

Unreal Engine 4 Virtual Reality
Projects

Build immersive, real-world VR applications using UE4, C++,
and Unreal Blueprints

Kevin Mack
Robert Ruud

BIRMINGHAM - MUMBAI

Unreal Engine 4 Virtual Reality Projects
Copyright © 2019 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
authors, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Kunal Chaudhari
Acquisition Editor: Karan Gupta
Content Development Editor: Arun Nadar
Technical Editor: Rutuja Vaze
Copy Editor: Safis Editing
Project Coordinator: Kinjal Bari
Proofreader: Safis Editing
Indexer: Priyanka Dhadke
Graphics: Alishon Mendonsa
Production Coordinator: Arvindkumar Gupta

First published: April 2019

Production reference: 1300419

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78913-287-8

www.packtpub.com

http://www.packtpub.com

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

Packt.com
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://mapt.io/
http://www.packt.com
http://www.packt.com

Contributors

About the authors
Kevin Mack is a co-founder of Manic Machine, a Los Angeles-based development studio
specializing in VR and virtual production development using Unreal Engine. Manic
Machine designs and builds games in VR and provides development services to clients and
partners in the film and visual effects industries. Prior to this, he co-founded WhiteMoon
Dreams, which developed traditional and VR games and experiences. Earlier work includes
design on the Medal of Honor series for EA, Fear Effect series for Kronos Digital
Entertainment, and several titles for Disney Interactive. Kevin holds a BFA in film
production from New York University and an MFA in film directing from the American
Film Institute.

I am deeply grateful to Lorrie for her endless patience and understanding as I spent
numerous days and evenings glued to a screen or inside a VR headset. I would like to
thank my parents as well for encouraging me always to do what I love and supporting the
journey. And for that TRS-80 Color Computer that started it all. Finally, thank you Rob
for joining me on this bizarre adventure and being such a fantastic partner through it.

Robert Ruud is a co-founder of Manic Machine, where he focuses primarily on the design
and development of Manic Machine's proprietary tech and gameplay experiences. Prior to
this, he spent six years at Whitemoon Dreams, where he designed and engineered gameplay
for the successfully kickstarted game, Warmachine: Tactics, which was one of the first games
to be released to market using Unreal Engine 4, and where he also led the design
exploration for the company's location-based VR experiences. Robert holds a BA in
philosophy from California State Polytechnic University, Pomona, where his studies
focused on cognitive science and philosophy of the mind.

I would like to thank my beautiful, intelligent, and caring girlfriend Hannah for being so
incredibly supportive throughout this entire process and life in general. My parents for
always believing in me and helping me however they could. My friends for everything they
have taught me and the adventures they have joined me in. Finally, I would like to thank
Kevin for being an astounding business partner as we explore this new and wonderful
medium.

About the reviewer
Deepak Jadhav is a game developer based in Pune, India. Deepak holds a bachelor's degree
in computer technology and a master's degree in game programming and project
management. Currently, he is working as a game developer at a leading game development
company in India. He has been involved in developing games on multiple platforms, such
as PC, macOS, and mobile. With years of experience in game development, he has a strong
background in C# and C++, and has also refined his skills in platforms including Unity,
Unreal Engine, Augmented and Virtual Reality.

I would like to thank the authors, as well as the Packt Publishing team, for giving me the
opportunity to review this book.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Chapter 1: Thinking in VR 8
What is virtual reality? 9

VR hardware 10
VR isn't just about hardware though 11
Presence is tough to achieve 13

What can we do in VR? 14
Games in VR 15
Interactive VR 16
VR cinema – movies, documentary, and journalism 17
Architecture, Engineering, and Construction (AEC) and real estate 19
Engineering and design 20
Education and training 20
Commerce, advertising, and retail 21
Medicine and mental health 22
So much else 22

Immersion and presence 22
Immersion 23

Using all the senses 23
Make sure sensory inputs match one another and match the user's expectations 23
Keep latency as low as possible 24
Make sure interactions with the world make sense 25
Build a consistent world 26
Be careful of contradicting the user's body awareness 27
Decide how immersive you intend your application to be and design accordingly 27

Presence 28
Simulator sickness 28
Safety 29

Best practices for VR 30
Maintain framerate 30

Tethered headsets 30
Standalone Headsets 31

Never take control of the user's head 31
Do not put acceleration or deceleration on your camera 33
Do not override the field of view, manipulate depth of field, or use motion blur 33
Minimize vection 34
Avoid stairs 35
Use more dimmer lights and colors than you normally would 36
Keep the scale of the world accurate 36
Be conscious of physical actions 37

Table of Contents

[ii]

Manage eyestrain 37
Make conscious choices about the content and intensity of your experience 40
Let players manage their own session duration 40
Keep load times short 40
Question everything we just told you 41

Planning your VR project 41
Clarify what you're trying to do 41
Is it a good fit for VR? Why? 42
What's important – what has to exist in this project for it to work? (MVP) 43
Break it down 44
Tackle things in the right order 45
Test early and often 46
Design is iterative 47

Summary 47

Chapter 2: Setting Up Your Development Environment 49
Prerequisite – VR hardware 50
Setting up Unreal Engine 50

What it costs 50
Creating an Epic Games account 51
The Epic Games launcher 51
Installing the engine 53
Editting your vault cache location 54
Setting up a Derived Data Cache (DDC) 55

Setting up a local DDC 56
Launching the engine 58

Setting up for mobile VR 61
Creating or joining an Oculus developer organization 62
Setting your VR headset to developer mode in Oculus Go 62
Installing Android Debug Bridge (ADB) 62
Setting up NVIDIA CodeWorks for Android 63
Verifying that the HMD can communicate with your PC 63
Generating a signature file for Samsung Gear 64
Deploying a test project to the device 65

Setting up a test project 65
Checking that your OculusVR plugin is enabled 66
Setting a default map 66
Clearing the default mobile touch interface 66
Setting your Android SDK project settings 66
Setting your Android SDK locations 68

Launching the test project 68
Using the Epic Games launcher 70

The Unreal Engine Tab 71
Learn 71

The content examples project 73
Gameplay concepts and example games 76

Marketplace 76

Table of Contents

[iii]

Library 77
Setting up for C++ development 79

Installing Microsoft Visual Studio Community 80
Recommended settings 81
The UnrealVS plugin 82

Installing the UnrealVS plugin 82
Turning on the UnrealVS toolbar 83

Unreal debugging support 83
Test everything out 84

Building Unreal from source code 91
Setting up a GitHub account and installing Git 91

Setting up or logging into your GitHub account 91
Installing Git for Windows 92
Installing Git Large File Storage 93
Installing a Git GUI 93
Connecting your GitHub account to your Epic Games account 94

Downloading the Unreal Engine source code 95
Choosing your source branch 97
Forking the repository 97
Cloning the repository to your local machine 98

Option 1 – Cloning using GitHub Desktop 98
Option 2 – Cloning from the command line 99

Downloading engine binary content 99
Generating project files 99

Opening and building the solution 99
Updating your fork with new changes from Epic 101

Option – Using the command line to sync changes 101
Setting the upstream repository 102
Syncing the fork 103
Reviewing the Git commands we just used 103

Option – Using the web GUI to sync changes 104
Creating a pull request 106
Merging the pull request 107
Pulling the origin to your local machine 107

Re-synchronizing your engine content and regenerating project files 108
Going further with source code on GitHub 109

Additional useful tools 109
A good robust text editor 109
3D modeling software 110
Image-editing software 112
Audio-editing software 112

Summary 113

Chapter 3: Hello World - Your First VR Project 114
Creating a new project 115

Setting your hardware target 116
Setting your graphics target 117
Settings summary 117

Table of Contents

[iv]

Taking a quick look at your project's structure 118
The Content directory 118
The Config directory 119
The Source directory 120
The Project file 120
A summary of an Unreal project structure 120

Setting your project's settings for VR 121
Instanced Stereo 122
Round Robin Occlusions 123
Forward and deferred shading 124

Choosing the right rendering method for your project 127
Choosing your anti-aliasing method 128

Modifying MSAA settings 131
Starting in VR 132
Turning off other stray settings you don't need 133
Turning off default touch interface (Oculus Go/Samsung Gear) 133
Configuring your project for Android (Oculus Go/Samsung Gear) 134

Verifying your SDK locations 135
Making sure Mobile HDR is turned off (Oculus Go/Samsung Gear) 135
Mobile Multi-View (Oculus Go/Samsung Gear) 135
Monoscopic Far Field Rendering (Oculus Go / Samsung Gear) 136
Project Settings cheat-sheet 137

Decorating our project 137
Migrating content into a project 138
Cleaning up migrated content 141

Deleting assets safely 142
Moving assets and fixing up redirectors 142

Setting a default map 147
Testing our map on desktop 147
Testing our map on mobile (Oculus Go/Samsung Gear) 148

Setting up a game mode and player pawn 150
Creating a VR pawn 150
Creating a game mode 153

Assigning the game mode 154
Overriding a GameMode for a specific map 155

Placing a pawn directly in the world 157
Setting up the VR pawn 158

Adding a camera 158
Adding motion controllers 159
Setting our tracking origin. 161

Adjusting our Player Start location to the map. 162
Testing in the headset. 162
Packaging a standalone build 163

Summary 164

Chapter 4: Getting Around the Virtual World 165
Teleport locomotion 166

Creating a navigation mesh 166
Moving and scaling the Navmesh Bounds volume 168
Fixing collision problems 173

Table of Contents

[v]

Excluding areas from the navmesh 176
Modifying your navmesh properties 178

Setting up the pawn Blueprint 178
Iterative development 179

Make it work 179
Make it right 179
Make it fast 180
Do things in order 180

Setting up a line trace from the right motion controller 181
Improving our Trace Hit Result 186

Using navmesh data 188
Changing from line trace to parabolic trace 189

Drawing the curved path 190
Drawing the endpoint after all the line segments have been drawn 194

Teleporting the player 196
Creating Input Mappings 196
Caching our teleport destination 198
Executing the teleport 201

Allowing the player to choose their landing orientation 202
Mapping axis inputs 202
Cleaning up our Tick event 203
Using thumbstick input to orient the player 205
Creating a teleport destination indicator 214
Giving it a material 214
Adding the teleport indicator to the pawn 216

Optimizing and refining our teleport 218
Displaying UI only when teleport input is pressed 218
Creating a deadzone for our input 220
Fading out and in on teleport 222

Teleport locomotion summary 226
Seamless locomotion 227

Setting up inputs for seamless locomotion 227
Changing the pawn's parent class 228

Fixing the collision component 231
Handling movement input 233

Fixing movement speed 236
Letting the player look around without constantly steering 236
Implementing snap-turning 237

Setting up inputs for snap turning 237
Executing the snap turn 238

Going further 240
Snap turn using analog input 241

Summary 244

Chapter 5: Interacting with the Virtual World - Part I 245
Starting a new project from existing work 246

Migrating Blueprints to a new project 246
Copying input bindings 248

Setting up new project to use the migrated game mode 248
Additional project settings for VR 249

Table of Contents

[vi]

Testing our migrated game mode and pawn 249
Adding scenery 250

Adding a NavMesh 250
Testing the map 252

Creating hands 252
Migrating hand meshes and animations from the VR Template project 253
Adding hand meshes to our motion controllers 254

Creating a new Blueprint Actor class 255
Adding motion controller and mesh components 255
Adding a Hand variable 256
Using a Construction Script to handle updates to the Hand variable 258

Adding BP_VRHand child actor components to your pawn 260
Fixing issues with Hand meshes 262
Replacing references to our old motion controller components in blueprints 264

Creating a function to get our hand mesh 266
Animating our hands 275

A quick word about access specifiers 276
Calling our grab functions from the pawn 276

Creating new input action mappings 277
Adding handlers for new action mappings 278

Implementing grab animations in the Hand blueprints 281
Creating an Animation Blueprint for the hand 282
Creating a blend space for our hand animations 284
Wiring the blend space into the animation blueprint 286
Connecting the animation blueprint to our hand blueprint 289
Creating a new enumerator for our grip 290
Smoothing out our grip animation 294

Summary 295

Chapter 6: Interacting with the Virtual World - Part II 296
Creating an object we can pick up 296
Creating a Blueprint Interface for pickup objects 299
Implementing the Pickup and Drop functions 301
Setting up VRHand to pick up objects 303

Creating a function to find the nearest pickup object 303
Calling Find Nearest Pickup Object on the Tick event 308
Picking up an actor 309
Releasing an actor 311
Test grabbing and releasing 313

Fixing cube collision 314
Letting players know when they can pick something up 315

Adding haptic feedback 318
Creating a Haptic Feedback Effect Curve 319
Playing the haptic effect on command 321

Going further 323
Summary 324

Chapter 7: Creating User Interfaces in VR 325
Getting started 326

Table of Contents

[vii]

Creating a new Unreal project from an existing project 327
We’re not alone – adding an AI character 328

Migrating the third-person character blueprint 328
Cleaning up the third-person character blueprint 328
Examining the animation blueprint 329
Creating a companion character subclass 330
Adding a follow behavior to our companion character 332
Examining the AI controller 332
Improving the companion's follow behavior 335

Adding a UI indicator to the companion pawn 338
Creating a UI widget using UMG 338
Adding a UI widget to an actor 343
Orienting the indicator widget to face the player 345

Implementing the Align UI function 345
Calling Align UI from the Tick event 346

Adding a new AI state to the companion pawn 348
Implementing a simple AI state 349
Indicating AI states using the UI indicator 349
Using events to update, rather than polling 353
Being careful of circular references 353

Ensuring that UI is updated when our state is changed 354
Adding an interactive UI 356

Adjusting the button colors 360
Adding event handlers to our buttons 361
Attaching the UI element to the player pawn 362
Using widget interaction components 365

Sending input through widget interaction components 369
Making a better pointer for our interaction component 370

Creating an interaction beam material 371
Creating an impact effect 373

Summary 378

Chapter 8: Building the World and Optimizing for VR 379
Setting up the project and collecting assets 380

Migrating blueprints into the new project 381
Verifying the migrated content 381

Using the VR editor 382
Entering and exiting VR Mode 383
Navigating in VR Mode 384

Moving through the world 385
Teleporting through the world 386
Rotating the world 387
Scaling the world 388
Practicing movement 389

Modifying the world in VR Mode 389
Moving, rotating, and scaling objects 389
Using both controllers to rotate and scale objects 392

Table of Contents

[viii]

Practicing moving objects 393
Composing a new scene in VR Mode 393

Navigating the radial menu 395
Gizmo 396
Snapping 396
Windows 397
Edit 400
Tools 401
Modes 402
Actions and System 402

Making changes to our scene 402
Optimizing scenes for VR 407

Testing your current performance 407
Stat FPS 407

Determining your frame time budget 408
Warnings about performance profiling 408
Stat unit 410
Profiling the GPU 413
Stat scenerendering 416

Draw calls 418
Stat RHI 418
Stat memory 420
Optimization view modes 421
CPU profiling 422
Turning things on and off 424

Addressing frame rate problems 424
Cleaning up Blueprint Tick events 424
Managing skeletal animations 425
Merging actors 425
Using mesh LODs 427
Static mesh instancing 429
Nativizing Blueprints 429

Summary 431

Chapter 9: Displaying Media in VR 432
Setting up the project 433
Playing movies in Unreal Engine 433

Understanding containers and codecs 433
Finding a video file to test with 435
Adding a video file to an Unreal project 436
Creating a File Media Source asset 437
Creating a Media Player 439
Using Media Textures 441
Testing your Media Player 442
Adding video to an object in the world 443
Using a media playback material 443
Adding sound to our media playback 444
Playing media 446

Table of Contents

[ix]

Going deeper with the playback material 449
Adding additional controls to our video appearance 452

Displaying stereo video 454
Displaying half of the video 456
Displaying a different half of the video to each eye 458
Displaying over/under stereo video 460

Displaying 360 degree spherical media in VR 461
Finding 360 degree video 462
Creating a spherical movie screen 462

Playing stereoscopic 360 degree video 464
Controlling your Media Player 466

Creating a Media Manager 467
Adding a Pause and Resume function 469
Assigning events to a media player 471

Summary 473

Chapter 10: Creating a Multiplayer Experience in VR 474
Testing multiplayer sessions 475

Testing multiplayer from the editor 475
Understanding the client-server model 479

The server 482
Listen servers, dedicated dervers, and clients 484

Listen servers 484
Dedicated servers 485
Clients 485

Testing multiplayer VR 486
Setting up our own test project 487

Adding an environment 488
Creating a network Game Mode 488

Objects on the network 489
Server-only objects 491
Server and client objects 492
Server and owning client objects 492
Owning client only objects 493

Creating our network game mode 493
Creating a network client HUD 495

Creating a widget for our HUD 496
Adding a widget to our HUD 499

Network replication 500
Creating a replicated actor 501

Spawning an actor on the server only 502
Replicating the actor to the client 503
Replicating a variable 504
Notifying clients that a value has changed using RepNotify 506

Creating network-aware pawns for multiplayer 508
Adding a first-person pawn 508

Setting collision response presets 509

Table of Contents

[x]

Setting up a third-person character mesh 512
Adjusting the third-person weapon 515

Replicating player actions 518
Using remote procedure calls to talk to the server 518
Using multicast RPCs to communicate to clients 524
Client RPCs 526
Reliable RPCs 526

Going further 526
Summary 527

Chapter 11: Taking VR Further - Extending Unreal Engine 528
Creating a project to house our plugin 529

Installing the VRExpansion plugin 530
Installing using precompiled binaries 531
Compiling your own plugin binaries 531
Verifying the plugins in your project 534

Understanding plugins 535
Where plugins live 536

Installing plugins from the Marketplace 537
What's inside a plugin? 538

About licenses 539
Inside a plugin directory 540

Finishing our brief tour 542
Exploring the VRExpansion example project 542
Finishing our project setup 544

Using VRExpansion classes 545
Adding navigation 545
Adding a game mode 546
Updating the PlayerStart class 546
Adding a VR character 547

Setting up input 549
Setting up your VR character using example assets 549

Making effective use of example assets 549
Migrating the example pawn 550

Making sense of complicated blueprints 551
Begin by checking the parent class 553
Looking at the components to see what they're made of 554
Look for known events and see what happens when they run 555
Using inputs as a way to find a starting point in your blueprint 558

Setting breakpoints and tracing execution 561
Viewing the execution trace 566
Managing breakpoints with the Debug window 567

Using the call stack 568
Finding variable references 572

Using more of the VRExpansion plugin 574
Summary 575

Chapter 12: Where to Go from Here 576

Table of Contents

[xi]

Final word 577

Appendix A: Useful Mind Hacks 581
Rubber-duck debugging 581
Just the facts 581
Describing your solutions in positive terms 582
Plan how you're going to maintain and debug your code when you
write it 583
Favor simple solutions 584
Look it up before you make it up 585

Appendix B: Research and Further Reading 586
Unreal Engine resources 586
VR resources 588

Other Books You May Enjoy 591

Index 594

Preface
Virtual reality (VR) isn't just the media we knew and loved from the twentieth century in a
stereo headset. It's much more than that. VR doesn't simply show us images of the world
around us in stereo 3D. In a literal sense, sure, that is what it does, but that's a little like
saying that music just wiggles the air around our ears. Technically true, but too reductive to
let us understand it. VR plays with our senses and dances with the cognitive mechanisms
by which we think we understand the world. To get VR and learn how to create for it, we
have to accept that it is an entirely new medium, and what we don't know about its
language, rules, and methods far outweighs what we do know. This is powerful stuff, and,
without question, VR or some variant of this technology is likely to be the defining art form
of the twenty-first century.

You'd be right to greet this assertion with a bit of skepticism. Given the present state of the
technology and of the industry, it takes some imagination to see beyond the horizon of
where we are now. And you've probably seen by now that the public's expectations are in a
race with the actual state of the technology and the art form. Sometimes, they lag behind its
reality, and sometimes they jump ahead. Opinions about VR, therefore, are all over the
place. If we're in one of those phases where the tech makes a leap forward, people get
amazed and excited by the possibilities and the breathless blogs declare that the world has
changed. If we're in one of those phases where the expectations have jumped ahead,
suddenly everyone's disappointed that their first-generation Oculus Rift hasn't morphed
overnight into the Holodeck and we see a lot of disillusionment on blogs. It's impossible to
predict where the pendulum will be in its swing when you read this.

Here's the reality though, and why we believe this medium is worth learning now: VR is
coming, it's inevitable, and it changes everything, even if this isn't yet obvious from the
rudimentary state of the first-generation technology. This medium carries with it the
potential to revolutionize the way we learn, play, engage the virtual world, and so much
else. But it's going to take time and imagination.

VR is a medium at a crossroads. The decisions we make now are going to carry us far into
the future. The developers working in this medium will be the ones to shape its language
and methods for the next generation. To work in VR is to work on a frontier, and that's an
exciting place to be.

Preface

[2]

In this book, we intend to give you a solid set of tools to begin your work on this frontier.
This book uses a practical, hands-on approach to teach you how to build VR games and
applications using the Unreal Engine. Each chapter walks you step-by-step through the
process of building the essential building blocks of a VR application, and we pair these
steps with in-depth explanations of what's really going on when you follow them and why
things are done the way they are. It's this why that matters. Understanding how the
underlying systems and ideas work is crucial to the work you'll do on your own after
you've finished these tutorials, and, in this book, we've tried to give you both—an
understanding of what to do to build a VR application, and the background you'll need in
order to use this book as a springboard for your own work in VR.

You should come away from this book with a solid understanding of how VR applications
are built, and what specifically you need to know and understand about the Unreal Engine
to build them. It's our hope that the work we do together here will set you up to take your
exploration into this new frontier wherever you want to go.

Who this book is for
If you're interested in creating VR games or applications, interested in seeing how VR could
augment the work you do in your current field, or are just interested in exploring VR and
seeing what it can do, this book is for you. You don't have to be an experienced engineer or
even deeply experienced with Unreal Engine to benefit from this book; we explain
everything as we go. Readers who are entirely new to Unreal Engine will find it helpful to
run through Epic's getting started tutorials before diving in here, just so you know where
everything is, but this book is entirely appropriate for both experienced Unreal users who
need to learn specifically how Unreal works with VR, and for new Unreal users just finding
their way around.

Whether you're entirely new to VR development and to Unreal, you've already been
working in VR in another engine, or you know your way around Unreal but are new to VR,
this book should be able to provide a lot of value. (And we hope even those already well
versed in VR creation using Unreal Engine find a few interesting new perspectives and
techniques as well.)

What this book covers
Chapter 1, Thinking in VR, introduces VR as a medium and discusses a few of the many
ways it can be used in a number of fields. We discuss the crucial concepts of immersion and
presence, and outline practices for designing and building effective VR experiences.

Preface

[3]

Chapter 2, Setting Up Your Development Environment, takes you through the process of
setting up Unreal Engine and setting up to develop for mobile VR, and talks about where to
learn about using Unreal and where to get help. For those interested in working in C++, this
chapter also shows how to set up your development environment to build C++ projects and
to build Unreal Engine from source code.

Chapter 3, Hello World: Your First VR Project, shows you how to create a new VR project
from scratch, what settings to use when creating for VR and why we use them, and what
you need to do differently if you're building for mobile VR. This chapter also teaches you
how to get content into your project and work with it, and how to set up a few of the basic
blueprints you'll need for VR development.

Chapter 4, Getting Around the Virtual World, teaches you how to create and refine
navigation meshes for character locomotion, how to build a player-controlled character and
set up input handling, and then shows how to build a teleport-based locomotion scheme
and how to implement seamless movement for a more immersive VR experience.

Chapter 5, Interacting with the Virtual World - Part I, shows you how to add hands to the
player-controlled character and use hand-held motion controllers to drive them.

Chapter 6, Interacting with the Virtual World - Part II, shows how to set up an animation
blueprint to animate the player's hands in response to input, and how to make it possible
for players to pick up and manipulate objects in the world.

Chapter 7, Creating User Interfaces in VR, shows you how to create interactive 3D user
interfaces for VR, and introduces an AI-controlled companion character to be controlled by
this interface.

Chapter 8, Building the World and Optimizing for VR, teaches you how to use the Unreal
Editor's VR Mode to build environments from within VR, and how to find performance
bottlenecks in your environment and fix them.

Chapter 9, Displaying Media in VR, teaches you how to display video media on virtual
screens in VR space, in both mono and stereo. You'll learn how to put 2D and 3D movies
onto traditional virtual screens, how to surround the player with 360-degree mono and
stereo video, and how to create a media manager to control its playback.

Chapter 10, Creating a Multiplayer Experience in VR, teaches you about Unreal's client-server
network model, and shows you how to replicate actors, variables, and function calls from
the server to connected clients, how to set up a player character to display differently to its
owner and to other players, and how to set up remote procedure calls to trigger events on
the server from clients.

Preface

[4]

Chapter 11, Taking VR Further - Extending Unreal Engine, shows you how to install and
build plugins to extend the engine's capabilities, and how to use Blueprint's powerful
debugging tools to dig into unfamiliar code and understand it.

Chapter 12, Where to Go from Here, shows you where to get further information as you dive
deeper into VR development.

Appendix A, Useful Mind Hacks, leaves you with a number of useful mind hacks to make your
development more effective.

Appendix B, Research and Further Reading, provides a few useful starting places for your
search that will gradually help accelerate your learning enormously.

To get the most out of this book
You don't need to be an expert Unreal developer to benefit from this book, but it is helpful
to have a sense of where things are. If you haven't yet installed Unreal Engine, don't
worry—we'll cover this in Chapter 2, Setting Up Your Development Environment, but if
you've never used it before, it may be helpful at that point to take the time to run through
the Unreal getting started tutorials before diving back into this book just so you know
where everything is.

All of the projects in this book have been designed to work with the Oculus Rift and HTC
Vive minimum specs, so whether you're on a desktop or a laptop, you should be fine
provided your system meets these minimum specs. You should, of course, have a VR
headset available, and if you're planning to develop for mobile VR, it's still recommended
that you have a desktop VR headset available as well, since it will make testing
dramatically easier. All of the software you'll be using through the course of this book is
freely available online and we'll walk you through downloading and installing it, so there's
nothing special you need to have installed on your system before we begin.

This book is primarily written with PC developers in mind, but if you're working on a Mac,
your development environment setup will be different, but everything we do in the engine
will work the same way.

So that's it. If you have a VR headset, a system that can run it, and internet access (since
we'll be downloading the engine and example content), you have everything you need.

Download the example code files
You can download the example code files for this book from your account at
www.packt.com. If you purchased this book elsewhere, you can visit

http://www.packt.com

Preface

[5]

www.packt.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packt.com.1.
Select the SUPPORT tab.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https:/ / github. com/
PacktPublishing/Unreal- Engine- 4- Virtual- Reality- Projects. In case there's an update
to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https://github. com/ PacktPublishing/ . Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: https:/ /www. packtpub. com/ sites/ default/ files/
downloads/9781789132878_ ColorImages. pdf.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "We should take a quick look at your project's .uproject file as well."

http://www.packt.com/support
http://www.packt.com
https://github.com/PacktPublishing/Unreal-Engine-4-Virtual-Reality-Projects
https://github.com/PacktPublishing/Unreal-Engine-4-Virtual-Reality-Projects
https://github.com/PacktPublishing/Unreal-Engine-4-Virtual-Reality-Projects
https://github.com/PacktPublishing/Unreal-Engine-4-Virtual-Reality-Projects
https://github.com/PacktPublishing/Unreal-Engine-4-Virtual-Reality-Projects
https://github.com/PacktPublishing/Unreal-Engine-4-Virtual-Reality-Projects
https://github.com/PacktPublishing/Unreal-Engine-4-Virtual-Reality-Projects
https://github.com/PacktPublishing/Unreal-Engine-4-Virtual-Reality-Projects
https://github.com/PacktPublishing/Unreal-Engine-4-Virtual-Reality-Projects
https://github.com/PacktPublishing/Unreal-Engine-4-Virtual-Reality-Projects
https://github.com/PacktPublishing/Unreal-Engine-4-Virtual-Reality-Projects
https://github.com/PacktPublishing/Unreal-Engine-4-Virtual-Reality-Projects
https://github.com/PacktPublishing/Unreal-Engine-4-Virtual-Reality-Projects
https://github.com/PacktPublishing/Unreal-Engine-4-Virtual-Reality-Projects
https://github.com/PacktPublishing/Unreal-Engine-4-Virtual-Reality-Projects
https://github.com/PacktPublishing/Unreal-Engine-4-Virtual-Reality-Projects
https://github.com/PacktPublishing/Unreal-Engine-4-Virtual-Reality-Projects
https://github.com/PacktPublishing/Unreal-Engine-4-Virtual-Reality-Projects
https://github.com/PacktPublishing/Unreal-Engine-4-Virtual-Reality-Projects
https://github.com/PacktPublishing/Unreal-Engine-4-Virtual-Reality-Projects
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://www.packtpub.com/sites/default/files/downloads/9781789132878_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789132878_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789132878_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789132878_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789132878_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789132878_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789132878_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789132878_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789132878_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789132878_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789132878_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789132878_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789132878_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789132878_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789132878_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789132878_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789132878_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789132878_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789132878_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789132878_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789132878_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789132878_ColorImages.pdf

Preface

[6]

A block of code is set as follows:

html, body, #map {
 height: 100%;
 margin: 0;
 padding: 0
}

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

[default]
exten => s,1,Dial(Zap/1|30)
exten => s,2,Voicemail(u100)
exten => s,102,Voicemail(b100)
exten => i,1,Voicemail(s0)

Any command-line input or output is written as follows:

UE4Editor.exe ProjectName ServerIP -game

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Select Window | Developer Tools | Device Profiles to open the Device
Profiles window."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Preface

[7]

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packt.com/submit-errata, selecting your book, clicking
on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

http://www.packt.com/submit-errata
http://authors.packtpub.com/
http://www.packt.com/

1
Thinking in VR

"All reality is virtual.
That's a strong statement, and it's not obvious if you haven't thought about it before, so
I'll say it again—the reality we experience is a construct in our minds, based on highly
incomplete data. It generally matches the real world well, which isn't surprising,
evolutionarily speaking, but it's not a literal reflection of reality—it's just an inference of
the most probable state of the world, given what we know at any one time."
– Michael Abrash, Chief Scientist at Oculus

"The most important thing about a technology is how it changes people."
– Jaron Lanier, founder of VPL research, VR pioneer, and interdisciplinary scientist at
Microsoft Research

Welcome to the virtual world. (It's bigger on the inside.)

In this book, we're going to explore the process of creating VR applications, games, and
experiences using Unreal Engine 4. We'll spend some time looking at what VR is and what
we can do to design effectively for the medium, and then, from there, we'll move on to
demonstrate these concepts in depth using the Unreal Engine to craft VR projects that
illustrate and explore these techniques and ideas.

Every chapter will revolve around a hands-on project, beginning with basics such as setting
up your development environment and creating your first test applications in VR, and
moving on from there into increasingly in-depth explorations of what you can do in VR and
how you can use Unreal Engine 4 to do it. In each project, we'll walk you through the
process of building a project that demonstrates a specific topic in VR and explain the
methods used and, in some cases, demonstrate a few alternatives. It's important to us, as
you build these projects, that you come away not just knowing how to do the things we
describe, but also why we do them this way, so you can use what you've learned as a
launchpad to plan and execute your own work.

Thinking in VR Chapter 1

[9]

In this first chapter, we'll look at what VR is and a few of the many ways it's currently used
in a wide range of fields. We'll talk about the two most important concepts in VR:
immersion and presence, and how understanding what these are and how they work will
help you to make better experiences for your users. We'll lay out a collection of best
practices for developing immersive and engaging VR experiences, and talk about some of
the unique challenges posed by VR development. Finally, we'll pull this knowledge
together and dig into a method for planning and executing a VR project's design.

In brief, this chapter is going to take us through the following topics:

What is virtual reality?
What can we do in VR?
Immersion and presence
Best practices for VR
Planning your VR project

What is virtual reality?
Let's start at the beginning, and talk about virtual reality itself. VR, at its most basic level, is
a medium that immerses users into a simulated world, allowing them to see, hear, and
interact with an environment and things within this environment that don't actually exist in
the physical world around them. Users are fully surrounded by this experience, an effect
that VR developers call immersion. Users who are immersed in a space can look around and
often move and interact without ever breaking the illusion that they're actually there.
Immersion, as we're going to see shortly, is fundamental to the way VR works.

Rob Ruud testing an early build of Ludicrous Speed using an HTC Vive headset

Thinking in VR Chapter 1

[10]

Immersion in VR is a term used to describe a VR system's ability to
surround the user with the simulated world. They can look around and, in
many cases, move and interact as though they were really there, and
because the actual environment is blocked out by the headset, they're
given few conflicting cues to remind them that they aren't.

VR hardware
The most common way of immersing a user, and the one we'll be talking about in this book,
is through the use of a Head-Mounted Display (HMD), often just referred to as a headset.
(There are other ways of doing VR—projecting images on walls, for example, but in this
book, we focus on head-mounted VR.) The user's headset displays the virtual world and
tracks the movement of their head to rotate and shift the view to create the illusion that
they're actually looking around and moving through physical space. Some headsets,
though not all of them, include headphones to add to the illusion by enabling sounds in the
environment to sound as though they're coming from their sources in the virtual world
through a process called spatialized audio.

You'll see the terms HMD and headset used interchangeably throughout
this book and in other writing on VR. They all refer to the same thing.

Some headsets only track the direction the user is looking, while others can track changes to
the user's position as well. If you're using a headset that tracks rotation but not position,
and you lean forward to try to look more closely at an object, nothing's going to happen.
The object will seem as though it's moving away from you as you try to lean in toward it. If
you do this on a headset that tracks position as well, your virtual head will move closer to
the object. We use the term Degrees of Freedom (DoF) to describe the ways objects can
move in space. (Yes, it's OK to pronounce it doff. All of the developers do.) Take a look at
the following points:

3DOF: A device that tracks rotation but doesn't track position is commonly called
a 3DoF device because it only tracks the three degrees of freedom that describe
rotation: the degree to which the device is leaning to the side (roll), tilting
forward (pitch), or turning sideways (yaw). Up until recently, all mobile VR
headsets were 3DoF devices, as they used Inertial Measurement Units (IMUs)
similar to those found in cellphones to detect rotation, but had no way to know
where they were in space. The Oculus Go and Samsung Gear headsets are
examples of 3DoF devices.

Thinking in VR Chapter 1

[11]

6DOF: A device that tracks position as well as the rotation is a 6DoF device,
because it's tracking all six degrees of freedom—roll, pitch, and yaw, but also up
and down, side-to-side, and forward or backward movement. Tracking an
object's position in space requires you to have a fixed reference point from which
you can describe its motion. Most first-generation systems needed additional
hardware for this. The Lighthouse base stations for the HTC Vive, or the
Constellation cameras for the Oculus Rift provide this postional tracking on
desktop systems. Windows Mixed Reality headsets and standalone headsets such
as the Oculus Quest and Vive Focus use camera arrays on the headset to track the
headset's position in the room (we call this inside-out tracking), so they don't
require external cameras or base stations. The HTC Vive, Oculus Rift, HTC Vive
Focus, Oculus Quest, and Windows Mixed Reality headsets are 6DoF devices.

3DoF devices track rotation only, so users can look around or point, but
can't move from side-to-side. 6DoF devices track position as well as
rotation, so users can not only look around, but can move as well.

Headsets can either be tethered to a computer—as is the case with the Oculus Rift and the
HTC Vive, which allows the full computing power of the attached PC to drive the
visuals – or they can be self-contained devices such as the Samsung Gear, Oculus Go,
Oculus Quest, and HTC Vive Focus. At the time of this writing, wireless connections
between PCs and VR headsets are beginning to enter the market.

Most headsets also come paired with input devices that allow users to interact with the
world, which can act as pointers or as hands. Handheld devices, as with headsets, can be
tracked in three or six degrees of freedom. 3DoF devices such as the Oculus Go's controller
are essentially pointers—users can aim them but can't reach out and grab something. 6DoF
devices act much more like virtual hands and allow users to interact with the world in a
much greater variety of ways.

VR isn't just about hardware though
One of the major mistakes many new developers make when first approaching VR is that
they try to apply the traditional designs they're used to creating in 2D space to the VR space
and, for the most part, this doesn't work. VR is its own medium, and it doesn't follow the
same rules as the media that came before it. It's worth it to take a moment to look at what
this means.

Thinking in VR Chapter 1

[12]

When most people first consider VR, they see the headset and assume that it's primarily a
visual experience—traditional flat-screen media shown in stereo. It's understandable that it
would seem this way, but their perception misses the point. Yes, the VR headset is
(depending on whether or not it includes integrated audio) either primarily or entirely a
display device, but the experience it creates for the user is very different than the
experience created by a traditional flat screen.

Let's imagine for a minute that you're looking at a photo or a 2D video looking down over
the edge of a tall building. You see the streets far below, but they don't really feel as though
they're far below you. They're just small in the image. Take the same image, but now
present it in stereo through a VR headset, and you'll probably experience vertigo. Why is
this? Take a look at the following screenshot:

Non-immersive media, no matter how large or detailed, still leaves the viewer surrounded by reminders that the scene isn't real. Immersive media, on the other hand, seems to
surround the user completely. (Scene: Soul:City Environment Pack, by Epic Games)

First, as we mentioned a moment ago, you're immersed in the experience. There's nothing
else in the surrounding world to remind you that it isn't real. Let's jump back to our
previous example—the building edge on your television—turn around and look behind
you. Oh. You're just in your living room. Even when you look directly at it, the largest
television you could possibly buy still leaves you with lots of peripheral vision to remind
you that what you're seeing there isn't real. Everything on a flat screen, even a 3D screen,
takes place on the other side of a window. You're watching, but you're not really there. In
VR, the window is gone. When you look to the right, the world is still there. Look behind
you, and you're still in it. Your perception is completely overtaken by an experience that
has become an environment, not just a frame you're looking at.

Thinking in VR Chapter 1

[13]

Second, the stereo image creates a sense of real depth. You can see how far down the drop
really goes. The cars in the street below aren't just small, they're far away. In a 6DoF
headset that allows motion tracking, your movements in the real world are mirrored in the
virtual world. You can lean over the edge or step back. This mixture of immersion, real
depth perception, and natural response to your movement comes together to convince your
body that what you're perceiving is real. We call this phenomenon presence, and it's a
sensation that's mostly experienced physically.

Presence in VR refers to the user feeling that they're actually physically in
the virtual world, responding to the environment as though they were
really there and experiencing these things. Creating an experience of
presence is what VR is all about—this is the major thing it can do that
other media can't.

The mechanics of immersion and the resulting experience of presence are unique to VR. No
other medium does this.

When reading about VR, you'll sometimes see the
terms presence and immersion used interchangeably, but it's generally more
clear to think about presence as the goal—the sensation you're trying to
create in the user, and immersion as the mechanism by which we achieve
it.

Presence is tough to achieve
While we're on the topic of presence, it's worth pointing out that it's a fragile phenomenon,
and the current state of VR technology still faces a few challenges to creating a sense of
presence fully and reliably. Some of these are rooted in hardware and are almost certainly
going to go away as the technology advances. Users can feel the headset on their face, for
example, and on wired headsets, they can feel the cable running from the headset. The
current generation of headsets offers a field of view that's too narrow to provide peripheral
vision. (The desktop devices offer a 110° field of view, but your eyes, meanwhile, can
perceive a field twice as wide.) Display resolutions aren't yet high enough to keep users
from being able to see individual pixels (VR users call this the screen door effect), and
finicky optics can blur the user's vision if they're not perfectly aligned. This means, in
practice, that it's hard to read small text on a VR headset, and that users are sometimes
reminded of the hardware when they have to adjust it to get back into the sweet spot for the
lenses.

Thinking in VR Chapter 1

[14]

Looking at the state of things, though, it's obvious that these hardware challenges won't last
forever. Self-contained and wireless headsets are quickly entering the market, with
increasingly reliable tracking that no longer relies on external equipment. Displays are
getting wider, resolutions are getting higher, and optical waveguides show great promise
for lighter displays with wider in-focus regions. VR works extremely well already, and it's
easy to see how it's going to continue to improve.

There are a few other things that can break presence that we can't do as much
about—hitting a desk accidentally with a controller, for example, or running into furniture,
losing tracking, or hearing sounds from outside the experience. We can manage these when
we have control over the user's space, but where we don't, there's not much we can do.

Even given these limitations, though, think about how profoundly the current generation of
VR can create a sense of presence in a user, and realize that it only gets better from here.
Users believe what they experience in VR to a degree that simply doesn't happen with other
media. They explore and learn in ways that aren't possible in any other way. They
empathize and connect with people and places more deeply than they could in any way,
other than physically being there. Nothing else goes as deep. And we're only getting
started.

What can we do in VR?
So, what can we do with VR? Let's explore this, but before we begin, it's worth it to point
out that this medium is still in its infancy. At the time of this writing, we're on the first
generation of consumer VR hardware and the vast majority of the population hasn't even
seen a VR headset yet, much less experienced it. Try this: the next time you're in a
restaurant or a public space, ask yourself how many of the people around you have likely
ever seen a VR headset—a handful at best. Now, how many of them have watched a movie
(a century-old medium), watched television (three-quarters of a century), or played a video
game (just shy of half a century)? VR is that new. We haven't come close to discovering
everything we can do with it.

With that in mind then, use these ideas as a map of the current state of things and some
fodder for ideas, but realize that there's much much more that we haven't even thought of
yet. Why shouldn't you be the one to discover something new?

Thinking in VR Chapter 1

[15]

Games in VR
As we discussed a moment ago, VR at its core creates an experience of presence. If you're
developing a game for VR, this means that designs that focus on giving the player an
experience of being in a place are good candidates for the medium. Skyrim VR and Fallout 4
VR do a fantastic job of making players feel as though they're really in these expansive
worlds. Myst-like games that put the player into a space they can explore and manipulate
work well too.

The addition of motion controllers to simulate hands, such as those supplied with the HTC
Vive, Oculus Rift, and Oculus Quest, enable developers to create simulations with complex
interactions, such as Job Simulator and Vinyl Reality, which wouldn't be possible using
traditional game controllers. Tender Claws' Virtual Virtual Reality provides a great example,
meanwhile, of achieving 6DoF-like control with the Oculus Go's 3DoF controller.

The immersive aspect of VR means that games that surround you with the experience, such
as Space Pirate Trainer, work well because the player can interact with actors all around
them and not just what's in front. This need to watch all around you can be a focus of your
design.

The sensation of motion VR evoked in players turns fast-moving games such as Thumper
and Ludicrous Speed into physically-engaging experiences, and games such as Beat Saber
capitalize on the player's physical movements to turn the game into a fitness tool as well.

Games in VR present a few challenges too, though. This same experience of presence and
physical movement that makes the experience so engaging can mean that not every game
design is a great candidate for VR. Simply porting a 2D game into VR isn't likely to work. A
Heads-Up Display (commonly abbreviated as HUD) placed over the scene in 2D space
won't work in VR, as there's no 2D plane to put it on. Fast movements that could be
perfectly fine in 2D may make players motion-sick in VR. The decision to make a game for
VR needs to be a conscious choice, and you'll need to design with the medium's strengths
and challenges in mind.

When thinking about moving a game or a game design from 2D into VR,
there are a few specific areas that need to be considered: will the
movement scheme work in VR? How can the UI be designed to fit into the
world in VR? Will the game fit within the performance constraints of VR?
Does putting this game into VR improve the experience of playing it?
We'll address all of these considerations—movement, UI, and
performance, in later chapters.

Thinking in VR Chapter 1

[16]

Interactive VR
Interactive VR experiences aren't just limited to games. 3D painting applications such as Tilt
Brush allow users to sculpt and paint in room-scale 3D and share their creations with other
users. Google Earth VR allows users to explore the earth, much of it in 3D. Interactive
storytelling experiences such as Colosse, Allumette, Coco VR, and others immerse users in a
story and allow them to interact with the world and characters. Interactive VR applications
and experiences can be built for productivity or entertainment and can take almost any
form imaginable.

It's worthwhile to keep a few considerations in mind when thinking about creating an
interactive VR application. The mouse and keyboard aren't generally available to users in
VR—they can't see these devices to use them, so interactions are usually best designed
around the controllers provided with the VR system. Text can be difficult to read in
VR—display resolutions are improving, but they're still low enough that small text may not
be readable. The lack of a 2D HUD means that traditional menus don't work
easily—usually, these need to be built into the world or attached to the player's virtual
hands (see Tilt Brush for an excellent example of this.)

Input and output are the main considerations for interactive VR—how
will the user communicate input to the system, and how do they get
information back out of it? In both cases, you have to design around the
strengths and weaknesses of the system. You don't have a 2D HUD or a
mouse, but you do have objects that can be moved and manipulated in
space. VR displays can't yet approach the resolution of a desktop monitor,
so reading a lot of text may not work. Successful designs in VR take these
factors into account and turn them into deliberate design choices.

Interactive VR offers incredible possibilities for entirely new ways of exploring and
interacting, and it's likely that we haven't even begun to see the full range of possibilities
yet.

Thinking in VR Chapter 1

[17]

VR cinema – movies, documentary, and
journalism
The same experience of presence that makes VR so well-suited for certain types of games
makes it a powerful medium for documentary and journalism applications. VR is able to
immerse users in a circumstance or environment and can evoke empathy by allowing
viewers to share an experience deeply. Chris Milk, a pioneering VR filmmaker, has referred
to VR as the "ultimate empathy machine," and we think that's a fair description. Alejandro
Iñárritu's CARNE y ARENA was awarded a special Oscar by the Academy of Motion Picture
Arts and Sciences in 2017 to recognize its powerful use of the medium to tell a story with
deep empathy. VR's capacity to create presence through immersion makes things possible
that simply can't be done on a flat screen.

A player experiencing Alejandro Iñárritu's CARNE y ARENA at Los Angeles County Museum of Art

Film and video in VR can be presented in several ways, which generally boil down to the
shape of the virtual screen on which the images are presented and whether those images
are presented in monoscopic 2D or stereo 3D. Flat or curved surfaces are generally used to
present media carried over from traditional film or television, while domes, panoramas, or
spheres can be used to surround the viewer with a more immersive 2D or 3D experience.

Thinking in VR Chapter 1

[18]

Mono 360° video surrounds the viewer but lacks depth—it's simply mapped onto a sphere
surrounding the player. This has the advantage of being easier to produce and requires far
less storage and less expensive equipment, and for many scenes, the difference between this
and true stereo may be difficult to detect. Most early VR videos were produced this way.
Stereo 360° video is similarly mapped to a sphere around the player (we'll learn how to do
this in a later chapter), but displays a different image to each eye for true stereo depth.
(We'll learn how to do this too.) New approaches to volumetric video that use light fields,
Light Detection And Ranging (LIDAR) and photogrammetry to map real environments
into genuine 3D virtual environments are beginning to appear and will likely become more
prevalent as technology matures and processing power increases. As of this writing, they're
still fairly new, often expensive, and still largely confined to the realms of high-end
professionals and academics.

Documentary and journalism pieces are most often filmed as live-action video shot on a
360° camera or rig, in mono or increasingly in stereo, allowing the viewer to look around
and become immersed in a seamless sensory environment. 360° cinema is generally
intended to be a direct, immersive, and engaging experience, but is usually not interactive.
The viewer is generally not able to move freely through the scene except by triggering a cut
to a new scene and generally can't affect the events that go on within the scene.

In planning a cinematic VR experience, two of the primary choices to
make are the following: will the experience be presented in mono or
stereo, and what's the shape of the virtual screen on which it will be
displayed?

Cinematic VR is another area in which simply porting the the language of the flat screen
isn't enough. There's no concept of a frame in 360° film, and no concept of a shot size such
as a close-up or a long shot. VR filmmakers have to be very careful about moving the
camera, as it's very easy to make viewers sick with a moving or shaky camera. Film-making
in VR is still in its infancy, and we're beginning to learn the ways the grammar of the
language differs from traditional film or television, but still have a long way to go before
we'll fully understand the language of the new medium.

This hasn't stopped filmmakers such as Alejandro Innaritu, Nonny de la Pena, Chris Milk,
and Felix and Paul from creating astonishing and powerful cinematic experiences in VR,
and this highlights what an exciting time it is to be participating in the creation and
discovery of a powerful and entirely new art form.

Thinking in VR Chapter 1

[19]

Variants of VR cinema include the following:

Narrative stories
Documentaries
Journalism
Concerts and happenings
Sports
Virtual tourism

Architecture, Engineering, and Construction
(AEC) and real estate
VR is ideally suited for Architecture, Engineering, and Construction (AEC) planning, as it
allows designers to explore and iterate quickly on designs, and it serves as an excellent
communication tool between designers and clients. VR provides an immersive experience
that allows the user to explore and review the space in a real-world scale in a way that
simply isn't possible through any other medium.

The Architecture, Engineering, and Construction industries are often
bundled under the blanket initialism AEC.

For the same reasons that VR is such a useful tool for AEC, it's equally useful for real-estate
applications, providing prospective buyers an opportunity to tour a home remotely, or to
experience a space before it's been built. No medium represents space and scale better than
VR.

Unreal Engine, as we'll see, is particularly well-suited for architectural applications, as its
physically-based workflow for materials and lighting makes it possible to create surfaces
that look real and respond to light the way their real-world counterparts would.

In addition to providing a realistic lighting and shading model ideal for the realistic
representation of spaces, Epic Games (the makers of Unreal Engine), also provides a suite of
tools designed for non-game uses such as architectural visualization. The most important of
these is a toolkit called Datasmith, which allows high-detail scenes to be imported from
architectural Computer-Aided Design (CAD) and 3D packages into Unreal with little or no
modification required to reproduce the object placement, lighting, and shading from the
original source.

Thinking in VR Chapter 1

[20]

Architectural visualization is often shortened to archvis or archviz.

In terms of practical workflow, engineering and architecture environments for VR usually
begin in a CAD or a 3D Digital Content Creation (DCC) tool, and are then brought into
Unreal either by hand or by using the Datasmith workflow, where it can be made into an
environment that can be explored in VR.

For real-estate applications, the environment may be fully modeled in 3D, or may be
photographed as a 360° sphere or panorama, which provides less interactivity but is much
easier and less expensive to produce. Even though it limits the user's movement, 360°
photography can still provide an immersive sense of the space that the user couldn't
experience otherwise.

Engineering and design
As with building planning, VR can be an outstandingly effective tool for engineering and
other design applications. Designs can be tested in depth and iterated rapidly without
requiring physical prototypes to be built and can be placed in virtual environments that
allow them to be evaluated in context. Designers can use VR to explore designs and see
how parts will fit together and to communicate with stakeholders in an experience that
closely replicates the experience of actually handling and interacting with the object.

Education and training
It can be argued that VR began its life in education, in 1929, when Edwin Link created the
Link Trainer to train aircraft pilots using an early immersive simulator. The combination of
immersion and interaction makes VR a powerful tool for education, learning, and
exploration. VR, at its core, is capable of providing a much more concrete and experiential
understanding of a subject than other media. Where most other media communicate ideas,
VR communicates direct experience.

Thinking in VR Chapter 1

[21]

Traditional education often focuses on communicating facts to students, but facts in
isolation can bore or overwhelm them if they don't yet have sufficient context to know what
they need them for in the first place. VR, by contrast, can be used to allow students to
discover and learn concepts by working directly with materials and representations of
ideas they're exploring and learning, practicing real skills and turning abstract ideas into
experience. Context is a natural by-product of immersion, and VR's ability to evoke
presence can be instrumental in creating a physical, social, or emotional frame for the
subject being learned. This can potentially make it meaningful or understandable to the
student in ways that may not otherwise have been possible, and can allow students to
explore the ways a complex system's parts fit together.

VR also can aid concentration because it isolates the student's senses from distractions that
aren't part of the topic being explored and can be effective at creating virtual social learning
environments, such as virtual classrooms.

Educational VR can (and should) be made easy to use, immersive and engaging, and
meaningful to the student and can allow students to learn at their own pace and use its
interaction to fuel their own exploration and discovery.

Commerce, advertising, and retail
VR in commerce (the nickname, v-commerce, is sometimes used to describe it) offers a
range of new ways for customers to experience products and can create opportunities to
connect customers with products they may not otherwise have encountered. Car buyers,
for instance, can explore color choices and options in a virtual car configurator that allows
them to experience what their chosen options would look and feel like around them. This
experience can also be instrumental in moving an aspirational purchase out of the
imagination and into the realm of something that feels real.

For retailers, VR offers a way to reach customers who are not able to visit shops, increasing
accessibility and the likelihood of sales. Customers can see more clearly and in context what
a product is, reducing confusion and returns. VR can give a customer a chance to try before
they buy, even where the product might be too large, too far away, or too elaborate to
demonstrate effectively by other means. Virtual showrooms, for example, can allow
customers to place furnishings together into a virtual environment that allows them to see
how the pieces would fit together and how they might fit in their own space.

VR can be used as well to facilitate an emotional connection with the brand, placing the
customer into a virtual environment or experience that supports the brand's emotional
space, such as a mountaintop or a fashion show.

Thinking in VR Chapter 1

[22]

Medicine and mental health
VR offers promising opportunities as well in psychology, medicine, neuroscience, and
physical and occupational therapy. VR, for example, can be used in physical therapy by
slowing time and allowing patients to perform actions slowly and repeatedly and has been
used successfully for pain management. VR is also useful for providing simulated virtual
patients for medical and emergency training.

In the fields of mental and behavioral health, VR has powerful applications in assessment,
training, and the treatment of stress-related disorders. Patients can be exposed to complex
stimuli to help to assess and rehabilitate cognitive functions for stroke, traumatic brain
injury, and similar neurological disorders.

So much else
The through line through all of the uses of VR described is that VR works especially well to
communicate context and create meaning through presence and to allow complex physical
interactions with objects that just couldn't be done with a flat screen. Without question,
there are still more valuable uses of VR that haven't yet been discovered or considered. The
only limit is our own imagination.

Immersion and presence
Now that we've set up a bit of context about what VR is and a few of the many of the things
we can do with it. Let's start getting our hands dirty and learn the following:

What makes VR work
What can break it
What we need to do as developers to make sure the VR experiences we build
succeed

To that end, let's lay out a few best practices in VR, and then we'll talk about them in depth.

We'll begin by talking about the experience we're trying to create.

Thinking in VR Chapter 1

[23]

Immersion
When VR works, as we discussed earlier, it works through a process we call immersion,
which we described earlier as a perceived experience of being physically present in a
virtual world. For an experience to be immersive, a few things need to be true.

Using all the senses
First, it has to encompass a wide enough range of the user's senses that competing senses
from outside the VR experience don't pull the user back out of the virtual space. In practice,
this is why VR headsets are designed to block out all other light, and why they usually
include headphones or on-board audio. Anything we see or hear that isn't part of the VR
experience risks breaking immersion.

While vision and sound are pretty easily communicated through the eyes and ears, physical
sensations are more difficult to produce. In VR, we refer to physical sensations as
haptics. Decades of research have gone into figuring out how to recreate physical
sensations, but in practice, it's a tough problem to solve. In the current generation of VR
hardware, haptics take the form of a rumble pack in the player's controller that vibrates the
controller on cue. While it's limited just to the hand holding the controller, even using such
basic haptic feedback as this in your designs is still surprisingly effective for creating a
sense of physicality in virtual space. A little vibration when the user's virtual hand contacts
an object can go a long way toward making the object feel as though it's physically there
and to allow users to sense its boundaries and know when they've made contact with it.

Remember to use all the senses to create an immersive experience, not just
the visual. Use sound to involve the ears in the experience and haptic
feedback on the controllers to create physical cues.

Make sure sensory inputs match one another and
match the user's expectations
Senses need to match the user's expectations, and they need to match one another for an
immersive experience to feel real. When the user turns their head, an object they're looking
at should move in their view as it would have if it were in the physical world around them.
This part is pretty well handled for you by the Unreal engine and your VR hardware, but
the next bit, sound, is often overlooked by developers.

Thinking in VR Chapter 1

[24]

Objects that produce sound should use spatialized audio to ensure that sounds seem to
come from where the objects appear to be. As we mentioned a moment ago, physical
objects should produce a tactile response using haptic feedback when the user appears to
touch them.

The behavior of visual objects is pretty much taken care of for you by the
HMD and Unreal Engine, but make sure you use spatialized audio to
localize sounds to their apparent sources, and experiment with haptic
feedback to make physical actions feel more real.

Keep latency as low as possible
The quality of the visual and audio experience matters greatly to immersion, and the
absolute most important factor driving this quality is the smoothness and responsiveness of
the experience. What this means for developers is that frame rate matters above every other
consideration in VR. VR developers use the term latency to describe the responsiveness of a
VR application—the time between the user performing an action, such as turning their
head, and seeing the visual result (in this case, the world appearing to rotate around them).
Developers call this motion-to-photon time, and it's important. If the user turns their head
and world lags behind, it won't feel real, and worse, can make them sick. Current VR
headsets do quite a lot in hardware and software to minimize and disguise latency, but as a
developer, you also have to do a lot as well to keep latency as low as you can possibly get it.

Latency refers to the speed at which a VR application responds visually to
the user's actions and is fundamental to immersion in VR. Research
suggests that the absolute highest latency you can get away with is 20
milliseconds, but you should be shooting for far less.

In practice, this means that, when you have to choose between detail in your scene and
frame rate (and you'll have to make this choice all the time as a developer), choose speed.
Users will forgive a lower-resolution texture much more easily than they'll forgive a
dropped frame. Much of your work in VR development will focus on getting your scene
running at an acceptable frame rate, and we'll talk quite a bit about how to do this in
Unreal. For now, make sure you keep this in mind: keeping latency low is absolutely
fundamental to immersion in VR, and the choices you make in designing and developing a
VR application have to be made with this in mind.

Thinking in VR Chapter 1

[25]

When faced with a choice between image quality and framerate, choose
framerate every time. Beautiful textures, high-poly models, and dynamic
shadows won't create a convincing experience for the user if they're
dropping frames. Users will fill in a remarkable amount of detail in their
own minds, meanwhile, if the experience is running smoothly, while they
won't believe it at all, or worse, will get sick if latency gets too high.

Make sure interactions with the world make sense
Interactions with objects should be consistent and they should make sense. With the
immersive nature of VR comes an increased expectation that objects will behave as they
would in real life. In traditional media, delivered on a flat screen and constrained to a
frame, the user's eyes and brain are consistently reminded that they're looking at a flat
image that isn't real, and they'll forgive a lot. But in VR, the world already surrounds them
and seems to be real, and they'll expect it to behave as though it's real too.

Things that don't behave or respond in ways they would in the real world can pull the user
out of the experience and break immersion. There's a limit in practice: of course, you can't
make every object in the world interactive, but to the degree possible, you should pay
attention to what your users' expectations are going to be, and try to meet them. If you put
an object in the scene that looks as if it can be picked up, expect users to try to pick it up,
and understand that you'll be working against immersion if it doesn't behave as they
thought it would. Try to make objects in the scene that look interactive be interactive, and if
they can't be, consider moving them out of the play area or changing their appearance to
manage the user's expectation. This is another area where judgment comes into play—not
everything can be interactive, and you may not always want it to be, depending on the kind
of experience you're trying to create. You should be making conscious choices with
immersion in mind when deciding how objects in your world should behave, and those
choices should feel consistent with each other within the space of the world and not
arbitrary.

Users will try to reach out and touch objects that look as if they can be
touched and will try to move them. Try to satisfy their expectations where
you can, or design your scene in such a way that these interactions aren't
expected.

Thinking in VR Chapter 1

[26]

Explore the unique opportunities for interaction that VR, especially 6DoF VR with hand
controllers, gives you. In previous media, users mostly interacted using a mouse, buttons,
and joysticks, but in VR, the users hands interact with the world much more directly, and
this makes an entirely new range of interactions possible. Where in a traditional game, a
watering can might be used by pushing a button, in VR, the user can squeeze the controller
grips to pick it up and turn their hand over to use it. Think about what makes sense in your
world, and what becomes possible when the user's hands enter the picture, and design to
make use of these opportunities. Interfaces don't have to consist of just buttons anymore.

The user's expectations for interaction will vary depending on the type of experience you're
creating. If you're making a game that simulates the experience of being in another world,
immersion matters a lot. If, on the other hand, you're making a movie viewer, the user
probably doesn't really care whether a virtual coffee cup on a table nearby can be picked
up, because that's not what they're there for. It's up to you to understand what's going to
matter to your users and what isn't and to meet those expectations.

The way you represent the user's hands will drive expectations of how they'll behave as
well. If they're modeled as hands, the user may naturally expect that they can pick objects
up and move them around. If instead of hands, you display models of the controllers,
palettes, weapons, or other tools, you're suggesting a different type of interaction. Users
will try to do what it looks like they can do.

Build a consistent world
As we mentioned previously in the discussion about interaction, the whole experience
should make sense as it fits together. Users should be able to construct a model of reality,
even if it's an abstract or a complete fantasy, from what you give them in the world. The
place you're building should feel like a place, with its own language and rules.

The amount of detail you put into your world can have an impact here. The more
immersive an experience becomes, the more fragile that immersion becomes. Adding
details and immersive elements creates a raised expectation that everything else in the
world will live up to that standard too and can pull the user back out of immersion if
something doesn't behave consistently with the apparent rules of the world. In many cases,
you may want to render your world in a more stylized way to manage the user's
expectations. Immersion doesn't require the VR experience to mirror the real world
perfectly—it requires the experience to be consistent with itself.

Thinking in VR Chapter 1

[27]

Be careful of contradicting the user's body awareness
Be careful of adding immersive elements that contradict the player's awareness of their
body. We all have a natural awareness of where our body is and what it's doing. This is
called proprioception, and it's the sense that tells you where your arms and legs are even
when you're not looking at them. Representing the user's body in ways that don't match
this sense can break immersion.

Rendering the user's hands usually works well, as the motion controllers tell us exactly
where they are, but this may not be such a good idea to render the rest of the arm, since we
have no information about what that arm is really doing. If you guess and get it wrong, it
will feel wrong to the user and can break immersion. It's often better not to guess at all, and
simply render the hands up to the wrists, leaving the arms, legs, and body imagined.
Interestingly, users seem to prefer this. They tend not to notice that the body is invisible
until it's pointed out to them, whereas a body that's rendered but wrong calls attention to
itself.

For similar reasons, realistic, fleshy hands can make users feel uncomfortable if they don't
match their real-world hands. Hands work much better if they're stylized
as translucent, cartoonish, or robotic so users don't feel as if they're trying to simulate
reality and getting it wrong.

Animators commonly refer to a phenomenon called the uncanny valley,
which occurs when a simulation gets just close enough to resembling a
human that it triggers the viewer's instinctive awareness of everything
that's wrong with it. For a simulation to work, it either needs to be
stylized enough that viewers don't expect realism, or it needs to get the
realism right. Anything in between is creepy. The same principle holds for
representations of the user's own body in VR. Don't get it almost right. Get
it perfect, or stylize it.

Decide how immersive you intend your application to
be and design accordingly
Finally, not every use of VR needs to be equally immersive. Your choices in this really
hinge on what your application is intended to do. If it's a tool for visualizing engineering
models, you may be most interested in VR's ability to allow the user to manipulate models
easily, and it may not matter so much to you whether they really believe they're in another
place. If, on the other hand, you're creating an immersive game or cinematic experience,
these choices will be critical. It's up to you to figure out which of these rules matters most
for your particular application.

Thinking in VR Chapter 1

[28]

Presence
Immersion in VR serves a single goal—the creation of an experience of presence in the
user. Presence, as we previously defined it, is a sensation of being in a place, and this is, in
large part, a phenomenon perceived physically. Very often, they respond physically and
instinctively to things in the world such as heights or objects flying toward them. The body
largely believes what it perceives in VR and responds accordingly. If you think of presence
primarily in physiological terms, you'll have an easier time understanding how users
experience it. What does this experience make your user feel?

A key to understanding presence is to understand that VR doesn't so much work by trying
to simulate an environment accurately as it does by triggering and fooling a range of
systems that we use to perceive the world. This is one of the reasons why we can get away
with low detail in our textures if we get the movement of the world right and keep latency
low—our perceptive systems are much more aware of motion than detail. VR doesn't have
to fool all the senses—just the right ones in the right ways.

Simulator sickness
A major factor you'll be dealing with quite a lot in VR is simulator sickness. This is a form
of visually-induced motion sickness that often occurs in VR, and you'll deal with it a lot.

As humans, we spend most of our time walking upright, which takes a tremendously
complicated amount of coordination to achieve, and yet we manage to do it without
thinking about it. We manage this through a structure in our inner ear called the vestibular
system, which we use to coordinate movement and keep our balance. This system is
extremely sensitive, and it works in conjunction with our vision and our sense of our body
(proprioception) to understand how we're moving.

You'll hear VR developers talk a lot about the vestibular system or the inner
ear. For our purposes, since the vestibular system is located in the inner
ear, we mean the same thing when we use the terms interchangeably. This
is one of three systems that tell us whether we're moving and how to keep
our balance. The other two are our visual system and our proprioception (our
natural sense of our body's position). Problems arise when signals from
these three systems don't agree with one another.

Thinking in VR Chapter 1

[29]

This creates a problem when visual information tells the body that it's moving, but it can't
feel that movement in the inner ear. (Researchers call this the sensory conflict theory.)
Seasickness and carsickness happen for the same reason. When visual movement cues and
movement cues coming from the vestibular system in the inner ear don't match, the body
can respond by triggering nausea, sweating, and other effects. (Researchers don't yet agree
on why this is, but one theory suggests that when the senses don't match, the body may
assume that it's been poisoned.)

The challenge with VR is that it does such a good job of simulating movement. The user's
mind naturally accepts that the movement they see is really occurring, and runs into
problems when the signals from the inner ear don't confirm this. Developers need to be
conscious of this challenge and deal with it. We'll talk about ways to do this in a moment.
(Be aware that the opposite is true too—always show movement in the headset if the user
turns their head.)

Simulator sickness, sometimes shortened to simsickness, is a form of
motion sickness that can occur in VR. (You'll also sometimes see it
shortened to VIMS for Visually-Induced Motion Sickness.) The most
common cause of simulator sickness is poorly-designed locomotion. The
second most common cause is high latency. How users move through the
world, and how smoothly and consistently it responds to their
movements are critical factors in combating simulator sickness.

Safety
Another major consideration is safety. Because VR completely overwhelms the user's
senses, it's possible to put users into unsafe situations, and it is up to you as a developer to
try to avoid this. If you tilt the horizon, for example, there's a high likelihood that your
users are going to lose their balance. If you've designed an experience that involves big
physical movements, such as swinging a sword or a baseball bat, be aware that your users
can't see what's around them and can easily hit objects in the real world. Be conscious as
well of factors that can cause eyestrain, such as forcing users to focus on UI elements that
are too close to the camera, and photosensitive seizures that can be induced by flashing
lights.

With these factors in mind, let's get specific about laying out a few best practices that can
help to keep your users comfortable and safe.

Thinking in VR Chapter 1

[30]

Best practices for VR
Now that we've talked a bit about immersion and presence, let's take a look at a few specific
practices we can follow to keep our users comfortable and avoid breaking immersion. Don't
consider any of these to be set in stone (except the requirements to maintain framerate and
to leave the user's head alone)—VR is still a very new medium and there's a lot of room to
experiment and find new things that work. Just because someone says a thing can't be done
doesn't mean it can't. That having been said, the following recommendations generally
represent our current best understanding of what works in VR, and it's usually a good idea
to follow them.

Maintain framerate
Are you sensing a pattern here? You absolutely must maintain frame rate. High latency will
pull the user right out of immersion, and this is a leading trigger for simulator sickness.
Consider the work you're asking the renderer to do in VR, and you'll see that this is going
to be a bit of a challenge. The HTC Vive Pro displays a 2,880 x 1,600 image (1,400 x 1,600 per
eye), while the original Vive and the Oculus Rift display 2,160 x 1,200 (1,080 x 1,200 per
eye), and all of them require this to happen 90 times per second, leaving the renderer 11
milliseconds to prepare the frame. The Oculus Go displays 2,560 x 1,440 pixels (1,280 x
1,440 per eye) 72 times per second, meaning the renderer has about 13 milliseconds to
deliver the frame. The Unreal Engine renderer is blazingly fast, but, even so, this is a lot to
render, and there is not a lot of time in which to get the frame drawn. You're going to have
to make some compromises to reach your target. We'll talk about ways to do this
throughout this book.

Here's a list of headsets currently on the market and their rendering demands.

Tethered headsets
HMD Device Resolution Target Framerate
Oculus Rift 2,160 x 1,200 (1,080 x 1,200 per eye) 90 FPS (11 ms)
HTC Vive 2,160 x 1,200 (1,080 x 1,200 per eye) 90 FPS (11 ms)
HTC Vive Pro 2,880 x 1,600 (1,400 x 1,600 per eye) 90 FPS (11 ms)
Windows Mixed Reality It varies. Most display 2,880 x 1,440 (1,440 x 1,440 per eye) 90 FPS (11 ms)

Thinking in VR Chapter 1

[31]

Standalone Headsets
HMD Device Resolution Target Framerate
Gear VR It varies depending on the phone used. 60 FPS (16 ms)
Oculus Go 2,560 x 1,440 (1,280 x 1,440 per eye) 72 FPS (13 ms)
Oculus Quest 3,200 x 1,440 (1,600 x 1,440 per eye) 72 FPS (13 ms)

Bear in mind as well that you should aim for frame rates slightly higher than these targets
so hitches don't cause major discomfort.

VR hardware does do a bit of work to reduce perceived latency if the frame rate drops and
the new frame isn't ready to be rendered when the headset needs to display it, but it does
this by a bit of trickery. In these cases, the hardware will re-render the last frame and adjust
it to fit the user's current head movement, so what the user sees isn't an exactly correct
frame—it's just better than dropping the frame altogether. (Oculus calls this process
Asynchronous Time Warp (ATW), and on the Vive it's called Asynchronous
Reprojection.) Don't use time warp or reprojection as a crutch, though—they're there to
keep the user comfortable when your application hitches, but it's still a degraded
experience for the user. Don't let your application miss the target frame rate for extended
periods.

Also be sure to test your application on the minimum spec hardware you intend to support,
and give your users ways to scale the rendering demands so they can meet the frame rate
target on the hardware they're running.

Never take control of the user's head
Beyond dropping frames, the next most common cause of simulator sickness is the sensory
conflict we mentioned earlier—a mismatch between motion perceived visually and motion
felt in the inner ear. There are two major types of motion you're going to need to
accommodate in VR:

Movement of the player's avatar (walking around, teleporting, or piloting a
vehicle)
Movement of the player's head relative to their avatar

Movement of the player's avatar is handled by the locomotion system you implement for
your experience. You really don't have a choice here—you're going to have to create
movement that isn't happening in real life, but there are things you can do to make this less
of a problem and we'll talk about them shortly.

Thinking in VR Chapter 1

[32]

The word avatar originated in Sanskrit and referred to the embodiment of
a deity in human form. In its current usage, it extends this metaphor to
refer to the embodiment of a human user in a virtual world. You'll hear
the term commonly used to refer to a character in a simulated world
under the control of a human player. Its companion term, agent, refers to a
character under the control of an AI routine.

You should never interfere, however, with movement of the player's head.

What this means in practice is: never move the camera in a way the user didn't cause by
their own actions. If you're making a game and the user's avatar dies, don't leave the
camera bolted to the head as the body falls. You will almost definitely make users sick if
you do this. Consider cutting to a third-person view instead or handling the action in some
other way. Never move the camera to force the user to look around in a cinematic, and
don't apply a walking bob or a camera shake. The user should control their head always.

Never move the camera separately from the user's head, and never fail to
move the camera when the user's head is moving. You should always
maintain a 1:1 correlation between head movement and camera
movement relative to the user's avatar.

This applies both ways. If the player moves their head, the camera must move, even if the
game is paused or loading. Never stop tracking.

If you need to teleport the user to a new location or change cameras for any reason,
consider using a fast fade to black or white to cover the transition. People instinctively blink
when they turn their heads quickly, and it's a good idea to mimic this behavior.

In-game cut scenes need to be handled differently in VR than they would be on a
traditional flat screen for the same reasons. Ordinarily, in authoring a cut scene, you would
take control of the camera, moving and cutting from shot to shot, but you can't do this in
VR. You can't control where your user is going to look, and you need to be careful moving
them around. This leaves you with a few options. First, if your scenes are pre-rendered,
then you really have no choice but to map them on to a screen in the virtual environment.
This breaks immersion, but is no more difficult for the user than watching a movie in real
life. If you're doing them in-engine, you need to think about how you're going to handle the
player's point of view.

For a first-person point of view, it's probably best to stage the cinematic scene around the
user and allow them to look and move freely within it. You can't cut away to another shot
when doing this, and you can't guarantee that your user will be looking where you want
them to look when a key moment occurs, but it's the most immersive approach you can
take.

Thinking in VR Chapter 1

[33]

Cut scenes can also be handled in the third-person, in which you pull the user's viewpoint
out of their body and allow them to view the scene unfolding, but you need to do this
carefully—the out-of-body experience can be disorienting for your player and can weaken
immersion and the player's identification with the character.

For film-making in VR, be very careful of the ways you move the camera. Even very small
moves may induce sickness. Users will tolerate forward movement more easily than side-
to-side or rotational movement and seem to tolerate movement more easily if it's justified
by a visible vehicle or some other way of explaining why it's happening.

Thinking about how to use the camera in VR isn't just about managing user discomfort
either. This is new territory, and the rules you learned from film and gaming work
differently here. You're designing to recreate the user's eyes, not a camera, and this has far-
reaching implications for your compositions. How does the user move? Do they know
where you want them to look? What do they see when they look at their hands? What
about a mirror? How does surrounding the user with a world (instead of making them
watch it through a window) change their relationship to it? All of these factors require a
conscious choice as you develop your work.

Do not put acceleration or deceleration on your
camera
Depending on the type of application you're creating, you're probably going to need to give
your users a way to change their location, either by teleporting or moving smoothly. (We'll
dig into this in depth in a later chapter.) If you do choose to implement a smooth movement
method though, don't accelerate or decelerate as the player starts and stops moving. Start
the movement at full speed, or if you opt to smooth your starts and stops at all, keep them
very short. (And, of course, never do a start-moving or stop-moving animation that takes
control of the user's camera.)

Do not override the field of view, manipulate
depth of field, or use motion blur
We mentioned a moment ago that VR mimics the user's eyes, not a camera. For this reason,
don't do things in your simulation that eyes don't do in real life. Never change the focal
length of the camera lens or its depth of field. The eyes' focal lengths don't change the way
cinematic zoom lenses do, and you're very likely to make your user sick if you change this.

Thinking in VR Chapter 1

[34]

Manipulating the depth of field isn't a good idea in current-generation VR, as we don't yet
have a reliable way to know what the user is actually looking at within the view. In the
future, as eye-tracking improves, this will likely change, but for now, don't make this choice
for your user.

Motion blur shouldn't be applied to your camera or objects in the scene. This is an artifact
of the way film photographs a static frame for a fixed period of time, smearing the motion
within that frame, but that's not the way eyes work, and it will look unnatural in VR.

While we're on the topic, steer clear of other camera-mimicking effects, such as lens flares
and film grain. Again, these mimic the behavior of film, not the eyes, and we're not trying
to mimic film in VR. Filmic effects such as these can also cause unwanted physical side
effects in the user, contributing to simulator sickness if the effects don't line up between the
eyes, and they cost precious frame time to render. Don't use them.

Minimize vection
Have you ever looked out the window of a car sitting still, and watched a large vehicle such
as a truck or bus moving, and felt as if you were moving in the opposite direction instead?
This phenomenon is called vection, and it refers to the illusion of self-movement produced
by optical flow patterns. If a large portion of your view is moving, this can produce
sensations of movement in your body, and as we discussed earlier, sensations of movement
that don't match the signals from the inner ear can trigger simulator sickness.

Vection is the illusion of movement produced when large parts of your
field of view move. Optical flow, or optic flow, refers to the pattern of
movement of the contents of your view, and it's these patterns of
movement that cause vection.

What this means in practice is that, if a big chunk of your user's view is moving, you're at
risk of inducing simulator sickness. We've talked about this already with regard to moving
the user's head (don't do it), and we've touched on some of the ways we can handle this in
your locomotion system, but you'll also want to be aware of other circumstances that can
cause vection.

Be aware of moving patterns that fill large parts of the frame—whether or not they're part
of your locomotion system, they can still create an illusion of motion, which may be a
problem for your users.

Thinking in VR Chapter 1

[35]

Several games and applications have experimented with a tunnel vision effect to reduce
vection when users need to move quickly through the environment—when the player's
avatar runs, an iris closes in from the edges of the view to reduce peripheral vision.

Users seem to be much more tolerant of forward movement than they are of
strafing—moving side-to-side. This may in part be because, in real life, we move forward
far more than we move sideways, but it may also be because the optical flow the user sees
when moving forward still has a relatively fixed point at the center, whereas in sideways
movement, everything in the view moves.

When you're trying to figure out whether a particular movement in VR is
likely to cause simulator sickness, it can be useful to think about the kind
of optic flow that movement is going to create. Optic flows with relatively
fixed reference points, such as the horizon when running forward, may be
fine, while flows that move everything in the view, such as sideways
movements, may not.

Rotating the player's view is especially problematic. It moves pretty much everything in the
view, and the vestibular system is especially tuned to detecting rotation. Be very careful
here. Smooth rotations are generally not a good idea, but developers have found that
snapping the user to a new rotation works well to reorient the user without making them
sick. It turns out that the brain is very good at filling in interruptions in perception, so
snapping to a new rotation or "blinking" the view during a large movement can be very
effective at disrupting the perception of motion without distracting the user.

Many developers have also found that giving users a visible vehicle that moves with them,
such as an aircraft cockpit, can mitigate the effect of vection when rotating. Whether this is
an appropriate solution for you depends on the type of experience you're creating, but the
takeaway here should be that users seem to be less prone to simulation sickness if they're
given fixed points of reference in their view. Where this is appropriate, consider factoring it
into your design, and where it isn't, consider other ways of breaking the optic flow if you
have to do large smooth movements such as blinking or snapping.

Avoid stairs
If you're allowing your user to move smoothly through your environment, be aware that
certain features of environments can provoke simulator sickness when users navigate them.
Stairs are especially bad. Stairs that provide collision for every step so the view bounces
when user navigates it are worse. Environment features such as these that create a sense of
vertical movement when traversed can be difficult because the inner ear is very sensitive to
changes in altitude.

Thinking in VR Chapter 1

[36]

Avoid stairs if you can. If you can't avoid them, be conscious of how steep they are and
how fast you're letting your user move over them. You'll have to test a bit to get it right.

Use more dimmer lights and colors than you
normally would
Be careful of using bright lights and strong contrasts in your scene. Bright lights contribute
to simulator sickness in some users, and strong contrasts can increase the user's sense of
vection as the world moves across their view. Also, with current hardware, bright lights
can often create a flare on the headset's fresnel lenses, which can pull users out of
immersion by reminding them of the hardware they're wearing. In general, it's
recommended that you use cooler shades and dimmer lights than you normally would.

Keep the scale of the world accurate
VR communicates the scale of objects in the world in ways that flat screens simply do not.
Each of us sees the world in stereo vision through a pair of eyes that are a fixed distance
apart. This distance, called Interpupillary Distance (IPD), contributes to our sense of how
large or small objects in the world appear. Most VR headsets can be adjusted to match the
interpupillary distance of their user and should be adjusted correctly to minimize eyestrain.

The distance between the pupils of the user's eyes is called the
interpupillary distance and is a major contributor to a user's sense of how
large or small objects in the world are.

What this means for you as a developer is that the scale of objects in your world matters.
On a flat screen, the user is limited to comparing the size of an object to another object to
determine how large it is, but in VR, the user's IPD drives an absolute sense of scale. An
object that's too large or too small on a flat screen will still appear normal if it's alone on the
screen. The same object in VR, even if there's nothing to which it can be compared, will look
wrong to a viewer in stereo 3D.

Some users may be prone to simulator sickness if the scale of the world feels wrong, and
even those who aren't will still likely feel that the world feels "wrong," without necessarily
knowing why.

Make sure objects in your world are scaled correctly. In Unreal, by default, one Unreal Unit
(UU) is equal to one centimeter.

Thinking in VR Chapter 1

[37]

Be conscious of physical actions
Your users in VR are moving around the real world wearing electric blindfolds. Respect
this, and be careful what you ask them to do in VR. Take care when asking users to swing
their arms, run, or strafe, as they can easily run into obstacles or walls in the real world. For
headsets with cables, don't ask users to turn repeatedly in the same direction and tangle
themselves in the cable. Be conscious as well of asking users to reach for objects on the floor
or outside their normal reach area—this may not be easy or possible in their real-world
physical environment. As mentioned earlier, avoid shifting the horizon in ways that could
cause your user to lose balance. Remember that nearly all of the user's information about
the world is coming from the VR simulation while they're in it—be conscious of how this
information lines up with or contradicts what's in the invisible physical world around
them.

Manage eyestrain
The eyes use muscles to focus on objects and orient the eyes, and these muscles, like any
other, can get fatigued. We call this eyestrain. Symptoms of eyestrain can include
headaches, fatigue, and blurred or double vision. As a designer, there are things you can do
to minimize eyestrain in your users, and understanding a little about what causes eyestrain
will help you do this.

First, eyestrain can be caused by flickering. We've already talked a lot about the importance
of keeping latency low—this is another reason to keep low latency a priority. Don't create
purposely flickering content, as this can produce eyestrain but could also trigger
photosensitive seizures.

Flickering caused by high latency can cause eyestrain. Keep your latency
low.

Thinking in VR Chapter 1

[38]

Second, the eyes need to do some physical work to focus on an object in 3D space. They
have to adjust the shape of their lenses to focus on the object (this is called
accommodation), and they need to aim themselves so their lines of sight converge at the
object. This is called vergence. We naturally have a reflex that correlates these two actions
with each other, so the eyes naturally want to converge to a depth plane that matches the
depth to which their lenses are focusing, and the lenses naturally want to focus in a way
that matches where the eyes are converging. The problem comes in VR, where the actual
images the eyes are seeing are a fixed distance away, but the content of those images exist
at a variety of virtual depth planes, so the eyes still have to rotate so they converge at the
objects they're looking at. This creates a conflict, as the focal depth the lenses are
accommodating doesn't match the depth at which the eyes are converging, and it can cause
eyestrain.

Eyestrain can be caused by two factors in VR: flickering, which can be
managed by keeping your latency low, and conflict between the fixed
distance at which the eyes' lenses need to focus to see the headset screen,
and the changing distances at which they need to converge to see objects
in stereo depth. This is commonly called the vergence-accommodation
conflict, and you can manage it by keeping important objects in the
virtual world about 1 m away so the vergence and accommodation
demands mostly line up.

You can manage this when designing your world by keeping these two demands in mind.
The fresnel lenses on the HMD make the headset screen appear to be about 1 m from the
eyes, allowing the lenses to accommodate to a focal plane about 1 m away. The user's eyes,
then, will naturally find it easier to focus on objects in the virtual world that appear to be
about that far away. In practice, objects are most easily viewed at a range of 0.75 m to 3.5 m,
with 1 m seeming to be ideal. Avoid making users look for long periods at objects less than
half a meter away from the eye.

Put objects you know your user will be fixating on for long times at least a
half-meter away from the camera and ideally around 1 m to minimize
eyestrain.

Thinking in VR Chapter 1

[39]

Don't force your user to be an eyeball contortionist to view your user interface. Attaching a
GUI to the user's face is usually a bad idea—as they turn their head to view a UI element, it
appears to "run away" because it's attached to the same head that's turning to try to look at
it, so users have to turn their eyeballs alone to focus on it. Don't do this to them. It's
irritating to users, fatiguing, and has no real-world analogue. Put your UI in the world so
your users can focus on it from comfortable viewing angles and at a comfortable distance.
Attaching UI elements to the user's body, such as a wrist, can work well as it allows users to
bring it into view when they want to interact with it. Putting GUI elements into a cockpit or
vehicle can work well too. UI elements can be placed around the world and revealed when
the user looks at them.

Keep GUI elements within the ideal range we discussed and at an angle that allows it to be
read without straining, if you do wind up attaching it to the user's head.

Try to avoid creating situations that force the user to change focal distance rapidly and
often. If you're making a shooter, for example, that puts critical information on a nearby UI
element while the enemies are in the distance, you may be creating a situation that will
force your user to change focus frequently to check the UI and focus on enemies in the field.
In a flat-screen game, this wouldn't be a problem, but in VR, it will tire them out. Design
your UI in such a way that the user can get critical information without focusing on
it—easy-to-read graphical elements, for example, or consider putting UI elements over the
enemies' heads.

GUI elements can be occluded by objects in the world that are nearer to the camera than the
UI element is. Don't try to use tricks from 2D gaming space to change this. In 2D game
design, it's common to draw a UI element over a 3D element even if that element would
really block the player's view of it. If you do this in VR, however, you'll create a confusing
stereo image that won't be at all comfortable to look at. Accept the reality that your UI
exists as a physical object in the world and follows the same rules as other physical objects.

Thinking in VR Chapter 1

[40]

Make conscious choices about the content and
intensity of your experience
Presence, when it's achieved in VR, produces strong reactions. It's an intimate experience, a
visceral experience, and sometimes a fear-inducing experience. Be conscious of what you're
doing as you craft experiences—you can easily trigger a fight-or-flight response in some
users. This might be exactly what you intend, and we're not suggesting that you shy away
from whatever it is you're trying to create. But be aware that you can be playing with
strong stuff here and make intentional choices. VR is much more capable of triggering
phobias than its flat-screen predecessors because the user is immersed in the space and not
being constantly reminded by their peripheral vision that what they're seeing isn't true. Be
on the lookout for circumstances that can induce vertigo, claustrophobia, fear of the dark,
fear of snakes, spiders, or other phobias. Remember also that users will react more strongly
to threats within their personal space.

For those of you deliberately playing with fear in VR, making horror
experiences, or therapeutic experiences to treat PTSD, there are
meaningful distinctions between film and VR—the user always exists in
VR, which isn't the case in film. They have an instinctive sense of personal
space that you can use to great effect. Film doesn't have this either. In film,
an object that's supposed to seem close is just big on the screen, but it's
still whatever distance away from the user that the screen actually is. In
VR, this space is real. It's right behind you in VR really means that it's right
behind you.

Let players manage their own session duration
VR puts demands on the user's body, eyes, and mind that other media don't. They're
wearing a device on their head, and often standing or moving physically. Design your
experience to let them exit whenever they want to or need to and resume later on. Let them
take breaks as they need them.

Keep load times short
In contrast to games and applications on flat screens, users in VR can't do anything else
while they're waiting for the application to load. Optimize to keep your load times short.
Remember as well that, even during a load, your application must be responding to the
user's head tracking.

Thinking in VR Chapter 1

[41]

Question everything we just told you
VR is in its infancy as a medium and an art form. It's far too early to pretend we know what
its rules are really going to turn out to be. In the early days of film, actors were always
filmed in full-frame, because the conventional wisdom at the time was that audiences
wouldn't pay to see half an actor. Be equally willing to question the guidelines and advice
you receive in VR design. These represent the current best understanding of what seems to
work, but that doesn't mean that there aren't other ways to do things that haven't been
tried. Be open to them. This is part of the reason why these guidelines were each presented
with information about why they exist—so you can understand where they're coming from
and make your own choices and try your own experiments. You're on a frontier in VR, part
of the creation of an entirely new means of communication. Don't be afraid to explore.

Planning your VR project
We've talked quite a lot about VR in the abstract—what we can do with it, and what we
think we know so far about how it works and what works well within it. From here on out,
this book is going to get pretty practical and hands-on, and our hope is that, as we go
through these projects and learn how to build VR experiences in Unreal, these principles
we just talked about stay in your mind and guide your choices.

With that in mind, there's one last topic we should explore before we start getting our
hands dirty, which is how to turn an idea into a thing you can actually make.

Clarify what you're trying to do
The first thing to do in developing a design is to decide what it's for. This may sound
obvious, but it happens all too often that developers jump right into a project and start
building without first taking a step back and figuring out what it is that they're really trying
to make and who it's for. The result, more often than not, is either an unfocused experience
that doesn't really achieve what it was intended to do because the parts aren't all working
together to support a common goal, or a project that takes a long time to complete.
This wastes a lot of work, as developers discover things that need to change and have to
throw out existing work to make the changes. By taking some time to plan before you begin
building software, you can save yourself a lot of effort and make it more likely that the
project will succeed.

Thinking in VR Chapter 1

[42]

The first thing to remember in design is that the more you build, the more difficult and
expensive changes get, so try to make these decisions as early in the process as you can. The
cheapest prototype you can make is in your own mind. The second cheapest is on paper.
Once you start building software, start with the bare minimum you need to get your project
running—a gray box environment, or a simple prototype, and test it to see how it needs to
change. You're almost guaranteed to discover a few things you hadn't anticipated, and this
is the time to discover these things and change what you need. Once you've gone through
this process, discovered what really works and what doesn't, and adjusted your design to
respond to what you learned, now you're ready to begin putting expensive art and polish
into the work. Too many developers work backward and try to make the final product right
out of the gate, and they get locked into decisions that could have been changed more
easily if the legwork had been done first.

With that in mind, the first thing to think about is who the project is for and why you're
making it for them. Is this a game or an entertainment experience? What do you want the
user to feel? What will they be doing while they play or participate in the experience? The
same questions apply to cinematic VR—what's this experience about? What story are you
trying to tell? Take a moment to write this down.

If you're making a learning experience, what does the user need to learn? What's the best
way to teach it?

If you're making an architecture or design visualization application, what's important to
your end user? An architect or engineer may want to be able to look inside walls and
structures to see electrical and plumbing designs, while a real-estate buyer may care more
about the quality of light in the space.

Figure out who your user is, and what's important to them, and clarify what you're trying
to create and what's important to you. This should be done on paper. It's very easy for
vague design elements to hide in your mental model, only to reveal holes or unexpected
questions when you start to write them down.

Is it a good fit for VR? Why?
Pretty much the next thing you should do once you've clarified your design intention for a
VR project is to think about how it fits in VR.

Thinking in VR Chapter 1

[43]

Think about your project in terms of what VR allows you to do. Does it rely on immersion
and a strong sense of presence to work? Is it about making use of VR's ability to simulate
the body or to give context to information? Why does your project work better in VR than it
would on a flat screen? What can your user do or experience that they couldn't in
traditional media?

Think about the challenges VR imposes as well. As we've seen in the best practices
mentioned, VR imposes a different set of challenges than traditional media. Simulator
sickness is a major concern—does your project require you to move the camera in ways that
are going to be uncomfortable for your users? Does it rely on your users to move in a way
that may be difficult or impossible in VR? Are you asking your users to read lots of small
text that may not be legible on current headsets? Think about the practices we outlined, and
evaluate whether any of them pose challenges to your design. This doesn't necessarily
mean your design can't work in VR, but it does mean that you'll have to do some additional
design thinking to work through those challenges.

Your choice to put your project into VR should be made deliberately. You should be able to
describe why your project works better in VR than in traditional media, and how you plan
to handle the challenges VR imposes. This too should happen in writing. You'll probably
discover opportunities you hadn't seen, and a few challenges you hadn't realized you'd
need to overcome. Writing these down will help you to understand what's important about
your project and what needs to happen for it to succeed.

What's important – what has to exist in this
project for it to work? (MVP)
Now that you've clarified who your project is for, what you intend it to do, and why it
makes sense to do it in VR, you're ready to begin figuring out what it's really going to take
to build it. It's helpful to figure this out in terms of a Minimum Viable Product (MVP).
This, simply put, is a version of the product that contains only what's needed for it to
satisfy its intention. An architectural visualization project, for example, needs to put the
viewer into the building at the correct scale, and give the user some way to move around
and see what it looks and feels like from different perspectives. What your MVP contains is
your choice as a designer, but you should be clear about whether the thing you're talking
about is a thing you need or a thing you want. If the project simply isn't worth doing if you
can't get a given feature into it, then it's a needed feature and should go into your MVP. If it
would improve the experience but users could still get what they needed without it, it's not
part of the MVP.

Thinking in VR Chapter 1

[44]

MVP refers to a version of the project that contains only what's needed to
satisfy its goal and little or nothing else. Clarifying your MVP can help
you to understand what the spine of your project is, which can tell you
what to prioritize and gives you a baseline from which to evaluate
whether your project succeeds at achieving what it set out to do.

The contents of your MVP will differ greatly between different types of projects—the needs
of a cinematic VR experience are substantially different than those of an engineering
visualization application, but as a designer, you should know what they are and write them
down. You don't need to write a book or an essay here—a list of bullets should be enough,
but for each item on the list, ask yourself whether the project could still do what it's
intended to do without it, and be clear about your answers. Wants, even strong wants,
aren't needs. The point here is to know where your floor is.

Be on the lookout as well for things you missed. Imagine your user using your
project—what are they trying to do, from moment to moment, from the moment they start
up the application until the moment they shut it down? Use this exercise to discover items
you missed, and figure out whether they're wants or needs, and get them on to the list if
they belong there.

Break it down
If you've gone through the preceding exercises, you should have a clear idea of what your
project is for, why it works in VR, and what needs to be in it for it to work. Now you're
ready to figure out how to do it.

For the items in your MVP, what do you need to make them exist? Do you need a UI
element to display information to the user? Do you need a way for your user to move
around? Does the user need to be able to load or save information, or connect to a server?

For each item in your list, figure out what that item really requires you to build and write it
down. You should come out of this exercise with a pretty clear breakdown of the things
you need to do to get your project built.

A breakdown is a list of things you need to do or build to get your project
made. Use it as a tool to ensure that you haven't missed required
elements, or underestimated risks, and to see whether the project you're
trying to build is realistically achievable with the time and resources you
have. It's a tool for spotting problems early, while you still have a chance
to fix them, and then later for tracking your progress as you build.

Thinking in VR Chapter 1

[45]

Look through this list—where are the big jobs, and where are the big risks? Can you
achieve all of this with the time and resources you have? Do you need to re-evaluate your
scope if it's starting to look too big? Bear in mind that it's almost always better to do fewer
things well than to try to do everything and do a poor job of it. It's common, at this point, to
discover that the project scope exceeds what you can realistically do well, and this is a good
thing. The time to discover this is now while it's still on paper and you can reorganize the
work, move items off the MVP, or change your schedule or resources. If you discover these
problems near the start, you have a fighting chance of solving them, whereas if you
discover them only once you're months-deep into software development, you may discover
that you've painted yourself into a corner. Set yourself up for success on paper while you
still have the flexibility to do so.

Tackle things in the right order
Some items in your breakdown will be easier to do than others, and some will be more fun.
Use your judgement when you figure out the order in which you should do things. In
general, it's a good idea to tackle the risky things first. If something's important enough to
be in your MVP, and there's a risk that it could go long, or might not work at all, it's often
smart to get it out of the way early. Doing this gives you time to iterate on a risky item
while you work on other things, or in the worst-case scenario, if you discover that a thing
you'd counted on just can't be done, you're still early enough in your project that you may
be able to fall back to another plan. Don't leave high-risk, high-priority items to the
end—you'll be in trouble if something goes wrong.

Look for dependencies between items. If something can't be done before another thing is
done—a character, for example, that can't be animated until the character is built and
rigged, then make sure those dependencies factor into your plan. It does you no good to
plan to do a thing in a certain order and then discover that you can't because something it
depends on isn't ready.

As you plan how you're going to get through your breakdown, look for
items that involve risks or uncertainties, items that are just going to take a
long time, and items that depend on other items. Factor these into your
plan. In general, where you can, do your high-importance, high-risk work
early in your project so you have time to handle things if something goes
wrong.

Thinking in VR Chapter 1

[46]

A word about project management—there's a forest of literature out there about planning
and tracking projects, and discussing them in depth falls outside the scope of this book.
Broadly, these fall into two major schools of thought: waterfall and agile. Waterfall project
management methods lay out tasks in a rigid order that assumes that, once one task is
done, the next can begin. This works well when the things you're doing are well-defined
and don't entail much risk, such as painting a house, but VR design and development
rarely works out like this. You simply may not know whether a feature is done until you see
it running alongside other systems, and you may have to loop back at that point and
change something or rework it entirely. Agile methods, such as Scrum, take this reality into
account, and are intended for design and development projects where things are going to
need to be revisited as the project evolves and reveals new information. In general, agile
methods work much better for software development than waterfall plans.

Depending on the scope of the project, you may not need to apply a formal project
management method, but even if you're planning loosely, there should still be a plan, and
you should make sure the plan accommodates the reality that you're going to have to loop
back and iterate on features and design, that some items are going to depend on others, and
that some things are going to take longer than you thought.

Test early and often
Test your designs as early as you can. VR especially is a very new medium, and people
respond to it in very different ways. Test with as diverse a range of subjects as you can, as
early as you can, so you can spot things you need to change while they're still relatively
easy to change.

Remember as well that VR developers make terrible test subjects. We use VR far, far more
than other users and tend to be much more comfortable with VR interfaces and much less
prone to simulator sickness than typical users. Test VR with users who are new to it as well
as with users who are comfortable with the medium.

Test with as diverse a population as you can. VR embodies the user in ways that previous
media don't, and this can matter to your users. Hands that look fine to you may feel alien to
a user whose hands look different. Make sure your test population isn't limited to just
people like you.

Thinking in VR Chapter 1

[47]

Look for opportunities to test as early in the process as you can make them happen. Even
long before you've reached your MVP, test elements such as locomotion systems that may
need design iteration. Put users into a gray-box environment and have them navigate
through it, and watch what they do and where they get stuck. The more testing you do, the
better your project will get, and the earlier you test, the easier it is to act on what you've
learned.

Design is iterative
Lots of people assume that finished products somehow spring fully-formed from the minds
of genius designers or developers. It doesn't work this way. Anything worth making takes
iteration to get there.

Prepare yourself now for the reality that the first iteration of your design isn't going to be
everything you wanted it to be, and that's the point. The purpose of the first draft of
anything is to show you what's really important about the thing you're building and how it
needs to fit together. Plan for this. Design is a process, and time and iteration, more than
anything else, are the key elements of that process.

This is why we so strongly advise designing on paper first and testing prototypes in
software as early as you can. Each time you give yourself something tangible to respond to,
you're going to discover something about it and probably discover a way to make it better.

Summary
In this chapter, we looked at what VR is and some of the ways it can be used in the real
world. We talked quite a bit about immersion and presence. Let's recap for a moment here.

Presence, we said, is a physiological sensation of being in a place, and is really the point of
VR. We create VR to create presence. Immersion is the means by which presence is brought
about, and involves taking over the user's senses completely enough that they can begin to
believe the virtual world around them.

Thinking in VR Chapter 1

[48]

We discussed a number of currently-held best practices for creating good VR. The most
important of these was the need to keep latency as low as possible and the need to be very
careful of how you move the user's viewpoint. Simulator sickness is largely caused by
conflicts between a visual sense of motion and the lack of motion felt by the inner ear.
Breaking up movement and being aware of the types of movement most likely to trigger
simulator sickness are important for keeping your users comfortable in your experience.
We also talked about safety—the need to be conscious of the kinds of movement you're
asking your users to perform, about designing to avoid eyestrain, and the need to be careful
about triggering photosensitive seizures.

Finally, we outlined a process for planning a VR project and iterating on its design to make
the best project you can and ensure that it succeeds at what you intended it to do.

In the next chapter, we're going to dive in and start getting our hands dirty with the Unreal
Engine, and from here on out, the rest of this book will be hands-on. We hope that the ideas
outlined in this chapter will stay with you as you develop, and help you to succeed, not just
in making running VR applications, but in making them well.

With that out of the way, let's get to work.

2
Setting Up Your Development

Environment
The goal of this chapter is to get you set up to develop in Unreal Engine. Even if you've
already installed and started working in the engine, you may still find it worthwhile to take
a look through this chapter, as there are a few details of the installation process that might
be useful to you.

We're also going to take a look at the Epic Games launcher. It's easy to get into the habit of
looking at it just as a way of updating the engine and launching projects, but there's a huge
collection of useful resources for learning and development there too. It would be a mistake
to ignore them.

For those planning to develop for mobile VR on Oculus Go or Samsung Gear, we'll walk
you through the process of setting up the Android SDK and setting up a project for
deployment to the device, and finally for those interested in C++ development, we'll show
you how to set up Visual Studio 2017 for use with Unreal and for those interested in
working on the bleeding edge, how to download the Unreal Engine source code and build
it yourself.

Through out the course of this chapter, we're going to learn about the following topics:

Installing Unreal Engine using the Epic Games launcher
Setting up your development environment to build a project for mobile VR
Learning more about Unreal Engine, and where to get help
Setting up your development environment to build a project in C++
Downloading and building Unreal Engine from source code

Setting Up Your Development Environment Chapter 2

[50]

Prerequisite – VR hardware
If you're planning to develop for desktop VR hardware, such as the Oculus Rift or HTC
Vive, we're going to assume here that you've already set up your headset and ensured that
it's working. If you haven't, now's a good time. Head on over to https:/ /www. vive. com/
eu/setup/ or https:/ /www. oculus. com/ setup/ , and run through the guided installation
and setup operations there.

Remember that your VR headset driver software, Oculus Home or Steam VR, needs to be
running when you use the headset.

If you're going to be developing for mobile standalone VR, your setup process will involve
a few other steps, which we'll walk you through after we get Unreal Engine installed. We
do recommend even for those developing for mobile VR that you have a desktop VR
headset available as well. It dramatically speeds up debugging to be able to launch your
software right into the headset without having to cook it and deploy it to the device every
time. It's not required, but you will find it helpful.

Either way, test out your headset, make sure it's working, and then let's get our
development environment ready.

Setting up Unreal Engine
If you're going to develop VR applications using Unreal Engine, the first thing you'll need,
of course, is the engine. Let's walk through the process of setting it up.

What it costs
A natural question to start with when considering Unreal Engine is what it costs. The news
here is good. Unreal Engine is free to download and use, and if you use it commercially, the
terms are reasonable.

When you download the engine, you'll be asked to agree to one of two license agreements,
depending on what you're going to be using it for. If you're a game developer and you
make a game or application using Unreal and sell it, you'll pay a 5% royalty on gross sales
over $3,000 per calendar quarter. If you don't sell your game or app, or it earns less than
that per quarter, Unreal is free to use.

https://www.vive.com/eu/setup/
https://www.vive.com/eu/setup/
https://www.vive.com/eu/setup/
https://www.vive.com/eu/setup/
https://www.vive.com/eu/setup/
https://www.vive.com/eu/setup/
https://www.vive.com/eu/setup/
https://www.vive.com/eu/setup/
https://www.vive.com/eu/setup/
https://www.vive.com/eu/setup/
https://www.vive.com/eu/setup/
https://www.vive.com/eu/setup/
https://www.vive.com/eu/setup/
https://www.oculus.com/setup/
https://www.oculus.com/setup/
https://www.oculus.com/setup/
https://www.oculus.com/setup/
https://www.oculus.com/setup/
https://www.oculus.com/setup/
https://www.oculus.com/setup/
https://www.oculus.com/setup/
https://www.oculus.com/setup/
https://www.oculus.com/setup/
https://www.oculus.com/setup/
https://www.oculus.com/setup/

Setting Up Your Development Environment Chapter 2

[51]

If you're using Unreal for something that isn't intended to be sold to the public (training
simulations, architectural visualization, or anything else), Unreal is entirely free under the
terms of the Enterprise license agreement. For most businesses, the standard
Enterprise End User License Agreement (EULA) will be fine, but if you do need to make
changes, you can contact Epic to set up an enterprise license with different terms here:
https://www.unrealengine. com/ en- US/ enterprise/ contact- us. Epic will work with you.

What this boils down to for now is that you can download Unreal and use it for free, and if
you start making money with it, the terms are reasonable and clear.

While we're on the topic, it's worth mentioning that the version of Unreal
you get when you download the engine is the same version professional
developers use, including the devs at Epic. There's no split between a
"pro" version and everything else: everything's included and everything's
turned on.

Creating an Epic Games account
Let's get started, then. We're going to begin by heading over to https:/ /www.
unrealengine.com and hitting the download link. If you've already created an account with
Epic, sign in here. If you haven't, now's the time to create one.

After you've signed up or signed in, you'll be asked which license you need to agree
to—the Game Developers license or the Enterprise license. Choose the one that fits your
case. Next, select whether you're downloading for Windows or Mac, download the
appropriate Epic installer, and run it.

This will install the Epic Games Launcher, which you'll use as a hub for managing engine
versions, plugins, library content, and learning resources. There's useful stuff here.

The Epic Games launcher
Once you've downloaded and installed the launcher, open it up. It's going to ask you to
sign in using the same account you just used to log into the Epic website. (The Launcher
can be used offline as well, so you can still run the engine without an internet connection,
but of course you have much more useful stuff available to you if you're online.)

https://www.unrealengine.com/en-US/enterprise/contact-us
https://www.unrealengine.com/en-US/enterprise/contact-us
https://www.unrealengine.com/en-US/enterprise/contact-us
https://www.unrealengine.com/en-US/enterprise/contact-us
https://www.unrealengine.com/en-US/enterprise/contact-us
https://www.unrealengine.com/en-US/enterprise/contact-us
https://www.unrealengine.com/en-US/enterprise/contact-us
https://www.unrealengine.com/en-US/enterprise/contact-us
https://www.unrealengine.com/en-US/enterprise/contact-us
https://www.unrealengine.com/en-US/enterprise/contact-us
https://www.unrealengine.com/en-US/enterprise/contact-us
https://www.unrealengine.com/en-US/enterprise/contact-us
https://www.unrealengine.com/en-US/enterprise/contact-us
https://www.unrealengine.com/en-US/enterprise/contact-us
https://www.unrealengine.com/en-US/enterprise/contact-us
https://www.unrealengine.com/en-US/enterprise/contact-us
https://www.unrealengine.com/en-US/enterprise/contact-us
https://www.unrealengine.com/en-US/enterprise/contact-us
https://www.unrealengine.com/en-US/enterprise/contact-us
https://www.unrealengine.com
https://www.unrealengine.com
https://www.unrealengine.com
https://www.unrealengine.com
https://www.unrealengine.com
https://www.unrealengine.com
https://www.unrealengine.com
https://www.unrealengine.com

Setting Up Your Development Environment Chapter 2

[52]

Once you're logged in, look at the set of tabs along the left edge of the launcher. There's a
tab for Unreal Engine, and then a series of tabs for Epic's store, your game library, and your
friends. Select the UNREAL ENGINE tab. We'll be spending all our time here:

The Epic Games Launcher as of version 4.22; its layout changes fairly frequently, but the principles remain the same

Across the top of the Unreal Engine tab, you'll find four additional tabs:

Unreal Engine
Learn
Marketplace
Library

We're going to look at these tabs in a moment, but first, find the Install Engine button to
the right of them. By default, this button installs the latest stable version of the engine. Let's
do this.

Setting Up Your Development Environment Chapter 2

[53]

Installing the engine
When you hit the install button, the launcher will switch to the Library tab if it's not
already selected, and it will ask you to choose an install location. The default location is
usually a good choice here, but you can browse to a new location if you'd like to install the
engine somewhere else.

There's also an Options button on this page, and we should take a moment to talk about
the choices it offers:

Installation options allowing you to determine which components of Unreal Engine are set up on your machine

Core Components have to be installed—that's the bare minimum required to run
the editor.
Starter Content includes a number of useful assets to get you started, including a
number of materials and models, and the Advanced Lighting Map. We'll be
using these assets for the projects in this book, so you should install it.
Templates and Feature Packs give you a range of excellent projects to use as
starting points for your game projects, including the VR Template, which we'll
use for a few projects in this book. You should install this too.

Setting Up Your Development Environment Chapter 2

[54]

Engine Source is one of the things that sets Unreal Engine apart from the others:
Unreal Engine gives you the entire C++ source code for the engine. This can be a
great way to begin learning about C++, and can be a lifesaver when you really
need to understand how something works or need to figure out why something
is behaving unexpectedly. You don't need to install the engine source, and
whether you do is up to you, but it doesn't take up a lot of room so there's really
no reason not to. If you anticipate doing any C++ development, you should
install it. Once installed, you'll find the source code in the directory where you
installed your engine version, under \Engine\Source.
Editor symbols for debugging is something you'll need if you plan to debug in
C++. Without it, you'll be unable to set breakpoints in the engine source code or
trace execution through it. These editor symbols take up a lot of space though, so
if you don't plan to develop in C++ or debug using Visual Studio, you can skip it,
and you can always install it later if you realize you need it.

These options can be changed after you've installed an engine version, so it's not a problem
if you change your mind later on about whether you want an option installed. You can add
or remove any of them at any time. Also, if you're keeping older versions of the engine,
which developers often do if they're maintaining a legacy project, it's not a bad idea to save
space by using the options to uninstall everything but the core components.

For the projects in this book, the default options are fine—Core Components, Starter
Content, Templates, and Engine Source. If you anticipate developing or debugging in C++,
install the editor symbols as well.

Let's hit Apply after we've set our options, and install the engine. It's going to take a while.
(If you'd like to jump ahead to the Learning about unreal section while you wait, you can
jump back here when the install finishes.)

Editting your vault cache location
Depending on how your system is set up, you may want to change the location where
Unreal stores its vault cache. The vault cache stores assets that you've downloaded from the
marketplace, such as projects and asset packs. By default, it lands at C:\Program Files
(x86)\Epic Games\Launcher\VaultCache. You should be aware that it can get pretty
large, so if you're running out of space on your system drive, you may want to put it
somewhere else.

Setting Up Your Development Environment Chapter 2

[55]

If you'd like to do this, from the Epic Games launcher, select Settings | Edit Vault Cache
Location, select a new location, and hit Apply. Then, exit Settings and quit the Epic Games
launcher (find its icon in the system tray, right-click it, and select Exit—simply closing the
launcher window will minimize it without quitting it). When you restart the launcher, it
will create the cache in the new location. Remember to delete your old VaultCache
directory from its old location. (While you could copy the cache to the new location, it's
often a better idea to force the system to create a new cache, as this will eliminate a lot of
leftover stuff you're probably not using anymore.)

Setting up a Derived Data Cache (DDC)
There's one additional bit of setup we recommend you do. As you use the editor, Unreal
will compile assets into a form that's ready for use by your local machine's hardware.
Rather than forcing the engine to do this every time, it's a good idea to give it a place to
stash these compiled assets so that everything loads faster after the first build.

You don't have to do this, but it's a good idea. Materials especially will
compile much faster if you do. If you're seeing messages such as the
following, you definitely want to set up a DDC:

If you see this warning, be sure to set up your DDC as directed here. It will make a big difference.

Unreal calls this facility the Shared Data Cache (SDC), or the Derived Data Cache (DDC).
(This is a different cache than the vault cache we just mentioned a moment ago.) Everything
in the DDC is generated, which means that it's fine to clear out its content anytime. New
data will be generated in its place. If you change your video card, it's a good idea to empty
your DDC, as it will contain a ton of assets compiled for the old card.

You have two options in setting up a DDC: if you're working in a studio environment, you
can set up a shared DDC in a network-accessible location. To do this, follow the instructions
here: https://docs. unrealengine. com/ en-us/ Engine/ Basics/ DerivedDataCache.

What we're going to talk about here is the other option: setting up a local DDC for solo
development. If you're in a studio that already has a shared DDC set up, you can and
should skip the local setup.

https://docs.unrealengine.com/en-us/Engine/Basics/DerivedDataCache
https://docs.unrealengine.com/en-us/Engine/Basics/DerivedDataCache
https://docs.unrealengine.com/en-us/Engine/Basics/DerivedDataCache
https://docs.unrealengine.com/en-us/Engine/Basics/DerivedDataCache
https://docs.unrealengine.com/en-us/Engine/Basics/DerivedDataCache
https://docs.unrealengine.com/en-us/Engine/Basics/DerivedDataCache
https://docs.unrealengine.com/en-us/Engine/Basics/DerivedDataCache
https://docs.unrealengine.com/en-us/Engine/Basics/DerivedDataCache
https://docs.unrealengine.com/en-us/Engine/Basics/DerivedDataCache
https://docs.unrealengine.com/en-us/Engine/Basics/DerivedDataCache
https://docs.unrealengine.com/en-us/Engine/Basics/DerivedDataCache
https://docs.unrealengine.com/en-us/Engine/Basics/DerivedDataCache
https://docs.unrealengine.com/en-us/Engine/Basics/DerivedDataCache
https://docs.unrealengine.com/en-us/Engine/Basics/DerivedDataCache
https://docs.unrealengine.com/en-us/Engine/Basics/DerivedDataCache
https://docs.unrealengine.com/en-us/Engine/Basics/DerivedDataCache
https://docs.unrealengine.com/en-us/Engine/Basics/DerivedDataCache
https://docs.unrealengine.com/en-us/Engine/Basics/DerivedDataCache
https://docs.unrealengine.com/en-us/Engine/Basics/DerivedDataCache

Setting Up Your Development Environment Chapter 2

[56]

Setting up a local DDC
Open your Windows Control Panel | System and Security | System, and then hit the
Advanced system settings link:

You can also get here by right-clicking This PC on any Windows Explorer
pane, and selecting Properties.

Look for the Advanced system settings link on the left side of the System control panel

Setting Up Your Development Environment Chapter 2

[57]

In your Advanced system settings pane, hit the Environment Variables button:

The Environment Variables button is found in System Properties | Advanced. You'll need admin privileges to edit it.

In the Edit environment variable dialog that appears, hit New to create a new system
variable either in your User variables, or in the System variables section. (If you use the
former, the DDC will work for your login, but not for others who log into the same
machine. If you put the variable in your system variables, it will apply to all users.)

Setting Up Your Development Environment Chapter 2

[58]

Enter UE-SharedDataCachePath as the variable name, and for its value, browse to a
directory where you'd like to stash your derived data. If you're building projects with lots
of art, your DDC can take up well over 10 GB, so put it on a drive where you'll have space:

Create a variable named UE-SharedDataCachePath and set it to the location where you'd like to store your DDC.

Hit OK to save it. You'll need to restart your PC before this will take effect.

If your DDC starts to accumulate lots of stray assets from projects you're no longer working
on, or if you change your video hardware, it's safe to clear out its contents entirely; the
editor will regenerate the cache.

Launching the engine
Once the engine has been installed, let's launch it to verify that everything is working.

Hit the Launch button on the left-hand side of the Epic Games launcher, or the Launch
button on the ENGINE VERSIONS in your Library tab:

Setting Up Your Development Environment Chapter 2

[59]

The Library tab shows your installed engine versions, projects, plugins, and asset packs.

If you've never launched Unreal Engine before on your machine, it may ask you to allow it
to install a few prerequisites. Let it. The engine may also ask for permission to communicate
through your Windows Firewall. Let it do that, too.

Setting Up Your Development Environment Chapter 2

[60]

If everything is running as it should, you should see a window that looks something like
this:

The Unreal Project Browser appears any time you launch the engine without specifying a project to load.

Let's create a blank blueprint project just to make sure everything's working. (We're going
to look at creating projects in depth in the next chapter, but, for now, we just want to test
everything out.)

Select the New Project tab. Under the Blueprint tab, select Blank, and leave all the options
at their defaults. Give it a reasonable location, and hit Create Project.

The editor should open into your new project and you should be ready to go.

If you're developing for desktop VR (rather than a mobile device), let's do a quick test to be
sure everything's working. If you're developing for mobile VR, we'll cover that in the next
section.

Setting Up Your Development Environment Chapter 2

[61]

Find the drop-down to the right of the Play button in the editor toolbar. Pull it down and
select VR Preview:

Once you've selected a play mode, this will become the Play button's default behavior until you change it.

If VR Preview is disabled, check to be sure that your headset is properly
connected and that the Oculus or Steam VR software is running and not
displaying any warnings or errors.

Once you launch in VR, you should see your scene in the headset. It may not be the world's
most exciting scene, and you'll be floating unexpectedly high above the floor (we're going
to learn how to set a scene up correctly for VR in the next chapter), but you should be in it.
Congratulations! Everything's working!

Setting up for mobile VR
Mobile VR headsets such as Samsung Gear and Oculus Go are separate devices from your
PC, so you can't simply launch into a VR preview the way you can with a desktop headset.
Instead, you need to package the project and deploy it to the device so you can run it
directly on the headset. You'll have to set up a few things to make this possible.

Setting Up Your Development Environment Chapter 2

[62]

Creating or joining an Oculus developer
organization
First, if you're going to develop for Oculus-based mobile VR platforms, you need to register
with Oculus as a developer. We're assuming here that you've already created an account
with Oculus since you would have needed to do this to use the headset at all. If you haven't
yet done so, do that first and log in.

Now, navigate to https:/ / dashboard. oculus. com/organizations/ create/ and run
through the steps to register as a developer. If you're joining an existing organization
instead of creating your own, contact its administrator to be added to the list of registered
developers.

Setting your VR headset to developer mode in
Oculus Go
Once you've registered as a developer, you'll be able to use the Oculus mobile app to set
your headset to developer mode. You'll need to do this before you can deploy your own
projects to the device.

In the app, navigate to Settings | [Your headset] | More Settings | Developer Mode, and
turn Developer Mode on.

If you're unable to do this, confirm that your Oculus account is associated
with a developer organization.

Installing Android Debug Bridge (ADB)
Samsung Gear and Oculus Go both run on Google's Android operating system. You need to
install drivers to allow your PC to communicate with Android devices. To do this, we're
going to install the Android Debug Bridge drivers.

Navigate to the ADB 2.0 download page at https:/ /developer. oculus. com/ downloads/
package/oculus-go- adb- drivers/ , download and extract the .zip file, and then right-
click android_winusb.inf and select Install.

https://dashboard.oculus.com/organizations/create/
https://dashboard.oculus.com/organizations/create/
https://dashboard.oculus.com/organizations/create/
https://dashboard.oculus.com/organizations/create/
https://dashboard.oculus.com/organizations/create/
https://dashboard.oculus.com/organizations/create/
https://dashboard.oculus.com/organizations/create/
https://dashboard.oculus.com/organizations/create/
https://dashboard.oculus.com/organizations/create/
https://dashboard.oculus.com/organizations/create/
https://dashboard.oculus.com/organizations/create/
https://dashboard.oculus.com/organizations/create/
https://dashboard.oculus.com/organizations/create/
https://dashboard.oculus.com/organizations/create/
https://developer.oculus.com/downloads/package/oculus-go-adb-drivers/
https://developer.oculus.com/downloads/package/oculus-go-adb-drivers/
https://developer.oculus.com/downloads/package/oculus-go-adb-drivers/
https://developer.oculus.com/downloads/package/oculus-go-adb-drivers/
https://developer.oculus.com/downloads/package/oculus-go-adb-drivers/
https://developer.oculus.com/downloads/package/oculus-go-adb-drivers/
https://developer.oculus.com/downloads/package/oculus-go-adb-drivers/
https://developer.oculus.com/downloads/package/oculus-go-adb-drivers/
https://developer.oculus.com/downloads/package/oculus-go-adb-drivers/
https://developer.oculus.com/downloads/package/oculus-go-adb-drivers/
https://developer.oculus.com/downloads/package/oculus-go-adb-drivers/
https://developer.oculus.com/downloads/package/oculus-go-adb-drivers/
https://developer.oculus.com/downloads/package/oculus-go-adb-drivers/
https://developer.oculus.com/downloads/package/oculus-go-adb-drivers/
https://developer.oculus.com/downloads/package/oculus-go-adb-drivers/
https://developer.oculus.com/downloads/package/oculus-go-adb-drivers/
https://developer.oculus.com/downloads/package/oculus-go-adb-drivers/
https://developer.oculus.com/downloads/package/oculus-go-adb-drivers/
https://developer.oculus.com/downloads/package/oculus-go-adb-drivers/
https://developer.oculus.com/downloads/package/oculus-go-adb-drivers/
https://developer.oculus.com/downloads/package/oculus-go-adb-drivers/

Setting Up Your Development Environment Chapter 2

[63]

For additional information about ADB and how to use it to talk to Oculus
Go and Samsung Gear headsets, check here: https:/ /developer. oculus.
com/documentation/ mobilesdk/ latest/ concepts/ mobile- adb/#mobile-
android- debug- intro.

Let the installation complete, and then we're going to install the Android SDK.

Setting up NVIDIA CodeWorks for Android
In order to develop software for Android, you need to install a number of Software
Development Kits (SDKs) and other resources, and configure them to work with one
another. Fortunately, there's an easy way to do this using NVIDIA's CodeWorks for
Android installer.

Epic includes the required installer with your engine installation. Navigate to the directory
where you installed Unreal Engine and look for Engine\Extras\AndroidWorks\Win64.
Run the CodeWorksforAndroid installer found there:

C:\Program Files\Epic
Games\UE_4.21\Engine\Extras\AndroidWorks\Win64\CodeWorksforAndroid-1R6u1-
windows.exe

Accept the default options, and when it's finished, restart your computer.

Verifying that the HMD can communicate with
your PC
Once you've returned after the computer has been restarted, we want to check that your PC
can communicate with your Android headset.

Navigate to the location where you just installed Android SDK. By default, this will be
C:\NVPACK\android-sdk-windows. Look for the platform-tools directory.

From within this directory, Shift + right-click to open a context menu that includes the Open
PowerShell window here command. If you right-click without holding Shift, your
context menu won't include PowerShell. If you're using an older version of Windows 10, or
you have PowerShell disabled, Shift + Right-Click will open a command line instead.

From within PowerShell, type ./adb devices.

https://developer.oculus.com/documentation/mobilesdk/latest/concepts/mobile-adb/#mobile-android-debug-intro
https://developer.oculus.com/documentation/mobilesdk/latest/concepts/mobile-adb/#mobile-android-debug-intro
https://developer.oculus.com/documentation/mobilesdk/latest/concepts/mobile-adb/#mobile-android-debug-intro
https://developer.oculus.com/documentation/mobilesdk/latest/concepts/mobile-adb/#mobile-android-debug-intro
https://developer.oculus.com/documentation/mobilesdk/latest/concepts/mobile-adb/#mobile-android-debug-intro
https://developer.oculus.com/documentation/mobilesdk/latest/concepts/mobile-adb/#mobile-android-debug-intro
https://developer.oculus.com/documentation/mobilesdk/latest/concepts/mobile-adb/#mobile-android-debug-intro
https://developer.oculus.com/documentation/mobilesdk/latest/concepts/mobile-adb/#mobile-android-debug-intro
https://developer.oculus.com/documentation/mobilesdk/latest/concepts/mobile-adb/#mobile-android-debug-intro
https://developer.oculus.com/documentation/mobilesdk/latest/concepts/mobile-adb/#mobile-android-debug-intro
https://developer.oculus.com/documentation/mobilesdk/latest/concepts/mobile-adb/#mobile-android-debug-intro
https://developer.oculus.com/documentation/mobilesdk/latest/concepts/mobile-adb/#mobile-android-debug-intro
https://developer.oculus.com/documentation/mobilesdk/latest/concepts/mobile-adb/#mobile-android-debug-intro
https://developer.oculus.com/documentation/mobilesdk/latest/concepts/mobile-adb/#mobile-android-debug-intro
https://developer.oculus.com/documentation/mobilesdk/latest/concepts/mobile-adb/#mobile-android-debug-intro
https://developer.oculus.com/documentation/mobilesdk/latest/concepts/mobile-adb/#mobile-android-debug-intro
https://developer.oculus.com/documentation/mobilesdk/latest/concepts/mobile-adb/#mobile-android-debug-intro
https://developer.oculus.com/documentation/mobilesdk/latest/concepts/mobile-adb/#mobile-android-debug-intro
https://developer.oculus.com/documentation/mobilesdk/latest/concepts/mobile-adb/#mobile-android-debug-intro
https://developer.oculus.com/documentation/mobilesdk/latest/concepts/mobile-adb/#mobile-android-debug-intro
https://developer.oculus.com/documentation/mobilesdk/latest/concepts/mobile-adb/#mobile-android-debug-intro
https://developer.oculus.com/documentation/mobilesdk/latest/concepts/mobile-adb/#mobile-android-debug-intro
https://developer.oculus.com/documentation/mobilesdk/latest/concepts/mobile-adb/#mobile-android-debug-intro
https://developer.oculus.com/documentation/mobilesdk/latest/concepts/mobile-adb/#mobile-android-debug-intro
https://developer.oculus.com/documentation/mobilesdk/latest/concepts/mobile-adb/#mobile-android-debug-intro
https://developer.oculus.com/documentation/mobilesdk/latest/concepts/mobile-adb/#mobile-android-debug-intro
https://developer.oculus.com/documentation/mobilesdk/latest/concepts/mobile-adb/#mobile-android-debug-intro

Setting Up Your Development Environment Chapter 2

[64]

If you're using PowerShell, you must precede any call to launch a
program with ./. (Requiring ./ before an executable call is a safety
feature that's standard on Unix-based systems to prevent you from
accidentally launching an executable when you didn't mean to. Windows
now follows this convention as well.) If you're using the legacy command
prompt instead, you simply type the name of the executable: adb
devices. It's a good idea to get into the habit of using PowerShell instead
of the legacy command prompt. It's safer and you can do more with it.

Take a look at the following screenshot:

The adb devices command lists your currently-connected Android devices.

If the Go or Gear appears as Unauthorized, that means your PC was able to see it, but the
headset hasn't yet given the PC permission to talk to it. Put on the headset and accept the
confirmation dialog that should have appeared there. Run adb devices again and confirm
that the headset now appears as a device.

Generating a signature file for Samsung Gear
You do not need to create a signature file to deploy to Oculus Go or Quest.

For a Samsung Gear device, you'll need to create an Oculus Signature File (osig).

Follow the directions at https:/ / dashboard. oculus. com/ tools/ osig- generator/ , and
place the resulting file in your Unreal install directory,
under \Engine\Build\Android\Java\assets. If the assets directory doesn't yet exist,
create it.

https://dashboard.oculus.com/tools/osig-generator/
https://dashboard.oculus.com/tools/osig-generator/
https://dashboard.oculus.com/tools/osig-generator/
https://dashboard.oculus.com/tools/osig-generator/
https://dashboard.oculus.com/tools/osig-generator/
https://dashboard.oculus.com/tools/osig-generator/
https://dashboard.oculus.com/tools/osig-generator/
https://dashboard.oculus.com/tools/osig-generator/
https://dashboard.oculus.com/tools/osig-generator/
https://dashboard.oculus.com/tools/osig-generator/
https://dashboard.oculus.com/tools/osig-generator/
https://dashboard.oculus.com/tools/osig-generator/
https://dashboard.oculus.com/tools/osig-generator/
https://dashboard.oculus.com/tools/osig-generator/
https://dashboard.oculus.com/tools/osig-generator/
https://dashboard.oculus.com/tools/osig-generator/

Setting Up Your Development Environment Chapter 2

[65]

For more information on signature files, check here: https:/ /developer.
oculus. com/ documentation/ mobilesdk/ latest/ concepts/ mobile-
submission- sig- file/ .

Deploying a test project to the device
Now that we've installed all the required software and verified that our PC can see our
Android headset, let's create a project and deploy it to the device to make sure everything is
working correctly.

Setting up a test project
Launch Unreal Engine from the Epic launcher, and in the Projects browser, select New
Project. Select the Blueprint tab, the Blank template, and set your project settings to
Mobile/Tablet, Scalable 3D or 2D, No Starter Content. Choose a location for the project
and create it:

The options you set here determine what your project's starting settings will be, but you can change them later.

https://developer.oculus.com/documentation/mobilesdk/latest/concepts/mobile-submission-sig-file/
https://developer.oculus.com/documentation/mobilesdk/latest/concepts/mobile-submission-sig-file/
https://developer.oculus.com/documentation/mobilesdk/latest/concepts/mobile-submission-sig-file/
https://developer.oculus.com/documentation/mobilesdk/latest/concepts/mobile-submission-sig-file/
https://developer.oculus.com/documentation/mobilesdk/latest/concepts/mobile-submission-sig-file/
https://developer.oculus.com/documentation/mobilesdk/latest/concepts/mobile-submission-sig-file/
https://developer.oculus.com/documentation/mobilesdk/latest/concepts/mobile-submission-sig-file/
https://developer.oculus.com/documentation/mobilesdk/latest/concepts/mobile-submission-sig-file/
https://developer.oculus.com/documentation/mobilesdk/latest/concepts/mobile-submission-sig-file/
https://developer.oculus.com/documentation/mobilesdk/latest/concepts/mobile-submission-sig-file/
https://developer.oculus.com/documentation/mobilesdk/latest/concepts/mobile-submission-sig-file/
https://developer.oculus.com/documentation/mobilesdk/latest/concepts/mobile-submission-sig-file/
https://developer.oculus.com/documentation/mobilesdk/latest/concepts/mobile-submission-sig-file/
https://developer.oculus.com/documentation/mobilesdk/latest/concepts/mobile-submission-sig-file/
https://developer.oculus.com/documentation/mobilesdk/latest/concepts/mobile-submission-sig-file/
https://developer.oculus.com/documentation/mobilesdk/latest/concepts/mobile-submission-sig-file/
https://developer.oculus.com/documentation/mobilesdk/latest/concepts/mobile-submission-sig-file/
https://developer.oculus.com/documentation/mobilesdk/latest/concepts/mobile-submission-sig-file/
https://developer.oculus.com/documentation/mobilesdk/latest/concepts/mobile-submission-sig-file/
https://developer.oculus.com/documentation/mobilesdk/latest/concepts/mobile-submission-sig-file/
https://developer.oculus.com/documentation/mobilesdk/latest/concepts/mobile-submission-sig-file/
https://developer.oculus.com/documentation/mobilesdk/latest/concepts/mobile-submission-sig-file/
https://developer.oculus.com/documentation/mobilesdk/latest/concepts/mobile-submission-sig-file/
https://developer.oculus.com/documentation/mobilesdk/latest/concepts/mobile-submission-sig-file/

Setting Up Your Development Environment Chapter 2

[66]

Checking that your OculusVR plugin is enabled
Once the project has launched, select Settings | Plugins | Virtual Reality, and verify that
the OculusVR plugin is enabled. (It should already be.)

Setting a default map
Since we're going to be running this project as a standalone executable on our Gear or Go,
we need to tell it what map to open when it starts up. Save the empty map that was created
when the editor started, and give it any name you want.

Select Settings | Project Settings | Project | Maps & Modes, and set the map you just
saved as Editor Startup Map and Game Default Map.

Clearing the default mobile touch interface
Ordinarily, mobile applications assume you'll be touching the screen to operate them, but
of course this isn't going to happen in your headset, so we need to clear that default setting
from our project.

From Project Settings, select Engine | Input | Mobile, and from the Default Touch
Interface drop-down, select Clear to set it to None.

Setting your Android SDK project settings
Now, we need to configure our project for deployment to our Android headset.

Under Platforms | Android | APK Packaging, hit Configure Now, and Accept SDK
License (you'll only need to accept the license once):

Setting Up Your Development Environment Chapter 2

[67]

Hitting the Configure Now button will write a project.properties file to your project's Build/Android directory.

We need to set a few settings under this category as well:

Minumum SDK Version: 21
Target SDK Version: 21
Enable FullScreen Immersive on KitKat and above devices: True

You'll see some older documentation tell you to set your minimum and
target SDK versions to 19. This is true for Samsung Gear, but for Oculus
Go, you must select version 21.

Scroll down to the Advanced APKPackaging section and set the following:

Configure the AndroidManifest for deployment to Oculus Mobile to True

Older walkthroughs will refer to this setting as Configuring the
AndroidManifest for deployment to Gear VR. Its name has been changed.

Setting Up Your Development Environment Chapter 2

[68]

Setting your Android SDK locations
Now, select Platforms | Android SDK, and set the following (adjusting for wherever you
installed your SDK):

Location of Android SDK: C:/NVPACK/android-sdk-windows
Location of Android NDK: C:/NVPACK/android-ndk-r12b
Location of ANT: C:/NVPACK/apache-ant-1.8.2
Location of JAVA: C:/NVPACK/jdk1.8.0_77
SDK API Level: latest
NDK API Level: android-21

Refer to the following screenshot:

Make sure the directories you specify here point to actual locations on your drive.

Be aware that these directory names are going to change when you update
your Android SDKs (which you must remember to do whenever you
update your engine version. Make sure you're pointing to the correct
directories for each of these after an update, or you'll run into some
impressively cryptic errors).

Launching the test project
Close your project settings, and find the drop-down beside the Launch button. Open it, and
you should be able to see the serial number of your mobile VR headset:

Setting Up Your Development Environment Chapter 2

[69]

The devices listed here will vary depending on what platforms your project supports and what devices are found.

Select the headset to launch to it. It's totally normal for the editor to become unresponsive
for a short time as it gets things ready. Be patient. Once the editor becomes responsive
again, you should see something such as the following:

Android asset processing progress indicator

It's not a bad idea to select Window | Developer Tools | Output Log so that you can see
what it's doing, but this isn't required. Hitting the Show Output Log link will do the same
thing.

Get in the habit of watching your output log. Lots of developers ignore
this, but you shouldn't. You can learn a lot about what the engine is doing
by watching the log.

Setting Up Your Development Environment Chapter 2

[70]

This is going to take a while the first time you run it, because lots of shaders will need to be
compiled. Subsequent runs will go much faster.

Once the assets are compiled, Unreal will copy them to your device:

Deployment may take a while depending on how much data needs to be transferred to the device.

Once deployment is finished, the scene should run in your device:

Once this dialog indicates that the project is running on the device, you should be ready to test it.

Put on the headset and you should be in your scene. Congratulations! You've just deployed
a project to a mobile VR headset!

Using the Epic Games launcher
Before we go too much further, let's take a look at the Epic Games launcher—there's a ton
of useful material here, and this should be a starting place for much of your learning. It's
worth it to take some time to look around and see what resources are available to you. It's
easy to overlook these resources, but if you get used to understanding where you can learn
and find information when you need it, you'll get much further, much faster.

The launcher's Unreal Engine tab is broken into four major sections:

Unreal Engine
Learn
Marketplace
Library

Let's take a look at each of them.

Setting Up Your Development Environment Chapter 2

[71]

The Unreal Engine Tab
The Unreal Engine tab displays featured content and projects, which are definitely worth
exploring, but they'll become more relevant to you as you use the engine longer. As a new
user, pay particular attention to that row of icons right under the main banner. These are
valuable resources:

The Unreal Engine tab as of Unreal 4.22

The News link is a great way to keep up with what's going on; it mostly focuses
on new features, events, and interesting ways the engine is being used. This is
another one that will get more meaningful to you as you spend more and more
time in the engine.
The YouTube link takes you to the Unreal Engine YouTube channel. This is one
of the best places to find in-depth tutorials, feature highlights and project
spotlights. There's quite a lot of information in the Feature Highlight videos
especially that you're not likely to find anywhere else.
The AnswerHub is an essential resource for developers to ask and answer
questions. Just about any time you have a question, this should be one of the first
places you search for an answer. The chances are pretty high that you'll find
what you're looking for. Don't be shy about asking questions of your own, but do
try to search for existing questions and answers before you jump in and ask
something that's already been answered. Also, try to pay it forward—if you see a
question you know how to answer, contribute. This is how the community
works.
The Forums are a place for conversations about all topics related to the engine,
and are a great place to find out what's going on. Most plugin developers
maintain contact with their users on the forums too. There's a forum dedicated to
VR and AR development here: https:/ /forums. unrealengine. com/
development- discussion/ vr- ar-development.
The Roadmap link takes you to a Trello page that describes what's being worked
on for upcoming releases and what's planned for the more distant future. Early
on in your Unreal development career, this may not be so meaningful to you, but
as you get deeper into the engine, those upcoming changes will start to matter.

https://forums.unrealengine.com/development-discussion/vr-ar-development
https://forums.unrealengine.com/development-discussion/vr-ar-development
https://forums.unrealengine.com/development-discussion/vr-ar-development
https://forums.unrealengine.com/development-discussion/vr-ar-development
https://forums.unrealengine.com/development-discussion/vr-ar-development
https://forums.unrealengine.com/development-discussion/vr-ar-development
https://forums.unrealengine.com/development-discussion/vr-ar-development
https://forums.unrealengine.com/development-discussion/vr-ar-development
https://forums.unrealengine.com/development-discussion/vr-ar-development
https://forums.unrealengine.com/development-discussion/vr-ar-development
https://forums.unrealengine.com/development-discussion/vr-ar-development
https://forums.unrealengine.com/development-discussion/vr-ar-development
https://forums.unrealengine.com/development-discussion/vr-ar-development
https://forums.unrealengine.com/development-discussion/vr-ar-development
https://forums.unrealengine.com/development-discussion/vr-ar-development
https://forums.unrealengine.com/development-discussion/vr-ar-development
https://forums.unrealengine.com/development-discussion/vr-ar-development
https://forums.unrealengine.com/development-discussion/vr-ar-development

Setting Up Your Development Environment Chapter 2

[72]

Learn
This is one of the most important resources on the launcher. You won't regret the time you
spend here.

Let's begin by looking at the top bar:

The Learn tab as of Unreal 4.22

The Documentation link takes you to Unreal's documentation home at https:/ /
docs.unrealengine. com/ en- us. The Get Started with UE4 link on the
documentation page is a good place to learn the basics of the art, level design,
and programming pipelines. If you're brand new to Unreal Engine, we
recommend that you go through these basics so you know your way around the
editor. You'll have a much better time building the projects in this book, and
you'll get more out of them if you've done this. After you've gotten through the
basics, consider this documentation page to be your standard go-to reference any
time you need to work with a new tool or system in the engine.
The Video Tutorials link takes you to https:/ / academy. unrealengine. com/ , an
online learning site consisting of tons of detailed video tutorials on topics
centered around specific industries, roles, workflows, and concepts. These are
worthwhile classes, and are a great way to get an understanding of how the
different parts of the engine fit together to allow you to do whatever you need to
do.
The Community Wiki page is less useful than the others. As we
mentioned previously, the content on this page is not guaranteed to be up-to-
date, or even correct. It's worth knowing that it's there, but it's usually a better
idea to search for information on the forums and in the documentation than on
the Wiki, as incorrect information on the forums will usually be corrected fairly
quickly by other users, while it can fester on the Wiki.

https://docs.unrealengine.com/en-us
https://docs.unrealengine.com/en-us
https://docs.unrealengine.com/en-us
https://docs.unrealengine.com/en-us
https://docs.unrealengine.com/en-us
https://docs.unrealengine.com/en-us
https://docs.unrealengine.com/en-us
https://docs.unrealengine.com/en-us
https://docs.unrealengine.com/en-us
https://docs.unrealengine.com/en-us
https://docs.unrealengine.com/en-us
https://docs.unrealengine.com/en-us
https://academy.unrealengine.com/
https://academy.unrealengine.com/
https://academy.unrealengine.com/
https://academy.unrealengine.com/
https://academy.unrealengine.com/
https://academy.unrealengine.com/
https://academy.unrealengine.com/
https://academy.unrealengine.com/
https://academy.unrealengine.com/
https://academy.unrealengine.com/

Setting Up Your Development Environment Chapter 2

[73]

The content examples project
Below this bar, we have a few featured links to quick-start guides and blog posts, and then
a collection of engine feature samples. The most important of these is the Content
Examples project. All of the projects here are worth looking at for specific topics, but
Content Examples should be a regular reference for you. Let's install it now.

Click the Content Examples project to open its detail page, and hit the Create Project link
on the page:

The Content Examples project detail page

Setting Up Your Development Environment Chapter 2

[74]

You'll be asked where you want to put the project, and what engine version you'd like to
use to create it. Put it someplace reasonable (it's not a bad idea to maintain a directory
specifically for Unreal reference projects), and select your most recent engine version. Hit
Create to create the project. The project will launch automatically after you've created it,
and later on you can access it from the My Projects section of the Library tab. Let's allow
the project to launch, or launch it specifically from your Library tab once it's been created:

When launching a project, note the Unreal Editor version number and the Loading progress.

It's natural for the project to take a little while to initialize the first time you launch it.
Unreal is building assets for your machine. If it appears to be hung up for a few minutes at
45% or 95%, don't worry—it isn't. It's building animations, shaders, and other assets.
Subsequent launches will go much faster.

Once the project has opened, hit File | Open Level (or Ctrl + O) to open one of the demo
maps. Hit the Play button, and use standard WASD keyboard controls to move around and
look at examples:

Setting Up Your Development Environment Chapter 2

[75]

One of the demo levels contained within the Content Examples project

Take some time to poke around this project to familiarize yourself with the editor, and get a
sense of what Unreal can do. Later on, when you want to include something in your
project, make it a habit to check to see whether there's an example in Content Examples
that can give you a head-start on figuring out how it's done.

Seriously, this is one of the most useful and often overlooked resources available to you.
There's a ton of good stuff in the Content Examples project.

Setting Up Your Development Environment Chapter 2

[76]

Gameplay concepts and example games
At the bottom of the Learn page is a series of projects illustrating specific gameplay
concepts and a series of example games. These are incredibly valuable resources for
learning more advanced topics and for learning what finished projects in Unreal Engine
look like. The content of these projects tends to be more advanced, however, as these
mostly represent finished games in a releasable state. You may want to spend some time in
the engine before you download them and start to explore. For now, you should know that
they're there. Feel free to dig around if you're curious and want to look ahead.

Marketplace
We're going to make use of free assets from Marketplace in this book, so you should take
some time to look at this tab:

Marketplace content as of Unreal 4.20

Setting Up Your Development Environment Chapter 2

[77]

Epic provides an astonishing amount of high-quality free material in the Marketplace.
Often, if Epic cancels a game that it was developing internally, it'll make the game assets
available for free on the Marketplace. Make use of this, especially when building your
learning projects. Assets from Infinity Blade are especially useful for projects in VR, as they
were originally intended for a mobile game, so they're optimized reasonably well for VR's
stringent demands. We'll see how to add Marketplace content to existing projects as we
start building in the next chapters. Don't ignore the paid material on the Marketplace
either. Much of it is excellent, and it can give you a huge leg-up in building your projects,
whether you use it for prototype, or in your released title.

Library
The Library tab is where you maintain your installed engine versions, open your projects,
and access your vault of plugins and content packs that you downloaded from the Learn
tab and Marketplace:

The Library panel as of Unreal 4.20

Setting Up Your Development Environment Chapter 2

[78]

Use the ENGINE VERSIONS section to update your installed engine versions, install new
engine versions, and modify their options.

A quick word about engine versions: If you see an indicator appear on an
installed engine version indicating that it can be updated, you should
update it. Updates to engine releases, such as going from 4.20.2 to 4.20.3,
are generally safe to apply, as they involve bug fixes but don't change the
way anything works in ways that could break your project.

In addition to updating your currently installed engine version, you can also use the + sign
beside the ENGINE VERSIONS label to add additional installed versions. This allows you
to install older versions if you need to open older content that hasn't yet been updated to
the current version, or to install preview versions if you'd like to test something that's
coming in the next release.

Use caution when working in preview versions. They're intended to allow
you to look ahead, but they aren't guaranteed to be stable. Don't put
mission-critical work on a preview version. Work in release versions, and
use previews to see what's coming or to see how you might need to
update your project when you move to the new version.

The My Projects section allows you to launch your projects. Project thumbnails are marked
with the engine version number for which they're currently set up. You can update a
project to a new engine version by launching the newer version, and then opening that
project into the newer version. When you do this, you'll be presented with a dialog asking
whether you'd like to copy the project or convert it in-place. Converting in place is
dangerous; it's recommended that you perform your updates on a copy to be sure nothing
in your project conflicts with the update. (That's why the option to convert in-place is
buried under the More Options... link.) If you have a really old project that's a few versions
behind, you're generally going to have better luck converting it a version at a time than
trying to jump a few versions. It can work, but whether it does will depend entirely on how
many versions you're trying to skip and what's in your project:

The Convert Project dialog gives you a few options to determine how you want to handle an engine update.

Setting Up Your Development Environment Chapter 2

[79]

You don't have to launch your projects using the Epic Games Launcher;
you can always navigate to where you saved the project and double-click
the .uproject file directly to launch it in its associated engine version.

The Vault section contains everything you own—learning projects, plugins, and content
packs. You can add plugins or content to existing projects and create new projects here.

Most of the time, the Library tab will be your default tab, since you'll be using it to launch
projects, but as we mentioned a moment ago, don't forget about the others.

Setting up for C++ development
This section is entirely optional. None of the projects in this book will require you to
develop in C++, but we will occasionally highlight items in native code for those interested
in going deeper. If you don't anticipate working in code, or if pages of code give you the
screaming heebie-jeebies, it's completely fine to jump over this section and the one that
follows it.

It's absolutely not required to use C++ when developing in Unreal. The
Blueprint visual scripting language is incredibly expressive, and there
isn't much that it can't do. Most applications, including pretty advanced
projects, can be built entirely in Blueprint. Many new Unreal users see the
C++ support and worry that they'll have to learn the language to use the
engine. You don't. (If you are interested in learning C++ though, this can
be a great way to do it.)

Still here? Excellent. The first thing you'll need if you plan to develop in C++ is an editor
and compiler with which to build your code. This type of application is called an
Integrated Development Environment (IDE). For development in Unreal 4.20 and beyond
in Windows, you should be using Microsoft's Visual Studio 2017 (VS2017). Visual Studio
comes in several flavors, but for development in Unreal, you don't need any of the
professional or Enterprise edition features. The free Community edition has everything you
need.

Setting Up Your Development Environment Chapter 2

[80]

Installing Microsoft Visual Studio Community
Head to the Microsoft Visual Studio Community page, https:/ / visualstudio.
microsoft.com/vs/ community/ , to download the installer. When you run the installer,
you'll be presented with a few options:

The Visual Studio Community 2017 Setup dialog determines which languages and development tasks your installation will be configured to handle.

Under the Workloads tab, select Game development with C++, and then on the Summary
sidebar on the right, make sure you've checked the following:

Unreal Engine installer (required)
Windows 10 SDK (required—should already be checked by default)
Windows 8.1 SDK (required on VS 2017—should already be checked by default)
C++ profiling tools (optional but useful)

If you're going to be developing for Samsung Gear or Oculus Go, make sure you also
include this:

Android support for Unreal Engine (required for Gear or Go development)

This installs the Java development kit and the Android tools you're going to need to talk to
the Gear and the Go:

https://visualstudio.microsoft.com/vs/community/
https://visualstudio.microsoft.com/vs/community/
https://visualstudio.microsoft.com/vs/community/
https://visualstudio.microsoft.com/vs/community/
https://visualstudio.microsoft.com/vs/community/
https://visualstudio.microsoft.com/vs/community/
https://visualstudio.microsoft.com/vs/community/
https://visualstudio.microsoft.com/vs/community/
https://visualstudio.microsoft.com/vs/community/
https://visualstudio.microsoft.com/vs/community/
https://visualstudio.microsoft.com/vs/community/
https://visualstudio.microsoft.com/vs/community/
https://visualstudio.microsoft.com/vs/community/

Setting Up Your Development Environment Chapter 2

[81]

The Visual Studio 2017 Installation details panel allows you to determine which options are installed.

By setting these options, you've told Visual Studio to include C++ language support, and to
include the necessary supporting files to run and develop for Unreal.

These settings are important. Visual Studio 2017 no longer automatically
assumes that you're going to be developing in C++, so you need to select
which languages you want it to support when you install it. If you realize
later on that you missed something, use your Add and Remove Programs
control panel to modify your VS2017 installation options.

Recommended settings
There are a few things you'll want to change in Visual Studio before you start working.
These aren't required, but do make it play more nicely with Unreal. They're documented in
depth here: https:/ /docs. unrealengine. com/en- us/ Programming/ Development/
VisualStudioSetup. Run through this page and make the recommended changes.

https://docs.unrealengine.com/en-us/Programming/Development/VisualStudioSetup
https://docs.unrealengine.com/en-us/Programming/Development/VisualStudioSetup
https://docs.unrealengine.com/en-us/Programming/Development/VisualStudioSetup
https://docs.unrealengine.com/en-us/Programming/Development/VisualStudioSetup
https://docs.unrealengine.com/en-us/Programming/Development/VisualStudioSetup
https://docs.unrealengine.com/en-us/Programming/Development/VisualStudioSetup
https://docs.unrealengine.com/en-us/Programming/Development/VisualStudioSetup
https://docs.unrealengine.com/en-us/Programming/Development/VisualStudioSetup
https://docs.unrealengine.com/en-us/Programming/Development/VisualStudioSetup
https://docs.unrealengine.com/en-us/Programming/Development/VisualStudioSetup
https://docs.unrealengine.com/en-us/Programming/Development/VisualStudioSetup
https://docs.unrealengine.com/en-us/Programming/Development/VisualStudioSetup
https://docs.unrealengine.com/en-us/Programming/Development/VisualStudioSetup
https://docs.unrealengine.com/en-us/Programming/Development/VisualStudioSetup
https://docs.unrealengine.com/en-us/Programming/Development/VisualStudioSetup
https://docs.unrealengine.com/en-us/Programming/Development/VisualStudioSetup
https://docs.unrealengine.com/en-us/Programming/Development/VisualStudioSetup
https://docs.unrealengine.com/en-us/Programming/Development/VisualStudioSetup

Setting Up Your Development Environment Chapter 2

[82]

Here's a quick overview of the changes the page is going to ask you to make:

Increase the width of the Solution Configurations control on the Standard
toolbar because Unreal solution configuration names can be too long to read
otherwise.
Ensure that the Solution Platforms control is shown on the Standard toolbar. It
should already be by default.
Ensure that Tools | Options | Projects and Solutions | Always show Error List
if build finishes with error is turned off.
Set Tools | Options | Text Editor | C/C++ | View | Show Inactive Blocks to
False.
Ensure that your Intellisense options under Tools | Options | Text Editor |
C/C++ | Advanced are not disabled. Older instructions would have told you to
disable Intellisense, as it used to work poorly with Unreal's source code. This is
no longer the case, and instructions that tell you to turn it off are now out of date.
If you turned Intellisense off in the past, turn it back on now.

The UnrealVS plugin
Now that you have Unreal Engine installed and Visual Studio set up, we're going to want
to install the UnrealVS plugin to Visual Studio in order, to simplify a number of common
tasks you'll be performing in Visual Studio while working with Unreal.

Installing the UnrealVS plugin
Make sure Visual Studio is closed, and navigate to the location where you installed your
current Unreal Engine version, and under Engine\Extras, find the UnrealVS directory.
Open the directory corresponding to your version of Visual Studio (in our case, this is
VS2017), and run the UnrealVS.vsix installer to install the plugin.

For Unreal 4.20, install it in the standard location. For example, you'll find
the plugin here:
C:\Program Files\Epic

Games\UE_4.20\Engine\Extras\UnrealVS\VS2017.

Setting Up Your Development Environment Chapter 2

[83]

Turning on the UnrealVS toolbar
Once you've finished running the plugin installer, open Visual Studio, and right-click an
empty area of the toolbar to set your active toolbars. Turn on the UnrealVS toolbar:

Right-clicking an empty toolbar area in Visual Studio 2017 allows you to select which toolbars are visible.

There's additional documentation on configuring and using UnrealVS here: https:/ / docs.
unrealengine.com/ en- us/ Programming/ Development/ VisualStudioSetup/ UnrealVS. By
installing it and turning on the toolbar, you've done everything you need to get it running,
but it's worthwhile to take a look at this page to get a sense of what UnrealVS does for you
and how you can use it.

Unreal debugging support
There's one more thing we need to do before we're ready to go, and that is to install a
debugging support file for Unreal in Visual Studio.

https://docs.unrealengine.com/en-us/Programming/Development/VisualStudioSetup/UnrealVS
https://docs.unrealengine.com/en-us/Programming/Development/VisualStudioSetup/UnrealVS
https://docs.unrealengine.com/en-us/Programming/Development/VisualStudioSetup/UnrealVS
https://docs.unrealengine.com/en-us/Programming/Development/VisualStudioSetup/UnrealVS
https://docs.unrealengine.com/en-us/Programming/Development/VisualStudioSetup/UnrealVS
https://docs.unrealengine.com/en-us/Programming/Development/VisualStudioSetup/UnrealVS
https://docs.unrealengine.com/en-us/Programming/Development/VisualStudioSetup/UnrealVS
https://docs.unrealengine.com/en-us/Programming/Development/VisualStudioSetup/UnrealVS
https://docs.unrealengine.com/en-us/Programming/Development/VisualStudioSetup/UnrealVS
https://docs.unrealengine.com/en-us/Programming/Development/VisualStudioSetup/UnrealVS
https://docs.unrealengine.com/en-us/Programming/Development/VisualStudioSetup/UnrealVS
https://docs.unrealengine.com/en-us/Programming/Development/VisualStudioSetup/UnrealVS
https://docs.unrealengine.com/en-us/Programming/Development/VisualStudioSetup/UnrealVS
https://docs.unrealengine.com/en-us/Programming/Development/VisualStudioSetup/UnrealVS
https://docs.unrealengine.com/en-us/Programming/Development/VisualStudioSetup/UnrealVS
https://docs.unrealengine.com/en-us/Programming/Development/VisualStudioSetup/UnrealVS
https://docs.unrealengine.com/en-us/Programming/Development/VisualStudioSetup/UnrealVS
https://docs.unrealengine.com/en-us/Programming/Development/VisualStudioSetup/UnrealVS
https://docs.unrealengine.com/en-us/Programming/Development/VisualStudioSetup/UnrealVS
https://docs.unrealengine.com/en-us/Programming/Development/VisualStudioSetup/UnrealVS

Setting Up Your Development Environment Chapter 2

[84]

Navigate to your engine install directory and find
Engine\Extras\VisualStudioDebugging. Look for the UE4.natvis file there and copy
it.

Paste it into one of two locations.

You can either install it to your Visual Studio install location, in the following path (you'll
need admin rights on your machine to do this):

[VisualStudioInstallPath]\Common7\Packages\Debugger\Visualizers
\UE4.natvis

Example: C:\Program Files (x86)\Microsoft Visual
Studio\2017\Community\Common7\Packages\Debugger\Visualizers

Alternatively, you can install it to your personal Documents directory. If you check within
your user profile's Documents directory, you should find a Visual Studio 2017 directory
that was automatically created for you when you installed the IDE. If a visualizers
subdirectory already exists inside this directory, paste UE4.natvis inside it. If not, create
the directory and put the natvis file there:

[UserProfile]\Documents\Visual Studio
2017/Visualizers/UE4.natvis

Example: D:\OneDrive\Documents\Visual Studio 2017\Visualizers

A .natvis file contains instructions to help Visual Studio display the
contents of native data types defined within your particular solution.
Unreal defines its own custom string type (FString), custom array types
(TArray) and many others. UE4.natvis tells Visual Studio how to
display the data contained within these types in a readable way when
you're debugging.

Test everything out
Now, we're ready to verify that we've set everything up correctly. From the Epic Games
launcher, launch your current engine version. Under the New Project tab, select C++.

If you see a warning such as the following, make sure you've installed Visual Studio 2017,
and that you installed it with the game development with C++, and the recommended
settings were selected:

Setting Up Your Development Environment Chapter 2

[85]

If you see this warning, you either haven't yet installed Visual Studio, or haven't set up the required installation options.

If you've installed VS2017 and you do see a warning, it means you're missing one of the
required options we just mentioned. Use your Add and Remove Programs control panel to
modify your VS2017 install and add these options.

If you don't see any warnings, you're ready to create a quick test project. Let's select a Basic
Code template under the C++ tab, with the default options, and choose a location and name
for it:

Creating a C++ project works similarly to creating a Blueprint project.

Hit Create Project, and allow the tool to create a new project for you. Give it a moment. If
you've set everything up correctly, Unreal Editor should open your newly created project,
and Visual Studio 2017 should open to the newly created project solution file. Let's close the
Unreal Editor now and build and launch the new project from VS2017 just to see how this is
done.

Setting Up Your Development Environment Chapter 2

[86]

In the Solution Explorer tab in Visual Studio, find your new project solution under the
Games tree. Right-click it and select Set as Startup Project:

The Solution Explorer on the left side shows you what files are contained in your project. The Workspace on the right shows the contents of the currently-loaded file.

Right-click it again, and select UnrealVS Quick Build | Win64 | DebugGame Editor. Your
project should begin building.

There are two solution configurations you'll commonly use when
developing for Unreal in C++: DebugGame Editor and Development
Editor. Visual Studio is what's called an optimizing compiler, which
means that it modifies your code somewhat when it compiles it to make it
run faster. This has the advantage of letting you write easily readable code
that still runs quickly after it's been compiled, but what this means in
practice is that if you debug a development build, not every bit of data
will be visible, because some variables will have been optimized out.

A debug build leaves everything as you wrote it, so it runs a little more
slowly, but you can see exactly what each variable contains. Most of the
time, you'll want to use the Development Editor configuration.

You'll see that in addition to DebugGame Editor and Development Editor,
you also have DebugGame and Development configurations available.
You won't use these when working in the editor; they don't include the
editor and require your content to be cooked into a release-ready format.
(We'll talk about cooking later on.)

Setting Up Your Development Environment Chapter 2

[87]

For this example, we selected a DebugGame Editor configuration so you'd have a chance
to see the compiler build a configuration that hadn't been built yet.

Once your project has finished building, check your output. If it looks something like this,
you're good to go:

1>Deploying BasicCodeTestEditor Win64 DebugGame...
1>Total build time: 45.92 seconds (Parallel executor: 27.81 seconds)
1>Done building project "BasicCodeTest.vcxproj".
========== Build: 1 succeeded, 0 failed, 0 up-to-date, 0 skipped ==========

Now, on your standard toolbar, use the Solution Configurations control to select the
debug editor configuration you just built:

The Solution Configurations control determines what type of build you're going to create.

Setting Up Your Development Environment Chapter 2

[88]

Hit F5, or select Debug | Start Debugging, to launch the editor from Visual Studio. If
everything is set up correctly, your project should launch, and your Visual Studio window
should look something like this:

An Unreal C++ project loaded in Visual Studio Community 2017. The orange bar at the bottom indicates that the project is running and Visual Studio's debugger is connected to
it.

Congratulations! You're now set up to develop in C++.

Let's take a look at a quick example of why this can be so useful. In the default scene that
was automatically created in your Unreal Editor, select Floor from your World Outliner.
Right-click it:

Setting Up Your Development Environment Chapter 2

[89]

You can open C++ files directly from within the Unreal Editor.

Setting Up Your Development Environment Chapter 2

[90]

The floor is a Static Mesh actor. Select the option to open StaticMeshActor.h. You'll be
switched automatically to Visual Studio, and the StaticMeshActor header file will be
opened:

If you're not able to open StaticMeshActor.h, check to be sure you
installed the engine source for your engine version. Head to the Library
tab, find the engine version you're running under Engine Versions, and
select Options from the drop-down to the right of the Launch button.
Add Engine Source if you hadn't already.

The C++ header file for the StaticMeshActor class describes the class and declares its functions.

This is one of the many amazing things about Unreal Engine—Epic gives you the source
code—all of it. For any object, any Blueprint node, anything at all in the editor, you can
view the source code underneath. There are no black boxes. Again, this is by no means a
thing you have to do in Unreal—the documentation is excellent, but if you're ever facing a
mystery and really need to figure out what's going on, being able to read the source code
can be a lifesaver.

Setting Up Your Development Environment Chapter 2

[91]

Building Unreal from source code
You absolutely do not need to download source code and build the engine
from scratch for almost anything you'll realistically be doing with it. This
section is included here so that you have the freedom to make engine
changes if you ever need to, but you can safely skip this. It's rare even for
professional developers to work from the bleeding edge source.

This next section is even more optional than the previous. You'll only ever need to do this if
you intend to modify the behavior of the engine itself, or if you want to work with a feature
that's so new that it hasn't yet been bundled into one of the releases. That's another part of
the beauty of this engine though—if you really need it to do something it doesn't already
do, you can make the changes yourself. Also, if you make changes that improve the engine
or might be useful to other developers, you can use GitHub to contribute your changes to
Epic. Lots of developers do, and the net effect of it is that this engine grows and improves at
an astonishing pace.

For real though, you can skip this if you don't anticipate needing it. We're going to get a
little into the weeds here.

Setting up a GitHub account and installing Git
The source code for the Unreal engine is distributed using a site called GitHub. Git is a
version-control system (a system for managing code revisions and distributing them to
users), and GitHub is a centralized location for housing and sharing Git repositories. To
download the Unreal Engine source code in a format that allows you to build the engine
yourself, you'll need Git and GitHub.

Lots of people confuse Git with GitHub. They're not the same thing. Git is
a version control system that allows users to track changes to code,
distribute those changes, and manage them in many other ways. GitHub
is a website that allows users to store and share Git data. There are other
sites that also allow you to do this, though GitHub is the largest, or you
could set up a Git repository entirely on your own.

Setting up or logging into your GitHub account
If you do plan to dig into the absolute bleeding edge of Unreal development, the first thing
you're going to need is a GitHub account. Head to https:/ /github. com/ and sign in, or
sign up if you don't already have an account.

https://github.com/
https://github.com/
https://github.com/
https://github.com/
https://github.com/
https://github.com/
https://github.com/
https://github.com/

Setting Up Your Development Environment Chapter 2

[92]

Installing Git for Windows
Head to https://git- scm. com/ and download Git for Windows. Git is a software
configuration management tool, which allows you to synchronize your local Unreal source
code repository with the source code Epic supplies.

Install it using the default options, with one exception: when the installer asks what you'd
like to use as your default editor for Git, the currently selected choice will be Vim. Vim is
wonderful for those who have gotten used to using it, but for everyone else, it can be pretty
counter-intuitive because it follows a completely different set of conventions from pretty
much any other application you've used. You'll almost certainly want to select a different
text editor if you aren't already one of those people who uses and loves Vim:

You can choose your preferred text editor as Git's default editor when you set Git up.

It's a good idea to have a robust text editor on your system anyway, as it can be useful for
editing config files and a ton of other tasks. Common choices are Visual Studio Code,
Sublime Text, Notepad++, or Atom. If you have a favorite, feel free to use it. If you don't,
Visual Studio Code is a good choice, as it's free and follows the same conventions as Visual
Studio. If you need it, grab it here: https:/ /code. visualstudio. com/.

https://git-scm.com/
https://git-scm.com/
https://git-scm.com/
https://git-scm.com/
https://git-scm.com/
https://git-scm.com/
https://git-scm.com/
https://git-scm.com/
https://git-scm.com/
https://git-scm.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/

Setting Up Your Development Environment Chapter 2

[93]

Installing Git Large File Storage
Next, you're going to need to install Git Large File Storage (Git-LFS). This allows Git to
manage big binary files such as the ones Unreal generates.

Head to https://git- lfs. github. com/ , download Git-LFS, and install it.

Now, you need to configure Git to use Git-LFS. To do this, do the following:

Open Git Bash—a command-line tool for managing Git, which was installed a1.
moment ago when you installed Git for Windows. In Git Bash, type git lfs
install and hit Enter:

Git Bash is a terminal window specifically used to communicate with Git.

Once you see that Git LFS has been initialized, you can close Git Bash.

Installing a Git GUI
It's not required that you use a GUI to operate Git. Many developers
operate Git directly from the command line instead. Certain Git
operations are easier to perform this way. The following instructions
apply if you'd like to use a GUI for Git.

Head to https://desktop. github. com/ and download GitHub Desktop. There are many
other Git GUI applications out there; another popular choice is Atlassian's SourceTree,
which you can find at https:/ / www. sourcetreeapp. com/ , but for simplicity's sake for now,
we're going to stick with GitHub Desktop. During the installation, the installer will ask you
for credentials for the GitHub account you just created. Enter them here.

https://git-lfs.github.com/
https://git-lfs.github.com/
https://git-lfs.github.com/
https://git-lfs.github.com/
https://git-lfs.github.com/
https://git-lfs.github.com/
https://git-lfs.github.com/
https://git-lfs.github.com/
https://git-lfs.github.com/
https://git-lfs.github.com/
https://git-lfs.github.com/
https://git-lfs.github.com/
https://desktop.github.com/
https://desktop.github.com/
https://desktop.github.com/
https://desktop.github.com/
https://desktop.github.com/
https://desktop.github.com/
https://desktop.github.com/
https://desktop.github.com/
https://desktop.github.com/
https://desktop.github.com/
https://www.sourcetreeapp.com/
https://www.sourcetreeapp.com/
https://www.sourcetreeapp.com/
https://www.sourcetreeapp.com/
https://www.sourcetreeapp.com/
https://www.sourcetreeapp.com/
https://www.sourcetreeapp.com/
https://www.sourcetreeapp.com/
https://www.sourcetreeapp.com/
https://www.sourcetreeapp.com/

Setting Up Your Development Environment Chapter 2

[94]

Once you've finished installing, GitHub Desktop should start up, and you should be
looking at a window that looks something like this:

Git GUI's like GitHub Desktop aren't required to communicate with Git, but can be helpful when you're staring out.

Connecting your GitHub account to your Epic Games
account
Navigate to https:/ /www. unrealengine. com and if you're not logged in yet, log in now.
Find your username in the lower-left corner of the page, and hover over it to reveal the
drop-down menu. Select the Manage Account option:

https://www.unrealengine.com
https://www.unrealengine.com
https://www.unrealengine.com
https://www.unrealengine.com
https://www.unrealengine.com
https://www.unrealengine.com
https://www.unrealengine.com
https://www.unrealengine.com
https://www.unrealengine.com

Setting Up Your Development Environment Chapter 2

[95]

The account management link as of Unreal 4.22. This opens a browser window to https://www.unrealengine.com/account/personal

Be aware that menus in the Epic Games Launcher change frequently. You can also handle
this step by navigating to https:/ /www. unrealengine. com/account/ personal. Open the
Connected Accounts tab, find the GitHub icon, and hit Connect to connect your Epic
account to GitHub. Agree to the EULA if you need to, and sign into GitHub if it asks you to
do so. Finally, if the authorization utility asks, click the Authorize Epic Games button. You
should receive an email confirming that you've done this. If you need further help or if
something goes wrong, check the documentation at https:/ /www. unrealengine. com/ en-
US/ue4-on-github.

Confirm that everything is set up correctly by navigating to https:/ /github. com/
EpicGames/UnrealEngine. If you're able to see the page, you're properly connected. If not,
ensure that you've properly connected your account and been authorized to see the
UnrealEngine repository.

A word about Git: Git is a phenomenally useful tool, but the work it does
can seem fairly complex at first. Detailing all the things you should know
about Git falls outside the scope of this book, but we highly recommend
that you spend some time to learn what Git is and how it works if you
plan to use it. This is a good place to start: https:/ /git- scm. com/ book/
en/v2/ Getting- Started- Git- Basics. To understand how GitHub works
with Git, start here: https:/ /guides. github. com/ activities/ hello-
world/ .

Downloading the Unreal Engine source code
Now, you're ready to pull the source. Let's look at how to do this. Navigate to https:/ /
github.com/EpicGames/ UnrealEngine, and take a look around the page. There's a ReadMe

https://www.unrealengine.com/account/personal
https://www.unrealengine.com/account/personal
https://www.unrealengine.com/account/personal
https://www.unrealengine.com/account/personal
https://www.unrealengine.com/account/personal
https://www.unrealengine.com/account/personal
https://www.unrealengine.com/account/personal
https://www.unrealengine.com/account/personal
https://www.unrealengine.com/account/personal
https://www.unrealengine.com/account/personal
https://www.unrealengine.com/account/personal
https://www.unrealengine.com/account/personal
https://www.unrealengine.com/account/personal
https://www.unrealengine.com/en-US/ue4-on-github
https://www.unrealengine.com/en-US/ue4-on-github
https://www.unrealengine.com/en-US/ue4-on-github
https://www.unrealengine.com/en-US/ue4-on-github
https://www.unrealengine.com/en-US/ue4-on-github
https://www.unrealengine.com/en-US/ue4-on-github
https://www.unrealengine.com/en-US/ue4-on-github
https://www.unrealengine.com/en-US/ue4-on-github
https://www.unrealengine.com/en-US/ue4-on-github
https://www.unrealengine.com/en-US/ue4-on-github
https://www.unrealengine.com/en-US/ue4-on-github
https://www.unrealengine.com/en-US/ue4-on-github
https://www.unrealengine.com/en-US/ue4-on-github
https://www.unrealengine.com/en-US/ue4-on-github
https://www.unrealengine.com/en-US/ue4-on-github
https://www.unrealengine.com/en-US/ue4-on-github
https://www.unrealengine.com/en-US/ue4-on-github
https://www.unrealengine.com/en-US/ue4-on-github
https://github.com/EpicGames/UnrealEngine
https://github.com/EpicGames/UnrealEngine
https://github.com/EpicGames/UnrealEngine
https://github.com/EpicGames/UnrealEngine
https://github.com/EpicGames/UnrealEngine
https://github.com/EpicGames/UnrealEngine
https://github.com/EpicGames/UnrealEngine
https://github.com/EpicGames/UnrealEngine
https://github.com/EpicGames/UnrealEngine
https://github.com/EpicGames/UnrealEngine
https://git-scm.com/book/en/v2/Getting-Started-Git-Basics
https://git-scm.com/book/en/v2/Getting-Started-Git-Basics
https://git-scm.com/book/en/v2/Getting-Started-Git-Basics
https://git-scm.com/book/en/v2/Getting-Started-Git-Basics
https://git-scm.com/book/en/v2/Getting-Started-Git-Basics
https://git-scm.com/book/en/v2/Getting-Started-Git-Basics
https://git-scm.com/book/en/v2/Getting-Started-Git-Basics
https://git-scm.com/book/en/v2/Getting-Started-Git-Basics
https://git-scm.com/book/en/v2/Getting-Started-Git-Basics
https://git-scm.com/book/en/v2/Getting-Started-Git-Basics
https://git-scm.com/book/en/v2/Getting-Started-Git-Basics
https://git-scm.com/book/en/v2/Getting-Started-Git-Basics
https://git-scm.com/book/en/v2/Getting-Started-Git-Basics
https://git-scm.com/book/en/v2/Getting-Started-Git-Basics
https://git-scm.com/book/en/v2/Getting-Started-Git-Basics
https://git-scm.com/book/en/v2/Getting-Started-Git-Basics
https://git-scm.com/book/en/v2/Getting-Started-Git-Basics
https://git-scm.com/book/en/v2/Getting-Started-Git-Basics
https://git-scm.com/book/en/v2/Getting-Started-Git-Basics
https://git-scm.com/book/en/v2/Getting-Started-Git-Basics
https://git-scm.com/book/en/v2/Getting-Started-Git-Basics
https://git-scm.com/book/en/v2/Getting-Started-Git-Basics
https://guides.github.com/activities/hello-world/
https://guides.github.com/activities/hello-world/
https://guides.github.com/activities/hello-world/
https://guides.github.com/activities/hello-world/
https://guides.github.com/activities/hello-world/
https://guides.github.com/activities/hello-world/
https://guides.github.com/activities/hello-world/
https://guides.github.com/activities/hello-world/
https://guides.github.com/activities/hello-world/
https://guides.github.com/activities/hello-world/
https://guides.github.com/activities/hello-world/
https://guides.github.com/activities/hello-world/
https://guides.github.com/activities/hello-world/
https://guides.github.com/activities/hello-world/
https://guides.github.com/activities/hello-world/
https://github.com/EpicGames/UnrealEngine
https://github.com/EpicGames/UnrealEngine
https://github.com/EpicGames/UnrealEngine
https://github.com/EpicGames/UnrealEngine
https://github.com/EpicGames/UnrealEngine
https://github.com/EpicGames/UnrealEngine
https://github.com/EpicGames/UnrealEngine
https://github.com/EpicGames/UnrealEngine
https://github.com/EpicGames/UnrealEngine
https://github.com/EpicGames/UnrealEngine

Setting Up Your Development Environment Chapter 2

[96]

file on this page as well. It's highly recommended that you read it.

Setting Up Your Development Environment Chapter 2

[97]

Choosing your source branch
Note that Epic maintains multiple branches of the Unreal Engine repository:

The release branch contains tested source code and is equivalent to the source
code you get by downloading the engine using the Epic Games launcher.
The promoted branch contains less-tested code that's used internally by Epic's
designers and artists. It's fairly stable and will contain newer, but also less stable,
code than that on the release branch.
The master branch is the absolute bleeding edge, and contains changes more-or-
less the moment Epic's engineers submit them. There's no guarantee that these
changes will be stable though, or even compile. If you plan to contribute to the
engine though, you should be on this branch:

This view of the Epic Games / UnrealEngine GitHub repository allows you to choose your current branch and download its contents.

For now, let's stick with the release branch. Select it using the Branch drop-down near the
upper-left corner.

Forking the repository
We're going to Fork this repository. Forking a Git repository makes a copy of it that allows
you to make your own changes without impacting the main repository. Hit the Fork button
near the upper-right. This will create a personal repository for you containing the source
code you just forked.

Setting Up Your Development Environment Chapter 2

[98]

Cloning the repository to your local machine
Now, you need to get it onto your desktop. Hit the green Clone or download button on the
right-hand side of the page:

When cloning a repository, you have the option to choose your authentication method and how you'd like the content to be delivered.

You have a few options here.

Option 1 – Cloning using GitHub Desktop
If you're using GitHub Desktop as a GUI, select Open in Desktop and allow the page to
launch GitHub Desktop. GitHub Desktop will ask you where you want to store the new
repository. Tell it where to put it and hit Clone:

Ensure that the location you choose for your local path has room to hold the engine and its content.

Setting Up Your Development Environment Chapter 2

[99]

Option 2 – Cloning from the command line
If you're using a command line, hit the Copy to Clipboard button to the right of the
repository's URL, and then open a Windows Command Prompt and navigate to the
directory where you'd like to house your local repository. Once there, type git clone, and
paste the URL you just copied:

git clone https://github.com/yourusername/UnrealEngine_YourFork.git

The source code will now be downloaded to the location you specified.

Downloading engine binary content
Navigate to the location where you downloaded the Unreal Engine source just now, and
look for the Setup.bat file there. Run it:

Unreal Engine content is delivered separately from the source code. You must run this .bat file before the engine can work.

This batch file will now check for engine binary content that's missing or needs to be
updated, and will update it. It may take a while the first time you run it.

Generating project files
Next, find GenerateProjectFiles.bat in the same directory and run it. This will create
the UE4.sln solution file for Visual Studio and the required project files for each of Unreal
Engine's sub-projects. This should run fairly quickly.

Opening and building the solution
Open the newly generated UE4.sln file in Visual Studio. Ensure that the Development
Editor solution configuration is set, and right-click the Engine/UE4 project from your
Solution Explorer. Select UnrealVS Quick Build | Win64 | Development Editor:

Setting Up Your Development Environment Chapter 2

[100]

The Quick Build command allows you to select the build configuration you'd like to build. Most of the time, you'll only be interested in Development Editor or Debug Editor
configurations.

Setting Up Your Development Environment Chapter 2

[101]

This build is going to take much longer than the build we ran earlier, as we're now building
the entire engine, not just a game.

Once the build completes, ensure that UE4 is set as the startup project (it should be by
default), and hit F5 to launch it in the debugger.

Congratulations! You've now downloaded and built Unreal Engine entirely from source.

Updating your fork with new changes from Epic
Epic will soon release new changes that aren't yet present in your fork. How soon will
depend on the branch you're on. If you're on the release branch, new changes will come
every few weeks. On the promoted branch, they will come every day or two. On the master
branch, they will come every few minutes. In all these cases, you'll need to update your
fork to get the new changes.

You can see when new changes need to be merged by looking at the bar below the Branch
selector. It indicates how many commits have occurred since you last updated your fork:

Here's an example of an ancient branch, far behind the current state of the release channel. We can see that it's over 52,000 changes behind. That's old. Dinosaurs roamed the earth
when this code was last updated. We'll want to fix that.

Setting Up Your Development Environment Chapter 2

[102]

Option – Using the command line to sync changes
Keeping your fork up-to-date with changes from the upstream branch is one of those
operations that really is easier to do from the command line. We recommend that you do it
this way. Let's talk you through the process.

Setting the upstream repository
We've already forked our own repository from the Unreal Engine source repository, and
we've cloned it to our local machine. Now, we need to tell our fork how to pull changes
from the original project (which we'll call the upstream repository). You only need to do
this once. In GitHub, open the original Unreal Engine repository page, https:/ /github.
com/EpicGames/UnrealEngine, and hit the green Clone or download button, and then hit
the Copy to Clipboard button to the right of the URL. Don't open it in desktop or
download the ZIP. All you need here is the URL.

Open a Windows Command Prompt (note that you can also use Git Bash for this if you're
comfortable with UNIX commands, and if you're going to be using Git heavily, it's
recommended that you do), and navigate to the directory where you've cloned your
repository. Type git remote -v and press Enter. You should see your origin repository
listed here, but no upstream repository. That's what we're going to set up next:

The results of a git remote -v command before you've added your upstream repository

Now, type git remote add upstream and paste the URL you copied a moment ago:

git remote add upstream https://github.com/EpicGames/UnrealEngine.git

And let's verify that the upstream repo was properly set up by typing git remote -v
again:

The results of a git remote -v command after you've added your upstream repository

Everything looks good—our upstream repo has been set.

https://github.com/EpicGames/UnrealEngine
https://github.com/EpicGames/UnrealEngine
https://github.com/EpicGames/UnrealEngine
https://github.com/EpicGames/UnrealEngine
https://github.com/EpicGames/UnrealEngine
https://github.com/EpicGames/UnrealEngine
https://github.com/EpicGames/UnrealEngine
https://github.com/EpicGames/UnrealEngine
https://github.com/EpicGames/UnrealEngine
https://github.com/EpicGames/UnrealEngine

Setting Up Your Development Environment Chapter 2

[103]

For more information on forking a repo and preparing it to pull changes
from the upstream depot, have a look at GitHub's documentation
here: https:/ /help. github. com/ articles/ fork- a- repo/ .

Syncing the fork
From a command prompt or Git Bash within our repository directory, type git fetch
upstream:

Output from a git fetch upstream operation

Now, check out whichever branch you're working in by typing git checkout, and the
name of the branch. For example, type git checkout release, for the Release branch,
git checkout promoted for the promoted branch, and git checkout master for the
master branch.

Next, merge the changes from the upstream branch into your local branch by typing git
merge upstream/, followed by the name of your branch. Again, if you're on the release
branch, this would be git merge upstream/release.

Finally, you need to push your changes from your local machine back to your fork's
repository online. Type git push origin master to do this.

Reviewing the Git commands we just used
To recap: any time you need to bring your branch up-to-date with the upstream branch, use
the following commands:

git fetch upstream

git checkout [branch]

git merge upstream/[branch]

git push origin [branch]

https://help.github.com/articles/fork-a-repo/
https://help.github.com/articles/fork-a-repo/
https://help.github.com/articles/fork-a-repo/
https://help.github.com/articles/fork-a-repo/
https://help.github.com/articles/fork-a-repo/
https://help.github.com/articles/fork-a-repo/
https://help.github.com/articles/fork-a-repo/
https://help.github.com/articles/fork-a-repo/
https://help.github.com/articles/fork-a-repo/
https://help.github.com/articles/fork-a-repo/
https://help.github.com/articles/fork-a-repo/
https://help.github.com/articles/fork-a-repo/
https://help.github.com/articles/fork-a-repo/
https://help.github.com/articles/fork-a-repo/
https://help.github.com/articles/fork-a-repo/
https://help.github.com/articles/fork-a-repo/
https://help.github.com/articles/fork-a-repo/
https://help.github.com/articles/fork-a-repo/

Setting Up Your Development Environment Chapter 2

[104]

Refer to the following screenshot:

Command outputs in Git Bash.

Option – Using the web GUI to sync changes
If you'd prefer to sync your fork online rather than by using the command line, follow this
procedure.

If you're using the command-line procedure for synchronizing your fork,
you can skip this part, since it does the same job.

Setting Up Your Development Environment Chapter 2

[105]

Navigate to your fork's page on GitHub, and hit the Compare button on the right-hand side
of the bar. If you've made changes locally, they'll appear in the Compare window that
follows. (Let's assume for simplicity's sake that we haven't, and that we're just trying to get
new code from Epic.) To do this, first, hit the switching the base link on the comparison
page. This will reverse the comparison, so instead of looking for changes on our local fork
that haven't gone to Epic, we'll look for changes made by other developers that aren't yet
present in our fork:

A list of changes on GitHub that haven't yet been merged to your fork

Here, we can see that the new changes can be merged automatically. This is expected
because we haven't made any engine changes of our own. (Managing merged changes
between your own Unreal Engine fork and Epic's branches is beyond the scope of this
book.) In our case, we just want to get up to date.

Setting Up Your Development Environment Chapter 2

[106]

Creating a pull request
Hit the Create pull request button:

A new pull request to merge changes from the upstream branch to your own

Give your pull request a name, and hit Create pull request again to create it.

Your pull request will now be ready for review. In this case, since you initiated it, you can
simply accept it:

The pull request confirmation dialog

Setting Up Your Development Environment Chapter 2

[107]

Merging the pull request
Hit Merge pull request to execute the merge and then hit Confirm merge to make it
happen.

Once the merge is complete, return to your fork, and you should no longer be behind:

Comparison between our branch and the upstream branch. We can see that we're now in-sync.

Pulling the origin to your local machine
Now, you need to update your local copy on your machine.

Head back to GitHub Desktop, and in your Unreal Engine repository, look for the Fetch
origin button. Hit this to instruct GitHub Desktop to look for changes on the remote
repository that you haven't yet copied locally:

GitHub Desktop before we've fetched the new changes from the repo

Setting Up Your Development Environment Chapter 2

[108]

In our case, we have a few:

GitHub Desktop ready to pull changes to our local machine

It's time to pull those 52,000 changes down to our local machine. Hit Pull origin to do this.
GitHub desktop will check out the changes, copying them to the local machine. Once this is
done, we should see that hitting Fetch origin no longer results in any new files to
pull—we're current.

Re-synchronizing your engine content and
regenerating project files
Regardless of whether you used the command line or a GUI to update your fork, you now
need to update your solution file and project files to reflect the new source you've
downloaded.

If you're certain that no source files or assets have been added or
removed, you can skip this part. When in doubt, run these operations to
make sure your assets are current and that Visual Studio knows about
changed files.

With Visual Studio closed, re-run the Setup.bat file from your engine directory to update
your binary content, and then re-run GenerateProjectFiles.bat to update your Visual
Studio files. These will run much more quickly than they did the first time, as they're only
updating what's changed.

Open the solution, build it, and run it. You should be back in business on the current code.

Very often, your startup project will change when you regenerate project
files. If it does, right-click the project you'd like to launch and select Set as
StartUp Project to reset it.

Setting Up Your Development Environment Chapter 2

[109]

Going further with source code on GitHub
There's quite a lot more we could talk about in modifying and building the engine source,
but it falls outside the scope of this book. What you've learned here though will allow you
to download Epic's most recent Unreal Engine code and build the engine if you need code
that's more recent than the current release, or need to modify the engine.

If you do plan to work with Unreal source code from GitHub, it's worthwhile to take the
time to learn about it. It's a powerful tool, but it can be mystifying if you're not clear on
what it's doing. Help is available here: https:/ /help. github. com/ .

Again, most users will not need to do this, but it does sometimes happen that code to
support new VR devices appears on the promoted or master branches long before it makes
it to the release branches and the binary release channel through the launcher. You should
now know enough to use the latest and greatest, if you ever need to do so.

Additional useful tools
Before we move on from this chapter, let's take a quick moment to talk about other tools
you may want to set up to work with Unreal. None of these will be required by the projects
in this book, but they're worth knowing about, so you need to know where to look when
you need them.

A good robust text editor
Notepad just isn't going to cut it when you need to edit large text files or replace a lot of text
in a file. We recommend that you set up a dedicated text editor for this purpose. Here are a
few options:

Visual Studio Code (https:/ /code.visualstudio. com/) is a powerful,
lightweight text editor that supports lots of languages and contains a number of
useful text-editing tools. It's free.
Sublime Text (https:/ /www. sublimetext. com/) is a highly customizable editor
with tons of custom integrations for various languages. It is $80, with a free trial.
Atom (https:/ / atom. io/) is a relatively new editor made by GitHub that
supports tons of additional package installers for just about anything you could
want to do to a text page. Because it's made by GitHub, its Git integration is
great. And it's free.

https://help.github.com/
https://help.github.com/
https://help.github.com/
https://help.github.com/
https://help.github.com/
https://help.github.com/
https://help.github.com/
https://help.github.com/
https://help.github.com/
https://help.github.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://www.sublimetext.com/
https://www.sublimetext.com/
https://www.sublimetext.com/
https://www.sublimetext.com/
https://www.sublimetext.com/
https://www.sublimetext.com/
https://www.sublimetext.com/
https://www.sublimetext.com/
https://www.sublimetext.com/
https://www.sublimetext.com/
https://atom.io/
https://atom.io/
https://atom.io/
https://atom.io/
https://atom.io/
https://atom.io/
https://atom.io/
https://atom.io/

Setting Up Your Development Environment Chapter 2

[110]

Notepad++ (https:/ /notepad- plus- plus. org/) is fast and lightweight and is
older than most of the rest, so it has a devoted following. It's free as well.
Vim (https:/ / www. vim. org/ download. php) is its own beast. Its user interface
conventions bear no resemblance to anything else in Windows, so it takes some
significant effort to learn them. Its advantage is that once users learn the
keystrokes to operate it, they can navigate through text documents at blazing
speed without requiring the use of a mouse. And it runs on nearly anything that
computes. We recommend this only if you're already using it and love it or are
specifically interested in learning it.

Any of these or any other text editors you know and love will work out fine. Pick one that
feels right to you and stick with it.

3D modeling software
Unreal scenes are made of 3D models, and you're going to need to modify them, clean them
up, or create them from scratch at various points through your development. (How much
you need to do this depends a lot on what you're creating, who you're working with, and
the degree to which you're relying on existing art from the marketplace or other sources.)
At any rate, it's a good idea to have a tool on your system that can edit 3D meshes.

You'll commonly hear 3D modeling tools referred to as Digital Content
Creation tools in the industry, usually shortened to DCC. If you hear
someone refer to a DCC, they're generally talking about a 3D modeling
tool such as Blender, Maya, or 3ds Max.

Here are a few options:

Blender (https:/ / www. blender. org/) is a free and open source 3D modeling
program that's heavily used in the independent development community. Lots of
tutorials exist to teach you how to create assets in Blender and get them into
Unreal. It's free.
Autodesk Maya (https:/ / www. autodesk. com/ products/ maya/ overview) is a
professional tool focused on creating content for media and entertainment.
Nearly every creature you've ever seen in any movie or game over the past
decade was likely modeled and animated in Maya. A Maya subscription costs
around $1,500/year, but students are able to use it free for three years.

https://notepad-plus-plus.org/
https://notepad-plus-plus.org/
https://notepad-plus-plus.org/
https://notepad-plus-plus.org/
https://notepad-plus-plus.org/
https://notepad-plus-plus.org/
https://notepad-plus-plus.org/
https://notepad-plus-plus.org/
https://notepad-plus-plus.org/
https://notepad-plus-plus.org/
https://notepad-plus-plus.org/
https://notepad-plus-plus.org/
https://www.vim.org/download.php
https://www.vim.org/download.php
https://www.vim.org/download.php
https://www.vim.org/download.php
https://www.vim.org/download.php
https://www.vim.org/download.php
https://www.vim.org/download.php
https://www.vim.org/download.php
https://www.vim.org/download.php
https://www.vim.org/download.php
https://www.vim.org/download.php
https://www.vim.org/download.php
https://www.vim.org/download.php
https://www.blender.org/
https://www.blender.org/
https://www.blender.org/
https://www.blender.org/
https://www.blender.org/
https://www.blender.org/
https://www.blender.org/
https://www.blender.org/
https://www.blender.org/
https://www.blender.org/
https://www.autodesk.com/products/maya/overview
https://www.autodesk.com/products/maya/overview
https://www.autodesk.com/products/maya/overview
https://www.autodesk.com/products/maya/overview
https://www.autodesk.com/products/maya/overview
https://www.autodesk.com/products/maya/overview
https://www.autodesk.com/products/maya/overview
https://www.autodesk.com/products/maya/overview
https://www.autodesk.com/products/maya/overview
https://www.autodesk.com/products/maya/overview
https://www.autodesk.com/products/maya/overview
https://www.autodesk.com/products/maya/overview
https://www.autodesk.com/products/maya/overview
https://www.autodesk.com/products/maya/overview
https://www.autodesk.com/products/maya/overview

Setting Up Your Development Environment Chapter 2

[111]

Autodesk 3ds Max (https:/ /www. autodesk. com/products/ 3ds- max/ overview)
is a professional modeling tool focused on creating content for architecture,
engineering and construction (AEC), and product design. It's commonly used in
media and entertainment as well, but its animation tools are much more limited
than those found in Maya. Pricing for 3ds Max is the same as it is for
Maya—around $1,500/year, with a free student license available.
Modo (https:/ / www. foundry. com/ products/ modo#) is a newer entry to the
professional market and is gaining adherents. It's worth a look. A Modo
subscription costs $600/year.

The DCC you choose will depend on your budget and what you plan to do with it.
Generally, if you're making VR for entertainment, Maya will contain more of what you
need, but this is by no means absolute. For architecture and product design, 3ds Max may
be what you need. For indie game development, you might be fine with Blender as well. Do
some research and find out what's the best fit for your particular needs.

You'll also see a few other tools in your professional travels. You mostly won't see
beginners using them, but they're powerful tools and you should know they exist, so you
can consider whether they might be a good solution for something you're trying to do:

ZBrush (http:/ / pixologic. com/) is a digital sculpting tool, used for creating
highly detailed models and surfaces.
Mudbox (https:/ /www. autodesk. com/products/ mudbox/ overview), like ZBrush,
is a sculpting tool for adding fine detail to models.
Houdini (https:/ /www. sidefx. com/) is a procedural creation tool for 3D
geometry and effects. If you need to create a city full of buildings, a forest full of
vines, or a churning fireball, Houdini may be what you're looking for.
Substance Painter (https:/ / www.allegorithmic. com/ products/ substance-
painter) is a texture painting tool that allows artists to paint textures directly
onto 3D models.
Substance Designer (https:/ /www. allegorithmic. com/ products/ substance-
designer) is a powerful material- authoring tool for creating highly varied and
realistic physically-based materials.

These generally are expert and specialist tools, but it's worth knowing they're there and
what they do.

https://www.autodesk.com/products/3ds-max/overview
https://www.autodesk.com/products/3ds-max/overview
https://www.autodesk.com/products/3ds-max/overview
https://www.autodesk.com/products/3ds-max/overview
https://www.autodesk.com/products/3ds-max/overview
https://www.autodesk.com/products/3ds-max/overview
https://www.autodesk.com/products/3ds-max/overview
https://www.autodesk.com/products/3ds-max/overview
https://www.autodesk.com/products/3ds-max/overview
https://www.autodesk.com/products/3ds-max/overview
https://www.autodesk.com/products/3ds-max/overview
https://www.autodesk.com/products/3ds-max/overview
https://www.autodesk.com/products/3ds-max/overview
https://www.autodesk.com/products/3ds-max/overview
https://www.autodesk.com/products/3ds-max/overview
https://www.autodesk.com/products/3ds-max/overview
https://www.autodesk.com/products/3ds-max/overview
https://www.foundry.com/products/modo#
https://www.foundry.com/products/modo#
https://www.foundry.com/products/modo#
https://www.foundry.com/products/modo#
https://www.foundry.com/products/modo#
https://www.foundry.com/products/modo#
https://www.foundry.com/products/modo#
https://www.foundry.com/products/modo#
https://www.foundry.com/products/modo#
https://www.foundry.com/products/modo#
https://www.foundry.com/products/modo#
https://www.foundry.com/products/modo#
https://www.foundry.com/products/modo#
http://pixologic.com/
http://pixologic.com/
http://pixologic.com/
http://pixologic.com/
http://pixologic.com/
http://pixologic.com/
http://pixologic.com/
http://pixologic.com/
https://www.autodesk.com/products/mudbox/overview
https://www.autodesk.com/products/mudbox/overview
https://www.autodesk.com/products/mudbox/overview
https://www.autodesk.com/products/mudbox/overview
https://www.autodesk.com/products/mudbox/overview
https://www.autodesk.com/products/mudbox/overview
https://www.autodesk.com/products/mudbox/overview
https://www.autodesk.com/products/mudbox/overview
https://www.autodesk.com/products/mudbox/overview
https://www.autodesk.com/products/mudbox/overview
https://www.autodesk.com/products/mudbox/overview
https://www.autodesk.com/products/mudbox/overview
https://www.autodesk.com/products/mudbox/overview
https://www.autodesk.com/products/mudbox/overview
https://www.autodesk.com/products/mudbox/overview
https://www.sidefx.com/
https://www.sidefx.com/
https://www.sidefx.com/
https://www.sidefx.com/
https://www.sidefx.com/
https://www.sidefx.com/
https://www.sidefx.com/
https://www.sidefx.com/
https://www.sidefx.com/
https://www.sidefx.com/
https://www.allegorithmic.com/products/substance-painter
https://www.allegorithmic.com/products/substance-painter
https://www.allegorithmic.com/products/substance-painter
https://www.allegorithmic.com/products/substance-painter
https://www.allegorithmic.com/products/substance-painter
https://www.allegorithmic.com/products/substance-painter
https://www.allegorithmic.com/products/substance-painter
https://www.allegorithmic.com/products/substance-painter
https://www.allegorithmic.com/products/substance-painter
https://www.allegorithmic.com/products/substance-painter
https://www.allegorithmic.com/products/substance-painter
https://www.allegorithmic.com/products/substance-painter
https://www.allegorithmic.com/products/substance-painter
https://www.allegorithmic.com/products/substance-painter
https://www.allegorithmic.com/products/substance-designer
https://www.allegorithmic.com/products/substance-designer
https://www.allegorithmic.com/products/substance-designer
https://www.allegorithmic.com/products/substance-designer
https://www.allegorithmic.com/products/substance-designer
https://www.allegorithmic.com/products/substance-designer
https://www.allegorithmic.com/products/substance-designer
https://www.allegorithmic.com/products/substance-designer
https://www.allegorithmic.com/products/substance-designer
https://www.allegorithmic.com/products/substance-designer
https://www.allegorithmic.com/products/substance-designer
https://www.allegorithmic.com/products/substance-designer
https://www.allegorithmic.com/products/substance-designer
https://www.allegorithmic.com/products/substance-designer

Setting Up Your Development Environment Chapter 2

[112]

Image-editing software
You're often going to need to edit textures and 2D art as well. You'll need a tool with which
to do this, and really you have two options you can seriously consider:

Adobe Photoshop (https:/ /www. adobe. com/ products/ photoshop. html) is the
standard for 2D image editing. It's worth it. There's a secret to Photoshop's
pricing: if you subscribe to it as a standalone app, it costs $20.99 a month, but if
you subscribe to the Photography bundle, you get it for $9.99/month instead.
GIMP (https:/ /www. gimp. org/) is a free, open source image editing application.
It lacks a lot of the functionality of Photoshop, but if you're only occasionally
modifying textures, it may be all you need.

Your choice between Photoshop and GIMP will depend on your needs and your budget. If
you're working professionally, it's probably best to stick with Photoshop, but if you don't
need everything Photoshop does, GIMP might be enough.

Audio-editing software
You're occasionally going to need to edit sounds and music for your games and
applications. You have a few options here, too:

Audacity (https:/ / www. audacityteam. org/) is a free, open source audio editing
solution that's surprisingly good. For much of the sound-editing work you'll
need to do, Audacity may be all you need.
Adobe Audition (https:/ /www. adobe. com/ products/ audition. html) is a
professional audio-editing tool. Its advantages over Audacity are higher quality
effects, and a non-destructive editing workflow, which means that if you apply a
filter or effect to your sound, and then want to change it later on, you still can.
Audition is available on a monthly subscription, or it can be bundled into an
Adobe All Apps subscription.
Avid Pro Tools (https:/ /www. avid. com/ pro-tools) is the most commonly used
audio editing software among professionals, and is available in a free Pro Tools |
First edition that contains all the features of the professional versions, but limits
the number of inputs and audio tracks you can use. Whether this is an
appropriate solution for you really depends on how heavily you anticipate
editing audio, and what you plan to do with it.

https://www.adobe.com/products/photoshop.html
https://www.adobe.com/products/photoshop.html
https://www.adobe.com/products/photoshop.html
https://www.adobe.com/products/photoshop.html
https://www.adobe.com/products/photoshop.html
https://www.adobe.com/products/photoshop.html
https://www.adobe.com/products/photoshop.html
https://www.adobe.com/products/photoshop.html
https://www.adobe.com/products/photoshop.html
https://www.adobe.com/products/photoshop.html
https://www.adobe.com/products/photoshop.html
https://www.adobe.com/products/photoshop.html
https://www.adobe.com/products/photoshop.html
https://www.adobe.com/products/photoshop.html
https://www.adobe.com/products/photoshop.html
https://www.gimp.org/
https://www.gimp.org/
https://www.gimp.org/
https://www.gimp.org/
https://www.gimp.org/
https://www.gimp.org/
https://www.gimp.org/
https://www.gimp.org/
https://www.gimp.org/
https://www.gimp.org/
https://www.audacityteam.org/
https://www.audacityteam.org/
https://www.audacityteam.org/
https://www.audacityteam.org/
https://www.audacityteam.org/
https://www.audacityteam.org/
https://www.audacityteam.org/
https://www.audacityteam.org/
https://www.audacityteam.org/
https://www.audacityteam.org/
https://www.adobe.com/products/audition.html
https://www.adobe.com/products/audition.html
https://www.adobe.com/products/audition.html
https://www.adobe.com/products/audition.html
https://www.adobe.com/products/audition.html
https://www.adobe.com/products/audition.html
https://www.adobe.com/products/audition.html
https://www.adobe.com/products/audition.html
https://www.adobe.com/products/audition.html
https://www.adobe.com/products/audition.html
https://www.adobe.com/products/audition.html
https://www.adobe.com/products/audition.html
https://www.adobe.com/products/audition.html
https://www.adobe.com/products/audition.html
https://www.adobe.com/products/audition.html
https://www.avid.com/pro-tools
https://www.avid.com/pro-tools
https://www.avid.com/pro-tools
https://www.avid.com/pro-tools
https://www.avid.com/pro-tools
https://www.avid.com/pro-tools
https://www.avid.com/pro-tools
https://www.avid.com/pro-tools
https://www.avid.com/pro-tools
https://www.avid.com/pro-tools
https://www.avid.com/pro-tools
https://www.avid.com/pro-tools
https://www.avid.com/pro-tools

Setting Up Your Development Environment Chapter 2

[113]

All the options we've mentioned cover sound editing, but for sound creation, there's no
shortage of tools and audio libraries available. Cataloging them falls beyond the scope of
this book, as sound design is its own art and the rabbit hole goes deep. For most users
developing VR applications in Unreal, it's not a bad idea to begin with Audacity, and move
on from there when or if you discover you need to do something specific.

Summary
In this chapter, we installed the Unreal Engine and learned about the various options we
have available to us when setting it up. We created and launched a simple test project to
verify that everything was working. Additionally, for those developing for mobile VR, we
learned how to set up the required drivers and software development kits, and set up a
mobile test project that we deployed to our device.

Along the way, we learned how to use the Epic Games launcher—not just as a way of
keeping engine versions up to date and launching projects, but also as a vital learning and
support resource. Through our exploration of the launcher, we learned how to get answers
to questions from the Community tab and where to find documentation and video tutorials
from the Learn tab. We explored the incredibly useful Content Examples project and
looked at other projects we can use to explore specific topics in the engine. We saw that the
Marketplace offers a huge range of free and paid content that we can use to accelerate our
projects, and we learned how to use the Library tab to maintain our projects and engine
versions.

For those planning to develop in C++, we learned how to set up our Visual Studio 2017
development environment and configure it to work with Unreal, and then we created a
simple test project to ensure that we were able to build and run our own C++ code within
Unreal. For the extra adventurous, we learned how to download the Unreal Engine source
from GitHub and build the engine entirely from scratch.

Finally, we took a brief look at additional tools that developers may generally find useful
when building content for Unreal Engine, including a range of free and paid solutions for
various needs.

In the next chapter, we're going to build our first project explicitly for VR. (The quick-and-
dirty projects we set up during the course of this chapter allowed us to test that our
development environment was properly set up, but they weren't designed specifically for
VR.) Now, we're going to learn how to set up a project correctly for VR. Let's jump in!

3
Hello World - Your First VR

Project
It's time to start building! Back in Chapter 1, Thinking in VR, we learned what VR is and
what it can do, and we learned a number of best practices for its design. Then, in Chapter
2, Setting up Your Development Environment, we set up our development environment. Now
we're ready to start building.

In this chapter, we're going to build a VR project in Unreal from the ground up. We're
going to take a different approach, though, from most tutorials. Rather than just give you a
list of steps to follow, for each thing we do we're going to talk a bit about what's going on
under the hood and why we're doing it this way. This is what's really important. If you
understand a bit about how these systems work, you'll be much better equipped to
understand what to do when you build your own projects.

As we build our first VR project, we're going to learn a bit about its structure, and we'll
learn about the specific project settings that apply most to VR development. We'll also look
at those settings and choices that specifically affect mobile VR, and show you what you
need to know there. From here, we'll bring a detailed scene into our project and learn a bit
about how to move assets safely between projects and how to manage a project's content.
Finally, we'll set up the game mode and pawn blueprints we'll need to run a VR project.

Hello World - Your First VR Project Chapter 3

[115]

This chapter will cover the following:

Creating a project for VR from scratch
Understanding important settings and choices you need to make when you start
your project
Setting up a project for mobile VR
Moving content safely between projects and managing content within your
project
Setting up the basic blueprints you'll need for VR development in Unreal

Creating a new project
All right, let's start creating!

The first thing we need to do is create a new project. We created a few quick throwaway
projects in the previous chapter just to make sure everything was working, but now we're
ready to begin building for real.

Open your Epic Games Launcher if it isn't already open, head to the Library tab, and
where you see your Engine Versions, hit Launch on your most current engine version.
(You can do this from the Launch button on the left side of the launcher as well.)

The Unreal Project Browser will appear. Select the New Project tab, and let's select
the Blueprint tab and the Blank template to create an empty Blueprint project.

Templates are very useful starting points for Unreal projects. They
contain simple and useful working foundations of many game types, and
much of the time when you're starting a new project, you'll want to use
them. We're beginning with a blank project here so you can see each
element as it goes in. You'll probably most commonly use the First Person,
Third Person, and VR templates as starting points for most projects.

Hello World - Your First VR Project Chapter 3

[116]

We have a few more choices to make on this dialog, and we should understand what they
mean:

Setting your hardware target
The Hardware Target selector gives you two options:

Desktop / Console
Mobile / Tablet

Ordinarily, you should choose the correct option for your target platform, but when
developing for VR, it can be a good idea to select the Mobile / Tablet option even if you're
developing for desktop, as that option will turn off a few rendering options that can be
expensive in VR.

Hello World - Your First VR Project Chapter 3

[117]

Specifically, choosing the mobile target rather than the desktop target will turn off the
following rendering options:

Separate Translucency
Bloom
Ambient Occlusion

Setting your graphics target
The next choice you need to make is your Graphics Target. Again, you have two choices
here:

Maximum Quality
Scalable 3D or 2D

Selecting Maximum Quality will turn on all of the default high-end rendering options
Unreal Engine offers. As we've mentioned previously, however, in VR, meeting your target
framerate is far more important than including detail in your scene. For VR development,
it's always a good idea to select the Scalable option.

You're better off beginning with everything turned off and turning things
on as you need them. If you start the other way, with everything turned
on, it can be difficult to figure out what's killing your framerate and figure
out what you need to turn off. It's a much better practice to start with your
project running at a reasonable speed and keep it running quickly than to
build something that runs poorly and hope that you're somehow going to
get it running faster later on.

Settings summary
For our project, we're going to go with the following:

Project Template: Blueprint - Blank
Hardware Target: Mobile / Tablet
Graphics Target: Scalable 2D or 3D
No Starter Content

We can leave the Starter Content turned off for now, since we can easily add that stuff later
when we need it.

Hello World - Your First VR Project Chapter 3

[118]

Choose where you'd like to save your project and hit Create Project to set it up.

Taking a quick look at your project's structure
We've now created an empty project. Let's take a brief moment to take a look at what that
actually means.

If you navigate Windows Explorer to the location where you saved your project, you'll see
that Unreal has created a file there with your project's name and the .uproject extension,
along with four directories:

Config: Configuration files such as DefaultEngine.ini and
DefaultGame.ini live here and hold settings for your engine and project.
Content: This is where your project's assets, such as models, textures, materials,
and blueprints will live. This is the bulk of your project.
Intermediate: Temporary files created when your project's assets are compiled
go here. Everything in here is temporary and will be regenerated if you delete it.
Saved: Log files, screenshots, and save games land in this directory.

If you've generated a C++ project, you'll see three additional directories:

Binaries: Your project's built executable and supporting files live here. When you
build your project in Visual Studio, this is where the resulting executable is
saved.
Build: Files related to building for specific targets, such as Windows 64 or
Android, live here. These include logs are generated as you build, and certain
supporting resources such as application icons. You'll rarely touch the contents of
this directory.
Source: Your C++ files and the C# scripts that govern building them live here.

The Content directory
For the most part, when you work with an Unreal project, you'll be working with the
contents of the Content directory and the Config directory. Generally, you should do all
your management of the Content directory from within Unreal Editor, since it can
otherwise be easy to break references between objects. We'll talk about ways to do this
shortly.

Hello World - Your First VR Project Chapter 3

[119]

The Config directory
We should, however, take a moment to look at the Config directory.

Inside this directory are the config files containing the settings for your project. All of your
engine-related project settings, such as choices about rendering quality, are written to
the DefaultEngine.ini file. When you chose your hardware and graphic targets in the
Create Project dialog, you were actually just choosing which default options to write to that
file. Similarly, when you change your project settings from the editor, those settings are also
written to DefaultEngine.ini (or DefaultGame.ini for certain game-related settings.)

Your Config directory will always contain the following two files:

DefaultEngine.ini: This contains your rendering settings, startup map
setting, physics settings, and other options that govern how the engine runs.
DefaultGame.ini: This, for the most part, contains information about your
game and copyright information, but it also holds information about how your
application will be packaged when you prepare it for release on different
platforms

When you make changes to your project settings from within the editor, you're mostly
writing changes to these two files.

Other Config files may be created depending on what settings you change as you build
your project:

DefaultInput.ini: This contains input mappings and settings related to using
input devices.
DefaultEditor.ini: This contains settings governing how your editor
behaves.
DefaultDeviceProfiles.ini: This contains specific settings for the different
platforms to which you might release your application.

You don't have to know about this to use the engine. It's perfectly fine to manage your
settings entirely from within the editor, but this is another one of the great things about
Unreal Engine - it doesn't scatter important information in weird places. If at some point
you do need to figure out what you've set somewhere, you know where to look. It's going
to be in one of these files.

Hello World - Your First VR Project Chapter 3

[120]

If you're not seeing file extensions such as .ini in your Windows
explorer, open your File Explorer Options control panel, and turn off
Hide extensions for known file types. It's on by default in Windows, but
it will hide useful information from you when you're developing.

The Source directory
If you've created a C++ project, your project directory will also contain a Source sub
directory. Your C++ source files live here.

The Project file
We should take a quick look at your project's .uproject file as well. It's actually really just
a simple text file with a few bits of information about your project, but if you right-click it
in Explorer, you're given three useful options:

Launch Game: This will just open up your project in Unreal Editor. Double-
clicking the .uproject file will do this too.
Generate Visual Studio project files: This only applies if you've created a C++
project. You'll generally only need to do this if you've cleared the Intermediates
directory, which holds your VS project files, or if you've added new source code
files from outside the editor.
Switch Unreal Engine version: This changes the engine version associated with
your project. Generally, it's safer and more advisable to copy and update your
project in the launcher when going to a new engine version, but if you already
know it's safe to do, you can switch it here.

A summary of an Unreal project structure
Now that we've taken a quick look at the structure of an Unreal project, we should keep it
in the back of our minds as we work.

Again, at its bare minimum, an Unreal project consists of the following:

The Project directory:
The Project file
The Content directory
The Config directory
(C++ only) The Source directory

Hello World - Your First VR Project Chapter 3

[121]

If you need to share a Blueprint-based Unreal project with someone, you
only need to share the .uproject file, the Content directory, and the
Config directory. All the rest are dynamically generated when the project
runs.

Depending on what you do with your project, other directories may be created
automatically.

That's really all we wanted to do here—just have a quick look around and see the lay of the
land before we start adding a lot of content to our project. It can make your life easier later
on to know where things are.

Setting your project's settings for VR
Let's jump back into the editor and continue setting up our project. Before we do anything
else, we have a few settings we should take a look at.

All of these settings we're about to discuss affect the way your scene is rendered:

Rendering is the process of taking the 3D geometry in your scene, looking at it through a virtual camera, and turning that geometry into an image that can be displayed on your
screen or in your headset.

Hello World - Your First VR Project Chapter 3

[122]

As we mentioned in Chapter 1, Thinking in VR, VR places much heavier demands on the
rendering pipeline than traditional flat-screen rendering. Even the lowest-resolution
headsets on the current market display quite a lot of pixels and have to update extremely
quickly. As if this weren't challenging enough, we also have two eyes to think about, and
the views they see aren't exactly the same. This means we're rendering two separate views.
That's quite a lot to do and not a lot of time in which to do it.

Because of this, it's important for a VR developer to understand a bit about the rendering
options Unreal makes available. Good choices here can get you a long way toward your
goal of having something that both looks great and runs fast.

Instanced Stereo
Remember when we mentioned a moment ago that we needed to render two separate
views simultaneously in VR? Back in the bad old days (before Unreal 4.11), this was
literally true. The engine simply ran the entire rendering process twice – once for each eye.
This was hugely wasteful, since the only real difference between the two views was a small
shift in the location of the eye looking at it. The full cost of a second render pass was being
spent to draw something almost identical to what had just been drawn.

Instanced Stereo rendering improves on this by allowing the scene to be rendered in a
single pass. The rendered view is then given to the video hardware along with the
information it needs to adjust the view for each eye. It's dramatically faster than running
the entire pass twice, and you want to make sure you turn it on. Let's do this now.

If you create a project using the VR template, Instanced Stereo will already
be turned on for you, but if you're creating a project from scratch, or
taking an existing project and modifying it to work in VR, you need to
remember to do this yourself.

From the editor, open your Project Settings either by hitting the Settings button on the
editor toolbar and selecting Project Settings..., or by selecting Edit | Project Settings:

Hello World - Your First VR Project Chapter 3

[123]

In Project Settings, find the Rendering item in the Engine section. In the Rendering page,
find the Instanced Stereo option in the VR section and turn it on:

You'll be asked to restart the engine after you do this. This is going to take a little while
because your shaders are going to need to recompile.

Round Robin Occlusions
Because we don't have a lot of time available to get our frame on to the headset, we don't
want to waste any of it drawing anything we don't need to draw. The engine chooses which
objects to draw through a process called culling. It uses four main methods to do this, in
order, from the fastest and simplest to the most complex:

Distance culling simply ignores any object beyond a certain distance from the
camera. This is inexpensive.
View frustum culling ignores objects that aren't in the camera's current view.
This is more expensive than distance culling but still pretty cheap.
Precomputed visibility allows designers to set up volumes to tell the engine
explicitly what can be seen from certain locations and what can't. For instance, if
you know that a player inside a room can't possibly see anything outside, you
can use precomputed visibility volumes to tell the engine that it doesn't even
need to bother checking.
Dynamic Occlusion tests in real-time to see whether an actor in the scene is
blocking another actor. This is relatively expensive, so it's done only with those
objects that haven't been culled by the cheaper methods.

Hello World - Your First VR Project Chapter 3

[124]

For VR projects, Unreal offers an optimized dynamic occlusion culling method called
Round Robin Occlusion, which only tests occlusion for one eye per frame, rather than
both. This saves a considerable amount of time, especially in scenes with a lot of objects,
and works well since the views from each eye are nearly identical. The system switches
which eye it tests on each frame, which is where the name comes from.

Let's turn it on:

In Project Settings | Engine | Rendering | VR, check Round Robin Occlusion1.
Queries:

Forward and deferred shading
We now need to make an important choice about the rendering method we want to use for
our project.

Broadly, there are two ways of drawing a scene, and the difference between them mostly
boils down to how the objects in the scene are lit. These two methods are
called forward shading and deferred shading.

You'll sometimes see these as forward rendering and deferred rendering,
or you'll hear people talk about a forward renderer or a deferred
renderer. Epic uses the terms interchangeably in its documentation, but
they all refer to the same things. For our purposes here, we'll stick with
the term forward shading, since that's what the option is called in the
editor and it most accurately describes what's really different between the
two approaches.

Hello World - Your First VR Project Chapter 3

[125]

Shading is the process of applying light to geometry. This includes highlights, surface
reflections, shadows, and all the various things light does when it hits a material:

The preceding screenshot shows the same mesh without shading applied, and then with shading applied. In the left-hand image, you can see the shape of the object and its base
color (also commonly called albedo), but no shadows, reflections, or highlights. The right image has been shaded, so highlights, shadows, and reflections are visible.

We're simplifying things a bit in the descriptions that follow, but, for our purposes, this is
fine. You really don't need to know every detail of how a rendering pipeline works to make
good decisions about how to use it. It's just important to understand enough to make the
right choice for what you need to do.

Forward shading was the original way of drawing 3D scenes through most of the history of
real-time 3D rendering. In forward shading, each geometric object in the scene is shaded as
it's rendered, and each light in the scene is checked to see how it might affect it. If you have
a lot of objects in your scene and a lot of lights, this can turn into a lot of operations. This is
why most lighting tended to be baked into static lightmaps, and dynamic lights tended to
be so rare in games in the 1990s and early 2000s. Each dynamic light dramatically added to
the cost of the scene.

Deferred shading, on the other hand, draws every object in the view, but instead of
lighting and shading it right then, it writes out a series of images that contain information
about the materials in the scene, the depth of each pixel, and other factors that would affect
how the scene is lit. Shading is then performed only once, after all this information has been
assembled. This is where the name comes from—the shading pass has been deferred until
after the base pass is complete.

This collection of buffers is called the geometric buffer, or G-buffer, and
the process of building them is called the base pass. If you're using
deferred shading in Unreal Engine (which is the default setting for a new
project), you can see the contents of the G-buffer by selecting View Mode
| Buffer Visualization | Overview.

Hello World - Your First VR Project Chapter 3

[126]

Take a look at the following screenshot:

Hello World - Your First VR Project Chapter 3

[127]

Since the lighting pass happens only once, this is much faster for scenes with a lot of
dynamic lights, and also allows screen-space effects such as ambient occlusion to be
handled efficiently. It doesn't, however, do as good a job as forward shading with objects
that are partially transparent.

Choosing the right rendering method for your project
So, sounds like a no-brainer then, right? Deferred shading seems to offer a lot of
advantages. For rendering outside of VR, this is mostly true, and by the late 2000s, deferred
shading became the default for pretty much every game engine including Unreal.

VR, however, is a different story. The problem with deferred shading is that because of the
way it handles information, it's difficult to turn off individual aspects of the rendering
process. For the most part, it's an all-or-nothing deal. This wasn't generally a problem on
flat screens—developers were pretty much always going to want everything the deferred
shader had to offer. Some of these processes, though, are just too expensive to run
efficiently in VR, or they're calculated in screen-space and look bad when they don't match
up between the two eyes. In VR, you're often going to want the freedom to turn them off.

When you hear the term screen-space what this means is that instead of
doing the calculations on the object in 3D space, the part of the scene
containing the object is rendered to 2D (this process is called
rasterization), and then the calculations are performed on the 2D image.
This can create a problem in VR, because many screen-space calculations
won't match between the eyes. You'll usually want to avoid using screen-
space effects in VR.

In Unreal 4.14, Epic added forward shading as an option specifically designed for VR
projects. They also introduced a clustering system that reduced the cost of processing lights
in the base pass, so it's not nearly as costly as it used to be. For most VR projects, it's a good
idea to use forward shading.

Hello World - Your First VR Project Chapter 3

[128]

There are cases where you may still want to stick with deferred rendering in VR—if your
scene needs to support a lot of movable lights, or if you know you'll need very complicated
reflections—but you should seriously consider using forward shading for most VR projects.

You'll almost always want to use forward shading for VR projects. It gives
you much greater control over which parts of the rendering process you
want to do, and which ones you want to skip; it handles transparency
more easily, and supports better anti-aliasing options.

Let's turn it on for our project.

From your Project Settings | Engine | Rendering, find the Forward Renderer section, and
turn on Forward Shading. You'll have to restart the editor after you do this:

When using forward shading, many expensive material features that
would normally be included by default need to be turned on explicitly.
This is a good thing in VR, as it gives you the freedom to use expensive
features only where they'll be seen. We'll talk later on about doing this
when we start creating and modifying materials for VR.

While you can turn forward shading on or off later in your project's development, you'll
generally want to make a choice and stick with it, as your project's lighting, materials, and
reflections can differ greatly between the two methods. You don't want to put a lot of effort
into developing your look, and then make a change like this late in development. You'll
wind up redoing a lot of work.

Choosing your anti-aliasing method
One major advantage of using forward shading is that anti-aliasing is much easier to
achieve than it is when using deferred shading. Let's talk about what this means and why it
matters to us in VR.

Hello World - Your First VR Project Chapter 3

[129]

When the renderer draws a scene onto a flat screen, whether it's a monitor or a VR headset,
that display actually consists of a grid of tiny squares, called pixels (short for picture
elements), and the renderer has to decide what color each of them is going to be. This turns
into a problem when an object in the 3D scene only partly fills a pixel in the 2D space to
which it's going to be drawn. The renderer then has to decide whether the pixel should be
filled with the color of the object or the color of the background. There's no in-between—it
has to pick one or the other. What this means in practice is that objects can wind up
appearing to have jagged edges, especially along diagonal lines that cross over a lot of pixel
borders. We call this problem aliasing:

A scene rendered with no anti-aliasing

Note the jaggies all around the windows in the scene rendered without anti-aliasing. These look bad here and will look worse in VR.

The way we solve this is through a process unsurprisingly called anti-aliasing. Different
anti-aliasing methods use a variety of techniques to figure out how to soften jagged edges
by finding the right color for a pixel to appear to blend between the foreground and
background colors. This has the effect of smoothing jagged edges and removing stair-steps
from diagonal lines:

Hello World - Your First VR Project Chapter 3

[130]

A scene rendered using multisampling anti-aliasing (MSAA)

See how much smoother the windows look when this scene is rendered using multisampling anti-aliasing?

This is especially important in VR since headset resolutions are still fairly limited, so users
can generally see the individual pixels. Aliasing that would be acceptable on a flat screen
may look awful in VR as the user looks around the scene and jagged edges crawl and
shimmer all over the place. You want to avoid this.

Fortunately, Unreal Engine gives you three anti-aliasing methods to address this:

FXAA stands for Fast Approximate Anti-Aliasing. It looks for edges in the scene
and blends the colors at those edges, and it is smart enough to avoid processing
areas that don't have contrasting edges, so it looks great and runs pretty quickly.
This should be your default choice if you're using deferred shading in VR.
Temporal AA (TAA) works by looking at the previous few frames to make
decisions about how to anti-alias the current frame. This generally makes it a
poor choice for VR as the user's view tends to move quite a lot, and temporal AA
can create "smearing" effects on fast movements. Even where smearing isn't
apparent, it can appear too blurry to be acceptable on a VR headset. Temporal
AA tends to do a fantastic job on flat screens, but it isn't a great choice for VR.

Hello World - Your First VR Project Chapter 3

[131]

MSAA stands for Multisampling Anti-Aliasing. This method is only available
when using forward shading, and will give you sharper, better results than
FXAA. If you're using forward shading in your project, and you almost always
should be, this is the anti-aliasing method you should use.

Let's take care of this in our project:

From your Project Settings | Engine | Rendering, find the Default Settings section, and
set the Anti-Aliasing Method to MSAA:

Most of the time, you won't need to change anything about how your anti-aliasing method
works, but if you do, read on.

Modifying MSAA settings
This bit is optional. Making adjustments to your anti-aliasing settings is an advanced topic,
and for most projects you don't need to do this. If you do wind up needing to adjust your
MSAA settings, here's a good way to do it:

Select Window | Developer Tools | Device Profiles to open the Device Profiles window:

From this panel, hit the CVars button in the Windows row.

Hello World - Your First VR Project Chapter 3

[132]

From within the resulting dialog, open Console Variables | Rendering. From here, you can
see all the rendering-related console variables you're currently specifying. If you hit the +
sign beside Rendering, you can type msaa in the search window that appears, and add a
value for r.MSAACount. By default, this value is set to 4. Reducing it to 3 or 2 will lower
the quality of your anti-aliasing but speed it up a bit. Setting it to 1 turns it off. Setting it to 0
turns it off and falls back to temporal anti-aliasing:

If you've made changes here, hit Save as Default on your Device Profiles window to save
these settings. They'll be written to a new config file in your project's Configs directory
called DefaultDeviceProfiles.ini.

Again, changing these values is an advanced topic. We don't advise that you modify these
until you're comfortable that you understand what they do.

Starting in VR
It's also important to tell our project to start in VR when we run it. You do have the option,
if you want to build a project that could be run both in VR and on a flat screen, to leave this
turned off and use the -vr command line argument when you launch it. Our project is a
VR-only project, though, so we want to turn this on.

Head to Project Settings | Project | Description | Settings, and set Start in VR to True.

Hello World - Your First VR Project Chapter 3

[133]

Turning off other stray settings you don't need
In your Rendering | Default Settings, turn off Ambient Occlusion Static Fraction.
Ambient occlusion is a method for creating those subtle shadows that appear where objects
touch each other, but they're expensive to calculate and can look awful in VR because
they're calculated in screen-space. We're not going to go into depth on this topic here. You
already turned off ambient occlusion when you set your project to mobile, scalable 2D/3D,
so this is just a stray setting you should clear.

Turning off default touch interface (Oculus
Go/Samsung Gear)
If you're developing for Oculus Go or Samsung gear, you need to turn off the default touch
interface. Mobile apps ordinarily assume that you'll operate them by touching the screen,
but of course this isn't going to happen inside your headset.

Navigate to Project Settings | Engine | Input, and from within the Mobile section, grab
the drop-down beside Default Touch Interface and clear it:

Hello World - Your First VR Project Chapter 3

[134]

Configuring your project for Android (Oculus
Go/Samsung Gear)
We now need to configure the project to use the Android SDK. We went through this
process in the last chapter—we just need to set the same settings for this project. Here's a
quick reminder of what we need to do.

From Project Settings | Platforms | Android, find the APK Packaging section, and hit
Configure Now. If you already accepted the SDK license in the previous chapter, that
button will be disabled – you only have to accept it once:

Then set these settings (as we mentioned in the previous chapter, most guides will tell you
to use SDK Version 19 as your minimum. This is OK for Samsung Gear, but use version 21
for Go):

Minumum SDK Version: 21
Target SDK Version: 21
Enable FullScreen Immersive on KitKat and above devices: True

Scroll down to the Advanced APKPackaging section and set this:

Configure the AndroidManifest for deployment to Oculus Mobile to True.

Hello World - Your First VR Project Chapter 3

[135]

Verifying your SDK locations
Select Project Settings | Platforms | Android SDK, and make sure your SDK locations are
properly set. If you ran through the instructions in the previous chapter, they should be. If
not, jump back there and set them up now.

Making sure Mobile HDR is turned off (Oculus
Go/Samsung Gear)
Check your Project Settings | Engine | Rendering | Mobile, and ensure that Mobile HDR
is turned off.

Mobile Multi-View (Oculus Go/Samsung Gear)
Remember back in the section on Instanced Stereo rendering when we discussed how
wasteful it is to render the entire scene for each eye? The mobile headsets have a solution
for this too, called Mobile Multi-View. Mobile Multi-View works pretty much the same
way Instanced Stereo rendering does – by rendering the scene once for the left eye, and
then shifting and adjusting the image for the right eye. We want to turn this on.

In Project Settings | Engine | Rendering | VR, set Mobile Multi-View to true, and turn
on Mobile Multi-View Direct as well. Oculus doesn't recommend or support using Mobile
Multi-View without the Direct option. Turn them both on:

Hello World - Your First VR Project Chapter 3

[136]

Monoscopic Far Field Rendering (Oculus Go / Samsung
Gear)
Here's the thing about stereo depth perception – we can only see it up to a certain distance.
Beyond that distance, there's no visible difference between a stereo image and a flat image.
They look the same to us. We may as well use that to our advantage.

If we set Project Settings | Engine | Rendering | VR | Monoscopic Far Field to true, the
engine will render any object beyond a specified distance only once, which can save
significant time on the right sorts of scenes:

By default, the split between mono and stereo rendering happens at 7.5 meters, but this is
set individually on each map. (The location of this split is called the culling plane.) This
culling plane's distance from the camera is set individually for each map. To adjust it, open
Window | World Settings, and look for the VR section on the settings panel that appears.
Adjusting the Mono Culling Distance will shift the location of the culling plane.

For certain objects in your scene, especially large objects, you may need to force them to
render in mono, if their bounds extend close to the camera even though they only ever
actually appear far away. In these instances, open the object's details and set Rendering |
Render in Mono to true. (This option is hidden in the Rendering section's advanced
options.)

Hello World - Your First VR Project Chapter 3

[137]

Project Settings cheat-sheet
We just ran through a number of settings you should modify when setting up your project
for VR along with a bit of background for each of them. Just to recap, here's a cheat-sheet of
what we changed:

Project Settings | Engine | Rendering | VR | Instanced Stereo: True
Project Settings | Engine | Rendering | VR | Round Robin Occlusion Queries:
True
Project Settings | Engine | Rendering | Forward Renderer | Forward Shading:
True
Project Settings | Engine | Rendering | Default Settings | Anti-Aliasing
Method: MSAA
Project Settings | Engine | Rendering | Default Settings | Ambient Occlusion
Static Fraction: False
Project Settings | Project | Description | Settings | Start in VR: True

This is the mobile VR version:

Project Settings | Engine | Input | Mobile | Default Touch Interface: None
Project Settings | Platforms | Android | APK Packaging: Configure and set the
settings mentioned
Project Settings | Platforms | Android SDK: Verify that your SDK locations are
set.
Project Settings | Engine | Rendering | Mobile | Mobile HDR: False
Project Settings | Engine | Rendering | VR | Mobile Multi-View: True
Project Settings | Engine | Rendering | VR | Mobile Multi-View Direct: True
Project Settings | Engine | Rendering | VR | Monoscopic Far Field: True

Again, don't just follow these blindly. For most VR projects, these are the settings you're
going to want, but that doesn't mean they'll apply to every project you ever do.

Decorating our project
Now that we've set up our project's basic settings, let's add some environment art so we
have something interesting to look at while we work.

Hello World - Your First VR Project Chapter 3

[138]

Migrating content into a project
From your Epic Games Launcher, open the Learn tab, and search for the Sun Temple
example environment. Hit the Create Project button, and choose a location where you'd
like to save it:

Hello World - Your First VR Project Chapter 3

[139]

Let it download. Once the project has finished downloading, open it up. It should open up
to the Sun Temple map. Now we're going to migrate this map into our existing project.

We could just as easily have downloaded the Sun Temple project and
then set it up to run in VR. We're doing it this way to give you an
opportunity to learn about the Migrate... tool. When you need to get
assets from one project to another, the Migrate tool is the best way to do it.

In your content browser, select Content | Maps | Sun Temple. Right-click it and select
Asset Actions | Migrate...:

You're now going to be presented with a list of everything that will be copied if you
migrate this map. This is the power of the Migrate... tool and is why you should use it.
When you migrate an asset to another project, Unreal checks for everything else that would
be needed for that asset to work, and includes it in the list of assets to be copied. So, for
example, if you're migrating a mesh, the materials and textures used by that mesh will be
found automatically and migrated too. In our case here, we're migrating a map, so Unreal
will bring everything the map relies on into the new project:

Hello World - Your First VR Project Chapter 3

[140]

Now you need to choose where you're going to put your migrated content. The destination
for a migrate operation always has to be the Content directory of the target project.
Navigate to that location and select it. (This is why we mentioned at the start of this chapter
that it's important to understand the structure of an Unreal project directory. You will
occasionally need to know where things live in it.)

Once the migration is complete, let's close this project and re-open the project to which we
just added this map.

You should now see a Sun Temple map in a Maps directory in your Content browser. Let's
open it up.

Hello World - Your First VR Project Chapter 3

[141]

Unreal will probably need to compile lots of shaders if this is the first time
you've opened this map. (This is one of the reasons why we set up a
derived data cache in Chapter 2, Setting Up Your Development
Environment—once you've compiled your shaders, they'll be stored in this
cache so you won't have to re-compile them when you open other
projects.)

There's a little bit of extra stuff that came across when we migrated this map. We're going
to get rid of it now so we can focus on the new assets we're creating. While we're at it, we're
going to take this opportunity to show you a few things about managing assets to the
content browser that will be important to you as you continue developing.

Cleaning up migrated content
With the Sun Temple map open, open Window | World Settings, and find GameMode
Override. (We're going to talk about Game Modes shortly.) Clear it by hitting the yellow
Reset to Default arrow beside the property:

Any time you see a yellow Reset to Default arrow, hitting it will restore
the property to its standard setting.

Save the map.

Hello World - Your First VR Project Chapter 3

[142]

Deleting assets safely
Now select the Blueprints folder inside your content browser. We're going to make our
own blueprints in a moment, so we don't need these. Delete this folder, but pay attention to
the confirmation dialog that appears.

If you see a Force Delete button with a warning, this means the thing you're trying to
delete is still in use somewhere. You should almost never just delete something that's still
being referenced. (We say almost here because once you really know what the engine is
doing, there are certain circumstances where you can push it around a bit, but don't do this
until you're really sure you know what's going on under the hood.) Instead, find out where
the asset is still in use, and either change the reference to point to something else, or delete
the object that's referencing it, or leave it alone:

If it's safe to delete an object, the dialog will just display a Delete button. This means that
getting rid of it won't break anything else:

In this case, a force delete warning would mean that you either hadn't cleared out the
GameMode Override from the map's World Settings, or that you hadn't saved the map
after you did. If you're looking at a simple Delete button, hit it to get rid of the folder and
its contents.

Moving assets and fixing up redirectors
Now let's organize what remains. From within your content browser, create a new folder
for your project. We can call this folder HelloVR.

Hello World - Your First VR Project Chapter 3

[143]

It's a good idea always to create a folder for your project inside the content
browser. This way, as you migrate more content into your project from
other sources, or add assets from the marketplace, you'll never be
confused about which assets belong to your project and which arrived
from outside. Similarly, if you migrate assets somewhere else, they'll all
appear together in the new project's content browser. Most developers
don't do this. Everybody should. The first time you migrate in a plugin
and have it dump assets all over existing folders in your contents, you'll
see why. You can prevent a lot of mess by keeping your own project
organized.

Since we've gotten rid of our Blueprints folder, we still have two other folders from our
migrated content that are just sitting out at the content root. Let's move them inside our
project folder.

Grab the Maps folder and drag it into your HelloVR folder. When asked whether you'd like
to move or copy it, choose to move it. Now grab the Assets folder and do the same.

But what's this? We've moved the folder but the folder in the old location hasn't gone away.
Why? The reason for this is that Unreal has left behind a collection of Redirectors. You
should know about these. Let's make them visible.

From the Filters drop-down beside the search bar, select Filters | Other Filters | Show
Redirectors:

Hello World - Your First VR Project Chapter 3

[144]

Now let's navigate inside that left-behind Assets folder, and jump into its Blueprints
folder. There's a Redirector in there with the name of a BP_Godray blueprint that we
moved to a new location. Double-click this redirector, and it will take you to the asset's new
location. This is what redirectors do. When you move assets in Unreal, it's very likely that
something else in your project is using the asset and pointing to it. Rather than force you to
change every asset that refers to the thing you're moving right then, Unreal allows you to
move it without changing the references, and when other objects try to find it in its old
location, the redirector will just point them to the new location, and you can change the
location the reference points to later. It's a good system and can save you a lot of hassle on a
large project.

You don't want to leave redirectors lying around if you don't need them, however. To clean
up a redirector, right-click on it, and select Fix Up:

What this is going to do is find every asset that's referring to this asset in its old location,
and replace the references to point to the new location. Once this has been done, it deletes
the redirector since it's no longer needed.

This can also be done to every redirector in a folder at once. Let's do this next.

Hello World - Your First VR Project Chapter 3

[145]

First, we'll make it easier to see our content browser's folder structure. Hit the Sources
Panel button beside your Filters drop-down to open your Sources panel:

This toggles a tree view of your project's content directory, which can make getting around
and moving assets much more convenient:

Now that we can see what we're doing, let's select the old Assets folder that contains all
the redirectors, right-click it, and select Fix Up Redirectors in Folder:

Hello World - Your First VR Project Chapter 3

[146]

Once the operation is complete, you can delete the old Assets folder, since it's now empty.

A good way to verify that a folder is empty before you delete it is to right-
click the folder in your content browser, select Show in Explorer, and
from within Explorer, select the folder and hit Alt + Enter to bring up its
properties. If it shows 0 files, it's empty. If there's anything in it, you can
dig in and find out what's there and whether it's anything you want to
keep.

Our Content directory now should be pretty well-organized, with everything we're using
consolidated under our HelloVR folder. If you get into the habit of keeping your Content
directory clean while your project is small, you'll have a much easier time once it gets large.

Hello World - Your First VR Project Chapter 3

[147]

Setting a default map
Now that we've brought in our map and cleaned up the extra Blueprints that came with it,
let's set up our project to load Sun Temple as its default map.

Under Project Settings | Project | Maps & Modes | Default Maps, use the drop-down to
set Sun Temple as your Editor Startup Map and your Game Default Map:

This way, when you start your editor or launch the game as a standalone executable, it will
load directly into this map.

Testing our map on desktop
Let's take a look at what we've got so far. If we're working on desktop VR, we can launch
the map in VR and look around. Select the drop-down to the right of the Play button on
your editor toolbar. Select VR Preview (if VR Preview is dimmed, check to be sure that
your VR headset is hooked up and its software is running):

Hello World - Your First VR Project Chapter 3

[148]

Kinda nice in here, right?

We can't do much yet, and we're not at the right height relative to the floor, but it's running
and we're ready to begin setting things up.

Testing our map on mobile (Oculus Go/Samsung Gear)
If we'd like to test the map on mobile, there are a few other things we need to do.

Assuming that we've already set up our project to run on mobile as described, let's check
first that our mobile device is connected and can be seen.

Hello World - Your First VR Project Chapter 3

[149]

Important: If you update your Unreal Engine version, be sure you re-run
the CodeWorks for Android installer at <Engine Install
Location>\Engine\Extras\AndroidWorks\Win64. Building with
newer Unreal code and out-of-date Android SDK code can create difficult-
to-debug errors when you try to run in mobile VR. Remember to keep
your CodeWorks up-to-date.

Open Windows PowerShell and navigate to the platform-tools directory in your
Android SDK directory. By default, this will be C:\NVPACK\android-sdk-
windows\platform-tools. From here, type ./adb devices. You should see the serial
number of your connected device here with the word device beside it. If this reads
unauthorized instead, you need to accept the connection to your PC from within the headset.
If this reads offline, you may need to restart your adb server. Type ./adb kill-server,
and then run ./adb devices again:

If you're working on mobile devices, there's no way around the reality
that you're going to spend a lot of time in PowerShell talking to the
device. Take the time to learn about ADB especially. When something
goes wrong, you're going to use ADB to figure out what's happening.
Learn more about it here: https:/ /developer. android. com/ studio/
command- line/ adb.

If your ./adb devices looks good, you should be ready to launch the project to the device.

https://developer.android.com/studio/command-line/adb
https://developer.android.com/studio/command-line/adb
https://developer.android.com/studio/command-line/adb
https://developer.android.com/studio/command-line/adb
https://developer.android.com/studio/command-line/adb
https://developer.android.com/studio/command-line/adb
https://developer.android.com/studio/command-line/adb
https://developer.android.com/studio/command-line/adb
https://developer.android.com/studio/command-line/adb
https://developer.android.com/studio/command-line/adb
https://developer.android.com/studio/command-line/adb
https://developer.android.com/studio/command-line/adb
https://developer.android.com/studio/command-line/adb
https://developer.android.com/studio/command-line/adb
https://developer.android.com/studio/command-line/adb
https://developer.android.com/studio/command-line/adb

Hello World - Your First VR Project Chapter 3

[150]

From your launch drop-down on the editor toolbar, select the Android entry that matches
the serial number of your device.

The launch process should begin. As we mentioned in the Chapter 2, Setting Up Your
Development Environment, expect it to take a while the first time you do this.

Setting up a game mode and player pawn
Now that we've set up a basic scene and verified that it runs on the platform, let's get to
work on building in some functionality.

Creating a VR pawn
The first thing we're going to need to do is create a pawn to represent the player. Pawns are
a type of actor that can be controlled by a player or by AI. In our case, we're going to create
a pawn that our player can control.

Unreal Engine is an object-oriented system. This means that the engine is
organized around discrete items called objects. An object consists of
properties, which you can generally see by looking at the Details panel of
an item you select in the map, and functions, which you can often see in
the blueprint editor. Objects often inherit from one another, so a new class
of object might be created using another class as its parent. This means
that the new class would take on the attributes and behavior of its parent,
but could then change these attributes and behaviors or add new ones. An
actor, therefore, is a child of the object class that adds the capability to be
placed in the world. A pawn is a type of actor that adds the ability to be
controlled by a player or AI. When we create our own class using a pawn
as a parent, we're setting up that class to take on everything a pawn can
do, and then changing its behaviors or adding our own.

Hello World - Your First VR Project Chapter 3

[151]

Let's navigate to our Content/HelloVR/Assets/Blueprints folder in the content
browser, right-click on any empty space in the folder, and select Create Basic Asset |
Blueprint Class:

In the dialog that follows, we'll be asked to select our new blueprint's parent class. Select
Pawn:

Hello World - Your First VR Project Chapter 3

[152]

A new blueprint asset will be created in our Blueprints directory. Let's name it
BP_VRPawn.

It's a good idea to get into the habit of following a naming convention
when you name your assets. A naming convention is a set of rules you
follow when thinking up a name for a new thing you're creating. By
following rules when you name objects, you can make it much easier to
see what an object is, or to remember what you called it. In this instance,
we're using the BP_ prefix as a reminder that our pawn is a blueprint
class. A particularly thorough and well-thought-out naming convention
lives here: https://github.com/Allar/ue4-style-guide.

In a moment, we're going to start modifying our pawn, but, first, we need to tell our map to
use it.

https://github.com/Allar/ue4-style-guide

Hello World - Your First VR Project Chapter 3

[153]

Creating a game mode
Whenever Unreal loads up a map, the first thing it does is check to see what rules govern
the behavior of the map. These rules can specify a number of things, but the one we care
about right now is what sort of pawn is going to spawn from a Player Start object. This
collection of rules lives in a class called the Game Mode.

Let's create a game mode. Right-click in empty space, create a Blueprint Class, and select
Game Mode Base as its parent. We'll name it BP_VRGameMode.

Double-click our new game mode to open it up, and in its Details section, select the Classes
| Default Pawn Class drop-down, and select the BP_VRPawn class we just created:

Hello World - Your First VR Project Chapter 3

[154]

For our purposes right now, this is all we need to do with our game mode. We're just using
it to specify the pawn class we'd like to load. Compile it and save it.

Blueprint is a compiled language. Before the code you write can be run by
the CPU, it needs to be translated into a language the CPU understands.
There are two main ways this can happen. Interpreted languages are
translated on-the-fly while they're running. This comes with a cost
though, since the interpreter needs to be running alongside your code and
trying to translate it while it runs. It's much faster to translate everything
offline in a separate process so it's ready to go when the CPU needs to run
it. This is how compiled languages handle things, and when you compile
your blueprints, this is what you're doing.

By default, when blueprints are compiled, they're compiled to a format that's then used by
a virtual machine that hosts the blueprint code while your application is running. This
system runs fast, but if you want to squeeze even more speed out of it, you have the option
to convert them to native C++, which then allows them to be compiled to machine code. At
this point, they can run as fast as code written directly in C++.

Assigning the game mode
Now we need to tell our project to use this game mode as its default.

Hello World - Your First VR Project Chapter 3

[155]

Open Project Settings, and under Project | Maps & Modes | Default Modes, set our
Default GameMode to our newly-created game mode:

Now any level that loads in our project will use this GameMode to decide what to spawn
and what rules to follow when running the scene.

Overriding a GameMode for a specific map
What if we wanted one of our maps to use a different GameMode? For instance, if we set
up an entry menu scene, we might want to spawn a pawn designed to interact with the
menus in place of our default player pawn. Fortunately, this is easy.

If it isn't already visible, select Window | World Settings to open up our World Settings
tab. In World Settings, under Game Mode, set the GameMode Override to the new
BP_VRGameMode we just created:

Hello World - Your First VR Project Chapter 3

[156]

We've just told the engine to use our new game mode when this map loads up, regardless
of what GameMode was specified in the project settings.

There are four places where we can specify what game mode to use:

You can set it in Project Settings | Maps & Modes | Default Modes | Default
GameMode. A GameMode specified here will load by default anywhere in your
project unless something else overrides it.
You can set the GameMode Override in an individual map as we've done here.
This will override the global default game mode from your project settings if it's
set.
You can specify a game mode using the command-line
argument ?game=MyGameMode when you launch your executable. This, in turn,
will override your default game mode, and any override set in your map.
In your DefaultEngine.ini, you can specify specific game modes to load when
maps with specific prefixes are loaded. This will override any other specification
if it's set.

Hello World - Your First VR Project Chapter 3

[157]

Placing a pawn directly in the world
While it's generally preferable to use a game mode and a player start object to get your
player pawn into the world, you don't have to do it this way, and you'll occasionally run
across existing projects, such as the default VR Template project, that don't use a
GameMode to set the player pawn.

In these cases, instead of placing a player start object in your scene where you want the
player to spawn, drag your pawn blueprint directly into the scene. If your scene has an
existing player start, get rid of it.

Remember that we said pawns could be controlled by players or AI? You need to put your
pawn under player control since you don't have a GameMode doing the job for you. Select
the pawn you just placed in the level, and in its Details, find Pawn | Auto Possess Player,
and set the value to Player 0. This will put the pawn under the player's control when it
spawns into the world:

In general, it's better practice to use a GameMode to specify the player pawn class, but you
should know that this method exists, because you will see some projects use it.

Hello World - Your First VR Project Chapter 3

[158]

Setting up the VR pawn
Now that we've created a VR pawn and set up the game mode to use it, let's modify this
pawn to set it up appropriately for use in VR. We're going to do this from scratch here.
Quite often, you'll use the pawn class supplied with the VR template when you create a
simple VR application, but we don't want you to use this as a crutch. It's much better to
understand how a pawn is built for VR, so you can build it appropriately for what you
need it to do.

The first thing we're going to do is open up our pawn.

Adding a camera
In the upper-left corner of the blueprint editor view, you should see a Components tab. Hit
the green +Add Component button, and in the drop-down that appears, select Scene to
create a Scene Component. Name it Camera Root:

Hello World - Your First VR Project Chapter 3

[159]

Components are additional elements that can be added to blueprint
objects. There's a wide variety of components available to you, and they
all do different jobs. Components are organized into a hierarchy, allowing
you to attach components to other components. You can do quite a lot
with this.

Now, create a new Camera component. If the Camera Root scene component was still
selected when you did this, the Camera component will be created as a child of Camera
Root. If it isn't, drag it on to Camera Root to set Camera Root as its parent.

It's often a good idea to set a separate root component as we've done here.
This gives you much more flexibility to change the structure of the actor
later, or to change rotations or positions of components such as cameras
without having to adjust the position of the object.

Adding motion controllers
Next, select the DefaultSceneRoot component, and create a Motion Controller
component. For this one, use the Search Components bar at the top of the Add Component
menu and type mot to narrow the search to the motion-controller component. You can save
yourself a lot of time by using this search bar. Name this new component
MotionController_L and make sure it's a child of the DefaultSceneRoot, and not a
child of the CameraRoot or the Camera.

Select DefaultSceneRoot and do this again to create a second motion-controller
component. Name this one MotionController_R and again make sure it's a child of the
DefaultSceneRoot, and not any other component:

Your component hierarchy should now look like the preceding screenshot.

Hello World - Your First VR Project Chapter 3

[160]

Before we move on, we need to set a few properties on our motion-controller components.
Select the MotionController_R component, and in its Details panel, find the Motion
Controller | Motion Source entry. Set it to Right to allow the controller to be moved by the
right-hand Oculus or Vive controller. While we're at it, ensure that MotionController_L
is still set to use Left as its motion source. It should be this by default:

Hello World - Your First VR Project Chapter 3

[161]

Let's also make both of these controllers visible so we can verify that they're working. From
each motion-controller component's Details panel, select Visualization | Display Device
Model. Turn this on, and verify that Display Model Source is still set to Default, which
will simply display the model for the motion-controller hardware you're using. We'll
replace our motion-controller display later on, but for now, we just want to see them so we
can verify that we've set them up correctly:

Setting our tracking origin.
Now we need to tell our pawn how it should interpret the location of the headset in the
tracked space. Look for the My Blueprint tab underneath your pawn's Components tab,
and if your EventGraph panel isn't already visible in the main editing window, double-
click Graphs | EventGraph in the My Blueprint tab to display it:

Once you're in your EventGraph, find the BeginPlay event, or right-click anywhere in the
graph editor and type beginplay in the search dialog that appears to find or create a
BeginPlay event. Drag an execution line from the BeginPlay event and right-click to create
a new node. Find Input | Head Mounted Display | Set Tracking Origin, or begin typing
in the search box to find it. Create a Set Tracking Origin node, and set its origin to
Floor Level if you're using a room-scale VR system such as the HTC Vive or Oculus Rift
with Touch controllers, or Eye Level if you're using a non-room-scale system such as the
Oculus Go or older single-camera Oculus Rift.

Hello World - Your First VR Project Chapter 3

[162]

Adjusting our Player Start location to the map.
Finally, we need to adjust our Player Start position in the map. Find it in your World
Outliner (you can use the search bar to find it quicker, and then select it and drag it down
in the scene until its center intersects the floor (this is a bit of a hacky way to align our
pawn, and we'll do a better job of this later, but for now it will work):

Testing in the headset.
We now have the building blocks we're going to need to create VR experiences in Unreal.
We have a project that's been properly set-up to run efficiently in VR, and a pawn that may
not do much yet, but is ready to be used as a foundation for the things we really want to do.

Let's test it. Launch the map using VR preview, and verify that your view seems to be at the
right height, and that you can see your motion controllers when you move your hands.
Framerate should be acceptable as well.

Hello World - Your First VR Project Chapter 3

[163]

Packaging a standalone build
When we distribute an Unreal application to other users, we generally don't give them the
source files for the editor. Instead, we package the project into a stand-alone executable that
can be run on the target platform.

Let's create a Windows standalone executable.

Select File | Package Project | Windows | Windows (64-bit) to kick off a packaging
process. You'll be asked where to put it. Choose a location that makes sense. (Often,
creating a Packaged directory inside your project directory can be reasonable. You can put
your packaged build wherever you want.) When the build status dialog appears, hit Show
Output Log so you can see what it's doing:

Expect this process to take a while.

Hello World - Your First VR Project Chapter 3

[164]

Once the process completes, close the editor and check the location where you told the
system to build your executable. You should see a WindowsNoEditor folder inside it.
Inside that, you should see an executable with your project's name. Launch the executable.
If you set the Start in VR flag in your Project Settings, it should launch directly to your
headset.

Summary
Congratulations! We covered a lot of ground. In this chapter. We went through the process
of creating a starting VR project and set it up properly to run well on the target hardware.
We learned how to decide what settings to use when setting up a new project for VR, and
how to find our way around inside an Unreal project directory. We also learned about a
number of important Unreal Engine features used in VR development:

Instanced Stereo
Round Robin Occlusions
Forward Shading
Multisampling Anti-Aliasing (MSAA)
[Mobile] Mobile Multi-View
[Mobile] Monoscopic Far Field Rendering

We learned how to migrate content from one project to another, and how to clean up our
Content directory once it arrives.

Finally, we set up a basic VR pawn and set up a game mode to instruct the map to load it.
In working with the pawn, we learned about how we can use components to build complex
objects out of simple parts, adding a camera and tracked motion controllers. Finally, we set
up the first elements of our pawn's blueprint to set our tracking origin appropriately for our
VR hardware, and tested our map.

In the next chapter, we're going to make it possible for the pawn we created in this chapter
to move through the world. We'll use Blueprints to create a teleport movement scheme, and
learn how to set up the environment to support it, and then we'll move on from there to
implement a range of immersive movement schemes as well.

4
Getting Around the Virtual

World
In this chapter, we're going to take the pawn we built in the previous chapter and get it
moving through the world. We'll begin with a commonly employed teleport movement
scheme and cover a wide range of tasks that go into setting it up. We'll learn about
navigation meshes in our environment, how to set up input events in our project and use
them in Blueprints, and how to build a player pawn Blueprint and get it moving around the
world. Finally, we'll also explore an immersive seamless locomotion scheme that you can
use to allow your players to move through the world without teleporting.

Throughout the course of this chapter, we'll be discussing the following topics:

Navigation meshes—what they are, how to set them up in your level, and how to
refine them
How to set up a Blueprint for your player pawn, and how to create input events
that your pawn can use
How to perform traces, using both straight lines and curves, to find legal target
locations in your environment
How to create simple in-game indicators to show players what's going on
How to implement a seamless locomotion scheme to provide immersive
movement for projects where teleportation wouldn't be appropriate

Getting Around the Virtual World Chapter 4

[166]

This is going to be a lot of ground to cover, but it should be fun, and you're going to come
away with a good grounding that's going to help you to figure out how to develop the
things you want, and how to understand what other developers are doing when you see
their Blueprints. We're going to take a slightly different approach in this chapter from the
way most tutorials are done. To be an effective developer, it's far more important to learn
how to think about a problem than simply to memorize a series of steps that may not apply
to the next problem you face. In this chapter, we're going to walk through the processes of
building elements and then, in some instances, discover bugs in them. Afterward, we'll need
to change things to fix these bugs. This is where the real value in this approach lies—you'll
begin to get a sense of how to develop software through iteration, which is the way it's
really done. The goal here isn't to make you good at building these tutorials—it's to help
you to become a developer who can make whatever you dream up on your own.

With that being said, let's get building!

Teleport locomotion
As we discussed in Chapter 1, Thinking in VR, one of the biggest challenges we face in VR
is motion sickness that's triggered when the user tries to move around. One of the most
commonly used solutions for this is to teleport the user from place to place rather than to
allow them to move smoothly through the space. This breaks immersion, but avoids the
problem of motion sickness entirely because it doesn't create a sense of motion at all. For
applications where immersive movement isn't a priority, such as architectural visualization,
this may be an ideal scheme to employ.

Creating a navigation mesh
The first thing we're going to need for a teleport-based locomotion scheme is a way to tell
the engine where players are allowed to move and where they aren't. We can use a
navigation mesh to do this job.

A navigation mesh, often shortened to navmesh, is an automatically
generated set of surfaces indicating walkable floors in an Unreal level. AI-
controlled agents use the navigation mesh to find their way around the
world, but it can also be used as a way to identify safe destinations for the
player pawn to land, as we're doing here in our teleport system.

Getting Around the Virtual World Chapter 4

[167]

Creating a navmesh in Unreal is fairly simple. From your Modes panel, select the Volumes
tab, and find the NavMesh Bounds Volume. Drag it into your scene, as shown in the
following screenshot:

Select the Nav Mesh Bounds Volume from Modes | Volumes

Getting Around the Virtual World Chapter 4

[168]

Moving and scaling the Navmesh Bounds volume
The NavMesh Bounds volume needs to surround any floor where you'd like the player to
be able to teleport. Let's make our navmesh visible so that we can see where the walkable
floors are being set up:

Hit the P key to toggle navigation visibility or, from the viewport menu, select1.
Show | Navigation:

Use the P key or Show | Navigation to display the generated navmesh in the environment.

Getting Around the Virtual World Chapter 4

[169]

If you don't see any navigable space after you've placed a NavMesh
Bounds volume, make sure it's intersecting a walkable floor. The volume
sets the boundaries for the navmesh generation, so if it's above the floor, it
won't generate anything.

Of course, this NavMesh Bounds volume we just placed is far too small. Let's
extend it to cover the space in which we'd like to move. We're going to do this by
scaling the volume.

Hit the R key to switch to scaling mode, or just tap the spacebar until the scaling2.
gizmo appears.

We could scale the volume from the perspective view, but for this kind of
operation, it's often a good idea to go to an orthographic view so that we can
really see what we're doing.

Hit Alt + J or use the viewport's view selector to switch to a top view:3.

Switch to an orthographic top view using the menu or its associated shortcut key.

Getting Around the Virtual World Chapter 4

[170]

Scale the navmesh to surround the walkable area of the building.4.

With your navigation visible, you can see where it's generating navmesh surfaces
and whether it's doing a sensible job of it:

A top view of our level showing the extents of the NavMesh bounds volume

Getting Around the Virtual World Chapter 4

[171]

In our case, parts of the building that we expect to be walkable aren't yet covered.
This is because we haven't yet done anything with the height of our bounds
volume, and these areas are too high or low to fit inside it. Let's jump to a side
view to fix that.

Hit Alt + K to jump to the left view, or select Left from your viewport view5.
selection.
Scale the bounds volume to a scale that reasonably covers the floor:6.

Side view of the level. You can see here that we're scaling the navmesh bounds volume to encompass the floor

Hit Alt + G to jump back to a perspective view and see how we're doing.7.
Alternatively, you can select Perspective from your view selector.

It's worth memorizing these keystrokes for changing views. You'll use
them all of the time, and it's handy to be able to switch quickly. Alt + J, K,
and H switch view angles. Alt + 2 switches to a wireframe view, and Alt +
4 switches back to a shaded view. There are plenty of other hotkeys, but
you'll use these the most.

Getting Around the Virtual World Chapter 4

[172]

If we fly to the back of the temple, we can see that we have a problem here. Our
navmesh didn't generate as expected in the back corridor. Let's figure out what's
going on here:

Here we can see that part of our level hasn't been properly covered by the navmesh.

Getting Around the Virtual World Chapter 4

[173]

Fixing collision problems
There are almost always two reasons why a navmesh isn't generating where you expect it.
Either your volume isn't surrounding the area where you're trying to generate the mesh, or
there's something wrong with the collision in the area. Let's take a look:

Hit Alt + C to view the collision in the back hall, or hit Show | Collision.1.

It doesn't appear that there's any stray collision encroaching into the hall, so it's
probably a missing collision on the floor.

Select the floor in the bad area.2.
In its details, find its Static Mesh and double-click it to open it up:3.

Use the Details panel to find the static mesh for the bad floor region.

Getting Around the Virtual World Chapter 4

[174]

In the Static Mesh Editor, select the Collision toolbar item and make sure4.
that Simple Collision is checked:

View simple collision for the static mesh

Sure enough, our simple collision is missing. Let's fix this.

Select Collision | Add Box Simplified Collision to add a simple collision plane5.
to our floor.

Getting Around the Virtual World Chapter 4

[175]

That's much better. We should now see that the navmesh we expect has been generated
back in our main level:

Simplified collision created for our floor mesh

Before we move on, let's take a second to talk about what's going on here. A very common
thing we need to do in real-time software is figure out when an object has hit another
object. Unreal uses collision meshes to do this. A collision mesh is simplified geometry that's
used to check for intersections with other collision meshes in the world.

Getting Around the Virtual World Chapter 4

[176]

Actors have two of these:

A Complex Collision mesh. This is simply the model's visible mesh.
A Simple Collision mesh. This is a much less detailed convex mesh that
surrounds the object. These are often generated when an object is imported, or
can be created explicitly in the DCC where the model was created. If it's missing,
you can create a simple collision in the editor, like we've done here. As a last
resort, you can set Details | Collision | Collision Complexity to Use Complex
Collision As Simple to use the object's visible mesh for all collision calculations.
Don't do this for a mesh with a ton of polygons, though. It's expensive.

Collision detection and handling is its own fairly deep topic and beyond the scope of this
book, but for our purposes in VR development, we're going to care a lot about the simple
collision meshes of our objects, because we'll use these as walkable surfaces to detect when
another object hits them, to detect whether we can grab them, and for many other purposes.

Excluding areas from the navmesh
Looking around our map, we have a few more problems we need to fix. Our Navmesh
Bounds Volume is generating a navmesh in a few areas where we don't want our players to
teleport. Let's fix this, too:

Hit Alt + 2 to switch to a wireframe view, or use the viewport's View Mode1.
selector to switch to wireframe.

We probably have a few problems we can fix just by adjusting the scale of the NavMesh
Bounds volume. If we have navmesh generating on rooftops or window sills, let's reduce
our Bounds volume's vertical scale to exclude these areas if we can. This is an area where
hitting Alt + K to jump to a side view can help.

If our NavMesh Bounds volume is spreading further outside the building than it needs to,
we can jump to a top view using Alt + J and adjust it to fit better.

We're still going to have a few leftover stray areas that we'll want to exclude, and that can't
simply be fixed by scaling the volume. For these, we'll use Nav Modifier Volumes. Refer to
the following steps:

Grab a Nav Modifier Volume from your Modes palette and drag it into the1.
scene.
Move and scale it until it surrounds an area where the unwanted navmesh is2.
being generated.

Getting Around the Virtual World Chapter 4

[177]

You'll see the navmesh in this region disappear when the nav modifier volume
surrounds it. Take a look at the nav modifier volume properties in your Details
panel. Do you see that Default | Area Class is set to NavArea_Null? This tells the
navmesh generator to omit generating a navmesh in this region. You can see from
the pulldown menu that it can also be used to mark obstacles and crawlspaces,
but for what we're doing here, we don't care about these. We're just interested in
using it to clear out unwanted navigation.

Drag as many of these into your scene as you need to clean up the stray bits. You3.
can hold down the Alt key while dragging a modifier volume to duplicate it, or
hit Ctrl + W to make a copy:

A perspective wireframe view can be useful for finding problems with your navigation coverage.

Getting Around the Virtual World Chapter 4

[178]

You'll find it helpful to memorize the transform hotkeys as you're moving
objects around. W activates the Translate tool, which allows you to slide
an object around. E activates the Rotate tool, and R activates
the Scale tool. Tapping the spacebar also cycles through these
tools. Ctrl + W duplicates an object, and holding Alt while dragging an
object also copies it.

When you're done, you should have a collection of Nav Modifier Volumes blocking off areas you don't want your player to stand on.

Fly through your level and make sure you don't have any weird navmesh where you don't
want it. Where you find problems, fix them by scaling your navmesh bounds volume, or
adding nav modifier volumes.

Modifying your navmesh properties
There's one other thing you should know about before we move on, and that's where to
adjust the properties for the navmesh you've just generated.

If you need to change anything about its behavior, select the RecastNavMesh object, which
will have been created in your level. In its Details panel, you can see properties governing
its generation, querying, and runtime behavior.

We're not going to go into these here except to call attention to one of these properties: if
you wanted to adjust the size of an area into which your player could fit, you can adjust the
Agent Radius to do so. Making this smaller will allow your player to fit into tighter spots.
Similarly, you can adjust the Agent Height and Max Height to determine acceptable ceiling
heights under which navigation should be generated. Generally, you'll want to make
changes to these values before you go crazy fine-tuning your nav modifier volumes since
changes here will change where your navmesh is generated. For our purposes, we're going
to leave these values alone.

Setting up the pawn Blueprint
Now that we have our navigation built and tuned in our scene, we can turn off navigation
visualization by hitting P, and start working on our locomotion behavior.

Getting Around the Virtual World Chapter 4

[179]

To implement a teleport locomotion scheme, we need to do three jobs:

Figure out where the player wants to move
Figure out where the player is actually allowed to move
Move the player to the new location

Let's get to work.

Iterative development
We're going to develop this method iteratively, the way you really would if you were
developing it from scratch. Most tutorials simply walk you through the steps to build a
finished method, but the problem with this approach is that it doesn't teach you why you're
doing the things you're doing. As soon as you want to do something similar, but not exactly
the same, you're back to square one.

Instead, we're going to work in stages.

Kent Beck, a pioneering software developer, gives this advice to developers: Make it work,
make it right, make it fast.

What's important here is the order in which you do things. It seems almost obvious at first,
but few developers get it right when they're starting out. You'll save yourself a lot of
heartache if you work in this order.

Make it work
Build a rough assembly of what you're trying to do. Test it early and often. Build it to be
easy to test and easy to change. Change things around until you're satisfied that it's doing
the right work.

Make it right
Now that you know what your code needs to do, figure out how you should really
organize it. Are there better or cleaner ways to do what you're trying to do? Are there parts
that can be reused? Will this code need to be used anywhere else? Could you debug it if
you had to? Use the work you did in the make it work phase as a starting point, but now that
you understand what you really need to do, write it correctly. It's okay to make a mess in
the first stage (in fact, you're probably doing it wrong if you're not making a mess), but
clean that mess up in this phase.

Getting Around the Virtual World Chapter 4

[180]

Make it fast
Once you have reasonably clean code that's doing the right job, look for ways you could get
it running faster. Is there a result that you're generating more than once that you could
cache to a variable and reuse? Are you checking conditions repeatedly, even though you
know they can only change when certain things happen? Are you copying data that you
could just read from its original location? Figure out what you could be doing more
efficiently, and speed things up where you can. Be careful here, though. Some
optimizations are so minor that they may not really make a noticeable difference to the
running application. Go for the big ones, and use profiling tools to understand where your
problems really are. You want to make sure you're optimizing things that are really going
to make a difference. Also, be careful about making your code more difficult to read or
debug as you optimize it. A change that shaves a tiny amount off of your frame time but
makes a class difficult or impossible to update or maintain might not be worth it. Use
judgment when optimizing.

Do things in order
Many new developers mess this order up, and start trying to optimize their code before
they've really made sure they're doing the right thing. This just wastes time, as there's a
high likelihood that some of that code will be thrown out. Other developers skip the make it
right phase, and consider their work done as soon as it seems to work. This is a mistake too,
as 80% of the life cycle of a piece of code is spent maintaining and debugging it. If your
code works but it's a mess, you're going to burn a lot of extra time trying to keep it running
later on.

Problems that are created by rushed or sloppy work early in development
are often referred to as technical debt. This is stuff you're going to have to
fix later because, even though it runs, it may not be flexible or robust, or
might just be an unreadable shambles. The time to clear your technical
debt is right after you've finished your make it work phase, and before
you've moved onto other things and started to build more code on top of
something that needs to change.

Working in this order and thinking of these as discrete stages will make you a more
effective developer.

Getting Around the Virtual World Chapter 4

[181]

Setting up a line trace from the right motion controller
Let's begin with the first thing we need to do to get our teleport running—figuring out
where the player wants to go:

Open up our BP_VRPawn Blueprint, and open My Blueprint | Graphs |1.
EventGraph, if it isn't already open.

We should still see the BeginPlay event in our Event Graph where we set our
tracking origin. Now, we're going to add some code to our Event Tick.

The Tick event is called every time the engine updates the frame. Be
careful about putting too much work into your Tick events, as they can eat
performance.

If you don't already see an Event Tick node in your Event Graph, right-click2.
anywhere in the graph, type tick in the search box, and select Add Event |
Event Tick. If you already have a Tick event defined, this won't add a new
one—it'll just take you to that node in the event graph. If you don't, this will
create one now.
Right-click to the right of Event Tick, and add a Line Trace by Channel.3.

When you perform a line trace, you supply a start point and an end point, and tell it what
collision channel you're looking for. If an actor with a collision set to the supplied collision
channel intersects the line between the start and end points, the trace will return true, and
will return information about what it hit. We're going to use this behavior to find our
teleport destination.

Let's start our trace at the location of the right motion controller:

From your components list, grab MotionController_R, and drag it into your1.
event graph.
We want to start our trace at the motion controller's location, so let's drag a2.
connector out from the MotionController_R return value and release.

Getting Around the Virtual World Chapter 4

[182]

In the dialog that appears, type getworld into the search bar and select3.
GetWorldLocation:

Blueprint node creation is context-sensitive by default. This means that if you're dragging a connection from another object, you'll only be shown actions that
would be appropriate for that object.

Drag the result of GetWorldLocation into the Line Trace node's Start input pin.4.

Now, let's set the trace end point. We're going to end our trace at a point 10,000
units away from our start location, in the direction the controller is facing. Let's
do a bit of simple math to figure out where that point is.

From the MotionController_R output, create a Get Forward Vector node.5.

This will return a vector with a length of 1 that aims in the direction the controller
is facing. We said we wanted our end point to be 10,000 units from the start, so
let's multiply our Forward vector by that value.

Drag the Get Forward Vector return value out and type * into the search bar.6.
Select vector * float.

Now, drag a connector out from the float input to the multiply action, and select
Promote to Variable:

Getting Around the Virtual World Chapter 4

[183]

This is a fast way of creating variables in Blueprint. You can simply drag out from an input, select Promote to variable,
and a variable will be created with the correct type for the input

Name the new variable TeleportTraceLength, compile the Blueprint, and set7.
the variable's value to 10000.

You could have simply typed 10000 directly into the multiplication
action's float input, but it's bad practice to do so. If you start hiding values
all over the place in your Blueprints, you'll have a hard time finding them
later on when you need to change them. Also, a number typed into an
input doesn't do anything to explain what it is. A variable, on the other
hand, can be given a name that describes what's actually going to change
if its value is changed. Numbers buried without explanation in your code
are called magic numbers by developers, and they're an example of technical
debt. They're just going to turn into a hassle for you later on when you
need to maintain or debug your code. Unless the use of a value is
absolutely obvious in its context, use a variable instead, and give it a
meaningful name.

Getting Around the Virtual World Chapter 4

[184]

We now have a vector that's 10,000 units long, aiming in the controller's forward direction,
but right now it would be running 10,000 units from the world's center, rather than from
the controller, as we intend. Let's add the controller's location to this vector to fix that:

Drag another connector from the controller's GetWorldLocation call, and type1.
+ in the search bar. Select vector + vector.
Drag the output from our forward vector multiplication into the other input.2.
Connect the output of this addition to the End argument3.
of LineTraceByChannel:

Before we move on, let's set up some debug drawing to see whether everything is
behaving as we expect so far.

Hold down the B key and click on the open space to the right of the Line Trace4.
node to create a Branch node. (You can also right-click and create a Branch node
the way you usually do, but this is a useful shortcut.)
Drag a connector from the Line Trace node's Boolean Return Value to this5.
branch's Condition.

The trace operation will return True if it hits something, and False if it doesn't.
We're only interested in debug drawing the result if it hits something, so we're
just going to use the True output from our branch.

If we did hit something, we need to know where the hit occurred.

Drag a connector from Out Hit and select Break Hit Result to see the members6.
of the hit result struct.

Getting Around the Virtual World Chapter 4

[185]

A struct is a bundled collection of variables that can be given a name and
passed around as a single unit. The Hit Result struct is a commonly
used struct that describes the properties of a detected collision, telling you
where it occurred, what actor was hit, and many other details. Calling
break on a struct allows us to see its contents.

Now, let's draw a debug line representing our trace:

Drag an execution line from our Branch node's True output, and create a Draw1.
Debug Line action.
Drag the Location from the Hit Result struct into the Line End input on the2.
Debug Line call.
Drag the hit result's Trace Start to the Line Start.3.
Set the line's thickness to 2, and set its color to anything you like.4.

While we're at it, let's draw a debug sphere at the hit location:

Create a Draw Debug Sphere node.1.
Connect its execution input to the debug line's output.2.
Set its Center to the hit result's Location:3.

Getting Around the Virtual World Chapter 4

[186]

Be aware that Draw Debug calls only work in development builds. They're useful
for understanding what's going on, but they're just debugging tools and need to
be replaced with real visualizations for your actual software. We'll do that shortly.

Let's test it. Your result should look something like this:4.

Good. So far, it's doing what we expect—casting a ray from the controller, and showing us
where it hits a surface. The problem, though, is that it's just as happy to hit a wall as a floor.
We need to restrict it to valid teleport destinations. Let's do that.

Improving our Trace Hit Result
We're going to do this first by setting up a simple test that only accepts surfaces facing
upward. We'll do this by using a vector operation called a Dot Product to compare a surface
normal with the world's up vector. Follow these steps to get started:

Right-click somewhere to the right of our hit result breakout, and create a Dot1.
Product node.
Drag the Normal from the hit result into the first input, and set the second2.
input's Z value to 1.0.

Getting Around the Virtual World Chapter 4

[187]

A normal is a vector that's perpendicular to the surface from which it
extends. A dot product is a mathematical operator that returns the cosine of
the angle between two vectors. If two vectors are exactly parallel, their dot
product will be 1.0. If they're facing exactly in opposite directions, their
dot product will be -1.0. If they're exactly perpendicular, the dot product
is 0.

Since the vector (0,0,1) is the world's up vector, by testing the dot product of a
surface normal against this vector, we can find out whether or not the normal is
facing upward by checking whether the dot product is greater than 0.

Drag a connector from the result of the dot product, and select the > operator.3.
Create another branch operator using this result as its Condition.4.
Press Alt + click the execution input to the Draw Debug Line node to disconnect5.
it.
Drag a new execution line from the return value's branch to this new branch.6.
Connect the True output from the dot product's branch with our Draw Debug7.
Line node:

Let's test it. We'll see that we now see the debug sphere drawn when our ray hits a floor,
but not when it hits a wall or a ceiling. As we mentioned a moment ago, this is because the
dot product of a wall's normal versus the world's up vector will be 0, while the dot product
of a ceiling against the world up is -1.

Getting Around the Virtual World Chapter 4

[188]

This is better, but what about the places we decided we didn't want the player to go? We
spent all of that time setting up our navmesh bounds and navmesh modifiers, and we're
not using them yet. We should fix this.

Using navmesh data
Now, we're going to take our test a step further, and look for the nearest point on the
navmesh to wherever our pointer is pointing:

Right-click in our graph, and create a Project Point to Navigation node1.
Connect our hit result's Location output to this new node's Point input2.
Connect the node's Projected Location output with the debug line's Line3.
End and the Debug Sphere's Center, replacing the location inputs that we'd
previously been using there:

What we're doing here is querying the navmesh we created to find the closest point on the
mesh to the location we supplied. This will prevent a location from being selected that we'd
excluded from our mesh.

As we look around the scene, though, we can start to see that we're going to have a
problem. Casting a ray straight from the controller isn't going to allow us to teleport onto
higher locations than where we're currently standing, because the ray won't be able to hit
the higher floor. This is a flaw in our system, and we're going to need to rethink this.

Getting Around the Virtual World Chapter 4

[189]

This is why it's so important to stick to our guns and do a make it work phase before we put
a ton of work into cleaning up. It often happens that your first running prototype will
reveal things you need to rethink, and it's better to discover these things early, before
you've burned a ton of effort.

Changing from line trace to parabolic trace
Thinking it through, it becomes clear that we're going to need a curved path to reach points
that are higher than our current viewpoint. Let's modify our trace method to make this
possible. This is the result we will get:

The math used to calculate a parabola is actually fairly simple, but we have an even easier
option available to us. The Predict Projectile Path By TraceChannel method
already handles the math for us and can save us some time. Let's use this now:

Disconnect our Event Tick from the old Line Trace By Channel node.1.
Right-click in our graph and create a Predict Projectile Path by2.
TraceChannel node.
Connect it to our Tick.3.
Set its Trace Channel to Visibility.4.

Getting Around the Virtual World Chapter 4

[190]

Next, connect the output from the GetWorldLocation of MotionController_R to5.
the Start Pos input.

To get our Launch Velocity, we're going to take the Forward Vector of
MotionController_R, and multiply it by an arbitrary value:

Disconnect the old TeleportTraceLength variable from the Multiply node.
Drag out a new connector from the Multiply node's float input and promote it to
a variable. Let's name it TeleportLaunchVelocity.
Compile our Blueprint, and give it a value of 900.
Connect the result to the Launch Velocity input:

Now, let's draw the resulting path so that we can verify that it's doing what we expect.

Drawing the curved path
The Predict Projectile Path By TraceChannel method is going to return an array
of points describing the path of the parabola. We can use these points to draw our targeting
indicator. Let's get started:

Just as we did previously, connect a Branch to our Return Value. We're only1.
interested in drawing anything if we got a good result.

Now, to draw the curved path, we're actually going to have to draw a series of
debug lines instead of just one.

Getting Around the Virtual World Chapter 4

[191]

Let's drag a connector from Out Path Positions and create a ForEachLoop node:2.

We should take a moment to talk about what we're doing here, since this is a concept you'll
use quite a lot.

So far, all of the variables we've handled in our pawn Blueprint have contained single
values—a number, a true or false value, and a vector. The connector for Out Path Positions,
however, looks different. Instead of a circle, it's a 3 x 3 grid. This icon indicates that this is
an array. Rather than holding a single value, an array contains a list of values. In this case,
those values are a list of points that make up the curved path we're going to draw.

A For Each Loop is a programming structure called an iterator. Iterators loop through
collections of values and allow you to perform operations on each element in the collection.

Let's take a quick look at the ForEach Loop's outputs:

The Loop Body will execute once for each item it finds in the array.
The Array Element is the item it found.
The Array Index is where it found it. Arrays are always numbered from zero, so
the first item will have an index of 0, the second will have an index of 1, and so
on.
The Completed execution pin will be called when it reaches the end of the list.

Getting Around the Virtual World Chapter 4

[192]

We're going to use this loop to draw the line segments of our curve, but we're going to need
two points for each segment, which means we can't draw anything until we reach the
second point in the array:

Drag a connector from the Array Index output and connect it to an integer |1.
integer node. Leave the second value as 0.
Connect its output to a Branch, and connect the Loop Body to the Branch input.2.
This will allow us to skip the first value in the array.
Create a Draw Debug Line node, and connect the Array Element to the Line3.
End input. Since we're starting with the second value of the array, the point at
that location is the end of our line. We're going to get the line start by getting the
point before it:

To find our Line Start, drag another connector from the Array Index, and4.
subtract 1 from it.
Now, drag another connector from Out Path Positions, and type Get into the5.
search box. Select Get (a copy):

Getting Around the Virtual World Chapter 4

[193]

This will get the element stored at the location in the array corresponding to the
index we give it.

Connect the result of our Array Index -1 subtraction to the Get node's integer6.
input. This will retrieve the value before the one we're currently iterating on.
Connect the output from this Get node to the Line Start of Draw Debug Line:7.

When you're finished, the drawing routine should look something like what's shown in the preceding screenshot.

What we've just done here is looped through each of the path position vectors in Out Path
Positions, and for each one after the first, we drew a line from the position before it to the
current one, until we reached the end of the list.

Getting Around the Virtual World Chapter 4

[194]

Drawing the endpoint after all the line segments have been drawn
Finally, let's draw a debug sphere at the trace endpoint. We can reuse the nodes we were
previously using to draw the sphere at the end of our straight line trace:

Just as we did before, break the Hit Result struct from Out Hit.1.
Take its Location and feed it into a ProjectPointToNavigation node.2.
Connect a Branch to its Return Value, and feed the True branch's execution into3.
a Draw Debug Sphere node.
Use the Projected Location as the debug sphere's Center.4.

Rather than calling this right after the Draw Debug Line node, however, call it from
the Completed output of ForEachLoop instead, since we only need to draw the sphere once
after all of the line segments have been drawn.

Your graph should now look like this:

Getting Around the Virtual World Chapter 4

[195]

Let's test it and see what happens when we run it:

Great! We're now projecting a curved path that will allow us to get around the map much
more easily, and we've used debug drawing to verify that it's giving us good results.

The Draw Debug methods we're using here will only work in debug and
development builds. They aren't included in shipping builds. The correct
way to draw this path would be to use the collection of points in Out Path
Positions to change the shape of a spline mesh, but doing this is beyond
the scope of this book. There's a good example, however, in the VR
Template, and the work we've done here is a good starting point for
understanding what they're doing in that project's Blueprints.

Next, let's take care of the next job and allow our player to teleport to the destination
they've chosen.

Getting Around the Virtual World Chapter 4

[196]

Teleporting the player
The first thing we need to do in this instance is give the player a way to tell the system
when they intend to teleport.

Creating Input Mappings
We're going to use our Engine Input Mappings to set up a new named input. Let's get
started:

Open your Project Settings and navigate to Engine | Input.1.
Hit the + sign beside Bindings | Action Mappings to create a new action2.
mapping:

We're going to name it TeleportRight.3.

What this is going to do is create an input event with this name that we can then respond to
in our event graphs.

You may have already discovered that you can set up events in your event
graphs directly to listen to controller inputs and keystrokes. For most
projects, though, it's a better idea to map your inputs here as it gives you a
central location from which to manage them.

Getting Around the Virtual World Chapter 4

[197]

Now, let's indicate what inputs should trigger this teleport action. A drop-down menu has
appeared beneath the new action mapping with a None indicator displayed. (Hit the
expander arrow beside the action mappings if the drop-down menu isn't visible.) Let's
carry on:

Under TeleportRight, use the drop-down menu to select MotionController (R)1.
Thumbstick.

This will handle our Oculus Touch controller mappings, but doesn't help us on
the HTC Vive, which doesn't use thumbsticks.

Hit the + sign beside the TeleportRight action to add another mapping to the2.
group.
Select MotionController (R) FaceButton1 for this one:3.

Your bindings should now look like what's shown in the preceding screenshot.

Now, we've told the input system to send a TeleportRight input event, regardless of
whether the player is using a motion controller with a thumbstick or one with face buttons.

These bindings are stored in DefaultInput.ini and can be edited there,
but it's generally more convenient to set them up here in the Project
Settings UI. If you need to copy a bunch of input bindings from one
project to another, however, it can be convenient to copy the contents of
DefaultInput.ini from one project to another. Not every project will
have DefaultInput.ini. If yours doesn't, you can simply add it and the
engine will use it.

Getting Around the Virtual World Chapter 4

[198]

Let's close Project Settings and return to our VRPawn's event graph. You'll find that you
can now create a TeleportRight event here, since we defined it in our input settings. Let's
do this, as follows:

Caching our teleport destination
Now, before we do anything with this event, we need to store the location we found in our
trace method previously so that we can use it here when the player tries to teleport:

Under My Blueprint | Variables, hit the + sign to create a new variable.1.
Set its type to Boolean, and name it bHasValidTeleportDest.2.

Variable names are important. They tell the reader (who might be another
developer maintaining your code or might be yourself in the future) what
a variable represents. Your variable names should accurately reflect what
they contain. In the case of True/False Boolean variables, make sure your
name describes what question it's actually answering. So, for instance, in
this case, Teleport would be a poor choice for a name, as it doesn't indicate
whether the variable's value means that the player can teleport, is
teleporting, has recently teleported, or just enjoys daydreaming about
teleporting. Be clear about these things. bHasValidTeleportDest clearly
indicates what it means.

Prefixing Boolean variable names with b is a practice mandated by Epic's
coding style guide for C++, but it's a good idea to follow it in Blueprint
development as well. (If you plan on developing in C++, you should know
and follow the Unreal style guide, which can be found at https:/ / docs.
unrealengine. com/ en- us/ Programming/ Development/ CodingStandard.)

Create another variable and name it TeleportDest.3.
Set its type to Vector.4.

https://docs.unrealengine.com/en-us/Programming/Development/CodingStandard
https://docs.unrealengine.com/en-us/Programming/Development/CodingStandard
https://docs.unrealengine.com/en-us/Programming/Development/CodingStandard
https://docs.unrealengine.com/en-us/Programming/Development/CodingStandard
https://docs.unrealengine.com/en-us/Programming/Development/CodingStandard
https://docs.unrealengine.com/en-us/Programming/Development/CodingStandard
https://docs.unrealengine.com/en-us/Programming/Development/CodingStandard
https://docs.unrealengine.com/en-us/Programming/Development/CodingStandard
https://docs.unrealengine.com/en-us/Programming/Development/CodingStandard
https://docs.unrealengine.com/en-us/Programming/Development/CodingStandard
https://docs.unrealengine.com/en-us/Programming/Development/CodingStandard
https://docs.unrealengine.com/en-us/Programming/Development/CodingStandard
https://docs.unrealengine.com/en-us/Programming/Development/CodingStandard
https://docs.unrealengine.com/en-us/Programming/Development/CodingStandard
https://docs.unrealengine.com/en-us/Programming/Development/CodingStandard
https://docs.unrealengine.com/en-us/Programming/Development/CodingStandard
https://docs.unrealengine.com/en-us/Programming/Development/CodingStandard
https://docs.unrealengine.com/en-us/Programming/Development/CodingStandard

Getting Around the Virtual World Chapter 4

[199]

Let's populate these variables. The location we care about is the Projected Location found
by the Project Point to Navigation method we're calling at our hit location. Let's store
whether we've found a valid location. You'll probably want to drag the Draw Debug
Sphere node a bit to the right to give yourself some room since we're about to add a few
nodes before we call it:

Drag your bHasValidTeleportDest variable onto the event graph, and select1.
set when asked.

Do you see where the Completed output from the ForEach loop runs into the
Branch statement coming out of our Project Point to Navigation method?

Press Ctrl + drag the execution input into that Branch node to move it onto the2.
CanTeleport setter. (Notice that the b prefix on Boolean variables is
automatically hidden when the variable is used in a graph.)
Feed the Return Value from the Project Point to Navigation method into this3.
variable. You can press Ctrl + drag to move this too.
Drag an execution line from Set bHasValidTeleportDest to the Branch input,4.
and use the output of the setter to drive the branch.

Let's set our TeleportDest to the Project Point to Navigation method's projected location if
it returns true:

Drag our TeleportDest variable onto the event graph and choose to set it.1.
Take the execution line running from our Branch node into our Draw Debug2.
Sphere node, and press Ctrl + drag it to move it into the Set Teleport Dest input.
Feed the Projected Location output into the TeleportDest variable.3.
Now, just because it's cleaner, let's feed the output from the TeleportDest setter4.
into the Center input on our DrawDebugSphere node.

It's worth learning about Blueprint shortcuts. Pressing Alt + clicking on a
connection disconnects it. Pressing Ctrl + dragging a connection allows
you to move it somewhere else.

From the False execution pin of Branch, let's set TeleportDest to (0.0, 0.0,5.
0.0).

Getting Around the Virtual World Chapter 4

[200]

Your graph should now look like this:

Can you see the extra pin on the connection between Projected Location
and Set Teleport Dest? That's a Reroute Node. You can create one by
dragging a connection out and selecting Add Reroute Node from the
creation dialog, or by double-clicking on an existing connector. These are
useful for organizing your connections so that you can easily see what's
going on in your graphs. In general, try to avoid allowing connectors to
cross underneath nodes they're not connected to, as this can mislead
someone reading your Blueprint. You can also feed multiple inputs into a
reroute node or branch multiple outputs from it.

Now, on every tick, we have either a true or a false value in bHasValidTeleportDest,
and if it's true, we have the location to which we could teleport.

Getting Around the Virtual World Chapter 4

[201]

Executing the teleport
Let's use the value we've just stored in the bHasValidTeleportDest flag to see whether
we have a valid destination, and teleport the player pawn to the TeleportDest if we do:

From the TeleportRight input action we created a moment ago, we'll connect1.
an execution line from its Pressed output into a Branch node.

Remember that you can hold down B and click to create a Branch node.
Take a look at the other shortcuts found on Epic's Blueprint Editor Cheat
Sheet here: https:/ / docs. unrealengine. com/ en- us/Engine/ Blueprints/
UserGuide/ CheatSheet. They'll save you a lot of time.

Grab your bHasValidTeleportDest variable and drag it onto the Branch2.
node's Condition input.
From the True execution output, create a SetActorLocation action, and drag your3.
TeleportDest variable onto its New Location input:

Launch it into a VR preview and give it a shot. You should now be able to teleport around
the map. It's nice to be able to explore, right?

Now that we have everything working, let's do some work to improve things.

The first thing we'll notice when we start jumping around the map is that we don't have
any way to change the player's orientation at their landing position. We can definitely
improve this.

https://docs.unrealengine.com/en-us/Engine/Blueprints/UserGuide/CheatSheet
https://docs.unrealengine.com/en-us/Engine/Blueprints/UserGuide/CheatSheet
https://docs.unrealengine.com/en-us/Engine/Blueprints/UserGuide/CheatSheet
https://docs.unrealengine.com/en-us/Engine/Blueprints/UserGuide/CheatSheet
https://docs.unrealengine.com/en-us/Engine/Blueprints/UserGuide/CheatSheet
https://docs.unrealengine.com/en-us/Engine/Blueprints/UserGuide/CheatSheet
https://docs.unrealengine.com/en-us/Engine/Blueprints/UserGuide/CheatSheet
https://docs.unrealengine.com/en-us/Engine/Blueprints/UserGuide/CheatSheet
https://docs.unrealengine.com/en-us/Engine/Blueprints/UserGuide/CheatSheet
https://docs.unrealengine.com/en-us/Engine/Blueprints/UserGuide/CheatSheet
https://docs.unrealengine.com/en-us/Engine/Blueprints/UserGuide/CheatSheet
https://docs.unrealengine.com/en-us/Engine/Blueprints/UserGuide/CheatSheet
https://docs.unrealengine.com/en-us/Engine/Blueprints/UserGuide/CheatSheet
https://docs.unrealengine.com/en-us/Engine/Blueprints/UserGuide/CheatSheet
https://docs.unrealengine.com/en-us/Engine/Blueprints/UserGuide/CheatSheet
https://docs.unrealengine.com/en-us/Engine/Blueprints/UserGuide/CheatSheet
https://docs.unrealengine.com/en-us/Engine/Blueprints/UserGuide/CheatSheet
https://docs.unrealengine.com/en-us/Engine/Blueprints/UserGuide/CheatSheet
https://docs.unrealengine.com/en-us/Engine/Blueprints/UserGuide/CheatSheet
https://docs.unrealengine.com/en-us/Engine/Blueprints/UserGuide/CheatSheet

Getting Around the Virtual World Chapter 4

[202]

Allowing the player to choose their landing orientation
If we want our player to be able to specify their facing direction when they land, the first
thing we're going to need to do is give them a way to tell the system where they want to be
looking.

Mapping axis inputs
Let's add an input to give our player a way to do this:

Open up Project Settings | Engine | Input.1.

Do you see the section in Bindings | Action Mappings where we set up our
TeleportRight input? Right below it is a list of Axis Mappings.

Hit the + button beside Axis Mappings to add a new mapping.2.
Use the expansion arrow to open it up, and name it3.
MotionControllerThumbRight_Y.
Map it to MotionController (R) Thumbstick Y.4.
Set its scale to -1.0.5.
Create a second mapping, named MotionControllerThumbRight_X.6.
Map it to MotionController (R) Thumbstick X, and leave its scale as 1.0.7.

Unreal's input system handles two kinds of mappings: Action
Mappings and Axis Mappings. Action mappings are discrete events, such
as button or key presses and releases. Axis mappings give you continuous
information about an analog input, such as a joystick or a trackpad.

You may have noticed that we scaled the Y input from our motion controller thumbstick by
-1.0. This is because the Y input from that device comes in reversed, so we need to flip it.
Multiplying it by -1 simply inverts the input:

Getting Around the Virtual World Chapter 4

[203]

Your input mappings should now look like what's shown in the preceding screenshot.

Now that we've added our new input mappings, we can close our project settings.

Cleaning up our Tick event
Let's jump back to our pawn's event graph.

Since we want to check the player's thumbstick position continuously while we're setting
up a teleport, we're going to need to put this on the Event Tick. Our Tick event is getting a
little crowded, though. Let's clean it up before we start adding more:

Drag a marquee over the current contents of your Tick event:1.

Select all the nodes connected to your Event Tick.

Getting Around the Virtual World Chapter 4

[204]

Right-click anywhere on the selected nodes and select Collapse to Function from2.
the context menu:

Right-click any of the selected nodes and select Collapse to Function.

Name the new function SetTeleportDestination.3.

That's much cleaner, isn't it? Take a look at the following screenshot:

In general, it's a good idea to use functions as a way of organizing and reusing your code,
rather than leaving things strewn all over your event graph. Remember that 80% of the life
cycle of any piece of code will be spent in debugging and maintaining it, so organizing your
code early can save you quite a lot of work later on.

Getting Around the Virtual World Chapter 4

[205]

The names you give your functions should be descriptive and they should
be accurate. Think of them as a promise to the reader that the contents of
the function really do whatever the name suggests they do. That reader
might be you in the future, debugging or updating your code, or it might
be another developer altogether. If you've named your functions clearly,
everyone's going to have a much easier time understanding what your
code is doing. If you modify a function in a way that changes what it does,
change its name too. Don't let a legacy name mislead your reader.

Using thumbstick input to orient the player
Let's create a new function to handle our teleport orientation:

Hit the + button in My Blueprint | Functions to create a new function.1.
Name it SetTeleportOrientation.2.

A new tab will automatically open, showing you the contents of your function.
Right now, it just contains an entry point with an execution pin.

Right-click anywhere inside the function's graph and type thumbright into the3.
context menu's search box. You'll see that the two Axis Mappings you created in
your input settings are now visible here as functions.
Add the Get MotionControllerThumbRight_Y and Get4.
MotionControllerthumbRight_X nodes here:

Getting Around the Virtual World Chapter 4

[206]

Create a Make Vector node.5.
Feed the return value from Get MotionControllerThumbRight_Y into the Make6.
Vector node's X input. (This may seem backward, but it's correct—we need to
transform this input to use it to drive our rotation.)
Feed Get MotionControllerThumbRight_X into the new vector's Y input.7.
Normalize the new vector by adding a Normalize node to the Make Vector's8.
Return Value:

Normalizing a vector scales it to a length of 1. A vector whose length is 1
is called a unit vector. Many mathematical operations on vectors will
return incorrect results if they're called on vectors with arbitrary lengths.
A general rule of thumb is that, if you're doing vector operations to figure
out rotations or angles, make sure you're using unit vectors.

Now that we've normalized our input vector, we need to rotate it so it's aiming in the
direction the player intends.

Here's the thing about designing locomotion systems for VR: when you present the player
with a rotation, you have to decide what its basis is going to be. When the player pushes a
stick forward or touches forward on a trackpad, how do we translate that into a real-world
rotation? If you've operated a remote control car or been playing games long enough to
remember the old tank-style controls in Resident Evil and Fear Effect, you have some notion
of what we're describing here. Forward in those systems meant the direction the car or
character was facing, and if the character was facing the camera at the moment, those
controls were going to feel backward.

In traditional first-person designs over the past two decades, this isn't a problem we've had
to address. There was no difference between the direction the character was facing and the
direction the player was looking, so using the camera's look direction as a forward direction
was an obvious choice.

Getting Around the Virtual World Chapter 4

[207]

In VR, on the other hand, we have several options:

We can base our rotation on the pawn's rotation, but that's not a great idea in
room-scale VR, as the player can turn around in the tracking volume without
necessarily rotating their pawn. You don't want to orient a control based on
something the player may not be able to see.
We could base it on the player's look direction, which is a better choice since it's
consistent from the player's perspective, but creates funky behaviors as the
player looks around:

A character in VR can have several transforms at the same time - head, body, and hands.

In VR, a player's head, hands, and body can rotate independently of each other, so it's no longer always obvious where forward is.

The best choice, though (and as we'll discover later on when we handle seamless
locomotion), is to base it on the motion controller's orientation, since the player's already
using it to provide input, is aware of its orientation, and can change its orientation easily.

Getting Around the Virtual World Chapter 4

[208]

Let's set our system up this way:

Add a RotateVector node to our Normalize node's return value.1.
Drag a reference to MotionController_R onto the graph.2.
Drag a GetWorldRotation node from MotionController_R:3.

This will get us the right controller's orientation in the world, but we're only
interested in the side-to-side rotation (Yaw). We don't want any Pitch or Roll
information.

Right-click the Return Value from GetWorldRotation and select Split Struct4.
Pin:

Getting Around the Virtual World Chapter 4

[209]

Do the same for the RotateVector node's B input.5.
Connect the Yaw output from GetWorldRotation to the Yaw input to6.
RotateVector. Leave Roll and Pitch unconnected:

Splitting struct pins in Blueprints is often cleaner than using Break and
Make nodes to split them and reconstruct them. They do the same thing.
It's purely a question of what makes your Blueprint more readable.

Now, we need to turn our rotated vector into a rotator we can use.

Add a RotationFromXVector node to the RotateVector's return value.7.

Finally, we need to store this vector so that we can use it later.

Drag the RotationFromXVector node's return value out and select Promote to8.
variable.
Name the new variable TeleportOrientation.9.
This will create a Set node for the new variable automatically. Drag an execution10.
line from your function's entry point to this setter.

Getting Around the Virtual World Chapter 4

[210]

Drag an execution line from your setter and select Add Return Node to add an11.
exit point to your function.

We're now converting the return value from our RotateVector node to a rotator and using it to populate Teleport Orientation.

Adding return nodes to functions that don't return values isn't required,
but it's good practice to do it because it makes it clear to someone
maintaining or debugging the code where the exit points are. Nothing will
break if you don't do this, but your code will be easier to read if you do.
We're not going to do this with every method in this book, just to avoid
adding extra steps, but it's a good idea to make this a habit.

Return to your event graph's Event Tick, and drag the SetTeleportOrientation12.
function onto the outgoing execution pin from SetTeleportDestination:

Set Teleport Orientation will now be called on every frame after Set Teleport Destination
finishes.

Getting Around the Virtual World Chapter 4

[211]

Let's use this new information:

In your event graph, find the InputAction TeleportRight event, where we're1.
setting our actor location.
First, let's collapse this into a function as well. Leaving it out on the event graph2.
is sloppy. Select the nodes to the right of our input action, right-click, and collapse
them into a new function.
Name the new function ExecuteTeleport:3.

Since we now have a teleport orientation value we need to accommodate,
SetActorLocation is no longer enough for us, since it only sets location and not
rotation. We could call a Set Actor Rotation method right after it, using the
value stored in our TeleportOrientation variable, but there's a cleaner method
available to us.

Select the Set Actor Location node here and delete it.4.
Right-click in the graph and create a Teleport node.5.
Connect the True branch from our Branch statement to its execution input.6.
Connect the TeleportDest variable to its Dest Location input.7.

Getting Around the Virtual World Chapter 4

[212]

Grab the TeleportOrientation variable from our Variables list and drag it onto8.
the Dest Rotation input pin:

Let's try it out. Much better. Now, the position of our thumb on the trackpad or the
orientation of the thumbstick affects our teleport orientation. We can look around much
more easily.

There's still one more thing we need to fix though. Our teleport orientation works fine if the
player is still looking in the same direction as the pawn's rotation, but becomes confusingly
inaccurate if they aren't. Let's accommodate this.

What we're going to want to do here is find out where the player is looking relative to the
pawn's orientation, and then combine this difference in rotations with our selected teleport
orientation so that when the player lands there, they're looking in the direction they
selected.

Right-click and create a GetActorRotation node.1.
We're only going to want the Yaw value from this rotation, so right-click the2.
node's Return Value and select Split Struct Pin to break out the rotator's
components.
From your Components list, drag a reference to the Camera component onto the3.
graph.
Drag its output and call GetWorldRotation on it.4.
Right-click its Return Value and select Split Struct Pin.5.

Getting Around the Virtual World Chapter 4

[213]

Right-click in the graph and create a Delta (Rotator) node. Split its A and B input6.
struct pins.
Connect the GetActorRotation node's Return Value Z (Yaw) output to the Delta7.
(Rotator) node's A Z (Yaw) input.
Connect the Camera's GetWorldRotation node's Return Value Z (Yaw) output8.
to the Delta (Rotator) node's B Z (Yaw) input.
Right-click in the graph and create a CombineRotators node.9.
Feed the Teleport Orientation variable's value into the CombineRotators node's10.
A input.
Feed the Return Value from the Delta (Rotator) node into the CombineRotator11.
node's B input.
Feed the Return Value from the CombineRotators node into the Teleport node's12.
Dest Rotation input.

Now when the player lands at the selected teleport spot, they'll be looking in the direction
they expect. If you're coming from traditional flat-screen game development, this is a thing
you're going to have to get used to accommodating as a VR developer: the pawn's rotation
is not synonymous with the look direction. Players in VR can look around without affecting
the pawn's orientation, so you'll always need to keep both orientations in mind when
handling rotation in VR.

The problem now is that we can't see where it's going to aim us when we land. Let's
improve our target indication.

Getting Around the Virtual World Chapter 4

[214]

Creating a teleport destination indicator
We'll create a simple Blueprint actor to act as our teleport destination indicator:

In your project's Blueprints directory, right-click and create a new blueprint class1.
with Actor as its parent class.
Name it BP_TeleportDestIndicator.2.
Open it up.3.
In its Components tab, hit Add Component, and add a Cylinder component.4.
Set the scale of the Cylinder to (0.9, 0.9, 0.1). (Remember to unlock the5.
uniform scale lock to the right of the Scale input.)
Under the Cylinder's Collision properties, set Can Character Step Up On to No,6.
and set its Collision Preset to NoCollision. (This is important—this indicator
will interfere with the pawn if it has a collision.)
Add a Cube component.7.
Set its Location to (60.0, 0.0, 0.0).8.
Set its Scale to (0.3, 0.1, 0.1):9.

Our indicator should look something like this.

Compile it, save it, and close it.10.

Giving it a material
If the blank white material isn't doing it for you, we can create something a little nicer.
We're not going to go crazy on this one, but we can improve its look with some quick work:

From your project directory in your Content browser, create a new directory1.
called MaterialLibrary.

Getting Around the Virtual World Chapter 4

[215]

Right-click inside it and select Create Basic Asset | Material.2.
Name your new material M_TeleportIndicator.3.
Open it up.4.
In the Details | Material section, set its Blend Mode to Additive.5.
Set its Shading Model to Unlit.6.
Hold down the 3 key and click anywhere in the graph to create a Constant 37.
Vector node. This is how colors are represented in materials.
Double-click the node and choose a primary green: R=0.0, G=1.0, B=0.0.8.
Drag the output of our color node into the Emissive Color input.9.
Right-click anywhere in the graph and create a Linear Gradient node.10.
Drag the VGradient output into the material's Opacity input:11.

Getting Around the Virtual World Chapter 4

[216]

Save and close the material.12.
Open your BP_TeleportDestIndicator Blueprint and select the Cylider13.
component. Under its Details | Materials, set its Element 0 material to the
material you just created.
Do the same for the Cube component:14.

Nice! This is a very simple material, and if we really wanted to, we could spend a lot of
time designing something wonderful, but for what we're doing now, this is entirely fine.

Adding the teleport indicator to the pawn
Now, let's add this new indicator to our pawn:

In our VRPawn's Components tab, add a Child Actor component.1.
In its Details | Child Actor Component | Child Actor Class, select the new2.
BP_TeleportDestIndicator actor we just made.
Rename the ChildActor to TeleportDestIndicator. (You can use the F2 key to3.
rename objects.)

Let's create a new function to set its position and orientation:

Create a new function in the pawn's Functions collection, and name it1.
UpdateTeleportIndicator.
Drag the TeleportDestIndicator into the function's graph.2.

Getting Around the Virtual World Chapter 4

[217]

Drag the output from TeleportDestIndicator and create a3.
SetWorldLocationAndRotation node, using it as its Target.
Drag your TeleportDest variable onto the New Location input.4.
Drag your TeleportOrientation variable onto the New Rotation input.5.
Give it a return node:6.

Return to your event graph, and drag an instance of the7.
UpdateTeleportIndicator function onto your Event Tick after Set Teleport
Orientation:

Let's try it out. That's better! Now, we can see where we're going to be facing
when we land. While we're at it, let's get rid of that Debug Sphere we were using
as a temporary solution earlier on.

In the Set Teleport Destination function, find the Draw Debug Sphere call and8.
delete it.

Getting Around the Virtual World Chapter 4

[218]

Optimizing and refining our teleport
Let's finish things up with a bit of refinement, where we're still seeing some rough edges.

Displaying UI only when teleport input is pressed
First off, we're running the teleport indicators all of the time, regardless of whether or not
the user is actually trying to teleport. Let's activate these interfaces only when the user is
pressing the teleport input:

Add a new variable to our player pawn. Set its type to Boolean, and name it1.
bTeleportPressed.
Press Alt + click on the execution line from InputAction TeleportRight to the2.
ExecuteTeleport function call to disconnect it.
Drag the bTeleportPressed variable onto the Pressed execution pin from3.
InputAction TeleportRight to create a setter. Set it to True here.
Drag another instance of bTeleportPressed onto the Released execution pin.4.
Set it to False.
Connect ExecuteTeleport to the setter that's clearing TeleportPressed, so the5.
teleport will happen when the user releases the input:

Now that we have a variable that will be true when the teleport input is held, and
false when it isn't, we can use this to manage what happens on our Tick event.

Disconnect Event Tick from SetTeleportDestination.6.

Getting Around the Virtual World Chapter 4

[219]

Add a Branch node here, and use bTeleportPressed as its condition.7.
Feed the execution line from Event Tick to the Branch input, and feed its True8.
branch to SetTeleportDestination. This way, the teleport UI will only be
updated or displayed when the user presses the teleport input:

Let's try it out. This is better, but our destination indicator is still visible while the input
isn't pressed, and it's not updating. We need to hide it when we're not using it:

Select the TeleportDestIndicator component from your pawn's Components tab.1.
In its Details, set Rendering | Hidden in Game to True.2.
Drag your TeleportDestIndicator component onto the graph.3.
Drag a connector from it and call Set Hidden in Game on it.4.
Drag an instance of bTeleportPressed onto your graph and Get its value.5.
Drag a connector from it and type not into the search bar. Select NOT Boolean.6.
Plug this value into the New Hidden input in your Set Hidden in Game action.7.

This will cause the indicator to be hidden when Teleport is not pressed, and not hidden
when it is:

Let's try it again. Much better. The UI is only displayed when we need it.

Getting Around the Virtual World Chapter 4

[220]

We would still need to replace the teleport arc we're currently drawing
with debug methods before we could ship. We're not going to run
through that process here, though, because it's a bit too involved for the
scope of this chapter. Basically, what you would do here is create a spline
component on the pawn and attach a mesh to it. Instead of using a
ForEach loop in SetTeleportDestination to draw a series of debug
lines, we would save the path positions to a variable. In
UpdateTeleportIndicator, we would then use these positions to set
the points on the spline. If you'd like to give this a shot, there's a good
example in the VR Template.

Creating a deadzone for our input
As we jump around the map, it's also becoming clear that we haven't given the player an
easy way to teleport without changing orientation. Our system works well when they want
to look around, but doesn't give them a way to opt out.

Let's open up SetTeleportOrientation and fix this:

Create a new variable in BP_VRPawn. Set its type to Float, and name it1.
TeleportDeadzone.
Compile the Blueprint and set its value to 0.7. This will accept input at 70% of the2.
trackpad or thumbstick's radius.
Drag a second output from the Make Vector node that's combining the two Get3.
MotionControllerThumbRight input values, and create a VectorLengthSquared
node from it.
Drag the TeleportDeadzone variable onto the graph and Get its value.4.
Square the value of Teleport Deadzone.5.
Drag the output from VectorLengthSquared and create a >= node.6.
Drag the squared Teleport Deadzone value into its other input:7.

Getting Around the Virtual World Chapter 4

[221]

What's going on here? We're interested in finding out whether the user's input is more than
70% of the way toward the edge of its range. We could find this by getting the vector length
and comparing it with the Teleport Deadzone, and this would give us a correct answer, but
finding the actual length of a vector involves a square root, which is expensive. Squaring a
value, on the other hand, just involves multiplying it by itself, which is cheap. In our case,
since we don't care what the real vector length is—just how it compares with the deadzone.
We can skip the square root on our vector length and just compare it with the squared
target length. This is a common way of optimizing vector length comparisons. You'll see it a
lot.

Using squared vector lengths to test input deadzones will give you a
properly round test region, so you'll get consistent results at any input
angle.

Now, let's use the result of this comparison to pick which rotation value we will use:

Place a Select node in the graph, and connect the output of the >= test to its Index1.
input.
Disconnect the RotationFromXVector node's output from the Set Teleport2.
Orientation node.
Connect the RotationFromXVector node's output to the Select node's True input.3.
Create a GetActorRotation node and connect its output to the Select node's False4.
input.
Connect the Select node's Return Value to the Set Teleport Orientation node's5.
input:

Getting Around the Virtual World Chapter 4

[222]

What we're doing here is using the result of our deadzone check to decide whether we
should use the rotation value from the thumbstick inputs or just stick with the pawn's
existing rotation. If the input is at 70% of the range or greater, we'll use the input. If not, we
just use the pawn's rotation.

Let's run it. Now, you'll change orientation if you're hitting the edge of the trackpad or
pushing the thumbstick a fair distance, but if they're closer to the center, you'll just retain
your current orientation when you teleport.

Fading out and in on teleport
Our system is starting to work pretty well, but our teleport can feel a little jarring. Let's fade
out and back in to make a more pleasant transition:

Open our pawn's event graph.1.
Near our InputAction Teleport Right event, create a Get Player Camera2.
Manager node.
From this node's Return Value, create a Start Camera Fade action.3.
Set its To Alpha value to 1.0.4.
Drag out its Duration input and promote it to a variable. Compile and set its5.
value to 0.1.

This will fade the scene camera to black over a duration of one tenth of a second.

Getting Around the Virtual World Chapter 4

[223]

Disconnect the input to the Execute Teleport function call.6.
Connect the execution output from the Teleport Pressed = False node to the new7.
Start Camera Fade action.
You'll probably need to drag a few nodes off to the right to make some room.8.

Now, we're going to call Start Camera Fade after the user has released the teleport input,
since we've cleared the bTeleportPressed flag:

Drag an execution line from the Start Camera Fade node's execution output and1.
put a Delay on it.
Set the Delay duration to your Fade Duration variable.2.
Drag from the Delay's Completed output into your Execute Teleport function3.
call so that the function will be called after the fade and delay have occurred.

When the user releases the teleport input, we're fading out over a tenth of a
second, waiting another tenth of a second, and then executing the teleport. Now,
we need to fade back in once the teleport is done.

Create another Start Camera Fade node, and connect the Execute Teleport4.
output to its execution input.
Connect the output from Get Player Camera Manager to this node's Target5.
input.
Set its Duration to your Fade Duration variable.6.
Set its From Alpha value to 1.0 and its To Alpha value to 0.0.7.
Connect the output from this node to the input of your Set Hidden in Game8.
node of Teleport Dest Indicator:

Your graph should now look like this.

Getting Around the Virtual World Chapter 4

[224]

Let's test it in-game. This is much nicer. We now have a fast fade out and in when the
teleport action occurs. It's subtle, but adds a bit of polish to the application and makes the
teleport less jarring.

Since this action takes time, however briefly, we should ensure that the player can't trigger
a second teleport while one is already underway:

Create a new Boolean variable and name it bIsTeleporting.1.
Drag an instance of it onto your graph and Get its value.2.
Insert a new Branch node between InputAction TeleportRight and set Teleport3.
Pressed to True.
Use bIsTeleporting as the Branch node's Condition.4.
Connect its False output to the set Teleport Pressed to True node, and leave its5.
True output unconnected.
Do the same for the input action's Released execution:6.

This way, a Teleport Pressed or Released event will only be processed if bIsTeleporting
is False.

Now, we need to set bIsTeleporting to True when we start a teleport action, and then set
it to False again when the action finishes:

After the Set Teleport Pressed = False node coming from the input action's1.
Released output, insert a setter to set bIsTeleporting to True.
Connect its output to the Start Camera Fade node.2.

Getting Around the Virtual World Chapter 4

[225]

After the second Start Camera Fade node, add another setter to set3.
bIsTeleporting to False.
Connect the output of that node to the Set Hidden in Game input for the4.
Teleport Dest Indicator:

Now, when we execute a teleport by releasing the input, bIsTeleporting will be set to
true until the teleport action has finished, and a new teleport action won't be accepted.

Getting Around the Virtual World Chapter 4

[226]

Teleport locomotion summary
We've covered a lot of ground here and created a pretty comprehensive teleport locomotion
scheme. Let's go over the scheme:

It's bound to the navmesh, so it won't allow players to teleport into illegal
locations
It's using a parabolic trace so that the player can teleport to destinations higher
than their current position
It allows the player to choose their target orientation when teleporting
It does a decent job of indicating where the player is going to go and where
they'll be facing
It includes a few bits of polish, such as an input deadzone and a camera fade

There's more we could do with this, but it's a reasonably complete solution. If we were to
improve it further, we would likely want to allow it to work with either hand, and we
would certainly need to replace our debug-drawn teleport path with something that will
work in a shipping build. If you choose to explore further from here, the VR Template
included with the engine is a great next step. Many of the methods we just wrote here are
similar to the methods used in that template, so you should find that you're standing on
good ground to understand what you see when you start digging around in there.

Teleportation is an effective solution for getting around in VR because, as we mentioned
earlier, it doesn't try to represent movement, so it doesn't generally trigger motion sickness
in users. It works pretty well for applications that don't rely on a high degree of immersion
in the ways players move through the world.

For games and applications that want to maintain a higher level of immersion, teleportation
may not be what you want, as it doesn't behave the way movement in the real world does:
it creates a discontinuous sense of space, and introduces interface elements that clearly
don't exist in the world. There's no way around the reality that it's an immersion-breaker.

Getting Around the Virtual World Chapter 4

[227]

Next, we're going to take a look at an immersive movement scheme that allows players to
move smoothly through the world. Very sensitive players or those who are new to VR may
not find immersive movement comfortable, so in some circumstances, it may be
appropriate to offer teleport locomotion as an option on an application that also offers
seamless movement.

Let's take a look at how it works.

Seamless locomotion
If you're making an immersive game or experience, that experience is going to be much
more convincing to the player if their sense of the space around them isn't constantly being
broken up by teleport actions. Let's take a look at a way to handle seamless locomotion in
space.

Setting up inputs for seamless locomotion
Ordinarily, we would probably allow users to select the sort of locomotion scheme they're
comfortable with in an options menu, but since our current character doesn't do anything
but move around, and we haven't done anything with the left controller yet, we can use it
to drive our seamless locomotion scheme.

Let's add a pair of input axis mappings for the left controller's thumbstick:

Open Project Settings | Engine | Input.1.
Hit the + button beside Bindings | Axis Mappings twice to add two new axis2.
mappings.
Name them MoveForward, and MoveRight.3.
Bind MoveForward to MotionController (L) Thumbstick Y.4.
Set its Scale to -1.0.5.

Getting Around the Virtual World Chapter 4

[228]

Bind MoveRight to MotionController (L) Thumbstick X, and leave its Scale at6.
1.0:

We're all set with our input bindings for the moment, so we can close our project settings.

Changing the pawn's parent class
For our pawn to move smoothly, we're going to need to give it a way to handle its
movement input. There are two ways we could do this. We could write our own input
handler on our Tick event, but this is a fairly involved process, and unnecessary if we're
interested in implementing a straightforward movement scheme.

Getting Around the Virtual World Chapter 4

[229]

An easier way is to add a Movement Component to our pawn. In Blueprint, however,
there's no way to add a movement component (in C++, there is), so instead, we're going to
have to change our pawn's parent class to a class that contains the component we need,
along with several others we're also going to want. Let's get started:

Open your Blueprint of BP_VRPawn, and hit Class Settings on the toolbar:1.

We mentioned earlier that Unreal Engine is an object oriented system.
An object is an instance of a class, and classes inherit from other classes,
taking on their abilities and characteristics as they do. This is where that
becomes important. We're going to change the capabilities of
our BP_VRPawn by changing its parent class to a child of the Pawn class
that contains the component we need.

Under Details | Class Options, change Parent Class from Pawn to Character:2.

Getting Around the Virtual World Chapter 4

[230]

If you look at your Components tab, you'll see that a few new components have appeared:

In addition to the components we created earlier on, we now have the following:

A Capsule component
An Arrow component
A Mesh component
A Character Movement component

These are all inherited from the Character class.

Getting Around the Virtual World Chapter 4

[231]

This is useful. We need the Movement component to allow us to move around, and we
need the Capsule component to keep us from walking through walls. We don't really need
the Mesh component, since we're not rendering the player pawn's body, but it doesn't hurt
us in this instance to have it here and just leave its Skeletal Mesh property empty for now.

Be careful when changing an object's parent class. If the class you're
changing to is a child of the previous parent class, that's generally going to
be a safe change, because it will add new elements, but the parent's
properties and functions will still be there. Going from a child class to a
parent class can be riskier, since you may be relying on properties or
functions that exist on the child, but don't exist on the parent. Changing to
a class that's very different from your current class will probably create
problems. It's fine if you know what you're doing, and the engine won't
stop you, but you'll probably wind up cleaning up a lot of invalidated
function calls or variable references.

Fixing the collision component
If you run the game now, you'll see that we're floating a little higher above the floor than
we were previously. This is because our Capsule component is colliding with the floor and
pushing us upward. To fix this, open your Pawn's Viewport tab. (If you've closed it, you
can reopen it by double-clicking the BP_VRPawn(self) entry on your Components tab.)
Let's get started:

Hit Alt + K to switch your viewport to a side view.

Getting Around the Virtual World Chapter 4

[232]

Grab your Camera Root and drag it downward until it's sitting at the bottom of
the Capsule Component. Its location should now be (0.0, 0.0, -90.0):

If you run the game again, you'll find that you're properly on the floor.

Getting Around the Virtual World Chapter 4

[233]

Handling movement input
Now that we've given our pawn a movement component, let's use the input bindings we
mapped a moment ago to allow us to move around:

Right-click in your pawn's event graph and create an Input | Axis Events |1.
MoveForward event:

Do the same for the MoveRight event we created in our axis bindings.2.

We now have two events that will run every frame, and allow us to feed
movement input to our movement component.

Create an Add Movement Input node, and connect its execution input to the3.
output of InputAxis MoveForward.
Feed the Axis Value of MoveForward into the movement input's Scale Value.4.

Getting Around the Virtual World Chapter 4

[234]

Repeat this for InputAxis MoveRight:5.

Now, we need to tell it the direction we'd like to move in:

Grab your Camera component from your components list, and drag it onto your1.
event graph.
From its output, create a GetWorldRotation node.2.
Right-click on the GetWorldRotation output and split the struct pin.3.
Right-click in the graph and create a Get Forward Vector node.4.
Split its input pin.5.
Connect the Yaw output from GetWorldRotation to the In Rot Z (Yaw) input in6.
Get Forward Vector.
Right-click to create a Get Right Vector node.7.
Split its input, and connect Yaw output of GetWorldRotation to its In Rot Z8.
(Yaw) input.

Getting Around the Virtual World Chapter 4

[235]

Connect the output from Get Forward Vector to the World Direction input9.
to Add Movement Input of InputAxis MoveForward node.
Connect the output from Get Right Vector to the MoveRight Add Movement10.
Input:

Let's give it a try in-game.

We can still teleport using our right trackpad or thumbstick, but if we use the left input, it
slides us smoothly through the world using our camera's look direction as the forward
direction.

Gamers that are used to first-person shooters are used to thinking of their
camera direction as their forward direction. In VR, this doesn't have to be
the case—it's perfectly reasonable for a character to be looking to the right
while moving to the left. Our pawn has a concept of Control Rotation,
which is its actual orientation in space, and is distinct from the direction
the camera is facing. In practice, if you're going to drive movement from a
pawn's control rotation rather than camera rotation, you need to provide
visual cues to make it clear to the player exactly what their forward
orientation is, or your movement scheme will just confuse them. To keep
things clear in this instance, we've made our movement relative to the
look direction.

This works well enough, but it has some problems.

Getting Around the Virtual World Chapter 4

[236]

Fixing movement speed
First, we're moving too fast. Let's fix this:

Select your pawn's CharacterMovement Component, and in Details | Character1.
Movement: Walking, set its Max Walk Speed to 240.0

That's a much more reasonable speed for walking through the world.

Letting the player look around without constantly
steering
Let's face it. Using the camera forward vector as the basis for our steering feels a little janky.
Every time you turn your head to look at something, you have to steer to correct yourself.
The world doesn't work that way. Let's use the orientation of the left controller as the basis
for our movement instead:

Grab the MotionController_L component and drag it into the event graph1.
near where we're currently getting the Camera's world rotation.
Feed MotionController_L component's output into the GetWorldRotation node,2.
replacing the Camera's connection:

Now, instead of using the Camera's Yaw as our basis for our forward and right world
directions, we're using the controller, which makes intuitive sense. Forward is wherever
you're pointing the controller, and meanwhile, the player can execute fine movements
using the trackpad or joystick. They can steer by pointing in the direction they want to go
and can look around without affecting their movement.

Getting Around the Virtual World Chapter 4

[237]

Implementing snap-turning
The last thing we need to give the player is a way to change their orientation without
having to spin their chair around in the real world.

While it works well to allow your players to move smoothly through the world like we just
have, we don't want them to turn smoothly. We discussed the reason for this in Chapter 1,
Thinking in VR, but to recap here, visually induced motion sickness arises when players see
movement that they don't feel. We're especially attuned to movements that appear to be
spinning. This likely arises from a number of reasons:

A sense of spinning is a natural effect of disruptions to the vestibular system
from poisoning. Ever had the bed-spins after a rough night out? What happened
next? Right. Don't do that to your player.
Vestibular disconnect is strongest when there's a lot of optic flow in the image.
When the player is rotating, nearly everything in the frame is moving to the side.
That's a lot of movement.
In the real world, we naturally blink when rotating our head, or we aim our eyes
first at the thing we want to look at (this movement is called a saccade), and then
turn our head to follow. In the real world, we don't keep our eyes steady while
we turn around.

Snapping the player through a turn rather than allowing them to turn smoothly not only
avoids creating a huge optic flow that's likely to make your user sick, but it actually does a
better job of replicating the way we actually perceive turning in the real world than a
smooth turn does.

Let's set up a snap turn.

Setting up inputs for snap turning
Let's add a pair of action bindings to snap right and left:

Open your Project Settings | Engine | Input.1.
Add two new Action Mappings in Engine | Input | Bindings. Name them2.
SnapTurnRight and SnapTurnLeft.
Bind SnapTurnRight to MotionController (L) FaceButton2.3.
Bind SnapTurnLeft to MotionController (L) FaceButton4 and MotionController4.
(L) FaceButton1.

Getting Around the Virtual World Chapter 4

[238]

We're binding two inputs to SnapTurnLeft to accommodate both Oculus and Vive inputs.
On Oculus Touch controllers, FaceButton1 on the left controller is the X button, while
FaceButton2 is the Y button. On the HTC Vive, FaceButton2 is the left-hand side of the
trackpad, and FaceButton4 is the right-hand side of the pad:

Your input bindings should now look like this.

We can close our project settings now.

Executing the snap turn
Now, let's execute a snap turn when these buttons are pressed:

In your pawn's event graph, add input events for your SnapTurnLeft and1.
SnapTurnRight actions:

Getting Around the Virtual World Chapter 4

[239]

Create a GetActorRotation node and split its output.2.
Drag from the Return Value Z (Yaw) output and create a float - float node.3.
Drag out from the subtraction node's second input and promote it to a variable.4.
Name the variable SnapTurnIncrement.
Compile your Blueprint and set the SnapTurnIncrement value to 30.0.5.
Create a SetActorRotation node, and connect the GetActorRotation node's Roll6.
and Pitch outputs directly to their corresponding inputs.
Connect the result of your subtraction to the Yaw input.7.
Connect the Pressed execution output from InputAction SnapTurnLeft to the8.
SetActorRotation node's input.
Select these nodes and press Ctrl + W to duplicate them.9.
Replace the subtraction in the duplicated set with an addition.10.

Getting Around the Virtual World Chapter 4

[240]

Connect the duplicated nodes to execution of the InputAction SnapTurnRight11.
output:

Give it a shot in-game. It's not bad. We could improve it further for sure—right now, snap
turning triggers movement as well, but it's a pretty usable solution. If it made sense for our
game, we could potentially map down a press on the Vive trackpad or a joystick press on
the left Oculus Touch to a 180° turn.

Going further
There are a few ways we could improve the work we've done here, but implementing them
fully would fall outside the scope of this chapter. Let's take a brief moment to talk about
ways you could improve on this class as you take things further.

Getting Around the Virtual World Chapter 4

[241]

Snap turn using analog input
Our current snap turn implementation works reasonably well on Vive wands, but doesn't
feel great on Oculus Touch controls. It might feel better for our players to listen to the
analog input from one of the thumbsticks and trigger a snap turn if it exceeds a certain
threshold. This way, players could flip the thumbstick to the side to execute the snap, or
just touch the edge of a Vive trackpad without having to press it.

You could execute this by setting up an input axis binding on a motion controller
thumbstick, and testing to see whether the input is greater than a threshold amount (for this
test, we used 0.8) for a right turn or less than the negative threshold for a left turn.

You'll need to remember to put a cooldown onto the snap so that it doesn't trigger
repeatedly from a single press. In our case, we used a cooldown duration of 0.2.

If you'd like to build this into your pawn, here are the steps:

Create an input event handler for your MotionControllerThumbRight_X input1.
axis.
Create a Branch, and only continue if bTeleportPressed is False. We don't2.
want to process snap turns while we're teleporting.
Create a new Boolean variable called bSnapTurnCooldownActive.3.
Create a Branch, and only continue if bSnapTurnCooldownActive is False.4.
Create a new float variable called SnapTurnAnalogDeadzone, compile, and set5.
its value to 0.8.
Add a >= test to see whether the incoming Axis Value from your thumbstick6.
input is greater than or equal to SnapTurnAnalogDeadzone.
Create a Branch from this, and on its False output, create another Branch.7.

Getting Around the Virtual World Chapter 4

[242]

For this second branch, test to see whether the incoming Axis Value is less than8.
or equal to the negative SnapTurnAnalogDeadzone (multiply it by -1.0).

Create a new Custom Event called ExecuteSnapTurnLeft, and feed it into the9.
SetActorRotation call you're making from InputAction SnapTurnLeft.
Create another one called ExecuteSnapTurnRight, and feed it in where10.
InputAction SnapTurnRight is being handled:

Getting Around the Virtual World Chapter 4

[243]

Now, back on your ThumbstickRight handler, call ExecuteSnapTurnRight if the11.
Input Axis was >= SnapTurnAnalogDeadzone.
Call ExecuteSnapTurnLeft if the Input Axis was <= -12.
SnapTurnAnalogDeadzone.

Now, we need to set a cooldown so that we don't get a rapid-fire series of snap turns when
the user moves the stick:

Add a setter to set bSnapTurnCooldownActive to true, and call it after both1.
ExecuteSnapTurnRight and ExecuteSnapTurnLeft.
Add a delay. The default value of 0.2 is fine here, but if you wanted to tune your2.
cooldown duration, promote this value to a variable.
After the delay, set bSnapTurnCooldownActive to False again.3.

Getting Around the Virtual World Chapter 4

[244]

With this Boolean flag and delay, we're simply setting up a gate whereby the snap turn
input will be ignored for 0.2 seconds after the last time it was handled, which gives the user
time to release the stick once they're oriented where they want to be.

This implementation gives your player a nice natural-feeling snap turn on the right stick
while leaving the left stick for analogue seamless movement.

Summary
We did quite a lot in this chapter.

We learned how to set up and refine a navigation mesh in our scene and how to find and
fix collision problems with objects in our scene. We learned how to set up input actions and
use them to move our player character around, and perhaps most importantly, we learned
Kent Beck's mantra for software development: Make it work, make it right, make it fast, and
learned what it means to follow it as we pursue iterative development. We're going to
revisit this a lot. It's a secret to effective software development.

That was a lot of work. The exercises in this chapter covered a lot of ground, but should
have left you with a decent sense of how the parts fit together when setting up a player
pawn and a locomotion system.

Now that we've given our pawn feet, in the next chapter, we're going to give it hands. We'll
learn how to use motion controllers to point, grip, and interact with objects in the world.
We'll also build on what we've learned about setting up navigation meshes and drop some
AI into the world to use them as well. Now that we can get around the world, we're going
to start bringing it to life.

5
Interacting with the Virtual

World - Part I
In the previous chapter, we learned how to make our player character move using teleport
locomotion and then by adding a more immersive seamless locomotion scheme. We gave
our users feet. Now, in this chapter, we're going to give them hands.

We'll start out by creating a new project using assets from the Marketplace to explore
another way of starting up a VR project, and then we'll take the VRPawn we built in the
preceding chapter and migrate it into this new project. Once we're set up, we'll begin by
adding hands to the VRPawn and exploring ways of interacting with objects in the world.

This is important. As humans interacting with the world, we're most conscious of the way
things appear as we look around, but we're nearly as conscious of our hands and what
they're doing. VR developers call this hand presence, and when it's done right, it can
contribute significantly to immersion. Think about it for a moment. Your hands are the part
of your body that you're probably most aware of most of the time. How well we represent
them in VR has a meaningful impact on how embodied we feel in the experience.

In this chapter, we're going to learn about the following topics:

How to create Blueprint-driven virtual hands for our players
How to use a construction script to customize an object when it's created in the
world
How to use animation blend spaces and animation blueprints to animate our
hands
How to set up new inputs to drive our hands

Let's get to it!

Interacting with the Virtual World - Part I Chapter 5

[246]

Starting a new project from existing work
Let's begin by creating a new project. We'll migrate the Pawn and game mode we made in
the previous chapter into this one, and we'll add some scenery from the Marketplace. As
you start to develop a library of elements you've developed yourself, or acquired through
the Marketplace, this will become a common way of getting a new project going.

Migrating Blueprints to a new project
Launch your current engine version, and in your Unreal Project Browser, create a new
project with the following parameters:

Blank Blueprint template
Hardware target set to Mobile / Tablet
Graphics target set to Scalable 3D or 2D
No starter content

Put it wherever you'd like.

Now, let's take the pawn we created in the previous project and add it to this one. To do
this, we're going to have to jump back to our previous project to grab the assets we want to
migrate:

Select File | Open Project and browse to your previous project's .uproject file.1.
Open it up. Your current project will close when you do this.
Once in your previous project, find the BP_VRGameMode blueprint we created.2.
Right-click it and select Asset Actions | Migrate..., as shown in the following3.
screenshot:

Interacting with the Virtual World - Part I Chapter 5

[247]

In addition to the object you select, the Migrate... utility collects any other object
that your selected object relies on to work. Because our Game Mode uses the
VRPawn as its default pawn, the Migrate... utility will collect the pawn, as well
as the teleport indicator we made for it:

Hit OK, and when you're asked where to put the new content, select your new4.
project's Content directory.

Great! Copies of your game mode and pawn have now been added to your new project.

We also mapped a few inputs, and we're going to need those too.

Interacting with the Virtual World - Part I Chapter 5

[248]

Copying input bindings
Remember when we mentioned that input mappings are just text entries in
DefaultInput.ini? Since we haven't mapped any inputs in our new project, we can
recreate the old project's input bindings by just copying the DefaultInput.ini file. You
could just as easily recreate the inputs using the Project Settings menu, but it's faster to do
it this way when you can get away with it:

Navigate to your old project's Config directory.1.
Select DefaultInput.ini and copy it to your new project's Config directory.2.

If you open it up, you'll see that it contains the input bindings we created, as shown in the
following screenshot:

Setting up new project to use the migrated game
mode
Now that we've copied our Game Mode and our Pawn, and our input bindings have been
set up, we can return to our new project:

If you hit File | Recent Projects, it should be listed there, but if not, use File |
Open Project to navigate to it

Now, let's set up our project to use the game mode we just brought over:

Open Project Settings | Project | Maps & Modes, and under Default Modes, set
Default GameMode to BP_VRGameMode

This will cause this game mode to be used on any map in our project, unless we override it.
As you'll recall, this game mode tells the project to load up our VRPawn.

Interacting with the Virtual World - Part I Chapter 5

[249]

Additional project settings for VR
Remember to set those other VR-relevant settings we described in Chapter 3, Hello World –
Your First VR Project, as well:

Project Settings | Engine | Rendering | VR | Instanced Stereo: True
Project Settings | Engine | Rendering | VR | Round Robin Occlusion
Queries: True
Project Settings | Engine | Rendering | Forward Renderer | Forward
Shading: True
Project Settings | Engine | Rendering | Default Settings | Anti-Aliasing
Method: MSAA
Project Settings | Engine | Rendering | Default Settings | Ambient Occlusion
Static Fraction: False
Project Settings | Project | Description | Settings | Start in VR: True

Also, remember that you shouldn't follow these blindly. For lots of VR projects, forward
shading will be the way to go, but you should always put a little bit of thought into
whether the particular thing you're doing would work better with the deferred shading
model. (This may be the case if you're going to do a lot of dynamic lighting and reflective
surfaces.) The same goes for the anti-aliasing method. MSAA is usually what you'll want if
you're doing forward shading, but there are instances in which temporal anti-aliasing or
FXAA will look better. Instanced Stereo is pretty much always something you'll want, and
the same goes for the Round-Robin Occlusion Queries.

Testing our migrated game mode and pawn
Let's test it before we do anything else:

Drag a Nav Mesh Bounds Volume onto the default map that opened with our1.
project, and scale it to cover the entire floor. (Remember that you can hit P to
view it.)
Launch a VR Preview and verify that you can teleport around your map and use2.
seamless movement.

Interacting with the Virtual World - Part I Chapter 5

[250]

Excellent. This quick test allows us to verify that the game mode we brought over from the
other project has loaded and it's spawning an instance of our VR Pawn at the player start.

Test things as you build them, a step at a time. It's far easier to find the
source of a bug after a few changes than after a lot of changes.

Adding scenery
Now, let's bring in some scenery so that we have a place to play:

Open up your Epic Games Launcher and in the Marketplace, search for Soul:1.
City. (It's free.)
Hit Add To Project, and add it to the project you're working on now.2.
Once it's done, reopen your project if you closed it, and open Content | Soul3.
City | Maps | LV_Soul_Slum_Mobile.

Grab a coffee while your shaders compile. Now, we should set up our project to
open this map automatically.

In Project Settings | Project | Maps & Modes, set Editor Startup Map and4.
Game Default Map to LV_Soul_Slum_Mobile.

Adding a NavMesh
We're also going to need to add a Nav Mesh Bounds Volume to this scene so that we can
teleport through it.

As you learned in the previous chapter, setting up a Bounds volume can be an involved
process if you want to do it right. For our purposes here, we're going to cheat a little and
just drop a volume generally over the bulk of the scene. If you'd like to tune the volume
further, you can scale it and place it more carefully, and use nav modifiers to exclude areas
you don't want. If you want to keep it simple, the following settings are good enough for
what we're focusing on here:

Interacting with the Virtual World - Part I Chapter 5

[251]

Location: X=3600, Y=-1200, Z=0
Scale: X=100, Y=40, Z=30

We get the following output:

Our NavMesh is kind of a shambles on this map. If you'd like to clean it up, feel free to
apply the methods we talked about in the previous chapter.

Interacting with the Virtual World - Part I Chapter 5

[252]

Testing the map
Launch a VR preview and explore the scene a bit. Hmm. Something's wrong. Our input
isn't working correctly. Because we verified on the previous step that our pawn works and
our input mappings are good, we know that's not the problem. Let's make sure we're
loading the correct pawn:

Open up your World Settings, and look at the Game Mode | Game Mode1.
Override.
Sure enough, there's another game mode being loaded there. Use the reset arrow2.
to clear the overridden game mode.

Let's test again. That's much better. Now, we're able to navigate through the environment.

While we're here and able to walk around, let's point out a few things about this
environment. It's not a perfect environment for a virtual reality project, and in this case, that
gives us a few useful things to talk about:

Scale matters in VR: First, as we walk around, we can see that the scale of certain
objects is inconsistent. Some of the staircases appear to be the correct size, while
others are enormous. We're not going to do anything about that here, but this is
an important takeaway: the scale of the objects in your world matters a great deal
in VR. People have an instinctive sense of how big things are, and VR gives them
much stronger cues about the sizes of objects than flat screens do. If your scale is
off, they'll notice that in VR.
Lights can cause lens flares in VR: The other potential issue is the bright neon
lights. They make for a great-looking environment, but you're probably noticing
that they sometimes flare the Fresnel lenses in your headset from certain angles.
We're not saying you need to avoid bright lights or contrasts in your scenes, but
be aware that they can sometimes call attention to the hardware. The takeaway
here is that you always want to check your artwork in the VR headset in addition
to the flat screen.

Creating hands
Now that we have a scene to work with, let's get to the meat of this chapter and start setting
up some interaction.

Interacting with the Virtual World - Part I Chapter 5

[253]

Before we do anything else, let's improve the way we're representing the motion controllers
in the scene. Currently, we're using debug meshes, which won't render correctly if our user
is using a different headset from the one we used when we authored the scene. It was good
enough to get us going, but now we need to replace it with something more permanent.

To get a hand mesh we can use, we're going to raid the VR Template. It's likely that, for
many of your VR projects, you'll simply begin by creating a project based on the VR
Template, or you'll migrate the entire MotionController Pawn Blueprint into a project
you've created, but for our purposes here, we want to build the pawn ourselves so that we
understand what's in it.

Migrating hand meshes and animations from the
VR Template project
If you already have an example of the VR Template project created, use File > Open Project
to open it up. If you don't already have one, close your current project and from your Epic
Launcher, launch the engine and create a new project using the VR Template. It doesn't
really matter what other settings you use for this one—we're just here for the meshes:

In the VR Template project's Content Browser, navigate to Content |1.
VirtualReality | Mannequin | Animations.
Select the three animation assets, right-click them, and select Asset Actions |2.
Migrate. Ignore the blend space and animation blueprint for now—we're going
to learn how to make these ourselves:

Interacting with the Virtual World - Part I Chapter 5

[254]

You'll see that the Migrate utility has not only collected the animations you
selected, but it also found the mesh, its physics asset, and its skeleton, along with
its material and the textures that feed into it:

Select your current project's Content directory as your destination.3.

Now that we've collected a few assets we can use, we're ready to return to our
project.

Hit File | Recent Projects, and open your previous project. (Use File | Open4.
Project if it doesn't appear here.)

Adding hand meshes to our motion controllers
Back in our current project, we should now have a VirtualReality directory in our
Content Browser, with a Mannequin subdirectory containing Animations and the
Character folder.

Let's apply these hand meshes to our pawn's motion controllers.

Interacting with the Virtual World - Part I Chapter 5

[255]

Creating a new Blueprint Actor class
The first thing we're going to want to do is create a Blueprint to represent them, since we
want to animate the hands to respond to the player's actions:

Right-click in your project's Blueprints directory, and select Create Basic Asset1.
| Blueprint Class.
Select Actor as its parent class.2.
Let's name it BP_VRHand.3.
Open it up.4.

We mentioned earlier in this book that a core principle of object-oriented development is
that we pull things that belong together into self-contained objects that can handle their
own behaviors. This is a good opportunity to do this, since we're about to link animated
hand meshes with our motion controllers. We could absolutely get away with just adding a
pair of skeletal mesh components to our pawn and attaching them to our motion controller
components, but it's going to be much cleaner and ultimately easier to manage if we
architect things a little better than that.

Adding motion controller and mesh components
Let's add the components we're going to need:

Add a MotionController component to your Components list.1.
With the new MotionController component selected, add a Skeletal Mesh2.
component so that it becomes a child of the motion controller:

Interacting with the Virtual World - Part I Chapter 5

[256]

Let's name it HandMesh.3.
In the Skeletal Mesh component's Details panel, set its Mesh | Skeletal Mesh4.
property to MannequinHand_Right:

Adding a Hand variable
Since we're going to reuse this VRHand for both the right and left hands, we need to set up
a way for the object to know which hand it's representing:

Add a variable to the Variables list of BP_VRHand and name it Hand.1.
Set its Variable Type to EController Hand.2.

Interacting with the Virtual World - Part I Chapter 5

[257]

Set its Instance Editable property to true:3.

You'll notice that, when you set Instance Editable to true, the eye icon
next to the variable's name is open. This indicates that this variable is
allowed to be set to different values for each separate instance of the object
in the world. Since we need one of these objects to be set to the right hand
and the other to the left hand, this is what we want here:

Interacting with the Virtual World - Part I Chapter 5

[258]

Now that we have an instance-editable Hand variable indicating which hand this object is
going to represent, we need to tell our MotionController component about that too. We're
going to do this in the VRHand's Construction Script.

Using a Construction Script to handle updates to the Hand variable
If you look at the Functions list for your BP_VRHand class, you'll see that a Construction
Script has been automatically created for you. This is a function that runs when the object is
created or updated before gameplay has begun. Construction Scripts are very useful for
synchronizing values that need to be lined up before the software runs. In our case, this is
exactly what we want. If we change the value of this Hand variable, we want the motion
controller's motion source to change automatically to match up with it. Let's make that
happen:

Open up your BP_VRHand's Construction Script.1.
Drag a reference to your Motion Controller component into the Construction2.
Script.
Drag out its output and call Set Motion Source on it:3.

Drag a reference to the Hand variable into your Construction Script.4.

Interacting with the Virtual World - Part I Chapter 5

[259]

Drag its output onto the Motion Source input. You'll see a Convert5.
EControllerHand Enum to Name node appear automatically:

Some data types can be converted easily into other types. In this case,
we're converting an enum into a name. Enum is short for enumerator. An
enum is a special data type that allows us to create a predefined list of
values and then use that collection of values as a data type. If you have a
known set of possible values for a data type, it's far better to use an enum
to list them than it is to use a name or a string. This prevents a typo from
causing a value to fail, and compares much, much faster than a string
comparison. It's generally pretty easy to turn enum values into human-
readable values in Blueprint when we need them, as we're doing here.

Finally, connect your execution output of Construction Script to the Set6.
Motion Source input, so that your whole Construction Script looks like this:

Interacting with the Virtual World - Part I Chapter 5

[260]

Adding BP_VRHand child actor components to your
pawn
Let's return to our BP_VRPawn blueprint now:

In its Components list, select your Camera Root component, and add a Child1.
Actor Component as a child.
Name it Hand_L.2.
In its Details, under Child Actor Component, set the Child Actor Class to3.
BP_VRHand.
Select Camera Root again so that it will be the parent of the next component we4.
make, and add another Child Actor component.
Set its class to BP_VRHand, and name it Hand_R.5.
This time, below the Child Actor Class property, expand the Child Actor6.
Template property.
Set Child Actor Template | Default | Hand to Right. (We're able to do this7.
because we made this variable instance editable in the preceding steps.)

Now we need to ensure that the BP_VRHand actors spawned by these components know
that this pawn is their owner. This is required for the motion controllers to register
correctly.

In BP_VRPawn, find Event BeginPlay in the Event Graph.1.
Drag a reference to the Hand_L component you just created onto the graph.2.
Drag its output and select Get Child Actor to get a reference to the BP_VRHand3.
object it contains.
Drag the Child Actor output and call Set Owner on it.4.

Interacting with the Virtual World - Part I Chapter 5

[261]

Right-click in the graph and select Get a Reference to Self to create a Self node.5.
Drag Self into the Set Owner node's New Owner input.6.
Drag the execution output from Set Tracking Origin into the Set Owner node's7.
execution input.
Repeat this for the Hand_R component.8.

Before we do anything else, let's test it.

We should still see our old motion controllers rendered since we haven't gotten rid of them
yet, but we should now see a pair of hands as well, and they should be moving correctly
with our motion controllers.

Our hands have a few problems we should fix, though.

Interacting with the Virtual World - Part I Chapter 5

[262]

Fixing issues with Hand meshes
If we look at our hands as they move with the motion controllers, we can see that they're
displaying at an unexpected angle:

Let's fix this by setting the HandMesh component's Transform | Rotation to 90°1.
around the X axis:

Second, they're both appearing as right hand meshes, even though one of them is
bound to the left hand. We can fix this in our construction script too.

Interacting with the Virtual World - Part I Chapter 5

[263]

Drag out an == operator from our Hand variable's output. Test to see whether it's2.
equal to Left.
Add a Branch node using this test result as its condition.3.
Drag a reference to your Hand Mesh into your construction script graph.4.
If Hand == Left, call Set World Scale 3D on your Hand Mesh to X=1.0, Y=1.0,5.
and Z=-1.0:

Setting the Hand mesh scale to -1 on its Z axis mirrors it along that axis, which is a spiffy
way of creating a left-handed mesh from a right hand without having to create a second
mesh.

Give it another try. The hands should now be angled better, and you should now have one
left and one right hand. It's still not perfect, though. The hand meshes aren't quite in the
right spot, and as a result, they don't quite feel like our own hands:

Select the HandMesh component from your Components list, and set its Details |1.
Transform | Location to X=-13.0, Y=0.0, Z=-1.8.
Nudge these values around until they feel about right to you.2.

Getting the angle of the hands right is very important in VR. As we
discussed in Chapter 1, Thinking in VR, our proprioceptive sense of where
our hands are is very strong, and if they look even a little bit out of place,
they won't feel real. Take the time to find what feels natural here. It's a
subtle detail, but it matters.

Interacting with the Virtual World - Part I Chapter 5

[264]

Replacing references to our old motion controller
components in blueprints
Now that we've got our hands in place, we need to remove the old, redundant motion
controller components from our pawn and where we're referring to them, replace those
references with references to our new hands. Let's get started:

Open up your pawn blueprint and select its MotionController_L component.1.
Right-click it and select Find References (Pressing Alt + Shift + F will do this as2.
well):

A Find Results panel will open and show you where this component is being
used in your blueprint. We can see from this list that MotionController_L is
being used in one place in our graph.

Interacting with the Virtual World - Part I Chapter 5

[265]

Double-click it to jump to where it's being used in our Event Graph:3.

We want to replace our reference to MotionController_L with a reference to
our newly created Hand_L.

Drag a reference to Hand_L onto your graph.4.

We can't simply replace a reference to MotionController_L with a reference to our
Hand_L object, because that object itself isn't moving with the controller. It contains a
motion controller component, and the visible Hand Mesh is a child of that motion
controller. We need to get a reference to that motion controller—or even better since the
player can see it—to the hand mesh.

Interacting with the Virtual World - Part I Chapter 5

[266]

Creating a function to get our hand mesh
The first thing we need to do to get access to the internal components of our VRHand object
is to get a reference to the child actor that's contained within our Child Actor Component.
Let's get started:

From Hand_L, drag out a connector and select Get Child Actor:1.

Remember all of the times we mentioned that Unreal Engine is an object-oriented
environment? We keep coming back to this because it's important. The Child
Actor reference we just extracted from our Child Actor component is a reference
to an Actor class. As we mentioned in the previous chapters, Actor is the parent
class for any object that can be placed in the world. The Actor class, however,
doesn't have a Hand Mesh component. It just has the basic stuff required to place
any object in the world. A BP_VRHand object, which is a child of the Actor class,
does contain this component. We need to tell Unreal that the actor we're working
with in this case is a BP_VRHand. We do this using a Cast operator.

Interacting with the Virtual World - Part I Chapter 5

[267]

Drag a connector from Child Actor and select Cast to BP_VRHand:2.

This will create a Cast node. Cast nodes require an execution input because
they're not guaranteed to succeed. If you try to cast some random actor to a
BP_VRHand, it will fail, because the actor you gave it isn't a VRHand. The cast node
doesn't turn the object into an actor of that type—it tells the system to treat the
reference as the specified type if it actually is an instance of that type.

We're going to deal with this execution line in a moment, but first, let's get the
hand mesh from our object.

Drag a connector from the Cast node's As BP_VRHand output and select Get3.
HandMesh:

We can now feed this into the GetWorldRotation node that's currently reading
from MotionController_L.

Interacting with the Virtual World - Part I Chapter 5

[268]

Drag the HandMesh output into GetWorldRotation, replacing the old4.
MotionController_L reference:

This isn't going to work yet, though, because we haven't connected the execution
lines to our Cast node yet. If you try to compile this right now, you'll see a
warning on the cast node and an error on Get HandMesh because of this.

There are two ways we could fix this. We could insert the Cast node into the main
execution lines from our inputs, and only make the Add Movement Input calls if
they succeed, but in our case here, there's a cleaner way. We can create a Pure
function to perform the cast.

A Pure function is a function that doesn't change the state of the object that
contains it, and because of this, it doesn't need to be placed into an execution line.
In our case here, we're just getting a reference to the hand mesh—it doesn't matter
when we do this because we're not changing anything. We're just reading a value,
so as long as that happens before we need to use it, that's fine.

Select the Hand_L node, its Child Actor, the Cast, and the Get Hand Mesh5.
nodes.

Interacting with the Virtual World - Part I Chapter 5

[269]

Right-click and select Collapse to Function:6.

Name the function GetHandMeshForHand.7.
Set its Pure property to true:8.

You'll notice that, when you did this, the execution pins went away. Now, we
have a simple, clean node we can use to get our Hand mesh.

Let's improve it. We know we're going to need to do the same operation for the
right hand, but it would be wasteful to make a second function to do an almost-
identical job. Let's set this function up so that it can grab either hand.

Interacting with the Virtual World - Part I Chapter 5

[270]

With the function selected, find its Details | Inputs list, and hit the + button to9.
create a new parameter.
Set the parameter's type to EControllerHand and name it Hand:10.

You'll see that your pure function node now has an input selector, and because
the input we're using is an enumerator, it already knows what values are
available. Useful, right?

This is yet another reason why enumerators are superior to strings as data
types. Please, oh please, with very few exceptions, don't use strings as
data types. They're slow and massively prone to user error.

Now, we need to update our function to use this new input.

Open the Get Hand Mesh for Hand function.11.

Right now, we're getting a reference to Hand_L, regardless of what the user
selects for the Hand input. It's time to fix that.

Drag a connector from your Hand input and create a Select node.12.
Drag the return value from the Select node into the Target input of Child Actor,13.
replacing the input from Hand_L.
Take the Hand_L reference and feed its output into the selector's Left input.14.
Drag an instance of Hand_R onto the graph and feed it into the selector's Right15.
input.

Interacting with the Virtual World - Part I Chapter 5

[271]

We can leave the rest of the inputs as Null, as we're not using them here:16.

Now, if the user feeds Left into the Hand argument, the Hand_L reference will be
used, and if they feed in Right, it will read from Hand_R. We're not safely
handling cases where the user passes in any other value here, so the function
would throw an error if the user selected Gun or some other input. Technically,
this would probably be fine in this case since we know exactly what inputs we
plan to give it, but for the sake of good practice, let's make it safer.

If we pass a value into the Select node that isn't Left or Right, it's going to return
a Null (empty) reference. Trying to read a value from an empty reference is a bad
thing to do. In C++, it will crash your application. In Blueprint, it will just throw
an error, but it's still not good practice to let it happen.

Interacting with the Virtual World - Part I Chapter 5

[272]

Drag an output from the Select node, and create an IsValid node. You have two17.
versions here. Use the macro version (the one with the question mark), as this
will give you convenient execution pins you can use:

Drag the execution pin from the function input into the Exec pin on the IsValid18.
node.
Drag the IsValid output into your Cast node's input so that the IsValid check19.
will happen before the cast is attempted.
Drag out from the Is Not Valid output and select Add Return Node. Don't20.
connect anything to the Hand Mesh output here. This will return a Null (empty)
value if the user passes a bad input into the Hand variable.
While we're at it, we should also connect our Cast node's Cast Failed output to21.
this empty return node, so if the cast fails, it won't try to get the HandMesh from
a bad object.

Interacting with the Virtual World - Part I Chapter 5

[273]

The completed function should look like this:

We've now created a pure function that returns the HandMesh contained within
the child actor component for the supplied hand. Here it is in use:

Now that we've created a clean, easy-to-use function to get our Hand mesh, let's
use it to replace our MotionController_R references as well.

From your Components list, right-click MotionController_R and select Find22.
References. You'll see that we're using it in two places.
Double-click the first use to jump to that part of the graph.23.
Drag an instance of the GetHandMeshForHand function onto the graph where24.
MotionController_R is currently being used.

Interacting with the Virtual World - Part I Chapter 5

[274]

From the Hand drop-down menu, select Right.25.
Press Ctrl + drag the output connection from MotionController_R onto the26.
output connection from GetHandMeshForHand:

Pressing Ctrl + dragging is a fast way to move all of the connections to a
Blueprint node from one pin to another.

Your graph should now look like this:

Interacting with the Virtual World - Part I Chapter 5

[275]

Do the same for the other reference to MotionController_R.27.
From the Components list, delete the MotionController_L and28.
MotionController_R components.

Test it out. Your motion controllers should be working as they did before, but the hand
meshes have now replaced the old controller meshes.

Animating our hands
Now, let's get our hands to change their posture based on the player's input.

The first thing we're going to need to do here is tell the hand when the player wants to do
something with it. Let's do this by creating a pair of functions on the BP_VRHand that can be
called from outside:

Open up your BP_VRHand Blueprint.1.
Create a new function in its Functions list. Call it Grab Actor.2.
Create another function called Release Actor.3.
Inside each of these functions, create a Print String node with the name of the4.
function in it. Since we're not going to make these functions do anything just yet,
we want to be able to see when they're being called:

Let's do a better job of organizing our functions and variables. We haven't been
doing this yet, but it's good practice.

For both of these functions, set their Details | Graph | Category to Grabbing.5.
After you've used a category name once, it will appear in the drop-down list for
other functions and variables.

Interacting with the Virtual World - Part I Chapter 5

[276]

A quick word about access specifiers
While we're here, take note of the Access Specifier property for these functions. By default,
it's set to Public. In this case, this is what we want, but let's take a moment to talk about
what these access specifiers mean:

Public functions can be called from outside the class. So, if I create a Foo class
with a public function called Bar, I can grab an instance of Foo from some other
blueprint and call its Bar function.
Private functions cannot be called from outside the class. Let's say that
the Bar function is an internal operation that the Foo class uses as part of some
other operation, and it shouldn't be called from outside. In that instance, the
function should be set to private so that nobody else will try to call it from
outside and it won't clutter the list of available actions for the class in other
contexts.
Protected functions cannot be called from outside the class, but can be called
from within child objects of the class. If the FooChild class inherited from
the Foo class, and the Bar function was private in the Foo class, FooChild
would not be allowed to call it. If it was protected, then FooChild could call it,
but it still couldn't be called from outside the object.

Your general rule of thumb should be to make every function private
unless you intend to call it from outside the class. Unreal defaults to
making functions public because this is easy for developers who may not
understand access specifiers yet, but now that you do, you should be
making everything private unless you have a reason not to. Early on in
your development, when your application is still small, this won't make
much of a difference, but once it gets big, it will. It's a big time saver and
debugging aid to be able to look at a function and know that it's safe to
change it because you can be sure that nobody else is using it.

For these two functions we just created, the default Public access specifier is correct,
because we intend to call them from the pawn.

Calling our grab functions from the pawn
For now, we can close out of BP_VRHand and open up BP_VRPawn. Before we can do much
with our pawn, though, we're going to need to add a few more action mappings to our
project's inputs.

Interacting with the Virtual World - Part I Chapter 5

[277]

Creating new input action mappings
We're going to do this just as we've done previously, using the Input UI in our Project
Settings. Keep it somewhere in the back of your mind as well that these settings are just
reading and writing your DefaultInput.ini. It's pretty much always a good idea to do
your work here, but worthwhile to know what's really happening when you make changes
in this interface. Let's get started:

Open Project Settings | Engine | Input, and expand the Action Mappings list.1.
Add a new Action Mapping named GrabLeft, and bind it to2.
MotionController (L) Trigger.
Add another new action named GrabRight, and bind it to MotionController3.
(R) Trigger:

Close your project settings and return to your BP_VRPawn blueprint.4.

Interacting with the Virtual World - Part I Chapter 5

[278]

Adding handlers for new action mappings
Now that we've created new input actions in our project settings, let's get our pawn
listening for them:

In your pawn's Event Graph, add an InputAction GrabLeft.1.
Drag a reference to your Hand_L child actor component onto the graph.2.
Call Get Child Actor on it.3.
Cast the Child Actor's output to a BP_VRHand.4.
Drag a connector from the As BP_VRHand output from the Cast node, and call5.
Grab Actor. You're able to call this function here because we made it public.
Call the Cast node from the input action's Pressed output.6.
Call Grab Actor if the cast succeeds. The blueprint editor will probably connect7.
this for you automatically:

You can see here that we stacked the inputs on top of the Cast node. This
is purely a visual organization strategy. It's often a convenient way of
organizing your nodes to make it clear that the whole cluster is really just
referring to a single object.

Drag a marquee over the Hand_L node, its Get Child Actor call, and the Cast8.
to select all three nodes.
Right-click them and select Collapse to Macro.9.
Name the new macro GetHand_L.10.

The new macro will have automatically inserted itself where these nodes
originally stood.

Hit Ctrl + W to duplicate the macro.11.

Interacting with the Virtual World - Part I Chapter 5

[279]

Connect the input action's Released output to the new macro's input.12.
Call Release Actor on the As BP_VRHand output from the macro.13.

If we open up the GetHand_L macro, we will see that it contains the nodes we previously
had sitting loose in our graph:

We can see that we're not doing anything if the cast fails, and in this case, that's what we
want. If, for some reason, the Hand_L class's child actor changed or wasn't set, we don't
want to try to make any calls on it.

It's important to make the distinction that macros are not functions. They
look like functions and can often be used to do similar jobs, but a macro is
really just an instruction to the Blueprint compiler to paste its contents
into the graph where the macro appears. It doesn't have the ability to
house local variables the way a function does. Macros are very
simple—just an automated copy and paste. Some developers will advise
you to avoid macros outright. This is definitely good advice if your
understanding of how macros differ from functions is fuzzy, but if you
understand how they work, they can be very useful. As a good rule of
thumb, keep your macros very small. If you're doing a lot of work in a
macro, you're really telling the compiler to paste a ton of nodes into your
graph, and it should probably be a function in that case. Treat macros as a
way of making a reusable node that does a simple job. Use them for
readability and to make your code easier to modify later on.

Interacting with the Virtual World - Part I Chapter 5

[280]

Now, let's repeat this for our right controller input:

Select your GetHand_L macro from your Macros list, and hit Ctrl + W to1.
duplicate it.
Rename the new macro GetHand_R.2.
Inside it, replace the Hand_L reference with a reference to Hand_R.3.
Drag two instances of GetHand_R onto your graph.4.
Connect them to the InputAction GrabRight node's Pressed and Released pins.5.
Call GrabActor and ReleaseActor on their outputs, like you did previously.6.

Your completed graph should look like this:

Interacting with the Virtual World - Part I Chapter 5

[281]

If you're thinking that we could have copied our GetMeshForHand
function and modified it to return the BP_VRHand reference directly,
you're right. We could also have modified that function outright and
moved the Get HandMesh calls we made in the teleport functions
outside. There are often many right ways to do the same job. In this
instance, where we're just doing a simple cast, a pair of macros is a nice
way of keeping our blueprint readable.

Let's test it. If we've done everything right, we should now see Grab Actor and Release
Actor messages appearing in our view when we squeeze and release the triggers.

Implementing grab animations in the Hand blueprints
Now that we've set up our inputs and set up the VRPawn to pass them along to their
respective motion controllers, let's get those motion controllers animating when these
inputs are received.

Let's jump back into our BP_VRHand Blueprint:

In the Variables list of BP_VRHand, add a new Boolean variable named1.
bWantsToGrip.
Hit Alt + drag a setter for bWantsToGrip into the Grab Actor function graph.2.
Set it to true when Grab Actor is called.
Hit Alt + drag a setter for bWantsToGrip into Release Actor. Set it to false3.
here:

Pressing Ctrl+ dragging a variable automatically creates a getter for that
variable. Pressing Alt + dragging a variable creates a setter.

Interacting with the Virtual World - Part I Chapter 5

[282]

Creating an Animation Blueprint for the hand
Unreal uses Animation Blueprints to control animations on Skeletal Meshes. We're going to
need one for our hand:

In your content browser, right-click in your project's Blueprints directory, and1.
select Create Advanced Asset | Animation | Animation Blueprint:

A dialog will appear asking for the animation Blueprint's parent class and for the
target skeleton it's going to control:

Interacting with the Virtual World - Part I Chapter 5

[283]

Leave the parent class empty, and select MannequinHand_Right_Skeleton as2.
its Target Skeleton.
Name it ABP_MannequinHand_Right.3.

Interacting with the Virtual World - Part I Chapter 5

[284]

Creating a blend space for our hand animations
Now, we want our hand animations to respond to this value. Since we want to be able to
blend smoothly between different animation poses, our best tool for this job is a Blend Space.

You have two types of Blend Space available to you. There's the standard Blend Space,
which blends two different axes (this is commonly used for aiming poses in shooters), and a
simpler blend space that just blends along one axis. This is the one we want. Let's get
started:

Right-click in your Blueprints directory, and select Create Advanced Asset |1.
Animation | Blend Space 1D.
A dialog will appear asking what skeleton this Blend Space will apply to. Select2.
MannequinHand_Right_Skeleton.
Name it BS_HandGrip:3.

Open up the blend space we just created:4.

Interacting with the Virtual World - Part I Chapter 5

[285]

The Blend Space editor consists of an Asset Details panel on the left, a preview window, the Sample Point workspace at the bottom,
and an animation asset browser in the lower right.

In the lower right-hand corner, you can see the list of animations we migrated from the VR
template for our hand. It's simply displaying any animation in the Content directories
that's mapped to the Hand Mesh's skeleton.

In the bottom center under the preview, we can see the workspace where we're going to
construct our blend.

The first thing we need to do here is set up the axis we're going to use for our blend. Let's
get started:

In the upper-left corner, find Asset Details | Axis Settings, and expand the1.
Horizontal Axis block.
Set its Name to Grip.2.
Set its Maximum Axis Value to 1.0.3.

Now, we have a place to put our animation poses.

Interacting with the Virtual World - Part I Chapter 5

[286]

From the Asset Browser, drag MannequinHand_Right_Open onto the4.
workspace until it snaps onto the 0.0 grid line.
Drag MannequinHand_Right_Grab onto the 1.0 line.5.
Drag MannequinHand_Right_CanGrab into the middle, at 0.5.6.

Test it out by holding down the Shift key and dragging on the workspace. We can blend
seamlessly between the three animation poses we applied to the Grip axis by changing its
value:

Let's get this working in our Animation Blueprint.

Wiring the blend space into the animation blueprint
We can now use the blend space we just created as an asset in its animation blueprint. The
animation blueprint is a powerful tool the allows you to control the way animations are
played on a skeletal mesh. It's split into two main sections:

The Anim Graph, which takes animation inputs and processes them to calculate
the mesh pose on every frame

Interacting with the Virtual World - Part I Chapter 5

[287]

The Event Graph, which behaves similarly to the Blueprints you've already
authored and is used to process the data that the animation blueprint is going to
use to decide what animations to play

Let's learn how it works:

Open the animation blueprint we created a moment ago.1.

Looking at its My Blueprint | Graphs block, you can see that in addition to the
familiar EventGraph we find in all of our blueprint assets, there's a second graph,
called AnimGraph.

Double-click My Blueprint | Graphs | AnimGraph to open it:2.

Interacting with the Virtual World - Part I Chapter 5

[288]

The Anim Graph is responsible for determining the animation pose of its
controlled skeletal mesh on each tick. We can see here that we have a Blueprint
graph, but it's different from the event graphs we're used to. Everything in the
Anim Graph leads to that Final Animation Pose and is used to decide what it's
going to be. We're not going to go deeply into Animation Blueprints here, as their
setup is a deep subject and outside the scope of this book but they're worth
learning about. The Anim Graph for our hands is going to be fairly simple.

From your Content Browser, grab the BS_HandGrip Blend Space we created a3.
moment ago and drag it onto the Anim Graph.
Drag its Animation Pose output to the Result Animation Pose input on the4.
Final Animation Pose node.
Drag out a connector from the Grip input on your BS_HandGrip node, and5.
promote it to a variable. Name the variable Grip:

Set the Grip variable's Slider Range and Value Range minimum values to 0 and6.
maximum values to 1.
Compile the blueprint:7.

Interacting with the Virtual World - Part I Chapter 5

[289]

In the lower-right corner of the window, you will see an Anim Preview Editor tab. The
variables you create in your animation blueprint appear here, and you can change their
values in real time to see how they would affect your animation. (You're not actually
changing the default value of the variable here—you're just previewing the system's
behavior with different values.) Give it a try. Mouse into the Grip value and drag it around
to slide between 0.0 and 1.0. You'll see that it's driving the blend space we created, which in
turn is driving the final animation pose. You can close and open the hand by changing the
value of the Grip float.

Let's get this responding to our user's input.

Connecting the animation blueprint to our hand blueprint
We need to tell our BP_VRHand actor that the HandMesh component should use our new
animation blueprint to drive its animation state:

Open up BP_VRHand and select the HandMesh Skeletal Mesh component from the1.
Components list.
In its Details | Animation, verify that its Animation Mode is set to Use2.
Animation Blueprint. (It should be by default.)
Use the Anim Class drop-down menu to select your new animation blueprint:3.

Now, let's drive the Grip value on the animation blueprint we just connected.

Find the Event Tick in event graph of BP_VRHand, or create it if needed.4.
Drag a reference to Hand Mesh onto the graph.5.
Drag a connector from Hand Mesh and call Get Anim Instance on it.6.

For a Skeletal Mesh being controlled by an animation blueprint, the Anim
Instance is going to be a reference to that animation blueprint. Now, since we
need to access a specific member of that blueprint, we need to cast the anim
instance to the specific animation blueprint class we're using.

Interacting with the Virtual World - Part I Chapter 5

[290]

Drag a connector from the Get Anim Instance return value and cast it to our7.
new animation Blueprint class (ABP_MannequinHand_Right.)
From the As ABP_Mannequin Hand Right output, call Set Grip.8.
Hit Ctrl + drag bWantsToGrip onto the graph to get its value.9.
Drag a connector from bWantsToGrip and create a Select node.10.
Connect the Select node's Return Value to Set Grip's Grip input.11.
Set the True value on the Select node to 1.0.12.

Your graph should now look like this:

Let's run it and test it out. Okay, good. Our hands are responding to our input. They don't
look great doing it yet, but we can see that the basics are working. When we squeeze the
trigger on a motion controller, that input sets bWantsToGrip to true, and on the Tick
Event of VRHand, we're setting the value of the Grip variable on our Animation Blueprint
to 0.0 or 1.0, based on the current value of bWantsToGrip.

Now, let's improve things a bit and set the system up to be more flexible.

Creating a new enumerator for our grip
Right now, we're just driving the Grip value on the hand's animation blueprint directly,
but it really makes more sense to let the animation blueprint handle this, and just tell it
what's going on. The system that handles animation, after all, should be responsible for
deciding how it wants to do that.

Interacting with the Virtual World - Part I Chapter 5

[291]

Let's give ourselves an easy way to communicate our grip state to the animation blueprint.
An enumeration is ideal for this:

Right-click in your Blueprints directory, and select Create Advanced Asset |1.
Blueprints | Enumeration. Name it EGripState:

Open up the new enumerator.2.
In its Enumerators list, hit New to create a new entry.3.
Set the new entry's Display Name to Open. You can leave its description blank:4.

Interacting with the Virtual World - Part I Chapter 5

[292]

Create another enumerator entry, and name it Gripping.5.
Close the enumerator.6.

Now, we've created a new data type that we can use to store information and pass
it in and out of objects. Let's add it to our animation blueprint.

Open up your animation blueprint and add a new variable to its Variables list.7.
Set its Variable Type to EGripState, and name it GripState.8.

Remember a moment ago when we noticed that the animation blueprint
contained two graphs—the Anim Graph and an Event Graph? Now, we're going
to begin to make use of the event graph. This is a powerful system. It allows us to
keep our game logic where it belongs, in the gameplay objects, and keep our
animation logic where it belongs, in the animation blueprint. We can pass a value
into the animation blueprint, and then in its event graph, determine what we
want it to do with that input.

In your animation blueprint's Event Graph, find the Event Blueprint Update9.
Animation node, or create one if it isn't already present. This is the equivalent of
a tick event in an animation blueprint.
Press Ctrl + drag a reference to your new Grip State variable onto the event10.
graph.
Drag a connector from its output and create a Select node.11.

You'll notice that, when you create a Select node from an enum, it's automatically
populated with that enum's available values:

Hit Alt + drag a reference to the Grip variable onto the graph to create a setter.12.
Drag the output from the Select node into the Grip setter.13.
Set its Gripping value to 1.0.14.
Compile the blueprint.15.

Interacting with the Virtual World - Part I Chapter 5

[293]

In the Anim Preview editor, verify that changing Grip State from Open to16.
Gripping closes the hand:

Now, let's update BP_VRHand to send the enum value instead of a grip value:

Back in your BP_VRHand's Event Tick, delete the Grip setter and the select1.
node feeding it.
Drag out a connector from the Cast output, and select Set Grip State.2.
Drag out a new Select node from your bWantsToGrip getter.3.
Drag the Select node's output into the GripState setter's input.4.
Set the True value of the Select node to Gripping.5.

Your graph should now look like this:

Interacting with the Virtual World - Part I Chapter 5

[294]

Test it out. There's no visible change, right? What we've done here is set up our graphs so
that we can now modify them more easily. Now that we've verified that the new setup is
working the same way the old one did, let's jump back into the animation blueprint and
improve the way we handle its input.

Smoothing out our grip animation
Snapping between the open and closed animation poses looks awful. Let's smooth this out
by transitioning between the values over time:

Jump back to your animation blueprint's Event Graph.1.
Right-click and add an FInterp to Constant node.2.
Drag your Grip variable onto its Current input.3.
Drag the output of your Grip State Select node onto its Target input.4.
Drag the Delta Time X value from Event Blueprint Update Animation into5.
its Delta Time input.
Drag out a connector from its Interp Speed input and promote it to a variable6.
named Interp Speed.
Compile the Blueprint and set Interp Speed to 7.0.7.
Connect the output from FInterpToConstant to the Grip setter's input:8.

Interacting with the Virtual World - Part I Chapter 5

[295]

Test it out. That's much better. Now, our hand is interpolating between poses instead of just
snapping to the value. What's happening here is the Interp to Constant node is managing a
smooth transition to a new target value that was selected by Grip State over the duration
specified by InterpSpeed. If we want the transition to happen faster, we can just reduce
Interp Speed. If we want it longer, just make Interp Speed larger.

As simple as this example is, it begins to show the power and flexibility animation
blueprints provide. We can easily communicate state information from the VRHand
blueprint, telling the animation blueprint what we're trying to do, and then do whatever
we'd like to do to illustrate that state in the animation blueprint.

Summary
This was another involved chapter. We did a lot here. We began by creating a new project
and migrating our VRPawn blueprints, along with their required objects, into the new
project. We learned a quick way of recreating input bindings by copying the contents of
DefaultInput.ini to a new project. We then added the Soul:City assets and maps to our
project and set up a navmesh so that we could explore it.

Then, we got to the meat of this chapter. We scavenged a hand mesh from the VR
Template project and created a Blueprint class to drive their behavior. We learned how to
use construction scripts to change objects when they're created, both in the editor and in-
game. We learned how to create child actor components inside our pawn and how to use
them in blueprints. We learned how to create an animation blend space and an animation
blueprint to animate our hand meshes and how to use an enumerator to pass state
information into the animation blueprint.

In the next chapter, we're going to learn how to use these hands to pick up objects. We'll
learn how to use blueprint interfaces to enable function calls to be made on a wide variety
of objects and how to detect actors we can pick up. We'll also learn a bit about using haptic
feedback effects to indicate to players when they've made contact with an object they can
pick up.

6
Interacting with the Virtual

World - Part II
In the last chapter, we set up our hands and learned how to animate them. As we
mentioned then, this alone can represent a big step toward establishing presence in our
application. Now, let's take things to the next step and start using them.

In this chapter, we're going to learn about the following topics:

How to use Blueprint interfaces to add functionality to a variety of Blueprints
How to use attachments to pick up and drop physics actors
How to indicate to players when they can interact with an object
How to create haptic feedback effects to provide more tactile feedback to the user

Creating an object we can pick up
We'll begin by making a few objects we can pick up. Let's start with a simple cube:

Right-click in your project's Blueprints directory in your content browser and1.
select Create Basic Asset | Blueprint Class.
This time, instead of selecting one of the common classes as its parent class,2.
expand the All Classes entry at the bottom of the Pick Parent Class dialog.

Interacting with the Virtual World - Part II Chapter 6

[297]

Select Static Mesh Actor:3.

Name it BP_PickupCube.4.
Open up BP_PickupCube.5.

You can see that it inherited a Static Mesh Component.

We could just as easily have created an Actor Blueprint and added a
Static Mesh component, but it's a good idea to get in the habit of
choosing your parent classes appropriately when you're building a new
asset. Don't reinvent things if you don't have to.

Set the Static Mesh property of Static Mesh Component to Engine6.
Content/Basic Shapes/Cube1.
Set its Scale to 0.2, 0.2, 0.2.7.
Set its Materials | Element 0 to8.
Content/SoulCity/Environment/Materials/Props/MI_Glow. (Or anything
else you like, but this one will be easy to see in the map.)

Interacting with the Virtual World - Part II Chapter 6

[298]

Now, we want our cube to simulate physics, so let's set a few values to make this happen:

Set its Physics | Simulate Physics flag to True.1.
Set its Collision | Simulation Generates Hit Events to True.2.
Set its Collision | Generate Overlap Events to True.3.
Make sure its Collision | Collision Presets is set to PhysicsActor. (This should4.
have been set for you automatically when you set Simulate Physics to true.)
Set its Collision | Can Ever Affect Navigation to False. (This will be hidden in5.
the Collision section's Advanced properties.)

We've now created a small glowing cube that will respond naturally to physics, but not
block our navmesh as it moves around the world.

Now, we're going to need to give it the ability to be picked up. There are a few ways we
could do this. We could simply write Pickup and Drop methods right into blueprint of
BP_PickupCube, but we're going to need to be able to call these functions from outside.

As we saw previously, if you want to call a function from outside its blueprint, you have to
be sure you're talking to a class that contains that function, which we do by casting the
reference to that class. This would be fine if we only ever anticipated picking up cubes, but
what if we want to be able to make other objects easy to pick up? We don't want to have to
rewrite our BP_VRHand blueprint every time we add a new type of object that could be
picked up, so that's not a great solution here.

We could derive BP_PickupCube from a common parent that implemented the Pickup
and Drop methods, and just cast our references to that parent. That's better, but still not
perfect. BP_PickupCube inherits from StaticMeshActor, but what if we want to make it
possible for something that inherits from SkeletalMeshActor to be picked up? We don't
have an easy way to create a common parent class in that instance.

The answer to this dilemma is a Blueprint Interface. An interface is a Blueprint object that
allows us to define functions that can be called on any object that implements the interface,
no matter what class that object derives from. It's a class you can attach to any object, and it
acts as a promise that the object to which it's attached will implement each of the functions
included in the interface. If I create an interface that declares the Pickup and Drop
functions, for example, and I apply that interface to my BP_PickupCube, I can call the
Pickup and Drop methods without having to cast the object first. This is a powerful
pattern. You can make your code very flexible and easy to extend by using interfaces
smartly.

Don't worry if this isn't completely clear yet. It's going to make more sense once we build it.

Interacting with the Virtual World - Part II Chapter 6

[299]

Creating a Blueprint Interface for pickup
objects
To create a Blueprint Interface, follow the given steps:

Right-click in your project's Blueprints directory, and select Create Advanced1.
Asset | Blueprints | Blueprint Interface:

Name it BPI_PickupActor.2.

When you open it up, you'll see that it contains a Functions list, and nothing else.
You'll notice that the graph can't be edited. This is because the interface is simply
a list of functions that the attached object must implement, but those functions
don't get written in the interface.

By default, it's created a new function declaration for you. Name it Pickup.3.
Under the function's Details | Inputs, add a new input. Set its type to Scene4.
Component | Object Reference, and name it AttachTo:

Interacting with the Virtual World - Part II Chapter 6

[300]

Add another function, and call it Drop. This one doesn't need any input.5.
Compile, save, and close the interface.6.

Now, let's apply this new interface to BP_PickupCube:

Open BP_PickupCube, and hit the Class Settings item on the toolbar.1.
Under Details | Interfaces, hit the Add button under Implemented Interfaces.2.
Select BPI_PickupActor.3.

Interacting with the Virtual World - Part II Chapter 6

[301]

Implementing the Pickup and Drop functions
Now that we've added this interface to the BP_PickupCube class, we can implement the
functions we declared in that interface in our event graph. Let's get started:

In your Event Graph, right-click and select Event Pickup to create a Pick up1.
event. This event exists on this Blueprint class now because we've attached an
interface that declares it. You'll see that the event indicates that it's an interface
event from BPI_PickupActor.
Create a Drop event in the same way.2.

Now that we've created handlers for the two events coming from our interface,
let's make them work.

When this object is picked up, we want to turn off its physics simulation so that it
doesn't fall out of our hand, and we want to attach it to a scene component on the
hand that's picking it up.

Drag a reference to the Static Mesh Component onto the Event Graph.3.
Call Set Simulate Physics on it, setting Simulate to False.4.
Right-click in the graph and select Get Root Component.5.
Drag a connector from the Root Component reference, and select Attach to6.
Component. You'll see that there are two options for this. Roll over them and
select the one whose tooltip reads Target is Scene Component, since we're going
to be attaching to a scene component:

Interacting with the Virtual World - Part II Chapter 6

[302]

Drag the Attach To output from Event Pickup to the Parent input on the7.
Attach To Component node.
On your Attach To Component node, set the Location, Rotation, and Scale8.
rules to Keep World, and set Weld Simulated Bodies to False.

Your completed Pickup implementation should look like this:

When we drop this object, we want to turn its physics back on and detach it from
the scene component we attached when we picked it up.

Select your Static Mesh Component reference and the Set Simulate9.
Physics call, and hit Ctrl + W to duplicate them.
Connect execution of Event Drop pin to the copied Set Simulate Physics10.
call.
Set Simulate to True so that we're turning physics back on.11.
Right-click and create a Detach From Actor node.12.
Set the Location, Rotation, and Scale rules to Keep World, just as we did on the13.
Attach node.

Interacting with the Virtual World - Part II Chapter 6

[303]

Your completed Drop implementation should look like this:

That's it for our Pickup Cube actor. We can close the blueprint.

Setting up VRHand to pick up objects
Now, we're ready to get our hands grabbing these objects.

Creating a function to find the nearest pickup
object
The next thing we need to do is find out what objects are near enough to our hand to be
picked up. Let's create a function to do this:

In BP_VRHand, create a new function called FindNearestPickupObject.1.
Set its Category to Grabbing and its Access Specifier to Private.2.
In its implementation graph, right-click to create a Get All Actors with3.
Interface node, and set its Interface value to BPI_PickupActor.

This is going to give us an array of every actor in the scene that implements the
BPI_PickupActor interface.

Drag a connector from the Out Actors output and create a For Each Loop node:4.

Interacting with the Virtual World - Part II Chapter 6

[304]

We're going to iterate through the actors that could possibly be picked up, ignore
any actor that's too far to be considered, and then return the closest remaining
eligible actor.

From the For Each Loop Array Element output, drag out a connector and call5.
Get Actor Location on it.
Drag a reference to Hand Mesh onto your graph and call Get World Location6.
on it.
Subtract the hand mesh's world location from the array element's actor location:7.

Get Vector Length Squared for the resulting vector.8.
Drag out its result and select Promote to local variable. Name the new variable9.
LocalCurrentActorDistSquared:

Interacting with the Virtual World - Part II Chapter 6

[305]

Connect the Loop Body execution line to the local variable's setter.10.
Drag the output from our local variable setter and create a <= test to see whether11.
it's equal to or shorter than the value we're going to give it.

The reason why we're creating a local variable here is that we're going to
need to use this value again if there's more than one grabbable actor in our
test radius, and we don't want to waste time recalculating the distance, so
we're stashing it here so that we can use it later if we need it.

Create a float variable and name it GrabRadius. Compile the Blueprint and set12.
its value to 32.0. (Later on, you can tune this value to whatever feels right for
you.)
Press Ctrl + drag GrabRadius onto your graph.13.
Drag a connector from its output and Square it.14.
Connect the result of the square to the <= test's second input:15.

Remember when we mentioned that real distance checks are expensive?
This is a place where it matters because we're going to call this function on
the Tick event. Since we just want to see whether the actor is within the
supplied radius, but we don't care how far away it really is, it's cheaper to
do this test on the squared values.

Create a Branch node from our <= test's output.16.

If our actor passes the <= test, we know it's within the grab range. Now, we need
to see whether it's the closest object in that range.

In the Local Variables list, create a new local variable named ClosestRange,17.
and set its Variable Type to Float. Set its Default Value to 10000.0.

Interacting with the Virtual World - Part II Chapter 6

[306]

Local variables are variables that only exist within the function in which
they're declared. They can't be read from outside the function. It's a good
idea to use local variables within functions for values that are only used
by that function so that they don't clutter the surrounding object. Local
variables are also reset to their default values each time the function is
run, so you don't have to worry about strange values hanging around
from previous function calls.

Press Ctrl + drag LocalCurrentActorDistSquared onto your graph to get its18.
value.
Drag a connector from its output and create a < test from it.19.
Drag the Closest Range local variable into the test's second input.20.
Create a Branch using the < test result as its condition:21.

If this test returns true, we've found a new closest actor. We want to save a
reference to it and record its distance as the new closest range.

Press Alt + drag Closest Range onto the graph, and drag22.
LocalCurrentActorDistSquared into its input.
Set this value from the branch's True output.23.
Create a new local variable named NearestPickupActor, and set its type to24.
Actor | Object Reference.
Press Alt + drag it onto the graph to set its value.25.
Set its value to the For Each Loop Array Element. (This is going to be a long26.
connection. Consider creating some reroute nodes to make it more readable.)

Interacting with the Virtual World - Part II Chapter 6

[307]

Connect it to the output from the Set Closest Range node:27.

Finally, once we've iterated through all of the possible objects and found our best
pickup candidate if one exists, we want to save that value so that it can be used by
our pickup method.

Create a new variable (not a local variable this time—we want to read this value28.
outside), name it AvailablePickupActor, and set its type to Actor > Object
Reference.
Press Alt + drag it onto the event graph near the Completed output of the For29.
Each Loop.
Connect the Completed output of the For Each Loop to the Set input30.
of Available Pickup Actor.
Drag the Nearest Pickup Actor local variable onto the setter's input:31.

Interacting with the Virtual World - Part II Chapter 6

[308]

What this is going to do is set an externally readable Available Pickup Actor variable
to the actor we found when we iterated through the list of possible actors, if we found any.
Nearest Pickup Actor will be Null if we didn't find any.

Calling Find Nearest Pickup Object on the Tick
event
Now, it's time to call our new function so that we know when we're able to pick an object
up. We don't want to do this, however, if we're already holding an object, so we should
store a reference to any object we're already holding. Let's get started:

Return to your event graph of BP_VRHand and find Event Tick.1.
Create a Sequence node near Event Tick.2.
We want to update our hand animation only after we've looked for objects we3.
could grab, so press Ctrl + drag the output from execution pin of Event Tick onto
the Sequence node's Then 1 output.
Connect the execution pin of Event Tick to the Sequence node's input.4.
Marquee select the node network connected to the Sequence node's Then5.
1 output and drag them down to give yourself some room to work:

Interacting with the Virtual World - Part II Chapter 6

[309]

Create a new variable, name it HeldActor, and set its Variable Type to Actor >6.
Object Reference.
Press Ctrl + drag HeldActor onto your event graph to get its value.7.
Right-click it and select Convert to Validated Get.8.
Drag a call to Find Nearest Pickup Object onto the graph, and call it from9.
the Held Actor getter's Is Not Valid output:

This way, we're only bothering to check for pickup actors if we're not already holding one.

Picking up an actor
Now that we're looking for actors we could pick up, let's make that happen when we try to
grab them. Let's get started:

Open up your Grab Actor function in BP_VRHand.1.
We don't need the Print String node here anymore, so we can delete it.2.
Press Ctrl + drag a getter for HeldActor onto your graph, right-click it, and3.
convert it into a validated get.
Connect the bWantsToGrip setter's execution output to the HeldActor getter's4.
input.

Interacting with the Virtual World - Part II Chapter 6

[310]

Press Ctrl + drag a getter for AvailablePickupActor onto the graph and make5.
this a validated get too.
Connect the Is Not Valid output from the Held Actor get to this getter's input,6.
since we're only interested in picking up an object if we're not already holding
one.
Drag out a connector from Available Pickup Actor and call Pickup7.
(Message) on it:

This is why Blueprint Interfaces are so useful. We didn't need to cast the pickup
actor to any particular class to call the interface method on it. We can simply
make the call, and if the object implements the interface and knows what to do
with it, the call will work. If the object doesn't implement the interface, it simply
does nothing.

If you need to find out whether a given actor implements an interface, call
Does Implement Interface on it. This will return true if the interface is
found on the object. In this particular case, making this call would be
redundant since we know that Available Pickup Actor will always
implement the BPI_PickupActor interface. We used that interface as a
filter when we were looking for objects in the Find Nearest Pickup
Object function.

Drag the Motion Controller component onto your Pickup node's Attach8.
To input.
Drag the Held Actor variable onto the output of Available Pickup Actor to9.
set it to that value.
Add Return Nodes to your exit points. (You don't have to do this, but your10.
code will be far more readable in the long run if you make this a habit.)

Interacting with the Virtual World - Part II Chapter 6

[311]

Your completed Grab Actor graph should look like this:

To summarize what's going on here, when Grab Actor is called, bWantsToGrip is set to
true, and then we check to see whether we're already holding an object. We don't do
anything more if we are. If we're not, we check to see whether we found an object on Event
Tick that we could pick up. If we didn't, there's nothing more to do. If we did, we send a
Pickup message to it through its interface, with a reference to our Motion Controller
component as the object it should attach to, and we stash it as our Held Actor.

Releasing an actor
Since we can now pick an actor up, we're also going to want to be able to drop it again.
Let's do this now:

Open up the Release Actor function.1.
Delete the Print String node from it—we're done with it.2.
Press Ctrl + drag Held Actor onto the graph, right-click it, and convert it into a3.
validated get.
Call the validated get after we set bWantsToGrip.4.
Connect a return node to its Is Not Valid output:5.

Interacting with the Virtual World - Part II Chapter 6

[312]

If we're not holding anything, there's nothing more we need to do. If we are, we
should make sure that the actor still thinks we're the one holding it (since we
could have grabbed it with the other hand) and drop it if it's still our object.

Drag a connector from Held Actor and get its Root Component.6.
Call Get Attach Parent on the root component.7.
Drag a connector from Return Value of Get Attach Parent and create a8.
== test.
Drag the Motion Controller component onto the test's other input.9.
Create a Branch using this test's result as its condition:10.

From the Branch's True output, call Drop on the Held Actor.11.
Press Alt + drag Held Actor onto the graph to create a setter.12.
Connect it to the execution output from the Drop call, and to the Branch node's13.
False output so that we clear the value in either case:

Interacting with the Virtual World - Part II Chapter 6

[313]

Your completed graph should look like this:

To recap what's going on here, when Release Actor is called, we first set bWantsToGrip
to false. We then check to see whether we're currently holding anything. If we're not, there's
nothing more to do. If we think we are holding something, we check to make sure the
object we think we're holding still sees our motion controller as its parent, since we could
have grabbed it with the other hand. If we really are holding the object, we drop it and clear
out the Held Actor variable. If it turned out we were no longer holding the object after all,
we clear out the Held Actor variable so that we no longer think we are.

Test grabbing and releasing
Let's test this in our map:

From your editor's Modes panel, select Place | Basic | Cube, and drag it into1.
your scene. Set its Location to X=-2580, Y=310, Z=40 so that it's sitting near the
player start.
Grab BP_PickupCube from your content browser, and place it on the cube you2.
just placed. You can use the End key to drop it to the surface below it. (X=-2600,
Y=340, Z=100 is probably a decent location for it.)
Press Alt + drag a few more of these BP_PickupCubes and stack them on the3.
cube:

Interacting with the Virtual World - Part II Chapter 6

[314]

Launch a VR Preview. Walk or teleport up to the objects on the cube and use the triggers to
pick them up, drop them, throw them, and move them from hand-to-hand.

Not bad, but there are a few things we need to fix here.

Fixing cube collision
First, and most importantly, they're colliding with the VRPawn's collision capsule and
throwing us around. We'd better fix that:

Open the BP_PickupCube blueprint and select its Static Mesh Component.1.
Under its Details | Collision, change its Collision Presets from2.
PhysicsActor to Custom.

Interacting with the Virtual World - Part II Chapter 6

[315]

The individual collision response channels for this object are now editable. Set3.
the Pawn collision response to Overlap instead of Block:

This way, we can still detect collisions with the pawn if we're interested in them, but they're
not going to prevent the player from moving around.

Letting players know when they can pick something up
Secondly, we're not giving the player any visual indication that they can pick something
up. Let's improve this.

Interacting with the Virtual World - Part II Chapter 6

[316]

First off, let's add another state to our EGripState enumerator:

Open up EGripState from your project's Blueprints directory.1.
Under its Enumerators list, hit New to add another entry. Name it CanGrab.2.
Close and save it.3.

Now, we need to tell our Animation Blueprint what to do with this.

Open the ABP_MannequinHand_Right animation blueprint and open its Event4.
Graph.
Under Event Blueprint Update Animation, you'll see that the Grip State5.
Select node has been automatically updated to reflect the new Can
Grab enumerator we added. Set its value to 0.5:

Try it out by compiling and then changing Grip State in the Anim Preview
Editor. The hand should go to a halfway-open state when Grip State is set to Can
Grab.

Save and close your animation blueprint.6.

Next, we need to get the BP_VRHand blueprint to set Grip State to Can
Grab when it detects that the player can grab something. Let's create a pure
function to determine what our Grip State should be.

Open Event Graph of BP_VRHand and find Event Tick.7.
Select the bWantsToGrip reference and the Select node connected to it and8.
collapse them into a function.

Interacting with the Virtual World - Part II Chapter 6

[317]

Name the function DetermineGripState, set its Category to Grabbing, set its9.
Access Specifier to Private, and set Pure to True:

Open up DetermineGripState.10.
Press Ctrl + drag Held Actor onto the graph and convert it into a validated get.11.
Connect it to the function input and add a new Return Node from its Is Valid12.
output.
Set this node's Return Value to Gripping:13.

If we're holding an object, we don't care about anything else—we should just
animate to the Gripping state.

Add a Branch node to the graph.14.
Drag the bWantsToGrip value into its Condition.15.

Interacting with the Virtual World - Part II Chapter 6

[318]

Connect its True branch to the Gripping Return Node we just created.16.
Press Ctrl + drag AvailablePickupActor onto the graph and convert it into a17.
validated get.
Add another Return Node connected to its Is Valid output, and set its Return18.
Value to Can Grab.
Add another Return Node to its Is Not Valid output, with the value Open:19.

Let's test it out. Now, you should see the hand change its pose when it detects an object it
can grab.

Adding haptic feedback
There's one other thing we should be doing, which is adding some degree of feedback to
the hand when the player makes contact with an object. This may seem like a small thing,
but it's actually significant to the process of evoking presence. We don't have many ways at
present to simulate physical sensations, but any sensation at all that's paired to an event or
action can go a long way toward making the virtual world feel less "ethereal" and more
physical.

Let's learn how to add a bit of rumble to our controllers.

Interacting with the Virtual World - Part II Chapter 6

[319]

Creating a Haptic Feedback Effect Curve
First, we need to create the haptic effect we want to play:

Right-click in your project's Blueprints directory and select Create Advanced1.
Asset | Miscellaneous | Haptic Feedback Effect Curve:

Interacting with the Virtual World - Part II Chapter 6

[320]

Name it FX_ControllerRumble.2.
Open the Haptic Feedback Effect Curve we just created.3.

You'll see that you have two curves under Haptic Feedback Effect | Haptic
Details: Frequency and Amplitude. We're going to create a very simple effect
here, but it's really worth experimenting with these curves and figuring out how
to create convincing feedback effects.

Right-click on your Frequency curve's timeline near the 0.0 time and select Add4.
key to None.
Fix its Time and Value settings to read 0.0 for each:5.

Right-click again on the timeline and add another key. Set this one's Time to 0.56.
and its Value to 1.0.
Create a third key on the curve, with Time as 1.0 and Value as 0.0.7.

Interacting with the Virtual World - Part II Chapter 6

[321]

Create the same three keys for your Amplitude curve:8.

Your completed curves should look like what's shown in the preceding screenshot.

Save and close your new haptic effect curve.9.

Playing the haptic effect on command
Now that we've created a Haptic Feedback Effect Curve, let's set up a method to play it:

Open Event Graph of BP_VRHand and right-click. Select Add Event | Add1.
Custom Event. Name the new event RumbleController.
Create an Input for this event. Name it Intensity, and set its type to Float.2.
Right-click and create a Get Player Controller node.3.
Drag a connector out from GetPlayerController and create a Play Haptic4.
Effect node.

Interacting with the Virtual World - Part II Chapter 6

[322]

Select the Haptic Effect we just created.5.
Drag the Hand variable into the Hand input.6.
Drag the event's Intensity output into the Scale input:7.

Now, let's call this Gaptic effect whenever we make contact with a new object we
could pick up.

Open up your Find Nearest Pickup Object function of BP_VRHand.8.

See where we're setting Available Pickup Actor to the value we found in
Nearest Pickup Actor? Let's detect when we're putting a new value in there
and trigger the effect when that happens.

Right-click your Nearest Pickup Actor getter, and convert it into a validated9.
get.
Press Ctrl + drag the execution input into Set Available Pickup Actor onto10.
the Get Nearest Pickup Actor getter's execution input.
Drag a connector from the Nearest Pickup Actor getter's value and create a11.
!= (Not Equal) node.
Drag a reference to Available Pickup Actor from your Variables list into the12.
Not Equal node's other input.
Create a Branch from its output.13.
Drag the Is Valid execution pin from Nearest Pickup Actor into the Branch14.
input.
Call Rumble Controller from its True output and set its Intensity to 0.8.15.
Drag the output from Rumble Controller into your Available Pickup16.
Actor setter's input.

Interacting with the Virtual World - Part II Chapter 6

[323]

Drag the Is Not Valid output from Nearest Pickup Actor into the setter17.
of Available Pickup Actor.
Add return nodes after Set Available Pickup Actor and from the Not18.
Equal test's False branch:

To recap what's going on here, once we've completed iterating through the objects we could
potentially pick up, we need to check whether we've found one. If we didn't, we just set
Available Pickup Actor to the null value so that we're clearing it if it previously
contained a value. If we did find an object we could pick up, we check to see whether it's
different from our current Available Pickup Actor. If it is, we rumble the controller
before we set Available Pickup Actor to the new value.

Going further
There are a few ways we could further improve on what we've done here:

First, detecting grabbable objects by distance gives us fuzzy results. It doesn't
take the object's size into account. Using a sphere to represent our grabbing hand
and testing for overlaps against this sphere is going to give us more accurate
results. If you'd like to refactor this code to use that method, the VR Template
project contains a good example.
Second, our haptic feedback effect feels indistinct. It fades in and out evenly, and
doesn't provide much of a physical sensation. Editing those curves to provide a
sharper attack could make the effect more convincing.

Interacting with the Virtual World - Part II Chapter 6

[324]

Summary
This chapter picked up where the last one left off and gave us a chance to start picking up
objects. We learned how to use Blueprint Interfaces to enable function calls to be made on a
wide variety of objects and how to detect actors we could pick up and use attachments to
pick them up and drop them. Finally, we also learned how to create haptic feedback effects
to indicate to players when they've made contact with an object they can pick up.

As we mentioned at the start of the previous chapter, hand presence is an important factor
in driving an overall sense of presence in VR. We're aware of our hands all of the time in
real life, and bringing them into the virtual world does a lot to make us feel present in the
space as well. In addition, the ability to use our hands to manipulate objects directly is one
of the crucial things we can do in VR that we just can't do in any other medium. (For an
example of just how well this can be done, check out Vinyl Reality by EntroPi Games
(https://vinyl-reality. com/) and then imagine trying to do the same thing with a
gamepad or a keyboard.) Hands are important to VR, and they're unique to VR. Take the
time to get them right in your applications.

In the next chapter, we're going to learn how to create user interfaces in VR to display
information and to make it possible for users to interact in 3D space.

https://vinyl-reality.com/
https://vinyl-reality.com/
https://vinyl-reality.com/
https://vinyl-reality.com/
https://vinyl-reality.com/
https://vinyl-reality.com/
https://vinyl-reality.com/
https://vinyl-reality.com/
https://vinyl-reality.com/
https://vinyl-reality.com/

7
Creating User Interfaces in VR

In the previous chapter, we learned how to create virtual hands driven by the motion
controllers. This enabled our users not only to look around the world and move through it,
but also to begin to interact with it. In this chapter, we're going to take this further, and
learn how to create user interfaces (UIs) that communicate information and accept input.

You should seriously consider whether your application really requires a
graphical UI. Just because most applications need a GUI doesn't
necessarily mean that's the case for all of them. Artificial-seeming UI
elements can break immersion. When building UI elements, try to figure
out how to fit them meaningfully into the world so that they look as
though they belong there. Don't fall too much in love with buttons either.
They're commonly used in 2D UI designs because they work well with a
mouse, but VR hand controllers offer a much, much wider range of
potential actions. Think beyond the button.

Most applications we develop for VR will require a Graphical User Interface (GUI) of
some sort, but UIs in VR pose new challenges that we didn't have to face on the flat screen.
Most of the time, when we're building a flat-screen UI, we can simply overlay 2D UI
elements on top of our 3D environment using a head-up display (HUD) and then read
mouse, gamepad, or keyboard input to allow the user to interact with it. This doesn't work
in VR.

If we simply draw a 2D interface over each eye's view, its position is going to appear the
same for each eye. The problem with this is that our stereo vision scopic interprets an object
that looks the same to both eyes as being infinitely far away. This means that, when 3D
objects in the world appear behind the UI on the screen, those objects are going to appear to
be closer than the UI, even though the UI is drawn over them. This will look terrible and
will almost certainly make your user uncomfortable.

Creating User Interfaces in VR Chapter 7

[326]

The solution to this is to incorporate UI elements into the 3D world, but it isn't enough to
simply create an HUD panel in front of the player's face and project onto this, either (we'll
talk more about why that is when we get to the player's UI later in this chapter). There's no
way around the reality that you have to re-think UIs in VR. Think of what you're doing as
re-creating objects you interact with in the real worlds rather than as re-creating 2D
metaphors from the flat-screen world.

We need to re-think how we interact with UI in the 3D world as well. We don't have access
to a mouse cursor in VR (which wouldn't work for us anyway, because it's a 2D input
device), and keyboard commands aren't a great idea, since your user can't see the keyboard.
We're going to need new ways to communicate input into the system. Fortunately, Unreal
gives us a solid set of tools to handle 3D UIs in ways that will work well in VR.

In this chapter, we're going to run through the process of creating the various elements
we'll need to create a functional UI in VR by creating a simple AI-controlled companion
character with an indicator displaying its current AI state, and a control interface on the
player character that allows us to change that state.

Specifically, we're going to cover the following topics:

Creating an AI-controlled character and giving it a simple behavior
Creating interfaces in 3D space using Unreal Motion Graphics (UMG) UI
designer to display information
Attaching UI elements to objects in the world
Using widget interaction components to interact with these interfaces and affect
objects in the world
Displaying the widget interaction component to the user

Let's get to it!

Getting started
For this project, we're going to begin by simply taking the previous chapter's project and
making a new copy. In previous chapters, we've explored a few ways of creating new
projects using material from other projects. Simply duplicating and renaming a project can
often be the simplest way to do this, and is appropriate if you're taking the work you've
done in a previous project and expanding on it, as we are here. (It's also perfectly
reasonable for this chapter's work to keep working from the previous project, if you'd like
to.)

Creating User Interfaces in VR Chapter 7

[327]

Creating a new Unreal project from an existing
project
When creating a new project by copying, there really isn't a lot that needs to be done. It's
enough to simply do the following:

Copy the old project directory.
Rename the new directory and the .uproject file.
Delete the generated files from the old project.

Let's run through this process using our project from Chapter 5, Interacting with the Virtual
World – Part I, as a starting point for our work in this chapter:

With Unreal Editor closed, find the location of the previous chapter's Unreal1.
project.
Make a copy of the project directory and give it a new name.2.
Inside the new directory, rename the .uproject file. You're not required to3.
match the name of the project file to the name of the directory that contains it, but
it's good practice to do so.
Delete the Intermediate and Saved directories from your new project4.
directory. These will be regenerated when you open the new project, and stray
data left over from old projects can cause problems. It's always better to start
clean with these.
Open up the new .uproject file. You'll see that the Intermediate and Saved5.
directories you just deleted are regenerated for the new project. The project
should open to the default map (LV_Soul_Slum_Mobile) we set in the last
chapter.
Hit the toolbar's Build button to rebuild its lighting.6.

Test the project by launching a VR preview. Everything should work as it did in the
previous project.

As we mentioned before, it's also fine simply to continue working from the previous
chapter's project. Either way, we're now ready to add the AI character we're going to
control.

Creating User Interfaces in VR Chapter 7

[328]

We’re not alone – adding an AI character
Creating an AI-controlled character from scratch would take us into areas that fall outside
the scope of this book, so, instead, we're going to repurpose the standard player character
from the third-person template and change the way it's controlled.

If you already have a project created using the third-person template available, open it up.
If not, create one:

Select File | New Project, and create a new Blueprint project using the third-
person template. It's fine to leave other settings at their default values – they
won't affect anything we're doing.

Migrating the third-person character blueprint
Whether we've taken an existing third-person template project or created a new one, what
we want to do now is migrate the ThirdPersonCharacter blueprint:

In the third-person project's content browser, navigate to1.
Content/ThirdPersonBP/Blueprints and select the
ThirdPersonCharacter blueprint.
Right-click and select Asset Actions | Migrate. Migrate the character into the2.
Content directory for this chapter's project.

Now, we can close this and return to our working project. A new
ThirdPersonBP directory should have been added by our content migration.

Navigate to Content/ThirdPersonBP/Blueprints, and find the3.
ThirdPersonCharacter blueprint. Open it up.

Cleaning up the third-person character blueprint
There are a few things we don't need here that we can safely clear out:

First, select everything in Event Graph and delete it. We don't need any of these1.
input handlers.
We also don't need the FollowCamera and CameraBoom items in the2.
Components list, so delete those:

Creating User Interfaces in VR Chapter 7

[329]

Now, we have a clean character that's going to work out well for what we need it to do.

Examining the animation blueprint
Even though we took a shortcut and migrated our character, it's still not a bad idea to take a
look at how it works.

Select the character's Mesh component and look at the Animation section of the Details
panel. You'll see that this character is animated using an animation blueprint called
ThirdPerson_AnimBP. Use the magnifying glass beside the Anim Class property to
navigate to the animation blueprint and then open it up so we can see what's inside:

It would take us outside the scope of this book to discuss animation blueprints in depth,
but, in general what you should understand about them is that, just as we saw with the
controlled hands, they're responsible for determining how a skeletal mesh animates in
response to whatever factors govern its animation.

Creating User Interfaces in VR Chapter 7

[330]

You saw a simple example of an animation blueprint driving the hand pose. This one's
doing a similar job, but driving a character skeleton. It's not a bad idea to take some time to
burrow through this blueprint to see how it works. You can find further documentation
at https://docs.unrealengine. com/ en- us/Engine/ Animation/ AnimBlueprints. When
you're done looking around, feel free to close the animation blueprint. We won't need to
change anything here.

Creating a companion character subclass
Since we're going to be adding new behaviors and components to this character, it's going
to be a good idea for us to create a new character blueprint and derive it from this one:

Right-click the ThirdPersonCharacter blueprint and select Create Child1.
Blueprint Class from the context menu:

https://docs.unrealengine.com/en-us/Engine/Animation/AnimBlueprints
https://docs.unrealengine.com/en-us/Engine/Animation/AnimBlueprints
https://docs.unrealengine.com/en-us/Engine/Animation/AnimBlueprints
https://docs.unrealengine.com/en-us/Engine/Animation/AnimBlueprints
https://docs.unrealengine.com/en-us/Engine/Animation/AnimBlueprints
https://docs.unrealengine.com/en-us/Engine/Animation/AnimBlueprints
https://docs.unrealengine.com/en-us/Engine/Animation/AnimBlueprints
https://docs.unrealengine.com/en-us/Engine/Animation/AnimBlueprints
https://docs.unrealengine.com/en-us/Engine/Animation/AnimBlueprints
https://docs.unrealengine.com/en-us/Engine/Animation/AnimBlueprints
https://docs.unrealengine.com/en-us/Engine/Animation/AnimBlueprints
https://docs.unrealengine.com/en-us/Engine/Animation/AnimBlueprints
https://docs.unrealengine.com/en-us/Engine/Animation/AnimBlueprints
https://docs.unrealengine.com/en-us/Engine/Animation/AnimBlueprints
https://docs.unrealengine.com/en-us/Engine/Animation/AnimBlueprints
https://docs.unrealengine.com/en-us/Engine/Animation/AnimBlueprints
https://docs.unrealengine.com/en-us/Engine/Animation/AnimBlueprints
https://docs.unrealengine.com/en-us/Engine/Animation/AnimBlueprints
https://docs.unrealengine.com/en-us/Engine/Animation/AnimBlueprints

Creating User Interfaces in VR Chapter 7

[331]

Let's name the new class BP_CompanionCharacter and move it to our project's2.
subdirectory inside the Content folder.
Now, we can drag an instance of BP_CompanionCharacter into the level:3.

Place your companion character somewhere that's covered by the navigation mesh.
Previously, we used a navigation mesh to allow us to indicate which areas of the map were
valid teleport destinations. Now, in addition to this, we're going to use it for its intended
purpose. Navigation meshes provide a simplified model of the walkable space of a map
that can be used by AI-controlled characters to find their way around. Remember that you
can use the P key to show and hide your navmesh if you need to check its coverage.

Creating User Interfaces in VR Chapter 7

[332]

Adding a follow behavior to our companion
character
Let's give our character a simple behavior. We'll have him follow the player:

Open the BP_CompanionCharacter event graph and find or create an Event1.
Tick node.
Right-click in the graph and create a Simple Move to Actor node.2.
Create a Get Controller node and feed its output into the Simple Move to Actor3.
node's Controller input.
Create a Get Player Pawn node and feed its output into the Simple Move to4.
Actor node's Goal input:

Launch your map. Our companion character should run to your location (if he doesn't,
verify that he's starting on the navmesh and that the navmesh section where he's standing
can access your PlayerStart location).

Examining the AI controller
Let's take a moment to talk about what's going on here:

Shut down the gameplay session, select the Simple Move to Actor node, and hit1.
F9 to set a breakpoint there.

Creating User Interfaces in VR Chapter 7

[333]

A breakpoint is a debugging tool that instructs the Blueprint interpreter to
pause execution when it hits the point you've set. While you're in the
paused state, you can roll over variable and function outputs to see what
they contain, and you can step through the code to see how it executes.
We'll cover using breakpoints and debugging tools in depth in a later
chapter.

Run the map again, but don't bother putting the VR headset on – we just want to
see what happens when the breakpoint is hit:

When execution stops at the breakpoint, roll over the output from the Get2.
Controller node. You'll see that this character is currently controlled by an AI
Controller that was automatically created for it.

Any pawn or character in your level must be possessed by a controller
before it can execute commands. The pawn or character you control as a
player is possessed by a player controller. Characters that are expected to
behave autonomously need to be possessed by an AI controller.

Select the Simple Move to Actor node again if it's been deselected, and hit F9 to3.
clear the breakpoint.
Click on Resume on the toolbar to return to normal execution.4.

The character should run to your location.

Creating User Interfaces in VR Chapter 7

[334]

Setting breakpoints in your blueprints is a valuable way of debugging
them and seeing how they operate. If you're working with a blueprint
written by another developer, setting a breakpoint and stepping through
the execution can be a valuable way of figuring out how it works. You can
set and clear breakpoints by hitting F9, and step through execution by
using F10. F11 and Alt + Shift + F11 allow you to step into and out of child
methods in a blueprint. You can view the values currently set in your
blueprint by mousing over input and output connectors.

If we take a look at the BP_CompanionCharacter class' Details | Pawn, we can see that
Auto Possess AI is set to Placed in World, meaning that the specified AI controller will
automatically take control of this pawn if it's placed in the world. Other options here allow
us to specify that the AI controller should possess the pawn when it's spawned, or should
not auto-possess at all. The AI Controller Class specifies which AI Controller class will
possess this pawn. If we needed to, we could select a new AI controller class here. In our
case, we don't need to do this because the default controller can do everything we need it to
do:

As with the depths of animation blueprints, a deep discussion of AI controllers and
decision trees falls outside the scope of this book, but if you wanted to take it further, it's
worthwhile exploring the documentation at https:/ /docs. unrealengine. com/ en- us/
Gameplay/AI.

It's worthwhile spending some time poking around with these elements. If you're
developing applications that involve visible non-player characters, time spent learning
about the animation blueprint and the AI controller is absolutely well spent.

https://docs.unrealengine.com/en-us/Gameplay/AI
https://docs.unrealengine.com/en-us/Gameplay/AI
https://docs.unrealengine.com/en-us/Gameplay/AI
https://docs.unrealengine.com/en-us/Gameplay/AI
https://docs.unrealengine.com/en-us/Gameplay/AI
https://docs.unrealengine.com/en-us/Gameplay/AI
https://docs.unrealengine.com/en-us/Gameplay/AI
https://docs.unrealengine.com/en-us/Gameplay/AI
https://docs.unrealengine.com/en-us/Gameplay/AI
https://docs.unrealengine.com/en-us/Gameplay/AI
https://docs.unrealengine.com/en-us/Gameplay/AI
https://docs.unrealengine.com/en-us/Gameplay/AI
https://docs.unrealengine.com/en-us/Gameplay/AI
https://docs.unrealengine.com/en-us/Gameplay/AI
https://docs.unrealengine.com/en-us/Gameplay/AI
https://docs.unrealengine.com/en-us/Gameplay/AI

Creating User Interfaces in VR Chapter 7

[335]

Improving the companion's follow behavior
Now that we've gotten our character following us, let's improve its behavior. It tends to
crowd us a bit, and it would improve things if our companion only tried to follow us when
we got a specified distance away from him.

First, for the sake of organization, we should bundle our movement behavior into a
function:

Select the Simple Move to Actor node and the Get Controller and Get Player1.
Pawn nodes feeding it.
Right-click and collapse them to a function named FollowPlayer.2.

Now, let's improve the way it works:

Open up the new function.1.
Drag an output from GetPlayerPawn and select Promote to local variable.2.
Name the new variable LocalPlayerPawn.

Use local variables in functions whenever you access a piece of
information that would cost time to collect again. Since we know we're
going to need to use the player pawn a few times in this function, it's
faster to get it once and save the value rather than to re-fetch it every time
we need it.

Connect the setter that was automatically created for you to the function input.3.
Create a Get Squared Distance To node from the Local Player Pawn node's4.
output.
Right-click, select Get a reference to self, and feed Self into the Get Squared5.
Distance To node's Other Actor input:

Creating User Interfaces in VR Chapter 7

[336]

Create a float variable named FollowDistance, compile, and set its value to6.
320.0. (Feel free to tune this value later on once the behavior is running.)
Square the FollowDistance (remember that the Square node will appear in the7.
graph as ^2), and test to see whether the result of Get Squared Distance To is
greater than the square of the follow distance. Create a Branch node from the
result:

Recall that we mentioned previously that square roots are expensive to
calculate, so when you're just comparing distances but don't care what
those actual distances are, use squared distances instead.

This Branch node will return True when we move beyond the follow distance
from the companion character, and False while we're within that distance.

Connect the Branch node's True output to your Simple Move To Actor node.8.
Connect the False output to a Return Node since we don't need to do anything9.
if we're within the follow distance.
Grab an instance of LocalPlayerPawn and plug it into the Simple Move to10.
Actor node's Goal input.
Get Controller should still be connected to your Simple Move to Actor node's11.
Controller input.
Add a Return Node to the Simple Move to Actor node's exit:12.

Creating User Interfaces in VR Chapter 7

[337]

Try it out. The companion pawn should now wait until you get more than 320 units away
from him before trying to follow you again:

Not bad. This is a very simple behavior, but it's a good start.

For AI behaviors of any meaningful complexity or behaviors that need to
be executed by many characters simultaneously, it's a good idea to
implement them using behavior trees instead of Blueprint tick operations.
Behavior trees allow us to construct very complex behaviors in a clean,
readable way, and run much more efficiently than simple Blueprint
operations on the tick event. We built our character's behavior in
Blueprint here to avoid going too far onto a tangent, but a behavior tree
would really be a better structure to use here.

Now that we have our companion character executing behaviors, it's time for us to move on
to the real meat of this chapter, which is adding UI elements to the world.

Creating User Interfaces in VR Chapter 7

[338]

Adding a UI indicator to the companion
pawn
Now that our character is moving through the world, we're going to give it another
behavior state and allow the player to instruct it to wait.

Before we create this new state, however, we're first going to create a simple UI element to
indicate the companion character's current state. We'll build it as a placeholder first, since
we haven't yet created its new state, and then, once we have, we'll update it to reflect the
real underlying data.

Creating a UI widget using UMG
Unreal provides a powerful tool for constructing UI elements. UMG allows developers to
lay out UI elements on a visual layout tool, and to tie Blueprint behaviors directly to the
objects in the layout. We call UI elements widgets. Let's learn how to create them:

In your project's Content directory, right-click to create a new asset. Select UI |1.
Widget Blueprint:

Name it WBP_CompanionIndicator and open it up.2.

Creating User Interfaces in VR Chapter 7

[339]

You'll be presented with the UMG UI Designer.

Unreal offers two toolsets for creating UIs. The original, called Slate, is
only usable in native C++. Much of the editor itself is written using Slate,
and some of the older game examples, such as ShooterGame, implement
their interfaces in Slate. UMG provides a much more flexible and user-
friendly method of creating UI objects in Unreal, and this is what we'll be
using to build our interface elements.

UMG is a very robust and deep system. You can create nearly any sort of interface element
imaginable by using it. We're not going to be able to cover everything UMG can do in this
example, so, when you're ready to go further, we encourage you to explore the
documentation at https:/ / docs. unrealengine. com/ en-us/ Engine/ UMG:

To begin with, notice that the UMG designer consists of two tabs: Designer, and Graph.
The Designer tab is your layout tool. The Graph, just as with other contexts within Unreal,
is where you specify the widget's behaviors.

https://docs.unrealengine.com/en-us/Engine/UMG
https://docs.unrealengine.com/en-us/Engine/UMG
https://docs.unrealengine.com/en-us/Engine/UMG
https://docs.unrealengine.com/en-us/Engine/UMG
https://docs.unrealengine.com/en-us/Engine/UMG
https://docs.unrealengine.com/en-us/Engine/UMG
https://docs.unrealengine.com/en-us/Engine/UMG
https://docs.unrealengine.com/en-us/Engine/UMG
https://docs.unrealengine.com/en-us/Engine/UMG
https://docs.unrealengine.com/en-us/Engine/UMG
https://docs.unrealengine.com/en-us/Engine/UMG
https://docs.unrealengine.com/en-us/Engine/UMG
https://docs.unrealengine.com/en-us/Engine/UMG
https://docs.unrealengine.com/en-us/Engine/UMG
https://docs.unrealengine.com/en-us/Engine/UMG
https://docs.unrealengine.com/en-us/Engine/UMG
https://docs.unrealengine.com/en-us/Engine/UMG

Creating User Interfaces in VR Chapter 7

[340]

Let's set up a simple UI to begin with, just so we can get all the parts into place:

In the upper-right corner of the Designer window, find the Fill Screen drop-1.
down menu, and set it to Custom.

It's very common in flat-screen applications to design a UI widget to scale
itself with the screen, but this isn't a feasible approach in VR, where our
UI elements need to exist in 3D space. Setting this value to Custom allows
us to specify the UI widget's dimensions explicitly.

Set the Custom dimension to Width=320, Height=100 (you can also use the2.
resizing tool to the lower right of the widget outline to adjust this):

Grab a Common | Text object from the Palette and drag it into the widget's3.
Hierarchy panel as a child of the Canvas Panel.

You can add elements to the canvas by dragging them directly onto the
designer workspace, or by dragging them into the Hierarchy panel.

Let's center this text object in our panel.

Select the Text object in our hierarchy if it isn't already selected.4.
Set its name to txt_StateIndicator.5.

Creating User Interfaces in VR Chapter 7

[341]

You're not required to name your widgets, but if you create a complicated
UI, and everything is named TextBlock_128327, you're going to have an
unpleasant time finding what you're looking for in your outline. It's a
good practice to name your stuff sensibly when you make it.

From the Anchors drop-down menu, select the centered anchor and click it:6.

Set its Position X and Position Y properties to 0.0. You'll see the text object7.
move so its upper-left corner is aligned with the center anchor.
Set its Alignment to X=0.5, Y=0.5. You'll see the text object move so that its center8.
is now aligned with the center anchor.
Set its Size to Content to true.9.
Set its Justification to Align Text Center.10.
Set its Text to read Following (we're going to set this dynamically later on).11.

Creating User Interfaces in VR Chapter 7

[342]

Anchors are an important concept to get the hang of in building UIs using UMG. When an
object is placed on the canvas panel, its position is considered to be relative to whatever it's
using as its anchor. For a UI canvas that doesn't change size, this may not matter much –
you could simply leave everything anchored to the upper-left corner, but as soon as you
start changing the size of your UI, anchors matter. It's a good idea to get used to using the
appropriate anchors for wherever you want your object to appear. You'll save yourself a lot
of re-working later.

An object's alignment determines where it considers its origin to be, on a scale of (0,0) to
(1,1), so an alignment of (0,0) places the origin at the object's upper-left corner, while an
alignment of (1,1) places it at the lower-right. (0.5, 0.5) centers the origin on the
object.

You can use Ctrl + click and Shift + click when selecting an anchor to set
the object's position and alignment values automatically when you select
the anchor.

Take a look at the following screenshot:

Creating User Interfaces in VR Chapter 7

[343]

So, to recap, when you're placing an object on a UMG canvas, choose an anchor that
determines where the object considers the position (0,0) on the layout board to be. This can
differ between objects, and that's a powerful thing. Next, determine where on the object it
should consider its own origin to be using its Alignment setting. Finally, set its position.

When thinking about designing interfaces in UMG, you'll have an easier
time if you think of what you're doing as setting up the rules by which
objects arrange themselves on the panel, rather than setting their locations
explicitly. UMG is designed to make it easy to create interfaces that scale
properly with different widget and screen sizes, and respond dynamically
to the data that's driving them. It does this very well but it can be
confusing to new users, until you shift your mindset away from thinking
of static layouts and toward thinking of it as a dynamic system of rules.

We're done with this object for now, so we can close it.

Adding a UI widget to an actor
Now that we've created our indicator widget, it's time to add it to our companion pawn:

Open up BP_CompanionCharacter, and from its Components panel, select1.
+Add Component | UI | Widget.
Name the new component Indicator Widget.2.
Under its Details | UI, set its Widget Class to the WBP_CompanionIndicator3.
class we just created.
Set its Draw Size to match the custom size we set for our widget layout: (X=320,4.
Y=100).
Jump over to your Viewport if you're not already in that view.5.

You should now see your widget displayed along with the pawn, but it's too large and not
yet in the right position.

UI widgets displayed in 3D space will tend to look blurry if they're
displayed at 100% of the scale at which they were built. It's a better idea to
build the widget to be larger than you need it to be and then scale it down
when you attach it to the actor. This will cause it to display at a higher
resolution than it would if you built the widget to be smaller and
displayed at full scale.

Creating User Interfaces in VR Chapter 7

[344]

Set its Location to (X=0.0, Y=0.0, Z=100.0).6.
Set its Scale to (X=0.3, Y=0.3, Z=0.3):7.

The indicator widget is attached to the pawn's Capsule Component and will move with the pawn.

Let's test it in the level. Not bad, but there's a problem – the indicator faces in the direction
the pawn is facing, so it's difficult or impossible to read if the companion pawn isn't facing
you. We can fix this.

Creating User Interfaces in VR Chapter 7

[345]

Orienting the indicator widget to face the player
We're going to create a function that orients the indicator to face the camera.

Under My Blueprint | Functions, create a new function named AlignUI.1.
Set its Category to UI, and its Access Specifier to Private (setting categories and2.
access specifiers isn't required, but it's a very good practice to follow. It will make
your life easier when your project gets larger).
Open it up.3.

Implementing the Align UI function
Within the body of this function, we're going to find the location of the player's camera and
orient the indicator widget to face it:

Drag the Indicator Widget from the Components list into the function graph.1.
Call SetWorldRotation on the Indicator Widget and connect the function's2.
execution input to this call.
Drag another connector from Indicator Widget and call GetWorldLocation on it.3.
Create a Get Player Camera Manager node and call GetActorLocation on the4.
result.
Create a Find Look at Rotation node and feed the Indicator Widget component's5.
location into the Start input and the Camera Manager node's location into its
Target.
Feed its result into the SetWorldRotation function's New Rotation input.6.
Give the function a Return Node:7.

Creating User Interfaces in VR Chapter 7

[346]

By getting the location of the player camera manager, we've gotten the location from which
the player is looking into the scene. The Find Look at Rotation method returns a
rotator whose forward vector points from the start location, where the widget is, to the
target location, where the camera is. Calling SetWorldRotation using this rotator causes
the UI widget to face the camera.

Calling Align UI from the Tick event
Now let's call the AlignUI function on Event Tick:

Jump back out to your event graph.1.
Drag a new execution line from Event Tick and type seq on release. Select2.
Sequence from the resulting list and create a Sequence node.

The Sequence node will interpose itself automatically between Event Tick and
the Follow Player call that was previously connected to it:

Creating User Interfaces in VR Chapter 7

[347]

Call Align UI from the Sequence node's Then 1 output:3.

Try it out in the level. The UI indicator should now orient itself to face the camera
regardless of where the companion pawn is looking:

Creating User Interfaces in VR Chapter 7

[348]

Good. We've created a simple UI element for our companion pawn. Of course it doesn't do
much yet, since the pawn only has one state, but we're ready to fix that now.

Adding a new AI state to the companion pawn
First, let's give our companion pawn a way to know what state it's in. This information is
best stored in an enumeration:

In the Content Browser, wherever you saved BP_CompanionCharacter, right-1.
click to add a new object, and select Blueprints | Enumeration. Name it
ECompanionState.
Open it up and add two items to the enumerator, named Following and2.
Waiting, as follows:

Save and close the new enumerator.3.

Creating User Interfaces in VR Chapter 7

[349]

Implementing a simple AI state
Now that we've created an enumerator to name our character's AI states, let's define the
behavior we already created as the character's Following state:

Open BP_CompanionCharacter and create a new variable. Set its name to1.
CompanionState and its Type to the ECompanionState enum we just created.
Find Event Tick in your event graph.2.
Hold Ctrl and drag the CompanionState variable onto the graph.3.
Drag a connector from its output, and type sw in the search box to filter your4.
search to Switch on ECompanionState. Add the node.
Hold Ctrl and drag to move the execution input leading to your Follow Player5.
call from that node's input to the execution input to your new switch statement.
Connect the switch statement's Following output to your Follow Player call:6.

Now, when your companion pawn's Companion State is set to Following, it will execute
the follow behavior, but if that state is set to Waiting instead, it won't.

Indicating AI states using the UI indicator
Before we go ahead and create our character's next AI state, let's update our UI element to
reflect the state the character is in. We'll want this shortly when we begin changing it.

Since we want our indicator UI to display information about the pawn to which it's
attached, we need to tell it about that pawn:

Open up WBP_CompanionIndicator and select txt_StateIndicator from the1.
design panel or from the Hierarchy tab.

Creating User Interfaces in VR Chapter 7

[350]

Set its Is Variable property to true:2.

By setting txt_StateIndicator as a variable, we've given ourselves access to
the object in this widget's event graph, so we can grab a reference to it and change
its value.

Flip to the Graph tab.3.
Create a new function and name it UpdateDisplayedState.4.
Add an input to the function named NewState and set its type to5.
ECompanionState.
Open the function.6.
txt_StateIndicator should now be visible in your Variables list. Hold Ctrl7.
and drag it onto the function's graph.
Drag a connector from txt_StateIndicator and call SetText on it.8.

Creating User Interfaces in VR Chapter 7

[351]

Drag a connector from your NewState input and type se into the search box. A9.
Select node should be available. Place it in the graph as follows:

Your newly-created Select node will have been automatically populated with
options for each of the ECompanionState enum's values. Select statements can be
used to select a wide variety of data types. To set its type, simply connect it to any
other function or variable's input or output, and it will take on the type of
whatever you connect to it.

Connect the Select statement's Return Value to your Set Text node's In Text10.
input.

You'll see that the Select statement has now taken on the Text data type, and
you can now enter values for the Following and Waiting options.

Creating User Interfaces in VR Chapter 7

[352]

Populate the select statement's text inputs with the names of the appropriate11.
states.
Connect the function's execution input with the SetText node:12.

Now, whenever we call Update Displayed State on this UI element, it will update the
displayed text to whatever we've entered in our Select statement for the newly-supplied
state.

You've seen in this example, and the previous how we can use switch
statements and select statements with enumerators. These are valuable
techniques and worth remembering, as they're easily readable, and will
update automatically if you add values to an enumerator or remove them.
Enumerators and switch and select statements are your friends.

It's worth noting here that there's another way we could have updated this UI, and it's a
method you'll commonly see taught. We could have stashed a reference to the pawn that
owns this widget in a variable, and then we could have used the Bind method to set up a
real-time update for the text element:

This is a good opportunity to talk about a few important considerations in UI development,
and explain why we didn't use Bind in this instance.

Creating User Interfaces in VR Chapter 7

[353]

Using events to update, rather than polling
First, the Bind method updates with every UI update. For values that change continuously,
this is something you'll want, but for a value like the pawn's AI state that only changes only
occasionally, and only when you perform an action that changes it, it's wasteful to check on
every single tick to see whether it needs to display a new value. Whenever possible, you
should favor updating your UI only when you know a value you're displaying needs to be
updated, rather than having your UI poll the underlying data to see whether what it's
displaying is still accurate. This will really start to matter if you build an interface with a lot
of different elements and you have every single one of them updating every frame.
Planning for efficiency in your UI pays off.

Being careful of circular references
The other reason we want to be careful about doing this is a bit more subtle, but it's
important to know about. If we were to stash a reference to the pawn on the widget
blueprint, and simultaneously stash a reference to the widget blueprint on the pawn, we've
introduced the possibility of a circular reference (sometimes also called a cyclic
dependency):

A circular reference: class A can't compile until B is built, but class B can't compile until A is built

A circular reference occurs when one class needs to know about another class before it can
be built, but that other class needs to know about the first class before it can be built. This is
a bad situation that can create very difficult-to-find bugs.

Creating User Interfaces in VR Chapter 7

[354]

In the event of a circular reference between the widget blueprint and the pawn, the widget
blueprint might not be able to compile correctly because it needs the pawn to be compiled
first, but the pawn might not compile correctly because it needs the widget blueprint
compiled first (we say "might not" because a lot of other factors can affect the order in
which objects are built, so it may sometimes work. You may not immediately realize you've
created a circular reference because things could work for a while, and then stop working
when you change something seemingly unrelated). You don't need to be paranoid about
this. Unreal's build system is very good at figuring out how to determine the right order to
build things, but if you try to keep your references going in one direction, you'll save
yourself what can turn into a very challenging bug-hunt.

Using the event-driven structure we've set up, the widget blueprint doesn't need to know
anything about the pawn. Only the pawn needs to know about the widget blueprint, so the
compiler can easily figure out which object it needs to build before it can build the other,
and no circular reference occurs.

Ensuring that UI is updated when our state is
changed
Now, because we've chosen to use an event-driven model rather than a polling model to
drive our indicator UI, we have to ensure that any time
the BP_CompanionCharacter class' Companion State changes, the UI is updated.

To do this, we'll want to make the variable private, and force any other object changing this
value to use an event or function call to change it. By forcing outside objects to use a
function call to change this value, we can ensure that any other operations that need to
happen when that value changes will happen by including them in the function or event's
implementation. Because we've set the variable to private, we're preventing anybody else
from changing it without calling this function.

This is a common practice in software development and a good one to
internalize. If there's a possibility that you might need to perform
operations in response to a variable's value changing, don't let outside
objects change it directly. Make the variable private, and only allow other
objects to change it through a public function call. If you make a habit of
doing this, you'll save yourself a lot of headaches when your project gets
large.

Creating User Interfaces in VR Chapter 7

[355]

Let's create a function to handle setting the companion state, and make the variable private
so that developers are forced to use it when they want to change the AI's state:

Select the BP_CompanionCharacter class' Companion State variable, and, in1.
its Details, set its Private flag to true.
In the event graph, create a new custom event and name it2.
SetNewCompanionState.
Add an input to this event. Name it NewState, and set its Type to3.
ECompanionState.
Hold Alt and drag a CompanionState setter onto the graph, and connect its4.
execution and its new value to the new event:

Now we need to tell the indicator widget that this state has changed.

Drag a reference to the IndicatorWidget component onto the graph.5.
Call Get User Widget Object on the IndicatorWidget reference (remember6.
that IndicatorWidget is not a reference to the widget itself, but to the
component that holds it).
Cast the Get User Widget Object component's return value7.
to WBP_CompanionIndicator.
Call Update Displayed State on the cast result:8.

Now, because Companion State is private, it can only be changed by calling
SetNewCompanionState, and we can be sure that the UI indicator will be updated
whenever this happens.

Creating User Interfaces in VR Chapter 7

[356]

Adding an interactive UI
Now it's time to give ourselves a way to change our companion pawn's state. To do this,
we're going to add a widget component to our player pawn, along with a widget
interaction component we can use to interact with it:

In the Content Browser, find the location of BP_VRPawn—our player pawn.1.
In the same directory, create a UI | Widget Blueprint, and name it2.
WBP_CompanionController.
Save it and open it.3.
In its Designer window, change Fill Screen to Custom as we did with our4.
previous widget.
Set its size to Width=300, Height=300.5.
From the Palette, select Panel | Vertical Box, and drag it onto your Hierarchy as6.
a child of the Canvas Panel:

Set its Anchors to fill the entire panel by selecting the lower-rightmost option (in7.
addition to managing placement rules, anchors can also manage stretching rules):

Creating User Interfaces in VR Chapter 7

[357]

Set its Offset Left, Offset Top, Offset Right, and Offset Bottom to 0.0.8.
From the Palette, select Common | Button, and drag it onto the Vertical Box.9.
Name it btn_Follow.
Drag another button onto the same Vertical Box and name this one btn_Wait:10.

Drag a Common | Text widget onto your btn_Follow. Set its Text to Follow.11.

Creating User Interfaces in VR Chapter 7

[358]

Drag another Common | Text widget onto btn_Wait and set its Text to Wait.12.

You may have noticed that we gave our buttons meaningful names when
we created them, but we didn't bother to rename our text blocks. The
reason for this is that these buttons are variables and we're going to refer
to them in the widget blueprint's graph, while the text labels won't be
referenced anywhere else, so their names don't really matter. You can
apply your own judgment in choosing which items to name explicitly, but
generally, your rule should be that if you're going to refer to the object
anywhere else, it should have a meaningful name. You don't want to
return to a widget blueprint after months of working on something else to
find a forest of references to Button376 in the graph.

Our buttons are pretty small, and not well-placed on the widget. Let's do a little
bit of layout work to fix this.

Right-click btn_Follow in the Hierarchy panel or on the layout designer, and13.
select Wrap With... | Size Box.
Select the Size Box that just appeared in the Hierarchy panel, and set its Height14.
Override to 80.0:

Size boxes are used to set specific sizes for UMG widgets. If you don't use a size
box, the widget will scale automatically according to its rules. Wrapping it with a
size box allows you to override these rules and set selected dimensions explicitly,
while still allowing the rest to scale automatically.

Creating User Interfaces in VR Chapter 7

[359]

Wrap btn_Wait with a Size Box and set its Height Override to 80.0. 15.

Now, let's center these buttons vertically on the panel. We'll do this by adding
Spacers.

From the Palette, drag a Primitive | Spacer onto the Vertical Box in the16.
Hierarchy panel. Place it before the Size Box surrounding btn_Follow.
Set its Size to Fill.17.
Drag another Spacer onto the Vertical Box, after the Size Box surrounding18.
btn_Wait, and set its Size to Fill as well:

Let's add one more spacer to separate the buttons a little.

Drag a Spacer onto the Hierarchy panel before the Size Box surrounding19.
btn_Wait. Leave its Size as Auto, and set its Padding to 4.0.

Here, we've seen an example of using spacers to tell the layout how to deal with space that
isn't occupied by other widgets, and also to force some separation between widgets. By
placing Fill spacers before and after the buttons, we centered them in the vertical box, and
by placing an Auto spacer between the buttons, we separated them by a fixed amount.

Creating User Interfaces in VR Chapter 7

[360]

Adjusting the button colors
These default button colors are going to appear too bright to be readable in our fairly dark
scene. We can fix this by adjusting their background color properties:

Select btn_Follow and hit the color swatch for its Details | Appearance |1.
Background Color.
In the resulting color picker's HSV input, set its Value to 0.05.2.
Do the same for btn_Wait:3.

Creating User Interfaces in VR Chapter 7

[361]

This will dim the button's background enough to allow us to read it clearly under the
environment's lighting.

Adding event handlers to our buttons
Now, let's make our buttons do something when they're clicked:

Select btn_Follow, and from its Details | Events, hit the + button for its On1.
Clicked event:

You'll be taken to the widget's event graph, where a new event named On
Clicked (btn_Follow) has been created.

Create a Get All Actors of Class node in your graph, and set its Actor Class to2.
BP_CompanionCharacter.
Drag a connector from its Out Actors array, and create a ForEachLoop from it.3.

Creating User Interfaces in VR Chapter 7

[362]

Drag a connector from the Array Element output of ForEachLoop, and make a4.
call to the Set New Companion State event we created on
BP_CompanionCharacter. Set the state to Following:

Let's do the same thing for btn_Wait.

Again, select btn_Wait from the Designer tab, and create an On Clicked event5.
for it.
Select the nodes connected to the On Clicked (btn_Follow) event, and hit6.
Ctrl + W to duplicate them.
Change the companion state we're setting to Waiting.7.

Attaching the UI element to the player pawn
Now, just as we did with our companion pawn's overhead indicator, we need to place this
UI somewhere in the world.

The natural response for someone used to designing for flat-screen applications would be
to follow the design principles they already knew and create some sort of HUD to display
in the headset. This isn't such a good idea.

First, any UI you attach to the headset is attached to the player's head. When they turn their
head to look at it, it's just going to keep moving away. This gets old fast and can induce
motion sickness in some users. This problem is compounded by the fact that the fresnel
lenses in VR headsets are much less clear at the edges than they are at the center, so UI
elements at the edge of the player's vision are going to be difficult to read. Finally, we face
the problem that there's no easy way to interact with a UI element that's been bolted to our
forehead.

Creating User Interfaces in VR Chapter 7

[363]

A better solution is to attach the UI to something the player can control, like their wrist.
Let's do this now:

Open up BP_VRPawn, and find Hand_L in its components list.1.
Add a Widget component as a child of Hand_L. Name it2.
CompanionController.
Set WBP_CompanionController as the widget's Widget Class.3.
Set its Draw Size to (X=300, Y=300) to match the size at which we created it.4.

Now let's get it attached.

Find your BP_VRPawn player's BeginPlay event.5.
Drag a new connector from BeginPlay and create a Sequence node. Our Set6.
Tracking Origin call should automatically attach to the Sequence node's Then
0 output.
Drag a reference to the CompanionController widget, which we just added to7.
the pawn, onto the graph.
Drag a connector from it and create an Attach to Component node.8.

Remember that there are two variants of this node: Target is Actor, and Target is
Scene Component. Select the node designed to work with a scene component.

Drag an execution line from the Sequence node's Then 1 output to the Attach to9.
Component node's execution input.

We could also simply have dragged a connector from Set Tracking
Origin output to the GetHand_L call, but it's a better practice to keep
unrelated operations on separate execution lines so it's easier to see what
really belongs together. By putting Set Tracking Origin on one sequence
output, and the GetHand_L call on another, we're making it clear to the
reader that these are two separate jobs being done.

Drag out an instance of the Get Hand Mesh for Hand method we created10.
earlier (if you want to set up for a left-handed player, change its Hand value to
Right; otherwise just leave it at the default Left).

Creating User Interfaces in VR Chapter 7

[364]

Feed the resulting hand mesh into the AttachToComponent node's Parent input:11.

Let's run it. It's tremendous and not yet correctly aligned, but it's moving with the
left hand as we intended.

Drag another connector from CompanionController, and call Set Relative12.
Transform on it.
Right-click the New Transform input and split the struct pin.13.
Enter the following values:14.

New Transform Location: (X=0.0, Y=-10.0, Z=0.0)
New Transform Rotation: (X=0.0, Y=0.0, Z=90.0)
New Transform Scale: (X=-0.05, Y=0.05, Z=0.05)

Creating User Interfaces in VR Chapter 7

[365]

Note that we're negating the Scale's X value here. If you recall, we flipped our left-hand
mesh by inverting its scale. Since we're attaching to that flipped mesh, we need to negate
the scale here too, otherwise our widget will appear mirrored (if we're instead attaching
this to the right hand, set the scale's X value to positive 0.05 instead, and set the rotation's Z
value to positive 90.0).

Run it again and we'll see that the wrist menu is now much better aligned with our wrist.

Now for the next challenge: how do we press one of these buttons?

Using widget interaction components
UIs in virtual reality pose a significant problem: how do we allow the user to interact with
them? Early solutions often used gaze-based controls. The user would push a button by
looking at it for a fixed amount of time. Yes, it was as clunky as it sounds. Thankfully, with
the advent of hand controls, we no longer need to do it this way.

In Unreal, we most commonly interact with UI elements in VR by using a widget
interaction component, which acts as a pointer in the scene and can simulate mouse
interactions when used with UMG widgets.

Creating User Interfaces in VR Chapter 7

[366]

Let's add one to our right hand:

Open up BP_VRPawn and add a Widget Interaction component to its1.
Components list (its default name is fine).
In its Details panel, set its Show Debug flag to True.2.
On our Event Graph, find the Sequence node on our Begin Play event, and use3.
the Add pin button to add a new output:

Drag a reference to our Widget Interaction component onto the graph.4.
Drag a connector from the Widget Interaction reference and create an Attach5.
To Component (Scene Component) node with Widget Interaction as its
target.
Drag a Get Hand Mesh for Hand function call onto the graph, and set its6.
Hand property to Right (or Left if you attached the UI to the right hand).

Creating User Interfaces in VR Chapter 7

[367]

Feed its Hand Mesh output into the Attach To Component node's Parent input:7.

We're now attaching the controller UI to the left hand and the Widget Interaction component to the right hand.

Creating User Interfaces in VR Chapter 7

[368]

Now, let's test it:

Good. The widget interaction component's default placement and alignment aren't bad. We
could adjust it by using a Set Relative Transform call if we wanted, but for what we're
doing here, this is fine.

Another way of setting the placement of objects we're attaching to another
object is to place a socket on the target object's skeleton. If you add a
socket to a skeleton, simply put its name in the Attach to Component
node's Socket Name property. In the interest of staying on topic, we're
sticking to simple Set Relative Transform calls, but if you want to explore
using sockets, the directions on https:/ /docs. unrealengine. com/ en-us/
Engine/ Content/ Types/ SkeletalMeshes/ Sockets will apply.

Now that we have our widget interaction component attached to our hand, we're ready to
pass input through it.

https://docs.unrealengine.com/en-us/Engine/Content/Types/SkeletalMeshes/Sockets
https://docs.unrealengine.com/en-us/Engine/Content/Types/SkeletalMeshes/Sockets
https://docs.unrealengine.com/en-us/Engine/Content/Types/SkeletalMeshes/Sockets
https://docs.unrealengine.com/en-us/Engine/Content/Types/SkeletalMeshes/Sockets
https://docs.unrealengine.com/en-us/Engine/Content/Types/SkeletalMeshes/Sockets
https://docs.unrealengine.com/en-us/Engine/Content/Types/SkeletalMeshes/Sockets
https://docs.unrealengine.com/en-us/Engine/Content/Types/SkeletalMeshes/Sockets
https://docs.unrealengine.com/en-us/Engine/Content/Types/SkeletalMeshes/Sockets
https://docs.unrealengine.com/en-us/Engine/Content/Types/SkeletalMeshes/Sockets
https://docs.unrealengine.com/en-us/Engine/Content/Types/SkeletalMeshes/Sockets
https://docs.unrealengine.com/en-us/Engine/Content/Types/SkeletalMeshes/Sockets
https://docs.unrealengine.com/en-us/Engine/Content/Types/SkeletalMeshes/Sockets
https://docs.unrealengine.com/en-us/Engine/Content/Types/SkeletalMeshes/Sockets
https://docs.unrealengine.com/en-us/Engine/Content/Types/SkeletalMeshes/Sockets
https://docs.unrealengine.com/en-us/Engine/Content/Types/SkeletalMeshes/Sockets
https://docs.unrealengine.com/en-us/Engine/Content/Types/SkeletalMeshes/Sockets
https://docs.unrealengine.com/en-us/Engine/Content/Types/SkeletalMeshes/Sockets
https://docs.unrealengine.com/en-us/Engine/Content/Types/SkeletalMeshes/Sockets
https://docs.unrealengine.com/en-us/Engine/Content/Types/SkeletalMeshes/Sockets
https://docs.unrealengine.com/en-us/Engine/Content/Types/SkeletalMeshes/Sockets
https://docs.unrealengine.com/en-us/Engine/Content/Types/SkeletalMeshes/Sockets
https://docs.unrealengine.com/en-us/Engine/Content/Types/SkeletalMeshes/Sockets

Creating User Interfaces in VR Chapter 7

[369]

Sending input through widget interaction components
First off, we're going to need to choose what input should drive our widget interaction.
Since we're only using our triggers to grab objects, it should work out fine to add our
widget interactions to these same inputs:

Find the InputAction_GrabLeft and GrabRight event handlers on1.
the BP_VRPawn player's event graph.
Drag a reference to your Widget Interaction component onto the graph.2.
Drag a connection from the Widget Interaction component, and call Press3.
Pointer Key from the connection. Set its Key drop-down to Left Mouse
Button.
Drag another connection from Widget Interaction and call Release4.
Pointer Key. Set this Key drop-down to Left Mouse Button as well.
If you've attached your Widget Interaction component to the right hand, call5.
Press Pointer Key from the end of
the InputAction_GrabRight component's Pressed event chain after the Grab
Actor call (if the interaction component is on the left hand, call it from GrabLeft
instead).
Call Release Pointer Key from the InputAction_GrabRight component's6.
Released chain, after the Release Actor call:

Creating User Interfaces in VR Chapter 7

[370]

What we're doing here is telling the widget interaction component to communicate with the
widget as though the user had moved a mouse pointer over it and pressed the left button.
This is a powerful and flexible system—you can recreate nearly any input event and pass it
through the interaction component.

Let's test it. You should now be able to point the widget interaction component at your
wrist controller and pull the trigger to activate a button. Try running around the level and
switching your companion between the Follow and Wait states.

Making a better pointer for our interaction component
The last thing we should probably improve before wrapping this up is that obtrusive-
looking debug beam on our widget interaction component. Let's take a moment to replace
it with something better-looking.

In BP_VRPawn, select the Widget Interaction component and turn off its1.
Show Debug flag.
In the Components panel, add a Static Mesh component as a child of2.
WidgetInteraction. Name it InteractionBeam.
Set its Static Mesh property to /Engine/BasicShapes/Cylinder.3.
Set its Location to (X=50.0, Y=0.0, Z=0.0)4.
Set its Rotation to (Roll=0.0, Pitch=-90.0, Yaw=0.0). Remember that Pitch is5.
mapped to Y in the UI.
Set its Scale to (X=0.005, Y=0.005, Z=1.0).6.
Set its Collision | Can Character Step Up On to No, and its Collision Presets to7.
NoCollision.

If you add a UI or other attached element to a hand and you suddenly
find that your movement is blocked, check to see whether you've turned
its collision off.

Try it out. We now have a gray cylinder indicating our interaction component. We should
give it a more suitable material.

Creating User Interfaces in VR Chapter 7

[371]

Creating an interaction beam material
We're going to give our interaction beam a simple translucent material. We want to be able
to see it in the world, but we don't want it to be so obtrusive that it distracts our attention
from the world:

Find the location in our Content directory where we saved the M_Indicator1.
material we used for teleportation.
Create a new material in this directory and name it2.
M_WidgetInteractionBeam.
Open it up and set its Blend Mode to Translucent. (Remember: to set material3.
properties, select the output node.)
Hold down the V key and click to create a Vector Parameter node. Name it4.
BaseColor.
Set the BaseColor node's default value to pure white – (R=1.0, G=1.0, B=1.0,5.
A=0.0).
Feed its output into the BaseColor and EmissiveColor material inputs.6.
Right-click in the material graph and create a Texture Coordinate node.7.
Right-click and create a Linear Gradient node with the texture coordinate's8.
output feeding into its UV Channel input.
Hold the M key and click to create a Multiply node.9.
Drag the LinearGradient node's VGradient output into the Multiply node's A10.
input.
Hold S and click to create a Scalar parameter. Name it OpacityMultiplier.11.
Set its Slider Max to 1.0 and its Default Value to 0.25.12.
Feed its output into the Multiply node's B input.13.

Creating User Interfaces in VR Chapter 7

[372]

Feed the result of the Multiply node into the material's Opacity input:14.

We're going to need to tune this material to work with our environment. We can
make our life easier by creating a material instance. Material instances are
derived from materials, but only those parameters that have been exposed in the
parent material can be changed. Because material instances don't include any
changes to the material graph, just value changes, they don't need to be
recompiled when those changes are made. It's much faster to change values in a
material instance than in a material.

Right-click M_WidgetInteractionBeam, and select Material Actions | Create15.
Material Instance.
Name the new instance MI_WidgetInteractionBeam.16.

Creating User Interfaces in VR Chapter 7

[373]

Assign MI_WidgetInteractionBeam to the InteractionBeam static mesh17.
component on BP_VRPawn.

Run the map. It's still pretty bright.

Open MI_WidgetInteractionBeam and set its OpacityMultiplier to 0.01. (Put a18.
checkmark beside a value you plan to change.)

Run it again. That's much better.

Creating an impact effect
Now we need an impact effect to show where the beam is intersecting a target.

Create a new Static Mesh component as a child of the BP_VRPawn player's root1.
component (the Capsule Component).
Name it InteractionBeamTarget.2.
Set its Static Mesh property to Engine/BasicShapes/Sphere.3.
Set its Scale to (X=0.01, Y=0.01, Z=0.01).4.
Set its Collision | Can Character Step Up On to No, and its Collision5.
Presets to NoCollision.

This target sphere needs a material too. For this, we'll create an emissive material
with a dark outline so it shows up clearly on both light and dark backgrounds.

Create a new material named M_WidgetInteractionTarget.6.
Hold the V key and click to create a vector parameter. Name it BaseColor and7.
set its default value to pure white.
Drag an output from BaseColor and click – to create a Subtract node.8.
Feed the result of the Subtract node into the material's Base Color and Emissive9.
inputs.
Right-click and create a Fresnel node.10.
Hold the 1 key and click to create a scalar material expression constant. Set its11.
value to 15.
Feed it into the Fresnel node's ExponentIn.12.
Hit Ctrl + W to duplicate it, set the new constant's value to 0, and feed it into the13.
Fresnel node's BaseReflectFractionIn.
Hold M and click to create a Multiply node.14.

Creating User Interfaces in VR Chapter 7

[374]

Feed the Fresnel node's result into the Multiply node's A input.15.
Hold S and click to create a scalar parameter. Name it OutlineThickness and16.
set its default value to 10.
Feed OutlineThickness into the Multiply node's B input.17.
Feed the Multiply node's result into the Subtract node's B input:18.

In your content browser, create a material instance from this material named19.
MI_WidgetInteractionTarget.
Assign MI_WidgetInteractionTarget to the InteractionBeamTarget20.
sphere we created on BP_VRPawn.

Finally, we need to set its position to the interaction component's impact location.

Creating User Interfaces in VR Chapter 7

[375]

In BP_VRPawn player's event graph, find the Event Tick and create a Sequence21.
node between Event Tick and the UpdateTeleport_Implementation
collapsed graph.
Drag a reference to WidgetInteraction onto the graph, and call Get Last22.
Hit Result on its output.
Right-click the Return Value and select Split Struct Pin.23.
Drag a reference to the InteractionBeamTarget static mesh component onto24.
the graph.
Call SetWorldLocation on it, and feed the Return Value Impact Point from25.
Get Last Hit Result into its new location.
Connect the Sequence node's Then 1 output to the SetWorldLocation node's26.
execution input.
Select these new nodes, right-click, and select Collapse Nodes. Name the27.
collapsed graph UpdateWidgetInteractionTarget_Implementation:

Open up the collapsed graph and clean it up.28.

Creating User Interfaces in VR Chapter 7

[376]

The collapsed graph should look like this:

Creating User Interfaces in VR Chapter 7

[377]

Test it out. The beam isn't bad, and the target point is fairly easy to spot:

There's quite a lot more we could do with this, like cutting off the beam where it hits a
widget, and adjusting the target sphere's scale based on how close it is to the player's view,
but what we have here is a very good starting ground. This system does a lot, and does it in
ways that would be easy to extend and improve upon.

Explore the level and try out the companion controller. While what we've put together here
is fairly streamlined, it contains the seeds for quite a lot of things we might want to do.

Creating User Interfaces in VR Chapter 7

[378]

Summary
In this chapter, we added a major remaining piece to our development repertoire and
added functional UI elements to our project.

In this chapter, we learned how to create a simple AI-controlled character and animate it,
and we learned how to create a UI in 3D space using UMG, which also allowed us to
change the character's AI state.

In the next chapter, we're going to move on from creating characters and interfaces, and
begin to explore creating environments for use in VR.

8
Building the World and

Optimizing for VR
Through the course of our work so far in this book, we've been focused for the most part on
the player avatar. This makes sense—virtual reality dramatically changes the way the
player engages with the world. We needed to learn new ways of enabling the player to get
around, new ways of using their hands to interact with the world, and new ways of
constructing user interfaces.

This is no small achievement, so congratulations for getting this far!

Now, we're going to shift our focus a bit and begin to look at the environment around us.
Up to this point, we've been using existing environments, but now it's time to begin to
build our own. As we do this, we are going to learn that environments in VR present
challenges that we're going to need to address. Lighting, object scale, and sightlines all
come into play to a greater degree than they do on the flat screen, and performance is a
major consideration.

In this chapter, we're going to learn how to use the tools and techniques at our disposal to
address these challenges as we build. We'll learn how to use the VR editor to lay out our
environment from within the headset and see how it's actually going to appear in VR as we
build it, and we'll learn how to profile and optimize these environments to make sure that
we can meet our frame rate requirements.

In this chapter, we're going to explore the following topics:

Building and lighting a scene using the VR editor
Profiling the scene to identify performance bottlenecks
Optimizing the scene using static mesh instancing, LODs, mesh combination,
and lighting changes

Building the World and Optimizing for VR Chapter 8

[380]

Project settings for optimization
Special considerations and technical requirements for mobile VR

Let's get to it and give ourselves a place to play.

Setting up the project and collecting assets
For this chapter's work, let's create a new project with the following template options:

A Blank Blueprint template
Targeting Mobile/Tablet hardware
Scalable 2D or 3D
No starter content

Once the project has been created, open its Project Settings and set the following menu
options:

Project | Description | Settings | Start in VR: True
Engine | Rendering | Forward Renderer | Forward Shading: True
Engine | Rendering | Default Settings | Ambient Occlusion Static
Fraction: False
Engine | Rendering | Default Settings | Anti-Aliasing Method: MSAA
Engine | Rendering | VR | Instanced Stereo: True
Engine | Rendering | VR | Round Robin Occlusion Queries: True

Allow the project to restart once all these settings have been set.

Once the project has restarted, open the File menu and use it to load the previous chapter's
project. Just as we did last time, we're going to grab elements that we previously created
and carry them forward using the Migrate tool.

Building the World and Optimizing for VR Chapter 8

[381]

Migrating blueprints into the new project
From your previous project, select BP_VRGameMode from the content explorer, right-click
it, and select Asset Actions | Migrate. Select your new project's Content directory as its
destination content folder. Because the GameMode references BP_VRPawn, and
BP_VRPawn references BP_CompanionCharacter, all of these objects and their required
supporting assets should come across.

Once the migration is complete, there's one more thing we need to do. We have a few
custom inputs set up for our previous project, and we'll need them for our new one as well.
Navigate to last chapter's project directory and copy the Config/DefaultInput.ini file
to your new project's config directory.

Verifying the migrated content
Re-open the new project. The first thing we're going to want to do here is verify that
everything we've brought across is working correctly:

Let's select File | New Level | VR Basic to create a starting VR map.1.
Drop a Nav Mesh Bounds Volume onto the map and make sure it surrounds the2.
floor. Setting its Location to (X=0.0, Y=0.0, Z=0.0) and Scale to (X=10.0, Y=10.0,
Z=2.0) will take care of this. Remember to hit the P key to visualize your navmesh
and make sure it's generating properly.
Save this level (we named ours VRModePractice and placed it in3.
Content/C07/Maps).
Open Settings | Project Settings | Maps & Modes | Default Modes, and set4.
your Default GameMode to the BP_VRGameMode we migrated from the other
project. Set your Editor Startup Map and Game Default Map to this map, as
well.
Drop an instance of BP_CompanionCharacter anywhere onto the level.5.

Building the World and Optimizing for VR Chapter 8

[382]

Test the map in a VR preview. You should be able to move and teleport, and your
companion character should follow you:

This map is a great map to use for learning the Unreal Editor's VR Mode—it's easy to get
around, and gives us lots of pieces we can manipulate as we practice with the interface.
Let's take advantage of this.

Using the VR editor
Unreal Engine comes equipped with a very capable virtual reality editor that allows you to
build your scenes entirely from within the virtual environment. Nearly any editor
operation you might need to perform can be done without leaving VR.

It may be tempting, though, to look at the VR Mode editor as a gimmick when you first
encounter it. After all, what's wrong with the existing editor? Nothing, but here's the thing:
virtual reality isn't a flat screen. Depth exists. Sightlines are different. Colors render
differently. Developing for virtual reality by using a flat screen adds a layer of abstraction
to your design process. You'll understand more and get better results by working directly
in your target medium when you can.

Building the World and Optimizing for VR Chapter 8

[383]

In practice, you're likely to find both editing modes useful. Just as it's difficult to see what a
scene is really going to look like in VR from the flat-screen editor view, it's difficult to
achieve precision in placing objects in VR Mode. You'll discover your workflow as you get
comfortable with the tools, and you'll discover which operations you prefer to do in which
domains. The point here, though, is that it's worthwhile to think of VR Mode as an
important part of your scene layout workflow for VR. Take the time to get comfortable with
it so you can rely on it when it's warranted.

A good practice for VR editing is to do your initial block-out in VR. Place
objects in ways that evoke the sense of space you want to convey, and
then go to traditional flat-screen editing to refine your layout and
populate it further. Finally, return to VR editing for your final refinements
so you can see exactly what you're going to get.

Let's activate the VR editor and see what we can do with it. Since you won't be able to read
this book while you're inside the headset, we'll go over a few basic principles, allow you to
try them out, and then return here to explore a few more.

The first thing to know is how to enter and exit the VR editor.

Entering and exiting VR Mode
You can activate the VR editor by using the VR Mode toolbar button. To exit VR Mode,
activate the radial menu (more on this later) and select System | Exit. It's easiest, though, to
get used to using Alt + V to enter and exit VR Mode:

It's also possible to configure VR Mode to enter automatically when the headset is put on
while the editor is running. To do this, select Edit | Editor Preferences | General | VR
Mode, and set Enable VR Mode Auto-Entry to True. Whether you'd like to do this is your
choice, but, in practice, it tends to have a difficult time figuring out when to turn itself back
off, so using Alt + V to enter and exit is usually a better idea.

Building the World and Optimizing for VR Chapter 8

[384]

If you prefer to interact primarily using your left hand, you have the option here in the VR
Mode preferences to switch your Interactor Hand:

VR Mode settings are found under Edit | Editor Preferences | General | VR Mode.

Set either of these options if you'd like. We're going to leave the rest of these at their
defaults for our work here.

The other thing we're going to need to address is how to move and look around.

Navigating in VR Mode
You activate movement mode in the VR editor by squeezing the grip buttons. When
movement mode activates, the movement grid will appear and the interaction beam will
turn green.

Building the World and Optimizing for VR Chapter 8

[385]

The interaction beam in the VR editor changes colors to indicate what
mode it's in. Red indicates standard interaction mode, green indicates
movement mode, yellow indicates that you currently have an actor
selected, and blue indicates that you're in UI interaction mode.

The metaphor for movement in the VR editor is pushing and pulling the world. It's fairly
intuitive. In most instances, the world will move in the way your hand is moving while
your movement mode is active.

Moving through the world
If you move the controller while holding the grip, the world moves as though you're
pulling it, or swimming through it:

Building the World and Optimizing for VR Chapter 8

[386]

If you release the grip while moving the controller, the movement continues for a bit, as
though you'd pushed off of an object and were now floating away from it. This takes a bit
of practice, but it becomes fairly intuitive once you get the hang of it. Squeezing the grip
again stops your movement.

The movement grid displays the location of the floor in your real-world tracking volume.
Align it with the floor in your scene to see what objects will really look like from the
perspective of someone standing on the floor.

Teleporting through the world
To teleport through the world, squeeze the grip button on your dominant hand's controller
and squeeze the trigger. Aim the controller at an object or destination, and you'll teleport
there on release:

Using a combination of teleport and drag moves, you can get around the world pretty well.

Building the World and Optimizing for VR Chapter 8

[387]

Rotating the world
When you need to rotate your viewpoint, hold both controllers' grips and rotate the
controllers around each other as though you were trying to spin the world:

The number you see over the rotation axis is the world's current scale. We can manipulate
that too.

Building the World and Optimizing for VR Chapter 8

[388]

Scaling the world
To scale the world, squeeze the grips and move the controllers toward each other to shrink
the world, or away from each other to expand it:

It's weirdly satisfying to shrink your scene down until it looks like miniatures on a table.

Moving the controllers toward each other shrinks the world. Moving them away from each
other grows the world. This can be useful for layout, as you can assemble the world in
miniature, then teleport back to the ground and restore its normal scale to see what you've
made.

One of the fastest ways to get around the world in VR Mode is to shrink
the world, then use the teleport action (grip + trigger) to teleport to a new
location on your map. The world will return to its default size when you
teleport.

Building the World and Optimizing for VR Chapter 8

[389]

Practicing movement
Take some time now to practice navigating through the world using your controllers. Use
Alt + V to enter VR Mode, and hit Alt + V again when you want to exit. Use the grip buttons
to move through the world, teleport, rotate, and change its scale. Play with it until it feels
natural. There's a bit of subtlety to getting this, but it's a very useful tool once you've made
yourself comfortable.

Modifying the world in VR Mode
Now that you've practiced moving around the world a bit, let's start to learn some of the
skills we'll need to do scene composition in VR.

Moving, rotating, and scaling objects
To select an object, just point at it and pull the trigger. Your interaction beam will turn
yellow to indicate that you've entered selection mode. A gizmo will appear that allows you
to move the object. By default, this will be a translate gizmo, which allows you to move the
selected object around (we'll see in a moment how to switch to other types of gizmo):

Building the World and Optimizing for VR Chapter 8

[390]

If you'd like to move the selected object, release the trigger and then pull it again while
pointing at the object or at the transform gizmo. You can use the transform gizmo's arrows
and planes to constrain your movement, or interact directly with the object to move it
freely. When moving an object directly with the interaction beam, you can use the trackpad
to move it closer or further from you.

Be aware that hidden objects with collision can sometimes interfere with
selection in VR Mode. If your selection beam appears to pass through the
object you want to select, move to a different vantage point to select it.

Usually it's a better idea to use the gizmo to move an object, as it's fairly difficult to move
objects in depth with any precision.

The default transform gizmo can be switched to other modes using the radial menu
interface. To activate the radial menu, touch the trackpad or thumbstick on your non-
interactor hand and point at the menu option you'd like to select. Use the trigger to select it.
Your controller's menu button takes you back out of sub-menus, or closes the radial menu if
you're already at the top menu:

Building the World and Optimizing for VR Chapter 8

[391]

Selecting the Gizmo submenu allows you to switch between transform gizmo options:

The Universal gizmo provides translation, rotation, and scale handles on a single gizmo.
The Translate, Rotate, and Scale gizmos provide individual tools for those operations.
Switching the transform mode to Local Space rotates, scales, and moves the object along its
own axes, while the World Space mode transforms the object along the world axes.

Building the World and Optimizing for VR Chapter 8

[392]

Using both controllers to rotate and scale objects
You also may have noticed that, whenever you have an object selected and you're holding
the trigger over the object itself (rather than a gizmo handle), a second interaction beam
appears on your off-hand controller. If you aim that second interaction beam at the object
and squeeze the trigger, you can use them both to tumble and stretch the object:

This is a great tool for exploring improvising rough layouts. It's intuitive and invites natural

Building the World and Optimizing for VR Chapter 8

[393]

interaction with objects in your environment. This is a good tool to use for exploring and
improvising layouts. You'll probably have a tough time getting things exactly where you
want them, but if you use this tool for rough layouts and then clean them up in the flat-
screen editor, you can achieve good results.

Practicing moving objects
Try it out now. Hit Alt + V to enter VR Mode, and, in addition to practicing moving around
the world, practice using the transform gizmos and free movement to move objects around
the world. Remember to use the radial menu to change movement modes, and use the
Menu button to get back out to the Home menu. Take some time to practice this. The
controls will probably feel unfamiliar at first, but once you get the hang of them, world-
building in VR is a rewarding experience.

When you're done, hit Alt + V to exit VR Mode again, and, if you'd like, clean up your
object alignments in flat-screen editing.

Now we're ready to begin composing a scene, and to do this, we'll be using the VR Mode
menus.

Composing a new scene in VR Mode
Now that we've learned the basics of operating the VR Mode editor, let's go deeper and
really see how we can use this as a scene composition tool. First, we're going to need some
assets to work with. The free Infinity Blade: Grass Lands package will give us something to
play with.

Building the World and Optimizing for VR Chapter 8

[394]

Open your Epic Games Launcher (it's fine to leave your existing project open as you do
this), navigate to the Unreal Engine | Marketplace | Free tab, and search for Infinity
Blade: Grass Lands. Hit Add to Project and select your new project as the target project:

Once the assets have finished downloading and installing, let's force the new shaders to
compile. Open up Content/InfinityBladeGrassLands/Maps/Overview, and let the
shaders compile. While these shaders are compiling, feel free to enter VR Mode using Alt +
V and navigate around the overview map to see what assets we have available to us.

After you've built your shaders, we can do some work composing a scene using these
assets. For this exercise, we're going to start with an existing map and modify it.

First, we'll need to learn how to navigate the editor menus in VR.

Building the World and Optimizing for VR Chapter 8

[395]

Navigating the radial menu
Menu interaction in the VR editor, is for the most part, handled by a series of radial menus
attached to the controller. In practice, these are fairly intuitive to use, as they map clearly to
the touchpad or thumbstick inputs on the hand controllers. Let's look at how they work:

Select Content/InfinityBladeGrassLands/Maps/ElvenRuins and open it.1.
If you'd like, you can also change your Project Settings | Maps & Modes |2.
Default Maps to open this map automatically.
Use Alt + V to enter VR Mode, and, while you're in this mode, touch the left3.
trackpad or thumbstick to activate the radial menu.
To enter a menu, aim the interaction beam at it and squeeze the trigger or use the4.
menu hand's trackpad to select options.
To back out of the submenus, use the non-dominant hand's menu button:5.

You can use the interaction beam or the menu hand's trackpad to navigate menus in VR Mode

Let's get into VR Mode and explore the menus. You have eight major menu categories
available from the Home menu.

Building the World and Optimizing for VR Chapter 8

[396]

Gizmo
We've already explored the Gizmo menu, so we won't dive back into detail here.
Remember that it's used to switch between behaviors of your in-editor movement tools.

Snapping
The Snapping menu is a close partner to the Gizmo menu. Most of these behave as you're
used to in the flat-screen editor, but the Smart Snapping option is especially worth
knowing about:

With Smart Snapping active, objects you move in-scene will attempt to align themselves to
other objects as you move them. Since precise placement can be challenging to achieve in
VR Mode, this is a big help.

Use the Set Targets option to select a specific object you'd like other objects to snap to, and
use the Reset Targets option to clear it.

Building the World and Optimizing for VR Chapter 8

[397]

Windows
The Windows submenu provides access to the individual palettes and menus you'll be
using as you compose your scene:

Building the World and Optimizing for VR Chapter 8

[398]

Each button opens its associated panel. These are the same panels you're used to from the
flat-screen editor:

The Content Browser as seen in the editor's VR Mode

Building the World and Optimizing for VR Chapter 8

[399]

To move a window, aim the interaction beam at the large bar beneath it. You can place and
angle it any way you want. The downward-facing arrow to the left of the move bar pins the
window in place. When it's activated, the window will stay where you place it, regardless
of how you move through the world. When it's un pinned, the window will move with you
when you move. The X-shaped button to the right of the bar closes the window:

You can move your active windows around to create a virtual workspace from which to work

These windows work just as they do in the flat-screen editor. An effective practice in using
them is to open only the windows that you need, and arrange them around yourself in a
virtual workspace for the task you're doing.

In practice, much of the time, you'll find it useful to leave your content browser open to
your side along with the details pane.

Building the World and Optimizing for VR Chapter 8

[400]

Edit
The Edit menu allows you to duplicate, delete, and snap objects in your scene:

Most of these options should be pretty self-explanatory and what you'd expect an edit
menu to contain. Snap to Floor is a bit of an outlier, so it's worth remembering that it's in
here. You'll use it often.

Building the World and Optimizing for VR Chapter 8

[401]

Tools
The Tools menu is primarily geared toward managing simulations in the editor. Here, you
can start, pause, and resume simulations, and save their results back to the editor:

Two options that aren't related to simulations are also contained here. The Screenshot tool
snaps a standard-resolution screenshot, but be aware that the screenshot will include the
menu, so move it out of sight if you want a clean shot. The Flashlight tool is useful for
finding your way around dark scenes, especially if you're midway through composing your
scene lighting.

Building the World and Optimizing for VR Chapter 8

[402]

Modes
The Modes panel allows you to place actors such as lights, volumes, and primitives;
manage foliage; enter landscape sculpting mode; and paint textures and vertex colors, just
as it does in the flat-screen editor:

Selecting one of these options will bring up a Modes panel that can then be placed in the
world and used in the same way as the other panels available from the Windows menu.

Actions and System
At present, the System menu just gives you a way to exit VR Mode. At the time of writing,
it doesn't do anything else. The Actions menu's behavior varies depending on context.

Making changes to our scene
Now that we've learned how to get around in VR Mode, let's put some of this learning into
practice. We're going to modify the Elven Ruins map from within VR Mode.

Building the World and Optimizing for VR Chapter 8

[403]

The first thing we're going to do is change the time of day. Let's see how these ruins would
look at dawn.

Use Alt + V to enter VR Mode and touch your non-interaction hand's trackpad or
thumbstick to bring up the radial menu. Use the menu button to navigate back up to home
if you're currently in a submenu. Select the Windows menu and, from there, activate the
World Outliner.

Use the interaction beam to drag the movement box at the base of the menu. Put it to your
side and a bit below you.

We're going to look for the directional light that's acting as our sun in this scene. To find it,
click the Type column's header to sort your actor list by type, and then use the trackpad to
scroll through the list and find the Directional Light named Light Source:

Building the World and Optimizing for VR Chapter 8

[404]

Unfortunately, you don't have an easy way to enter text in VR Mode. The radial menu
offers a number pad that you can use when setting values, but if you wanted to search for
light, you'd have to type it using a conventional keyboard. Sorting, scrolling, and selecting
works pretty well for this sort of work.

Once you've selected the directional light, use the radial menu to activate the Details panel.
Use the bar beneath it to drag it to a location where you can read it and interact with it, but
can still see the sky:

In this shot taken from within the VR headset, you can see how we've been able to create a virtual workspace by manipulating the panels in 3D space.

Point the interaction beam at the light's Rotation Y value and drag it back and forth over
the box to change its value. You'll see the sun changing overhead. It starts out at around
-48. Drag it to around 210 (or wherever you like, really) to create some nice dramatic
shadows.

Building the World and Optimizing for VR Chapter 8

[405]

Now, select BP_SkySphere. From its Details panel, turn on Colors Determined by Sun
Position, and check the Refresh Material checkbox to change the sky's color:

That's kind of nice, right? Lighting changes like this are often best made inside the VR
Mode editor, as light and colors render very differently in the headset than they do on the
flat screen.

Building the World and Optimizing for VR Chapter 8

[406]

Building new elements in your map is generally best done in the flat-screen editor. VR
Mode is excellent for checking sightlines and adjusting object positions, but, in practice, it
still suffers from some growing pains that can make object selection difficult:

Here are a few effective ways to work within VR Mode, benefit from its strengths, and
work around its weaknesses:

Get around by scaling the world down, then use teleport to land where you want
to go
Do rough lighting adjustments inside VR Mode where you can see what their
effects on the world will really be
Build geometry in the traditional editor, but use VR Mode to experiment with its
placement

Get into the habit of using Alt + V frequently to check your environment in VR as you build
it. You'll get a sense of which adjustments make sense to do in VR Mode and which work
best in the traditional editor.

Most importantly, what we wanted to communicate in this section is that VR Mode, far
from being a luxury or a gimmick, should be considered an essential tool for your scene
construction workflow in VR.

Building the World and Optimizing for VR Chapter 8

[407]

Optimizing scenes for VR
Now that we've spoken a fair bit about editing scenes using VR Mode, let's talk about an
absolutely crucial topic in VR development – maintaining an acceptable frame rate.

We've discussed the paramount importance of maintaining frame rate in virtual reality
several times before. It's critical, and it's challenging to do. In the remainder of this chapter,
we're going to talk about things that you can do to speed up your scenes and to find out
what's preventing them from running faster.

Testing your current performance
The first thing you need to do when assessing your scene's performance is to find out how
fast you're currently running. We're going to look at a few commands we can use for this.

From within the editor, click on the ` (backtick) key. It's to the left of the 1 key on your
keyboard, above the Tab key. A console entry box will appear:

A wide range of console commands can be entered here. We're going to talk about those
you're most likely to use as you optimize your scenes.

Stat FPS
Enter stat fps into the console command line. A frame rate counter will appear in your
editor window, displaying two values:

Building the World and Optimizing for VR Chapter 8

[408]

The first is your frames per second (FPS). The second value tells you how many
milliseconds it took to draw the frame, and this is the value you should train yourself to
focus on. Frame rate is what your player perceives, but, as you're developing and trying to
solve problems that impact your frame rate, you're going to have a much easier time
thinking about how the changes you make affect your performance if you train yourself to
think in milliseconds. The frame rate describes your desired result, but the milliseconds
you're spending on each part of getting the frame rendered are the cause. When fixing your
scene, you need to look at the individual costs of each operation that's contributing to your
frame time, and these are expressed in milliseconds.

Determining your frame time budget
If we're going to think in terms of milliseconds, the first thing we need to do is establish
how many milliseconds we can spend drawing our frame and still hit our target frame rate.
Figuring this out is simple.

To find your application's frame time budget, divide 1,000 by your target
frame rate.

This gives you the number of milliseconds in which you have to draw your frame to
achieve this frame rate. So, for example, if you're targeting a headset that refreshes at 90
FPS (which describes most of them), we find our frame budget like this:

1000 / 90 = 11.11

This gives us a frame budget of around 11 milliseconds. Your VR application will refresh at
90 FPS if it takes you 11 milliseconds or less to deliver the frame. That's not a lot of time, so
we're going to have to do some work with most scenes to achieve this.

Warnings about performance profiling
Before we dive too deep down the performance optimization rabbit hole, let's keep a few
important things in mind.

First, the frame time reported on a flat screen isn't going to be accurate for VR. It's a good
baseline value that you can use to see roughly how you're doing, but when you activate VR,
your frame rate is going to drop.

Building the World and Optimizing for VR Chapter 8

[409]

If you see a really substantial drop in frame rate between your flat-screen
values and your VR values, check your Project Settings and make sure
you have Instanced Stereo turned on. If it's off, which is its default
setting, you'll be paying the full cost of rendering your entire scene twice,
which you definitely don't want to do.

Be sure you're not just checking your values on flat-screen. Test in VR often. A quick way of
checking your VR performance is to read your stat fps values from within VR Mode.

Activate VR Mode with stat fps visible. The text will probably be too small to
read from within the headset, but you can read it from the flat-screen output.

Use this method to spot-check your environment. Move through the map and check for
problem areas using VR Mode.

Another important thing to consider is that, because we're testing in-editor, our numbers
are affected by the editor itself. We're paying to render all those windows that your editor
displays along with the in-game scene. For accurate values, we have to run the game in a
stand alone session. Checking your numbers in-editor is a good practice to see whether
changes you're making are making things better or worse, but you should remember that
they don't accurately describe what your packaged application will do.

We also need to remember that, when we test frame time in-editor, we're really just looking
at rendering performance, but we're not getting any information about what the rest of our
application is costing us. This is fine much of the time, since the bulk of your problems are
likely to be in rendering, but you should still make sure you're testing the running
application to make sure you don't have a runaway Blueprint or too many animated
characters bringing you down.

Finally, we should talk about system specifications. Different hardware configurations will
perform in different ways. If you're planning to release an application to the public, you
should be sure that you're testing it on your minimum spec hardware, as well as on your
development machines. Just because your application is running fine on a beast with a
brand-new high-end video card doesn't mean it's going to run so well on older hardware. If
you can test on your min-spec target, do so. If you can't, be conscious of how far your
development machine is from your min-spec and make sure you leave a decent amount of
headroom in your frame time budget to accommodate this.

Now that we've talked a bit about the things that can affect our measurements, let's dive in
deeper and learn how to get better information than we can get with stat fps alone.

Building the World and Optimizing for VR Chapter 8

[410]

Stat unit
Checking our frame rate is useful and it's an important thing to do frequently, but on it's
own it doesn't tell us much. It may tell us that we have a problem, but it won't give us
much guidance in finding what's wrong or how to fix it. For this, we have a few more
useful commands at our disposal.

The stat unit command breaks down the frame's cost in milliseconds and shows us which
parts of that cost are coming from the scene we're rendering and which parts are coming
from other things going on in our application, such as animations and AI.

Try it now. Click on the ` (backtick) key to bring up your console command window, and
type stat unit to add this additional information below your frame rate information:

The stat unit command displays four primary pieces of information:

Frame: This is the total time it took to draw the frame. This is the same value we
saw in the stat fps results.
Game: This tells you how long your game thread is taking on your CPU. This
covers things such as animation updates, AI, and anything else your CPU has to
figure out in order to update the frame. If you have Blueprints doing inefficient
things on the Tick event, that will drive this value up.
Draw: This tells you how long your CPU spent preparing the scene for
rendering. High values here may mean that you're doing too much occlusion
culling or spending too much on lights or shadows.
GPU: This value tells you how long the GPU took to draw the frame. High
values here may mean that you're drawing too many polygons, using too many
materials, or that your materials are too complex. Most of the time, your
problems will be here.

Building the World and Optimizing for VR Chapter 8

[411]

These values are not additive. Your game thread will wait for the rendering thread to
complete, so, if the Game timing matches your GPU timing, what that's really telling you is
that your CPU isn't holding you up, and that your frame time is being driven by rendering.

In addition to these four base values, we also have two advanced pieces of information that
you don't need to worry about right now:

RHIT: This is your rendering hardware interface thread. Realistically, you won't
be seeing values here that differ much from your GPU values unless you're
working with advanced rendering hardware or a video game console, and you're
running your rendering hardware interface calls on a dedicated thread. Until
you're working on an advanced project with a dedicated team of engineers, this
probably doesn't apply to you.
DynRes: This indicates whether dynamic resolution is supported or being used
by your application. In practice, this is only supported on video game consoles,
so you don't need to worry about it here. If you're curious, further information
can be found at https:/ /docs. unrealengine. com/ en-us/ Engine/ Rendering/
DynamicResolution.

What we're interested in finding from our stat unit information is whether we're spending
most of our time on our Game CPU, our Game rendering operations, or on our GPU. We're
looking for the largest number, because this is going to tell us what we need to fix.

You should make it a habit to leave stat fps and stat unit on nearly all the
time as you develop. If you introduce something new to the scene that is
going to hammer your frame rate, the best time to discover this is when
you put it in. If you go a long time before you discover a problem, you're
going to have to do a lot more work to find out what caused it.

https://docs.unrealengine.com/en-us/Engine/Rendering/DynamicResolution
https://docs.unrealengine.com/en-us/Engine/Rendering/DynamicResolution
https://docs.unrealengine.com/en-us/Engine/Rendering/DynamicResolution
https://docs.unrealengine.com/en-us/Engine/Rendering/DynamicResolution
https://docs.unrealengine.com/en-us/Engine/Rendering/DynamicResolution
https://docs.unrealengine.com/en-us/Engine/Rendering/DynamicResolution
https://docs.unrealengine.com/en-us/Engine/Rendering/DynamicResolution
https://docs.unrealengine.com/en-us/Engine/Rendering/DynamicResolution
https://docs.unrealengine.com/en-us/Engine/Rendering/DynamicResolution
https://docs.unrealengine.com/en-us/Engine/Rendering/DynamicResolution
https://docs.unrealengine.com/en-us/Engine/Rendering/DynamicResolution
https://docs.unrealengine.com/en-us/Engine/Rendering/DynamicResolution
https://docs.unrealengine.com/en-us/Engine/Rendering/DynamicResolution
https://docs.unrealengine.com/en-us/Engine/Rendering/DynamicResolution
https://docs.unrealengine.com/en-us/Engine/Rendering/DynamicResolution
https://docs.unrealengine.com/en-us/Engine/Rendering/DynamicResolution
https://docs.unrealengine.com/en-us/Engine/Rendering/DynamicResolution
https://docs.unrealengine.com/en-us/Engine/Rendering/DynamicResolution

Building the World and Optimizing for VR Chapter 8

[412]

It's often worth it to see how your stat unit values are changing over time, either as things
happen in your application (this is useful for finding hitches) or as you move through the
scene. To get this information, use stat unitgraph to display a graph over time of your
scene's performance metrics:

You'll see that your stat unit values have now been color-coded to correspond with lines on
the graph.

As mentioned previously, most of the time, your problems will be with the GPU art that's
just too heavy to fit within your scene.

Of course, if you're doing ridiculous things on your Tick, you may be getting killed on your
CPU, in which case you're going to want to look for Blueprints that could be refactored to
act in response to events or changes in data instead of using the tick. But, most of the time,
GPU is where you're going to run into trouble.

Building the World and Optimizing for VR Chapter 8

[413]

Profiling the GPU
The first tool you should learn to use in optimizing your scene is the GPU profiler. You can
activate this by typing profilegpu in the console, but since you're going to use it so often,
it's a better idea to memorize the hotkey: Ctrl + Shift + , (comma). Hit it now and let's look at
the numbers:

Building the World and Optimizing for VR Chapter 8

[414]

The most important part of this profile report is the graph under the Scene heading. Roll
over the graph, and you'll see that tooltips tell you what each block represents. The two
biggest blocks will usually be your BasePass and your PostProcessing pass. The base pass
represents the act of drawing everything in the scene. Post processing handles anything
that's taken care of after the scene has been drawn, such as screen-space ambient occlusion,
color correction, and other effects.

Hit the expander to the left of the Scene heading to drill down for more detail into your
scene rendering:

Here, we can see a more detailed breakdown of what's costing us time in drawing our
frame. Lighting looks good here, as does translucency. Our BasePass is fairly sizeable, but
that's to be expected.

You're not going to get too much more information by drilling down into your BasePass,
but you can learn some useful stuff by drilling into your PostProcessing operations. Use
the triangle beside your PostProcessing header to drill into it, and then click on large
chunks in your PostProcessing operations to see what they are:

Building the World and Optimizing for VR Chapter 8

[415]

In this instance, these post numbers look pretty good. We don't have anything returning an
unreasonably high duration.

Make sure you profile with the game running, or you'll see a lot of
operations coming from the editor.

We're not going to have the space here to dig into everything involved in the rendering
process and what it means, but in general, what you're looking for are large items that may
be unnecessarily impacting your frame rate. When you find something that looks
suspicious, search for it on the Unreal forums, and you'll likely find a discussion of what it
means and what to do about it.

As you use this tool more and more, you'll develop a sense for what looks healthy and what
problem areas look like. Use it often to get a clear handle on what your application is doing.

Now, let's look at a few other useful commands we can use to debug our scene.

Building the World and Optimizing for VR Chapter 8

[416]

Stat scenerendering
Behind the GPU profiler, your next most useful command is likely to be stat
scenerendering. This command gives you a detailed list of the steps your system is taking
to render the scene with their associated timings:

It's especially worthwhile in here to look at your Dynamic shadow setup and your
Translucency drawing.

If you're seeing high values in your shadow setup, see whether one or more of your lights is
doing too many shadow cascades or has a shadow distance that's too long. You can find
more information on this topic at https:/ /docs. unrealengine. com/ en- us/Platforms/
Mobile/Lighting/ HowTo/ CascadedShadow.

https://docs.unrealengine.com/en-us/Platforms/Mobile/Lighting/HowTo/CascadedShadow
https://docs.unrealengine.com/en-us/Platforms/Mobile/Lighting/HowTo/CascadedShadow
https://docs.unrealengine.com/en-us/Platforms/Mobile/Lighting/HowTo/CascadedShadow
https://docs.unrealengine.com/en-us/Platforms/Mobile/Lighting/HowTo/CascadedShadow
https://docs.unrealengine.com/en-us/Platforms/Mobile/Lighting/HowTo/CascadedShadow
https://docs.unrealengine.com/en-us/Platforms/Mobile/Lighting/HowTo/CascadedShadow
https://docs.unrealengine.com/en-us/Platforms/Mobile/Lighting/HowTo/CascadedShadow
https://docs.unrealengine.com/en-us/Platforms/Mobile/Lighting/HowTo/CascadedShadow
https://docs.unrealengine.com/en-us/Platforms/Mobile/Lighting/HowTo/CascadedShadow
https://docs.unrealengine.com/en-us/Platforms/Mobile/Lighting/HowTo/CascadedShadow
https://docs.unrealengine.com/en-us/Platforms/Mobile/Lighting/HowTo/CascadedShadow
https://docs.unrealengine.com/en-us/Platforms/Mobile/Lighting/HowTo/CascadedShadow
https://docs.unrealengine.com/en-us/Platforms/Mobile/Lighting/HowTo/CascadedShadow
https://docs.unrealengine.com/en-us/Platforms/Mobile/Lighting/HowTo/CascadedShadow
https://docs.unrealengine.com/en-us/Platforms/Mobile/Lighting/HowTo/CascadedShadow
https://docs.unrealengine.com/en-us/Platforms/Mobile/Lighting/HowTo/CascadedShadow
https://docs.unrealengine.com/en-us/Platforms/Mobile/Lighting/HowTo/CascadedShadow
https://docs.unrealengine.com/en-us/Platforms/Mobile/Lighting/HowTo/CascadedShadow
https://docs.unrealengine.com/en-us/Platforms/Mobile/Lighting/HowTo/CascadedShadow
https://docs.unrealengine.com/en-us/Platforms/Mobile/Lighting/HowTo/CascadedShadow
https://docs.unrealengine.com/en-us/Platforms/Mobile/Lighting/HowTo/CascadedShadow
https://docs.unrealengine.com/en-us/Platforms/Mobile/Lighting/HowTo/CascadedShadow

Building the World and Optimizing for VR Chapter 8

[417]

If your Translucency drawing is high, activate your editor's Quad Overdraw optimization
viewmode, and look for translucent objects stacking over one another. If you have a
problem here, you might be able to solve it by using masked rather than translucent
materials, or by being careful about how they overlap in views:

At the bottom of this list are some very important numbers: Mesh draw calls and Static List
draw calls. We should talk about these.

Building the World and Optimizing for VR Chapter 8

[418]

Draw calls
One of the biggest factors that will impact your scene performance is the number of draw
calls required to get its information onto the GPU. What are we talking about here? It
breaks down like this: everything you want the video card to draw has to be copied onto
that card's memory. The act of sending a set of instructions to the card is called a draw call,
or a draw primitive call (sometimes abbreviated to DPC). Let's say you have a static mesh
appearing in your scene that has three materials on it. That's going to take four draw calls
to set it up on the card: one for the mesh, and one for each material. You should endeavor
to keep the number of draw calls in your scene as low as you can get it. Realistically, 2,000
draw calls is probably your limit for a VR scene. On mobile VR, like the Oculus Go or
Quest, that number is lower.

What does this mean for you? First, put as few materials on your objects as you can get
away with; ideally, one material per object. By adding just one more material slot, you've
literally added one-third more to the cost of loading that object onto the video hardware,
and if that object appears frequently in your scene, that's going to add up in a hurry.

We're going to talk shortly about what you can do about high draw call counts, but for now
what you need to know about them is that, if these numbers are high, you're sending too
many separate instructions to the video card, and that's going to slow you down. Maybe
you have too many material slots on your objects, or too many individual objects being sent
separately, but in all cases, it's a thing you'll need to fix.

Stat RHI
Another closely related command you'll use often is stat rhi. RHI stands for rendering
hardware interface, and it tells you specifically what's impacting your rendering
performance:

Building the World and Optimizing for VR Chapter 8

[419]

The two values you'll care most about here are Triangles drawn and your DrawPrimitive
calls. Make it a habit to look through your scene with these values displayed, and look for
views with unreasonably high triangle counts or draw call counts. For a VR scene on a
desktop VR headset, you want to keep the number of triangles drawn below 2 million, and
you want to keep your draw calls under 2,000.

The other value you should care about here is your memory consumption. Another way to
get a scene running really slowly in real time is to use textures that are unreasonably large.
Don't put a 4K texture on a pebble. We've seen it happen.

Stat rhi is one of the most useful commands overall for getting a general sense of how
well your scene is fitting within its budget.

Building the World and Optimizing for VR Chapter 8

[420]

Stat memory
When you need more information about what's blowing your memory budget, you can
use stat memory:

Most of the time, if you're consuming too much memory, the culprit will be textures. Be on
the lookout for textures that are too large for what they're being used for. A huge object or a
hero character might warrant a 2048x2048 texture. Anything else should be 1024x1024 or
smaller. A 4K texture is probably not reasonable under any circumstances in VR. As you
consider where to cut your textures down, look at the object in scene. How big is it? How
close can the player get to it? Is it something the player really cares about looking at? It's
awfully easy to spend way too much on an object the player can barely see. Start to think in
terms of spending your texture and polycount budgets where they matter, and
economizing where you can get away with it.

Building the World and Optimizing for VR Chapter 8

[421]

Optimization view modes
In addition to the stat commands, we also have a few optimization view modes that can be
used to find problems in your scene. These are each accessed from the editor viewport's
view mode menu. We're just going to talk about two of them here.

The Shader Complexity view shows you where your materials may be slowing you down.
When you find a suspect object, select it, and see what's going on in its materials. Is your
material too complicated or doing expensive math? Consider the following screenshot:

Building the World and Optimizing for VR Chapter 8

[422]

In the case of the preceding screenshot, the grass and tree are registering as expensive
materials. When we select their objects and look at those materials, we can see that what's
driving up their cost is that they use their World Position Offset input to simulate wind.
That's expensive, but it's a nice effect and the player would notice if we turned it off, so we
can leave it alone since the rest of our scene is running pretty efficiently.

Use this view to search for materials that may be costing you a lot without adding much
value to the scene.

The Light Complexity view comes into play if you're using dynamic lights under the
deferred shading model. Because we're using forward rendering and static lights here, it
won't show us anything on this scene. When you are using dynamic lights and deferred
shading, this view can show you where your lights are causing problems.

CPU profiling
If you're having trouble with your CPU times, you can use CPU profiling to find out where
the problems are, just as we did earlier with the GPU profiler.

To activate CPU profiling, while the game is running, open a console command and type
stat startfile to begin profiling. Profiling generates a lot of data, so you don't want to run
your profiler over an entire session – just capture things you're interested in, such as, why
does the game slow down so much when that character alerts to an enemy?

After you've captured whatever you're looking for, type stat stopfile to turn profiling
back off. The profiler will save the captured data to a .ue4stats file in your
project's \Saved\Profiling\UnrealStats\ directory.

Building the World and Optimizing for VR Chapter 8

[423]

Now, open your Unreal Engine's install directory, and, inside its Binaries\Win64 folder,
look for the UnrealFrontend.exe application. Launch it and use the tabs to
select Session | Frontend | Profiler. Use the profiler's Load button to open the .ue4stats
file you just generated:

The CPU Profiler shows you how much time each operation called during a frame takes.

Building the World and Optimizing for VR Chapter 8

[424]

Just as we did with the GPU profiler, you can use this tool to burrow through expensive-
looking function calls and see what's going on. It would take us beyond the scope of this
book to go deeply into using the CPU profiler here—it's an extremely useful and powerful
tool, but it does take some time to learn how to get good information from it. We
recommend that you explore the write-up on the topic to go further, which can be found
at https://www.unrealengine. com/ en- US/blog/ how- to-improve- game- thread- cpu-
performance.

Turning things on and off
As primitive as it may sound, one of the most effective ways to find out what's costing you
frame rate is simply to turn features on and off with the relevant stat information displayed
(usually, stat unit is what you want for this). Use the viewport's Show menu to turn
individual elements on and off, especially if you've determined through your GPU
profiling or your stat information that the thing in question might be causing a problem. It
can also be helpful to start deleting objects from your level (as long as you have a backup or
it's under source control), and see whether a particular object makes a big change.

Addressing frame rate problems
Now that we've learned a bit about how to find problems in your scene, let's talk a bit about
what to do about them.

Cleaning up Blueprint Tick events
If you're seeing high numbers on your CPU, one of the first culprits you want to look for is
any Blueprint doing operations on the Tick event. This is an extremely common culprit.
Remember that Tick events happen every single frame, so if you're doing a lot of work on
your Tick, you're impacting every single frame you need to draw. Look for ways to spread
this work out over multiple frames, or to avoid using the Tick altogether and use events to
make objects change their state only when something changes.

https://www.unrealengine.com/en-US/blog/how-to-improve-game-thread-cpu-performance
https://www.unrealengine.com/en-US/blog/how-to-improve-game-thread-cpu-performance
https://www.unrealengine.com/en-US/blog/how-to-improve-game-thread-cpu-performance
https://www.unrealengine.com/en-US/blog/how-to-improve-game-thread-cpu-performance
https://www.unrealengine.com/en-US/blog/how-to-improve-game-thread-cpu-performance
https://www.unrealengine.com/en-US/blog/how-to-improve-game-thread-cpu-performance
https://www.unrealengine.com/en-US/blog/how-to-improve-game-thread-cpu-performance
https://www.unrealengine.com/en-US/blog/how-to-improve-game-thread-cpu-performance
https://www.unrealengine.com/en-US/blog/how-to-improve-game-thread-cpu-performance
https://www.unrealengine.com/en-US/blog/how-to-improve-game-thread-cpu-performance
https://www.unrealengine.com/en-US/blog/how-to-improve-game-thread-cpu-performance
https://www.unrealengine.com/en-US/blog/how-to-improve-game-thread-cpu-performance
https://www.unrealengine.com/en-US/blog/how-to-improve-game-thread-cpu-performance
https://www.unrealengine.com/en-US/blog/how-to-improve-game-thread-cpu-performance
https://www.unrealengine.com/en-US/blog/how-to-improve-game-thread-cpu-performance
https://www.unrealengine.com/en-US/blog/how-to-improve-game-thread-cpu-performance
https://www.unrealengine.com/en-US/blog/how-to-improve-game-thread-cpu-performance
https://www.unrealengine.com/en-US/blog/how-to-improve-game-thread-cpu-performance
https://www.unrealengine.com/en-US/blog/how-to-improve-game-thread-cpu-performance
https://www.unrealengine.com/en-US/blog/how-to-improve-game-thread-cpu-performance
https://www.unrealengine.com/en-US/blog/how-to-improve-game-thread-cpu-performance
https://www.unrealengine.com/en-US/blog/how-to-improve-game-thread-cpu-performance
https://www.unrealengine.com/en-US/blog/how-to-improve-game-thread-cpu-performance
https://www.unrealengine.com/en-US/blog/how-to-improve-game-thread-cpu-performance
https://www.unrealengine.com/en-US/blog/how-to-improve-game-thread-cpu-performance
https://www.unrealengine.com/en-US/blog/how-to-improve-game-thread-cpu-performance
https://www.unrealengine.com/en-US/blog/how-to-improve-game-thread-cpu-performance
https://www.unrealengine.com/en-US/blog/how-to-improve-game-thread-cpu-performance

Building the World and Optimizing for VR Chapter 8

[425]

Managing skeletal animations
If you have a lot of skeletal meshes animating, make sure they don't have a ridiculous
number of bones in their skeletons, and make sure they're not using a ton of blend space
animations. It's a much better practice to use skeletal mesh Level of Detail (LOD) to
include fine details only when the player can see them, or to use separate skeletal meshes
for cinematics, where highly-detailed facial animations matter, and for in-game meshes,
use skeletons with lower bone counts. For more information on setting up skeletal mesh
LODs, begin by looking at https:/ / docs. unrealengine. com/ en-US/ Engine/ Content/
ImportingContent/ImportingSkeletalLODs.

Merging actors
This is a big one. Remember a short while ago when we mentioned that draw call counts
have a big impact on your frame rate? One of the cheapest and easiest ways to drop your
draw call counts is to merge multiple meshes into a single mesh. This will not only create a
single mesh out of the multiple individual meshes you've selected, but it will also create a
combined material for that mesh out of each child mesh's materials. This is a big deal.

Let's say you have a bunch of debris in a corner of a room; maybe 25 objects or so, and each
of them uses one material slot. You're looking at 50 draw calls right there, out of a total of
maybe 2,000 that you have available for your entire scene. That's a big hit. By merging these
into a single object, you can drop 50 draw calls down to two. This is one of the fastest and
most effective ways you can bring down your draw call count.

One caveat about this though: remember earlier in this book when we talked about Kent
Beck's advice to make it work, make it right, make it fast? This is one of those areas where that
wisdom applies. Once you bake all these objects into a single object, you no longer have the
freedom to rearrange the individual components, so get the scene looking the way you
want it, and then merge your actors to bring things under control.

https://docs.unrealengine.com/en-US/Engine/Content/ImportingContent/ImportingSkeletalLODs
https://docs.unrealengine.com/en-US/Engine/Content/ImportingContent/ImportingSkeletalLODs
https://docs.unrealengine.com/en-US/Engine/Content/ImportingContent/ImportingSkeletalLODs
https://docs.unrealengine.com/en-US/Engine/Content/ImportingContent/ImportingSkeletalLODs
https://docs.unrealengine.com/en-US/Engine/Content/ImportingContent/ImportingSkeletalLODs
https://docs.unrealengine.com/en-US/Engine/Content/ImportingContent/ImportingSkeletalLODs
https://docs.unrealengine.com/en-US/Engine/Content/ImportingContent/ImportingSkeletalLODs
https://docs.unrealengine.com/en-US/Engine/Content/ImportingContent/ImportingSkeletalLODs
https://docs.unrealengine.com/en-US/Engine/Content/ImportingContent/ImportingSkeletalLODs
https://docs.unrealengine.com/en-US/Engine/Content/ImportingContent/ImportingSkeletalLODs
https://docs.unrealengine.com/en-US/Engine/Content/ImportingContent/ImportingSkeletalLODs
https://docs.unrealengine.com/en-US/Engine/Content/ImportingContent/ImportingSkeletalLODs
https://docs.unrealengine.com/en-US/Engine/Content/ImportingContent/ImportingSkeletalLODs
https://docs.unrealengine.com/en-US/Engine/Content/ImportingContent/ImportingSkeletalLODs
https://docs.unrealengine.com/en-US/Engine/Content/ImportingContent/ImportingSkeletalLODs
https://docs.unrealengine.com/en-US/Engine/Content/ImportingContent/ImportingSkeletalLODs
https://docs.unrealengine.com/en-US/Engine/Content/ImportingContent/ImportingSkeletalLODs
https://docs.unrealengine.com/en-US/Engine/Content/ImportingContent/ImportingSkeletalLODs
https://docs.unrealengine.com/en-US/Engine/Content/ImportingContent/ImportingSkeletalLODs
https://docs.unrealengine.com/en-US/Engine/Content/ImportingContent/ImportingSkeletalLODs

Building the World and Optimizing for VR Chapter 8

[426]

Here's how to do it:

Select Window | Developer Tools | Merge Actors. The Merge Actors window will appear.
Select the actors you want to merge. In general, it's a good idea to merge actors that are
close together and likely to be in the same view. Once they're merged, all of them will be
drawn even if only one of them is on camera, so merge items that are all going to be on
camera simultaneously most of the time:

The Merge Actors dialog seen with multiple selected actors in the viewport behind it

Building the World and Optimizing for VR Chapter 8

[427]

If you select Replace Source Actors, the actors you've selected in-scene will be replaced by
the merged model. For more information about merging actors, begin with https:/ / docs.
unrealengine.com/ en- us/ Engine/ Actors/ Merging.

Using mesh LODs
The number of triangles you're drawing in a scene (usually called the polycount) is another
huge factor in determining your scene's rendering speed.

Of course, your first line of defense against high polycounts is in modeling. Use an
application such as Pixologic's ZBrush to bake normal maps from a high-detail model, and
apply them to a lower-detail mesh that you import into the game engine. Much of the time,
your players will never notice the difference. VR is less forgiving of using normal maps to
simulate geometric detail than the flat screen is, because players can sometimes see that the
depth isn't real, but you should still make use of this technique anywhere you can get away
with it.

Once you have a mesh in-game, however, you have a powerful LOD tool available to you
to manage how many triangles you're drawing. LODs work like this: they store several
versions of the same model, with increasingly small polycounts. As the model gets smaller
on screen, the system switches out the high-detail mesh for a lower-detail mesh, since the
player won't be able to see the detail anyway, now that it's further away.

Here's how to set up an LOD:

Select a static mesh and open the Static Mesh editor from the content browser.1.
Under its Details, look for the LOD Settings section.2.
Find the Number of LODs entry, and set it to a value greater than 1. (For this3.
test, just set it to 2 to create 2 LODs.)
Click on Apply Changes. One or more additional LOD models will now be4.
created and added to the static mesh asset.
Under the LOD Picker section, find the LOD entry, and use it to select one of the5.
new LODs.

LOD 0 is the original model. Most of the time you'll leave this unchanged. LOD 1
is the first LOD after LOD 0.

With the new LOD, such as LOD 1, selected, open the Reduction Settings entry6.
from its LOD detail section and modify it.

https://docs.unrealengine.com/en-us/Engine/Actors/Merging
https://docs.unrealengine.com/en-us/Engine/Actors/Merging
https://docs.unrealengine.com/en-us/Engine/Actors/Merging
https://docs.unrealengine.com/en-us/Engine/Actors/Merging
https://docs.unrealengine.com/en-us/Engine/Actors/Merging
https://docs.unrealengine.com/en-us/Engine/Actors/Merging
https://docs.unrealengine.com/en-us/Engine/Actors/Merging
https://docs.unrealengine.com/en-us/Engine/Actors/Merging
https://docs.unrealengine.com/en-us/Engine/Actors/Merging
https://docs.unrealengine.com/en-us/Engine/Actors/Merging
https://docs.unrealengine.com/en-us/Engine/Actors/Merging
https://docs.unrealengine.com/en-us/Engine/Actors/Merging
https://docs.unrealengine.com/en-us/Engine/Actors/Merging
https://docs.unrealengine.com/en-us/Engine/Actors/Merging
https://docs.unrealengine.com/en-us/Engine/Actors/Merging
https://docs.unrealengine.com/en-us/Engine/Actors/Merging
https://docs.unrealengine.com/en-us/Engine/Actors/Merging
https://docs.unrealengine.com/en-us/Engine/Actors/Merging

Building the World and Optimizing for VR Chapter 8

[428]

You have a number of options available here, but most of the time, you'll be managing the
Percent Triangles value. If you make changes here, click on Apply Changes to see the
result:

You'll see the modified mesh in your viewport. To see what it will look like at the real view
distance, switch your LOD Picker back to LOD Auto and move your view around to see
how the object changes as it switches between LODs. The LOD generator is surprisingly
good.

For more information about creating and using LODs, start by looking at https:/ /docs.
unrealengine.com/ en- us/ Engine/ Content/ Types/ StaticMeshes/ HowTo/ LODs.

https://docs.unrealengine.com/en-us/Engine/Content/Types/StaticMeshes/HowTo/LODs
https://docs.unrealengine.com/en-us/Engine/Content/Types/StaticMeshes/HowTo/LODs
https://docs.unrealengine.com/en-us/Engine/Content/Types/StaticMeshes/HowTo/LODs
https://docs.unrealengine.com/en-us/Engine/Content/Types/StaticMeshes/HowTo/LODs
https://docs.unrealengine.com/en-us/Engine/Content/Types/StaticMeshes/HowTo/LODs
https://docs.unrealengine.com/en-us/Engine/Content/Types/StaticMeshes/HowTo/LODs
https://docs.unrealengine.com/en-us/Engine/Content/Types/StaticMeshes/HowTo/LODs
https://docs.unrealengine.com/en-us/Engine/Content/Types/StaticMeshes/HowTo/LODs
https://docs.unrealengine.com/en-us/Engine/Content/Types/StaticMeshes/HowTo/LODs
https://docs.unrealengine.com/en-us/Engine/Content/Types/StaticMeshes/HowTo/LODs
https://docs.unrealengine.com/en-us/Engine/Content/Types/StaticMeshes/HowTo/LODs
https://docs.unrealengine.com/en-us/Engine/Content/Types/StaticMeshes/HowTo/LODs
https://docs.unrealengine.com/en-us/Engine/Content/Types/StaticMeshes/HowTo/LODs
https://docs.unrealengine.com/en-us/Engine/Content/Types/StaticMeshes/HowTo/LODs
https://docs.unrealengine.com/en-us/Engine/Content/Types/StaticMeshes/HowTo/LODs
https://docs.unrealengine.com/en-us/Engine/Content/Types/StaticMeshes/HowTo/LODs
https://docs.unrealengine.com/en-us/Engine/Content/Types/StaticMeshes/HowTo/LODs
https://docs.unrealengine.com/en-us/Engine/Content/Types/StaticMeshes/HowTo/LODs
https://docs.unrealengine.com/en-us/Engine/Content/Types/StaticMeshes/HowTo/LODs
https://docs.unrealengine.com/en-us/Engine/Content/Types/StaticMeshes/HowTo/LODs
https://docs.unrealengine.com/en-us/Engine/Content/Types/StaticMeshes/HowTo/LODs
https://docs.unrealengine.com/en-us/Engine/Content/Types/StaticMeshes/HowTo/LODs
https://docs.unrealengine.com/en-us/Engine/Content/Types/StaticMeshes/HowTo/LODs
https://docs.unrealengine.com/en-us/Engine/Content/Types/StaticMeshes/HowTo/LODs

Building the World and Optimizing for VR Chapter 8

[429]

Static mesh instancing
Remember those draw calls we were so concerned about a moment ago? There's another
powerful way to reduce their count and dramatically speed up your rendering.

Say you have a big collection of mostly the same assets, such as a forest that reuses the
same tree mesh hundreds of times. If you simply place those meshes in the environment
individually, every single one of them is going to generate a minimum of two draw calls,
and even more if it uses more materials. That's a recipe for a slide show. What you want to
do instead is instance this geometry. Instancing is a way of telling your GPU that, even
though it's about to draw a few hundred meshes, they're really all just the same mesh with
different transforms. So, instead of making a separate draw call for each tree, the system
makes one set of draw calls and gives the video hardware a list of locations, orientations,
and scales at which to draw them. This is wildly faster than passing each item as a separate
item.

By default in Unreal, the easiest way to instance objects is to use the foliage tool. While it's
most commonly used for foliage, as the name suggests, you can also use it for repeated
objects in lots of other contexts, like streetlamps on city streets. You can find more
information on foliage instancing at https:/ /docs. unrealengine. com/ en- us/Engine/
Foliage.

Instancing static meshes outside the foliage tool is a bit more of a complex topic, but it can
be done and can be a good idea if you're procedurally generating an actor that contains a
large array of individual static meshes. Most of the time, however, when you're instancing
objects in scenes, use the foliage tool to do it.

Nativizing Blueprints
Blueprints are already interpreted amazingly fast, but they can be made even faster by
translating them automatically into C++ and then allowing the system to compile them.

To turn this on, open Project Settings | Project | Packaging | Blueprints, and use
the Blueprint Nativization Method selector to select inclusive or exclusive nativization.

Inclusive nativization will convert all your Blueprints to C++ when they compile.
Exclusive nativization will convert only those Blueprints for which you set the
nativize flag.

https://docs.unrealengine.com/en-us/Engine/Foliage
https://docs.unrealengine.com/en-us/Engine/Foliage
https://docs.unrealengine.com/en-us/Engine/Foliage
https://docs.unrealengine.com/en-us/Engine/Foliage
https://docs.unrealengine.com/en-us/Engine/Foliage
https://docs.unrealengine.com/en-us/Engine/Foliage
https://docs.unrealengine.com/en-us/Engine/Foliage
https://docs.unrealengine.com/en-us/Engine/Foliage
https://docs.unrealengine.com/en-us/Engine/Foliage
https://docs.unrealengine.com/en-us/Engine/Foliage
https://docs.unrealengine.com/en-us/Engine/Foliage
https://docs.unrealengine.com/en-us/Engine/Foliage
https://docs.unrealengine.com/en-us/Engine/Foliage
https://docs.unrealengine.com/en-us/Engine/Foliage
https://docs.unrealengine.com/en-us/Engine/Foliage
https://docs.unrealengine.com/en-us/Engine/Foliage

Building the World and Optimizing for VR Chapter 8

[430]

If you're using exclusive nativization, select the Blueprints you want to nativize by opening
their Class Settings, and turn on the Nativize option in their Details | Packaging panel.
Again, you don't need to do this if you're using inclusive nativization. In that case, every
Blueprint is nativized:

If you're planning to ship your application on desktop VR, inclusive nativization may be
fine, but if you're planning to deploy to mobile VR, such as the Oculus Go or Quest, it's
probably smarter to use exclusive nativization to choose which Blueprints you want to
nativize, since including them all can increase your executable size.

This is a bit of an advanced topic. In general, you'll see a benefit if you nativize Blueprints
that do a lot of work on the Tick event, or that just do a lot of work in general. If your
Blueprints are fairly simple, you won't really see a difference either way. Because speed is
so critical to VR development, it's good to know that this option is available to you.

If you do plan to do this, turn nativization on early in your project's development, and test
on cooked builds frequently. Nativization is extremely good, but it can sometimes still
cause unexpected side effects.

Building the World and Optimizing for VR Chapter 8

[431]

Summary
In this chapter, we learned quite a lot about how to use Unreal's VR Mode editor to
compose environments from within VR, and we learned how to analyze and optimize
scenes to see where our performance bottlenecks are.

In the next chapter, we're going to take a detour from building real-time 3D worlds in VR
and look at another common application – movies and immersive photography.

9
Displaying Media in VR

In the previous chapters, we focused on creating real-time 3D media for VR, and spent a lot
of time looking at player characters, interface elements, and building the world. Now, we're
going to shift gears a bit and explore another important application for VR—displaying
movies both on flat screens and in immersive environments.

VR is very good at this. Because it's possible to create a nearly infinite space within the
headset, users can experience movies and media on enormous virtual screens with no
distractions to take them out of the experience. These screens can take any shape as well. In
addition to flat and curved screens, photos and movies of entire environments can be
presented in a sphere surrounding the player so that they feel totally immersed in the
space. In this chapter, we're going to learn how to create these things.

In particular, we will cover the following topics:

Displaying video on a virtual screen
Displaying video with stereo depth from side-to-side and over/under video
sources
Displaying media in 360-degree spherical environments
Displaying 360-degree media in stereo
Creating interactive controls to allow the player to start, stop, and rewind their
media

Let's get to it and learn how to play movies!

Displaying Media in VR Chapter 9

[433]

Setting up the project
For this chapter's project, we don't need anything from our previous work, so we're going
to begin simply by creating a new project with the following settings:

Blank Blueprint template
Mobile / Tablet hardware target
Scalable 3D or 2D graphics target
With Starter Content (we'll use some of the starter content in this one)

We still need to set our settings appropriately for VR, as we do with each project. Here's the
cheat sheet:

Project | Description | Settings | Start in VR: True
Engine | Rendering | Forward Renderer | Forward Shading: True
Engine | Rendering | Default Settings | Ambient Occlusion Static
Fraction: False
Engine | Rendering | Default Settings | Anti-Aliasing Method: MSAA
Engine | Rendering | VR | Instanced Stereo: True
Engine | Rendering | VR | Round Robin Occlusion Queries: True

Allow the project to restart once all of these settings have been set. Once your project has
reopened, you'll be ready to begin learning about how media works in Unreal Engine.

Playing movies in Unreal Engine
We're going to begin by learning how we can play movies and other media in Unreal
Engine in general. Of course, to get started, we're going to need a movie to play.

Video files come in a confusing array of configurations, and there are a few things you
should know about them.

Understanding containers and codecs
The first point of confusion most people run into when they start learning about video files
is not understanding that the container that a video file is wrapped in doesn't necessarily
tell you much about how it was encoded. Let's take a moment to talk about this.

Displaying Media in VR Chapter 9

[434]

Video files consist of a lot of information, all packed into one file. There's the stream of
images representing the video track. Often, there's audio, sometimes there are subtitles, and
sometimes there's other additional information as well. All of this information gets bundled
together inside a wrapping format called a container. You've no doubt seen video files with
the .mp4 extension. That's the extension used by the MPEG-4 container format. AVI is
Microsoft's standard container format, and there are many others.

Here's the thing to remember, though: the container format specifies how these different
parts of information are held together in the file, but it doesn't tell us how the video and
audio streams were actually made. Just because you see the .mp4 extension on a file doesn't
necessarily mean it's going to work for what you're trying to use it for. There's another
factor you need to take into consideration: the codec.

The word codec is a shortened combination of the words compressor and decompressor.
Video files in their raw state can become huge. How big? Let's run some numbers. Say we
have a 1080p video file. Its dimensions are 1920 x 1080 pixels. That's 2,073,600 pixels per
frame. Let's say that we're displaying this video file in 24-bit color (8 bits per channel),
which allows us to display a little over 16 million colors, which comes out to about 50 MB
per frame. If we're running at 30 frames per second, that's going to eat up around 1.49
gigabytes per second. You're going to run out of space in a big hurry doing that.

We deal with this by compressing video files heavily when we store them, and then
decompressing them in real time when it's time to stream them to the screen. This work is
handled by the codec. Its compressor component is responsible for taking the raw source
video and packing it into a format that can fit on disc, and its decompressor component
handles unpacking it so that it can be displayed. Discussions of how video codecs work fill
entire books of their own, so we're not going to get into the weeds on this, but the part that
you do need to know is that while many codecs exist, not all of them work with all software
solutions, and not all of them work on all hardware configurations. The most commonly
used codec, and the most broadly compatible, is called H.264, but many codecs exist. Some
are designed to be broadly used and some are very specifically made for certain
applications, such as video editing. It's worthwhile spending a bit of time learning about
these.

So, now you know a secret about video files. The container doesn't necessarily tell you
about the codec, and you need to know about both to know whether the file will work. (So
the next time you ask someone what kind of video file they've given you, and they answer
that they've given you an .mp4, you'll know they haven't really answered your question.)
Some container formats only work on specific operating systems or hardware, while others,
such as .mp4, will work nearly anywhere.

Displaying Media in VR Chapter 9

[435]

For video files you intend to use with Unreal Engine, you should generally choose to wrap
them in the .mp4 container and compress them using the H.264 codec. For more
information on supported codecs, check out the following link: https:/ / docs.
unrealengine.com/ en- US/ Engine/ MediaFramework/ TechReference.

We're not going to cover the topic of compressing your own video files
here in this book – there's quite a lot to say about that, and quite a lot of
information available online about how to do it. If you have access to the
Adobe Creative Suite, the included Adobe Media Encoder application is
an excellent tool for converting video into nearly any format you need. If
you need a free video encoder, AVC Free is excellent and commonly used.
You can find it at the following link: https:/ /www. any- video- converter.
com/products/ for_ video_ free/ .

Finding a video file to test with
Let's find a file that meets these standards. If we navigate to the "Video For Everybody"
Test Page, we can find a suitable video for testing. Go to http:/ /camendesign. com/code/
video_for_everybody/ test. html and find the Download Video link for the .mp4
container format. Right-click the link and select Save Link As... to save the
big_buck_bunny.mp4 video file to your hard drive.

If you don't already have the VLC Media Player installed on your system, download and
install it from: https:/ /www. videolan. org/vlc/ index. html. In practice, you could use any
video player to check your files, but VLC is a good tool to know about. It'll play nearly
anything and gives you good information about the file you're playing. Refer to the
following steps:

Open the video file you just downloaded in VLC and play it.1.
Pause the video somewhere and hit Ctrl + J to open its Codec information:2.

https://docs.unrealengine.com/en-US/Engine/MediaFramework/TechReference
https://docs.unrealengine.com/en-US/Engine/MediaFramework/TechReference
https://docs.unrealengine.com/en-US/Engine/MediaFramework/TechReference
https://docs.unrealengine.com/en-US/Engine/MediaFramework/TechReference
https://docs.unrealengine.com/en-US/Engine/MediaFramework/TechReference
https://docs.unrealengine.com/en-US/Engine/MediaFramework/TechReference
https://docs.unrealengine.com/en-US/Engine/MediaFramework/TechReference
https://docs.unrealengine.com/en-US/Engine/MediaFramework/TechReference
https://docs.unrealengine.com/en-US/Engine/MediaFramework/TechReference
https://docs.unrealengine.com/en-US/Engine/MediaFramework/TechReference
https://docs.unrealengine.com/en-US/Engine/MediaFramework/TechReference
https://docs.unrealengine.com/en-US/Engine/MediaFramework/TechReference
https://docs.unrealengine.com/en-US/Engine/MediaFramework/TechReference
https://docs.unrealengine.com/en-US/Engine/MediaFramework/TechReference
https://docs.unrealengine.com/en-US/Engine/MediaFramework/TechReference
https://docs.unrealengine.com/en-US/Engine/MediaFramework/TechReference
https://docs.unrealengine.com/en-US/Engine/MediaFramework/TechReference
https://docs.unrealengine.com/en-US/Engine/MediaFramework/TechReference
https://www.any-video-converter.com/products/for_video_free/
https://www.any-video-converter.com/products/for_video_free/
https://www.any-video-converter.com/products/for_video_free/
https://www.any-video-converter.com/products/for_video_free/
https://www.any-video-converter.com/products/for_video_free/
https://www.any-video-converter.com/products/for_video_free/
https://www.any-video-converter.com/products/for_video_free/
https://www.any-video-converter.com/products/for_video_free/
https://www.any-video-converter.com/products/for_video_free/
https://www.any-video-converter.com/products/for_video_free/
https://www.any-video-converter.com/products/for_video_free/
https://www.any-video-converter.com/products/for_video_free/
https://www.any-video-converter.com/products/for_video_free/
https://www.any-video-converter.com/products/for_video_free/
https://www.any-video-converter.com/products/for_video_free/
https://www.any-video-converter.com/products/for_video_free/
https://www.any-video-converter.com/products/for_video_free/
https://www.any-video-converter.com/products/for_video_free/
https://www.any-video-converter.com/products/for_video_free/
https://www.any-video-converter.com/products/for_video_free/
https://www.any-video-converter.com/products/for_video_free/
http://camendesign.com/code/video_for_everybody/test.html
http://camendesign.com/code/video_for_everybody/test.html
http://camendesign.com/code/video_for_everybody/test.html
http://camendesign.com/code/video_for_everybody/test.html
http://camendesign.com/code/video_for_everybody/test.html
http://camendesign.com/code/video_for_everybody/test.html
http://camendesign.com/code/video_for_everybody/test.html
http://camendesign.com/code/video_for_everybody/test.html
http://camendesign.com/code/video_for_everybody/test.html
http://camendesign.com/code/video_for_everybody/test.html
http://camendesign.com/code/video_for_everybody/test.html
http://camendesign.com/code/video_for_everybody/test.html
http://camendesign.com/code/video_for_everybody/test.html
http://camendesign.com/code/video_for_everybody/test.html
http://camendesign.com/code/video_for_everybody/test.html
http://camendesign.com/code/video_for_everybody/test.html
http://camendesign.com/code/video_for_everybody/test.html
http://camendesign.com/code/video_for_everybody/test.html
https://www.videolan.org/vlc/index.html
https://www.videolan.org/vlc/index.html
https://www.videolan.org/vlc/index.html
https://www.videolan.org/vlc/index.html
https://www.videolan.org/vlc/index.html
https://www.videolan.org/vlc/index.html
https://www.videolan.org/vlc/index.html
https://www.videolan.org/vlc/index.html
https://www.videolan.org/vlc/index.html
https://www.videolan.org/vlc/index.html
https://www.videolan.org/vlc/index.html
https://www.videolan.org/vlc/index.html
https://www.videolan.org/vlc/index.html
https://www.videolan.org/vlc/index.html
https://www.videolan.org/vlc/index.html

Displaying Media in VR Chapter 9

[436]

You can see here that this file has been encoded using H.264, and we can see from its file
extension that it's using an .mp4 container. This file should work correctly for us on any
platform in Unreal.

Adding a video file to an Unreal project
Let's add this file to our Unreal project.

For other asset types, you use the Import method from within Unreal Editor to add them
to your project, but video files are different. To add a video file to an Unreal project, you
must manually place it in a subdirectory of the Content folder named Movies.

Displaying Media in VR Chapter 9

[437]

The name and location are important. The engine will look for movies in
Content/Movies by default, and your movies may not package correctly
if you put them in another location.

From your Content Browser, make sure you're at the root Content folder and1.
right-click to create a new folder.
Name it Movies, as shown in the following screenshot:2.

From your Windows Explorer, find the .mp4 file you downloaded, and move it3.
to your project's Content\Movies directory. (You can right-click this directory
in your Content Browser and select Show in Explorer to navigate to the
directory.)

Creating a File Media Source asset
Now, return to the Unreal Editor, and in your Content/Movies directory, right-click and
select Create Advanced Asset | Media | File Media Source to create a new file media
source asset. It's often easier to name file media sources using the same names as their
source assets, so it makes sense to name it big_buck_bunny since that's the name of the file
we're about to attach:

Displaying Media in VR Chapter 9

[438]

Open it up and use the ellipsis (...) button to select the video file you placed in your
Content/Movies directory as its File Path:

Displaying Media in VR Chapter 9

[439]

A File Media Source asset is simply a resolver that allows a media player to find a movie on
disk. Media players point to file media sources, and those file media sources point to the
actual file in the Movies directory.

File media sources also provide a few additional options:

The advanced Precache File option can be used to force the entire media file into
memory and play from there.
The Player Overrides list allows you to force a specific player to decode the
media on a specific platform. Leave these alone unless you're sure you need to
override the automatic choice.

Three other media source types exist, and while we're not going to dive into them in depth
here, you should know about them:

Img Media Sources are used to display image sequences – individual images
intended to be streamed in series as a movie. For detailed information on playing
image sequences, check out the following link: https:/ /api. unrealengine. com/
INT/Engine/ MediaFramework/ HowTo/ ImgMediaSource/ index. html.
Stream Media Sources allow you to specify a video file hosted at a specific URL
for playback. For more information, check out the following link: https:/ / api.
unrealengine. com/ INT/ Engine/ MediaFramework/ HowTo/ StreamMediaSource/
index.html.
Platform Media Sources allow you to specify different media to play on different
hardware platforms. Check out the following link for details: https:/ /api.
unrealengine. com/ INT/ Engine/ MediaFramework/ HowTo/ PlatformMedia/ index.
html.

Creating a Media Player
Now that we have a media source set up, let's create a Media Player to play it:

Right-click in your Content/Movies directory and select Create Advanced1.
Asset | Media | Media Player. We'll be using the same media player for all of
our media sources, so a general name such as MediaPlayer is fine. Refer to the
following screenshot:

https://api.unrealengine.com/INT/Engine/MediaFramework/HowTo/ImgMediaSource/index.html
https://api.unrealengine.com/INT/Engine/MediaFramework/HowTo/ImgMediaSource/index.html
https://api.unrealengine.com/INT/Engine/MediaFramework/HowTo/ImgMediaSource/index.html
https://api.unrealengine.com/INT/Engine/MediaFramework/HowTo/ImgMediaSource/index.html
https://api.unrealengine.com/INT/Engine/MediaFramework/HowTo/ImgMediaSource/index.html
https://api.unrealengine.com/INT/Engine/MediaFramework/HowTo/ImgMediaSource/index.html
https://api.unrealengine.com/INT/Engine/MediaFramework/HowTo/ImgMediaSource/index.html
https://api.unrealengine.com/INT/Engine/MediaFramework/HowTo/ImgMediaSource/index.html
https://api.unrealengine.com/INT/Engine/MediaFramework/HowTo/ImgMediaSource/index.html
https://api.unrealengine.com/INT/Engine/MediaFramework/HowTo/ImgMediaSource/index.html
https://api.unrealengine.com/INT/Engine/MediaFramework/HowTo/ImgMediaSource/index.html
https://api.unrealengine.com/INT/Engine/MediaFramework/HowTo/ImgMediaSource/index.html
https://api.unrealengine.com/INT/Engine/MediaFramework/HowTo/ImgMediaSource/index.html
https://api.unrealengine.com/INT/Engine/MediaFramework/HowTo/ImgMediaSource/index.html
https://api.unrealengine.com/INT/Engine/MediaFramework/HowTo/ImgMediaSource/index.html
https://api.unrealengine.com/INT/Engine/MediaFramework/HowTo/ImgMediaSource/index.html
https://api.unrealengine.com/INT/Engine/MediaFramework/HowTo/ImgMediaSource/index.html
https://api.unrealengine.com/INT/Engine/MediaFramework/HowTo/ImgMediaSource/index.html
https://api.unrealengine.com/INT/Engine/MediaFramework/HowTo/ImgMediaSource/index.html
https://api.unrealengine.com/INT/Engine/MediaFramework/HowTo/ImgMediaSource/index.html
https://api.unrealengine.com/INT/Engine/MediaFramework/HowTo/ImgMediaSource/index.html
https://api.unrealengine.com/INT/Engine/MediaFramework/HowTo/ImgMediaSource/index.html
https://api.unrealengine.com/INT/Engine/MediaFramework/HowTo/StreamMediaSource/index.html
https://api.unrealengine.com/INT/Engine/MediaFramework/HowTo/StreamMediaSource/index.html
https://api.unrealengine.com/INT/Engine/MediaFramework/HowTo/StreamMediaSource/index.html
https://api.unrealengine.com/INT/Engine/MediaFramework/HowTo/StreamMediaSource/index.html
https://api.unrealengine.com/INT/Engine/MediaFramework/HowTo/StreamMediaSource/index.html
https://api.unrealengine.com/INT/Engine/MediaFramework/HowTo/StreamMediaSource/index.html
https://api.unrealengine.com/INT/Engine/MediaFramework/HowTo/StreamMediaSource/index.html
https://api.unrealengine.com/INT/Engine/MediaFramework/HowTo/StreamMediaSource/index.html
https://api.unrealengine.com/INT/Engine/MediaFramework/HowTo/StreamMediaSource/index.html
https://api.unrealengine.com/INT/Engine/MediaFramework/HowTo/StreamMediaSource/index.html
https://api.unrealengine.com/INT/Engine/MediaFramework/HowTo/StreamMediaSource/index.html
https://api.unrealengine.com/INT/Engine/MediaFramework/HowTo/StreamMediaSource/index.html
https://api.unrealengine.com/INT/Engine/MediaFramework/HowTo/StreamMediaSource/index.html
https://api.unrealengine.com/INT/Engine/MediaFramework/HowTo/StreamMediaSource/index.html
https://api.unrealengine.com/INT/Engine/MediaFramework/HowTo/StreamMediaSource/index.html
https://api.unrealengine.com/INT/Engine/MediaFramework/HowTo/StreamMediaSource/index.html
https://api.unrealengine.com/INT/Engine/MediaFramework/HowTo/StreamMediaSource/index.html
https://api.unrealengine.com/INT/Engine/MediaFramework/HowTo/StreamMediaSource/index.html
https://api.unrealengine.com/INT/Engine/MediaFramework/HowTo/StreamMediaSource/index.html
https://api.unrealengine.com/INT/Engine/MediaFramework/HowTo/StreamMediaSource/index.html
https://api.unrealengine.com/INT/Engine/MediaFramework/HowTo/StreamMediaSource/index.html
https://api.unrealengine.com/INT/Engine/MediaFramework/HowTo/PlatformMedia/index.html
https://api.unrealengine.com/INT/Engine/MediaFramework/HowTo/PlatformMedia/index.html
https://api.unrealengine.com/INT/Engine/MediaFramework/HowTo/PlatformMedia/index.html
https://api.unrealengine.com/INT/Engine/MediaFramework/HowTo/PlatformMedia/index.html
https://api.unrealengine.com/INT/Engine/MediaFramework/HowTo/PlatformMedia/index.html
https://api.unrealengine.com/INT/Engine/MediaFramework/HowTo/PlatformMedia/index.html
https://api.unrealengine.com/INT/Engine/MediaFramework/HowTo/PlatformMedia/index.html
https://api.unrealengine.com/INT/Engine/MediaFramework/HowTo/PlatformMedia/index.html
https://api.unrealengine.com/INT/Engine/MediaFramework/HowTo/PlatformMedia/index.html
https://api.unrealengine.com/INT/Engine/MediaFramework/HowTo/PlatformMedia/index.html
https://api.unrealengine.com/INT/Engine/MediaFramework/HowTo/PlatformMedia/index.html
https://api.unrealengine.com/INT/Engine/MediaFramework/HowTo/PlatformMedia/index.html
https://api.unrealengine.com/INT/Engine/MediaFramework/HowTo/PlatformMedia/index.html
https://api.unrealengine.com/INT/Engine/MediaFramework/HowTo/PlatformMedia/index.html
https://api.unrealengine.com/INT/Engine/MediaFramework/HowTo/PlatformMedia/index.html
https://api.unrealengine.com/INT/Engine/MediaFramework/HowTo/PlatformMedia/index.html
https://api.unrealengine.com/INT/Engine/MediaFramework/HowTo/PlatformMedia/index.html
https://api.unrealengine.com/INT/Engine/MediaFramework/HowTo/PlatformMedia/index.html
https://api.unrealengine.com/INT/Engine/MediaFramework/HowTo/PlatformMedia/index.html
https://api.unrealengine.com/INT/Engine/MediaFramework/HowTo/PlatformMedia/index.html
https://api.unrealengine.com/INT/Engine/MediaFramework/HowTo/PlatformMedia/index.html

Displaying Media in VR Chapter 9

[440]

When you create it, a new dialog will appear, asking whether you whether you'd like to
create a Media Texture asset to handle the video output. Let's allow it to do so, as shown in
the following screenshot:

We could just as well have created it by creating a Media/Media Texture asset from our
content browser, but this saved us a step.

Displaying Media in VR Chapter 9

[441]

Using Media Textures
Media Texture assets display the streamed video or images from their bound Media Player
asset. If you open the one we just created, you'll see that it's bound to the Media Player we
just created:

Don't worry if your media texture looks blank. It won't display anything until you've
played something on its associated Media Player.

In general, you're going to want to leave your properties of Media Texture alone. Make
sure it's bound to your Media Player, but you're unlikely to need to change any of its other
properties.

Displaying Media in VR Chapter 9

[442]

Testing your Media Player
Open up the new Media Player asset you just created. You should see the file media source
we set up a moment ago in its list of available media sources. Select it and play it to verify
that it's playable in Unreal:

Ensure that Play on Open is selected for this file source, and turn on the Loop option as
well.

Once we've verified that the video file plays in our media player, let's add it to an object in
the world.

Displaying Media in VR Chapter 9

[443]

Adding video to an object in the world
Since we included Starter Content in this project, instead of launching with a blank map,
our project launches with a simple map named Minimal Default by default, which
contains a pair of chairs and a table. We can use this as a starting point for our movie
playback map. Save the map by selecting File | Save Current As... and save it as
Content/Chapter08/Maps/MoviePlayback2D. (Remember, it's a good idea to put your
work into a subdirectory of your Content directory for your project. Otherwise, you're
going to have a mess when you migrate something else in.)

If you'd like, feel free to use the starter content to arrange a more comfortable theater or
viewing room set. We're not going to cover that here, but if you're up for it, create a living
room or movie theater set, or anything that sparks your imagination.

What we do need in our scene is a screen to display our media. Follow these steps to create
one:

From the Modes panel, select Place | Basic | Plane, and drag a plane onto the1.
scene.
Set its Location to (X=-730.0, Y=0.0, Z=210.0) (or wherever fits the2.
environment you've built).
Set its Rotation to (Pitch=0.0, Yaw=-90, Roll=90) (in the editor, this reads3.
as X=90.0, Y=0.0, Z=-90.0).
Set its Scale to (X=8.0, Y=4.5, Z=1.0). By doing this, we've matched the4.
shape of the screen to the 16:9 aspect ratio of the video we intend to play.

Now, we're going to assign our Media Texture to this plane:

Drag the Media Texture we created for our Media Player onto the plane.1.
A material will automatically be created to display the texture.2.

This is how you get media into a 3D scene. Assign a material or a material instance that
uses a Media Texture as a source, and make sure that the Media Texture points back at a
Media Player.

Using a media playback material
We should look at this material for a moment. Open it up. If you look at its material
properties, you can see that it's an ordinary Surface material using the Default Lit shading
model. There's nothing special here.

Displaying Media in VR Chapter 9

[444]

The Texture Sample, on the other hand, is interesting:

The important details here are that its Texture source has been set to our media texture, and
its Sampler Type has been set to External. This is what will allow it to display our media
in real time. We're going to do more work with this material shortly, but for now you can
close it.

Adding sound to our media playback
We also want to be able to play sound in our scene. Follow these steps to do so:

With our screen actor still selected, click the Add Component button in its details1.
panel.

Displaying Media in VR Chapter 9

[445]

Add a Media Sound component and set its Media Player property to our media2.
player:

This Media Sound component will play whatever audio the associated media player is
streaming. By default, it handles stereo audio, but it can be used for mono or surround
audio sources as well.

Now that we've set everything up and placed an object in the world with video material
and a sound component, let's get our media player playing our test video.

Displaying Media in VR Chapter 9

[446]

Playing media
We're going to start simply here, and just make the movie play when the level starts. Later
on, we're going to do more to control our media player. Follow these steps to get started:

Click on Open Level Blueprint, as shown in the following screenshot:1.

Create a new variable and set its type to Media Player | Object Reference:2.

Displaying Media in VR Chapter 9

[447]

Compile the blueprint and change the variable's default value from None to the3.
media player we created a moment ago.
Ctrl + drag the media player variable onto your event graph.4.
Find or create the Event BeginPlay node.5.
Drag a connector from your Media Player variable and call Open Source on it.6.
Set the call's Media Source to the file media source we created from our movie:7.

Launch it in your VR Preview, and let's see what happens:

Displaying Media in VR Chapter 9

[448]

Nice. The video is playing. We'll take a moment to review what we did to set this up, and
then we're going to look at ways to improve it. Refer to the following screenshot:

Media playback works as follows:

Any media you want to play in engine begins as a file in Content/Movies. The1.
source movie isn't imported into the engine and doesn't appear in your content
browser.
To access it in the engine, you create a File Media Source asset that points to the2.
media file on disk.
Media is played through a Media Player object that you can control through3.
Blueprint calls.
Media Texture assets sample the video from their associated Media Player.4.
These are included in materials.
MediaSound components on objects play audio from their associated Media5.
Player. These are usually added to the object acting as a screen in your scene.

Displaying Media in VR Chapter 9

[449]

Going deeper with the playback material
Let's take a look at a few things we can do with our media playback materials. The right
choices to make here entirely depend on what effect you're trying to create, so we'll talk
about a few things you might want to do, but you'll want to decide on your own whether
they fit what you're going for.

The first thing we need to talk about is how the screen responds to light. The material we
created for our Media Texture uses the Default Lit shading model. What this means is that
lights in the environment that fall on this material will affect it as they normally would. If
the aesthetic effect you're going for is that this is a physical screen in the space, this may be
exactly what you want, but if the purpose of your application is to show the media itself,
you may not want any stray light falling on the screen and changing the way its colors
appear to the viewer.

Let's take a look at what we're talking about. From your Modes panel, drag a Point Light
onto the scene and put it right in front of your screen:

Displaying Media in VR Chapter 9

[450]

You'll see that the light creates a specular highlight on the screen, just as it would for any
other surface in the scene. Things get worse if we turn off the rest of the lights in the scene.
Now, parts of our screen are going dark, while others are obscured by the highlights from
our remaining lights.

If this is how we want it, that's fine, but if it isn't, we can correct this by changing our
material to use an unlit shading model and feeding the video signal into its emissive
channel. Let's give it a try:

Open your media material.1.
With the output node selected, change the material's Details | Material |2.
Shading Model from Default Lit to Unlit:

You'll see that its Base Color input becomes disabled. Alt + click that input to3.
disconnect your Texture Sample from it.
Feed the results of your texture sample into the material's Emissive Color input4.
instead.

Displaying Media in VR Chapter 9

[451]

Save the material and return to your scene. Now, because your material uses the Unlit
model, it's no longer affected by lights in the world. The media appears exactly as it does in
its source:

Displaying Media in VR Chapter 9

[452]

Adding additional controls to our video
appearance
We can also use our material graph to exercise a lot of additional control over how the
video signal appears. Let's take a look at this:

Return to your material.1.
Hold down the S key and click in the workspace to create a scalar parameter.2.
Name it Brightness and set its default value to 1.0.
Hold the M key and click to create a multiplier node.3.
Multiply your output of Texture Sample by the Brightness parameter you just4.
made.
Hold the S key and click to create another scalar parameter. Name this one5.
Contrast and leave its default at 0.0.
Right-click in the graph and create a CheapContrast_RGB node.6.
Connect the result of the Multiply node to its In (V3) input, and feed your7.
Contrast parameter into its Contrast input.
Feed the result into the material's Emissive Color input:8.

Displaying Media in VR Chapter 9

[453]

As you can see, we've now created a simple material that uses two scalar parameters to
allow our user to control the image's brightness and contrast.

Let's create a material instance from this material so that we can see the effect of these
parameters in real time:

Right-click your material in the Content Browser and select Material Instance1.
Actions | Create Material Instance.
Drag the material instance onto your screen to assign it to the object.2.
Open the material instance and try changing the Brightness and Contrast3.
values you just created. (Remember that you need to check the box beside a
parameter to enable modification.)
Switch the material's preview mesh to a cube primitive so that you can see what4.
you're doing more easily:

Displaying Media in VR Chapter 9

[454]

There's quite a lot we can do here, and we encourage you to explore and learn more about
what you can do.

Now that you know the basics of playing video in Unreal Engine, let's start diving into
some VR-specific work and learn how to display video in stereo 3D.

Displaying stereo video
Let's begin by creating another map to hold our stereo video screen. With your
MoviePlayback2D scene open, hit File | Save Current As... and save the map as
MoviePlayback3D.

Now, we need to find a stereo video file to test with. They're out there on the web, but they
can be challenging to find since we need to download ours. stereomaker.net has a few
example files here: http:/ / stereomaker. net/ sample/ . Let's pull down the Cycling in
Hibaya Park video from here. We can also find more example files here: http:/ /
photocreations.ca/ 3D/ index. html. Download the Bellagio Fountains, Las Vegas,
Nevada 3D 2048 x 2048 clip. This will give us a side-by-side stereo clip and an over/under
stereo clip that we can use for our experiments. The Hibaya clip is wrapped in an .AVI
container, but as long as we're running the clip on Windows, that will work. To run it on
another platform, we'd have to use an application such as Adobe Media Encoder or AVC to
convert it:

Place each of these files in your Content/Movies directory.1.
Create a File Media Source asset for each of your new video files. Again, it's2.
often easier to use a name for the file media source that matches the movie clip
on disk.

http://stereomaker.net/sample/
http://stereomaker.net/sample/
http://stereomaker.net/sample/
http://stereomaker.net/sample/
http://stereomaker.net/sample/
http://stereomaker.net/sample/
http://stereomaker.net/sample/
http://stereomaker.net/sample/
http://stereomaker.net/sample/
http://stereomaker.net/sample/
http://photocreations.ca/3D/index.html
http://photocreations.ca/3D/index.html
http://photocreations.ca/3D/index.html
http://photocreations.ca/3D/index.html
http://photocreations.ca/3D/index.html
http://photocreations.ca/3D/index.html
http://photocreations.ca/3D/index.html
http://photocreations.ca/3D/index.html
http://photocreations.ca/3D/index.html
http://photocreations.ca/3D/index.html
http://photocreations.ca/3D/index.html
http://photocreations.ca/3D/index.html

Displaying Media in VR Chapter 9

[455]

Now, open up your media player. You should see these new clips in its available file list,
and you should be able to play them. You should see two frames side-by-side, representing
the left and right stereo images (make sure you do this first test with a side-by-side stereo
video – we'll handle over/under later on):

The trick now will be to interpret the side-by side or over/under images as stereo images
and feed one frame to the left eye while we feed the other to the right.

We're going to handle that in our material. Specifically, what we want to do is modify the
texture coordinates we feed to the texture's UV map.

A UV map determines the way a texture aligns itself on a mesh in a 3D
space. By manipulating the texture coordinates we're using to apply
textures in our material, we can choose to display only parts of the texture
at a time.

Displaying Media in VR Chapter 9

[456]

Open up your media player material.

Since we want this material to be able to handle mono video sources as well, we're going to
use a Static Switch Parameter to switch between mono and stereo modes. This will allow us
to use this material as a master material but set up individual material instances that handle
whatever specific settings we want.

Static Switch Parameters are valuable tools that you can use to build a lot
of behavior into a master material, and derive material instances from it
that handle specific cases. As an added benefit, when those materials are
compiled, anything that's turned off by your static switches simply
doesn't even compile into the material instance, so you get it essentially
for free. What this means is that you can make fairly complex master
materials and only pay for the parts you use by using static switches to
turn off functionality that you're not using.

Let's add a switch to our material so that we can create a stereo path without messing up
our mono display:

Right-click in the material editing graph and create a Static Switch Parameter.1.
Name it SplitStereoMedia.
Right-click and create a Texture Coordinate node, and feed its output into the2.
switch parameter's False input. This will display in the graph as a
TexCoord node.

Now, it's time to split the image. When images are rendered to the VR headset, they're
rendered in two separate passes, and we can use this information to determine which side
of the image to display.

Displaying half of the video
To split the image, we first need to get access to the two separate axes of our texture
coordinates so that we can manipulate them individually:

Drag the output from the Texture Coordinate input and create a1.
BreakOutFloat2Components node from it.
Hold down the M key and click to create a Multiply node.2.
Connect the Break node's R output to the Multiply node's A input and set its3.
Const B parameter to 0.5.

Displaying Media in VR Chapter 9

[457]

Create an Append Vector node and connect the multiplier's output to the A4.
input, and the G output from the Break node to its B input.
Feed the result of the Append node into the Split Stereo Media switch's True5.
input.
Feed the result of the Switch node into the UVs input of Texture Sample:6.

What we've just done here is split our texture coordinates into two channels, labeled R and
G. We then cut the R channel in half while leaving the G channel alone, and then
reassembled the vector and told our texture sample to use the result to map the image to
the object it's applied to.

Let's test this to see what it does:

Open your scene's Level Blueprint. It should still contain the Open Source call to1.
the Media Player.
Switch its Media Source to your side-by-side video. Since we need a place to set2.
our Static Switch parameter, we need a new material instance to display our side-
by-side image.
Duplicate the material instance we made a moment ago when we adjusted our3.
contrast and brightness.
Name this one MI_MediaPlayer_SBS or something similar to remind us that it's4.
intended to display side-by-side stereo media.
Open it up and set its SplitStereoMedia switch parameter to true.5.
Assign it to your screen object.6.

Test it out. You should now see only the video's left frame displayed on the screen. You
won't see any stereo depth yet since we're still displaying the same image to each eye.

Displaying Media in VR Chapter 9

[458]

Displaying a different half of the video to each
eye
Now, let's get the right frame to display in the right eye:

Return to your material.1.
Right-click in the material graph and create a Custom node.2.
In its Code property, enter the following: return3.
ResolvedView.StereoPassIndex;.
Set its Output Type to CMOT Float 1.4.
Set its Description to StereoPassIndex.5.

This creates a Material Expression Custom node that will return a 0 when we're
rendering the left eye, and a 1 when we're rendering the right eye. We can use
this information to choose which half of the frame we display for each eye.

Hold down the M key and click to create a Multiply node.6.
Pass the output from StereoPassIndex into its A input, and set its Const B7.
parameter to 0.5:

Displaying Media in VR Chapter 9

[459]

Now, hold down the A key and click to create an Add node.8.
Feed the result of the multiplied R channel from the texture coordinates into its A9.
input.
Feed the result of the multiplied stereo pass index into its B input.10.
Feed the result of the Add node into the Append node's A input:11.

Test it again. You should now see stereo depth in the video image when you view it in your
VR headset.

Let's take a moment to make sense of what we just created here.

When we break our texture coordinates and modify the R value, we're modifying the
horizontal axis of the texture mapping. By multiplying it by 0.5, we're splashing half of the
texture over the entire surface of the mesh. The Stereo Pass Index node we made returns a
value of 0 for the left stereo pass, and 1 for the right stereo pass, so when we multiply this
value by 0.5, we get either a 0 for the left eye or an 0.5 for the right eye. When we then add
this value to our texture coordinate's R component, we're offsetting it by half its width. So,
when the left eye is rendered, it simply divides the texture space in half, and when the right
eye is rendered, it divides it in half and offsets it by half, displaying the right frame. This is
how we're getting our stereo image.

Displaying Media in VR Chapter 9

[460]

Displaying over/under stereo video
Modifying our material to handle over/under stereo video is fairly easy. We just need to do
our operation on the G channel instead of the R channel. Follow these steps to get started:

Reopen your media player material.1.
Create a new Static Switch Parameter node. Name it OverUnderStereo.2.
Ctrl + drag the SplitStereoMedia switch's True input to move it into the3.
OverUnderStereo switch's False input.
Connect the output from the OverUnderStereo switch to the SplitStereoMedia4.
switch's True input:

If OverUnderStereo is set to False, our material continues to use the side-by-side
split we set up a moment ago. Now, let's set up its behavior when this is set to
True.

Select the chain of nodes that includes the BreakOutFloat2Components node, all5.
the way to the Append node, and hit Ctrl + W to duplicate them.
Connect the R output from the BreakOut node directly to the Append node's A6.
input.
Connect the G output from the BreakOut node to the Multiply node's A input.7.
Connect the output from the Add node to the Append node's B input.8.

We've just swapped things, so we're now performing the same operation on the
vertical axis as we'd previously performed on the horizontal axis.

Feed the output of the Multiply node from your Stereo Pass Index into the new9.
Add node's B input.
Feed the Texture Coordinates into your BreakOut node's input.10.

Displaying Media in VR Chapter 9

[461]

Feed the output of the Append node into your OverUnderStereo switch's True11.
input:

This material can now handle mono, side-by-side stereo, and over/under stereo sources.

Now, let's test this out:

Close your material and in your Content Browser, duplicate one of the material1.
instances you've already made from it.
Ensure that its SplitStereoMedia parameter is set to True, and set its2.
OverUnderStereo parameter to True.
Assign it to your screen object in your scene.3.
Open your scene's Level Blueprint and switch the Media Source on your Open4.
Source node to your over/under stereo video.

Launch it into VR preview mode. We should now see our over/under stereo video playing
correctly.

Displaying 360 degree spherical media in VR
So far, we've done a decent job of reproducing 2D and 3D traditional screens in VR, but let's
take things a step further and do something we can't easily do in the outside world. One of
the most compelling and common uses of VR is to display immersive 360 degree video that
surrounds the viewer. Even in mono, this can create a fairly deep sense of presence in users,
and can be produced fairly easily using an ordinary camera and stitching software, or a
dedicated camera that's been purpose-built to create spherical images.

Displaying Media in VR Chapter 9

[462]

Displaying spherical media, for the most part, works exactly as it does on the flat screen,
but of course we'll need new geometry for our screen.

Finding 360 degree video
First, let's find a video to play. A few good options live here: https:/ / www.mettle. com/
360vr-master-series- free- 360- downloads- page/ .

The Crystal Shower Falls link takes us to a Vimeo page that allows us to download the
video. For our test here, the 1080p version should be fine:

Download the video and place it in your Content/Movies directory.1.
Create a File Media Source for your video.2.
Check it in your Media Player to be sure it plays.3.

Now, we need an environment to display it.

Create a new empty level and name it MoviePlayback2DSpherical (or4.
anything you like, really – it's your map).

Creating a spherical movie screen
Now, we're going to take an ordinary sphere and modify it to flip its normals inward so
that we can see our material while we're inside the sphere:

From your Modes panel, grab a Basic | Sphere actor and place it in your scene.1.
Look at its Details panel, and under Static Mesh, hit the Browse to Asset button2.
(the magnifier) to navigate the Content Browser to the sphere's static mesh.
We're going to make a copy of it.
Drag the Sphere static mesh from Engine Content/BasicShapes into your3.
project's Content directory (Content/Chapter08/Environments would be a
good choice). Select Copy Here to make a copy of the sphere.
Rename it MovieSphere.4.
Open it up.5.
From your Static Mesh editor, select the Mesh Editing tab.6.
Activate Edit Mode by hitting the toolbar button.7.
Drag to select all of the mesh's faces.8.

https://www.mettle.com/360vr-master-series-free-360-downloads-page/
https://www.mettle.com/360vr-master-series-free-360-downloads-page/
https://www.mettle.com/360vr-master-series-free-360-downloads-page/
https://www.mettle.com/360vr-master-series-free-360-downloads-page/
https://www.mettle.com/360vr-master-series-free-360-downloads-page/
https://www.mettle.com/360vr-master-series-free-360-downloads-page/
https://www.mettle.com/360vr-master-series-free-360-downloads-page/
https://www.mettle.com/360vr-master-series-free-360-downloads-page/
https://www.mettle.com/360vr-master-series-free-360-downloads-page/
https://www.mettle.com/360vr-master-series-free-360-downloads-page/
https://www.mettle.com/360vr-master-series-free-360-downloads-page/
https://www.mettle.com/360vr-master-series-free-360-downloads-page/
https://www.mettle.com/360vr-master-series-free-360-downloads-page/
https://www.mettle.com/360vr-master-series-free-360-downloads-page/
https://www.mettle.com/360vr-master-series-free-360-downloads-page/
https://www.mettle.com/360vr-master-series-free-360-downloads-page/
https://www.mettle.com/360vr-master-series-free-360-downloads-page/
https://www.mettle.com/360vr-master-series-free-360-downloads-page/
https://www.mettle.com/360vr-master-series-free-360-downloads-page/
https://www.mettle.com/360vr-master-series-free-360-downloads-page/
https://www.mettle.com/360vr-master-series-free-360-downloads-page/
https://www.mettle.com/360vr-master-series-free-360-downloads-page/
https://www.mettle.com/360vr-master-series-free-360-downloads-page/

Displaying Media in VR Chapter 9

[463]

Hit the Flip button to invert their normals:9.

Save it and close the Static Mesh editor.10.
Place an instance of your MovieSphere mesh in your level and delete the old11.
Sphere.
Set its Location to (X=0.0, Y=0.0, Z=0.0) and its Scale to (X=200.0, Y=200.0,12.
Z=200.0).
With the MovieSphere selected, set its Materials_Element 0 to your13.
MI_MediaPlayer_Mono material instance.
Hit Add Component, add a MediaSound component, and set its14.
associated Media Player to your media player.

Now, just as we did with our previous scenes, we need to tell the media player to
load our media.

Displaying Media in VR Chapter 9

[464]

In your map's Level Blueprint, create a variable named MediaPlayer, set its15.
Type to Media Player | Object Reference, compile it, and set its Default Value
to your Media Player.
Call Open Source on your Media Player variable with your new 360 video as its16.
Media Source.
Execute this call from your Event BeginPlay.17.

Test your scene. You should now see the movie playing all around you.

Playing stereoscopic 360 degree video
Now, we're going to do the same thing for stereoscopic 360 degree video. At the time of
writing, stereoscopic 360 degree video is much less common than its 2D counterpart, in
part because it consumes so much more disk space, and also because it's significantly more
difficult to produce, but it's reasonable to expect that things will continue to evolve.

In the meantime, we can find a viable test file here: https:/ /www. dareful. com/ products/
free-virtual-reality- video- sequoia- national- park- vr- 360-stereoscopic.

As always, download the file, put it in your Content/Movies directory, create a File Media
Source asset that points to it, and test it in your Media Player to ensure that it plays on your
system.

Next, let's make a copy of our 2D spherical test map to use for our 3D test:

Take the MoviePlayback2DSpherical map and hit File | Save Current As... to1.
MoviePlayback3DSpherical.
Select the MovieSphere asset and change its assigned material to your2.
OverUnder material instance.
Open the level blueprint and change the Open Source node to point to our new3.
file.

Let's test it. We have spherical 3D, but our stereo is flipped (on this file, at least). Everything
that should be close looks far away. We can correct this by adding another option to our
master material:

Open your media master material.1.
Add a new Static Switch Parameter and name it FlipStereo.2.
Drag the output from your StereoPassIndex node into the FlipStereo switch's3.
False input.

https://www.dareful.com/products/free-virtual-reality-video-sequoia-national-park-vr-360-stereoscopic
https://www.dareful.com/products/free-virtual-reality-video-sequoia-national-park-vr-360-stereoscopic
https://www.dareful.com/products/free-virtual-reality-video-sequoia-national-park-vr-360-stereoscopic
https://www.dareful.com/products/free-virtual-reality-video-sequoia-national-park-vr-360-stereoscopic
https://www.dareful.com/products/free-virtual-reality-video-sequoia-national-park-vr-360-stereoscopic
https://www.dareful.com/products/free-virtual-reality-video-sequoia-national-park-vr-360-stereoscopic
https://www.dareful.com/products/free-virtual-reality-video-sequoia-national-park-vr-360-stereoscopic
https://www.dareful.com/products/free-virtual-reality-video-sequoia-national-park-vr-360-stereoscopic
https://www.dareful.com/products/free-virtual-reality-video-sequoia-national-park-vr-360-stereoscopic
https://www.dareful.com/products/free-virtual-reality-video-sequoia-national-park-vr-360-stereoscopic
https://www.dareful.com/products/free-virtual-reality-video-sequoia-national-park-vr-360-stereoscopic
https://www.dareful.com/products/free-virtual-reality-video-sequoia-national-park-vr-360-stereoscopic
https://www.dareful.com/products/free-virtual-reality-video-sequoia-national-park-vr-360-stereoscopic
https://www.dareful.com/products/free-virtual-reality-video-sequoia-national-park-vr-360-stereoscopic
https://www.dareful.com/products/free-virtual-reality-video-sequoia-national-park-vr-360-stereoscopic
https://www.dareful.com/products/free-virtual-reality-video-sequoia-national-park-vr-360-stereoscopic
https://www.dareful.com/products/free-virtual-reality-video-sequoia-national-park-vr-360-stereoscopic
https://www.dareful.com/products/free-virtual-reality-video-sequoia-national-park-vr-360-stereoscopic
https://www.dareful.com/products/free-virtual-reality-video-sequoia-national-park-vr-360-stereoscopic
https://www.dareful.com/products/free-virtual-reality-video-sequoia-national-park-vr-360-stereoscopic
https://www.dareful.com/products/free-virtual-reality-video-sequoia-national-park-vr-360-stereoscopic
https://www.dareful.com/products/free-virtual-reality-video-sequoia-national-park-vr-360-stereoscopic
https://www.dareful.com/products/free-virtual-reality-video-sequoia-national-park-vr-360-stereoscopic
https://www.dareful.com/products/free-virtual-reality-video-sequoia-national-park-vr-360-stereoscopic
https://www.dareful.com/products/free-virtual-reality-video-sequoia-national-park-vr-360-stereoscopic
https://www.dareful.com/products/free-virtual-reality-video-sequoia-national-park-vr-360-stereoscopic
https://www.dareful.com/products/free-virtual-reality-video-sequoia-national-park-vr-360-stereoscopic
https://www.dareful.com/products/free-virtual-reality-video-sequoia-national-park-vr-360-stereoscopic
https://www.dareful.com/products/free-virtual-reality-video-sequoia-national-park-vr-360-stereoscopic
https://www.dareful.com/products/free-virtual-reality-video-sequoia-national-park-vr-360-stereoscopic

Displaying Media in VR Chapter 9

[465]

Create a OneMinus node, drag the output from StereoPassIndex into its input,4.
and connect its output to the FlipStereo switch's True input.
Connect the FlipStereo switch's output to the Multiply node:5.

What we've done here is simply set up an option so that if FlipStereo is true, we'll receive a
1 for the left eye and a 0 for the right eye instead of the other way around.

Now, let's create another material instance to hold this option setting and apply it to our
sphere:

Duplicate your OverUnder material instance and name it something like1.
MI_MediaPlayer_OverUnderFlipped.
Open up the new material instance and set its FlipStereo parameter to True.2.
Apply it to your movie sphere:3.

Displaying Media in VR Chapter 9

[466]

Test the map – you should now be seeing the stereo imagery sorted correctly.

Spend some time looking around. This video runs at a fairly high bitrate, so you may
experience occasional frame drops and there are a few perspective glitches, but the stereo
effect is pretty compelling. It's clear that we're going to be able to do some astonishing work
as this tech evolves.

Controlling your Media Player
Before we wrap things up for this chapter, let's give our players a few ways to control their
Media Player.

We could do this work from within the level blueprint, and that's what we've been doing so
far, but that's not an ideal solution if we're going to have multiple maps in our project.
We're going to wind up copying and pasting Blueprint code from one level to another, and
if we update one of them, we have to remember to update the rest. This is bad practice.

Displaying Media in VR Chapter 9

[467]

A much better idea is to create a manager actor that contains all the code we need to
manage our media player, and that we can just drop into any level that needs to support it.
This way, we're writing our code once, and as we update it, the effects are seen everywhere.
Let's do this.

Creating a Media Manager
Let's create a new Blueprints subdirectory inside our project's content directory:

Right-click inside it and select Create Basic Asset | Blueprint Class.1.
For its Parent Class, select Actor.2.
Name it BP_MediaManager.3.

Up until this point, we've been using our level blueprints to open media on our media
player. We're going to move that functionality into our media manager first:

Open up BP_MediaManager.1.
Create a new variable named MediaPlayer and set its Type to Media Player |2.
Object Reference.
Compile it and set its default value to your media player.3.
Create another new variable named FileMediaSource and set its Type to File4.
Media Source | Object Reference.
Set Instance Editable to True for this variable since we're going to need to set5.
different values on it for each map.
Set its Category to Config so that it's clear to the user that they have to edit this6.
value.

Now that we've set up our variables, let's use this actor's BeginPlay to load our media. To
start with, we're just going to recreate what we've already been doing in our level
Blueprints:

Open the Event Graph of BP_MediaManager.1.
Ctrl + drag the MediaPlayer variable onto the graph.2.
Call Open Source on it.3.
Ctrl + drag your File Media Source variable onto the graph.4.
Right-click it and select Convert to Validated Get. (We don't want to try and5.
open a file media source if we haven't set it yet.)
Drag the execution line from Event BeginPlay into your File Media Source Get.6.

Displaying Media in VR Chapter 9

[468]

Drag the getter's Is Valid execution line into your Open Source call's execution7.
input.
Drag the output of GET into your Open Source call's Media Source input.8.
Right-click and create a Print String node.9.
Set its In String value to Media Manager's file media source is not set!.10.
Drag the Is Not Valid execution line of GET to the Print String we just created:11.

Now, if we place this actor in any level and set its File Media Source, it will start playing
that source on the project's Media Player. If there's an object in that level with a material
reading a Media Texture that points to this media player, whatever we're playing will show
up there.

Whenever you set up a system that could fail if the developer or user fails
to do something, as is the case here with our File Media Source variable,
get in the habit of using validated gets and printing out warnings if the
get fails. You'll save yourself a lot of debugging time if you train yourself
to write code that tells you on its own when something is wrong.

Displaying Media in VR Chapter 9

[469]

Now, let's put a Media Manager in our current level and replace the work we're doing in
the Level Blueprint:

Drag an instance of BP_MediaManager into your scene and zero out its1.
Location.
Set its Config | File Media Source to whichever media source you were2.
previously playing in the scene.
Open the scene's Level Blueprint and delete the code we previously put there on3.
BeginPlay.
Test the scene. The media should still play, but now the Media Manager is4.
handling opening the source.

Repeat this for your other test levels so that they're all using the Media Manager blueprint.

Now that each of our levels is using an instance of our Media Manager class to operate the
Media Player, we can much more easily add functionality that will apply everywhere.

Let's do this now.

Adding a Pause and Resume function
Let's give our users a way to pause and play the video:

Open BP_MediaManager.1.
In its Details panel, set Input | Auto Receive Input to Player 0 and Block Input2.
to True.
Right-click in its Event Graph and select Input | Keyboard Events | Space Bar3.
to create a new keyboard event.
Right-click again and select Input | Gamepad Events | MotionController (R)4.
Trigger to create another input event.
Ctrl + drag your media player variable onto your graph.5.
Drag its output and create an Is Playing node.6.
Connect a Branch node to the Is Playing node's result.7.
Connect the Pressed execution line of Space Bar to the Branch node's execution8.
input. Do the same for the Trigger input.
Drag another connector from your Media Player variable and create a Pause9.
node for it.
Connect your Branch node's True execution line to the Pause node's execution10.
input.

Displaying Media in VR Chapter 9

[470]

Drag another connector from the Media Player variable (or create a reroute node11.
and branch from it) and create a Play call.
Connect the Branch node's False execution line to the Play node:12.

We've done a few things here that are worth talking about.

First, we're using a different means of capturing keyboard and motion controller input than
we previously have. For everything we've done up until now, we've relied on the Project
Settings and the DefaultInput.ini file to capture input from our hardware devices and
remap it to named input events. In truth, this remains a better way to do it, but we wanted
to show you another way it could be done. Very often, it can make sense to prototype your
systems using input events mapped directly in your Blueprints like this one, and then once
you've got your systems worked out, move them into your Project Settings so it's easier to
remap them for different controllers.

It's important to note as well that this object is only able to hear input because we set its
Auto Receive Input. Otherwise, it won't listen for input from other devices by default.

What we're doing here is querying the Media Player to see whether it's playing anything at
present, pausing it if it is, and playing it if it isn't.

While we're not going to cover it here because it would become a project
on its own, if you wanted to create a button-based user interface and use a
widget interaction component to allow the user to interact with the
controls, you could do so by having this Media Manager object own the
interface and using the button events to manage the media player's
behavior.

Displaying Media in VR Chapter 9

[471]

This is a fairly simple example, but it demonstrates a few ways you can interact with a
media player. You can query its status, control playback, open new media, and even assign
events to it so that it responds when it finishes loading media.

Assigning events to a media player
Let's demonstrate a way we can use an event on our media player. We're going to turn off
our Media Player's Play on Open setting, and instead have our Media Manager play a file
once it's finished opening. This is an important pattern to learn because large media files
won't be ready to play immediately after you call Open Source. Depending on how big they
are and how fast the hard drive they're stored on is, they're going to take a moment to
open, so it's good practice after you open a file to instruct your media player to listen for
when the file finishes loading, and to start playing it then.

In practice, the Play on Open setting already does this, but it's valuable for you to learn
about this pattern so that you can use it when you need to do something more complex
with your media player.

Let's set it up:

Open your media player asset and turn off its Play on Open setting.1.

If you test one of your maps now, you'll see that the media no longer plays until
you tap the spacebar or pull the trigger to start it.

Open BP_MediaManager and find the Open Source call you're making on Event2.
BeginPlay.
Connect a Branch node to its Return Value.3.

The Open Source call is going to return True if it found the file to open and is
will opening it, and False if it couldn't. We only want our Media Player to wait for
the file to open if we know it's actually opening it.

Drag a connector from your Media Player variable and select Media | Media4.
Player | Bind Event to OnMediaOpened.
Drag a connector from the Bind node's Event input and select Add Event | Add5.
Custom Event.
Name it MediaOpened.6.
Drag a connector from your Media Player variable and call Play on it.7.

Displaying Media in VR Chapter 9

[472]

Connect the execution output from your custom event to the Play call's input:8.

Test it. Your media should play when it finishes opening. In practice, it will behave exactly
as it did when Play on Open was still true, but there's some important stuff to talk about
here.

Most function calls will continue their execution only when they've finished whatever job it
was they were supposed to do. Open Source is a little different. This is what's known as an
Async Task. When you call Open Source, the execution will continue immediately, but the
task itself will take an indeterminate amount of time to finish. You'll run into this a lot
when opening large files, accessing URLs on the web, or doing any other task where you
really don't know when you begin how long it's actually going to take. An asynchronous
(Async) task starts up when you call it, and then finishes at some point in the future. The
object that you call an Async task on is pretty much always going to have some sort of
event it throws when the task finishes so that you can do whatever you need to do when it's
done.

In the case of the Open Source task on a Media Player object, the OnMediaOpened event
is called when the source finishes opening. By binding a custom event to this event, we're
telling it to trigger that event in our blueprint when the media finishes opening, and call the
Play method on the media player when this happens.

When creating custom events for bindings, it's a good idea to create them
by dragging out the event connector and creating the custom event from
there, as we did in this example. This is because many bindings will
require that their bound events include certain inputs (this is called a
signature), and if you just create a basic custom event that doesn't match
the required signature, it won't let you bind it. If you create your custom
events directly from the event connector, it will automatically set up the
correct signature for you. In this case, the bound event for
OnMediaOpened is required to pass an Opened URL argument.

Displaying Media in VR Chapter 9

[473]

This is an important pattern and it's worth learning. Video files are big, and sometimes
operations on them are going to take time. Get to know the events you can bind on your
media player objects, and make sure you're doing whatever it is you're trying to do once
you know the job has finished and succeeded.

You will, at some point in your travels, come across a developer who
handles asynchronous tasks by putting delays into their blueprints. They
will discover through trial and error that the call they're trying to make
works if they delay it and fails if they try to do it immediately, so they just
stick a delay on there with some random duration and call the bug fixed.
You, however, are not going to do this. It's amateur hour stuff, and will
just fail later on if they try to open a larger file or something else changes.
The correct way to deal with async tasks is always to find out what event
gets called when they finish, and then bind whatever else you need to do
to that event. Never use a delay to solve a problem unless you can
describe in positive terms why you know the delay is the correct solution.
The correct solution is almost always a bound event that will work no
matter how long the task takes.

You've now seen examples of each of the ways you can interact with a media player object.
We've polled its status, made calls to it, and bound additional code to its events so that we
can respond when the media player tells us something has happened. There's more you can
do with media players, and we encourage you to play with this. Try binding an event to its
OnEndReached, or some other bindable event. Try using Get Time and Duration calls on
the Media Player to create a progress bar. There's a lot you can do with this.

Summary
In this chapter, we learned a lot about how video files play in Unreal Engine. We learned a
bit about containers and codecs and how to understand what a video file contains, and then
we learned a variety of ways to play them back, both on flat screens and on spheres. We
learned how we can create materials to display 3D video as well as 2D, and learned how to
create a media manager class to manage their playback.

In the next chapter, we're going to learn about how multiplayer networking works in
Unreal.

10
Creating a Multiplayer

Experience in VR
In this chapter, we're going to move into some more advanced territory. Multiplayer
software is significantly more complicated to write than single-player applications. There's
no way around the reality that to write successful multiplayer code, you have to build a
clear mental model of what's going on and how your data is getting from one computer to
the other. The good news is that's what we're here to do. We're going to be dropping a lot
more theory in this chapter than we usually do, and the reason for this is that if we simply
walked you through the steps of setting up a networked application, that's really not going
to help you. You have to understand how networking works to understand how you need
to build your application. But don't worry—we'll try to alternate between theory and
practical examples so you can build a hands-on understanding of how this stuff works.

We also need to be clear that networking is a big topic and it's fairly advanced. We're not
going to have space in this chapter to go over every dark corner of the art, but we'll
consider it a success if you finish this chapter with a good understanding of how
networked applications fit together, what the major parts are, and how information most
commonly moves around. If you come away with this understanding in a reasonably clear
state, you'll be set up well to understand what you're seeing as you learn more about this
topic.

Creating a Multiplayer Experience in VR Chapter 10

[475]

In this chapter, we're going to learn to do the following:

Work with Unreal's client-server model to ensure that important gameplay
events happen on the server
Replicate actors from the server to connected clients
Replicate variables and call functions automatically when their values change
Create a pawn that looks more different to the owning player than it does to
other players
Use remote procedure calls to call events on remote machines

Let's jump in!

Testing multiplayer sessions
Before we get into the weeds talking about how networking works, let's learn how to
launch a multiplayer session. There are a number of ways you can do this. The easiest is to
launch the multiplayer session directly from within your editor, and most of the time when
you're testing network replication, this is going to be fine. For more comprehensive tests, or
if you need one of the sessions to run in VR, you can launch two separate game sessions
and connect them to each other. We'll show examples of how to do this a little later on
when we discuss session types.

Testing multiplayer from the editor
Fortunately, the Unreal editor makes it fairly easy to set up a multiplayer session from
within the editor on a single machine. To perform this test, we're going to use the Content
Examples project:

If you haven't already downloaded the Content Examples project, do so
now by selecting Content Examples | Create Project from the Unreal
Engine | Learn tab in your Epic Games Launcher. You should get into the
habit of always keeping a current version of Content Examples installed
on your system and using it for reference.

Open the Content Examples project and open the Network_Features level.1.

Creating a Multiplayer Experience in VR Chapter 10

[476]

Select the dropdown beside your toolbar's Play button and set the Multiplayer2.
Options | Number of Players to 2. Refer to the following screenshot:

Creating a Multiplayer Experience in VR Chapter 10

[477]

Select New Editor Window (PIE) to launch a multiplayer session as shown in the3.
following screenshot (unfortunately, we can't use the multiplayer options to
support a multiplayer VR session on a single machine):

Explore the scene playing as both server and client. Notice the differences between what
appears on the server and what appears on the client. We're going to look at these things in
greater depth shortly:

Creating a Multiplayer Experience in VR Chapter 10

[478]

In this example, the ghost on the left is visible on the server but not on the client because it has not been set to replicate to clients.

Take some time to understand what each of these displays is telling you in the context of
what we've described so far, but don't worry if some things are still fuzzy—we're going to
make more use of these ideas in our upcoming exercises.

For additional information about multiplayer-testing options in-editor, refer to the
documentation here: https:/ /docs. unrealengine. com/ en- us/Gameplay/ HowTo/
Networking/TestMultiplayer.

https://docs.unrealengine.com/en-us/Gameplay/HowTo/Networking/TestMultiplayer
https://docs.unrealengine.com/en-us/Gameplay/HowTo/Networking/TestMultiplayer
https://docs.unrealengine.com/en-us/Gameplay/HowTo/Networking/TestMultiplayer
https://docs.unrealengine.com/en-us/Gameplay/HowTo/Networking/TestMultiplayer
https://docs.unrealengine.com/en-us/Gameplay/HowTo/Networking/TestMultiplayer
https://docs.unrealengine.com/en-us/Gameplay/HowTo/Networking/TestMultiplayer
https://docs.unrealengine.com/en-us/Gameplay/HowTo/Networking/TestMultiplayer
https://docs.unrealengine.com/en-us/Gameplay/HowTo/Networking/TestMultiplayer
https://docs.unrealengine.com/en-us/Gameplay/HowTo/Networking/TestMultiplayer
https://docs.unrealengine.com/en-us/Gameplay/HowTo/Networking/TestMultiplayer
https://docs.unrealengine.com/en-us/Gameplay/HowTo/Networking/TestMultiplayer
https://docs.unrealengine.com/en-us/Gameplay/HowTo/Networking/TestMultiplayer
https://docs.unrealengine.com/en-us/Gameplay/HowTo/Networking/TestMultiplayer
https://docs.unrealengine.com/en-us/Gameplay/HowTo/Networking/TestMultiplayer
https://docs.unrealengine.com/en-us/Gameplay/HowTo/Networking/TestMultiplayer
https://docs.unrealengine.com/en-us/Gameplay/HowTo/Networking/TestMultiplayer
https://docs.unrealengine.com/en-us/Gameplay/HowTo/Networking/TestMultiplayer
https://docs.unrealengine.com/en-us/Gameplay/HowTo/Networking/TestMultiplayer
https://docs.unrealengine.com/en-us/Gameplay/HowTo/Networking/TestMultiplayer
https://docs.unrealengine.com/en-us/Gameplay/HowTo/Networking/TestMultiplayer

Creating a Multiplayer Experience in VR Chapter 10

[479]

Understanding the client-server model
Now that we have a running test we can play with, let's get a bit of theory out of the way. It
wouldn't be a bad idea to leave this test level open and explore it while we talk about this
next concept.

To understand how multiplayer gameplay works in Unreal, you first need to understand
how information moves between the connected game sessions and how changes are made
to the game environment. There's no way around this. To write multiplayer code
successfully, you have to build a clear mental model of what's going on, or you'll wind up
hitting a lot of walls. Multiplayer is challenging to debug—if something doesn't work, you
can't simply set a breakpoint in your blueprint and trace through to see what happened.
Very often, all you'll know is that a bit of information you thought should have gone to the
other machine never got there. If you take the time to understand how networking works,
you'll have a much easier time figuring out what's gone wrong when something doesn't
work as you expected it to. Multiplayer is absolutely not something you can debug by
stabbing in the dark.

So, let's learn how networking in Unreal works.

To begin thinking about this, let's imagine a scenario. Let's say you've created a multiplayer
shooter, and two players have joined a session and are both playing. One of the players
aims and fires, and now we need to show both players what happened.

Sounds simple enough at first, but it isn't.

Player A is aiming, but this is happening on player A's game instance. How does player B's
game instance know where player A is at all, let alone where they're aiming? Player A fires.
How does player B's game instance find out that this happened? Now, someone needs to
figure out whether player A's shot hit player B's avatar. Who figures out whether the shot
hit? What if player B is on a slow network connection and the information about where
player A was aiming hasn't gotten there yet? If both game instances were allowed to decide
whether the shot hit, they wouldn't agree. Whose opinion would win?

The answer to the first question—how does player B's game instance know about player
A's movements and actions—is handled through a process called replication. When player
A moves, their avatar's movement is replicated to player B's game instance, and when
player B moves, their movement is replicated to player A's game instance.

The answer to the last question—who decides whether the shot hit—is handled by the
server, and it's worth taking some time to understand this.

Creating a Multiplayer Experience in VR Chapter 10

[480]

Unreal Engine uses a client-server model of network management. What this means is that
only one of the game instances connected to a game session is actually allowed to make
important decisions about what's really happening. The server is authoritative, and the
clients are not. If the server and a client come to two different conclusions about a thing that
just happened, the server's opinion is the one that gets used.

In a peer-to-peer model, everybody would be equal. Peer-to-peer network
architectures are relatively easy to set up, but they come at a high cost:
when one of the connected peers gets out of sync with the other, nobody
knows which one's state is actually true. That may be fine for a demo or a
class project but would be absolutely unacceptable in an environment
where players actually cared about the outcomes. We need to know
without question what the actual state of the game and all its players is,
and the client-server model gives us a reliable way to do this.

Here's what actually happens:

Player A moves, and their movement is replicated to the server, which replicates1.
their movement to all the other connected game instances.
Player B and any other connected players see a proxy in their game sessions,2.
which shows them where the server says player A's avatar is.
When player A aims and fires, player A's client actually sends a request to the3.
server telling it that it wants to fire, and the server makes the actual
determination of whether it can.
If the server determines that player A has ammo, is in the right state, or whatever4.
the game rules specify, it fires the weapon and tells all the connected game
instances that it did.
The server has also been receiving player B's replicated movement, so it has the5.
information it needs to figure out whether player A's shot hit.
If it determines that it did, it decreases player B's health or does whatever it6.
needs to do to respond to this event and tells all the connected clients that player
B was hit.

Creating a Multiplayer Experience in VR Chapter 10

[481]

Each client then updates its local state information, plays hit animations and7.
effects, and updates its UI:

The top panel represents the server's view, while the bottom panel is the client's view. Lines have been added to indicate objects whose states can change and need to be replicated
to clients.

Unreal's network architecture is astonishingly efficient, which is why a game such
as Fortnite can run in real-time even when a large number of players are simultaneously
connected. There are a number of reasons for this, and many of them are under your
control as a developer. We'll cover a few of the important ones in depth later on in the
chapter.

Now, let's take a closer look at a few important concepts.

Creating a Multiplayer Experience in VR Chapter 10

[482]

The server
The term server refers to the network authority in a multiplayer environment. You'll hear
these terms used interchangeably. Technical documentation will tend to use the
term network authority, as that describes more precisely what it really is, while most of the
other material you read will call it the server. Both refer to the same thing.

A great deal of the time, when something goes wrong in your networked
application, it's going to be because you allowed a client to try to change
the game state when instead it needed to ask the network authority to
make the change.

The architecture works like this: the server hosts the game and allows multiple clients to
connect to it and communicate data back and forth. Communication happens between
clients and the server, and clients almost never communicate directly with one another:

Creating a Multiplayer Experience in VR Chapter 10

[483]

When a player performs an action, information about what the player is doing or wants to
do is sent from that player's client to the server. The server validates this information and
responds, telling the connected clients what it decided.

If, for example, you move your player avatar in a multiplayer game, you're not really
moving your avatar locally at all. Instead, your client will tell the server that you want to
move, and the server will then determine how you've moved and replicate your new
position back to your client and to the other connected clients.

This is true for seemingly-direct messages between clients as well. If you send a chat
message to another client, you're actually sending it to the server, and then the server
decides which client or group of clients should receive it.

The server, as we mentioned previously, is the network authority responsible for
maintaining the actual authoritative state of the multiplayer session. This idea of authority
is one of the most important concepts to grok about networking and you're going to see
when we get to the practical examples that we check for authority with almost everything
we do. If you keep clear in your mind who should be allowed to make a change and you
check to make sure that any change really is being made by the entity allowed to make it,
you'll be ahead of the game.

A good rule of thumb to follow is this: if any other player would care
about this change, it belongs on the server. If nobody else would care, do
it locally. So, if you're playing a visual effect that doesn't matter to the
game, don't bother running it on the server, but if you're changing a
player's health or moving them around, do that on the server, since
everybody else is going to need to agree on it.

In addition to ensuring that there's only one description at a time of anything important to
the game, there's another reason why it's important to maintain a single network authority,
and that is to ensure that a player can't easily cheat by modifying their client. When
important decisions are left to the server, the server can fairly easily override results on a
hacked client. If the player wants to fire a weapon, make sure their client tells the server
about it, and let the server decide whether they have enough ammo and are allowed to take
the shot. Never process an important gameplay event directly on the client. Only let them
happen once the server allows it. Never trust the client.

Creating a Multiplayer Experience in VR Chapter 10

[484]

Listen servers, dedicated dervers, and clients
There are three fundamental types of game session that can be running in an Unreal
networked environment: two types of servers and one client type.

Listen servers
When you run a listen server, your machine is acting as the host for the game session and
as the authority over that game session, but it is also running a client. If you've ever set up a
networked game in Unreal, it may have looked as though you were running a peer-to-peer
session, but this is what was really going on. The listen server is pretty much invisible to
the local player—it doesn't look like a separate running process, but it actually is separate
from the local client exactly as it would be if it were on another machine.

The following command-line arguments will launch a listen server using uncooked editor
data:

UE4Editor.exe ProjectName MapName?Listen -game

Often, your easiest way to use these commands will be to create shortcuts containing the
arguments, or to write a simple .bat file.

The following .bat file will launch a listen server using the Content Examples project's
Network_Features map:

set editor_executable="C:\Program Files\Epic
Games\UE_4.21\Engine\Binaries\Win64\UE4Editor.exe"
set
project_path="D:\Reference\UE4_Examples\ContentExamples\ContentExamples.upr
oject"
set map_name="Network_Features"

%editor_executable% %project_path% %map_name%?listen -game -log -WINDOWED -
ResX=1280 -ResY=720 -WinX=32 -WinY=32 -ConsoleX=32 -ConsoleY=752

In this example, we're setting variables for our executable location, project path, and map
name just to make the file easier to read and edit. We're also turning on the log and setting
the window sizes and locations explicitly to make it easier to see what's going on and fit
other sessions on the screen.

Creating a Multiplayer Experience in VR Chapter 10

[485]

Dedicated servers
A dedicated server does not have a client running in the same session. It doesn't accept
input or render output, and because of this it can be optimized to run less expensively than
a listen server. Because dedicated servers are so much smaller than full game clients since
they don't need to include anything that's going to be rendered to the player, you can fit
many of them on a single machine for hosting. Your existing game executable can be told to
run itself as a dedicated server, or developers have the option to compile a separate
executable for dedicated servers, which can further deter cheating and can make the
executable's footprint on the disk much smaller.

This command will launch a dedicated server using editor data:

UE4Editor.exe ProjectName MapName -server -game -log

Note that we've chosen to turn on the log for this session. This is because dedicated servers
don't open a rendering window, so a visible log becomes essential for knowing what it's
doing.

We could modify the preceding .bat file to launch a dedicated server:

set editor_executable="C:\Program Files\Epic
Games\UE_4.21\Engine\Binaries\Win64\UE4Editor.exe"
set
project_path="D:\Reference\UE4_Examples\ContentExamples\ContentExamples.upr
oject"
set map_name="Network_Features"

%editor_executable% %project_path% %map_name% -server -game -log

In this example, we replaced the ?listen directive with a -server argument, and of
course we didn't need any of the window placement specifications, since a dedicated server
won't open a game window.

Clients
A client is the point of contact between a networked application and the player. The client
may be running on the same system as the server if we're using a listen server, or it may
stand entirely on its own if it's connected to a remote host or to a dedicated server. The
client is responsible for accepting input from the player, communicating that input to the
server via remote procedure calls (RPC), and receiving new information about the
gamestate from the server via replication.

Creating a Multiplayer Experience in VR Chapter 10

[486]

The following command will launch a client:

UE4Editor.exe ProjectName ServerIP -game

Note that in the preceding example, ServerIP is the IP address of the server to which
you're trying to connect. If you're connecting to a server running on your own machine for
testing, the default home address of 127.0.0.1 will connect to a server running on the
local machine.

This .bat file will launch a client that connects to a server running on the same machine:

set editor_executable="C:\Program Files\Epic
Games\UE_4.21\Engine\Binaries\Win64\UE4Editor.exe"
set
project_path="D:\Reference\UE4_Examples\ContentExamples\ContentExamples.upr
oject"

%editor_executable% %project_path% -game 127.0.0.1 -log -WINDOWED -
ResX=1280 -ResY=720 -WinX=1632 -WinY=32 -ConsoleX=1632 -ConsoleY=752

Again, the -log and window size arguments are entirely optional—it just makes it easier to
test multiplayer sessions if you set up your shortcuts to place your windows out of each
other's way when they start up.

Now that we've done a bit of preliminary experimentation and talked about a few
fundamental ideas, let's set up our own test project so we can perform our own
experiments.

Testing multiplayer VR
To test multiplayer in VR, you're generally going to need two separate PCs on the network.
It is sometimes possible to test multiplayer VR on a single machine, but some VR headset
drivers will automatically send a quit signal to a running 3D application when a second one
starts up.

As of Unreal 4.21, the HTC Vive plugin automatically shuts down an
existing Unreal session if a second one starts up. (The code that does this
lives in FSteamVRHMD::OnStartGameFrame(), but unfortunately there's
no easy way for users of the installed binaries to change this behavior.)
The Oculus HMD plugin does not automatically quit existing sessions, so
if you're using an Oculus Rift, you'll likely be able to test multiplayer on a
single machine, but if you're using a Vive, you'll need two PCs.

Creating a Multiplayer Experience in VR Chapter 10

[487]

If you'd like to give it a shot, simply add the -vr keyword to any launch string.

A server launch string would look something like this:

%editor_executable% %project_path% %map_name%?listen -game -vr -log -
WINDOWED -ResX=1280 -ResY=720 -WinX=32 -WinY=32 -ConsoleX=32 -ConsoleY=752

And, a client launch string would look something like this:

%editor_executable% %project_path% -game -vr 127.0.0.1 -log -WINDOWED -
ResX=1280 -ResY=720 -WinX=1632 -WinY=32 -ConsoleX=1632 -ConsoleY=752

Of course, if you're trying to test on a single machine, only set one session to use VR at a
time.

Because it's going to be impractical for many users to test multiplayer VR with a single
machine, we're going to run through our multiplayer examples in 2D for the most part so
you can learn the concepts in an environment that can reasonably support testing. We will,
however, still go through certain specific things you'll need to do to make a player
character's animations respond appropriately to headset and motion controller movements,
so you'll exit this chapter with a good foundation from which to get started in multiplayer
VR.

Setting up our own test project
As we did with our last chapter, we're going to start out simply by creating a clean project
with the following settings:

Blank blueprint template1.
Mobile/tablet hardware target2.
Scalable 3D or 2D graphics target3.
No Starter Content4.

As usual, here's our project settings cheat sheet:

Engine | Rendering | Forward Renderer | Forward Shading: True1.
Engine | Rendering | Default Settings | Ambient Occlusion Static2.
Fraction: False
Engine | Rendering | Default Settings | Anti-Aliasing Method: MSAA3.
Engine | Rendering | VR | Instanced Stereo: True4.
Engine | Rendering | VR | Round Robin Occlusion Queries: True5.

Creating a Multiplayer Experience in VR Chapter 10

[488]

We're going to set one value differently, however, for this test because we're going to be
working mostly in the flat screen to simplify learning this challenging topic:

Project | Description | Settings | Start in VR: False

Allow the project to restart once all these settings have been set.

Adding an environment
Let's give ourselves some environment assets to play with so we're not stuck looking at an
empty level.

Open your Epic Games Launcher and find the Infinity Blade: Ice Lands pack. Add it to
your project.

If you're unable to add a content pack to a project because it says it's not
compatible with your current project version, you can very often get
around this just by adding the content pack to a project built with the
highest version the content pack allows, and then migrating its assets to
your new project. So, for example, if I'm trying to add Ice Lands to a 4.21
project, and the launcher tells me I can't because Ice Lands has only been
flagged as compatible with 4.20, I can add the content to a 4.20 project and
then migrate it to a 4.21 project. Most of the time, this will work.

This may take a while. Once these assets have been added, open up your project. We're
going to begin by creating a new Game Mode to get ourselves set up for a multiplayer
session.

Creating a network Game Mode
Remember when we mentioned a long time ago that the Game Mode is responsible for the
rules of a game? In a multiplayer game, this takes on additional significance because, as
we've mentioned, important gameplay events should only ever happen on the server. If
you put these two considerations together, then it shouldn't surprise you to learn that when
a multiplayer game is underway, there's only one Game Mode, and it lives on the server.

What this means for you as a developer is if you write code that talks directly to the Game
Mode, it's going to run fine when you test in a single-player session, but will fail when you
try to test it in multiplayer because the game mode isn't going to be there on the client. This
confuses many new multiplayer developers, so this would be a good time to take a quick
look at Unreal's network framework and understand where different objects live.

Creating a Multiplayer Experience in VR Chapter 10

[489]

Objects on the network
When thinking about objects in the multiplayer framework, you can think of them as
occupying four different domains:

Server Only: Objects exist only on the server.
Server & Clients: Objects exist on the server and on every client.
Server & Owning Client: Objects exist on the server and the client that owns
them, but they do not exist on any other client.
Owning Client Only: Objects exist only on the client that owns them.

Refer to the following screenshot:

Creating a Multiplayer Experience in VR Chapter 10

[490]

While this may seem at first like an academic point, you're really going to need to
understand this. More than once in your early networking career, you're going to try to
communicate with an object that doesn't live where you think it does because in a single-
player session you never needed to think about this. Everything lives in the same space in a
single-player game. In multiplayer, they don't, and you need to learn where they are.

Let's look at this another way:

Diagram based on Cedric Neukirchen's excellent Multiplayer Network Compendium, found here: http://cedric-neukirchen.net/2017/02/14/multiplayer-network-compendium/

Creating a Multiplayer Experience in VR Chapter 10

[491]

In the preceding diagram, you can see the following:

The server owns the GameMode, and no client has access to it.
The server and each connected client can see the Game State. There's only one of
these.
The server and each connected client can see a Player State for each client.
The server and each connected client can see each client's pawn.
The server can see each connected client's player controller, but clients can't see
other clients' player controllers.
The HUD and UI elements only exist on clients, and nobody else knows about
them.

Let's talk briefly about what each of these objects does with regard to multiplayer
gameplay.

Server-only objects
The Game Mode, as we mentioned a moment ago, lives on the server only. It runs the game
and is the sole authority on what's going on. Clients, by design, cannot access the game
mode directly. We've seen already that the game mode is responsible for deciding what
object classes are created for a game. In a multiplayer game, the game mode often takes on
additional responsibilities, such as choosing which team a player spawns into, where their
pawn appears, and whether a match is ready to begin or ready to end.

The game mode also applies and enforces the rules of the game. Let's say our game's map
was split up into sections and these sections can turn into danger zones that will damage
players if they remain in them. The game mode would be responsible for determining
which section turned dangerous, and when it happened.

This raises a question though. If the game mode exists only on the server and cannot be
seen by the clients, how do the clients find out which sections are dangerous and which
ones aren't?

This is where the next layer of objects comes in—those that exist on both client and server.

Creating a Multiplayer Experience in VR Chapter 10

[492]

Server and client objects
When clients need to get information about the state of the game, they get it from the Game
State, which is owned by the server but replicated to clients. We haven't really talked about
replication yet, so for now you can think of it as a copy of an object that gets sent from the
server to the connected clients. The game mode reads information from the game state and
writes to it, and the server sends copies of the updated game state to all the connected
clients through replication.

Returning to our previous example, if the game mode simply stored information about
which zones were dangerous in a variable contained within itself, nobody is going to know
about it. If the game mode instead stores this information on a game state that's replicated
to the clients, they can read this information from the game state and respond to it.

What if our game mode is also updating scores for each player? Where should we put this
information? We know of course that it shouldn't go on the game mode, since nobody can
see it there. We could put it in the game state, and maintain an array of scores for each
player, but there's a better place for this information. The game state maintains an array
of Player State objects for each connected client. This is an ideal place to put information
such as a player's score that applies to a single player, but that other players need to know
about.

We're already familiar with the work that pawns do—these are players' avatars in the
virtual world. They're maintained on the server and replicated to clients, so their movement
and other state information can be seen by other players.

Server and owning client objects
We've seen previously that the player controller is responsible for managing input coming
from the player and the output being displayed to the player. It owns the camera and the
HUD, and it handles input events. Each connected client in a multiplayer game has a player
controller associated with it, and can access it just as it would in a single-player session. The
server is aware of what's going on with each client's player controller as well, but clients
cannot see anything about each other's player controllers.

Creating a Multiplayer Experience in VR Chapter 10

[493]

Owning client only objects
Finally, objects such as UI display widgets exist only on the clients to which they apply. The
server doesn't know or care about them, and neither do any other clients. These are purely
local objects.

That was quite a lot of of theory to dump on you, we know, but, as we mentioned, it's
important. If you take a bit of time to internalize the structure described, you'll have a much
less-confusing time writing multiplayer applications.

That having been said, let's get back to some hands-on work.

Creating our network game mode
We're going to use this login to spawn different players at different spawn points. Before
we go on, let's jump into our map and add a second player start object:

From your Modes panel, select Basic | Player Start, and drag it on to your map1.
somewhere, and save your map:

Remember to use the P key to verify that your spawn point is on an area
with a valid navmesh. (We don't actually need the navmesh yet, but this is
a good way to verify that the floor collision is good in the location you've
chosen and that it's inside the gameplay area.)

Creating a Multiplayer Experience in VR Chapter 10

[494]

Here we've added a second player start at the other end of the map from the first.

Now, let's create a game mode to manage our network gameplay:

With your new project open, create a directory for it inside your Content1.
Browser. Name it Multiplayer (or anything you like).
Create a blueprints subdirectory within this directory.2.
Right-click to create Basic Asset | Blueprint Class | Game Mode Base. Name it3.
BP_MultiplayerGameMode.

Creating a Multiplayer Experience in VR Chapter 10

[495]

If you look in the Content Examples project's BP_GameMode_Network,
you'll see that it implements its own player start selection in Event
OnPostLogin. You don't need to do this. The native GameModeBase class
does it for you. If you did want to create special rules for selecting player
starts (to select them by team, for example, the correct way to do this is to
override the ChoosePlayerStart function. To do this, select Functions |
Override | Choose Player Start, and put whatever logic you want in the
resulting graph).

Open Settings | Project Settings | Project | Maps & Modes, and set the Default4.
GameMode to our new game mode.

Let's test it out:

Select the dropdown beside your toolbar's Play button and set the Multiplayer5.
Options | Number of Players to 2.
Select Play This Level in a New Window from your Play button to launch a two-6.
player test.

You should see one player spawning at the original spawn point and the other spawning at
the new spawn point you just created.

Creating a network client HUD
Let's add a simple HUD to our clients so we can display information about the game to our
user. Again, if we were planning this game to run exclusively in VR, we would not be using
a HUD object, but rather building this in 3D as an attached widget. We're doing it this way
here because we have quite a lot of ground to cover in this chapter and we want to keep it
focused on networking.

While we're going to stay focused on creating a 2D HUD for this chapter, we can take this
opportunity to add a bit of safety to ensure that we don't try to display 2D elements in 3D
space.

Let's create a new HUD to work with:

From your project's blueprints directory, right-click on Create Basic Asset |1.
Blueprint Class, and expand the All Classes expander and select HUD as your
class. Refer to the following screenshot:

Creating a Multiplayer Experience in VR Chapter 10

[496]

Hit the Select button to create it.2.
Name it BP_MultiplayerHUD.3.
Open our new game mode and set this HUD as its HUD Class.4.

Creating a widget for our HUD
Now, let's create a widget to display on our HUD:

Right-click or select Add New | User Interface | Widget Blueprint, and name1.
the resulting widget WBP_NetworkStatus.
Open up its designer panel and drag a text block on to the lower-left corner of the2.
panel.

Creating a Multiplayer Experience in VR Chapter 10

[497]

Note that because we're creating a 2D interface in this case, we don't
specify an explicit screen size; instead, we're allowing it to fill the screen.
As you'll recall from our earlier UI work, when you're building a widget
for 3D use, you'll want to specify its size.

Set the Text Block's Anchor to the lower-left corner.3.
Set its Position X to 64.0 and its Position Y to -64.0.4.
Set its Alignment to X=0.0, Y=1.0.5.
Name it txt_ClientOrServer.6.
Hit the Bind button beside its Content | Text entry to create a binding for it and7.
select Create Binding:

Creating a Multiplayer Experience in VR Chapter 10

[498]

In the resulting function graph, we're going to check to see whether this widget's owning
player controller is a client or a server and we'll set this widget's text accordingly:

Create a Get Owning Player node.1.
Drag the resulting player controller reference from its return value and call Has2.
Authority on it.
Create a Select node from the Has Authority call's result.3.
Drag the Select node's return value into the function's Return Value.4.
Type Client into the Select node's False entry and Server into its True entry:5.

Let's talk about a few things here.

Remember how we we described the server as the network authority? This Has Authority
check is now testing to see whether the owning player controller is resident on a server.
You'll be testing for authority very frequently whenever you write network code, because
you'll often have to do something different depending on whether your code is running on
a client or a server. File this mentally as a very important concept to keep in mind.
Checking for authority is how you're going to specify which behaviors happen on the
server and which happen on the client.

Notice also the lightning-bolt and screen icon on the Get Owning Player node. In single-
player applications, we didn't care about this icon, but it matters in a multiplayer setting.
This icon is indicating that the call in question will only occur on a client and cannot be
used on a server. In this case, this is fine. If you recall from the previous diagrams, the HUD
and the widgets it owns exist on clients only, so this client-only call is going to work. The
player controller reference it returns can exist on a client or on a server, which is why we're
going to get a valid result from our Has Authority check.

Refer back to the network framework diagrams as you think this through.

Creating a Multiplayer Experience in VR Chapter 10

[499]

Adding a widget to our HUD
Now, we're going to add this widget to our HUD:

Open the HUD's Event Graph and find or create an Event BeginPlay node.1.
Create an Is Head Mounted Display Enabled node.2.
Create a Branch using its result.3.
From the Branch node's False output, drag and create a Create Widget call.4.
Set its Class to the widget blueprint we just made.5.
Create a Get Owning Player Controller node and feed its result into the Create6.
Widget node's Owning Player input.
Drag out the Create Widget node's Return Value and call Add to Viewport on it:7.

What we've just done here is check to see whether we're in VR, and if we're not, create an
instance of our network status widget and add it to the HUD.

If you wanted to implement a 3D widget for use in VR, this would be a
reasonable place to do it. You could create a 3D widget in much the same
way we did before, and use a Get Owning Pawn call to grab the player
pawn and attach the widget's containing actor to it. It would be equally
reasonable to create a 3D widget on the pawn as we did earlier, and hide
or destroy it if an Is Head Mounted Display Enabled check returned
false.

Creating a Multiplayer Experience in VR Chapter 10

[500]

Let's test it. You should see one session labeled Server, and the other session labeled Client.

Now, try checking the Run Dedicated Server checkbox on the Play menu and run it again:

This time, you'll see that both sessions indicate that they're clients. What's happened here is
that a dedicated server has been spawned invisibly and both players have connected to it as
clients. After you've run this test, uncheck Run Dedicated Server again. We're going to
need a visible server and client for the next section.

Network replication
Now that we've talked a bit about servers and clients, let's learn more about how
information moves between them.

The first and most important concept to talk about is replication. Replication is a process by
which an actor or a variable value that exists on one system is communicated to another
connected system so it can be used there as well.

Creating a Multiplayer Experience in VR Chapter 10

[501]

This brings up an important point: only those items that you choose to replicate will be
communicated to the other connected systems, and this is deliberate. Unreal's networking
infrastructure is designed for efficiency, and a major way to maintain that efficiency,
especially if you have a lot of players, is to send only the information you absolutely need
to send over the network, and send it only to those who actually need to receive it. Think
about a massively-scoped game such as Fortnite. It simply could not run if every single
piece of data about every connected player was being sent to every other player. Unreal can
handle very large player populations, and it does this by giving you as a developer
complete control over exactly what gets replicated and to whom. With this power comes
responsibility though. If you don't tell an actor or a variable to replicate, it won't, and you
won't see it on a connected machine.

Let's start with a simple example to see how this works.

Creating a replicated actor
Let's say we wanted to use a flag to mark something in the game, and it was important that
all players could see where it was.

We can begin by creating an actor for our flag, so let's do this first:

Inside your Blueprints folder, right-click to select Create Basic Asset |1.
Blueprint Class | Actor. We can name our actor BP_ReplicatedFlag. Open it
up.
Select Add Component | Static Mesh.2.
Set the component's Static Mesh property to3.
/Game/InfinityBladeIceLands/Environments/Ice/Env_Ice_Deco2/Stat

icMesh/SM_Env_Ice_Deco2_flag2.
With the static mesh component selected, select Add Component | Skeletal4.
Mesh to create a child skeletal mesh attached to the flagpole's static mesh.
Set the component's Skeletal Mesh property to5.
/Game/InfinityBladeIceLands/Environments/Ice/EX_EnvAssets/Meshe

s/SK_Env_Ice_Deco2_BlowingFlag3.
Set the skeletal mesh component's Location to (X=40.0, Y=0.0, Z=270.0) and its6.
Scale to (X=1.8, Y=1.8, Z=1.8).
Drag the static mesh component on to the root component and set it as the new7.
root.
Add a Point Light component and set its Location to (X=40.0, Y=0.0, Z=270.0) so8.
our flag stands out.

Creating a Multiplayer Experience in VR Chapter 10

[502]

Spawning an actor on the server only
Now, let's spawn our flag into the level, but only on the server:

From your Modes panel, drag a Target Point somewhere on your map. Name it1.
FlagSpawnPoint.
Open up your level blueprint, and with FlagSpawnPoint still selected, right-click2.
in the event graph to create a reference to it.
Find or create an Event BeginPlay node.3.
Drag the execution line from this node and create a Switch Has Authority node.4.
Drag the execution line from the Switch Has Authority node's Authority output5.
and create a Spawn Actor from Class node.
Set its Class to the BP_ReplicatedFlag actor we just created.6.
Drag an output from the reference to your flag spawn point in the level and call7.
Get Actor Transform on it.
Feed the transform into the Spawn node's Spawn Transform:8.

Run it. You'll see the flag spawned on your server, but you won't see it on the client. Let's
talk this through to see why this is.

In the preceding screenshot, the first thing we did on BeginPlay was check to see whether
we have authority. Again, network authority is simply another term for the server. If we have
authority, meaning we're running on the server, we spawn the flag at the location we
supplied. If we're not on the server, we don't spawn it, which is why we didn't see it in our
client view.

This is an important pattern to remember. When we talk about making sure important
gameplay events happen only on the server, this is how you do it. Check to see whether
you have authority, and perform the action only if you do.

Creating a Multiplayer Experience in VR Chapter 10

[503]

Replicating the actor to the client
Now of course in this instance, we want to see this actor on the client as well, but at present
we can't because it exists only on the server. Let's change this by making it into a replicated
actor:

Open our flag actor's blueprint, and in its Details | Replication section, set1.
Replicates to true:

Test it again. Now, we see the flag on the client as well.

By indicating that this actor should replicate, we've now told the server to send the
spawned object to all of the connected clients as well. You may have noticed as you were
testing that you're able to see the other player's location represented as a gray sphere
floating through space. This is because the default pawn class we're currently using is set to
replicate as well. (If you're interested in seeing this in the source code, open <Your Engine
Install location|\Engine\Source\Runtime\Engine\Private\DefaultPawn.cpp,
and you'll see that bReplicates is set to true in the constructor.)

Creating a Multiplayer Experience in VR Chapter 10

[504]

Replicating a variable
Let's take this a step further and imagine that this point light we put on our flag is
meaningful to our game. If that's the case, we need to be sure that only the server changes
its value, and that all clients can see what that value is. That means that we need to ensure
that we have authority before we change it, and then we need to replicate that change
down to the connected clients.

Open the flag's blueprint and in the Variables section, and add a Boolean1.
variable named bFlagActive.
Compile and save your blueprint.2.
In the event graph, on Event BeginPlay, add a Switch Has Authority node.3.
From the Authority execution line, Alt + drag a setter for bFlagActive and set it4.
to False.
Create a Set Timer by Event node and connect it to your bFlagActive setter.5.
Set its Time to 3.0 and its Looping property to True.6.
Create a Custom Event and name it ToggleFlagState.7.
Connect the red connector (this is called an Event Delegate by the way) from8.
your timer to your custom event.
Alt + drag another setter for bFlagActive on to the graph and connect it to your9.
ToggleFlagState event.
Ctrl + drag a getter for bFlagActive on to the graph.10.
Create a Not Boolean node from its output and connect its result to the setter's11.
input:

Creating a Multiplayer Experience in VR Chapter 10

[505]

What we've just done here is, if we're on the server, initialize the bFlagActive variable,
and then set up a looping timer that flips its value to the opposite value every three
seconds.

You have two Set Timer event types available to you. You can set timers
to call functions by name when they trigger, or to call events. If you're
working in the event graph, it's often more readable to connect an event
directly to the timer's delegate connector. If you're working inside a
function, where events are not available to you, call a function by name
instead.

Now, we need to give ourselves a way to see the flag changing state:

Find or create the Event Tick node.1.
Drag a reference to your point light on to the graph.2.
Create a Set Intensity node and call it on the point light.3.
Ctrl + drag a getter for your bFlagActive variable on to the graph.4.
Drag out its result and create a Select node from it.5.
Connect the Select node's Return Value to the Set Intensity node's New6.
Intensity input.
Set the Select node's False value to 0.0 and its True value to 5000.0:7.

As you may recall, we're not fans of polling values on the tick event. It's a wasteful and
generally sloppy technique. Don't worry—we're going to set up a better way to do this in
just a moment.

In the meantime, though, let's test it.

Creating a Multiplayer Experience in VR Chapter 10

[506]

We can see our light turning on and off on the server, but not on the client. You may be able
to guess now why this is. Because of our authority check, we're only changing the value of
bFlagActive on the server, and we're never telling any of the clients about this change.
Fixing this is fairly straightforward:

Select the bFlagActive variable and, in its Details section, set Variable |1.
Replication to Replicated:

Run your test again. Now, you should see the flag's state changing on the client as well.

This brings up an important point. Just because an actor is replicated doesn't mean that any
of its properties, other than their initial states, are replicated. Again, this is deliberate. You
don't want to send anything over the network that you don't need to send. Every bit of
traffic adds to the bandwidth load and adds to the cost of adding additional players. Unreal
by default replicates only what you tell it to replicate.

Notifying clients that a value has changed using
RepNotify
Now, we mentioned a moment ago that polling values on the tick is wasteful, since it
performs an operation on every update even if there's no need to do it. It's nearly always a
better idea to respond to events.

Creating a Multiplayer Experience in VR Chapter 10

[507]

As it turns out, this is easy to do with replicated variables:

Select your bFlagActive variable and, in its Details | Variable block, set its1.
Replication property to RepNotify instead of Replicated.
Take a look at your Functions list. A new function was just automatically added,2.
called OnRep_bFlagActive.
Take everything you had on your Event Tick, select it, and Ctrl + X to cut it out.3.
Open up your new OnRep_bFlagActive function and paste everything into it,4.
connecting the function's execution line to your Set Intensity node:

This is a more efficient way to respond to changes in the value. The OnRep function for a
variable with its replication set to RepNotify will be called automatically every time that
variable receives a new value from the server. This makes it easy and efficient to respond to
those changes, and if we wanted to trigger an effect such as a particle system or perform
some other operation when a new value arrived through replication, we now have a
natural place to do this.

If you need something to happen when a new value arrives on a client
through replication, use RepNotify to create an OnRep function, and do
the operation there.

Creating a Multiplayer Experience in VR Chapter 10

[508]

The example we've built so far is fairly simple, but it actually illustrates a number of very
important points. We've talked a bit about where objects live in the network framework,
how to determine whether an action takes place on a network authority (server), or on a
remote (client) session, how to determine whether an actor replicates from a server to
clients, and how to replicate new values to clients and respond to their changes. Now, let's
take things a step further and start to build something that looks a bit more like a game.

Creating network-aware pawns for
multiplayer
Now that we've seen a bit about how information moves from the server to the clients, let's
explore the ways player actions get communicated from the clients back to the server. To
get ready for this, we're going to take a shortcut and add a pawn that can already perform a
few basic actions, and we'll get right to the task of making these actions work in a
multiplayer setting.

Adding a first-person pawn
We're going to set ourselves up by adding the pawn from the First Person template:

Create or open a project made using the Blueprint | First Person template.1.
Select Content | FirstPersonBP | Blueprints | FirstPersonCharacter, and2.
migrate this character into our working project.

Now, we need to tell our game mode to use it.

Open BP_MultiplayerGameMode, and set its Default Pawn Class to the3.
FirstPersonCharacter we just migrated in.

Let's test it. We should see a number of problems here. Our projectiles are bouncing off
invisible walls. When players fire, we can't see it happen from the other machine. The other
player's representation just appears as a first-person weapon. We'll fix all of these.

Creating a Multiplayer Experience in VR Chapter 10

[509]

Setting collision response presets
First, let's fix the collision problem. While it isn't directly network-related, it's distracting
and not hard to correct:

Select one of the blocking volumes that's blocking our projectiles:1.

Creating a Multiplayer Experience in VR Chapter 10

[510]

Take a look at its Details | Collision | Collision Presets to see what collision2.
preset it's using.

We can see that it's using the Invisible Wall preset. Probably, this preset is
blocking a lot of things we don't want it to block. For our game, we really only
want to stop pawns.

Open Settings | Project Settings | Collision, and expand the Preset section.3.
Find the Invisible Wall preset, and hit the Edit button:4.

Here we've found and selected the InvisibleWall collision preset from the Engine | Collision | Preset list.

Creating a Multiplayer Experience in VR Chapter 10

[511]

Sure enough, we can see that it's blocking everything except visibility. Let's
change this. Set it to ignore everything except the Pawn in the Trace Type:

We also need to make a change to our projectile:

Open Content/FirstPersonBP/Blueprints/FirstPersonProjectile, and5.
select its CollisionComponent.
Under Details | Collision, set its Collision Presets property to6.
OverlapAllDynamic.

Creating a Multiplayer Experience in VR Chapter 10

[512]

This will be good enough for now. The walls no longer block anything but pawns, and the
projectiles no longer attempt to bounce off objects in the world.

With this out of the way, let's get back to setting up our networking.

Setting up a third-person character mesh
The first thing we want to do is get our remote pawn using a proper third-person mesh.
Let's add the content we're going to need for this:

From your Content Browser, hit Add New | Add Feature or Content Pack...,1.
and select Blueprint Feature | Third Person:

Here we're adding the Third Person content pack to our project.

Creating a Multiplayer Experience in VR Chapter 10

[513]

Add it to your project.2.

Now, we're going to modify our pawn to use the third-person mesh:

Open your FirstPersonCharacter blueprint, and hit Add Component | Skeletal3.
Mesh. Make sure the actor or its CapsuleComponent is selected so this new
component is created as a child of the CapsuleComponent.
Name the new component ThirdPerson.4.
Set its Details | Mesh | Skeletal Mesh to the SK_Mannequin mesh that just5.
arrived with our third-person content.
Set its Details | Animation | Anim Class to use the ThirdPerson_AnimBP_C6.
animation blueprint from our third-person pack.
Adjust its position so it lines up appropriately with the capsule (setting its7.
Location Z value to -90.0 and its Rotation Z (Yaw) value to -90.0 works well
enough):

Creating a Multiplayer Experience in VR Chapter 10

[514]

If we run it right now, we'll see that the third-person mesh is blocking our camera view. We
want to display this mesh for other players, but hide it for ourselves:

Jump over to the Event Graph of FirstPersonCharacter and find its Event1.
BeginPlay node.
Drag the Event BeginPlay node out a bit to give yourself some room to work.2.
Right-click and add an Is Locally Controlled node to the graph.3.
Create a Branch from your Is Locally Controlled node, and connect execution4.
output of Begin Play to it.
Drag a reference to the ThirdPerson component on to your graph.5.
Call Set Hidden in Game on it, with New Hidden set to true.6.
Execute this Set Hidden in Game call from the Branch node's True output.7.
Connect execution output of Set Hidden in Game to the Branch node that Event8.
BeginPlay used to feed into.
Connect your Is Locally Controlled branch's False output to the Is Head9.
Mounted Display Enabled branch's input.

In an instance such as this, it's a good idea to double-click your execution
lines to create reroute nodes to avoid crossing under other nodes, and to
make it clear where the conditional part of an execution begins and ends.
This has no effect on the behavior of the blueprint, but it can improve its
readability.

Your graph should now look something like this screenshot:

Creating a Multiplayer Experience in VR Chapter 10

[515]

Checking whether an actor is locally controlled is a thing you'll do often in network
development. In a single-player environment, of course, this isn't a consideration,
everything is locally-controlled, but once you're dealing with objects that are arriving
through replication, it can often be the case that you'll want to treat them differently if they
belong to someone else.

You can also achieve this by setting the ThirdPerson component's Details
| Rendering | Owner No See setting to True. This flag, and its
companion, Only Owner See, can also be used to make certain things
visible only to owners or invisible to them. You'll have to expand the
Advanced area of the Rendering options to see it. For this example, we
chose to use the Is Locally Controlled check because there are so many
other cases in which it will be used, but it's worth it to know that these
shortcuts exist.

Let's run it again, and you'll now see the third-person mesh for the remote character, and
the first-person mesh for the locally-controlled character.

Adjusting the third-person weapon
The weapon is in a strange place for the third-person character. Let's fix that:

Open Content/Mannequin/Character/Mesh/UE4_Mannequin_Skeleton1.
and find the hand_r bone in the skeleton tree.
Right-click the bone and select Add Socket:2.

Creating a Multiplayer Experience in VR Chapter 10

[516]

Right click the hand_r bone and select Add Socket here.

Name the new socket Weapon.3.
Right-click the socket and select Add Preview Asset, and select SK_FPGun as4.
the preview.
Move the socket until the weapon appears to be lined up properly with the hand.5.
(Setting Relative Location to X=-12.5, Y=5.8, Z=0.2, and setting the Relative
Rotation Z (Yaw) value to 80.0 seems to work well enough.)

Now, we need to attach the weapon to the socket we just made, but only for
remote players:

Creating a Multiplayer Experience in VR Chapter 10

[517]

Jump back to our event graph of FirstPersonCharacter and find the Event6.
BeginPlay node.
From the Is Locally Controlled branch's False output, connect an7.
AttachToComponent (FP_Gun) node.

We've seen this before, but again, as a reminder, there are two versions of
AttachToComponent—one works on actors, while the other works on
components. Select the one that's bound to your FP_Gun component.

Drag your third-person component into the AttachToComponent node's parent8.
input.
Enter the name of the socket you created on your skeleton in Socket Name.9.
(Weapon):

Creating a Multiplayer Experience in VR Chapter 10

[518]

Run it again. The weapon should now be more reasonably-placed. It's not aiming where the
other player is aiming because we haven't added anything to the third-person animation
blueprint to handle this. Adding this capability falls outside the scope of this chapter, since
it really takes us out of networking, so for the purposes of our game here, we're going to
leave this as it is.

The next thing we need to do is make sure that when a player fires their weapon, the server
handles the shot, and replicates it to the other clients.

Replicating player actions
As we saw earlier, in the current build players can't see it when other players fire their
weapons. We'll begin simply enough, by making sure projectiles replicate from the server
to the clients when they're spawned:

Open up the FirstPersonProjectile blueprint, and in its Details | Replication
section, set Replicates to true.

Run it now, and you'll see that if you fire the weapon on the server, the client can see the
projectiles, but if you fire the weapon on the client, the server doesn't see it.

Take a moment to form a clear mental picture of why this is. Replication goes one way:
from the server to the client. When we spawned the flag on the server in our earlier
example, we saw it on the client because we'd told the server to replicate it. The same thing
is now happening with the projectiles. So, the question, then, is how does a client tell the
server that it needs to spawn a projectile?

Using remote procedure calls to talk to the server
The answer comes through a process called a remote procedure (RPC). A remote procedure
call is a call made from one system that's intended to run on another system. In our case,
when we want to fire the weapon, we'll have the client make an RPC to the server telling it
that we want to fire, and the server will handle actually firing the weapon.

Creating a Multiplayer Experience in VR Chapter 10

[519]

Let's change our pawn's firing method to use an RPC:

Open your FirstPersonCharacter blueprint's Event Graph, and look for1.
InputAction Fire.
Somewhere nearby, create a custom event. Call it ServerFire.2.
In the custom event's Details, set its Graph | Replicates value to Run on Server:3.

Now, let's get ready to use this call. The first thing we're going to want to do with our
weapon firing is separate those things that are gameplay-relevant and should be run on the
server, and those things that are purely cosmetic and can be run on the client.

Let's create an additional Custom Event to handle the non-essential client stuff.

Create a Custom Event and call it SimulateWeaponFire.1.

Unreal developers commonly follow a naming convention whereby non-
essential cosmetic aspects of a network action are named with the prefix
simulate. This indicates to the reader that this function is safe to run on the
client and contains only non-state-changing actions (sounds, animations,
particles, those sorts of things). It also indicates to the reader that the
function in question is safe to skip on a dedicated server.

Grab the Play Sound at Location call and the GetActorLocation call feeding it,2.
disconnect them from the SpawnActor FirstPersonProjectile node, and connect
them to your new SimulateWeaponFire event.

Creating a Multiplayer Experience in VR Chapter 10

[520]

Get rid of the Branch feeding from the InputTouch node's FingerIndex. There's3.
no execution line going into it, which means it's not doing anything. This is just
clutter; someone didn't bother to clean out the graph.

The partially-updated graph should look something like this, so far:

The Spawn Projectile method from the Third Person content pack we migrated into our project

Now, grab that Montage Play call, disconnect it from the execution line it's4.
currently in, and put it on to the SimulateWeaponFire execution line.

What we've done now has been to take everything that's purely decorative and move it to
its own event that can be called separately.

This is a good convention to follow even when you're developing a single-
player application because it makes it easy to see which chunks of code
are actually changing things and which ones are cosmetic. It's a
worthwhile practice to get into the habit of keeping them separate.

Now that we've created our SimulateWeaponFire event and populated it, we'll make sure
it gets called on any system that receives the input:

Now, put a call to SimulateWeaponFire where the Montage Play node used to1.
be, so it will get called any time this input event gets heard.

Creating a Multiplayer Experience in VR Chapter 10

[521]

Add a Switch Has Authority node right after the Simulate Weapon Fire call.2.
Connect the Switch node's Authority output to the SpawnActor First Person3.
Projectile call.
From its Remote branch, make a call to the ServerFire node we created earlier.4.
Feed the ServerFire node's execution output into the SpawnActor First Person5.
Projectile node's input.

Your SpawnProjectile graph should now look something like this screenshot:

And, the SimulateWeaponFire graph should look like this screenshot:

Creating a Multiplayer Experience in VR Chapter 10

[522]

Try it out. Aiming is going to be incorrect for clients because we're not doing anything to
send the client's weapon aiming to the server, but you should now see the projectile
spawning and hear the fire sound in both directions.

Let's improve this.

At present, the projectile's spawn rotation is coming from the first-person camera. This isn't
going to work when communicating from the client to the server, because the server doesn't
know anything about that camera. Let's replace this with a value the server does know
about:

Right-click in the graph to create a Get Base Aim Rotation node, and feed it into
the Make Transform node, replacing the input from the camera's
GetWorldRotation:

Test it again. The origin for the client's projectile when seen on the server is still going to be
incorrect, but the aim rotation is now correct. (Fixing the origin would really require us to
build a proper third-person animation blueprint, which takes us beyond the scope of this
chapter.)

Let's talk about how this is working so far. There's an important pattern embedded here
that's worth internalizing.

Creating a Multiplayer Experience in VR Chapter 10

[523]

When the fire input event arrives, we check to see whether we have authority to spawn the
particle. If we do, we just go ahead and spawn it. If we don't, however, we make a remote
procedure call to the server to tell it to spawn it. It does, and then we see it here on our local
client because it's been replicated.

Most gameplay events in multiplayer games will be written according to this pattern.
Here's a simplified example for clarity:

In the preceding screenshot, the Do the thing call will only ever run on the server. If the
event that triggers it is happening on the server, it just runs, and if the event is happening
on a client, the client calls the Server Do the Thing RPC, which then handles calling Do the
Thing. This pattern is worth committing to memory. You'll use it a lot.

Creating a Multiplayer Experience in VR Chapter 10

[524]

There's a common convention among Unreal developers whereby we
prefix the names of the RPCs that run on the server with the prefix Server.
You don't have to do this, but it's a good idea, and Unreal developers will
cast disapproving glances your way if you don't. It makes it much easier
to see which functions are RPCs and which ones run locally.

Using multicast RPCs to communicate to clients
There's another problem with what we've written that will be difficult to detect if you're
testing on a single machine: the simulated sounds and animations only play on the owning
client. If we were playing on two separate machines and the other player fired near us, we
wouldn't hear it.

Why not?

In the previous screenshot, when the input event is received on the local client, it calls the
Simulate method to play the sound and animation, and then checks to see whether it has
authority to decide whether to spawn the projectile itself or ask the server to handle it. But,
what if there's another player standing nearby?

Player A's client will send the RPC to the server to spawn the projectile, so everybody's
going to see that, but the call to simulate the firing event only ever happened on player A's
machine. The representation of player A's pawn over on player B's machine (we call this
representation a remote proxy) was never told to play the animation, so it doesn't.

We can solve this using another type of RPC, called a multicast event.

You'll often hear developers referring to multicast events as net
multicast events, or as broadcast events. These terms refer to the same
thing. By convention, just as server RPC event names are prefixed with
server, multicast events are often named with broadcast as a prefix. This is a
less-commonly-followed convention than the server prefix and you don't
have to do it, but you'll have an easier time following your blueprints later
on if you make this a habit.

Creating a Multiplayer Experience in VR Chapter 10

[525]

Since we've already abstracted our simulate methods to their own event, this isn't hard to
do:

Select your SimulateWeaponFire event, and in its Details | Graph, set its
Replicates property to Multicast:

What this will do is send this event to the server and instruct it to send it down to all
connected clients.

Now, when Player A fires, the call to spawn the projectile will happen only on the server,
but the call to play the fire sound and animation will happen on every representation of
player A's pawn across the network.

If you'd like, you can rename your SimulateWeaponFire event
BroadcastSimulateWeaponFire. Some developers follow this convention, others don't.
In general, though, the more information you give yourself and other developers about
what you're doing, the easier a time you or they are going to have debugging or
maintaining your code.

Creating a Multiplayer Experience in VR Chapter 10

[526]

Client RPCs
There's one more type of RPC, which we're not going to demonstrate here, but that we
should discuss for the sake of completeness. Let's say you were running an operation on the
server and you needed to make a call specifically to the client that owns the object you were
operating on. You can do this by setting the event to Run on owning Client.

Reliable RPCs
There's one final determination we have to make when we're deciding how to replicate a
function call, and that's whether to make the call reliable.

To understand what this flag means, we need to understand something critical about
networking. The internet is an unreliable thing. Just because you send an RPC to someone
on the other side of the globe, there's absolutely no guarantee that it will get there. Packets
get lost all the time. That's not an unreal thing; it's a reality-of-the-world thing. The choice
you need to make as a developer is what to do about this.

If an RPC is important to the game, such as firing a weapon, make it reliable. What this will
do is instruct the network interface to re-send it until it receives confirmation from the other
system that the call was received. This adds traffic to your network, however, so do it only
for those calls you care about. If you're just broadcasting a cosmetic call, such as a weapon
sound, leave it unreliable, since your game isn't going to break if it doesn't arrive. The call
to fire the weapon, however, should be reliable, since it matters to the player and to the
game whether it happens.

Let's make this change now:

Find your ServerFire custom event, and in its Details | Graph, set its Reliable1.
property to true.
Leave your BroadcastSimulateWeaponFire event unreliable, because it's just2.
playing cosmetic events that aren't important enough to be worth clogging the
network.

Going further
Networking is a substantial topic, and, to be honest, we've only scratched the surface here.
Our purpose in writing this has been to give you a solid mental model from which you can
understand what Unreal's network framework looks like, and what sorts of things you
need to understand to work within it.

Creating a Multiplayer Experience in VR Chapter 10

[527]

This is heady stuff, and it can get fairly confusing to new developers. The trick to network
development is to create a clear mental model of what's going on. Take your time to
understand these concepts, and you'll have a much easier time.

There are a few topics we didn't cover here, such as hosting sessions and making it possible
for others to join them, and quite a lot of the finer points of how networking works, such as
relevance. These things are worth understanding, and there are a few good resources
available to you to take your understanding further.

First, check out the Network Examples map in your Content Examples project, and take
some time to understand what they're showing. Next, Cedric Neukirchen's Multiplayer
Network Compendium, http:/ /cedric- neukirchen. net/ 2017/ 02/ 14/multiplayer- network-
compendium/, is an outstanding resource for learning how Unreal's networking framework
works. Unreal's documentation lives here: https:/ /docs. unrealengine. com/ en-us/
Gameplay/Networking, and it's absolutely worthwhile to spend some time picking through
its Multiplayer Shootout project in light of what you've learned here.

Summary
This chapter involved a bit more theory than other chapters have, and it's entirely fine if a
good chunk of it is still sinking in.

In this chapter, we talked a fair bit about Unreal's client-server architecture, and which
objects live in which domains. It's important to get a good working knowledge of this
structure in place. We also learned a bit about how information and events move between
machines via replication and remote procedure calls.

It's our hope that this chapter has given you a good foundation on which to stand as you
dig into networking and really explore how it works. Be patient with yourself and take time
to experiment.

We've now reached the point where we've covered a huge range of things you need to
know to develop VR using Unreal Engine. Next, we're going to take a look at a few tools
and plugins that can greatly accelerate your work in VR. With what you've learned so far in
this book, you should be ready to dig through them and understand how they can help you
develop and save you substantial amounts of time.

http://cedric-neukirchen.net/2017/02/14/multiplayer-network-compendium/
http://cedric-neukirchen.net/2017/02/14/multiplayer-network-compendium/
http://cedric-neukirchen.net/2017/02/14/multiplayer-network-compendium/
http://cedric-neukirchen.net/2017/02/14/multiplayer-network-compendium/
http://cedric-neukirchen.net/2017/02/14/multiplayer-network-compendium/
http://cedric-neukirchen.net/2017/02/14/multiplayer-network-compendium/
http://cedric-neukirchen.net/2017/02/14/multiplayer-network-compendium/
http://cedric-neukirchen.net/2017/02/14/multiplayer-network-compendium/
http://cedric-neukirchen.net/2017/02/14/multiplayer-network-compendium/
http://cedric-neukirchen.net/2017/02/14/multiplayer-network-compendium/
http://cedric-neukirchen.net/2017/02/14/multiplayer-network-compendium/
http://cedric-neukirchen.net/2017/02/14/multiplayer-network-compendium/
http://cedric-neukirchen.net/2017/02/14/multiplayer-network-compendium/
http://cedric-neukirchen.net/2017/02/14/multiplayer-network-compendium/
http://cedric-neukirchen.net/2017/02/14/multiplayer-network-compendium/
http://cedric-neukirchen.net/2017/02/14/multiplayer-network-compendium/
http://cedric-neukirchen.net/2017/02/14/multiplayer-network-compendium/
http://cedric-neukirchen.net/2017/02/14/multiplayer-network-compendium/
http://cedric-neukirchen.net/2017/02/14/multiplayer-network-compendium/
http://cedric-neukirchen.net/2017/02/14/multiplayer-network-compendium/
http://cedric-neukirchen.net/2017/02/14/multiplayer-network-compendium/
https://docs.unrealengine.com/en-us/Gameplay/Networking
https://docs.unrealengine.com/en-us/Gameplay/Networking
https://docs.unrealengine.com/en-us/Gameplay/Networking
https://docs.unrealengine.com/en-us/Gameplay/Networking
https://docs.unrealengine.com/en-us/Gameplay/Networking
https://docs.unrealengine.com/en-us/Gameplay/Networking
https://docs.unrealengine.com/en-us/Gameplay/Networking
https://docs.unrealengine.com/en-us/Gameplay/Networking
https://docs.unrealengine.com/en-us/Gameplay/Networking
https://docs.unrealengine.com/en-us/Gameplay/Networking
https://docs.unrealengine.com/en-us/Gameplay/Networking
https://docs.unrealengine.com/en-us/Gameplay/Networking
https://docs.unrealengine.com/en-us/Gameplay/Networking
https://docs.unrealengine.com/en-us/Gameplay/Networking
https://docs.unrealengine.com/en-us/Gameplay/Networking
https://docs.unrealengine.com/en-us/Gameplay/Networking

11
Taking VR Further - Extending

Unreal Engine
One of the major factors that differentiates professional developers from the newbies is how
they leverage existing tools and libraries to accelerate their work. Very often, new
developers try to do everything themselves, either because they're unaware of resources
that could help them or because they think that leaning on an existing library is somehow
cheating. It isn't. If you're a photographer, you're not cheating if you didn't build your own
camera in your garage—you're focusing on the part of your art that actually matters to you.
Don't be afraid to make use of tools and libraries that can accelerate your development.

Here's the rub though: to make effective use of another developer's work, you need to put
in the effort to understand what they're doing. Don't simply paste in someone else's code
without really understanding why it works—you're just asking for difficult-to-find bugs if
you do this. Do your homework and find code you can rely on, but consider it part of your
homework to understand how it's built so you can make deliberate choices about how you
use it.

Sooner or later in your development career, you'll encounter the
phrase cargo cult programming. This term, commonly attributed to the
physicist Richard Feynman, refers to aboriginal religious practices
observed in some islands of the South Pacific after World War II, whereby
the natives built replica airfields in an attempt to lure back the god-like
cargo planes that had supplied the islands during the war. In doing this,
they were reproducing the forms, but they didn't understand how those
forms worked and didn't understand why they weren't working now.
Don't let this describe how you develop software. For anything you
include in the project you're building, you should be able to give a clear
answer when another engineer points to any part of it and asks, What is
this doing? This won't be possible in all cases, of course, but in general,
consider that your work isn't finished until you've spent the time to
understand how the library or plugin is doing what it's doing.

Taking VR Further - Extending Unreal Engine Chapter 11

[529]

In this chapter, we're going to focus primarily on one of the most useful plugins available
for VR Developers: Joshua (MordenTral) Statzer's VRExpansion plugin. It's licensed under
the MIT license (we're going to talk about licenses shortly—they're important), which
means that it can be used freely in both non-commercial and commercial software. It
doesn't cost anything, but it represents absolutely outstanding professional-caliber work, so
if you use it, seriously consider supporting his Patreon to allow the project to continue.

In this chapter, we're going to learn how to make effective use of an advanced plugin such
as the VR Expansion plugin, and use the example Blueprints from its sample project to
learn how it's intended to be used. We'll learn strategies for exploring and making sense of
unfamiliar code, and ways of using debugging tools to show us how code runs.

Specifically, we'll learn to do the following:

Install and build plugins to extend the capabilities of the engine
Use documentation and sample projects to learn a plugin's capabilities and
intended use
Make use of new native classes provided by the plugin
Use strategies to read complicated blueprints and make sense of their structure
Use debugging tools to help us to explore unfamiliar blueprints and learn their
execution flow

This chapter is going to involve less direct Blueprint-building than those that came before
it, and that's deliberate. The real focus here is on helping you to develop strategies to learn
how unfamiliar code works so you can leverage it for your own development and use it to
learn advanced techniques. This is one of the most important skills you can cultivate as a
developer. It's fairly easy to find tutorials for basic topics, but once you get into more
advanced territory, you mostly need to learn by looking at other advanced work. It's not as
daunting as it might seem at first. We're going to learn a number of strategies to do this
effectively.

With that, let's add to the engine and learn how to make it do things it couldn't do before.

Creating a project to house our plugin
Let's begin by creating a new blank project:

Create a new Blueprint project using the Blank template, and set its hardware1.
target to Mobile / Tablet, and its graphics target to Scalable 3D or 2D, No starter
content.

Taking VR Further - Extending Unreal Engine Chapter 11

[530]

Installing the VRExpansion plugin
Once we've created our project, we're going to add the VRExpansion plugin to it.

The first thing we need to do before we can install any plugin to our project is create a place
to put it. Plugins must live in a directory named Plugins in your project directory or in the
Engine directory:

Open the directory containing your new project file. You should see your1.
.uproject file here, along with your Config and Content directories.
Create a new directory here named Plugins:2.

Now that we've created a Plugins directory for our project, let's add the VRExpansion
plugin to it. There are a few ways we can do this.

Taking VR Further - Extending Unreal Engine Chapter 11

[531]

Installing using precompiled binaries
The easiest way to get the plugin is to navigate to its forum discussion, https:/ / forums.
unrealengine.com/ development- discussion/ vr- ar-development/ 89050- vr- expansion-
plugin, and use the Plugin Pre-built Downloads link for your engine version:

Hit the Full Binaries and Source Package link for your engine version and1.
download the zipped plugin
Once the download has completed, open the .zip file and drag the2.
VRExpansionPlugin directory contained within it into your Plugins directory

That's it. As long as you installed the plugin version that was built for your engine version,
you're ready to go and can open up your project.

Compiling your own plugin binaries
If you need newer code for the plugin than what's included in the pre-built binaries (which
you will if you're running a preview version of the engine), you're going to need to build
your plugin binaries on their own. This isn't hard to do:

Navigate to the VRExpansionPlugin depot on BitBucket here: https:/ /1.
bitbucket. org/ mordentral/ vrexpansionplugin

Hit the Downloads link and hit the Download repository link to download a2.
zipped version of the depot

It's also possible to clone the plugin's Git depot directly into your project's
plugins directory, but unless you're working on the bleeding edge and
need absolutely up-to-date code, you don't really need to do this. You will
want to do this if you're planning to contribute your own changes to the
plugin. For most users, though, it's easier to download the zipped
repository.

Now open up the .zip file you just downloaded.3.
You'll see a folder inside it named something like mordentral-4.
vrexpansionplugin-9c1737a17bef (the hash at the end will be
different)—drag this into your new Plugins directory.

https://forums.unrealengine.com/development-discussion/vr-ar-development/89050-vr-expansion-plugin
https://forums.unrealengine.com/development-discussion/vr-ar-development/89050-vr-expansion-plugin
https://forums.unrealengine.com/development-discussion/vr-ar-development/89050-vr-expansion-plugin
https://forums.unrealengine.com/development-discussion/vr-ar-development/89050-vr-expansion-plugin
https://forums.unrealengine.com/development-discussion/vr-ar-development/89050-vr-expansion-plugin
https://forums.unrealengine.com/development-discussion/vr-ar-development/89050-vr-expansion-plugin
https://forums.unrealengine.com/development-discussion/vr-ar-development/89050-vr-expansion-plugin
https://forums.unrealengine.com/development-discussion/vr-ar-development/89050-vr-expansion-plugin
https://forums.unrealengine.com/development-discussion/vr-ar-development/89050-vr-expansion-plugin
https://forums.unrealengine.com/development-discussion/vr-ar-development/89050-vr-expansion-plugin
https://forums.unrealengine.com/development-discussion/vr-ar-development/89050-vr-expansion-plugin
https://forums.unrealengine.com/development-discussion/vr-ar-development/89050-vr-expansion-plugin
https://forums.unrealengine.com/development-discussion/vr-ar-development/89050-vr-expansion-plugin
https://forums.unrealengine.com/development-discussion/vr-ar-development/89050-vr-expansion-plugin
https://forums.unrealengine.com/development-discussion/vr-ar-development/89050-vr-expansion-plugin
https://forums.unrealengine.com/development-discussion/vr-ar-development/89050-vr-expansion-plugin
https://forums.unrealengine.com/development-discussion/vr-ar-development/89050-vr-expansion-plugin
https://forums.unrealengine.com/development-discussion/vr-ar-development/89050-vr-expansion-plugin
https://forums.unrealengine.com/development-discussion/vr-ar-development/89050-vr-expansion-plugin
https://forums.unrealengine.com/development-discussion/vr-ar-development/89050-vr-expansion-plugin
https://forums.unrealengine.com/development-discussion/vr-ar-development/89050-vr-expansion-plugin
https://forums.unrealengine.com/development-discussion/vr-ar-development/89050-vr-expansion-plugin
https://forums.unrealengine.com/development-discussion/vr-ar-development/89050-vr-expansion-plugin
https://forums.unrealengine.com/development-discussion/vr-ar-development/89050-vr-expansion-plugin
https://forums.unrealengine.com/development-discussion/vr-ar-development/89050-vr-expansion-plugin
https://bitbucket.org/mordentral/vrexpansionplugin
https://bitbucket.org/mordentral/vrexpansionplugin
https://bitbucket.org/mordentral/vrexpansionplugin
https://bitbucket.org/mordentral/vrexpansionplugin
https://bitbucket.org/mordentral/vrexpansionplugin
https://bitbucket.org/mordentral/vrexpansionplugin
https://bitbucket.org/mordentral/vrexpansionplugin
https://bitbucket.org/mordentral/vrexpansionplugin
https://bitbucket.org/mordentral/vrexpansionplugin
https://bitbucket.org/mordentral/vrexpansionplugin

Taking VR Further - Extending Unreal Engine Chapter 11

[532]

Change the name of the directory you just extracted to VRExpansionPlugin:5.

Now launch your project, or if it was already open, close it and re-open it.

A dialog should now appear indicating that you need to build your plugin binaries:

Taking VR Further - Extending Unreal Engine Chapter 11

[533]

If you set up Visual Studio Community 2017 as directed in Chapter 2, Setting Up Your
Development Environment, this isn't a problem. (If you didn't, jump back there now and
follow the directions to set it up. It's always worth it to have a working compiler set up on
your system because you will sometimes need it.) Say Yes and let Visual Studio build new
binaries for you.

Your plugin should build successfully, but if it doesn't, navigate to the
plugin's home page at https:/ / bitbucket. org/mordentral/
vrexpansionplugin and follow the instructions under Basic Installation
Step-By-Step, which will take you through the manual build process. As
mentioned earlier, you also have the option to download pre-built
binaries from here: https:/ /forums. unrealengine. com/ development-
discussion/ vr- ar- development/ 89050- vr- expansion- plugin.

If you hit Show Log on the build dialog, you should be able to see your build progress.
Expect it to take a few minutes:

Once the build finishes, your project will open.

https://bitbucket.org/mordentral/vrexpansionplugin
https://bitbucket.org/mordentral/vrexpansionplugin
https://bitbucket.org/mordentral/vrexpansionplugin
https://bitbucket.org/mordentral/vrexpansionplugin
https://bitbucket.org/mordentral/vrexpansionplugin
https://bitbucket.org/mordentral/vrexpansionplugin
https://bitbucket.org/mordentral/vrexpansionplugin
https://bitbucket.org/mordentral/vrexpansionplugin
https://bitbucket.org/mordentral/vrexpansionplugin
https://bitbucket.org/mordentral/vrexpansionplugin
https://forums.unrealengine.com/development-discussion/vr-ar-development/89050-vr-expansion-plugin
https://forums.unrealengine.com/development-discussion/vr-ar-development/89050-vr-expansion-plugin
https://forums.unrealengine.com/development-discussion/vr-ar-development/89050-vr-expansion-plugin
https://forums.unrealengine.com/development-discussion/vr-ar-development/89050-vr-expansion-plugin
https://forums.unrealengine.com/development-discussion/vr-ar-development/89050-vr-expansion-plugin
https://forums.unrealengine.com/development-discussion/vr-ar-development/89050-vr-expansion-plugin
https://forums.unrealengine.com/development-discussion/vr-ar-development/89050-vr-expansion-plugin
https://forums.unrealengine.com/development-discussion/vr-ar-development/89050-vr-expansion-plugin
https://forums.unrealengine.com/development-discussion/vr-ar-development/89050-vr-expansion-plugin
https://forums.unrealengine.com/development-discussion/vr-ar-development/89050-vr-expansion-plugin
https://forums.unrealengine.com/development-discussion/vr-ar-development/89050-vr-expansion-plugin
https://forums.unrealengine.com/development-discussion/vr-ar-development/89050-vr-expansion-plugin
https://forums.unrealengine.com/development-discussion/vr-ar-development/89050-vr-expansion-plugin
https://forums.unrealengine.com/development-discussion/vr-ar-development/89050-vr-expansion-plugin
https://forums.unrealengine.com/development-discussion/vr-ar-development/89050-vr-expansion-plugin
https://forums.unrealengine.com/development-discussion/vr-ar-development/89050-vr-expansion-plugin
https://forums.unrealengine.com/development-discussion/vr-ar-development/89050-vr-expansion-plugin
https://forums.unrealengine.com/development-discussion/vr-ar-development/89050-vr-expansion-plugin
https://forums.unrealengine.com/development-discussion/vr-ar-development/89050-vr-expansion-plugin
https://forums.unrealengine.com/development-discussion/vr-ar-development/89050-vr-expansion-plugin
https://forums.unrealengine.com/development-discussion/vr-ar-development/89050-vr-expansion-plugin
https://forums.unrealengine.com/development-discussion/vr-ar-development/89050-vr-expansion-plugin
https://forums.unrealengine.com/development-discussion/vr-ar-development/89050-vr-expansion-plugin
https://forums.unrealengine.com/development-discussion/vr-ar-development/89050-vr-expansion-plugin
https://forums.unrealengine.com/development-discussion/vr-ar-development/89050-vr-expansion-plugin
https://forums.unrealengine.com/development-discussion/vr-ar-development/89050-vr-expansion-plugin

Taking VR Further - Extending Unreal Engine Chapter 11

[534]

Verifying the plugins in your project
Regardless of how you downloaded and installed the plugin, it should now be available to
you once you've opened the project.

On opening the project, you should see two indicators in the lower-right corner indicating
that you have new plugins available and asking whether you want to update your project:

Hit Manage Plugins... to open the plugins list.

You should see two entries for the VRExpansion plugin, and they should both be enabled:

This is as it should be, so we can close this window.

Now, let's update our project file by hitting the Update button.

Taking VR Further - Extending Unreal Engine Chapter 11

[535]

Remember that your .uproject file is really just a text file telling Unreal a few basic things
about your project. If you open it up in a text editor, you'll see that new entries were added
indicating that this project now relies on the VRExpansion plugin and its companion
OpenVRExpansion plugin:

This is a text comparison of the .uproject file before and after we added the VRExpansion plugin

That's it. We're ready to start developing using the plugin, but before we do, let's talk a little
bit about what we just did.

Understanding plugins
Plugins are an important part of the Unreal ecosystem. They can contain content,
blueprints, native code, and anything else that affects what Unreal Engine can do and how
it does it. They can save you tremendous amounts of time and extend the engine's
capabilities almost infinitely.

For the most part, you really don't need to know much about how Unreal handles plugins
to use them—they pretty much just work, but if you want to be able to fix things if
something goes wrong, or if you need to update a plugin to accommodate a new engine
version, it is helpful to know a little bit about where they live and how they're put together.
We're not going to go too deep into the weeds here, but there are a few quick things to
point out that will help you in your future development. (If you do need to get deeper into
how plugins are developed, begin with the documentation here: https:/ /docs.
unrealengine.com/ en- us/ Programming/ Plugin)

https://docs.unrealengine.com/en-us/Programming/Plugins
https://docs.unrealengine.com/en-us/Programming/Plugins
https://docs.unrealengine.com/en-us/Programming/Plugins
https://docs.unrealengine.com/en-us/Programming/Plugins
https://docs.unrealengine.com/en-us/Programming/Plugins
https://docs.unrealengine.com/en-us/Programming/Plugins
https://docs.unrealengine.com/en-us/Programming/Plugins
https://docs.unrealengine.com/en-us/Programming/Plugins
https://docs.unrealengine.com/en-us/Programming/Plugins
https://docs.unrealengine.com/en-us/Programming/Plugins
https://docs.unrealengine.com/en-us/Programming/Plugins
https://docs.unrealengine.com/en-us/Programming/Plugins
https://docs.unrealengine.com/en-us/Programming/Plugins
https://docs.unrealengine.com/en-us/Programming/Plugins
https://docs.unrealengine.com/en-us/Programming/Plugins
https://docs.unrealengine.com/en-us/Programming/Plugins

Taking VR Further - Extending Unreal Engine Chapter 11

[536]

Where plugins live
First, it's important to know where to put new plugins that you want to install to a project
or the engine and to know where plugins downloaded from the Epic Games launcher will
be placed.

Any plugin you install will live in one of two places: in a Plugins directory in your project
for plugins that are installed just to that specific project or in an Engine\Plugins directory
for plugins that are installed to the engine and apply to all projects.

Take a moment to look at your currently-installed engine plugins as given in the following
step:

Open the directory where you installed Unreal Engine (by default, this will be1.
in C:\Program Files\Epic Games), and open the Engine\Plugins
subdirectory:

Taking VR Further - Extending Unreal Engine Chapter 11

[537]

Here you'll notice something interesting: many features of the engine, even those we think
of as core engine capabilities, such as effects editors, are really plugins living within the
Unreal framework. That's worth remembering. Plugins aren't second-class citizens in
Unreal Engine. Adding something to the engine through a plugin is really not meaningfully
different than writing it directly into the engine code, except that it's easier to replace it or
to turn it on or off if it's set up this way.

Plugins you download through the Epic Games launcher will appear in the Marketplace
subdirectory of your Engine\Plugins directory. In general, the Epic Games launcher will
alert you when a plugin you've installed from the launcher has an update available, and
you can update it directly from within the launcher. You'll rarely, if ever, need to open your
Engine\Plugins directory, but it's worth knowing that it's there.

Installing plugins from the Marketplace
To install a plugin using the Epic Games launcher, select the plugin you want from
the Marketplace or from your Library, and hit the Install to Engine button, or if the plugin
has been configured as an asset pack, hit the Add to Project button instead. Install to
Engine will put the plugin in your engine install's Engine\Plugins\Marketplace
directory, while Add to Project will put it in your project's Plugins directory:

Taking VR Further - Extending Unreal Engine Chapter 11

[538]

The Epic Games launcher will alert you automatically if a plugin you've installed using the
tool has an update available.

What's inside a plugin?
Now that we know a bit about where plugins live in Unreal Engine, let's take a look at what
they're made of.

To do this, we're going to do a quick exploration of the VRExpansion plugin we installed to
our project's Plugins directory:

Open up your project's Plugins directory, and open up the1.
VRExpansionPlugin directory within it

Taking VR Further - Extending Unreal Engine Chapter 11

[539]

You'll see that VRExpansion actually consists of two separate plugins within this directory:
VRExpansionPlugin and OpenVRExpansionPlugin. The latter exists to support Valve
Software's OpenVR SDK. For our purposes here, we're not going to worry about it and
we'll just focus on VRExpansion.

There are two files here that we should take a moment to mention.

The first is the README.md file. Take a moment to open it up. This is a markdown file
containing some basic information about the plugin.

If you have Visual Studio Code installed on your system, you can use
VSCode to open markdown files. Once the file is open, you can right-click
on its tab in the viewing area and select Open Preview, or just hit Ctrl +
Shift + V to view the markdown with formatting.

You'll see that this readme file basically recreates the text on the main BitBucket page
here: https://bitbucket. org/ mordentral/ vrexpansionplugin and links to instruction and
information pages. Many plugins will come with documentation or readme files that tell
you where to find the documentation. It's worth it to take a look.

About licenses
The other file we should look at here is the LICENSE.txt file. If you're going to include a
plugin in your project, it's important to know how you're allowed to use it.

If you've downloaded a plugin through the Marketplace, you don't need to worry about it.
All plugins distributed through Epic's Marketplace are licensed for non-commercial or
commercial use and don't place any additional restrictions on how they can be used.

If you need more information about licensing for plugins on the
Marketplace, the details live here: https:/ /www. unrealengine. com/ en-
US/marketplace- distribution- agreement.

If you're downloading a plugin directly from the net, as we did previously, you need to
check the license and make sure the author allows you to use the plugin in the way you
want to use it. Most plugin authors will not put restrictions on the way you use the
software, but always read the license and make sure. You don't want to build a project with
a plugin at its foundation only to discover when it's time to sell the software that you're not
actually allowed to do so. Read the license first.

https://bitbucket.org/mordentral/vrexpansionplugin
https://bitbucket.org/mordentral/vrexpansionplugin
https://bitbucket.org/mordentral/vrexpansionplugin
https://bitbucket.org/mordentral/vrexpansionplugin
https://bitbucket.org/mordentral/vrexpansionplugin
https://bitbucket.org/mordentral/vrexpansionplugin
https://bitbucket.org/mordentral/vrexpansionplugin
https://bitbucket.org/mordentral/vrexpansionplugin
https://bitbucket.org/mordentral/vrexpansionplugin
https://bitbucket.org/mordentral/vrexpansionplugin
https://bitbucket.org/mordentral/vrexpansionplugin
https://www.unrealengine.com/en-US/marketplace-distribution-agreement
https://www.unrealengine.com/en-US/marketplace-distribution-agreement
https://www.unrealengine.com/en-US/marketplace-distribution-agreement
https://www.unrealengine.com/en-US/marketplace-distribution-agreement
https://www.unrealengine.com/en-US/marketplace-distribution-agreement
https://www.unrealengine.com/en-US/marketplace-distribution-agreement
https://www.unrealengine.com/en-US/marketplace-distribution-agreement
https://www.unrealengine.com/en-US/marketplace-distribution-agreement
https://www.unrealengine.com/en-US/marketplace-distribution-agreement
https://www.unrealengine.com/en-US/marketplace-distribution-agreement
https://www.unrealengine.com/en-US/marketplace-distribution-agreement
https://www.unrealengine.com/en-US/marketplace-distribution-agreement
https://www.unrealengine.com/en-US/marketplace-distribution-agreement
https://www.unrealengine.com/en-US/marketplace-distribution-agreement
https://www.unrealengine.com/en-US/marketplace-distribution-agreement
https://www.unrealengine.com/en-US/marketplace-distribution-agreement
https://www.unrealengine.com/en-US/marketplace-distribution-agreement
https://www.unrealengine.com/en-US/marketplace-distribution-agreement

Taking VR Further - Extending Unreal Engine Chapter 11

[540]

Be especially careful of software licensed under the GNU General Public
License (GPL)—this license places significant restrictions on the software
in which it can be used and isn't compatible with Unreal Engine's
licensing terms. The much more permissive MIT and Apache licenses,
however, are fine, and you'll encounter many Unreal plugins that use
them.

In our case, the license for VRExpansion plugin allows you to do pretty much anything you
want (other than removing the license file and trying to pretend that the work was your
own), including modifying the plugin's code. It places no restrictions on the kind of project
you use it for in terms of content or commercial versus non-commercial use. This is ideal.
Whether we're making our project for sale as a commercial game, using it for live
performance, just building as a hobby, or whatever, we're fine.

Inside a plugin directory
If we now open up the VRExpansionPlugin directory within the outer
VRExpansionPlugin directory, we'll see a directory structure that looks a lot like the
structure for an Unreal project. This isn't accidental. You can pretty much think of plugins
almost as though they are mini projects being inserted into your project. They can contain
code, blueprints, or assets and other content just as a project can.

We're not going to worry about the contents of this directory except to take a look at one
thing:

Open up the VRExpansionPlugin.uplugin file in a text editor1.

You'll see that this file, just like your .uproject files, is just a text file containing
information about your plugin. It's rare that you're ever going to need to open this file up,
but just as with your .uproject files, you should know about it if you ever need to debug
something or change something by hand:

{
 "FileVersion": 3,
 "Version": 4.21,
 "VersionName": "4.21",
 "FriendlyName": "VRExpansionPlugin",
 "Description": "Adds several new VR features & components to UE4",
 "Category": "VRExpansion",
 "CreatedBy": "Joshua (MordenTral) Statzer",
 "CreatedByURL": "",
 "DocsURL": "",
 "MarketplaceURL": "",
 "SupportURL": "",

Taking VR Further - Extending Unreal Engine Chapter 11

[541]

 "EnabledByDefault": true,
 "CanContainContent": false,
 "IsBetaVersion": false,
 "Installed": true,
 "Modules": [
 {
 "Name": "VRExpansionPlugin",
 "Type": "RunTime",
 "LoadingPhase": "Default"
 }
],
 "Plugins": [
 {
 "Name": "PhysXVehicles",
 "Enabled": true
 }
]
}

Most of the information in here is just descriptive, but there's one important detail: the
Plugins block is used to specify dependencies between a plugin and other plugins. In this
case, we can see that the VRExpansion plugin requires the PhysXVehicles plugin to be
enabled. This shouldn't be a problem because it's on by default, but if you ever run into an
instance where a plugin isn't working, take a look at what it depends on and make sure
those plugins are present as well.

There's one other property you'll sometimes run into. Some plugins specify an engine
version that they're allowed to work with, using an EngineVersion entry that looks like
this:

"EngineVersion" : "4.21.0",

If a plugin contains this entry, Unreal will only allow it to load with the engine version
specified here. (You can sometimes get around this by modifying this value by hand in your
.uplugin file, but whether the plugin will compile and work will depend entirely on
what's in it and what's changed in the engine version for which you're trying to compile it.)

Taking VR Further - Extending Unreal Engine Chapter 11

[542]

Finishing our brief tour
This has been a quick look at how Unreal plugins are installed and what's inside them. As
we mentioned earlier, through most of your development, you won't need to mess with any
of this, but when you do need to figure out what's going on with your software, it can be
invaluable to know where to begin looking.

With this, then, let's move on and start working in VR.

Exploring the VRExpansion example project
Before we jump back into our own project, we're going to take one more detour to look at
the example project maintained alongside the VRExpansion plugin, so we can see what
sorts of things this plugin is going to let us do. We're also going to accelerate some of our
development through this chapter by using blueprints from this project, so don't skip this
step.

Let's begin by downloading it from here: https:/ /bitbucket. org/ mordentral/
vrexppluginexample/ downloads/ . Follow the given steps:

Hit the Download repository link to download a zipped version of the project1.
Unzip the downloaded project to wherever you keep your Unreal example2.
projects
Open up the project directory, right-click VRExpPluginExample.uproject, and3.
from the context menu, select Switch Unreal Engine version...
Set it to your current Unreal Engine version4.

Because this project was created as a C++ project, a Visual Studio solution file will also be
created for you when you set a new engine version association. You don't need to work in
C++ to use this plugin. Everything in the project itself was created using blueprints on top
of the plugin, and this is how we're going to build our project as well, but if you're
interested in digging deeper into the C++ classes and seeing how the plugin was built, this
solution file offers a good way to do this.

Try launching the project. It may ask you to build its included plugins. Let it. (Again, be
sure you installed and set up Visual Studio according to the directions in Chapter 2, Setting
Up Your Development Environment.)

https://bitbucket.org/mordentral/vrexppluginexample/downloads/
https://bitbucket.org/mordentral/vrexppluginexample/downloads/
https://bitbucket.org/mordentral/vrexppluginexample/downloads/
https://bitbucket.org/mordentral/vrexppluginexample/downloads/
https://bitbucket.org/mordentral/vrexppluginexample/downloads/
https://bitbucket.org/mordentral/vrexppluginexample/downloads/
https://bitbucket.org/mordentral/vrexppluginexample/downloads/
https://bitbucket.org/mordentral/vrexppluginexample/downloads/
https://bitbucket.org/mordentral/vrexppluginexample/downloads/
https://bitbucket.org/mordentral/vrexppluginexample/downloads/
https://bitbucket.org/mordentral/vrexppluginexample/downloads/
https://bitbucket.org/mordentral/vrexppluginexample/downloads/
https://bitbucket.org/mordentral/vrexppluginexample/downloads/

Taking VR Further - Extending Unreal Engine Chapter 11

[543]

Once the project launches, let it compile the shaders, and then explore a bit to see what it
offers. It should become apparent fairly quickly that VRExpansion offers a tremendous leg-
up to VR developers. It's a treasure trove of professionally-written code and Blueprint
examples of things you can do in VR, and numerous professionally-made and released
games have used this plugin or parts of it in their development:

A view of the VR Expansion Plugin's test project. You'll find a wealth of useful VR development examples in here.

Play around in here. We're not going to cover everything in this example project, since
we're about to begin building our own, but you won't be wasting your time to explore
enough to come away with a good sense of what's included and what you could re-purpose
for your own applications.

Taking VR Further - Extending Unreal Engine Chapter 11

[544]

Here are a few tips to get you started:

Your controller's D-Pad or thumbstick triggers teleport movement, just as it did
in our own examples
Squeezing the controller grips when you don't have an object in your hand
changes your movement modes

We strongly encourage you now to spend some time experimenting with each movement
mode. Teleportation and DPadPress-ControllerOrient modes will be familiar to you from
the locomotion project we built earlier. Others will be new to you. Play with them and get
ideas:

Many objects can be gripped and used. Use the triggers to grip.
White objects can be gripped and climbed.
The player character does a nice job of handling cases where players shove their
heads through walls. Try it.
The Barf Platform lives up to its name. (If you recall our discussions from
Chapter 1, Thinking in VR, you'll understand why.)

Consider this example project to be a major resource as you learn what this plugin allows
you to do. As a result of the work you've done in this book, you should be set up well to
understand what you're seeing in the blueprints and to use them as starting points to
develop further.

Now, let's jump in and build our own project using this plugin as a basis for our own work.

Finishing our project setup
Now that we have our project set up, the VRExpansion plugin installed, and a basic
understanding of what plugins are, let's jump back into building content.

First, of course, we need to set our project settings appropriately for VR:

Project | Description | Settings | Start in VR: False
Engine | Rendering | Forward Renderer | Forward Shading: True
Engine | Rendering | Default Settings | Ambient Occlusion Static
Fraction: False
Engine | Rendering | Default Settings | Anti-Aliasing Method: MSAA
Engine | Rendering | VR | Instanced Stereo: True
Engine | Rendering | VR | Round Robin Occlusion Queries: True

Taking VR Further - Extending Unreal Engine Chapter 11

[545]

Now let's give ourselves an environment to play in:

Find the soul: Cave environment pack in the marketplace and add it to your new1.
project. (It's fine to do this while your project is open.)
Once the environment pack has finished downloading, open up your project if it2.
wasn't already open.
Under Content/SoulCave/Maps, find the LV_Soul_Cave_Mobile level and3.
open it. Let your shaders compile.

While this is happening, let's set this as your project's default level:

Open Settings | Project Settings | Project | Maps & Modes, and set Editor1.
Startup Map and Game Default Map to LV_Soul_Cave_Mobile

Once your shaders have finished compiling, we can get down to work.

Using VRExpansion classes
We're going to use this project both as a review of the things we need to do when we set up
a scene for VR and as an introduction to the VRExpansion classes.

Adding navigation
The first thing we're going to need to do, of course, now that we have our environment, is
set it up with a nav mesh so we'll have the option to use teleport locomotion and so AI
characters can navigate through it.

Begin by checking your collision environment:

Hit Alt + C (or the from the viewport, Show | Collision) to visualize your1.
collision environment and make sure it looks sensible.

The collision here looks good, so let's add a Nav Mesh Bounds Volume to the
scene.

Taking VR Further - Extending Unreal Engine Chapter 11

[546]

Drag a Nav Mesh Bounds Volume into the scene and scale it to encompass the2.
areas where you want your player to be able to navigate.
The following values work reasonably well: Location (X= -11420.0, Y= -3790.0, Z=3.
-490.0), and Scale (X= 100.0, Y= 160.0, Z= 20.0).

Remember that you can make your life easier when setting up volumes by using the
viewport's top and side views to make sense of what you're doing.

The resulting navmesh is going to cover a lot of spots where you're not going to want
players to navigate, so remember to use Nav Modifier Volumes to block out undesirable
teleport destinations.

Adding a game mode
As always, we're going to want to set up a game mode for our project to specify which
classes to load and to handle any rules we want to apply to our game:

Create a directory for your project inside the Content directory, and then create1.
a blueprints directory inside this.
Create a new Blueprint Class inside this directory and use Game Mode Base as2.
its parent. Name it BP_VRExpansionGameMode.
Open Settings | Project Settings | Project | Maps & Modes, and set the Default3.
GameMode to the new game mode you just created.
Open the World Settings for your map and reset Game Mode | GameMode4.
Override to clear it.

We'll be revisiting our new game mode multiple times as we add new classes based on the
VRExpansion classes.

Updating the PlayerStart class
The VRExpansion plugin provides a new player start class that's scaled more accurately for
the VRCharacter we're going to spawn, so it represents more accurately where the player
can fit. We're going to use it here:

Drag a VRPlayerStart into your scene near the existing PlayerStart actor.1.
From the old PlayerStart Details, right-click its Transform | Location, and2.
copy the value.

Taking VR Further - Extending Unreal Engine Chapter 11

[547]

Delete the old PlayerStart.3.
Select the VRPlayerStart and in its Details, right-click its Transform | Location,4.
and paste in the value you copied from the old one.
Move it down a bit to place it on the floor. (X= -20220.0, Y= -13080.0, Z= -2118.0)5.
works pretty well.

Adding a VR character
Now it's time to add a VR-enabled character to our project. The VRExpansion plugin gives
us two new classes from which we can derive a character for use in VR:

VRSimpleCharacter is a base class for VR-enabled characters that automatically
sets up two GripControllers, a network-replicated VR camera, and
implements a movement component specifically designed for use in VR.
VRCharacter includes everything found in VRSimpleCharacter, but adds a
few additional methods to offset the collision by neck location and support more
significant re-scaling of the character's collision capsule.

In general, unless you're sure you need to use the neck collision offset or you're going to be
radically changing the collision capsule size, use VRSimpleCharacter.

Let's do this now:

From within the blueprints directory where you placed your GameMode, right-1.
click to create a new Blueprint Class.
Expand the All Classes expander, and in the search box, type vr char.2.

Taking VR Further - Extending Unreal Engine Chapter 11

[548]

You'll see the VRCharacter and VRSimpleCharacter classes listed. Select3.
VRSimpleCharacter. Name the new blueprint BP_VRCharacter:

Now, open up your Game Mode and set BP_VRCharacter as its Default Pawn4.
Class.

Run the map. You won't be able to move around yet, but you should be properly registered
to the floor.

Taking VR Further - Extending Unreal Engine Chapter 11

[549]

Setting up input
Now that our character is in place and our game mode has been told to spawn it, let's allow
our player to control it.

First, we're going to need to map some inputs. If we wanted to do this by hand, we would
do this through Settings | Project Settings | Engine | Input, but to save a bit of time here,
let's just copy the DefaultInput.ini file from the VRExpansion sample project into ours:

Open the directory where you unzipped the VRExpansion example project, and1.
copy the DefaultInput.ini file from its Config directory
Open your current project directory and paste DefaultInput.ini into it2.

Re-open your working project. Of course, if we were building our own game, we would
design our own input scheme for it, but this gives us a quick way to have a few inputs
already mapped and ready to go for testing.

Setting up your VR character using example assets
Now, ordinarily we would walk through the process of building this character from the
ground up, but we have a lot of material to get through here, so we're going to save
ourselves a bit of time by migrating the example character from the VRExpansion example
project into our own, and then we're going to dig into how it works.

Making effective use of example assets
This brings up a point worth mentioning about using plugins and example assets and code.
Very often, libraries and plugins will ship with example assets that have already been
designed to work with them. It's always a good idea to get familiar with these, as they show
you the author's intention for how they expect their code to be used. It's often the case, too,
that these assets will be pretty close right out of the box to what you need them to be,
though they'll rarely be exactly what you need.

Taking VR Further - Extending Unreal Engine Chapter 11

[550]

There are two approaches you can take when making use of someone's example assets or
code—you can incorporate the example wholesale, and then modify or remove anything
that works differently than the way you want it to work, or you can build your own assets
from scratch, using the example for guidance to see how the author recommends that you
use their code. There are benefits and drawbacks to each approach. The first approach
tends to get you working much earlier, but you'll often wind up with a lot of extra stuff that
you don't need that then needs to be cleaned out. (Remember that we don't believe in
cargo-cult programming here—you're not simply going to dump this code into your project
and walk away without understanding it.) The second approach can take a more time, but
gives you a clean class that does exactly what you need and only what you need, and that
you understand fairly well because you wrote it.

There's a middle road too, which is the path we recommend. Remember Kent Beck's advice:
Make it work; make it right; make it fast? Consider using an existing example asset or class as
part of your make it work phase. During this phase, you're experimenting with the class as
the author wrote it, and learning how it works and how it's meant to be used. Then, once
you have a handle on things, start pulling out the stuff you now know you don't need, and
changing things that need to work differently, until you have a version that does what you
need it to do. Now, move into your make it right phase. Is it OK as it is? Could it be
maintained easily? Would another engineer, or future-you, a year from now, be able to read
this blueprint and understand what's going on? Consider in light of these questions
whether you want to write a new, parallel version of the class now that you have a
workable template for how it should be built.

Migrating the example pawn
In light of this approach, let's migrate the example project's VR character blueprint into our
project so we can start experimenting with it and learn how it's built:

From the VRExpPluginExample project, find the Vive_PawnCharacter1.
blueprint in Content/VRExpansion/Vive, and migrate it into your new
project's Content folder

Don't worry about the Vive-centric name. This character works fine with
the Oculus Rift and Windows Mixed Reality headsets as well. When this
plugin was first written, only the Vive supported room-scale VR. Once
Oculus added this support, the plugin was updated to accommodate it,
but the example names were never changed.

Return to your new project, and switch your Game Mode's Default Pawn Class2.
to the Vive_PawnCharacter we just migrated in.

Taking VR Further - Extending Unreal Engine Chapter 11

[551]

We wanted to create the other VR character as an example to demonstrate that new classes
introduced in plugins can be used just like any other engine class, but for the work we're
actually going to do here, we're going to use the migrated character.

Test it out. You should now be able to navigate through the environment using teleport,
and you should be able to use the grip buttons to change your movement mode:

Play around a bit with this, and then we're going to take a look under the hood.

Making sense of complicated blueprints
Now that we have the basics working, let's do some digging and understand how this class
was built. You should find, as we do this, that many of the techniques you'll see in this
blueprint will make more sense as a result of the work you've done so far in this book.

The techniques we're going to explore here are valuable. If you work professionally in
software development, or even if you work as a hobbyist, sooner or later, you're going to
encounter an existing piece of code and you're going to need to figure out how it works.
We're going to guide you through a few strategies to make this a far less-daunting task than
it might at first seem.

Taking VR Further - Extending Unreal Engine Chapter 11

[552]

Let's get to it:

Open Content/VRExpansion/Vive, and find the Vive_PawnCharacter1.
blueprint. Open it up.
Open its Event Graph.2.

Yikes! There's a lot of stuff in here.

The example project's Vive_PawnCharacter Blueprint contains a lot of Blueprint code. Digging through it isn't as daunting as it may seem at first.

Taking VR Further - Extending Unreal Engine Chapter 11

[553]

Here's the thing though: as daunting as this may seem at first, you're going to appreciate
this soon enough. This class is an incredible compendium of useful techniques for
developing VR characters. On its own, this would be a thing of beauty, but what makes it
even more amazingly useful is that the blueprints written here and the underlying C++
code have been written with network replication in mind, so if you're planning to write a
networked VR experience, this class will help you right out of the box.

To make use of it, however, you need some sense of where to begin. Let's learn how to
approach a new class and figure it out.

Begin by checking the parent class
The first thing you want to do any time you're looking at a new blueprint is check the
upper-right corner of the interface, and see what its parent class is.

In our case, we can see that this blueprint derives from VRCharacter. VRCharacter is a
native class written in C++. If you follow the link provided by the parent class indicator, it
will open Visual Studio to this class, and you can explore its native implementation to learn
more about it. For our purposes here, we're going to stay in Blueprints, but it's worth
knowing that this is a thing you can do.

(If we were to burrow through this class in its native implementation, we would see that it
derives from a VRBaseCharacter class, which in turn derives from Character. So, this
class is essentially an Unreal character as described here: https:/ /docs. unrealengine.
com/en-US/Gameplay/ Framework/ Pawn/ Character. But it has additional VR-specific
modifications to replicate the camera and hand-controller positions, and handle movement
in ways that make sense for VR.)

https://docs.unrealengine.com/en-US/Gameplay/Framework/Pawn/Character
https://docs.unrealengine.com/en-US/Gameplay/Framework/Pawn/Character
https://docs.unrealengine.com/en-US/Gameplay/Framework/Pawn/Character
https://docs.unrealengine.com/en-US/Gameplay/Framework/Pawn/Character
https://docs.unrealengine.com/en-US/Gameplay/Framework/Pawn/Character
https://docs.unrealengine.com/en-US/Gameplay/Framework/Pawn/Character
https://docs.unrealengine.com/en-US/Gameplay/Framework/Pawn/Character
https://docs.unrealengine.com/en-US/Gameplay/Framework/Pawn/Character
https://docs.unrealengine.com/en-US/Gameplay/Framework/Pawn/Character
https://docs.unrealengine.com/en-US/Gameplay/Framework/Pawn/Character
https://docs.unrealengine.com/en-US/Gameplay/Framework/Pawn/Character
https://docs.unrealengine.com/en-US/Gameplay/Framework/Pawn/Character
https://docs.unrealengine.com/en-US/Gameplay/Framework/Pawn/Character
https://docs.unrealengine.com/en-US/Gameplay/Framework/Pawn/Character
https://docs.unrealengine.com/en-US/Gameplay/Framework/Pawn/Character
https://docs.unrealengine.com/en-US/Gameplay/Framework/Pawn/Character
https://docs.unrealengine.com/en-US/Gameplay/Framework/Pawn/Character
https://docs.unrealengine.com/en-US/Gameplay/Framework/Pawn/Character
https://docs.unrealengine.com/en-US/Gameplay/Framework/Pawn/Character
https://docs.unrealengine.com/en-US/Gameplay/Framework/Pawn/Character

Taking VR Further - Extending Unreal Engine Chapter 11

[554]

Looking at the components to see what they're
made of
The next thing to look at for any new class you're exploring is its Components list:

Taking VR Further - Extending Unreal Engine Chapter 11

[555]

Looking at this components list tells us a lot about this character class and what it can do.
It's worth doing this with the viewport active so you can see which components have
visible representations. Roll over each component to see what type of component it is, and
allow this to build an overall sense of the whole class in your mind.

We can see that the VRCharacter supports a static mesh for the head, a static mesh for the
body, and two motion controllers with text renderers, grab-detection spheres, and skeletal
meshes attached. (This motion controller setup should feel somewhat familiar to the work
we did on grip interactions.) We can also see that it provides a character movement
component and some support for VOIP communication.

You don't need to agonize over every detail when you're doing this. The point at this stage
of the process is to build an overall mental model of what's in the class and how the parts fit
together.

Look for known events and see what happens
when they run
Another useful starting point for getting information about a blueprint is to begin with
events we know are likely to be implemented and see what they do.

Most classes will do some sort of setup work on Event BeginPlay, and most will do some
work on Event Tick, so these are generally smart starting points:

Hit Ctrl + F to activate the Find Results panel and type beginplay into the1.
search bar.

Taking VR Further - Extending Unreal Engine Chapter 11

[556]

Hit Enter, since we're just interested in searching inside this blueprint:2.

Event BeginPlay appears on the Find Results list. We can double-click it to jump to that
event in the blueprint.

Looking at BeginPlay, we can see that it only handles this event on clients from the server;
it uses a SetupOnPossession custom event instead. We can see that it's setting up grip
components for the locally-controlled player; it's adjusting the tracking origin and spectator
screen, and then for every body it's going to spawn and set up a pair of
BP_Teleport_Controller actors, which get attached to the motion controllers.

We may not know everything yet about this pawn, but just from looking at its BeginPlay,
we've learned a few things:

This pawn has been set up to be used in network play—it's executing different
paths depending on whether it has the authority
The pawn handles some things differently depending on whether it's running
locally or controlled by another player
Teleport handling is managed by a separate class from the pawn. We'll want to
look at this

Taking VR Further - Extending Unreal Engine Chapter 11

[557]

Now let's do the same thing for Event Tick:

Search for Tick, and double-click the Event Tick entry that comes up in the
results:

Taking VR Further - Extending Unreal Engine Chapter 11

[558]

Again, this tells us a few things right off the bat:

Remote pawns don't do anything on the tick at all. This is good.
The tick is handling movement for the most part, but climbing movement was
moved to a separate event.
Grip animations and teleport rotations are being handled on the tick too.

It's not necessary to do a deep dig at this stage of the process yet. Your intention here is to
give yourself a broad view of what parts this class contains and when and how they do
their work. This way, when you're looking for details later on, you'll have a good sense of
where to look.

This process has given us a bit of information so far. Just by knowing the parent class, the
components it contains, and two of its known events, we can already intuit a fair bit about
what this class can do. Now it's time to get more specific and begin with a simple
question—what happens when the player tries to teleport?

Using inputs as a way to find a starting point in
your blueprint
We could try to answer this question by looking through this huge event graph and trying
to find what we're looking for (and in this instance, that would work out reasonably well
for us because the graph is well-organized and the author has done a good job of
documenting it), but there's an easier way.

Start with a thing you know, and follow the execution from there to see what happens.

In our case, we know that the player executes the teleport by hitting one of the Dpads or
thumbsticks, depending on whether they're on a Vive, an Oculus, or some other device.
That's going to be mapped as an input. Let's find it:

Open Settings | Project Settings | Engine | Input, and expand the Action1.
Mappings expander.

Taking VR Further - Extending Unreal Engine Chapter 11

[559]

There's an input here named TeleportRight that sounds promising. If we expand
it, we can see that it's mapped to the right thumbstick, or FaceButton 1 (which is
on the Vive is the Dpad's top quadrant). That's the one:

Now that we have an input name to look for, we'll search for TeleportRight in
our blueprints, and we're probably going to find something. (Some projects
handle their inputs in the native C++ environment, but it's much more common to
do it in blueprints.

Jump back to your event graph and hit Ctrl + F to bring up the Find Results2.
panel.
Type TeleportRight in the search box and hit the binoculars symbol to the3.
right of the box to run the search in all blueprints:

Taking VR Further - Extending Unreal Engine Chapter 11

[560]

There it is. Our character is handling that input:

Another useful strategy when you're looking for inputs is simply to type
inputaction into your search box. Any input that's been mapped using the
project's Inputs settings (which are written to DefaultInput.ini) will begin with
this prefix.

Double-click the entry for InputAction TeleportRight, and you'll be taken to that4.
event handler in the event graph:

Now we have something to look at. We can use a breakpoint to confirm that we're looking
at the right thing.

Taking VR Further - Extending Unreal Engine Chapter 11

[561]

Setting breakpoints and tracing execution
We're going to use a breakpoint to verify that the code we think is going to execute when
we trigger the input is really what executes. This is a common technique for understanding
someone else's code. When you're not sure about its execution path, put breakpoints at
locations you expect to be hit, and then see which ones really trip. This will give you a
starting point from which to begin exploring the software:

Select the InputAction TeleportRight node, and hit F9 to put a breakpoint on it,1.
or right-click and select Toggle breakpoint from the context menu:

When a breakpoint is active on a blueprint node, it instructs the editor to pause
the blueprint's execution when it reaches the node containing the breakpoint. You
can then step through execution one action at a time and see what the blueprint is
doing. Let's test this now.

Taking VR Further - Extending Unreal Engine Chapter 11

[562]

With the breakpoint still set on InputAction TeleportRight, launch a VR2.
Preview session (you don't really need to put on your headset for this—we're
going to be back out of it in a second), and activate the right teleport input.

The game should appear to freeze on you, and your VR headset will stop
displaying the environment.

Take a look now at the InputAction TeleportRight node. You'll see a red arrow3.
indicating that the blueprint simulation has paused at this node:

Taking VR Further - Extending Unreal Engine Chapter 11

[563]

Let's take note of a few other things here too. You can see that the blueprint display is
ringed with a yellow indicator to indicate that it's currently simulating, and you can see
from the title line that the graph is currently in a read-only state. You're not allowed to
change a blueprint while you're simulating it:

Let's also take a look at the execution controls that have appeared on our toolbar:

The Resume button will resume normal execution. (This is dicey when running
VR—your headset may not properly wake back up from the paused state.)
The Frame Skip button allows a single frame to execute and returns to a paused
state.
The Stop button will shut down your Play-in-Editor (PIE) session and return to
the editor.
The Find Node button takes you back to the node at which execution is currently
stopped.

These next three nodes are the important ones for stepping through code, and you should
memorize their hotkeys because you'll use them all of the time:

Step Into (F11) steps to the next executed node, and jumps into a function's
implementation if the node represents a blueprint function call or a macro.

Let's see this in action before we move on.

Hit F11 now. See how we've now jumped to the Switch on MovementMode node:

Roll over the selection input of Switch on MovementMode node. The rollover1.
tooltip indicates the input's type and its current value:

Taking VR Further - Extending Unreal Engine Chapter 11

[564]

We can see that Movement Mode Right is currently set to Teleport, so the first
branch of the switch statement is going to execute.

Hit F11 again, and execution steps to the Branch statement.2.

Rolling over its input value, we can see that, because we're not hand-climbing,
out of body, or in a movement-disabled state, this value is false and the false
branch is going to execute.

Hitting F11 again takes us to the SetTeleporterActive node as we expected.3.
Hit F11 again, and this time something interesting happened. Instead of jumping4.
to the next node in the event graph, we jumped inside of the Set Teleporter
Active function.

This is the difference between Step Into (F11) and Step Over (F10). Step into will
take you wherever execution goes, even into function calls or macros, while F10
will step over a function call without taking us inside it.

Continue hitting F11 until we step inside of the Is Valid macro.5.

We're not actually interested in the contents of this macro, so we'd like to step
back out so we can continue looking at our SetTeleporterActive function.

Taking VR Further - Extending Unreal Engine Chapter 11

[565]

Hit Alt + Shift + F11, or the Step Out button to get back to the6.
SetTeleporterActive graph.

Now you've seen each of these three navigation operations in action. Practice
them and get used to using their hotkeys. Stepping through blueprints like this is
one of the fastest and most effective ways of seeing how a complex blueprint
runs.

Remember the following:

F11 (Step Into) steps to the next executed node, even if it's inside another
function or macro.
F10 (Step Over) steps to the next executed node in the current context, but
does not step inside functions or macros that get called from that context.
Alt + Shift + F11 (Step Out) steps back out of a function or macro to the
context that called it.

Memorize these keys. You'll be happy you did.

These hotkeys—F9 to toggle a breakpoint, F10 to step over, and F11 to
step in, also work pretty much exactly the same way in Visual Studio
when tracing through C++ code, and the same general techniques—find a
known point in the code, set a breakpoint, and then step through to see
how it works, and apply it there too. Use Shift + F11 to step out of a
method in Visual Studio.

Hit F11 until execution jumps into the Activate Teleporter method.7.

Take a look at your tab bar and you'll see that you've now jumped into a different class
altogether. The VRExpansion plugin's example project uses a separate Blueprint actor
called BP_TeleportController to handle drawing the teleport beam and the target
indicator. This is useful information.

This is also a smart way to design this system. Keeping a system such as
this bundled together into its own object makes it easier in the long run to
swap things out, to add it to a new character class, or to find what you're
looking for if you need to debug. What you're seeing here is a more
advanced organizational principle, but it's worth learning to think in these
terms.

Taking VR Further - Extending Unreal Engine Chapter 11

[566]

Viewing the execution trace
Let's say we were stepping through a blueprint and we realized we needed to jump back a
few steps to see what values drove a branch or a switch. To do this, we can make use of the
Debug panel's Execution Trace:

Select Window | Debug to bring up the Debug panel.1.
Expand the panel's Execution Trace section.2.
Continue stepping through your blueprint and watch what happens here:3.

The execution trace will build a list of breadcrumbs showing where we've been so far as we
step through execution. Any time you need to revisit a previous execution step, you can
click it, and you'll be taken to that section of the graph, where you can see what inputs were
driving it and what outputs it produced.

This is one of the most effective ways you can learn a new blueprint: set breakpoints and
see how it runs. You'll develop a very clear sense of how the class is built this way.

Taking VR Further - Extending Unreal Engine Chapter 11

[567]

As you progress through your development career and get good at
figuring out and leveraging existing code, you're probably going to be
surprised by how many developers you encounter who hold themselves
back by failing to learn to do this effectively and wind up doing things the
hard way, if they get anything done at all. Some of this, you'll find, is what
developers call the not-invented-here syndrome (generally a fear of doing
the work masked as an ego), and some of it is simply lack of knowledge.
The time you spend doing your research and learning what's already been
figured out about the problem you're trying to solve is never wasted time.

Managing breakpoints with the Debug window
We're going to do another exploration in a moment, but, first, we're going to clear our
breakpoints out of the Vive_PawnCharacter blueprint:

Hit the Stop button to end the simulation and return to the editor.1.
Tab back to the Vive_PawnCharacter blueprint, and if it isn't still open, select2.
Window | Debug.

This time, we're interested in the Breakpoints list displayed on this panel:

In this screenshot, I've added a few more breakpoints to make the example clearer.

Taking VR Further - Extending Unreal Engine Chapter 11

[568]

You can click any breakpoint in the list to jump to its location in the blueprint, and you can
right-click to disable or remove a breakpoint.

Disabling a breakpoint turns the breakpoint off without removing it. This
is useful if you want to omit a breakpoint temporarily but still want to be
able to re-enable it later for further debugging.

You can also toggle any breakpoint on or off by selecting a blueprint node and hitting F9.

Let's clear them all out of our class for now:

Hit Debug | Delete All Breakpoints (or use Ctrl + Shift + F9).

This will remove the breakpoint we set on the input action earlier, along with any other
breakpoints we might have set in this blueprint. This menu also gives you the option to
disable and enable all breakpoints in a class, as well.

Using the call stack
Let's do another experiment now. We've seen how we can begin stepping through
execution at an input event to see what happens when the event gets called, but what if
we're interested in a particular function, and we want to see when it gets called and who
calls it? We have a few powerful tools to help us here too.

Let's say we were seeing a camera fade happen in-game and we wanted to find out who
was calling it. Maybe we're not even sure what the name of the call is going to be, but we're
guessing it might have the word fade in its name:

Hit Ctrl + F to activate the Find Results window, and type fade into the search1.
bar.

Taking VR Further - Extending Unreal Engine Chapter 11

[569]

Use the binoculars to find in all blueprints:2.

Taking VR Further - Extending Unreal Engine Chapter 11

[570]

We can see a number of entries here, but most of them are variables. Clearly, the
stuff in the fog sheet isn't what we're looking for, but these Start Camera Fade
calls in Vive_PawnCharacter look promising.

Double-click the first Start Camera Fade entry to jump to its location in the3.
graph, and hit F9 to set a breakpoint on it.
Repeat this for the other three.4.
Launch a VR Preview session and activate a teleport.5.

Execution will stop at one of the Start Camera Fade nodes. This time, though,
instead of stepping through the code to see what happens next, we want to see
how we got here.

Hit Window | Developer Tools | Blueprint Debugger to open up Blueprint6.
Debugger.

You'll see that the first of the three displayed tabs is labeled Call Stack:

The Call Stack is a list of all of the events and functions that led to where the execution has
currently been paused. This gives you an enormous amount of information. The top of a
call stack represents where execution is currently paused, and the entry right below it is the
function or event that called it. The entry below that one is whatever called that function,
and so on.

Taking VR Further - Extending Unreal Engine Chapter 11

[571]

Looking at this stack, we can see that a C++ routine detected the button-press and triggered
InputAction TeleportRight. Then, a call was made from the event graph. Let's double-click
this entry in the Call Stack to see it:

It's an Execute Teleportation call triggered by the input action's Released event.

We can double-click the next call—the ExecuteTeleportation event, and see the graph
that leads to the camera fade we were looking for.

This is a powerful technique, and you should get into the habit of using it.

For more information on using Unreal's blueprint debugging tools, look
here: https:/ /docs. unrealengine. com/ en-us/ Engine/ Blueprints/
UserGuide/ Debugging.

Do a bit of exploring through the blueprint using this tool, and then hit Stop to return to
the editor.

https://docs.unrealengine.com/en-us/Engine/Blueprints/UserGuide/Debugging
https://docs.unrealengine.com/en-us/Engine/Blueprints/UserGuide/Debugging
https://docs.unrealengine.com/en-us/Engine/Blueprints/UserGuide/Debugging
https://docs.unrealengine.com/en-us/Engine/Blueprints/UserGuide/Debugging
https://docs.unrealengine.com/en-us/Engine/Blueprints/UserGuide/Debugging
https://docs.unrealengine.com/en-us/Engine/Blueprints/UserGuide/Debugging
https://docs.unrealengine.com/en-us/Engine/Blueprints/UserGuide/Debugging
https://docs.unrealengine.com/en-us/Engine/Blueprints/UserGuide/Debugging
https://docs.unrealengine.com/en-us/Engine/Blueprints/UserGuide/Debugging
https://docs.unrealengine.com/en-us/Engine/Blueprints/UserGuide/Debugging
https://docs.unrealengine.com/en-us/Engine/Blueprints/UserGuide/Debugging
https://docs.unrealengine.com/en-us/Engine/Blueprints/UserGuide/Debugging
https://docs.unrealengine.com/en-us/Engine/Blueprints/UserGuide/Debugging
https://docs.unrealengine.com/en-us/Engine/Blueprints/UserGuide/Debugging
https://docs.unrealengine.com/en-us/Engine/Blueprints/UserGuide/Debugging
https://docs.unrealengine.com/en-us/Engine/Blueprints/UserGuide/Debugging
https://docs.unrealengine.com/en-us/Engine/Blueprints/UserGuide/Debugging
https://docs.unrealengine.com/en-us/Engine/Blueprints/UserGuide/Debugging
https://docs.unrealengine.com/en-us/Engine/Blueprints/UserGuide/Debugging
https://docs.unrealengine.com/en-us/Engine/Blueprints/UserGuide/Debugging

Taking VR Further - Extending Unreal Engine Chapter 11

[572]

Finding variable references
Going back to our teleport example, what if we wanted to know what changes that
Movement Mode variable that drives the switch statements from InputAction
TeleportRight?

This is easy to do:

Select the Movement Mode Right variable.1.
Right-click it and select Find References, or hit Alt + Shift + F:2.

Taking VR Further - Extending Unreal Engine Chapter 11

[573]

We can see that this variable is used in a number of places, but it's only set in two
locations. This is what we're interested in:

Double-click on of the Set MovementModeRight entries in your Find Results.3.

This takes us to the location where this variable is set, and we can see that this is taking
place in a function called Cycle Movement Modes. We could then use the strategies we've
learned to see when and how this function gets called, and what else happens along with it.

You can use Alt + Shift + F with functions as well as variables. Practice doing this.

Making sense of someone else's code is like untying a complicated knot. You'll discourage
yourself if you try to make sense of it all at once. Instead, you find a single strand and start
following it and pulling it apart, and the structure of it becomes clear as you go. These tools
can help you to do this.

Taking VR Further - Extending Unreal Engine Chapter 11

[574]

Using more of the VRExpansion plugin
VRExpansion is a large plugin, and it provides a great deal of functionality to VR
developers. Now that you have some strategies in place for exploring it and figuring out
how it works and how you can use it, you're going to be able to unlock enormous potential.

In addition to the character we've just explored, this plugin provides a VR-enabled player
controller, an AI controller, stereo widgets, buttons, levers, and much more.

If you'd like to get a better sense of what this plugin includes (there's far too much to fit
within this chapter), hit the View Options popout in your content browser, turn on Show
Plugin Content, and make sure Show C++ Classes is visible:

Browse through the class directory and see what's in there. If you double-click any of these
classes, its native source will open in Visual Studio.

One of your best resources though is the VR Expansion Plugin forum at UnrealEngine.com,
found here: https:/ / forums. unrealengine. com/ development- discussion/ vr- ar-
development/89050- vr- expansion- plugin.

https://forums.unrealengine.com/development-discussion/vr-ar-development/89050-vr-expansion-plugin
https://forums.unrealengine.com/development-discussion/vr-ar-development/89050-vr-expansion-plugin
https://forums.unrealengine.com/development-discussion/vr-ar-development/89050-vr-expansion-plugin
https://forums.unrealengine.com/development-discussion/vr-ar-development/89050-vr-expansion-plugin
https://forums.unrealengine.com/development-discussion/vr-ar-development/89050-vr-expansion-plugin
https://forums.unrealengine.com/development-discussion/vr-ar-development/89050-vr-expansion-plugin
https://forums.unrealengine.com/development-discussion/vr-ar-development/89050-vr-expansion-plugin
https://forums.unrealengine.com/development-discussion/vr-ar-development/89050-vr-expansion-plugin
https://forums.unrealengine.com/development-discussion/vr-ar-development/89050-vr-expansion-plugin
https://forums.unrealengine.com/development-discussion/vr-ar-development/89050-vr-expansion-plugin
https://forums.unrealengine.com/development-discussion/vr-ar-development/89050-vr-expansion-plugin
https://forums.unrealengine.com/development-discussion/vr-ar-development/89050-vr-expansion-plugin
https://forums.unrealengine.com/development-discussion/vr-ar-development/89050-vr-expansion-plugin
https://forums.unrealengine.com/development-discussion/vr-ar-development/89050-vr-expansion-plugin
https://forums.unrealengine.com/development-discussion/vr-ar-development/89050-vr-expansion-plugin
https://forums.unrealengine.com/development-discussion/vr-ar-development/89050-vr-expansion-plugin
https://forums.unrealengine.com/development-discussion/vr-ar-development/89050-vr-expansion-plugin
https://forums.unrealengine.com/development-discussion/vr-ar-development/89050-vr-expansion-plugin
https://forums.unrealengine.com/development-discussion/vr-ar-development/89050-vr-expansion-plugin
https://forums.unrealengine.com/development-discussion/vr-ar-development/89050-vr-expansion-plugin
https://forums.unrealengine.com/development-discussion/vr-ar-development/89050-vr-expansion-plugin
https://forums.unrealengine.com/development-discussion/vr-ar-development/89050-vr-expansion-plugin
https://forums.unrealengine.com/development-discussion/vr-ar-development/89050-vr-expansion-plugin
https://forums.unrealengine.com/development-discussion/vr-ar-development/89050-vr-expansion-plugin
https://forums.unrealengine.com/development-discussion/vr-ar-development/89050-vr-expansion-plugin
https://forums.unrealengine.com/development-discussion/vr-ar-development/89050-vr-expansion-plugin

Taking VR Further - Extending Unreal Engine Chapter 11

[575]

The plugin's author, Joshua Statzer (mordentral) is very active on the forum and is
surrounded by a community of helpful developers who are very willing to help new
developers to get on their feet.

Summary
This chapter took a bit of a different turn from the tutorials we've done up to this point, as
its intention really is to help you to get to a point where you can explore the numerous
plugins, templates, examples, and other projects you find within the Unreal ecosystem and
learn how to use them to accelerate your work and learn new techniques. This is one of the
most valuable skills you can teach yourself as a developer. If you get comfortable exploring
code you find in the wild, you'll develop much more powerful software in a much shorter
time and learn more advanced techniques by seeing how experienced developers have
approached the problem you're trying to solve. This will make you a better developer
faster.

12
Where to Go from Here

Serious congratulations are in order.

By reaching this point, you've done more than many aspiring developers ever will, and
that's no small achievement. The most valuable asset you can cultivate in your journey as a
VR creator is your persistence and your willingness to do the work. By finishing this book,
you've already shown dedication and a desire to see things through that will set you apart
from the rest. Take a moment to recognize this quality in yourself.

You've probably spotted by now that our focus in writing this book differed from that of a
lot of other tutorials. There's no shortage of material out there that will tell you what
buttons to push, but here's the thing—knowing those things isn't how you become a good
developer. You get good at this by learning how to think about the challenges you're trying
to solve and how you can use the tools you have to solve them. To this end, we digressed
multiple times into discussions of why something works the way it does or how else it
could be used. Continue this thinking as you continue your own self-education. Taking the
time to learn why will carry you much further than simply learning what. The latter could
change with the next software update and usually won't apply to anything else. The
underlying reasons we do things tend not to change. Train yourself to recognize that, to
know a thing, you have to be able to describe why it is the way it is. We've tried throughout
the course of this book to get you used to thinking about these why questions and to give
you a number of tools to make more of these distinctions yourself.

We hope you've come away from this book with a lot that you can use as you develop VR,
but, honestly, if you just came away with these two realizations alone, it would have been
worth it:

Success comes from persistence and willingness to do the work
Focus on why rather than what

Where to Go from Here Chapter 12

[577]

We also tried throughout the course of this book to demonstrate another important truth:
development is iterative. Many of the examples we did together involved solving
problems and changing our solutions as we discovered new problems or better ways of
doing things. We tried, in doing this, to recreate the way developers really think as we
solve problems. It's a process that happens one step at a time. By focusing on the next steps,
doing whatever work is required to do the next step, and not giving up or surrendering to
discouragement when it's not clear what those next steps should be, you can create nearly
anything you imagine.

You will find yourself constantly asking yourself why you saw the results you did, or why
a problem you need to fix might be happening. Becoming an effective developer isn't a
matter of memorizing a lot of things—it's a matter of building effective ways of thinking so
you can find your way through the problems you need to solve.

Take this to heart. You're embarking on a frontier, developing for a medium whose rules
and vocabulary are still almost wholly unknown to us, and we're all in this together,
learning what works and how we can help VR bloom into the art form we sense it's going
to be. You'll be facing challenges that don't have known answers, because they simply
haven't been solved yet. Maybe you'll be the first to discover them.

Final word
As we write this, VR is at a crossroads.

In the years immediately following the release of the Oculus Rift and the HTC Vive, there
was a flurry of activity and interest around VR, and then as the years wore on, that interest
leveled out. Many people brought out their VR headsets for parties or demos and then put
them away again—why?

Well, it happened for a few reasons.

The first was a question of technology, and here we need to be honest with ourselves that
this is first-generation tech. What's actually going on to make these headsets work is
astonishing, but they have limitations. This first generation of the technology was too
expensive and too difficult to set up for mainstream consumers. The headsets weren't
comfortable to wear for long periods of time, and the limitations of the lenses and the
screens combined to break presence by reminding users of the technology they were using.
Fields of view were narrow, lenses blurred the image if they were even a little bit
misaligned, and low-screen resolutions left pixel boundaries visible (the dreaded screen door
effect). The hardware developers knew this, but they also knew that the only way past the
growing pains of a newly-emerging technology is to work through them.

Where to Go from Here Chapter 12

[578]

Think ahead a few years and you can see how these problems start going away in a big
hurry. Screen resolutions are only going to keep improving, even as the screens get lighter
and require less power. Optical waveguides are likely to replace the heavy Fresnel lenses
we're using now and dramatically lighten the headsets and widen their field of view.
External sensors are soon going to be a thing of the past, so setting up your VR headset
won't require you to chew up three USB ports or mount base stations on your walls.
Increasingly good standalone headsets and PC-based headsets that can communicate
wirelessly with their base PCs will soon become the norm. These are very solvable
problems, and it's reasonable to expect that they won't be significant concerns soon.

Then there's the question of simulator sickness. In the early years of the VR gold rush,
developers tended to be utterly naive about this, or they became paranoid. Usually, the
latter came as a response to the former. We all got our original DK1s and DK2s and
immediately started making locomotion schemes just as we had on the flat screen, and we
made ourselves sick. So, then we swung the pendulum in the other direction and teleported
everywhere. Neither extreme is how it has to be. We're learning more about what we can
do to move the player's view that works, and we encourage you to experiment with this as
well. There are solutions that can work. The other reality is that people become acclimated
to simulators, just as they do to being on a boat at sea. In the early 1990s, it was common for
first-person shooters to induce motion sickness too. That doesn't happen anymore, in part
because the rendering tech improved, but also in part because players got used to them. A
similar effect is happening with VR. Be conscious of simulator sickness and design your
software to mitigate the effect, but don't live in mortal fear of it: explore. Figure out what
else can work. Early filmmakers had to figure out how they could get away with moving
the camera and what cuts would work. This is the same thing. We'll solve this challenge
through experimentation. Frontiers aren't places to be bound by rules. We don't know them
yet.

The last challenge especially is where you come in. We really don't know what we can do
with this technology. Anyone who tells you we have figured this out isn't using their
imagination. We've barely gotten started.

In the gold rush that followed the first release of the Rift and the Vive, developers for the
most part treated this medium as an updated version of whatever medium they already
knew. Movie people saw this as a 3D movie device. Games people saw it as an immersive
gaming device. Neither really had it right.

Where to Go from Here Chapter 12

[579]

The language of this medium is mostly undiscovered, and that makes this an exciting place
to play. We've advised you a few times to question those who try to tell you what you can't
do in VR, and here we want to take this a step further. Break those boundaries on purpose.
Try things you know aren't going to work, because one time in a hundred, they just might.
Put active thought and imagination into the work you do in exploring VR. Let the medium
show you how it works. We firmly believe that VR or some variant of it will be the defining
medium of the 21st century. If you really think it through, it's hard to argue convincingly
any other way. The benefits of immersion and presence are just too pronounced. But we
need to figure out how these things really work. We know a few of the basics, but we are
far from knowing the whole. Early film viewers watching the Lumière brothers' films of
trains pulling into stations would have been hard-pressed to imagine anything even
remotely approaching what films ultimately evolved into. Accept that this is the case here
too. We've only begun to learn what we can do with this medium, and only barely begun to
figure out how we can do it. The most exciting parts of this exploration lie ahead of us.
Take a look at the following picture:

A frame from L'Arrivée d'un Train en Gare de la Ciotat (The Arrival of a Train at la Ciotat Station), by Auguste and Louis Lumière

Where to Go from Here Chapter 12

[580]

In this book, we've really tried to give you a foundation from which to embark on this
adventure. We wanted to give you a grounding in VR as a medium, but we also wanted to
set you up to think about development and about Unreal Engine in ways that will
empower you to do this exploration. We genuinely hope we've been able to be helpful
regarding this. VR matters to us, as it obviously does to you too, or you wouldn't have
made it through this book. Let's make some art.

Thank you, sincerely, for taking this journey with us.

Useful Mind Hacks
We've talked a lot throughout this book about ways to think about development, and we've
suggested once or twice before that the factor that differentiates an effective developer from
an amateur isn't so much what they know as how they think.

Effective thinking is a skill, and, like any other, it can be practiced. As we saw in the last
chapter, you can simplify a complicated problem by breaking it down and finding a
starting point. Let's take a moment now to explore a few more tricks that can help.

Rubber-duck debugging
You may have heard this phrase before: rubber-duck debugging. It's been around a long
while and it's one of the most effective problem-solving tricks you can perform. The idea
here is simple. Take anybody who will listen, and if there's nobody around, a rubber duck
on your desk would do just as well (hence the name). Describe the problem you're trying to
solve, out loud, and in simple terms. This forces you to organize your thoughts about the
problem. If you find that you can't describe the problem in clear, simple terms, then you
don't understand it yet. You're not ready to try to answer the question because you're not
yet clear on what question you need to ask. Play with it and explore it until you really can
phrase it in simple terms. Often, this process alone will suggest a clear solution to you, and
if not, you now have a much better shot at finding a solution because you now know what
question you're asking. Do this out loud or in writing. It's too easy to stay fuzzy and gloss
over things when you let it tumble around in your mind. Force yourself to put the words in
order. You'll be surprised by how powerful and effective this technique is.

Just the facts
When you realize something is going wrong in your software, write down what you see
happening. Not what you think you see happening—just what you see. It's far too easy in
debugging to jump to a conclusion about why something is happening and then dive into
trying to solve that problem before you've really ascertained what problem you actually
have. Take a step back and just look at what you can concretely observe.

Useful Mind Hacks

[582]

Think like this: That torch is appearing in the wrong position when it spawns, as opposed to The
spawning routine is putting things in the wrong place. You don't know that yet. You just know
that one torch isn't where you expected it to be. Do an experiment. Spawn a different object.
Does it appear in the right place? OK, then maybe there's a weird offset in your model.
Another object is also out of position? OK, then, yes, it might be the routine that's spawning
it. Or it might be some collision in your level that's keeping things from spawning where
you want them and is shoving them to the closest available spot. Try moving the spawn
point and see whether that changes things.

See what we're doing here? We're applying a basic scientific method to the problem we're
solving. What do we see? What can we think of that might be causing that? How could we
test it to see whether we're right? What new information did our test just give us? Do we
know enough to work on a solution now?

It's very very easy to jump to a conclusion and burn a lot of time debugging the wrong
problem. Taking the time to take a step back will help to keep you from doing this and keep
you from a lot of frustrated stabbing in the dark. You'll solve problems this way.

Describing your solutions in positive terms
We talked a bit about cargo-cult programming in Chapter 10, Creating a Multiplayer
Experience in VR, and made you promise not to do it. To take this idea further, let's look at a
phrase we'd like you never to utter: It works—don't touch it!

This isn't how we describe a robust system. If you feel tempted to say this, congratulations!
You're at step one of the make it work; make it right; make it fast process, and that means
you're not done. What you've created is a successful example of what your ultimate
solution may look like, but now it's time to start the make it right phase. You've met the
requirements for this step of your development when you can give three answers about
your solution in positive terms:

It needs to solve X
I know it solves X because....
I know it's safe because....

Useful Mind Hacks

[583]

Remember these three statements. Don't skip them. You should be able to describe in clear,
simple terms what you're trying to do. (Your rubber duck is a good listener for this too.)
You should be able to explain why the thing you just did takes care of the thing you're
trying to do, and you should be able to do this in positive terms: We needed to make sure the
player can't fire their weapon while the pause menu is up. This takes care of it by having the input
handler check for a paused state before it calls the fire function. Finally, you should be able to
explain why this thing is safe to do: I know this is safe because we're ensuring that we clear any
existing input when the pause state begins, and the input handler knows to allow only the unpause
command through.

Discipline yourself to do this, and use clear, positive terms. If you're being vague, you're
hiding from a thing you need to solve. Make this a habit: describe what you're trying to do,
why you know your solution does it, and why you know it's safe to do it. You'll head off a
lot of bugs before they ever even have a chance to make it into your software this way.

Plan how you're going to maintain and
debug your code when you write it
Technical debt is an insidious thing. This term describes the downstream cost of fixing a
mess that was left in the code, usually as a result of rushed development. And it's a project-
killer.

Let's say, for instance, that you needed to get something ready for a demo, and you ran out
of time so you put in a hack solution. Then, you left it there and built a bunch of additional
systems on top of it. Now, you're trying to get your game online, and the thing you did
shows up incorrectly on the client, and you realize to your horror that you have to rewrite
every one of those systems you built on top of that hack that went in for the demo, and,
even worse, you realize it's going to take weeks of work to do this.

Or, let's say you were in a hurry building your blueprint, and it works but looks like a
clump of hair in a drain. You move on to the next problem. Six months later, you're about
to demo the game for your publisher and a weird bug keeps happening in your system.
You haven't looked at it since you wrote it, and now you're forced to spend all day and all
night untangling the mess you made so you can figure out where the bug is happening.

Useful Mind Hacks

[584]

In both of these cases, you would have saved yourself a lot of time and heartache if you'd
taken the time to clean up the work you did while it was fresh in your mind. If you
absolutely have to hack, mark the hack as a hack, and if you know what the proper solution
should really be, write it into a comment right next to the hack. And then fix it before you
build anything else on top of it. If you've gotten a blueprint or a bit of code running, go
straight into your make it right phase while everything you learned during your make it
work phase is still fresh in your mind.

Remember this truth: The vast majority of the life cycle of a piece of code is spent maintaining and
debugging it. Drill this into your head. It's much harder to debug code than it is to write it
the first time, so give yourself every advantage you can. You are not saving yourself any
time if you rush when you first write your solution. You're saving time on the small part of
its life and creating a big headache that will haunt you during the long part of its life. Plan
for your code to be debugged when you write it. You'll be happy you did.

Favor simple solutions
Sadly, you're going to run into developers who write complicated, impenetrable code or
blueprints in a mistaken effort to impress everyone else with how smart they are. They're
secretly fantasizing that someone else is going to look over their shoulder at their
unreadable code and think, Wow! They must be so smart! I can't read any of that. Please, oh
please, don't be this developer.

The experienced developers whose respect you really want won't be impressed by a
shambolic blueprint or obfuscated code. They'll wonder why you left it in such a mess and
assume that it's because you didn't know any better. Amateurs write unreadable code. Pros
know they're going to have to maintain it a year from now when they've forgotten
everything about it, and they don't want to make that job any harder than it has to be.

You'll know you're doing it well if your make it right draft is simpler and cleaner than your
make it work draft was.

Useful Mind Hacks

[585]

Look it up before you make it up
We mentioned this in Chapter 10, Creating a Multiplayer Experience in VR, and want to
reiterate it here: one of the core mistakes new developers make is failing to do research
before they dive into a problem, and they wind up rewriting code that's already been
written.

Do your homework. When you're trying to solve a problem, before you start hacking away
at it, see whether anybody else has tacked anything similar and left footprints behind. Is
there already a tool in the engine that does this or does most of it? Are there examples in
the templates or the sample projects that show how it can be solved? Has someone written
a tutorial somewhere? Sometimes, the answer is going to be no, but far more often, you're
going to find something that either points you directly toward a solution or gets you closer
than you would have gotten without it.

We once saw a small team of engineers waste weeks of development budget on a problem
that had already been solved with a single function in a freely-licensed plugin. That's time
that didn't go into making the game better, and you don't need to fall into this trap.
Research is part of your development process and should always happen before you start
typing or dragging nodes.

This leads us right into our next topic of discussion where can you look when you need to
find information?

Research and Further Reading
A browser and search engine are among your best friends when developing software. If
you practice the art of effective searching and take note of a few useful starting places for
your search, you're going to accelerate your learning enormously. Software development
changes extremely quickly, and cutting-edge software development such as real-time VR
changes even more so. The time you spend learning how to search for information
effectively will serve you forever.

Let's talk about a few places to begin.

Unreal Engine resources
Of course, one of the first and most important places to look for information about Unreal
Engine is at the source. https:/ /www. unrealengine. com should be one of the first places
you look any time you need new information. You can get there via a browser or find the
information in your Epic Games launcher.

 Here are a few essential Unreal Engine links:

Unreal Engine 4 Documentation: https:/ /docs. unrealengine. com/ en- us/
—Start here always. Any time you're working with something new, give its
relevant page a read.
Unreal Engine Forums: https:/ /forums. unrealengine. com/ —There is a lot of
useful information here, along with a huge population of forum users willing to
help out others with questions. Jump in here and contribute constructively. You'll
grow as a developer much faster with a community around you.
UE4 AnswerHub: https:/ / answers. unrealengine. com/index. html—When
you're facing a specific question, search for its answer here. If you can't find it,
ask. The key word here is specific. If you ask, How do I Unreal? that question
clearly demonstrates you haven't done your homework, so you'll be ignored.
Good questions, though, get good answers. Be willing to return the favor, too. If
you see a question you know the answer to, jump in and help out.

https://www.unrealengine.com
https://www.unrealengine.com
https://www.unrealengine.com
https://www.unrealengine.com
https://www.unrealengine.com
https://www.unrealengine.com
https://www.unrealengine.com
https://www.unrealengine.com
https://www.unrealengine.com
https://docs.unrealengine.com/en-us/
https://docs.unrealengine.com/en-us/
https://docs.unrealengine.com/en-us/
https://docs.unrealengine.com/en-us/
https://docs.unrealengine.com/en-us/
https://docs.unrealengine.com/en-us/
https://docs.unrealengine.com/en-us/
https://docs.unrealengine.com/en-us/
https://docs.unrealengine.com/en-us/
https://docs.unrealengine.com/en-us/
https://docs.unrealengine.com/en-us/
https://docs.unrealengine.com/en-us/
https://docs.unrealengine.com/en-us/
https://forums.unrealengine.com/
https://forums.unrealengine.com/
https://forums.unrealengine.com/
https://forums.unrealengine.com/
https://forums.unrealengine.com/
https://forums.unrealengine.com/
https://forums.unrealengine.com/
https://forums.unrealengine.com/
https://forums.unrealengine.com/
https://forums.unrealengine.com/
https://answers.unrealengine.com/index.html
https://answers.unrealengine.com/index.html
https://answers.unrealengine.com/index.html
https://answers.unrealengine.com/index.html
https://answers.unrealengine.com/index.html
https://answers.unrealengine.com/index.html
https://answers.unrealengine.com/index.html
https://answers.unrealengine.com/index.html
https://answers.unrealengine.com/index.html
https://answers.unrealengine.com/index.html
https://answers.unrealengine.com/index.html
https://answers.unrealengine.com/index.html
https://answers.unrealengine.com/index.html

Research and Further Reading

[587]

Unreal Academy: https:/ / academy. unrealengine. com/—This is a series of
focused tutorials geared toward specific topics of interest, either within the
engine or out in the professional world. They generally take the form of a series
of video lessons, and the quality is consistently high. This is one of the best places
to broaden and sharpen your skills.
Unreal Engine YouTube Channel: https:/ / www.youtube. com/ channel/
UCBobmJyzsJ6Ll7UbfhI4iwQ—This is another resource many new developers
overlook, but you shouldn't; it's important. Here's the thing: Unreal Engine is
absolutely huge, and with hundreds of engineers working on it, along with
thousands more in the community, it evolves and grows fast. Because of this,
there's a ton of amazingly useful stuff in the Engine that just hasn't been
documented anywhere because it's too new or too niche. The secret to finding
this stuff are the Live Training videos on the Unreal Engine channel. These are
nearly always given by whatever engineer wrote the system they're talking about
or by a trainer who knows it really well, and they're a fountain of useful
information. If you really want to learn how to use this engine, this is the place to
do it.
User Groups: https:/ /www. unrealengine. com/ en- US/user- groups—Get
involved in the community of real-life people in your area. Find meet-ups and
events, and then go to them. This is one of the biggest secrets we see new
developers overlook—they don't put themselves out in the world. Whether
you're looking for collaborators, looking to get hired, or looking to hire someone,
you're doing yourself a big service by getting out there and participating in the
community.

For more general programming questions, one of the best resources out there is Stack
Overflow (https:/ /stackoverflow. com/). It's not Unreal-centric, but if you're looking for
information on C++ development, this is where you'll find some of the most experienced
developers on the web. Be warned though—the Stack community is notoriously intolerant
of low-effort questions. Be respectful of everyone's time and come in with a question after
you've gone as far as you can to find the answer to it on your own. Describe what you were
trying to do, what you did, and what challenges you faced. Do this, and you'll get some of
the most reliable expert advice you can get on the web.

https://academy.unrealengine.com/
https://academy.unrealengine.com/
https://academy.unrealengine.com/
https://academy.unrealengine.com/
https://academy.unrealengine.com/
https://academy.unrealengine.com/
https://academy.unrealengine.com/
https://academy.unrealengine.com/
https://academy.unrealengine.com/
https://academy.unrealengine.com/
https://www.youtube.com/channel/UCBobmJyzsJ6Ll7UbfhI4iwQ
https://www.youtube.com/channel/UCBobmJyzsJ6Ll7UbfhI4iwQ
https://www.youtube.com/channel/UCBobmJyzsJ6Ll7UbfhI4iwQ
https://www.youtube.com/channel/UCBobmJyzsJ6Ll7UbfhI4iwQ
https://www.youtube.com/channel/UCBobmJyzsJ6Ll7UbfhI4iwQ
https://www.youtube.com/channel/UCBobmJyzsJ6Ll7UbfhI4iwQ
https://www.youtube.com/channel/UCBobmJyzsJ6Ll7UbfhI4iwQ
https://www.youtube.com/channel/UCBobmJyzsJ6Ll7UbfhI4iwQ
https://www.youtube.com/channel/UCBobmJyzsJ6Ll7UbfhI4iwQ
https://www.youtube.com/channel/UCBobmJyzsJ6Ll7UbfhI4iwQ
https://www.youtube.com/channel/UCBobmJyzsJ6Ll7UbfhI4iwQ
https://www.youtube.com/channel/UCBobmJyzsJ6Ll7UbfhI4iwQ
https://www.unrealengine.com/en-US/user-groups
https://www.unrealengine.com/en-US/user-groups
https://www.unrealengine.com/en-US/user-groups
https://www.unrealengine.com/en-US/user-groups
https://www.unrealengine.com/en-US/user-groups
https://www.unrealengine.com/en-US/user-groups
https://www.unrealengine.com/en-US/user-groups
https://www.unrealengine.com/en-US/user-groups
https://www.unrealengine.com/en-US/user-groups
https://www.unrealengine.com/en-US/user-groups
https://www.unrealengine.com/en-US/user-groups
https://www.unrealengine.com/en-US/user-groups
https://www.unrealengine.com/en-US/user-groups
https://www.unrealengine.com/en-US/user-groups
https://www.unrealengine.com/en-US/user-groups
https://www.unrealengine.com/en-US/user-groups
https://www.unrealengine.com/en-US/user-groups
https://stackoverflow.com/
https://stackoverflow.com/
https://stackoverflow.com/
https://stackoverflow.com/
https://stackoverflow.com/
https://stackoverflow.com/
https://stackoverflow.com/
https://stackoverflow.com/

Research and Further Reading

[588]

VR resources
Getting good information on VR is tricky. Everyone's still figuring this medium out, and
nearly anything you read will wind up being some combination of legitimate information
and unfounded opinion and lore. That's nobody's fault—this medium is simply too new for
us to understand fully.

We began this book by advising you to question any accepted wisdom about VR, and we
want to repeat that here. Remember that the earliest surviving motion picture was made in
1888, and it wasn't until 1925 that Sergei Eisenstein really figured out the language of film
editing. It took thirty-seven years to figure out one of the most fundamental aspects of the
genre. Citizen Kane came sixteen years after that. Please remember this when somebody tells
you what you can't do in VR. We haven't got the faintest inkling of a clue what the limits of
this medium are. Dive in and play with it. You're working on a frontier. Don't be afraid to
try weird things you think might not work. This is how discoveries are made.

A quick word about the occasional bloggers who will crop up in your feed
declaring VR dead because it hasn't yet erupted into a mass medium in the
space of two years: that's not how new means of communication
propagate through society. It took almost three decades for cellular
phones to become common consumer devices and longer for personal
computers. This is no different. At the time of this writing, we're still on
the first generation of consumer VR headsets, with heavy lenses and
wires, narrow fields of view, and external sensors. (On the morning this
paragraph was written, Oculus announced its first desktop headset with
inside-out tracking.) We're very, very early in the development of this
hardware, with a lot of technical challenges still to overcome, but it's
evident to anyone really paying attention that they are going to be
overcome. We have no way of knowing whether, when you read this,
we'll be in another VR is dead phase or another VR gold rush, or hopefully
somewhere in the middle, but think about this from a standpoint of
reality. When XR headsets are as comfortable to wear as glasses, don't
require wires, have batteries that can last all day, and can offer immersive
fields of view, we'll all be using them. This medium isn't going away.
Work in it because you love it.

Research and Further Reading

[589]

This advice aside, here are a few resources we recommend that you check out:

Oculus VR design resources: https:/ /developer. oculus. com/design/
—The Oculus VR Best Practices document, while a little dated at the time of this
writing, remains one of the best overall guides for things to think about when
designing for VR, and the Developer Perspectives collection should be considered
essential reading for anyone designing for VR.
Road to VR: https:/ /www. roadtovr. com/ —This is one of the longest-running
and most expertly-edited news sources for VR. They're serious about this
medium, and they know what they're talking about. Consider this essential
regular reading.
Upload VR: https:/ / uploadvr. com/—This is another of the genuinely good
sources of information on VR, and a great place to get information on the state of
the VR hardware and software industry.

Here are a few people worth seeking out and listening to:

Jaron Lanier is a computer scientist, author, and composer, and he was a crucial
pioneer in the development of VR's first phase in the 1980s. He's the reason we
call it virtual reality. You'd be hard-pressed to find anyone on Earth who's spent
more time thinking about and working with this medium.
Michael Abrash is chief scientist at Oculus and is a consistent voice for its future.
Seek out his talks on YouTube, or wherever you find them.
John Carmack, co-creator of Doom and Quake, now works for Oculus and is one
of the foremost engineers pushing VR forward. If you want a good sense of
where the tech is right now and where it's about to be, you can count on him to
be a very candid and deeply informed source of information.
Marshall McLuhan was one of the most influential thinkers in the 20th century
about the ways media and communication shape our society. You've been
swimming through an ocean of his ideas whether you've heard his name before
or not. The medium is the message—that's him. Global village—also McCluhan. His
central work, Understanding Media, is a sometimes-challenging read, but it quite
literally changed how we viewed the role of electronic media in the world. We
bring him up here because to work in VR is to work on a frontier of
communication technology that, through its powers of immersion and presence,
has the potential to shape us more dramatically than anything previously has.
McCluhan would have been fascinated by VR and probably terrified of what it
could do to us. Why not put some thought into what that might mean?

https://developer.oculus.com/design/
https://developer.oculus.com/design/
https://developer.oculus.com/design/
https://developer.oculus.com/design/
https://developer.oculus.com/design/
https://developer.oculus.com/design/
https://developer.oculus.com/design/
https://developer.oculus.com/design/
https://developer.oculus.com/design/
https://developer.oculus.com/design/
https://developer.oculus.com/design/
https://www.roadtovr.com/
https://www.roadtovr.com/
https://www.roadtovr.com/
https://www.roadtovr.com/
https://www.roadtovr.com/
https://www.roadtovr.com/
https://www.roadtovr.com/
https://www.roadtovr.com/
https://www.roadtovr.com/
https://www.roadtovr.com/
https://uploadvr.com/
https://uploadvr.com/
https://uploadvr.com/
https://uploadvr.com/
https://uploadvr.com/
https://uploadvr.com/
https://uploadvr.com/
https://uploadvr.com/

Research and Further Reading

[590]

There are many, many others we could cite, but, in truth, it's fairly impossible to write an
exhaustive list of resources on a topic as new and fluid as VR, and it's possibly futile given
that this is a medium within which five-month-old information is considered woefully out-
of-date. Consider these resources as starting points, but understand that they're far from
complete. Let your own exploration take you where it will.

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Hands-On Data Science and Python Machine Learning
Frank Kane

ISBN: 978-1-78728-074-8

Learn how to clean your data and ready it for analysis
Implement the popular clustering and regression methods in
Python
Train efficient machine learning models using decision trees and
random forests
Visualize the results of your analysis using Python's Matplotlib
library
Use Apache Spark's MLlib package to perform machine learning
on large datasets

https://www.packtpub.com/big-data-and-business-intelligence/hands-data-science-and-python-machine-learning

Other Books You May Enjoy

[592]

Kali Linux Cookbook - Second Edition
Corey P. Schultz, Bob Perciaccante

ISBN: 978-1-78439-030-3

Acquire the key skills of ethical hacking to perform penetration testing
Learn how to perform network reconnaissance
Discover vulnerabilities in hosts
Attack vulnerabilities to take control of workstations and servers
Understand password cracking to bypass security
Learn how to hack into wireless networks
Attack web and database servers to exfiltrate data
Obfuscate your command and control connections to avoid firewall and IPS
detection

https://www.packtpub.com/networking-and-servers/kali-linux-cookbook-second-edition

Other Books You May Enjoy

[593]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

3
360 degree spherical media
 displaying, in VR 461
360 degree video
 finding 462
3D modeling software 110, 111

A
access specifiers 276
accommodation 38
action mappings
 handlers, adding 278, 281
actors
 merging 425, 427
 picking up 309, 311
 releasing 311, 313
 replicating, to client 503
 spawning, on server 502
 UI widget, adding 343, 344
Adobe Audition 112
Adobe Photoshop
 reference 112
agile methods 46
AI character
 adding 328
AI controller
 examining 332, 334
AI state
 adding, to companion pawn 348
 implementing 349
AI states
 indicating, with UI indicator 349, 351, 352
Align UI function
 calling, from Tick event 346, 348
 implementing 345
analog input

 used, for snap turn 241, 242
Android Debug Bridge (ADB)
 about 62
 reference 62
Animation Blueprint
 blend space, wiring 286, 288
 connecting, to hand blueprint 289, 290
 creating, for hand 282, 283
 examining 329
animations
 migrating, from VR Template project 253
anti-aliasing method
 MSAA settings, modifying 131, 132
 selecting 128, 129, 130, 131
Architecture, Engineering, and Construction (AEC)

19

array 191
assets
 collecting 380
Async task 472
Asynchronous Reprojection 31
Asynchronous Time Warp (ATW) 31
Atlassian's SourceTree
 reference 93
Atom
 reference 109
Audacity 112
audio-editing software 112
Autodesk 3ds Max
 reference 111
Autodesk Maya
 reference 110
AVC Free
 reference 435
Avid Pro Tools 112

[595]

B
base pass 125
blend space
 creating, for hand animations 284, 286
 wiring, into animation blueprint 286, 288
blender
 reference 110
Blueprint Actor class
 creating 255
Blueprint Interface
 creating, for pickup objects 299, 300
Blueprint Tick events
 cleaning up 424
Blueprints
 migrating, to project 246, 247, 381
 nativizing 429, 430
 old motion controller components, references

replacing 264, 265
BP_VRHand child actor components
 adding, to VR pawn 260, 261
breakdown 44
button colors
 adjusting 360, 361
buttons
 event handlers, adding to 361, 362

C
C++ development
 Microsoft Visual Studio Community, installing 80
 recommended settings 81, 82
 setting up for 79
 testing 84, 85, 86, 87, 88, 90
 unreal debugging support 83, 84
 UnrealVS plugin 82
 UnrealVS plugin, installing 82
 UnrealVS toolbar, turning 83
Cinematic VR 18
circular references 353, 354
client RPCs 526
client-server model
 about 479, 480, 481
 clients 485, 486
 servers 482, 483
clients

 about 485, 486
 value change with RepNotify, notifying 506, 508
codec
 about 434
 reference 435
companion character subclass
 creating 330, 331
companion character
 follow behavior, adding 332
companion pawn
 AI state, adding 348
 UI, adding 338
companion's follow behavior
 improving 335, 337
compiled 154
complicated blueprints
 about 551
 breakpoints, managing with Debug window 567
 breakpoints, setting 561, 562
 call stack, using 568, 570, 571
 components, viewing 554
 events 555, 556, 558
 execution trace, viewing 566
 execution, tracing 561, 562
 inputs, using 558, 559
 parent class, checking 553
 variable references, finding 572, 573
compressor 434
Computer-Aided Design (CAD) 20
Construction Script
 using, to handle updates to the Hand variable

258, 259
container 434
controls
 adding, to video appearance 452, 453
cube collision
 fixing 314
culling plane 136

D
Datasmith 19
decompressor 434
dedicated servers 485
deferred renderer 124
deferred shading 125

[596]

degrees of freedom (DoF)
 3DOF 10
 6DoF 11
 about 10
Derived Data Cache (DDC) 55
Digital Content Creation (DCC) 20, 110
draw primitive call (DPC) 418
Drop functions
 implementing 301, 302

E
End User License Agreement (EULA) 51
engine content
 re-synchronizing 108
engine version 115
enumerator
 creating, for grip 290, 292, 294
Epic Games account
 GitHub account, connecting to 94
Epic Games Launcher
 about 115
 community 71
 learn 72
 Library 77, 78, 79
 Marketplace 76, 77
 using 70
event handlers
 adding, to buttons 361, 362
events
 assigning, to media player 471, 472, 473
 using, for update 353
eyestrain 37

F
Fast Approximate Anti-Aliasing 130
File Media Source asset
 creating 437, 438
 options 439
FindNearestPickupObject function
 calling, on Tick event 308, 309
 creating 303, 305, 308
first-person pawn
 adding 508
 collision response presets, setting 509, 511, 512
follow behavior

 adding, to companion character 332
fork, updating with changes from Epic
 about 101
 command line, using to sync changes 102
 fork, syncing 103
 Git commands, reviewing 103
 origin, pulling to local machine 107, 108
 pull request, creating 106
 pull request, merging 107
 upstream repository, setting 102
 web GUI, using to sync changes 104, 105
forward renderer 124
forward shading 125
frame rate problems
 addressing 424
function
 creating, to get hand mesh 266, 268, 271, 275

G
G-buffer 125
game mode
 assigning 154, 155
 creating 153, 154
 overriding, for map 155, 156
games
 in VR 15
geometric buffer 125
GIMP
 reference 112
Git GUI
 installing 93
Git Large File Storage (Git-LFS)
 installing 93
Git
 installing 91
 installing, for windows 92
GitHub account
 connecting, to Epic Games account 94
 logging into 91
 setting up 91
GitHub
 source code on 109
GNU General Public License (GPL) 539
grab animations
 implementing, in Hand blueprints 281

[597]

grab functions
 calling, from VR pawn 276
Graphical User Interface (GUI) 325
Graphics Target 117
gray box environment 42
grip animation
 smoothing 294, 295

H
H.264 codec 434, 435
hand animations
 blend space, creating for 284, 286
hand blueprint
 animation blueprint, connecting to 289, 290
Hand blueprints
 grab animations, implementing 281
hand meshes
 adding, to motion controllers 254
 migrating, from VR Template project 253
Hand meshes
 used, for fixing issues 262, 263
Hand variable
 adding 256
handlers
 adding, for action mappings 278, 281
hands
 animating 275
 Animation Blueprint, creating 282, 283
 creating 252
haptic effect
 playing, on command 321, 323
Haptic Feedback Effect Curve
 creating 319, 320
haptic feedback
 adding 318
haptics 23
Head-Mounted Display (HMD) 10
Heads-Up Display (HUD) 15, 325
headset
 about 10
 testing 162
Houdini
 reference 111

I
image-editing software 112
Img Media Sources
 reference 439
immersion 9, 23
indicator widget
 orienting, to face the player 345
Inertial Measurement Units (IMUs) 10
input action mappings
 creating 277
input bindings
 copying 248
inside-out tracking 11
interactive UI
 adding 356, 358, 359
interactive VR 16
Interpreted 154
Interpupillary Distance (IPD) 36
iterator 191

L
latency 24
learn
 content examples project 73, 74, 75
 example games 76
 gameplay concepts 76
Level of Detail (LOD) 425
licensing for plugins, Marketplace
 reference 539
Light Detection And Ranging (LIDAR) 18
line trace, modifying to parabolic trace
 curved path, drawing 190, 191, 192, 193
 endpoint, drawing 194, 195
listen servers 484
lookUnreal project structure 120

M
map
 testing 252
Marketplace
 plugins, installing from 537
Media Manager
 creating 467, 468
 Pause and Resume function, adding 469

[598]

media playback material
 using 443, 444
media playback
 sound, adding to 444, 445
Media Player
 controlling 466
 creating 439, 440
 events, assigning to 471, 472, 473
 testing 442
Media Textures
 using 441
media
 playing 446, 447, 448
mesh components
 adding 255
mesh LODs
 using 427, 428
migrated blueprints content
 verifying 381, 382
migrated content
 assets safely, deleting 142
 assets, moving 142, 144, 145, 146
 redirectors, fixing up 142, 144, 145, 146
migrated game mode
 testing 249
 using, by setting project 248
Minimum Viable Product (MVP) 43
Mobile Multi-View 135
mobile VR headsets
 Android Debug Bridge (ADB), installing 62
 HMD, communication with PC verifying 63, 64
 NVIDIA CodeWorks, setting up for Android 63
 Oculus developer organization, creating 62
 Oculus developer organization, joining 62
 setting up for 61
 setting, to developer mode in Oculus Go 62
 signature file, generating for Samsung Gear 64
 test project, deploying to device 65
Modo
 reference 111
motion controller
 adding 255
motion-to-photon time 24
movement input
 MotionController_L component, using 236

 snap-turning, implementing 237
 speed, fixing 236
movies
 playing, in Unreal Engine 433
Mudbox
 reference 111
multicast event 524
multicast RPCs
 used, to communicate to clients 524, 525
multiplayer sessions
 testing 475
 testing, from editor 475, 477, 478
multiplayer VR
 testing 486, 487
Multisampling Anti-Aliasing (MAA) 131

N
navigation mesh
 areas, excluding from 176, 177, 178
 collision problems, fixing 173, 174, 175
 creating 166
 Navmesh Bounds volume, moving 168, 169,

171, 172
 Navmesh Bounds volume, scaling 168, 169,

171, 172
 properties, modifying 178
navmesh 166
NavMesh
 adding 250
network client HUD
 creating 495
 widget, adding 499, 500
 widget, creating for 496, 498
network Game Mode
 client objects 492
 client objects, owning 492, 493
 creating 488
network game mode
 creating 493, 495
network Game Mode
 objects on the network 489, 491
 server 492
 server objects 492
 server-only objects 491
network replication 500

[599]

network-aware pawns
 creating, for multiplayer 508
Notepad++
 reference 110

O
object-oriented 150
objects
 about 150
 creating 296, 298
Oculus developer organization
 reference 62
Oculus Signature File (osig) 64
optic flow 34

P
pawn Blueprint
 iterative development 179, 180
 line trace, modifying to parabolic trace 189, 190
 line trace, setting up from right motion controller

181, 182, 183, 184, 185, 186
 player, landing orientation selection 202
 player, teleporting 196
 setting up 178
 Trace Hit Result, improving 186, 187
pawn's parent class
 collision component, fixing 231, 232
peer-to-peer model 480
Pickup functions
 implementing 301, 302
pickup objects
 Blueprint Interface, creating for 299, 300
picture elements 129
pitch 10
pixels 129
Platform Media Sources
 reference 439
Play-in-Editor (PIE) 563
playback material 449, 450, 451
player actions
 client RPCs 526
 multicast RPCs, used to communicate with

clients 524, 525
 reliable RPCs 526
 remote procedure calls, using to talk to server

518, 520, 522, 523
 replicating 518
Player Start location
 adjusting, to map 162
player, landing orientation selection
 axis inputs, mapping 202, 203
 material, creating 214, 216
 teleport destination indicator, creating 214
 teleport indicator, adding to pawn 216, 217
 thumbstick input, using to orient the player 205,

206, 207, 209, 210, 212, 213
 Tick event, cleaning up 203, 204
player, teleporting
 Engine Input Mappings, creating 196, 197, 198
 teleport destination, caching 198, 199, 200
 teleport, executing 201
plugin directory 540, 541
plugins
 about 535
 currently-installed engine plugins, viewing 536,

537

 download location 536
 in Unreal Engine 538
 installing, from Marketplace 537
 licenses 539
 reference 535
 verifying, in project 534
precompiled binaries
 used, for installing VRExpansion plugin 531
presence 13, 28
project files
 regenerating 108
project settings
 for VR 249
project
 Blueprints, migrating to 246, 247
 creating 327
 creating, for plugin 529
 setting up 380
 setting, for using migrated game mode 248
 starting 246
properties 150
proprioception 27, 28

[600]

R
radial menu, VR Mode
 Actions menu 402
 Edit menu 400
 Gizmo menu 396
 Modes panel 402
 Snapping menu 396
 System menu 402
 Tools menu 401
 Windows submenu 397, 399
rasterization 127
reliable RPCs 526
remote procedure calls (RPC)
 about 485, 518
 used, to talk with server 518, 520, 522, 523
rendering hardware interface (RHI) 418
rendering method
 selecting, for VR project 127, 128
replicated actor
 creating 501
replication 479
Reroute Node 200
robust text editor 109
roll 10
Round Robin Occlusions 124

S
scene, VR Mode
 changes, making 402, 404, 405, 406
scenery
 adding 250
scenes optimization, VR Mode
 CPU profiling 422, 424
 draw calls 418
 features, turning off 424
 features, turning on 424
 GPU, profiling 413, 414, 415
 performance profiling, warnings 408, 409
 performance, testing 407
 scenerendering 416, 417
 stat FPS command 407
 stat memory 420
 stat rhi 418, 419
 stat unit command 410, 411, 412

 view modes, optimizing 421, 422
screen door effect 13
Scrum 46
SDK locations
 verifying 135
seamless locomotion
 about 227
 inputs, setting up 227, 228
 movement input, handling 233, 234, 235
 pawn's parent class, modifying 228, 230, 231
sensory conflict theory 29
servers 482, 483
servers, types
 dedicated servers 485
 listen servers 484
Shared Data Cache (SDC) 55
signature file
 reference 64
simulator sickness 28, 29
skeletal animations
 managing 425
Slate 339
snap turn
 using analog input 241, 242, 243, 244
snap-turning
 executing 238, 240
 inputs, setting up 237, 238
snap
 used, for snap turn 243, 244
snapping 35
solution
 building 99, 101
 opening 99, 101
sound
 adding, to media playback 444, 445
source code
 on GitHub 109
 Unreal, building from 91
spatialized audio 24
spherical movie screen
 creating 462, 463
standalone build
 packaging 163, 164
standalone headsets 31
static mesh

[601]

 instancing 429
stereo video
 displaying 454, 455, 456
stereoscopic 360 degree video
 playing 464, 465
strafing 35
Stream Media Sources
 reference 439
Sublime Text
 reference 109
Substance Designer
 reference 111
Substance Painter
 reference 111

T
teleport locomotion
 about 166
 deadzone, creating for input 220, 221, 222
 fading in 222, 224, 225
 fading out 222, 224, 225
 navigation mesh, creating 166
 optimizing 218
 pawn Blueprint, setting up 178
 refining 218
 summary 226
 UI, displaying when teleport input is pressed

218, 219
templates 115
Temporal AA (TAA) 130
test grabbing 313
test project
 Android SDK locations, setting 68
 Android SDK project, settings 66, 67
 default map, setting 66
 default mobile touch interface, clearing 66
 environment, adding 488
 launching 68, 70
 network Game Mode, creating 488
 OculusVR plugin is enabled, checking 66
 setting up 65, 487
test releasing 313
tethered headsets 30
third-person character blueprint
 cleaning up 328

 migrating 328
third-person character mesh
 setting up 512, 514, 515
 weapon, adjusting 515, 518
Tick event
 Align UI, calling from 346, 348
Trace Hit Result
 navmesh data, using 188, 189
tunnel vision 35

U
UI element
 attaching, to player pawn 362, 364, 365
UI indicator
 used, for indicating AI states 349, 351, 352
UI update
 ensuring, on state change 354, 355
UI widget
 adding, to an actor 343, 344
 creating, with UMG 338, 340, 343
UI
 adding, to companion pawn 338
UMG
 used, for creating UI widget 338, 340, 343
uncanny valley 27
Unreal Engine source code
 downloading 95
 engine binary content, downloading 99
 project files, generating 99
 repository, cloning from command line 99
 repository, cloning GitHub Desktop used 98
 repository, cloning to local machine 98
 repository, forking 97
 source branch, selecting 97
Unreal Engine
 about 19
 cost 50, 51
 Derived Data Cache (DDC), setting up 55
 engine, installing 53, 54
 engine, launching 58, 60, 61
 Epic Games account, creating 51
 Epic Games Launcher 51
 local DDC, setting up 56, 57, 58
 movies, playing 433
 reference 51

[602]

 setting up 50
 vault cache location, editing 54, 55
Unreal Motion Graphics (UMG) 326
Unreal project
 video file, adding to 436, 437
Unreal Unit (UU) 36
Unreal
 building, from source code 91
UnrealVS
 reference 83
user interfaces (UIs) 325

V
v-commerce 21
variable
 replicating 504, 506
vection 34
vergence 38
vergence-accommodation conflict 38
vestibular system 28
video appearance
 controls, adding to 452, 453
video file
 about 434
 adding, to Unreal project 436, 437
 finding, to test 435
Video For Everybody
 reference 435
video
 adding, to object 443
 different half of video, displaying to each eye

458, 459
 half of video, displaying 456, 457
 over/under stereo video, displaying 460, 461
Vim
 about 92
 download link 110
virtual reality
 about 9
 advertising 21
 Architecture, Engineering, and Construction

(AEC) 19
 best practices 30, 31, 32, 33, 34, 35, 36, 38,

39, 40
 challenges 577, 579

 commerce 21
 design 20
 education 21
 engineering 20
 games 15
 hardware 10, 11
 health 22
 immersion 23, 24, 25, 26, 27
 interactive VR 16
 medicine 22
 retail 21
 safety 29
 training 21
 uses 14
 VR Cinema 17
visual indication
 giving, to players 315, 318
Visual Studio Code
 reference 109
Visually-Induced Motion Sickness (VIMS) 29
VR character
 adding 547
 example pawn, migrating 550
 input, setting up 549
 setting up, example assets used 549, 550
VR Cinema 17, 18
VR editor
 entering VR Mode 383, 384
 exiting VR Mode 383, 384
 using 382, 383
VR Mode navigation
 moving through the world 386
 practicing 389
 rotating the world 387
 scaling the world 388
 teleporting through the world 386
VR Mode
 controllers, using to rotate objects 392
 controllers, using to scale objects 392
 moving objects, practicing 393
 navigating 384
 objects, moving 389, 390, 391
 objects, rotating 389, 390, 391
 objects, scaling 389, 390, 391
 radial menu, navigating 395

[603]

 scenes, composing 393, 394
 scenes, optimizing 407
 world, modifying 389
VR pawn
 BP_VRHand child actor components, adding

260

 camera, adding 158, 159
VR Pawn
 creating 151, 152
VR pawn
 creating 150
 grab functions, calling 276
 motion controllers, adding 159, 161
 placing, in world 157
 setting up 158
 testing 249
 tracking origin, setting 161
VR project structure
 about 118
 Config directory 119
 Content directory 118
 file 120
 Source directory 120
VR project
 content, migrating into 138, 139, 141
 creating 115
 decorating 137
 default map, setting 147
 game mode, setting up 150
 graphics target, setting 117
 hardware target, setting 116
 map, testing on desktop 147
 map, testing on mobile 148, 150
 migrated content, cleaning up 141
 planning 41, 42, 43, 44, 45, 46, 47
 player pawn, setting up 150
 rendering method, selecting 127, 128
 summary, settings 117
VR Template project
 animations, migrating from 253
 hand meshes, migrating from 253
VR
 360 degree spherical media, displaying 461
 anti-aliasing method, selecting 128, 129, 130,

131

 cheat-sheet 137
 default touch interface, turning off 133
 deferred shading 124, 125, 127
 forward shading 124, 125, 127
 instanced Stereo 122, 123
 Mobile HDR, turning off 135
 Mobile Multi-View 135
 Monoscopic Far Field, rendering 136
 project settings 249
 project, configuring for Android 134
 Round Robin Occlusions 123
 settings 121, 122
 starting in 132
 stray settings, turned off 133
VRExpansion classes
 game mode, adding 546
 navigation, adding 545, 546
 PlayerStart class, updating 546
 using 545
 VR character, adding 547
VRExpansion example project
 exploring 542, 543
 setup, finishing 544
VRExpansion plugin
 exploring 538
 installing 530
 installing, precompiled binaries used 531
 plugin binaries, compiling 531, 533
 reference 531
 using 574
VRHand
 setting up, for objects pick up 303

W
waterfall project management methods 46
widget interaction components
 impact effect, creating 373, 377
 input, sending through 369
 interaction beam material, creating 371, 373
 pointer, making for 370
 using 365, 368

Y
yaw 10

Z ZBrush
 reference 111

	Cover
	Title Page
	Copyright and Credits
	About Packt
	Contributors
	Table of Contents
	Preface
	Chapter 1: Thinking in VR
	What is virtual reality?
	VR hardware
	VR isn't just about hardware though
	Presence is tough to achieve

	What can we do in VR?
	Games in VR
	Interactive VR
	VR cinema – movies, documentary, and journalism
	Architecture, Engineering, and Construction (AEC) and real estate
	Engineering and design
	Education and training
	Commerce, advertising, and retail
	Medicine and mental health
	So much else

	Immersion and presence
	Immersion
	Using all the senses
	Make sure sensory inputs match one another and match the user's expectations
	Keep latency as low as possible
	Make sure interactions with the world make sense
	Build a consistent world
	Be careful of contradicting the user's body awareness
	Decide how immersive you intend your application to be and design accordingly

	Presence
	Simulator sickness
	Safety

	Best practices for VR
	Maintain framerate
	Tethered headsets
	Standalone Headsets

	Never take control of the user's head
	Do not put acceleration or deceleration on your camera
	Do not override the field of view, manipulate depth of field, or use motion blur
	Minimize vection
	Avoid stairs
	Use more dimmer lights and colors than you normally would
	Keep the scale of the world accurate
	Be conscious of physical actions
	Manage eyestrain
	Make conscious choices about the content and intensity of your experience
	Let players manage their own session duration
	Keep load times short
	Question everything we just told you

	Planning your VR project
	Clarify what you're trying to do
	Is it a good fit for VR? Why?
	What's important – what has to exist in this project for it to work? (MVP)
	Break it down
	Tackle things in the right order
	Test early and often
	Design is iterative

	Summary

	Chapter 2: Setting Up Your Development Environment
	Prerequisite – VR hardware
	Setting up Unreal Engine
	What it costs
	Creating an Epic Games account
	The Epic Games launcher
	Installing the engine
	Editting your vault cache location
	Setting up a Derived Data Cache (DDC)
	Setting up a local DDC

	Launching the engine

	Setting up for mobile VR
	Creating or joining an Oculus developer organization
	Setting your VR headset to developer mode in Oculus Go
	Installing Android Debug Bridge (ADB)
	Setting up NVIDIA CodeWorks for Android
	Verifying that the HMD can communicate with your PC
	Generating a signature file for Samsung Gear
	Deploying a test project to the device
	Setting up a test project
	Checking that your OculusVR plugin is enabled
	Setting a default map
	Clearing the default mobile touch interface
	Setting your Android SDK project settings
	Setting your Android SDK locations

	Launching the test project

	Using the Epic Games launcher
	The Unreal Engine Tab
	Learn
	The content examples project
	Gameplay concepts and example games

	Marketplace
	Library

	Setting up for C++ development
	Installing Microsoft Visual Studio Community
	Recommended settings
	The UnrealVS plugin
	Installing the UnrealVS plugin
	Turning on the UnrealVS toolbar

	Unreal debugging support
	Test everything out

	Building Unreal from source code
	Setting up a GitHub account and installing Git
	Setting up or logging into your GitHub account
	Installing Git for Windows
	Installing Git Large File Storage
	Installing a Git GUI
	Connecting your GitHub account to your Epic Games account

	Downloading the Unreal Engine source code
	Choosing your source branch
	Forking the repository
	Cloning the repository to your local machine
	Option 1 – Cloning using GitHub Desktop
	Option 2 – Cloning from the command line

	Downloading engine binary content
	Generating project files

	Opening and building the solution
	Updating your fork with new changes from Epic
	Option – Using the command line to sync changes
	Setting the upstream repository
	Syncing the fork
	Reviewing the Git commands we just used

	Option – Using the web GUI to sync changes
	Creating a pull request
	Merging the pull request
	Pulling the origin to your local machine

	Re-synchronizing your engine content and regenerating project files
	Going further with source code on GitHub

	Additional useful tools
	A good robust text editor
	3D modeling software
	Image-editing software
	Audio-editing software

	Summary

	Chapter 3: Hello World - Your First VR Project
	Creating a new project
	Setting your hardware target
	Setting your graphics target
	Settings summary
	Taking a quick look at your project's structure
	The Content directory
	The Config directory
	The Source directory
	The Project file
	A summary of an Unreal project structure

	Setting your project's settings for VR
	Instanced Stereo
	Round Robin Occlusions
	Forward and deferred shading
	Choosing the right rendering method for your project

	Choosing your anti-aliasing method
	Modifying MSAA settings

	Starting in VR
	Turning off other stray settings you don't need
	Turning off default touch interface (Oculus Go/Samsung Gear)
	Configuring your project for Android (Oculus Go/Samsung Gear)
	Verifying your SDK locations

	Making sure Mobile HDR is turned off (Oculus Go/Samsung Gear)
	Mobile Multi-View (Oculus Go/Samsung Gear)
	Monoscopic Far Field Rendering (Oculus Go / Samsung Gear)
	Project Settings cheat-sheet

	Decorating our project
	Migrating content into a project
	Cleaning up migrated content
	Deleting assets safely
	Moving assets and fixing up redirectors

	Setting a default map
	Testing our map on desktop
	Testing our map on mobile (Oculus Go/Samsung Gear)

	Setting up a game mode and player pawn
	Creating a VR pawn
	Creating a game mode
	Assigning the game mode
	Overriding a GameMode for a specific map

	Placing a pawn directly in the world
	Setting up the VR pawn
	Adding a camera
	Adding motion controllers
	Setting our tracking origin.

	Adjusting our Player Start location to the map.
	Testing in the headset.
	Packaging a standalone build

	Summary

	Chapter 4: Getting Around the Virtual World
	Teleport locomotion
	Creating a navigation mesh
	Moving and scaling the Navmesh Bounds volume
	Fixing collision problems
	Excluding areas from the navmesh
	Modifying your navmesh properties

	Setting up the pawn Blueprint
	Iterative development
	Make it work
	Make it right
	Make it fast
	Do things in order

	Setting up a line trace from the right motion controller
	Improving our Trace Hit Result
	Using navmesh data

	Changing from line trace to parabolic trace
	Drawing the curved path
	Drawing the endpoint after all the line segments have been drawn

	Teleporting the player
	Creating Input Mappings
	Caching our teleport destination
	Executing the teleport

	Allowing the player to choose their landing orientation
	Mapping axis inputs
	Cleaning up our Tick event
	Using thumbstick input to orient the player
	Creating a teleport destination indicator
	Giving it a material
	Adding the teleport indicator to the pawn

	Optimizing and refining our teleport
	Displaying UI only when teleport input is pressed
	Creating a deadzone for our input
	Fading out and in on teleport

	Teleport locomotion summary

	Seamless locomotion
	Setting up inputs for seamless locomotion
	Changing the pawn's parent class
	Fixing the collision component

	Handling movement input
	Fixing movement speed
	Letting the player look around without constantly steering
	Implementing snap-turning
	Setting up inputs for snap turning
	Executing the snap turn

	Going further
	Snap turn using analog input

	Summary

	Chapter 5: Interacting with the Virtual World - Part I
	Starting a new project from existing work
	Migrating Blueprints to a new project
	Copying input bindings

	Setting up new project to use the migrated game mode
	Additional project settings for VR
	Testing our migrated game mode and pawn
	Adding scenery
	Adding a NavMesh
	Testing the map

	Creating hands
	Migrating hand meshes and animations from the VR Template project
	Adding hand meshes to our motion controllers
	Creating a new Blueprint Actor class
	Adding motion controller and mesh components
	Adding a Hand variable
	Using a Construction Script to handle updates to the Hand variable

	Adding BP_VRHand child actor components to your pawn
	Fixing issues with Hand meshes
	Replacing references to our old motion controller components in blueprints
	Creating a function to get our hand mesh

	Animating our hands
	A quick word about access specifiers
	Calling our grab functions from the pawn
	Creating new input action mappings
	Adding handlers for new action mappings

	Implementing grab animations in the Hand blueprints
	Creating an Animation Blueprint for the hand
	Creating a blend space for our hand animations
	Wiring the blend space into the animation blueprint
	Connecting the animation blueprint to our hand blueprint
	Creating a new enumerator for our grip
	Smoothing out our grip animation

	Summary

	Chapter 6: Interacting with the Virtual World - Part II
	Creating an object we can pick up
	Creating a Blueprint Interface for pickup objects
	Implementing the Pickup and Drop functions
	Setting up VRHand to pick up objects
	Creating a function to find the nearest pickup object
	Calling Find Nearest Pickup Object on the Tick event
	Picking up an actor
	Releasing an actor
	Test grabbing and releasing
	Fixing cube collision
	Letting players know when they can pick something up

	Adding haptic feedback
	Creating a Haptic Feedback Effect Curve
	Playing the haptic effect on command

	Going further
	Summary

	Chapter 7: Creating User Interfaces in VR
	Getting started
	Creating a new Unreal project from an existing project

	We’re not alone – adding an AI character
	Migrating the third-person character blueprint
	Cleaning up the third-person character blueprint
	Examining the animation blueprint
	Creating a companion character subclass
	Adding a follow behavior to our companion character
	Examining the AI controller
	Improving the companion's follow behavior

	Adding a UI indicator to the companion pawn
	Creating a UI widget using UMG
	Adding a UI widget to an actor
	Orienting the indicator widget to face the player
	Implementing the Align UI function
	Calling Align UI from the Tick event

	Adding a new AI state to the companion pawn
	Implementing a simple AI state
	Indicating AI states using the UI indicator
	Using events to update, rather than polling
	Being careful of circular references

	Ensuring that UI is updated when our state is changed

	Adding an interactive UI
	Adjusting the button colors
	Adding event handlers to our buttons
	Attaching the UI element to the player pawn
	Using widget interaction components
	Sending input through widget interaction components
	Making a better pointer for our interaction component
	Creating an interaction beam material
	Creating an impact effect

	Summary

	Chapter 8: Building the World and Optimizing for VR
	Setting up the project and collecting assets
	Migrating blueprints into the new project
	Verifying the migrated content

	Using the VR editor
	Entering and exiting VR Mode
	Navigating in VR Mode
	Moving through the world
	Teleporting through the world
	Rotating the world
	Scaling the world
	Practicing movement

	Modifying the world in VR Mode
	Moving, rotating, and scaling objects
	Using both controllers to rotate and scale objects
	Practicing moving objects

	Composing a new scene in VR Mode
	Navigating the radial menu
	Gizmo
	Snapping
	Windows
	Edit
	Tools
	Modes
	Actions and System

	Making changes to our scene

	Optimizing scenes for VR
	Testing your current performance
	Stat FPS
	Determining your frame time budget

	Warnings about performance profiling
	Stat unit
	Profiling the GPU
	Stat scenerendering
	Draw calls

	Stat RHI
	Stat memory
	Optimization view modes
	CPU profiling
	Turning things on and off

	Addressing frame rate problems
	Cleaning up Blueprint Tick events
	Managing skeletal animations
	Merging actors
	Using mesh LODs
	Static mesh instancing
	Nativizing Blueprints

	Summary

	Chapter 9: Displaying Media in VR
	Setting up the project
	Playing movies in Unreal Engine
	Understanding containers and codecs
	Finding a video file to test with
	Adding a video file to an Unreal project
	Creating a File Media Source asset
	Creating a Media Player
	Using Media Textures
	Testing your Media Player
	Adding video to an object in the world
	Using a media playback material
	Adding sound to our media playback
	Playing media
	Going deeper with the playback material
	Adding additional controls to our video appearance

	Displaying stereo video
	Displaying half of the video
	Displaying a different half of the video to each eye
	Displaying over/under stereo video

	Displaying 360 degree spherical media in VR
	Finding 360 degree video
	Creating a spherical movie screen

	Playing stereoscopic 360 degree video
	Controlling your Media Player
	Creating a Media Manager
	Adding a Pause and Resume function
	Assigning events to a media player

	Summary

	Chapter 10: Creating a Multiplayer Experience in VR
	Testing multiplayer sessions
	Testing multiplayer from the editor

	Understanding the client-server model
	The server
	Listen servers, dedicated dervers, and clients
	Listen servers
	Dedicated servers
	Clients

	Testing multiplayer VR

	Setting up our own test project
	Adding an environment
	Creating a network Game Mode
	Objects on the network
	Server-only objects
	Server and client objects
	Server and owning client objects
	Owning client only objects

	Creating our network game mode

	Creating a network client HUD
	Creating a widget for our HUD
	Adding a widget to our HUD

	Network replication
	Creating a replicated actor
	Spawning an actor on the server only
	Replicating the actor to the client
	Replicating a variable
	Notifying clients that a value has changed using RepNotify

	Creating network-aware pawns for multiplayer
	Adding a first-person pawn
	Setting collision response presets
	Setting up a third-person character mesh
	Adjusting the third-person weapon

	Replicating player actions
	Using remote procedure calls to talk to the server
	Using multicast RPCs to communicate to clients
	Client RPCs
	Reliable RPCs

	Going further
	Summary

	Chapter 11: Taking VR Further - Extending Unreal Engine
	Creating a project to house our plugin
	Installing the VRExpansion plugin
	Installing using precompiled binaries
	Compiling your own plugin binaries
	Verifying the plugins in your project

	Understanding plugins
	Where plugins live
	Installing plugins from the Marketplace

	What's inside a plugin?
	About licenses
	Inside a plugin directory

	Finishing our brief tour

	Exploring the VRExpansion example project
	Finishing our project setup

	Using VRExpansion classes
	Adding navigation
	Adding a game mode
	Updating the PlayerStart class
	Adding a VR character
	Setting up input
	Setting up your VR character using example assets
	Making effective use of example assets
	Migrating the example pawn

	Making sense of complicated blueprints
	Begin by checking the parent class
	Looking at the components to see what they're made of
	Look for known events and see what happens when they run
	Using inputs as a way to find a starting point in your blueprint
	Setting breakpoints and tracing execution
	Viewing the execution trace
	Managing breakpoints with the Debug window

	Using the call stack
	Finding variable references

	Using more of the VRExpansion plugin
	Summary

	Chapter 12: Where to Go from Here
	Final word

	Appendix A: Useful Mind Hacks
	Rubber-duck debugging
	Just the facts
	Describing your solutions in positive terms
	Plan how you're going to maintain and debug your code when you write it
	Favor simple solutions
	Look it up before you make it up

	Appendix B: Research and Further Reading
	Unreal Engine resources
	VR resources

	Other Books You May Enjoy
	Index

