as Pyroscope, the level of visibility and
accessibility to non-technical members of the team can be astounding. The project started back in
2016 and was acquired by Grafana Labs in June 2021. The goal of k6 is to make performance testing
easy and repeatable. We’ll explore k6 in Chapter 13.

Pyroscope

Pyroscope is a recent acquisition of Grafana Labs, joining in March 2023. Pyroscope is a tool that enable
teams to engage in the continuous profiling of system resource use by applications (CPU, memory,
etc.). Pyroscope advertises that with a minimal overhead of ~2-5% of performance, they can collect
samples as frequently as every 10 seconds. Phlare is a Grafana Labs project started in 2022, and the
two projects have now merged. We discuss Pyroscope in more detail in Chapter 13.

Now that you know the different tools available from Grafana Labs, let’s look at some alternatives
that are available.

Alternatives to the Grafana stack
The monitoring and observability space is packed with different open and closed source solutions
such as ps and top going back to the 70s and 80s. We will not attempt to list every tool here; we aim
to offer a source of inspiration for people who are curious and want to explore, or who need a quick
reference of the available tools (as the authors have on a few occasions).

Alternatives to the Grafana stack 23

Data collection

These are agent tools that can be used to collect telemetry from the source:

Tool Name Telemetry Types

OpenTelemetry Collector Metrics, logs, traces

FluentBit Metrics, logs, traces

Vector Metrics, logs, traces

Vendor-specific agents

(See the Data storage, processing, and visualization section for
an expanded list)

Metrics, logs, traces

Beats family Metrics, logs

Prometheus Metrics

Telegraf Metrics

StatsD Metrics

Collectd Metrics

Carbon Metrics

Syslog-ng Logs

Rsyslog Logs

Fluentd Logs

Flume Logs

Zipkin Collector Traces

Table 1.2 – Data collection tools

Data collection is only one piece of the extract transform and load process for observability data.
The next section introduces tools to transform and load data.

Data storage, processing, and visualization

We’ve grouped data processing, storage, and visualization together, as there are often a lot of crossovers
among them. There are certain tools that also provide security monitoring and are closely related.
However, as this topic is outside of the scope of this book, we have chosen to exclude tools that are
solely in the security space.

Introducing Observability and the Grafana Stack24

Tool Name Tool Name Tool Name

AppDynamics InfluxDB Sematext

Aspecto Instana Sensu

AWS CloudWatch & CloudTrail Jaeger Sentry

Azure Application insights Kibana Serverless360

Centreon Lightstep SigNoz

ClickHouse Loggly SkyWalking

Coralogix LogicMonitor Solarwinds

Cortex Logtail Sonic

Cyclotron Logz.io Splunk

Datadog Mezmo Sumo Logic

Dynatrace Nagios TelemetryHub

Elastic NetData Teletrace

GCP Cloud Operations Suite New Relic Thanos

Grafana Labs OpenSearch Uptrace

Graphite OpenTSDB VictoriaMetrics

Graylog Prometheus Zabbix

Honeycomb Scalyr Zipkin

Table 1.3 – Data storage processing and visualization tools

With a good understanding of the tools available in this space, let’s now look at the ways we can deploy
the tools offered by Grafana.

Deploying the Grafana stack
Grafana Labs fully embraces its history as an open source software provider. The LGTM stack, alongside
most other components, is open source. There are a few value-added components that are offered as
part of an enterprise subscription.

As a SaaS offering, Grafana Labs provides access to storage for Loki, Mimir, and Tempo, alongside
Grafana’s 100+ integrations for external data sources. As a SaaS customer, you also gain ready access
to a huge range of other tools you may use and can present them in a consolidated manner, in a single
pane of glass. The SaaS offering allows organizations to leverage a full-featured observability platform
without the operational overhead of running the platform and obtaining service level agreements for
the operation of the platform.

Summary 25

As well as managing the platform for you, you can run Grafana on your organization’s infrastructure.
Grafana offers its software packaged in several formats for Linux and Windows deployments, as well
as offering containerized versions. Grafana also offers Helm and Tanka configuration wrappers for
each of their tools. This book will mainly concentrate on the SaaS offering because it is easy to get
started with the free tier. We will explore some areas where a local installation can assist in Chapters
11 and 14, which cover architecting and supporting DevOps processes respectively.

Summary
In this chapter, you have been introduced to monitoring and observability, how they are similar,
and how they differ. The Agua Clara locks on the Panama Canal acted as a simplified example of the
concepts of observability in practice. The key takeaway should be to understand that even when a
system produces alerts for significant problems, the same data can be used to observe and investigate
other potential problems.

We also talked about the customers who might use observability systems. These customers will be
referenced throughout this book when we explore a concept and how to target its implementation.

Finally, we introduced the full Grafana Labs stack, and you should now have a good understanding
of the different purposes that each product serves.

In the next chapter, we will introduce the basics of adding instrumentation to applications or infrastructure
components for readers whose roles are similar to those of Diego and Ophelia.

2
Instrumenting Applications

and Infrastructure

The previous chapter introduced observability, with examples outside of the computing world to
give you a generic understanding of the subject. In this chapter, we’ll build on those examples by
providing a high-level overview of both application and infrastructure instrumentation. We will
look at the data created by systems and how that fits into the different telemetry types and common
protocols in use. We will also explore widely used libraries for popular programming languages that
simplify instrumenting applications. To finish, we will cover more traditional telemetry collection
from infrastructure components, operating systems, and network devices. This will give you insight
into the components that are still in operation today that run applications and Kubernetes workloads.
This chapter is aimed at readers of all technical abilities and no specific technologies are needed. An
understanding of observability terminology (for example, logs, metrics, traces, and instrumentation)
is helpful. It aims to provide an overview of the technology space and act as a valuable resource that
you can quickly reference when you are working with your observability solutions.

In this chapter, we explore the following introductory sections:

•	 Common log formats

•	 Metrics protocols and best practices

•	 Tracing protocols and best practices

•	 Using libraries to instrument efficiently

•	 Infrastructure data technologies

Instrumenting Applications and Infrastructure28

Common log formats
Log files are a standard component of computer systems and an essential tool for software developers
and operators – in our example, Diego and Ophelia, respectively. Logs support performance and
capacity monitoring in infrastructure, bug detection in software, root cause analysis, user behavior
tracking, and more. There is no perfect recipe for logs and as such, it does not matter what your logs
look like, though following certain guidelines will help your future self when you need to analyze logs.
In this section, we will learn about different log formats and how the data can be used. Log formats
are the definition of what a log file looks like and should explain how the data can be interpreted.

Log formats usually identify if they are structured or unstructured, the data types used in them, and
if any encoding or delimitation is being used. We’ll explore structure first and then look at example
log formats in more detail in the following sections.

Structured, semi-structured, and unstructured logging

As mentioned previously, it does not matter what your logs look like and they can come in structured,
semi-structured, or unstructured formats. However, when designing and building observability
solutions, it’s important to understand the log formats you are working with. This ensures that you can
ingest, parse, and store the data in a way that it can be used effectively. If you familiarized yourself with
the personas in Chapter 1, you have an awareness of who they will be used by and for what purpose.

Structured logging

Structured logs have a predetermined message format that allows them to be treated as datasets rather
than text. The idea of structured logging is to present data with a defined pattern that can be easily
understood by humans and efficiently processed by machines. The log entries are often delimited with
characters such as a comma, space, or hyphen. Data fields may also be joined using an equals sign or
colon for key-value pairs, such as name=Diego or city=Berlin.

Here is an example of a structured log format:

{
"timestamp": "2023-04-25T12:15:03.006Z",
"message": "User Diego.Developer has logged in",
"log": {
"level": "info",
"file": "auth.py",
"line": 77
},
"user": {
"name": "diego.developer",
"id": 123
},

Common log formats 29

"event": {
"success": true
}
}

An additional benefit of structured logging is that you can validate the conformation of the data to
a schema with tools such as JSON schema. This opens up the possibility of making version control
changes to the schema, which is where logs and event bus technology overlap.

Semi-structured logging

Semi-structured logs aim to bridge the gap between unstructured and structured and, as a result, can
be quite complicated. They are designed to be easy for humans to read but also have a schema that
makes it possible for machines to process them too. They have complex field and event separators and
usually come with a defined pattern to aid with ingesting and parsing. Parsing is usually done using
regular expressions or other code.

Unstructured logging

Unstructured logging typically refers to log entries that are presented in a textual format that can
easily be read by humans but is difficult for machines to process. They are often color-coded with blank
spaces to improve presentation and readability. It is this presentation that creates issues for machines
to process the logs. Parsing and splitting the data correctly creates a disassociation between events
and their identifying metadata. An unstructured log will require some custom parsing, requiring
intimate knowledge of the data and often creating additional work for the engineer (Ophelia) when
ingesting data. This also creates technical liability; the dependency on the log remaining the same
restricts developers from changing logs or runs the risk of parsing and reporting on unstructured
logs prone to breaking.

To aid the ability of machines to process unstructured logs, encapsulation prevents entries such as
stack traces from splitting at an inappropriate location.

The following is an example of a multiline log, with a naive encapsulation that looks for line breaks;
this will appear in logging systems as four distinct events:

2023-04-25 12:15:03,006 INFO [SVR042] UserMembershipsIterable Found 4
children for 4 groups in 3 ms
Begin Transaction update record.
Process started.
Process completed.

With encapsulation based on the timestamp at the start of the event, this will be stored correctly
for searching.

In the following section, we will explore common log formats found in today’s systems.

Instrumenting Applications and Infrastructure30

Sample log formats

Many log formats have been used in computer systems. All of these formats have a common goal of
presenting a standard structure or set of fields for recording important information about the activity of
a computer system. The following table aims to provide easy reference for some of the more notable ones:

Format Overview

Common Event Format (CEF)
CEF is an open logging and auditing format from
ArcSight that aims to provide a simple interface to
record security-related events.

NCSA Common Log Format (CLF)

The NCSA CLF is historically used on web servers to
record information about requests made to the server.
This format has been extended by the CLF to include
additional information about the browser (user-agent)
and the referer.

W3C Extended Log File Format
W3C Extended Log File Format is a log format
commonly used by Windows Internet Information
Services servers (web servers).

Windows Event Log

Windows Event Log is the standard log format used by
the Windows operating system. These logs record events
that occur on the system and are categorized System,
Application, Security, Setup, and Forwarded events.

JavaScript Object Notation (JSON) JSON is an open standard file format that is very useful
for easily parsing structured log events.

Syslog
Syslog is a standard that’s used across many hardware
devices such as networking, compute, and storage, and
is used by the Linux kernel for logging.

Logfmt Logfmt does not have a defined standard but is a widely
used form of human-readable structured logging.

Table 2.1 – Log format overview

Let’s look at these formats in greater detail.

Common log formats 31

CEF

Developed by ArcSight to fulfill the Security Information and Event Management (SIEM) use case,
the CEF is a structured text-based log format. Using UTF-8 encoding, the format contains a prefix, a
CEF header, and a body containing additional enrichment data.

The following table shows the log sections of the CEF format:

Log Section Description

Prefix It combines the event timestamp and source hostname.

CEF header

It combines the following pieces of metadata:

•	 Software version

•	 Vendor name

•	 Product name

•	 Product version

•	 Product event class identification code

•	 Event name

•	 Event severity

Body It contains a list of key-value pairs

Table 2.2 – CEF format

Here is an example CEF log event:

CEF:0|Security Provider|Security Product|Version|123|User
Authenticated|3|src=10.51.113.149 suser=diego target=diego msg=User
authenticated from 1001:db7::5

NCSA CLF

As one of the oldest log formats used by web servers, the NCSA CLF has for a long time been the
most common and well-known log formats. It has a fixed format text-based structure and therefore
cannot be customized at all.

Here is the NCSA CLF field list:

•	 Remote host address

•	 Remote log name

•	 Username

Instrumenting Applications and Infrastructure32

•	 Timestamp

•	 Request and protocol version

•	 HTTP status code

•	 Bytes sent

Where data is missing from the log, a hyphen acts as a placeholder. Unsupported characters are
replaced with the + symbol.

Here is an example NCSA CLF log:

127.0.0.1 user-identifier diego [25/Apr/2023:12:15:03 -0000] "GET /
apache_pb.gif HTTP/1.1" 200 2326

W3C Extended Log File Format

The Microsoft Internet Information Server log format known as W3C is a structured yet configurable
format. Full control over the included fields ensures log files contain the most relevant data. Identification
of the information or direction of flow is denoted using a string prefix: server (S), client (C), server
to client (SC), and client to server (CS).

Here is the W3C Extended Log File Format field list:

•	 Timestamp

•	 Client IP

•	 Server IP

•	 URI-stem

•	 HTTP status code

•	 Bytes sent

•	 Bytes received

•	 Time taken

•	 Version

Here is an example W3C log:

#Software: Internet Information Services 10.0
#Version: 1.0
#Date: 2023-04-25 12:15:03
#Fields: time c-ip cs-method cs-uri-stem sc-status cs-version
12:15:03 10.51.113.149 GET /home.htm 200 HTTP/1.0

Common log formats 33

Microsoft Windows Event Log

The Microsoft Windows operating system comes with a built-in complex structured logging system
that captures data related to specific events on the operating system. There are four common Windows
event log categories – system, application, security, and setup – and an additional special category
for forwarded events.

Each event log is also one of five different types: information, warning, error, success audit, and failure
audit. Windows Event Log is one of the most verbose log formats in use. It usually includes details
such as timestamp, event ID, username, hostname, message, and category, making it invaluable in
diagnosing problems. Windows event IDs are documented and searchable, so you can easily get
detailed information regarding the log event; they are grouped into categories, narrowing down the
area where the event occurred, which makes debugging very accurate.

Here is a trimmed example of Microsoft Windows Event Log:

An account was successfully logged on.
Subject:
Security ID: SYSTEM
Account Name: DESKTOP-TMC369$
Account Domain: WORKGROUP
Logon ID: 0xE37
Logon Information:
New Logon:
Security ID: AD\DiegoDeveloper
Account Name: diego.developer@themelt.cafe
Account Domain: AD
Logon ID: 0xEC4093F
Network Information:
Workstation Name: DESKTOP-TMC369

JSON

As one of the newer yet most commonly used log formats today, JSON is a structured format constructed
from multiple key-value pairs. Using JSON, data can be nested into different layers while keeping
the format easy to read. Additionally, different data types can be represented, such as string, number,
Boolean, null, object, and array.

Here is an example JSON log file:

{
"timestamp": "2023-04-25T12:15:03.006Z",
"message": "User Diego.Developer has logged in",
"log": {
"level": "info",

Instrumenting Applications and Infrastructure34

"file": "auth.py",
"line": 77
},
"user": {
"name": "diego.developer",
"id": 123
},
"event": {
"success": true
}
}

Syslog

The go-to log format for many years and still widely used, Syslog is a defined standard for creating
and transmitting logs. The Syslog transport protocol specifies how log transmission takes place, as
well as the data format. The default network ports for the protocol are 514 and 6514, with the latter
being used for encryption.

The Syslog message format combines a standardized header and message holding the body of the log.

Here is an example Syslog log:

Apr 25 12:15:03 server1 sshd[41458] : Failed password for  diego from
10.51.113.149 port 22 ssh2

Logfmt

Logfmt is a widely used log format that fits as human readable and structured so that computers and
people can both read it. A Logfmt-formatted log line consists of any number of key-value pairs that
can be easily parsed. As there are no standards, it is easy to extend and perfect for developers to simply
add more key-value pairs to the output.

Here is an example Logfmt log:

level=info method=GET path=/ host=myserver.me fwd="10.51.113.149"
service=4ms status=200

Exploring metric types and best practices
Metrics, along with logs, are an essential tool for software developers (Diego) and operators (Ophelia),
providing them with indicators regarding the state of applications and systems. Resource usage data is
great for monitoring a metric that captures numerical data over time. There are many different types of
resources but some good examples would be CPU or RAM usage, the number of messages in a queue,
and the number of received HTTP requests. Metrics are frequently generated and easily enriched

Exploring metric types and best practices 35

with labels, attributes, or dimensions, making them efficient to search and ideal in determining if
something is wrong, or different from usual.

A metric commonly has the following fields:

•	 Name: This uniquely identifies the metric

•	 Data point value(s): The data that’s stored varies by metric type

•	 Dimensions: Additional enrichment labels or attributes that support analysis

Metrics capture the behavior of the data they represent. CPU usage would go up and down between
0% and 100% usage, whereas the number of received HTTP requests could increase indefinitely.
In the following section, we will look at metric types, which allow us to capture the behavior of the
metric being collected.

Metric types

Metrics vary in characteristics and structure. There are four common types of metrics, from simple
single values to more complex values:

•	 Counter: This metric represents the last increment value. This could be the incremental change
from the last recording or the total increment since the recording started.

Here are some examples of this metric:

	� The number of requests served

	� Tasks completed

	� Errors reported

How the value is reset to zero depends on the protocol used to collect them, so it is important
to factor this in for your use case. The StatsD implementation resets the counter every time
the value is flushed, and Prometheus resets the counter when the application process restarts.

•	 Gauge: A gauge metric is a snapshot of state and can be used to take a measure of something
reporting continuously. As such, it is usually made more useful by aggregating with sum,
average, minimum, or maximum over a certain period.

Here are some examples of this metric:

	� Temperature

	� Items in queue

	� Disk space used

	� Number of concurrent requests

Instrumenting Applications and Infrastructure36

Like counter, the definitions for gauge vary in implementation, so be sure to verify how the
protocol you select will report gauge metrics.

•	 Histogram: A histogram metric represents the statistical distribution of a set of values returning,
for example, min, max sum, and count data points. These are calculated by the agent, reported
in a single time interval, and often counted in configurable buckets. They return the raw values;
this differs from a summary, which returns the percentile values. Here are some examples:

	� Request durations

	� Response sizes

In Prometheus, a histogram is made up of a count of the total measurements (_count), a sum
of all the values of the measurements (_sum), and several buckets that have a count of events
with a measure less than or equal (le) to a defined value.

Definitions can vary in implementation – for example, Prometheus has a histogram_quantile
function that can be used to calculate percentiles from histogram metrics.

•	 Summary: Similar to a histogram, a summary samples a set of values. While it provides sum
and count, it also calculates percentiles over a sliding time window. These are usually a good
option if you need to calculate accurate percentiles but cannot be sure what the range of the
values will be. Some examples of this metric are as follows:

	� Request durations

	� Response sizes

In Prometheus, a summary, like a histogram, is made up of the _count and _sum metrics and
several groupings. Unlike a histogram, these groupings are a quantile, and the value represents
the value of that quantile at the point in time for the measurement. For example, a quantile of
0.99 and a value of 3.2148 would indicate that 99% of the sampled data was smaller than 3.2148.

Again, definitions can vary in implementation, so work out what your goals are from your metrics to
ensure the capabilities are supported by your choice of protocol. It’s useful to note that, in Prometheus,
summary metrics have a significant drawback in modern systems as they cannot be aggregated over
multiple sources.

There are some distinct differences between these metric types, as we will discuss in the following section.

Comparing metric types

The following table describes each type in general terms. When querying them, this provides a useful
reference when approaching metric adoption:

Exploring metric types and best practices 37

Consideration Counter Gauge Histogram Summary

Structure Simple Simple Complex Complex

Can increase and decrease No Yes No No

Is an approximation No No Yes Yes

Can calculate percentiles No No Yes Yes

Can use a rate function Yes No No No

Can be queried with the
prometheus histogram_
quantile function

No No Yes No

Can be aggregated across
multiple series Yes Yes Yes No

 Table 2.3 – Comparison of metric types

The following table provides a few reference examples of the type and values expected:

Metric Type Data Field Value

Counter Last increment 15

Gauge Last value 25.4

Histogram

Min 0

Max 100

Count 10

Interval 20

0-20 1

20-40 2

40-60 4

60-80 2

80-100 1

Summary Min 1.2ms

Max 4.23ms

Count 10

Instrumenting Applications and Infrastructure38

Sum

Percentiles/Quantiles

P90 2.98ms

P95 3.76ms

P99 4.23ms

Table 2.4 – Metric type example data

Now that we’ve looked at the different types of metrics, let’s look at the different technologies used
to transmit metrics.

Metric protocols

Metric protocols are collections of tools and libraries for instrumenting applications, data formats to
transmit, clients to collect data, and often storage and visualization tools. Some common protocols
that are in use today are described in the following table:

Metric Protocol Features

StatsD

 It supports the following:

•	 Counters

•	 Gauges

•	 Timers

•	 Histograms

•	 Meters

DogStatsD

DogStatsD implements the StatsD protocol and adds a few
Datadog-specific extensions:

•	 Histogram metric type

•	 Service checks

•	 Events

•	 Tagging

Exploring metric types and best practices 39

OpenTelemetry
Protocol (OTLP)

 It supports the following:

•	 Counters

•	 Gauges

•	 Histograms

•	 Summaries (legacy support)

Prometheus

 It supports the following:

•	 Counters

•	 Gauges

•	 Cumulative histograms

•	 Summaries

Table 2.5 – Common metric protocols and their features

Metrics are very powerful, but some pitfalls can catch people out. Some of these can lead to expensive
mistakes. To avoid these pitfalls, let’s discuss some best practices.

Best practices for implementing metrics

Introducing metrics into your services is a very good way to gain a huge amount of visibility on how
they behave in real situations. The following best practices are from our experience with metrics and
will help you manage scope creep, cost, and linking metrics up with traces:

•	 Set your objectives: Work out what your objectives are from your metrics. We have already
spoken about the variation in implementation between metric protocols – this can have a big
impact if you are expecting to use a metric in a certain way and haven’t factored in nuances.

This will also help you define service-level indicators (SLIs) and service-level objectives
(SLOs), which will be useful in Chapter 9, Managing Incidents Using Alerts.

•	 Manage cardinality: Cardinality is generally defined as the number of unique elements in
a set. High cardinality may provide richer, more useful data, but at the cost of monitoring
performance impacts or increased storage costs. For example, if you dimension your metrics
by server name, the sample could be small, maybe a few hundred metrics. If we compare this
to dimensioning by user, which could be in the millions, the increase in the number of metrics
produced is exponential. This increase has a direct impact on load and storage.

Take time to understand the capabilities of the observability backend – things such as the billing
framework, limitations, storage, and performance.

Instrumenting Applications and Infrastructure40

•	 Add context: The ability to correlate (establish a common identifier) metrics with traces has
been introduced to Grafana and Open Telemetry recently with exemplars. They enable quick
visualization and linking between a metric data point and a specific trace span, thus giving
improved context and detail to your data.

As we just discussed, metrics capture numerical data from a single service; however, the systems
that operate today may consist of multiple services. Distributed tracing is a way to gain visibility of
the communications between services. Let’s take a look at tracing protocols and some best practices
regarding them.

Tracing protocols and best practices
Tracing, or as it is more commonly referred to, distributed tracing, tracks application requests as
they are made between services of a system. It allows you to follow a single request through an entire
system or look at the aggregate data over requests to better understand distributed behavior.

This capability provides software developers (Diego), operators (Ophelia), and service managers (Steven)
with valuable tools that enable an understanding of the flow of logic that is essential for troubleshooting.
Instrumenting your code by adding traces helps you easily pinpoint almost any issue or at least have
a clear indicator of where the problem could be. Distributed tracing uses the concepts of spans and
traces to capture this data. Let’s examine these in more detail.

Spans and traces

The trace record is the parent object that represents the data flow or execution path through the
system being observed. Each trace will contain one or more span records that represent the logical
operations. This relationship between traces and spans is illustrated in the following figure, in what
can be thought of as a directed acyclic graph of spans:

 Figure 2.1 – Traces and spans

Tracing protocols and best practices 41

A trace is pieced together from multiple spans and would usually report the following information:

•	 Identifier: Uniquely identifies the trace

•	 Name: Describes the overall work being recorded

•	 Timing details: Provides the start and end timestamps for the complete trace

 A span commonly has the following fields:

•	 Trace identifier: Establishes the trace relationship

•	 Identifier: Uniquely identifies the span

•	 Parent span identifier: Establishes a parent relationship

•	 Name: Describes the work being recorded

•	 Timing details: Provides the start and end timestamps

A trace identifier will be automatically generated if one has not been received by the calling operation;
each application will pass the trace ID along to the next.

The start and end timestamps for the operation help identify which stages are taking the most time.
You can drill down to identify dependencies on other services and how they contribute to the overall
trace timings.

Spans can often have additional fields that are specific to the protocol implemented. Investigating the
options against your use case will help provide the right diagnostics for your system.

Tracing protocols

As with all technology, standards have taken a while to be formalized for tracing, and a few protocols have
been implemented. Some common protocols that are in use today are described in the following table:

Protocol Name Features

OTLP

It supports the following:

•	 Additional fields

•	 Span attributes (metadata about the operation)

•	 Context propagation

•	 Span events (meaningful point-in-time annotation)

•	 Span links (imply a causal relationship between spans)

•	 Span kind (additional details supporting the assembly of a trace)

Instrumenting Applications and Infrastructure42

Zipkin

It supports the following:

•	 Additional fields

•	 Span tags (metadata about the operation)

•	 Context propagation

•	 Span annotations (such as OTLP events and meaningful
point-in-time annotation)

•	 Span kind (additional details supporting the assembly of a trace)

Jaeger

It supports two formats – Jaeger Thrift and Jaeger Proto – with similar
characteristics. Jaeger Proto has been discontinued in favor of OTLP.

It supports the following:

•	 Additional fields

•	 Span tags (metadata about the operation)

•	 Context propagation (Thrift only; Proto does not support this)

•	 Span logs (meaningful point-in-time annotation)

•	 Span references (imply a causal relationship between spans)

•	 Span kind (similar to OTLP, this is stored as a special type of span tag)

Table 2.6 – Distributed tracing protocols and features

Implementing distributed tracing can be a daunting task, so let’s discuss some best practices that will
help you avoid common mistakes and issues.

Best practices for setting up distributed tracing

So far, we have described how traces will help you with problem resolution. However, when producing
traces, it’s worth considering the additional system visibility against cost and performance impacts.
Let’s discuss some of the best practices that should be considered when implementing tracing on any
application or system.

Performance

The process of generating trace information can potentially incur a performance overhead at the
application level. Mix this with the reduced level of control with auto-instrumentation and the
problem can increase.

Using libraries to instrument efficiently 43

Here are some of the possible impacts to consider:

•	 Increased latency

•	 Memory overhead

•	 Slower startup time

Some of the more recent observability agents have addressed a lot of the issues with configurable
options. For example, the OpenTelemetry Collector offers a sampling configuration that will submit 0%
to 100% of spans to the collection tool. This sampling implementation will also notify any downstream
services that the parent sampled its span so that the full trace will be collected.

Cost

Increased network and storage costs can become a factor and need factoring in as a limitation when
designing your observability solution. However, this does depend on your observability backend and
if you are doing additional processing or filtering when the data is being transmitted.

The mitigation practices are as follows:

•	 Sampling: Only sends a percentage of traces

•	 Filtering: Restricts which traces are transmitted and stored

•	 Retention: Sets optimal data storage durations

Accuracy

To ensure one of the major benefits of tracing is implemented, it is important to ensure context
propagation is working correctly. Without the relationships being established between the operations,
spans will be broken across multiple traces. Validating and solving this problem will increase the
usability and adoption of tracing for fast issue resolution.

With most code, libraries are used so that developers can focus on writing code that provides value
to the organization. The modern libraries that are available will help you instrument quickly so that
you can start using the data collected from your application. We’ll explore this next.

Using libraries to instrument efficiently
Instrumenting your application code to emit the telemetry of logs, metrics, and traces can be complex,
time-consuming, and difficult to maintain. There are two main approaches to solving this problem –
automatic instrumentation and manual instrumentation – with a wide selection of SDKs and libraries
available to support them. Here is a brief overview of them:

•	 Automatic instrumentation: Automatic instrumentation is the simplest to implement but
can lack the level of control that’s often required when building an observability platform. In

Instrumenting Applications and Infrastructure44

a very short space of time, it will provide visibility into your application and help you start
answering your observability questions. Without careful configuration and design, this will
lead to other problems such as performance and cost issues, and, in the worst case, render the
observability platform useless.

The approach varies depending on the programming language; for example, code manipulation
(during compilation or at runtime) is often used with Java, whereas monkey patching (updating
behavior dynamically at runtime) is often used with Python and JavaScript.

•	 Manual instrumentation: Manual instrumentation can be quite complex, depending on the
systems being instrumented. It requires an intimate knowledge of the application code, with
the benefit of allowing you to specify exactly what telemetry you want. Additionally, you need
to understand the observability API you are working with. Though SDKs and libraries have
simplified this, a lot of work must be done to understand the implementation.

If you are interested in further reading about application instrumentation, there is an excellent section
dedicated to the subject in Alex Boten’s book Cloud-Native Observability with OpenTelemetry, by
Packt Publishing.

Now that we’ve seen how various libraries approach instrumentation, let’s look at some of the common
libraries that are used in different languages.

Popular libraries for different programming languages

There have been many telemetry solutions, SDKs, and libraries over the years; however, in more
recent history, there has been a concerted effort to align on supporting the OpenTelemetry standard.
With its goal to provide a set of standardized vendor-agnostic SDKs, APIs, and tools for ingesting,
transforming, and transporting data to an observability backend platform, there are obvious benefits.
We will look at the OpenTelemetry libraries in this section to focus on where the most enhancements
are currently. However, investigating what is appropriate for your use case is important. One drawback
of this concerted development effort is that it creates a fast-changing landscape, so you have to pay
attention to release stability and monitor for changes and improvements.

Here are some of the available instrumentation libraries:

Language SDKs and Libraries Notes

JavaScript OpenTelemetry
JavaScript SDK

Multiple resources and examples are available that
cover Node.js and browser implementations.

JavaScript OpenTelemetry
JavaScript Contrib

An additional repository for OpenTelemetry
JavaScript contributions that are not part of the
core repository and core distribution of the API and
the SDK.

Infrastructure data technologies 45

Python OpenTelemetry
Python SDK

At the time of writing, both traces and metrics are
stable, with logs in an experimental state.

Python OpenTelemetry
Python Contrib

An additional repository for OpenTelemetry Python
contributions. At the time of writing, Contrib
libraries are in beta and active development.

Java OpenTelemetry
Java SDK

There is a long list of supported libraries and
frameworks with good documentation to get
you started.

Java Spring Boot/Micrometer As of Spring Boot 3, the default exporter for
Micrometer is OTLP.

Table 2.7 – Common libraries and SDKs for telemetry

Applications are only one part of the computer systems we work with today. Our infrastructure
components, such as switches, servers, Kubernetes clusters, and more, are just as important to observe.
We’ll discuss how we can do this in the next section.

Infrastructure data technologies
So far in this chapter, we have focused on implementations that work well for cloud technologies
and containerized platforms. Underneath all of the abstraction are physical components, the servers
running the workloads, the network and security devices handling communications, and the power
and cooling components that keep things running. These have not dramatically changed over time
and neither has the telemetry reported by the logs and metrics. Let’s take a look at the common
infrastructure components and standards used in this area.

Common infrastructure components

Infrastructure can largely be categorized into some broad categories, as we will discuss in the following
sections. The types of data you can collect will differ on the category of the component.

Instrumenting Applications and Infrastructure46

Compute or bare metal

Servers are often referred to as bare metal or compute; these are physical devices that are used for
computation. Often, these systems would run virtualized operating systems that can collect server
telemetry. Usually, you will run an agent on the operating system that scrapes metrics or reads log
files and then transports them to a receiver. The data that’s obtained from server equipment can not
only help in diagnosing and responding to issues but can help predict capacity problems that may
arise in the future. Often, these devices can send data outside of any virtual operating system as well.

For instance, here are a few telemetry examples that can indicate if a system is close to capacity in
any area:

•	 System temperature

•	 CPU utilization percent

•	 Overall disk space used and remaining

•	 Memory usage and free memory

Network devices

Network and security devices such as switches and firewalls come with the capability to send monitoring
information via SNMP to a receiver. Firewalls can often send Syslog-formatted logs to a receiver. The
telemetry provided helps diagnose issues with connectivity – for example, latency and throughput
are difficult to investigate without information from the hardware.

Here are some telemetry examples:

•	 Latency

•	 Throughput

•	 Packet loss

•	 Bandwidth

Power components

The components that provide power or cooling are often built with the capability to emit telemetry
over SNMP to a receiver. Some older components will implement the Modbus protocol and expose
registers that can be read to obtain metrics. The telemetry reported at this level is simplistic but essential
when you are operating your data center. If, for example, you are running on backup power, you need
to react fast to protect the systems or trigger other mitigation activities.

Infrastructure data technologies 47

Here are some telemetry examples:

•	 Power supply state

•	 Backup power supply state

•	 Voltage

•	 Wattage

•	 Current

As infrastructure components have been used for many years, there are some agreed-upon standards
for data structures and transmission. Let’s look at those original standards now.

Common standards for infrastructure components

There are a few well-established standards that are used by infrastructure components that you may
need to monitor. These include the following:

•	 Syslog: Syslog has been around since the 1980s and is very common in infrastructure components.
Created as part of the Sendmail project by Eric Allman, it was quickly adopted and became
the standard logging solution on Unix-like platforms. It is very popular because of its ease of
use. To use Syslog, you need a client available to receive the data, and each device needs to
be configured to send data there. Common clients include RSyslog and Syslog-ng, and the
OpenTelemetry Collector also supports this protocol.

The Syslog message format provides a structured framework that has allowed organizations to
provide vendor-specific extensions. Contributing to its success and longevity, most modern
observability tooling providers still supply an interface to receive Syslog messages. The logs can
then be accessed and analyzed alongside other system and application telemetry.

•	 Simple Network Management Protocol (SNMP): Forming part of the original Internet Protocol
suite defined by the Internet Engineering Task Force (IETF), SNMP is commonly used in
networking infrastructure. A lot of the protocol is not of interest for observability, but SNMP
Traps allow devices to inform the manager about significant events.

SNMP provides a common mechanism for network devices to relay management and, specifically
in the context of this chapter, monitoring information within single and multi-vendor LAN or
WAN environments. It is different from other telemetry receivers as it requires more specific
knowledge of the devices on the network, and specific configurations for the metrics to be
collected. Here are some examples of data that can be collected from SNMP:

Instrumenting Applications and Infrastructure48

Data Type Example Metrics Collected

Network data

Processes

Uptime

Throughput

Device data

Memory usage

CPU usage

Temperature

 Table 2.8 – Example SNMP Trap information

You may encounter other formats out in the wide world of engineering. We have covered a lot of the
common formats here and have hopefully given you an indication of the types of information you
will need to help you work with telemetry in Grafana. Grafana will handle just about whatever you
can throw at it. Knowing what’s important and preparing for that will help you when you’re building
your visualizations and alerts on that data. Now, let’s quickly recap what we’ve covered in this chapter.

Summary
In this chapter, we explored the foundations that modern observability is built on. This will serve as
easy reference and support for future chapters in this book and your own projects. First, we looked at
the common log formats and their examples, which will assist us in Chapter 4, Looking at Logs with
Grafana Loki. Then, we took a closer look at metrics, their differing types, some example protocols,
and best practices to consider when designing metric-based observability. What we covered here will
help with Chapter 5, Monitoring with Metrics Using Grafana Mimir and Prometheus. We then moved
on to traces and spans, where we looked at current protocols and some best practices to consider when
building an efficient and effective trace-based observability platform. This section lays the groundwork
for Chapter 6, Tracing Technicalities with Grafana Tempo. After looking at the telemetry of observability,
we learned about application instrumentation, which we will see more of in Chapter 3, Setting Up
a Learning Environment with Demo Applications, and later chapters where we go into specifics with
logs, metrics, and traces. Lastly, we considered some of the more traditional infrastructure telemetry.

With the overview of application and infrastructure instrumentation complete, we can now start
playing with logs, metrics, and traces. In the next chapter, we will get our learning environment up
and running.

3
Setting Up a Learning

Environment with Demo
Applications

This chapter guides you through setting up a learning environment for the practical examples
throughout this book and for independent experimentation. As Grafana Labs offers a free tier of their
cloud service, we will use this for the storage and searching of data. To produce rich, useful data, we
will use the OpenTelemetry demo application. This demo application deploys the services needed
to run the OpenTelemetry Astronomy Shop locally. These applications are written in many different
languages and are instrumented to produce metrics, logs, and distributed traces. This application
will help you interact directly (and via load generators) with real applications and see observability
telemetry in real time in the Grafana Labs instance.

In this chapter, we’re going to cover the following main topics:

•	 Introducing Grafana Cloud

•	 Installing the prerequisite tools

•	 Installing the OpenTelemetry Demo application

•	 Exploring telemetry from the demo application

•	 Troubleshooting your OpenTelemetry demo application

Technical requirements
We assume you are working on at least Windows 10 version 2004, macOS version 11, or a relatively
recent installation of Linux (e.g., Ubuntu 20.10 or later); earlier versions are not supported. We will
be using the OpenTelemetry Collector version 0.73.1 and the OpenTelemetry Demo version 0.26.0.
Full installation instructions for these components are provided in this chapter.

Setting Up a Learning Environment with Demo Applications50

All commands and configuration files to complete these steps are included in the GitHub repository at
https://github.com/PacktPublishing/Observability-with-Grafana/tree/
main/chapter3. You'll find the Code in Action videos for this chapter at https://packt.
link/GNFyp.

Introducing Grafana Cloud
Grafana Cloud is a hosted platform-as-a-service observability tool. It offers the ability to quickly create
infrastructure to receive and store log, metric, and trace data as well as tools to visualize the data.
We are using Grafana Cloud to reduce the technical skill needed to engage with this book, although
all the open source components from Grafana that we will introduce can be deployed locally as well.

Grafana Cloud offers free access. In this chapter, we will first set up a cloud account and familiarize
ourselves with the administration and use of the tools.

Important note
Grafana Labs introduces changes on a regular basis. The information and screenshots in this
chapter are based on Grafana version 10.2, which was released in October 2023.

Setting up an account

Creating a free Grafana Cloud account is simple. To do this, follow these steps:

1.	 Go to https://www.grafana.com and click on Create Free Account.

2.	 Sign up using any of the following:

A.	 A Google account

B.	 A GitHub account

C.	 A Microsoft account

D.	 An Amazon account

E.	 An email address

https://github.com/PacktPublishing/Observability-with-Grafana/tree/main/chapter3
https://github.com/PacktPublishing/Observability-with-Grafana/tree/main/chapter3
https://packt.link/GNFyp
https://packt.link/GNFyp
https://www.grafana.com

Introducing Grafana Cloud 51

3.	 Choose a team URL. This is the URL used to access your Grafana instance. In our sample setup,
we chose observabilitywithgrafana:

Figure 3.1 – Creating a Grafana stack

4.	 Choose a deployment region from the available list and then wait for a few minutes for your
Grafana account to be created.

Setting Up a Learning Environment with Demo Applications52

5.	 When the account creation is completed, you will see a screen titled GET STARTED, as shown
in the following screenshot. We encourage you to explore the screens in Grafana, but for this
introduction, you can just click on I’m already familiar with Grafana:

Figure 3.2 – Get started with Grafana

Then click on the Grafana icon in the top-left corner to return to the home screen, and finally,
click on Stacks, which you will find just under the welcome message:

Figure 3.3 – Welcome to Grafana Cloud

6.	 This will take you to the Grafana Cloud Portal, which will look like this.

Introducing Grafana Cloud 53

Figure 3.4 – The Grafana Cloud Portal

Before we set up the local data-producing environment, let’s take a few moments to explore the basics
of the Grafana Cloud Portal and your new Grafana Stack.

Exploring the Grafana Cloud Portal

The home page of the portal shows your subscription and billing information, as well as details about
your single Grafana Stack. When you first sign up for a Cloud Free subscription, you will be granted
access to a 14-day trial for Cloud Pro. To access your instance of Grafana, you need to click on the
Launch button in the Grafana section. This gives you access to view data you send to Grafana Cloud.

Setting Up a Learning Environment with Demo Applications54

A full Grafana Stack consists of the following installations:

•	 Visualization:

	� A Grafana instance

•	 Metrics:

	� A Prometheus remote write endpoint

	� A Graphite endpoint

	� A Mimir backend storage instance

•	 Logs:

	� A Loki endpoint

	� A Loki backend storage instance

•	 Traces:

	� A Tempo endpoint

	� A Tempo backend storage instance

•	 Alerting:

	� An Alerting instance for managing Prometheus-based alerts

•	 Load testing:

	� A k6 cloud runner

•	 Profiling:

	� A Pyroscope endpoint

	� A Pyroscope backend storage instance

Let’s take a look at some of the sections you can access in your portal:

•	 Security: In this section, you can manage access policies and access tokens, Open Authorization
(OAuth), Security Assertion Markup Language (SAML), and Lightweight Directory Access
Protocol (LDAP).

Access policies are scoped to a realm; a realm can cover a specific stack, or it can cover the
entire organization.

•	 Support: This section gives access to support from the community via Community Forums,
and from Grafana Labs via Support Ticket and Chat with Support.

Introducing Grafana Cloud 55

•	 Billing: The Billing section is where invoices and subscriptions are managed. A Cloud Free
subscription provides a monthly limit of 10,000 metrics, 50 GB logs and 50 GB traces, 50 GB
profiles, as well as three Incident Response & Management (IRM) users and 500 k6 virtual
user hours (VUh). This subscription is plenty for the demo applications we will be using during
the book and similar small demo, personal-use installations. For larger installations, Grafana
Cloud also offers two additional tiers, Cloud Pro and Cloud Advanced. These tiers give access to
different key features, with Cloud Advanced being geared toward enterprise-level installations.
Grafana then bills based on ingest and active users in different areas. Grafana provides a very
easy-to-use monthly cost estimation tool:

Figure 3.5 – Grafana cost estimator

Setting Up a Learning Environment with Demo Applications56

With a Cloud Free subscription, you will only have access to a single stack. With a subscription
to Cloud Pro or Cloud Advanced, you will be able to create multiple stacks in your account.
These stacks can be in different regions.

• Org Settings: Here, you can manage the users who can access Grafana Cloud. You can also
update your avatar, organization name, and any plugins or dashboards you have shared with
the community.

Now that you have explored the Grafana Cloud Portal and have an overview of managing a Grafana
Cloud account, let’s explore the Grafana instance in your cloud stack.

Exploring the Grafana instance

The main way to interact with the tools provided by the Grafana Stack is to access the Grafana
instance. This instance provides visualization tools to view the data that is collected by the rest of the
Grafana stack or other linked tools. To access your Grafana instance, you can click on the Launch
button in your Cloud Portal:

Figure 3.6 – Launching Grafana

To access it more directly, you can use the direct URL based on the team name selected during
account creation. For instance, our sample account has the URL https://observability
withgrafana.grafana.net.

Once you have accessed Grafana, you will be greeted with a home page that shows your current
usage. Navigation is done using the menu available at the top left of the page:

Introducing Grafana Cloud 57

Figure 3.7 – The main navigation panel in Grafana

Let’s talk through the different sections available in the menu shown in the preceding figure.

Dashboards and Starred dashboards

The Dashboards section allows you to create, import, organize, and tag dashboards in your Grafana
installation. Under Dashboards, you can also access Playlists, Snapshot, Library panels, and Reporting:

•	 The Playlists subsection lets you manage groups of dashboards that are displayed in a sequence,
for instance, on TVs in an office.

•	 The Snapshot tab gives you the ability to take a snapshot of a dashboard with the data to
share. This will give the recipients the ability to explore the data much better than by sharing
a simple screenshot.

•	 Library panels provides reusable panels that can be used in multiple dashboards to aid in
offering a standardized UI.

•	 Finally, Reporting allows you to automatically generate PDFs from any dashboard and send
them to interested parties on a schedule.

The Starred dashboards section lets you customize the UI by saving dashboards you frequently use
at the top of the menu. We will explore using dashboards more fully in Chapter 8.

Setting Up a Learning Environment with Demo Applications58

Explore

Explore is the way to get direct access to the data that is connected to the Grafana instance. This is
the foundation of building custom dashboards and exploring data to understand the current state of
the system. We will look at this briefly later in this chapter in the section titled Exploring telemetry
from the demo application, and in a lot more detail in Chapters 4, 5, and 6.

Alerts & IRM

The Alerts & IRM section contains Grafana’s Alerting, OnCall, and Incident systems for IRM, as
well as machine learning capabilities and the SLO service. These can help with identifying anomalies
in the system (for more details on this, you can refer to Chapter 9):

Figure 3.8 – Alerts & IRM

Alerting, or Alertmanager, allows teams to manage rules for when an alert should be triggered. It
also gives teams control over the method of notification used for the alert and whether there are any
schedules for when to alert. Grafana Alerting is geared toward notifying an individual team of alerts
in their system, and it has been battle-tested by many organizations.

OnCall and Incident form Grafana’s IRM toolkit. This gives organizations the ability to receive
notifications from many monitoring systems and manage schedules and escalation chains, as well as
giving high-level visibility of sent, acknowledged, resolved, and silenced alerts. The Incident section
gives organizations the ability to start incidents. These follow predefined processes for involving

Introducing Grafana Cloud 59

the right people and communicating with stakeholders. Once the incident is initiated, Grafana can
record key moments during the incident process ready for any post-incident processes. Both OnCall
and Incident are aimed at organizations that need a central hub to manage the technical aspects of
problem and incident management. Chapter 9 will explore these tools in greater detail and show you
how to configure them.

Performance testing

The Performance testing area is where the k6 performance testing tool is integrated with the Grafana UI,
allowing teams to manage tests and projects. k6 allows your teams to use the same performance testing
tools in the CI/CD pipeline as they use to test against production. k6 will be covered in Chapter 13.

Observability

The Observability section brings together Kubernetes infrastructure and application monitoring,
with synthetic tests used to simulate critical user journeys in your application alongside frontend real
user monitoring (RUM) and profiles from Pyroscope. By combining these data sources, you gain an
end-to-end view of the current performance of your products.

Connections

The Connections section is an administrative area to set up and manage connections from Grafana to
the 160+ data sources and infrastructure components that it can connect and show data from. Some
examples of available connections are Elastisearch, Datadog, Splunk, AWS, Azure, cert-manager, GitHub,
Ethereum, and Snowflake. The page to configure these connections is shown in the following figure:

Figure 3.9 – Connections screen

Setting Up a Learning Environment with Demo Applications60

Administration

The Administration panel allows for the management of many aspects of Grafana, from plugins and
recorded queries to users, authentication, teams, and service accounts:

Figure 3.10 – Administration panel

Now that we’ve explored the Grafana Cloud Portal, let’s prepare your local environment to send data.

Installing the prerequisite tools
Grafana is much more exciting with data! To build a realistic view of how Grafana works and can
help your organization, we have chosen to install the OpenTelemetry demo application. This is a
demonstration web store that sells telescopes and other observational equipment. We’ll take you
through the installation process to get this running locally on your machine.

But first, there are a few prerequisites that your local environment has, and they depend on the
operating system you use.

In this section, we will explain how to install the following:

•	 Tools based on your operating system:

	� Windows Subsystem for Linux version 2 (WSL2)

	� macOS Homebrew

•	 Docker or Podman

•	 A single-node Kubernetes cluster

•	 Helm

Installing the prerequisite tools 61

Installing WSL2

WSL is a way of running a Linux filesystem and tools directly on Windows. This is used to give a
standard set of commands and tools across operating systems. It is possible to run these systems
outside of WSL, but the processes are much easier using WSL. Follow these steps to set up WSL2:

1.	 Open a PowerShell terminal or Windows Command Prompt as an administrator.

2.	 Run the following command to install WSL2:

C:\Users\OwG> wsl --install

This will install the Ubuntu distribution of Linux.

You should see a message that Ubuntu is installing and then you will be prompted for a new
UNIX username. If you see any other message, you may have a version of WSL installed already;
please refer to the Microsoft website to address this.

3.	 Create a new user for your Ubuntu installation by entering a username and password. These
do not need to match your Windows username and password.

4.	 Upgrade packages by running the following command:

sudo apt update && sudo apt upgrade

It is recommended to install the Windows Terminal to use WSL. This can be downloaded
from the Microsoft Store: https://learn.microsoft.com/en-us/windows/
terminal/install.

More detailed instructions on how to complete this installation process and troubleshoot any issues
that may arise can be found at https://learn.microsoft.com/en-us/windows/wsl/
install.

Installing Homebrew

Homebrew is a package management tool for macOS. To install it on your system, follow these steps:

1.	 Open a terminal window.

2.	 Run the following command to install Homebrew:

$ /bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/
Homebrew/install/HEAD/install.sh)"

The script that runs will explain what it is doing and pause before continuing.

3.	 Run the following command to install wget (used later in the setup process):

$ brew install wget

Detailed instructions on this installation can be found at https://brew.sh/.

http://.microsoft.com/en-us/windows/terminal/install
http://.microsoft.com/en-us/windows/terminal/install
https://learn.microsoft.com/en-us/windows/wsl/install
https://learn.microsoft.com/en-us/windows/wsl/install
https://brew.sh/

Setting Up a Learning Environment with Demo Applications62

Installing container orchestration tools

Docker and Podman are both container orchestration tools. Docker has been the de facto standard
for about a decade. Podman is a newer tool. It was first released in 2018. The major functions of Docker
are also offered in Podman, but support and information may be more difficult to find.

In 2021, Docker made licensing changes that became fully effective in January 2023. These licensing
changes may impact readers using devices belonging to businesses. We will only provide instructions
for Docker, but we will highlight the potential issues, so you are aware of them. The aim of providing
a container orchestration tool is to run a single-node Kubernetes cluster on that tool.

Installing Docker Desktop

The following sections briefly describe how Docker Desktop can be installed on Windows, macOS,
and Linux. Let’s look at the Windows installation process first.

Windows installation

To install Docker Desktop on Windows, do the following:

1.	 Go to https://docs.docker.com/desktop/install/windows-install/
and download the latest Docker installer .exe file.

2.	 Run the installation package. You will be prompted to enable WSL2. Select Yes.

3.	 After installation, start Docker Desktop.

4.	 Navigate to Settings | General. Select the Use WSL2 based engine checkbox.

5.	 Select Apply & Restart.

6.	 In your WSL terminal, validate the Docker installation by running the following command:

$ docker --version
Docker version 20.10.24, build 297e128

macOS installation

For the macOS installation of Docker Desktop, do the following:

1.	 Go to https://docs.docker.com/desktop/install/mac-install/ and
download the latest Docker installer for your Mac.

2.	 Run the installation package.

3.	 In your terminal, validate the Docker installation by running the following:

$ docker --version
Docker version 20.10.24, build 297e128

https://docs.docker.com/desktop/install/windows-install/
https://docs.docker.com/desktop/install/mac-install/

Installing the prerequisite tools 63

Linux installation

Linux users may consider using Podman Desktop as it has better native support for Linux environments.
Installation instructions are available at https://podman-desktop.io/docs/Installation/
linux-install.

However, if you do wish to use Docker, please follow the installation guide provided as the process will
vary by distribution: https://docs.docker.com/desktop/install/linux-install/.

The full documentation can be found at https://docs.docker.com/desktop/.

With a base system that now supports containerization, let’s set up a single-node Kubernetes cluster.
This will be used to easily and repeatably install the OpenTelemetry demo application.

Installing a single-node Kubernetes cluster

There are a few different tools to run local Kubernetes clusters, including Kubernetes in Docker
(KinD), Minikube, and MicroK8s. However, we have chosen to use k3d due to the ease of installation
across operating systems. Follow these steps:

1.	 Install k3d using the following command:

$ wget -q -O - https://raw.githubusercontent.com/k3d-io/k3d/
main/install.sh | bash

Full details can be found at https://k3d.io/stable/.

2.	 Create a k3d cluster:

$ k3d cluster create owg-otel-demo

3.	 Validate the cluster status:

$ kubectl get nodes
NAME             STATUS   ROLES                  AGE   VERSION
k3d-owg-otel-demo-server-0   Ready    control-
plane,master   13d   v1.25.7+k3s1

With a Kubernetes cluster installed, we now need a way to install applications easily. OpenTelemetry
provides Helm charts, which allow us to deploy applications to Kubernetes; we will install Helm to
use these.

Installing Helm

Helm is a package manager for Kubernetes clusters. A lot of infrastructure-level components are
provided as Helm charts for installation, and OpenTelemetry is no exception. To install Helm, follow
these steps:

https://podman-desktop.io/docs/Installation/linux-install
https://podman-desktop.io/docs/Installation/linux-install
https://k3d.io/stable/

Setting Up a Learning Environment with Demo Applications64

1.	 Install Helm using the following command (details can be found at https://helm.sh/
docs/intro/install/):

$ wget –q –O - https://raw.githubusercontent.com/helm/helm/main/
scripts/get-helm-3 | bash

2.	 Validate the Helm installation:

$ helm version
version.BuildInfo{Version:"v3.11.3",
GitCommit:"323249351482b3bbfc9f5004f65d400aa70f9ae7",
GitTreeState:"clean", GoVersion:"go1.20.3"}

With our local system ready to start running applications, we can now install the demo application
provided by OpenTelemetry.

Installing the OpenTelemetry Demo application
As we need to send data from our local machine to our Grafana Cloud instance, we need to provide
some credentials and tell our local machine where to send data. Before we install the demo application,
we need to set up access tokens so we can send data to our Grafana Cloud stack.

Setting up access credentials

Access tokens allow the Open Telemetry application to send data securely to your Grafana Cloud
stack. To set up an access token, we need to do the following:

1.	 In the Grafana Cloud Portal, select Access Policies in the Security section.

2.	 Click Create access policy.

3.	 Choose a name and display name, and set Realm to All Stacks.

4.	 Set the Write scope for metrics, logs, and traces and click Create.

5.	 On the new access policy, click Add token.

6.	 Give the token a name and set the expiration date. Click Create.

7.	 Finally, copy the token and save it securely.

Now that we’ve created our token, let’s download the GitHub repository for this book and set it up.

Downloading the repository and adding credentials and
endpoints

The Git repository contains configuration files for each of the chapters that will use live data. Downloading
the repository is simple. Go to the Git repository: https://github.com/PacktPublishing/

https://helm.sh/docs/intro/install/
https://helm.sh/docs/intro/install/
https://github.com/PacktPublishing/Observability-with-Grafana

Installing the OpenTelemetry Demo application 65

Observability-with-Grafana. Click on the green Code button and follow the instructions
to clone the repository. Once downloaded, the repository should look like this:

Figure 3.11 – Observability with Grafana repo

To set up the demo application, we need to add the token we saved in the previous section and the
correct endpoints in the OTEL-Creds.yaml file. The information you will need is the following:

•	 Password: This is the token you saved earlier and is shared by each telemetry type

•	 Username: This is specific to each telemetry type

•	 Endpoint: This is also specific to each telemetry type

Let’s take Loki as an example of how to get this information. In the Grafana Cloud Portal, do the
following to get the correct information:

1.	 Click on the Send Logs button in the Loki box. At the top of the page is an information box
that looks like this:

Figure 3.12 – Grafana Data Source settings

https://github.com/PacktPublishing/Observability-with-Grafana

Setting Up a Learning Environment with Demo Applications66

2.	 The User field is used as the username.

3.	 The URL field is used as the endpoint. This needs modifying:

	� For logs, add /loki/api/v1/push to the end of the URL

	� For metrics, add /api/prom/push to the end of the URL

	� For traces, remove https:// and add :443 to the end of the URL

4.	 Add this information into the relevant fields in the OTEL-Creds.yaml file.

With Loki completed, we can follow the same process for Prometheus (click Send Metrics) and
Tempo (click Send Traces).

These instructions are repeated and expanded on in the README.md file in the repository. With the
credentials saved, we are now ready to deploy OpenTelemetry.

Installing the OpenTelemetry Collector

With the credentials file updated, we can now install the Helm chart for the OpenTelemetry Collector.
This is the component that will collect and transmit the data produced by the demo application. To
proceed with the installation, perform the following steps:

1.	 Add the OpenTelemetry repository:

$ helm repo add open-telemetry https://open-telemetry.github.io/
opentelemetry-helm-charts

2.	 Install the collector with Helm:

$ helm install --version '0.73.1' --values chapter3/OTEL-
Collector.yaml --values OTEL-Creds.yaml owg open-telemetry/
opentelemetry-collector
NAME: owg-otel-collector
LAST DEPLOYED: Sun May 14 13:53:16 2023
NAMESPACE: default
STATUS: deployed
REVISION: 1
…

3.	 Validate that the installation was successful:

$ kubectl get pods
NAME                         READY   STATUS    RESTARTS   AGE
owg-otel-collector-opentelemetry-collector-6b8fdddc9d-
4tsj5   1/1     Running   0          2s

We are now ready to install the OpenTelemetry demo application.

Installing the OpenTelemetry Demo application 67

Installing the OpenTelemetry demo application

The OpenTelemetry demo application is an example web store that sells telescopes and other tools to
observe the universe. To install this demo application, follow these steps:

1.	 Install the demo application with Helm:

$ helm install --version '0.26.0' --values owg-demo open-
telemetry/opentelemetry-demo
NAME: owg-otel-demo
LAST DEPLOYED: Mon May 15 21:58:37 2023
NAMESPACE: default
STATUS: deployed
REVISION: 1
…

2.	 Validate that the installation was successful. This process may take a few minutes on the first install:

$ kubectl get pods

You should see about 19 Pods running.

3.	 Open a port for frontendproxy access:

$ kubectl port-forward svc/owg-demo-frontendproxy 8080:8080 &

4.	 Open a port for browser spans:

$ kubectl port-forward svc/owg-opentelemetry-collector 4318:4318
&

5.	 Check you can access the OpenTelemetry demo application on http://localhost:8080:

Figure 3.13 – OpenTelemetry demo application

Setting Up a Learning Environment with Demo Applications68

6.	 Explore the OpenTelemetry demo application to generate some data. Take some time to add
items to your cart and purchase them. While a load generator is part of the installation, it is
worth getting familiar with the application as it will help put the telemetry generated in context.

Now that you have an application that produces data, let’s start exploring that data.

Exploring telemetry from the demo application
Assuming the installation was successful, you will have data flowing into your Grafana instance. To
view these, head to your Grafana instance, either from your team URL or by clicking Launch in the
Cloud Portal.

On the front page, you should see information detailing your current or billable usage of logs, metrics,
and traces. If everything is correct, these should all be greater than 0. It may take a few minutes for
this to show up completely, sometimes up to an hour:

Figure 3.14 – Grafana Cloud usage

Important note
If you don’t see usage for metrics, logs, and traces, you might need to troubleshoot. We have
included some tips at the end of this chapter.

Click on the menu and select Explore. This will take you to the page to run queries on the telemetry
from the demo application. The highest-level concept in Grafana is a data source. These are selectable
just below the main menu. Each data source is a connection from the Grafana instance to either a
component in the Grafana Stack or a connection to another tool. Each data source is self-contained.
The data source menu can be seen in the following figure:

Exploring telemetry from the demo application 69

Figure 3.15 – Data source menu

You will see that there are data sources for logs, prom (Prometheus metrics), and traces. There are
other data sources, but for this chapter, we will only concentrate on these three, as they are the data
sources related to the Grafana Stack we have provisioned.

These data sources relate to our Loki, Mimir, and Tempo components, used to collect logs, metrics,
and traces, respectively. We’ll discuss these next.

Logs in Loki

Loki stores the log data produced by the demo application. Let’s have a quick look at the interface for
a Loki data source and see some of the log data the demo application is producing.

Setting Up a Learning Environment with Demo Applications70

Select the grafanacloud-<team name>-logs data source. In Label filters, add exporter =
OTLP and click Run query. You should now see a screen like this:

Fig 3.16 – Reviewing logs

The upper area of the screen is where you enter and modify your query. In the middle of the screen,
you will see the volume of logs returned by your search over time. This can provide a lot of contextual
information at a glance. The lower part of the screen displays the results of your query:

Figure 3.17 Query panel details

Exploring telemetry from the demo application 71

Let’s break the preceding screenshot down into its components:

1.	 You can select the time range and add the query to various tools by clicking on Add.

2.	 Using the buttons at the bottom of this section, you can use Add query to produce a more
complex analysis of the data. Query history lets you review your query history. Query inspector
helps to understand how your query is performing.

3.	 The Builder or Code selector allows you to switch between the UI-focused query builder you
see by default and a query language entry box, which is useful for directly entering queries.

4.	 The Kick start your query button will give you some starter queries and the Label browser
button will let you explore the labels currently available in your collected log data.

5.	 Finally, the Explain query slider will give you a detailed explanation of each step of the query
you currently have.

Let’s take a look at the components in the query result panel:

Figure 3.18 – Query result panel details

These components can be used as follows:

1.	 You can customize the display of this data to show the timestamp, highlight any unique labels,
wrap lines, or prettify JSON.

2.	 You can also apply deduplication.

3.	 You can choose to view the oldest or newest log events first.

4.	 Finally, you can download the data as .txt or .json.

We will look at these features in more depth in Chapter 4 and introduce the LogQL query language.

Now that you have familiarized yourself with the query panels for logs in a Loki data source, let’s see
how querying metrics from a Mimir data source is very similar.

Setting Up a Learning Environment with Demo Applications72

Metrics in Prometheus/Mimir

Grafana uses similar repeating blocks for querying data. In this section, we will explore how to
query metrics.

Select the grafanacloud-<team name>-prom data source. In the Metric dropdown, select kafka_
consumer_commit_rate and leave Label filters blank. Click on Run query and you should see a
screen like this:

Figure 3.19 – Kafka consumer commit rate

Similar to Loki, we have a query section at the top, although the structure is slightly different. The
major difference is the Options section, which controls how the data is presented. Legend manages the
graph’s legend display. The Format option allows you to select between a Time series representation
(the graph shown in the preceding screenshot); a Table representation, showing each value of each
time series; and a Heatmap representation. The Type selector allows you to select either a range of
time, the latest instant of each time series, or both. The Exemplars slider will show trace data that is
linked to each metric.

Exploring telemetry from the demo application 73

The bottom section shows the data, with options to display it in different ways.

To see how Grafana represents multiple plots, from the Metric dropdown, select process_runtime_
jvm_cpu_utilization_ratio and click Run query. You should see a chart like this:

Figure 3.20 – JVM CPU utilization

Each of the plotted lines in the chart in the preceding screenshot represents the CPU utilization of
a different service running in the demo application. We will look at these features in more depth in
Chapter 5 and introduce the PromQL query language.

A Tempo trace data source is very similar to a Loki log data source and a Mimir metric data source.
Let’s look at this now.

Traces in Tempo

Traces use a little bit more querying, as we have to find and select an individual trace, and then show
the spans in the trace in detail.

Setting Up a Learning Environment with Demo Applications74

Select the grafanacloud-<team name>-traces data source. For Query type, choose Search, for Service
Name, select checkoutservice, and click Run query. You should see a screen like this:

Figure 3.21 – Selecting a trace

Exploring telemetry from the demo application 75

Click on one of the Trace ID links and you will see a screen like this:

Figure 3.22 – Trace view

This view shows the split view that Grafana offers. This can be accessed from any data source and
can provide the ability to use linked data points to move between logs, metrics, and traces to see the
same point in time or event in each of the telemetry types. If you select the bar between the panels,
indicated by the number 1 in the preceding screenshot, you can make the trace view bigger by clicking
and dragging.

Looking through the trace, each line represents a span with information on which service was involved
alongside specific information from that service. For example, checkoutservice will show you the
count of items in the cart and the shipping amount. The bars with each span show the total time that
span took and are stacked to represent the relative start and end times of the span. You might see that
productcatalogueservice takes up a significant portion of the time in the transaction in Figure 3.21.

Setting Up a Learning Environment with Demo Applications76

Adding your own applications

It is possible to add your own application to this demo installation. The OpenTelemetry Collector has
been deployed with receivers available for OTLP-formatted data on port 4317 for gRPC data and
4318 for HTTP(s) data. To deploy your application, it will need to be packaged as a container and
then just follow a standard deployment mechanism for a Kubernetes deployment. Please do note that
k3d is opinionated and by default uses Flannel and Traefik for networking and ingress, respectively.

Now that we’ve understood this demo application, let’s look at some troubleshooting tips that will
help you if you’re facing any issues while setting it up or using it.

Troubleshooting your OpenTelemetry Demo installation
There are various things that could go wrong while using this application, so this section is not
necessarily exhaustive. We will assume that all the prerequisite tools were installed correctly.

Let’s first take a look at the correct formatting of Grafana credentials.

Checking Grafana credentials

If the OpenTelemetry Collector is giving authentication errors, or you are not receiving data from it,
it is likely that the credentials are not formatted correctly. These details are entered into the OTEL-
Creds.yaml file from this book’s Git repository.

The Grafana credentials should be formed like this:

•	 Username: Number, typically six digits.

•	 Password: API token, which is a long string of letters and numbers. When troubleshooting the
token there are some important considerations:

	� The same token can be shared by all the exporters.

	� The Access policy associated with the API token needs to be able to write logs, metrics and
traces. This can be checked in the Grafana Cloud portal.

•	 Endpoint: The URL that the OpenTelemetry Collector will push data to. These are the endpoints
that are provided by the Grafana Cloud installation you set up in an earlier section, Introducing
Grafana Cloud.

The following are sample endpoints. Yours will be different, but they will be similarly formed:

	� loki: https://logs-prod-006.grafana.net/loki/api/v1/push

	� prometheusremotewrite: https://prometheus-prod-13-prod-us-
east-0.grafana.net/api/prom/push

	� otlp (tempo): tempo-prod-04-prod-us-east-0.grafana.net:443

Troubleshooting your OpenTelemetry Demo installation 77

Important note
The OTLP endpoint for Tempo is different from the others.

If you notice that you have made a mistake, you will need to use helm upgrade to deploy the
changes you make to the OTEL-Creds.yaml file:

$ helm upgrade --version '0.73.1' --values chapter3/OTEL-Collector.
yaml --values OTEL-Creds.yaml owg open-telemetry/opentelemetry-
collector

You can also use helm uninstall and then use the original instructions to reinstall.

The most common problem is with the access credentials, but sometimes you will need to look at the
collector logs to understand what is happening. Let’s see how to do this now.

Reading logs from the OpenTelemetry Collector

The next place to investigate is the logs from the OpenTelemetry Collector.

Kubernetes allows you to directly read the logs from a Pod. To do this, you need the full Pod name,
which you can get using the following command:

$ kubectl get pods --selector=app.kubernetes.io/instance=owg
NAME                              READY   STATUS    RESTARTS   AGE
owg-opentelemetry-collector-567579558c-
std2x   1/1     Running   0          6h26m

In this case, the full Pod name is owg-opentelemetry-collector-567579558c-std2x.

To read the logs, run the following command:

$ kubectl logs owg-opentelemetry-collector-567579558c-std2x

Look for any warning or error-level events, which should give an indication of the issue that is occurring.

Sometimes, the default logging does not give enough information. Let’s see how we can increase the
logging level.

Debugging logs from the OpenTelemetry Collector

If the standard logs are not enough to resolve the problem, the OpenTelemetry Collector allows you to
switch on debug logging. This is typically verbose, but it is very helpful in understanding the problem.

At the end of OTEL-Creds.yaml, we have included a section to manage the debug exporter. The
verbosity can be set to detailed, normal, or basic.

Setting Up a Learning Environment with Demo Applications78

For most use cases, switching to normal will offer enough information, but if this does not help you
to address the problem, switch to detailed. Once this option is changed, you will need to redeploy
the Helm chart:

$ helm upgrade owg open-telemetry/opentelemetry-collector -f OTEL-
Collector.yaml

This will restart the Pod, so you will need to get the new Pod ID. With that new ID, you can look at
the logs; as we saw in the previous section, you should have a lot more detail.

Summary
In this chapter, we have seen how to set up a Grafana Cloud account and the main screens available
in the portal. We set up our local machine to run the OpenTelemetry demo application and installed
the components for this. Finally, we looked a the data produced by the demo application in our
Grafana Cloud account. This chapter has helped you set up an application that will produce data that
is visible in your Grafana Cloud instance, so you can explore the more detailed concepts introduced
later with real examples.

In the next chapter, we will begin to look in depth at logs and Loki, explaining how best to categorize
data to give you great insights.

Part 2: Implement
Telemetry in Grafana

This part of the book will take you through the different telemetry sources, explaining what they
are, when to use them, and problems to watch out for. You will look at integrations with major cloud
vendors: AWS, Azure, and Google. This part will also investigate real user monitoring with Faro,
profiling with Pyroscope, and performance with k6.

This part has the following chapters:

•	 Chapter 4, Looking at Logs with Grafana Loki

•	 Chapter 5, Monitoring with Metrics Using Grafana Mimir and Prometheus

•	 Chapter 6, Tracing Technicalities with Grafana Tempo

•	 Chapter 7, Interrogating Infrastructure with Kubernetes, AWS, GCP, and Azure

4
 Looking at Logs

with Grafana Loki

In this chapter, we will get hands-on experience with Grafana Loki. We will learn how to use LogQL,
which is the language used for querying Loki, how to select and filter log streams, and how to use the
operators and aggregations available. This will give you the tools to extract the data in appropriate
ways for your dashboard visualizations and alerts. We will review the benefits and drawbacks of the
log format and how it impacts your use of Loki. To fully explore the benefits of Loki, we will explore
the architecture and where it can be scaled for performance. To finish, we will look at advanced areas
of LogQL, such as labels and transformations, and other tips and tricks to expand your use of Loki.

We will cover the following main topics in this chapter:

•	 Introducing Loki

•	 Understanding LogQL

•	 Exploring Loki’s architecture

•	 Tips, tricks, and best practices

Technical requirements
In this chapter, you will work with LogQL using the Grafana Cloud instance and demo you set up in
Chapter 3. The full LogQL language documentation can be found on the Grafana website at https://
grafana.com/docs/loki/latest/logql/. Loki is in active development, so it’s worth
checking for new features frequently.

You’ll find the code for this chapter in the GitHub repository at https://github.com/
PacktPublishing/Observability-with-Grafana/tree/main/chapter4. You'll
find the Code in Action videos for this chapter at https://packt.link/aB4mP.

https://grafana.com/docs/loki/latest/logql/
https://grafana.com/docs/loki/latest/logql/
https://github.com/PacktPublishing/Observability-with-Grafana/tree/main/chapter4
https://github.com/PacktPublishing/Observability-with-Grafana/tree/main/chapter4
https://packt.link/aB4mP

 Looking at Logs with Grafana Loki82

Updating the OpenTelemetry demo application
First, let’s improve the logging for our demo application. For this chapter, we have provided an
updated OTEL-Collector.yaml file with additional Loki log labels in the chapter4 folder
in the GitHub repository. These instructions assume you have already completed the demo project
setup in Chapter 3. Full details on this process are available in the GitHub repository in the Chapter 4
section of the README.md file.

To upgrade the OpenTelemetry Collector, follow these steps:

1.	 Upgrade the collector with Helm:

$ helm upgrade --version '0.73.1' --values chapter4/OTEL-
Collector.yaml --values OTEL-Creds.yaml owg open-telemetry/
opentelemetry-collector
NAME: owg-otel-collector
LAST DEPLOYED: Sun Apr 25 12:15:03 2023
NAMESPACE: default
STATUS: deployed
REVISION: 2
…

2.	 You can validate that the upgrade was successful with this command:

$ kubectl get pods --selector=app.kubernetes.io/instance=owg
NAME  READY   STATUS    RESTARTS   AGE
owg-opentelemetry-collector-594fddd656-
tfstk   1/1     Terminating   1 (70s ago)   2m8s
owg-opentelemetry-collector-7955d689c4-
gsvqm   1/1     Running       0             3s

You will now have a lot more labels available for your Loki log data. Let’s explore what that means in
the next section.

Introducing Loki
Grafana Loki was designed from the ground up to be a highly scalable multi-tenant logging solution.
Its design was heavily influenced by Prometheus with a few main objectives:

•	 It was built with developers and operators in mind (such as Diego and Ophelia, who were
introduced in Chapter 1)

•	 It has simple ingestion; no pre-parsing is required

•	 It only indexes metadata about logs

•	 It stores everything in an object store

Introducing Loki 83

Let’s look at how Loki ingests data and uses labels as this will provide valuable insight into the way
your queries source and then process the data for presentation:

•	 Log ingest: Loki accepts logs from all sources with a wide choice of agents available to make
that easy. You can even send log data directly to the Loki API. This makes it the perfect choice
for complex environments featuring a multitude of systems and hardware components.

Loki stores its logs as log streams, where each entry has the following:

	� Timestamp: It has nanosecond precision for accuracy.

	� Labels: These are key-value pairs used for the identification and retrieval of your data; they
form the Loki index.

	� Content: This refers to the raw log line. It is not indexed and is stored in compressed chunks.

The following diagram shows a log stream with a log line and its associated metadata:

Figure 4.1 – Loki log structure

•	 Log labels: Loki log labels provide the metadata for the log line and not only help identify the
data but also are used to create the index for the log streams and structure the log storage. They
have the following features:

	� Each unique set of labels and values creates a log stream

	� Logs in a stream are batched, compressed, and stored as chunks

	� Labels are the index to Loki’s log streams

	� Labels are used to search for logs

The following diagram demonstrates two log streams. As you can see, in a stream of logs, each log has
the same unique set of labels. In this instance, k8s_node_name has two values:

Figure 4.2 – Loki log streams

 Looking at Logs with Grafana Loki84

Now that we have looked at the structure of a Loki log, let’s introduce LogQL, the query language
used to extract value from your logs.

Understanding LogQL
Grafana developed LogQL as the query language for Loki using the Prometheus Query Language
(PromQL) for inspiration. It was designed with developers (Diego) and operators (Ophelia) in mind
(you can refer to Chapter 1 for an introduction to these personas), providing familiar filtering and
aggregation mechanisms. Loki does not index the log content. Log events are grouped into log
streams and indexed with labels (the log metadata). Executing a LogQL query in Loki invokes a type
of distributed filtering against log streams to aggregate the log data.

Let’s explore the Grafana explorer UI for LogQL, where you will be executing most of your LogQL queries.

LogQL query builder

We took a brief look at the Grafana explorer UI in Figure 3.16 in Chapter 3. For our examples, we
will mostly work with raw LogQL in the Code editor. The following screenshot shows LogQL typed
directly into the query builder code editor:

Figure 4.3 – LogQL query builder Code editor

If you ever get stuck with your LogQL, you can lean on the Log query starters and Explain query
tools to help you get started with your queries and understand what each step of your pipeline is doing.

Log query starters provides some quick examples to work with your data and get you filtering and
formatting it with ease:

Understanding LogQL 85

Figure 4.4 – Log query starters

Similarly, Metric query starters provides some quick examples to work with your data and generate
metrics ready for use in dashboards and alerts:

Figure 4.5 – Metric query starters

 Looking at Logs with Grafana Loki86

Available in the LogQL query builder and the dashboard panel editor, Explain query, when toggled
on, provides a breakdown of each stage of your LogQL pipeline. This tool is invaluable when analyzing
an existing query or debugging your own during design:

Figure 4.6 – Explain query

Let’s now explore the features of LogQL available for selecting, filtering, and parsing your log data.

An overview of LogQL features

A basic LogQL query consists of one or more log stream selectors to retrieve the raw log chunks for
processing and an optional log pipeline to filter and parse the log data. The following figure shows
a basic LogQL query with the component="cartservice" selector and a pipeline filter, |=
`GetCartAsync`, which would return two lines from the log stream example in Figure 4.2:

Figure 4.7 – A basic LogQL query

The following reference table shows the different features available to you when building your LogQL
query, which will help while you get familiar with querying your logs with Loki:

Understanding LogQL 87

LogQL Sections Syntax Operators Scope

Stream selector
{ l a b e l = " v a l u e " ,
foo!="bar"}

=,

!=,

=~,

!~

Select log streams to
retrieve; there must
always be at least
one selector

Line filter |= `error`

|=,

!=,

|~,

!~

Filter to matching
log lines

Parser | json
json, logfmt,
p a t t e r n ,
regexp, unpack

Parse and extract
labels from the log
content, with parses
for structured and
unstructured logs

Label filter | label="value"

=,

!=,

=~,

!~,

<,

<=,

>,

>=

Filter log lines using
original and newly
extracted labels

Line format
| line_format "{{.
label}}"

R e w r i t e t h e l o g
l i n e c o n t e n t f o r
presentation purposes

Label format
| new_label="{{.
label}}"

Rename, modify, or
add labels

Table 4.1 – LogQL feature overview

 Looking at Logs with Grafana Loki88

Let’s start by looking at the log stream selector in detail.

Log stream selector

Selecting log streams to include in your query results requires filtering based on the Loki labels using
simple operators. By improving the granularity of your log stream selector, you can reduce the number
of streams searched and improve query performance. We will discuss this in more detail later in this
chapter when we look at the Loki architecture. There must always be at least one stream selector, but
it must be written in a way that will not match empty values; for example, the regular expression
(regex) {label=~".*"} will fail as a 0 or more quantifier and {label=~".+"} will pass as a
1 or more quantifier. Multiple stream selectors can be used and are separated using commas. The
log stream selector must be the first item in your LogQL query and identified with curly braces. For
example, the following LogQL query will select log streams where the component label ends with
service and the name label equals owg-demo-checkoutservice:

 {component=~".+service", name="owg-demo-checkoutservice"}

As mentioned at the beginning of this section, LogQL was inspired by PromQL and as such, the
Prometheus label selector rules have been adopted by LogQL for log stream selectors:

Operator Meaning

= Exactly equal

!= Not equal

=~ Regex matches

!~ Regex does not match

Table 4.2 – Log stream selector operators

Grafana has implemented the Golang RE2 syntax for log streams, which means you will have to
match against entire strings. This includes newlines, so it’s worth checking this if your regex filters
are failing. Syntax documentation can be found here: https://github.com/google/re2/
wiki/Syntax.

Once you have your log streams selected, the log pipeline can then be used to filter and process them.
Let’s discuss this next.

Log pipeline

As we presented in Table 4.1, the expressions available are line and label filters, parsers, and formatters.
Expressions are executed in sequence for each line of the log stream, dropping anything filtered out
and moving on to the next line.

https://github.com/google/re2/wiki/Syntax
https://github.com/google/re2/wiki/Syntax

Understanding LogQL 89

Expressions allow you to transform or mutate the log data to then use it for additional filtering/
processing. Let’s look at the following example (this is the pipeline section only; you would need the
{component=~".+service"} selector to make it work in Grafana):

  |= `emailservice`
  | json
  | resources_k8s_container_restart_count > 0
  | line_format `{{.body}}`
  | __error__=``

Here, we’re doing the following tasks:

1.	 We start by matching the logs containing emailservice.

2.	 We then use the json parser to extract additional labels that are filtered where resources_
k8s_container_restart_count is greater than 0.

3.	 We then rewrite the log line to only contain the contents of body.

4.	 Finally, we strip all formatting and parsing errors.

Let’s now look at each of the log pipeline expressions and how to use them.

Line filters

Grafana describes line filters as a distributed grep over the aggregated logs from the matching log
streams. We will understand this statement better in the Loki’s architecture section. For now, it’s fine to
just understand line filters as case-sensitive searches through log line contents dropping lines that do
not match. Filter expressions are made up of a filter operator followed by text or regex. The following
table shows the meaning of each expression with examples:

Operator Meaning Example
|= Log line contains a string |= `emailservice`

!= Log line does not contain a string != `emailservice`

|~ Log line contains a match to the regex |~ `email\w+`

!~ Log line does not contain a match to
the regex

!~ `email\w+`

Table 4.3 – Line filters

It is best practice to start log pipelines with line filter expressions to reduce the result set for subsequent
expressions and improve the performance of the query.

 Looking at Logs with Grafana Loki90

IP address matching

LogQL provides a useful function to aid IP address matching without complex regex patterns. Using
the ip("<pattern>") syntax, it supports both IPv4 and IPv6 addresses, address ranges, and CIDR
patterns. This function works for both line and label filters with a slight caveat in implementation;
only |= and != are allowed for line filter expressions. We’ll look at this in the context of label filters
later in this section.

The following examples show various patterns (ip(<pattern>)) along with an explanation of
what each will do, for both IPv4 and IPv6:

•	 Match a single IP address: ip("192.168.0.22") and ip("::1")

•	 Find a match within a range: ip("192.168.0.1-192.189.10.12")
and ip("2001:db8::1-2001:db8::8")

•	 Find a match within a CIDR specification: ip("192.52.100.0/24")
and ip("2001:db8::/32")

Decolorize

In Chapter 2, we mentioned unstructured logging is often color-coded to improve readability on the
computer terminal. However, in a log aggregation system, such as Loki, those color codes are displayed
in full. For example, the color red would be displayed as \u001b[31m.

Loki has a simple line filter expression that removes these ANSI sequences for color codes so that you
can clean the log to make it more readable in Grafana:

{name="emailservice"} | decolorize

Parsers

We have said this before: Loki accepts logs from all sources. It does not really matter what your logs look
like; they can come in structured, semi-structured, or unstructured formats. It is, however, important
when designing and building observability solutions to understand the log formats you are working
with. This ensures that you can ingest, store, and parse log data in a way it can be used effectively. The
personas in Chapter 1 give you an idea of who these will be used by and for what purpose.

Having a good understanding of your source log format is important to instruct you on what to use
and help with your overall observability design. The following LogQL parsers can be used to parse
and extract labels from your log content:

•	 json: If your log content is structured or semi-structured JSON and has embedded JSON
(which can be isolated using the line_format expression), the JSON parser can be used.
Using | json on its own will extract all of the JSON properties as labels. Any nested properties
will be represented as a single label separated with _. Arrays are skipped completely when

Understanding LogQL 91

extracting all of the properties. Additionally, expressions can be passed into the JSON parser
as quoted strings to restrict the output to only the labels required, for example, | json
label1="expression", label2="expression", where the expression identifies
a key or nested key. Arrays are returned where identified by expressions and they are assigned
to the label formatted as JSON.

•	 logfmt: If your log content is structured, single-level key-value pairs, it can be parsed with the
logfmt parser. Using | logfmt on its own will extract all of the key-value pairs. Similar to
the JSON parser, expressions can be passed into the logfmt parser as quoted strings to restrict
the output to only the labels required, for example, | logfmt label1="expression",
label2="expression", where expression identifies a key.

•	 pattern: For unstructured log content, the pattern parser allows the explicit extraction of
fields from log lines using | pattern "<expression>", where expression matches
the structure of a log line. The pattern parser expression is made up of captures delimited by
the < and > characters and literals, which can be any sequence of UTF-8 characters.

•	 regexp: Unstructured log content can also be extracted using the regular expression parser,
which takes a single expression, | regexp "<expression>", where expression is
a regex pattern that complies with the Golang RE2 syntax. A valid expression must contain at
least one sub-match, with each sub-match extracting a different label.

•	 unpack: If you are using a compatible logging agent, such as Grafana Agent or Promtail, you
can take advantage of the unpack parser to unpack embedded labels created by Promtail’s
pack feature. With Promtail’s pack feature, the original log line is stored in the _entry key.
This value will be used to replace the log line.

Label filters

We discussed log labels at the beginning of this section with regard to log ingestion and retrieval.
Additionally, labels can be extracted as part of the log pipeline using parser and formatter expressions.
The label filter expression can then be used to filter your log line with either of these labels.

The statement part of the filter is referred to as the predicate, and in the case of label filters, it contains
the following:

•	 The label identifier

•	 The operation

•	 A value

For example, in name="emailservice", the name label is compared, using the = operator, with
the value "emailservice". It is processed from left to right, so the label identifier must start
the predicate.

 Looking at Logs with Grafana Loki92

Value types are inferred from your query input. In the following table, you will find an overview of
these types as a useful reference for building your label filters:

Value Type Description

String Can be surrounded with double quotes or backticks, for example,
"emailservice" or `emailservice`.

Duration

Structured as a sequence of decimal numbers. They can optionally contain
fractions and the unit can be declared as a suffix, for example, "280ms",
"1.3h", or "2h30m". Units of time that can be used are "ns", "us" (or
"µs"), "ms", "s", "m", and "h", and as the examples show, you can use
multiple units: "2h30m".

Number Standard floating-point numbers, for example, 357 or 98.421.

Bytes

Structured as a sequence of decimal numbers. They can optionally contain
fractions and the unit can be declared as a suffix, for example, "36MB",
"2.4Kib", or "18b". Units for bytes that can be used are "b", "kib",
"kb", "mib", "mb", "gib", "gb", "tib", "tb", "pib", "pb",
"eib", and "eb".

Table 4.4 – Value types

Let’s now look at these value types in more detail:

•	 String: As with the label matchers we use with the log stream selector, the =, !=, =~, and !~
operations can be used. The string type is used to filter the built in label __error__, which is
often used to strip formatting and parsing errors from results; for example, | __error__=``.

•	 Duration, Number, and Bytes: All of the remaining value types follow the same rules. Duration,
Number, and Bytes convert the label value for use with the following list of comparators:

Operator Meaning

= or == Equals

!= Does not equal

> and >= Is greater than or greater than and equal to

< and <= Is less than or less than and equal to

Table 4.5 – Type operators

Take the example | resources_k8s_container_restart_count > 0. Loki
attempts to convert the value for use with the operator if it needs to. If there are any errors with
the conversion, the __error__ label will be added to the log line, which as we demonstrated
earlier, can be filtered out using | __error__=``.

Understanding LogQL 93

Grafana LogQL also allows for multiple predicates to be chained together using and and or . and
can alternatively be expressed using , or | or <space>.

For example, all of the following produce the same output:

  | quantity >= 2 and productId!~"OLJ.*"
  | quantity >= 2 | productId!~"OLJ.*"
  | quantity >= 2 , productId!~"OLJ.*"
  | quantity >= 2 productId!~"OLJ.*"

We described IP address matching in the Line filters section. Label filter expressions are the same
except only the = and != label matchers are allowed. Once you have filtered and parsed your logs as
required, you can begin to transform the data, whether that is for presentation or further pipeline
processing. We will discuss the two ways of doing this in detail next. But first, let’s explore template
functions, which are implemented by both line and label filters.

Template functions

The Golang text/template format has a large set of available template functions, all of which are available
for use in LogQL queries. Full documentation can be found on the Grafana website. The templating
engine has access to your data in various ways:

•	 It can treat labels as variables, referencing them using ., for example, {{ .component }}

•	 It can access the log line itself using __line__, for example, `{{ __line__ | lower }}`

•	 It can access the log timestamp using __timestamp__, for example, `{{ __timestamp__
| date "2023-04-25T12:15:03.00Z+01:00" }}`

Template functions can be broken down into the following distinct areas:

•	 Regex patterns

•	 String functions

•	 Math functions

•	 JSON functions

•	 Date and time functions

In addition, there are other functions that do not necessarily fit into a grouping but are nevertheless
very useful. These include encode and decode functions, byte and duration conversions, counts, and
default values.

 Looking at Logs with Grafana Loki94

Line and label format

Two features are available for transforming logs:

•	 Line format: The line format expression, given by | line_format "{{ .label }}",
is used to rewrite log line content. This expression is used to modify your log line using the
template functions referenced earlier. LogQL injects all labels as variables into the template,
making them available for use, for example, | line_format "{{.label_one}}
{{.label_two}}". The format takes double quotes or backticks, where backticks allow
you to avoid escaping characters.

For example, if we have the following labels, method=sent, status=200, and
duration=15ms, the following LogQL query would return sent 200 15ms:

{instance="owg-demo", component="featureflagservice"} |= `Sent`
| json
| regexp "(?P<method>Sent) (?P<status>\\d+?)
in\\s(?P<duration>.*?ms)"
| line_format "{{.method}} {{.status}} {{.duration}}"

•	 Label format: The label format expression given by |label_format new_label="{{
.label }}" is used to rename, modify, or even create new labels. It accepts a comma-separated
list of equality operations, allowing multiple operations to be carried out simultaneously.

To rename a label with another label, the label identifiers must be on both sides of the operator;
for example, target=source will put the contents of the source label into the target
label and drop the source label.

A label can be populated using the Golang text/template format and functions detailed previously
(double quotes or backticks). For example, if we have the user=diego and status=200
labels, the |label_format target="{{.status}} {{.user}}" pipeline would
define the target label as 200 diego.

Templating can be used if you wish to preserve the original source label. In the example,
target=source removed the source label. We can write this as target="{{.source}}",
which will put the contents of the source label into the target label while preserving the
source label. If the target label does not already exist, a new label is created.

Important note
Only one instance of a label name can be used per expression; for example, | label_
format foo=bar,foo="new" would fail. The desired result could be implemented
with two expressions, one following the other, like this: | label_format foo=bar |
label_format foo="new".

We’ve looked at how the label format gives you options to create, modify, and rename labels. Additionally,
we have the drop labels command to remove labels completely. Let’s explore that expression now.

Understanding LogQL 95

Dropping labels

The drop labels expression is used to remove labels from the pipeline. For example, if we have
the user=diego, status=200, and duration=1000(ms) labels, the |drop user pipeline
would drop the user label, leaving only status and duration.

We will now take a look at more of the LogQL features, exploring formatters, metric queries, and the
UI for executing LogQL the Grafana Explorer where queries for all data sources are built.

Exploring LogQL metric queries

One of the most powerful features of Loki and LogQL is the ability to create metrics from logs. With
metric queries, you can, for example, calculate the rate of errors or the top 10 log sources with the highest
volume of logs over the last hour. This makes it perfect for creating visualizations or triggering alerts.

If we combine metric queries with the parsers and formatters we looked at earlier in this section, they
can be used to calculate metrics from sample data within a log line. For example, latency or request
size can be extracted from log data and used as a metric. These will then be available for aggregations
and the generation of new series.

Let’s now take a look at the aggregations available, namely, range vector aggregations and built-in
aggregation operators.

Range vector aggregations

The Prometheus concept of a range vector is shared by LogQL, where the range of samples is a
range of log or label values. We will discuss the range vector concept in greater detail in Chapter 5.
The selected aggregation is applied to a time interval specified as a number followed by a unit. The
following time interval units can be used:

•	 ms: Milliseconds

•	 s: Seconds

•	 m: Minutes

•	 h: Hours

•	 d: Days

•	 w: Weeks

•	 y: Years

Examples are 6h, 1h30m, 10m, and 20s.

There are two types of range vector aggregations supported by Loki and LogQL: log range aggregations
and unwrapped range aggregations. Let’s explore these in detail.

 Looking at Logs with Grafana Loki96

Log range aggregation

A log range aggregation is a LogQL query followed by a duration, for example, [10ms], with a
function applied to it to aggregate the query over the duration. The duration can be placed after the
log stream selector or at the end of the log pipeline.

Here are the aggregation functions:

Aggregation Description

rate(range) Will calculate the number of entries per second.

count_over_
time(range)

Will count the entries for each log stream within the given range.

bytes_rate(range)
Useful to detect changes in log data volume. It will calculate the
number of bytes per second for each log stream.

bytes_over_
time(range)

Useful to calculate the volume of log data. It will count the amount
of bytes used by each log stream for the given range.

absent_over_
time(range)

Useful for alerting when there are no time series and logs streams
for label combinations for a duration of time. It returns an empty
vector if the range passed to it has elements and a single element
vector with the value 1 if the range passed to it has no elements.

 Table 4.6 – Log range aggregation functions

Here are a few log range aggregation examples:

•	 To count all the log lines within the last 10 minutes for the currencyservice component:

count_over_time({component="currencyservice"}[10m])

•	 To sum the rate per second of errors by component within the last minute:

sum by (component) (rate({component=~".+service"}
|= "error" [1m]))

Unwrapped range aggregations

Unwrapped range aggregations use the LogQL unwrap function to extract a value to be used in the
aggregation. They support grouping using the by or without clause to aggregate over distinct labels.
The without aggregation removes the labels identified from the result vector while preserving all
other labels. The by aggregation drops labels that are not identified in the by clause.

Understanding LogQL 97

Here are the aggregation functions:

Aggregation Description

rate(unwrapped-
range)

Will calculate the per-second rate of the sum of all of the
values within the interval.

rate_counter(
unwrapped-range)

Will calculate the per-second rate of all the values within the
interval, treating them as counter metrics.

sum_over_time(
unwrapped-range)

Will sum of all the values within the interval.

avg_over_time(
unwrapped-range)

Will return the average of all the points within the interval.

max_over_time(range) Will return the maximum of all the points within the interval.

min_over_time(
unwrapped-range)

Will return the minimum of all the points within the interval.

first_over_time(
unwrapped-range):

Will return the first value of all the points within the interval.

last_over_time(
unwrapped-range)

Will return the last value of all the points within the interval.

stdvar_over_time(
unwrapped-range)

Will return the population standard variance of the values
within the interval.

stddev_over_time(
unwrapped-range)

Will return the population standard deviation of the values
within the interval.

quantile_over_
time(scalar,
unwrapped-range)

Will return the specified quantile of the values within
the interval.

absent_over_time(
unwrapped-range)

Useful for alerting when there are no time series and logs
streams for label combinations for a duration of time. It
returns an empty vector if the range passed to it has elements
and a single element vector with the value 1 if the range passed
to it has no elements.

 Table 4.7 – Unwrapped range aggregation functions

The sum_over_time, absent_over_time, rate, and rate_counter functions are excluded
from grouping.

 Looking at Logs with Grafana Loki98

Here are a few unwrapped range aggregation examples:

•	 To calculate the 99th percentile of the webserver container request_time excluding
any JSON formatting errors by path within the last minute:

quantile_over_time(0.99,
  {container="webserver"}
    | json
    | __error__ = ""
    | unwrap duration_seconds(request_time) [1m]) by (path)

•	 To calculate the number of bytes processed by org_id within the last minute, filtering where
the log contains the metrics string:

 sum by (org_id) (
  sum_over_time(
  {container="webserver"}
      |= "metrics"
      | logfmt
      | unwrap bytes(bytes_processed) [1m])
  )

Built-in aggregation operators

LogQL supports a subset of the built-in aggregation operators that PromQL supports. These can
be used to aggregate the element of a single vector, resulting in a new vector of fewer elements but
with aggregated values.

The following table shows some built-in range aggregation operators:

Aggregation Description

sum Will calculate the sum by the labels specified

avg Will calculate the average by the labels specified

min Will select the minimum by the labels specified

max Will select the maximum by the labels specified

stddev Will calculate the population standard deviation by the labels specified

stdvar Will calculate the population standard variance by the labels specified

count Will count the number of elements in a vector

topk Will select the largest k elements by sample value

bottomk Will select the smallest k elements by sample value

Exploring Loki’s architecture 99

sort Will return the vector elements sorted by their sample values, in ascending order

sort_desc Will return the vector elements sorted by their sample values, in descending order

Table 4.8 – Built-in range aggregation functions

Here are a few built-in range aggregation operator examples:

•	 To return the top 10 applications by the highest log throughput for the last 10 minutes by name:

topk(10, sum(rate({region="us-west1"}[10m])) by (name))

•	 To return the average rate of GET requests to the /hello endpoint for web server logs by
region for the last 10 seconds:

avg(rate(({container="webserver"} |= "GET" | json | path="/
hello")[10s])) by (region)

We have looked at how LogQL can parse different log formats. Let’s now take a look at the Loki
architecture and how Loki stores and queries the log data you send.

Exploring Loki’s architecture
Grafana Loki has a full microservices architecture that can be run as a single binary and a simple
scalable deployment to a full microservices deployment running all the components as distinct
processes. At a high level, it is made up of features that implement write, read, and store functionality,
as shown in the following diagram:

Figure 4.8 – High-level overview of Loki architecture

 Looking at Logs with Grafana Loki100

Both write and read functionality can be scaled independently to suit your particular needs and use cases.

Under the hood, Loki has the following core components:

•	 Distributor

•	 Ingester

•	 Query frontend

•	 Querier

•	 Backend services:

	� Ruler

	� Compactor

	� Query scheduler

Let’s now look at the functionality and core components in more detail:

•	 Writes: Writes for the incoming log data hit the distributor, which is responsible for data
sharding and partitioning, and sending them to the ingesters. The distributor validates each
set of streams, checking labels, timestamps, and log line sizes, then batches log stream chunks
to multiple ingesters.

The ingester writes to the write-ahead logs (WALs) for resiliency and finally into the object
storage backend.

Both the querier and ruler read the ingester to access the most recent data. The querier can
additionally access the object storage data.

•	 Reads: The query frontend is responsible for accelerating query execution, distributing large
queries across multiple queriers and ensuring retries in the event of failure.

Queriers parse the LogQL and query the underlying systems: the ingester for the most recent
data and object storage for older data. The querier de-duplicates data with the same nanosecond
timestamp, labels, and log content.

•	 Storage: The object storage is where the batched logs are stored. The compactor is responsible for
maintaining the data. It monitors the object storage, de-duplicating data and removing old logs.

•	 Backend services: The ruler evaluates queries and performs actions based on the result.
The actions can be recording rules (generating new metrics for LogQL queries) or alerts for
system events.

The alert manager is responsible for notifications and alerts triggering and being sent from the
system, but this is not included with Loki.

Tips, tricks, and best practices 101

•	 Loki index: In this chapter, so far, we have covered Loki log labels and LogQL log stream
selectors. The underlying architecture completes the picture, explaining how the distributor
shards the data. It is that sharding and subsequent storage using the label-based Loki index that
makes Loki fast and inexpensive. It also validates the importance of a good labeling strategy to
improving storage and retrieval, and essentially querying performance.

Now that we have built up a good understanding of Loki, let’s look at a few best practices and some
tips for working with Loki log data.

Tips, tricks, and best practices
In this section, we will look at a few best practices for filtering and cardinality. We will then look
at the LogQL Analyzer and LogCLI, which are tools that can help you when you are working with
Grafana Loki log data.

Here are some best practices to keep in mind:

•	 Filter first: Loki stores the raw log in object storage as compressed chunks. Because of this, it
is important, from a speed point of view, to filter early. Processing complex parsing on smaller
datasets will increase the response time.

•	 Cardinality: High cardinality in Loki can be very detrimental. It is important to design your
Loki labels well. Anything that has a lot of variable data in it is a bad idea as that will multiply
the number of log streams and therefore storage chunks by that factor. Thinking of them as
a locator rather than a content descriptor helps. You can always extract labels from log lines
with the range of parsers available. Some examples of good labels (targeted with limited values)
are the following:

	� namespace

	� cluster

	� job

	� app

	� instance

	� filename

Some examples of poor labels (often vague with unlimited values) are the following:

	� userid

	� traceid

	� path

	� status code

	� date

 Looking at Logs with Grafana Loki102

Now, let’s take a closer look at the advantages offered by using the LogQL Analyzer and LogCLI:

•	 LogQL Analyzer: The LogQL Analyzer provides an interface on the Grafana website for you to
practice your LogQL queries. You can view detailed explanations of the actions implemented by
your query on a sample log entry. Head over to https://grafana.com/docs/loki/
latest/query/analyzer/ to try it out. Let’s take a look at the Loki LogQL Analyzer:

Figure 4.9 – Loki LogQL Analyzer

The explanations provided by the LogQL Analyzer are far more detailed than the Explain
query feature in the query builder, so it’s worth checking out while you are learning LogQL.

•	 Using LogCLI: For command-line lovers everywhere, Grafana Loki comes with a command-
line interface called LogCLI that allows you to do the following at your terminal:

	� Query your logs

	� Evaluate metric queries for a single point in time

	� Identify Loki labels and obtain stats about their values

	� Return log streams for a time window with a label matcher

This is great if you need access to the power of LogQL without leaving the comfort of your own console.

https://grafana.com/docs/loki/latest/query/analyzer/
https://grafana.com/docs/loki/latest/query/analyzer/

Summary 103

Full setup documentation and command references can be found here: https://grafana.com/
docs/loki/latest/query/. You can download the binary from the Loki releases page on GitHub.

We will now wrap up this chapter with a reminder of what you have learned.

Summary
In this chapter, we have taken a look at Loki, exploring the log ingest format and the importance of
log labels. We then started looking at the comprehensive features of LogQL, the query language of
Loki, and how we can select log streams and then filter, parse, format, and transform log lines. These
techniques will be invaluable when working with Loki to build dashboards in Chapter 8. Then, we
looked at the Loki architecture to get an understanding of what’s going on behind the scenes. We
also explained how our data is stored and how Loki can be scaled to increase performance. Lastly, we
reviewed some tips and best practices that can help you improve your experience with Loki.

In the next chapter, we’ll move on from logs to explore metrics and Prometheus, where Loki took
its original inspiration from.

https://grafana.com/docs/loki/latest/query/
https://grafana.com/docs/loki/latest/query/

5
Monitoring with Metrics Using

Grafana Mimir and Prometheus

This chapter will introduce the Prometheus query language (PromQL). Like LogQL, PromQL can
be used to select and filter metrics streams and process numeric data with operators and functions,
enabling you to build quick and efficient queries that will support establishing an observable system. We
will also explore and compare the various protocols that can be used to output metrics from systems.
Finally, we will explore the architecture of Prometheus and Mimir to understand how Mimir fills
the need for a highly scalable system.

We will cover the following main topics in this chapter:

•	 Updating the OpenTelemetry collector for metrics

•	 Introducing PromQL

•	 Exploring data collection and metric protocols

•	 Understanding data storage architectures

•	 Using exemplars in Grafana

Technical requirements
In this chapter, you will need the following:

•	 The OpenTelemetry demo application set up in Chapter 3

•	 The Grafana Cloud instance set up in Chapter 3

•	 Docker and Kubernetes

Monitoring with Metrics Using Grafana Mimir and Prometheus106

You'll find the code for this chapter in the GitHub repository at https://github.
com/PacktPublishing/Observability-with-Grafana/tree/main/chapter5.
You'll find the Code in Action videos for this chapter at https://packt.link/
A2g91.

Updating the OpenTelemetry demo application
For this chapter, we have prepared an updated version of OTEL-Collector.yaml, which will
add additional labels to metrics for you to explore. Full details on this process are available from
the Git repository in the README.md file. This process will apply the new version of the collector
configuration to your demo application:

1.	 Using Helm, we will apply the updated configuration file to our Kubernetes cluster:

$ helm upgrade --version '0.73.1' --values chapter5/OTEL-
Collector.yaml --values OTEL-Creds.yaml owg open-telemetry/
opentelemetry-collector
NAME: owg-otel-collector
LAST DEPLOYED: Sun Mon 19 12:42:36 2023
NAMESPACE: default
STATUS: deployed
REVISION: 2
…

2.	 Validate upgrade was successful:

$ kubectl get pods --selector=component=standalone-collector
NAME  READY   STATUS    RESTARTS   AGE
owg-otel-collector-594fddd656-tfstk   1/1     Terminating   1
(70s ago)   2m8s
owg-otel-collector-7b7fb876bd-
vxgwg   1/1     Running       0             3s

This new configuration adds the collection of metrics from the Kubernetes cluster and the OpenTelemetry
collector. The configuration also does some necessary relabeling.

Now that we are collecting more data from our local demo application, let’s introduce the language
used to query that data.

Introducing PromQL
Prometheus was initially developed by SoundCloud in 2012; the project was accepted by the Cloud
Native Computing Foundation in 2016 as the second incubated project (after Kubernetes), and version
1.0 was released shortly after. PromQL is an integral part of Prometheus, which is used to query stored
data and produce dashboards and alerts.

https://github.com/PacktPublishing/Observability-with-Grafana/tree/main/chapter5
https://github.com/PacktPublishing/Observability-with-Grafana/tree/main/chapter5
https://packt.link/A2g91
https://packt.link/A2g91

Introducing PromQL 107

Before we delve into the details of the language, let’s briefly look at the following ways in which
Prometheus-compatible systems interact with metrics data:

•	 Ingesting metrics: Prometheus-compatible systems accept a timestamp, key-value labels, and
a sample value. As the details of the Prometheus Time Series Database (TSDB) are quite
complicated, the following diagram shows a simplified example of how an individual sample
for a metric is stored once it has been ingested:

Figure 5.1 – A simplified view of metric data stored in the TSDB

•	 The labels or dimensions of a metric: Prometheus labels provide metadata to identify data of
interest. These labels create metrics, time series, and samples:

	� Each unique __name__ value creates a metric. In the preceding figure, the metric is app_
frontend_requests.

	� Each unique set of labels creates a time series. In the preceding figure, the set of all labels
is the time series.

	� A time series will contain multiple samples, each with a unique timestamp. The preceding
figure shows a single sample, but over time, multiple samples will be collected for each
time series.

	� The number of unique values for a metric label is referred to as the cardinality of the label.
Highly cardinal labels should be avoided, as they significantly increase the storage costs of
the metric.

The following diagram shows a single metric containing two time series and five samples:

Figure 5.2 – An example of samples from multiple time series

In Grafana, we can see a representation of the time series and samples from a metric. To do this,
follow these steps:

1.	 In your Grafana instance, select Explore in the menu.

2.	 Choose your Prometheus data source, which will be labeled as grafanacloud-<team>-
prom (default).

Monitoring with Metrics Using Grafana Mimir and Prometheus108

3.	 In the Metric dropdown, choose app_frontend_requests_total, and under Options, set Format
to Table, and then click on Run query. This will show you all the samples and time series in
the metric over the selected time range. You should see data like this:

Figure 5.3 – Visualizing the samples and time series that make up a metric

Now that we understand the data structure, let’s explore PromQL.

An overview of PromQL features

In this section, we will take you through the features that PromQL has. We will start with an explanation
of the data types, and then we will look at how to select data, how to work on multiple datasets, and
how to use functions. As PromQL is a query language, it’s important to know how to manipulate data
to produce alerts and dashboards.

Data types

PromQL offers three data types, which are important, as the functions and operators in PromQL will
work differently depending on the data types presented:

•	 Instant vectors are a data type that stores a set of time series containing a single sample, all
sharing the same timestamp – that is, it presents values at a specific instant in time:

Introducing PromQL 109

Figure 5.4 – An instant vector

•	 Range vectors store a set of time series, each containing a range of samples with different timestamps:

Figure 5.5 – Range vectors

Monitoring with Metrics Using Grafana Mimir and Prometheus110

•	 Scalars are simple numeric values, with no labels or timestamps involved.

Selecting data

PromQL offers several tools for you to select data to show in a dashboard or alert, or just to understand
a system’s state. Some of these are described in the following table:

Name Syntax Operators Scope

Metric selector metric_name Selects a metric

Range selector [5m]
ms, s, m, h, d, w,

and y Selects samples

Label selector
{label="value",
foo!="bar"}

=, !=, =~,
and !~

Selects and filters time series
using labels

Offset modifier offset 5m
ms, s, m, h, d, w,

and y

Offsets the evaluation time
from the current point in time

by the specified amount

@ modifier @ 1686561123 @

Sets the evaluation time to
a specific time for instant or
range vectors. This modifier

uses epoch timestamps

Table 5.1 – The selection operators available in PromQL

In addition to the operators that allow us to select data, PromQL offers a selection of operators to
compare multiple sets of data.

Operators between two datasets

Some data is easily provided by a single metric, while other useful information needs to be created
from multiple metrics. The following operators allow you to combine datasets.

Name Syntax Operators Scope

Arithmetic operators a + b
+, -, *, /, %,
and ^

Arithmetic operations on
instant vectors and scalars;
scope depends on the data
type of a and b. It’s important
to note that vectors are
matched on all labels.

Introducing PromQL 111

Comparison operators a == b
==, !=, >, <, >=,
and <=

Filters instant vectors
and scalars based on the
comparison; scope depends
on the data type of a and b.

Aggregation operators
sum by
(label) (a)

sum(), min(),
max(), avg(),
group(),
stddev(),
stdvar(),
count(),
count_
values(),
bottomk(),
topk(),
and quantile()

Aggregation operations on a
single instant vector.

These operators offer the
without and by clauses
to modify how results are
grouped by label.

One-to-one
vector matching

a + on b
on()
and ignoring()

Modifies vector matching
to specific labels (on) or
ignoring a label (ignoring)

One-to-many/
many-to-one vector
matching using
group modifiers

a + group_
left b

group_left()
and group_
right()

Modifies the vector matching
in cases of many-to-one or
one-to-many matching.

Grouping can use a label
list to include a label in
the results.

Many-to-many vector
matching using
logical operators

a and b
and, or,
and unless

Modifies vector matching
in cases of many-to-many
matching, based on logical
operations between labels
and the values of a and b

Table 5.2 – The comparison operators available in PromQL

Vector matching is an initially confusing topic; to clarify it, let’s consider examples for the three cases
of vector matching – one-to-one, one-to-many/many-to-one, and many-to-many.

Monitoring with Metrics Using Grafana Mimir and Prometheus112

By default, when combining vectors, all label names and values are matched. This means that for each
element of the vector, the operator will try to find a single matching element from the second vector.
Let’s consider a simple example:

•	 Vector A:

	� 10{color=blue,smell=ocean}

	� 31{color=red,smell=cinnamon}

	� 27{color=green,smell=grass}

•	 Vector B:

	

	� 5{color=red,smell=cinamon}

	� 2{color=blue,smell=powder}

•	 Vector B:

	� 20{color=blue,smell=ocean}

	� 8{color=red,smell=cinamon}

	� 14{color=green,smell=jungle}

•	 A{} + on (color) group_left B{}:

	� 27{color=blue,smell=ocean}

	� 13{color=red,smell=cinamon}

	� 22{color=blue,smell=powder}

Now, we have two different elements in vector A with color=blue. The group_left command
will use the labels from vector A but only match on color. This leads to the third element of the
combined vector having a value of 22, when the item matching in vector B has a different smell. The
group_right operator will behave in the opposite direction.

The final option is a many-to-many vector match. These matches use the logical operators and,
unless, and or to combine parts of vectors A and B. Let’s see some examples:

•	 Vector A:

	� 10{color=blue,smell=ocean}

	� 31{color=red,smell=cinamon}

	� 27{color=green,smell=grass}

•	 Vector B:

	� 19{color=blue,smell=ocean}

	� 8{color=red,smell=cinamon}

	� 14{color=green,smell=jungle}

•	 A{} and B{}:

	� 10{color=blue,smell=ocean}

	� 31{color=red,smell=cinamon}

Monitoring with Metrics Using Grafana Mimir and Prometheus114

•	 A{} unless B{}:

	� 27{color=green,smell=grass}

•	 A{} or B{}:

	� 10{color=blue,smell=ocean}

	� 31{color=red,smell=cinamon}

	� 27{color=green,smell=grass}

	� 14{color=green,smell=jungle}

Unlike the previous examples, mathematical operators are not being used here, so the values of the
elements are the values from vector A, but only the elements of A that match the logical condition
in B are returned.

Now that we understand the operators, let’s quickly introduce PromQL functions before we look at a
practical example of writing PromQL. We will explore a practical example of their use in the Writing
PromQL section.

Functions

PromQL offers about 60 different functions. The full list of functions can be found on the Prometheus
website: https://prometheus.io/docs/prometheus/latest/querying/functions.

Now that we’ve looked at the functions available in PromQL, let’s explore writing a PromQL query.

Writing PromQL

While technical descriptions of a language are useful for reference, this section will follow the process
of building a query so that the language can be seen in context. Having your Grafana instance open
in Explorer will help you follow along. In the following sections, we’ll write practical examples using
the selectors, operators, and modifiers we introduced in the previous section.

Metric selection

When we looked at metric labels, we saw how you can select metrics in PromQL with the metric_
name{} syntax. This can be typed directly into a query using the Code button in the top-right corner
of the query panel, or as we did earlier in the Introducing PromQL section, you can use Builder.
In Builder, you will see the PromQL in the query panel below your selection, it should currently
say app_frontend_requests_total. If it does not, use the Metric dropdown to select this
metric. You should see results like in Figure 5.3. This method of selection returns an instant vector,
as described in Figure 5.4.

https://prometheus.io/docs/prometheus/latest/querying/functions

Introducing PromQL 115

The syntax is similar for returning a range vector, as described in Figure 5.5. We just need to add the
range we are interested in – metric_name[range]. The range must include the time units, which
can range from milliseconds (ms) to years (y). It’s important to note that queries using range vectors
need to be run with a query type of Instant. If a query type of Range or Both (the default) is selected,
then you will receive an error. Here is an example of the error you will see:

Figure 5.6 – An error when using a range vector in a range query

Time series selection and operators

As time series are made up of a unique set of labels, we can expand our query to only look at specific
data – for example, only requests that target the cart API of the OpenTelemetry demo application. The
following steps will filter our query to show only the requests that target the /api/cart endpoint:

1.	 Switch to the Table view at the top right of the Results panel:

Figure 5.7 – Using the Table view in the PromQL results

Monitoring with Metrics Using Grafana Mimir and Prometheus116

2.	 Hover your mouse over a value for the target; you should see this icon:

Figure 5.8 – Filter for value

3.	 Click on the plus icon, and you will see that we have a new label filter and our PromQL now
says the following: app_frontend_requests_total{target="/api/cart"}.

4.	 Let’s only show the GET method requests as well; you can do this by using the filters selector
in the query panel, or the table in the Results panel. Like LogQL, we have different operators
available to filter labels. The operators we can use are as follows:

	� =: Checks for an exact match of a string. For example, target="/api/cart" will match
only when the target label is /api/cart/.

	� !=: Checks for anything other than an exact match. target!="/api/cart" will match
everything except when the target label is /api/cart/.

	� =~: Checks for a regex match. For example, target=~"/api/.*" will match when the
target label starts with /api/. This includes /api/cart/, /api/horse/, and /
api/cart/foo/bar/.

	� !~: Checks for anything other than a regex match. target!~"/api/.+" will match
when the target label is /api/ or /checkout/ but will not match /api/cart/, /
api/horse/, and /api/cart/foo/bar/.

While we’re looking at the table, you should also see a column titled __name__; this is a special
label that can be used as an alternative during search, for instance, metric_name{} is equivalent
to {__name__="metric_name"}.

We’ve now selected data and filtered it to the endpoint we’re interested in, but a raw count of the requests
that were made is difficult to interpret. Let’s look at how to transform this count into something more
useful, using a function.

Functions, aggregation, and operators

PromQL is a nested language, so to apply a function to a selected set of data, you simply enclose the
data selection with the function. Our query so far looks like this:

app_frontend_requests_total{target="/api/cart",method="GET"}

Introducing PromQL 117

This query returns the count of requests at each sample point. For most purposes, we are more interested
in the rate of requests that hit that endpoint. This will allow us to answer questions such as what the
peak rate is, or whether the rate is higher now or lower than at another point in time. The function to
get this information is the rate() function. We can plug our current query into the function like this:

rate(app_frontend_requests_total{target="/api/cart",method="GET"}[$__
rate_interval])

The rate function takes an input of a range vector, so we have added the special [$__rate_interval]
time variable. This is a Grafana feature that instructs Grafana to pick an appropriate interval, based
on the scrape interval of the data source we have selected. This feature simplifies the technicalities
of selecting the correct rate interval. A similar process is used for aggregation and other operators.

Now that we know how to get the rate of requests to the /api/cart endpoint, let’s have a look at
another example query.

HT TP success rate

A common Service Level Indicator (SLI) for a web application is the success rate of HTTP requests.
In plain language, this is the number of successful HTTP requests/total HTTP requests. We will discuss
the process of choosing good SLIs in Chapter 9.

A PromQL query like the following will produce the success rate SLI for the app_frontend_
requests_total metric:

sum by (instance) (rate(
   app_frontend_requests_total{status=~"2[0-9]{2}"}[5m]))
/
sum by (instance) (rate(app_frontend_requests[5m]))

We can break this code down as follows:

•	 Using app_frontend_requests_total{status=~"2[0-9]{2}"}[5m], we select
samples of the app_frontend_requests metric that have the status label, with a
value between 200 and 299. This uses regex to select the label range, and it is a range vector
over a five-minute range. For those of you familiar with regex, Grafana requires the escaping
of backslashes.

•	 The rate() function calculates the per-second average rate of successful requests. This
function returns an instant vector.

•	 The previous functions have left all data grouped into the initial time series from it. However,
for this query, we are not interested in the method, target, or any other labels. Instead, we are
interested in knowing whether a particular instance of the application is failing, as a failing
instance could be masked by many good instances. To achieve this, we use the sum by
(instance) () aggregation.

Monitoring with Metrics Using Grafana Mimir and Prometheus118

•	 The last line of the query mirrors the first line but removes the label selector, so we get the
total requests.

•	 Finally, we use the arithmetic operator (/) to divide the successful requests by the total requests.
The output of this query gives us a number that will be close to 1 when most requests are
successful; as we see failures, this will trend downward to 0 when every request fails.

Another common item to measure is the duration of requests made to the service. Durations are
frequently represented as histogram data, and PromQL offers us many statistical tools we can use to
understand our user’s experience. Let’s look at the following query:

histogram_quantile(
    0.95, sum(
        rate(
            http_server_duration_milliseconds_bucket{}[$__rate_
interval])
        ) by (le)
    )

The http_server_duration_milliseconds_bucket metric is a histogram, which is
indicated by the naming convention of _bucket. The histogram_quantile() function takes
this histogram data and gives us the 95th percentile duration. This is calculated using the le (less
than or equal to) label in the histogram data. While it might be tempting to use averages for this kind
of calculation, percentiles offer us a more nuanced understanding of the data. The 95th percentile
means that 95% of samples have a duration less than or equal to the value returned.

Grafana offers several helpful functions to understand a query:

•	 Above the query component is a slider titled Explain. Toggling this on will present a step-by-
step breakdown of what a query is doing.

•	 Also, above the query component is a button titled Kick start your query. Clicking this will
give a number of starter queries.

•	 Below the Options section is the query Inspector. This will give detailed information about
the query, such as its total request time and the data returned.

Exploring data collection and metric protocols 119

Here is a screenshot showing the location of these options:

Figure 5.9 – Helpful functions for queries

Hopefully, you have a good grasp of the fundamentals of PromQL now and know what resources you
have available to learn more. Whilst querying data is a major part of the day-to-day work in Grafana,
it is good to have an understanding of how metrics data is collected.

The OpenTelemetry demo that has been set up also produces metrics from the single-node Kubernetes
cluster, the kubelet instance on the node, and the underlying host. We encourage you to explore these
metrics and see what you can find.

We’ve seen how to query the data stored in Prometheus-compatible systems. Now, let’s see how to
collect data from your services.

Exploring data collection and metric protocols
In Chapter 2, we introduced four common protocols in use to collect data from today’s software –
StatsD and DogStatsD, OpenTelemetry Protocol (OTLP), and Prometheus. We also introduced
Simple Network Management Protocol (SNMP), which is used in the networking and compute
spaces. In this section, we’ll explore some of the features of these protocols.

There are two methods that metrics can be collected, push and pull. In a push protocol, the application
or infrastructure must be configured with a destination to send metrics. In a pull protocol, the
application or infrastructure is configured to expose metrics for another service to request. Both
methods have advantages and disadvantages, it is also important to be aware of the potential security
implications. In the following subsections, let’s delve into each protocol.

Monitoring with Metrics Using Grafana Mimir and Prometheus120

StatsD and DogStatsD

We have grouped StatsD and DogStatsD together, as they are identical for the purposes of what we
are discussing in this chapter.

StatsD is a push protocol, so each application producing metrics needs to be aware of the destination
for these metrics. StatsD uses User Datagram Protocol (UDP) over port 8125 in its default settings.
These are things to consider when using StatsD:

•	 StatsD uses UDP for transmission. This favors the speed of transmission over the guarantee
of delivery.

•	 The protocol offers no support for authentication between the application and the receiving
service. Depending on the environment, this could be a security concern.

It’s worth noting that common practice, especially in Kubernetes, is to expose the StatsD receiver on
localhost:8125, thus limiting exposure and offering a standard for applications to use.

StatsD has quite wide support in data collection agents, usually via contributed receivers. The
OpenTelemetry collector, FluentBit, Vector, Beats, Telegraf, and the StatsD daemon all support the
protocol. Prometheus offers an exporter that takes StatsD format metrics and exposes them as a
Prometheus scrape endpoint; this is recommended as an intermediate step to a full Prometheus migration.

DogStatsD is less well supported than the StatsD format it is derived from; it provides an expanded
set of metrics to StatsD. The data collection agents that natively support DogStatsD are Vector and
Datadog’s own agent. The OpenTelemetry collector currently has no support, but there are discussions
in progress on adding this, and Datadog is an active participant in the OpenTelemetry project, so this
is likely to change.

OTLP

OTLP is also a push protocol, so destination knowledge is necessary. Like StatsD, OTLP is often
implemented using the standard receiving endpoint of localhost:4317 (Google Remote
Procedure Call (gRPC)) or localhost:4318 (HTTP). OTLP supports both gRPC and HTTP
and offers support for the authentication and acknowledgment between the client and server. OTLP
also offers several quality-of-life items, such as server-controlled throttling and GZIP compression.

OpenTelemetry is in very active development, so this information is liable to change. As the project is
a collaboration between several major vendors, agents from those vendors are increasingly supporting
OTLP metrics. While other collection tools do not support OTLP input, the OpenTelemetry collector
supports input from many sources. This means the OTEL collector is ideal for supporting a mixed
estate. The vector collection agent also offers this versatility, and most things said about the OTEL
collector can be applied to it as well.

Understanding data storage architectures 121

Prometheus

Unlike StatsD and OTLP, Prometheus is a pull protocol. A client application needs to be configured to
serve metrics on an endpoint, and then a Prometheus-compatible scraper is configured to collect those
metrics at specific intervals. These metrics are commonly exposed on the /metrics endpoint, although
some frameworks implement this differently (e.g., /actuator/Prometheus for Spring Boot).

It may seem that using a pull configuration increases the configuration steps required. However, using
a pull method does reduce the information needed by the application of its running environment.
For example, the application configuration would remain the same if 0 or 10 clients read its metrics.
This pull pattern also matches very closely with the pattern of liveness and readiness endpoints for
applications in Kubernetes.

To assist in the server configuration, Prometheus offers a wide range of service discovery options,
across many different platforms, including Kubernetes, DNS, and Consul. These discovery options
include matching a specific name and collecting data if a label is present, and this range of options
allows for quite complex architectures where needed.

The Prometheus format has good collector support; Prometheus, the OTEL Collector, Grafana Agent,
Vector, Beats, and Telegraf all support the collection of these metrics.

SNMP

SNMP is more complex than the other protocols discussed here, as it includes a lot of functionality
for the management and monitoring of network-connected devices, such as switches and physical
servers. The monitoring aspect of SNMP is a pull protocol, where a manager instance connects to agent
software on devices and pulls data. There is additional functionality in SNMP traps, which allow a
device to inform the manager about items as a data push. These traps are often of interest to track
metrics from. It is worth noting that security can be a concern using SNMP, depending on how it is
configured. SNMP offers a significant attack surface if configured incorrectly.

SNMP is very well supported, as the protocol has been active since 1988 and has good support from
hardware vendors.

We’ve now covered querying data using PromQL, and how data is produced and collected, so let’s
now explore how Grafana stores metric data.

Understanding data storage architectures
Time Series Databases (TSDBs) are ideally suited to handle metric data, as metrics need to record
data at specific points in time, and TSDBs are structured to make this data easy to record and query.
There are several TSDBs available, but as this book is focused on Grafana, we will only discuss
Graphite, Prometheus, and Mimir in this section. This is aimed at giving you an understanding of
the structure of data as it is stored, as well as an overview of how Mimir allows organizations to scale
their data beyond the capabilities of Graphite and Prometheus.

Monitoring with Metrics Using Grafana Mimir and Prometheus122

Graphite architecture

Graphite has several components; we will discuss the storage component Whisper here. The Whisper
TSDB uses a flat file structure, where each unique time series is a fixed-size file. This size is determined
by the configuration of resolution and retention configured in Whisper. Gathering this data for a search
requires each of these files to be read, which quickly becomes expensive in disk I/O. As there are no
inbuilt items that manage data redundancy, Graphite is also unable to guarantee that data written to
it will be protected from loss or corruption.

However, the protocols introduced by Graphite to write data are still relevant although aging, so
Grafana Cloud offers a Graphite ingest endpoint and query endpoint for teams that are already using
this technology.

Graphite was an early example of metrics, introduced in 2008; the limitations of query speed and data
integrity outlined previously led to the creation of Prometheus, which we will discuss next.

Prometheus architecture

Prometheus stores data in an immutable block, which covers a fixed time range (by default, two hours).
Inside a block are several chunks, which are capped at 512 MB; these files contain the sampled value.
Alongside these chunks are metadata files – index and meta.json. The index file contains a
table that records the labels contained in the block and a reference to the position of all samples, with
these labels in the associated chunks. Highly cardinal metric labels cause a huge increase in the size
of the index file and degrade read performance. The meta.json file contains metadata such as
the min and max timestamp contained in the block and stats on the samples, series, and chunks
contained and the version used.

To process data as it’s received, Prometheus also uses a head block, which is similar to the block
used for storage, but it allows writes. This allows for the collection of a full two-hour block of data, ready
for the index and metadata to be created when the block is finished. This process includes functionality
to persist data on disk to prevent data loss. The head block consists of a Write-Ahead Log (WAL)
that contains the raw data as it is received and a meta.json file that records what has been received.
When the end of the two-hour time block is reached, a new head block is created, and the old
head block is transformed into a standard block, with the creation of an index and chunks.

The following figure shows the structure of a fictional Prometheus TSDB, with the blocks, chunks,
index, and metadata files and the WAL highlighted:

Understanding data storage architectures 123

Figure 5.10 – The Prometheus TSDB

The implementation of the Prometheus TSDB in Prometheus itself is limited, as it uses local storage,
which is not clustered or replicated natively. While it is possible to improve the aspects of this, there
is a fundamental limitation of only a single node carrying out reads and writes. These limitations are
perfectly acceptable in the correct circumstances. However, when scaling the TSDB to accept many
active time series, changes are needed. Handling these situations is what Mimir was designed to do.

Mimir architecture

Mimir uses the same fundamental TSDB storage structures. However, unlike Prometheus, Mimir
natively supports object stores for block files. The supported stores include Amazon S3, Google Cloud
Storage, Microsoft Azure Storage, and OpenStack Swift.

Monitoring with Metrics Using Grafana Mimir and Prometheus124

By leveraging object storage, which is massively scalable, Mimir can handle the scaling problem
experienced with Prometheus by adding new instances of the data-ingesting service. Mimir separates
the incoming streams of data to a specific per-tenant TSDB, and each of these is assigned to an instance
of the ingesting service. Like Prometheus, data is written to memory and the WAL by the ingester, and
when the block is complete, it is written to object storage. To provide resilience Mimir will write each
of these streams to multiple ingesters, and a compactor service will handle the process of merging the
redundant blocks in object storage and removing duplicate samples.

Like the horizontal scalability of the write pathway, Mimir also scales the read pathway. It does this
by splitting an incoming query into shorter time ranges. Then, it distributes these smaller units of the
query to multiple querier instances. By doing this, Mimir again leverages the benefits of the underlying
object storage for a quick return of data.

The following diagram shows the read and write pathways for Mimir:

Figure 5.11 – Mimir architecture

Metrics show us aggregated data, such as the total count of requests. It is helpful when exploring an
odd metric value to be able to look at an example. In applications that are instrumented with traces
and metrics, exemplars allow us to record a sample trace in our metric data. Let’s see this capability
in action.

Using exemplars in Grafana 125

Using exemplars in Grafana
Exemplars are functions in Grafana that allow us to pivot from an aggregated view of the system, given
by metrics, to a detailed view of a single request, given by traces. Exemplars need to be configured at
the collection layer and then sent to the storage layer.

When they are available, you can view exemplars by doing the following:

1.	 Open Options under the query, and toggle the Exemplars slider:

Figure 5.12 – The Exemplars toggle

2.	 Exemplars will appear as stars on the metrics chart:

Figure 5.13 – An exemplar in metrics

Hovering over an individual exemplar will expand on the metrics data by showing information
from the exemplar trace in the metrics view. We will explain these fields in more detail in
Chapter 6, but some notable fields are the name and version of the process runtime and
span_id, which would not usually be available in a purely metric view:

Monitoring with Metrics Using Grafana Mimir and Prometheus126

Figure 5.14 – Exemplar information

Summary 127

3.	 From an exemplar, you can also pivot from viewing metric data to looking at the trace in
question by clicking on the Query with Tempo (Tempo) button:

Figure 5.15 – Opening an exemplar in Tempo

We’ll discuss the details of tracing in more detail in Chapter 6, but this should give you a good
introduction to using this kind of data in your metrics.

Summary
In this chapter, we explored metrics in detail. We saw all the operators available in PromQL and wrote
two queries using the language. With that foundation of querying knowledge, we looked at the tools
available to collect data and the various protocols with which applications can share data. We then
looked at the architecture for Prometheu, and saw how Mimir takes the concepts of Prometheus and
turns them into a highly scalable data processing tool, able to meet the needs of organizations of any
size. Our final exploration was of Exemplars, giving us a concrete data example to add context to the
aggregated data seen in metrics.

The next chapter will explore how traces work in Grafana Tempo, which will show you how powerful
the use of exemplars and logging trace and span information can be to create a truly observable system
for your organization’s customers.

6
Tracing Technicalities with

Grafana Tempo

Grafana Tempo is the third telemetry storage tool from Grafana that we’ll discuss; it provides the
capability to store and query trace data. This chapter will introduce the Tempo query language
(TraceQL). TraceQL can be used to select and filter traces generated by your applications to gather
insights from across traces; the language is very similar to LogQL and PromQL but tailored to trace
data. In this chapter, we will explore the major tracing protocols and how they can be used to output
traces from applications; this will help you make informed choices on which protocol to use in an
application, or which protocols to support when collecting data. We’ll then explore the architecture
of Tempo to understand how it can fulfill the need for a scalable platform for tracing.

We will cover the following main topics in this chapter:

•	 Introducing Tempo and the TraceQL query language

•	 Exploring tracing protocols

•	 Understanding the Tempo architecture

Technical requirements
In this chapter, you will use the demo application and Grafana Cloud instance (set up in
Chapter 3). You'll find the code for the chapter in the GitHub repository at https://github.
com/PacktPublishing/Observability-with-Grafana/tree/main/chapter6.
You'll find the Code in Action videos at https://packt.link/fJVXi.

Updating the OpenTelemetry Demo application
For this chapter, we have provided an updated OTEL-Collector.yaml with additional tracing
configuration. This updated configuration is in the GitHub repository in the chapter6 directory.
Full details on the update process are available from the GitHub repository in README.md.

https://github.com/PacktPublishing/Observability-with-Grafana/tree/main/chapter6
https://github.com/PacktPublishing/Observability-with-Grafana/tree/main/chapter6
https://packt.link/fJVXi

Tracing Technicalities with Grafana Tempo130

To apply this updated configuration to the OpenTelemetry Collector, follow these steps:

1.	 Upgrade the Collector with Helm:

$ helm upgrade --version '0.73.1' --values chapter6/OTEL-
Collector.yaml --values OTEL-Creds.yaml owg open-telemetry/
opentelemetry-collector
NAME: owg-otel-collector
LAST DEPLOYED: Sat Aug 19 12:42:36 2023
NAMESPACE: default
STATUS: deployed
REVISION: 4
…

2.	 Validate that the upgrade was successful:

$ kubectl get pods --selector=component=standalone-collector
NAME  READY   STATUS    RESTARTS   AGE
owg-otel-collector-594fddd656-tfstk   1/1     Terminating   1
(70s ago)   2m8s
owg-otel-collector-7b7fb876bd-
vxgwg   1/1     Running       0             3s

Your traces will now have more labels, and will also produce service graphs and span metrics.

Now that our local installation is updated, let’s begin by exploring the third query language, TraceQL.

Introducing Tempo and the TraceQL query language
Tempo and TraceQL are the newest of the tools and query languages we will explore in depth in this
book. Like LogQL, TraceQL was built using PromQL as an inspiration and offers developers and
operators a familiar set of filtering, aggregation, and mathematical tools that aid in the observability
flow between metrics, logs, and traces.

Let’s have a quick look at how Tempo sees trace data:

•	 Trace collection: Introduced in Chapter 2, a trace (or distributed trace) is a collection of data
that represents a request propagating through a system. Traces are often collected from multiple
applications. Spans are sent by each application to some form of collection architecture and,
ultimately, to Tempo for storage and querying.

•	 Trace fields: The following diagram introduces a simplified structure of a trace, similar to the
simplified structure of logs, seen in Chapter 4, and traces, seen in Chapter 5:

Introducing Tempo and the TraceQL query language 131

Figure 6.1 – A simplified view of a trace containing four spans

Back in Chapter 2, we introduced the common fields of a trace. In the preceding figure, we can
see that all four spans have the same trace_id, which is the unique identifier of the whole
trace. Each span has a unique identifier, the span_id. Each span also records where it came
from, using the parent_id field. Finally, the start and end times are recorded. This simplified
view does exclude several of the fields seen in the OpenTelemetry Protocol (OTLP), Zipkin,
and Jaeger, which are used to capture a lot of contextual information. We will discuss these
later in this chapter.

Now that we’ve seen the structure of trace data, let’s now explore the Tempo interface and how we
can query data.

Exploring the Tempo features

In this section, we will introduce the major features of Tempo, the tracing platform available in
Grafana, and its query language, TraceQL. In Chapters 4 and 5, we introduced the LogQL and PromQL
languages, which focus on being able to select log or metric data and offer detailed functionality to
perform a powerful analysis of the selected data. Currently, PromQL only offers the ability to select
trace data. While there are powerful tools to select this data, there are no tools to perform an analysis.
Such functionality is an eventual aim for the product, but we wanted to highlight the current state of
Tempo at v2.3.x.

Let’s begin by exploring the user interface for Tempo and how it represents trace data.

Tracing Technicalities with Grafana Tempo132

The Tempo interface

The main view used to explore data in Tempo is split into two parts, the query editor, and the trace
view. In the following screenshot, the query editor is on the left and the trace view is on the right.
When you first enter the view, you will only see the query editor. The trace view is opened when a
trace ID or span ID is clicked on:

Figure 6.2 – The query editor (left) and the trace view (right)

The results panel is contextual. If we use TraceQL to run a search, it will return a list of traces and spans
that match; this is shown on the left in the preceding screenshot. However, if we search for a specific
trace ID, we will be shown the trace view on the right, where we can explore the spans in the trace.

Introducing Tempo and the TraceQL query language 133

While we are examining the query panel, let’s look at two of the different search modes we can use,
as shown here:

Figure 6.3 – Search modes

The two search modes shown in the preceding screenshot are as follows:

•	 Basic Search mode: Here, you are presented with drop-down menus to select the traces you
are interested in. This is especially useful for people who are new to Tempo and want to get
data quickly, but we will not explore this search mode in this book. Be aware that this mode is
due to be deprecated in Grafana 10.3.

•	 TraceQL mode: This allows you to use TraceQL to search in a very granular way for the data
you need. This is the default search mode.

As well as these, three search modes are available:

•	 Loki Search mode: This should be familiar to you from Chapter 4; it is available in Tempo, so
you can pivot between logs containing trace and span IDs and a full trace view very quickly.

•	 JSON File mode: This allows for a trace saved in the JSON format to be imported and viewed
directly. Combined with the export functionality, this allows for the simple preservation and
sharing of interesting traces. Exploring the data in an exported JSON file is a good exercise for
understanding the underlying data structures used in tracing.

•	 Service Graph mode: One of the most powerful features of collecting distributed traces is
the ability to visualize the connections between those services. This tool gives anyone a clear
graphical representation of how applications in a system communicate with each other. This
functionality leverages metrics and traces together to represent a system’s current state. The
tool will also indicate erroring requests in red and successful requests in green.

Tracing Technicalities with Grafana Tempo134

The following screenshot shows the default view of a service graph:

Figure 6.4 – Service graphs

As well as representing the connections between services, the preceding screenshot shows the request
rates and average latency of the responses. Above the service graph, the Requests, Errors, and Duration
(RED) metrics are shown. We will discuss these metrics in greater detail in Chapter 9.

At the time of writing, this aspect of OpenTelemetry and Tempo is under active development, and
the authors are looking forward to the features that are coming.

Introducing Tempo and the TraceQL query language 135

Now that we have seen the interface for Tempo, let us understand how to use TraceQL to query trace data.

Exploring the Tempo Query language

Like Prometheus and Loki, Tempo offers a query language, TraceQL. Now that you are familiar with
the interface of Tempo and the structure of traces, let’s explore the features of TraceQL.

Field types

TraceQL uses two field types, intrinsic fields and attribute fields. Let’s look at these in detail:

•	 Intrinsic fields: These are the fundamental information of spans and traces. These are used to
show information in the trace view. The intrinsic fields are as follows:

	� status: The value could be error, ok, or unset (null)

	� statusMessage: Optional text to clarify the status

	� duration: The time between the start and end of the span

	� name: The operation or span name

	� kind: The value could be server, client, producer, consumer, internal, or
unspecified, which is a fallback value

	� traceDuration: Number of milliseconds between the start and end of all spans in the trace

	� rootName: The name of the first span of the trace

	� rootServiceName: The name of the first service of the trace

•	 Attribute fields: These are the customizable fields that have been added to a span, either by the
application or the collection tooling. Attribute fields are either span fields or resource fields,
which is a distinction derived from the implementation of OpenTelemetry:

	� Span attributes are the fields added to the span by the submitting application; examples
include span.http.method and span.app.ads.ad_response_type.

	� Resource attributes, conversely, represent the entity producing telemetry; examples include
resource.container.id and resource.k8s.node.name.

For efficient querying, it is best practice to always include span. and resource. in an
attribute query. However, it is possible to use a leading . to query when you are unsure whether
a field is a span or resource – for example, .http.method or .k8s.node.name.

Tracing Technicalities with Grafana Tempo136

When looking at an individual span, you can see the fields available under Span Attributes and
Resource Attributes. This expanded view of a single trace shows the fields that are contained
in the span:

Figure 6.5 – Attributes for a span

Now that you have a good grasp of the fields available when searching traces in Tempo, let’s have a
look at how to search for traces and spans.

Selecting traces and spans

TraceQL offers tools to select data to show in a dashboard, or just to explore the current state of the
system. These are described in the following table:

Name Syntax Operators Scope

Field selector {field = " value"}
=, !=, >, >=, <,
<=, =~, !~

Selects spans on the value
of a field

Field expressions
{field1="value1" &&
field2="value2"}

&&, || Selects spans on the values
of multiple fields

Introducing Tempo and the TraceQL query language 137

Logical operators
{field1="value1} &&
{field1="value2}

&&, ||

Selects spans where a logical
check between sets of spans
is true. This can check
multiple fields.

Structural operators
{field1="value1"} >
{field2="value2}

>, >>, ~

Searches for spans in the
second filter where they are
related to the first filter.

These are explained in more
detail after this table.

Table 6.1 – The selection operators available in TraceQL

Structural operators offer the ability to carry out queries that take account of where conditions are
met upstream (parent) or downstream (child) in a trace. Let’s look at some examples:

•	 > or the child operator refers to the direct child, such as the following:

{.service.name="frontend"} > {.service.
name="productcatalogservice"}

The preceding line would search for any span from the product catalog service, where the
frontend service was the immediate parent.

•	 >> or the descendent operator refers to any descendent, such as the following:

{.service.name="frontend"} >> {.service.name="cartservice"}

This would search for any span from the cart service where the frontend service was a parent
in the trace but could have passed through another service first, such as the checkout service.

•	 ~ or the sibling operator refers to any spans that share the same parent, such as the following:

{.service.name="frontend"} ~ {.service.name="frontend"}

This would search for any span that visited the frontend multiple times. In the demo application,
the frontend service would be the parent.

These operators allow us to select data. TraceQL also allows tools to carry out aggregation and
mathematical functions on trace data.

Tracing Technicalities with Grafana Tempo138

Aggregators and arithmetic

Aggregators and mathematical functions allow for more complex queries. These can display information
aggregated across all traces. Some of these are described in the following table:

Name Syntax Operators Scope

Count aggregator | count() >
10

count()
Refines the returned spans
by the total count of spans
in the span set

Numeric aggregators
|
avg(duration)
> 20ms

avg(), max(),
min(),
and sum()

Refines the returned spans
by the field in the span set

Arithmetic operators
{field1 <
field2 * 10}

+, -, *, /, and ^ Performs arithmetic on
numeric fields

Table 6.2 – Aggregation and mathematical operators in TraceQL

It is worth noting that TraceQL is in active development at the time of writing, so this list of operators
is expected to grow.

Now that you have seen how to search trace data, let’s discuss the important topic of moving seamlessly
between data types to get a full picture.

Pivoting between data types

When correctly instrumented, an application will produce data that can be used to move between
traces, logs, and metrics to truly understand what is happening.

Let’s consider the following span, where an error was seen in checkoutservice. This could be
a problematic error in a real shop, as it suggests a customer got to the checkout and was unable to
complete their sale for some reason:

Figure 6.6 – Finding the logs for an error

Exploring tracing protocols 139

The query interface for Tempo offers a helpful link, Logs for this span, which will open a Loki query.
This functionality uses the service_name and service_namespace fields from the trace to
query Loki. In a similar way, services can inject the trace context (traceId and spanId) into their
log output where available. Loki can then be configured to provide contextual linking to Tempo, to
see the trace view. Finally, as mentioned in Chapter 5, metrics can present exemplars, which allow
users to see a sample trace from a metric graph.

We’ve explored the ways of seeing the data produced by applications. In the next section, we will
understand the different protocols that are available to produce trace data for Grafana Tempo.

Exploring tracing protocols
In Chapter 2, we introduced the three main tracing protocols, OTLP, Zipkin, and Jaeger. In this section,
we will explore some of the features of these protocols, how well-supported they are, and how to use
them in the software services that you write. We will also discuss the different headers used by these
protocols to propagate context to other services. A tracing protocol is made up of a set of headers
that are added to the HTTP requests made by an instrumented application. These headers are what
propagate the information of individual spans to downstream services. Once all of these spans are
collected, they form a fully distributed trace.

What are the main tracing protocols?

First, let’s look at the features and support of the main tracing protocols – OTLP, Zipkin, and Jaeger.

OTLP

OTLP tracing offers support for C++, .NET, Erlang, Go, Java, JavaScript, PHP, Python, Ruby, Rust, and
Swift. There is good support for OTLP in popular development frameworks such as Spring, Django,
ASP.NET, and Gin. With this wide support, it is best practice to search the documentation for your
framework of choice on how to instrument an application; in most cases, instrumentation can be as
simple as adding a few lines of dependencies.

Tracing is an inherently distributed process, and there have been several standards to propagate
trace fields. This means that applications may need to use different HTTP or gRPC headers when
handling traces, depending on other applications in their operating environment. OTLP provides
native support for W3C TraceContext, B3, and Jaeger propagation headers, as well as support for
W3C baggage headers, used to propagate other context information. The support of B3 and Jaeger
headers means that applications instrumented with Zipkin and Jaeger libraries are natively supported.
However, other trace headers such as AWS’s X-Ray protocol are not maintained as part of the mainline
distribution. If these protocols are used, it is recommended to use the relevant vendor’s distribution of
OpenTelemetry – for example, the AWS Distro for OpenTelemetry when X-Ray is used in a monitored
environment (https://aws.amazon.com/otel/).

https://aws.amazon.com/otel/

Tracing Technicalities with Grafana Tempo140

In the data collection space, OTLP trace data has good support from the OpenTelemetry Collector,
Grafana Agent, FluentBit via a plugin, and Telegraf via a plugin.

Zipkin

Zipkin offers support for C#, Go, Java, JavaScript, Ruby, Scalar, and PHP via supported libraries, and
C++, C, Clojure, Elixir, Lua, and Scala, via community-supported libraries. As with OTLP, there is
also good support for Zipkin in popular development frameworks, so it is good practice to check the
framework documentation when instrumenting applications.

Zipkin only natively supports the B3 propagation headers. However, as frameworks offer pluggable
support for different trace protocols, support for alternative propagation headers is probably easy to
implement in an application.

When it comes to data collection, Zipkin is supported by the OpenTelemetry Collector, Grafana Agent,
and the native tools created by Zipkin.

Jaeger

We have included Jaeger for historical reasons here, but it is not recommended for adoption. Jaeger
was originally developed by Uber. Before January 2022, Jaeger offered SDKs for Java, Python, Node.js,
Go, C#, and C++. These SDKs supported the OpenTracing APIs. OpenTelemetry was formed
by the OpenTracing and OpenCensus projects merging. Jaeger now recommends the use of the
OpenTelemetry SDKs for instrumenting applications. For applications already using the Jaeger client
libraries, migration guides have been provided by OpenTelemetry: https://opentelemetry.
io/docs/migration/opentracing/.

Jaeger libraries supported the Jaeger, Zipkin, and W3C TraceContext headers, but they had no support
for any other propagation formats.

There was not wide support in data collectors for Jaeger while it was actively supported; the intended
way to use the protocol was to collect data in a Jaeger backend locally in an environment. The
OpenTelemetry Collector and Grafana Agent do offer receivers for Jaeger traces and allow you to
collect these traces as applications migrate to the OpenTelemetry protocol.

Now that you are familiar with the tracing protocols, let’s look at the headers that are used to propagate
information between services that use distributed tracing.

Context propagation

Distributed tracing is relatively new in web technologies, with the World Wide Web Consortium
(W3C) making Trace Context a recommended standard in November 2021, while the Baggage
format is still currently in a working draft state. Tracing records information in two distinct ways:

•	 Traces and spans are sent to a collection agent by each application

https://opentelemetry.io/docs/migration/opentracing/
https://opentelemetry.io/docs/migration/opentracing/

Exploring tracing protocols 141

•	 Applications also share data using HTTP or gRPC headers, which are picked up by the
receiving application

As tracing is a new technology, a couple of unofficial standard formats were used before the official
W3C Trace Context headers were decided on. To provide some historical context on tracing, we’ll
explore the following formats:

•	 Jaeger/Uber headers

•	 Zipkin B3 headers

•	 W3C Trace Context headers

•	 W3C baggage headers

Jaeger/Uber headers

Jaeger libraries historically used the following header formats; we’ve included these for historical
reference, as these should be considered deprecated in favor of W3C Trace Context.

The two HTTP headers used in Jaeger are uber-trace-id and uberctx, which look like this:

uber-trace-id: {trace-id}:{span-id}:{parent-span-id}:{flags}
uberctx-{baggage-key}: {baggage-value}

An example of the uber-trace-id header is as follows:

uber-trace-id: 269daf90c4589ce1:5c44cd976d8f8cd9:39e8e549de678267:0x01

Let’s break this down the various fields in the uber-trace-id header:

•	 trace-id: This field is a 64-bit or 128-bit random number and is hex-encoded. In the example
this is 269daf90c4589ce1.

•	 span-id and parent-span-id: These are 64-bit random numbers and are hex-encoded.
These are 5c44cd976d8f8cd9 and 39e8e549de678267, respectively.

•	 flags: This field is used to convey additional information, such as whether the trace is being
sampled. In this example, its value is 0x01.

In the uberctx baggage header, the fields are as follows:

•	 baggage-key: This is a unique string that is used to name the header.

•	 baggage-value: This is a string that will be percent-encoded. Baggage as a concept will be
explored further in the W3C baggage section.

Tracing Technicalities with Grafana Tempo142

Zipkin B3 headers

Zipkin libraries use B3 headers; unlike the Uber headers, Zipkin has historically separated each field
into its own header, as shown in the following snippet:

X-B3-TraceId: {TraceId}
X-B3-ParentSpanId: {ParentSpanId}
X-B3-SpanId: {SpanId}
X-B3-Sampled: {bool}
X-B3-Flags: 1 OR header absent
b3: {TraceId}-{SpanId}-{SamplingState}-{ParentSpanId}

Let’s break these headers down:

•	 X-B3-TraceId: Similar to the Jaeger format, TraceId is 64-bit or 128-bit hex-encoded.
Here is an example of this header as it would be sent:

X-B3-TraceId: 68720d6346a16000531430804ce28f9c

•	 X-B3-ParentSpanId and X-B3-SpanId: These are 64-bit and hex-encoded.

•	 X-B3-Sampled: This has a value of either 1 or 0, although early implementations may use
true or false.

•	 X-B3-Flags: This header is used to propagate debug decisions.

•	 b3: Zipkin predated the introduction of the W3C Trace Context standards. To aid in the transition
to the newly agreed standard, Zipkin introduced the b3 header. Later versions of Zipkin can
propagate using both these headers and the W3C Trace Context headers for interoperability.
The b3 header exactly matches the tracestate header used in W3C Trace Context and
represents the other headers combined into one mapping.

W3C Trace Context

W3C specifies a standard pair of headers, as shown here:

traceparent: {version}-{trace-id}-{parent-id}-{trace-flags}
tracestate: vendor specific trace information

Let’s break these headers down into their constituents:

•	 The various fields in traceparent are as follows:

	� The trace-id is a hex-encoded 16-byte array (128-bit).

	� parent-id is a hex-encoded 8-byte array (64-bit); this field is equivalent to span-id
or SpanId in Jaeger and B3, respectively, and represents the span ID used by the service
that generated the header. It differs from the B3 ParentSpanId, as this can be used to
represent a service further upstream that initiated a traced process.

Understanding the Tempo architecture 143

	� The version field is another hex-encoded 8-bit field; it represents the version of the
standard being used. Currently, only version 00 exists.

	� trace-flags is another hex-encoded 8-bit field. In version 00 of the W3C standard, the
only available flag is one to denote whether sampling is occurring or not.

•	 tracestate is used to encode vendor-specific information. While traceparent is a
fixed format and required by any vendor adopting the standard, tracestate is available for
vendors to ensure that trace data is propagated while giving space for them to use and encode
that data as desired. The only requirement regarding this header field is that the contents will
be a comma-separated list of key-value pairs.

W3C baggage

Baggage is a related but different concept to a trace. Baggage headers contain contextual data that
is passed between applications. These headers can share specific fields from one application and a
downstream application. For example, we might have a top-level concept of tenantId, but when
an application makes a request to a downstream application, that application may not need to
know about tenantId for it to process the request. A baggage header allows us to propagate this
tenantId field to the downstream application. The downstream application can then use this field
in its observability instrumentation, while not polluting its data model with an unrelated field. This
effectively separates observability concerns from application concerns. It’s important to note that data
contained in baggage headers can be exposed to anyone inspecting network traffic, so it should not
be used to share sensitive information.

W3C baggage headers look like this:

baggage: key1=value1,key2=value2;property1;propertyKey=propertyValue,…

All fields must be percent-encoded; the full header must have 64 members or fewer, and it has a maximum
size of 8,192 bytes. Using baggage gives systems a standardized way to propagate contextual information.

We’ve now discussed how trace data is produced by applications and how it is shared, both with a
collection agent and other applications. Let’s take some time to look at how data is processed and
stored by Tempo.

Understanding the Tempo architecture
Like Loki and Mimir, Tempo leverages object stores such as Amazon S3, Google Cloud Storage, and
Microsoft Azure Blob Storage. With the horizontal scalability of components in both the read and
write pathways, Tempo has a fantastic ability to scale as data volumes increase.

Tracing Technicalities with Grafana Tempo144

The following diagram shows the architecture used by Tempo:

Figure 6.7 – The Tempo architecture

The write pathway for Tempo consists of the following:

•	 Distributor: The distributor is responsible for accepting spans and routing them to the correct
instance of the ingester service, based on the trace ID of the span.

•	 Ingester: The ingester is responsible for grouping spans into traces, batching multiple traces
into blocks, and writing bloom filters and indexes for querying. Once a block is complete, the
ingester also flushes the data to the backend.

•	 Metrics generator: The metrics generator is an optional component; it receives spans from the
distributor and uses them to produce service graphs and span metrics (such as the rate and the
error duration). These are then written to a metrics backend.

The read pathway has these components:

•	 Query frontend: The frontend is responsible for receiving a query and splitting it into smaller
shards, based on the blocks (created by the ingester) that will be read to return the requested
data. These shards are then queued with queriers.

•	 Querier: This component is responsible for finding the requested data, either from the backend
if the block has been flushed, or directly from the ingester if the block is still being collected.

Summary 145

The compactor, which is a standalone component, is responsible for optimizing the use of the
backend storage.

Now that we’re done exploring the system architecture of Tempo, you have seen all the major
components of the tool, and how distributed tracing using Tempo can help provide great visibility of
the components of the systems you run.

Summary
In this chapter, you learned how to use TraceQL to query trace data stored in Tempo, which will
help you build queries for dashboards using this rich data source. You have explored the Tempo user
interface, so you will be confident in moving around the interface. Combined with the skills learned
in Chapters 4 and 5 you will be confident in moving between log, metric, and trace data in Grafana
to be able to observe the systems you work with.

We took a detailed look at the different protocols and libraries you can use when instrumenting an
application, and we saw the levels of support those tools have across different programming languages.
We also explored the HTTP headers that are used to propagate trace data between applications. This
will help you choose the best way to instrument an application and how to work with applications
that are already instrumented with tracing.

Finally, we looked at the Tempo architecture and how it can horizontally scale to support your
organization with however many traces you need to sample. With this knowledge, you will understand
how to operate a Tempo installation and monitor the various components.

In the next chapter, we will conclude Part 2 of the book by showing you how to collect data from your
infrastructure layers, whether that is a cloud provider such as AWS, Azure, or GCP, or a Kubernetes cluster.

7
Interrogating Infrastructure
with Kubernetes, AWS, GCP,

and Azure

This chapter will introduce the setup and configuration required to capture telemetry from various
common cloud infrastructure providers. You will learn about the different options available for
Kubernetes. Additionally, you will investigate the main plugins that allow Grafana to query data from
cloud vendors such as Amazon Web Services (AWS), Google Cloud Platform (GCP), and Azure.
You will look at solutions for handling large volumes of telemetry where direct connections are not
scalable. The chapter will also cover options for filtering and selecting telemetry data before it gets to
Grafana for security and cost optimization.

We will cover the following main topics in this chapter:

•	 Monitoring Kubernetes using Grafana

•	 Visualizing AWS telemetry with Grafana Cloud

•	 Monitoring GCP using Grafana

•	 Monitoring Azure using Grafana

•	 Best practices and approaches

Technical requirements
In this chapter, you will work with multiple cloud providers using a Grafana Cloud instance. You will
need the following:

•	 A Grafana Cloud instance (set up in Chapter 3)

•	 Kubernetes and Helm (set up in Chapter 3)

•	 Accounts with the AWS, GCP, and Azure cloud providers with admin-level permissions

Interrogating Infrastructure with Kubernetes, AWS, GCP, and Azure148

Monitoring Kubernetes using Grafana
Kubernetes has been designed to be monitored, and as such, it presents multiple options for anyone
wanting to monitor it or the workloads running on it using Grafana. In this section, we will focus on
monitoring Kubernetes, as we have already worked with Kubernetes workloads in previous chapters
using the OpenTelemetry Demo application.

The OpenTelemetry Collector introduced in Chapter 3 provides receivers, processors, and exporters to
implement Kubernetes monitoring with data collection and enrichment. The following table identifies
those components with a brief explanation for each of them:

OpenTelemetry Component Description

Kubernetes Attributes Processor
The Kubernetes Attributes Processor appends
Kubernetes metadata to telemetry, providing the
necessary context for correlation.

Kubeletstats Receiver

The Kubeletstats Receiver obtains Pod metrics via
a pull mechanism from the kubelet API. It collects
node and workload metrics from each node it is
installed on.

Filelog Receiver
The Filelog Receiver collects Kubernetes and
workload logs that are written to stdout
and stderr.

Kubernetes Cluster Receiver The Kubernetes Cluster Receiver collects cluster-level
metrics and entity events using the Kubernetes API.

Kubernetes Object Receiver The Kubernetes Object Receiver collects objects for
example events from the Kubernetes API.

Prometheus Receiver The Prometheus Receiver scrapes metrics using
Prometheus scrape_config settings.

Host Metrics Receiver The Host Metrics Receiver scrapes metrics from
Kubernetes nodes.

Table 7.1 – Kubernetes receivers

Let’s now explore each component and how to implement them.

Kubernetes Attributes Processor

The OpenTelemetry Kubernetes Attributes Processor can automatically discover Pods, extract metadata
from them, and add the extracted metadata to spans, metrics, and logs as additional resource attributes.

Monitoring Kubernetes using Grafana 149

It provides necessary context to your telemetry, enabling the correlation of your application’s metrics,
events, logs, traces, and signals with your Kubernetes telemetry, such as Pod metrics and traces.

Data passing through the processor is by default associated to a Pod via the incoming request’s IP
address, but different rules can be configured.

The OpenTelemetry Collector Helm chart comes with several presets. For instance, the
kubernetesAttributes preset, when enabled, will add the necessary RBAC roles to a ClusterRole
and will add a k8sattributesprocessor to each enabled pipeline:

presets:
  kubernetesAttributes:
    enabled: true

Kubernetes comes with its own metadata to document its components. When using the
kubernetesAttributes preset, the following attributes are added by default:

•	 k8s.namespace.name: The namespace the Pod is deployed to.

•	 k8s.pod.name: The name of the Pod.

•	 k8s.pod.uid: The unique ID for the Pod.

•	 k8s.pod.start_time: The timestamp for Pod creation, useful when understanding
Pod restarts.

•	 k8s.deployment.name: The Kubernetes deployment name for the application.

•	 k8s.node.name: The name of the node the Pod is running on. As Kubernetes distributes the
Pods over all of its nodes, it is important to understand whether any are having specific problems.

Additionally, the Kubernetes Attributes Processor creates custom resource attributes for your telemetry
using Pod and namespace labels and annotations.

There are two methods applied to obtain and associate your data, that is, extract and pod_
association. You can enable them in your Helm chart as detailed in the following code:

k8sattributes:
  auth_type: 'serviceAccount'
  extract:
  pod_association:

Let’s look at these methods in greater detail:

•	 extract: This method provides the ability to use metadata, annotations, and labels as resource
attributes for your telemetry. It has the following options:

	� metadata: Used to extract values from the Pod and namespace, such as k8s.namespace.
name and k8s.pod.name

Interrogating Infrastructure with Kubernetes, AWS, GCP, and Azure150

	� annotations: Used to extract the value of a Pod or namespace annotation with a key
and insert it as a resource attribute:

      - tag_name: attribute-name
        key: annotation-name
        from: pod

	� labels: Used to extract the value of a Pod or namespace label with a key and insert it as
a resource attribute:

      - tag_name: attribute-name
        key: label-name
        from: pod

Both annotations and labels can also be used with regex to extract part of the value
for the new resource attribute.

•	 pod_association: This method associates data with the relevant Pod. You can configure
multiple sources and the agent will try them in order, stopping when it finds a match. pod_
association has the sources option, which is used to identify the resource attribute to
use for the association, or it uses the IP attribute from the connection context:

  pod_association:
    - sources:
        - from: resource_attribute
          name: k8s.pod.ip
    - sources:
        - from: resource_attribute
          name: k8s.pod.uid
    - sources:
        - from: connection

Permissions
If you are not using the kubernetesAttributes preset, you will have to provide the necessary
permissions to allow access to the Kubernetes API. Usually, being able to access Pod, namespace,
and ReplicaSet resources is adequate, but this will depend upon your cluster configuration.

Kubeletstats Receiver

The Kubeletstats Receiver connects to the kubelet API to collect metrics about the node and the
workloads running on the node, which is why the preferred deployment mode is DaemonSet. Metrics
are collected for Pods and nodes by default but can additionally be configured to collect metrics from
containers and volumes.

Monitoring Kubernetes using Grafana 151

The following code shows the configuration of the Kubeletstats Receiver:

receivers:
  kubeletstats:
    collection_interval: 60s
    auth_type: 'serviceAccount'
    endpoint: '${env:K8S_NODE_NAME}:10250'
    insecure_skip_verify: true
    metric_groups:
      - node
      - pod
      - container

Filelog Receiver

Although not a Kubernetes-specific receiver, the Filelog Receiver is the most popular log collection
mechanism for Kubernetes. It tails and parses logs from files using operators chained together to
process log data.

The OpenTelemetry Collector Helm chart has the logsCollection preset to add the necessary
RBAC roles to the ClusterRole, and it will add a filelogreceiver instance to each enabled
pipeline (we will explain includeCollectorLogs in Chapter 10):

presets:
  logsCollection:
    enabled: true
    includeCollectorLogs: false

If configuring this yourself, you will have to add the roles and filelogreceiver into your
pipelines manually. A basic Filelog Receiver shows what to include and exclude, along with additional
processing options:

filelog:
  include:
    - /var/log/pods/*/*/*.log
  exclude:
    - /var/log/pods/*/otel-collector/*.log
  start_at: beginning
  include_file_path: true
  include_file_name: false

Additionally, operators can be applied for log processing, filtering, and parsing.

Interrogating Infrastructure with Kubernetes, AWS, GCP, and Azure152

The following is a list of Filelog Receiver parsers:

•	 json_parser: To parse JSON

•	 regex_parser: To perform regular expression parsing

•	 csv_parser: To parse comma-separated values

•	 key_value_parser: To process structured key-value pairs

•	 uri_parser: To process structured web paths

•	 syslog_parser: To process the standard syslog log format

Kubernetes Cluster Receiver

The Kubernetes Cluster Receiver, as its name suggests, collects metrics and events from the cluster
using the Kubernetes API server. This receiver is used to obtain information regarding Pod phases,
node conditions, and other cluster-level operations. The receiver must be deployed as a single instance;
otherwise, the data would be duplicated.

An example cluster receiver configuration follows:

k8s_cluster:
  auth_type: serviceAccount
  node_conditions_to_report:
    - Ready
    - MemoryPressure
  allocatable_types_to_report:
    - cpu
    - memory
  metrics:
    k8s.container.cpu_limit:
      enabled: false
  resource_attributes:
    container.id:
      enabled: false

Kubernetes Object Receiver

The Kubernetes Objects Receiver can be used to collect any type of object from the Kubernetes API
server. As with the Kubernetes Cluster Receiver, this must be deployed as a single instance to prevent
duplicate data.

The receiver can be implemented to pull or watch objects by using pull or watch:

•	 When pull is implemented, the receiver periodically polls the Kubernetes API and lists all
the objects in the cluster. Each object will be converted to its own log.

Monitoring Kubernetes using Grafana 153

•	 When watch is configured, the receiver creates a stream with the Kubernetes API to receive
updates as and when objects change; this is the most common use case.

Let’s look at an example of Kubernetes Object Receiver configuration:

  k8sobjects:
    auth_type: serviceAccount
    objects:
      - name: pods
        mode: pull
        label_selector: environment in (prod)
        field_selector: status.phase=Running
        interval: 15m
      - name: events
        mode: watch
        group: events.k8s.io
        namespaces: [default]

Prometheus Receiver

The Prometheus Receiver can be used to collect (scrape) metrics from Kubernetes and its workloads.
The full range of Prometheus scrape_config options are supported by the receiver. An example
of this implementation and scrape_configs can be seen in the Chapter 5 demo project code.
Here is an example Prometheus Receiver configuration:

    prometheus:
      config:
        scrape_configs:
          - job_name: 'opentelemetry-collector'
            tls_config:
              insecure_skip_verify: true
            scrape_interval: 60s
            scrape_timeout: 5s
            kubernetes_sd_configs:
              - role: pod

The Prometheus Receiver is stateful, so the following points need to be taken into consideration
when using it:

•	 The receiver cannot auto-scale the scraping process with multiple replicas

•	 Running multiple replicas with the same config will scrape targets multiple times

•	 To manually scale the scraping process, each replica will need to be configured with a different
scraping configuration

Interrogating Infrastructure with Kubernetes, AWS, GCP, and Azure154

Host Metrics Receiver

The Host Metrics Receiver collects metrics from a host using a variety of scrapers; the receiver will
need access to the host filesystem volume to work correctly.

Table 7.2 shows the metrics available to scrape. The OpenTelemetry Collector Helm chart
has the hostMetrics preset to add the necessary configurations:

mode: daemonset
presets:
  hostMetrics:
    enabled: true

By default, the preset will scrape every 10 seconds, which may generate too many metrics for your
backend system. Be aware of this and consider overriding it to 60 seconds. The following table also
shows the metrics that will be scraped by default using the preset:

Metric
Scraper Description

Included when
using the

hostMetrics preset

CPU Scrapes CPU utilization metrics Yes

Disk Scrapes disk I/O metrics Yes

Load Scrapes CPU load metrics Yes

Filesystem Scrapes filesystem utilization metrics Yes

Memory Scrapes memory utilization metrics Yes

Network Scrapes network interface I/O metrics and TCP
connection metrics Yes

Paging Scrapes paging and swap space utilization and
I/O metrics No

Processes Scrapes process count metrics No

Process Scrapes per-process CPU, memory, and disk I/O metrics No

Table 7.2 – Host Metrics Receiver scrapers

Let’s now take a look at our first cloud provider, AWS, and the connectivity options available.

Visualizing AWS telemetry with Grafana Cloud 155

Visualizing AWS telemetry with Grafana Cloud
There are two main ways in which you can visualize your AWS telemetry with Grafana Cloud:

•	 Amazon CloudWatch data source: Amazon CloudWatch telemetry remains in AWS and
Grafana is configured to remotely read the data at query time

•	 AWS integration: AWS CloudWatch telemetry data is either sent to or scraped and stored in
Grafana Cloud (logs in Loki and metrics in Mimir).

Let’s take a look at the differences between these two options to understand whether the integration
option or the data source option best fits your use case.

Amazon CloudWatch data source

Grafana Cloud comes with support for Amazon CloudWatch, allowing you to query, trigger alerts,
and visualize your data in Grafana dashboards. To read CloudWatch telemetry, you will need to
configure the AWS Identity and Access Management (IAM) permissions and provide the necessary
authentication details in the data source configuration screen. This does not store any telemetry data
in Grafana; it only retrieves it at query time.

Let’s now look at the different configuration steps.

Configuring the data source

Data sources can be accessed from the menu under the Connections item. To create a new connection,
click the Add new data source button and search for CloudWatch. For existing ones, search for
CloudWatch in the Data sources search box. You will see a screen similar to the following. Click
CloudWatch to open the Settings page:

Figure 7.1 – Grafana Connections Data sources screen

Interrogating Infrastructure with Kubernetes, AWS, GCP, and Azure156

The Settings screen requires the AWS configuration details needed to establish the connection, as
shown in the following screenshot. Here, you can also configure namespace details for custom metrics,
log query timeouts, and X-Ray trace links:

Figure 7.2 – Amazon CloudWatch data source settings

Using the Amazon CloudWatch query editor

The CloudWatch data source comes with its own specialized query editor that can query data from
both CloudWatch metrics and logs.

From the data explorer, you can select CloudWatch Metrics or CloudWatch Logs as the source data,
as shown in the following screenshot:

Figure 7.3 – Amazon CloudWatch query editor

Visualizing AWS telemetry with Grafana Cloud 157

With the metrics editor in Builder mode, you can create a valid metric search query by specifying
the namespace, metric name, and at least one statistic.

The logs editor provides a Log group selector, allowing you to specify the target log groups and
then use AWS CloudWatch Logs Query Language https://docs.aws.amazon.com/
AmazonCloudWatch/latest/logs/CWL_QuerySyntax.html in the query editor.

Using Amazon CloudWatch dashboards

On the data source Settings screen, there is a Dashboards tab with a set of pre-configured dashboards
to get you started.

The following figure shows the list of available dashboards and import details (if a dashboard has
already been imported, you will see the options to delete or reimport):

Figure 7.4 – Amazon CloudWatch pre-configured dashboards

Let’s now take a look at the AWS integration option.

Exploring AWS integration

The AWS integration option can be added to your account. It will then be available as a connection.
When added and configured, you will be able to ingest metric and log data directly into Grafana, which
provides a query time benefit as the data is contained within your Grafana Cloud stack. The metrics
and logs can then be queried using LogQL or PromQL; see Chapter 4 and Chapter 5 for refreshers.

Let’s now look at the different configuration steps.

Configuring the integration

The AWS connection can be accessed from the menu under the Connections item. Search for aws
from the Add new connection screen; you will see a screen similar to the following. You will see this
is an Infrastructure connection and is labeled as Guide. This means there will be comprehensive
instructions to help you connect the account and walk you through the process:

https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/CWL_QuerySyntax.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/CWL_QuerySyntax.html

Interrogating Infrastructure with Kubernetes, AWS, GCP, and Azure158

Figure 7.5 – Grafana Add new connection screen

Selecting the AWS integration option presents you with several options for integration – CloudWatch
metrics, Logs with Lambda, and Logs with Firehose – as shown in the following screenshot:

Figure 7.6 – AWS integration screen

Visualizing AWS telemetry with Grafana Cloud 159

Next, we will discuss CloudWatch metrics and Logs with Lambda.

CloudWatch metrics

The CloudWatch integration allows you to scrape Amazon CloudWatch metrics without installing
any collector or agent infrastructure. Multiple scrape jobs can be created to separate concerns, but
metrics can only be discovered for AWS resources with tags.

As mentioned earlier, this integration is guided and presents you with all the necessary details to get
started by using infrastructure as code or by manually connecting and configuring scrape jobs. The
following screenshot shows the CloudWatch metrics Configuration Details screen:

Figure 7.7 – CloudWatch Configuration Details screen

Interrogating Infrastructure with Kubernetes, AWS, GCP, and Azure160

Additionaly there are some pre-built dashboards that are ready to use. The following figure shows the
list of pre-built dashboards that come with the integration option at the time of writing:

Figure 7.8 – Sample CloudWatch Metrics dashboard

Logs with Lambda

The Logs with Lambda integration enables you to send CloudWatch logs to Grafana Cloud. The
integration will guide you through the deployment of an AWS Lambda function that forwards
CloudWatch logs to Grafana Cloud Loki, where they can be queried using LogQL. Chapter 4 explains
Loki and LogQL in detail.

Visualizing AWS telemetry with Grafana Cloud 161

The following screenshot shows the Logs with Lambda configuration screen where you can select
your deployment approach:

Figure 7.9 – Logs with Lambda configuration details

The following screenshot shows the configuration steps as the onscreen guide walks you through the
connection and configuration of the logs integration:

Figure 7.10 – Logs with Lambda CloudFormation configuration

Interrogating Infrastructure with Kubernetes, AWS, GCP, and Azure162

Let’s now look at our second cloud provider – GCP.

Monitoring GCP using Grafana
Grafana Cloud comes with support for Google Cloud Monitoring, allowing you to query, trigger
alerts, and visualize your data in Grafana dashboards. It does not store any telemetry data in Grafana;
it only retrieves it at query time.

Let’s now look at the steps for configuring the data source.

Configuring the data source

Data sources can be accessed from the menu under the Connections item. Search for Google
Cloud Monitoring in the Data sources search box; you will see a screen similar to the one shown
in Figure 7.11. Click on Google Cloud Monitoring to open the settings page. The settings screen
prompts for the Google configuration needed to establish and test the connection. The Connections
search results screen is shown here:

Figure 7.11 – Connections search results screen

The configuration settings for Google Cloud Monitoring shown in the following screenshot walk
you through the configuration, helping you to choose an authentication method of either JSON Web
Token (JWT) or GCE Default Service Account:

Monitoring GCP using Grafana 163

Figure 7.12 – Google Cloud Monitoring configuration settings

Depending upon the size of your GCP deployment, you may have to consider, as part of your design,
any limits imposed on the token or service account.

Google Cloud Monitoring query editor

The Google Cloud Monitoring data source comes with its own specialized query editor that can
help you build queries for metrics and GCP Service Level Objectives (SLOs), both of which return
time-series data (you will learn more about visualizing time-series data in Chapter 8). Metrics can be
queried using the Builder interface or using GCP’s Monitoring Query Language (MQL). The SLO
query builder helps you visualize SLO data in a time-series format. To understand the basic concepts
of GCP service monitoring, refer to the GCP documentation at https://cloud.google.com/
stackdriver/docs/solutions/slo-monitoring.

Interrogating Infrastructure with Kubernetes, AWS, GCP, and Azure164

The Google Cloud Monitoring query editor in the following screenshot shows the three available choices:

Figure 7.13 – Google Cloud Monitoring query editor selection

Let’s look at the different Explorer query types:

•	 Metrics queries: The metrics query editor builder helps you select metrics, group and aggregate
them by labels and time, and specify time filters for the time-series data you want to query:

Figure 7.14 – Google Cloud Monitoring query editor metrics builder

The following screenshot shows the query editor for MQL, which provides an interface to create
and execute your MQL query:

Figure 7.15 – Google Cloud Monitoring query editor metrics MQL interface

Monitoring GCP using Grafana 165

Full documentation for the MQL language specification can be found on the Google Cloud
website at https://cloud.google.com/monitoring/mql.

•	 SLO queries: The SLO query builder helps you visualize SLO data in time-series format.
Documentation to explain the basic concepts of service monitoring can be found on the Google
Cloud website at https://cloud.google.com/stackdriver/docs/solutions/
slo-monitoring.

The Google Cloud Monitoring SLO query editor is shown in the following screenshot:

Figure 7.16 – Google Cloud Monitoring query editor metrics SLO builder

Google Cloud Monitoring dashboards

From the Data source | Settings screen, the Dashboards tab lists a set of pre-configured dashboards
to get you started. The following screenshot shows the list of available dashboards at the time of
writing and import details (if a dashboard has already been imported, there are options to delete or
reimport). You can see from the list the various GCP components that are covered, including firewalls,
data processing, SQL, and so on:

Figure 7.17 – Google Cloud Monitoring pre-built dashboards

https://cloud.google.com/monitoring/mql
https://cloud.google.com/stackdriver/docs/solutions/slo-monitoring
https://cloud.google.com/stackdriver/docs/solutions/slo-monitoring

Interrogating Infrastructure with Kubernetes, AWS, GCP, and Azure166

Let’s now look at our third cloud provider, Azure.

Monitoring Azure using Grafana
Grafana Cloud comes with support for Azure, allowing you to query, trigger alerts, and visualize
your data in Grafana dashboards. This is called the Azure Monitor data source. As with the other
cloud data sources, it does not store any telemetry data in Grafana; it only retrieves it at query time.

Let’s now step through the configuration.

Configuring the data source

Data sources can be accessed from the menu under the Connections item. Search for Azure Monitor
in the Data sources search box; you will see a screen similar to the following:

Figure 7.18 – Connection search results screen for Azure Monitor

Click on Azure Monitor to open the settings page. The configuration settings for Azure Monitor shown
in the following screenshot walk you through the configuration, helping you to set up authentication
using the Azure Client Secret configuration, and test the connection:

Monitoring Azure using Grafana 167

Figure 7.19 – Azure Monitor data source settings screen

Using the Azure Monitor query editor

The Azure Monitor data source comes with its own specialized query editor that can help you build
queries for metrics and logs, Azure Resource Graph, and Application Insights traces.

The following Azure Monitor query editor screenshot shows four choices:

Figure 7.20 – Azure Monitor query editor selector

Interrogating Infrastructure with Kubernetes, AWS, GCP, and Azure168

Let’s look at these options in detail:

•	 Metrics queries: The Azure Monitor metrics queries collect numeric data from Azure-
supported resources, which are listed here on the Microsoft Azure website: https://learn.
microsoft.com/en-us/azure/azure-monitor/monitor-reference.

The metrics store numeric data only, and in a specific structure that allows for near real-time
detection of platform health, performance, and usage. The Azure Monitor metrics query
builder is shown here:

Figure 7.21 – Azure Monitor metrics query builder

•	 Log queries: The Azure Monitor logs queries collect and organize log data from Azure-supported
resources. A variety of data types, each with their own defined structure, are accessible, and
to access these, the Kusto Query Language (KQL) can be used. An overview of KQL can be
found on the Microsoft Azure website here: https://learn.microsoft.com/en-us/
azure/data-explorer/kusto/query/. The Azure Monitor logs query editor is shown
in the following screenshot:

Figure 7.22 – Azure Monitor logs query editor

https://learn.microsoft.com/en-us/azure/azure-monitor/monitor-reference
https://learn.microsoft.com/en-us/azure/azure-monitor/monitor-reference
https://learn.microsoft.com/en-us/azure/data-explorer/kusto/query/
https://learn.microsoft.com/en-us/azure/data-explorer/kusto/query/

Monitoring Azure using Grafana 169

Azure Monitor logs can store a variety of data types, each with its own structure. For more
details, you can refer to https://learn.microsoft.com/en-us/azure/azure-
monitor/monitor-reference.

•	 Traces queries: The Azure Monitor traces queries can be regarded as Azure Application Insights
under the hood. The Azure Application Insights service provides application performance
monitoring (APM) features to its workloads. The Azure Monitor traces can be used to interrogate
and visualize various metrics and trace data. The query editor looks like this:

Figure 7.23 – Azure Monitor traces query editor

•	 Azure Resource Graph (ARG): The ARG service extends the functionality of Azure Resource
Manager by providing the ability to query across multiple Azure subscriptions in a scalable
manner. This allows you to query Azure resources using the resource graph query language,
making it ideal for querying and analyzing larger Azure cloud infrastructure deployments. Full
documentation for the resource graph query language can be found at https://learn.
microsoft.com/en-us/azure/governance/resource-graph/samples/
starter?tabs=azure-cli.

The following example query shows all resources by name:
Resources | project name, type, location | order by name asc

https://learn.microsoft.com/en-us/azure/azure-monitor/monitor-reference
https://learn.microsoft.com/en-us/azure/azure-monitor/monitor-reference
https://learn.microsoft.com/en-us/azure/governance/resource-graph/samples/starter?tabs=azure-cli
https://learn.microsoft.com/en-us/azure/governance/resource-graph/samples/starter?tabs=azure-cli
https://learn.microsoft.com/en-us/azure/governance/resource-graph/samples/starter?tabs=azure-cli

Interrogating Infrastructure with Kubernetes, AWS, GCP, and Azure170

 Here’s what the ARG query editor looks like:

Figure 7.24 – Azure Resource Graph query editor

Using Azure Monitor dashboards

From the Data source | Settings screen, the Dashboards tab shows a set of pre-configured dashboards
that will get you started with Azure Monitor. In the following screenshot, there is a list of the various
Azure components that have dashboards designed for them; they include applications, SQL servers,
and storage accounts:

Figure 7.25 – Azure Monitor pre-built dashboards

Best practices and approaches 171

Let’s now review some of the best practices we have covered for each of the cloud infrastructure
providers we have discussed in this chapter.

Best practices and approaches
In this chapter, we have provided an overview of several popular cloud infrastructures. Let’s now
discuss some of the best practices that should be considered when implementing observability on
any application or system:

•	 Performance: The process of retrieving telemetry data can potentially incur a performance
overhead. For example, with a remote Grafana data source, the telemetry data is fetched at query
time over a great distance. This can introduce latency when compared to data stored closer to
the Grafana query engine using one of the Grafana Cloud data sources, such as Loki, Mimir, and
Tempo. Where performance is important and there is an option to ship telemetry into Grafana,
that could be the best choice. Alternatively, several data sources have caching options to improve
query speed; improvements in query speed can also be made using specific configurations. Take
the time to understand your data and ensure you are using it in an optimal way.

•	 Cost: Alongside the increased network and storage costs of shipping data into Grafana Cloud,
there can also be costs when querying a cloud provider API. It is important to understand
where charges are raised. This ensures that they are factored in when you’re designing your
observability solution for the specific platform that your systems utilize.

•	 Constraints: In general, infrastructure platforms come configured with constraints in place to
protect the system. Sometimes these are soft limits that can be relaxed after careful consideration,
but they may be hard limits. Before committing to a solution for a specific platform, understand
your requirements and the volume of data or query transactions expected. You can compare
these to any documented limits, your API key use, or your network egress volumes, therefore
validating that the system will support your needs.

•	 Security: For most of the configuration options we discussed in this chapter, we identified how
they can be set up to generate separation of concerns. Having separate data sources or other
controls on the data being queried or ingested will allow you to improve your security posture
based on the underlying data and use case.

Important note
As this book was nearing publication, Grafana Labs released private data source connect (PDC),
which gives administrators the ability to connect to any network-secured data source, regardless
of where it is hosted. We have not covered this topic, but it is likely to be of interest to readers.

We will now wrap this chapter up with a summary and set the stage for the next chapter.

Interrogating Infrastructure with Kubernetes, AWS, GCP, and Azure172

Summary
In this chapter, we have looked at various common cloud infrastructure providers, starting with
Kubernetes, and we presented examples that can be used with the demo project provided alongside
this book. We then looked at the big three cloud providers, AWS, GCP, and Azure. We presented
an overview of the connection options and how to get started with the pre-built dashboards and
the data explorer. Lastly, we covered some of the best practices that need to be considered with all
observability integrations.

In the next chapter, we move on from getting telemetry data into Grafana and on to the visualization
of that data using dashboards. This is where the fun starts!

Part 3: Grafana in Practice

In practice, Grafana is used to understand the current system state and take appropriate actions to
give customers the best results. This part will cover the wide variety of activities that may be needed to
complete that goal and what should be considered along the way. You will learn how to present your
data while considering the requirements of your audience. You will explore how to build a world-class
incident management process. You will also learn approaches to automating and architecting your
observability platform.

This part has the following chapters:

•	 Chapter 8, Displaying Data with Dashboards

•	 Chapter 9, Managing Incidents Using Alerts

•	 Chapter 10, Automation with Infrastructure as Code

•	 Chapter 11, Architecting an Observability Platform

8
Displaying Data with

Dashboards

Now that we have explored the topics covered in the earlier chapters together, we have a good
understanding of the many ways to retrieve accessible data from Grafana. We will now create our first
dashboard together and look at different ways to visualize our data. We will then explore concepts
and techniques that help you communicate effectively with your dashboards and reduce cognitive
load for your viewers. We will look at a few resources for inspiration out in the community to inspire
you with your dashboards. Then, to finish, we will share guidance around managing your dashboard
artifacts as they grow to help you get organized.

In this chapter, we’re going to cover the following main topics:

•	 Creating your first dashboard

•	 Developing your dashboard further

•	 Using visualizations in Grafana

•	 Developing a dashboard purpose

•	 Advanced dashboard techniques

•	 Managing and organizing dashboards

•	 Case study – an overall system view

Technical requirements
In this chapter, you will work with the Grafana user interface using the Grafana Cloud instance and
the demo you set up in Chapter 3. Also, to ensure you have all the data sources and settings available,
be sure to have implemented the updates in Chapter 6 to your stack. Let’s dive in and create our
first dashboard.

Displaying Data with Dashboards176

Creating your first dashboard
Dashboards are a medium to communicate important and sometimes urgent information to consumers.
Before we delve into design techniques and best practices, let’s get familiar with the Grafana user
interface to start with a simple dashboard. The demo application we have worked with throughout
this book has a frontend store; let’s look at the requests we get for its shopping cart.

To create your first panel and dashboard, follow these steps:

1.	 In your Grafana instance, select Explore in the menu.

2.	 Choose your Prometheus data source; this will be labeled as grafanacloud-<team>-prom (default).

3.	 In the Metric dropdown, choose app_frontend_requests_total (the metric count of requests
to the frontend app), and in the Label filters dropdown, choose target = /api/cart as the filter
(to restrict the results to the cart API only), and then click on Run query. You should see data
like this:

Figure 8.1 – App frontend requests

We now have a representation of the time series data in a graph.

4.	 To add this to a dashboard, select the Add drop-down menu button at the top of the
Explore window.

Creating your first dashboard 177

5.	 Choose Add to dashboard:

Figure 8.2 – The Add to dashboard menu

6.	 From the pop-up screen, ensure New dashboard is selected, and then click Open dashboard:

Figure 8.3 – Add panel to dashboard

You will now have your new dashboard on screen with its first panel. As you can see, there are
a few problems – the legend is difficult to read, the data does not make much sense, and the
panel title does not relate to the data:

Figure 8.4 – The New dashboard view

Displaying Data with Dashboards178

7.	 Let’s make a few changes to improve this a little. From the triple-dots drop-down menu, select
Edit. The panel editor will appear; you should see something like this:

Figure 8.5 – The panel editor

8.	 Give the panel a meaningful name. We’ve entered Frontend Requests in the Title field:

Figure 8.6 – Query options

Creating your first dashboard 179

9.	 The graph, by default, will show data from both Range and Instant queries, which can look
odd on a time series visualization, as you will see a timeline and then standalone single values.
Change Type to Range only.

10.	 Click the Apply button to update the panel and return to the dashboard:

Figure 8.7 – The panel Apply button

11.	 You will now see the dashboard panel name applied to the metrics shown. Click the Save icon
on the dashboard menu bar:

Figure 8.8 – Saving the dashboard

12.	 Give your new dashboard a meaningful name that reflects its purpose; we have a Frontend
Requests panel, so let’s call it Frontend Dashboard.

Figure 8.9 – The Save dashboard panel

Displaying Data with Dashboards180

We now have our first dashboard, but it is very simple, with only one panel. It does not effectively
communicate much, and the number of frontend requests alone does not give an indication of what
is happening to our online store. Let’s explore what else we can do to improve this.

Developing your dashboard further
Let’s now develop our dashboard further and improve the information we share. Approaching your
dashboard as a work in progress that you can iterate over as you develop the message it is communicating
is key to getting the right message across. In this section, we’ll use an example where there’s an increasing
count of requests to the frontend app, which does not really tell us much. Showing the rate of those
requests makes more sense, as we will be able to see the speed at which they arrive in our app. Let’s
make that change now:

1.	 From the panel’s triple-dots drop-down menu, select Edit and you will see the following screen:

Figure 8.10 – The panel editor

Developing your dashboard further 181

2.	 Back in the panel editor, we can see that the query build gives us a hint to add a rate; this is
highlighted with a blue box around it. Click on this hint to add the suggested aggregation to
the existing query (if the hint does not appear, click the Operations button, and select Rate
with a range of $__rate_interval):

Figure 8.11 – The Rate query

As you can see, the graph now shows how many frontend GET and POST requests per second
come into our store. This is much more useful, but the legend is confusing, so let’s clean that up.

3.	 Expand the Options section just below the PromQL query preview.

4.	 Replace the contents of the Legend field with the Custom label identifier ({{method}}), as
shown in Figure 8.12; this will extract the values from the method label as the values for the
graph’s legend.

Displaying Data with Dashboards182

5.	 While we are here, let’s also change the title to reflect we are now showing a rate, not a count,
and add a meaningful description, as shown in the following screenshot:

Figure 8.12 – Panel updates

6.	 Once again, click the Apply button to update the panel and return to the dashboard. You should
see a dashboard like this:

Figure 8.13 – Our first dashboard

As we can see in the preceding screenshot, we now have a meaningful presentation of the rate of GET
and POST requests coming into the frontend API. The name of the dashboard and panel reflect their
purpose well, and there is also a new i icon next to the panel, which will display the description you
added when you hover over it.

Let’s now look at the visualizations available in Grafana and how to use them.

Using visualizations in Grafana 183

Using visualizations in Grafana
Grafana has a large selection of visualizations to support your varying use cases and data formats.
For example, for the counter and gauge metric types, you could use the Stat or Gauge visualization,
and the histogram could use Bar chart or Gauge. Logs can be presented using the table visualization
or by generating metrics from your logs in the time series chart. You can find the latest searchable
list of plugins here on the Grafana website: https://grafana.com/grafana/plugins/
panel-plugins/. A great place to try them out and get ideas you can use in your own dashboards
is https://play.grafana.org, where you will find dashboard examples of all the panel
visualizations along with a wide range of data types.

To change the panel visualization from within the panel editor, you can use the visualization selector,
which is on the top right-hand side. Selecting it will display a searchable list, with a graphical
representation of what the visualization looks like. This can be seen in the following screenshot:

Figure 8.14 – Grafana visualizations

https://grafana.com/grafana/plugins/panel-plugins/
https://grafana.com/grafana/plugins/panel-plugins/
https://play.grafana.org

Displaying Data with Dashboards184

Let’s try this with our panel on our first dashboard:

1.	 From the panel’s triple-dots drop-down menu, select Edit.

2.	 Select Stat from the list of panel visualizations. You should see the dashboard panel change to
look similar to the following:

Figure 8.15 – Stat visualisation

To better understand the options available, take some time to try out the different visualizations, or
spend time on Grafana Play exploring the examples there. Once you know the visualizations available
and the different panel configurations for each, it will become much easier for you to design your
own dashboards.

A typical panel configuration will have the following items:

•	 A title and description: While the title should help people understand the data presented, the
description should complement or embellish the title.

•	 A legend configuration: The legend should help interpret data presented with context and
clarity. It can be formatted to support visually processing data and can interact with the view,
filtering data to the selected item.

•	 A standard options setup: This is used to control the options for the units, maximum and
minimum values, decimals, display name, and color scheme.

•	 A panel-specific options setup: Each visualization can have its own panel configurations.

•	 Thresholds: These are used to control colors, backgrounds, or values displayed, based on
whether a data threshold value is met or exceeded.

•	 Overrides: Custom visualization settings can be applied to data to format and alter the
presentation – for example, removing decimals and showing unit identifiers.

Developing a dashboard purpose 185

•	 Value mappings: These are similar to the overrides used to change the visual treatment of your
data. They can be used to replace returned values with colors or values based on data matches
(including ranges and regular expressions) to alter the visual presentation.

Spending time developing your familiarity with the configuration of some of the main visualization
panels will give you the confidence to shape and present data for your users.

Let’s now take a look at some design concepts that will help you present your data more effectively.

Developing a dashboard purpose
When creating a dashboard, it is very important that it has an objective. There are three key questions
you can ask yourself to help you get the answers that identify those objectives:

•	 Who is the audience?

•	 What are their requirements?

•	 Where will the dashboard be viewed (on a big screen or a mobile phone)?

A dashboard must tell a story or answer a question, but we cannot do either of those things without
answering the preceding questions. Let’s refer to the personas introduced in Chapter 1 to think about
the type of people who need dashboards, what they want from them, and where they will see them:

Persona Requirements

Diego the Developer

Insight into the traffic flowing through the
systems I develop. This will inform how
customers are using our product and help me
make it better. Often, I need to investigate bugs
and dig deeper into errors with much more detail.

Ophelia the Operator

Visibility of problems as they happen, with clear
indicators and colors to represent system states.
Things need to be simple to understand at a
glance. Dashboards will usually be on a large
screen but need to be on my computer if I am
investigating an issue.

Steven the Service Manager

Overall, a system view that helps me see the
wider picture. If there is a problem, I need the
information to identify who can solve it. I will
view this on my computer.

Displaying Data with Dashboards186

Pelé the Product Manager

Clear and comprehensive metrics that show
me how our products are used and with which
devices. I will view this on my computer, and
often, I want to export it to a spreadsheet for
further analysis.

Masha the Manager

Aggregated data is useful to me, showing trends
with details on recovery rates and capacity so
that I can plan ahead. I will view these on my
computer, but periodic PDF reports via email
help me.

Table 8.1 – Dashboard users and needs

Capturing end user requirements and delivering them with the dashboards you create will ensure value
is taken from your observability platform and increase adoption. Once you have your user requirements
and have analyzed your data (so that you understand what important information is there), you can
start pulling your dashboards together. We say pulling together because it’s important to remember
you are creating something to answer a question, and that’s going to take time. Do not be afraid to try
out different styles, layouts, and visualizations as you work on the goal for each dashboard. Be sure
to test under the different presentation requirements; if it’s a large wall screen display or an emailed
PDF, you want to ensure you have verified that it displays correctly.

Let’s look at some techniques that will help with presentation.

Advanced dashboard techniques
To communicate effectively with our dashboards, we can use a layout and some technical features to
up our game. Let’s start looking at some of these in detail:

•	 Layout tricks: To help get your message across, you need to consider a few layout tricks that
really make your message pop. These include the following:

	� Use a short top title in the Overview panel to make it clearer to read.

	� Add a description showing how to use the information and who it’s for to give the users the
best chance of understanding the data presented.

	� Call out key indicators using visualizations such as Stat with sparklines, and show them first
at the top of your dashboard.

Advanced dashboard techniques 187

	� Present panels in a grid to visually guide viewers through your dashboard and control
their focus.

	� Do not cram too many panels into a single dashboard; this makes it hard to digest. Instead,
use datalinks to other dashboards and separate the data more.

	� Use transparent panels to introduce visual spacing on your dashboard and help key data
stand out.

	� Use rows to group relevant panels and data together, creating a context for the data.

	� Use the collapse feature of rows to hide certain data when the dashboard loads; this will
also have the performance benefit of not running those queries until the row is expanded.

	� Group similar visualizations to make the dashboard easier to read; this makes it easier to
process the data presented.

•	 Tech tips: Grafana comes with some really useful features; here are a few tips to help you work
smarter and speed up your development cycle:

	� Save dashboards often, or back them up by exporting the JSON.

	� Use useful change messages to help your future self when reviewing changes.

	� Remember that dashboard versions are saved, and these can be compared for changes if you
need to debug a problem that has crept into your dashboard.

	� Create interactive and dynamic dashboards to engage viewers and deliver a message
more effectively.

	� Use dashboard variables to get more use from your dashboard and help the viewer see data
they are interested in; these are displayed as inputs at the top of the dashboard.

	� Avoid hardcoding values in panels and queries; your future self will appreciate this as the
number of systems being monitored grows and new data is added that changes your dashboards.

	� Use relative time ranges as defaults to ensure the initial view is standardized – for example,
set the from time to now-15m to show the last 15 minutes.

Displaying Data with Dashboards188

	� Use transformations to present your data in more digestible formats. The Transform tab
and available transforms are shown in the following screenshot:

Figure 8.16 – The transformation selection screen

	� Use annotations; mark points on a graph with rich events from other data sources or even
manual annotations to communicate key events:

Figure 8.17 – Annotations

Managing and organizing dashboards 189

Let’s now look at how we can develop good practices to maintain control over our dashboards.

Managing and organizing dashboards
As the list of dashboards and teams using them grows, you will need a way to manage them easier.
Grafana provides folders, tags, and permissions that give us the capability to get organized. From the
main Dashboards screen, you can create folders, move and delete dashboards, and star them, as you
can see in the following screenshot:

Figure 8.18 – The Dashboards screen

Displaying Data with Dashboards190

From the dashboard Settings screen, you can add or remove tags from individual dashboards, as
shown in the following screenshot:

Figure 8.19 – Dashboard settings

Let’s look at the available settings for folders, tags, and permissions:

•	 Folders:

	� Provide easy organization and grouping

	� Enhanced security by segregating permissions at the folder level

•	 Tags:

	� Useful when searching for related dashboards

	� Color-coded for visual recognition

Case study – an overall system view 191

•	 Permissions:

	� Control access to folders and their dashboards

	� Give viewer access only to those who do not need to edit

	� Hide folders on a need-to-know basis

	� Available for both individual users and teams

Now that you have an understanding of the concepts involved, let’s look at a case study to develop a
dashboard for one of our personas.

Case study – an overall system view
We will now walk through the process you would take to develop dashboards for Steven the Service
Manager. If you recall from Chapter 1, he works in service delivery. He wants the organization’s services
to run as smoothly as possible.

We will start with a use case; in an earlier section in this chapter, Developing a dashboard purpose,
we recorded the following requirement from Steven:

“Overall, a system view that helps me see the wider picture. If there is a problem,
I need the information to identify who can solve it. I will view this on my

computer.”

This can be broken down into the following:

•	 A top-level system view

•	 Problem indicators (to highlight issues)

•	 More detail when needed

•	 Assistance in identifying who can help

We then need to gather information from documentation and by having conversations.

We have been using the OpenTelemetry demo app throughout the book; fortunately, architecture
diagrams are provided at https://opentelemetry.io/docs/demo/architecture/,
which will help us understand the system better.

Displaying Data with Dashboards192

Let’s look at the OpenTelemetry demo system architecture diagram:

Figure 8.20 – OpenTelemetry demo system architecture

We will also look at what telemetry is being ingested for these applications. This could be done by
exploring Grafana ourselves; we have system names now and application flows. Alternatively, we could
talk to Diego the Developer and obtain his insight into the system.

If you are exploring by yourself, this is a good time to build a research dashboard. This is where you
add panels as you explore and discover interesting data. We did this with our first dashboard earlier
in this chapter, starting with frontend requests and then enhancing it to show the rate of frontend
requests. Otherwise, start building up a scrapbook dashboard of data you may want to use; do not
worry about layout or visualizations right now.

Case study – an overall system view 193

To help us choose useful metrics, we can use a methodology such as the Four Golden Signals, as
identified in Google’s Site Reliability Engineering handbook (https://sre.google/sre-book/
monitoring-distributed-systems/#xref_monitoring_golden-signals). There
are other popular methods available – for example, the Utilization, Saturation, Errors (USE) and
Rate, Errors, Duration (RED) methods, which we will discuss in the next chapter.

Let’s quickly take a look at the Four Golden Signals:

•	 Latency: The time taken to service a request

•	 Traffic: How much demand is placed on your system

•	 Errors: The rate of requests that fail

•	 Saturation: How full your system services are

When you have some key metric data ready for use, you can start shaping your dashboard. Remember
that a dashboard should tell a story or answer a question; Steven has said he wants a top-level system
view that highlights problems with access to more detailed information as and when needed. We can
follow these steps:

1.	 Let’s start with the first row of the dashboard, creating the first-look area. By choosing metrics
detailing the flow of traffic through our system, we can use visualizations such as Stats (with
a timeline) to stand out. Lead the viewer, Steven, from left to right, with the most important
information first.

Here’s an example of Stats with timeline visualizations for the first-look area:

Figure 8.21 – A system overview

Other visualizations such as Gauge are good to represent the saturation of a system.

Displaying Data with Dashboards194

To ensure Steven’s attention is drawn to the most important information first, we can enhance
our panels with thresholds, overrides, and value mappings. In certain panels, we can even
overlay further context as annotations.

2.	 We then need to find a way to communicate more detailed information and decide this based
on how much information we have to display. We have to ask two questions:

	� Can we present the detailed information here on this dashboard itself (is there enough room)?

	� Do we need to drill down into other, more focused dashboards?

For our use case, we will work on the same dashboard. To support Steven with the identification
of who he needs to support in the event of an incident, we can do the following:

	� We can logically group our visualizations in rows. Each row can be a team, and the first
panel can be a text panel used to share contact information and provide details on how to
engage the team. This means the cognitive load when using the dashboard is greatly reduced,
helping Steven solve problems more quickly.

	� We can also use panel descriptions to share useful information that helps viewers, including
Steven, understand the data, and dashboard links to callout support pages will also help.

	� To represent more detailed information better, we could use visualizations such as the table
panel along with color coding to provide visual aids, helping to process the information quicker.

Here, we have an example with top-level insights and more detailed and directional (i.e., identifying
the owning or supporting teams) panels and rows:

Figure 8.22 – A detailed dashboard

Summary 195

As you can see from this fictional example, building a useful dashboard requires several iterations.
Much more than telemetry alone goes into the process, but the results mean Steven can do his job
and have the best shot at delivering customer satisfaction.

Let’s now close this chapter with a few words on how you can support your development with dashboards.

Summary
In this chapter, we explored the different components of a dashboard and looked at the different
details we need to factor in. These techniques will take time to build, so approach your dashboard
development in the same way, get something simple built early, and iterate on it. We talked about the
visualizations available for panels and inspiration on websites such as play.grafana.org. Have
some fun, and try out alternative methods to present your data and find a style you like. Finally, we
looked at some tricks and tips to improve your dashboarding, wrapping up with some simple ideas
to help you manage your dashboards.

In the next chapter, we will learn about incident management and the great tools available from
Grafana that support it.

http://play.grafana.org

9
Managing Incidents

Using Alerts

This chapter will explore the concepts of incident management. We will discuss how to build a
world-class incident management process, which treats those responding to incidents humanely and
avoids burnout. The chapter will establish the responsibilities for this, from the senior leadership
teams to the engineers responding to the callout. It will introduce the important concepts of building
an organization that can handle incidents and excel at providing customers with a stable experience.
With the process established, we’ll explain how to consider a service and pick critical measures that
can be used to see the current service level, without being drowned out by noise.

This chapter will also explore the three tools available from Grafana for incident management. First,
there’s Grafana Alerting, which is used to monitor metrics and logs for failures and trigger notifications
to responding teams. Then, there’s Grafana OnCall, which expands on the features of Alerting with a
dedicated mobile app for alerts, team schedules, and the ability to receive alerts from any third-party
application that can send webhook data. OnCall lets you centralize all alerts for visibility and route
them to the right response team. Finally, there’s Grafana Incident, which provides an easy-to-use
incident tracking tool that keeps all highlighted information ready for your post-incident activities,
helping your organization focus on improvements that prevent incidents.

In this chapter, we’re going to cover the following main topics:

•	 Being alerted versus being alarmed – how to build great incident management

•	 Writing great alerts using service-level indicators (SLIs) and service-level objectives (SLOs)

•	 Grafana Alerting

•	 Grafana OnCall

•	 Grafana Incident

Managing Incidents Using Alerts198

Technical requirements
In this chapter, we will go into technical details, aimed at readers such as Ophelia Operator, Diego
Developer, and Steven Service (who represent operators, developers, and service delivery professionals,
as introduced in Chapter 1), and which may be of interest to readers such as Masha Manager
(in leadership), to understand what is possible with Grafana’s tools and how they support established
incident management.

Being alerted versus being alarmed
Incident management is a common process used in many areas, from physical incidents such as fire and
medical emergencies to computer security or service failure. While we may not handle life-threatening
incidents in the computing world, the stress caused by bad incident management processes can be
very significant, from anxiety and depression to complete burnout, and it can increase the chance of
heart attacks and strokes. Our aim in this section is to explain how observability and Grafana’s tools
fit into an incident management strategy, and how to use them to reduce the impact on your teams,
the duration of incidents, and the frequency of incidents. We will explore the details of these concepts
and the tools available in Grafana to support them further throughout the chapter.

There are a lot of great public resources available on the topic of incident management; here are some
for you to explore if you wish:

•	 Emergency response and recovery (https://www.gov.uk/government/publications/
emergency-response-and-recovery): This is guidance given to the emergency
services in the UK. While most of you will not be handling incidents that involve risks to life
or property, this document is a fantastic read for anyone looking to understand how to make
incidents as easy as possible to handle.

•	 Atlassian Incident Handbook (https://www.atlassian.com/incident-management/
handbook): The Atlassian Incident Handbook is a great place to start when writing or reviewing
an incident management process.

•	 What is incident management? (https://www.servicenow.com/uk/products/
itsm/what-is-incident-management.html): Similar to the Atlassian Incident
Handbook, the ServiceNow incident management guide is a great place to start when writing
or reviewing an incident management process.

•	 Google Site Reliability Engineering (https://sre.google/sre-book/managing-
incidents/ and https://sre.google/workbook/incident-response/):
Google's Site Reliability Engineering books are packed with helpful information. Most organizations
will not be running services at the same scale as Google, but these give a clear view of creating
a highly scalable incident management process.

https://www.gov.uk/government/publications/emergency-response-and-recovery
https://www.gov.uk/government/publications/emergency-response-and-recovery
https://www.atlassian.com/incident-management/handbook
https://www.atlassian.com/incident-management/handbook
https://www.servicenow.com/uk/products/itsm/what-is-incident-management.html
https://www.servicenow.com/uk/products/itsm/what-is-incident-management.html
https://sre.google/sre-book/managing-incidents/
https://sre.google/sre-book/managing-incidents/
https://sre.google/workbook/incident-response/

Being alerted versus being alarmed 199

This may seem like an oversimplification of incident management, but we will group these concepts
into before, during, and after an incident.

Before an incident

As the mantra says, “Hope for the best, and prepare for the worst.” Knowing how you will respond
to an incident before it happens is crucial to responding effectively to an incident when it happens.
In this section, we will discuss various aspects that need to be in place before an incident occurs.

Roles and responsibilities

Incidents are messy, quickly evolving situations, and they are no place to be trying to figure out who
is doing what. Roles and responsibilities for your organization’s incident response must be clearly
documented and understood by everyone who may be called on to respond to an incident. It is not
advisable to reinvent the wheel for incident management; there are several frameworks available,
including the following:

•	 Information Technology Infrastructure Library (ITIL) incident management

•	 Site Reliability Engineering (SRE) incident management

•	 The National Institute of Standards and Technology (NIST) incident response framework

•	 The SysAdmin, Audit, Network, and Security (SANS) incident response framework

There are some key roles that appear in all of these:

•	 Commander: This is the person who has the authority to make decisions. These are some key
features of this role:

	� The range of decisions will be different for each incident, but the commander needs to be
able to call in the correct people, sign off on communications to customers, and handle
internal communications with senior leadership

	� This is also the person who has overall control of an incident

	� All other roles report to this person

•	 Communications: This is the person who is responsible for internal and external communications.
These are some key features of the communications role:

	� Communicating effectively during an incident is vital for success, and this person is responsible
for managing that

	� Internal and third-party communications are their responsibility

	� Customer-facing communication is also their responsibility

Managing Incidents Using Alerts200

•	 Technical leader: This person is vital for directing the many technical people who may be involved
in an incident. Some key features of technical leadership during an incident are as follows:

	� When multiple people from multiple teams are investigating a problem, it’s important for
one person to make the technical calls

	� The technical leader needs to know who in the technical teams is looking at what and when
to expect updates on findings

The roles outlined in these frameworks are very focused at the operational (bronze) level. The UK
emergency services have documented a very effective command structure, gold–silver–bronze,
which outlines responsibilities for tactical (silver) and strategic (gold) levels. It is valuable to be clear
about the responsibilities of executive or senior leaders and their subordinates before any incidents
are handled. This ensures everyone involved in an actual incident knows how to bring in the correct
leaders when needed. What we mean here is that it’s better to have a plan that can handle a major
incident that causes serious harm to an organization than to realize you need one during the incident.
Let’s explore these levels in greater detail:

•	 Gold – strategic responsibilities: Gold teams are made up of senior managers or the C-suite.
Members of the gold team should always keep their focus on the strategic level and not get
drawn into making tactical decisions. The main responsibilities of gold teams are as follows:

	� Set, review, and communicate the incident management strategy

	� Define whether any resources or specialist skills are needed

	� Handle the media strategy

	� Consider the legal issues that may arise from any incidents

	� Report to shareholders where appropriate

	� Approve the silver team’s tactical plans before they are used

	� Lead the de-brief or postmortem after an incident

•	 Silver – tactical responsibilities: Silver teams are composed of managers from different
departments. They provide tactical leadership for bronze teams, make decisions on how to
implement the strategic vision set out by gold teams, and, during incidents, act as the conduit
for information to flow between gold and bronze teams. Silver teams are responsible for
the following:

	� Set, review, and communicate the tactical plan for incidents up and down the chain of command

	� Document the incident management procedures

	� Capture how communication with customers should be handled

	� Choose the appropriate tools to manage incidents

Being alerted versus being alarmed 201

	� Understand which teams will be meeting which strategic objectives

	� Address any resource needs in critical teams

	� Update the gold team with any relevant information during an incident

•	 Bronze – operational responsibilities: The bronze team is the team that is responsible for
responding to an incident, from the initial alert to the conclusion of the post-incident process.
The bronze team’s responsibilities include the following:

	� Taking operational control of the incident

	� Informing the silver team when an incident is declared

	� Understanding the cause of an incident

	� Making decisions on how to resolve an incident

	� Communicating internally and externally within the tactical plan

	� Completing post-incident reports and meetings to address any ongoing issues

Cutting noise to improve the signal during incidents

It is impossible to know how an incident will occur and what the root cause will be. When they do
occur, getting the right information quickly and communicating effectively are two very important
factors in recovering from the incident as quickly as possible.

The first place to reduce noise is in observability systems, which makes it easier to identify important
signals. Doing this requires knowledge of a service, which is why it is best to do this before an incident
occurs. The following practices can help engineers such as Diego share the detailed domain knowledge
of their application with the wide experience of systems from engineers such as Ophelia and Steven:

•	 Identifying and documenting critical SLIs

•	 Using distributed traces, so all calls can be seen in service graphs

•	 Writing log messages that are easy to understand

•	 Writing logs that handle failures without producing lots of messages

A lot of observability tools offer some form of AIOps; these effectively offer a tool that watches the
standard flow of data and highlights times when something deviates from the previously seen data.
This should not be treated as a reason for not identifying critical signals, as these tools do not replace
specific domain knowledge in our experience.

The second form of noise that can occur is the inappropriate use of communication channels. Many
of us will have seen messages such as Is the site down right now? in a Slack or Teams channel, dedicated
to notifying us of incidents when they become a problem on a user’s computer. Noise and lack of signal
can occur for customers as well, either repeatedly notifying customers of every minor blip, or more

Managing Incidents Using Alerts202

likely, not informing customers when an incident occurs. Getting these communications correct is a
core part of an incident management strategy. Common practices include the following:

•	 Giving a dedicated group of people authority to declare an incident and its severity

•	 Automating the communication response to an incident when declared – for example, updating
a customer-visible status page and posting in a dedicated internal communications channel

•	 Setting up protected internal channels of communication for incident teams (bronze)

•	 Setting up protected channels of communication between incident teams and senior leadership
(bronze to silver and silver to gold)

•	 Pre-writing status messages so that incident teams only select the most appropriate message
for most consumers

Supporting tools

The adage that a bad workman always blames their tools is very appropriate here; there is no perfect
tool and what works for one organization may not work for another, and there are many tools on the
market. This is a list of capabilities that we believe all organizations should consider as part of their
incident management strategy:

•	 Alert notification – sending a page to the person on call. Also, consider mobile apps for
out-of-hours notification.

•	 Process automation.

•	 On-call rota management.

•	 Integration with other systems.

•	 Automatically capturing internal communications during an incident.

•	 Running practice or drill incidents.

•	 Escalation processes.

•	 Customer-facing communication during an incident.

Now that you have a lot of knowledge on preparing for the worst, let’s look at these plans in action
during an incident.

During an incident

Incidents happen, as much as we would prefer that they didn’t. In this section, we’ll discuss some key
tasks that help make the process of resolving incidents as painless as possible.

Being alerted versus being alarmed 203

Identifying the incident

There are many failure modes that can be seen in computer systems, from immediate lights-out outages
through cascading failures to intermittent failures. Having clear information to say when a service
is behaving as expected is vital to identifying issues. It is the responsibility of domain experts such
as Diego or Ophelia to write this information into software services, or ensure they are provided by
systems from third parties, such as compute, storage, or network services. There are some common
ways of capturing this information, including white-box monitoring techniques and black-box
monitoring techniques.

White-box monitoring is the practice of monitoring a system that you have access to. This practice
helps identify whether a service is healthy, with detailed information of the state of the service. Here
are some ways of presenting metrics that are commonly used in this process:

•	 Rate, Errors, Duration (RED): This is a way of measuring services that are driven by requests.
Rate is a measure of the volume of requests the service handles in a period. Errors is the number
of requests that are encountering errors. Duration is the distribution of request durations, and
it’s common to represent this as a set of percentiles or a histogram.

With these three signals, we can quickly compare the current state with a “normal” state,
checking whether any service has a higher or lower number of requests hitting it, whether it
has a higher than usual number of errors, or whether the duration of the requests are longer
or shorter. With that knowledge, the incident response team can identify services that need
further investigation.

RED is a great system to use for any service that responds to requests, such as a web server.

•	 Utilization, Saturation, Errors (USE): USE and RED are complementary to each other;
RED looks at the requests to a service, and USE looks at the internal state of the service.
Utilization measures the number of resources the service is using to process work (we’ll talk
about resources shortly). Saturation is the amount of work that the service cannot process due
to a lack of resources. Errors is the number of errors that are being produced. We’ve used the
term resources here; these will be different in each service, and identifying them is an area for
domain expertise. Common resources would be CPU and RAM availability, network or disk
I/O, or even the number of threads available in an application.

USE is best-suited to model a service that offers a resource, such as a storage system or
Kubernetes cluster.

•	 Golden signals: Golden signals were introduced in the Google SRE book, and they overlap very
strongly with RED and USE. The golden signals are latency, traffic, errors, and saturation.

Errors and saturation are the same as described in RED and USE. Traffic is the measure of
requests per second, so is equivalent to the rate from RED. Latency is the time it takes to service
a request; this is like duration from RED. However, latency also captures whether a request is
successful or not. This signal allows for differentiation between situations where a duration

Managing Incidents Using Alerts204

may be lower because the error is returned very quickly and the more challenging scenario of
a service taking a long time to give an error.

•	 Core web vitals: The previous views of services were driven by the backend systems. Core web
vitals are a set of metrics that are gathered from an end user’s browser, usually using a Real User
Monitoring (RUM) agent such as Grafana Faro, which is embedded into web applications to
collect data. This set of metrics is very focused on the end user experience for web applications.

The current core web vitals include the following:

	� Largest Contentful Paint (LCP): LCP measures the loading performance of a web page;
it is a measure of when the largest element on a page is rendered. Historically similar metrics
such as First Contentful Paint, First Meaningful Paint, Load, DOMContentLoaded, and
SpeedIndex have been used; LCP is the current recommendation from Google’s web.dev team.

	� First Input Delay (FID): FID measures the interactivity of a page; it is a measure from
when a user first interacts with a page to when the browser can process the event handlers
in response.

	� Cumulative Layout Shift (CLS): CLS measures how frequently the content rendered on a
page changes position because another element was rendered.

In contrast to white-box monitoring, black-box monitoring treats a service as an unknown and
checks whether it is behaving as an end user would see it. There are broadly two categories of
black-box monitoring:

•	 Synthetic monitoring uses a configurable service to simulate connections and user actions.
Prometheus offers the black-box exporter, which can connect to endpoints using HTTP, HTTPS,
DNS, TCP, Internet Control Message Protocol (ICMP – often called ping), and Google
Remote Procedure Call (gRPC). Other services on the market can also simulate critical user
journeys if more granular external monitoring is needed. Where service-level agreement (SLA)
adherence is a contractual obligation of an organization, using a third-party synthetic tool is
a very easy way of proving that the SLA was (or was not) adhered to. This tool is offered as a
managed service as part of Grafana Cloud as Synthetic Monitoring. All functionality except
gRPC calls are supported.

•	 RUM uses an agent embedded in frontend code to collect data from real end users using a
service. While RUM offers much broader functionality than just black-box monitoring, it can
also be used to provide the initial alert based on the actual experience of end users.

Black-box monitoring does come with a risk of false positives. While white-box monitoring only
covers items that are under the control of the organization such as internal networks, cloud-provided
services, and so on, black-box monitoring must cover areas outside of control such as external internet
provider networks or DNS services.

Being alerted versus being alarmed 205

By using common groups of signals and clearly defining these critical SLIs for each service, organizations
can effectively transfer the knowledge of a service’s health from domain experts to others in the
organization. Detailed how-to guides commonly known as runbooks, which detail responses to
situations, also transfer this knowledge. Finally, a robust post-incident process effectively allows
organizations to step away from a hero culture. A hero culture is when a small group of individuals
keep things working by responding to every incident, often at the expense of their health. A mature
organization is one that moves from the chaos of frequent incidents to one that gives highly motivated
individuals, and the organization as a whole, space to grow.

Once our monitoring has notified us that there is something wrong, the next questions are who to
bring into the incident and when.

Escalating an incident

If an incident can be resolved quickly with only the on-call person being involved, this is ideal.
Unfortunately, some incidents need to be escalated, whether that is because someone with more
specialized knowledge is needed, or because the scale of the incident is too large for one person to
handle. Each organization is different, and a clear escalation policy needs to be part of the tactical plan
for incidents. An escalation policy should give clear guidance and answer these questions:

•	 Who should be notified when an issue is identified by an automated system?

	� Does this change during in-hours and out-of-hours?

	� Does this change depending on severity?

•	 Who should be notified if the first responder isn’t available?

•	 Who should take over if a first responder can’t resolve an issue alone?

•	 What criteria are used to make that decision?

	� The duration of the incident?

	� The severity level of the incident?

	� The time of day of the incident?

•	 How should the handover of an incident occur?

•	 What happens if there are multiple incidents at one time?

With this guidance in place, it is the responsibility of leadership (Masha) to make sure everyone who
is on call knows the policy. This is especially important for junior engineers who may feel that they
need to avoid disturbing more senior colleagues. There is also a responsibility to regularly audit on-call
schedules and ensure engineers on call are protected from overwork and burnout from the schedule.

Managing Incidents Using Alerts206

Communication

During an incident, communication is critical. We can split communication into three broad strands:

•	 Incident team communication: Most organizations use some combination of in-person or
video meeting rooms and chat tools. There are a few considerations that should be taken to
make this communication easy during an incident:

	� What is the primary communication channel to tell someone to join an incident?

	� A chat channel, phone call/SMS, or mobile app (e.g., Grafana OnCall or PagerDuty)

	� Is there a primary conference bridge video meeting?

	� Make sure the details are included in any alerts sent on the primary communication channels

	� What is the expected response time for people called into an incident?

	� This has an impact on the time to recovery

	� This also has an impact on the health and well-being of people regularly called into
incidents, which should be monitored

	� How are team communications recorded for post-incident review?

	� Peoples’ recollection will become fuzzy as the time between an incident and the post-
incident review increases. Capturing communications is a good way of managing this to
ensure that the post-incident process is as accurate as possible. The tools that can be used
to make this process as simple as possible during an incident are very valuable to the entire
incident management process.

	� There are tools and processes to assist here. Grafana Incident will track a timeline of events
from tools such as Slack. The communications and technical leads of an incident should
also be responsible for regular status updates, which should be made with a post-incident
review in mind.

•	 Internal communication: The communications lead of a major incident is responsible for
internal communication. For most channels, the tactical plan for incidents should specify a
frequency of updates. This communication typically does not need to go into a lot of detail;
even saying, “We are still investigating the issue and working to resolve it” is better than being
silent. This communication is equally important during incidents of internal tooling as well.

Being alerted versus being alarmed 207

The communications lead should keep senior stakeholders such as the gold and silver teams
informed of the current state in more detail. As silver teams will typically include technical
and managerial leadership for the products that may be the cause of the incident, this channel
is especially important for escalating and bringing in experts where needed. Following the
same primary communication channel for incident notification is the best practice – that is, if
escalation is a case of notifying the correct on-call rota, then incidents can be resolved more
quickly. However, this does come with the cost of placing more engineers on call.

•	 Customer communication: This is likely the most important because when incidents affect
external customers, it is important to get a message out quickly to reassure an organization’s
customers that you are on top of the issue and working on restoring service. There are a whole
host of options for communication with customers:

	� Status pages, either dedicated and separate from the organization’s service or embedded into it

	� Email notifications

	� Social media

	� SMS notifications

	� Messages on any customer ticket management portal

During an incident, the communications lead should have a selection of pre-generated and
approved messages for customers, with little need to modify the message. This helps keep the
tone and feel of the messages correct, even if the communications lead has just been woken
up at 3 a.m. It is also useful to have a message that informs customers there may be a problem
but you are investigating; this is ideal for situations where you’ve been alerted to a situation
but you’re unsure whether there is an actual impact on customers.

With all these things in place, you will have put your organization in a great place to resolve incidents
quickly and let the team go back to bed. After the incident, the arguably harder pieces of work will
begin, such as understanding why the incident happened and communicating how the organization
is going to fix any underlying causes. Let’s explore how to approach this.

After an incident

Incidents happen to big organizations and small organizations; even organizations that have been
meticulous in avoiding incidents will experience them. The most important thing from any incident is
for the organization, as a whole, to learn about the vulnerabilities in a system or the gaps in processes
that led to the incident.

When incidents happen, it can be natural to look for a person or a department to blame; this human
tendency is in direct contradiction to an organization’s best interest. Blame leads to burdensome
procedures, a lack of innovation, and ultimately, to the organization’s stagnation, as staff stop being
honest and seek to ensure they are not blamed, demoted, or even fired.

Managing Incidents Using Alerts208

Blameless postmortems are a space for an honest and objective examination of what happened, with
the goal of understanding the true root cause(s). Good intentions from all staff and departments
must be assumed. It is critical to understand that the goal of a blameless postmortem is not to remove
accountability from an individual or team but to ensure that accountability is not accompanied by
the fear of reprimands, job loss, or public shaming. The important aspects of a blameless postmortem
include the following:

•	 Open communication where mistakes are accepted as a part of life

•	 Encouraging honesty and the acceptance of failure

•	 Sharing detailed information on the timeline of events, which should be supported by the logs
of internal communication and systems during the incident

•	 Making decisions and seeking approval for improvements

There are many guides that detail these processes in much greater detail than we have gone into here;
our goal is to introduce those of you who fit the personas to the broad topic of incident response.
We will now discuss in more detail how the practices of observability and the tools of Grafana can
help build part of a great incident response plan. We will start this by looking more deeply at SLIs,
as well as SLOs.

Writing great alerts using SLIs and SLOs
An SLI is a measurement that is used to indicate a current service level. An example could be the
number of errors over a 15-minute period.

It is best practice to keep the number of SLIs small; three to five SLIs for a service is a good rule of thumb
to follow. This reduces confusion and allows teams to focus on what is critical for their service. SLIs can
also be thought of as a fractal concept; while a service team can have indicators for a component of a
larger system, the system can also be tracked by a small number of SLIs – for example, the number of
services that are failing their SLOs. By keeping the number of SLIs tracked relatively small, the potential
for spurious alerts is reduced, and the impact of continuously monitoring services is kept small. This
means more services can be monitored without scaling the tools used and increasing operating costs.

The patterns we discussed earlier of RED, USE, golden signals, and core web vitals are good SLIs to
consider when deciding what to track. These are not the only measures that can be used as SLIs, but
they have good adoption in the industry and are well understood. Teams should think hard about
whether they need to use something different.

Grafana Alerting 209

By agreeing on SLIs and objectives, the process of writing a great alert becomes much simpler, as the
person implementing the alert only needs to consider how to translate the business description of the
SLI (the number of errors in a 15-minute period) into a query, using LogQL or PromQL, and then
create a threshold based on the set objective. Alerts written this way will also be easy to understand.

Another important concept is the SLO, which refers to an internally agreed-upon target that is
considered acceptable for an SLI. An example would be no more than 3% of requests resulting in
errors during a 10-minute period.

While not directly related to incident alerting, there is the concept of error budgets, which are strongly
related to a good SLO setting. An error budget is an SLO that measures the meeting of other SLOs.
When the error budget is exceeded, this is a good indicator that a service is unstable in some way,
and this should serve as a trigger for focusing the team’s energy on remediating this. Conversely, if
the error budget is high, this should give the team the space to experiment, or even take the service
down in a planned way. This can be a great opportunity to expose issues that could be catastrophic if
they were seen in an unplanned outage. This topic is discussed in much greater detail in publications
that discuss SRE.

An SLA is an agreement made with clients or users on what is acceptable for the service. These can
be legal agreements. These are often made up of multiple SLIs and SLOs. An example would be an
uptime of 99.9%. Setting objectives with SLOs helps an organization keep easily within their legally
agreed SLAs, which is a great way to ensure that the SLAs are very rarely breached and customers feel
they can trust your organization.

We’ve explored the theory of a good incident response strategy and the choices to make, from the team
level to the organization level, to support it. Let’s now take a look at the three tools Grafana offers to
support incident response, Grafana Alerting, OnCall, and Incident.

Grafana Alerting
Grafana Alerting is the first of three major components of Grafana’s Incident Response and
Management (IRM) toolset. Grafana Alerting itself comes with no additional licensing costs, and
it is an ideal solution for smaller organizations while forming the foundation of the IRM tools in
larger organizations.

Managing Incidents Using Alerts210

The IRM features can be accessed from the main Grafana menu under the Alerts & IRM tab:

Figure 9.1 – The Grafana Alerts & IRM main screen

Grafana Alerting continuously evaluates user-created alert rules for alert-worthy states, following
predefined steps to send messages to the chosen notification channel.

Next, we will see how to set up alert rules, get your contact points and notification policies right,
silence alerts when needed, and set up teams and team members.

Alert rules

The main configuration screen for Grafana Alerting is the Alert Rules screen. This allows you to set
up new rules and see the current state of existing rules. Setting up a rule should feel very familiar after
learning LogQL and PromQL in Chapters 4 and 5, respectively.

Grafana Alerting 211

Setting up an alert rule requires several items to be configured; let’s walk through those now:

1.	 Set the alert rule name and define the query and alert condition: First, a query is created and
named; in our example, we have used the following query for a period of 10 minutes:

(sum(app_frontend_requests_total{status=~ " 5.. "})/sum(app_
frontend_requests_total))*100

This will calculate the percentage of all requests in the period that were completed, with a
status code of 5xx, which is the SLI. In the Expressions section, we can then set how we want
to reduce the time series returned; in this case, we want the last event, but if we were looking
perhaps at errors per endpoint, we could get the maximum value, so we see the highest error
rate from any endpoint. The Threshold value lets us set when the alert is triggered or not – in
this case, when the error percentage is above 3, which is the SLO. The following screenshot
shows the screen where these items can be filled in:

Figure 9.2 – Creating an alert rule

Managing Incidents Using Alerts212

2.	 Set the alert evaluation behavior: With our SLI and SLO set, we now need to decide how we
want Grafana to evaluate its next action. Grafana has three states an alert rule can be in – normal,
pending, and firing. The alert evaluation behavior manages how an alert rule group will transition
between states. An evaluation group will sequentially evaluate each rule in the group with the same
evaluation period. In our example, we have created a frontend group, which would contain the
RED metrics from the frontend service. As our frontend service is business-critical, the evaluation
period is set to 1 minute, and our pending period is set to 5 minutes. With these settings, if our
error percentage goes over 3, our rule will enter the pending state within 1 minute, and our alert
will trigger within 5 minutes if the state persists. This can be seen in the next screenshot.

It is very tempting to set these values as low as possible (10 seconds); however, this can have
unintended consequences. Running the queries every minute would result in 1,440 queries per
day, while every 10 seconds would give 8,640 queries per day. While compute power is relatively
cheap, this still increases the resources required by Grafana by six and probably offers little
advantage. Another consideration is the interaction of this frequency and the query period. If
we evaluated every five minutes but our query only looked at the last minute, we would have
minutes that were not evaluated, which could disguise legitimate intermittent errors. Let’s look
at the lower part of the screen to manage an alert rule:

Figure 9.3 – Managing an alert rule

Grafana Alerting 213

3.	 Add annotations: Annotations are used to add information that will be sent to the contact point
when an alert triggers. It is good practice to include easy-to-read summaries that capture key
information, such as which service is involved and what the problem is. The description should
give more detail if needed, and it is best practice to include a runbook URL and dashboard
link. These should guide a responder to quickly understand the problem and give information
on remedial steps they can follow to quickly restore a service.

4.	 Configure notifications: The Configure notifications section provides space to add labels.
These can be used to manage alert routing, which we will cover when we discuss notification
policies. Clicking the Preview Routing button will give information on how an alert will be
routed with its current configuration.

The next few tabs in the Alerting menu allow us to configure other aspects of Grafana Alerting. These
are smaller items than the main alert rules. Let’s take a look at them now.

Contact points, notification policies, and silences

Contact points are configured by Grafana admins. They consist of a name and one or more integrations.
It’s typical for a contact point to be a team responsible for addressing an issue. With some of the
integrations available, such as webhooks and Kafka message queues, it is relatively easy to establish
more complex contacts that go beyond just alerting. In more complex environments, Grafana offers the
option of creating notification templates on the Contact points page. These can be used to standardize
the message structure across multiple contact points and integrations. Grafana provides a great guide
to setting up custom notifications here: https://grafana.com/docs/grafana/latest/
alerting/manage-notifications/template-notifications/.

Notification policies allow you to connect alerts triggered from an alert rule to a contact point. These
policies can be nested, and they can also have mute timings applied to silence notifications during off
hours. A very valuable feature of notification policies is the ability to match notifications on a label
from Loki or Prometheus/Mimir sources. This effectively gives you the ability to use a label from the
source telemetry and route notifications to the team responsible for that service; an example of this
could be routing to teams on the service_name label from the services in the OpenTelemetry
Demo. Rules at the same level of nesting can also continue matching, meaning the service team and
a central operations team can both be notified.

Silences are defined periods when no notifications will be created. These can be used to manage
maintenance periods when using Grafana Alerting.

Groups and admin

The Groups section shows grouped alerts. Grafana will also display alerts here for data sources that
have defined alerts but are not sending data.

https://grafana.com/docs/grafana/latest/alerting/manage-notifications/template-notifications/
https://grafana.com/docs/grafana/latest/alerting/manage-notifications/template-notifications/

Managing Incidents Using Alerts214

The admin page provides the configuration for Alertmanager in JSON format; this allows administrators
to save a configuration and transfer it to other instances, or to use it as a configuration backup.

Grafana OnCall
Grafana OnCall is the second major component of IRM and expands on Grafana Alerting, by adding
capabilities to do the following:

•	 Consume alert notifications from many external monitoring systems

•	 Specify alert groupings to reduce noise during incidents

•	 Specify when alert groups should send notifications

•	 Define on-call rotations and escalation paths

•	 Expand notification channels from what is offered in Grafana Alerting:

	� Create and update tickets in ServiceNow, Jira, and Zendesk

	� Notify the current on-call individual directly

•	 Provide a mobile application for engineers to handle on-call responsibilities

All features of Grafana OnCall are included with an IRM user license. A Cloud Free subscription
includes access for three users. Both the Pro and Advanced accounts include access to 5 users; additional
users are billed at $20 per month at the time of writing.

In the next section, we will look at alert groups and how to set up integrations for inbound and
outbound data flow. We will also explore the templating language used in Grafana OnCall and how
to manage escalation chains.

Alert groups

All alerts that flow into Grafana OnCall are grouped into alert groups. These groups can consist of
one or more individual alerts, and the grouping behavior is managed by the integration template that
is being applied. We will discuss templating after looking at integrations. An alert group can be in
one of the following states at any time – firing, acknowledged, silenced, or resolved. Actions taken
by on-call engineers or escalation chains can transition the state of an alert group. An alert group
will look like this:

Grafana OnCall 215

Figure 9.4 – The alert group anatomy

This web view mirrors the functionality available to on-call engineers via integrated communications
channels, the mobile app, phone calls, and SMS. Alert groups can easily be acknowledged, unacknowledged,
silenced, or resolved. Engineers can also notify additional responders if they need to bring in another
team, declare an incident to trigger the processes in Grafana Incident (which is discussed later in this
chapter), or combine alert groups if they are all related, meaning that cleaning up after an incident
is much easier.

Inbound integrations

The tools to set up an inbound integration, or alert source, are under the Integrations option. These
interactions are used to send alert information from an external source to Grafana OnCall. There are
currently over 20 integrations, and inbound webhooks can be used to integrate with any system that
can send them. Clicking on New Integration will begin the process of connecting to a new alert source;
we will use Grafana Alerting as our source, as we have just explored it. First, give the integration a
name and description, and then select an alert manager and a contact point. Grafana OnCall is able
to integrate with any Prometheus-compatible alert manager; a default alert manager is configured in
Grafana Cloud, called Grafana. Finally, click Create Integration and you will see the following screen:

Managing Incidents Using Alerts216

Figure 9.5 – Grafana alerting integration

The HTTP endpoint is used to configure the alert source to send alerts to. If you need assistance in
configuring a specific integration, the How to connect link offers additional information. To test the
integration, the Send demo alert will create a test alert.

The Templates block on the screen shows how OnCall will take a JSON payload and parse it. This
uses Jinja2 templating to set various fields of the OnCall alert group. Each integration will have a
different template to parse the unique payload sent by each source. In the Grafana Alerting template,
we create a grouping ID field from the value in the payload.groupKey field. Similarly, the
alert group will be resolved if payload.status is resolved. This means that the source of the
alert can also send a resolution update as well.

The next sections, Web, Phone, Slack, Telegram, Email, and MS Teams, hold the template for how
a notification about an alert group will be sent to these ChatOps integrations.

Adding routes allows you to select an escalation chain, based on a Jinja routing template for each
alert group that originates from the integration. This is achieved by clicking on the Add route button.
Routes also include the option to publish to any ChatOps integrations that have been configured.

Another important function available on the triple dot menu on the integration page is the ability
to start a maintenance period. Maintenance can be either a debug, which silences all escalation, or
standard maintenance, which collects all alerts into one alert group.

Let’s cover templating and escalation chains next.

Grafana OnCall 217

Templating

Jinja is a templating language with many useful features to parse multiple alerts in an alert group,
enabling valuable information to be seen quickly in the messages sent to those on call. Here are some
of the features and syntax of the language:

•	 Loops: The syntax for a loop is this:

{% for item in seq -%}
Do something with item from seq
{% else %}
Do something else if there are no items in seq
{%- endfor %}

Let’s use an example. We will assume our payload is as follows:
{"results": [{"metric": "bigbadwolf", "value": 1},{"metric":
"littlepiggies", "value": 3},{"metric": "houses", "value": 1}]}

We can then use the following Jinja template:
Values:
{% for item in results-%}
{{ item['metric'] }}: '{{ item['value'] -}}'{{ "\n" }}
{%- endfor %}

This will result in this output:
Values:
bigbadwolf: '1'
littlepiggies: '3'
houses: '1'

•	 Conditions: Conditions can be constructed with this syntax:

{% if field == condition1 %}
Do something
{% elif field == condition2 %}
Do something different
{% else %}
Do something else if condition 1 and 2 didn't match
{% endif %}

•	 Functions: Jinja offers a comprehensive list of built-in functions that can be used in templates.
Grafana has also added a few additional functions:

	� time: The current time

	� tojson_pretty: JSON prettified

Managing Incidents Using Alerts218

	� iso8601_to_time: Converts time from iso8601 (2015-02-17T18:30:20.000Z)
to datetime format

	� datetimeformat: Converts time from datetime to the given format (%H:%M/%d-%m-%Y
by default)

	� regex_replace: Performs a regex find and replace

	� regex_match: Performs a regex match, and returns True or False

	� b64decode: Performs a Base64 string decode

•	 White space management: Jinja templates blocks of text, so it’s sometimes useful to add white
space in a template for readability but have it stripped in the formatted message. Jinja offers the
option to add a minus sign (-) to the start or end of a block to remove all white space before
or after it. If seq = [1,2,3,4,5,6,7,8,9], we can write this as follows:

{% for item in seq -%}
    {{ item }}
{%- endfor %}

This will strip the white space before and after the item, and this is rendered as follows:
123456789

Without this white space management, it would be rendered as follows:
    1
    2 …

Jinja also offers the ability to trim functions, which can remove white space as well. If you want
to maintain white space, adding a plus sign (+) will indicate that it should be retained.

For more information on Jinja, please check out the website: https://jinja.palletsprojects.
com.

Now that we understand how to use templates to format payloads and messages, let’s take a look at
escalation chains.

Escalation chains

Escalation chains let us set up standard workflows for alert groups. This is great for routing alerts
based on the severity or content of the alert, the time of day, or other factors. There are a number of
steps that can be set up:

•	 Wait: Wait for a specified amount of time and then continue to the next step.

•	 Notify users: Send a notification to a user or a group of users.

Grafana OnCall 219

•	 Notify users from on-call schedule: Send a notification to a user or a group
of users from an on-call schedule.

•	 Resolve incident automatically: Resolve the alert group right now with the status
Resolved automatically.

•	 Notify whole Slack channel: Send a notification to a Slack channel.

•	 Notify Slack User Group: Send a notification to a Slack user group.

•	 Trigger outgoing webhook: Trigger an outgoing webhook.

•	 Notify users one by one (round robin): Each notification will be sent to a
group of users one by one, in sequential order and round-robin fashion.

•	 Continue escalation if current time is in range: Continue the escalation
only if the current time is in a specified range. This can be used to pause escalations outside
of working hours.

•	 Continue escalation if >X alerts per Y minutes (beta): Continue the
escalation only if it passes some threshold.

•	 Repeat escalation from beginning (5 times max): Loop the escalation chain.

When a notification is sent to a user, either directly, via an on-call schedule, or via a round-robin,
then the user’s personal notification steps are followed. These can be managed by the user. The user’s
page will highlight the status of notification steps for all users; any users who have not configured
notifications will be marked with a warning.

Outbound integrations

Grafana OnCall offers several ways to perform outbound integration, which involves integrating
external tools so that outbound messages can be sent, either to a messaging tool or any system that
can receive a webhook. There are two types of such integration:

•	 ChatOps, which are integrations that include Slack, Telegram, and MS Teams. These are
configured via Settings | ChatOps.

•	 Webhooks: These outgoing Webhooks provide the ability to integrate with any system that can
receive them, and they are triggered from events in OnCall.

Managing Incidents Using Alerts220

The following screenshot shows how to set up a webhook in Grafana OnCall:

Figure 9.6 – Configuring an outbound webhook

Grafana OnCall 221

Webhooks can be triggered from an escalation step, or when an alert group is created or transitions
to particular states.

Schedules

Schedules are the way Grafana OnCall manages who is on call from each team. These are very easy
to set up, and they offer you the ability to have a standard rotation schedule and set up any overrides.
Schedules will also notify a Slack channel about the current on-call shift and any unassigned shifts.
The New Schedule screen is shown in the following screenshot:

Figure 9.7 – Setting up a new schedule

Managing Incidents Using Alerts222

Now, let’s look at Grafana Incident.

Grafana Incident
The final major component of Grafana’s IRM offering is Incident. This tool helps simplify and automate
many aspects of the incident management tactical plan. The tool integrates with an organization’s chat
tooling, such as Slack, and offers you the ability for team members to declare incidents in that tool.

Once an incident is declared, Grafana Incident can automatically start a video conference, update
status page tools, add context to the incident timeline from GitHub, and so on, depending on the
integrations that have been configured. Team members of the incident can specify who takes what
role in the incident and specify and assign tasks during the incident. As the incident evolves, Grafana
Incident will record important information in a timeline, which can be published and easily reviewed
in regular post-incident reviews.

To begin using Grafana Incident in Grafana cloud, an administrator needs to agree to a few integrations
being set up initially. It is also good to set up integrations with a messaging tool such as Slack and a
video conferencing tool such as Zoom, as Grafana Incident will use these when an incident is declared.
A new incident bridge will be created in video conferencing, and the tool can record chat messages
when instructed so that they are available for a post-incident review. Where applicable, integrations
with Statuspage, GitHub, and Jira should also be configured; these can update Statuspage, record the
state of pull requests and issues, and manage bug tickets, respectively. We expect the list of available
integrations to expand as this tool matures.

Let’s look at how Grafana Incident is used during an incident:

•	 During an incident: During an incident, a commander and multiple investigators can be
assigned. Predefined tags can be associated with the incident, and a severity can be set.
Investigators can then record text updates in the incident timeline, as well as relevant queries,
alerts, and panels visited. The tool will then collect all relevant chats, text updates, queries run,
alerts that were fired, and panels that were used during the incident. Investigators can also fire
outbound webhooks that have been configured. The incident screen includes a task list, and
links to relevant resources can also be attached.

•	 After an incident: The information collected during an incident is collated into a timeline of
the incident. The timeline for this incident can then be reviewed. Grafana Incident also collates
standard metrics, which can be viewed at a higher level on the Insights page.

The Insights page shows high-level metrics for all incidents in the last 90 days by default.
It is best practice for the silver leadership teams in organizations to review this page as part of
a regular formal process, reporting to gold teams. This helps to ensure that incidents are being
handled well and remediation work is being scheduled by teams, reducing the frequency and
impact of incidents on an organization.

Grafana Incident 223

Grafana offers several AI and machine learning (ML) tools to help incident management:

•	 Suggestbot: This tool uses Natural Language Processing (NLP) to analyze the conversation
during an incident and will suggest dashboards that have titles that are related to the subject
that is being discussed.

•	 OpenAI integration: This is a public preview tool at the time of writing. Its aim is to speed up
the tedious process of writing post-incident summaries. The tool uses OpenAI’s ChatGPT to
distill the incident timeline into a summary, which can be fine-tuned. An OpenAI account is
required to use this integration. This integration can produce the following:

	� A summarized description of incidents

	� An event timeline of what happened leading up to an incident

	� Details of the actions that were taken to resolve an incident

•	 ML Forecasting: This tool will forecast the future state of metrics based on the learned models
of past states. This is only available for metric data (either from Prometheus, Graphite, or Loki
metrics queries). These forecasts can be used in dashboards or to drive alerts.

•	 ML Outlier Detection: This tool builds a model of what normal looks like for a metric and will
highlight when metrics are outside of this normal range. These outliers can be used in alerting.

•	 ML Sift: Sift is also a public preview tool. This is a powerful tool for incident management, as
it will interrogate telemetry from infrastructure and help identify critical details that may be
drowned out in the noise of an incident. Sift will look for the following:

	� Patterns in error logs

	� Crashes in Kubernetes clusters

	� Noisy Kubernetes nodes, which have high loads

	� Containers that have resource throttling

	� Deployments that occurred recently

	� Slow requests seen in Tempo

You should now feel confident in being prepared for and responding to incidents using the tools
provided by Grafana.

Managing Incidents Using Alerts224

Summary
In this chapter, we have seen how to establish a great incident management process, which will help
you evaluate and work on your organization’s own process. We have also explored SLIs, SLOs, and
SLAs and how to use them, seeing immediately whether a service is responding successfully or not.
You have gained the skills to select appropriate SLIs, allowing you to transparently share with the rest
of your organization whether the services you are responsible for are behaving as expected. In turn,
this transparency helps the organization identify quickly where problems are and target resources to
address them.

Finally, we looked at the tools offered by Grafana for incident management, seeing how to configure
and use them to support great incident management processes.

The next chapter will look at how we can use the tools provided by Grafana and OpenTelemetry to
automate the processes of collecting, storing, and visualizing data in an observability platform.

10
Automation with Infrastructure

as Code

This chapter will explore how to use Infrastructure as Code (IaC) tools to automate the management
of the various components of the Grafana observability platform. We will focus on Ansible, Terraform,
and Helm, which allow teams to manage many aspects of their systems repeatably and automatically.
This chapter divides the platform into the collection and processing layer, the storage layer, and the
visualization layer and will outline how to automate each of these components. This chapter will
provide the technical tools to create an easy-to-manage and very scalable observability platform, and
combined with the information in Chapter 11, you will be well placed to lead your organization in
easily leveraging the power of observability.

In this chapter, we’re going to cover the following main topics:

•	 Benefits of automating Grafana

•	 Introducing the components of observability systems

•	 Automating collection infrastructure with Helm or Ansible

•	 Getting to grips with the Grafana API

•	 Managing dashboards and alerts with Terraform or Ansible

Technical requirements
This chapter involves working with Ansible, Terraform, and Helm, and it is recommended that you
install them before you start reading. The chapter will also discuss a couple of concepts that you should
have at least a passing familiarity with:

•	 Kubernetes objects

•	 The Kubernetes operator pattern

Automation with Infrastructure as Code226

Benefits of automating Grafana
Observability tooling combines the collection, storage, and visualization of telemetry from many
applications, infrastructure services, and other components of systems. Automation offers us a way
of providing a testable, repeatable way of delivering these needs. Using industry-standard tools such
as Helm, Ansible, and Terraform helps us maintain these systems in the long term. There are a lot of
benefits to using automation, including the following:

•	 It reduces the risks associated with manual processes.

•	 Domain experts can provide automation for systems that developers interact with. This gives
development teams confidence that they are using unfamiliar systems correctly. This knowledge
comes in the following forms:

	� Data architecture for telemetry

	� Repeatable system architecture

	� Best practices for managing data visualizations

•	 By providing automation, domain experts are able to focus on higher-value work by letting
teams self-serve using more straightforward and user-friendly systems.

•	 It provides a golden path so development teams can adopt observability easily and quickly and
spend more time focusing on value-adding activities.

•	 It allows for easy scaling of best practices and operational processes. This is especially important
for organizations that are growing, where a process that may work with a handful of teams
does not scale to dozens of teams.

•	 It ensures that cost information is always attributable.

Now that we’ve introduced why you would want to use automation, let’s have a look at the components
that make up an observability platform so we can easily automate the different aspects of the system.

Introducing the components of observability systems
Observability systems consist of many components involved in producing, consuming, transforming,
storing, and using data. Over the course of this chapter, we will split these components into four distinct
systems to be clear about which aspect of observability platforms we are discussing. The different aspects
of automation will be of interest to different audiences. The systems we will discuss are as follows:

1.	 Data production systems: These are the systems that generate data. The applications, infrastructure,
and even components of the data collection system will produce data. Let’s look at the key features:

	� These systems are managed by developers such as Diego, or by operations experts such as
Ophelia (refer to Chapter 1 for details on these personas).

Introducing the components of observability systems 227

	� These systems are tested as part of the application- or component-testing process. If a data
schema is in use, this can be validated using a tool such as JSON Schema.

2.	 Data collection systems: These systems collect the logs, metrics, and traces generated by
data-producing systems. They typically offer tools for transforming data. Their key features
are the following:

	� These systems are often run by specialist operations teams, observability engineers, site
reliability engineers, or platform engineers

	� These systems are provisioned infrastructure

	� Automation involves the use of IaC tools and static analysis tools (where available) to validate
the infrastructure

3.	 Data storage systems: These are the systems that store data and make it searchable. If your
observability platform leverages SaaS tools, these systems will be provided by your vendor. Loki,
Prometheus, Mimir, and Tempo are all examples of storage systems. Some of the important
features of these systems include the following:

	� These systems are often managed by dedicated third parties, but when they are managed within
an organization, they will typically be managed by the same team as the data collection system

	� These systems are provisioned infrastructure

	� Automation involves the use of IaC to provision on-prem resources, or leverages SaaS tooling
such as Grafana Labs with IaC configuration

4.	 Data visualization systems: These are the systems that allow users to search the data stored
in the storage systems and produce visualizations, alerts, and other methods of understanding
the data. Grafana is an example of a visualization system. The following are some important
features of such systems:

	� The management of this layer is typically a shared responsibility. The developers and operators
who manage a particular system should be empowered to take ownership of their dashboards.
The team managing the collection and storage layers will typically be the team empowering
the rest of the organization.

	� These systems are provisioned infrastructure.

	� Automation involves the use of IaC to provision on-prem resources, or leveraging SaaS
tooling such as Grafana Labs, with IaC configuration.

In this chapter, we will discuss systems 2, 3, and 4 in the preceding list. System 1, while important, is
a very broad area and the automation strategies differ for different types of data producers. However,
in most cases, teams can rely on the testing done by the libraries they consume, or the third-party
systems they run.

Automation with Infrastructure as Code228

Let’s start by looking at how we can use Terraform or Ansible to deploy data collection systems.

Automating collection infrastructure with Helm or Ansible
Automating the installation of the infrastructure used to collect telemetry is a critical piece of building
a great observability platform. The tools to support this depend on the infrastructure you are deploying
to. In this section, we will examine the installation of the OpenTelemetry Collector and Grafana
Agent using the following tools:

•	 Helm is a tool for packaging and managing Kubernetes applications. A Helm chart contains
all the configuration files for the various Kubernetes components needed for an application,
and typically handles setting the variables for the application. We will be using Helm in a
Kubernetes environment.

•	 Ansible is a tool for standardizing operations into repeatable playbooks. It uses simple YAML
configuration files to define the actions to be taken and leverages OpenSSH to connect to the
target servers on which the actions are to be taken. We’ll be using Ansible in a virtual or bare-
metal environment, but it can be used to manage Kubernetes environments as well.

Important note
OpenTelemetry and Grafana both offer a Kubernetes operator, which can be installed using
Helm. We will provide an overview of these tools as well.

Now let’s look at how we can use Helm and Ansible to automate the installation of the OpenTelemetry
Collector and Grafana Agent.

Automating the installation of the OpenTelemetry Collector

In this book, we have been using the OpenTelemetry Collector to collect data from the OpenTelemetry
demo application and send it into our Grafana instance. First, we’ll use the configuration we have
already deployed to explore using the Helm chart made by OpenTelemetry to deploy the collector
into a Kubernetes cluster.

OpenTelemetry Collector Helm chart

We first installed the OpenTelemetry Helm chart in Chapter 3, and then updated the configuration
in Chapters 4, 5, and 6. OpenTelemetry provides detailed information about the configuration
options that are available in its Git repository at https://github.com/open-telemetry/
opentelemetry-helm-charts/tree/main/charts/opentelemetry-collector.

Let’s look at the final configuration that we applied in Chapter 6 and see how we configure the OTEL
Helm chart. You can find this file in the Git repository at /chapter6/OTEL-Collector.yaml.

Automating collection infrastructure with Helm or Ansible 229

The first configuration block we’ll look at is mode, which describes how the collector is going to be
deployed in Kubernetes. The options available are deployment, daemonset, and statefulset.
Here, we use the deployment option:

mode: deployment

Let’s explore the available options in some detail:

•	 A deployment is deployed with a fixed number of Pods, which is the replicaCount in
Kubernetes terms. For our reference system, we used this mode as we know the system will be
deployed to a single-node Kubernetes cluster, and it allows us to combine presets that would
usually be used independently in a multi-node cluster.

•	 A daemonset is deployed with a collector to every node in a cluster.

•	 A statefulset is deployed with unique network interfaces and consistent deployments.

We discuss selecting the appropriate mode in Chapter 11 when we discuss architecture. These deployment
modes can also be combined to provide specific functionality in a Kubernetes cluster.

The next configuration block we’ll look at is presets:

presets:
  logsCollection:
    enabled: true
    includeCollectorLogs: false
  kubernetesAttributes:
    enabled: true
  kubernetesEvents:
    enabled: true
  clusterMetrics:
    enabled: true
  kubeletMetrics:
    enabled: true
  hostMetrics:
    enabled: true

As you can see, this configuration involves simply enabling or disabling different functions. Let’s look
at the parameters in detail:

•	 The logsCollection parameter tells the collector to collect logs from the standard
output of Kubernetes containers. We are not including the collector logs as this can cause a
logging cascade, where the collector reads its own log output and writes the collected logs to
that output, which are then read again. In real-life setups, it is recommended to only use the
logsCollection parameter in daemonset mode.

Automation with Infrastructure as Code230

•	 The kubernetesAttributes parameter collects Kubernetes metadata as the collector
receives logs, metrics, and traces. This includes information such as k8s.pod.name, k8s.
namespace.name, and k8s.node.name. The attribute collector is safe to use in all modes.

•	 The kubernetesEvents parameter collects the events that occur in the cluster and publishes
them in the log pipeline. Effectively, every event that occurs in the cluster receives a log entry
in Loki with this configuration. Cluster events include things such as Pod creations and
deletions, among others. It’s best practice to use kubernetesEvents in the deployment
or statefulset modes to prevent the duplication of events.

•	 The three metrics options collect metrics about the system:

	� clusterMetrics looks at the full cluster. This should be used in deployment or
statefulset modes.

	� kubeletMetrics collects metrics from the kubelet about the node, Pods, and containers
it is managing. This should be used in daemonset mode.

	� hostMetrics collects data directly from the host, such as CPU, memory, and disk usage.
This should be used in daemonset mode.

We’ll skip over a few blocks that are standard Kubernetes configurations and consider the config
block next. The config block has a few subblocks:

•	 The telemetry pipeline includes the following:

	� receivers: Receivers are at the start of a pipeline. They receive data and translate it to
add it to the pipeline for other components to use.

	� processors: Processors are used in a pipeline to carry out various functions. There are
supported processors and contributed processors available.

	� exporters: Exporters come at the end of a pipeline. They receive data in the internal
pipeline format and translate it to send the data onwards.

	� connectors: These combine receivers and exporters to link pipelines together.
connectors act as exporters to send the data from one pipeline onwards, and as
receivers to take that data and add it to another pipeline.

•	 Separate to the pipeline are extensions, which add additional functionality to the collector,
but do not need access to the telemetry data in the pipelines.

•	 Finally, there is a service block, which is used to define the pipelines and extensions in use.

The only extension we are using in our config block is the health_check extension:

config:
  extensions:
    health_check:

Automating collection infrastructure with Helm or Ansible 231

      check_collector_pipeline:
        enabled: false

This enables an endpoint that can be used for a liveness and/or readiness probe in the Kubernetes
cluster. This is helpful for you to be able to see easily whether the collector is working as expected.

In our receivers block we have configured two receivers, otlp and prometheus:

config:
  receivers:
    otlp:
      protocols:
        http:
          endpoint: 127.0.0.1:4318
          cors:
            allowed_origins:
              - "http://*"
              - "https://*"
    prometheus:
      config:
        scrape_configs:
          - job_name: 'opentelemetry-collector'
            tls_config:
              insecure_skip_verify: true
            scrape_interval: 10s
            scrape_timeout: 2s
            kubernetes_sd_configs:
              - role: pod
            relabel_configs:
              - source_labels: [__meta_kubernetes_pod_annotation_
prometheus_io_scrape]
                action: keep
                regex: "true"
              - source_labels: [__address__, __meta_kubernetes_pod_
annotation_prometheus_io_port]
                action: replace
                target_label: __address__
                regex: ([^:]+)(?::\d+)?;(\d+)
                replacement: $$1:$$2

Let’s look at these receivers more closely:

•	 The OTLP receiver configures our collector instance to expose port 4318 on 127.0.0.1 on
the Kubernetes node, which allows the demo applications to submit telemetry easily.

Automation with Infrastructure as Code232

•	 The Prometheus receiver is used to collect metrics from the collector itself. This receiver config
shows an example of relabeling, where we take meta_kuberentes_pod_annotation_
prometheus_io_port and rename it with __address__, which is the standard used
in OTLP.

In our configuration, we have set up the k8sattributes, resource, and attributes
processors. The k8sattributes processor extracts attributes from the kubelet and adds them to
the telemetry in the pipelines. The resource and attributes processors will insert or modify
the resource or attributes respectively. We’ll not discuss these concepts in detail, but resources are
used to identify the source that is producing telemetry.

In our configuration, we are using both the spanmetrics and servicegraph connectors:

config:
  connectors:
    spanmetrics:
      dimensions:
      - name: http.method
        default: GET
      - name: http.status_code
      namespace: traces.spanmetrics
    servicegraph:
      latency_histogram_buckets: [1,2,3,4,5]

Both connectors are used to export the data from the traces pipeline and receive it in the
metrics pipeline. spanmetrics collects the request, error, and duration (RED) metrics from
the span data (we introduced RED in Chapter 9). servicegraph generates metrics that describe
the relationship between services, these metrics allow the service graphs to be shown in Tempo.

The final subblock in our config block is services. This subblock defines the extensions to be
loaded and the configuration of the pipelines. Each pipeline (logs, metrics, and traces) defines
the receivers, processors, and exporters used. Let’s look at the metrics pipeline as it
is the most complex:

metrics:
        receivers:
          - otlp
          - spanmetrics
          - servicegraph
        processors:
          - memory_limiter
          - filter/ottl
          - transform
          - batch
        exporters:

Automating collection infrastructure with Helm or Ansible 233

          - prometheusremotewrite
          - logging

The receivers are OTLP, spanmetrics, and servicegraph as discussed previously. We then
instruct the pipeline to use the memory_limiter, filter, transform, and batch processors,
in the order listed. You may notice that our filter is named ottl using the syntax of processor/
name, which is useful when you need to use the same processor with different configurations. Finally,
the pipeline uses the prometheusremotewrite exporters and logging to output data.

You may have noticed that the exporters are not defined in the /chapter6/OTEL-Collector.
yaml file – this is because they are defined in /OTEL-Creds.yaml, and this highlights a very
useful feature of Helm, which is the ability to separate out configuration files based on their function.
When we install the Helm chart, we use a command such as the following:

helm install owg open-telemetry/opentelemetry-collector --values
chapter3/OTEL-Collector.yaml --values OTEL-Creds.yaml

The -f or --values option can be used multiple times for multiple YAML files – if there are
conflicts, then precedence is always given to the last file used. By structuring the YAML files in such
a way, we can split the full configuration in ways that allow us to protect secret information, such as
API keys, while still making our main configuration easily available. We can also use this feature for
other purposes such as overriding a default configuration in a test environment. It’s important to be
careful with precedence here as duplicate arrays will not be merged. Deploying the collector in this
way is fantastic in a lot of situations. However, it has a limitation – any time there is a change to the
configuration, or a new version of the collector is to be installed, a Helm install or upgrade
operation needs to be carried out. This introduces the need for a system that has knowledge of and
access to each cluster in which the collector will be deployed, which can introduce bottlenecks and
security risks. Let’s look at the OpenTelemetry Operator, which offers solutions to these problems.

OpenTelemetry Kubernetes Operator

OpenTelemetry also offers a Kubernetes operator to manage both the OpenTelemetry Collector and
allow for auto-instrumentation of workloads. This operator is still in active development and the
feature set is expected to increase.

Kubernetes operators use Custom Resource Definitions (CRDs) to provide extensions to the
Kubernetes API, which are used by the operators to manage the system. The advantages of using an
operator include the following:

•	 The complex logic involved in managing the OpenTelemetry Operator or the auto-instrumentation
system can be designed by the experts working on the OpenTelemetry projects. For the person
responsible for managing an OpenTelemetry installation, the operator offers a defined CRD
specification against which to validate the proposed configuration in a CI/CD pipeline.

Automation with Infrastructure as Code234

•	 The OpenTelemetry operator also allows for limited automated upgrades. Minor and major version
updates still need to be applied via a Helm upgrade due to the possibility of breaking changes.

•	 It can be combined with GitOps tooling to move from a solution where a central system must
know each cluster and have the necessary credentials to deploy to them, to a solution where
each cluster reads the desired configuration from a central version-controlled repository.

•	 The operator really excels when it comes to making the OpenTelemetry auto-instrumentation
easily accessible to applications by adding annotations. For the majority of use cases,
auto-instrumentation will provide ample metric and trace telemetry to understand an application.

The OpenTelemetry Collector can also be installed on virtual or bare-metal servers, this process can
be automated with tools such as Ansible. Let’s see how you might approach this.

OpenTelemetry and Ansible

OpenTelemetry does not provide an official collection for Ansible. It provides packaged versions of the
collector for Alpine-, Debian-, and Red Hat-based systems as .apk, .deb, and .rpm files respectively.
Using community.general.apk, ansible.builtin.apt, or ansible.builtin.yum,
the package can be installed with a configuration similar to the following:

- name: Install OpenTelemetry Collector
  ansible.builtin.apt:
    deb: https://github.com/open-telemetry/opentelemetry-collector-
releases/releases/download/v0.85.0/otelcol_0.85.0_linux_amd64.deb

With the package installed, the only other thing to do to configure the collector is to apply a configuration
file. The default configuration file is located at /etc/otelcol/config.yaml and is used when
systemd starts the collector. Ansible can overwrite this file or modify it in place. This could be done
with the following configuration:

- name: Copy OpenTelemetry Collector Configuration
  ansible.builtin.copy:
    src: /srv/myfiles/OTEL-Collector.yaml
    dest: /etc/otelcol/config.yaml
    owner: root
    group: root
    mode: '0644'

We have looked at the OpenTelemetry agent a lot during this book. One major reason for this is that
OpenTelemetry also offers the Demo application we have used to produce realistic sample data. Next,
let’s take a look at Grafana Agent.

Automating collection infrastructure with Helm or Ansible 235

Automating the installation of Grafana Agent

Grafana produces its own agent, which is recommended by Grafana for use with its cloud platform.
Grafana Agent also provides automation options, which we will introduce in this section.

Grafana Agent Helm charts

Grafana offers two Helm charts, the grafana-agent chart and the agent-operator chart. Similar
to the OpenTelemetry charts, the Agent chart allows for a direct installation of the Grafana Agent
on a Kubernetes cluster. The Operator chart deploys CRDs into the cluster and then manages the
state of the Agent based on these definitions. At the time of writing, the Grafana Agent Operator
offers CRDs for metrics and log collection. For full details of the grafana-agent chart and the
configuration options, please check out the Helm chart documentation at https://github.
com/grafana/agent/tree/main/operations/helm/charts/grafana-agent.
Similarly, the documentation for the agent-operator chart can be found at https://github.
com/grafana/helm-charts/tree/main/charts/agent-operator#upgrading-
an-existing-release-to-a-new-major-version. Details of the available CRDs are
documented in the Operator architecture documentation at https://github.com/grafana/
agent/blob/v0.36.2/docs/sources/operator/architecture.md.

Grafana Agent and Ansible

Unlike OpenTelemetry, Grafana maintains an Ansible collection (https://docs.ansible.
com/ansible/latest/collections/grafana/grafana) that includes tools to manage
collection, storage, and visualization systems, and we will revisit it in later sections.

The included grafana_agent role is used to manage data collection and will install the agent on
Red Hat, Ubuntu, Debian, CentOS, and Fedora distributions. This role can be used as follows:

- name: Install Grafana Agent
  ansible.builtin.include_role:
    name: grafana_agent
  vars:
    grafana_agent_logs_config:
      <CONFIG>
    grafana_agent_metrics_config:
      <CONFIG>
    grafana_agent_traces_config:
      <CONFIG>

The configuration for logs, metrics, and traces is specific to that telemetry type and the documentation
available from Grafana covers using that configuration to manage the Agent.

https://github.com/grafana/helm-charts/tree/main/charts/agent-operator#upgrading-an-existing-release-to-a-new-major-version
https://github.com/grafana/helm-charts/tree/main/charts/agent-operator#upgrading-an-existing-release-to-a-new-major-version
https://github.com/grafana/helm-charts/tree/main/charts/agent-operator#upgrading-an-existing-release-to-a-new-major-version

Automation with Infrastructure as Code236

Getting to grips with the Grafana API
Grafana offers a full-featured API for both Grafana Cloud and Grafana itself. This API is the same
API used by the frontend, which means that we can also drive the functions of Grafana using either
direct API calls in a script, or an IaC tool such as Terraform. We’ll start by having a high-level look
at the APIs available in Grafana Cloud and Grafana, then we’ll look at the Grafana Terraform module
and the Ansible collection, and see how to use them to manage a Grafana Cloud instance.

Exploring the Grafana Cloud API

The Grafana Cloud API is used to manage all aspects of a Grafana Cloud SaaS installation. Let’s have
a high-level look at the functions provided by the Grafana Cloud API:

•	 Access policies and tokens: These API endpoints manage authentication and authorization
resources. Here are their major functions:

	� Create, read, update, and delete functions for access policies

	� Create, read, update, and delete functions for tokens

Tokens must be associated with an accessPolicyId, which is the unique ID for an access
policy object.

•	 Stacks: These endpoints manage Grafana Cloud stacks. The following are their key functions:

	� Create, read, update, and delete functions for stacks

	� Restart Grafana on a specific stack

	� List data sources on a specific stack

•	 Grafana plugins: These endpoints manage plugins installed on Grafana instances related to a
stack. Their functions include creating, reading, updating, and deleting functions for Grafana
plugins installed on a specific stack.

•	 Regions: These API endpoints list the Grafana Cloud regions available. They are used to read
functions for the available Grafana Cloud regions that can be used to host a stack.

•	 API keys: These endpoints were for managing Cloud API keys and their major functions are
the create, read, and delete functions for API keys. These endpoints are now deprecated as
Grafana has moved to authentication techniques using access policies and tokens. API key
endpoints will be removed in a future update.

We will discuss access policies and tokens in more detail in Chapter 11 where we discuss access levels as
part of architecting a great observability platform. All the Grafana Cloud endpoints have an associated
access policy, and the token used must be authorized with that policy for a successful response.

Getting to grips with the Grafana API 237

More detailed information is available in Grafana’s documentation at https://grafana.com/
docs/grafana-cloud/developer-resources/api-reference/cloud-api/,
including information on the parameters and details needed in a request as well as example requests
and responses.

We’ve now reviewed the API endpoints. Next, we'll discuss Grafana’s offerings of both a Terraform
provider and the Ansible collection, which can be used to interact with the aforementioned APIs
using IaC automation.

Using Terraform and Ansible for Grafana Cloud

Grafana provides both a Terraform provider and an Ansible collection for use in managing organizations’
Cloud instances. Let’s explore how we can use these tools with the Grafana Cloud API to manage a
Grafana Cloud instance.

The Grafana Terraform provider

The Grafana Terraform provider has resources that match the Cloud API endpoints we have
discussed. The provider also offers resources for other Grafana API endpoints, which we will cover
when we discuss managing dashboards and alerts later in this chapter. The official documentation
for the provider can be found on the Terraform Registry at https://registry.terraform.
io/providers/grafana/grafana/latest/docs.

Important note
This chapter was written with version 2.6.1 of the Grafana Terraform provider.

Here are some of the commonly used Terraform resources with examples of their use:

•	 First, let’s have a look at using the provider. The grafana_cloud_stack data provider
is used to find a stack called acme-preprod, which we will use later to specify where our
access policy is to be created:

data "grafana_cloud_stack" "preprod" {
  slug = "acme-preprod"
}

•	 The grafana_cloud_access_policy resource allows us to create an access policy. Here,
we set our region value to us, along with a name and a display name. Finally, we specify
the scope of the policy – in this case, we want to be able to write logs, metrics, and traces. The
stack ID we found earlier is then used to specify where to create this access policy:

resource "grafana_cloud_access_policy" "collector-write" {
  region       = "us"
  name         = "collector-write"

https://registry.terraform.io/providers/grafana/grafana/latest/docs
https://registry.terraform.io/providers/grafana/grafana/latest/docs

Automation with Infrastructure as Code238

  display_name = "Collector write policy"

  scopes = ["logs:write", "metrics:write", "traces:write"]

  realm {
    type       = "stack"
    identifier = data.grafana_cloud_stack.preprod.id
  }
}

•	 Finally, the grafana_cloud_access_policy_token resource can be used to create
a new token. We specify a region, the access policy to use, and a name. The token will then
be able to be read from grafana_cloud_access_policy_token.collector-
token.token:

resource "grafana_cloud_access_policy_token" "collector-token" {
  region           = "us"
  access_policy_id = grafana_cloud_access_policy.collector-
write.policy_id
  name             = "preprod-collector-write"
  display_name     = "Preprod Collector Token"
  expires_at       = "2023-01-01T00:00:00Z"
}

This isn’t the only thing we can do with the Grafana Terraform provider: we’ll consider another
example later in this chapter when we examine managing dashboards and alerts. Typically, this would
be combined with another provider to record this newly created token in a secrets management tool,
such as AWS Secrets Manager or HashiCorp Vault, where it can be accessed whenever a collector
is deployed.

Let’s look managing a Grafana Cloud system with another IaC tool provided by Grafana, the Grafana
Ansible collection.

The Grafana Ansible collection

The Grafana Ansible collection is not as feature rich as the Terraform provider for managing
cloud instances. However, a lot of the functionality from the Grafana Cloud API can be accessed
using the Ansible URI module. The official collection documentation is available on the Ansible
site at https://docs.ansible.com/ansible/latest/collections/grafana/
grafana/. A community-provided collection is also available, but will not be discussed here. The
relevant documentation is available at https://docs.ansible.com/ansible/latest/
collections/community/grafana/index.html.

https://docs.ansible.com/ansible/latest/collections/grafana/grafana/
https://docs.ansible.com/ansible/latest/collections/grafana/grafana/
https://docs.ansible.com/ansible/latest/collections/community/grafana/index.html
https://docs.ansible.com/ansible/latest/collections/community/grafana/index.html

Getting to grips with the Grafana API 239

Important note
This chapter was written with version 2.2.3 of the Grafana Ansible collection.

We’ll look at managing a Grafana Cloud stack using Ansible. The name and stack_slug (this is the
stack we are interacting with) values are set to the same string by convention. We then need to set the
region value for the stack, along with the organization the stack will belong to using org_slug:

- name: Create preprod stack
  grafana.grafana.cloud_stack:
    name: acme-preprod
    stack_slug: acme-preprod
    cloud_api_key: "{{ grafana_cloud_api_key }}"
    region: us
    org_slug: acme
    state: present

We’ve so far looked at the API for Grafana Cloud. This API is great for managing an observability
platform in Grafana Cloud, but a lot of teams will be more interested in managing dashboards, alerts,
and other items in the Grafana UI. Grafana provides another API to manage objects in the Grafana
UI – let’s look at it now.

Exploring the Grafana API

While the Grafana Cloud API is only used to manage Grafana Cloud SaaS instances, the Grafana
API is very far reaching as Grafana has a lot of functionality. These APIs can be used on both Grafana
Cloud and locally installed Grafana instances.

Similar to the Grafana Cloud API, all endpoints use role-based access control. However, the Grafana
API offers an additional authentication option: service accounts. Service accounts should be used for
any application that needs to interact with Grafana.

As most teams will use a small subset of APIs frequently, we will only discuss a few APIs here. However,
there are a lot of other APIs that can be used to automate the management of a Grafana instance. Let’s
take a closer look at some commonly used APIs:

•	 Dashboard and Folder: These endpoints manage dashboards and folders in Grafana. Their
functions include the following:

	� Create, read, update, and delete functions for dashboards or folders

	� Create, read, update, and delete the tags on a dashboard

Dashboards and folders have both an ID and a UID. The ID is only unique to a specific Grafana
installation, while the UID is unique across installations.

Automation with Infrastructure as Code240

•	 Dashboard Permissions and Folder Permissions: These APIs handle the access controls for
dashboards and folders. They can be used to update permissions for a dashboard or folder.
These endpoints use a UID, although there is a deprecated endpoint to update permissions
for dashboards by ID. Permissions are set numerically: 1 = View, 2 = Edit, 4 = Admin.
Permissions can be set for user roles or teamId values.

•	 Folder/Dashboard Search: This API allows users to search for dashboards and folders. This
endpoint allows for complex searches using query parameters. The response is a list of matching
objects including the UID of an object.

•	 Teams: These endpoints manage Teams in Grafana. They can be used to do the following:

	� Create, read, update, and delete teams

	� Get, add, and remove team members

	� Get and update team preferences

•	 Alerting: These complex APIs manage all of the aspects of alerts. This API manages everything
to do with Grafana Alertmanager. It can be used to create, read, update, and delete alerts, alert
rules, alert groups, silences, receivers, templates, and many more alerting objects.

These API endpoints are fantastic for managing Grafana. Grafana provides a detailed API reference
at https://grafana.com/docs/grafana/latest/developers/http_api/.

Let’s now look at how these API endpoints allow us to use the IaC tools of Terraform and Ansible to
manage dashboards and alerts.

Managing dashboards and alerts with Terraform or
Ansible
As dashboards are typically managed by the teams responsible for a service or application, it is best
practice to separate the tooling to deploy dashboards from the tooling to manage observability
infrastructure. We will discuss the practicalities of this in Chapter 14.

For managing dashboards, both Terraform and Ansible leverage the fact that Grafana dashboards are
JSON objects, providing a mechanism to upload a JSON file with the dashboard configuration to the
Grafana instance. Let’s look at how this works.

The Terraform code looks like this:

resource "grafana_dashboard" "top_level " {
  config_json = file("top-level.json")
  overwrite = true
}

Managing dashboards and alerts with Terraform or Ansible 241

A collection of dashboard JSON files can be iterated over using the Terraform fileset function
with a for_each command. This makes it very easy for a team to manage all its dashboards in an
automated manner by saving the correct dashboard to the relevant folder.

The Ansible collection works in a very similar fashion:

- name: Create Top Level Dashboard
  grafana.grafana.dashboard:
    dashboard: "{{ lookup('ansible.builtin.file', ' top-level.json')
}}"
    grafana_url: "{{ grafana_url }}"
    grafana_api_key: "{{ grafana_api_key }}"
    state: present

Like the Terraform code, this could be iterated using the built-in with_fileglob function, allowing
teams to manage all their dashboards in an automated fashion.

Unfortunately, with the latest changes to alerting in Grafana, the Ansible collection has not been
updated to allow for alert management. With Terraform, you can manage Grafana Alerts in a very
similar way to dashboards. Consider the following example code block:

resource "grafana_rule_group" "ateam_alert_rule" {
  name             = "A Team Alert Rules"
  folder_uid       = grafana_folder.rule_folder.uid
  interval_seconds = 240
  org_id           = 1
  rule {
    name           = "Alert Rule 1"
  }
  rule {
    name           = "Alert Rule 2"
  }

We’ve not included the full details of the two rules shown here as the required configuration block
is too large. The Terraform documentation has a very clear example of a full alert at https://
registry.terraform.io/providers/grafana/grafana/latest/docs/resources/
rule_group.

Similar to the grafana_dashboard resource, grafana_rule_group can be iterated over by
using a dynamic block to populate each rule from another source, such as a JSON file, for example.
This makes the management of these rules significantly more user-friendly.

Automation with Infrastructure as Code242

Summary
In this chapter, you were introduced to the benefits of automating the management of your observability
platform, and saw how investing in good automation can allow subject-matter experts to shift repetitive
and low-value work to others in the organization. We discussed the different aspects of observability
platforms, being data production, collection, storage, and visualization. You also learned who is
typically responsible for each aspect of the platform.

With the theory largely covered, we then went on to discuss how to manage the data collection
layer, presenting an in-depth analysis of the OpenTelemetry Collector Helm configuration that has
been used to collect data throughout this book. We contrasted the way Helm works with Ansible to
deploy to a virtual or physical setup, and you gained valuable skills in understanding the structure of
the management files used by each tool. We rounded out the automation of data collection systems
by introducing the Helm chart and the Ansible collection for Grafana Agent. While we did not go
into this in the same depth as the OpenTelemtry configuration, the skills required for managing the
Grafana Agent are identical.

Our next topic was the Grafana API, where you learned that there are two APIs, one to manage the
SaaS Grafana Cloud solution, and one to manage Grafana instances (both cloud and local). You were
then introduced to the Terraform provider for Grafana and learned through specific examples how
to manage both their cloud stacks and their Grafana instances. We then also looked at the Grafana
Ansible collection and saw how it can be used to manage cloud stacks and Grafana instances as well
as the data collection layer.

In the next chapter of this book, we will discuss how to architect a full observability platform that
scales to the needs of your organization.

11
Architecting an

Observability Platform

This chapter covers several topics related to architecting a great observability platform for teams in
an organization to use. We will discuss how to structure data into domains to help find relevant data
quickly in even the largest organizations, and how that relates to other aspects of the business, such
as financial reporting and business intelligence (BI). Then, we will discuss architecting the four main
system components of an observability platform: data production, data collection, data storage, and
data uses such as visualization and alerting. We will cover how to link the architecture with the IaC
tools that were discussed in Chapter 10. After that, we will discuss how to use various easily available
tools to validate a design with local testing. These tools can also be used in CI/CD pipelines to validate
the platform after a change has been implemented. We will discuss the role-based access controls
(RBACs) that are implemented in Grafana and how to set them up to provide least-privilege access.
Finally, we will briefly discuss how to architect connections with other systems that make use of the
same telemetry, such as security information and event management (SIEM) or BI systems. This
chapter is aimed at a senior technical audience who has experience in architecting platforms and systems.

In this chapter, we’re going to cover the following main topics:

•	 Architecting your observability platform

•	 Proving theoretical designs (proof of concept)

•	 Setting the right access levels

•	 Sending telemetry to other consumers

Architecting your observability platform
Understanding and articulating the problem(s) your organization is trying to solve is the most critical
and undervalued aspect of a well-architected observability platform. There are some common problems
that organizations are trying to solve with observability, but every organization is different, and working

Architecting an Observability Platform244

with people such as Masha (senior leadership, as introduced in Chapter 1) to understand the business
needs is a step that is often missed and can lead to complex problems in the future.

Here are some common problems that organizations face that can be solved with an observability platform:

•	 Customer-affecting incidents: These types of incidents could range from downtime to data
breaches. These pose a compliance, operational, and reputational risk to the organization. The
customers could be internal or external to the organization.

•	 Understanding the organization’s key performance indicators (KPIs): Organizations often
want to have a clear understanding of the current state of their KPIs. These KPIs articulate
whether the organization is doing well or whether something needs addressing.

•	 Understanding how customers use products: Understanding how customers interact with an
organization’s products can identify pain points and help guide a better experience. Offering
great products gives the organization a competitive advantage.

•	 Understanding the financial costs of serving customers: This is commonly known as the cost
of goods sold (COGS) and operating expenses (OPEX).

In this section, we will consider how to architect the data structures used in an observability platform
to support the organization’s goals. We’ll talk about the process of designing a system architecture and
the considerations you should make to support the operational needs of the organization. Finally, we
will think about designing management and automation processes so that following the best practices
you establish becomes the easiest path for teams to take.

Defining a data architecture

A data architecture defines an organization’s data assets and maps how data flows through the organization’s
systems. Most organizations will already have a data architecture in place, so it is worth discussing
with the team responsible. In this section, we will discuss how the field names and data types in the
observability platform need to match or be translatable into common fields across the organization.

Observability systems are inherently data systems. They collect, process, move, store, and use data. The
data in an observability system is most valuable to the wider organization when it is compatible with
other data systems so the organization can merge datasets. The crux of this is that when embarking
on this journey, talk to people throughout the organization and find out who is responsible for the
data architecture of the whole organization. If no one exists in that position, it can be raised with
senior leadership as a hindrance to solving the problems they are trying to address. For example,
when I was a junior engineer, I remember having many meetings discussing whether tenantID
and customerID were different fields or not as there were two systems that used different names.
Ultimately, it was decided they were different concepts so the business could capture the idea of
principal and subsidiary organizations that were customers of the company. However, both systems
then needed months of work to implement this wider concept. The logging platform also needed a lot
of data model rebuilding to capture this new concept. This work would have been entirely avoidable
by having someone responsible for the data model and defining the requirements early on.

Architecting your observability platform 245

It is common to use data models from other areas of the organization when implementing an
observability platform. There is a step that should be completed by an architect where they translate
external requirements into a requirements document detailing where fields should be recorded. For
example, it may be a requirement of the financial data model to record cost centers. There are many
ways to achieve this, such as the following:

•	 Requiring every log line, every metric, and every trace to include this information

•	 Requiring every service to be tagged with an organization.costcenter label

•	 Maintaining a lookup table of service name ↔ cost center

The requirements guide should be clear on how this will be achieved for teams who will be meeting
the requirements. We recommend a document structure such as MoSCoW, which stands for Must
have, Should have, Could have, Won’t have.

Different telemetry types are best suited for different data types. Observability systems are also
packed with features to gather data from other systems, such as Kubernetes object labels and cloud
tags. These should form part of the data architecture. Here are some telemetry types and what they
are best suited for:

•	 Log fields in Loki: Log fields are best suited to string data such as the following:

	� Application state fields in string format, such as error or warn states, for example, if an
application queries data from another service and cannot connect

	� Organizational or business data fields, such as service name, customer ID, user ID, and so on

	� Low- to medium-cardinality indexed fields

	� High-cardinality unindexed fields

	� Link from application state to system state in traces

•	 Metric fields in Prometheus or Mimir: Metric fields are best suited to numeric data such as
the following:

	� Application state fields in numeric format, such as the count of records processed since startup

	� Organizational or business data fields, including labels containing the service name,
hostname, and so on

	� Low- to medium-cardinality fields, such as HTTP methods (GET, POST, PUT, etc.)

•	 Trace fields in Tempo: Trace fields are a complex data type that can handle data such as
the following:

	� System state fields

	� High-cardinality fields

Architecting an Observability Platform246

	� Organizational or business data fields when added as an attribute, such as customer ID and
user ID

	� Cross-system fields

	� Links to application state by using trace metrics

•	 Kubernetes labels: These are Kubernetes key-value pair data objects. They are used to record
information such as the following:

	� Core organization fields, such as ownership and cost allocation

	� Linking the application to the infrastructure

	� These labels can be added to log, metric, and trace data as it is collected

•	 Cloud vendor tags: These are tags applied to infrastructure in a cloud vendor system. They
can be used to record information such as the following:

	� Core organization fields, such as ownership and cost allocation

	� These labels can be added to log, metric, and trace data as it is collected

A lot of this data is standard across many organizations and industries, and the libraries that produce
the data are well tested. There is one area of data production that is not tested by these tools though,
and that is organization-specific fields. These are always organization-specific, but some common
examples are user ID or customer ID. These fields, when used by the organization, can be very
important, even being reviewed regularly by executive leaders. It is important that these are tested
as bad data can lead to bad decisions. Any data architecture documents should highlight this need.
There is a lot of technical detail in achieving this goal, which we will not go into in this book, but
we would recommend this article from Martin Fowler, which gives clear instructions on producing
organizational data in a testable way: https://martinfowler.com/articles/domain-
oriented-observability.html.

We’ve now seen how to work within the organization to have a coherent data architecture that works
with the infrastructure layer, the application layer, the observability layer, and the business layer. Let’s
now consider how to have a great system architecture for your organization’s observability platform.

Establishing system architecture

In this section, we will consider the aspects of building a great observability system. We will see how
to help software engineers with producing data. Then, we will consider how to collect that data, while
providing engineers with a stable API. Finally, we’ll discuss the storage and visualization of the data.
The following list presents some questions to consider relating to these topics:

•	 How will data be produced?

	� What telemetry types (logs, metrics, traces, or others) are used?

https://martinfowler.com/articles/domain-oriented-observability.html
https://martinfowler.com/articles/domain-oriented-observability.html

Architecting your observability platform 247

	� Will developers such as Diego be given standards for libraries?

	� Should system or state data be separated from business data?

•	 How will data be collected?

	� What systems do you need to collect data from?

	� If a tool is changed, will every application need to be updated?

	� How much data will be collected?

•	 How will data be stored?

	� Will any local storage be provided? If so, how will the scale and cost of this be managed?

	� Is the storage managed per cluster or environment, or as a centralized system?

	� Will a third-party solution such as Grafana Cloud be used? If so, how is the cost allocated?

•	 How will visualizations be managed?

	� Will the system be fully open, so anyone can submit changes for any dashboard?

	� Will each team be responsible for their dashboards?

	� Will IaC tools be provided to help teams manage their dashboards?

•	 An additional question to consider for all of these is how the system employed handles failure

Let’s cover these considerations in more detail, starting with architecting how applications produce data.

Data production

Data production details how applications and services produce data. Teams responsible for observability
platforms should assist the teams who produce data in doing so with all the correct fields, practices,
and standards. Common topics to cover are the following:

•	 Which telemetry types must be produced and which should or may be produced?

•	 Is organizational or business data being collected from the observability systems? If it is, what
are the fields? Is a data domain used (e.g., acme.cost_center or acme.department)?

•	 Are developers expected to use libraries from a pre-approved list?

•	 What standards are used by applications to present data?

Architecting an Observability Platform248

OpenTelemetry, while relatively young, is emerging as the standard in observability, with adoption
across most vendors and systems. A suggested best practice for an application is to add instrumentation
using the relevant OpenTelemetry SDK, as shown in the following diagram:

Figure 11.1 – Proposed application data production standard

Here, logs are produced on stdout and stderr. Metrics are published both to a Prometheus scrape
endpoint and to an OpenTelemetry receiver via either gRPC on port 4317 or HTTP on port 4318.
Traces are also pushed to the OpenTelemetry receiver using the same ports.

Producing data is only part of the picture for a well-architected system. Next, let’s look at how to
design a system to collect all this data so it is useful to the organization.

Data collection

The data collection agents we have discussed in previous chapters can collect data in many formats.
Managing infrastructure that collects data in every format is a cumbersome challenge and prone to
failure and errors. The system architecture needs to detail which protocols are preferred and which
can be accepted. For mature organizations, start with which protocols are currently in use and set
end-of-life dates for any protocols the organization wishes to remove. It is strongly recommended to
stick with default ports where they exist, and where applicable in the environment.

Another consideration is whether data will be stored locally, remotely, or both. Local storage adds
management overhead and cost but may be a requirement in some environments. Having remote storage
reduces management costs, but it can remove the option of using the metrics from an application to
make environment choices. An example of this would be the Prometheus HorizontalPodAutoscaler
(HPA). We’ll discuss this in a little bit more detail in the Management and automation section. The
authors have used short-lived, volatile local storage for such considerations in the past, while using
a remote, third-party-provided infrastructure for long-lived storage, and such a setup works well.

OpenTelemetry offers several configurations. The following reference architectures are designed to
give a starting point for readers who need to architect a system.

Architecting your observability platform 249

For instance, the simplest way to architect data collection is for each application to send data directly
to the backends, like this:

Figure 11.2 – Agentless configuration

For demonstrations or small installations, this architecture is perfectly fine. However, each application
needs to be aware of each backend service, which means that this installation type does not scale
very well.

Adding a local agent to the application adds a small amount of complexity but removes a lot of
overhead for the team managing the application itself. Such an installation looks like this:

Figure 11.3 – Local agent only

Running a local agent is a very common pattern, and this pattern is great for many environments.
As the number of instances of the agent grows, the agent configuration should be deployed using some
form of configuration-as-code setup, such as Ansible, Salt, or Helm in a Kubernetes environment.

Architecting an Observability Platform250

Adding a gateway service is another common architecture. This type of installation looks like this:

Figure 11.4 – Gateway agent only

Gateway architectures are perfect in a couple of situations:

•	 When the number of local instances is high, it can cause strain on the backend system by having
a lot of open connections. Tthe gateway architecture resolves this by spreading this load over
multiple instances of the agent.

•	 Gateway architectures are very good for installations where the collection of data from SNMP
or similar systems is a goal.

It is best practice to put some form of load balancer in front of gateway architectures, and where
possible to implement autoscaling.

Kubernetes introduces its own challenges to data collection architecture; this next diagram tries to
capture the most common tools needed to collect data across the cluster and node:

Architecting your observability platform 251

Figure 11.5 – A more complex Kubernetes architecture

A simple way to think of this configuration is to break it up into three parts:

•	 There is a local agent configuration on each node. This is configured to receive OTLP metrics
on gRPC or HTTP. The local agent is also configured to query the kubelet for stats related to
the Kubernetes node. It also has a host receiver configured to collect metrics; this would only
be needed in a physical installation.

•	 A gateway agent is also configured. This collects data from each node and from the cluster
agent. Using a gateway agent here also allows for processing to be done in the gateway.

•	 The final component is the cluster agent. This is a standalone instance of the agent configured to
collect data from the Kubernetes API service. If this task were delegated to all node or gateway
agents, the data would be collected by each instance, duplicating the data in the backend. By
using a standalone instance, we get a single data stream, and this instance can leverage the
gateway in the same way that the node agent can.

There are many more configurations that could be used, and we have not discussed the topic of using
multiple different agents. However, this should give us a foundation to work from.

Architecting an Observability Platform252

We have now looked at producing and collecting data. These systems will be similar for all organizations.
Let’s have a look at architecting data storage systems next.

Data storage and data visualization

There is one key question to ask regarding data storage or visualization layers for observability platforms.
Who is responsible? With Grafana tools, it is easily achievable to deploy a local storage solution. By
doing this, the responsibility for maintaining that platform is with an internal team. The alternative
is to use a third party with whom your organization has a contractual relationship. This relationship
is a very helpful thing to have when something goes wrong.

We considered the architectures for Loki, Mimir, and Tempo in Chapters 4, 5, and 6, so we will not
show the specific architectures of each tool. Let’s consider how to deploy these tools if you have reason
to manage your own storage.

Grafana Mimir, Loki, and Tempo offer multiple deployment modes:

•	 Monolithic mode: In monolithic mode, all of the microservices are deployed as a single instance
and connected to an object store. Monolithic mode can be horizontally scaled by deploying more
instances. This scaling method can provide a highly available platform with lower complexity
but has the drawback of not allowing for independent scaling of read and write paths. This
deployment mode is also not recommended for production environments.

•	 Microservices mode: This mode deploys and scales each component of the system independently.
This adds complexity but also allows the system to cater to the actual load that is placed on it.
This mode is the recommended deployment mode for production use of Mimir and Tempo.

•	 Simple scalable mode (only available in Loki): This mode strikes a balance between monolithic
and microservices mode by allowing the independent deployment and scaling of write targets,
read targets, and backend targets. These targets contain all the services needed for their role.
This mode is the recommended deployment mode for the production use of Loki.

For all three of the storage platforms, deployment is carried out using a Helm chart for Kubernetes
deployments. Packages are also supplied for deployments to Linux operating systems. These deployments
can be automated using the provided Puppet or Tanka packages.

When you wish to manage your own data visualization layer, the Grafana application needs to be
installed. This is available as a package for Linux, macOS, or Windows operating systems. Grafana
also provides Docker images and detailed guidance on deploying to Kubernetes using Helm.

Handling system failure

A big consideration for a data collection architecture is how it handles failure. For agent failure, the
only real option is to restart the agent. However, when the collection pipeline fails, this can be handled
by buffering in memory or on disk. Each collector in the system is capable of buffering by configuring

Architecting your observability platform 253

the batch processor for memory and the file storage extension for disk storage. The main thing to
consider when designing a buffering solution is how long the system will need to tolerate failure. This,
along with the throughput of data, dictates how much memory or disk space must be available to the
instances. Reporting this calculation as a service-level indicator (SLI) for the data collection layer is
a good practice, as it makes the resilience of the system publicly available.

We’ve now looked at how to architect the data that an observability system will collect, and we’ve
looked at how to architect a system to collect that data. Let’s now consider how to architect the system
to account for management tools and automation tools.

Management and automation

We discussed using IaC in Chapter 10; when designing the system architecture, the use of IaC should
manage the four systems (production, collection, storage, and visualization) as separate concerns:

•	 Data production system:

	� This should be managed by each application independently

	� Guidance should be provided

•	 Data collection system:

	� This is usually managed by an infrastructure, platform, observability, or similar team

	� This should have published SLIs and SLOs like any other component

•	 Data storage system:

	� This is usually managed by an infrastructure, platform, observability, or similar team

	� It is common to use a third-party tool (such as Grafana Cloud)

	� Grafana Cloud stacks are a great tool for separating storage where necessary, for example,
for CI/CD platforms or performance testing

•	 Data visualization system:

	� The system itself would usually be managed by an infrastructure, platform, observability,
or similar team

	� The dashboards and other artifacts related to an application should be managed by each
application team independently

	� IaC can be provided to teams to manage deployment

Architecting an Observability Platform254

Architecting for automation does not stop with the observability platform. Applications deployed to
Kubernetes should be able to scale automatically as needed. When suggesting an ideal application
pattern in the Data production section, keen-eyed readers may have seen that we recommended
publishing metrics via a Prometheus endpoint as well as via OTLP export. This recommendation was
made for autoscaling. While this book is concerned with observability in Grafana, a truly observable
system can self-correct, such as the steam engine governor shown in Chapter 1. The Kubernetes HPA
allows for the scaling of Pods based on CPU and memory usage. This is fine for some cases, but it is
common for application teams to want to scale on metrics such as the rate of requests or number of
sessions. The Prometheus community provides an adapter for Kubernetes Metrics APIs, which allows
for querying a Prometheus endpoint to enable these types of scaling operations. An important question
for an organization’s architecture is whether this type of instrumentation would be managed by a central
team or by each application team, perhaps with a default configuration offered for teams to consume.

We’ve looked at how to create an architectural design. There are a lot of tools available to test those
designs in practice to prove they work. Let’s have a look at proving the architecture.

Developing a proof of concept
The best place to prove a theoretical design is in an environment that has customers actually interacting
with it, that is, a production environment. This is because any other environment is a mock environment
and may miss some nuance of customer interactions. This is a recommendation to get the pathway
to production created early and use it regularly. Having made that recommendation, it is still very
important to have spaces for testing designs.

We will discuss compute containerization and virtualization tools, as well as simulated data production
tools, which can be used to validate designs quickly.

Containerization and virtualization

Using containerization and virtualization locally and as part of a deployment pipeline can be a huge
boost to provide quick feedback on whether a collection or storage architecture is achievable. Let’s
consider some of the tools that will help in this space:

•	 Containerization: The tools k3d, KinD, MicroK8s, and minikube can be used for containerization
for the following reasons:

	� These four tools all offer the ability to run a Kubernetes cluster locally

	� KinD, k3d, and minikube can run using Docker or Podman drivers

	� minikube also offers a VM driver, which can be useful for certain local installations

	� For data collection architecture and pipelines, the authors have used KinD to deliver very
good results

Developing a proof of concept 255

•	 Virtualization: Vagrant can be used with several virtualization tools, including Hyper-V,
VMware, VirtualBox, Xen, QEMU, and libvirt. This is for the following reasons:

	� Vagrant offers the ability to define virtual machines and virtual networking and deploy these
definitions on different virtualization tools using providers

	� This is a valuable feature for providing a reference virtual infrastructure for experimenting
and use in a pipeline

These tools provide the capability to build reference infrastructure on which to deploy data collectors.
They also provide the ability to document architectural requirements and diagrams using a real setup
that is deployed locally.

Deploying infrastructure and data collectors is one part of the process of proving a design. Having tools
to produce test data is also vital to check that the design is right. Let’s have a look at these tools now.

Data production tools

There are a couple of ways of testing data production – using a sample application (such as the
OpenTelemetry Demo application) or replaying pre-recorded datasets:

•	 Demo applications: These applications can be used to generate real observability data to test
observability systems. Take the following examples:

	� OpenTelemetry Demo application: This is a full retail application that we have used to
provide demo data throughout this book.

	� One Observability Workshop applications: These applications are provided by AWS and
demo how to push data into AWS observability tools.

	� mythical-creatures application: This is an application written by Heds Simons for an
interview with Grafana (he got the job). This application outputs metrics, logs, and traces.
It’s a simpler application than the OTEL demo, which can be an advantage.

•	 Pre-recorded datasets: These applications can be used to produce a predefined set of data to test
observability systems. The process of replaying pre-recorded datasets crosses over very strongly
with load-testing and packet capture tools. Tools such as k6, Locust, Postman, Insomnia, and
GHZ can be used to send predefined data blobs to the data collection endpoints of your collection
tools and validate the output. As observability tools use specific protocols, it’s important to look
for features that match the organization’s production of data. Some examples are the following:

	� The ability to send gRPC data as this is a common format for OpenTelemetry

	� The ability to send other protocols such as SNMP if they are used

Tools such as Fiddler and Wireshark, as well as other network analyzers or HTTP(S) debuggers,
can be used to record wire data to build up a library of reference data.

Architecting an Observability Platform256

We will discuss in greater detail, in Chapter 14, how these tools can be integrated into CI/CD pipelines.

We’ve now seen how to architect the different components of an observability platform and how
to validate those designs. Another important architectural consideration is getting the access levels
correct. Let’s look at that now.

Setting the right access levels
We have talked about the data in observability systems and how to architect the actual systems for
producing, collecting, storing, and visualizing the data. A significant element of the architecture of
the system that we have not discussed is RBAC.

There are two places where RBAC can be applied:

•	 Grafana Cloud: Administration of the deployed Grafana stacks and billing.

•	 Grafana instances: Access to data and visualizations. These instances can be deployed to
Grafana Cloud or on-premises.

Let’s start by looking at the permissions currently available in Grafana Cloud:

Permission/Role Admin Editor Viewer

View API keys ✓ × ×

Manage API keys ✓ × ×

View organization billing information ✓ ✓ ✓

Manage organization billing information ✓ × ×

Manage Grafana Cloud subscription ✓ × ×

View Grafana instance plugins ✓ ✓ ✓

Manage Grafana instance plugins ✓ × ×

View stacks ✓ ✓ ✓

Manage stacks ✓ ✓ ×

Manage organization members ✓ × ×

View invoices ✓ ✓ ✓

Pay invoices ✓ × ×

View Enterprise licenses ✓ ✓ ✓

View OAuth clients ✓ ✓ ✓

Setting the right access levels 257

Manage OAuth clients ✓ × ×

View support tickets ✓ ✓ ✓

Open support tickets ✓ ✓ ×

Table 11.1 – Grafana Cloud RBAC

These Grafana Cloud roles are focused on managing a Grafana Cloud instance. For most users, using
and editing items in one or more Grafana instances is more applicable to their daily work. Grafana
offers a rich permission set that breaks down into the following:

•	 Basic roles: The basic roles have very broad privileges. This is great for small organizations
and having easy access to new installations. Assigning a basic role with least privilege to users
is good practice. The basic roles are a default set of fixed role definitions, which we’ll discuss
in the next point. Basic roles include the following:

	� Admin: An admin for a Grafana organization.

	� Editor: A user who has access to edit objects in the organization.

	� Viewer: A user who has access to view objects.

	� None: A role that has minimal privileges for use with service accounts

	� Grafana Admin: A special admin account for all the Grafana organizations in an on-premises
instance. As we have mainly discussed Grafana Cloud, let’s clarify what a Grafana organization is:

	� Organizations are a method to separate Grafana resources in a single instance.

	� In Grafana Cloud, organizations are not available to use. Stacks are a better way to separate
parts of the organization as a dedicated Grafana instance will be used in each stack.

•	 Fixed role definitions: Fixed roles can be used to expand the privileges assigned via basic roles.
Fixed roles contain specific permission assignments that can be added to a subject.

•	 Custom roles: Custom roles allow for the creation of roles that have specific permissions, actions,
and scopes assigned to them. Custom roles can only be created via the API, but Terraform can
be used to manage these with IaC.

Permissions can also be assigned at the data source, team, dashboard, and folder levels. This can
allow for structures such as giving management capabilities to all dashboards in a folder assigned to
a specific team, but not granting management to other team folders. All the permission structures
can also be managed using IaC, which we discussed in Chapter 10. Grafana provides a helpful guide
on planning an RBAC rollout strategy here: https://grafana.com/docs/grafana/
latest/administration/roles-and-permissions/access-control/plan-
rbac-rollout-strategy/.

https://grafana.com/docs/grafana/latest/administration/roles-and-permissions/access-control/plan-rbac-rollout-strategy/
https://grafana.com/docs/grafana/latest/administration/roles-and-permissions/access-control/plan-rbac-rollout-strategy/
https://grafana.com/docs/grafana/latest/administration/roles-and-permissions/access-control/plan-rbac-rollout-strategy/

Architecting an Observability Platform258

Let’s consider how we might configure roles for some of the personas we have – Diego Developer,
Steven Service, and Pelé Product:

•	 As a member of a team responsible for a service, Diego will need to be able to read dashboards
to understand how other services may be behaving. He will also need to have write access for
dashboards and alerts, but is limited to the folder that contains the application he is responsible for.

•	 Steven needs to be able to view dashboards but not edit them. However, he does need to be
able to view and manage on-call schedules and silence alerts.

•	 Pelé has a couple of distinct needs. For most day-to-day processes, he needs to be able to view
dashboards, incident history, and query data about the applications he is the product owner for.
However, he also needs a service account to run specific queries for business metrics and load
the data into the BI platform that is used with Masha Manager to analyze whether the teams
need any help with delivering great products. He worked on setting up this service account
with limited permission with Ophelia, the admin of the Grafana system.

For most users, once a role is created, it is simply a case of assigning the role to the individual user.
Special consideration should be made for service accounts. Some service accounts, such as those used
by the team managing the provisioning of Grafana tools, will need significant access and should be
thoroughly audited. Other accounts, such as those used by an individual application team to manage
dashboards, should have limited permissions. With this second type of account, it is a good idea to
grant limited privileges for managing the service account to a senior member of the team as this
enables the team to work independently.

Now that we understand RBAC in Grafana, let’s have a look at how data collected for Grafana can be
used in other systems.

Sending telemetry to other consumers
It is common for the data collected by observability systems to be of use in other systems. Logs are
often used in SIEM systems and aggregate metrics are of interest in BI systems. There are two different
strategies that can be used to share telemetry with other consumers:

•	 Sharing data in the collection pipeline: Sharing data in the collection pipeline is dependent on
the data collection pipeline being used. We’ve talked a lot about the OpenTelemetry collector,
which offers the ability to filter and send data to multiple backend systems. Similarly, AWS, GCP,
and Azure offer options for writing telemetry to multiple backend systems. A consideration
is that this type of solution will increase costs by storing multiple copies of the same data.
Spending time with other consumers to understand their needs to minimize this cost is advised.

Summary 259

•	 Querying data from Grafana directly: Querying data from Grafana is done using a scheduled
job that runs queries directly against Grafana. These are often custom connectors that will read
data and write it into a BI platform. Grafana offers the recording rule functionality, which can
assist in this data collection process. This functionality allows for the pre-computation of queries,
which can be stored as a separate time series. For example, if the business were interested in
the number of unique users who logged in daily, a recording rule could query this and store
the data as a new metric. When the BI platform then collects this data, it would not need to
wait for a potentially slow query to complete and instead would have the data easily available.

You should now be confident in architecting a comprehensive observability platform that meets the
needs of the organization and can feed valuable information into other systems across the organization.

Summary
In this chapter, we have explored the process of architecting the data fields that will be collected. You
will be able to use this knowledge to structure data in a Grafana platform so it is easy to use across
your organization. We have discussed the process of architecting data production by applications
and offering standard guidance on the best application structure to use. This will account for most
needs of the developers in the organization. We shared several levels of complexity for the data
collection architecture. You can use these as a starting point for architecting your own system. We
discussed the various tools that are available to validate an architectural design: both tools for running
local infrastructure and tools to simulate data that is being collected. This will help in producing a
pipeline for delivering the infrastructure for an observability platform that you can rely on. Finally,
we briefly discussed how to share data with other consumers, either in the data collection pipeline or
by querying Grafana directly. You can use this knowledge to link observability data back to the rest
of the organization.

In the next chapter, we will explore the use of real user monitoring (RUM) to collect data directly
from the browser. This provides visibility of how your code runs when users are active in the system.

Part 4: Advanced Applications
and Best Practices of Grafana

There are a number of topics related to observability, including frontend observability, application
performance, load testing, DevOps pipelines, and monitoring security applications. This part will
discuss these topics and additionally look at possible future trends. We will close out with some best
practices and troubleshooting approaches.

This part has the following chapters:

•	 Chapter 12, Real User Monitoring with Grafana

•	 Chapter 13, Application Performance with Grafana Pyroscope and k6

•	 Chapter 14, Supporting DevOps Processes with Observability

•	 Chapter 15, Troubleshooting, Implementing Best Practices, and More with Grafana

12
Real User Monitoring

with Grafana

In this chapter, we will investigate real user monitoring (RUM) with Grafana Cloud Frontend
Observability and the Faro Web SDK. We'll explore what RUM is, how we use it to solve real user
problems, and some important metrics to consider. We will then look at how to set up Frontend
Observability in your Grafana Cloud instance and the prebuilt dashboards that are included. We
will explore how Frontend Observability data can be correlated with backend telemetry for a more
complete picture. To finish, we will look at best practices for collecting frontend data.

In this chapter, we are going to cover the following main topics:

•	 Introducing RUM

•	 Setting up Grafana Frontend Observability

•	 Exploring Web Vitals

•	 Pivoting from frontend to backend data

•	 Enhancements and custom configurations

Introducing RUM
RUM is the term used to describe the collection and processing of telemetry that describes the health of
the frontend of your web applications. It gives us a bird’s-eye view of user transactions as they happen,
live from the user’s browser all the way through to the backend system. The benefit of this telemetry
is in the insight into the experience real users are having with the performance of your application.

Real User Monitoring with Grafana264

Grafana implements RUM with a combination of the following:

•	 The Grafana Faro Web SDK, which, when embedded in your web application, collects the
following telemetry by default:

	� Web Vitals performance metrics

	� Unhandled exceptions

	� Browser environment information

	� Page URL changes

	� Session identification (for data correlation)

	� Activity traces

In addition to the defaults, the SDK can be configured to send custom metadata, measurements,
and metrics into Grafana to enhance Frontend Observability. The Faro Web SDK integrates
with opentelemetry-js to provide Open Telemetry-based tracing in your application. This SDK
is open source, and the repository can be found at https://github.com/grafana/
faro-web-sdk; it has comprehensive documentation along with some demonstration code.

•	 A cloud-hosted receiver of browser telemetry (you can alternatively deploy a Grafana Agent
on your own infrastructure). The cloud-hosted receiver is created and configured when you
activate application observability in Grafana Cloud (we will talk you through the setup steps
in the next section).

•	 A dedicated Grafana app interface for each Frontend Observability app you create with included
dashboards as tabs (we look at these dashboard tabs later in this chapter).

The following diagram shows the relationship between your frontend application in the left box, with
the Faro Web SDK installed, and the Grafana Cloud components in the right box for ingesting, storing,
and presenting your telemetry:

Figure 12.1 – Frontend relationship diagram

https://github.com/grafana/faro-web-sdk
https://github.com/grafana/faro-web-sdk

Setting up Grafana Frontend Observability 265

The Grafana Faro Web SDK collects telemetry and forwards it to the collector endpoint in Grafana
Cloud where it is processed and sent to the appropriate backend – Loki for logs and Tempo for traces.
Metrics are generated from logs using Loki’s LogQL metric queries we discussed in Chapter 4. The
generated metrics are visualized in the Grafana Cloud Frontend Observability application dashboards.

Let’s now look at the setup for Grafana Frontend Observability.

Setting up Grafana Frontend Observability
To get started with monitoring your application frontend and configure Grafana Cloud Frontend
Observability, follow these steps:

1.	 In your Grafana instance, select Observability | Frontend from the menu:

Figure 12.2 – Grafana Observability menu

Real User Monitoring with Grafana266

2.	 The Frontend Apps landing page will be displayed. If this is your first time here, you will have
a Start observing button – go ahead and click on it:

Figure 12.3 – Grafana Cloud Frontend Observability screen

If you have already set up frontend apps, they will be listed here and there will be a Create
New button instead of the Start observing button. Clicking either of these buttons shows the
Create New App modal window.

3.	 The Create New App modal window shown in Figure 12.4 requires an app name, Cross Origin
Resource Sharing (CORS) addresses, and additional label details (these are labels to add to
Loki logs as they come into Grafana Cloud). Additionally, you will be asked to confirm the
cloud costs associated with the additional telemetry from this feature:

Setting up Grafana Frontend Observability 267

Figure 12.4 – Create New App screen

4.	 Once you have completed the form, you are provided with a few options for integrating the Faro
Web SDK into your frontend application using NPM, CDN with Tracing, or CDN without
Tracing. You will have to decide which suits your application development requirements best:

Figure 12. 5 – Web SDK configuration

Real User Monitoring with Grafana268

When you have connected the Faro Web SDK in your application to Grafana, the default
telemetry we identified at the beginning of this section will begin sending.

The Overview tab of your observability frontend app will look similar to the following screenshot,
with the main dashboard included in Grafana Frontend Observability showing key metrics:

Figure 12.6 – Frontend Observability Overview tab

Next to the Overview tab are the Errors and Sessions tabs, which help you investigate your app. Let’s
look at these tabs in more detail:

•	 The top row on the dashboard in the Overview tab shows important Web Vitals metrics,
including Core Web Vitals. Web Vitals is an initiative by Google that provides unified guidance
for signals that are essential to reporting user experience on the web.

Exploring Web Vitals 269

•	 The Errors tab details any frontend exceptions, where they happened, and the browsers affected:

Figure 12.7 – Frontend Observability Errors tab

•	 The Sessions tab shows a list of the available user sessions to analyze. We will explore this in
more detail in the Pivoting from frontend to backend data section.

The Settings and Web SDK Configuration tabs help you configure the connection (Settings allows
you to modify the values entered in step 3 earlier in this section, and Web SDK Configuration provides
the config seen in step 4).

In the next section, let’s look at Web Vitals metrics in more detail to understand the information we
are capturing and reporting for our frontend applications.

Exploring Web Vitals
To explain the quality of experience delivered to users, the Web Vitals metrics report on several areas
of a user’s interaction. Web Vitals is a Google initiative that provides unified guidance for quality
signals that are essential for delivering a great web user experience. You can read about the Web Vitals
project in more detail at https://web.dev/articles/vitals and specifically Core Web
Vitals at https://web.dev/vitals/#core-web-vitals.

https://web.dev/articles/vitals
https://web.dev/vitals/#core-web-vitals

Real User Monitoring with Grafana270

The important Web Vitals metrics used in the Overview tab are as follows:

Metric Description
Core Web Vitals

Largest Contentful Paint (LCP) The LCP metric measures the display time of the largest visible
section in relation to the page starting to load. This could be text
or an image that completely loads on the visitor’s screen.

A target LCP of <= 2.5 seconds is promoted.

For more details, refer to https://web.dev/articles/
lcp.

First Input Delay (FID) The FID metric measures the time from when a visitor clicks a
link to the time the browser starts processing the event.

A target FID of <= 100 milliseconds is promoted.

For more details, refer to https://web.dev/articles/fid.

There are plans to replace FID with Interaction To Next Paint
(INP) as a Core Web Vital in March 2024.

Cumulative Layout Shift (CLS) The CLS metric measures any time a visible element changes its
position. As the visitor experiences layout changes, the duration
is captured and the cumulative score is reported.

A target CLS of <= 0.1 is the aim.

For more details, refer to https://web.dev/articles/cls.
Other Web Vitals

Time To First Byte (TTFB) The TTFB metric measures the time between the request for a
web resource and when the very first byte of a response starts
to arrive. This will not be obvious to the visitor, but it is a good
indicator of responsiveness of getting content to the visitor.

A target TTFB of <= 0.8 seconds is the objective.

For more details, refer to https://web.dev/articles/
ttfb.

https://web.dev/articles/lcp
https://web.dev/articles/lcp
 https://web.dev/articles/fid
https://web.dev/articles/cls
https://web.dev/articles/ttfb
https://web.dev/articles/ttfb

Pivoting from frontend to backend data 271

First Contentful Paint (FCP) The FCP metric measures the time from when the page starts
loading to when any part of the page is displayed on the screen
– essentially, when your visitor actually sees an interaction with
the website requested.

A target FCP of <= 1.8 seconds is the aim.

For more details, refer to https://web.dev/articles/fcp.
Interaction to Next Paint (INP) The INP metric measures the responsiveness of a page throughout

a visitor’s session. It does this by observing the latency of every
click, tap, and keyboard interaction by a visitor and takes the
longest (ignoring outliers).

The target value for the INP is <= 200 milliseconds.

For more details, refer to https://web.dev/articles/inp.

Table 12.1 – Important Web Vitals metrics

Now that we have looked at some of the important frontend metrics to consider, let’s look at how we
can pivot to backend telemetry when investigating issues.

Pivoting from frontend to backend data
Once you have started collecting Frontend Observability data, you will be able to correlate it with
backend and infrastructure telemetry. Grafana provides simple interfaces for this when you are using
Loki for logs, Tempo for traces, and Mimir for metrics.

Within the Grafana Cloud Frontend Observability app, there are readymade dashboards that make
navigation and investigation simple. As discussed in the Setting up GrafanaFrontend Observability
section, the app menu has three main sections, namely, Overview, Errors, and Sessions. The Sessions
tab allows us to jump into other telemetry that our system is producing and sending to Grafana. You
can see in the following screenshot multiple requests to different page URLs alongside the associated
session IDs:

https://web.dev/articles/fcp
https://web.dev/articles/inp

Real User Monitoring with Grafana272

Figure 12.8 – The Sessions tab

Clicking a Session Id entry will take you to a detailed view, where you can see the Web Vitals for that
specific visitor session, associated exceptions, and, if you have instrumented the rest of your system,
links to Traces:

Figure 12.9 – The Session Details screen

Selecting Traces takes you into an Explore view of full system traces, where you can easily navigate
to associated Loki logs from the backend, providing you with the ability to traverse your system. This
demonstrates the additional value that can be gained with full end-to-end observability instrumentation:

Enhancements and custom configurations 273

Figure 12.10 – The Explore view for system traces

A default session is defined by the following:

•	 Session start: The visitor navigates to a web page, Faro is initialized, and a new session is started

•	 Session end: The visitor navigates away and the session is destroyed (by default, a session end
event is not sent)

However, you can define session logic as you prefer, to fit your use case. The Faro docs for session
instrumentation at https://grafana.com/docs/grafana-cloud/monitor-
applications/frontend-observability/faro-web-sdk/components/provided-
instrumentations/#session-tracking show available configurations.

Let’s now look at some best practices to consider with Frontend Observability.

Enhancements and custom configurations
With all observability, you need to consider your use case. This is especially important when
considering Frontend Observability as you will be operating in your visitor’s browser. There are several
enhancements you can make to Frontend Observability over the default implementation. However,
these enhancements come with the overhead of additional configuration, additional developer effort,
and a potentially greater impact on your visitor’s browser. However, they can dramatically increase
the value provided by Frontend Observability instrumentation.

https://grafana.com/docs/grafana-cloud/monitor-applications/frontend-observability/faro-web-sdk/components/provided-instrumentations/#session-tracking
https://grafana.com/docs/grafana-cloud/monitor-applications/frontend-observability/faro-web-sdk/components/provided-instrumentations/#session-tracking
https://grafana.com/docs/grafana-cloud/monitor-applications/frontend-observability/faro-web-sdk/components/provided-instrumentations/#session-tracking

Real User Monitoring with Grafana274

 Let’s explore the enhancements for Frontend Observability:

•	 Frontend Tracing: This provides improved correlation between real user interactions and
backend events. It requires the additional OpenTelemetry SDK configurations and adds some
overhead to your visitor’s browser, so consider the implications carefully and test for any impact.

•	 Custom Errors: This provides improved observability for systems that have error handling.
Additional configuration is required to manually add the Faro Web SDK to the error handling
pipeline to push errors to Grafana.

•	 Custom Measurements: This provides enhanced telemetry with application-specific data.
Additional configuration is required to manually add the Faro Web SDK to push additional
measurements to Grafana.

•	 Custom Logs: This provides the ability to send supporting metadata along with telemetry
to help you understand your visitors’ experiences. It requires additional configuration and
development effort to instrument.

•	 Custom Events: This provides additional correlation to help with issue investigation and
data presentation. Events are ingested by Loki as logs with a specific label, kind=event.
We learned all about Loki labels in Chapter 4.

If you do not have a frontend app ready to instrument, there is a demo project as part of the Faro Web
SDK that you can experiment with. It will help you understand in more detail what is happening and
how it works: https://github.com/grafana/faro-web-sdk/blob/main/demo/
README.md.

Let’s now wrap up this chapter with a summary and look toward the following chapter.

Summary
In this chapter, we have explored user monitoring and the additional value gained with full end-to-
end observability instrumentation. We looked at how Grafana provides this capability with Grafana
Frontend Observability and the Faro Web SDK. We then looked at the Web Vitals metrics, which
are important for interpreting visitor experience. We also looked at the built-in dashboards that help
you navigate to your backend telemetry in Grafana, giving you the ability to fully diagnose problems.
Finally, we looked at some best practices and custom configurations for Frontend Observability.

In the next chapter, we will learn about different aspects of application performance with Pyroscope
and k6 from Grafana.

https://github.com/grafana/faro-web-sdk/blob/main/demo/README.md
https://github.com/grafana/faro-web-sdk/blob/main/demo/README.md

13
Application Performance with

Grafana Pyroscope and k6

This chapter will explore two tools, Pyroscope and k6. Pyroscope is a continuous profiling tool that
allows users to collect very detailed information about the usage of system resources such as CPU
and memory. k6 is a load testing tool that can be used to interact with an application via endpoints,
or via a browser session in a scripted way.

With Pyroscope, we will see how to search data, which will give you a good understanding of how
to make use of the data available. We will then show how to add instrumentation to collect this data
using both an installed client and by adding a native language SDK to the application code. Finally, we
will see how the new version of the Pyroscope architecture leverages Grafana’s knowledge of highly
scalable storage platforms, using inexpensive block storage to set Pyroscope on a path toward offering
truly continuous profiling for developers. This functionality will allow those of you who need visibility
of code execution to improve operational cost or end user performance.

k6 will move a little away from observability into the very closely related field of load or performance
testing. We will discuss the general principles of load testing and look at the different categories of load
tests that you may need. Then, you will be introduced to the scripting language used by k6 to easily
write tests that validate the application is performing as expected. We will see how k6 uses virtual
users (VUs) to scale tests and create a significant load on an application, so you can use it to prove your
applications are running as expected. Finally, we’ll see how k6 can be installed, and how it is versatile
enough to even run as part of a CI pipeline, ensuring your applications are continuously load tested.

In this chapter, we’re going to cover the following main topics:

•	 Using Pyroscope for continuous profiling

•	 Using k6 for load testing

Application Performance with Grafana Pyroscope and k6276

Using Pyroscope for continuous profiling
First, let’s address the question of what continuous profiling is. As we outlined at the start of this book,
a system is observable when the internal state of the system can be inferred from its external outputs.
We have seen three types of output telemetry: logs, metrics, and traces. Profiling data is another form of
telemetry. Profiling data is very low-level data that relates to a workload’s use of resources, such as the
use of CPU or memory. As profiling tools analyze very low-level system data, they capture information
such as the running time or the number of objects in memory of a specific application function. This
is very powerful for domain experts to inspect how an application behaves, and this power can lead to
significant performance and cost improvements. Profiling has been around for a long time, as anyone
who has produced a stack trace will know. Pyroscope offers the ability to capture this profiling data
continuously, with a default interval of 15 seconds. The ability to collect this telemetry continuously
over the lifetime of an application can give insight into how an application runs over time, which
can link the inner workings of the code base to specific user actions seen in logs, metrics, and traces.

In this section, we will briefly introduce Pyroscope. You will be shown how to search the data collected
by Pyroscope. We will talk about configuring the client to collect profiles, and we will look at the
architecture of the Pyroscope server.

A brief overview of Pyroscope

Pyroscope, also known as Grafana Cloud Profiles, was founded in 2020 and acquired by Grafana
Labs in 2023. The Pyroscope team joined the team from a Grafana Labs experimental product called
Phlare, and the product is now a standard offering from Grafana Cloud. Some of the key features of
Pyroscope are as follows:

•	 Great horizontal scalability using the same architecture as Loki, Mimir, and Tempo

•	 Cheap storage for profile data

•	 Can store data locally or using Grafana Cloud

•	 High frequency of sampling, which produces very granular data

Now, let’s explore how we can examine the data collected by Pyroscope.

Searching Pyroscope data

Profile telemetry can be viewed using the Explore view in the Grafana UI by selecting a Pyroscope
source. While the view is similar to Loki, Mimir, and Tempo, the query language is limited by the
nature of the telemetry type; effectively, only selection functionality is available to select a signal
from an application or group of applications by tag. This is the view you will see to select data from
a Pyroscope source:

Using Pyroscope for continuous profiling 277

Figure 13.1 – Pyroscope query pane

The first view to look at is the Top Table view, as shown in Figure 13.2. For those of you who know
the Linux top command, this view will be familiar. The view lists every function and the amount
of time that has been spent on the function. The Self column shows the time spent on that function.
The Total column shows the total time each function takes to run. This allows users to see functions
that have a long running time. Long runtimes could indicate an inefficient function, but it could also
indicate a function that is central to the application. Domain expertise is needed to understand where
improvements could be made. This screenshot shows the Top Table view:

Figure 13.2 – Pyroscope Top Table view

Application Performance with Grafana Pyroscope and k6278

The second view is the Flame Graph view. This chart is specifically designed to visualize profile data.
Flame graphs were invented to be able to visualize stack trace output from applications to make
debugging easier. Before we look at the view in Pyroscope, let’s take a look at a sample application
stack trace:

Figure 13.3 – Example application stack trace

We can see there is a main() function, which is started when the application is run. This function
calls the child functions, foo() and bar(), in order, and bar() also calls the baz() and qux()
functions. A flame graph captures the hierarchical nature of these stack calls by grouping child
functions under their parent. This allows us to see how deep the call stack is by looking at the y axis.
The total population of functions is shown in the x axis; importantly, this does not represent the time
but rather each function that was seen on the call stack during the sampling period. The visualization
of duration is shown in a flame graph by the width of the box for each function, which shows the total
time spent on a function during the sampling period. Let’s have a look at how this looks in practice:

Figure 13.4 – Example flame graph from the stack trace

Using Pyroscope for continuous profiling 279

In this example flame graph, we can see that the baz() function takes up a significant portion of the
operating time. In some applications, this may be completely expected behavior; in other applications,
this may indicate a function that needs to be optimized.

Very few applications are as simple as this example. Let’s look at a real flame graph from the OpenTelemetry
Demo application:

Figure 13.5 – A real flame graph

We’ve seen how continuous profiling tools such as Pyroscope can be valuable in creating efficient code
and debugging issues. Let’s now look at how to collect profile data.

Continuous profiling client configuration

There are currently three separate ways to collect data for Pyroscope, although we expect this to evolve
as Pyroscope is quite a new piece of technology. We would recommend the Grafana Labs blog for
those of you who want to keep up to date with the latest developments from this exciting technology
(https://grafana.com/blog/). Let’s explore how to set up each one:

•	 Extended Berkeley Packet Filter (eBPF) client: The first way to collect profile data for Pyroscope
is to make use of a Linux kernel-level tool called eBPF. This tool allows the profiling client
to view the trace information for all applications running on the server or node. The eBPF
client combines this data with metadata on the data source (for example, a Kubernetes Pod or
namespace) and then sends this profile information to a Pyroscope backend. The following
diagram shows a simplified view of how eBPF stores data for the Pyroscope client to collect:

Application Performance with Grafana Pyroscope and k6280

Figure 13.6 – eBPF client process

With eBPF, the kernel collects profile data, as well as several other types of data, and stores it
in eBPF maps. Pyroscope links into the eBPF maps, packages the data, and then sends it for
storage in the configured backend.

•	 Native language instrumentation: The second way to collect profile data is to use a language-
specific Pyroscope SDK to add instrumentation to your application. SDKs are currently provided
for Go, Java, .NET, Python, Ruby, Rust, and Node.js. Apart from the Go SDK, all these libraries
only support a push mode of operation. Go supports both a push and a pull mode of operation;
the pull mode allows the Grafana agent to collect profile data from a scraping endpoint published
by the application. In push mode, it is currently necessary to add the Pyroscope server address,
basic authenticated username, and password at the application level, although as this tool
matures, we’re sure this will become easier to manage in an operational environment.

•	 Instrumenting Lambda functions: Pyroscope also provides tooling for AWS Lambda functions.
This consists of a Lambda extension that is loaded as a layer when the function is triggered. This
allows the profiling tooling to collect the required profile telemetry asynchronously without
impacting the operation of your Lambda function. Like the native language instrumentation,

Using Pyroscope for continuous profiling 281

environment variables must be provided with the remote address for the Pyroscope backend
and the relevant authentication tokens.

For teams running serverless functions, this adds the capability to look inside the Lambda
function black box and allows teams to answer questions such as, Why is my Lambda costing
so much?, Why do I have such high latency?, and Why is my function failing so often?

There are benefits and drawbacks to the eBPF client, the SDK, and the Lambda approaches: their usage
is dependent on the use case. Here are some benefits and drawbacks for each method:

Instrumentation method Benefits Drawbacks

eBPF

System-wide whole system
profiles are easy to collect.

Infrastructure metadata
is easy to add (for
example, Kubernetes Pod
or namespace).

Easy to manage a multi-
language or large system.

Can combine with native
language instrumentation.

Linux kernel constraints.

Limited ability to tag user-level code.

Some profile types are not
performant to collect (for example,
memory use).

More complex for local
development environments.

Native language

Flexible tagging of code.

Detailed profiling of specific
parts of code.

Ability to profile other
types of data (for example,
memory use).

Simple to use in local
development environments.

Managing a multi-language or large
system is difficult.

Difficult to auto-tag infrastructure
metadata (for example, Kubernetes
Pod or namespace).

Lambda functions

Allows for collection
of trace data from
serverless functions.

Links with the native
language support to
instrument the function.

Currently only available for
AWS Lambda.

Table 13.1 – Advantages and drawbacks of Pyroscope instrumentation methods

Application Performance with Grafana Pyroscope and k6282

We’ve looked at the different ways to set up applications and clients to collect profile data. Now, let’s
consider the storage and search architecture of Pyroscope.

Understanding the Pyroscope architecture

Pyroscope 1.0 has introduced a major change to the architecture of Pyroscope. This leverages the
Grafana knowledge of Cortex architectures to make the architecture horizontally scalable. This is
a breaking change from previous versions so we will only be considering the architecture from this
change onward.

Similar to Loki, Mimir, and Tempo, Pyroscope uses low-cost, highly available block storage such as
Amazon S3, Google Cloud Storage, or Microsoft Azure Storage to provide massive scalability. Here’s
a diagram of the Pyroscope architecture:

Figure 13.7 – Pyroscope architecture

When data is written, it is sent to the Ingester, which persists the data to Object Storage. On the
Reads side, queries are split and sharded to instances of the Querier, which grabs the necessary data
from the Ingester and/or the long-term storage.

There are several alternatives to Pyroscope on the market that may be of interest to you. The open
source tools include OpenTelemetry eBPF, Parca, and profefe, and several observability vendors include
similar profiling tools. These tools can be found at https://github.com/open-telemetry/
opentelemetry-ebpf, https://www.parca.dev/, and https://github.com/
profefe/profefe. We’ve now seen how Pyroscope functions. Another tool that is helpful for
developers and testers is k6 load testing. Let’s take a look at this next.

https://github.com/open-telemetry/opentelemetry-ebpf
https://github.com/open-telemetry/opentelemetry-ebpf
https://www.parca.dev/

Using k6 for load testing 283

Using k6 for load testing
Load testing is the practice of applying a known, artificial load to an application to see how it
behaves. The term is often used interchangeably with performance testing, and we will follow the k6
documentation in using average load to differentiate a specific type of test.

Several different types of load tests can be applied; they differ on two axes – the load throughput and
the duration. They may also differ in the content of the tests that are performed. Some common types
of tests are shown in the following table:

Test Description Purpose Runtime and volume

Smoke tests

These are designed to
validate that the system
works. They can also
be known as sanity or
confidence tests. They
are called smoke tests
after testing a device
by powering it on and
checking for smoke.

These are designed to
quickly say that things
look as expected
or that something
is wrong

These should run
quickly, in minutes
not hours.

They should be
low volume.

Average
load tests

These tests show how
the system is used in
most conditions.

These are designed
to simulate the most
frequent level of load
on the system.

These should run
relatively quickly,
but slower than
smoke tests.

They should simulate
average volumes
of traffic.

Stress tests
These tests stress the system
with higher-than-average
peak traffic.

These are designed to
simulate what would
happen if peak traffic
were experienced for
an extended duration.

These should run in
less than a day.

They should simulate
high volumes of traffic.

Spike tests

These tests should show
how the system behaves
with a sudden, short,
massive increase in
traffic, as might be seen
during a denial of service
(DoS) attack.

These are designed to
test how the system
would handle a sudden
overwhelming spike
in traffic, such as a
DoS attack.

These should
run quickly.

They should simulate
unrealistic amounts
of traffic.

Application Performance with Grafana Pyroscope and k6284

Breakpoint tests
These tests gradually
increase traffic until the
system breaks down.

These are designed to
understand when the
system will fail with
added load.

These can run for
extended periods.

They should simulate
steadily increasing
rates of traffic.

Soak tests

These tests assess the
performance of the system
over extended periods.
They are like an average
load test over a significantly
longer period.

These are designed to
demonstrate how the
system will function
during real operations
for extended periods.
They are good for
identifying issues such
as memory leaks.

These will run over
extended periods such
as 48 hours.

They should simulate
average volumes
of traffic.

Table 13.2 – Types of load tests

The following graph shows the different tests for reference:

Figure 13.8 – Visual representation of the different load test types

Using k6 for load testing 285

In the preceding figure, we can see the different types of tests graphed by the test throughput and
the test duration. Try correlating what you can see in the graph with what you’ve just learned about
these tests in Table 13.2.

You can see that load testing and observability are very closely linked. The data collected from a live
system will show what average and unrealistic loads look like. The data injected by a smoke test can
show a system is working as expected, for example, after a new version is deployed. The data collected
from the load testing environment can give critical insights into the operation of the system under load.

It is good practice to separate the observability data collected from load testing from other data. Due
to the nature of the tests that are being tried, very large volumes of data can be generated, which can
be a very costly thing to collect. One huge advantage of open source systems such as Grafana is the
ability to run the data storage system as part of the load testing environment while using the same
visualization as in production.

There are several load testing tools on the market, both open source and commercial. The open source
offerings include JMeter, k6, Gatling, Locust, Artillery, Tsung, Vegeta, Hey, and Siege. As this book
focuses on Grafana tools, we will only discuss k6 here. Let’s have a look at some of the features of k6.

A brief overview of k6

k6 is the load testing tool developed by Grafana Labs after they acquired LoadImpact. k6 offers several
key features:

•	 A command-line interface (CLI) that allows tests to be run, paused, resumed, or scaled.

•	 The ability to start tests locally, from a Kubernetes cluster, or in the cloud with the CLI. k6
supports distributed running via a Kubernetes operator.

•	 Scripting support using JavaScript.

•	 The ability to load additional modules into scripts, although this does not include support for
Node.js modules.

•	 A browser module that adds browser-level APIs for full frontend testing.

•	 Support for goal-oriented load testing using checks and thresholds.

•	 Great supporting tools, such as the following:

	� Reference projects

	� Tools to convert scripts from other tools to k6

	� Tools to convert k6 output to other common formats

	� A GUI for test building

Let’s now look at the process of writing a simple test.

Application Performance with Grafana Pyroscope and k6286

Important note
As k6 requires a test file to run, we have included the installation and usage instructions after
these instructions on writing a test.

Writing a test using checks

Tests are written in k6 using JavaScript. A very simple test to submit a GET request to the acme
website would look like this:

import http from 'k6/http';
export default function () {
  http.get('http://www.acme.com');
}

This script would just submit a request to the web page, but it would not validate that the request was
successful. The check functionality would be used to confirm that this is the case, like this:

import { check } from 'k6';
import http from 'k6/http';

export default function () {
  const res = http.get('http://www.acme.com');
  check(res, {
    'is status 200': (r) => r.status === 200,
  },
  { company: 'Acme' }
  );
}

The check() function takes a value, an object containing the checks that will be run against the value,
and an object containing any tags. If all the checks pass, then the function returns true; otherwise,
it will return false. The check functionality makes it very simple to check for simple conditions
in a script. It is common to want to check that an endpoint is meeting specific expectations, and k6
offers thresholds for this goal.

Writing a test using thresholds

Thresholds are checked against all requests made in the script, and it is good practice to use the
service-level objectives (SLOs) set by the team as a starting point for testing. Here is an example of
a threshold test:

import http from 'k6/http';
export const options = {

Using k6 for load testing 287

  thresholds: {
    http_req_failed: ['rate<0.01'], // http errors should be less than
1%
    http_req_duration: ['p(95)<200'], // 95% of requests should be
below 200ms
  },
};

export default function () {
  http.get('http://www.acme.com');
}

This test would make a call to the acme website and check that the built-in http_req_failed
and http_req_duration HTTP metrics meet the threshold expression specified. These metrics
are collected from all the requests made in the script; in this case, there is only a single request made.
If needed, it is possible to use groups and tags to evaluate HTTP requests independently.

Now that we know how to write basic scripted tests, let’s look at how we can use options to scale.

Adding scenarios to a test to run at scale

In the previous section, we mentioned that the test would only make a single HTTP request. By using
options, it is easy to manage the behavior of the default function in complex ways. Let’s consider a
simple example in which we create 100 VUs, and each VU will execute the default function repeatedly
for 30 minutes:

import http from 'k6/http';

export const options = {
  vus: 100,
  duration: '30m'
};
export default function () {
  http.get('http://www.acme.com');
}

You might notice that we are using the same options constant as we used when we created the test
thresholds in the previous section. The options configuration option offers a lot of flexibility for
defining the behavior of a test. It is a common requirement to share data with each of the VUs that
will run the tests. Let’s have a look at how the test life cycle can manage these requirements.

Application Performance with Grafana Pyroscope and k6288

Test life cycle

There are four stages to the k6 test life cycle. These stages are explicitly set in the ordering of a test file:

1.	 Initialization code: This is any code that appears at the top of the test script, before the setup
code. It is run once per VU and is used to load files, import modules, configure the options
used in the test, and for similar operations.

2.	 Setup code: The code runs once and is used to set up data that is shared by all the VUs that are
running the tests. This code uses the following syntax:

export function setup() { }

3.	 VU code: The code is run as many times as needed on each VU and is used to define the
functions that will be run during a test. This code uses the following syntax:

export default function (data) { }

4.	 Teardown code: The code is run once, but it will not run if the setup ends abnormally. It is
used to process results and stop the test environments. This code uses the following syntax:

export function teardown (data) { }

Now that we have a good understanding of using k6 to run tests, we need to consider the different
ways we can install and run k6.

Installing and running k6

k6 is available in several package formats:

•	 Linux (.rpm and .deb)

•	 macOS

•	 Windows

•	 Containerized image

•	 Standalone binary for all platforms

Installation is very simple on all platforms, and full instructions can be found on the k6 website
at https://k6.io/docs/get-started/installation/.

https://k6.io/docs/get-started/installation/

Using k6 for load testing 289

Running k6 is also very easy as all processes are triggered from the CLI. This is very well documented
via the --help flag:

$ k6 --help

          /\      |‾‾| /‾‾/   /‾‾/
     /\  /  \     |  |/  /   /  /
    /  \/    \    |     (   /   ‾‾\
   /          \   |  |\  \ |  (‾)  |
  / __________ \  |__| __\ _____/ .io

Usage:
  k6 [command]

Available Commands:
  archive     Create an archive
  cloud       Run a test on the cloud
  completion  Generate the autocompletion script for the specified
shell
  help        Help about any command
  inspect     Inspect a script or archive
  login       Authenticate with a service
  pause       Pause a running test
  resume      Resume a paused test
  run         Start a test
  scale       Scale a running test
  stats       Show test metrics
  status      Show test status
  version     Show application version

The k6 run and k6 cloud operations are used to run tests locally or via the k6 cloud, respectively.
Here are some example commands using a test file called test.js:

•	 Run a single VU once:

k6 run test.js

•	 Run 10 VUs with 20 iterations of the test being run across these VUs:

k6 run -u 10 -i 20 test.js

•	 Ramp VUs from 0 to 50 over 20 secs, maintain the 50 VU count for 60 secs, then ramp down
to 0 over 10 secs:

k6 run -u 0 -s 20s:50 -s 60s:50 -s 10s:0 test.js

Application Performance with Grafana Pyroscope and k6290

These commands could all have k6 run replaced with k6 cloud to use a k6 cloud runner instead
of running the tests from the local machine.

Now that we’ve seen how to use k6 to perform load testing, let’s wrap up.

Summary
In this chapter, we have explored two of the tools that Grafana offers as part of its observability
platform: Pyroscope and k6. We learned how to search the profile data collected by Pyroscope and
how to configure the client to collect that profile data. We also learned how to instrument applications,
both using a native language SDK and using Lambda layers for serverless applications. Finally, we
explored the new Pyroscope architecture and saw how it is very similar to Loki, Mimir, and Tempo.
This new scalability should give Pyroscope the space to grow into a vital fourth telemetry type, making
systems more observable.

With k6, we learned about various types of load or performance tests. We saw how we can easily write
tests using the JavaScript language, using checks and thresholds to articulate vital measures for an
application. We saw how to use options to manage how k6 runs its tests, and how to add the correct
data and functions to our scripts to best make use of the test life cycle. Finally, we saw the process for
installing and running k6, and how the simple operation even allows us to run the tool as part of a CI/
CD pipeline to continuously load test applications to validate that their performance is meeting SLOs.

In the next chapter, we will bring together all of the tools, APIs, and knowledge to understand how
to best support DevOps principles using Grafana.

14
Supporting DevOps Processes

with Observability

This chapter will discuss the use of Grafana in two different aspects of the technology industry –
software delivery and platform operations.

We will briefly introduce you to the DevOps life cycle as valuable foundational knowledge. Using
this framework, we will guide you through the value of Grafana in each phase to enrich the software
development process in your organization. We encourage you to spend time understanding where
bottlenecks are in this process and focus resources on the most appropriate phase for your team
or organization.

Platform operations are typified by using third-party applications. This removes about half of the DevOps
life cycle, as those stages are conducted by a third party. You will be introduced to the considerations
you should make for using Grafana during the deployment and operation of several types of platforms.
We will look at collecting data from data collection tools in an observability platform and consider
best practices around disaster planning for the failure of this business-critical system. We will look
at the particular needs of the operators and users of platforms that provide continuous integration
(CI) or continuous delivery/deployment (CD) capabilities to an organization, as monitoring these
platforms can be challenging. We will discuss resources available to monitor databases, in-memory
data stores, message buses, and web servers, covering how to install them efficiently and how these
common tools have publicly available dashboards in Grafana to use. Finally, we will have a quick look
at how this same pattern of monitoring platforms is applicable for some security tools.

This chapter will handle technical concepts but there are no requirements to have experience with
individual tools, and the chapter should be accessible to anyone, regardless of background.

In this chapter, we’re going to cover the following main topics:

•	 Introducing the DevOps life cycle

•	 Using Grafana for fast feedback during the development life cycle

•	 Using Grafana to monitor infrastructure and platforms

Supporting DevOps Processes with Observability292

Introducing the DevOps life cycle
Before we explain what the DevOps life cycle is, let’s consider the history of Agile, DevOps, DevSecOps,
and platform engineering a little.

Iterative development practices were used as early as the late 1950s, but in the 1990s, several development
methods were introduced as a reaction to development practices that were seen as heavyweight,
micromanaged, highly regulated, and with a high risk of project failure. These new methods included
rapid application development (RAD), Scrum, extreme programming, and feature-driven design
(FDD). These all originated before the Agile Manifesto, but they are now known as agile practices.
According to the Agile Manifesto, published in 2001, we prefer the following:

•	 Individuals and interactions over processes and tools

•	 Working software over comprehensive documentation

•	 Customer collaboration over contract negotiation

•	 Responding to change over following a plan

This indicates that, while there is value in the items on the right, we value the items on the left more.

Agile practices evolved from development practices, and they are focused on development teams,
although there are a lot of crossovers with operational practices. These manifesto notions drove a lot
of interest in practices such as test-driven development, CI, CD, and many others.

In the early 2000s, concerns around the separation of development practices and operational practices
were highlighted (although these concerns were also raised through the 1980s and 1990s). These
concerns coalesced in 2009 with the first DevOps Days conference. DevOps does not articulate a
central philosophy such as Agile, but it suggests practices and measures that are intended to speed the
delivery of working software to customers. A lot of these practices revolve around having developers,
testers, and operators collaborate more closely, often by bringing them together in the same team.
Similarly, development practices such as using version control systems (for example, Git) are adopted
so operational concerns such as system configuration can become part of the shared understanding
of a whole software system.

DevOps has several branches, extensions, and concepts. Here are some of them for those who are
interested in reading further: ArchOps, site reliability engineering (SRE), DevSecOps, DataOps,
12-factor apps or 15-factor apps, infrastructure as code (IaC), configuration as code (CaC),
and GitOps.

A quote from Amazon CTO Werner Vogels back in 2006 became a bit of a rallying cry for the DevOps
movement: “You build it, you run it.” This has a lot of merit. Having the team who designed and wrote
a product also be responsible for its operation should mean that incidents are resolved quicker and
customer feedback can be heard and responded to. Teams can be more agile! When managed well
and in the right organization, this can be a very effective way to operate. However, as the analysis by

Introducing the DevOps life cycle 293

Matthew Skelton and Manuel Pais in Team Topologies (https://web.devopstopologies.
com/index.html#anti-types) shows, many anti-patterns can appear and lead to dysfunction
in an organization. This approach can also lead to a significant cognitive load for development teams,
which makes organizations less able to respond to change.

You might ask why we include this history when we are explaining what the DevOps life cycle is. The
reason is to caution you that this life cycle is a tool and, in most organizations, a collection of processes;
while they do have value, they should not be valued more than individuals and interactions. The way
that teams tasked with managing a customer-facing software system will interact with an observability
platform will differ significantly from a team tasked with managing the platform in support of the
organization’s goals. With this caution given, let’s look at the DevOps life cycle as it gives us a good
framework to discuss the many aspects of using an observability platform through the life cycle:

Figure 14.1 – The DevOps life cycle

Important note
There’s isn’t a clear definition of DevOps or DevSecOps. The DevOps life cyle itself covers
development and operations while the security aspect wraps around all of that (and more), as
shown in Figure 14.1.

Let’s walk through each phase of this life cycle:

•	 Code: This is where new code is written in line with the specification given during the
planning phase

•	 Build: This phase is where new code is built

•	 Test: New code is tested in various ways during this phase

•	 Release: The code is verified as ready to be deployed to production in this phase; any final
checks or assurances will be performed here

https://web.devopstopologies.com/index.html#anti-types
https://web.devopstopologies.com/index.html#anti-types

Supporting DevOps Processes with Observability294

•	 Deploy: The code is deployed to a production environment

•	 Operate: This phase is a continuous phase; the latest deployed release is run in a
production environment

•	 Monitor: Any data collected from the release that is currently operating in production is
gathered, as well as any feedback or user research, and is collated together to be used in the
next planning phase

•	 Plan: During this phase, the team plans what future iterations of the product will contain

•	 Security: This is a continuous concern for the team in a DevSecOps approach and is the
responsibility of all members of the team

Now that we have seen the DevOps life cycle, let’s consider how we can use Grafana tools during each
phase of this cycle.

Using Grafana for fast feedback during the development
life cycle
In this section, we will consider how to use Grafana tools through each stage of the DevOps life cycle.
Developing software can be risky and expensive, and observability platforms can also be expensive.
Therefore, using the data from an observability platform to reduce the risks and expense of developing
software is a great investment. We’ll start with the code phase of the life cycle.

Code

To use Grafana in the DevOps life cycle, the system must produce useful data that can be used to
understand the state of the system. To that end, the first act during the code phase of the life cycle is to
instrument the system. Depending on the type of system we are working on, the method of producing
data may look different:

•	 A software application would be instrumented by adding libraries or SDKs that produce data
in a format agreed with the team(s) who collects this data. In some situations, this can even be
achieved by the injection of instrumentation into the application, which can happen during the
deploy stage of the life cycle. Organizations need to be clear on where this responsibility lies.

•	 A cloud infrastructure or cloud platform component would be instrumented by collecting
data from the vendor.

•	 A local infrastructure or local platform component would be instrumented by collecting data
in a format supported by the vendor of the component.

Using Grafana for fast feedback during the development life cycle 295

For a lot of systems, this may be all that is needed. However, there are times when an organization
needs custom data from a system. Adding such instrumentation falls squarely in the code phase of the
life cycle. However, when considering such activities, it is important to also ensure that the plan and
test phases are considered. This can be achieved through activities such as agreeing on a data format
and field definitions and implementing the code in a way that it can be tested in future iterations of
the product (for example, domain-orientated observability).

The final area in which Grafana can help during the coding process is by being run directly against
code as it is developed. Most, if not all developers, will run their code locally before it is committed to a
version control repository. As Grafana is open source, it is very easy to implement a local development
environment that produces and collects observability telemetry; we provided an example of this kind
of environment when we explored live data in Chapters 3, 4, 5, and 6. This wealth of information can
feed directly back into the coding process as it happens.

The next phase of the life cycle is the build phase. We will skip over this as we deal with monitoring
builds in a lot more detail when we talk about monitoring CI/CD platforms in the next section of this
chapter. Let’s talk about the test phase next.

Test

The test phase can cover a lot of different test types. While tests are typically managed by the CI/CD
platform, such as the use of a testing framework or static analysis tools, the most common form of
feedback in Grafana is to monitor the CI/CD platform itself. An additional approach for organizations
or teams who want to track more information is to output time series data from the CI/CD platform
into a time series database (TSDB). These kinds of custom approaches can often become like a
complex Rube Goldberg machine, so we would caution you to be very mindful of what the value is
to the organization, and we recommend that you research the market in case a more suitable product
is available.

As the test phase moves into end-to-end tests, tools such as k6 really come into play (we discussed
this in Chapter 13). Writing great repeatable tests for tools in this space can also offer a very valuable
ability to run them during the deploy phase of the life cycle to confirm that the new code has been
successfully deployed.

The release phase encompasses everything between completing testing and releasing code to customers.
This often covers activities such as gaining approvals for the deployment from stakeholders or assurance
teams. Let’s have a look at how Grafana can help.

Release

Let’s start discussing using Grafana for the release phase with a brief warning: many tools on the
market may offer a better fit for organizations and teams, so we recommend that organizations do
some research if they are having problems with their release processes.

Supporting DevOps Processes with Observability296

Perhaps the biggest feature of Grafana that enables a smooth release step is the ability to show whether
a new iteration of a product complies with the service-level objectives (SLOs) and service-level
agreements (SLAs) for the product. Showing these metrics from a new iteration, especially when
the product has been put under load by a tool such as k6, is a very powerful way to say that the new
iteration behaves as expected.

The other feature that may be of interest to some teams is the ability to automatically build dashboards
that contain HTML widgets. This can be used to automatically assemble a release dashboard with links
to various artifacts such as test reports, tickets for included features, and similar.

The operational phases of the life cycle are the most associated with Grafana. Let’s start looking at
these with the deploy phase, in which code is deployed into a production environment ready for
customers to access.

Deploy

The deploy phase will see a lot of changes occur, and the details of using Grafana will differ depending
on how the system is deployed:

•	 Where an application is deployed to a Kubernetes cluster, Pods will be scheduled for termination,
while new Pods using the newer version will be started. We might see Pods responsible for
database updates scheduled, and various other aspects. When used as the repository for all
telemetry from a Kubernetes cluster, Grafana can be used to visualize the deployment process
in a way that suits the deployment team, from prebuilt dashboards to a custom dashboard
specifically designed for a specific application deployment.

•	 Where applications are deployed directly to an operating system rather than a containerized
environment, Grafana still offers detailed monitoring, with prebuilt dashboards for operating
systems, common languages, web servers, databases, in-memory data stores, and many other tools.

These approaches provide white box monitoring of a deployment; a lot of organizations will also
implement black box monitoring of the application during a deployment. Grafana can help here as
well. By using Grafana OnCall to receive messages from an availability monitoring tool such as the
Prometheus blackbox exporter, k6, or Pingdom, this stream of data can also be monitored during
a deployment.

It is best practice to generate annotations when a deployment happens, which can be done via the
API. Here is an example of an annotation added to a deployment of the OpenTelemetry Collector
that caused an incident:

Using Grafana for fast feedback during the development life cycle 297

Figure 14.2 – Annotations in action

As the screenshot shows, Grafana will display contextual information about deployments on any
visualization that has the option switched on. Annotations appear as a line on the chart and show
information when hovered over; this contextual information can be tagged.

At their heart, CD platforms are code execution platforms, which means that any action that can be
coded can be performed by a CD platform. We just talked about monitoring a deployment visually
using a dashboard. This approach is great when deployments happen infrequently. When deployments
occur much more frequently, it can be valuable to invest time in writing stages of a deployment where
the state of the application being deployed is monitored. Loki, Mimir, and Tempo all offer query
endpoints, which can be used to run queries as part of the scripted CD job. Effectively, this offloads
the need to watch a dashboard to the CD pipeline, and rollback steps can be defined if the deployment
fails. Some common examples of this use are as follows:

•	 Monitoring the error rate seen in the application logs.

•	 Checking whether login actions are successful. This would usually be tied to a smoke test to
ensure that login events occur.

•	 Checking whether communication with downstream services is affected.

If these checks were to fail, the deployment could be quickly rolled back using automated procedures.
This approach significantly reduces the mean time to recovery (MTTR) for such common issues and
ensures that engineers can be focused on more valuable tasks during a deployment.

Supporting DevOps Processes with Observability298

The gold standard for leveraging the tools provided by Grafana is to also deploy any updates to the
dashboards used for a service with Terraform during the same deployment window as the code
deployment. Adopting this practice allows for an easily repeatable process, moving from local
development work through testing and into a production environment.

While exciting, the deploy phase is not the phase where code is in normal operation; that phase is the
operate phase. Let’s look at this phase next.

Operate

The operate phase is where the product is live in front of customers. The most important aspect of this
phase is ensuring customers are getting a great service. This can be achieved by monitoring SLOs and
SLAs, checking errors that may occur, responding to incidents, and helping customers in their use of
the product. Grafana is primarily a tool that is used through the operate phase of the life cycle, so most
tools in Grafana are targeted toward this phase. Some key components that will be used by all teams
who use Grafana are dashboards and alerts. The ability to see how a user is interacting with a product
is also very valuable to operational teams, such as customer experience or customer support teams.

We discussed in Chapter 9 how Grafana Alerting and Grafana Incident can integrate with many
systems. This capability is very helpful in creating a detailed incident response system – for example,
by linking Grafana with ServiceNow so the creation, updating, and closing of incident tickets can be
partially or fully automated, even with capabilities to collect chat communications to reduce the time
needed to write up what happened during an incident for reporting.

We talked about using Grafana Frontend Observability in Chapter 12; when correctly implemented
with distributed tracing, this tool allows customer-facing teams to reconstruct an individual user’s
session. This allows these teams to work quickly with the customer to understand the frontend problem
they are experiencing and translate that into a trace path through the system to identify the source
of the issue and get it to the right team quickly, with easy-to-digest information on what happened.

Let’s consider how to use Grafana to monitor the system.

Monitor

Like the operate phase. the monitor phase is the phase in which using Grafana can really shine. The
two biggest challenges are knowing what telemetry to use to answer a question about the product and
whether the telemetry is being made available. While it would be impossible to list every potential
question, here are some common questions, linked with the telemetry type that would be best suited
to answer them:

•	 How are my customers interacting with my product?

This is best answered by using real user monitoring, which we discussed in Chapter 12. This
question could cover many similar questions such as what the uptake of a new feature is, and
whether there are unvisited pages or features in the system.

Using Grafana for fast feedback during the development life cycle 299

•	 Are there particular functions that are slow?

This can be answered by combining the timing information for requests from metrics with the
detailed application information produced in logs. We discussed these in Chapters 4 and 5. For
applications with downstream dependencies, this information can also be complemented with
trace data, as discussed in Chapter 6.

•	 Why is a particular function slow?

Often, this question will be answered through local testing, but this process may be significantly
aided by using continuous profiling against a system with real or replayed requests. Chapter 13
discussed continuous profiling in more detail.

•	 Is my application behaving as expected?

This is best addressed by establishing clear service-level indicators (SLIs) and SLOs for the
application; we outlined how to do this in Chapter 9.

•	 Is the service compliant with the SLOs/SLAs?

This is typically answered by using metrics data. However, some indicators may be metrics
derived from logs or tracing data – for example, creating a metric from logs of the number of
errors seen.

•	 Is my infrastructure scaled correctly?

This would be answered by collecting data from the infrastructure. How that is done may differ
depending on the type of infrastructure:

	� For cloud infrastructure, this is done via an integration that provides logs, metrics, and
sometimes tracing data

	� For on-premises infrastructure, the collection methods will vary

We discussed this topic in more detail in Chapter 7.

•	 What is the long-term trend for something?

The best telemetry type for long-term trending is metrics as they provide a default 13-month
retention period. This means the best practice for such analysis is to produce a metric from
the data you wish to track.

Another approach would be to load data from Grafana into some form of data warehouse, but
this is outside the scope of this book.

The real difference between the operate phase and the monitor phase is the aim of the use of Grafana.
In the operate phase, the goal is to ensure that the system is functioning correctly for customers of the
system. In the monitor phase, the goal is to understand and document how the system is functioning
to feed into the plan phase to improve the system. Let’s finish discussing the DevOps life cycle with
the plan phase.

Supporting DevOps Processes with Observability300

Plan

The plan phase takes input from many sources to help a team decide what the next priority for work is.
The questions asked in the monitor phase, and any incidents or SLO breaches from the operate phase,
are some of those sources. To help prioritize, it is common to consider things such as the following:

•	 How many customers are affected by a particular incident or potential improvement?

The logs, metrics, and traces in Grafana can collect the data needed to answer this. This is true
even for changes that have been sourced from other places such as user feedback.

•	 How close to capacity is a component of the system, or how much time is there to address a
bottleneck before it begins creating incidents or performance degradation?

Identifying bottlenecks before they become critical can be done by using k6 to load test the system
with spike testing, stress testing, or even testing it to breakpoint.

The DevOps life cycle is very focused on teams who are developing software. It’s common for
organizations to use software provided by third parties to provide internal platforms. There is a lot
of crossover with the deploy, operate, and monitor phases, but let’s take a more detailed look at using
observability with some of these platforms.

Using Grafana to monitor infrastructure and platforms
Teams who work with third-party infrastructure and platforms are well supported by the tools from
Grafana and OpenTelemetry. We’ll consider a few major types of platforms; observability, CI, CD,
infrastructure and resource, and finally, security platforms. The deploy, operate, monitor, and plan phases
should all be understood for these platforms and the points made in the previous section for these
phases are relevant to these kinds of platform products. Let’s start by considering observability platforms.

Observability platforms

Teams who manage observability platforms have a responsibility to offer a platform that demonstrates
best practices by having well-documented SLIs and SLOs, easy-to-find dashboards, and a dependable
incident management process.

Helpfully, there are dashboards available through the Grafana Dashboards community portal that
provide very detailed views of the OpenTelemetry Collector and the data flows as they pass through
the Collector. Deciding what aspects of the Collector are most important to your organization and
publishing them is a step that should be taken by any team that manages observability collection.

An important consideration for managing an observability platform is the disaster management
process for the loss of the platform. While this scenario is unlikely, it is much better to have a tested
plan than to try to come up with one when the platform is on fire – this is advised after a very painful
experience. Usually, such a disaster plan can be simple – for instance, the ability to create a Prometheus

Using Grafana to monitor infrastructure and platforms 301

instance or even a full Grafana stack in each cluster will give organizations the capability to continue
operating in the event of the software-as-a-service (SaaS) platform they use being down.

A related plan that should exist is how noisy data sources are controlled. Compartmentalization of
production data from other sources is a best practice. Sometimes, the financial or capacity cost of a
noisy data source could be a business interruption. These risks can be managed in several ways, such
as revoking API keys, adding filtering to collectors, or even more extreme measures such as switching
off the data source.

Let’s consider CI platforms next.

CI platforms

CI platforms cover a lot of different tools, such as Github Actions, GitLab CI/CD, Jenkins, Azure
DevOps, Google Cloud Build, and similar. We believe the most common question asked of CI platforms
is “Why did my build fail?”. Giving engineers tools to debug their builds is very important for such
a platform. Often, this feedback can be seen in the CI platform itself. However, for some types of
failures, it may not be obvious, such as a runner that failed, a noisy neighbor, or some other issue. In
these cases, having data collected from the CI platform itself can be very useful.

Due to the nature of the CI platform, data collection usually needs to be tailored to the platform:

•	 Platforms provided by cloud vendors would usually be instrumented by collecting the logs
and metrics from the platform in the vendor’s own tooling (for example, AWS CloudWatch,
GCP Operations Suite, or Azure Monitor) and then sending them on to a Grafana instance
if appropriate.

•	 Other platforms will probably need to have an agent installed. We discussed this process in
Chapter 13. For reference, the OpenTelemetry Collector is provided via a Docker image, Alpine
image (APK), Debian image (.deb), Enterprise Linux image (.rpm), and as a general image
(.tar.gz), which includes executables for macOS (Intel and ARM) and Windows. The Grafana
Agent is provided as a Docker image, Debian image (.deb), Enterprise Linux image (.rpm),
SUSE image, macOS image (via Homebrew for Intel and ARM), and Windows Installer (.exe).

Once an agent is installed, the configuration should be managed to give the best support for the
nature of the integration work that is carried out on the platform. We recommend using one of the
automation tools discussed in Chapter 10 to manage this.

Logs and metrics are the prime data components to capture, as CI platforms do not typically need
distributed tracing. One thing to consider as a team adds observability to a CI platform is whether the
leadership team wishes to track higher-level business metrics – for example, lead time for changes,
defect counts, or similar. For those of you who want to look further into these ideas, we recommend
looking at Google’s DevOps Research and Assessment (DORA) team reports (https://cloud.
google.com/devops/state-of-devops/). These kinds of considerations would usually
need to be agreed upon across several teams, so having a clearly documented definition of how

https://cloud.google.com/devops/state-of-devops/
https://cloud.google.com/devops/state-of-devops/

Supporting DevOps Processes with Observability302

they are calculated and collected is vital. This kind of data collection may or may not be done in the
observability tooling. It is best practice to separate the data from CI platforms from business-critical
workloads. This can easily be achieved by dedicating a separate Grafana stack for CI workloads. There
are publicly available dashboards for these systems as well.

Now that we’ve seen how to monitor a CI platform, let’s consider the deployment platform.

CD platforms

CD platforms often have crossover with CI platforms; we’re considering them separate as they are
different aspects of the overall system. These platforms use tools such as Jenkins, GitLab CI/CD, AWS
CodeDeploy, ArgoCD, FluxCD, and similar. For infrastructure deployment, they may also include
tools such as Terraform Cloud, Atlantis, or Spacelift. There are two main groups of CD tools: push
systems and pull systems. We’ll discuss them separately in this way as the data collection processes
differ. With either deployment method, a very important aspect of integrating with Grafana well is to
record an annotation in Grafana. We discussed this in more detail when we talked about the deploy
phase of the DevOps life cycle, but this contextual information can save huge amounts of time during
troubleshooting, and ultimately, provide a better customer experience.

Pull systems in Kubernetes also use the term GitOps; such systems typically use tools such as ArgoCD
or FluxCD. As these tools are deployed into an existing Kubernetes cluster, the observability stance is
very simple, in that the service will have data collected by the existing collection infrastructure in the
cluster. ArgoCD provides metrics in Prometheus format, and there are several dashboards publicly
available. It’s also possible to extend the data collection via other tools in the Argo group of tools.
FluxCD provides Prometheus metrics that can be extended with kube-state-metrics as well. The tool
also provides logs and produces Kubernetes events as well. There are other pull systems outside of
Kubernetes, such as Chef and ansible-pull, but due to the low prevalence of these tools, we’ll not
discuss them here.

Push-based CD platforms have one or more central systems that connect to the deployment target
and run the deployment process. Jenkins is perhaps the classic example here, but systems such as
GitHub Actions and GitLab CI/CD also fall into this category. You may notice that these tools were
also mentioned previously when we considered the CI platform. Unsurprisingly, these tools are
monitored in the same way, whether they are used for integration tasks or delivery/deployment tasks.
When the use of these tools has a mix of integration and delivery/deployment tasks, monitoring
the actions of the platform is very important from a security perspective as these systems will often
consume third-party libraries during the integration phase, which opens the system to supply chain
attacks. Combining such an attack with high-level access to production on a single system is a very
real threat to organizations.

We’ve now considered how to monitor the platforms that build and deploy software. Let’s consider a
wider group of systems next. We’ll consider data storage and message queue systems in this next section.

Using Grafana to monitor infrastructure and platforms 303

Resource platforms

We’re using the term resource platform to describe the types of backend systems that an application
may depend on. These might include databases, in-memory data stores, message buses, web servers,
or similar. These platforms are an odd case, as the responsibility for the system can reside in many
different areas of the organization. Commonly, either a software delivery team would be responsible,
or sometimes a centralized team would be responsible. We will attempt to ignore this complexity by
talking in general terms about how to ensure these tools are observable.

There are a few places to start looking at monitoring these systems:

•	 OpenTelemetry Collector contributed receivers: There are contributed receiver modules for
a vast array of resource platforms. Deploying these receivers is very simple:

	� In Kubernetes, the collector can be deployed as a sidecar to the service, or as a dedicated
agent in the cluster or namespace that forwards telemetry on to a gateway. An example of
a dedicated agent is shown in Figure 11.5 in Chapter 11 where the agent is used to collect
metrics from the Kubernetes cluster.

	� In a virtual or bare metal installation, a dedicated OpenTelemetry Collector needs to
be deployed, although this can often be done on the instance being monitored with no
performance degradation.

•	 Prometheus modules: These are modules that allow Prometheus to scrape data from a lot of
resource platforms. These can simply be deployed to a Prometheus instance and configured to
connect to the platform that needs to be monitored.

Once metrics are collected from these systems, Grafana offers a wide range of prebuilt public dashboards
for them. The wide availability of these dashboards means the time to value is very good.

One thing to highlight to prevent confusion with these systems is that this type of data collection is not
the same as using the system as a data source in Grafana. A lot of these systems, especially databases
such as MySQL, PostgreSQL, and MongoDB, can be used as a Grafana data source. A data source
connects to the system and allows users to query the data in the system. The tools we are discussing
here connect to the system and query operational metrics from it. These metrics can then be used to
provide SLOs and transparency of the operation of the system to other teams.

Security platforms

We will not delve too deeply into security platforms as they could fill an entire book on their own.
However, it’s worth noting that several tools, such as Falco, Open Policy Agent, kube-bench, Trivy,
and others, have methods of exposing metrics related to their operation, which can be consumed by
Grafana in some way.

Supporting DevOps Processes with Observability304

There is also a very big crossover of concerns of observability platforms with cyber security platforms.
Both platforms consume log data, which can lead to the running of multiple agents to collect this
data. A more cost-effective solution could be for these teams to work together on a shared pipeline
of this data that supports both teams’ operations. Such a pipeline should be monitored closely as it
could present a significant risk to the organization.

We’ve now considered using Grafana both in the software application life cycle and for the management
of infrastructure and platforms.

Summary
In this chapter, we have considered how you can use Grafana through the DevOps life cycle. You learned
about deploying Grafana in a local environment to speed up development time by getting instant
feedback on the performance of the code. We looked at the testing phase, and you learned how using
tools such as k6 can provide great repeatable tests that can even be used as an application is deployed.
During the release phase, Grafana can be used to demonstrate various aspects of an application to the
stakeholders who approve your releases. We saw how deployments can have their risks reduced by
leveraging SLOs and black box monitoring. We also saw how using Grafana annotations can improve
the visibility of deployments occurring. The operate and monitor phases use Grafana in very similar
ways, which have been covered in this book. You were introduced to the difference in the aim of these
two phases, with the operate phase being concerned with the correct functioning and the monitor
phase being concerned with how to improve the customer experience. Finally, we talked about how
Grafana can be used to have a data-driven discussion during the planning phase of a software tool.

We then considered how Grafana can also be used with various types of platforms. We introduced you
to using Grafana to monitor your observability platform, effectively demonstrating the principle of
using your own product or “eating your own dog food,” and acting as an example of best practice to an
organization. You saw how to use Grafana with your CI/CD platforms, so engineers in an organization
have a lot of data to understand how their builds and deployments are working. We then discussed
how to get operational data from many systems used across the industry, such as databases, in-memory
data stores, message buses, and web servers. You learned that the best approach is to look for available
data collection tooling and publicly available dashboards. The final kind of platform we looked at was
a security platform, where you saw that some tools also surface data in Prometheus or OpenTelemetry
format, which can be consumed by Grafana. Where this is available, prebuilt Grafana dashboards are
also available, which significantly reduces the time to value for using these tools.

We have nearly reached the end of the book. The next chapter will cover best practices and troubleshooting
techniques. You will look at some specific items around data collection and the Grafana stack as well
as general guidance on common pitfalls in observability. We will also discuss interesting future trends.

15
Troubleshooting, Implementing

Best Practices, and More
with Grafana

We are nearing the end of our journey in Observability with Grafana, so this is a good time to revisit
some of the things we have learned. In this chapter, we will review the best practices for data collection
and look at troubleshooting techniques that can help get your telemetry into Grafana. We will then
move on to the Grafana stack for more best practices and troubleshooting with your telemetry backend,
alerts, and dashboards. We will identify some of the pitfalls of observability and how to avoid them.
Then, before wrapping up, we will look to the future and explore potential trends on the horizon.

In this chapter, we are going to cover the following main topics:

•	 Best practices and troubleshooting for data collection

•	 Best practices and troubleshooting for the Grafana stack

•	 Avoiding pitfalls of observability

•	 Future trends in application monitoring

Best practices and troubleshooting for data collection
Throughout this book, we have repeatedly talked about the importance of preparation, setting objectives,
and defining requirements. Doing the upfront thought work cannot be underestimated, but sadly, it is
often completely overlooked. There are far too many occasions where I have investigated a company’s
observability platform and discovered collection agents have been deployed without thought, opening
the floodgates to send everything into the backend. The price is an excess of undefined telemetry,
making it hard to do your job and causing expensive operating and storage costs.

Troubleshooting, Implementing Best Practices, and More with Grafana306

In this section, we’ll be sharing some best practices for data collection, together with some useful
troubleshooting tips. Let’s first look at preparation activities for data collection.

Preparing for data collection

Observability starts with a need or desire to monitor and observe systems, and to do that, we need
data. However, too much data (and data for the sake of data) can break your system’s observability,
which is why it is important to prepare. Set your objectives, considering what you want from your
platform and who it is for. Instead of planning for the what if, plan for what is. You can always add to
it later, which is much easier than taking away after the fact.

In Chapter 1, we introduced observability personas. You can use these to gather platform requirements.
Ideally, you want to be able to answer the following questions:

•	 Who are my observability customers?

•	 What log formats do I want or have in my system?

•	 What is the origin of the data?

•	 What metrics are important for our service-level objectives (SLOs)?

•	 Will tracing instrumentation help solve observability problems?

•	 What data do I need for dashboards?

These answers will help you determine which agent technology works best for your use case, what log
formats to use, and other important decisions.

Let’s look at some of the decisions we need to make for our data collection.

Data collection decisions

Several critical decisions must be made early on that can impact your entire observability journey.
It is important to take the time upfront to make these decisions, as it becomes a lot harder and more
expensive to change them later. In most scenarios, your choices are reduced, and you have to work
with existing data. That does not stop you from identifying and communicating a new standard to aim
for. Standardizing data collection across the entire organization provides a framework that supports
engineers in compliance. Here, we group some of those factors together to help you process them:

•	 Logs:

	� Choose a log format that can be extended so you can deliver quickly and enhance later.

	� Select labels carefully, considering Loki’s performance and cardinality. You can always extract
additional fields as labels during querying.

	� Consider whether valuable metrics can be created from logs (to maximize the value).

Best practices and troubleshooting for data collection 307

•	 Metrics:

	� Identify important metrics, and drop what you don’t need. This can help with metric
cardinality, too. If you cannot drop the whole metric, just dropping some of the highest
cardinality labels can help a lot.

	� Choose the protocols that provide the data you need (remember, there are variations, so
read the documentation for each carefully).

	� If using verbose metric protocols, ensure protection is in place (e.g., histogram bucketing)
to restrict the ability to flood your system.

	� Add context so you can correlate metrics with traces.

•	 Traces:

	� Ensure that the accuracy of spans and traces is implemented and validated

	� Balance the performance and cost impact with a mitigation strategy (sampling, filtering,
and retention)

•	 Instrumentation libraries:

	� Research them well. If you are using a library, you want it to be maintained and supported
going forward.

•	 Telemetry collector:

	� Run proofs of concept to validate what works with your technology. You don’t want to fall
foul of permission constraints restricting the choice of collector on your route to production.

	� Consider the support model that comes with the collector technology, if any.

	� What are your business needs from a collector?

Now that all the decisions have been made, let’s look at what to do if your telemetry is not showing up.

Debugging collector

Within the observability platform, it can be difficult to isolate problems with your telemetry getting to the
backend, especially if it is sent through different connections and components in your telemetry pipeline.

Here are a few steps that can help diagnose issues:

•	 Check for error messages in the collector logs

Troubleshooting, Implementing Best Practices, and More with Grafana308

•	 Look for data rejections by Grafana, such as the following:

	� Sample too old

	� Trace too large

	� Ingest rate limiting

•	 Validate authentication credentials (token expiry and permissions)

•	 Verify how telemetry is being ingested (ports and protocols)

•	 Analyze whether the telemetry is modified with sampling or redaction

•	 Identify which exporters are being used to send telemetry to the next stage

•	 Validate the telemetry format

•	 Identify the next hop and validate its configuration

•	 Test simple network connectivity and identify whether firewall rules or network policies are
restricting data flow

We should, hopefully, have data in the backend now, so let’s look at some best practices with Grafana.

Best practices and troubleshooting for the Grafana stack
As with the previous section, the importance of preparation applies to the Grafana stack, as it does
with any good system design. You are making decisions that affect your users, your data, and your
costs. In this section, we’ll be sharing some best practices for preparing Grafana, together with some
useful tips for debugging. Let’s first look at preparation activities for your Grafana stack.

Preparing the Grafana stack

When designing your platform, consider what you are sending there and who your users are. With
your stack, it is important to consider wider subjects such as corporate authentication integration,
as well as best endeavors to right-size your stack and implement processes to monitor that usage.

Ideally, you want to be able to answer the following questions:

•	 Who needs to use the platform?

•	 Where are they using the platform?

•	 What data retention requirements exist (if any)?

Best practices and troubleshooting for the Grafana stack 309

Grafana stack decisions

There are important decisions to be made before you fully embrace your Grafana stack. Not all of them
are related to observability; some are affected by regional governance and some are company policy.
Working on and prioritizing these decisions earlier will help with the smooth running of your platform.

Here, we group some of those factors together to help you process them:

•	 Architecture:

	� Does your use case require single or multiple stacks – for instance, in the case of data residency
or the separation of development and production systems?

	� Is any data restricted and requires specific permissions, such as Personally Identifiable
Information (PII) and the General Data Protection Regulation (GDPR)?

	� Are there global latency issues to consider?

	� Are there any user audit requirements?

•	 Management:

	� Can the backend be outsourced to ease administration efforts?

	� Do you have the ability to fix problems in a timely manner in the case of an incident?

	� Would IaC provide platform control?

•	 Authentication:

	� Can the platform be integrated with an authentication provider to make user management easier?

	� Do you have team-specific permissions that might cause issues with an identity provider?

•	 Data retention:

	� You need to create data retention policies to understand why telemetry data is needed and
for how long

	� Metrics are usually cheaper to store – you can generate these from logs with recording rules
rather than store more expensive logs for longer

Debugging Grafana

There are a few areas or touchpoints where problems can occur with your Grafana backend. The
following techniques should help you get back on track or at least provide a point of reference to help
you debug further:

Troubleshooting, Implementing Best Practices, and More with Grafana310

•	 Data collection: If you are having difficulties getting telemetry into Grafana, drop back to the
APIs to send test data to validate network routes, API keys, and so on. This can be done with
tools such as Postman or quite simply on the command line with curl.

•	 Data querying: Sometimes, queries do not give you the results you expected or provide them
in a timely manner. Here are a few steps that can help solve problems or diagnose them:

	� Break down large queries: Start small and build up your results, validating at each step by
using short time ranges and stronger filters

	� Check function order: The order of query functions affects the outcome, in the same way
that the order of equations affects the result in math

	� Speed up slow results: Results can be obtained more quickly by following these practices:

	� Check how many data points there are

	� Limit the maximum data points returned in query options

	� Increase the minimum interval timeout in query options

	� Use group by functions to reduce the result set

If you are trying out different variations of your query, the Query history button will remember
them for you.

•	 Problem discovery: It is not always obvious where problems lie – unless, of course, people
report them. Grafana provides a set of dashboards to support your success with Grafana Cloud.
Here is a screenshot of the Grafana Cloud Dashboards list:

Figure 15.1 – Grafana Cloud Dashboards

Avoiding pitfalls of observability 311

When diagnosing problems with your Grafana data and dashboards, the Usage Insights dashboards
can help. Navigate to the Usage Insights – 1 – Overview dashboard and scroll down; you will find
three panels:

•	 Top 10 dashboards with errors: This lets you know which dashboards are encountering errors
of some form.

•	 Top 10 data sources with errors: This reports the Grafana data sources that have issues. This
is useful to diagnose errors with queries, or in communicating to the backend data source.

•	 Top 10 users seeing errors: This identifies your platform users who are encountering problems
inside Grafana. This is helpful when investigating platform stability.

These panels guide you to the issues being encountered with drill-down links into other dashboards
to show specific errors to aid diagnosis.

In particular, the Grafana Cloud Billing/Usage dashboard is very important in showing why samples
might be rejected due to hitting account limits. Additionally, the Cardinality management dashboards
can help highlight problems where label values are causing issues.

Let’s now look at problems that we could encounter in the wider subject of observability.

Avoiding pitfalls of observability
We have identified several areas throughout this book where you need to sit down and think about
your approach. All of these considerations contribute to your ongoing success with your observability
platform. We will now call out a few of these, with some guidelines to follow:

•	 Treat your platform as an evolving development; start with the basics and build upon that,
continuously reviewing where you are. Reducing the time to value will ensure return on
investment is being realized.

•	 Collect requirements from multiple customers and then plan a roadmap that will deliver more
value to more users to ensure the adoption and support of your platform.

•	 Monitor costs, paying close attention to the data collection stage, where it is cheaper to fix. Use
your observability tools to help.

•	 Fix cardinality early, and develop standards that teams can work to that will control the problem.
Additionally, you can apply governance that restricts data collection into the platform if it does
not adhere to standards.

•	 Isolate high-load, low-value environments (especially performance test environments) to protect
business-critical system observability. You can build cheaper, short-lived observability systems
for these environments to keep costs under control.

Troubleshooting, Implementing Best Practices, and More with Grafana312

•	 Define a 6- and 12-month roadmap. This will help you plan for and adapt to industry changes.
Observability is moving fast, with new developments coming all the time; being agile will help
you navigate them.

•	 Monitor platform usage. Grafana provides some excellent dashboards, as shown in Figure 15.1, that
help you understand what is being used and how. Additionally, you can enhance this by improving
the monitoring of your collector estate to create visibility of your entire telemetry pipeline.

Let’s now look to the future and think about where observability could be heading.

Future trends in application monitoring
It is difficult to present a perspective on future trends without being opinionated, so the following
opinions reflect my beliefs on where the industry is heading:

•	 Cost reduction: At the time of writing, companies are actively looking at ways to reduce
operational expenditure. There is a lot of scope for cost reduction in observability systems.
Grafana is leading the charge with this. Take a look at the following:

	� The Grafana Cloud Billing/Usage dashboard to get an understanding of Grafana Cloud
spend. This dashboard is part of the list shown in Figure 15.1.

	� Adaptative Metrics (https://grafana.com/docs/grafana-cloud/cost-
management-and-billing/reduce-costs/metrics-costs/control-
metrics-usage-via-adaptive-metrics/) for solutions to reducing costs.

	� Log Volume Explorer (https://grafana.com/docs/grafana-cloud/cost-
management-and-billing/analyze-costs/logs-costs/analyze-log-
ingestion-log-volume-explorer/) to discover sources with excessive log collection.

•	 Artificial intelligence (AI): AI has matured recently to a point where it will soon become a
key part of observability platforms. Grafana recently released generative AI features for the
Dashboard panel title and description text and incident response auto summaries. You can see
and read more here: https://grafana.com/blog/2023/08/28/generative-
ai-at-grafana-labs-whats-new-whats-next-and-our-vision-for-the-
open-source-community/. Hot off the press as we go to press with this book, Grafana
announced the acquisition of Asserts.ai delivering root cause analysis solutions into Grafana;
you can learn more here: https://grafana.com/blog/2023/11/14/grafana-
labs-acquires-asserts/.

•	 Tool enhancements: Capabilities to improve the relationship between developers and observability,
easing the adoption earlier in the development life cycle. Grafana recently released live
dashboard development with a VS Code Grafana extension: https://marketplace.
visualstudio.com/items?itemName=Grafana.grafana-vscode.

https://grafana.com/docs/grafana-cloud/cost-management-and-billing/reduce-costs/metrics-costs/control-metrics-usage-via-adaptive-metrics/
https://grafana.com/docs/grafana-cloud/cost-management-and-billing/reduce-costs/metrics-costs/control-metrics-usage-via-adaptive-metrics/
https://grafana.com/docs/grafana-cloud/cost-management-and-billing/reduce-costs/metrics-costs/control-metrics-usage-via-adaptive-metrics/
https://grafana.com/docs/grafana-cloud/cost-management-and-billing/analyze-costs/logs-costs/analyze-log-ingestion-log-volume-explorer/
https://grafana.com/docs/grafana-cloud/cost-management-and-billing/analyze-costs/logs-costs/analyze-log-ingestion-log-volume-explorer/
https://grafana.com/docs/grafana-cloud/cost-management-and-billing/analyze-costs/logs-costs/analyze-log-ingestion-log-volume-explorer/
https://grafana.com/blog/2023/08/28/generative-ai-at-grafana-labs-whats-new-whats-next-and-our-vision-for-the-open-source-community/
https://grafana.com/blog/2023/08/28/generative-ai-at-grafana-labs-whats-new-whats-next-and-our-vision-for-the-open-source-community/
https://grafana.com/blog/2023/08/28/generative-ai-at-grafana-labs-whats-new-whats-next-and-our-vision-for-the-open-source-community/
https://grafana.com/blog/2023/11/14/grafana-labs-acquires-asserts/
https://grafana.com/blog/2023/11/14/grafana-labs-acquires-asserts/
https://marketplace.visualstudio.com/items?itemName=Grafana.grafana-vscode
https://marketplace.visualstudio.com/items?itemName=Grafana.grafana-vscode

Summary 313

•	 OpenTelemetry standard maturity: Increased third-party development supporting OpenTelemetry
as standards are agreed upon. Vendor-neutral solutions are becoming more popular, helping
reduce overall costs (operational and management).

•	 Collector management: Here are some configuration and control tools for agent technology:

	� Open Agent Management Protocol (https://opentelemetry.io/docs/specs/
opamp/) for the remote management of large fleets of data collection agents. No more
re-deployments to block a metric or add a new receiver.

	� Grafana Agent Flow brings new ways to build complex telemetry pipelines for the Grafana
Agent. It includes a visualization of the Agent pipeline, which is perfect for understanding
complex configurations.

•	 Platform engineering: Advancements in platform engineering will help increase observability
adoption and development as dependency on telemetry increases.

We will now wrap up this chapter and the book. You should now have the knowledge to implement,
troubleshoot, and manage Grafana for your observability journey.

Summary
In this chapter, we have gone over best practices and troubleshooting techniques for data collection
and the Grafana stack. We have looked at ways to avoid the pitfalls of observability as a whole,
wrapping the chapter up with a look at future trends in application monitoring. These sections should
have given you insights that will support your observability platform being a success, and help you
get value from your platform for your users quicker and more efficiently. Now that we’ve completed
the final chapter in our journey together through Observability with Grafana, let’s take a moment to
review our key learnings.

In the first part of the book, we introduced observability and Grafana, along with a look at application
and infrastructure instrumentation. We closed that part by setting up the OpenTelemetry demonstration
application in your own Kubernetes environment.

In part two, we worked through different telemetry types that you will encounter with Grafana – Loki
for logs, Prometheus (Mimir) for metrics, and Tempo for traces – together making LGTM (Loki,
Grafana, Tempo, Mimir), which you will see all over the Grafana website. We then looked at integrations
with Kubernetes (which we used with the demo app throughout the book), AWS, GCP, and Azure.

In part three, we worked with Grafana more, presenting data with dashboards and building an incident
management process with alerts. We then explored IaC for configuring Grafana, followed by a look
at the architecture of the Grafana stack.

https://opentelemetry.io/docs/specs/opamp/
https://opentelemetry.io/docs/specs/opamp/

Troubleshooting, Implementing Best Practices, and More with Grafana314

In our final part, we talked about real user monitoring with Grafana frontend observability, application
profiling with Grafana Pyroscope, and performance testing with Grafana K6. We closed the book
with a look at how DevOps can be supported with observability, followed by some best practices and
troubleshooting in this chapter.

Technology in the observability space, and especially with Grafana, moves fast. Hopefully, we have
provided you with some timeless approaches and techniques that you can develop to support your
observability work. Your new friends, the observability personas, will be there to lend a hand when
you need it. Thank you for allowing us to be part of this journey with you. Good luck!

Index

A

access levels 236
setting 256-258

access policies 54
access tokens 54
Adaptative Metrics

reference link 312
advanced dashboard techniques 186

layout tricks 186, 187
tech tips 187, 188

agent-operator chart 235
agile practices 292
Agua Clara locks on Panama

Canal, case study 5, 6
distributed traces 8
logs 7, 8
metrics 7
telemetry types 9, 10

AIOps 201
alert groups 214
alerting rules 21
alerts 298

managing, with Ansible 240, 241
managing, with Terraform 240, 241

alternatives, to Grafana stack 22
data collection 23
data storage, processing and

visualization 23, 24

Amazon CloudWatch 155
Amazon CloudWatch dashboards

using 157
Amazon CloudWatch data source 155

configuring 155, 156
Amazon CloudWatch query editor

using 156
Amazon Web Services (AWS) 147
Ansible 225, 228

used, for managing alerts 240, 241
used, for managing dashboards 240, 241
using, for Grafana Cloud 237

ansible-pull 302
application monitoring

future trends 312, 313
application performance

monitoring (APM) 169
ArgoCD 302
artificial intelligence (AI) 312
Asserts.ai 312

reference link 312
automatic instrumentation 43, 44
automation

architecting 254
automation tools 3
AWS Distro for OpenTelemetry

reference link 139

Index316

AWS Identity and Access
Management (IAM) 155

AWS integration 155, 157
configuring 157, 158

AWS Secrets Manager 238
AWS telemetry

visualizing, with Grafana Cloud 155
Azure DevOps 21
Azure Monitor dashboards

using 170
Azure Monitor data source 166

configuring 166
Azure Monitor query editor

metric queries 168
reference link 168
using 167-169

Azure Resource Graph (ARG) 169

B
backend data

used, for pivoting frontend data 271, 272
baggage 140, 143
bare metal/compute 46

telemetry examples 46
Basic Search mode 133
black-box monitoring 203, 296

RUM 204
synthetic monitoring 204

blameless postmortem 208
built-in aggregation operators 98

examples 99

C
cardinality 39, 107
CD platforms 302
ChatOps 219

Chat with Support 54
checks

used, for writing test 286
Chef 302
child operator or > 137
CI platforms 301
Cloud Advanced 56
Cloud Free subscription 53
cloud infrastructure/cloud platform 294
Cloud Pro 56
CloudWatch metrics 159, 160
cluster agent 251
collection infrastructure

automating, with Ansible 228
automating, with Helm 228

command-line interface (CLI) 285
Common Event Format (CEF) 31
communication channels 201
Community Forums 54
Community.Grafana

reference link 238
compactor 145
comparison operators, PromQL 110-114
complex system 3
complicated system 3
conditions 217
consumers

telemetry, sending to 258, 259
containerization tools 254
container orchestration tools 62

installing 62
context propagation 140
continuous delivery/deployment (CD) 291
continuous integration (CI) 291
continuous profiling 275, 276

Pyroscope, using for 276
control theory 4

Index 317

core Grafana stack 19
Grafana 20
Grafana Agent 20
Loki 20
Mimir 19
Tempo 20

Core Web Vitals 204, 268
Cumulative Layout Shift (CLS) 204
First Input Delay (FID) 204
Largest Contentful Paint (LCP) 204
reference link 269

cost of goods sold (COGS) 244
cost optimization 147
counter metric 35

examples 35
Cross Origin Resource Sharing (CORS) 266
custom configuration 273, 274
customer communication 207
Custom Resource Definitions (CRDs) 233

D
dashboards 175, 298

case study 191-195
creating 176-180
developing 180-182
folders 190
managing 189-191
managing, with Ansible 240, 241
managing, with Terraform 240, 241
objectives, identifying 185
organizing 189-191
permissions 191
tags 190
users and needs 185, 186

data architecture
defining 244-246

Databricks 21

data collection 248-252
preparing 306

data collection and metric protocols
DogStatsD 120
OpenTelemetry Protocol (OTLP) 120
Prometheus 121
Simple Network Management

Protocol (SNMP) 121
StatsD 120

data collection decisions 306
data collection decisions, factors

instrumentation libraries 307
logs 306
metrics 307
telemetry collector 307
traces 307

data collection systems 227, 253
data production 247, 248, 253
data production systems 226
data production, testing methods

demo applications, using 255
pre-recorded datasets, using 255

data production tools 255, 256
data source 68
data storage 252
data storage architectures 121

Graphite architecture 122
Mimir architecture 123, 124
Prometheus architecture 122, 123

data storage systems 227, 253
features 227

data types, PromQL
instant vectors 108
range vectors 109
scalars 110

data visualization 252
data visualization systems 227, 253

features 227

Index318

decolorize 90
descendent operator or >> 137
DevOps Anti-Types

reference link 292
DevOps life cycle 291, 292

phases 293, 294
DevOps Research and Assessment

(DORA) 301
Diego Developer 13

goals 13
interactions 13
needs 13
pain points 14

distributed traces 8
distributed tracing 40, 140
distributed tracing, best practices 42

accuracy 43
costs 43
performance 42

distributed tracing protocols 41
features 41

Docker 62
Docker Desktop

installing 62
installing, on Linux 63
installing, on macOS 62
installing, on Windows 62

DogStatsD 119, 120
Domain-Oriented Observability

reference link 246
drop labels expression 95

E
escalation chains 218
events 10
exemplars 125

using, in Grafana 125-127

Explorer query types
metrics query editor 164, 165
SLO query builder 165

Extended Berkeley Packet Filter
(eBPF) client 279, 280

extreme programming 292

F
Faro 22
Faro Web SDK 263
feature-driven design (FDD) 292
Fiddler 255
Filelog Receiver 151
flame graphs 278
FluxCD 302
Four Golden Signals

reference link 193
fractal concept 208
frontend data

pivoting, to backend data 271, 272
Frontend Observability enhancements 274

custom errors 274
custom logs 274
custom measurements 274
frontend tracing 274

functions 217, 218
functions, PromQL

reference link 114

G
gateway agent 251
gateway architectures 250
gateway service 250
gauge metric 35

examples 35

Index 319

General Data Protection
Regulation (GDPR) 309

generative AI at Grafana Labs
reference link 312

GHZ 255
GitLab 21
Golang RE2 syntax 88
Golden signals 203
Google Cloud Monitoring 162

data source, monitoring 162, 163
Google Cloud Monitoring dashboards 165
Google Cloud Monitoring query

editor 163, 164
Google Cloud Platform (GCP) 147
Google Remote Procedure Call

(gRPC) 120, 204
Grafana 19, 20

automating, benefits 226
basic roles 257
custom roles 257
Enterprise plugins 21
exemplars, using 125-127
fixed role definitions 257
Incident Response and

Management (IRM) 21
used, for monitoring Kubernetes 148
using, to monitor infrastructure 300
using, to monitor platforms 300
visualizations, using 183-185

Grafana Agent 19, 20, 228
and Ansible 235
installation, automating 235

grafana-agent chart 235
Grafana Agent Helm charts 235
Grafana Alerting 54, 197, 209, 210, 298

alert rules 210-213
contact points 213
groups and admin 213

notification policies 213
silences 213

Grafana Ansible collection 238
Grafana API

exploring 239, 240
used, for obtaining grips 236

Grafana Cloud 50
account setup 50-53
Ansible, using for 237
AWS telemetry, visualizing with 155
Terraform, using for 237

Grafana Cloud API
exploring 236
functions 236
reference link 237

Grafana Cloud Frontend Observability 263
Grafana Cloud Portal 53

Billing 55, 56
Org Settings 56
Security 54
Support 54

Grafana Cloud Profiles 276
Grafana Cloud RBAC 256
Grafana Frontend Observability 298

setting up 265-269
grafana.grafana collection

reference link 235
Grafana Incident 21, 197, 222, 298
Grafana instance 56, 256

Administration panel 60
Alerts & IRM section 58
Connections section 59
Dashboards section 57
Explore section 58
Observability section 59
Performance testing section 59
Starred dashboards section 57

Grafana Labs 19, 21, 24

Index320

Grafana Loki 81, 82
architecture, exploring 99-101
core components 100, 101
functionality 100, 101

Grafana OnCall 21, 197, 214, 296
alert groups 214
escalation chains 218
inbound integration 215, 216
outbound integration 219-221
schedules 221

Grafana Play
URL 183

Grafana Provider
reference link 237

grafana_rule_group
reference link 241

Grafana stack 54
alerting 54
debugging 309-311
deploying 24, 25
load testing 54
logs 54
metrics 54
preparing 308
profiling 54
traces 54
visualization 54

Grafana stack decisions 309
Grafana stack decisions, factors

architecture 309
authentication 309
data retention 309
management 309

Grafana Tempo 129
Grafana Terraform provider 237, 238

Grafana tools 21
Faro 22
k6 22
Pyroscope 22

Grafana, using in DevOps life cycle 294
code phase 294, 295
deploy phase 296-298
monitor phase 298, 299
operate phase 298
plan phase 300
release phase 295
test phase 295

Graphite 121
architecture 122

groups 287
GZIP compression 120

H
HashiCorp Vault 238
headers 139
Helm 63, 225, 228

installing 63
histogram metric 36

examples 36
Homebrew 61

installing 61
URL 61

HorizontalPodAutoscaler (HPA) 248
Host Metrics Receiver 154
HTTP API reference

reference link 240
HTTP endpoint 216

Index 321

I
incident management 197-199

after aspects 207
communication 206
escalating 205
identifying 203

incident management, before aspects 199
noise cancellation 201, 202
roles and responsibilities 199, 200
supporting tools 202

Incident Response and
Management (IRM) 209

Incident Response & Management
(IRM) users 55

incident response tools 3
incident team communication 206
information Technology Infrastructure

Library (ITIL) 199
Infrastructure-as-Code (IaC) 225
infrastructure components 45

compute/bare metal 46
network devices 46
power components 46
Simple Network Management

Protocol (SNMP) 47
Syslog 47

infrastructure data technologies 45
Insomnia 255
instant vectors 108
instrumentation

with libraries 43, 44
internal communication 206, 207
Internet Control Message

Protocol (ICMP) 204
Internet Engineering Task Force (IETF) 47
IP address matching 90, 93

J
Jaeger 131, 140
Jaeger header 141
JavaScript Object Notation (JSON) 33
Jinja language

reference link 218
JSON File mode 133
JSON parser 90
JSON Web Token (JWT) 162

K
k3d 254
k6 22, 255, 275

features 285
installation link 288
installing 288
package formats 288
running 289
test life cycle 288
using, for load testing 283-285

Kubeletstats Receiver 150
Kubernetes

monitoring, with Grafana 148
Kubernetes Attributes Processor 148-150
Kubernetes Cluster Receiver 152
Kubernetes in Docker (KinD) 63, 254
Kubernetes Objects Receiver 152, 153
Kusto Query Language (KQL) 168

reference link 168

L
label filter expressions 93
Lambda functions

instrumenting 280

Index322

libraries
for programming languages 44
using, to instrument efficiently 43, 44

Lightweight Directory Access
Protocol (LDAP) 54

Linux
Docker Desktop, installing on 63

load testing 54, 275
k6, using for 283-285

local agent 249, 251
local infrastructure/local platform 294
Locust 255
LogCLI

using 102, 103
log files 28
logfmt parser 91
log formats 28

Common Event Format (CEF) 31
JavaScript Object Notation (JSON) 33
Logfmt 34
Microsoft Windows Event Log 33
NCSA Common Log Format (CLF) 31
overview 30
semi-structured logging 29
structured logging 28, 29
Syslog 34
unstructured logging 29
W3C Extended Log File Format 32

Log ingest 83
log labels 83
log pipeline 88, 89

decolorize 90
IP address matching 90
label filter 91-93
label format 94
line filters 89
line format 94
parsers 90, 91
template functions 93

LogQL 81, 84, 105
features 86-88
query builder 84-86

LogQL Analyzer 102
LogQL metric queries

exploring 95
range vector aggregations 95

log range aggregations 96
logs 7, 8, 54

debugging, from OpenTelemetry
Collector 77, 78

in Loki 69-71
reading, from OpenTelemetry Collector 77

log stream selector 88
Logs with Lambda integration 160, 161
Log Volume Explorer

reference link 312
Loki 20
Loki, Grafana, Tempo, Mimir

(LGTM) stack 3, 19
Loki log data

best practices 101
Loki LogQL Analyzer

reference link 102
Loki Search mode 133
Looker 21
loop 217

M
macOS

Docker Desktop, installing on 62
manual instrumentation 44
Masha Manager 18

goals 18
interactions 18
needs 18
pain points 19

Index 323

mean time to recovery (MTTR) 10, 297
metric protocols 38

features 38
implementing, best practices 39, 40

metric queries 95
metrics 7, 34, 54, 107

fields 35
in Prometheus/Mimir 72, 73

metrics query editor 164, 165
metric types 35

comparing 36
counter 35
example data 37
gauge 35
histogram 36
summary 36

MicroK8s 63, 254
microservices architecture 99
microservices mode 252
Microsoft Windows Event Log 33
migrating, from OpenTracing

reference link 140
Mimir 19, 105, 121

architecture 123, 124
minikube 63, 254
ML forecasting 223
ML outlier detection 223
ML Sift 223
monitoring 4, 5
Monitoring Query Language (MQL) 163
monolithic mode 252
MQL language specification

reference link 165
Must have, Should have, Could have,

Won’t have (MoSCoW) 245

N
National Institute of Standards and

Technology (NIST) 199
native language instrumentation 280
Natural Language Processing (NLP) 223
NCSA Common Log Format (CLF) 31
network devices 46

telemetry examples 46

O
object storage 124
observability 3-5, 11

pitfalls, avoiding 311, 312
observability, implementing on

application or system
best practices 171

observability platform 300
architecting 243
organizations issues, solving with 244

observability systems 201
components 226, 227

Open Agent Management
Protocol (OpAMP)

reference link 313
OpenAI integration 223
Open Authorization (OAuth) 54
OpenTelemetry

and Ansible 234
OpenTelemetry Collector 148, 228

installation, automating 228
installing 66
logs, debugging from 77, 78
logs, reading from 77

OpenTelemetry Collector
contributed receivers 303

Index324

OpenTelemetry Collector Helm
chart 228-233

OpenTelemetry Demo application
access credentials setup 64
credentials and endpoints, adding 65, 66
installing 64, 67, 68
repository, downloading 64
updating 82, 106, 129, 130

OpenTelemetry Demo Architecture
reference link 191

OpenTelemetry Demo installation
troubleshooting 76

OpenTelemetry Kubernetes Operator 233
advantages 233, 234

OpenTelemetry Protocol (OTLP)
119, 120, 131, 139, 140

operating expenses (OPEX) 244
operational responsibilities 201
Ophelia Operator 14

goals 14
interactions 14
needs 15
pain points 15

organizations
issues, solving with observability

platform 244
outbound integration 219-221

P
panel plugins for Grafana

reference link 183
Parca

reference link 282
parsers 90, 91
pattern parser 91

Pelé Product 16
goal 17
interactions 17
needs 17
pain points 17

Personally Identifiable
Information (PII) 309

personas 3
Phlare 22, 276
Podman 62
Postman 255
power components 46

telemetry examples 47
private data source connect (PDC) 171
production environment 254
profiles 59
profiling 54
profiling data 10
Prometheus 105, 106, 119-121

architecture 122, 123
Prometheus-compatible systems

interactions, with metrics data 107
Prometheus modules 303
Prometheus Query Language

(PromQL) 84, 105, 106
aggregation 116
comparison operators 110-114
data types 108-110
functions 114-116
HTTP success rate 117, 118
metric selection 114
operators 116
selection operators 110
time series selection and operators 115, 116
writing 114

Prometheus Receiver 153

Index 325

Prometheus Time Series
Database (TSDB) 107

proof of concept
developing 254

pull protocol 119
pull systems 302
push protocol 119
push systems 302
Pyroscope 22, 275

architecture 282
data, searching 276-279
features 276
overview 276
profile data, collecting 279, 280
using, for continuous profiling 276

Pyroscope instrumentation methods
advantages 281
drawbacks 281

Q
query editor 132

R
range vector aggregations 95
range vectors 109
rapid application development (RAD) 292
Rate, Errors, Duration (RED) 193, 203
RBAC rollout strategy

reference link 257
realm 54
real user monitoring (RUM)

59, 204, 263-265
regular expression parser 91
regular expression (regex) 88
Requests, Errors, and Duration

(RED) 134, 232

resource platform 303
role-based access controls (RBACs) 243
runbooks 205

S
samples 107
scalars 110
scenarios

adding, to test to run at scale 287
schedules 221
Scrum 292
security 147
Security Assertion Markup

Language (SAML) 54
security information and event

management (SIEM) 31, 243
security platforms 303
selection operators, PromQL 110
semi-structured logging 29
Sendmail project 47
server-controlled throttling 120
Service Graph mode 133
service-level agreements (SLAs) 204, 296
service-level indicators (SLIs) 39,

117, 197, 253, 299
used, for writing alerts 208, 209

service-level objectives (SLOs) 3,
39, 163 197, 286, 296, 306

used, for writing alerts 208, 209
service monitoring

reference link 165
sibling operator or ~ 137
Simple Network Management Protocol

(SNMP) 47, 119, 121
simple scalable mode 252
single-node Kubernetes cluster

installing 63

Index326

Site Reliability Engineering (SRE) 199
SLO query builder 165
SNMP Trap information

example 47
SNMP traps 47, 121
Snowflake 21
software application 294
software-as-a-service (SaaS)

platform 22, 301
span 8, 40, 41

fields 41
span ID 8
stack traces 10
State of DevOps report 2023

reference link 301
StatsD 119, 120
Steven Service 15

goals 15
interactions 16
needs 16
pain points 16

strategic responsibilities 200
structured logging 28, 29
Suggestbot 223
summary metric 36

examples 36
Support Ticket 54
synthetic monitoring 204
SysAdmin, Audit, Network, and

Security (SANS) 199
Syslog 34, 47
system architecture

data collection 248-252
data production 247, 248
data storage 252
data visualization 252
establishing 246, 247
for automation tools 253, 254

for management tools 253, 254
system failure, handling 252

T
tactical responsibilities 200
tags 287
telemetry 3, 6, 147

sending, to consumers 258, 259
telemetry collector

debugging 307, 308
telemetry, from demo application

exploring 68, 69
template functions 93
templating engine 93
Tempo 20, 130

architecture 143
interface 132-134
read pathway, components 144
search modes 133
trace collection 130
trace fields 130, 131
write pathway, components 144

Tempo features
exploring 131

Tempo query language 129
exploring 135

Terraform 225, 236
used, for managing alerts 240, 241
used, for managing dashboards 240, 241
using, for Grafana Cloud 237

test
scenarios, adding to run at scale 287
writing, with checks 286
writing, with thresholds 286, 287

thresholds
used, for writing test 286, 287

time series 107

Index 327

time series database (TSDB) 19, 121, 295
trace 40, 41, 54

information, reporting 41
in Tempo 73-75

Trace Context 140
trace ID 8
TraceQL 135

>> or descendent operator 137
> or child operator 137
~ or sibling operator 137
aggregators 138
data types 138, 139
mathematical operators 138
spans, selecting 136
traces, selecting 136

TraceQL, field types
attribute fields 135
intrinsic fields 135

TraceQL mode 133
trace record 40
trace view 132
tracing 40
tracing protocols

exploring 139
Jaeger 140
OTLP 139, 140
Zipkin 140

troubleshooting, OpenTelemetry
Demo installation 76

Grafana credentials, checking 76, 77
logs, debugging from OpenTelemetry

Collector 77, 78
logs, reading from OpenTelemetry

Collector 77

U
Uber header 141
unstructured logging 29
unwrapped range aggregations 96

examples 98
User Datagram Protocol (UDP) 120
user personas, of observers 11

Diego Developer 13, 14
Masha Manager 18, 19
Ophelia Operator 14, 15
Pelé Product 16, 17
Steven Service 15, 16

Utilization, Saturation, Errors
(USE) 193, 203

V
Vagrant 255
value types 92

Bytes 92
Duration 92
Number 92
string 92

Vector 120
virtualization tools 255
virtual user hours (VUh) 55
virtual users (VUs) 275
visualizations 54

using, in Grafana 183-185
VS Code Extension for Grafana

reference link 312

Index328

W
W3C baggage 143
W3C Extended Log File Format 32
W3C Trace Context 142, 143
Webhooks 219
Web Vitals

exploring 269-271
reference link 269

Web Vitals metrics 268
Whisper 122
white-box monitoring 203, 296
whitespace management 218
Windows

Docker Desktop, installing on 62
Windows Subsystem for Linux

version 2 (WSL2)
installing 61

Wireshark 255
World Wide Web Consortium (W3C) 140
write-ahead logs (WALs) 100, 122
WSL 61

Z
Zipkin 131, 140
Zipkin B3 headers 142

Packtpub.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well as
industry leading tools to help you plan your personal development and advance your career. For more
information, please visit our website.

Why subscribe?
•	 Spend less time learning and more time coding with practical eBooks and Videos from over

4,000 industry professionals

•	 Improve your learning with Skill Plans built especially for you

•	 Get a free eBook or video every month

•	 Fully searchable for easy access to vital information

•	 Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at packtpub.com and as a print book customer, you
are entitled to a discount on the eBook copy. Get in touch with us at customercare@packtpub.
com for more details.

At www.packtpub.com, you can also read a collection of free technical articles, sign up for a range
of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

http://Packtpub.com
http://packtpub.com
http://customercare@packtpub.com
http://customercare@packtpub.com
http://www.packtpub.com

Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

AWS Observability Handbook

Phani Kumar Lingamallu, Fabio Braga de Oliveira

ISBN: 978-1-80461-671-0

•	 Capture metrics from an EC2 instance and visualize them on a dashboard

•	 Conduct distributed tracing using AWS X-Ray

•	 Derive operational metrics and set up alerting using CloudWatch

•	 Achieve observability of containerized applications in ECS and EKS

•	 Explore the practical implementation of observability for AWS Lambda

•	 Observe your applications using Amazon managed Prometheus, Grafana, and OpenSearch
services

•	 Gain insights into operational data using ML services on AWS

•	 Understand the role of observability in the cloud adoption framework

https://packt.link/9781804616710

331Other Books You May Enjoy

Becoming a Rockstar SRE

Jeremy Proffitt, Rod Anami

ISBN: 978-1-80323-922-4

•	 Get insights into the SRE role and its evolution, starting from Google’s original vision

•	 Understand the key terms, such as golden signals, SLO, SLI, MTBF, MTTR, and MTTD

•	 Overcome the challenges in adopting site reliability engineering

•	 Employ reliable architecture and deployments with serverless, containerization, and release
strategies

•	 Identify monitoring targets and determine observability strategy

•	 Reduce toil and leverage root cause analysis to enhance efficiency and reliability

•	 Realize how business decisions can impact quality and reliability

https://packt.link/9781803239224

332

Packt is searching for authors like you
If you’re interested in becoming an author for Packt, please visit authors.packtpub.com and
apply today. We have worked with thousands of developers and tech professionals, just like you, to
help them share their insight with the global tech community. You can make a general application,
apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

Share Your Thoughts
Now you’ve finished Observability with Grafana, we’d love to hear your thoughts! If you purchased
the book from Amazon, please click here to go straight to the Amazon review page for this book and
share your feedback or leave a review on the site that you purchased it from.

Your review is important to us and the tech community and will help us make sure we’re delivering
excellent quality content.

http://authors.packtpub.com
https://packt.link/r/1803248009
https://packt.link/r/1803248009

333

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical
books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content
in your inbox daily

Follow these simple steps to get the benefits:

1.	 Scan the QR code or visit the link below

https://packt.link/free-ebook/9781803248004

1.	 Submit your proof of purchase

2.	 That’s it! We’ll send your free PDF and other benefits to your email directly

https://packt.link/free-ebook/9781803248004

	Cover
	Title Page
	Copyright and Credits
	Contributors
	Table of Contents
	Preface
	Part 1: Get Started with Grafana and Observability
	Chapter 1: Introducing Observability and the Grafana Stack
	Observability in a nutshell
	Case study – A ship passing through the Panama Canal

	Telemetry types and technologies
	Metrics
	Logs
	Distributed traces
	Other telemetry types

	Introducing the user personas of observers
	Diego Developer
	Ophelia Operator
	Steven Service
	Pelé Product
	Masha Manager

	Introducing the Grafana stack
	The core Grafana stack
	Grafana Enterprise plugins
	Grafana incident response and management
	Other Grafana tools

	Alternatives to the Grafana stack
	Data collection
	Data storage, processing, and visualization

	Deploying the Grafana stack
	Summary

	Chapter 2: Instrumenting Applications and Infrastructure
	Common log formats
	Structured, semi-structured, and unstructured logging
	Sample log formats

	Exploring metric types and best practices
	Metric types
	Comparing metric types
	Metric protocols
	Best practices for implementing metrics

	Tracing protocols and best practices
	Spans and traces
	Tracing protocols
	Best practices for setting up distributed tracing

	Using libraries to instrument efficiently
	Popular libraries for different programming languages

	Infrastructure data technologies
	Common infrastructure components
	Common standards for infrastructure components

	Summary

	Chapter 3: Setting Up a Learning Environment with Demo Applications
	Technical requirements
	Introducing Grafana Cloud
	Setting up an account
	Exploring the Grafana Cloud Portal
	Exploring the Grafana instance

	Installing the prerequisite tools
	Installing WSL2
	Installing Homebrew
	Installing container orchestration tools
	Installing a single-node Kubernetes cluster
	Installing Helm

	Installing the OpenTelemetry Demo application
	Setting up access credentials
	Downloading the repository and adding credentials and endpoints
	Installing the OpenTelemetry Collector
	Installing the OpenTelemetry demo application

	Exploring telemetry from the demo application
	Logs in Loki
	Metrics in Prometheus/Mimir
	Traces in Tempo
	Adding your own applications

	Troubleshooting your OpenTelemetry Demo installation
	Checking Grafana credentials
	Reading logs from the OpenTelemetry Collector
	Debugging logs from the OpenTelemetry Collector

	Summary

	Part 2: Implement
Telemetry in Grafana
	Chapter 4: Looking at Logs
with Grafana Loki
	Technical requirements
	Updating the OpenTelemetry demo application
	Introducing Loki
	Understanding LogQL
	LogQL query builder
	An overview of LogQL features
	Log stream selector
	Log pipeline
	Exploring LogQL metric queries

	Exploring Loki’s architecture
	Tips, tricks, and best practices
	Summary

	Chapter 5: Monitoring with Metrics Using Grafana Mimir and Prometheus
	Technical requirements
	Updating the OpenTelemetry demo application
	Introducing PromQL
	An overview of PromQL features
	Writing PromQL

	Exploring data collection and metric protocols
	StatsD and DogStatsD
	OTLP
	Prometheus
	SNMP

	Understanding data storage architectures
	Graphite architecture
	Prometheus architecture
	Mimir architecture

	Using exemplars in Grafana
	Summary

	Chapter 6: Tracing Technicalities with Grafana Tempo
	Technical requirements
	Updating the OpenTelemetry Demo application
	Introducing Tempo and the TraceQL query language
	Exploring the Tempo features
	Exploring the Tempo Query language
	Pivoting between data types

	Exploring tracing protocols
	What are the main tracing protocols?
	Context propagation

	Understanding the Tempo architecture
	Summary

	Chapter 7: Interrogating Infrastructure with Kubernetes, AWS, GCP, and Azure
	Technical requirements
	Monitoring Kubernetes using Grafana
	Kubernetes Attributes Processor
	Kubeletstats Receiver
	Filelog Receiver
	Kubernetes Cluster Receiver
	Kubernetes Object Receiver
	Prometheus Receiver
	Host Metrics Receiver

	Visualizing AWS telemetry with Grafana Cloud
	Amazon CloudWatch data source
	Exploring AWS integration

	Monitoring GCP using Grafana
	Configuring the data source
	Google Cloud Monitoring query editor
	Google Cloud Monitoring dashboards

	Monitoring Azure using Grafana
	Configuring the data source
	Using the Azure Monitor query editor
	Using Azure Monitor dashboards

	Best practices and approaches
	Summary

	Part 3: Grafana in Practice
	Chapter 8: Displaying Data with Dashboards
	Technical requirements
	Creating your first dashboard
	Developing your dashboard further
	Using visualizations in Grafana
	Developing a dashboard purpose
	Advanced dashboard techniques
	Managing and organizing dashboards
	Case study – an overall system view
	Summary

	Chapter 9: Managing Incidents
Using Alerts
	Technical requirements
	Being alerted versus being alarmed
	Before an incident
	During an incident
	After an incident

	Writing great alerts using SLIs and SLOs
	Grafana Alerting
	Alert rules
	Contact points, notification policies, and silences
	Groups and admin

	Grafana OnCall
	Alert groups
	Inbound integrations
	Templating
	Escalation chains
	Outbound integrations
	Schedules

	Grafana Incident
	Summary

	Chapter 10: Automation with Infrastructure as Code
	Technical requirements
	Benefits of automating Grafana
	Introducing the components of observability systems
	Automating collection infrastructure with Helm or Ansible
	Automating the installation of the OpenTelemetry Collector
	Automating the installation of Grafana Agent

	Getting to grips with the Grafana API
	Exploring the Grafana Cloud API
	Using Terraform and Ansible for Grafana Cloud
	Exploring the Grafana API

	Managing dashboards and alerts with Terraform or Ansible
	Summary

	Chapter 11: Architecting an
Observability Platform
	Architecting your observability platform
	Defining a data architecture
	Establishing system architecture
	Management and automation

	Developing a proof of concept
	Containerization and virtualization
	Data production tools

	Setting the right access levels
	Sending telemetry to other consumers
	Summary

	Part 4: Advanced Applications and Best Practices of Grafana
	Chapter 12: Real User Monitoring
with Grafana
	Introducing RUM
	Setting up Grafana Frontend Observability
	Exploring Web Vitals
	Pivoting from frontend to backend data
	Enhancements and custom configurations
	Summary

	Chapter 13: Application Performance with Grafana Pyroscope and k6
	Using Pyroscope for continuous profiling
	A brief overview of Pyroscope
	Searching Pyroscope data
	Continuous profiling client configuration
	Understanding the Pyroscope architecture

	Using k6 for load testing
	A brief overview of k6
	Writing a test using checks
	Writing a test using thresholds
	Adding scenarios to a test to run at scale
	Test life cycle
	Installing and running k6

	Summary

	Chapter 14: Supporting DevOps Processes with Observability
	Introducing the DevOps life cycle
	Using Grafana for fast feedback during the development life cycle
	Code
	Test
	Release
	Deploy
	Operate
	Monitor
	Plan

	Using Grafana to monitor infrastructure and platforms
	Observability platforms
	CI platforms
	CD platforms
	Resource platforms
	Security platforms

	Summary

	Chapter 15: Troubleshooting, Implementing Best Practices, and More
with Grafana
	Best practices and troubleshooting for data collection
	Preparing for data collection
	Data collection decisions
	Debugging collector

	Best practices and troubleshooting for the Grafana stack
	Preparing the Grafana stack
	Grafana stack decisions
	Debugging Grafana

	Avoiding pitfalls of observability
	Future trends in application monitoring
	Summary

	Index
	Other Books You May Enjoy

