

Unreal Engine 4 Shaders and
Effects Cookbook

Over 70 recipes for mastering post-processing effects and
advanced shading techniques

Brais Brenlla Ramos
John P. Doran

BIRMINGHAM - MUMBAI

Unreal Engine 4 Shaders and Effects
Cookbook
Copyright © 2019 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
authors, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Kunal Chaudhari
Acquisition Editor: Trusha Shriyan
Content Development Editor: Pranay Fereira
Technical Editor: Diksha Wakode
Copy Editor: Safis Editing
Project Coordinator: Kinjal Bari
Proofreader: Safis Editing
Indexer: Tejal Daruwale Soni
Graphics: Alishon Mendonsa
Production Coordinator: Deepika Naik

First published: May 2019

Production reference: 1240519

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78953-854-0

www.packtpub.com

http://www.packtpub.com

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

Packt.com
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://mapt.io/
http://www.packt.com
http://www.packt.com

Contributors

About the authors
Brais Brenlla Ramos is a passionate Architect, 3D artist, Unreal Engine 4 developer and
first-time author based between A Coruña and his place of work in London, UK. His
passion for all things 3D-related dates back to when he was playing games as a child,
experiences that fuelled his later studies in architecture and computer animation. His
entrance into the professional 3D world happened at the same time as his studies were
finishing, with initial projects undertaken in the field of architectural visualization for
different studios. Since then, he's worked on many different 3D modeling and app
development projects, first as a team member, and later as the Unreal Engine 4 lead
developer at a company called AccuCities, based in London.

To my friends and family, who got me this far; and to my partner, Tamy, whose support
and love carried me throughout.

John P. Doran is a passionate and seasoned technical game designer, software engineer,
and author based in Peoria, Illinois.

For over a decade, John has gained extensive hands-on expertise in game development,
working in a variety of roles, ranging from game designer to lead UI programmer.
Additionally, John has worked in game development education teaching in Singapore,
South Korea, and the United States. To date, he has authored over 10 books pertaining to
game development.

John is currently an instructor in residence at Bradley University. Prior to his present
ventures, he was an award-winning videographer.

I want to thank my wife, Hien, for all of her support over the course of working on this
book.

About the reviewer
Deepak Jadhav is a game developer based in Pune, India. Deepak received his bachelor's
degree in computer technology and master's degree in game programming and project
management. Currently, he is working as a game developer in India's leading game
development company. He has been involved in developing games on multiple platforms,
such as PC, Mac, and mobile. With years of experience in game development, he has a
strong background in C# and C++, and he has developed his skills in platforms including
Unity, Unreal Engine, and augmented and virtual reality.

I would like to thank the authors and the Packt Publishing team for giving me the
opportunity to review this book.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Chapter 1: Physically Based Rendering 6
Introduction 6
Setting up a studio scene 8

Getting ready 8
How to do it... 9
How it works... 14

Working inside the material editor 14
Getting ready 15
How to do it... 15
How it works... 22

Our first physically based material 23
Getting ready 23
How to do it... 24
How it works... 31

Creating some simple glass with the translucent blend mode 32
Getting ready 32
How to do it... 33
How it works... 37

Lighting our scene with image-based lighting 38
Getting ready 39
How to do it... 39
How it works... 45

Checking the cost of our materials 47
Getting ready 48
How to do it... 48
How it works... 54

Chapter 2: Post-Processing Effects 56
Introduction 56
Using a post-process volume 57

Getting ready 57
How to do it... 59
How it works... 63
See also 64

Changing the mood of a scene through color grading 64
Getting ready 65
How to do it... 65
How it works... 72

Table of Contents

[ii]

There's more... 73
See also 75

Setting up a cinematic shot using depth of field 75
Getting ready 75
How to do it... 76
How it works... 81
There's more... 82
See also 82

Applying cinematic effects to our games 83
Getting ready 83
How to do it... 83
How it works... 89
There's more... 89
See also 90

Mimicking a real-life camera using Bloom and Lens Flares 90
Getting ready 90
How to do it... 91
How it works... 97
There's more... 98
See also 99

A horror movie pulsating effect with post process materials 99
Getting ready 99
How to do it... 100
How it works... 108
There's more... 109
See also 110

Adjusting anti aliasing and other rendering features 110
Getting ready 111
How to do it... 111
How it works... 117
There's more... 118
See also 119

Chapter 3: Opaque Materials and Texture Mapping 120
Introduction 121
Using masks within a material 122

Getting ready 122
How to do it... 123
How it works... 129
There's more... 130
See also 131

Instancing a material 131
Getting ready 131
How to do it... 132
How it works... 136

Table of Contents

[iii]

There's more... 138
See also 139

Texturing a small prop 139
Getting ready 140
How to do it... 140
How it works... 146
There's more... 146
See also 147

A plastic cloth using Fresnel and detail texturing 147
Getting ready 148
How to do it... 148
How it works... 152
There's more... 153
See also 154

Creating a semi procedural material 155
Getting ready 155
How to do it... 155
How it works... 161
There's more... 161
See also 162

Baking out a material 162
Getting ready 162
How to do it... 163
How it works... 168
There's more... 169
See also 169

Distance-based texture blending 170
Getting ready 170
How to do it... 171
How it works... 174
There's more... 175
See also 177

Chapter 4: Translucent Materials and More 178
Introduction 179
Creating a candle material with SSS 179

Getting ready 180
How to do it... 180
How it works... 187
There's more... 189
See also 189

Setting up a truly transparent glass 189
Getting ready 190
How to do it... 190
How it works... 196

Table of Contents

[iv]

There's more... 197
See also 197

A different type of translucency – holograms 198
Getting ready 198
How to do it... 199
How it works... 207
There's more... 208
See also 208

Achieving realistic reflections 208
Getting ready 209
How to do it... 210
How it works... 220
There's more... 221
See also 221

Mastering refraction by creating a pool water material 221
Getting ready 222
How to do it... 223
How it works... 232
There's more... 233
See also 233

Water caustics 233
Getting ready 234
How to do it... 235
How it works... 243
There's more... 244
See also 244

Animating a sea shader 245
Getting ready 245
How to do it... 246
How it works... 257
There's more... 258
See also 258

Chapter 5: Beyond Traditional Material Uses 259
Introduction 259
Using an emissive material to light the scene 260

Getting ready 261
How to do it... 261
How it works... 268
There's more... 269
See also 270

Playing a video from the internet on a screen 270
Getting ready 271
How to do it... 271
How it works... 276

Table of Contents

[v]

There's more... 277
See also 277

Creating a CCTV camera feed 278
Getting ready 278
How to do it... 279
How it works... 284
There's more... 284
See also 286

Highlighting interactive elements within our game 286
Getting ready 287
How to do it... 287
How it works... 297
There's more... 298
See also 298

Creating a game compass 299
Getting ready 299
How to do it... 300
How it works... 307
There's more... 308
See also 311

Creating a mini map 312
Getting ready 312
How to do it... 313
How it works... 321
There's more... 322
See also 322

Chapter 6: Advanced Material Techniques 323
Introduction 324
Painting a mesh with vertex painting 324

Getting ready 325
How to do it... 325
How it works... 330
There's more... 331
See also 332

Using decals to add granularity to our scenes 333
Getting ready 333
How to do it... 334
How it works... 338
There's more... 339
See also 340

Creating a brick wall with Parallax Occlusion Mapping 340
Getting ready 341
How to do it... 341
How it works... 347

Table of Contents

[vi]

There's more... 348
See also 349

A brick wall using displacement 349
Getting ready 350
How to do it... 350
How it works... 354
There's more... 354
See also 355

Proximity-based masking with mesh distance fields 355
Getting ready 356
How to do it... 356
How it works... 360
There's more... 362
See also 362

Chapter 7: Using Material Instances 363
Introduction 363
Creating snow on top of objects using layered materials 364

Getting ready... 364
How to do it... 365
How it works... 379

Changing from a sunny scene to a snowy one through parameter
collection 380

Getting ready... 380
How to do it... 380
How it works... 384

Changing between seasons quickly with curve atlases 385
Getting ready... 385
How to do it... 385
How it works... 396

Blending landscape materials 397
Getting ready... 397
How to do it... 398
How it works... 404

Customizing UVs 405
Getting ready... 405
How to do it... 405
How it works... 411

Chapter 8: Mobile Shaders and Material Optimization 412
Introduction 412
Creating materials for mobile platforms 413

Getting ready... 413
How to do it... 413
How it works... 415
There's more... 416

Table of Contents

[vii]

See also... 417
Using the forward shading renderer for VR 417

Getting ready... 417
How to do it... 418
How it works... 421
See also... 421

Optimizing through texture atlases 421
Getting ready... 422
How to do it... 422
How it works... 427

Baking a 3D model material into a texture 428
Getting ready... 429
How to do it... 430
How it works... 435

Combining multiple meshes with the HLOD tool 436
Getting ready... 437
How to do it... 438
How it works... 445

General material-optimization techniques 446
Getting ready... 446
How to do it... 447
How it works... 453

Chapter 9: Some Extra Useful Nodes 454
Introduction 455
Adding randomness to identical models 455

Getting ready 456
How to do it... 456
How it works... 461
There's more... 461
See also 462

Adding dirt to occluded areas 462
Getting ready 462
How to do it... 463
How it works... 466
There's more... 467
See also 467

Matching texture coordinates across multiple meshes 467
Getting ready 468
How to do it... 468
How it works... 473
There's more... 474
See also 474

Adjusting material complexity through quality switches 475
Getting ready 475

Table of Contents

[viii]

How to do it... 476
How it works... 481
There's more... 481
See also 482

Using interior cubemaps to texture the interior of a building 482
Getting ready 483
How to do it... 483
How it works... 486
There's more... 487
See also 488

Using fully procedural noise patterns 489
Getting ready 489
How to do it... 490
How it works... 494
There's more... 495
See also 496

Other Books You May Enjoy 497

Index 500

Preface
Unreal Engine 4 Shaders and Effects Cookbook aims to take you on a journey of creation and
discovery within the Unreal Engine 4 game engine. As the title of the book implies, we'll
travel hand in hand to every corner of the engine, performing actions that affect the visuals
of our games and apps. We'll do so in an orderly way, starting from the very beginning by
covering fundamental topics that will stay with us throughout the rest of the book. Each
chapter that follows will expand upon that base, allowing for a gentle progression curve
that will allow almost any user to follow along. In spite of that, each entry – or recipe – has
been also conceived as an independent unit, letting you tackle it separately from the others
in case you are already proficient with the other topics.

We'll start by covering the core concepts behind Unreal Engine's rendering pipeline, such as
its physically based rendering approach and post-processing effects. With solid
foundational knowledge about those two topics, we'll expand upon them and study
different types of materials: opaque ones, translucent ones, and more, such as the different
subsurface materials and other shading models. We'll also explore several advanced
material creation techniques and tricks that the engine lets us use to create multiple
different effects—from mixing materials and blueprints, to instancing and material
optimization. There's a whole lot we are going to be covering!

Upon finishing this book, you will have a thorough knowledge about many different
material concepts and techniques, both from a practical and a theoretical point of view.
You'll be able to use these newly learned concepts in any games, apps, or personal projects
that you tackle, with the absolute confidence that you are doing it right. With that said, let's
get to it!

Who this book is for
Unreal Engine 4 Shaders and Effects Cookbook benefits from a structure that goes in crescendo,
covering more difficult topics as we move along together. Thus, the book lends itself to
being read by multiple different profiles of user from novice users, to more seasoned ones
that haven't yet touched Unreal's material pipeline. Whatever the case, a good
understanding of Unreal is definitely a plus, and something that will make your journey
throughout this book a much smoother experience.

Preface

[2]

What this book covers
Chapter 1, Physically Based Rendering, starts off this book by going over the fundamental
rendering concepts that Unreal relies on, as well as introducing us to the material editor.

Chapter 2, Post-Processing Effects, introduces the user to the powerful concept of post-
processing in Unreal and explains the different effects that can be achieved through it.

Chapter 3, Opaque Materials and Texture Mapping, goes into detail about one of the most
common type of materials in Unreal and the different uses that it has.

Chapter 4, Translucent Materials and More, covers one of the most exciting type of materials,
the translucent ones, as well as many others, including subsurface and emissive materials.

Chapter 5, Beyond Traditional Material Uses, goes over different uses that materials can have
beyond simply being applied to 3D models, including light functions, UI elements, and
displaying videos.

Chapter 6, Advanced Material Techniques, talks about some of the most high-end effects that
can be created within the material editor by using advanced techniques, such as parallax
occlusion mapping and mesh distance fields.

Chapter 7, Using Material Instances, discusses how to use the concept of instancing
to quickly make tweaks to a material instance, layer different shaders on top of each other,
and affect multiple material settings at once.

Chapter 8, Mobile Shaders and Material Optimization, goes over various ways to optimize
your materials to make them more performant on different hardware where efficiency is
important, such as on mobile devices or when working in virtual reality.

Chapter 9, Some Extra Useful Nodes, focuses on some of the most useful nodes we can find
within Unreal that don't really belong to a collective category of their own.

To get the most out of this book
Any reader will need to have installed a version of Unreal Engine on their computers; the
latest version, if possible. Most of the recipes we'll look at should work on different engine
versions, but we recommend 4.22 in order to have the latest features installed.

Preface

[3]

Prior knowledge about the engine is not a must, but having some working experience with
Unreal will help the reader enjoy a smoother experience throughout the book. Whilst no
coding skills are required, some fluency with the Blueprint visual scripting language would
also be of great help.

Download the example code files
You can download the example code files for this book from your account at
www.packt.com. If you purchased this book elsewhere, you can visit
www.packt.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packt.com.1.
Select the SUPPORT tab.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https:/ / github. com/
PacktPublishing/Unreal- Engine- 4- Shaders- and- Effects- Cookbook. In case there's an
update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https://github. com/ PacktPublishing/ . Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: https:/ /www. packtpub. com/ sites/ default/ files/
downloads/9781789538540_ ColorImages. pdf.

http://www.packt.com
http://www.packt.com/support
http://www.packt.com
https://github.com/PacktPublishing/Unreal-Engine-4-Shaders-and-Effects-Cookbook
https://github.com/PacktPublishing/Unreal-Engine-4-Shaders-and-Effects-Cookbook
https://github.com/PacktPublishing/Unreal-Engine-4-Shaders-and-Effects-Cookbook
https://github.com/PacktPublishing/Unreal-Engine-4-Shaders-and-Effects-Cookbook
https://github.com/PacktPublishing/Unreal-Engine-4-Shaders-and-Effects-Cookbook
https://github.com/PacktPublishing/Unreal-Engine-4-Shaders-and-Effects-Cookbook
https://github.com/PacktPublishing/Unreal-Engine-4-Shaders-and-Effects-Cookbook
https://github.com/PacktPublishing/Unreal-Engine-4-Shaders-and-Effects-Cookbook
https://github.com/PacktPublishing/Unreal-Engine-4-Shaders-and-Effects-Cookbook
https://github.com/PacktPublishing/Unreal-Engine-4-Shaders-and-Effects-Cookbook
https://github.com/PacktPublishing/Unreal-Engine-4-Shaders-and-Effects-Cookbook
https://github.com/PacktPublishing/Unreal-Engine-4-Shaders-and-Effects-Cookbook
https://github.com/PacktPublishing/Unreal-Engine-4-Shaders-and-Effects-Cookbook
https://github.com/PacktPublishing/Unreal-Engine-4-Shaders-and-Effects-Cookbook
https://github.com/PacktPublishing/Unreal-Engine-4-Shaders-and-Effects-Cookbook
https://github.com/PacktPublishing/Unreal-Engine-4-Shaders-and-Effects-Cookbook
https://github.com/PacktPublishing/Unreal-Engine-4-Shaders-and-Effects-Cookbook
https://github.com/PacktPublishing/Unreal-Engine-4-Shaders-and-Effects-Cookbook
https://github.com/PacktPublishing/Unreal-Engine-4-Shaders-and-Effects-Cookbook
https://github.com/PacktPublishing/Unreal-Engine-4-Shaders-and-Effects-Cookbook
https://github.com/PacktPublishing/Unreal-Engine-4-Shaders-and-Effects-Cookbook
https://github.com/PacktPublishing/Unreal-Engine-4-Shaders-and-Effects-Cookbook
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://www.packtpub.com/sites/default/files/downloads/9781789538540_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789538540_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789538540_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789538540_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789538540_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789538540_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789538540_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789538540_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789538540_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789538540_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789538540_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789538540_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789538540_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789538540_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789538540_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789538540_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789538540_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789538540_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789538540_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789538540_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789538540_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789538540_ColorImages.pdf

Preface

[4]

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "Add a Cheap Contrast node after the Texture Sample, and connect its In
(S) input pin with the output of the previous image"

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Drag a cable out of the original Texture Sample and create a new Multiply node"

Warnings or important notes appear like this.

Tips and tricks appear like this.

Getting ready
This section tells you what to expect in the recipe and describes how to set up any software
or any preliminary settings required for the recipe.

How to do it…
This section contains the steps required to follow the recipe.

How it works…
This section usually consists of a detailed explanation of what happened in the previous
section.

Preface

[5]

There's more…
This section consists of additional information about the recipe in order to make you more
knowledgeable about the recipe.

See also
This section provides helpful links to other useful information for the recipe.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packt.com/submit-errata, selecting your book, clicking
on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

http://www.packt.com/submit-errata
http://authors.packtpub.com/
http://authors.packtpub.com/
http://www.packt.com/

1
Physically Based Rendering

Welcome to the first chapter of the book! In the next few pages, we are going to start
looking at how to set up a scene in Unreal for visualization purposes—we want to make
sure that we nail this first part down before we move any further. Beginner or advanced, no
matter what type of user you are, we'll need to make sure to take a look at some of the most
critical elements that can make or break a scene in Unreal. Things like taking advantage of
the right type of lighting, knowing where to look for the most common material
parameters, or learning to measure the impact in performance that the shaders have are
vital in any project. With that in mind, we are going to be learning about the following
topics:

Setting up a studio scene
Working inside the material editor
Our first physically based material
Creating some simple glass with the translucent blend mode
Lighting our scene with image-based lighting
Checking the cost of our materials

Introduction
Welcome to this in-depth journey through the material creation process in Unreal Engine 4!
I think you are going to have a great time if you are excited about the possibilities that this
game engine brings to the table in terms of state-of-the-art rendering techniques. And by
state-of-the-art I mean a powerful and robust rendering pipeline, where both photorealistic
and stylized game art are possible without changing to a different development suite.

The fact that such a flexible system is in place is courtesy of the continuous advances over
the years in the field of real-time rendering. We've journeyed from the 2D era into the 3D
era, from sprites and flat images to the rendering of polygons and whole worlds.

Physically Based Rendering Chapter 1

[7]

Each of these changes happened thanks to a combination of new and more powerful
hardware as well as increasingly intelligent rendering pipelines and techniques. One of the
latest improvements that we can talk about is what we are going to be covering throughout
this book—the PBR workflow.

And what does PBR stand for? That would be Physically Based Rendering—a particular
method that takes into account how light behaves when it comes into contact with 3D
objects. In order to represent materials placed in a 3D environment, artists need to specify
certain properties for each of the materials that they create—such as what the underlying
color should be, how much light they reflect, or how defined those reflections are.

This is significant change from previous workflows, where light propagation and its
simulation wasn't taken into account in a realistic way. This meant, for example, that
materials couldn't be replicated under different lighting conditions—having, for instance, a
night and a day scene using the same assets resulted in them looking substantially
different. An artist would therefore need to create different sets of textures or adjust the
materials to make them look right for each particular scenario they might be in.

This has changed with the recent introduction of the PBR workflow. Newer game engines,
such as Unreal Engine 4, have made this rendering approach their quasi default one—and I
say quasi as they also allow for older rendering methods to be thrown into the mix in order
to give artists more freedom. Materials are coherent under different lighting settings, and
knowing how to create content under this pipeline ensures usability under a lot of different
circumstances.

However, PBR is not a universally defined convention as far as its implementation goes.
This means that how things work under the hood varies across the different rendering
engines. The exact implementation that Epic has chosen for their Unreal Engine platform is
different from that of other third-party software creators. Furthermore, PBR workflows in
real-time applications are slightly different to offline renderers, as efficiency and speed are
a must in this industry and things have to be adapted consequently. What we need to take
away from these facts is that a physically based approach to rendering has huge advantages
(as well as some limitations) that we as artists need to be aware of if we are to use the
engine to its full potential.

We conceived the present book with that goal in mind. We aim to present you with a series
of recipes that tackle many different functionalities within Unreal, structured in a way
where each unit can be read independently from the rest. In order to do so, we'll be taking a
look in the following pages at how to get a hold of the engine and how to set up a basic
scene, which we'll use to visualize our projects.

Physically Based Rendering Chapter 1

[8]

Setting up a studio scene
In this first recipe, we are going to create a basic scene that we'll be able to use as our
background level throughout this course. This initial step is here just so we can go over the
basics of the engine and get familiar with different useful websites from where we can
download multiple assets.

Getting ready
Before we actually start creating our basic studio scene, we will need to download Unreal
Engine 4. I've started writing this book with version 4.20.3, but don't hesitate to use the
latest version at the time of reading.

Here's how you can download it:

Get the Epic Games Launcher from the engine's website, https:/ / www.1.
unrealengine. com/ en- US/ blog, and follow the installation procedure indicated
there.
Once installed, download the latest version of the engine. We can do so by2.
navigating to the UNREAL ENGINE section of the launcher, in the tab named
Library. In there, we'll be able to see a + icon (1), which lets us download
whichever version of Unreal we want. Once we've downloaded it, launch it (2) so
we can get started:

https://www.unrealengine.com/en-US/blog
https://www.unrealengine.com/en-US/blog
https://www.unrealengine.com/en-US/blog
https://www.unrealengine.com/en-US/blog
https://www.unrealengine.com/en-US/blog
https://www.unrealengine.com/en-US/blog
https://www.unrealengine.com/en-US/blog
https://www.unrealengine.com/en-US/blog
https://www.unrealengine.com/en-US/blog
https://www.unrealengine.com/en-US/blog
https://www.unrealengine.com/en-US/blog
https://www.unrealengine.com/en-US/blog
https://www.unrealengine.com/en-US/blog
https://www.unrealengine.com/en-US/blog

Physically Based Rendering Chapter 1

[9]

And that's all you need! We now have everything required to get started in Unreal Engine
4. How cool is that? A whole new game engine at our fingertips, completely free, and with
a variety of tools within it that would take years to learn and master. It really is a thing of
wonder! Next up, we are going to start learning about one of those tools—the materials.
And in order to do so, let's start by creating our first project!

How to do it...
Let's start by launching the engine that we have just installed and creating a new project by
taking the following steps:

Create a New Project—give it a name and select the folder where you want it to1.
live. Just as a reference, as shown in the following screenshot, I've decided to
start off with a blank blueprint-based project, but it doesn't really matter what we
decide to initially include. Nothing special so far! You can choose to add the
Starter Content if you want, as it comes with several useful resources that we can
use later on:

Physically Based Rendering Chapter 1

[10]

Additionally, you can get more free resources from other different places.
You can check the Learn tab within the Epic Games Launcher to see what
freely available examples you can get a hold of, or check the community
section to see if there is any new cool content.

Epic has recently collaborated with multiple content creators to make a multitude
of different assets available to anyone using Unreal, and you can check them out
at the following website: https:/ /www. unrealengine. com/ en- US/blog/ new- free-
content- coming- to- the- unreal- engine- marketplace? utm_ source= launcher
utm_medium= chromium utm_ term= forum utm_ content= FreeContent utm_ campaign=
communitytab.

The first thing that we need to do once the editor loads is to go to File | Save2.
Current As, just to make sure that the changes we are about to implement get
saved. Otherwise, we would just be working on the default untitled map, which
wouldn't store any of the changes that we are about to make!
Once that's done, we are now ready to start spicing things up. Erase everything3.
from the world outliner—we are not going to be using any of that for our studio
scene. Your scene and the world outliner should look something like this:

https://www.unrealengine.com/en-US/blog/new-free-content-coming-to-the-unreal-engine-marketplace?utm_source=launcher&utm_medium=chromium&utm_term=forum&utm_content=FreeContent&utm_campaign=communitytab
https://www.unrealengine.com/en-US/blog/new-free-content-coming-to-the-unreal-engine-marketplace?utm_source=launcher&utm_medium=chromium&utm_term=forum&utm_content=FreeContent&utm_campaign=communitytab
https://www.unrealengine.com/en-US/blog/new-free-content-coming-to-the-unreal-engine-marketplace?utm_source=launcher&utm_medium=chromium&utm_term=forum&utm_content=FreeContent&utm_campaign=communitytab
https://www.unrealengine.com/en-US/blog/new-free-content-coming-to-the-unreal-engine-marketplace?utm_source=launcher&utm_medium=chromium&utm_term=forum&utm_content=FreeContent&utm_campaign=communitytab
https://www.unrealengine.com/en-US/blog/new-free-content-coming-to-the-unreal-engine-marketplace?utm_source=launcher&utm_medium=chromium&utm_term=forum&utm_content=FreeContent&utm_campaign=communitytab
https://www.unrealengine.com/en-US/blog/new-free-content-coming-to-the-unreal-engine-marketplace?utm_source=launcher&utm_medium=chromium&utm_term=forum&utm_content=FreeContent&utm_campaign=communitytab
https://www.unrealengine.com/en-US/blog/new-free-content-coming-to-the-unreal-engine-marketplace?utm_source=launcher&utm_medium=chromium&utm_term=forum&utm_content=FreeContent&utm_campaign=communitytab
https://www.unrealengine.com/en-US/blog/new-free-content-coming-to-the-unreal-engine-marketplace?utm_source=launcher&utm_medium=chromium&utm_term=forum&utm_content=FreeContent&utm_campaign=communitytab
https://www.unrealengine.com/en-US/blog/new-free-content-coming-to-the-unreal-engine-marketplace?utm_source=launcher&utm_medium=chromium&utm_term=forum&utm_content=FreeContent&utm_campaign=communitytab
https://www.unrealengine.com/en-US/blog/new-free-content-coming-to-the-unreal-engine-marketplace?utm_source=launcher&utm_medium=chromium&utm_term=forum&utm_content=FreeContent&utm_campaign=communitytab
https://www.unrealengine.com/en-US/blog/new-free-content-coming-to-the-unreal-engine-marketplace?utm_source=launcher&utm_medium=chromium&utm_term=forum&utm_content=FreeContent&utm_campaign=communitytab
https://www.unrealengine.com/en-US/blog/new-free-content-coming-to-the-unreal-engine-marketplace?utm_source=launcher&utm_medium=chromium&utm_term=forum&utm_content=FreeContent&utm_campaign=communitytab
https://www.unrealengine.com/en-US/blog/new-free-content-coming-to-the-unreal-engine-marketplace?utm_source=launcher&utm_medium=chromium&utm_term=forum&utm_content=FreeContent&utm_campaign=communitytab
https://www.unrealengine.com/en-US/blog/new-free-content-coming-to-the-unreal-engine-marketplace?utm_source=launcher&utm_medium=chromium&utm_term=forum&utm_content=FreeContent&utm_campaign=communitytab
https://www.unrealengine.com/en-US/blog/new-free-content-coming-to-the-unreal-engine-marketplace?utm_source=launcher&utm_medium=chromium&utm_term=forum&utm_content=FreeContent&utm_campaign=communitytab
https://www.unrealengine.com/en-US/blog/new-free-content-coming-to-the-unreal-engine-marketplace?utm_source=launcher&utm_medium=chromium&utm_term=forum&utm_content=FreeContent&utm_campaign=communitytab
https://www.unrealengine.com/en-US/blog/new-free-content-coming-to-the-unreal-engine-marketplace?utm_source=launcher&utm_medium=chromium&utm_term=forum&utm_content=FreeContent&utm_campaign=communitytab
https://www.unrealengine.com/en-US/blog/new-free-content-coming-to-the-unreal-engine-marketplace?utm_source=launcher&utm_medium=chromium&utm_term=forum&utm_content=FreeContent&utm_campaign=communitytab
https://www.unrealengine.com/en-US/blog/new-free-content-coming-to-the-unreal-engine-marketplace?utm_source=launcher&utm_medium=chromium&utm_term=forum&utm_content=FreeContent&utm_campaign=communitytab
https://www.unrealengine.com/en-US/blog/new-free-content-coming-to-the-unreal-engine-marketplace?utm_source=launcher&utm_medium=chromium&utm_term=forum&utm_content=FreeContent&utm_campaign=communitytab
https://www.unrealengine.com/en-US/blog/new-free-content-coming-to-the-unreal-engine-marketplace?utm_source=launcher&utm_medium=chromium&utm_term=forum&utm_content=FreeContent&utm_campaign=communitytab
https://www.unrealengine.com/en-US/blog/new-free-content-coming-to-the-unreal-engine-marketplace?utm_source=launcher&utm_medium=chromium&utm_term=forum&utm_content=FreeContent&utm_campaign=communitytab
https://www.unrealengine.com/en-US/blog/new-free-content-coming-to-the-unreal-engine-marketplace?utm_source=launcher&utm_medium=chromium&utm_term=forum&utm_content=FreeContent&utm_campaign=communitytab
https://www.unrealengine.com/en-US/blog/new-free-content-coming-to-the-unreal-engine-marketplace?utm_source=launcher&utm_medium=chromium&utm_term=forum&utm_content=FreeContent&utm_campaign=communitytab
https://www.unrealengine.com/en-US/blog/new-free-content-coming-to-the-unreal-engine-marketplace?utm_source=launcher&utm_medium=chromium&utm_term=forum&utm_content=FreeContent&utm_campaign=communitytab
https://www.unrealengine.com/en-US/blog/new-free-content-coming-to-the-unreal-engine-marketplace?utm_source=launcher&utm_medium=chromium&utm_term=forum&utm_content=FreeContent&utm_campaign=communitytab
https://www.unrealengine.com/en-US/blog/new-free-content-coming-to-the-unreal-engine-marketplace?utm_source=launcher&utm_medium=chromium&utm_term=forum&utm_content=FreeContent&utm_campaign=communitytab
https://www.unrealengine.com/en-US/blog/new-free-content-coming-to-the-unreal-engine-marketplace?utm_source=launcher&utm_medium=chromium&utm_term=forum&utm_content=FreeContent&utm_campaign=communitytab
https://www.unrealengine.com/en-US/blog/new-free-content-coming-to-the-unreal-engine-marketplace?utm_source=launcher&utm_medium=chromium&utm_term=forum&utm_content=FreeContent&utm_campaign=communitytab
https://www.unrealengine.com/en-US/blog/new-free-content-coming-to-the-unreal-engine-marketplace?utm_source=launcher&utm_medium=chromium&utm_term=forum&utm_content=FreeContent&utm_campaign=communitytab
https://www.unrealengine.com/en-US/blog/new-free-content-coming-to-the-unreal-engine-marketplace?utm_source=launcher&utm_medium=chromium&utm_term=forum&utm_content=FreeContent&utm_campaign=communitytab
https://www.unrealengine.com/en-US/blog/new-free-content-coming-to-the-unreal-engine-marketplace?utm_source=launcher&utm_medium=chromium&utm_term=forum&utm_content=FreeContent&utm_campaign=communitytab
https://www.unrealengine.com/en-US/blog/new-free-content-coming-to-the-unreal-engine-marketplace?utm_source=launcher&utm_medium=chromium&utm_term=forum&utm_content=FreeContent&utm_campaign=communitytab
https://www.unrealengine.com/en-US/blog/new-free-content-coming-to-the-unreal-engine-marketplace?utm_source=launcher&utm_medium=chromium&utm_term=forum&utm_content=FreeContent&utm_campaign=communitytab
https://www.unrealengine.com/en-US/blog/new-free-content-coming-to-the-unreal-engine-marketplace?utm_source=launcher&utm_medium=chromium&utm_term=forum&utm_content=FreeContent&utm_campaign=communitytab
https://www.unrealengine.com/en-US/blog/new-free-content-coming-to-the-unreal-engine-marketplace?utm_source=launcher&utm_medium=chromium&utm_term=forum&utm_content=FreeContent&utm_campaign=communitytab
https://www.unrealengine.com/en-US/blog/new-free-content-coming-to-the-unreal-engine-marketplace?utm_source=launcher&utm_medium=chromium&utm_term=forum&utm_content=FreeContent&utm_campaign=communitytab
https://www.unrealengine.com/en-US/blog/new-free-content-coming-to-the-unreal-engine-marketplace?utm_source=launcher&utm_medium=chromium&utm_term=forum&utm_content=FreeContent&utm_campaign=communitytab
https://www.unrealengine.com/en-US/blog/new-free-content-coming-to-the-unreal-engine-marketplace?utm_source=launcher&utm_medium=chromium&utm_term=forum&utm_content=FreeContent&utm_campaign=communitytab
https://www.unrealengine.com/en-US/blog/new-free-content-coming-to-the-unreal-engine-marketplace?utm_source=launcher&utm_medium=chromium&utm_term=forum&utm_content=FreeContent&utm_campaign=communitytab
https://www.unrealengine.com/en-US/blog/new-free-content-coming-to-the-unreal-engine-marketplace?utm_source=launcher&utm_medium=chromium&utm_term=forum&utm_content=FreeContent&utm_campaign=communitytab
https://www.unrealengine.com/en-US/blog/new-free-content-coming-to-the-unreal-engine-marketplace?utm_source=launcher&utm_medium=chromium&utm_term=forum&utm_content=FreeContent&utm_campaign=communitytab
https://www.unrealengine.com/en-US/blog/new-free-content-coming-to-the-unreal-engine-marketplace?utm_source=launcher&utm_medium=chromium&utm_term=forum&utm_content=FreeContent&utm_campaign=communitytab
https://www.unrealengine.com/en-US/blog/new-free-content-coming-to-the-unreal-engine-marketplace?utm_source=launcher&utm_medium=chromium&utm_term=forum&utm_content=FreeContent&utm_campaign=communitytab
https://www.unrealengine.com/en-US/blog/new-free-content-coming-to-the-unreal-engine-marketplace?utm_source=launcher&utm_medium=chromium&utm_term=forum&utm_content=FreeContent&utm_campaign=communitytab
https://www.unrealengine.com/en-US/blog/new-free-content-coming-to-the-unreal-engine-marketplace?utm_source=launcher&utm_medium=chromium&utm_term=forum&utm_content=FreeContent&utm_campaign=communitytab
https://www.unrealengine.com/en-US/blog/new-free-content-coming-to-the-unreal-engine-marketplace?utm_source=launcher&utm_medium=chromium&utm_term=forum&utm_content=FreeContent&utm_campaign=communitytab
https://www.unrealengine.com/en-US/blog/new-free-content-coming-to-the-unreal-engine-marketplace?utm_source=launcher&utm_medium=chromium&utm_term=forum&utm_content=FreeContent&utm_campaign=communitytab
https://www.unrealengine.com/en-US/blog/new-free-content-coming-to-the-unreal-engine-marketplace?utm_source=launcher&utm_medium=chromium&utm_term=forum&utm_content=FreeContent&utm_campaign=communitytab
https://www.unrealengine.com/en-US/blog/new-free-content-coming-to-the-unreal-engine-marketplace?utm_source=launcher&utm_medium=chromium&utm_term=forum&utm_content=FreeContent&utm_campaign=communitytab
https://www.unrealengine.com/en-US/blog/new-free-content-coming-to-the-unreal-engine-marketplace?utm_source=launcher&utm_medium=chromium&utm_term=forum&utm_content=FreeContent&utm_campaign=communitytab
https://www.unrealengine.com/en-US/blog/new-free-content-coming-to-the-unreal-engine-marketplace?utm_source=launcher&utm_medium=chromium&utm_term=forum&utm_content=FreeContent&utm_campaign=communitytab
https://www.unrealengine.com/en-US/blog/new-free-content-coming-to-the-unreal-engine-marketplace?utm_source=launcher&utm_medium=chromium&utm_term=forum&utm_content=FreeContent&utm_campaign=communitytab
https://www.unrealengine.com/en-US/blog/new-free-content-coming-to-the-unreal-engine-marketplace?utm_source=launcher&utm_medium=chromium&utm_term=forum&utm_content=FreeContent&utm_campaign=communitytab
https://www.unrealengine.com/en-US/blog/new-free-content-coming-to-the-unreal-engine-marketplace?utm_source=launcher&utm_medium=chromium&utm_term=forum&utm_content=FreeContent&utm_campaign=communitytab
https://www.unrealengine.com/en-US/blog/new-free-content-coming-to-the-unreal-engine-marketplace?utm_source=launcher&utm_medium=chromium&utm_term=forum&utm_content=FreeContent&utm_campaign=communitytab
https://www.unrealengine.com/en-US/blog/new-free-content-coming-to-the-unreal-engine-marketplace?utm_source=launcher&utm_medium=chromium&utm_term=forum&utm_content=FreeContent&utm_campaign=communitytab
https://www.unrealengine.com/en-US/blog/new-free-content-coming-to-the-unreal-engine-marketplace?utm_source=launcher&utm_medium=chromium&utm_term=forum&utm_content=FreeContent&utm_campaign=communitytab
https://www.unrealengine.com/en-US/blog/new-free-content-coming-to-the-unreal-engine-marketplace?utm_source=launcher&utm_medium=chromium&utm_term=forum&utm_content=FreeContent&utm_campaign=communitytab
https://www.unrealengine.com/en-US/blog/new-free-content-coming-to-the-unreal-engine-marketplace?utm_source=launcher&utm_medium=chromium&utm_term=forum&utm_content=FreeContent&utm_campaign=communitytab
https://www.unrealengine.com/en-US/blog/new-free-content-coming-to-the-unreal-engine-marketplace?utm_source=launcher&utm_medium=chromium&utm_term=forum&utm_content=FreeContent&utm_campaign=communitytab

Physically Based Rendering Chapter 1

[11]

If you haven't done so before, it is now time to include the Starter Content. Don't4.
worry if you didn't do it at first! I didn't say it was mandatory only to be able to
look at how to include it after starting a new project—just navigate to the content
browser and look for the Add New option in the upper left corner. Select the first
available option in there, named Add feature or Content Pack, as shown in the
following screenshot:

With that included, we can see that the Starter Content includes a blueprint that5.
can be quite useful for setting up the lighting in our scene. You can look for this
inside of the Content Browser | Starter Content | Blueprints folder, and it's
named BP_ Light Studio. Select it and drag it into the scene we have previously
created.

The asset called BP_Light Studio is a blueprint that Epic Games has already
created for us. It includes several lighting settings that will make our lives
easier—instead of having to set up multiple lights and assign them different
values, it automates all of that work for us so we just have to choose how we want
our scene to look. Making a simple studio scene will be something very easy to do
this way.

Physically Based Rendering Chapter 1

[12]

Retaining that level of control over which lights are placed and how we do that is,
of course, very important, and something that we'll do later in the book, but for
now this is a very powerful tool that we will use.

With the BP_ Light Studio placed in our scene, we can start tweaking its default6.
values just so we can use it as a lighting studio setup. Select the blueprint from
the world outliner and let's tweak several settings.
The first one we can look at is the HDRi tab inside the details panel for the BP_7.
Light Studio. HDRi is short for High Dynamic Range imaging, which is a type
of texture that stores the lighting information from the place at which the photo
was taken. Using that data as a type of light in 3D scenes is a very powerful
technique, which makes our environments look more natural and real:

However, useful HDRi might be, this lighting method is turned off by default, so8.
make sure to tick the Use HDRi checkbox. That will make the texture placed in
the HDRi Cubemap slot light the scene. Feel free to use any other ones you
might have or download one to use throughout the project!

HDRi images are very useful for 3D artists, even though they can be tricky to
create as it is usually a lengthy process. There are many websites from which you
can buy them, but I like the following one that gives you free access to some very
useful ones: http:/ /www. hdrlabs. com/ sibl/ archive. html.

http://www.hdrlabs.com/sibl/archive.html
http://www.hdrlabs.com/sibl/archive.html
http://www.hdrlabs.com/sibl/archive.html
http://www.hdrlabs.com/sibl/archive.html
http://www.hdrlabs.com/sibl/archive.html
http://www.hdrlabs.com/sibl/archive.html
http://www.hdrlabs.com/sibl/archive.html
http://www.hdrlabs.com/sibl/archive.html
http://www.hdrlabs.com/sibl/archive.html
http://www.hdrlabs.com/sibl/archive.html
http://www.hdrlabs.com/sibl/archive.html
http://www.hdrlabs.com/sibl/archive.html
http://www.hdrlabs.com/sibl/archive.html
http://www.hdrlabs.com/sibl/archive.html
http://www.hdrlabs.com/sibl/archive.html

Physically Based Rendering Chapter 1

[13]

We will be using the one called Alexs Apartment, which is quite useful for
interior visualization.

You can now untick the Use Light Sun and the Use Atmosphere option found9.
under the Sun and the Atmosphere section of the BP_LightStudio blueprint if
you use an HDRi image. As we said earlier, this type of picture stores lighting
information, which renders the use of other lights sometimes optional.
Once you've done that, let's create a basic plane on which we can use to lay out10.
our objects. Dragging a plane into the scene from the Modes panel will do the
job: Modes | Basic category | Plane.
Let's assign our newly placed plane an interesting default material so we have11.
something to look at—with the plane selected, scroll down to the Materials
section of the details panel and change its default value to M_Wood_Pine. Said
material is part of the Starter Content, so make sure you have it installed!

We should now be looking at something like the following:

With that out of the way, we can say that we've finished creating our basic studio scene.
Having done that will enable us to use this level for visualization purposes, kind of like
having a white canvas on which to paint. We will use this to place other models and
materials as we create them, in order to correctly visualize our assets.

Physically Based Rendering Chapter 1

[14]

How it works...
There are at least two different objectives that we can complete if we follow the previous set
of steps—the creation of our intro scene being the first one and the second one being getting
familiar with the engine. This final task is something that will continue to happen over
time—but getting our hands dirty now will have hopefully accelerated that process.

Something that could also speed that up even more is a review process of what we've just
done. Not only will we learn things potentially faster, but knowing why we do the things
the way we do them will help us cement the knowledge we acquire—so expect to see a How
it works... section after each recipe we tackle! As the first ever example of the
aforementioned section, we'll briefly go over what we have just done before in order to
understand how things work in Unreal.

The first step we've taken was to actually create the Unreal Engine project on which we'll be
working throughout this book. We've then added the assets present in the Starter Content
package that Epic Games supplies, as it contains useful 3D models and materials that we
can check later on as we work on other recipes. The most important bit we've done was
probably the lighting setup though, as this will be the basis of some of the next recipes. This
is because having a light source is vital to visualizing the different assets that we create or
add to the scene. Lighting is something that we'll explore more in some of the next recipes,
but the method we've chosen in this one is a very cool technique that you can use in your
own projects. We are using an asset that Unreal calls a blueprint, something that allows
you to use the engine's visual scripting language to create different functionalities within
the game engine without using C++ code. This is extremely useful, as you can program
different behaviors across multiple types of actors to use to your advantage—turning a
light on and off, opening a door, creating triggers to fire certain events, and so on. We'll
explore them more as we go along, but at the moment we are just using an already
available one to specify the lighting effects we want to have in our scene. This is in itself a
good example of what a blueprint can do, as it allows us to set up multiple different
components without having to specify each one of them individually—such as the HDRi
image, the sun position, and others that you can see if you look at the Details panel.

Working inside the material editor
Let's get started with the material editor! This is the place where the magic will happen and
also where we'll spend most of our time during this cookbook. Better get well acquainted
with it then! As with everything inside Unreal, you'll be able to see that this space for
creating materials is a very flexible one—full of customizable panels, rearrangeable
windows, and expandable areas. You can place them however you want!

Physically Based Rendering Chapter 1

[15]

Because of its modular nature, some of the initial questions we need to tackle are the
following ones: how do we start creating materials and where do we look for the most
commonly used parameters? Having different panels means having to look for different
functionalities in each of them, so we'll need to know how to find our way around the
editor. We won't stop there though—the editor is packed with plenty of useful little tools
that will make our jobs as material creators that much easier, and knowing where they live
is one of the first mandatory steps.

So, without further ado, let's use the project we have already set up in the previous recipe
as our starting point and let's start creating our first material!

Getting ready
There's not much we need to do at this point—all thanks to having previously created the
basic blank project. That's the reason we created it in the first place, so we can start working
on our materials straight away. Having set up the studio scene is all we need at this point.

In spite of this, don't feel obliged to use the level we created in the first recipe. Any other
one will do, as long as there are some lights in it that help you visualize your world. That's
the advantage of the PBR workflow, that whatever we create following its principles will
work across different lighting scenarios. Let's jump right in!

How to do it...
It's now time to take a look at how the material editor works, at the same time as we create
our first material. This editor includes many different tools and functionalities within it, so
there are plenty of things to take a look at!

Remember that you can bring the material editor up by just creating a
new material and double-clicking on it.

The first important thing we will be doing is to actually create a material. Of course, this is a
very trivial action and there's not much to explain—just right-click anywhere on the content
browser and select the Create Basic Asset | Material option. What is important is knowing
how to name and organize our contents. Even though keeping the Content Browser
organized is not the main goal of this chapter, I didn't want to pass up on the opportunity
to briefly talk about that.

Physically Based Rendering Chapter 1

[16]

One good way of keeping things tidy is to organize the folder structure in categories
(Materials, Characters, Weapons, Environment...) and naming the different assets using
Unreal's recommended syntax. You can find more about that on several discussion forums
or on Epic Games' wiki:

Unreal Engine 4 style guide: https:/ /github. com/ Allar/ ue4- style- guide

Assets naming convention: https:/ /wiki. unrealengine. com/ Assets_ Naming_
Convention

The second important thing we want to be doing is to make sure that the layout we are
looking at is the default one, just so that the images we will be including later on match
what you'll be seeing in your monitor. To do that, go to Window | Reset Layout, as shown
in the following screenshot:

Remember that resetting the layout to its default state can still make things not look
perfectly equal between your screen and mine—that's because settings such as the screen
resolution or its aspect ratio can hide panels or make them imperceptibly small. Feel free to
move things around until you reach a layout that works for you!

https://github.com/Allar/ue4-style-guide
https://github.com/Allar/ue4-style-guide
https://github.com/Allar/ue4-style-guide
https://github.com/Allar/ue4-style-guide
https://github.com/Allar/ue4-style-guide
https://github.com/Allar/ue4-style-guide
https://github.com/Allar/ue4-style-guide
https://github.com/Allar/ue4-style-guide
https://github.com/Allar/ue4-style-guide
https://github.com/Allar/ue4-style-guide
https://github.com/Allar/ue4-style-guide
https://github.com/Allar/ue4-style-guide
https://github.com/Allar/ue4-style-guide
https://github.com/Allar/ue4-style-guide
https://github.com/Allar/ue4-style-guide
https://wiki.unrealengine.com/Assets_Naming_Convention
https://wiki.unrealengine.com/Assets_Naming_Convention
https://wiki.unrealengine.com/Assets_Naming_Convention
https://wiki.unrealengine.com/Assets_Naming_Convention
https://wiki.unrealengine.com/Assets_Naming_Convention
https://wiki.unrealengine.com/Assets_Naming_Convention
https://wiki.unrealengine.com/Assets_Naming_Convention
https://wiki.unrealengine.com/Assets_Naming_Convention
https://wiki.unrealengine.com/Assets_Naming_Convention
https://wiki.unrealengine.com/Assets_Naming_Convention
https://wiki.unrealengine.com/Assets_Naming_Convention
https://wiki.unrealengine.com/Assets_Naming_Convention
https://wiki.unrealengine.com/Assets_Naming_Convention
https://wiki.unrealengine.com/Assets_Naming_Convention

Physically Based Rendering Chapter 1

[17]

Now that we've made sure that we are looking at the same screen, let's turn our attention to
the material editor itself and the different parts that constitute it. By default, this is what we
should be looking at:

The first part of the material editor is the Toolbar, a common section that you'll
find in many other places within the engine. It lets you save your progress or
apply any changes that you've made to your materials amongst other things.
The second panel is the Viewport, where we'll be able to see what our material
looks like. You can rotate the view, zoom in or out, and change the lighting setup
of that window.
The Details panel (3) is a very useful one, for here is where we can start to define
the properties of the materials that we want to create. Its contents vary
depending on what is selected in the main graph editor (the panel numbered 6).
The Stats and the Find Results panels (4) is where you can take a look at how
costly your materials are or how many textures they are using.
The material node Palette (5) is a library of different nodes and functions that
we'll use to modify the materials we create.
The main graph editor (6) is where the action happens, and where most of the
functionality that you want to include in your materials needs to be visually
scripted.

Physically Based Rendering Chapter 1

[18]

Now that we've taken a look at the different parts that make up the material editor in
Unreal, we can start creating our own first simple material—a plastic. I find plastics to be a
very straightforward type—even though we could make them as complicated as we want
to. So, let's explore how we would go about at creating it:

Take a look at the main graph. By default, every time you create a new material,1.
you should be looking at a central main node. You will see multiple pins, which
are the elements where we want to connect the different elements we will be
creating.
Right-click on the main graph, preferably to the left of the main material node,2.
and start typing constant. As you start to write, notice how the auto-completion
system starts to show several options: Constant,
Constant2Vector, Constant3Vector, and so on. Select Constant3Vector, as shown
in the following screenshot:

Physically Based Rendering Chapter 1

[19]

Having chosen that option, you will be able to see that a new node has now3.
appeared. You can now connect it to the Base Color of the material node. If you
are on the constant node, take a look at the Details panel and you'll be able to see
that there are a couple settings that you can tweak. Since we want to move away
from the default blackish appearance that the material now has, click on the black
rectangle to the right of where it says Constant and use the color wheel to change
its current value. I'm going to go with orange:

There's more to the base color property than meets the eye! Apart from
the different options that are available to select a color, you might be
interested to know that the actual value that gets connected to the material
slot matters beyond the color choice. Certain materials have a measured
intensity to them, and you can check that out on the following
website: https://docs.unrealengine.com/en-us/Engine/Rendering/Mat
erials/PhysicallyBased.

It's not something that you should concern yourself with at this stage, but can
come in handy in the future!

https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/PhysicallyBased
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/PhysicallyBased

Physically Based Rendering Chapter 1

[20]

At the moment, we can see that we have managed to modify the color of our
material. We can now change how sharp the reflections are, as we want to go for a
plastic look. In order to do so, we need to modify the Roughness parameter with
another different constant. Instead of right-clicking and typing, let's choose it
from the palette menu instead.

Navigate to the Palette section, and look for the Constant category. We want to4.
select the first option in there, aptly named like this subsection itself.
Alternatively, you can type its name in the search box at the top of the panel:

A new, smaller node should have now appeared. Unlike the previous one, we5.
don't have the option to select a color—we need to type in a value. Let's go with
something low, about 0.2. Connect it to the Roughness pin.

If you look at the preview viewport, you will notice that the appearance of the material has
now changed. It looks like the reflections from the environment are much sharper than
before. This is happening thanks to the previously created constant pin, which, using a
value closer to 0 (or black), makes the reflections stand out that much more. Whiter values
decrease the sharpness of those reflections or, in other words, make the surface appear
much more rough.

Physically Based Rendering Chapter 1

[21]

Having done so, we are now in a position where we can finally apply this material to a
model inside of our scene. Let's go back to the main level and look at the Modes panel,
particularly to the Basic section. Drag and drop a cube into the main level, and assign it the
following values inside of the Details panel just so we are looking at the same:

Reducing the size of the cube will make it fit better into our scene. Now head over to the
Materials section of the Details panel, and click on the drop-down menu. Look for the
newly created material and assign it to our cube. Finally, click on the Build icon located on
the toolbar as follows:

Physically Based Rendering Chapter 1

[22]

And there it is! We now have our material applied to a simple model, being displayed on
the scene we had previously created. Even though this has served as a small introduction to
a much bigger world, we've now gone over most of the panels and tools that we'll be using
in the material editor. See you in the next recipe!

How it works...
We've used the present recipe to learn about the material editor and we've also created our
first material. Knowing what each section does within the editor will help a lot in the
immediate future, as what we've just done is but a prelude to our real target—creating a
physically based material. Now we are in a much better position to tackle that goal, so let's
look at it in the next recipe!

Before moving on though, let's check the nodes that we have used to create this simple
material. From an artist's point of view, the names that the engine has given to something
like a color value or a grayscale value can seem a bit confusing. It might be difficult to
establish a connection between the name of the Constant3Vector node and our idea of a
color. But there is a reason for all of this!

Physically Based Rendering Chapter 1

[23]

The idea behind that naming convention is that these nodes can be used beyond the color
values we have just assigned them. At the end of the day, a simple constant can be used in
many different scenarios—such as depicting a grayscale value, using it as a brightness
multiplier, or as a parameter inside a material function. Don't worry if you haven't seen
these other uses yet, we will—the point is, the names that these nodes were given tell us
that there are more uses beyond the ones we've seen.

With that in mind, it might be better to think of those elements we've been using in more
mathematical terms. For instance, think of a color as an Red Green Blue (RGB) value,
which is what we are defining with that previous Constant3Vector node. If you want to
use an RGB value alongside an alpha one, why not use the Constant4Vector, which
allows for a fourth input? Even though we are at a very early stage, it is always good to
familiarize ourselves with the different expressions the engine uses.

Our first physically based material
PBR is, at its core, a principle that several graphic engines try to follow. Instead of being a
strict set of rules that every rendering program needs to abide by, it is more of an idea—one
that dictates that what we see on our screens is the result of a study on how light behaves
when it interacts with certain surfaces.

As a direct consequence, the so-called PBR workflow varies from one rendering solution to
the next, depending on how the creators of the software have decided to program the
system. For our case, what we are going to be looking at is the implementation that Epic
Games has chosen for their Unreal Engine 4 real-time renderer.

However, we are going to do so in our already established recipe process, that is, by
creating real examples of materials that follow the PBR workflow rather than just talking in
a general way. Let's get to it!

Getting ready
We don't need a lot in order to start working on this recipe—just the project we have
previously created so we don't have to start from scratch. You can continue using the
previous section's materials or create new ones, whatever works best for you! Something
that would be helpful to have is the scene from the previous recipe open, for instance—that
way we already have a 3D model in it that we can use to show our materials on.

Physically Based Rendering Chapter 1

[24]

We are going to be creating multiple materials in this section, so
duplicating and modifying an already existing asset is going to be faster
than creating several ones from scratch. To do this, just select any material
that you want to duplicate on the content browser and press Ctrl + W.

How to do it...
Let's start our journey into the PBR pipeline by creating a new material and looking at the
different attributes that define it:

Right-click anywhere inside of the Content Browser and select the material1.
option in the Create Basic Asset section. Name it whatever you want—I'll go
with M_PBR_Metal for this particular instance. Double-click on the newly created
material to open up the material editor.
With the Material editor now open, we can start taking a look at the PBR2.
workflow. The first material we are going to create is a metallic one, a particular
type that uses most of the attributes associated to this pipeline. With that said,
let's focus our attention on the following two different places—the Details panel
and the main Material node itself:

Physically Based Rendering Chapter 1

[25]

The settings you see here are the default ones for most materials in Unreal, and
they follow the PBR pipeline very closely. The first option, the Material Domain,
is currently set to Surface. That tells us that the material we are creating is meant
to be used on a 3D model. Blend Mode, which has a value of Opaque, indicates
that it is not a translucent material like glass. Finally, the shading model is set to
Default Lit, which is the default one for most materials.

This configuration is the default one for most common materials, and the one that
we'll need to use to define materials such as metal, plastic, wood, or concrete, to
name a few.

With that bit of theory out of the way, let's create a Constant3Vector node3.
anywhere in the graph and plug it into the Base Color input pin of our material.
We've used the Base Color attribute in the previous recipe, and as we saw, this is
the node where the overall color of a material should be plugged into.
The next item we will be creating is a Constant. You can do so by holding the 14.
key on your keyboard and clicking anywhere within the material editor graph.
Give it a value of 1 and plug it into the Metallic attribute of our material.

The Metallic attribute defines whether we are creating a metal or a non-metal
material. We should use a value of 1 to define metallic surfaces and a value of 0
for non-metals—or we can leave this attribute unconnected, which would be the
same as using a zero. Values between 0 and 1 should only be used in special
circumstances, such as when dealing with metals that have been
treated—corroded or painted metals and the like.

For our next step, let's replicate what we have just done—start by creating5.
another constant and plugging it into the Roughness slot. This time, let's not give
it a value of 1, but something like 0.2 instead. The final material graph should
look something like this:

Physically Based Rendering Chapter 1

[26]

The attribute we are controlling through the previous constant defines how rough
the surface of a given material should be. Higher values, such as 1, simulate the
micro details that make light scatter in all directions—which means we are
looking at a matte surface where reflections are not clear. Values closer to zero
result in those imperfections being removed, allowing a clear reflection of the
incoming light rays and a much clearer reflected image.

Through the previous steps, we have taken a look at some of the most important
material attributes used to define a PBR material. We've done so by creating a
metal, which can be a good example for some of the previous properties.
However, it will be good to create another quick material that is not a metallic
one—this is because some of the other properties of the PBR workflow, like the
specular material attribute, are meant to be used in such cases.

Create another material, which we can name M_PBR_Wood, and open the material6.
editor for that asset.
Let's plug something into the Base Color material attribute—but instead of using7.
a plain value, let's go with an image this time. The Starter Content provides
multiple textures that can be used for this very purpose, so let's make use of one
of those resources.

Physically Based Rendering Chapter 1

[27]

Right-click anywhere inside of the main graph for our newly created material and
search for TextureSample, like in the next screenshot:

With that new node on our graph, click on it to access the options in the Details8.
panel. Click again on the drop-down menu found in the Material Expression
Texture Base | Texture slot and type wood. Select the T_ Wood_ Floor_ Walnut_
D asset and connect the Texture Sample node into the Base Color material
attribute as follows:

Physically Based Rendering Chapter 1

[28]

If you want to get hold of more textures online, feel free to browse the
internet for more of them. A good place where I like to search for these
types of resources is www.textures.com, which allows you to download
several samples a day once you create a free account.

With that done, it's time to be looking at another material attribute—the Specular
parameter. Unlike roughness, this node controls how much light is being reflected
by the material and not how clear those reflections are. We therefore tend to
modify the specular level when we have small-scale occlusion or small shadows
happening across a surface, similar to what would be happening for the texture
that we chose before.

http://www.textures.com

Physically Based Rendering Chapter 1

[29]

The seams in between the wood boards are a good place to use a specular map,9.
as those areas will reflect less light. In Unreal, such places are described with
values close to 0 (black). Knowing that, drag a pin from the red channel of the
previously created Texture Sample node into the Specular attribute of the main
material node.

You might be wondering why we are using the red channel of the wood texture
to drive the specular parameter. The simple answer is that even though we could
create a custom black and white image to achieve the same effect, any of the
original textures' channels are black and white values that contain the information
that we are after. Because seams are going to contain darker pixels than other
areas, the end result we achieve is still very similar if we use the red channel of
the original texture. You can see in the next image our source asset and the red
channel by its side:

Copy the Texture Sample node twice, since we are going to use more textures for10.
the roughness and the normal material attribute slots.
Just as we did previously, select the T_ Wood_ Floor_ Walnut_ M and the T_11.
Wood_ Floor_ Walnut_ N assets on each of the new nodes. Connect the first one
to the Roughness slot and the second one to the Normal node. Save the material
and click on the button that says Apply. Your material node graph should look
something like this:

Physically Based Rendering Chapter 1

[30]

Navigate back to the main level, and select the floor plane. In the Details panel,12.
scroll down to the Materials section and assign the M_PBR_Wood material we
have just created. Take a look at what our scene looks like now:

Physically Based Rendering Chapter 1

[31]

Nice job, right? The new nodes we've used, both the specular and the normal ones,
contribute to the added details we can see in the preceding screenshot. The specular node
diminishes the light that is being reflected in the seams between the wood planks, and the
normal map modifies the direction in which the light bounces from the surface. The
combined effect is that our model, a flat plane, looks as if it has much more geometrical
detail than it really has.

How it works...
Remember how we were talking about each renderer having its own implementation of a
PBR workflow? Well, we have just taken a look at how Epic has chosen to set up theirs!

As we have already said, efficiency and speed are at the heart of any real-time application.
These are two factors that have heavily influenced the path that the engineers at Epic have
chosen when coding their physical approach at rendering. That being the case, the
parameters that we have tweaked are the most important ones when it comes to how
Unreal deals with the interaction between light and 3D models. The base color gives us the
overall appearance of the material, whilst roughness indicates how sharp or blurry the
reflections are. Metallic enables us to specify whether an object is made out of metal, and
the specular node lets us influence how intense those reflections are. Finally, using normal
maps allows for the modification of the direction in which the light gets reflected—a useful
technique for adding details without actually using more polygons.

The previous parameters are quite common in real-time renderers, but not every program
uses the same ones. For instance, offline suites such as VRay use other types of calculations
to generate the final output—physically based in their nature, but using other techniques.
This shows us that, at the end of the day, the PBR workflow that Epic uses is specific to the
engine and we need to be aware of its possibilities and the limitations.

Throughout the current recipe, we have managed to take a look at some of the most
important nodes that affect how the physically based rendering gets tackled in Unreal
Engine 4. Base color, roughness, specularity, ambient occlusion, normal maps, and the
metallic attribute all constitute the basics of the PBR workflow.

Having seen all of them, we are now ready to start looking into how to build more complex
materials and effects. And even though we still need to understand some of the other areas
that affect our pipeline, we can do so with the certainty that the basics are covered.

Physically Based Rendering Chapter 1

[32]

Creating some simple glass with the
translucent blend mode
In the previous section, we had the opportunity to create a basic material that followed the
physically based approach that Unreal Engine uses to render elements into our screens. By
using nodes and expressions that affected the roughness or the metallic attributes of a
material, we saw how we could potentially create endless combinations—going from
plastics to concrete, metal, or wood.

Those previous examples can be considered simple ones—for they use the same shading
model to calculate how each element needs to be rendered. Most of the materials that we
experience in our daily lives fall into that category, and they can be described using the
attributes we have previously tweaked. In spite of that, there are always examples that can't
be exactly covered with one unique shading model. The way that light behaves when it
touches glass, for example, needs to be redefined in those cases. The same applies to other
elements, such as human skin or foliage, where light distribution varies from that of a
wooden material.

With that in mind, we are going to create several small examples of materials that deviate
from the standard shading model—starting with some simple glass. This will work as an
introductory level, just so we can create more complex examples at a later stage. Buckle up
and let's dive right in!

Getting ready
In order to start this recipe, you are not going to need a lot of anything. The sample Unreal
project we have previously created will serve us fine, but feel free to create a new one if you
are starting in this section of the book. It is completely fine to use standard assets, such as
the ones included with the engine, but I've also prepared a few of them that you can
download if you want to closely follow this book.

Physically Based Rendering Chapter 1

[33]

How to do it...
The first example that we are going to create is going to be some simple glass. As before,
right-click in the appropriate subfolder of your Content Browser and create a new material.
Here's how we go about it:

Let's name it with a pertinent name, something like M_SampleGlass, as that's1.
what we'll be creating!
Open up the material editor, and focus on the Details panel. That's the first area2.
we are going to operate on. Make sure you have the main material node
selected—if you haven't created anything else, that's the only element that should
exist on the main editor graph:

Having the main node selected, you'll be able to see that the second editable3.
attribute under the Material section of the Details panel is the Blend Mode. Let's
change that from the default value of Opaque to the more appropriate
Translucent one as follows:

Physically Based Rendering Chapter 1

[34]

After this change has happened, you'll note that several options have been4.
grayed out inside of the main material node. We'll come back to this shortly.
Without leaving the Details panel, you can now scroll down to the5.
Translucency section of the main material node. You should be able to find a
drop-down menu named Lighting Mode, which we'll need to change from the
default value of Volumetric NonDirectional to the one named Surface
Translucency Volume, as shown in the following screenshot:

If you hover over each of the options inside of the Lighting Mode drop-down
menu, you should be able to take a look at their description. You'll note that some
of the options are meant to be used with particles, while others are meant for 3D
models. That's the reason why some of the material attributes were previously
grayed out— some options don't make sense to be used if we are going to be
applying the material to a particle, for example, so these are left out.

With that out of the way, let's now attach a Constant4Vector to the Base Color6.
node and give it an interesting value. I'm going with a bluish tone, as we'll be
creating a glass and they usually have that kind of tint.

Physically Based Rendering Chapter 1

[35]

Why a Constant4Vector and not a Constant3Vector, as we used last time?
This new type that we are using includes a fourth parameter, which can
be used as an alpha value, something very useful for glass-like materials
as you'll see for yourself in a moment.

Without leaving the Constant4Vector behind, set the alpha value to something like7.
0.5. Don't go all the way with this parameter! Setting it either as a 0 or a 1 would
make our future material fully transparent or opaque, so choose something in
between. Plug the value into the Base Color material node as follows:

Now it's time to plug in the alpha value of our Constant4Vector into the Opacity8.
slot of our material. Drag from the pin of the Constant4Vector into an empty
space in the main graph and release the left mouse button. A contextual menu
should now appear, and you want to type mask. Selecting ComponentMask is
what we want to be doing now!

Physically Based Rendering Chapter 1

[36]

With the component mask selected, let's take a look at the details panel. In there9.
you'll be able to select which of the four components from the Constant4Vector
node you want to use. For our case, as we'll be driving the opacity through the
alpha, let's just tick the last option.
Finally, connect the mask to the Opacity pin. Click on the Apply button and save10.
the material. The preview window may take a moment to update itself, but once
it does we should be looking at a translucent material like the following:

Physically Based Rendering Chapter 1

[37]

Now that we have our material correctly set up, let's apply it to the model in our scene. If
you've opened the level that I've set up for you, 01_ 04_ TranslucentMaterials_ Intro, you'll
see that we have an object called SM_ Glass. If you are creating things on your own project,
just create a model in which we can apply this newly created material. In any case, the
scene should look something like this after you apply the new material:

Simple but effective! In the future, we'll be taking a look at how to properly set up a more
complex translucent material, with reflections, refractions, and other interesting effects. But
for now, we've taken one of the most important steps in that path—actually starting to
walk!

How it works...
Translucent materials are really tricky to tackle in real-time renderers—and we are starting
to see why. One hint that you might have been able to spot is that we aren't using a
different shading model to create glasses. Instead, we are just using a different blend mode.
So what are the differences between both of these concepts, and how is driving translucent
materials through the latter indicative of their render complexity?

First of all, a shading model is a combination of mathematical expressions and logic that
determines how models are shaded or painted with light. One such model will describe how
light behaves when it comes into contact with a material that uses said shading method. We
use as many different models as we need in order to describe the different materials we see
on our daily lives—for example, the way light scatters through our skin or the way it does
the same on a wooden surface. We need to be able to describe that situation in a way that
our computer programs can tackle that problem.

With that in mind, you could think that we should have a different shading model to
describe translucent materials. However, things are a bit more complex in real-time
renderers as the calculations that we would need to have to realistically simulate that
model are too expensive performance-wise. Being always on the lookout for efficiency and
speed, the way that Unreal has decided to tackle this issue is by creating a different blend
mode. But what is that?

Physically Based Rendering Chapter 1

[38]

You can think of blend modes as the way that the renderer combines the material that we
have applied to a model on the foreground over what is happening on the background. Up
until now, we've seen two different types— opaque and the translucent ones.

The opaque blend mode is the easiest one to comprehend: having an object in front of
another will hide the second one. This is what happens with opaque materials in real life—
wood, concrete, bricks, and so on. The translucent mode, however, lets the previously
hidden object to be partially visible according to the opacity value that we feed into the
appropriate slot.

This is a neat way of implementing translucency, but there are some caveats that the system
introduces we have to be aware of. One such issue is that this blend mode doesn't support
specularity, meaning that seeing reflections across the surface is a tricky effect that we will
have to overcome later on. But don't worry, we'll definitely get there!

Lighting our scene with image-based
lighting
This introductory chapter has so far laid out some of the foundations of the PBR workflow
that Unreal introduces. With that pipeline as our main focus, we've already taken a look at
several of its key components—namely the different material parameters and shading
models.

However, as we've said in the past, PBR takes information from the lights in our scene to
display and calculate how everything should look. So far, we've focused on the objects and
materials that are being rendered, but that is only part of the equation. One of the other
parts is, of course, the light emitters themselves.

Lights are crucial to the PBR workflow. They introduce shadows, reflections, and other
subtleties that affect how the final image looks. They work alongside the materials that
we've previously applied by giving value to some of the properties we set up. Roughness
textures and normal maps work in tandem with the lights and the environment itself. And
all of this combined is also an integral part of the pipeline we are looking at in this
introductory chapter.

With that as our objective, let's create in this recipe different types of lights and see how
they affect some of the materials we have previously created. We'll be taking a look at the
all-important High-dynamic-range imaging (HDRi) maps, 32-bit textures, which include
lighting information in them and that can be used to light up a scene. Let's get started!

Physically Based Rendering Chapter 1

[39]

Getting ready
You can use the scene we created at the beginning of the book, where we set up a studio
environment. We took some time aside in the introduction to this book to set it up just so
we could place several objects and visualize them. At that point, we just wanted to create
something quick and useful, and one of the things we did was to use one of the already
available resources of the Starter Content: the BP_Light Studio blueprint. Through that,
we've already had access to HDRi lighting, the topic that we are going to be covering in this
recipe.

With that in mind, we are now going to explore how to use this type of lighting to its full
potential and create a realistic scene through it.

How to do it...
We will start this recipe by placing a reflective object in our default scene and looking at
how certain aspects of the environment can be seen reflected in its surface. Take the
following steps:

Open the map named 01_05_HDRi Lighting, and take a look at the reflective 1.
sphere in the middle of the level:

You can see that I've applied a material to the model, named M_Chrome. This is a
copy of the material we created in our third recipe, named M_PBR_Metal, where
we've modified the base color and the roughness value to make it more chrome-
looking. Thanks to its reflective properties, we can see the environment clearly.
This is happening thanks to the HDRi image we are using. We are now going to
replicate this effect without using the blueprint that was already set up for us, and
we will instead create our own.

Physically Based Rendering Chapter 1

[40]

One of the things that we want to move away from in the setup we are going to
create is having the environment image visible at all times. You could be thinking
that the metal ball is reflecting the image you see in the preceding screenshot and
not the actual light—and that would be only natural as you are seeing that image
in the background. This is, however, just a visual cue that the blueprint uses to
better visualize from where the environment lighting is hitting an object. Having
said so, let's start working with the basic building blocks and not with pre-made
tools to better understand how things work.

Delete the BP_LightStudio and the SphereReflectionCapture and click on the2.
Build icon—we should now be looking at a completely dark scene.
From the Modes panel, navigate to the Place tab and to the Lights section within3.
it. You should be able to find a Skylight, the type of light that we can use to
illuminate with HDRi textures. Drag and drop it into the scene as follows:

Physically Based Rendering Chapter 1

[41]

With the newly created skylight selected, navigate to the Details panel and look4.
at the options under the Light section. The first option on the drop-down menu
says SLS Captured Scene, which uses the already existing scene to create a light.
We want to change that value to the other available option, SLS Specified
Cubemap. Once that's done, select a Cubemap from the next drop-down
menu—let's go with the one we've used in the past, HDRI_AlexsApt, as follows:

After selecting the texture, you will be able to check for yourself that nothing has5.
changed; we are still looking at a black screen. This is because the default type
that was spawned was one of the Static type and skylights of that type need to
get built before we can see them. Click on the Build icon again and see what
happens:

Physically Based Rendering Chapter 1

[42]

We are now lighting our scene with the HDRi! However, we are still using a6.
static light, which has its inconveniences regarding reflections (as you can see,
there are none!). Let's change between static, stationary, and dynamic to see how
the scene varies:

As you can see, going from a static type of light to a dynamic one gets us the
reflections back. This is due to the fact that static lights only exist during the light
baking process—that is, when we click on the Build button. In order to use HDRis
to their full extent, we should be aiming for a dynamic or stationary type of light.

Let's focus once again on the metallic ball under this new dynamic skylight that
we now have. There might be a bit of a problem, if we look closely:

Physically Based Rendering Chapter 1

[43]

You can see that there's a black edge going on across the surface of the ball, which
is happening because the skylight is by default only using half of a sphere to
project the selected texture. This is happening because objects are usually not lit
from underneath, and we might be fine with that sometimes. However we can
solve that by selecting the next option:

As you saw in the previous picture, select the Skylight and expand the Light7.
section on the Details panel. In there you will be able to see that the set Lower
Hemisphere Is Solid setting is ticked by default—unticking it will make the light
use a full sphere to project the HDRi.

You might be inclined to fill your scene with geometry so as to obscure
the emptiness that is being reflected in the chrome ball. However, Unreal
doesn't render the objects that the camera can't see—so the reflections that
should be happening thanks to the objects that would be behind it won't
show at all. This is one of the sacrifices that real-time rendering has to
make in order to be so efficient, so keep that in mind! We can solve that by
placing a reflection capture, as we'll see next.

However useful having a full spherical HDRi skylight lighting our scene might
be, it can also introduce some undesired effects that we don't want to see. For
instance, we might want to use the actual geometry of our level to affect the lower
part of the chrome ball and not the HDRi. If that's the case, tick again the Lower
Hemisphere Is Solid setting and let's try something different.

Physically Based Rendering Chapter 1

[44]

Place some planes around the level, in a similar fashion to what I'm doing in the8.
next screenshot. This is just to mimic a scenario where we would have more
geometry throughout the level, which could be used for reflections, so we don't
have that black band across the reflective ball we saw before. Assign those planes
a different material—I'm using M_Basic_Wall from the Starter Content pack:

Place the camera somewhere close to the reflective ball so we can see it clearly.9.
We are still seeing the previous reflections, and not the current ones:

Physically Based Rendering Chapter 1

[45]

In order to fix this, go to the drop-down menu to the right of the Build icon and10.
select the option Build Reflection Captures:

With that done, you should now be looking at your recently created planes in the
reflections of the chrome ball as follows:

How it works...
Throughout the current recipe, we've had the opportunity to work with HDRi lighting. The
lights that make use of this technique are usually of the Skylight type in Unreal Engine 4,
a particular kind that allows for the input of the necessary textures that contain the photon
information.

Physically Based Rendering Chapter 1

[46]

As we've said before, HDRi images capture the lighting state of a particular scene in order
to be able to use that information in a 3D environment. The way they do this is by sampling
the same environment multiple times under different exposure settings. Taking multiple
pictures this way allows for their combination at a post process stage, where the differences
in lighting can be interpolated to better understand how the scene is being lit.

What's important to us it that we need to be on the lookout for the right type of textures.
HDRi images need to be in a 32-bit format, such as .EXR or .HDRi, as each pixel contains
multiple layers of information condensed into itself. You might find HDRi images in a
non-32-bit format, but these don't contain as much lighting information as the real ones
because of the format they use.

Another parameter to take into consideration is the number of f-stops that a given HDRi
image is composed of. This number indicates the amount of different pictures that were
taken under different exposures to be able to compose the HDRi. A value of five means that
the HDRi was created out of five interpolated images, and a value of seven indicates that
said number was instead used. More pictures mean a wider range of values and the
consequent increase of information. It is a case of the more, the better, as seen in the next
screenshot:

Physically Based Rendering Chapter 1

[47]

These photographs are a sequence of different images that make up an HDRi. HDRi by
HDRi labs.

In this recipe, we've taken a look at several key concepts in the PBR workflow—image-
based lighting, reflections, and the different mobility types a light can belong to. These
elements, while not a part of the material pipeline themselves, are an essential part of the
whole physically based approach at rendering that Unreal has at its core. They work hand-
in-hand with the materials we create, expanding their capabilities and complementing the
base properties we define them to have. Think about it—there's not much use having a
highly reflective material if we don't tell the engine how to treat those reflections. Hope you
found this useful!

Checking the cost of our materials
In this recipe, we are going to be looking at the impact that our materials have on
performance. So far, this introductory chapter has gone over the basics of the rendering
pipeline—we've seen how to create a physically based material, understood what the
different shading models were, and saw how light played a key role in the overall look of
the final image. However, we can't yet move on without understanding the impact that our
games or applications have on the machines that are running them.

The first thing that we need to be aware of is that some materials or effects are more
expensive in terms of efficiency than others. Chances are you have already experienced that
in the past—think, for example, about frames per second in video games. How many times
a second our displays are updated by the hardware that runs them directly influences how
the game plays and feels. There are many elements that affect performance, but one
determining factor in that equation is how complex our materials are.
A different example, if your background is more closely tied to traditional offline renderers
such as VRay or Corona, could be how the rendering times vary wildly depending on how
complex the materials you are rendering are. Using subsurface scattering, complex
translucency, or a combination of multiple advanced effects can take render times from
minutes to hours.

The point is that we need to be able to control how performant the scene we are creating is.
Unreal offers us several tools that allow us to see how expensive certain effects and
materials are, and check where we should be optimizing our assets or where certain things
aren't working. With that in mind, let's bring all of the assets we have previously created
together and use those tools to check them out.

Physically Based Rendering Chapter 1

[48]

Getting ready
All we need to do before starting this recipe is to load up the map called 01_ 06_ The Cost
Of Materials. As you can see, it's just the usual scene we have been working with up until
now, except that it now has a couple more models in it. Feel free to bring your own meshes
and materials, as we are going to be checking them out from a technical point of view. All
we care about at this point is having multiple elements that we can take a look at, so having
materials that use different blend modes is great in that we will be able to see the difference
in performance between them.

How to do it...
No matter if you've opened the level provided with this book or one of your own, we are
going to be looking at the rendering cost that materials incur when being displayed. To do
so, we'll be taking a look at several different indicators that can help us understand our
scenes a little bit better. Take the following steps:

Let's start by taking a look at the following scene:1.

I've included four different objects with their respective materials applied, which
should help us understand the cost to performance that each one of them has.

Physically Based Rendering Chapter 1

[49]

Continue by selecting the chrome ball (named SM_ReflectiveSphere) and2.
navigate to the Details panel, specifically to the Materials tab. Double-click on
the material that is currently applied to the model to open the material editor.
With that editor in front of us, let's take a look at the Stats panel:3.

The values we see in there can give us an approximation to how expensive the
material is to render. You can see that this M_ReflectiveSphere has 115
instructions for the base pass shader, 135 if we are using static lighting, and 191 if
we use movable lights. The numbers themselves will be useful if we compare
them to other materials.

Let's go back to the main scene, and select the object named SM_Glass. Open up4.
the material that it has applied just like we did for the reflective ball, and look at
the stats panel again:

As you can see, the instruction count is much higher than in the last example we
saw. This is due to the fact that the complexity of translucent materials is higher
than that of opaque ones, and we can see that in here.

Physically Based Rendering Chapter 1

[50]

Another way of looking at the Shader Complexity is by navigating to the main 5.
viewport and selecting one of the available Optimization viewmodes. You can
find it in here:

After clicking that button, you should be looking at something like this:6.

Physically Based Rendering Chapter 1

[51]

This is a more visually appealing way of looking at the shader complexity.
However, it is one that is not 100% accurate, as Unreal only takes the instruction
count as a reference to calculate the gradient you are seeing in the preceding
image and not the complexity of the material's nodes themselves.

You might see similar values for two different materials that are really not equal
in terms of their complexity—for instance, a material that is made out of several
textures versus one that uses simple constants might show a similar complexity in
this viewmode when in reality using the first is more demanding on the Graphics
Processing Unit (GPU).

Now that we've seen one of the optimization viewmodes, why stop with just that
one? All of them are useful for understanding how our scene is working from
different technical points of view. Let's go over them in a quick way to see how
they can help us.

The first of these modes is called Light Complexity. This can serve us to analyze7.
how expensive the different lights we have in our scene are. Toggle that on and
let's see how our scene looks.
At first you'll see that the whole scene is being rendered in black. This is because8.
we are using a HDRi static type of light—and as the lighting has already been
calculated, there's no light complexity at this stage at all. You can only see the
object's I've selected being outlined in yellow for reference purposes:

Physically Based Rendering Chapter 1

[52]

If we place a new point light, you'll be able to see how the scene turns blue. This9.
is to indicate that there's some complexity to the scene, but this is just as cheap a
lighting method as they come:

Placing more lights will change how your scene looks—getting away from its10.
original blue color. That means that lighting is becoming more complex and
costly for our hardware to compute, so keep that in mind! The following
screenshot is what our scene looks like in that viewmode with seven different
lights:

Another viewmode related to the previous one is Stationary Light Overlap. If we11.
have multiple stationary lights it will tell us how expensive our scene is to
render, in a gradient that goes from green to white.

Physically Based Rendering Chapter 1

[53]

Finally, the lightmap density viewmode shows you how dense the lightmaps are12.
for the objects that occupy your scene. Using static or stationary lights means that
static objects will have their shadows baked, and this is the viewmode that lets us
see if the settings we've chosen for our models are evenly distributed. Let's take a
look at the two following examples.
In this first set of images, we've set up the lightmap resolution for both wood13.
planes to a high value of 1,024. That means, as you can see in the first image, that
the shadows look correct even across the two surfaces:

In the next set of images, we've lowered the resolution, but in a more dramatic14.
way for the vertical wood plane. That means that the vertical plane has much
lower quality shadows to the point where they are barely visible, even though
they are still there in the horizontal plane:

Physically Based Rendering Chapter 1

[54]

There are a couple more viewmodes that we haven't talked about, but they deal with the
amount of polygons that a model comprises and are not related to the materials we are
using. You can take a look at them in the same panel we saw before, and they are called
Quad Overdraw and Shader Complexity and Quads. They can be very useful in order to
diagnose our scenes, especially when we have many high poly meshes or semi-transparent
models—so keep them on your radar in case you ever need them!

How it works...
As we've seen in previous recipes, materials are not homogeneous entities. And we are not
even talking about the ones in real life, but, of course, the ones we have created within
Unreal. The mathematics and functions used to describe the different shading and blend
modes carry a weight with them that vary from one type to the next. Knowing how heavy
each of them is can be a complicated task to burden oneself with, but having an overall idea
is key to running a well-oiled application.

In the previous pages, we've taken a look at some examples, which included an opaque
material and a translucent one—examples that we've worked on in the past. However, we
need to keep in mind that there are more types we can—and will—encounter in the future.
Unreal includes the following different shading models, which I will list now in order of
how costly they are to render:

Unlit
Default lit
Preintegrated skin
Subsurface
Clear coat
Subsurface profile

(The other shading models—hair and eye—are very specific to characters and we will cover
them in the appropriate section.)

Of course, the actual cost of a material depends on how complex we make the graphs for
each of them, but that previous order applies to base materials with nothing more applied
to them. On top of that, there are options within each type that can make them more or less
expensive to render: having a material being two-sided or use a particular type of
translucency can increase the cost to the GPU, for example.

Physically Based Rendering Chapter 1

[55]

On top of this, there are other things to be considered in terms of efficiency that we might
want to keep in mind. Epic has created some performance guidelines for artists that
highlight where we should be focusing our attention in order to keep our applications
running well. You can take a look at them at the following link: https:/ /docs.
unrealengine.com/ en- us/ Engine/ Performance/ Guidelines.

We've used this recipe to take a look at how fast Unreal can process different types of
shaders. We've done so by comparing an opaque material against a translucent one, which
gives us a good idea about how instruction counts vary and how efficient some shaders are
compared to others. Not only that, we've also had the opportunity to see what optimization
tools are available for anyone using the engine. All in all, there is a wide variety of options
that give the user control over how well their application runs, and now we are in a
position in which we know how to use them.

https://docs.unrealengine.com/en-us/Engine/Performance/Guidelines
https://docs.unrealengine.com/en-us/Engine/Performance/Guidelines
https://docs.unrealengine.com/en-us/Engine/Performance/Guidelines
https://docs.unrealengine.com/en-us/Engine/Performance/Guidelines
https://docs.unrealengine.com/en-us/Engine/Performance/Guidelines
https://docs.unrealengine.com/en-us/Engine/Performance/Guidelines
https://docs.unrealengine.com/en-us/Engine/Performance/Guidelines
https://docs.unrealengine.com/en-us/Engine/Performance/Guidelines
https://docs.unrealengine.com/en-us/Engine/Performance/Guidelines
https://docs.unrealengine.com/en-us/Engine/Performance/Guidelines
https://docs.unrealengine.com/en-us/Engine/Performance/Guidelines
https://docs.unrealengine.com/en-us/Engine/Performance/Guidelines
https://docs.unrealengine.com/en-us/Engine/Performance/Guidelines
https://docs.unrealengine.com/en-us/Engine/Performance/Guidelines
https://docs.unrealengine.com/en-us/Engine/Performance/Guidelines
https://docs.unrealengine.com/en-us/Engine/Performance/Guidelines
https://docs.unrealengine.com/en-us/Engine/Performance/Guidelines
https://docs.unrealengine.com/en-us/Engine/Performance/Guidelines

2
Post-Processing Effects

Welcome to the chapter on post-processing effects! Here are some of the things that we are
going to be doing in the next few pages:

Using a Post Process Volume
Changing the mood of a scene through color grading
Setting up a cinematic shot using depth of field
Applying cinematic effects to our games
Mimicking a real-life camera using Bloom and Lens Flares
A horror movie pulsating effect with post process materials
Adjusting anti aliasing and other rendering features

Introduction
As you probably already know, Unreal combines many different pipelines in order to
create whatever it is you are after—a video game, an app, an architectural walk-through.
From animation to rendering, there are many different fields of study that we could be
looking at. However much we would like to do so, the topics are just too wide to be tackled
here. But even though we are not going to be looking at all of them, there is one important
aspect that we need to pay attention to. It is one that directly affects the material and the
rendering pipeline—we are talking, of course, about post-processing effects.

Post-Processing Effects Chapter 2

[57]

At their core, post-processing effects are a rendering pass that happens after our materials
have been constructed but before the whole scene is outputted to the screen. They are like a
layer that we can insert between what we have created and what the user experiences, so
they are very powerful tools that enable us to modify and correct what we have previously
done. Throughout the present chapter, we are going to be covering most of the available
functionalities in the following recipes.

The properties we can tweak at that stage are anti-aliasing, color grading, depth of field,
bloom, lens flares, vignetting, or screen space reflections. Those are just some of them, but
something that they all have in common is that they affect the elements of the scene that are
already placed in. Keeping that in mind will help us understand later on what is achievable
through those methods and what is better done elsewhere.

Using a post-process volume
In order to access the different post process effects that Unreal has in store for us, we will
need to place a specific actor in our level. This actor receives the name Post Process
Volume, a container in the shape of a box that specifies its area of influence.

Thankfully for us, every setting that we are going to be tweaking in this chapter can be
modified using the previous actor. Having all of the post process effects grouped in one
place makes our lives easier—so, let's start looking at all of the different options that we can
play with!

Getting ready
I've prepared a scene for you to use as you traverse through the different recipes of this
chapter—it is a very simple one, but it should help demonstrate the different post process
effects that we are going to be using in the next pages. You can locate the file by navigating
to the following directory inside the Unreal project we are
providing: Content/UE4ShadersAndEffects/Maps/Chapter02.

Post-Processing Effects Chapter 2

[58]

The name of the scene is 02_01_PostProcessEffects, and as soon as you open it you'll
be greeted by the next screenshot:

The purpose behind this little still-life level is to have a custom scene where we can play
around the different settings of the post process volume. Feel free to use your own assets if
you want, as there's nothing specific in the ones I'm using that would prevent you from
gaining the same amount of knowledge out of the following recipes.

Do you want more models to populate your scenes? Sites such as
TurboSquid or CGTrader offer some free assets, so be sure to check them
out:
https:/ /www. cgtrader. com/free- 3d- models
https:/ /www. turbosquid. com/ Search/ 3D- Models/ free

https://www.cgtrader.com/free-3d-models
https://www.cgtrader.com/free-3d-models
https://www.cgtrader.com/free-3d-models
https://www.cgtrader.com/free-3d-models
https://www.cgtrader.com/free-3d-models
https://www.cgtrader.com/free-3d-models
https://www.cgtrader.com/free-3d-models
https://www.cgtrader.com/free-3d-models
https://www.cgtrader.com/free-3d-models
https://www.cgtrader.com/free-3d-models
https://www.cgtrader.com/free-3d-models
https://www.cgtrader.com/free-3d-models
https://www.cgtrader.com/free-3d-models
https://www.cgtrader.com/free-3d-models
https://www.cgtrader.com/free-3d-models
https://www.turbosquid.com/Search/3D-Models/free
https://www.turbosquid.com/Search/3D-Models/free
https://www.turbosquid.com/Search/3D-Models/free
https://www.turbosquid.com/Search/3D-Models/free
https://www.turbosquid.com/Search/3D-Models/free
https://www.turbosquid.com/Search/3D-Models/free
https://www.turbosquid.com/Search/3D-Models/free
https://www.turbosquid.com/Search/3D-Models/free
https://www.turbosquid.com/Search/3D-Models/free
https://www.turbosquid.com/Search/3D-Models/free
https://www.turbosquid.com/Search/3D-Models/free
https://www.turbosquid.com/Search/3D-Models/free
https://www.turbosquid.com/Search/3D-Models/free
https://www.turbosquid.com/Search/3D-Models/free
https://www.turbosquid.com/Search/3D-Models/free
https://www.turbosquid.com/Search/3D-Models/free
https://www.turbosquid.com/Search/3D-Models/free

Post-Processing Effects Chapter 2

[59]

How to do it...
Let's start by opening the scene we've mentioned at the beginning of this recipe, the one
called 02_01_PostProcessEffects. You can find by looking into the content
browser: Content/UE4ShadersAndEffects/Maps/Chapter02.

If you want to use a custom level that you have created yourself, feel free to go ahead and
just use that one instead. We want to have a scene where we have something interesting to
look at—after all, we are trying to use post process effects to affect how something already
created looks. Once that's done, let's start the recipe by locating the actor we are going to be
playing with:

Look for the Post Process Volume inside the Modes | Place | Volumes panel:1.

Post-Processing Effects Chapter 2

[60]

Instead of scrolling through all of the different volumes available in that
palette, try typing Post Process Volume inside the search bar at the top
of that panel. That will single out the element you are looking for!

Drag and drop the volume into the level. Place it anywhere you want, but make2.
sure that it is big enough so that it covers all of the visible scene:

Post-Processing Effects Chapter 2

[61]

With our newly placed post process volume selected and positioned, let's take a3.
look at some of its settings. We want to make sure that we are affecting the whole
scene and not just the inside of the volume. Scroll down to the Post Process
Volume Settings and check the Infinite Extent (Unbound) setting:

Doing so will make sure that the effect that this volume has is propagated across the
entirety of the level.

Post-Processing Effects Chapter 2

[62]

By now, you will have probably encountered many of the settings that we will be tweaking
in the next recipes—possibly when you were looking for the Unbound toggle in the
previous step. Even though we will look at most of them in greater detail later on, let's see
what the basic categories are:

The Color Grading section allows us to modify the color and balance of the
scene. Operations such as color correction, creating an intentional mood for the
level, or affecting the overall contrast of the scene are performed primarily here.
The Film panel enables the modification of the tonemapper in UE4. The
tonemapper in Unreal is there to tell the program how to trick our eyes into
seeing a much wider range of color values than our displays can produce. That is
the reason it's not meant to be constantly tweaked—it is there to define how that
conversion should be happening and not as an artistic resource.

The tonemapper can be a complex topic, so be sure to check the official
documentation if you need more info!:

https:/ /docs. unrealengine. com/en- us/ Engine/ Rendering/
PostProcessEffects/ ColorGrading

Mobile Tonemapper is similar to the previous section, but intended for projects
that are going to be deployed on mobile hardware.
The Lens tab controls certain camera effects, such as the exposure, the chromatic
aberration, bloom or lens flares.

https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/ColorGrading
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/ColorGrading
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/ColorGrading
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/ColorGrading
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/ColorGrading
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/ColorGrading
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/ColorGrading
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/ColorGrading
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/ColorGrading
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/ColorGrading
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/ColorGrading
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/ColorGrading
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/ColorGrading
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/ColorGrading
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/ColorGrading
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/ColorGrading
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/ColorGrading
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/ColorGrading
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/ColorGrading
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/ColorGrading

Post-Processing Effects Chapter 2

[63]

Rendering Features is a panel that controls certain effects that apply to the 3D
world. Examples of that are the use of post process materials, the ambient
occlusion that is happening across the level, or the quality of the screen space
reflections.
Finally, the Post Process Volume Settings section affects how that particular
actor behaves in the world. Defining which overlapping volume should be
affecting the world when there are multiple ones or the distance in which two
different such entities blend are examples of what we have mentioned
previously.

As you can see, there are many properties that can be tweaked and adjusted. We will have a
look at them in the following recipes, as even though this is just one actor the importance of
the different settings is paramount in regard to the final output we are seeing. See you in
the next recipe!

How it works...
Something we've seen in the current recipe is how to make sure that our post process
volume works across the entirety of the level. This is very useful as we usually want the
settings that we tweak within that actor to extend beyond its boundary box. We often do
this so that we can forget about the bounding box size for the selected volume in the event
that we are only using one.

Convenient as that might be for the purposes of this book, we can't forget that the situation
described is not always the one we want to happen. From time to time, especially in
complex environments, we will want to place several instances of the post process volume
throughout our scene. Think, for example, about a level that contains outdoor areas as well
as interior ones—we may want to emphasize the differences between both ambiences by
dialing different settings in the post process effects. This is where properties such as the
Blend Radius or the Priority index start to play a bigger role, as they will enable us to
merge and change between different volumes.

The first thing that we need to check when working with multiple post process volumes is
that the Infinite Extent (Unbound) setting is disabled. Were that not the case, we would
have a post process volume that affects the whole world. Once that's done, the once
relatively unimportant Scale value comes into play—we need to adjust it so that the whole
volume surrounds the area that we want to be affecting. Keep in mind that the volume
affects our vision only when the player character is inside of its bounds—so even though
you might be applying a specific set of options for a determined area, those won't be visible
unless you step inside of it.

Post-Processing Effects Chapter 2

[64]

This situation can be described in the next image—unless the camera that is rendering the
scene isn't inside of the post process volume, this one won't be affecting the final image
output:

Apart from that, the other settings are quite intuitive—the Priority option enables you to
type a number in its adjacent text box, which will in turn be used to calculate which post
process volume should be affecting the scene in the event that there are any overlapping
ones. On the other hand, the Blend Radius allows to specify a value in centimeters, which
determines the area around the bounding box in which the settings of the post process
volume get blended with any others that might be applied to the scene be they the default
ones or those of a different volume.

See also
There is a whole world out there in regard to post processing in Unreal Engine 4, different
effects that can be achieved, different techniques that can be used... We will be covering
many different examples in the recipes that follow, but here is a link to the official
documentation that Epic Games provides: https:/ / docs. unrealengine. com/ en- us/
Engine/Rendering/ PostProcessEffects.

Changing the mood of a scene through
color grading
After we've taken some time to familiarize ourselves with the post process volume actor, it
is now time to start looking at how to use the different functionalities we can find within it.

https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects

Post-Processing Effects Chapter 2

[65]

The first section that we will be covering is also the first one we can find if we look at the
details panel for the actor and that is the Color Grading tab.

The reason these options exist in Unreal is similar to why they exist elsewhere, like in
movies or videos. The end goal is to provide artists with a series of tools that they can use
to alter the look of the final image. Similar techniques have been prominent in motion
pictures, for example, where the captured footage is adjusted to satisfy a particular need be
that the establishing of a stylized look or the ensuring of color continuity. What we are
going to be doing in the following pages is exactly that tweaking of the default camera
values to modify the look of our scene.

Getting ready
In this recipe, we are going to start with a default scene, where no post process effects are
happening at all, and completely change how it feels by tweaking the color grading options
in the post process volume actor. As I'm sure it's becoming usual, all you need to tackle this
scene is to open up the following level in the Unreal project we are providing: Content /
UE4ShadersAndEffects / Maps / Chapter02 / 02_02_ColorGrading

You can alternatively choose to continue using your own scene after all, everything you
need is a post process volume actor and a nicely crafted environment in which to follow
this recipe. Without further ado, let's get started!

How to do it...
Before we start this recipe, let's take a look at how the scene has been set up for you. We are
providing the level we mentioned in the previous section as a starting point for you to
follow along and you can find it in the following directory: Content /
UE4ShadersAndEffects / Maps / Chapter02 /.

The name of the scene is 02_02_ColorGrading, and it includes several elements that are
going to be useful for us. At this point, you are probably already familiar with this scene
after all, we've used it in the previous recipes to start learning about the post process
volume. As we are going to delve a little bit deeper into that same actor, we've also
included it in this new level. Additionally, we've decided to add a cinematic camera just so
we have a fixed point that we can use to compare the different visual changes we are about
to introduce.

Post-Processing Effects Chapter 2

[66]

Of course, and as should be becoming a bit of a tradition by now, feel free to follow along
with any scene you might have created yourself. The key components to include are the
post process volume, as always, and perhaps a cinematic camera for a bit of flair. Having an
interesting environment in which to test the following steps we are about to perform is
always nice, but not essential as we are going to be color grading the whole scene, the
visual changes are going to be quite evident. In any case, rest assured, you'll have access to
the scene you see if you need it.

Wile we're talking about that camera actor we've included in this level, let's allow ourselves
access to its viewpoint. To do so, head over to the upper-left corner on the main viewport –
hopefully, you can locate a little button there that, once clicked, shows a dropdown menu
that you can use to access the existing camera. The view you will enter is something such as
this:

Post-Processing Effects Chapter 2

[67]

Having access to that camera perspective will enable us to better visualize the changes we
are about to make. And all of those changes, as stated, are going to revolve around the
Color Grading tools inside of the Post Process Volume actor. You can find the different
settings if you select the appropriate actor and look for the Color Grading section within
the Details panel. You should be looking at something like this:

With that out of the way, let's properly start setting up a different mood for this scene by
playing with the properties we can find under the Color Grading section. As you can see,
the scene we are dealing with is quite warm it feels cozy, inviting, and you could think that
it was someone's house. This is mainly happening because of the overall color of the scene,
where the wooden floor and the soft walls (along with the little festive prop) add to that
sensation. We are going to change that feeling with the power of color grading:

Head over to the Details panel after making sure that the post process volume is1.
selected. The first option we are going to be changing is the White
Balance; expand that section and tick the Temp checkbox, and change the value
to something lower. I'm going with the value 4,500, which makes the scene
already feel colder.

Post-Processing Effects Chapter 2

[68]

Leave the Tint checkbox unticked if you want, as that allows for the modification2.
of the cyan and magenta color ranges. If we decided to use it, we would find
ourselves modifying the White Balance temperature tint between those two
colors, something we don't want to be doing for this exercise:

As you can probably already tell by looking at the previous screenshot, the scene
feels much colder already. Be sure to check the How it works... section to fully
understand how modifying the White Balance setting affects our scene. Let's now
continue to change the feel of the scene by tweaking a couple more settings.

While still in the Details panel, let's take a look now at the following categories
within the Color Grading tab: the Global, Shadows, Midtones and Highlights.
All of them control the same properties of the image, but they affect different
color ranges. We will be able to change settings such as the saturation of the
image or the contrast for each different color spectrum. For instance, modifying
the Saturation within the Highlights will affect only the brightest values within
our image. Doing the same on the Shadows section will do the same but on the
darker tones.

Post-Processing Effects Chapter 2

[69]

With that in mind, let's continue to modify our scene:

The first operation we will be performing is the adjustment of the shadow3.
intensity. Find the Gain property under the Shadows category and modify its
value to something like 2. This will effectively wash out the shadows.
Now let's change the gain of the shadows:

We also want to desaturate the image a little bit, just so we move away from the4.
original warmth we were seeing initially. Head over to the Saturation section of
Midtones, where we can apply a lower value than the default 1. I've chosen 0.75
just to make things a bit more pale:

With all of those changes in place, we can now compare the initial scene we were
looking at against the current state it is in. If you want to do so, just select the Post
Process Volume you have on your scene and uncheck the Enabled option under
the Post Process Volume Settings section inside the Details panel. Ticking that
box on and off will let you toggle the Post Process Volume that is affecting our
scene. Let's take a look at the results:

Post-Processing Effects Chapter 2

[70]

They feel quite different, don't they. The changes might be subtle, but they are
definitely there—we are now looking at a much whiter scene, which feels
colder overall and is less saturated. While the first image can make you feel warm
and cozy, the second one is a bit more neutral. However, let's not stop with the
adjustments just yet! Now that we know the basics, let's get a bit crazy. What if
we gave the scene a bit of a horror touch?

To do so, let's start by cranking up the Contrast of the Midtones to something5.
like 1.5. That should make the scene pop out a little more:

Post-Processing Effects Chapter 2

[71]

Something we can also tweak is the value of the Saturation under the Highlights6.
section. Let's set that to something really high—I've chosen 1,000 for this
particular scene. Doing so should really make the brightest parts of the image
stand out in an unnatural way, which could make the viewer feel a bit uneasy
and on edge:

Finally, let's apply a color tint to the scene. Horror movies and psychological7.
thrillers often make use of a greenish tint when they want to highlight the fact
that something is wrong or just to create a bit of an atmosphere. If you head over
to the Misc section of the Color Grading tab, you will find a setting called Scene
Color Tint. Changing that to a greenish pastel color should give us the result we
are after:

Post-Processing Effects Chapter 2

[72]

Look at that! With that final touch we've covered most of the settings that we can tweak
inside of the Color Grading post process category. Now that you have an idea of what they
do and what they affect, you may want to play around a little bit more with them to get
more familiar and confident. The job of a color grader requires patience, as tweaks and
corrections need to constantly be applied until you get to the look you are after. In spite of
that, the tools that we have at our disposal are quite powerful and should serve us well.
Have fun with them!

How it works...
The color grading tools inside Unreal are quite similar to what can be found in other
software packages such as Photoshop or Gimp. They are there to allow the user to modify
certain image parameters, most of which we have already seen. In spite of having done so, I
would like to take some time aside to further explain what some of the perhaps more
obscure parameters affect.

One such example of a setting that might be a bit confusing is the initial White Balance we
saw and tweaked. That property is controlled via the Temp parameter, which is as you've
probably guessed short for Temperature. This word references one characteristic of the
light we see – and that is its color. Saying that a light has a color temperature of 6,500 K
means that it has a blueish tint to it. Lower values will start to get closer to a red tint - 3,500
K would be quite yellow and 1,800 is the typical orange from the flame of a candle. Just so
we are on the same page, a fluorescent light would have a higher temperature than your
typical light bulb, and this one would be in turn higher than a candle.

The reason why we use a temperature value instead of just specifying a color for our lights
is that this is the physically correct approach. Feel free to read more about the topic if it isn't
clear at this stage, as it can be quite extensive: https:/ /en.wikipedia. org/ wiki/ Color_
temperature.

In spite of the preceding, the way the White Balance Temp setting works might be a bit
counter intuitive compared to what we've just said. According to the previous explanation,
lights that have a light color above 5,000 K are considered cold; that is, they have a blueish
tint to them. Lower values get us in the range of reds, yellows, and oranges. For instance, a
value of 3,000 K would be in the yellow range. That being the case, you can probably infer
that the higher the temperature the bluer the light color. However, why did we have to
decrease the temp value of the white balance if we wanted to get colder values?

https://en.wikipedia.org/wiki/Color_temperature
https://en.wikipedia.org/wiki/Color_temperature
https://en.wikipedia.org/wiki/Color_temperature
https://en.wikipedia.org/wiki/Color_temperature
https://en.wikipedia.org/wiki/Color_temperature
https://en.wikipedia.org/wiki/Color_temperature
https://en.wikipedia.org/wiki/Color_temperature
https://en.wikipedia.org/wiki/Color_temperature
https://en.wikipedia.org/wiki/Color_temperature
https://en.wikipedia.org/wiki/Color_temperature
https://en.wikipedia.org/wiki/Color_temperature
https://en.wikipedia.org/wiki/Color_temperature
https://en.wikipedia.org/wiki/Color_temperature
https://en.wikipedia.org/wiki/Color_temperature

Post-Processing Effects Chapter 2

[73]

The answer is that we are not tweaking the light color values, but we are defining which
one should be the new standard one (which is by default 6,500 K). Imagine that you have a
light of 3,500 K because the default white balance is calculated against that value of 6,500 K;
that means that your light is quite warm. If we decrease the default of 6,500 to something
like 4,500, the value of your light is still lower than the standard, but not by as much as
before. That means that it will look closer to white than it previously did. This is how the
white balance temp setting works.

Something else that I'd also like to mention are the different options that we have on
the Global, Shadows, Midtones, and Highlights categories. When we looked at them on
this current recipe, we only adjusted the overall multiplier that we can find in each
subsection. Here's an example to refresh your mind:

We are usually tweaking the value below the color wheel—that is effectively a multiplier
that affects all of the RGB values equally. However, we can have an even finer control if we
know that we only want to be affecting a specific channel. Additionally, we can even
change between the RBG mode and the HSV one, which will have us modifying the hue,
the saturation or the value instead of a specific color channel.

There's more...
There's something useful we haven't seen yet, as it requires the use of other software apart
from Unreal, but I want to mention it before we move on and that is the concept of Look-
Up Tables (LUTs), and they are an asset that allow us to match the post process tweaks we
make in other software such as Photoshop or Gimp in Unreal.

Post-Processing Effects Chapter 2

[74]

Think about this – you have an image in Unreal that you want to tweak. You can do so
through the methods we've seen before, by modifying and tweaking the post process
volume and playing with its settings until you get the effect you are after. However
convenient that can be, some users might feel more comfortable taking that image and
pasting it in an image editor and adjusting it there. Fortunately for us, this process can be
replicated thanks to the LUTs.

The way we would do so is by following the next steps:

Export a sample screenshot out of Unreal that shows your scene clearly.1.
Load that sample shot in your image editor of choice, alongside a neutral LUT2.
image. One such asset can be found on Epic's official example, which you can
find at the following website: https:/ /docs. unrealengine. com/ en- us/Engine/
Rendering/ PostProcessEffects/ UsingLUTs. The idea is that all of the changes
that you will implement in the next step are applied to both your sample from
Unreal and the neutral LUT.
Adjust the image however you like change the contrast, the saturation,3.
brightness... Any changes that you make will also affect the LUT texture.
Once you are happy with your image, export just the small LUT file. The4.
modifications that the image has suffered are going to enable us to replicate that
same effect in Unreal.
Import the modified LUT back into Unreal and double-click on it once it is inside5.
the engine. In the Details panel for the texture, set the Mip Gen Settings to
NiMipmaps and the Texture Group to ColorLookupTable.
After that, head back to your post process volume actor and under the Color6.
Grading | Misc tick the Color Grading LUT checkbox and select your recently
imported texture. That should leave you with a scene looking exactly like the one
you modified in your image-editing software.

As you can imagine, this technique can be quite useful – especially for those users who are
more used to adjusting these types of settings outside Unreal. However great that is, it also
has some shortcomings that we should be aware of. Even though we won't cite them all,
they all revolve around the notion that LUTs don't translate well across several screens.
Even though you might be doing a correction to your particular scene and you might be
happy with it, due to the nature of these textures operating in a low dynamic range those
changes might not translate well into other displays—especially those using a different
color space. Keep that in mind when you work with them!

https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/UsingLUTs
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/UsingLUTs
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/UsingLUTs
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/UsingLUTs
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/UsingLUTs
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/UsingLUTs
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/UsingLUTs
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/UsingLUTs
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/UsingLUTs
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/UsingLUTs
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/UsingLUTs
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/UsingLUTs
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/UsingLUTs
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/UsingLUTs
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/UsingLUTs
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/UsingLUTs
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/UsingLUTs
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/UsingLUTs
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/UsingLUTs
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/UsingLUTs
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/UsingLUTs

Post-Processing Effects Chapter 2

[75]

See also
A useful link to Epic Games' official documentation is due—you might find snippets and a
thorough explanation of what each setting does in there. Make sure to look it up if you
want to delve deeper! And we'll also include a second link if you want to know more about
LUTs.

https://docs.unrealengine. com/ en- us/ Engine/ Rendering/ PostProcessEffects/
ColorGrading

https://docs.unrealengine. com/ en- us/ Engine/ Rendering/ PostProcessEffects/
UsingLUTs

Setting up a cinematic shot using depth of
field
In this short recipe, we are going to take a break from the post process volume actor to
focus instead on the Cinematic Camera one. That doesn't mean we are leaving behind the
world of post processing effects, far from it, in fact. The beauty of this recipe resides
partially in learning that the previously used post process volume has a companion in the
shape of this handy camera. Both of them have access to some of the post processing
functionalities that Unreal offers, and learning when to use each one can be quite useful.

The other part that we want to cover as well is the setup of a proper camera, pretty much as
we would do if we were working with a real one. This is especially useful as some of the
most used visual effects we can introduce directly relate to this actor, so it makes sense to
master it before moving forward.

Getting ready
You should really see this coming by now! Yes, we have a scene already set up for you, and
you can find it here: Content / UE4ShadersAndEffects / Maps / Chapter02 /
02_04_CameraDepthOfField.

https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/ColorGrading
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/ColorGrading
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/ColorGrading
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/ColorGrading
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/ColorGrading
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/ColorGrading
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/ColorGrading
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/ColorGrading
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/ColorGrading
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/ColorGrading
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/ColorGrading
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/ColorGrading
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/ColorGrading
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/ColorGrading
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/ColorGrading
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/ColorGrading
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/ColorGrading
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/ColorGrading
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/ColorGrading
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/ColorGrading
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/UsingLUTs
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/UsingLUTs
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/UsingLUTs
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/UsingLUTs
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/UsingLUTs
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/UsingLUTs
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/UsingLUTs
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/UsingLUTs
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/UsingLUTs
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/UsingLUTs
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/UsingLUTs
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/UsingLUTs
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/UsingLUTs
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/UsingLUTs
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/UsingLUTs
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/UsingLUTs
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/UsingLUTs
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/UsingLUTs
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/UsingLUTs
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/UsingLUTs

Post-Processing Effects Chapter 2

[76]

Not much has changed from the scenes we have already worked with in the previous
recipes; we've just removed some of the work we did at the post processing level and
adjusted the position of the cine camera actor. This new camera position will allow us to
show some of the cool effects we are going to introduce in this recipe. As usual, feel free to
continue to use your own scenes if that's what you prefer to do! If you had something
suitable for the previous recipes, chances are that will work here as well. Make sure you
have, at least, multiple objects scattered at different positions; this will help us highlight the
depth of field effects we are going to be exploring. And that's pretty much it!

How to do it...
Once you open the 02_04_CameraDepthOfField level, you should find yourself looking at
the already familiar level that we are using throughout this chapter. There's nothing new
under there! However true that may be, things will start to change if you look through the
camera we have in our level. Let's take a look through it:

Post-Processing Effects Chapter 2

[77]

Wow! You should be able to see that the rendered image is completely out of focus. Getting
it back to something more pleasing to our eyes is what our task is going to be, so let's get
started!:

For our first step, let's take a look at the Cine Camera Actor details panel. The1.
name I've given to said camera is Camera01, if you want to select it from the
world outliner. If you collapse each section in that panel, you should be looking
at something such as this:

As you can see, many of the different options available to us through this actor
are very similar to what we have already seen in the post process volume. In fact,
they share almost the same amount of settings except for two main categories.
With the camera, we are able to control which type we are using and certain
intrinsic settings – the aperture of the lens, the diaphragm blade count or the
FStop, among others. With the post process volume, we don't control those exact
same settings, but we have access to more specific parameters that determine
things the priority of the selected volume or how it blends with any adjacent ones.

The first issue we want to solve is the blurriness that we see at the moment in the2.
picture. With the camera selected, open up the Current Camera Settings section
in the Details panel and scroll down to the Focus Settings area. Look for
the Draw Debug Focus Plane and tick the checkbox on:

Post-Processing Effects Chapter 2

[78]

With that setting enabled, we should now be seeing a purple plane as in the
previous screenshot. That element is there as a visual cue for us to know where
the focus plane is, that is, the area that is clearly visible. We need to modify its
position so that the elements that we want to see clearly are at the same distance
as that plane is from the camera.

Take a look at the Manual Focus Distance entry box and change its current value3.
until it overlaps the candles. A value of 62.5 seems to be working in this case:
You can now disable the focus plane if you want, as we've made sure that the
area in focus is where we want it to be. That was the most fundamental value we
needed to change – let's take a look now at what other options we can play with.

Post-Processing Effects Chapter 2

[79]

As we want the candle to be the protagonist of this shot, let's increase the value4.
Current Focal Length. Locate that setting and change the current value of 55 to
something like 120. This should make the candle occupy a bigger space in our
screens:

All we are doing is adjusting certain camera properties. If you want to
know more about them, here is a good and quick post about what those
properties do in a bit more detail: https:/ /www. paragon- press. com/
lens/ lenchart. htm

As things stand now, we have our main element in focus whilst the rest of the
scene has been been blurred. We can play with the aperture of the camera to
increase or decrease this effect.

https://www.paragon-press.com/lens/lenchart.htm
https://www.paragon-press.com/lens/lenchart.htm
https://www.paragon-press.com/lens/lenchart.htm
https://www.paragon-press.com/lens/lenchart.htm
https://www.paragon-press.com/lens/lenchart.htm
https://www.paragon-press.com/lens/lenchart.htm
https://www.paragon-press.com/lens/lenchart.htm
https://www.paragon-press.com/lens/lenchart.htm
https://www.paragon-press.com/lens/lenchart.htm
https://www.paragon-press.com/lens/lenchart.htm
https://www.paragon-press.com/lens/lenchart.htm
https://www.paragon-press.com/lens/lenchart.htm
https://www.paragon-press.com/lens/lenchart.htm
https://www.paragon-press.com/lens/lenchart.htm
https://www.paragon-press.com/lens/lenchart.htm
https://www.paragon-press.com/lens/lenchart.htm

Post-Processing Effects Chapter 2

[80]

 Head over to the Current Aperture value. As it stands, the value we can find in5.
the adjacent box should be 2.8. This means that most of the objects that are placed
before or after the focus plane will be out of focus—so let's play around with that
number to make the effect a bit more subtle. I've chosen a value of 10, but make
sure to set it to whatever you like!:

And having done that we've pretty much covered all of the settings that you need
to be aware of in order to manually set up a cinematic camera depth of field
effect. The main fields that we need to adjust are the Focal Length, the Aperture
and the Focus Distance, much like in a real-world camera. We don't take the ISO
into account as we don't have to deal with that problem in Unreal. Something I'd
like to mention before we move on is the availability of other post process effects
within the camera actor. Even though we've mentioned that before, let's tweak
one of these values just to demonstrate how to control them within this actor.

Still on the Details panel for the Camera01, scroll down to the section6.
named Rendering Features. Even though we haven't covered this section yet, I
feel as if we could enhance the look of this scene by modifying one of the values
that can be found within it. In particular, expand the Ambient Occlusion
category and set the following settings as per the next screenshot:

Post-Processing Effects Chapter 2

[81]

Don't worry for now about understanding how all of the previous settings work—we'll
come back to them in one of the next recipes. What we are doing at this stage is showing
how different post process effects can be used outside of the post process volume actor.
This setting is particularly useful for our cinematic camera, as we are defining the impact
that the ambient occlusion has in this particular shot, which might not be the same amount
we would like to use throughout the rest of the scene. Let's finally check one last image to
see what the difference is after we've applied the effect:

The changes are subtle, but if you look closely at the area where the bottom of the candle
and the table surface meet you can see that it's slightly darker than it used to be. This effect,
used moderately, can enhance the look of a scene by making it a bit more believable. We'll
explore it further later down the road.

How it works...
We've spent most of our time adjusting different post process effects inside the cine camera
actor in order to achieve a particular look for the scene. Seeing as we have two different
actors that can take care of those effects (the post process volume and the cine camera actor
itself), how do we decide when we should be using each one of them?

The answer lies in the specific goals that you want to reach with your project. Sometimes,
one of the two actors is more useful or better suited to satisfy one of your needs. We can
explore this through different examples.

Think, for instance, that you are playing a multiplayer shooter. If you were to receive any
damage, you might be expecting to see some effects pop up on your screen – such as a red
tint to the whole image or some other similar visual cue that indicates damage. This
situation asks for said effect to be local to the specific player that is suffering said effect, so
it makes sense to adjust any post process effects through their player camera.

Post-Processing Effects Chapter 2

[82]

Another example where we could instead benefit from using a post process volume is
when we want to add post process effects to a whole open world game. If we want to
artistically tweak how the colors look or modify the look of the scene when the climatology
changes we might find a good ally in this type of actor.

There's more...
Something that I'd like to point out with regard to the recipe we've just completed is that it
focused on understanding and mastering the use of the depth of field post process effect
within Unreal. In order to do so, we've made sure to go over all of the pertinent settings in
the Details panel. However, I'd like to point you to a particular setting we haven't tweaked
that might be useful in certain circumstances: the Tracking Focus Method.

So far, we have spent the current recipe tweaking different settings, and we've done so after
we had previously established the Manual Focus Distance of the camera. However useful
that is, there are other times when we know the specific actor we want to be in focus – and
it is on those occasions when the aforementioned Tracking method comes into play.
Moving away from specifying the actual distance at which we want the focus plane to be,
this latest system enables the user to just indicate which actor they want to be in focus. All
of the other settings do still play an important role though, as properties such as the
aperture or the focal length are still crucial when determining the out-of-focus areas.
However, changing to this method when you do know which actor needs to be in focus can
save you time from figuring out the distance value you should be inputting. If you want to
check it out, be sure to head over to the Current Camera Settings section of your camera's
Details panel, and look under Focus Settings | Focus Method.

See also
If you want to have a look at a very detailed explanation of every setting available to you
for the cine camera actor, make sure to check out Unreal's official documentation: https:/ /
docs.unrealengine. com/ en- us/ Engine/ Rendering/ PostProcessEffects/ DepthOfField/
CinematicDOFMethods.

https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/DepthOfField/CinematicDOFMethods
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/DepthOfField/CinematicDOFMethods
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/DepthOfField/CinematicDOFMethods
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/DepthOfField/CinematicDOFMethods
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/DepthOfField/CinematicDOFMethods
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/DepthOfField/CinematicDOFMethods
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/DepthOfField/CinematicDOFMethods
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/DepthOfField/CinematicDOFMethods
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/DepthOfField/CinematicDOFMethods
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/DepthOfField/CinematicDOFMethods
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/DepthOfField/CinematicDOFMethods
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/DepthOfField/CinematicDOFMethods
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/DepthOfField/CinematicDOFMethods
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/DepthOfField/CinematicDOFMethods
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/DepthOfField/CinematicDOFMethods
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/DepthOfField/CinematicDOFMethods
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/DepthOfField/CinematicDOFMethods
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/DepthOfField/CinematicDOFMethods
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/DepthOfField/CinematicDOFMethods
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/DepthOfField/CinematicDOFMethods
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/DepthOfField/CinematicDOFMethods

Post-Processing Effects Chapter 2

[83]

Applying cinematic effects to our games
We took some time aside in the previous recipe to learn about the other type of actors that
have access to the post processing effects in UE4 – the cameras. In particular, we focused
our attention on the cine camera actor, a specific type that has the potential to use certain
cinematic effects. Taking it from there, we will continue to look at some other cinematic
techniques available to us while still using that same camera actor. We'll take a look at
Grain, Vignetting, Chromatic Aberration, and more.

The reason we continue to use a camera and not the post process volume is because some of
the effects we are about to include come from the world of cinematography. While they
definitely can be used on the volume as well, it does make sense at this stage to continue to
use the camera if only to just replicate how things would also be happening in real life.
After all, Unreal bases much of its capabilities in the realm of reality, and these are another
set of techniques that come from there.

Getting ready
As usual, we've prepared a scene which you can use to get you started in this recipe. Its
name is 02_04_CinematicEffects, and you can find it inside of the following
folder: Content / UE4ShadersAndEffects / Maps / Chapter02.

We are still using the same scene we've previously tweaked, so you are probably familiar
with it at this point. All we've done is change the camera position so it helps us better
visualize the effects we are about to introduce. Let's begin!

How to do it...
Let's start this recipe by looking through the camera's view; that way, we'll be looking at the
same image when we start applying the different effects. Select it, as usual, by clicking on
the Perspective drop-down button located on the upper left corner of the main viewport.
Choose Camera01 in order to jump to that specific actor. We should be looking at the
following screenshot:

Post-Processing Effects Chapter 2

[84]

The first thing we are going to try is to use several effects to enhance the main focus of the
shot; we want to highlight the central area of the image, where the props are located, and
direct the attention of the user to said area. We can do so by playing with the vignetting
effects:

Select the camera in the Content Browser and look at the Details panel. If you1.
scroll down to the Lens category, you can find within it a section named Image
Effects. This is where we'll control the Vignetting that we want to apply. Tick
the box and change the default value of 0.4 to something higher, such as 0.6:

Vignetting is a subtle effect which makes the areas around the center of the image
darker than the central ones. It can help highlight the elements that are in the
center of the screen if that's our intention, but you can also remove the effect if
that's what you prefer.

Post-Processing Effects Chapter 2

[85]

Vignetting is always applied by default to the scene—the value of 0.4 is
always present. It is good to note that you might want to remove the effect
sometimes, as it doesn't always fit what you are looking to achieve. If that
is the case, make sure to add a post process volume to the scene and check
the vignetting box, and giving it a value of 0.

Another setting that is sometimes interesting to use is grain. You might have
encountered it in the past in different scenarios; it was originally an effect we
could see happening in old movies because of the processing of the photographic
film those were recorded in. Nowadays, it is used more as an artistic effect,
especially in the video game industry. It can also help hide certain flaws within
the rendered image, or introduce granularity in an otherwise flat surface.

To use it, take a look at the Grain Intensity setting while still inside the Image2.
Effects section. In there, tick the checkbox for the Grain Intensity setting and
give it a value higher than the initial 0. 0.2 seems to work well to demonstrate the
effect in a subtle way, but feel free to raise the value to be able to properly see it
in action:

Post-Processing Effects Chapter 2

[86]

Something else you can also adjust is the amount by which the grain is jittering.
By default, this value is set to 0, but increasing it will make the grain move more
and more:

You might be seeing the grain jitter even though the value is set to 0. This
is its default state, and unless you raise the number substantially you
probably won't see a lot of difference. We might be used to setting values
between 0 and 1 in the previous examples, but feel free to crank this one
up to see the difference.

At this point, we've almost covered all of the available settings we could be
influencing if we were dealing with a real life camera. We've seen the depth of
field features, the aperture, the focal length, the grain and vignetting effects...
something we haven't done yet though is tweak the exposure in a manual way.
Let's do that now:

 Still in the Lens category of the Camera01 Details panel, expand the Camera and3.
the Exposure tabs. Under Exposure / Metering Mode tick its adjacent checkbox
and change the default value of Auto Exposure Histogram to Manual:

Post-Processing Effects Chapter 2

[87]

We should now be looking at an almost completely black viewport. This is4.
happening because Unreal is no longer taking care of the exposure for us; we are
now driving this setting through the camera properties. That being the case,
move up a section and look out for the ISO, Aperture and Shutter
Speed parameters. Tick the checkboxes next to them:

At this stage, we have to start thinking as if we had a real camera in our hands.
Thanks to Unreal's physically based approach to rendering, we can feel safe by
treating those properties just like we would in real life. Since our scene is too dark
at the moment, let's change that.

Change the ISO to 3200.0 and the Shutter Speed to 1. That should make the5.
scene visible again, even though a bit dark. Feel free to raise the ISO or lower the
Shutter Speed to make it brighter. This is the final image we should be looking at,
as shown in this screenshot:

Post-Processing Effects Chapter 2

[88]

Finally, I'd like to take a look at yet another effect that is wildly used nowadays:
the Chromatic Aberration. Even though it is a very particular setting, it can have
many different uses. It is sometimes used as a substitute for anti aliasing, but
more often than not it is seen as a technique that can help with creating a
psychedelic feel in our scenes, or just mimicking a real camera by introducing that
effect.

Focus now on the first parameter within the Lens category, aptly6.
named Chromatic Aberration. Enable it by ticking the Intensity checkbox and
giving it a value greater than the default 0. Feel free to crank it up to something
that makes it clearly visible, but I'll go with 1 for a subtle effect. The following
screenshot will have a value of 5 just to see it clearly:

In a real camera, this effect is caused by the dispersion of colors as a result
of the variation of the refractive index of the camera's lens. It is sometimes
associated with a low quality lense, so this effect is also sometimes used
when trying to replicate such real-life situations.

Finally, check the Start Offset box and give it a value of 0.4. What this does is7.
remove the chromatic aberration effect from the center of the framebuffer,
leaving it on the edges. It can be a good setting to tweak in order to add to the
psychedelic feeling:

Post-Processing Effects Chapter 2

[89]

How it works...
Every setting we've seen so far has been included in the engine in order to give the artist as
much creative freedom as possible, and thankfully this is something that happens
throughout the engine. However, these tools in particular owe their presence to specific
effects that happen in the world of photography or cinematography and as such, we need
to be aware of when to use them and how to use them.

Beyond that, I'd like to talk a little bit more about one thing that we've tweaked:
the Manual Exposure group of settings. Even though we've already seen how they work, it
is interesting to note how we can check that the engine behaves in a physically based way
through them. If you think about it, changing from the automatic to the manual exposure
control is kind of like changing from shooting in automatic or manual in a photographic
camera. Because our lighting was a bit dark, (after all, the HDRi we are using was taken in
the interior of a house) it makes sense to increase the ISO and make the shutter speed a bit
slower since we need the camera to compensate for the lack of light. It is just another nudge
that reminds us how everything tries to be grounded on real life, making life easier if we
already know how things should behave.

There's more...
Something we saw in one of the last steps of this recipe was the chromatic aberration effect.
Even though we used it to emphasize the weird sensation it can cause, it is sometimes used
as a cheap alternative to anti aliasing. This is due to the fact that low values for that setting
don't introduce a lot noise or strange artifacts; all they due is push the boundaries of the
different objects in the scene in a very subtle way. This can create a similar effect to that
added by anti aliasing when done in a subtle way.

Whatever the case, all of the previous effects should be used carefully and with taste.
Overuse is always a cause for disagreement; some people might like the effect but is usually
ends up looking dated given enough time, and it can look like a gimmick. On the other
hand, subtlety can go a long way, as even though the effect might not be so evident it still
adds to the granularity of the image and can add detail to the scene.

Post-Processing Effects Chapter 2

[90]

See also
As usual, let me include Epic Games' official documentation for vignetting and exposure
settings.

Vignetting: https:/ / docs. unrealengine. com/en- us/ Engine/ Rendering/
PostProcessEffects/ Vignette

Camera exposure control: https:/ / docs. unrealengine. com/ en-US/ Engine/ Rendering/
PostProcessEffects/ AutomaticExposure

Mimicking a real-life camera using Bloom
and Lens Flares
The post processing effects that we are going to covering in this recipe are going to deal
with lights. Daily life has probably taught every one of us about the different consequences
that light introduces in our vision: as in what happens when we look at a very bright spot
or how our eyes adapt to sudden changes in lighting. If you have also dealt with a camera
in the past, the chances are you've also seen how certain camera effects can start to show if
we have a light source in our sights. This is what we are going to be covering in the
following pages: namely, two of them known as Bloom and Lens Flares. Replicating those
effects in Unreal is easy and can add a bit of flavor to your scenes, as long as they are use in
a subtle way. Let's take a look at them!

Getting ready
The scene we are going to be using in order to introduce the previous camera effects can be
found in the following folder: Content / UE4ShadersAndEffects / Maps /
Chapter02 / 02_05_BloomAndLensFlares

https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/Vignette
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/Vignette
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/Vignette
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/Vignette
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/Vignette
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/Vignette
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/Vignette
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/Vignette
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/Vignette
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/Vignette
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/Vignette
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/Vignette
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/Vignette
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/Vignette
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/Vignette
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/Vignette
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/Vignette
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/Vignette
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/Vignette
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/Vignette
https://docs.unrealengine.com/en-US/Engine/Rendering/PostProcessEffects/AutomaticExposure
https://docs.unrealengine.com/en-US/Engine/Rendering/PostProcessEffects/AutomaticExposure
https://docs.unrealengine.com/en-US/Engine/Rendering/PostProcessEffects/AutomaticExposure
https://docs.unrealengine.com/en-US/Engine/Rendering/PostProcessEffects/AutomaticExposure
https://docs.unrealengine.com/en-US/Engine/Rendering/PostProcessEffects/AutomaticExposure
https://docs.unrealengine.com/en-US/Engine/Rendering/PostProcessEffects/AutomaticExposure
https://docs.unrealengine.com/en-US/Engine/Rendering/PostProcessEffects/AutomaticExposure
https://docs.unrealengine.com/en-US/Engine/Rendering/PostProcessEffects/AutomaticExposure
https://docs.unrealengine.com/en-US/Engine/Rendering/PostProcessEffects/AutomaticExposure
https://docs.unrealengine.com/en-US/Engine/Rendering/PostProcessEffects/AutomaticExposure
https://docs.unrealengine.com/en-US/Engine/Rendering/PostProcessEffects/AutomaticExposure
https://docs.unrealengine.com/en-US/Engine/Rendering/PostProcessEffects/AutomaticExposure
https://docs.unrealengine.com/en-US/Engine/Rendering/PostProcessEffects/AutomaticExposure
https://docs.unrealengine.com/en-US/Engine/Rendering/PostProcessEffects/AutomaticExposure
https://docs.unrealengine.com/en-US/Engine/Rendering/PostProcessEffects/AutomaticExposure
https://docs.unrealengine.com/en-US/Engine/Rendering/PostProcessEffects/AutomaticExposure
https://docs.unrealengine.com/en-US/Engine/Rendering/PostProcessEffects/AutomaticExposure
https://docs.unrealengine.com/en-US/Engine/Rendering/PostProcessEffects/AutomaticExposure
https://docs.unrealengine.com/en-US/Engine/Rendering/PostProcessEffects/AutomaticExposure
https://docs.unrealengine.com/en-US/Engine/Rendering/PostProcessEffects/AutomaticExposure

Post-Processing Effects Chapter 2

[91]

Albeit similar to the previous levels we've played with, this one introduces a couple of key
components that are going to help us in this recipe. The first one is the extra geometry we
have placed: having a ceiling and the prop for a downlight will help us to set up the scene.
The second important element is the extra light that we have emanating from the ceiling,
through which we will be able to showcase both the Bloom and the Lens Flares. Without
further ado, let's dive right in!

How to do it...
Let's start tackling this recipe as we always do jump straight into the camera we have
placed in the level, the already familiar Camera01, and look through its lens. We should be
seeing something such as this:

Post-Processing Effects Chapter 2

[92]

It's the scene we are already familiar with, but seen from a different angle! The light that
you see on the ceiling will help us introduce the effects this recipe is going to be covering,
so focus your attention on that actor after we tweak the different settings for the bloom and
the lens flares. With that said, let's start tweaking our scene:

Select the PostProcessVolume actor and look inside the Details panel. The Lens1.
section contains the two effects that we are going to be looking at, separated into
their own groups, Bloom and Lens Flares. We'll start looking at the first of those
categories:

Make sure you are looking at the scene in Gameplay mode. This viewing
setting will let you hide the icons for actors such as the Post Process
Volume or the Reflection captures, allowing yo to look at the scene as if
you were playing. With the Main Viewport as your active panel, you can
press the G key on your keyboard to toggle this viewing mode on and off.

Post-Processing Effects Chapter 2

[93]

Tick the checkboxes for Method and Intensity. We are going to be playing with2.
those two values first. Set the Method to Standard and bump up the Intensity up
to 2.5 with those values we should start to see some differences in the rendered
image:

The Threshold parameter should be left at -1 if we want all scene colors to
contribute to the effect. This is the most physically realistic approach, but
feel free to change that value if you are after a specific effect, such as a
dreamy scene or something out of the ordinary.

Now expand the Advanced section, which is directly underneath the settings
we've tweaked in the previous step. In here you will be able to tweak two
different type of parameters for the Bloom—the tint and the size of the visible
effect.

Let's start by adjusting the size, but instead of tweaking each different numbered3.
entry individually we'll focus on the Size scale parameter. This is a scale setting
for all bloom sizes, so it controls all of them by just applying a multiplying factor.
Let's set it to 16.

Post-Processing Effects Chapter 2

[94]

As we want the light to give off a warm sensation, let's tweak the bloom values to4.
something closer to yellow. Modify each of the six tints ever so slightly, going in
the yellow direction:

The reason there are six different sizes and tints to be modified is because
the Bloom effect is actually made up of six different Gaussian blur filters.
Each setting affects one of them, giving you more creative freedom.

Next up, we are going to be looking at the other effect we are going to be
adjusting, the lens flares. This is a nice addition to the bloom we've just set up,
and I like to work with them in tandem. Let's look at how to set it up:

Post-Processing Effects Chapter 2

[95]

Next up, jump to the Lens Flares section, which is a bit further down below the5.
previous Bloom category. Tick the Intensity checkbox and set its value to
something such as 90, just so the effect is clearly visible.

Change the BokehSize from the default 3 to something such as 6 in order to6.
make the effect even more visible:

Something else we could also change is the actual shape of the Bokeh effect. The
setting named BokehShape lets us do just that, so let's take advantage of it as we
introduce our last adjustment.

Tick the BokehShape checkbox and click on the dropdown menu. Click on7.
the View Options icon and select Show Engine Content; luckily for us, Unreal
comes with a couple of different bokeh textures that we can try out. Start typing
bokeh to narrow down the search results and select the texture named Bokeh.
This introduces a nice round filter which we'll use in this case:

Post-Processing Effects Chapter 2

[96]

Post-Processing Effects Chapter 2

[97]

You can also create your own Bokeh textures to use in here; just export
the ones that the engine includes to see how they created them and play
around in an image editor to create something new!

With all of this done, we should be looking at our final image, which should look
something like the following screenshot:

As you can see, these are effects that can have a great impact on our scenes, especially when
we have multiple light sources. Playing around with the settings until you get to the point
where everything feels nice is something that I hope has become easier after this recipe. See
you in the next section!

How it works...
The way the bloom and the lens flares effects work is quite intuitive, even though they are
slightly different. As we've said before, the first technique is rendered to the screen through
six different Gaussian blur passes. Lens Flares, however, is an image based technique that
uses textures to simulate the scattering of light through a camera's lens. In the end, what
both of those implementations are trying to do is to replicate what can be observed both
with our naked eye and through a camera.

Post-Processing Effects Chapter 2

[98]

As with many other effects we've seen, they are at their best when used in a subtle way.
Overuse is always bad, especially with new techniques such as these. Taking care of how
those effects impact the scene is an important task for the artist, so make sure to check the
effect every so often and under different angles. Best of luck!

There's more...
The specific type of Bloom we've seen in the present chapter is one aimed at video games or
real time applications in particular. However, Epic Games has recently introduced a
different type that can be considered a bit more high quality, called Bloom convolution.

This new effect lets users include their own custom bloom kernel shapes, which is a texture
that can depict physically accurate bloom effects as seen through a camera or our eyes. To
enable it, just tick the Method checkbox in the Lens section of our post process volume or
camera and change the value from Standard to Convolution. Once that's done, we'll be able
to change the Convolution kernel used as a texture for this effect; again, tick the checkbox
with that same name and select any texture that you might desire. By default we'll get an
effect similar to this one:

In the previous screenshot, we've also set the Convolution boost Mult to 100 in order to
make the effect perfectly visible. You can do so if you head over to the Advanced section of
the Bloom category and look for that setting.

Post-Processing Effects Chapter 2

[99]

See also
As usual, let me include the official documentation for the topics we've covered before. It's
a great place to know more about them whenever you feel like exploring a bit more!:

https://docs.unrealengine. com/ en- us/ Engine/ Rendering/ PostProcessEffects/ Bloom

https://docs.unrealengine. com/ en- us/ Engine/ Rendering/ PostProcessEffects/
LensFlare

A horror movie pulsating effect with post
process materials
Welcome back to another recipe on post processing effects! I'm quite excited about this one,
as we are about to start creating our own personal effects instead of using the ones we
already have available through the engine. To do so, we'll take advantage of a particular
type of shaders called the Post Process Materials that, to be honest, are quite self
explanatory. They are the ones to be used when we need to adjust the scene as a whole.
They are applied inside the post process volume, and not on a particular 3D model. Because
of that, the way we create them is somewhat different to that of a standard material, so
we'll be taking a look at how they are structured. This recipe will be the foundation which
will let us create more complex effects later on, so let's jump right in!

Getting ready
We are going to start this recipe by loading a specific level, one which might feel familiar.
Dive into the following folder and select the specified map: Content /
UE4ShadersAndEffects / Maps / Chapter02 / 02_06_PostProcessMaterials.

The base scene is one we have already worked with in the past and it's none other than the
horror movie-style level we worked on in the color grading recipe. Our goal this time will
be to enhance the feel of the shot by introducing a pulsating effect through a post process
material, just to make it look a bit more menacing and sinister. As usual, feel free to use any
scene you want.

https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/Bloom
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/Bloom
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/Bloom
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/Bloom
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/Bloom
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/Bloom
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/Bloom
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/Bloom
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/Bloom
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/Bloom
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/Bloom
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/Bloom
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/Bloom
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/Bloom
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/Bloom
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/Bloom
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/Bloom
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/Bloom
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/Bloom
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/Bloom
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/Bloom
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/LensFlare
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/LensFlare
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/LensFlare
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/LensFlare
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/LensFlare
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/LensFlare
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/LensFlare
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/LensFlare
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/LensFlare
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/LensFlare
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/LensFlare
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/LensFlare
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/LensFlare
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/LensFlare
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/LensFlare
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/LensFlare
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/LensFlare
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/LensFlare
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/LensFlare
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/LensFlare

Post-Processing Effects Chapter 2

[100]

How to do it...
As we said before, this is the exact same scene we worked on the Color Grading recipe, and
with this as our base, we will continue to expand upon the mood that we had previously
created. Make sure to select the Camera01 actor and look through its lens as we've been
doing lately, as that will ensure that the effects we see are the same. With that out of the
way, let's start the recipe:

Select the PostProcessVolume and scroll down to the Rendering Features1.
section. The first category we can see should be called Post Process Materials be
sure to expand that as we'll be using it later on to set up the effects we will be
creating. Do also expand the Array section and click on the + button, as we will
need that at a later stage as well:

In order to use any post process materials we first need to actually create one.2.
Head over to the Content Browser and create a new material wherever you
want; in my case, and following the structure we've been using through the
previous pages, I'm creating it in the following directory: Content Browser
/ UE4ShadersAndEffects / Assets / Chapter02. The name I've given it is
M_PostProcessSample.

Post-Processing Effects Chapter 2

[101]

The first thing we need to do to our material is to specify that it is a Post Process3.
type of shader. To do so, select the main material node and head over to the
details panel—the first category inside the Material section is called Material
Domain, and we need to set that to Post Process:

We can start creating the actual functionality after that. The first node we are
going to be operating upon is the SceneTexture, so let's create it:

Right-click in the main Material Graph and look for the SceneTexture option.4.
Once created, head over to the Details panel and change the default value from
SceneColor to PostProcessInput0. Doing that will let us access the unadulterated
color of the scene, which is what we want at this stage, as we'll be modifying it:

Post-Processing Effects Chapter 2

[102]

The SceneTexture node is an important concept to grasp in order to
understand how Post Process Materials work. Because we are not
applying these materials to a 3D model, but instead the scene we are
looking at, we need to specify which part of the rendering pipeline we
want to be affecting. The SceneTexture node lets us do that.

Create a ComponentMask by right clicking again and typing that same name.5.
Make sure that the R, G and B values are ticked in the Details panel for that
mask, and connect the Color output pin from the SceneTexture node to the input
pin of our new mask:

The reason we are masking the color of the scene is because we want to play with
its RGB values and nothing else. With those two nodes in place we have secured
ourselves access to the image that is being rendered, and what we are now about
to do is to overlay information on top of that.

Post-Processing Effects Chapter 2

[103]

Create a TextureSample node (right-click | TextureSample) and assign it6.
the T_PanningDistortion asset to it. This image contains a reddish gradient that
we will overlay with the base rendered image of the scene:

Alternatively, you can create a TextureSample node by holding the T key
on your keyboard and clicking anywhere within the main graph.

Post-Processing Effects Chapter 2

[104]

Overlay the previous texture with the color of the scene by creating a Lerp node.7.
You can do this if you hold the T key on your keyboard and click within the
boundaries of the main graph or by any other method, such as right-clicking and
typing Lerp or looking for that node in the palette. Connect to the A input pin
the output of Mask, and the Texture Sample into the pin labeled B. Finally,
Connect the alpha channel of our texture to the Alpha input pin for the Lerp:

With that done, connect the output of the Lerp pin to the Emissive Color node on
the main material node. Apply and save the material. What we now want to do is
to apply the material we have just created as a post processing effect for our
scene. Let's get back to the main viewport in order to do so.

Post-Processing Effects Chapter 2

[105]

With the PostProcessVolume selected, scroll back to the Post Process Materials8.
section we were previously in and select our newly created material as the asset
on the Array, like in the following screenshot:

We should be able to see the effect across the screen one that's done. Even though
we've technically just created a new material and we are looking at it, I think we
can make it a bit more interesting. Let's get back to the material editor and
perform a few more tweaks.

The next bit of functionality that we are going to be creating for our material is a
time function. What we basically want to do is to animate our texture, just so that
the effect we are creating is not static. Let's make it pulsate over time, making our
already creepy scene a little bit more eerie.

Post-Processing Effects Chapter 2

[106]

Right-click anywhere within the Material Graph and start typing Time. This will9.
allow us to create a new node that will be used to animate the pulsating effect, as
the node introduces the concept of time in our material. Pair it with a constant
node, which we'll use to affect how fast the effect pulsates, and combine both of
the previous nodes in a Multiply node. Finally, drag from the output pin of the
Multiply node and create another one called Sine. The graph should look
something like this:

That expression will be driving our future animated material, and we will be able
to control how fast it is animated thanks to that constant node we've introduced.
The last step in this pipeline is to actually combine the effect we've created with
the raw scene color based on this time function:

Copy the SceneTexture and the Mask nodes and past the above the previously10.
created ones.
Create a second Lerp node, and connect the output of what we created in the11.
previous step to the A pin.
Connect the output of the initial nodes we had created, the result of the Lerp12.
between the scene color and out reddish texture to the B pin.

Post-Processing Effects Chapter 2

[107]

Finally, connect the time function to the Alpha value of the latest Lerp node. The13.
graph should look something like this:

Post-Processing Effects Chapter 2

[108]

With all of those changes made, we should now be looking at a much more disturbing
scene one which blends between the default "greenish" look and a new reddish gradient,
which makes things more creepy.

Any other effects would have been possible; the possibilities are almost endless. Be sure to
check out further chapters when we'll start to deal with more advanced effects. Until then,
see you in the next section!

How it works...
Post process materials are a bit different than the ones we apply to 3D models. Just as we
need UVs in our meshes to indicate how textures should wrap around the objects, we need
to access a specific bit of information from the scene that is being rendered in order to apply
certain effects to it.

Instead of UVs, though, the information that we need from the scene comes in the shape of
different scene textures, such as the one we dealt with before named Post Process Input 0.
There are many others, and we will use them according to our needs. For instance, we can
also access the subsurface color or the Ambient Occlusion pass if we want to. The point is
that we have access to many scene buffers and you can use them to create a material that
suits your needs.

Of course, using those nodes is not always mandatory and you can create a post process
material using only the nodes that you would use on a traditional material. However, don's
pass on the resources available to you through the Scene Texture parameter.

Post-Processing Effects Chapter 2

[109]

There's more...
Before we go, something else that can be of interest is the position in which the Post Process
Material we create is inserted within the post processing pipeline. If we take a look back at
the Details panel for our material, we can see that there are several options if we scroll
down to the Post Process Material section:

Post-Processing Effects Chapter 2

[110]

The position in which this happens can be important, depending as always on your
particular scene. For instance, selecting the Before Tonemapping option means that the
effect we are creating happens before the color grading and tone mapping operations
happen in our scene. That can be of interest if we need to access the raw values of our level
in case any of the corrections we are introducing later is causing issues with our scene. It's
always good to take that into consideration, so do have a play with those settings if you are
experiencing any issues with the materials you create.

See also
Make sure to check out Epic Games' official documentation if you want a different take on
the post process material parameters and a different example of what you can build with
them: https://docs. unrealengine. com/ en-us/ Engine/ Rendering/ PostProcessEffects/
PostProcessMaterials.

Adjusting anti aliasing and other rendering
features
Welcome to the last recipe of this chapter! So far, we've had the opportunity to play around
with most of the settings that both the post process volume and the cine camera actor have
to offer. We don't want to say goodbye to this topic though without looking at some of the
final technical adjustments we can perform on our scenes at a global scale. That being the
case, we will focus our attention now on several important values such as the following:

Supersampling
Screen Space Reflections
Ambient Occlusion
Motion Blur
Anti Aliasing

All of the previous topics are often viewed more from a technical point of view rather than
an artistic one. They can have a great impact on the visual quality and feel of the scene, and
we don't want to downplay the part that they have on that regard. However, more often
than not, they are values that we have to adjust keeping in mind the performance that we
are after. It's not so much a question of whether we want to use supersampling or not, it's
more of a case of can we afford to? Let's take a look at the answer then!

https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/PostProcessMaterials
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/PostProcessMaterials
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/PostProcessMaterials
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/PostProcessMaterials
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/PostProcessMaterials
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/PostProcessMaterials
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/PostProcessMaterials
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/PostProcessMaterials
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/PostProcessMaterials
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/PostProcessMaterials
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/PostProcessMaterials
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/PostProcessMaterials
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/PostProcessMaterials
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/PostProcessMaterials
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/PostProcessMaterials
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/PostProcessMaterials
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/PostProcessMaterials
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/PostProcessMaterials
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/PostProcessMaterials
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/PostProcessMaterials

Post-Processing Effects Chapter 2

[111]

Getting ready
As usual, you can find an already prepared scene set up for you in the following
folder: Content / UE4ShadersAndEffects / Maps / Chapter02 /

The name of the scene is 02_07_AntiAliasing. Again, feel free to continue using one of your
own scenes if you so prefer, as that is completely possible. We will however point out that
we are going to be exploring some effects, such as the screen space reflections, which
require some highly reflective objects to be placed in the scene in order to be able to see
what we are actually modifying, so keep that in mind!

How to do it...
Let's start this recipe by looking through the camera's lens. This is something we have
usually done throughout the current chapter, and we've always done that with the hope
that certain effects that we are going to use will be better visualized if they are seen from
that particular camera location. This is still the case in the current recipe, since we are going
to explore screen space reflections and we need to make sure that they are visible. With that
said, this is the image we should be seeing once we are looking through the camera:

Post-Processing Effects Chapter 2

[112]

Having that image as a reference will let us check many of the post processing effects we
are about to introduce. Let's start with the first one—choosing the default Anti
Aliasing method:

Head over to Edit | Project Settings. In there, navigate to the Rendering section1.
under the Engine category. Once inside, scroll even further down to the panel
called Default Settings and look for the anti-aliasing method. Make sure that it's
set to Temporal AA, which should be by default. You can keep that value
throughout the rest of this recipe, or try to change it if you want to see a
difference. We'll be exploring this further in the How it works... section, but we
need to have something at this point for the next steps to happen:

Even though the anti-aliasing option used to be part of the post process
volume actor in past iterations of the engine, they've changed it's location
to the one mentioned previously.

The quality of the anti aliasing can be controlled via console commands, both in
game and in the editor.

Post-Processing Effects Chapter 2

[113]

Open up the command console by tapping the tilde key in your keyboard. Type2.
r.PostProcessAAQuality 6 to set the quality of the temporal anti aliasing to
the maximum the Unreal will allow you to. Feel free to set it up to anything
between 0 and 6, which is the range said command is expecting:

If you can't bring up the console command or if you are using a different
keyboard layout other than the English (UK) one, rest assured that you
can set a custom key binding to bring it up. Head over to Project Settings
| Engine | Input | Console to change the default value.

Post-Processing Effects Chapter 2

[114]

Another command you can use to quickly change between the different anti3.
aliasing methods is r.DefaultFeature.AntiAliasing. Following that command
with a value of 0, 1 or 2 will toggle between no effect, FXAA or TAA:

As you can see from the preceding screenshot, the difference in the quality of the
AA method is really visible if we go from zero to two, or from two to four. Going
as high as six doesn't seem to be doing much in our particular scene, but could be
useful when heavy aliasing happens in thin objects such as cables. Next up, we
are going to be looking at the screen space reflections. With the post process
volume selected, head over to the Details panel and scroll down to the Rendering
Features settings.

Expand the Screen Space Reflections section and tick the Quality checkbox. By4.
default this should be set to 50 increase it to 100 instead.
While in here, do tick as well the parameter called Max Roughness. Its default5.
value of 0.6 might be a bit low for many cases, so let's raise it to 0.8:

Post-Processing Effects Chapter 2

[115]

We'll explore in further detail what those parameters are affecting in the There's
more... section, but this setting basically increases the quality of the screen space
reflections effect. These can be quite important in some scenes, in particular in
those where we have dynamic objects moving around which can cause reflections
to update in real time. They are limited in that they can only reflect what is on the
screen, so things that are behind the camera or at the very edges of the image
won't be picked up. Another rendering feature we can include is the Ambient
Occlusion. It works on a post process layer by analyzing the scene and
determining which areas should be darker according to how occluded they are.

Expand the Ambient Occlusion section and tick the Intensity checkbox, as well6.
as the Radius one. Give the first parameter a value of 0.3 and go with 10 for the
second one.
Expand the Advanced section while still within the Ambient Occlusion tab.7.
Check the two tick-boxes where it says Radius in WorldSpace. By doing this, we
are ensuring that the value of 10 we have previously specified means 10
centimeters in world space units:

Post-Processing Effects Chapter 2

[116]

If we set the property Radius in WorldSpace to true, the Radius we
specify takes into account that distance to create the Ambient Occlusion
effect. Leaving it on the default false state means that the calculations for
the AO happen taking into account the default view space, which is
locked to 400 units.

The last setting that we are going to talk about is the Screen Percentage. This
setting can be found under the Misc section of the Rendering Features
category. What we basically control through it is what you might know as
Supersampling; let's try it out.

Check the Screen Percentage checkbox and increase the default value of 100 to8.
something like 200. Be careful though this has a great impact on performance
and you should be careful when choosing a number in this box. You can read
more about this in the next section, How it works...
In order to test this setting we actually need to play the game. As it is a runtime9.
effect, we can't visualize its impact on the main viewport of the Unreal editor;
instead, click on the Play button at the top of the main Toolbar:

Post-Processing Effects Chapter 2

[117]

Before we go, I'd like to leave you with some images from this scene taken under
different Screen Percentage settings. They should be representative of the
changes in image quality that Supersampling introduces or upscaling, which is
the term used when the screen percentage is lower than 100:

How it works...
Now that we've seen how the previous settings affect our scene, let's take some time aside
to go over the theory behind them all. We will start explaining the very last parameter
we've tweaked: the Screen Percentage.

The specifics behind this technique are quite simple: instead of rendering the scene at a
fixed resolution, which would usually match that of our screens, we instead render at a
different one. This second number needs to then be transformed back into the initial screen
resolution, as that is a fixed variable. We are therefore left with two possible scenarios: if
the initial resolution is greater than the one we are rendering the game image at, we would
be talking about upscaling. If we are, on the other hand, rendering at a higher pixel density
than that of our displays we get what is known as Supersampling.

Upscaling is cheaper to render, as the engine needs to deal with a lower amount of pixels.
The resulting image is of a lower quality than what we would if we weren't using this
technique. Supersampling, on the other hand, takes advantage of the extra pixel count to
create a higher quality image at the expense of being more demanding in terms of
performance. It can be used as an anti-aliasing technique, as we are effectively
reconstructing the image through this method.

Continuing with the topic of AA, let's focus once again on the different implementations
that Unreal has decided to implement. There are four in total: the already-seen
Supersampling, Temporal AA, FXAA, and MSAA. This last method is only available when
we are using the forward renderer or developing for mobile platforms, which isn't the
default state Unreal is targeting. Each method has its strengths and weaknesses, which we'll
try to mention next.

Post-Processing Effects Chapter 2

[118]

FXAA is the cheapest AA method. It is one that was developed by nVidia, and it works on
the rendered image that the engine outputs and not on the geometry of our levels. Because
of that, it sometimes blurs the textures or operates beyond just the jagged edges we want to
tweak so it can introduce unintended consequences. SSAA, or Supersampling anti aliasing,
is the technique that we described before we first rendered the scene at a higher resolution
and then downsampled it using an averaging filter, which makes the transition between
pixels more smooth and greatly reduces jaggies.

MSAA works in a similar way to SSAA, but in an optimized way. Instead of sampling the
whole scene by rendering it at a higher resolution, MSAA takes different samples by just
focusing on overlapping areas of the level. This saves up on performance while still
achieving a great anti-aliasing result.

Finally, Temporal AA is a new actor in the anti-aliasing world. It is the one we use by
default in Unreal, and it is a mix of a temporal filter solution, hardware anti-aliasing, and
custom algorithms that work throughout the scene. It isn't as cheap to enable as FXAA, but
the quality is much better overall. Choosing between one or the other is a matter of what
you are trying to achieve with your project.

There's more...
Before moving on, I didn't want to pass on the opportunity of explaining a bit more some of
the settings that we tweaked in this recipe. Even though we've covered most of the
parameters that define each of the post process effects that we've seen, we haven't had the
time to really explain how each setting contributes to the overall effect. Let's do that now:

The Screen Space Reflections are controlled by three different properties: the
intensity, the quality and the max roughness. Even though the first two can be
quite self explanatory, it's the third one that is a bit more subtle. In simple terms,
max roughness is used to specify what roughness value the engine fades the
screen space reflections. The higher the number, the more the effect will be seen
on surfaces which have a material applied with a high roughness value. This
basically means that the effect will be more visible throughout the entirety of the
scene.
The Ambient Occlusion has some extra settings that we didn't need to tweak in
our example, but which are worth considering when working on a different
level. I'd like to mention the Fade Out Distance, which is the value that
determines up until where this screen space effect is visible in centimeters. Be
sure to modify that value if your scene requires it.

Post-Processing Effects Chapter 2

[119]

Other settings, such as Motion Blur, are quite straightforward; it is enabled by
default, and if you want to disable it you need to tick the Amount checkbox and
set it to 0. The Max amount is the maximum distortion that the effect can
introduce, and you determine it by specifying a percent of the screen width.

With all of those settings in mind, it will be easy for you to configure the scene to your
liking, so make sure to have a go at them!

See also
As usual, the official documentation includes examples and explanations about almost
every setting we've seen before—make sure to take a look at them if you want to learn a bit
more:

Anti-Aliasing: https:/ / docs. unrealengine. com/en- us/ Engine/ Rendering/
PostProcessEffects/ AntiAliasing

Screen space reflections: https:/ /docs. unrealengine. com/ en-us/ Engine/ Rendering/
PostProcessEffects/ ScreenSpaceReflection

Ambient Occlusion: https:/ / docs. unrealengine. com/ en- us/Engine/ Rendering/
LightingAndShadows/ AmbientOcclusion

Screen percentage: https:/ /docs. unrealengine. com/ en-us/ Engine/ Rendering/
ScreenPercentage

https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/AntiAliasing
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/AntiAliasing
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/AntiAliasing
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/AntiAliasing
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/AntiAliasing
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/AntiAliasing
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/AntiAliasing
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/AntiAliasing
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/AntiAliasing
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/AntiAliasing
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/AntiAliasing
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/AntiAliasing
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/AntiAliasing
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/AntiAliasing
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/AntiAliasing
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/AntiAliasing
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/AntiAliasing
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/AntiAliasing
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/AntiAliasing
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/AntiAliasing
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/ScreenSpaceReflection
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/ScreenSpaceReflection
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/ScreenSpaceReflection
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/ScreenSpaceReflection
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/ScreenSpaceReflection
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/ScreenSpaceReflection
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/ScreenSpaceReflection
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/ScreenSpaceReflection
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/ScreenSpaceReflection
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/ScreenSpaceReflection
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/ScreenSpaceReflection
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/ScreenSpaceReflection
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/ScreenSpaceReflection
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/ScreenSpaceReflection
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/ScreenSpaceReflection
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/ScreenSpaceReflection
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/ScreenSpaceReflection
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/ScreenSpaceReflection
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/ScreenSpaceReflection
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/ScreenSpaceReflection
https://docs.unrealengine.com/en-us/Engine/Rendering/LightingAndShadows/AmbientOcclusion
https://docs.unrealengine.com/en-us/Engine/Rendering/LightingAndShadows/AmbientOcclusion
https://docs.unrealengine.com/en-us/Engine/Rendering/LightingAndShadows/AmbientOcclusion
https://docs.unrealengine.com/en-us/Engine/Rendering/LightingAndShadows/AmbientOcclusion
https://docs.unrealengine.com/en-us/Engine/Rendering/LightingAndShadows/AmbientOcclusion
https://docs.unrealengine.com/en-us/Engine/Rendering/LightingAndShadows/AmbientOcclusion
https://docs.unrealengine.com/en-us/Engine/Rendering/LightingAndShadows/AmbientOcclusion
https://docs.unrealengine.com/en-us/Engine/Rendering/LightingAndShadows/AmbientOcclusion
https://docs.unrealengine.com/en-us/Engine/Rendering/LightingAndShadows/AmbientOcclusion
https://docs.unrealengine.com/en-us/Engine/Rendering/LightingAndShadows/AmbientOcclusion
https://docs.unrealengine.com/en-us/Engine/Rendering/LightingAndShadows/AmbientOcclusion
https://docs.unrealengine.com/en-us/Engine/Rendering/LightingAndShadows/AmbientOcclusion
https://docs.unrealengine.com/en-us/Engine/Rendering/LightingAndShadows/AmbientOcclusion
https://docs.unrealengine.com/en-us/Engine/Rendering/LightingAndShadows/AmbientOcclusion
https://docs.unrealengine.com/en-us/Engine/Rendering/LightingAndShadows/AmbientOcclusion
https://docs.unrealengine.com/en-us/Engine/Rendering/LightingAndShadows/AmbientOcclusion
https://docs.unrealengine.com/en-us/Engine/Rendering/LightingAndShadows/AmbientOcclusion
https://docs.unrealengine.com/en-us/Engine/Rendering/LightingAndShadows/AmbientOcclusion
https://docs.unrealengine.com/en-us/Engine/Rendering/LightingAndShadows/AmbientOcclusion
https://docs.unrealengine.com/en-us/Engine/Rendering/LightingAndShadows/AmbientOcclusion
https://docs.unrealengine.com/en-us/Engine/Rendering/ScreenPercentage
https://docs.unrealengine.com/en-us/Engine/Rendering/ScreenPercentage
https://docs.unrealengine.com/en-us/Engine/Rendering/ScreenPercentage
https://docs.unrealengine.com/en-us/Engine/Rendering/ScreenPercentage
https://docs.unrealengine.com/en-us/Engine/Rendering/ScreenPercentage
https://docs.unrealengine.com/en-us/Engine/Rendering/ScreenPercentage
https://docs.unrealengine.com/en-us/Engine/Rendering/ScreenPercentage
https://docs.unrealengine.com/en-us/Engine/Rendering/ScreenPercentage
https://docs.unrealengine.com/en-us/Engine/Rendering/ScreenPercentage
https://docs.unrealengine.com/en-us/Engine/Rendering/ScreenPercentage
https://docs.unrealengine.com/en-us/Engine/Rendering/ScreenPercentage
https://docs.unrealengine.com/en-us/Engine/Rendering/ScreenPercentage
https://docs.unrealengine.com/en-us/Engine/Rendering/ScreenPercentage
https://docs.unrealengine.com/en-us/Engine/Rendering/ScreenPercentage
https://docs.unrealengine.com/en-us/Engine/Rendering/ScreenPercentage
https://docs.unrealengine.com/en-us/Engine/Rendering/ScreenPercentage
https://docs.unrealengine.com/en-us/Engine/Rendering/ScreenPercentage
https://docs.unrealengine.com/en-us/Engine/Rendering/ScreenPercentage

3
Opaque Materials and Texture

Mapping
The fact that we have already seen how a material is set up at a basic level should give us
the confidence to tackle the present chapter, where we'll expand upon what we have
previously learned in order to see more advanced materials and effects. This is what you
can expect to see in the pages to follow:

Using masks within a material
Instancing a material
Texturing a small prop
A plastic cloth using Fresnel and Detail Texturing
Creating a semi procedural material
Baking out a material
Distance-based texture blending

Opaque Materials and Texture Mapping Chapter 3

[121]

Introduction
Even though we have already exposed ourselves to a material in Unreal Engine 4, that was
back in the first chapter. We were toddlers back then! Not really, but that experience was an
introductory one. Seeing the inner workings of a PBR material got us close to the material
editor and several of its nodes, but we are yet to properly use and master them. And that's
what we are planning to do now.

Starting gently—as we always do—we'll begin working on a simple scene where we'll learn
how to set up a proper material graph for a small prop. Beyond that, we can also look at
how to create materials that are going to be applied on large-scale models, and what clever
techniques can be implemented to balance quality and performance. And from there, we
will also take a look at a bunch of other interesting resources: material effects driven by the
position of the camera, large-scale optimizations, and semi-procedural creation techniques:

Let's get started!

Opaque Materials and Texture Mapping Chapter 3

[122]

Using masks within a material
Welcome to the first recipe of this third chapter! I think this is a very important moment in
our material-creation journey, as we are about to leave the introductory stuff aside in order
to focus more on real assets. From now on, everything we do is really real and by that I
mean that we are no longer talking about the possibilities or applications of what we are
learning, but instead we are doing things that could be part of a real-life project. Hopefully,
you'll start feeling like a pro, learning and applying specific techniques that are part of a 3D
artist's daily workflow in UE4!

With that in mind, our first goal is going to be the replication of a complex material graph.
This is going to be very helpful, as one of the most important steps is to actually decide
how our materials should be set up. We'll do that for a small wooden toy tank, which is
indicative of many different objects that we might want to texture in the future. We will
also take a look at other examples throughout this chapter, but this particular recipe will
serve as a nice entry point, as we are about to see.

Getting ready
We've included a small scene that you can use as a starting point for this recipe – its name
is 03_01_ComplexShader_Start, and it includes all of the basic assets that you will need to
follow along. As you'll be able to see for yourself, there's a small toy tank that has two UV
channels in the center of the level. The first of those channels is the one that Unreal uses by
default to understand how it needs to place the textures that we feed to the material the
model is using, while the second one is used to generate the lightmaps.

Opaque Materials and Texture Mapping Chapter 3

[123]

As always, feel free to use your own 3D models and populate your scenes however you
like. Something to take into consideration is the need to have well-laid-out UVs, as we are
going to be masking certain areas of our models to drive the look of our materials. Make
sure that your custom assets follow that rule, as we'll need that to be true for this recipe to
work:

Something that you might want to change now is the camera clipping
plane. Unreal's default camera settings aren't really suitable for working
with small objects. Head over to the Project Settings | Engine | General
Settings | Settings section and set the value of the Near Clip Plane to
something like 1 and remember to restart the editor!

How to do it...
We are going to create our first complex material in Unreal Engine 4! Complex is a word
used lightly in this context, as it doesn't have anything to do with the difficulty of creating
the asset itself. It's more of a statement: what we are going to be creating from now on are
examples that could just as well be real assets in a game studio.

Opaque Materials and Texture Mapping Chapter 3

[124]

With that said, the first stop in this journey is going to be the laying down of the
foundations of the material. We are going to operate on the material graph by organizing
and thinking about how things should be put together. Make sure you have the
03_01_ComplexShader_Start scene open, or any other of your own that you choose, and
let's start taking a look at that:

Let's start by creating a new material, so that we can change the appearance of1.
the main model to something more exciting. I've created a new asset, named
M_ToyTank, which will be in the following folder: Content /
UE4ShadersAndEffects / Assets / Chapter03. You could use that or also
create your own!
As the tank has different small parts (the tracks, the barrel, the main body, and so2.
on), chances are that we are going to want to treat those areas differently. To do
so, we will need to create masks that fit the selected parts that we want to
shade— but before that happens, we need to take a look at how the UVs are laid
out. Select SM_ToyTank in the content browser, open the asset editor, and click
on the UV button | UV Channel 0. This is what it should look like:

You can export the model from the game engine and alter the UVs in your
DCC until you are happy with them. To do this, right-click on the asset
within the content browser and select Asset Actions | Export.

Opaque Materials and Texture Mapping Chapter 3

[125]

There's a small mask that you can use for this example, named T_TankMasks,3.
which you'll be able to find in the same folder as the tank. It's basically an RGB
image, which you can see in the following screenshot. Drag that resource into the
newly created material, as we'll be using it soon:

Also within the material graph, create two Constant3 nodes, and select4.
whichever color you want under their color selection wheel. Make sure they are
different from one another, though!
Next, create a Lerp node. That strange word is short for linear interpolation, and5.
it lets us blend between different assets according to the masks that we connect to
the Alpha pin. Connect the red channel of the T_TankMasks asset to that pin of
the new node.
Connect each of the Constant3 vectors to the A and B pins of the Lerp node. 6.

Opaque Materials and Texture Mapping Chapter 3

[126]

Create another Lerp node and a different Constant3 vector. Connect7.
the blue channel of our mask into the Alpha of the new Lerp and the new
Constant3 vector into the B pin. Finally, connect the output of the previous Lerp
into the A slot. Also, make sure to apply the material to the tank in the main
scene! The resulting material graph should look something like this:

At this stage, we've managed to differentiate certain areas of the model in our
material thanks to using masks. We now need to expand this concept to the
Metallic and the Roughness attributes of the material, just so we can also control
those independently.

Copy all of the previously created nodes and paste them twice—we'll need one8.
copy to connect to the roughness slot and a different one that will drive the
Metallic attribute.

Opaque Materials and Texture Mapping Chapter 3

[127]

Replace the Constant3 nodes of the new copies for simple Constant nodes. We9.
don't need an RGB value to specify the Metalness and Roughness properties, so
let's tidy that up! The graph should now look something like this:

Assign custom values for the new constant nodes you have created on the10.
Metallic and the Roughness attributes. Remember what we saw in the first
chapter: a value of 0 for the roughness slot means that the material has very clear
reflections, while a value of 1 means the exact opposite. Similarly, a value of 1
connected to the metallic node means that the material is a metal, while 0
determines that it is not. Let's take a look at the final results!

Finally, think about tidying things up by grouping the different sections of the
material graph together. This is done by selecting all the nodes that you want to
group and pressing the C key on your keyboard. It keeps things organized, which
is very important—especially when working with others or whenever you revisit
your own work:

Opaque Materials and Texture Mapping Chapter 3

[128]

Opaque Materials and Texture Mapping Chapter 3

[129]

How it works...
Even though we've used masks extensively in this recipe, we haven't had a chance to
properly look at how they are set up until now, that is!

In essence, the textures that we've used as masks are images that contain a black and white
picture stored in each of the image's RGB channels. As you probably already know, if you
were to open up any image in your default photography editing software you would have
the chance to take a look at the three individual image channels the picture is composed of
the red, green, and blue ones, specifically. There might be an extra one, known as the
Alpha, depending on the type of file that you are using.

The composition of those file formats is actually beneficial to us, as we can use the separate
channels as masks—just like we did in this recipe. The Lerp node, as we saw, blends
between two inputs according to the values that we provide it. Since those values can be
anything from 0 to 1, or black to white, that means that we have a perfect match in each of
the image's RGB (and possibly Alpha) channels, since they are each a black and white
image if taken separately:

In any case, using masks to drive the appearance of a material is often preferable to using
multiple materials per mesh. This is because of the way the rendering pipeline works on the
background. Without getting too technical, we could say that each new material makes the
whole graphic operation more expensive, and even though we won't start noticing the
effects until we have lots of different shaders in the scene, this is something that will
eventually happen for almost any project bigger than a small example.

Opaque Materials and Texture Mapping Chapter 3

[130]

There's more...
We've seen how to use masks to drive the appearance of a material in the previous section.
With that said, there's a limitation to that technique with regards of masking—having three
or four different channels per texture means that we can have as many masks per image at
most. Even though this is sometimes enough, there are always situations where we are
bound to want more masks. In those situations, we can either use another image (which
would give us three or four extra masks) or use a different technique—color masking.

That last method is one we haven't explored, as it isn't native to Unreal, but it can certainly
be useful. The only thing we need to do is have a color texture where each individual color
masks an area we want to operate on, as in the following screenshot:

The idea is to color pick from the colored texture the areas that we want to apply a certain
effect on. If this is of interest, you can find more information about that at the following
link: https://answers. unrealengine. com/ questions/ 191185/ how- to- mask- a-single-
color.html.

https://answers.unrealengine.com/questions/191185/how-to-mask-a-single-color.html
https://answers.unrealengine.com/questions/191185/how-to-mask-a-single-color.html
https://answers.unrealengine.com/questions/191185/how-to-mask-a-single-color.html
https://answers.unrealengine.com/questions/191185/how-to-mask-a-single-color.html
https://answers.unrealengine.com/questions/191185/how-to-mask-a-single-color.html
https://answers.unrealengine.com/questions/191185/how-to-mask-a-single-color.html
https://answers.unrealengine.com/questions/191185/how-to-mask-a-single-color.html
https://answers.unrealengine.com/questions/191185/how-to-mask-a-single-color.html
https://answers.unrealengine.com/questions/191185/how-to-mask-a-single-color.html
https://answers.unrealengine.com/questions/191185/how-to-mask-a-single-color.html
https://answers.unrealengine.com/questions/191185/how-to-mask-a-single-color.html
https://answers.unrealengine.com/questions/191185/how-to-mask-a-single-color.html
https://answers.unrealengine.com/questions/191185/how-to-mask-a-single-color.html
https://answers.unrealengine.com/questions/191185/how-to-mask-a-single-color.html
https://answers.unrealengine.com/questions/191185/how-to-mask-a-single-color.html
https://answers.unrealengine.com/questions/191185/how-to-mask-a-single-color.html
https://answers.unrealengine.com/questions/191185/how-to-mask-a-single-color.html
https://answers.unrealengine.com/questions/191185/how-to-mask-a-single-color.html
https://answers.unrealengine.com/questions/191185/how-to-mask-a-single-color.html
https://answers.unrealengine.com/questions/191185/how-to-mask-a-single-color.html
https://answers.unrealengine.com/questions/191185/how-to-mask-a-single-color.html
https://answers.unrealengine.com/questions/191185/how-to-mask-a-single-color.html
https://answers.unrealengine.com/questions/191185/how-to-mask-a-single-color.html
https://answers.unrealengine.com/questions/191185/how-to-mask-a-single-color.html
https://answers.unrealengine.com/questions/191185/how-to-mask-a-single-color.html
https://answers.unrealengine.com/questions/191185/how-to-mask-a-single-color.html

Opaque Materials and Texture Mapping Chapter 3

[131]

See also
There are more examples of masks being used in other assets that you might want to check
out. This is something easy to do, as we've included Starter Content in this project,
where we can find a couple of other materials that make use of the technique we've just
seen.

You can find them in the following folder: Starter Content | Props | Materials. Shaders
such as M_Door or M_Lamp have been created according to the methodology explained
previously, so be sure to check them out!

Instancing a material
We've seen how to set up the material graph for a small prop in the previous recipe,
something that we are sure to be doing multiple times every time we create a new material.
Something extra that we can now do is to create an instance of that previous asset: basically,
a copy of the previous material that is quicker to edit and that doesn't need to be compiled
every time we make a change.

This technique is especially useful precisely because of the removal of that compile time. As
you've probably seen by now, every time you make a change to a material, you are then
forced to click on the Compile and Save buttons. This can be a time consuming process in
complex materials, especially if we only want to tweak a certain color or a specific value.
Furthermore, the lack of compilation means that this specific type of asset can be
dynamically changed at runtime, which is quite powerful!

Getting ready
We are going to continue to work on the scene we saw in the previous recipe. This means
that, as always, there's not a lot you need to follow along—you can either use the assets we
provide or create your own. Either way, we'll be taking a simple model that has a material
applied to it and tweak it so that the new shader that we apply at the end of the scene is an
instance of the original one. The base level we are going to be working on can be found in
the following folder: Content /
UE4ShadersAndEffects/Maps/Chapter03/03_02_MaterialInstance_Start.

Without further ado, let's get to it!

Opaque Materials and Texture Mapping Chapter 3

[132]

How to do it...
Let's start by reviewing the material that we have created in the previous recipe—it's a
pretty standard one, containing attributes that affect the Base Color, the roughness, and the
metallic properties of the material. Here's what the part of the graph that affects the metallic
material node looks like:

As you can see, there are basically two things happening—we are using Constants to adjust
the metalness of the shader and we are also employing texture masks to determine where
those values are applied within our models. The same logic applies elsewhere in the
material graph both parts of the graph that affect the Roughness and the Base Color
properties are almost identical copies of the preceding image.

Even though this is pretty standard, tweaking values this way until we finally have the
material look the way we want can be a bit time consuming, especially if we have to
compile it every single time we make a change. To alleviate this, we are going to start using
parameters and material instances. Let's see how to do this:

Open up the material that is currently being applied to the toy tank in the middle1.
of the scene. It should be M_ToyTank_Parameterized_Start, or feel free to use
one similar to what we used in the previous recipe.

Opaque Materials and Texture Mapping Chapter 3

[133]

Select the constant nodes that live within the Metallic material expression2.
comment (the ones seen in the preceding screenshot) and right-click with your
mouse. Select the Convert to Parameter option, which will create a Scalar
Parameter:

Instead of doing that, you can also create these type of nodes by right-
clicking anywhere within the material graph and searching for scalar
parameter. Remember that you can also look for them in the Palette panel!

With that done, it's now time to give the parameters a name! Judging from the3.
way the mask is dividing the model, I've gone with the following criteria: Tire
Metalness, Body Metalness, and Cannon Metalness. Feel free to use your own!

Opaque Materials and Texture Mapping Chapter 3

[134]

Do the same for the constants that can be found within the Roughness and4.
the Base Color sections and give them appropriate names, just like we did before
for the previous nodes. This is how the Base Color nodes look after doing that:

The type of parameters that will be created from the constant3 nodes
found within the Base Color section will actually be a different type of
nodes from the ones we've seen so far. These new ones are called vector
parameters, as opposed to the previous scalar parameters, so keep that in
mind when you want to create them from scratch.

Once all of this is done, we should be left with a material graph that looks like
what we previously had; but one where we are using parameters instead of
constants. This is a key feature that will play a major role in the next steps, as we
are about to see.

Opaque Materials and Texture Mapping Chapter 3

[135]

Locate the material you've been operating on within the Content Browser and5.
right-click on it. Select the Create Material Instance option and give it a
name, I've gone with MI_ToyTank, since MI is a common prefix for these type of
assets:

Double-click on the newly created asset to open it up. Unlike with normal
materials, instances let us expose the parameters we have created and tweak
them—either before or during runtime, and without the need to recompile any
shaders.

Opaque Materials and Texture Mapping Chapter 3

[136]

Apply the Material Instance to the model, replacing the previous 6.
 M_ToyTank_Parameterized_Start.
Tweak the values that you have previously exposed with this new method. First,7.
be sure to tick the parameters that you want to change and then modify them to
try a different look for the little prop. I've gone a bit psychedelic in the next
example, but why not:

After all of these steps are done, you will have officially created a Material Instance. You've
already seen the benefits of how modular they can be, and in the next section we'll be also
looking at what their benefits are in terms of performance and real-time editability.

How it works...
In this recipe, we've dedicated our efforts to creating a Material Instance. So far, we've seen
how to do it, but we haven't yet covered the reasons why they can be beneficial to out
workflow. Let's take care of that now.

Opaque Materials and Texture Mapping Chapter 3

[137]

First and foremost, we have to understand how this type of asset falls within the material
pipeline. If we think of a pyramid, a basic material will sit at the bottom layer – this is the
basic building block over which the rest of what we are about to be talking about rests.
Material Instances are an extension: once we have a basic material set up, we can create
multiple instances if we want to modify things like the color, the roughness, or the textures
we are using as long as the basic material graph is the same. For example, if we have two
toy tanks and we want to give them different colors, we would create a master material and
then two material instances, which we would apply to each model. That is better in terms of
performance than having two master materials applied to each toy.

Furthermore, material instances can also be modified at runtime, something that can't be
done using the master materials. The properties that can be tweaked are the ones that we
decide to expose in the parent material through the use of different types of parameters,
such as the Scalar or the Vector types that we have seen in this recipe. These materials that
can be modified during gameplay receive the distinctive name of Material Instance
Dynamic, as even though they are also an instance of a master material, they are created
differently. We'll see one method that we can use to create them in the next few steps:

Create an Actor Blueprint and assign a Static Mesh to it.1.
In the Construction Script, add the Create Dynamic Material Instance node and2.
hook the static mesh to its Target input pin. Select the parent material that you'd
like to modify in the Source Material drop-down menu, and store this material
as a variable:

Opaque Materials and Texture Mapping Chapter 3

[138]

Use a Set Vector Parameter Value node in conjunction with a custom event to3.
drive the changing of the material parameter that you'd like to trigger.
Remember to type the exact parameter you'd like to change and assign a value to
it:

I'll leave the previous set of steps as a challenge for you, as it includes certain topics that we
haven't covered yet, such as the creation of Blueprints, which you'll need to be a little bit
familiar with if you want to tackle it. However, if you'd like to see an example for yourself
without having to complete the challenge, rest assured that you'll be able to do so. I've left
something for you in the Unreal Engine project examples we include alongside this book: a
blueprint called BP_ChangingColorTank that you can open to see for yourself how it's
been set up.

There's more...
Something we didn't do in the recipe is group the different parameters we created into
groups. If you remember, when we had to edit the different options within the material
instance, those were all grouped under two different categories: Vector Parameter Values
and Scalar Parameter Values. The names are only representative of the type they belong to,
and not what they are affecting. That is something that we can fortunately modify by going
back to the parent material.

Opaque Materials and Texture Mapping Chapter 3

[139]

If we go there, and select each of the parameters we had created, you'll be able to see that
there is an option named Group in the Details panel. Giving it a name different to the
default None is what will appear instead of the previous vector or scalar parameter values
in the Material Instance. You can put several nodes into the same group, which might help
to keep things tidy. Be sure to give it a go:

See also
As always, and before we move on to the next recipe, I'd like to leave you with the official
documentation on this topic, as written by Epic Games: https:/ /docs. unrealengine. com/
en-us/Engine/Rendering/ Materials/ MaterialInstances.

Texturing a small prop
In this recipe, we are going to take a look at how to properly work with textures within a
material. The word properly is the real key element in the previous sentence – for even
though we've worked with images in the past, we haven't really manipulated them inside
the editor or seen what tricks we can use on them to enhance the look of our materials. It's
time we did that, so let's take a look at it in this recipe!

https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/MaterialInstances
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/MaterialInstances
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/MaterialInstances
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/MaterialInstances
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/MaterialInstances
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/MaterialInstances
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/MaterialInstances
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/MaterialInstances
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/MaterialInstances
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/MaterialInstances
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/MaterialInstances
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/MaterialInstances
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/MaterialInstances
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/MaterialInstances
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/MaterialInstances
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/MaterialInstances
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/MaterialInstances
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/MaterialInstances
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/MaterialInstances
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/MaterialInstances

Opaque Materials and Texture Mapping Chapter 3

[140]

Getting ready
I'm almost sure you know what I'm about to say by now, having read similar Getting ready
sections elsewhere in this book. So, before doing that, let me say: "hello to you Sir/Madam,
nice to see you here again! " Apart from that, you can follow along if you open up the
following level from the UE4 project we are providing: Content
/UE4ShadersAndEffects / Maps / Chapter03 /

03_03_TexturedMaterial_Start.

We'll be using assets that are also part of the project we provide or from the Starter Content,
so make sure to include those ones as well if you haven't done so yet. If you want to follow
along on your own personal project, know that the only thing you'll need is a small 3D
model that you can get a hold of and some textures. We are going to be using wood images
for this example, but the principles we are going to be looking at really work across any
kind of texture, so include whatever suits your tastes. See you in the next section!

How to do it...
So far, we've used simple colors in our toy tank material – and even though they can look
good depending on the type of visuals that we are after, we are going to use realistic
textures this time. As usual, the assets we'll be using can be found in either the Starter
Content package or the ones that we are providing with the book. Let's start:

Duplicate the material we had previously created in the first recipe of this1.
chapter, which was M_ToyTank. This is going to be useful, as we don't want to
reinvent the wheel so much as expand a system that already works. Having
everything separated with masks and neatly organized will speed things up
greatly. Name the new asset however you like I've gone with
M_ToyTank_Textured.
Open up the material graph by double-clicking on the newly created asset and2.
delete the constant3 node that can be found inside of the Base Color section.

Opaque Materials and Texture Mapping Chapter 3

[141]

Create a new Texture Sample node and assign the following texture to it:3.
T_Wood_Pine_D. Link that to the B pin of the Lerp node where the output of the
recently deleted constant3 node used to be connected to drive the appearance of
the main body of the tank:

Remember that the shortcut for the Texture Sample node is the T on your
keyboard. Hold it and left-click anywhere within the material graph to
create one!

There are a couple of extra things that we can do to this texture—firstly, we can
probably adjust the tiling so that the wood veins are a bit closer to each other.
Secondly, we might want to rotate it just to modify the current direction of the
image. Even though this is an aesthetic choice, it's useful to get familiar with these
nodes, as they are often quite useful.

Add a texture coordinate node and give it a value of 3, for instance, or adjust it4.
until you are happy with the result. There's a keyboard shortcut for this node as
well, and it's the U key. Hold it and left-click with your mouse to make it appear!
Next, create a CustomRotator node and before the recently created Texture5.
Coordinate one. Plug the output of that texture sample into the UVs (V2) input
pin of the CustomRotator, and connect the Result Values output node to the
UVs of the Texture Sample where we have the wooden texture.

Opaque Materials and Texture Mapping Chapter 3

[142]

Create a simple Constant node and plug it into the Rotation Angle (0-1) (S) node6.
of the CustomRotator. Give it a value of 0.25 if you want to rotate the texture 90
degrees:

You might be wondering why a value of 0.25 equates to a rotation value
of 90 degrees. This is because the Rotation Angle expects a value in the
range between 0 and 1, which it then translates into a 0 to 360 degree
range. With that in mind, 0.25 is the value that corresponds to 90
following that same logic.

Next, let's add a little extra variation to other parts of the material. I'd like to focus
on the other two masked elements—the tires and the metallic parts, and make
them a little bit more interesting, visually speaking.

Change the color of the rubber constant3 vector to something that better7.
represents that material. At the moment, we've been using a blueish color, so
something closer to black would probably be a better match—even though white
can be quite cool as well. Make it your own!
Create a Multiply node right after that constant3 vector and hook its A input pin8.
to the output of the same constant3. Give the B value something like 0.5, which
can be done in the Details panel without the need to create a new Constant.
Lerp between the default value of the constant3 and the result of the previous9.
multiplication. We'll be feeding the Alpha in the next steps.
Create a Texture Sample and assign the T_Smoked_Tiled_D asset to its texture10.
slot.
Connect a Texture Coordinate node to the just created Texture Sample and give11.
it a higher value than the default 1. I've gone with 3, just so we can see the effect
this will have more clearly in the future.

Opaque Materials and Texture Mapping Chapter 3

[143]

Drag a pin out of the Texture Sample node for the new black and white smoke12.
texture and create a Cheap Contrast node.
Create a constant and connect it to the Cheap Contrast node. This will increase13.
the difference between the dark and white areas of the texture it is affecting,
making the final effect more obvious.
Connect the result of the Cheap Contrast node to the Alpha of the new Lerp14.
node you created in step 9, and connect the output of that to the original Lerp
node that is being driven by the texture mask:

Opaque Materials and Texture Mapping Chapter 3

[144]

We've managed to introduce a little bit of color variation thanks to the use of the
smoke texture as a mask. This is something that we'll come back to in future
recipes, as it's quite useful when you want to create non-repetitive materials.

Clicking on the teapot icon in the Material Editor Viewport whichever
mesh you have selected on the Content Browser as the visible asset. This
is useful for previewing changes without moving back and forward
between the material editor and the main viewport.

Finally, let's introduce some extra changes to the metallic parts of the model in a
very similar way to what we've done with the rubber. To do that, head over to the
Roughness section of the material graph.

Create a Texture Sample parameter and assign the T_MacroVariation texture to15.
it. This will serve as the Alpha for a new Lerp node we are about to create.
Add two simple constants and give them two different values. Keep in mind that16.
these will affect the Roughness of the metallic parts when choosing the values.
Include a Lerp node and plug the new constants into the A and B input pins.17.
Remember to also plug in the red channel of the Texture Sample to the Alpha.

Why are we connecting the Red channel into the Alpha of the Lerp node?
Each individual channel of an image offers a black and white picture, in
contrast with the RGB output, which gives us a color texture.

Opaque Materials and Texture Mapping Chapter 3

[145]

Finally, replace the initial constant that was driving the Roughness value of the18.
metallic parts with the node network we have created in the three previous steps.
The graph should now look something like this:

And after doing that, let's now... oh, wait, I think we can call it a day! After all of those
changes have been made, we will be left with a nice new material that is a more realistic
version of the shaders we had previously created. Furthermore, everything we've done
constitutes the basics of setting up a real material in Unreal Engine 4. Combining textures
with math operations, blending nodes according to different masks, and taking advantage
of different assets to create specific effects are everyday tasks that many artists working
with the engine have to face. And now you know how to as well! Let's check out the results
before moving on, and see you in the next recipe:

Opaque Materials and Texture Mapping Chapter 3

[146]

How it works...
We are at a point where I feel it's pertinent to talk about the importance of correctly laid-out
UVs. Everything we've used so far relies on them—starting with the Texture Samples we've
placed to the masks that drive the position of the different material effects we are using.
They map where these different nodes are placed across the surfaces of our models, but
they are also a part of the 3D modeling process that I feel doesn't receive enough attention.

This is partly because 3D models are created in a wide variety of computer programs. Some
of them allow for UV editing, and they tend to be the most 3D oriented packages: Max,
Maya, C4D, Blender. However, other useful programs that can also create these type of
assets don't allow you to edit the UVs of the models, and this is something that limits what
can be done inside of Unreal. If that's your case, you might want to consider taking your
models to a program that lets you create and edit the UVs. For instance, Blender is a freely
available package that you can try to use to do just that as well as many more things. The
point is, UVs are quite important in the context of Unreal and this should be noted before
moving forward.

There's more...
The material we've created in this recipe isn't a particularly complex one—it has some basic
math thanks to us using the Lerp node, and it also includes a couple of Texture Samples
that drive the appearance of the final shader. Even though this isn't something very
demanding, I didn't want to pass over the opportunity of introducing certain limitations
that arrive when working with mobile platforms. Better to talk about them now, while we
haven't encountered any issues, rather than wait until we hit a wall.

Opaque Materials and Texture Mapping Chapter 3

[147]

The first thing to talk about when mixing textures and mobile platforms is the maximum
size these type of assets can have. It's 2K, or 2048 by 2048 pixels. There are other quirks
though: for example, the images we use need to be a power of two, preferably square (64 x
64), but definitely at least complying with that first requirement (512 x 64 would also be
accepted).

Apart from this, which is something to get right from the beginning, it is also
recommended to leave the Compression settings as either the Default or the Normal
Map option, as they require the least amount of memory. Following that logic, using as few
textures as possible will help to keep the memory demands of your project low and the
number of texture requests from memory at a nice point.

Now that you know a bit more about this topic, test yourself by going
back and changing the different parts of the material that we've created.
Changing the textures that we've used, playing with the rotation values,
or modifying the roughness and metallic properties will make you more
confident in your skills, so make sure to give it a go!

See also
I wanted to leave you with the official documentation that Epic Games provides for using
Textures in Unreal Engine: https:/ /docs. unrealengine. com/ en-us/ Engine/ Content/
Types/Textures.

They provide a thorough look at that type of asset within the engine, even going so far as
giving guidelines for importing different images, best practices, and how to create some
more complex textures such as normal maps. Don't hesitate to check it out!

A plastic cloth using Fresnel and detail
texturing
We've started to use textures extensively in the previous recipe, and while at it we also had
the opportunity to talk about certain useful nodes, such as the Cheap Contrast one or the
CustomRotator. Just like those two, Unreal includes several other ones that are there for a
number of reasons, sometimes to improve the look of our models or to create specific
effects in a smart way. Whatever the case, learning about them is sure to improve the look
of our scenes.

https://docs.unrealengine.com/en-us/Engine/Content/Types/Textures
https://docs.unrealengine.com/en-us/Engine/Content/Types/Textures
https://docs.unrealengine.com/en-us/Engine/Content/Types/Textures
https://docs.unrealengine.com/en-us/Engine/Content/Types/Textures
https://docs.unrealengine.com/en-us/Engine/Content/Types/Textures
https://docs.unrealengine.com/en-us/Engine/Content/Types/Textures
https://docs.unrealengine.com/en-us/Engine/Content/Types/Textures
https://docs.unrealengine.com/en-us/Engine/Content/Types/Textures
https://docs.unrealengine.com/en-us/Engine/Content/Types/Textures
https://docs.unrealengine.com/en-us/Engine/Content/Types/Textures
https://docs.unrealengine.com/en-us/Engine/Content/Types/Textures
https://docs.unrealengine.com/en-us/Engine/Content/Types/Textures
https://docs.unrealengine.com/en-us/Engine/Content/Types/Textures
https://docs.unrealengine.com/en-us/Engine/Content/Types/Textures
https://docs.unrealengine.com/en-us/Engine/Content/Types/Textures
https://docs.unrealengine.com/en-us/Engine/Content/Types/Textures
https://docs.unrealengine.com/en-us/Engine/Content/Types/Textures
https://docs.unrealengine.com/en-us/Engine/Content/Types/Textures
https://docs.unrealengine.com/en-us/Engine/Content/Types/Textures
https://docs.unrealengine.com/en-us/Engine/Content/Types/Textures

Opaque Materials and Texture Mapping Chapter 3

[148]

In this recipe, we'll be taking a look at some of those useful nodes to create a velvety effect,
something that would be more difficult without them. Let's take a look at them!

Getting ready
The scene we are going to use is similar to one we worked on in previous recipes from
Chapter 2, Post Processing Effects, but it includes a new element that is going to be the focus
of our work. The name of the level is 03_04_AdvancedTechniques_Start and it can be
found in the following folder: Content / UE4ShadersAndEffects / Maps /
Chapter03 / 03_02_MaterialInstance_Start.

If you want to follow, know that we'll be creating a velvet-like material. You can use your
own 3D model and scene if you want, as the only thing you'll need is an asset that is
properly UV-mapped to start. All of the assets that we'll be using are part of the Starter
Content, except for one texture that we are providing with the Unreal Project.

How to do it...
Here is an screenshot that highlights what we'll be doing in the following pages:

We are going to take a simple material and enhance it thanks to some of Unreal's material
nodes, which will help us—with very little effort on our side—to improve its final
appearance. First of all, open the level 03_04_AdvancedTechniques_Start and open the
material that is being applied to the tablecloth, named M_TableCloth_Start, as we are
going to be working on that one. As you can see, it only has a single Texture Sample
applied, being driven by a Texture Coordinate node that is adjusting the tiling of the asset:

Create a Constant3 vector and give it a soft red color, similar to the one being1.
displayed on the existing Texture Sample. I've chosen values of R = 0.90, G = 0.44,
and B = 0.44. We'll use this to drive a future effect with it.

Opaque Materials and Texture Mapping Chapter 3

[149]

Add a Lerp node after both the original Texture Sample and the Constant32.
vector, and connect the two nodes to its A and B pins.
It's not time to introduce a new node. Right-click anywhere within the material3.
graph and type Fresnel, and create that node.
Connect the output of the Fresnel node to the Alpha of the Lerp. This is the4.
material graph we should now be looking at:

The Fresnel effect node modifies the value of a given pixel depending on the
angle from which it is being viewed by the camera. When the normal of the
surface you are viewing points directly at you, the value will be zero, whilst when
the surface normal is perpendicular to the camera, a value of 1 will be in place.
This creates a black and white gradient that varies according to the camera
position and the surface the node is affecting, something quite useful in different
circumstances. In our case, where we are dealing with a cloth-like material, we
can use it to simulate the light dispersion on velvety surfaces, as the pixels that
face the camera will be seen differently to those that are directed elsewhere.

Opaque Materials and Texture Mapping Chapter 3

[150]

Select the Fresnel node and head over to the Details panel. Set5.
the Exponent parameter to something lower than the default, which will make
the effect more apparent. I've gone with 2.5, which seems to work fine:

Next up, we are going to start using another new different node: the Detail
Texturing one. This node allows us to use two different textures to enhance the
look of a material. Its usefulness resides in the ability to create highly detailed
models without the need for large texture assets. Of course, there might be other
cases where this is also useful beyond the example I've just mentioned. Let's see
how to set it up.

Right-click in the material graph and type Detail Texturing. You'll see a new6.
node appear, the one we want to use.
In order to work with this node, we are going to need some extra ones as well 7.
create three constants and two Texture Samples.
Connect the constants to the scale, diffuse intensity, and normal intensity input8.
pins. We'll give them values later.
Set the T_ground_Moss_D and the T_ground_Moss_N as the assets in the9.
Texture Samples we have created. They are part of the Starter Content, so you
should have them with you already.

Using the Detail Texturing node presents a little quirk, in that the previous two
Texture Samples that we've created will need to be converted into what is known
as a Texture Object.

Opaque Materials and Texture Mapping Chapter 3

[151]

Right-click on the two Texture Samples we've created and select the second10.
option, Convert to Texture Object.
Give the first constant, the one connected to the Scale pin, a value of 20 and a11.
value of 1 to the other Constants.
Connect the Diffuse output pin of the Detail Texturing node in the Base Color12.
of the main material graph, and the Normal to the node with the same name:

With that out of the way, we are pretty much done. However, let's use the Fresnel
node before we go once again to drive the Roughness parameter of the
material. The idea is to use the Fresnel node again, but this time to specify the
Roughness values. We want the parts that are facing the camera to have less clear
reflections than the parts that are perpendicular to our vision, see let's do that!

Create two constants, and give them different values. I've gone with 0.65 and13.
0.35: more rough if we are looking directly at the surface, less so around the areas
that don't face us.
Add a Lerp node, and connect the previously created Constants to its A and B14.
pins. The rougher value (0.65) should go into A.
Drag another pin from our original Fresnel node and hook it to the Alpha of the15.
new Lerp. The final graph should look something along these lines:

Opaque Materials and Texture Mapping Chapter 3

[152]

Finally, all we need to do is to click on the Apply and Save buttons and assign the material
to our model in the main viewport. I'll leave you with a final image of what we've created,
compared to what we used to have:

See you in the next section!

How it works...
Let's take a minute to go over how the Fresnel node works once again, as it can be tricky to
grasp at first. As we've already mentioned, this effect consists of giving a different value to
each pixel depending on the direction the normal at that point is facing. However, there are
certain settings we haven't yet gone over the parameters it takes, specifically.

Opaque Materials and Texture Mapping Chapter 3

[153]

There are three in this version of the node: ExponentIn, BaseReflectFrctionIn, and Normal.
The first of them controls the falloff of the effect, and higher values will make it only visible
on the parts of a surface that are perpendicular to the camera. The second attribute
specifies, put technically, "the fraction of specular reflection when the surface is viewed
from straight on". This basically specifies how the areas that are neither facing the camera
nor perpendicular to it behave. The Normal parameter lets us input such a map to modify
the effect.

Detail texturing is also a handy node to get familiar with, as seen in this example. But even
though it's quite easy to use, we don't really need it to blend and use at the same time two
textures or assets. As with pretty much everything else in Unreal, this task can be done
thanks to the use of a series of logically connected nodes, as we are about to see. So, how
does detail texturing work?

The answer can be found if you double-click on the node itself. Doing that will open up a
material function called DetailTexturing, which comes bundled with Unreal as part of the
Engine Content; more about this in the There's More section, next. This material function
contains a bunch of nodes that take care of creating the effect that you end up seeing, and
you can check them out inside of the editor. Because they are normal nodes, you can copy
and paste them into your own material. Doing that would remove the need to use the
Detail Texturing node itself, but this also highlights why we use Material Functions in the
first place they are a nice way of reusing the same logic across different materials whilst
keeping things organized.

There's more...
Just as the Detail Texturing node is part of the content that comes bundled with the engine,
so are plenty of other functions and assets. Accessing them is not a straightforward
operation, and for good reason—it's often best to leave these assets alone if you don't know
exactly what you are doing. However, we can find many examples from which we can
learn, just like we did in the preceding section. Not only that, but certain assets (such as
specific textures or models) are also hidden as part of that content, so accessing it is always
useful. If you want to do so, make sure to check the View Options icon situated in the
lower right-hand corner of the Content Browser and tick the checkbox for Show Engine
Content:

Opaque Materials and Texture Mapping Chapter 3

[154]

That's all you need to do!

See also
You can find more documentation about the Fresnel and the Detail Texturing nodes
through Epic's official documents:

https://docs.unrealengine. com/ en- us/ Engine/ Rendering/ Materials/ HowTo/ Fresnel

https://docs.unrealengine. com/ en- us/ Engine/ Rendering/ Materials/ HowTo/
DetailTexturing

https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/HowTo/Fresnel
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/HowTo/Fresnel
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/HowTo/Fresnel
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/HowTo/Fresnel
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/HowTo/Fresnel
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/HowTo/Fresnel
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/HowTo/Fresnel
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/HowTo/Fresnel
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/HowTo/Fresnel
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/HowTo/Fresnel
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/HowTo/Fresnel
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/HowTo/Fresnel
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/HowTo/Fresnel
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/HowTo/Fresnel
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/HowTo/Fresnel
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/HowTo/Fresnel
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/HowTo/Fresnel
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/HowTo/Fresnel
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/HowTo/Fresnel
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/HowTo/Fresnel
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/HowTo/Fresnel
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/HowTo/Fresnel
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/HowTo/Fresnel
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/HowTo/DetailTexturing
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/HowTo/DetailTexturing
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/HowTo/DetailTexturing
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/HowTo/DetailTexturing
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/HowTo/DetailTexturing
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/HowTo/DetailTexturing
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/HowTo/DetailTexturing
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/HowTo/DetailTexturing
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/HowTo/DetailTexturing
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/HowTo/DetailTexturing
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/HowTo/DetailTexturing
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/HowTo/DetailTexturing
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/HowTo/DetailTexturing
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/HowTo/DetailTexturing
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/HowTo/DetailTexturing
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/HowTo/DetailTexturing
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/HowTo/DetailTexturing
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/HowTo/DetailTexturing
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/HowTo/DetailTexturing
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/HowTo/DetailTexturing
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/HowTo/DetailTexturing
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/HowTo/DetailTexturing

Opaque Materials and Texture Mapping Chapter 3

[155]

Creating a semi procedural material
So far, we've worked on examples of materials that were applied to relatively small 3D
models, where a single texture or color was enough to make them look good. However,
that is but one case from the many different ones that we can encounter in a real-life project.
Sometimes, we will face other scenarios where we have to deal with bigger meshes, making
the texturing process not as straightforward as we've seen so far. In those circumstances,
we are forced to think creatively and find ways to realistically shade that asset. Thankfully,
Unreal provides us with a very robust material editor and several ways of tackling this
issue, as we'll see next.

Getting ready
We are about to use several different assets to semi-procedurally texture a 3D model, but all
of the resources that you will need come bundled by default with Unreal Engine 4. Be sure
to include the Starter Content if you want to follow along using the same textures and
models I'll be using, but don't worry if you want to use your own everything we are about
to do can be done with very simple assets that you can get on the web.

As always, if you have the Unreal project that we are providing you alongside this book
you can open the level named 03_04_SemiProceduralMaterial_Start, which you can find in
the following folder: Content / UE4ShadersAndEffects / Maps / Chapter03.

See you in the next section!

How to do it...
Let's start this recipe by opening up the 03_04_SemiProceduralMaterial_Start level and
looking at the problems that we have to deal with when working with large-scale surfaces.
As you can see, I've placed two cameras in the scene, just so we can better understand what
we are dealing with. The geometry is quite simple, as we only have a plane, but that will be
enough for this case. Let's take a look through the cameras:

Opaque Materials and Texture Mapping Chapter 3

[156]

As you can see, the first image is actually quite nice we have a concrete floor that looks like
a concrete floor! However, things start to get messy once the camera gets farther from the
ground. Even though it's difficult to notice, the repetition of the texture across the surface is
starting to show up, and the overall look is quite bland because of that. This is what we are
going to try to fix in this recipe: creating materials that look good both up close and far
from the camera thanks to semi-procedural material creation techniques. Let's dive right in:

Open up the material being applied to the plane, which is1.
M_SemiProceduralConcrete_Start. You should see a lonely Texture Sample
(T_Concrete_Poured_D) node being driven by a Texture Coordinate, which is
currently adjusting the tiling. This will serve as our starting point.
Add another Texture Samples, and set the T_Rock_Marble_Polished_D texture2.
from the Starter Content as its value. We are going to blend between these first
two images thanks to the use of a third one, which will serve as a mask.

Using multiple similar assets can be key when creating semi-procedural
content. Blending between two or more textures in a random pattern
helps to alleviate the visible tiling across big surfaces.

Create a Texture Coordinate node and give it a value of 20 both in the UTiling3.
and the VTiling sections of the Details panel. Hook the output node to the
UVs input pin of the previous two texture samples.

The next step would be to create a Lerp node that we could use to randomize
between the first two images. However, if we want to fully mix the two initial
assets, we need to have a black and white image as a mask, and even though
we've selected one, it doesn't completely work as it currently is. Let's take a look
at it:

Opaque Materials and Texture Mapping Chapter 3

[157]

As you can see, it's more of a gray and white image rather than a black and white
one. Even though that is great to blend between two textures (after all, gray
values sample from the two assets), we still want to see fully white or black areas
every now and then. If we do that, we would be ensuring that the black parts of
the mask show Input A, the white parts show Input B, and the gray areas display
a mixture of both. That's the ideal scenario, as we would get both textures and a
soft blend between them in certain areas. We can achieve that effect if we increase
the contrast of the image used as a mask.

Create a new Texture Sample and assign the T_MacroVariation resource to it.4.
Create a Cheap Contrast node after this last Texture Sample and hook its input5.
pin to the output of said texture (T_MacroVariation).
Add a Constant and connect it to the contrast slot in the Cheap Contrast node.6.
Give it a value of 0.5, so that we achieve the desired effect we mentioned before:

If you want to preview how a certain node is affecting the material graph,
you can do so by right-clicking on the desired node and selecting the Start
Previewing Node option.

Create a Lerp node, which we'll use to combine the first two texture samples7.
according to the mask we've created in the previous step.

Opaque Materials and Texture Mapping Chapter 3

[158]

Connect the output nodes of the first two textures8.
(T_Rock_Marble_Polished_D and T_Concrete_Poured_D) to the A and B input
pins of the Lerp node, and connect the Alpha to the output of the Cheap
Contrast node. The graph should now look something like this:

Opaque Materials and Texture Mapping Chapter 3

[159]

We've managed to add variety and randomness to our material thanks to the
graph we've created in the previous steps. In spite of that, there's still room for
improvement, as we can take the previous approach one step further and
improve upon what we've created. We will now include a third texture, which
will help to further randomize the shader, as well as teach ourselves how to
further modify an image within Unreal.

Create a new combo made out of a Texture Coordinate and a Texture Sample.9.
Assign the T_Rock_Sandstone_D asset as the default value of the Texture
Sample, and give the Texture Coordinate a value of 15 in both the U and the V
tiling fields.
Add a Desaturation node and a Constant one right after that last Texture10.
Sample. Give the Constant a value of 0.95 and connect it to the Fraction input
pin of the Desaturation node.
Connect the output of the last created Texture Sample into the main input node11.
of the Desaturation node:

Following these steps has left us with a texture quite similar to the other ones
we've been using as concrete lookalikes, which will enable us to further mix it
with the rest without it looking too out of place. Let's create the final blend mask!

Add a new Texture Sample with the T_MacroVariation asset as its selected12.
texture.

Opaque Materials and Texture Mapping Chapter 3

[160]

Include a Texture Coordinate node giving it a value of 2.13.
Add a CustomRotator node, and hook it to the previously created Texture14.
Coordinate one.
Create a Constant and feed it to the Rotation Angle input pin of the15.
CustomRotator. Give it a value of 0.167, which will mean a rotation of 60
degrees.

Why does a value of 0.167 equate to a rotation value of 60 degrees? Just
like we saw two recipes ago, the Custom Rotator node maps the 0 to 360
degree range to a range of 0 to 1. This makes 0.167 roughly 60 degrees -
60.12 degrees, to be precise!

Hook the Custom Rotator into the Texture Sample. 16.
Create a new Lerp node, and feed the previous Texture Sample into the Alpha17.
input pin.
Connect the A pin to the output of the original Lerp and connect the B pin to the18.
third concrete texture. We are now finished creating random variation for this
material!

If you have any doubts about the final graph, be sure to check the material we are
providing as an example M_SemiProceduralConcrete_End. Our end result will be visible
in this final image:

As you can see, the final shader looks good both up close and far away from the camera.
This is happening thanks to the techniques we've used, which help reduce the repetition
across our 3D models quite dramatically. Be sure to pay attention to these methods, as they
are quite awesome!

Opaque Materials and Texture Mapping Chapter 3

[161]

How it works...
The principles behind this technique are quite simple—just introduce enough randomness
as you can so you can cheat the eye into thinking there's no one texture repeating endlessly.
Even though the principle is simple to grasp, tricking the eye is no simple task and as the
surfaces you work on increase in size, so will your challenge as an artist.

Choosing the right textures for the job is part of the solution—be sure to blend gently
between different layers, and don't overuse the same masks throughout the entirety of your
projects. Doing so could result in the eye knowing what's going on. In general, this is a
method that has to be increasingly tested. Keep that in mind!

There's more...
In this recipe, we've created what could be considered as semi-procedural materials
through the use of several black and white gradient noise textures. However, they are
limited in that they too repeat themselves just like the images we were using as the base
color. Thankfully, we have access to the Noise node in Unreal, which gets rid of that
limitation:

This node is exactly what we are looking for in order to create fully procedural materials.
As you can see, it creates random patterns that we have a great deal of control over through
the settings in the Details panel, and the resulting maps are similar to the ones we've used
in this recipe.

The reason why we didn't take advantage of this asset is because it is taxing on the
performance of our apps, so it's often used to create nice looking materials that are then
baked. We'll be taking a look at that in the next recipe, so be sure to check it out!

Opaque Materials and Texture Mapping Chapter 3

[162]

See also
Before we go, you can find an extensive article on the Noise node at the following
link: https://www. unrealengine. com/ en- US/tech- blog/ getting- the- most- out- of-
noise-in-ue4

It's also a great resource if you want to learn more about procedural content creation, so be
sure to give it a go!

Baking out a material
Materials are a type of asset that can be sometimes simplified without losing any quality.
Think, for example, about the shader we created in the previous recipe—we made use of
several nodes to make sure that it looked good both on close-ups as well as when the
camera was far from the object the material was being applied to. Creating materials that
way can sometimes be expensive for the GPU, especially if the object that is being rendered
is very far from the screen or at a point where we can no longer make out the subtleties on
its surface.

For those cases, Unreal offers us the possibility of baking out a material into another one, a
more simplified version of our initial asset. What we'll be doing now is reducing the
complexity of the original material graphs by baking out simple textures that behave just
like the more complicated original material graphs we had previously set up. Let's go!

Getting ready
The scene we will be using throughout this recipe is the level
named 03_06_BakingAMaterial_Start, located in the following folder: Content /
UE4ShadersAndEffects / Maps / Chapter03.

We will be using the same scene we saw in the recipe called Simulating velvet through
Fresnel and Detail Texturing, as it includes several assets that we will be able to merge or
optimize. If you want to follow on your own, there might be some considerations to take
into account, such as the following:

The 3D models need to be correctly UV-unwrapped.
The UVs need to stay in the 0 to 1 UV space.

https://www.unrealengine.com/en-US/tech-blog/getting-the-most-out-of-noise-in-ue4
https://www.unrealengine.com/en-US/tech-blog/getting-the-most-out-of-noise-in-ue4
https://www.unrealengine.com/en-US/tech-blog/getting-the-most-out-of-noise-in-ue4
https://www.unrealengine.com/en-US/tech-blog/getting-the-most-out-of-noise-in-ue4
https://www.unrealengine.com/en-US/tech-blog/getting-the-most-out-of-noise-in-ue4
https://www.unrealengine.com/en-US/tech-blog/getting-the-most-out-of-noise-in-ue4
https://www.unrealengine.com/en-US/tech-blog/getting-the-most-out-of-noise-in-ue4
https://www.unrealengine.com/en-US/tech-blog/getting-the-most-out-of-noise-in-ue4
https://www.unrealengine.com/en-US/tech-blog/getting-the-most-out-of-noise-in-ue4
https://www.unrealengine.com/en-US/tech-blog/getting-the-most-out-of-noise-in-ue4
https://www.unrealengine.com/en-US/tech-blog/getting-the-most-out-of-noise-in-ue4
https://www.unrealengine.com/en-US/tech-blog/getting-the-most-out-of-noise-in-ue4
https://www.unrealengine.com/en-US/tech-blog/getting-the-most-out-of-noise-in-ue4
https://www.unrealengine.com/en-US/tech-blog/getting-the-most-out-of-noise-in-ue4
https://www.unrealengine.com/en-US/tech-blog/getting-the-most-out-of-noise-in-ue4
https://www.unrealengine.com/en-US/tech-blog/getting-the-most-out-of-noise-in-ue4
https://www.unrealengine.com/en-US/tech-blog/getting-the-most-out-of-noise-in-ue4
https://www.unrealengine.com/en-US/tech-blog/getting-the-most-out-of-noise-in-ue4
https://www.unrealengine.com/en-US/tech-blog/getting-the-most-out-of-noise-in-ue4
https://www.unrealengine.com/en-US/tech-blog/getting-the-most-out-of-noise-in-ue4
https://www.unrealengine.com/en-US/tech-blog/getting-the-most-out-of-noise-in-ue4
https://www.unrealengine.com/en-US/tech-blog/getting-the-most-out-of-noise-in-ue4
https://www.unrealengine.com/en-US/tech-blog/getting-the-most-out-of-noise-in-ue4
https://www.unrealengine.com/en-US/tech-blog/getting-the-most-out-of-noise-in-ue4
https://www.unrealengine.com/en-US/tech-blog/getting-the-most-out-of-noise-in-ue4
https://www.unrealengine.com/en-US/tech-blog/getting-the-most-out-of-noise-in-ue4
https://www.unrealengine.com/en-US/tech-blog/getting-the-most-out-of-noise-in-ue4
https://www.unrealengine.com/en-US/tech-blog/getting-the-most-out-of-noise-in-ue4
https://www.unrealengine.com/en-US/tech-blog/getting-the-most-out-of-noise-in-ue4
https://www.unrealengine.com/en-US/tech-blog/getting-the-most-out-of-noise-in-ue4
https://www.unrealengine.com/en-US/tech-blog/getting-the-most-out-of-noise-in-ue4
https://www.unrealengine.com/en-US/tech-blog/getting-the-most-out-of-noise-in-ue4

Opaque Materials and Texture Mapping Chapter 3

[163]

There need to be no dynamic effects happening within your base materials, such
as vertex animation or panning textures.
Only Static Meshes; Skeletal Meshes are not supported.

With that in mind, let's get to it!

How to do it...
In this recipe, we are not only going to be looking at materials and textures, but also
at Blueprints! If you are using Unreal, you are bound to come into contact with them – they
are basically the Visual Scripting language that Unreal uses, a helpful way for artists to
create functionality without the need to learn how to program. We will be creating a very
simple Blueprint to help us bake a material, so let's start with that:

Create a Blueprint anywhere in the Content Browser. I'm creating mine in the1.
same folder where all of the assets for this Chapter live, inside Content |
UE4ShadersAndEffects | Assets | Chapter03 | MaterialBaking. I've named
mine BP_MaterialBaker:

Opaque Materials and Texture Mapping Chapter 3

[164]

Apart from the Blueprint, we'll also need a Render Target. You can create one by2.
right-clicking in the same folder as before, and choosing Materials & Textures
| Render Target. I've named it RT_TextureTarget:

Even though this is just the first time we've used Render Targets so far,
they are quite straightforward. Think of them as a white canvas in which
you can store image information that you want to render. They are, in a
way, the opposite of textures, in that we don't read info from them as
much as we store data inside.

Opaque Materials and Texture Mapping Chapter 3

[165]

Open up the Blueprint you've just created and select all of the nodes that exist on3.
the Event Graph. Delete them all! If you don't know your way around the
Blueprint editor, check the How it works... section of this recipe. They are quite
straightforward!
Create a Custom Event and give it a name—I'll go with OnBake. To create one,4.
just right-click anywhere within the Event Graph and start typing Custom
Event—it will eventually appear before you.
Drag a line from the execution pin of the Custom Event node and create a Draw5.
Material To Render Target function.

Every time that you drag a line from a pin and then release the left mouse
button, you'll be immediately prompted to create a new node, just as if
you clicked with the right mouse button. The advantage of this is that the
nodes that you'll be able to create will be context sensitive, meaning that
you'll only see the nodes that make sense to be created according to the
one where you are coming from!

Again, drag a line from the Texture Render Target and the Material pins of the6.
just created Draw Material To Render Target node. Select the Promote to
Variable option in both cases. Give them appropriate names, like
RenderTargetTexture and MaterialToRender.
Make the variables Public. You can do so by clicking on the Eye icon to the right7.
of their names in the Variables section of the MyBlueprint panel. The Even
Graph should now look something like this:

Let's now head over to the Construction script, where we'll be calling the Custom
Event, which we've just created.

Opaque Materials and Texture Mapping Chapter 3

[166]

Drag from the pin of the Construction Script and start typing OnBake as soon as8.
you release the mouse. That will let you create a node that will trigger the
functionality that we created before.
Click on Save and Compile:9.

With that done, we have almost everything we need to bake out our materials.
But before we do, we need to slightly modify the base materials that we are about
to bake. Because of that, let's follow the next steps:

Create a copy of the material that you want to bake. I'll do so with the10.
M_TableCloth one, which I'll rename M_TableCloth_Baking.
Open it up and set the Shading Model to Unlit.11.

If you open M_TableCloth_Baking, you'll be able to see that I've removed
certain parts of the graph, especially the Fresnel node. This is because the
material baker can't process screen space effects or dynamic nodes, so
keep that in mind!

The next steps are going to be quite important—we are going to be exporting one
texture at a time, so we need to hook up each section of the graph that we want to
export into the Emissive Color pin of the main material node. In other words,
each cable that we were connecting into the Base Color or the Roughness nodes
previously will now be connected into the Emissive one. As it only accepts one
line, we'll do it as many times as we need to.

Connect the Diffuse output pin from the DetailTexturing node into the12.
Emissive Color pin of the main material graph.
Drag and drop the BP_MaterialBaker blueprint from the Content Browser into13.
the scene, and place it wherever you want.

Opaque Materials and Texture Mapping Chapter 3

[167]

Assign the appropriate render target and material that you want to bake in the14.
Details panel. After that, move the blueprint around (this is needed for the
Render Target texture to update):

Once all of these steps are done, the render target should have created a new
texture containing the information of the diffuse color for the material that we've
specified. Because that information lives inside of the render target, and we don't
want to lose that data, we need to create a texture out of it.

Select the render target (we called it RT_TextureBaker) within the Content15.
Browser and right-click on it. Select the Create Static Texture option.
Rename the newly created asset something unique, such16.
as T_TableCloth_Baked_D. Remember that for every different texture that your
original material contains, you will have to repeat steps 12 to 16. Now that we
have a new baked texture, let's create a new material and replace the original one
to compare the results.

Create a new material and drag the newly created texture into it. Connect it to17.
the Base Color node.
Replace the material that is being applied to the SM_ShoeRackRug model with18.
the new one:

Opaque Materials and Texture Mapping Chapter 3

[168]

As you can see, both the original material and the newly baked one look identical, but we
have an increase in performance using the first one.

How it works...
Something we need to talk about briefly is the Blueprint Editor. Even though we've used it
lightly in this recipe, it might be a good idea to go over it if we want to get the most out of
Unreal. Before we jump into it, let's remind ourselves how to create a Blueprint; just right-
click anywhere in the Content Browser and select the Blueprint option. Once we have
something to work upon, double-click on it and let's take a look at the Blueprint editor:

Viewport: This is where you can see the assets that can be part of the Blueprint, if1.
any. Things such as static meshes would appear in here.
Construction Script: The place to code the functionality that happens before2.
runtime, whilst you are on the editor.
Event Graph: This is the section where we code different functionalities through3.
Visual Scripting.
Details panel: Similar to other sections we've seen elsewhere, this offers context-4.
sensitive information.
Components tab: A window that display the hierarchy of the Blueprint.5.

Opaque Materials and Texture Mapping Chapter 3

[169]

My Blueprint: Section of the asset that displays all of the available meta assets,6.
such as the graphs, functions, variables, and components.
Compiler results and find results: A handy place to see if everything we are7.
doing plays nicely with the editor or if there's something we should worry about.

Those are the basic sections, and we've used several ones in this recipe—the Event Graph
and the Construction Script specifically. We are sure to be coming back to it later on!

There's more...
Before we go, I'd like to mention a couple of things that were left unsaid. First of all, the
resolution of the render target. You can change it according to your needs, and doing so is
quite simple: just double-click on the asset itself to open up the texture editor, and focus on
the Details panel. Size X and Size Y determine its resolution, so set it to whatever you need!

Something else that you might want to check out is the Merge Actors tool. You can find it
under Window | Developer Tools, and it allows you to do something very similar to what
we've done in this recipe. Even though it can also merge actors, you can use it on a single
model to create a simpler version of the material that is being applied. Make sure to check
the Use Specific LOD Level under the LOD Selection Type settings to enable the material
baking part of the tool, and then play with the options under Material settings to create the
material you want. It's quite a straightforward process, so be sure to check it out!

All of those techniques are really helpful in multiple game development scenarios,
especially during the late stages of development. Think, for instance, about a level where
you've crammed in multiple different assets. Performance might be an issue, especially on
low-end devices that don't support as many materials at the same time onscreen. Using
these techniques can help reduce the number of draw calls, as well as the complexity of the
shaders themselves. Keeping those elements in line can be helpful whenever you struggle
maintaining an even level of performance, hence their importance.

See also
This functionality is based on a tutorial from Epic, which you can find here: https:/ /www.
youtube.com/watch? v=WaM_ owaUpbE.

You can read a little bit more about the topic on the following website: https:/ /docs.
unrealengine.com/ en- us/ Engine/ Actors/ Merging.

https://www.youtube.com/watch?v=WaM_owaUpbE
https://www.youtube.com/watch?v=WaM_owaUpbE
https://www.youtube.com/watch?v=WaM_owaUpbE
https://www.youtube.com/watch?v=WaM_owaUpbE
https://www.youtube.com/watch?v=WaM_owaUpbE
https://www.youtube.com/watch?v=WaM_owaUpbE
https://www.youtube.com/watch?v=WaM_owaUpbE
https://www.youtube.com/watch?v=WaM_owaUpbE
https://www.youtube.com/watch?v=WaM_owaUpbE
https://www.youtube.com/watch?v=WaM_owaUpbE
https://www.youtube.com/watch?v=WaM_owaUpbE
https://www.youtube.com/watch?v=WaM_owaUpbE
https://www.youtube.com/watch?v=WaM_owaUpbE
https://www.youtube.com/watch?v=WaM_owaUpbE
https://www.youtube.com/watch?v=WaM_owaUpbE
https://www.youtube.com/watch?v=WaM_owaUpbE
https://docs.unrealengine.com/en-us/Engine/Actors/Merging
https://docs.unrealengine.com/en-us/Engine/Actors/Merging
https://docs.unrealengine.com/en-us/Engine/Actors/Merging
https://docs.unrealengine.com/en-us/Engine/Actors/Merging
https://docs.unrealengine.com/en-us/Engine/Actors/Merging
https://docs.unrealengine.com/en-us/Engine/Actors/Merging
https://docs.unrealengine.com/en-us/Engine/Actors/Merging
https://docs.unrealengine.com/en-us/Engine/Actors/Merging
https://docs.unrealengine.com/en-us/Engine/Actors/Merging
https://docs.unrealengine.com/en-us/Engine/Actors/Merging
https://docs.unrealengine.com/en-us/Engine/Actors/Merging
https://docs.unrealengine.com/en-us/Engine/Actors/Merging
https://docs.unrealengine.com/en-us/Engine/Actors/Merging
https://docs.unrealengine.com/en-us/Engine/Actors/Merging
https://docs.unrealengine.com/en-us/Engine/Actors/Merging
https://docs.unrealengine.com/en-us/Engine/Actors/Merging
https://docs.unrealengine.com/en-us/Engine/Actors/Merging
https://docs.unrealengine.com/en-us/Engine/Actors/Merging

Opaque Materials and Texture Mapping Chapter 3

[170]

Distance-based texture blending
We are now going to learn how to blend between a couple of different textures according to
how far we are from them. Even though it's great to have a complex material that works
both when the camera is close to the 3D model or far from it, having a complex material
graph operating on a model that only occupies a small percentage in our screens can be a
bit too much. This is especially true if we can achieve the same effect with a much lower
resolution texture.

With that goal in mind, we are going to take a look at another useful node available in the
material graph that will make our lives easier. Let's get started!

Getting ready
If we take a look back at one of the recipes that we've tackled in this chapter, you will
probably remember about the semi-procedural concrete we created a couple of recipes ago.
While it wasn't an overly complicated material, it did make use of several nodes and
textures. This serves us well to prove what we want to show in the following pages: a
material that makes use of simple textures to create a similar effect to our original complex
shader. We will thus start our journey with a very similar scene to what we have already
seen, and you can find it in the following folder: Content / UE4ShadersAndEffects /
Maps / Chapter03 / 03_07_DistanceBasedBlending_Start.

Let's now take a look at it and start improving things in there!

Opaque Materials and Texture Mapping Chapter 3

[171]

How to do it...
Right before we start this recipe, I'd like to mention that I've created another texture for
you, named T_DistantConcrete_D, which we'll be using in the following steps. The curious
thing about this asset is that it's a baked texture from the original, more complex material
we used in the Creating a Semi Procedural Material recipe. So, we are actually using two
different things we learner in previous lessons—a baked texture and a semi-procedural
asset. This is top-tier stuff!

With that said, let's start taking a look at how to achieve our goal of distance blending two
textures:

Create a new material, which I've called M_DistanceBasedConcrete, and apply it1.
to the plane in the center of the level. This is the humble start of our journey!
Add two Texture Samples, and choose the T_Concrete_Poured_D and the2.
T_DistantConcrete_D resources as the selected assets.
Include a Texture Coordinate node and plug it into the first of the two Texture3.
Samples. Give it a value of 20 for both fields in the Details panel, UTiling, and
VTiling.
Finally, place a Lerp node into the graph and connect its A and B pins to the4.
previous created Texture Samples:

Opaque Materials and Texture Mapping Chapter 3

[172]

So far, everything we've done is a simple mixture of two textures, one of which
we had previously used in a different recipe as our base image. The idea is to
create something very similar to what we previously had, but more efficient. The
part that we are now going to tackle is the Distance Based calculations, as we'll
see next.

 Add an Absolute World Position node by right-clicking anywhere within the5.
content browser and typing World Position. Be careful not to type Absolute,
as that will prevent the search box from finding the node.
Create a Camera Position node, in a similar fashion to what we've seen before for6.
the World Position node. Similarly, even though you can type Camera Position
when looking for the node, the actual name is Camera Position WS. The
WS stands for world space.
Include a Distance node after the previous two and connect it to them. Absolute7.
World Position should be plugged into the A input pin, and Camera Position
should connect to B:

Next, add a Divide and a Constant node. It should appear if you just type that,8.
as there are no other similarly named nodes. Give the constant a value of
something like 256.
Connect the constant to the B pin of the Divide node, and connect the A to the9.
output of the previous distance.

The Constant we have just created will drive the distance at which the
swapping of the textures will happen. Higher numbers mean that it will
be further from the camera, so feel free to play around with several
values.

Opaque Materials and Texture Mapping Chapter 3

[173]

Add a Power node after the previous Divide, and connect the Base input pin it to10.
that.
Create another Constant to feed the Exp pin of the Power node. The higher the11.
number, the softer the transition between the two textures. Sensible numbers
happen in the range from 1 to 10, so set it to something like 4 or 5.
Finally, throw a Clamp node into the mix at the end, right after the final Power12.
node, and connect both. Leave the values at their default, with the 0 as a
minimum and 1 as the max.

The final node we have created does what it says, because it clamps whatever range of
values we feed it to a 0-to-1 range. This is precisely what we need, as the Lerp node expects
such values. The resulting graph should look something like this:

At this point, remember to connect the output pin of the Clamp to the Lerp that is blending
between the two original textures.

With all of the previous steps done, we should now have a material that can effectively
blend between two different assets according to the distance the model is from the camera.
Of course, this approach could be expanded upon to make it so that we are not just
blending between two textures, but as many as we want—it's just a matter on how far you
want to take things.

One of the most useful things we can use this technique for is to reduce the cost of
previously expensive materials, such as the semi-procedural concrete we used in one of the
previous recipes. I'll leave you with an image that highlights the results both up-close and
far away from our level's main plane using the new material, comparing it with the
previous semi-procedural one we had.

Opaque Materials and Texture Mapping Chapter 3

[174]

Here is a close-up comparison:

And here it is, as seen from far away:

How it works...
Let's now focus our attention for a little bit on what exactly is going on across the Distance
Blend nodes we've previously created. Even though we took the time to place them in the
graph, it's always good to know why we are doing the things we are doing. Plus, I
promised we would take a closer look, didn't I? I like to keep my word! First, let's refresh
our memory by bringing up the picture of the part of the graph that controls how we blend
between the two textures according to how far away the camera is:

Opaque Materials and Texture Mapping Chapter 3

[175]

The first node, Absolute World Position, gives us the position of the vertices we are
looking at in world space. The second one, Camera Position, tells us about the position of
the camera in the same coordinate system as before. With those two values, we can get the
distance by creating a third Distance node and plugging the first two nodes into its input
pins.

After that, we include a fourth node that will help us control the distance at which the
transition between one texture and the other happens. Its name is simply Distance, and we
add a Constant node into its B input pin for control purposes. Higher numbers will make
the fade effect happen further from the camera and vice versa.

One of the last steps is to use a Power node to affect the distribution of the effect across the
surfaces. This is similar to what we were seeing in the Fresnel node, in that higher numbers
will make the effect more visible beyond the central areas of the model we are looking at.

Finally, we add a Clamp node to get our values in the 0 to 1 range, precisely what the Lerp
node we are feeding all of this sequence into is expecting.

There's more...
Sometimes, it's useful to group these nodes together. There can be plenty of reasons to do
this, but I can think of two immediately: to quickly reuse them across different materials
and to keep things tidy. So how do we do that?

First, create a Material Function. I'll name mine MF_DistanceBlending. You can do so if
you right-click on the content browser and then select Materials & Textures | Material
Function:

Opaque Materials and Texture Mapping Chapter 3

[176]

After that, copy the nodes that are driving the distance blend (the ones before the Lerp
node in the original material) and paste them inside the function. Click on Apply and Save:

Opaque Materials and Texture Mapping Chapter 3

[177]

Once all of that is done, we can simply drag and drop the function into our material,
replacing the nodes that were there before. Neat!

See also
You can find extra information about some of the nodes we've used, such as the Absolute
World Position, in Epic Games' official documentation: https:/ /docs. unrealengine. com/
en-US/Engine/Rendering/ Materials/ ExpressionReference/ Coordinates. Not only that,
but that reference material provides access to some extra nodes that can be quite useful to
create other cool effects. We'll see some of them in future recipes, but be sure to check it out
in case something catches your eye!

https://docs.unrealengine.com/en-US/Engine/Rendering/Materials/ExpressionReference/Coordinates
https://docs.unrealengine.com/en-US/Engine/Rendering/Materials/ExpressionReference/Coordinates
https://docs.unrealengine.com/en-US/Engine/Rendering/Materials/ExpressionReference/Coordinates
https://docs.unrealengine.com/en-US/Engine/Rendering/Materials/ExpressionReference/Coordinates
https://docs.unrealengine.com/en-US/Engine/Rendering/Materials/ExpressionReference/Coordinates
https://docs.unrealengine.com/en-US/Engine/Rendering/Materials/ExpressionReference/Coordinates
https://docs.unrealengine.com/en-US/Engine/Rendering/Materials/ExpressionReference/Coordinates
https://docs.unrealengine.com/en-US/Engine/Rendering/Materials/ExpressionReference/Coordinates
https://docs.unrealengine.com/en-US/Engine/Rendering/Materials/ExpressionReference/Coordinates
https://docs.unrealengine.com/en-US/Engine/Rendering/Materials/ExpressionReference/Coordinates
https://docs.unrealengine.com/en-US/Engine/Rendering/Materials/ExpressionReference/Coordinates
https://docs.unrealengine.com/en-US/Engine/Rendering/Materials/ExpressionReference/Coordinates
https://docs.unrealengine.com/en-US/Engine/Rendering/Materials/ExpressionReference/Coordinates
https://docs.unrealengine.com/en-US/Engine/Rendering/Materials/ExpressionReference/Coordinates
https://docs.unrealengine.com/en-US/Engine/Rendering/Materials/ExpressionReference/Coordinates
https://docs.unrealengine.com/en-US/Engine/Rendering/Materials/ExpressionReference/Coordinates
https://docs.unrealengine.com/en-US/Engine/Rendering/Materials/ExpressionReference/Coordinates
https://docs.unrealengine.com/en-US/Engine/Rendering/Materials/ExpressionReference/Coordinates
https://docs.unrealengine.com/en-US/Engine/Rendering/Materials/ExpressionReference/Coordinates
https://docs.unrealengine.com/en-US/Engine/Rendering/Materials/ExpressionReference/Coordinates
https://docs.unrealengine.com/en-US/Engine/Rendering/Materials/ExpressionReference/Coordinates
https://docs.unrealengine.com/en-US/Engine/Rendering/Materials/ExpressionReference/Coordinates
https://docs.unrealengine.com/en-US/Engine/Rendering/Materials/ExpressionReference/Coordinates
https://docs.unrealengine.com/en-US/Engine/Rendering/Materials/ExpressionReference/Coordinates

4
Translucent Materials and More

The previous chapter saw us dealing with multiple different materials, and, even though
they were all unique, they also shared a common attribute: they all made use of the
Opaque Blend Mode and the Default Lit Shading Model. In this chapter, we are going to
explore other examples of materials that differ from at least one of those two attributes—so
get ready to talk about translucency, refraction, subsurface shaders, and planar reflections.
This is the place where we will start looking at those cases.

In this chapter, we will be covering the following topics:

 Creating a candle material with SSS
Setting up a truly transparent glass
A different type of translucency – holograms
Achieving realistic reflections
Mastering refraction by creating a pool water material
Water caustics
Animating a sea shaders

Let's dive right in!

Translucent Materials and More Chapter 4

[179]

Introduction
Now that we know how to properly set up and control a material in Unreal Engine 4
(UE4), it's time that we get out of our comfort zone and start exploring other areas. We have
a basic toolkit at our disposal, which is everything we learned in Chapter 3, Opaque
Materials and Texture Mapping, about material masks, texture coordinate nodes, and other
useful functions that we can apply within the material graph. It's now time to venture out
into the wild with that knowledge and learn about other non-opaque material cases, with
the final goal of mastering every possible material that we can image:

Creating a candle material with SSS
One of the first materials we'll explore outside the opaque blend mode realm is going to be
wax. Wax! I think that this can serve as a good first example in this journey we are about to
start, as it is a nice bridge between the Chapter 3, Opaque Materials and Texture Mapping,
and some of the further recipes you'll find in this one. Why? Well, we'll be using the SSS
shading model in order to build up this material, and that is neither too different from the
previous opaque model nor too similar to some others that we'll be seeing in a few pages.

Translucent Materials and More Chapter 4

[180]

Getting ready
You can follow along by opening the 04_01_Subsurface_Start map located inside
the Content / UE4ShadersAndEffects / Maps / Chapter04 folder. As always, all of
the assets that you'll be seeing in the next few pages can be found in there—but what if you
want to use your own?

You'll need a couple of things, as you did in previous chapters—the first being a basic scene
setup with some lights so that we can see the materials that we are about to introduce. The
second element you'll need to have is some type of model where the subsurface effect can
be seen, such as a candle, an ear, a human head, or a patch of snow or ice. Even though we
can apply a material that makes use of SSS to any mesh, the effect will be more obvious if
it's applied to an object where it would also be visible in real life. Take the following image
of the model that we'll be using as an example:

As you would expect, the thinner areas of that candle are the places where the effect will be
the most visible. You might want to take that into consideration when choosing your own
objects.

How to do it...
At the time of writing, Unreal offers several possibilities in terms of SSS rendering – two
main ones with the Subsurface Profile and Subsurface options, and some other more
specific ones, such as the pre-integrated skin method. In this section, we'll be exploring the
first implementation, but we'll talk about the others in the How it works section. Let's start
by creating the material that we'll use in this recipe:

Create a new material, and, assuming you've opened the previous level we1.
mentioned in the Getting ready section, assign it to the SM_Candle static mesh in
the scene that we have opened. I've named mine M_CandleWax_SSS. Double-
click on it once created to open the Material Editor.

If you are using your own assets, just assign the material to the model on which
you want to see the subsurface effect happening.

Translucent Materials and More Chapter 4

[181]

Drag and drop some of the textures that we have created for you into the2.
material you've just created. I've included three, named T_ Candle_
ColorAndOp, T_ Candle_ AORM, and T_ Candle_ Normals, which you can
see as the three texture samples here. Connect them to the appropriate nodes, as
seen in the following screenshot:

Instead of using the textures I've mentioned before, feel free to create your
own or use simple constants to drive the appearance of those basic
properties of the material. The important stuff is what comes next: setting
up the subsurface properties of the shader.

Before we go any further, it's time to create the asset that we'll be using in the next
few steps: the Subsurface Profile one. We are going to need it very soon, so let's
create it now.

Translucent Materials and More Chapter 4

[182]

Go back to the Content Browser and create a new Subsurface Profile object. You3.
can find the right type if you right-click and look in the Create Advanced Asset
category: Materials & Textures | Subsurface Profile. I've named mine SSP_Wax:

Now that we have it, we can set it up properly. Before we do that, however, let's
assign it to the material that we have applied to our candle.

Translucent Materials and More Chapter 4

[183]

Not having a Subsurface Profile object defined for our material means
that Unreal will assign it the default one, tailored to the visualization
of Caucasian human skin.

Once back in the Material editor, and with nothing selected in the material4.
graph, let's look at the Details panel and focus our attention on the Shading
Model category. The default value should be Default Lit, but we want to change
that to Subsurface Profile.

Assign SSP_Wax (or whatever you named your subsurface profile asset!) to5.
the Subsurface Profile section of the material. You can find this category right
after the previous one in the Details panel, as seen in the following screenshot:

Translucent Materials and More Chapter 4

[184]

With that done, we have finally told the Unreal Engine that the material we are
working with is going to behave like wax or human skin. The next steps are going
to deal with tweaking that effect until it looks like what we are after, and, to
achieve that, we'll need to head back to the Subsurface Profile object that we
created and tweak its parameters. Let's do that!

It's good to have the Subsurface Profile object applied to the material
before tweaking its properties as we are about to do, since this will enable
us to check how they affect the model in real time.

Open the previously created Subsurface Profile object by double-clicking on it in6.
the Content Browser. Having it open at the same time as the main viewport will
help you see how the candle material changes in real time.

The first parameter we can change is the Scatter Radius. This controls the7.
distance that the engine uses to perform the scattering effect in centimeters,
which has an obvious impact on the appearance of the material. I've chosen a
value of 30 so that the effect is easy to notice.
The next option we can tweak is the Subsurface Color, which acts as a control8.
mechanism for the overall effect. You can think of it as the intensity of the effect,
with a black value negating it and white acting as the opposite. Choosing a non-
grayscale value, similar to the diffuse color, can give you a more interesting
result, and that's what I've chosen for this category.

Translucent Materials and More Chapter 4

[185]

The third option we'll be talking about is the Falloff Color. If you change this,9.
you'll quickly notice how this parameter affects the color of the areas where the
scattering is happening the most—those where we can see the light trapped
inside the material. Be sure to play with this setting until you get the result you
want:

You'll note that there are some extra parameters that we haven't explored and there's a
reason for that. Subsurface profile is an asset that can be used to define the subsurface
behavior of many different materials, and the options that we haven't talked about were
created to serve other use cases. We might come back to some of them eventually, but you
can learn more about them in Epic's official documentation, available at https:/ / docs.
unrealengine.com/ en- us/ Resources/ Showcases/ DigitalHumans.

With all of these changes in place, there's one further interesting element that we can look
at before moving on. Apart from modifying the different settings within the Subsurface
Profile asset to get the results we want, there's also the option to make use of the Opacity
channel within the material graph. Through this, we have the ability to change how the
subsurface effect works across the entirety of our models. Going back to our candle
example, we want the scattering effect to happen on the main body of the object, but not on
the wick. We can set this up by plugging a mask into the Opacity input pin of the main
material node, as seen in the following screenshot:

https://docs.unrealengine.com/en-us/Resources/Showcases/DigitalHumans
https://docs.unrealengine.com/en-us/Resources/Showcases/DigitalHumans
https://docs.unrealengine.com/en-us/Resources/Showcases/DigitalHumans
https://docs.unrealengine.com/en-us/Resources/Showcases/DigitalHumans
https://docs.unrealengine.com/en-us/Resources/Showcases/DigitalHumans
https://docs.unrealengine.com/en-us/Resources/Showcases/DigitalHumans
https://docs.unrealengine.com/en-us/Resources/Showcases/DigitalHumans
https://docs.unrealengine.com/en-us/Resources/Showcases/DigitalHumans
https://docs.unrealengine.com/en-us/Resources/Showcases/DigitalHumans
https://docs.unrealengine.com/en-us/Resources/Showcases/DigitalHumans
https://docs.unrealengine.com/en-us/Resources/Showcases/DigitalHumans
https://docs.unrealengine.com/en-us/Resources/Showcases/DigitalHumans
https://docs.unrealengine.com/en-us/Resources/Showcases/DigitalHumans
https://docs.unrealengine.com/en-us/Resources/Showcases/DigitalHumans
https://docs.unrealengine.com/en-us/Resources/Showcases/DigitalHumans
https://docs.unrealengine.com/en-us/Resources/Showcases/DigitalHumans
https://docs.unrealengine.com/en-us/Resources/Showcases/DigitalHumans
https://docs.unrealengine.com/en-us/Resources/Showcases/DigitalHumans

Translucent Materials and More Chapter 4

[186]

Translucent Materials and More Chapter 4

[187]

In the preceding screenshot, you can see that we've connected the Alpha
channel of the color texture into the opacity input pin of the main material
node. This channel is shown as the grayscale image at the top of the
screenshot.

With all of those changes implemented in the material, we can now say that we've achieved
our objective: creating a candle made out of wax. We'll leave it here for the moment, but not
before having a look at the result. You must be feeling confident now about your ability to
tackle subsurface shading:

From left to right: no SSS, SSS radius of 1, and SSS radius of 30; bottom: the final result

How it works...
In the previous section, we looked at the implementation of the subsurface profile shading
model inside UE4. This is quite a powerful rendering technique, one that makes a huge
difference when we are dealing with materials that exhibit properties such as wax or skin.
But how does it work under the hood? First of all, we need to understand that this is not the
only way we can enable the subsurface effect in our materials. In total, there are four
shading models that can do so:

The standard subsurface model
The preintegrated skin model
The subsurface profile model
The two-sided foliage model

Translucent Materials and More Chapter 4

[188]

Each of these is geared toward achieving a specific goal, and we'll be exploring some of
them in later recipes. For now, let's focus on the one we know, which is aimed for use in
high-end projects.

The subsurface profile shading model works as a screen space technique, similar to what
we saw with ambient occlusion or screen space reflections back in Chapter 1, Physically-
based Rendering. This is a different implementation from what the other three methods offer,
and this is the key difference we need to be aware of when working with it. While the
standard subsurface shading model is cheaper and can run faster overall, using the
subsurface profile model offers several advantages in terms of quality. The different
settings we can modify, some of which we've already seen in the previous pages, such as
scatter radius or color, help us to realistically define the effect that is applied throughout
the material. Other settings, such as the ones found under the Transmission tab in a
Subsurface Profile asset, help to define how light scatters from the back of an object.

I would also like to point out the difference in functionality of some of the nodes that make
up a Subsurface Profile material. If you look at the main Material node in the Material
graph, you'll see that the Opacity input pin is no longer grayed out, unlike what happened
when we were using a Default Lit type of shader:

As you can see in the previous screenshot, the Opacity input pin is now available for us to
use. However, it can be a bit counter-intuitive as to what it does—it affects the strength of
the subsurface effect in our model, as we saw in this recipe, and not how opaque the 3D
mesh is actually going to be.

Something else that we need to note is the limitation with regards to the Metallic input pin.
If we plug anything into that slot, the subsurface effect will disappear; this is because that
material channel has now been repurposed in shading model to accommodate the
subsurface profile data. Keep that in mind!

Translucent Materials and More Chapter 4

[189]

There's more...
You might remember that the material for the candle that we created was being driven by
several textures placed within the material graph. We used three main ones: T_ Candle_
ColorAndOp, T_ Candle_ AORM, and T_ Candle_ Normals. I'd like to talk a bit more
about the first two, as we are doing something smart with them that we haven't seen before.

As you already know, some material attributes can be driven by the grayscale values. That
being the case, we find ourselves in the situation where we can use the RGB channels (as
well as the alpha channels) of a texture to drive certain material input. That's exactly what
we are doing with the T_Candle_AORM asset; we store the ambient occlusion, the
Roughness, and the Metallic textures into each of that image's channels (hence the
Ambient Occlusion, Roughness, and Metallic (AORM) suffix). You can see this in the
following screenshot:

See also
Epic Games is continuously updating their documentation on this topic, so be sure to check
it out at https://docs. unrealengine. com/ en- us/Engine/ Rendering/ Materials/
LightingModels/SubSurfaceProfile.

Setting up a truly transparent glass
After having played with a material that didn't make use of the Opaque blend mode for the
first time in the previous recipe, it is now time to go a little bit further. As we just saw, a
material that makes use of the subsurface profile shading model treats light differently than
the examples we created in earlier chapters. The next shaders we create will follow suit;
starting with a realistic glass material in this recipe, we are about to see how we can deal
with these type of surfaces. Let's take a look!

https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/LightingModels/SubSurfaceProfile
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/LightingModels/SubSurfaceProfile
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/LightingModels/SubSurfaceProfile
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/LightingModels/SubSurfaceProfile
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/LightingModels/SubSurfaceProfile
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/LightingModels/SubSurfaceProfile
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/LightingModels/SubSurfaceProfile
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/LightingModels/SubSurfaceProfile
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/LightingModels/SubSurfaceProfile
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/LightingModels/SubSurfaceProfile
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/LightingModels/SubSurfaceProfile
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/LightingModels/SubSurfaceProfile
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/LightingModels/SubSurfaceProfile
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/LightingModels/SubSurfaceProfile
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/LightingModels/SubSurfaceProfile
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/LightingModels/SubSurfaceProfile
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/LightingModels/SubSurfaceProfile
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/LightingModels/SubSurfaceProfile
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/LightingModels/SubSurfaceProfile
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/LightingModels/SubSurfaceProfile
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/LightingModels/SubSurfaceProfile
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/LightingModels/SubSurfaceProfile

Translucent Materials and More Chapter 4

[190]

Getting ready
Let me get the easiest part out of the way without delay: the scene we'll be using is
called 04_02_Glass_Start, and it can be found in
the Content/UE4ShadersAndEffects/Maps/Chapter04 folder.

We'll use a very similar scene to the last one, as you'll be able to see this for yourself if you
want to use the same assets I'll be using. However, unlike in the previous recipe, there's no
special consideration in terms of the geometry we'll employ. Where SSS is happening,
models are at their best if they exhibit some of the traits their real-life counterparts show,
such as the variations in thickness seen in human ears and noses. If we don't have a similar
model, the effect might be more difficult to spot. Glass, on the other hand, is quite obvious –
so no worries at this stage!

How to do it...
As we've seen in some of the previous recipes, we have to focus on at least two different
places any time that we want to set up a new material. The first one is where most of the
logic is coded, the so-called main material graph, where many of the parameters that
specify what our material looks like are placed. The second one is the Details panel for the
material itself, where we can find the options that define how that material behaves at a
more intrinsic level. That is going to be our point of entry for this new recipe:

Create a new material for the glass located in the center of the screen and apply it1.
to that element. This is what we'll be working on over the next few pages. I've
called mine M_Glass, and this can be found in the same folder as the static mesh
I'm applying it to.

Translucent Materials and More Chapter 4

[191]

Open up the material editor for the new asset we've created, and, with the main2.
Material node selected, switch your focus to the Details panel. There are several
things we'll want to modify here:

The preceding screenshot will help you identify the locations of the different
settings we are about to change. Even though there aren't that many that need to
be tweaked, they are scattered throughout the panel.

The first parameter we want to change is the Blend Mode, which is the second3.
setting we can change under the Material category within the Details panel.
Select Translucent instead of the default Opaque option.
Scroll down to the Translucency section. There are three parameters that we4.
want to change in here: check the checkbox next to Screen Space Reflection,
change the Lighting Mode to Surface Translucency Volume, and check the
Render after DOF box.
Search under the Usage category for the checkbox next to Used with Static5.
Lighting. We want to be sure to check this one, as this is the type of lighting we'll
be using.

Translucent Materials and More Chapter 4

[192]

Having implemented all of those changes in the main material node, this has
effectively changed the way the surface we apply the material to reacts to the light
that hits it, and how it deals with other things, such as transparency, reflections,
or the depth-of-field calculations. Be sure to check out the How it works section to
learn more about this topic, as this is quite important and sometimes confusing
for translucent materials.

Next up is the actual creation of the material logic. We'll start in a gentle way,
playing with parameters we already know, only to introduce new concepts, such
as view dependent opacity or refraction, later on.

Create a Vector parameter, which we'll use to feed the Base Color node of the6.
material. This will act as the main color of the glass, so choose something with a
blueish tint. Remember to also give it a name!

Remember Vector parameters? We've used them in the past to create
Material instances, and that is what we are going to be doing in this recipe
as well. That will enable us to quickly change the material without
needing to recompile it.

Throw a Scalar parameter into the mix, give it a value of 0.9, and plug that into7.
the Metallic node of the material. Even though assigning a metallic value to a
glass is a questionable thing to do, it makes the final image a bit more vibrant
and closer to the real thing.

So far, so good! The next bit we are going to be doing is the part that gets
interesting. Since we are dealing with glass, we also need to tackle reflections, the
refraction of light, and the opacity of the material itself. All of these are going to
be viewing-dependent—reflections on the glass are most notorious when our
view is parallel to the surface of the object. That being the case, we'll need to call
our old friend, the Fresnel function, to do the job.

Right-click within the material graph and start typing Fresnel. You can create8.
the basic node that we've used in previous recipes, but feel free to
select Fresnel_Function, especially if you are using your own custom meshes. It
is a bit more complex to set up than the simple one, but it also gives you more
control over the different parameters it contains.

Translucent Materials and More Chapter 4

[193]

Add a Scalar parameter right before Fresnel_Function and name it Power, since9.
that's the input pin we'll be connecting it to on the newly created function. Give it
a value of 3:

The previous two nodes will allow us to drive the appearance of the material in
terms of those three parameters we mentioned: the Reflection, the Refraction,
and the Opacity parameters. We'll be using the previous Fresnel function to drive
the linear interpolation of two values in those categories, so let's create six scalar
parameters for that purpose two per category.

Add two scalar parameters to control the reflections and name them10.
appropriately, such as Reflection front and Reflection side. After that,
create a Lerp node and plug each parameter into the A and the B pins (A for the
front reflection, B for the other one).
Repeat the same operation as before, creating two other scalar parameters and11.
the Lerp node, but give them names such as Opacity front and Opacity
side.
Repeat the same sequence for a third time, naming the new parameters12.
Refraction front and Refraction side, and Lerp between them once more.

In total, we should have three sets of two scalar parameters, with the
corresponding Lerp nodes after each set, as you can see in the next screenshot. By
the way, the reason I've named them Reflection front instead of Front reflection
is because they will be easier to read once we create a material instance out of this
one. It's quicker for the eye to read, but feel free to use your own nomenclature:

Translucent Materials and More Chapter 4

[194]

Apart from creating those parameters, remember to give them values! I didn't
want to say it before as we'll be able to interactively change them once we create a
material instance, but if you want something that works, go with the following:

0.05 for Reflection front
1 for Reflection side
0.05 for Opacity front
0.2 for Opacity side
1.2 for Refraction front
0.8 for Refraction side

Connect the Result output node of the Fresnel_Function into the Alpha of the13.
last three Lerp nodes we created.
Plug the output pin of said Lerp nodes into the Roughness, Opacity, and14.
Refraction input pins of the main material node.

This is what your material should now look like if applied to the glass in the
scene:

Looking good, right? But we are not yet finished! Something that I like to adjust is
the opacity in the upper edges of the glass, which is difficult to achieve by default
in Unreal. If you take a look at anything made out of this material, you'll be able
to see that the bits where you place your mouth to drink are usually more opaque
or darker than the rest of the body. This usually happens as an optic effect, one
that is difficult to mimic inside the engine. However, something we can do is fake
it, which we'll do next.

Translucent Materials and More Chapter 4

[195]

Create a texture sample node close to the scalar parameters we created for the15.
opacity. Assign the texture named T_Glass_OpacityMask in the Details panel.

T_ Glass_ OpacityMask is a custom texture that we've created for the model that
we are using in this recipe, which will mask out the rim of the glass. What if you
are using your own models, you say? You'll have to create a mask of your own,
which can be easily done in a program such as Photoshop or Gimp. Since the last
of those two is free, we'll leave a link to it in the See also section. Remember that
the only thing you'll need to do is to create a black and white image, where the
white part matches the rim of your object that you want to be more opaque than
the rest.

Create another scalar parameter, and name it Opacity Rim or something similar.16.
Give it a value of 1.
Add a Lerp node after these two new ones we've just created, and plug the17.
Opacity rim into the B input pin. Connect the Opacity mask to the Alpha pin,
and finally connect the output of the original Opacity Lerp node to pin A. The
sequence should look something like this:

Translucent Materials and More Chapter 4

[196]

Once we implement the preceding steps, we'll end up with a glass that has a much more
opaque edge, which should look nicer than before. These type of adjustments are often
made to materials such as glass, where we can't just rely on the engine's implementation of
translucency and we need an artist to tweak the scene a little bit:

How it works...
Glass! It can be a complicated thing to get right in real-time renderers for sure, and even
though we've come a long way in recent years, it still has its hurdles. Because of that, we'll
need to talk about these issues in order to fully understand what we've just created.

Most of the issues that we might experience when working with translucent materials often
boil down to how this effect is actually tackled by the engine. Whenever we have an object
that makes use of this type of material, such as the glass in the current recipe, Unreal needs
to know how it affects the objects that are behind it. Not only that, it also needs to know
whether the image has to be distorted, how much light can pass through its surface, or the
type of shadows that the object is casting. Some of these problems are solved by adopting
smart rendering methods that can provide affordable solutions to hard computational
problems, which can sometimes introduce little errors for the sake of performance.

Translucent Materials and More Chapter 4

[197]

One such example of this balance between realism and performance is the implementation
of refraction within the engine. Unreal has introduced two different solutions to the
problem: one physically-based, which uses the index of refraction to calculate the effect,
and another one more that is artistic in nature, named Pixel Normal Offset. Even though
the first one relies on a real-world measurable value, the second one is sometimes better in
order to achieve the desired effect. This is because the refraction method takes the scene
color into account to calculate the distortion, which can cause undesired artifacts, especially
in big translucent objects.

There's more...
Before we finish, let's talk about a couple of things that we have just covered briefly before,
but are actually quite important in this recipe. The first thing I'd like to mention is the
already-familiar material instance asset—a tool that can save us quite a bit of time when
working with translucent materials.

You might have noticed that the material took a while to update itself every time that we
changed any of its settings. Creating an instance out of the material once we set it up can
greatly speed up this process—that way, we'll be able to modify every exposed parameter
on the go, without having to wait for our shader to recompile.

The second item we should talk about is the Refraction parameters we have chosen as our
default values. We chose 1.2 and 0.8 as the Refraction Front and Refraction Side,
respectively, and even though the real-life index of refraction (IOR) for glass is closer to
1.52, those looked better in the viewport. Something that also works well and that you can
try is to combine the following nodes: two constants, one with a value of 1 and another one
with the real IOR value, hooked into a Lerp node being driven by a Fresnel one. This is
usually closer to the real-life appearance than using just the real IOR value.

See also
There are lots of useful and interesting official docs that cover this topic, so be sure to read
them if you are interested!

Transparency: https:/ /docs. unrealengine. com/en- us/ Engine/ Rendering/
Materials/ HowTo/ Transparency
Index of refraction: https:/ / docs. unrealengine. com/en- us/ Engine/ Rendering/
Materials/ HowTo/ Refraction

Getting Gimp: https:/ /www. gimp.org/

https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/HowTo/Transparency
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/HowTo/Transparency
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/HowTo/Transparency
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/HowTo/Transparency
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/HowTo/Transparency
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/HowTo/Transparency
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/HowTo/Transparency
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/HowTo/Transparency
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/HowTo/Transparency
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/HowTo/Transparency
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/HowTo/Transparency
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/HowTo/Transparency
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/HowTo/Transparency
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/HowTo/Transparency
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/HowTo/Transparency
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/HowTo/Transparency
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/HowTo/Transparency
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/HowTo/Transparency
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/HowTo/Transparency
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/HowTo/Transparency
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/HowTo/Transparency
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/HowTo/Transparency
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/HowTo/Refraction
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/HowTo/Refraction
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/HowTo/Refraction
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/HowTo/Refraction
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/HowTo/Refraction
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/HowTo/Refraction
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/HowTo/Refraction
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/HowTo/Refraction
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/HowTo/Refraction
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/HowTo/Refraction
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/HowTo/Refraction
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/HowTo/Refraction
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/HowTo/Refraction
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/HowTo/Refraction
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/HowTo/Refraction
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/HowTo/Refraction
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/HowTo/Refraction
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/HowTo/Refraction
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/HowTo/Refraction
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/HowTo/Refraction
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/HowTo/Refraction
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/HowTo/Refraction
https://www.gimp.org/
https://www.gimp.org/
https://www.gimp.org/
https://www.gimp.org/
https://www.gimp.org/
https://www.gimp.org/
https://www.gimp.org/
https://www.gimp.org/
https://www.gimp.org/
https://www.gimp.org/

Translucent Materials and More Chapter 4

[198]

A different type of translucency – holograms
Now that we are familiar with translucent materials, why don't we spice things up a little
bit and see what other cool effects we can create using the same blend mode? An interesting
one that comes to mind is holograms—the ever-so-sci-fi, cool-looking effect that we can see
in futuristic movies. This can be quite an interesting technique to implement, as not only
are we going to deal with transparent surfaces, but also with animated textures and light-
emitting properties.

All in all, holograms are going to enable us to revisit certain topics we already know
something about while discovering new features of the material editor, which will come in
handy not just in this recipe, but in any animated material we want to create in the future.
Let's see what it's all about!

Getting ready
You'll probably remember from previous recipes that we always provide you with the same
assets you see throughout the pages of this book. This is, of course, so you can easily follow
along. This time won't be any different, but you'll probably start to see that sometimes, we
won't even need any type of models or textures to tackle a specific topic. As we get more
and more proficient with the engine, we'll sometimes start to make use of procedural and
mathematical approaches to material creation. This allows us to expose some very powerful
material creation techniques, as well as freeing ourselves from the need to use resolution-
dependent textures.

With that said, you can expect a lot of math nodes and smart techniques in the following
pages. The binary assets, models, and textures are provided as always by us, and you can
find them in the following folder:

Assets: Content / UE4ShadersAndEffects / Assets / Chapter04
Maps: Content / UE4ShadersAndEffects / Maps / Chapter04

Translucent Materials and More Chapter 4

[199]

The name of the map we'll be working on is 04_03_Hologram_Start, so make sure to open
that one up if you want to use the same resources. If you prefer to use your own, you'll only
need a 3D model either created by you or one found in the Starter Content. With that said,
let's get the ball rolling!

How to do it...
Let's start by taking a look at the scene we'll be working off:

As you can see from the previous picture, the tree in the center of the screen is the 3D
model we are going to operate on—it's similar to one we've seen in the past, but tweaked to
make it look more sci-fi once we start implementing the material on it. If you select it, you'll
be able to see that it has two material slots: the first one with a material called M_
ChristmasTree_ Base and the second one named M_ ChristmasTree_ Hologram. This is
the one we'll be operating upon, so make sure to open it up! Let's get started:

Open up the second material, named M_ ChristmasTree_ Hologram, and delete1.
everything but the main material node.
With the main material node selected, head over the Details panel and look for2.
the Blend Mode and the Shading Model sections.

Translucent Materials and More Chapter 4

[200]

Change the default values from Opaque to Translucent and from Default Lit3.
to Unlit, as seen in the next screenshot:

There are two materials applied to the same model because they each make
use of a different Shading Model and Blend Mode. Unlike with metallic
and non-metallic objects, which we can mask apart, surfaces that require a
different shading model have to make use of their own unique material.

The preceding step has ensured that the material we create is not going to be
affected by any scene lighting, which is quite common for light-emitting materials
such as a hologram. Changing the Blend Mode to Translucent has also enabled
that see-through quality that most sci-fi holograms have. All in all, we are now
ready to start adjusting the look of our material.

Add a Texture Sample, a Constant, and a Cheap Contrast node. We are already4.
familiar with the first two items, and the third one is easily accessible by right-
clicking anywhere in the material graph and typing its name.
Select the T_ ChristmasTree_ D texture in the Details panel of the Texture5.
Sample. We will use this asset as a holographic reminder of what the prop once
looked like with a different shader.

Translucent Materials and More Chapter 4

[201]

Plug the Red channel of the Texture Sample into the In (S) input pin of the6.
Cheap Contrast node. This means that we are using a black and white version of
the image, as we don't want the color one.

Assign a value of 0.2 to our constant, and plug it into the Contrast (S) input pin7.
of the Cheap Contrast node. This will make the brighter areas a little bit whiter,
and the darker areas lean more toward black values.
Add a Multiply node and a Constant. Hook the output pin of the Cheap8.
Contrast node into pin A of the Multiply, and our new constant into pin B.
Give the Constant a value of 2. Right-click on the Multiply node and select the9.
Start Previewing Node option. That will let you see what the graph would look
like up until that point:

As you probably already know, holograms are usually tinted, and, more often
than not, they are given a blueish color. We can easily achieve that if we do the
following.

Translucent Materials and More Chapter 4

[202]

Create a new Multiply node and place it after the previous sequence.10.
Add a new Constant3 vector and give it a blueish value. I've gone with the11.
following: 0.52, 0.55, and 0.74 in the RGB values.
Plug the result of Constant3 into pin B of the new Multiply node, and hook pin12.
A to the output of the previous Multiply node.
You might want to add a third Multiply node, if only to control the overall13.
brightness of what we've created. I've connected the A pin to the output of the
second Multiply node and given the B pin a value of 0.5:

(We'll call the previous nodes part A, and we'll come back to them in step 18)

All of what we've done so far has left us with a washed-out, blueish wood-ghost
material, which we'll use later on. If this were a cookbook, we would now put
what we've made aside to focus on other things. For organizational purposes, let's
call what we've created part A. The next part we are going to be looking at is the
creation of a wireframe overlay, which will give us a very sci-fi look—we'll call
this part B, as we'll need to merge both parts.

Create a Texture Sample node and assign the T_ChristmasTree_UVs asset to it.14.
Add a Constant3 node and give it a blueish color, brighter than the one we15.
created in step 11. RGB values of 0.045, 0.16, and 0.79 would be a good starting
point.

Translucent Materials and More Chapter 4

[203]

Multiply both assets.16.
Create a new Multiply node after the previous one and connect pin A to the17.
output of the first Multiply. The B value will decide the brightness of the
wireframe, so feel free to give it a high value. I've gone with 50:

Now that we have Parts A and B, we can blend between both.

Create a Lerp node and place it after both parts A and B.18.
Connect the result of part A (the output of the last Multiply node of the wood-19.
ghost effect) into pin A of the new Lerp node. Do the same with pin B and the
last Multiply node of part B (the wireframe part).
Add a new Texture Sample node and select the T_ ChristmasTree_ UVs image20.
as its value. Connect the Alpha node to the Alpha input pin of the Lerp node.

Having done that will see us almost finished with most of the nodes that we are
going to be connecting to the Emissive Color input pin of the main material node.
However, we are not finished with this section yet, as there's a small addition we
can implement. Some holographic implementations have a Fresnel quality to
them—this is, they are brighter around the edges of the model than they are in the
center of it. Let's implement that.

Create a Multiply node and give it a high value, such as 10. Place it immediately21.
after the last Lerp node we had created that was interpolating between the
previous Parts A and B of the graph.
Introduce a Lerp node after this last Multiply. Hook pin A to the output of the22.
previous Lerp and pin B to the previous Multiply.

Translucent Materials and More Chapter 4

[204]

Add a Fresnel node to work as the Alpha for the last Lerp. If you click on it and23.
look at the Details panel, you'll be able to modify its default values. I've chosen 8
as the Exponent and 0.01 for the Base Reflect Fraction value:

With those last changes, we can say that our material looks like a proper
hologram! However, a nice addition to the current setup would be the
introduction of some varying levels of opacity. Most holograms we see in movies
are translucent objects, as we can see what's behind them. Furthermore, some
holograms flicker and get distorted with time—this is often done to emulate how
a hypothetical technology that allows the holograms to even exist would work.
Think of it like an old TV effect, where the scan lines get updated from one side of
the screen to the other every frame. That's what we'll be trying to replicate next.

Some of the nodes that we are about to use change the way textures get
projected into our models. This is useful whenever we want to have an
effect working independently from the UVs of the object, like we are
about to see.

Head over to an empty plot in our material graph and add a Texture Sample.24.
Select the T_ ChristmasTree_ Scanlines texture as the default value—we will use
them to drive the opacity of the material.
The texture can't be applied as-is to the object, as it doesn't match the UVs of our25.
model. Create a BoundingBoxBased_0-1_UVW node in order to use a custom
projection for the previous texture. If you right-click and start typing that name,
the node should appear. Place the node a little bit before the previous Texture
Sample, as we'll be driving its UVs through it.

Translucent Materials and More Chapter 4

[205]

Create a MakeFloat2 node after the previous Bounding Box one. Connect the R26.
value of the bounding box to the X of the MakeFloat, and the B value to Y.
Add a One Minus node after the MakeFloat one. This will invert the previously-27.
created content. Hook its input pin to the Result pin of the Make Float node.
Include a Multiply node that will act as a scale control for the texture this array28.
of nodes is affecting. Connect pin A to the output of the One Minus node, and
assign a value to pin B—I've gone with 3.
Create a Panner and plug the result of the previous Multiply into its Coordinate29.
input pin.
Select the Panner and look at the Details panel. As we want the scan lines to be30.
moving upward, leave the Speed X at zero and increase the value for the Speed
Y setting. I've chosen 0.025 to give it a nice, slow effect.
Connect the output of the Panner node to the UVs input pin of the Texture31.
Sample scan lines.

This is what the previous part of the graph should look like, which for reference
we'll call part C:

Now let's add a little bit of variation to this scan-line effect, and finally plug it into
the opacity channel of the main material node.

Translucent Materials and More Chapter 4

[206]

Copy the graph we've just created and paste it immediately under the previous32.
one. We should have two identical bits of visual scripting code, one on top of the
other, which we can refer to as part C and part D.
Head over to the Multiply node of the copied graph (part D) and change its33.
previous value of 3 to something such as 6. This will make the scan-line effect in
this section smaller than the previous one.
Combine both effects by creating an Add node and hooking its A and B pins to34.
the output of the Texture Sample in part C and D, respectively.
Add two Constant3 vectors after the last Add node. Give the first of them a value35.
of 0.2 in each of its channels (R, G, and B) and assign the second Constant3 node
a value of 1 on each channel as well.

We'll use those Constant3 vectors to drive the opacity of the material. We
need them to be that specific type and not simple constants to match the
texture we'll be using as the blending mask, the scan lines, which are a 3
vector as well.

Create a Lerp node and connect its A pin to the first of the Constant3 vectors,36.
and pin B to the second one.
For the Alpha value, use the output of the Add node where we combined both37.
scan lines.

The resulting graph and effect should be similar to the one seen in the next screenshot:

Translucent Materials and More Chapter 4

[207]

Connecting the output of the previous Multiply node to the Opacity input pin of our
material will give us the final look we were trying to achieve: a nice holographic material
based on a small wooden tree prop:

And there you go! We've finally achieved the look we want, while also learning about some
new useful nodes. Like in many of the other recipes, sometimes the most useful lessons we
learn are snippets of information that we can then apply elsewhere. Hope you've learned
something new!

How it works...
The holographic material we've been dealing with made use of the Translucent blend
mode, something we dealt with when we created the glass material in the previous recipe.
In addition, we've also started to explore a new unlit shading model, which is something
completely new to us at this point.

Even though we are just starting to explore this new type of shader, it is quite easy to
understand the way it works by just comparing it to the other types we've used in the past.
In essence, a shading model is a function used to describe how light affects the surfaces of
the objects within Unreal. So far, we've explored a couple of them: the Default Lit and the
Subsurface Profile in particular. The former is meant to be used on types of objects that
reflect light in a similar way to opaque objects, such as wood, iron, or concrete. The latter
was explored in the recipe where we created a candle, and is very helpful when part of the
light that reaches a certain object gets absorbed by it and scattered underneath its surface.
This new shading model, the unlit one we are now dealing with, also determines how light
interacts with objects that make use of it. However, the main peculiarity, in this case, is the
lack of interactivity between the light and the materials altogether—that is, lights in our
scene are not going to affect our models at all. That's one of the reasons we use the
Emissive input pin on the main material node instead of the Base Color one, as this is a
property that doesn't get affected by the existence of lights throughout our levels.

Translucent Materials and More Chapter 4

[208]

There's more...
The emissive property of our materials is a powerful resource when we want to fake lights
or actually create them. Even though this is not the standard procedure to add a new light,
setting up material to make use of the emissive node can replace them under certain
conditions. So what options do we have when we work with these type of assets?

First of all, we have two basic choices: we can use the emissive property to give the
impression that our material is casting light, or we can set it up so that it actually affects the
world by emitting photons. The way the engine deals with the faking part is by actually
using the emissive node of the material to affect its contribution to the bloom effect and
give the impression that you are looking at a bright light. If we don't want this technique to
just be an illusion, but to actually affect the shadows in our scene, we also have the option
to do that. The way we achieve this is by selecting the model that the emissive material is
being applied to and looking at its Details panel. Under the Lighting tab, we should be
able to find an option named Use Emissive for Static Lighting. Turn that on, click on the
Build button to calculate the shadow maps, and you're good to go!

Something to note at this point is the type of light that the materials can emit, as they are
always going to be of the static type. You'll have to keep this in mind in case you want to
achieve any type of real-time effect, as that's not currently possible.

See also
You can find more information on the unlit shading model and the emissive material input
pin in Epic Games' official documentation at https:/ /docs. unrealengine. com/ Engine/
Rendering/Materials/ HowTo/ EmissiveGlow.

Achieving realistic reflections
Reflections are a very interesting and powerful effect, and one that can often make or break
a scene. They are amazing when used to their full potential, since their inclusion alone adds
a layer of realism that can be difficult to fake. So far, we've made use of two reflection
methods in the previous recipes: the standard Screen Space Reflections that is enabled by
default in the engine, and the Reflection Captures we've always had around in our scenes.
Even though we only set them up in the Chapter 1, Physically Based Rendering, both of these
methods have been implemented in the scenes we have provided.

https://docs.unrealengine.com/Engine/Rendering/Materials/HowTo/EmissiveGlow
https://docs.unrealengine.com/Engine/Rendering/Materials/HowTo/EmissiveGlow
https://docs.unrealengine.com/Engine/Rendering/Materials/HowTo/EmissiveGlow
https://docs.unrealengine.com/Engine/Rendering/Materials/HowTo/EmissiveGlow
https://docs.unrealengine.com/Engine/Rendering/Materials/HowTo/EmissiveGlow
https://docs.unrealengine.com/Engine/Rendering/Materials/HowTo/EmissiveGlow
https://docs.unrealengine.com/Engine/Rendering/Materials/HowTo/EmissiveGlow
https://docs.unrealengine.com/Engine/Rendering/Materials/HowTo/EmissiveGlow
https://docs.unrealengine.com/Engine/Rendering/Materials/HowTo/EmissiveGlow
https://docs.unrealengine.com/Engine/Rendering/Materials/HowTo/EmissiveGlow
https://docs.unrealengine.com/Engine/Rendering/Materials/HowTo/EmissiveGlow
https://docs.unrealengine.com/Engine/Rendering/Materials/HowTo/EmissiveGlow
https://docs.unrealengine.com/Engine/Rendering/Materials/HowTo/EmissiveGlow
https://docs.unrealengine.com/Engine/Rendering/Materials/HowTo/EmissiveGlow
https://docs.unrealengine.com/Engine/Rendering/Materials/HowTo/EmissiveGlow
https://docs.unrealengine.com/Engine/Rendering/Materials/HowTo/EmissiveGlow
https://docs.unrealengine.com/Engine/Rendering/Materials/HowTo/EmissiveGlow
https://docs.unrealengine.com/Engine/Rendering/Materials/HowTo/EmissiveGlow

Translucent Materials and More Chapter 4

[209]

With that covered, it is now time to deal with other additional reflection techniques that can
enhance the look of our models even further, such as Planar Reflections. The methods
we've used so far have worked great with the assets that we were dealing with, but some of
the materials that we are going to be exploring in the immediate future will benefit from
more precise reflection techniques. They are going to play an important role in future
recipes as well, so let's see what's so special about them!

Getting ready
Want to follow along using the same assets? Then just open up the level called
04_04_AccurateReflections_Start located in the Content / UE4ShadersAndEffects /
Maps / Chapter04 folder.

The scene you'll be greeted with is a simple one, using some of the assets we've seen in the
past, but arranged in a way where we can get nice reflections happening in the surface of
the central mirror. This is very simple to replicate using your own assets and scenes, as
there's nothing special you need—not even a specific type of model. If you wanted to, you
could use the standard assets that come bundled by default with Unreal Engine. Just make
sure that you add a plane that can act as a mirror, and a highly reflective material with a
low roughness value. Let's get started:

Translucent Materials and More Chapter 4

[210]

How to do it...
Something we've had to do in some of the previous recipes was enable certain settings
within the engine in order to turn on specific functionalities. We saw this when we were
working with translucent materials, as we had to enable screen space reflections on those
type of shaders since they weren't switched on by default. Something similar will happen
next—as we are about to work with Planar Reflections, there is a certain Project Setting that
we have to enable first:

Open the Project Settings by heading over to Edit | Project Settings. Click on All1.
Settings, and type clip on the Search box.
Under Engine | Rendering | Lighting, you'll be able to see a certain parameter2.
named Support global clip plane for Planar Reflections. Check the checkbox by
its side and restart the project when prompted:

Doing that will enable us to use the Planar Reflection actor. You'll be able to find
it within the Place tab of the Modes panel, provided that you type Planar
Reflection in the search box. If you don't want to type, know that it can be also
found under the Visual Effects section of the same panel.

Drag and drop the Planar Reflection actor into the scene. 3.
With said actor selected, rotate it until it is perpendicular to the floor. We want to4.
place it parallel to the mirror in our scene, so keep that as a reference.

Translucent Materials and More Chapter 4

[211]

Planar actors can be a bit frustrating to work with, as they are only visible
in the editor if you are not in Game View. Remember that you can enter
and exit Game View at will by pressing the G key on your keyboard
while the main viewport is in focus (it won't work if you are on the World
Outliner, for example).

The next screenshot shows how to add a Planar Reflection Actor from the Modes
panel:

With that done, we can start tweaking the different settings of the Planar
Reflection actor. Before we do so, however, remember that you can inspect the
material that we are using for the mirror, which will enable the reflections to
work.

Select SM_WoodenBedroomMirror and check the material that is being applied5.
to the model in the Details panel. Open it up to see what it's made of.

Translucent Materials and More Chapter 4

[212]

Once inside of the material graph, feel free to play around with the roughness6.
value for the mirror surface. That setting can be controlled by selecting the Lerp
node and changing the value of Const A in the Details panel:

As you can see, the material is a simple one. We are using two textures: one that
connects to the Base Color and another that stores the values for Ambient
Occlusion, Roughness, and Metalness of the material as grayscale masks. Even
though most input are directly connected, the Roughness gets treated
differently—to make sure that the mirror surface is perfectly clean, we isolate that
area using the metallic value as a mask and we give a 0 value to ensure we have a
smooth surface.

With that out of the way, we can now start to play with the Planar Reflection
properties to achieve the desired look.

Select the Planar Reflection actor and look at the Details panel. Set the Normal7.
Distortion Strength to 100, decreasing it from the default 500. This will make
the reflections appear more realistic in our tilted mirror, but feel free to play with
this setting if you are using your own models.
Set Distance from Plane Fadeout Start and Distance from Plane Fadeout End to8.
600 and 700, respectively. This will ensure that the objects that are supposed to
be reflected are in fact displayed in the mirror.
Uncheck the Show Preview Plane option, just so that it doesn't bother us9.
whenever we are in Game View.

Translucent Materials and More Chapter 4

[213]

Expand the Planar Reflection category of the same actor to find some extra10.
settings we want to tweak, then focus on the Screen Percentage option. Change it
to 100, which will increase the quality of the reflections:

Having performed the preceding steps will give us a nice planar reflection in our
mirror, which we can compare to the existing previous one:

Translucent Materials and More Chapter 4

[214]

Even though we now have a reliable way of achieving realistic reflections, this is a
method that can be quite expensive—as we are basically rendering the scene
twice. With that in mind, we will be looking at a different system that can also
generate nice, detailed reflections in a cheaper way, which will be the Scene
Capture technique.

This second method that we are going to explore presents some benefits as well as
some potential inconveniences, and we need to be aware of them! The benefits?
Well, this time we don't need to render the scene twice every so often to achieve
the desired results, as this new technique for capturing reflections consists of
baking our scene into a texture that is then fed to the objects where we want those
reflections to show. This can present a bit of a problem, as we'll need to manually
tweak and position the baked environment in order to ensure that it blends well
in our scene.

Delete the previous Planar Reflection actor so it doesn't affect our scene11.
anymore.
Head over to the Place tab of the Modes panel and search for a Scene Capture12.
Cube actor. Drag and drop it into our scene:

Translucent Materials and More Chapter 4

[215]

Place the previous Scene Capture Cube actor close to the mirror in our scene.13.
You can take a look at the next screenshot for reference purposes:

The Scene Capture Cube works in tandem with a Render Target—a texture
where we'll store the view from the actor. All we are doing is placing a camera in
our scene, which will create a photograph of the level for us to use as a reflection
value.

Create a Render Target texture by right-clicking in an empty space of the14.
Content Browser and browsing inside the Materials & Textures section.

Translucent Materials and More Chapter 4

[216]

Give it a name you'll remember and double-click on it to access its Details panel.15.
You'll find a parameter named Size X under the Texture Render Target Cube
category. Assign it a value of 2048 (2K):

Head back to the main viewport and select the Scene Capture Cube we placed in16.
step 13. Look at its Details panel and set the previously-created Render Target in
the Texture Target category.
There's another setting a little bit further down, named Capture Every Frame.17.
Disable this to increase performance.

Translucent Materials and More Chapter 4

[217]

Move the camera around slightly. This should update the contents of our Render18.
Target, which you'll be able to check if you double-click on it again:

Now that we have that texture, we can use it within our mirror material. With
that goal in mind, let's create a new material where we can put that in motion.

Create a new material, and apply it to the mirror in our scene (replacing the19.
previous one). I've named mine M_ WoodenMirror_ CaptureReflection. Open
the new asset in the Material Editor.
Add a Texture Sample node and set the Render Target we had previously20.
created as its value.

Even though we now have that texture inside our new material, we need to affect
the way we look at it based on the position of the camera. This will give the
impression that the reflection gets updated as we look at the mirror. Thankfully,
Unreal has a handy node that allows us to do just that.

Right-click within the material graph and start typing Reflection Vector WS.21.
This will give us what we need to make our Render Target work as intended.
Connect its output to the UVs input pin of the previous Texture Sample.

Translucent Materials and More Chapter 4

[218]

Connect the output of the Texture Sample to a Multiply node, and set the value22.
for the B parameter to something like 5. This will brighten up the reflection we
see once we apply and save the material, so make sure to play around with this
until you are happy.

All of the previous steps have created a reflection texture that we can see no
matter where we are with regards to the mirror object. We now need to blend that
with the other parts that make up the mirror, such as the wooden frame.

Add three texture samples and assign the following textures to them: T_23.
WoodenBedroomMirror_ AORM, T_ WoodenBedroomMirror_ UVMask, and
T_ WoodenBedroomMirror_ BaseColor. All of them will be needed in the
following steps.
Create a Lerp node, which we'll use to mix between the texture that will act as24.
the reflection and the wood color.
Connect the result of the Multiply node we created in step 22 to pin A of the new25.
Lerp.
Connect the T_ WoodenBedroomMirror_ BaseColor texture to its B input pin.26.
Connect the Alpha to the green channel of the T_ WoodenBedroomMirror_27.
UVMask asset. Remember to connect the Lerp to the Base Color of the material
as well.

Performing the previous steps has given us the color, let's now tackle the
roughness value.

Connect the red channel of T_ WoodenBedroomMirror_ AORM directly into the28.
Ambient Occlusion input pin of the main material node.
Create another Lerp node, which we'll use similarly to the one we needed to29.
drive the color values, but that will work for the roughness this time.
Connect the green channel of the T_ WoodenBedroomMirror_ UVMask texture30.
into the Alpha input pin, and assign pin A a value of 1. Connect pin B to the
green channel of the T_ WoodenBedroomMirror_ AORM asset.
Plug the result of the previous Lerp node into the Roughness channel of our31.
material.

Translucent Materials and More Chapter 4

[219]

Here's what the material graph should look like, all things considered:

Translucent Materials and More Chapter 4

[220]

With these last changes, we have effectively finished our intervention in the material, and
we can finally check the results if we go back to the main viewport. You'll notice that the
effect is far from perfect in this case, but it does work at certain angles and it works
according to plan. You might want to test the effect on other surfaces to see the results, as
this method tends to work best with objects larger than our mirror. However, it still is a
powerful technique that can add life to our scenes and limit the impact on performance that
other methods can have. Be sure to test it on different types of surfaces and materials!

How it works...
Every actor in our level can be affected by a Planar Reflection asset, even though this effect
will be most obvious in those materials that have a low roughness value. Such is the case of
the mirror in our scene, as you saw in this recipe. Other surfaces, such as the walls or the
rest of the props inside of the level, didn't get affected as much since their roughness
settings didn't allow for that.

The way that the Planar Reflection affects our scene is tied directly to the settings we
specify in its Details panel. The first of the bunch, the normal distortion strength,
determines how much the normals of the affected surfaces distort the final reflection. This
is especially useful if we have multiple actors that we want to be affecting at the same time
that are not facing in the exact same way—instead of creating multiple planar reflections
that are parallel to each individual rotated object, we can adjust the normal distortion
strength to allow for varying rotation angles.

Other useful settings to remember are the distance from the plane fade out start and its
twin, the end one, as they control the region where the effect is happening. However,
maybe one of the most important ones is the one labelled Screen Percentage, as that
controls the quality of the overall effect and the rendering cost of the effect.

Translucent Materials and More Chapter 4

[221]

There's more...
The Scene Capture Cube actor is a very cool asset, as it allows us to create similar effects to
what we've seen in this recipe that can be used in a myriad of places. Continuing with the
topic of reflections, we know that they can be costly to render in real time. The technique
that we've studied can be effective when dealing with materials where real-time reflections
are too much of an overhead. One such example would be glass or water materials, where
enabling screen space reflections on those shaders increases their instruction count and thus
the complexity of the materials. Instead of doing that, we can disable that SSR effect in the
Details panel of the material and fake the reflections by using the same technique we saw
in this recipe instead.

Of course, the way we would apply the texture wouldn't be exactly the same; instead of
completely replacing the color info like we did in the previous pages, we might want to
overlay it a little bit or just mix it in the right amount so that we don't lose the underlying
image. There are many different options in which we can apply that technique, so be sure
to play around with it!

See also
Let me leave you with with some links to the official documentation regarding planar
reflections and render targets:

https:// docs. unrealengine. com/en- us/Engine/ Rendering/
LightingAndShadows/ PlanarReflections

https:// docs. unrealengine. com/en- us/Resources/ ContentExamples/
Reflections/ 1_ 6

https:// docs. unrealengine. com/en- us/Engine/ Rendering/ RenderTargets

Mastering refraction by creating a pool
water material
Water is cool, pool water is cooler, but apart from studying it for that reason, it's interesting
to see how to deal with different bodies of water in UE4. We are going to be looking at two
different types: a see-through implementation, and a rough sea shader. This recipe will deal
with the first type, which is going to allow us to check a different refraction implementation
within the engine that works well with large surfaces. We'll check out the sea shader in a
later recipe.

https://docs.unrealengine.com/en-us/Engine/Rendering/LightingAndShadows/PlanarReflections
https://docs.unrealengine.com/en-us/Engine/Rendering/LightingAndShadows/PlanarReflections
https://docs.unrealengine.com/en-us/Engine/Rendering/LightingAndShadows/PlanarReflections
https://docs.unrealengine.com/en-us/Engine/Rendering/LightingAndShadows/PlanarReflections
https://docs.unrealengine.com/en-us/Engine/Rendering/LightingAndShadows/PlanarReflections
https://docs.unrealengine.com/en-us/Engine/Rendering/LightingAndShadows/PlanarReflections
https://docs.unrealengine.com/en-us/Engine/Rendering/LightingAndShadows/PlanarReflections
https://docs.unrealengine.com/en-us/Engine/Rendering/LightingAndShadows/PlanarReflections
https://docs.unrealengine.com/en-us/Engine/Rendering/LightingAndShadows/PlanarReflections
https://docs.unrealengine.com/en-us/Engine/Rendering/LightingAndShadows/PlanarReflections
https://docs.unrealengine.com/en-us/Engine/Rendering/LightingAndShadows/PlanarReflections
https://docs.unrealengine.com/en-us/Engine/Rendering/LightingAndShadows/PlanarReflections
https://docs.unrealengine.com/en-us/Engine/Rendering/LightingAndShadows/PlanarReflections
https://docs.unrealengine.com/en-us/Engine/Rendering/LightingAndShadows/PlanarReflections
https://docs.unrealengine.com/en-us/Engine/Rendering/LightingAndShadows/PlanarReflections
https://docs.unrealengine.com/en-us/Engine/Rendering/LightingAndShadows/PlanarReflections
https://docs.unrealengine.com/en-us/Engine/Rendering/LightingAndShadows/PlanarReflections
https://docs.unrealengine.com/en-us/Engine/Rendering/LightingAndShadows/PlanarReflections
https://docs.unrealengine.com/en-us/Engine/Rendering/LightingAndShadows/PlanarReflections
https://docs.unrealengine.com/en-us/Engine/Rendering/LightingAndShadows/PlanarReflections
https://docs.unrealengine.com/en-us/Resources/ContentExamples/Reflections/1_6
https://docs.unrealengine.com/en-us/Resources/ContentExamples/Reflections/1_6
https://docs.unrealengine.com/en-us/Resources/ContentExamples/Reflections/1_6
https://docs.unrealengine.com/en-us/Resources/ContentExamples/Reflections/1_6
https://docs.unrealengine.com/en-us/Resources/ContentExamples/Reflections/1_6
https://docs.unrealengine.com/en-us/Resources/ContentExamples/Reflections/1_6
https://docs.unrealengine.com/en-us/Resources/ContentExamples/Reflections/1_6
https://docs.unrealengine.com/en-us/Resources/ContentExamples/Reflections/1_6
https://docs.unrealengine.com/en-us/Resources/ContentExamples/Reflections/1_6
https://docs.unrealengine.com/en-us/Resources/ContentExamples/Reflections/1_6
https://docs.unrealengine.com/en-us/Resources/ContentExamples/Reflections/1_6
https://docs.unrealengine.com/en-us/Resources/ContentExamples/Reflections/1_6
https://docs.unrealengine.com/en-us/Resources/ContentExamples/Reflections/1_6
https://docs.unrealengine.com/en-us/Resources/ContentExamples/Reflections/1_6
https://docs.unrealengine.com/en-us/Resources/ContentExamples/Reflections/1_6
https://docs.unrealengine.com/en-us/Resources/ContentExamples/Reflections/1_6
https://docs.unrealengine.com/en-us/Resources/ContentExamples/Reflections/1_6
https://docs.unrealengine.com/en-us/Resources/ContentExamples/Reflections/1_6
https://docs.unrealengine.com/en-us/Resources/ContentExamples/Reflections/1_6
https://docs.unrealengine.com/en-us/Resources/ContentExamples/Reflections/1_6
https://docs.unrealengine.com/en-us/Resources/ContentExamples/Reflections/1_6
https://docs.unrealengine.com/en-us/Resources/ContentExamples/Reflections/1_6
https://docs.unrealengine.com/en-us/Engine/Rendering/RenderTargets
https://docs.unrealengine.com/en-us/Engine/Rendering/RenderTargets
https://docs.unrealengine.com/en-us/Engine/Rendering/RenderTargets
https://docs.unrealengine.com/en-us/Engine/Rendering/RenderTargets
https://docs.unrealengine.com/en-us/Engine/Rendering/RenderTargets
https://docs.unrealengine.com/en-us/Engine/Rendering/RenderTargets
https://docs.unrealengine.com/en-us/Engine/Rendering/RenderTargets
https://docs.unrealengine.com/en-us/Engine/Rendering/RenderTargets
https://docs.unrealengine.com/en-us/Engine/Rendering/RenderTargets
https://docs.unrealengine.com/en-us/Engine/Rendering/RenderTargets
https://docs.unrealengine.com/en-us/Engine/Rendering/RenderTargets
https://docs.unrealengine.com/en-us/Engine/Rendering/RenderTargets
https://docs.unrealengine.com/en-us/Engine/Rendering/RenderTargets
https://docs.unrealengine.com/en-us/Engine/Rendering/RenderTargets
https://docs.unrealengine.com/en-us/Engine/Rendering/RenderTargets
https://docs.unrealengine.com/en-us/Engine/Rendering/RenderTargets
https://docs.unrealengine.com/en-us/Engine/Rendering/RenderTargets
https://docs.unrealengine.com/en-us/Engine/Rendering/RenderTargets
https://docs.unrealengine.com/en-us/Engine/Rendering/RenderTargets

Translucent Materials and More Chapter 4

[222]

Apart from that, we are also going to be able to tackle different interesting nodes, such as
the Depth Fade one, which we'll talk about more later. With that in mind, let's see what
you'll need to get started!

Getting ready
Since we'll be trying out different effects, we'll need to actually set up the scene in a way
that allows for them to show up. First of all, we'll need a plane onto which we can apply the
water material we'll be creating. Apart from that, we'll also need something to act as a
container for the water—I'm going to use a 3D model of a bath tub, so something similar
will do. Having something opaque wrapping around the water plane is actually quite
important, as we'll be using nodes that detect the intersection of several geometries. Those
two things would be the basics, but we'll probably want to add a small prop just so that we
can check the refraction in the water body—a rubber duck can work!

As always, we'll be providing you with everything you need if you want to use the same
assets. Open the 04_ 05_ StillWater_ Start scene, located in Content /
UE4ShadersAndEffects / Maps / Chapter04, and you'll find everything you need to
follow along:

Translucent Materials and More Chapter 4

[223]

How to do it...
As we are about to create a new type of translucent material, it's always good to think about
what we want to achieve before we begin. We've dealt with different types of translucent
surfaces in the past, but this time things won't be as straightforward as before. The reason
for that lies within the specific asset that we want to create: water. Unlike glass, water is a
material that is rarely found resting perfectly still. Its condition as a fluid means that it is
almost always in motion, and that introduces certain conditions that we need to take into
account, such as how the normals of the material are going to be animated, how the
direction of those affect the color of the material, and how the opacity changes across the
body of water. We will explore all of those conditions next:

Create a new material and name it whatever you like—I've gone with1.
M_BathtubWater, as that's what we'll be creating.
Change the Blend Mode to Translucent, and check Screen Space2.
Reflections checkbox found a little further down on the Details panel, in the
Translucency section.
Change the Lighting Mode to Surface Translucency Volume and check the3.
Render after DOF checkbox. Scroll down to the Usage category, look for the
checkbox next to Used with Static Lighting ..., and check it:

Translucent Materials and More Chapter 4

[224]

So far, these are the same steps we had to follow when creating the glass material,
so the previous screenshot will just act as a reminder. The first bespoke
modifications we are going to introduce deal with the way we assign the opacity
and the color values to our material. Since we have water in a bathtub, you'll note
that the surface tends to lose its see-through properties the deeper we go, in real
life, that is. We'll replicate this with a handy node, called Depth Fade, which
performs that calculation for us.

Start by adding a Depth Fade node into the material graph. You'll find it either in4.
the Palette menu or by right-clicking and typing its name.
Look at the Details panel and modify the two properties you'll find in there.5.
Leave the Opacity Default with its default value of 1 and set the Fade Distance
Default to 10.
Try hooking that node up to the Base Color of the material and see what it looks6.
like back in the main viewport. To do that, remember to apply the new material
to the SM_ BathTub_ Water model that lives in the center of the scene:

As you can see, the areas of the model that are closer to the walls of the bathtub
are displayed in black, fading gradually to white as we get away from them. This
will act as a mask, which we'll use to drive the color and the opacity of the
material.

Drag from the output pin of the Depth Fade node and create a Clamp node at its7.
end. Leave the new node as is, with the default values of 0 and 1 as the
minimum and maximum. This ensures every value from the Depth Fade node is
constrained to that range.
Create a Lerp node, and connect the output of the previous Clamp to its Alpha8.
input pin.

Translucent Materials and More Chapter 4

[225]

Add two Scalar Parameters, which will act as the opacity controls for our9.
material. Name them and connect them to the A and B pins of the previous Lerp
node. Hook the output of the Lerp node into the Opacity pin in the main
material node.

I've named the two previous parameters Edge opacity and Default opacity, as the
first one controls the value at the edge of the bathtub and the other one adjusts the
rest. The values I've gone with are 0.3 and 0.65, but feel free to play with them.
You can also wait and create a material instance later to test how they look
interactively!

You'll need to feed something into the Lerp node's Alpha pin be it a
grayscale value or a constant. Whatever it is, it can be described as a black
and white value, and the A and B input pins will get blended according to
that. As a rule of thumb, you can associate A and B with black and
white pin A will show in the black areas and pin B will appear on the
white ones.

The following screenshot shows the nodes we have previously created:

The next steps are almost going to be an identical copy of what we've just done, as
we'll be driving the color of the material through the same Depth Fade node.

Translucent Materials and More Chapter 4

[226]

Create a couple of Vector Parameters, and assign them a name and a value. I've10.
gone with Edge Color and Main Color, choosing a whitish value as the first one
and a slightly bluer variant for the main part.
Add a Lerp node after the two previous parameters, and connect them to pins A11.
and B of this new node.
Drag another cable from the Clamp located after the Depth Fade node and12.
connect it to the Alpha of the new Lerp, just as we did for the opacity. Connect
that to the Base Color pin of our material.

We now need to address the roughness, the normal, and the refraction of the
material, which will rely on an animated water texture. Before that, let's introduce
a simple modifier for the Metallic property of the material, which can help our
water look a bit nicer.

Create a Constant vector and give it a value of 0.9. Connect it to the Metallic13.
input pin on the main material node:

Here are the previously-created nodes—note that the Alpha on the Lerp node is
being controlled by the Clamp after the Depth Fade node.

Translucent Materials and More Chapter 4

[227]

As we said, it is now time to animate a normal texture so we can do a couple of
different things: we'll use it to drive the roughness of our water body, and to
affect the normals and the refraction to create the illusion of a moving surface.

Create a Panner node, which we'll use to animate the water normals. For this14.
node to work, we need to give it some values: it needs to know the coordinates it
is going to be animating and the time and speed at which it's going to operate.
Let's define those.
Create a Texture Coordinate node and a Scalar Parameter. This last node is15.
going to control the scale of the pattern we'll be applying, so let's name it
sensibly. I've gone with Wave scale and given it a value of 3.
Multiply those two nodes and connect the output to the Coordinate pin of the16.
previous Panner.

That was the part that feeds into the Coordinate input pin of the Panner. Let's
now focus on the time and speed.

Create a Time node in our graph by right-clicking and looking for that name.17.
This introduces the concept of time to the material.
Create a Multiply node and hook its A pin to the previous Time node. Set the B18.
value to 0.03, either by adjusting that setting in the Details panel of the
Multiply node or by creating and connecting a Constant vector.
Hook the output of the previous node into the Time input pin of the Panner.19.
Let's now take care of the Speed section.

Create a Scalar Parameter and connect it to the Speed input pin of the Panner.20.
We want to be able to modify this node in case we create a Material Instance,
hence us choosing that specific node. A value of 0.5 here can work well!

The reason we created this part of the node network is to affect or animate a
texture. With that said, it becomes obvious that we need to create one! Let's do
that now and select one that can fulfill the role of the water normals.

Create a Texture Sample node and assign the texture named T_ Water_ N. It's21.
part of the Starter Content, so make sure you've included that!

Translucent Materials and More Chapter 4

[228]

With that last node created, we now have a fully-functioning Panner system. For
the sake of simplicity, and because we'll come back to this section multiple times,
let's give this set of nodes a name—we'll call it part A. Let's review what we've
got so far in the next screenshot:

We'll now branch off this node multiple times, hence the need to be able to
quickly refer to this part as we'll come back to it—to the Texture Sample node in
particular. This is the basic building block where the refraction, the normal, and
the roughness stem from. The first element of the triad we'll tackle is the
Refraction bit.

Drag a cable out of the Texture Sample we created in step 21 and create22.
a Component Mask. Select the red and green channels.
Drag again from the end of the Component Mask and create a Multiply node.23.
Set it to 2.

The previous nodes are quite a powerful technique. By taking the red and green
channels of the normal texture, where the actual values that define this type of
textures are stored, and increasing their intensity, we make the effect more
noticeable.

Translucent Materials and More Chapter 4

[229]

Create an Append vector and connect the result of the previous Multiply node24.
to its A pin.
Go back to part A, drag a cable out of the blue channel of the Texture Sample25.
that contains our original water normals, and connect it to pin B of the previous
Append node.

Doing this has given us a more intense version of the normal map we are using
for the water, which we can almost immediately use to drive the Refraction of the
material.

Click on the main material node and head back to its Details panel. Scroll all the26.
way down to the Refraction tab (it's one of the last ones) and set the Refraction
Mode drop-down box to the Pixel Normal Offset option. We'll see how this
works in the There's more section.
Head back to the Append node we created in step 24 and connect it to the27.
Refraction input pin of our main material node:

The preceding screenshot shows a part of the material that we'll copy later on, so
let's refer to it as part B. Apart from using the previous nodes to drive the
refraction, we can also modify the roughness of the water through them.

Translucent Materials and More Chapter 4

[230]

Add a Fresnel node and connect its Normal input pin to the output of the28.
previous Append node. Set the exponent to 1.5 and the Base Reflect Function
to 0.1 in the Details panel.

Include a couple of Scalar Parameters in order to drive the different roughness29.
values. I've created one called Parallel roughness and another one
called Perpendicular roughness so that it helps me to identify the viewing
direction at which those values are supposed to show.
Create a Lerp node and connect the three previous nodes to the A, B, and Alpha30.
input pins. Connect that in turn to the Roughness material input pin.

Even though the roughness of the water should really be the same value
as long as there's no oil or other substances in its surface, we've decided to
modify it a little bit as there's usually other surfaces apart from water in a
bathtub, such as soap.

The last bit we need to tackle is the actual Normal input pin of the material,
which we haven't yet connected. Instead of using the previous normal we created,
we will blend between different intensities of the same one according to a random
texture. This will help us to introduce further variation in the material so there's
no repetition.

Copy part B of the material a couple of times.31.
Adjust the B value of the Multiply node on each. Set the first one to 0.1, and the32.
second to 0.2.
Connect pin B of the two new Append nodes back to the blue channel of the33.
Texture Sample in part A. The Component Masks should be connected to the
general output of that same texture, just like what happened in part B.
Create a new Texture Sample and assign it the T_Smoke_Tiled_D texture.34.
Add a Cheap Contrast and connect it to that last Texture Sample, and connect a35.
Constant with a value of 1 to the Contrast input pin.

Translucent Materials and More Chapter 4

[231]

Throw a Lerp node and connect the output of the two previous Append vectors36.
to the A and B pins. The Alpha should be connected to the output of the Cheap
Contrast node. Feed the output of the Lerp node into the Normal input pin of the
material:

Translucent Materials and More Chapter 4

[232]

All of the previous changes have left us with the final material we'll apply to the bathtub
water. Be sure to check out how it looks, and feel free to tweak the different parameters
we've set up. Creating a Material Instance can be especially useful in this case, since it will
allow us to quickly modify the material without having to wait for the compilation process:

How it works...
We introduced a couple of new concepts in this recipe, and I'd like to go into a little bit
more detail on one of them: the Pixel Normal Offset refraction mode. We used this
technique instead of the traditional IOR, which we saw in the second recipe of this chapter,
because it tends to work better on large and/or flat surfaces. Even though we might think
that the IOR method is closer to real-life refraction mechanics, the implementation that
Unreal has chosen for this system is not always our best option when trying to mimic
reality. Without getting too technical, their IOR implementation makes some assumptions
that can introduce artifacts in the type of models that we mentioned before. To counter this,
Epic has also introduced the Pixel Normal Offset Refraction method as an alternative.

This new refraction model works by using the vertex normal data to calculate the refraction
offset that you see. This is possible by computing the difference between the per-pixel
normal against that of the vertex normal, offering the results that you see onscreen, which
match the real world better than the IOR method.

Translucent Materials and More Chapter 4

[233]

There's more...
Another useful node we employed is the Depth Fade one, which allowed us to mask an
area according to the distance to the shore. Beyond its actual usefulness, it helps to
highlight a number of other creative nodes that are at our disposal and that make the
material-creation process a very powerful and versatile one. I'd like to leave you thinking
about some of them, as they might help you realize your material ideas later on.

One of them is the Pixel Depth function. This expression assigns a value to the rendered
pixels that is tied to their distance to the camera. This can be used in different ways and to
achieve a multitude of effects—one of them being a manual depth of field effect, where we
might blur areas that are far from the camera or closer to it.

The second one we'll cover is the Scene Depth node. It is very similar to the previous node,
except that the depth values it gives us are sampled at any location of the scene and not just
on the pixels currently being drawn. This is a useful node to use in conjunction with the
previous one, as we can create interesting effects by comparing both nodes.

See also
As always, make sure to read Epic Games' official documentation if you want to learn more
about the subject available at https:/ / docs.unrealengine. com/ en-us/ Engine/ Rendering/
Materials/PixelNormalOffset.

Water caustics
Nailing down the right look for a water surface can greatly increase the realism of our
scenes, especially when dealing with tricky materials, such as the ones that make use of
translucency. Getting those nice reflections to show up, the refraction working in the right
way, and the animation to feel believable is something we tackled in the previous recipe.
On top of that, we can add an extra effect that is often seen in bodies of water: caustics.

https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/PixelNormalOffset
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/PixelNormalOffset
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/PixelNormalOffset
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/PixelNormalOffset
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/PixelNormalOffset
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/PixelNormalOffset
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/PixelNormalOffset
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/PixelNormalOffset
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/PixelNormalOffset
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/PixelNormalOffset
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/PixelNormalOffset
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/PixelNormalOffset
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/PixelNormalOffset
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/PixelNormalOffset
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/PixelNormalOffset
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/PixelNormalOffset
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/PixelNormalOffset
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/PixelNormalOffset
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/PixelNormalOffset
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/PixelNormalOffset

Translucent Materials and More Chapter 4

[234]

This technique, which tries to mimic how the refracted envelope of light rays that the
surface of our water body is projecting onto another object works (the bathtub, in our case),
is difficult to calculate in real-time renderers. That being the case, we usually rely on
approaches that try to fake the effect rather than realistically show it. We'll be exploring one
such method in the following pages.

Getting ready
Since this recipe is going to follow in the footsteps of the previous one, there's nothing new
that you'll need. All of the same considerations we took into account some pages ago still
apply here: we'll need a plane that can act as a body of water and a model that acts as its
container. With regards of the new bits that we'll be using, all of them are provided as part
of the Starter Content so make sure to include that!

If you want to follow along using the same assets, you can find the map we'll be using as
the starting point in the Content / UE4ShadersAndEffects / Maps / Chapter04 /
04_06_WaterCaustics_Start folder.

See you in the next section!

Translucent Materials and More Chapter 4

[235]

How to do it...
As we said before, caustics are usually faked within the engine rather than computed in
real time as there's no current method that allows for that operation to run at a high refresh
rate. As such, we'll fake them with something called a light function, which is a type of
asset that is applied to lights in UE4. With that in mind, let's first place the light that will
support this technique:

Add a Spot Light to the scene. This type of light is quite helpful when dealing1.
with caustics, since it has a couple of parameters (the Outer Cone Angle and the
Inner Cone Angle) that allow us to have a nice area where the light isn't fully on
or off.
Place the Spot Light slightly above the water plane and tilt it a little bit, like in2.
the following screenshot:

Just as a reference, I've used a rotation value of 90, -60, -60 in the X, Y, and Z axes.

Set the type of light to Movable.3.
Play a little bit with the values for the light—weak the Intensity, adjust the Inner4.
and Outer Cone Angles. I've set the values to 2.3 for the first of those settings, 22
degrees for the Inner Cone Angle and 42 for the Outer one.
Scroll down to expand the available settings under the Light section of our Spot5.
Light actor and focus on the Lighting Channels section. Uncheck Channel 0,
which should be on by default, and check Channel 1.

Translucent Materials and More Chapter 4

[236]

Select the SM_BathTub actor and head over to the Lighting section in the6.
Details panel. At the bottom of that section, you will have the opportunity to
check Channel 1 as well. Leave both channels checked on this occasion:

Lighting Channels for the Spot Light and the Bathtub.

Assigning a specific Lighting Channel to a mesh means that said model
will only be affected by lights that make use of the same Lighting
Channel. Keep that in mind when you want to create special effects that
only affect certain surfaces.

With that out of the way, we can finally dedicate our efforts to build the light
function through which we are going to emulate the caustic effect. We'll start this
process by heading over to the Content Browser and creating a new material.

Translucent Materials and More Chapter 4

[237]

Create a new material and perform the usual steps—give it a name, save it, and7.
so on. I've named mine M_ WaterCaustics.
Open the new asset in the Material editor and head over to the Details panel.8.
Change the Material Domain to Light Function.
Assign the new material to our Spot Light. To do so, head back to the main9.
editor and select the spot light. Look at its Details panel—there's a section there
called Light Function that you'll find if you scroll down enough:

A / B : Set the Material Domain to Light Function and assign the material to the
Spot Light.

Having the material applied to the light will allow us to see the changes as we
make them and save them. Let's start modifying it!

Create a Texture Coordinate node as we need one of these whenever we want to10.
alter the size or the position of our textures.
Add a Multiply node after the previous Texture Coordinate one, and connect11.
the output of that one to the pin A of our new node.

Translucent Materials and More Chapter 4

[238]

Somewhere under the Texture Coordinate, create a Scalar Parameter. We will12.
use this to change the tiling of the Texture Sample we'll create later instead of the
Texture Coordinate node, simply because Scalar parameters can be tweaked in
Material Instances, unlike Texture Coordinate nodes. Set it to 1.
Connect the Scalar Parameter to the pin labelled B of the previous Multiply13.
node.

For organizational purposes, let's call the previous steps we've performed part A.
This will help us to remember what we have to connect where.

Create a couple of Scalar Parameters; name one Horizontal Speed 01 and the14.
other Vertical Speed 01. Feel free to give them whatever name you want, but
know that's what we'll be using them for to define the speed at which a future
texture is going to move. Set them to 0.01 and 0.025, respectively.
Create a MakeFloat2 node. As this is a new node, know that you can do so if you15.
right-click anywhere within the Material Graph and start to type that name.
Connect the scalar parameter that affects the horizontal speed to the input pin16.
named X (S) of the MakeFloat2 node, and the one that affects the vertical speed
to the pin labelled Y (S).
Drag a line from the Result pin of the MakeFloat2 node and create a Multiply17.
node at the end of it. It will automatically connect itself to pin A, and leave pin B
with the default value of 1 at this stage, since it will come in handy later on.

We can call these last few steps part B. With these two parts under our belts, we
can create the next bit, which is going to tie things together.

Add a Panner node (right-click Panner).18.
Connect part A to the Coordinate pin of our Panner and then connect part B to19.
the Speed pin of the same Panner node.

Translucent Materials and More Chapter 4

[239]

This is what our graphs should look like now:

Feed the Speed pin with a 2D vector! That's why we used the
MakeFloat2— to control the Speed in X and Y independently. Had we
only used a Constant, we would be tweaking both speeds with just one
value, resulting in a diagonal movement.

Drag a cable out of the output pin of the Panner node and create the Texture20.
Sample that the whole sequence we created is going to be affecting.
Select the T_Water_M texture as the value for our new Texture Sample. This21.
asset is part of the Starter Content, so be sure to include it if you haven't done so.

Translucent Materials and More Chapter 4

[240]

Every step we've performed so far now has left us with a node network that we
could use to drive the appearance of the material. Thanks to the texture we just
selected, which contains a similar pattern to that of water caustics, the light
function could just as well work. In fact, if you click on the Apply and Save
buttons, you'll be able to see what it looks like on our scene. However, we want to
do something more caustics are a type of pattern that usually wraps around and
moves fluently on the surfaces where it appears, and that's what we are going to
replicate next. And those things we are going to create in just a second are going
to be quite similar to the ones we now have, so let's call the node network we
have already created section A before we move on:

Duplicate section A and place it below the first instance of section A. We'll call22.
this part section B, where we'll be operating next.
Change the names of the scalar parameters located within section B. I've gone23.
with Second Scale, Horizontal Speed 02, and Vertical Speed 02 to reflect what
they'll be doing.
Apart from changing the names, feel free to play around with the values of the24.
previous parameters as well. Making them similar but different to the ones in
Section A will work well, as our intention is to create a slightly different pattern.
I've gone with the following values: 1.5 for the scale, -0.008 for the horizontal
speed, and -0.0125 for the vertical one.

Translucent Materials and More Chapter 4

[241]

The values on those fields can change drastically depending on the type of
surface that you are working on and how its UVs are laid out. Feel free to
experiment with them if you are using your own assets.

Having this duplicate of the original node network will let us mix both in a nice,
subtle way. With this as our objective, let's create a node that can do that.

Add a Lerp node after both of the previous sections. Connect the output of25.
section A to pin A, and the output of section B to pin B. Leave the Alpha as it is
by default, with a value of 0.5, which will create a 50% blend between both input.
Include a Multiply node right after the last Lerp.26.
Create another Scalar Parameter and name it Overall Intensity. We'll use that to27.
control the strength of the light function.
Connect the output pin of the Lerp node into pin A of the Multiply, and the last28.
Scalar Parameter into the B pin.
Plug the result of the Multiply node into the Emissive Color pin of our main29.
material node.

Even though we are almost finished, we can still add one more scalar parameter
to control the overall speed of the effect. Do you remember that we left an
unconnected pin on the Multiply node in section A after the MakeFloat2? We'll
take care of that now.

Create a Scalar Parameter with a value of 1 to control the overall speed at the30.
beginning of the graph. Name it Overall Speed.
Hook its output pin to pin B of both the Multiply nodes located in sections A and31.
B (the ones that are placed right after the MakeFloat2 nodes).

Translucent Materials and More Chapter 4

[242]

Compile and save your work:32.

Translucent Materials and More Chapter 4

[243]

We've included the previous screenshot as a reminder of what our node graph should be
composed of. The red bit contains the overall speed now, which we've created in the last
steps to control that property of the material. The orange and blue rectangles match what
we've called sections A and B, with the green bit at the end blending between both and
adjusting the intensity. With all of those changes in place, this is what our scene should
now look like:

How it works...
Light functions are great! You already knew that, but the way we've used them in this
recipe really highlights Unreal's versatility. Think about it: we've used a light. However,
this light doesn't cast shadows, as we've disabled that. The light that it emits doesn't affect
any other surface apart from the one we want to affect, as we used the lighting channels
Unreal provides to take care of that. Pretty uncommon behavior as far as lights go!

This type of versatility is something that we should exploit more and more as Unreal users,
as it only offers us benefits in the long run. We become more familiar with the engine,
know what the possibilities are, and where the limits lie.

Translucent Materials and More Chapter 4

[244]

There's more...
Before we finish, let's talk about realistic water caustics. If, for some reason, you wanted to
create a more realistic version of the water caustic effect, instead of faking it, there's an
option that you might want to explore, even though, all being said, it's not 100% accurate
either.

Something you could do is record the animation of the water plane you are going to be
using from a top-down perspective, and render that sequence of images into a video. Of
course there's no use in us rendering the color, we would need to render the height map,
but that's something we can do in other 3D editing software packages or if we visualize our
scene through the Scene Depth buffer and we then adjust the values to create a height map.

All in all, the point is to record an animated height map that matches the real movement of
an animated water plane—the same one that we'll use, to be precise. This animation can
then be fed into the light function, and if we align it correctly and play with it, we'll have a
much more realistic water caustic!

See also
You can find more info about light functions and lighting channels here (official Epic Docs,
as always!):

https:// docs. unrealengine. com/en- us/Engine/ Rendering/
LightingAndShadows/ LightFunctions

https:// docs. unrealengine. com/en- us/Engine/ Rendering/
LightingAndShadows/ LightingChannels

https://docs.unrealengine.com/en-us/Engine/Rendering/LightingAndShadows/LightFunctions
https://docs.unrealengine.com/en-us/Engine/Rendering/LightingAndShadows/LightFunctions
https://docs.unrealengine.com/en-us/Engine/Rendering/LightingAndShadows/LightFunctions
https://docs.unrealengine.com/en-us/Engine/Rendering/LightingAndShadows/LightFunctions
https://docs.unrealengine.com/en-us/Engine/Rendering/LightingAndShadows/LightFunctions
https://docs.unrealengine.com/en-us/Engine/Rendering/LightingAndShadows/LightFunctions
https://docs.unrealengine.com/en-us/Engine/Rendering/LightingAndShadows/LightFunctions
https://docs.unrealengine.com/en-us/Engine/Rendering/LightingAndShadows/LightFunctions
https://docs.unrealengine.com/en-us/Engine/Rendering/LightingAndShadows/LightFunctions
https://docs.unrealengine.com/en-us/Engine/Rendering/LightingAndShadows/LightFunctions
https://docs.unrealengine.com/en-us/Engine/Rendering/LightingAndShadows/LightFunctions
https://docs.unrealengine.com/en-us/Engine/Rendering/LightingAndShadows/LightFunctions
https://docs.unrealengine.com/en-us/Engine/Rendering/LightingAndShadows/LightFunctions
https://docs.unrealengine.com/en-us/Engine/Rendering/LightingAndShadows/LightFunctions
https://docs.unrealengine.com/en-us/Engine/Rendering/LightingAndShadows/LightFunctions
https://docs.unrealengine.com/en-us/Engine/Rendering/LightingAndShadows/LightFunctions
https://docs.unrealengine.com/en-us/Engine/Rendering/LightingAndShadows/LightFunctions
https://docs.unrealengine.com/en-us/Engine/Rendering/LightingAndShadows/LightFunctions
https://docs.unrealengine.com/en-us/Engine/Rendering/LightingAndShadows/LightFunctions
https://docs.unrealengine.com/en-us/Engine/Rendering/LightingAndShadows/LightFunctions
https://docs.unrealengine.com/en-us/Engine/Rendering/LightingAndShadows/LightingChannels
https://docs.unrealengine.com/en-us/Engine/Rendering/LightingAndShadows/LightingChannels
https://docs.unrealengine.com/en-us/Engine/Rendering/LightingAndShadows/LightingChannels
https://docs.unrealengine.com/en-us/Engine/Rendering/LightingAndShadows/LightingChannels
https://docs.unrealengine.com/en-us/Engine/Rendering/LightingAndShadows/LightingChannels
https://docs.unrealengine.com/en-us/Engine/Rendering/LightingAndShadows/LightingChannels
https://docs.unrealengine.com/en-us/Engine/Rendering/LightingAndShadows/LightingChannels
https://docs.unrealengine.com/en-us/Engine/Rendering/LightingAndShadows/LightingChannels
https://docs.unrealengine.com/en-us/Engine/Rendering/LightingAndShadows/LightingChannels
https://docs.unrealengine.com/en-us/Engine/Rendering/LightingAndShadows/LightingChannels
https://docs.unrealengine.com/en-us/Engine/Rendering/LightingAndShadows/LightingChannels
https://docs.unrealengine.com/en-us/Engine/Rendering/LightingAndShadows/LightingChannels
https://docs.unrealengine.com/en-us/Engine/Rendering/LightingAndShadows/LightingChannels
https://docs.unrealengine.com/en-us/Engine/Rendering/LightingAndShadows/LightingChannels
https://docs.unrealengine.com/en-us/Engine/Rendering/LightingAndShadows/LightingChannels
https://docs.unrealengine.com/en-us/Engine/Rendering/LightingAndShadows/LightingChannels
https://docs.unrealengine.com/en-us/Engine/Rendering/LightingAndShadows/LightingChannels
https://docs.unrealengine.com/en-us/Engine/Rendering/LightingAndShadows/LightingChannels
https://docs.unrealengine.com/en-us/Engine/Rendering/LightingAndShadows/LightingChannels
https://docs.unrealengine.com/en-us/Engine/Rendering/LightingAndShadows/LightingChannels

Translucent Materials and More Chapter 4

[245]

Animating a sea shader
Even though we've worked on water before, I couldn't pass up the opportunity to talk
about large-scale ocean shaders in UE4. I'll admit it: this is one of my favorite subjects in
computer rendering, and achieving great results is completely possible thanks to the
methods we are about to see. However, this is not going to be a mere expansion of any of
the previous topics. Instead, we are going to continue to learn new techniques and apply
new concepts throughout the following pages—so buckle up, there's no time for rest in our
journey!

Getting ready
Big changes for this recipe but everything you'll need is, as always, provided either by us,
included in the Starter Content, or part of the engine. Since we are going to be working on
a large ocean material, it made sense to move from the familiar interior scene we've been
working on to a large outdoors environment. The level we'll be working on is
called 04_07_SeaShader_Start, and you can find it in the folder for this chapter: Content /
UE4ShadersAndEffects / Maps / Chapter04.

But what if you want to apply what we'll be learning on your own projects, you say? In that
case, here are the basic building blocks you'll need: a subdivided plane and the
BP_LightStudio blueprint (that comes provided with the Starter Content). Basically, a
plane that has enough subdivisions so that we can fake the motion of the waves and a light
to see it. That's it!

Translucent Materials and More Chapter 4

[246]

How to do it...
Working with oceans usually means working with large-scale surfaces. In our industry, and
unlike in real life, those surfaces could actually be very small but for the purposes of this
recipe, we are going to force ourselves to deal with big areas. Doing so allow us to learn
how to tackle them, as their scale usually comes with certain challenges. The main one we'll
face is something called tiling, which is a word we use to refer to the visible repetition of a
texture across a model. Even though that's something we dealt with in Chapter 3, Opaque
Materials and Texture Mapping, when working on concrete surfaces, we'll expand upon that
by adding interesting effects and techniques that we couldn't apply there. One of them is
the addition of sea foam depending on the height of the waves we create – something
extremely useful as it introduces dynamic changes in our materials.

With your scene already set up—either by opening the one we provide or after1.
creating yours—add a new material in the Content Browser. I've named mine
M_OceanWater which is self-explanatory!

As one of our main worries will be to hide any repetition that may become
obvious in our material, we'll start by defining two set of randomly-generated
waves—one smaller and one larger in scale. We'll call this first bit part A,
dedicated to the creation of the small waves.

Create a Material Function Call, either by holding the F key and left-clicking in2.
an empty space of the material graph or by right-clicking and typing its name.
With the new node selected, look at the Details panel and expand the drop-down3.
menu for the material function. Search for and select the one
called Motion_4WayChaos_Normal.

This handy function will create a randomized animated motion based on a
normal texture we'll use as input. Let's set the parameters up.

Pop an Absolute World Position node in. Remember to just type World4.
Position, as starting with Absolute will give you no results.
Throw two scalar parameters into the mix. The first one, which I've named Water5.
Scale (1), will be used as a general control for the scale of our ocean. The second
one, named Small Wave Scale (256), will control the specific scale of the smaller
waves.
Add a Multiply node and connect its A and B input to the previous two scalar6.
parameters.
Create a Divide node and place it after the Absolute World Position one.7.
Connect its A input pin to the output of the World Position.

Translucent Materials and More Chapter 4

[247]

Connect pin B of the new divide node to the output of the previous Multiply8.
node.
Place a Component Mask after the Divide node. Select the Red and Green9.
channels in the Details panel.
Connect the output of that network of nodes to the Coordinates/UVs input pin of10.
the original Material Function:

This first part that is feeding into the UVs input pin of the Four-Way Chaos
function defines how it will project itself onto the surfaces we apply this material
to. On the one hand, the World Position gives us a projection that doesn't rely on
the UVs of the model. We affect the scale of this projection through the two scalar
parameters we created, and we finally mask the red and green channels as we
need a two-coordinate vector to feed into the final input pin. With the coordinates
under control, let's now affect the Speed and the Texture pins.

Create a couple of scalar parameters, one which we'll call Small Wave Speed11.
(0.2) and one called Water Speed (1.5). This is the same approach we took when
we created the scalar parameters that affected the scale of these small
waves—except now we are controlling the speed instead.
Multiply both by creating one such node and connecting the previous scalar12.
parameters to it.
Connect the output of that Multiply node to the Speed input pin of the Four-13.
Way Chaos function.

Translucent Materials and More Chapter 4

[248]

Include a Texture Object Parameter, assign the T_ Water_ N texture to it, and14.
connect it to the Texture input node of our previous function.

We are creating so many scalar parameters and texture object parameters because
we want to create a Material Instance at the end of this process and be able to edit
all of those things in real time, as going one by one and compiling every change
would take a lot of time.

With that done, we are almost finished with this section of the graph (part A). We
still need to create a couple more nodes in order to finish it, so let's do that.

Create two Constant3Vector nodes. Assign the first a value of 0,0,0 and the15.
second one a value of 1,1,0.2.
Create a Scalar Parameter and name it Small wave amplifier, with a value of 0.5.16.
Lerp between the first two vectors according to this last parameter.17.
Add a Multiply after the Four-Way Chaos function and connect that to the A18.
input pin of the new node. Connect pin B to the output of the previous Lerp.

Implementing all of the previous steps will see us finished with part A of the
material, which controls the scale, speed, and magnitude of the small scale waves:

This will enable us to quickly duplicate the contents we've just created and
generate the second set of waves, which will be larger in scale hence the name
we'll be giving them, Large Scale Waves. We'll start to do that now, but just as a
reference, we'll call this section of the graph part B.

Translucent Materials and More Chapter 4

[249]

Copy all of the nodes that we've previously created, what we've called part A,19.
and paste them a little bit further down the material graph. This is going to be
called part B, which will control the scale, speed, and amplitude of the large-scale
waves.
Rename things, as the names of the scalar parameters need to be adapted for this20.
large-scale section of the graph. Small Wave Scale, Small Wave Speed, and
Small Wave Amplifier should change the word Small to Large in all of them.
Other scalar parameters need to be renamed so that they match their original21.
names. That will ensure that we are using the same parameters across the whole
material. Pay special attention to Water Scale and Water Speed, as they've
slightly changed their names after the copy/paste process.
Change the values of Large Wave Scale, Large Wave Speed, and Large Wave22.
Amplifier. The new values should be something like 1024, 0.05, and 0.9. Also,
change the values of the Constant3 Vectors that feed into the Lerp being driven
by the Large Wave Amplifier, the new values should be 1,1,3 and 1,1,0.1 in the A
and B pins.
As a small addition, include a Rotator node between the Component Mask and23.
the Four-Way Chaos function in this part B of the material. This will spice things
up a little bit as we would otherwise end up with just a larger-scale version of the
previous texture.
Feed the Time input pin of this rotator with a simple constant, which I've given a24.
value of 1.342:

Translucent Materials and More Chapter 4

[250]

The previous changes have left us with a functional part B of the graph, identical
to part A except for the different scalar parameters and values we've applied. This
means that we now have two functions that are creating two wave patterns of
different sizes, animated at different speeds and that have a different normal
intensity. Let's see what this means by connecting the output of each part into the
Base Color, one at a time:

As you can see, this is creating a nice wave pattern. However, the reason we've
created two different ones is so we can blend between them to remove the
repetition we see. This will be useful to drive other elements of the material, as we
are about to do. However, there's something that we can do straight out of the
box at this stage, which is to connect the blend of both parts into the Normal input
of the main material node:

Create an Add node after both parts A and B and connect each of them to the25.
input pins.
Connect the output of the previous Add node into the Normal input pin of the26.
main material node.

Those actions have taken care of the normals for the material. We still need to
address its Base Color, the Displacement, and many of the other properties that
define the look of our shaders. We can start this process by tackling the
displacement of the plane on which we are applying the material.

Copy part B of the material and paste it under the original part B. We'll call this27.
other section part C, which we are about to modify as well.
Delete the Multiply located after the 4 Way Chaos function, along with the Lerp,28.
the two Constant3 vectors, and the scalar value that are feeding its B input pin.

Translucent Materials and More Chapter 4

[251]

Select the Motion_4WatChaos_Normal function and change it to the one called29.
Motion_4WayChaos. Be careful with the name, as they are very similar but are
meant for different purposes.
Change the texture being fed to the Texture Object Parameter to the one named30.
T_Water_M. This is a heightmap version of the previous one, included with the
Starter Content as well. While you're at it, change the name of this parameter to
Large Wave Height.
Rename the rest of the other scalar parameters to match those found in part B.31.
Add a Power node after the function, and connect the Result pin of that to the32.
Base pin of the new node:

All of the previous actions will have left us with part C of the material graph. As
you can probably tell by now, this is going to be a complex shader! Part C
basically does the same as part B; it defines the scale and speed of the large
waves. However, instead of calculating the normals, we are calculating the height,
which is going to be useful in order to drive the displacement of our model as
well as the location of the foam in the shader.

At this stage, we are going to branch off part C, as we'll need this to drive the
location of the sea foam and the displacement of the material. The displacement
can be used almost as-is, so let's focus on that for the time being.

Translucent Materials and More Chapter 4

[252]

Add a Scalar Parameter and name it Luminance bias to control the intensity of33.
the height-map. Give it a value of 0. This will control how high or low it is in our
world. Create an Add node and connect this to the Luminance Bias and to the
output of the Power node from step 32.
Mask the red channel with a Component Mask. This will give us a grayscale34.
texture that we can then store in a different channel. We'll want to put it in the
blue one in particular, or the Z one as it is sometimes known.
Create an Append node and a Constant2 Vector. Give the vector a value of 0,0,35.
and connect it to pin A of the Append node. Connect the previous mask we
created into pin B of the Append node. This will effectively create a three-
component vector and store the height map as the Z value.
Throw a Multiply node to increase the intensity. Multiply it by 5.36.
Create another Multiply node and a Scalar Parameter. This latest parameter will37.
control the displacement, so name it just that and give it an initial value of
something like 10. Connect the new scalar parameter and the output of the
previous multiply node to the new one.
Right-click and create a Vertex Normal vector. This will give us the world space38.
value of the vertex normals our material is applied to, which will let us displace
the model in turn. Add that node to the previous Multiply by creating a new
Add and doing just that.
Hook the result of the Add node into the World Displacement input pin of the39.
material:

Now we can take care of the water color; the first step in that journey is going to
be the creation of the Sea Foam texture. Let's do it.

Translucent Materials and More Chapter 4

[253]

Copy part C and paste it between parts B and C. Create space in between if you40.
don't have any at the moment.
Rename some of the scalar parameters; we should have Seafom scale instead of41.
Large wave scale, and Seafoam speed instead of Large wave speed.
Set the Water_d texture as the Texture Object Parameter default value. 42.

Before we continue, let's introduce a small difference. If we were to join the result
of the Component Mask to the Coordinate input pin of the Motion_4WayChaos
function, we would be effectively populating our material with sea foam all over
the place. However, we want this texture to appear linked to the large waves (part
B). Here's how we can take care of that:

Include an Add node between the Component Mask node and the material43.
function of the sea foam. The Component Mask should be fed into one of the
input pins of the Add node, and the output of that connected again to the
material function.
We should now have an empty input pin on the latest Add node. We'll come44.
back to this in a few steps, so keep this in the back of your head.
Go back to part B of the large wave section, and drag another cable out of the45.
material function (Motion_4WayChaos_Normal). Create a Component Mask
and select the Red and Green channels.
Continue to drag another cable, out of the output pin of the new mask, and create46.
a One Minus node.
Create a Multiply node.47.
Add a Scalar Parameter and name it Foam distortion. Hook it into pin B of the48.
previous Multiply.
Connect the output of the One Minus node in pin A.49.
Connect the result of the Multiply node back into the original Add node from50.
step 43.

Steps 40 to 50 will be referred to as part D. Those steps have enabled us to include
a small sea foam texture that will be driven in part by the large waves. We will
use this to modify the appearance of our material. It is now time to tackle the Base
Color of the shader a process that will involve several steps. The first of them will
see us trying to mimic the effect that we see when we look at the ocean: the color
seems to change according to the position and movement of the waves, where
surfaces that are pointing toward us seem darker than those that are parallel to
our vision:

Translucent Materials and More Chapter 4

[254]

Drag a cable from the Add node we created in step 25 (the one that combines51.
parts A and B).
Create a Normalize node at the end of it. This expression takes the vector values52.
we give them and returns the unit vector back to us (a vector with a length of 1).
Add a Transform Vector after the Normalize node, which will take the tangent53.
space values that we are inputting and output them according to the world
space.
Create a Fresnel node, and hook the previous Transform Vector into its Normal54.
input pin. With the node still selected, set the Exponent to 5 and the Base Reflect
Fraction to 0.
Throw a Clamp node after the Fresnel and leave the Min and Max values with55.
the default 0 and 1:

Translucent Materials and More Chapter 4

[255]

We'll call the previous part of the graph part E for future reference. All of those
nodes have given us a mask that treats the areas of the material that aren't facing
the camera differently to those that are and what's even more useful, taking the
waves into account. We finally have something that can help us drive the
appearance of the different water parts. Next, we'll create the colors of the water,
which we'll call part F.

Create two vector parameters. Name the first something like Water color and the56.
second Water side color, and give them values that you think would work well
with such a material. You can give them wildly different colors if you want to see
the effect in action in a more obvious way.
Lerp between those two vector parameters using the output of part E as the57.
Alpha:

At this point, all we need to do is to merge this color with the sea foam we
previously created. To do so, we still need to implement a little bit of code.

Go back to the Power node in part C (where we calculated the Large wave58.
height), which we created in step 32, and drag a pin from it in order to create a
new Power node at the end.
Create a Scalar Parameter, which we'll use to control how much foam we can59.
see. I've named it Seafoam Height Power and given it a value of 2. Connect it to
the Exp pin of the previous Power node.
Create a Multiply node, and connect its A pin to the output of the Power node.60.
Create another scalar parameter, which will control the tolerance at which the sea61.
foam will be placed. I've named it Seafoam Height Multiply, and given it a
value of 2,048. Connect it to pin B of the previous Multiply node.
Create a Component Mask out of the Multiply node and select the Red channel62.
as its only option.

Translucent Materials and More Chapter 4

[256]

Clamp the output of the previous mask between 0 and 1:63.

We'll refer to the previous set of nodes as part G. They control the height at which
the foam is going to be positioned, so they are bound to come into play soon.

Drag a wire out of the output pin of the Lerp node in part F, the one that64.
interpolates between the water colors.
Create a Lerp node at the end of that wire, which should automatically connect65.
itself with the output of the previous Lerp.
Connect its B pin to the output of the Motion_4WayChaos material function66.
from part D, where we created the sea foam.
Create a Component Mask with the Green channel selected after that same67.
Motion_4WayChaos function. Connect that to the Alpha pin of step 65.

The previous steps have enabled us to interpolate between the normal water color
and the sea foam texture, according to the motion of the large waves. We also
need to introduce a final requirement so that the foam only shows on the highest
parts of the large waves, which we've calculated in part G.

Drag another wire from the Lerp node in part F, and create another Lerp.68.
Connect the output of the Lerp in step 65 to the B pin of the new Lerp.69.
The Alpha pin should be hooked to the output of the Clamp node from part G.70.
Hook the output of this final Lerp into the Base Color of the material node.71.

Translucent Materials and More Chapter 4

[257]

The only thing we now need to do is to create a couple of constants to define the Metallic,
the Specular, and the Roughness of the material. We can create three such scalar
parameters and give them values of 0.1 to define the metalness, 1 for the specular to really
boost the reflections, and 0.01 on the Roughness slot, since we want to see the details
reflected in the surface of our water body. Make sure to create a material instance after
doing that, and tweak the values until you are happy with the result. As a final image,
here's what it should look like once you adjust the color values to something natural:

How it works...
We did a lot in this recipe. And I'm sure things will take a while to settle and become clear,
but let's see whether we can expedite that process in the next few sentences.

At the end of the day, it's always useful to think about any complex materials in terms of
what we are doing instead of the individual steps we are taking. If you break it down into
small pieces, such as the different Parts we've mentioned, things can become clear. Let's
review our work.

Parts A and B are quite straightforward: we are creating an animated wave pattern, one
small and one large in scale, thanks to a material function that the engine includes. We also
introduced a small variation in the large wave pattern by introducing a rotator node.

Beyond that, we used part D to create a sea foam texture. Unlike the A and B sections,
which were completely independent, part C relies on the large-scale waves as we only want
the foam to appear on their crests.

Translucent Materials and More Chapter 4

[258]

Part C calculated the height map for the large waves, and part H used that information to
drive the displacement of the waves. Part G also relied in the height map from part C to
define which areas should have sea foam in them. Everything came together as we merged
the water color and the sea foam according to these calculations.

That's pretty much it! I know it's still a lot to take in, and the best way to tackle this kind of
complexity is by reviewing the graph and making sure everything makes sense.

There's more...
I don't want to finish this chapter without mentioning a very useful technique that can help
us review our graph. This is especially useful in complex materials such as this latest one,
as it's easy to lose track of what we are doing. The tool I'm talking about is the Start
Previewing Node option within the material graph. To enable it, just select the node of
your graph that you want to check and right-click on it. Said option should become
apparent as one of the first ones—just click on it and look at the material viewport, which
should now show the results. Remember to right-click and select the Stop Previewing
Node option to cancel that effect.

Note that some effects are difficult to visualize by just clicking the Start Previewing Node
option. This is especially true with techniques that rely on screen space calculations, as they
will only show in our viewport. Effects such as the Depth Fade node, which we used when
creating the bath tub water a couple of recipes ago will by affected by that circumstance, for
example.

See also
One of the things we used the most in this recipe was the 4 Way Chaos material function.
Even though we've used several useful nodes in the past, functions are kind of new to us
and going back to Unreal Engine's official docs can be a great way to learn more about
them: https://docs. unrealengine. com/ en-us/ Engine/ Rendering/ Materials/ Functions/
Overview. Additionally, we all know that this last recipe has been a bit on the long side but
the different parts we've tackled are actually very important and quite advanced stuff! As
an assignment, try to test yourself and go over the different steps we've reproduced by
creating a similar material once again, introducing your own tweaks. You'll gain a lot of
knowledge and hands-on experience when doing so!

https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/Functions/Overview
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/Functions/Overview
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/Functions/Overview
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/Functions/Overview
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/Functions/Overview
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/Functions/Overview
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/Functions/Overview
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/Functions/Overview
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/Functions/Overview
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/Functions/Overview
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/Functions/Overview
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/Functions/Overview
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/Functions/Overview
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/Functions/Overview
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/Functions/Overview
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/Functions/Overview
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/Functions/Overview
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/Functions/Overview
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/Functions/Overview
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/Functions/Overview
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/Functions/Overview
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/Functions/Overview

5
Beyond Traditional Material

Uses
All of the materials and techniques we've seen so far had one thing in common: they were
designed to affect the look of our scenes. Many shaders fall under this category, and it
seems logical given the real-world definition of what a material is. However, they can also
be useful in many ways other than the one described when working with real-time
applications. In this chapter, we will look at the following recipes:

Using an emissive material to light the scene
Playing a video from the internet on a screen
Creating a CCTV camera feed
Highlighting interactive elements within our game
Creating a video game compass
Creating a mini map

As you can see, there are other interesting uses for materials that can help game or app
development. Let's explore them in the next recipes!

Introduction
Try to think for a moment about any game or app you've played in the past – that could be
your favorite childhood video game or a recent one that you can't stop thinking about. I'm
sure that the first thing you'll remember will be tied to a specific experience you had while
playing the game, something that impressed you at the time. It could be the way the world
was crafted within the game, or a specific sequence of events that happened in it. In any
case, we can probably agree that apps and games aren't just made out of static components,
such as models and materials, but the interactions and the magic that happens when
everything works together.

Beyond Traditional Material Uses Chapter 5

[260]

In this recipe, we'll take a look at some of those elements within the realm of materials that
add interactivity and functionality to our real-time experiences. As we said before, shaders
have the ability to be interactive as well, and thanks to that and the logic that we write, we
can create powerful assets that make our levels that much more interesting. Let's take a
look at them!

Using an emissive material to light the
scene
One of the first examples that we'll explore is a material – a lamp, to be precise – that is
being used outside of its traditional comfort zone. This light-emitting object isn't going to
rely on a light asset derived from one of the many different engine classes that are available
to us—instead, we'll use a good, old material to do the job. We won't stop there though, as
creating the material is actually not the difficult part. What's going to be tricky is getting the
right results out of the light baking process, so we'll explore which settings we need to
tweak there. All in all, we'll have access to a powerful way of faking and computing light
which will come in handy in many different situations.

Beyond Traditional Material Uses Chapter 5

[261]

Let's start exploring one of them! Take a look at the following screenshot:

Getting ready
Even though we are going to be using some custom 3D models and textures in this recipe,
this is just so we have something pretty to look at. If you want to use your own assets,
know that there won't be many requirements in terms of what you'll need to produce.
You'll want to have a simple mesh where you can apply the emissive material we'll be
creating and a small scene where you can test the results of the light-baking process we'll be
tackling. Even using the assets provided as part of the engine can work in here!

If you, however, want to use the assets we'll be providing, feel free to open the level named
05_ 01_ EmissiveAsStaticLighting_ Start located inside the Content Browser /
UE4ShadersAndEffects / Maps / Chapter05 folder.

How to do it...
The first step we'll need to take before starting this recipe deals with the scene setup. No
matter whether you've opened the same level we started with or your own, we want to
have quite a dark scene so we can clearly see the effects of what we are about to create. If
you've opened the scene we provided, make sure to do the following:

Select the BP_LightStudio blueprint asset within the World Outliner and look at1.
the Details panel. The third visible category, named HDRI, has an option called
Use HDRI. Make sure that box is unchecked so we can better appreciate the
results of the next steps we'll be enabling.

Beyond Traditional Material Uses Chapter 5

[262]

Even though we should have no lights at this point, you might need to
click on the Build button just so that the engine can rebuild the lighting.
Once that's done, you should be looking at an almost completely black
level.

Don't worry if, at this point, you still see some light on certain objects—those are
reflections present in very reflective surfaces, such as candles or certain parts of
the wooden floor. It's interesting to note that they are there, however, as it gives
us an idea about how the engine composes the final render output. Refer to the
following screenshot:

Create a new material within the content browser; one which we'll use as the2.
light caster. Name it whatever you like—I've gone with M_LightBulb.

Beyond Traditional Material Uses Chapter 5

[263]

Select the main material node and change the shading model from Default Lit3.
to Unlit. You can do so in the Details panel of the selected node, as we've seen in
previous recipes.

We'll be ready to start creating the material logic once we've performed the
previous couple of steps. Creating an emissive light is simple, so we'll try to spice
things up along the way. The first bit that I want to make you aware of is that
we'll try to stay close to the original look of the lamp, which you can check by
looking at the first image in this recipe or once you open up the starting scene.
We'll use the same textures to achieve that.

Create a Texture Sample node, and assign it the T_Lamp_Color texture. We've4.
included that asset in the Assets folder for this chapter.
Add a Cheap Contrast node after the previous Texture Sample, and connect5.
its In (S) input pin with the output of the previous image.
Include a Scalar Parameter and name it something like Contrast Intensity –6.
since that's what it will control. Connect it to the Contrast (S) input pin of the
CheapContrast node, but not before assigning it a value (something such as 2
works well).

The previous set of nodes has taken a regular texture and created a contrast-
adjusted black and white version of it. This will let us mask certain areas of the
lamp, so that some of them emit more light than others. Take a look at the
following screenshot:

Beyond Traditional Material Uses Chapter 5

[264]

The preceding screenshot of the graph so far, previewing the results of the
CheapContrast node.

Include a Multiply node right after the CheapContrast one. Connect the result of7.
the contrast to its B input pin and the output of the texture sample to pin A.
Doing this will color the lighter areas of the white and black image with the
original texture's color.
Add a second Multiply node after the previous one, and connect that to pin A.8.
Pin B will be connected to a parameter that will control the intensity of the lighter
areas.
Create a Scalar Parameter, which we'll use to feed into pin B of the previous9.
Multiply node. As this will control the brightness of the lighter areas, name it
accordingly. Remember to also assign a value, something high, such as 500.

The previous node sequence has left us with an emissive material that is only
casting light on the lighter areas of our original texture. The darker parts aren't
emitting at the moment, which is something we'll want to change.

Drag a cable out of the original Texture Sample and create a new Multiply node.10.
Add a new Scalar Parameter and name it something like Dark area11.
brightness, as we'll use it to control the emissive intensity in those areas.
Add a Lerp node after both this latest Multiply node and the one we created in12.
step 8. Connect that Multiply to pin B of the new Lerp, and connect the node
created in step 10 to the A input pin.
Connect the Result pin of the CheapContrast node to the Alpha of our new Lerp.13.

Beyond Traditional Material Uses Chapter 5

[265]

Connect the output of the Lerp node to the Emissive Color input pin of the14.
material:

We are left with an emissive material that we can apply to the lamp in our scene.
We'll still need to do a couple more things before we see the results though, as
there are some settings that need to be enabled.

Select the lamp from the World Outliner and look at its Details panel. You'll be15.
able to find an option called Use Emissive for Static Lighting if you scroll down
to the Lighting section of that panel. Check the checkbox at its side.

Beyond Traditional Material Uses Chapter 5

[266]

Apply the material we created to the model. If you are using the model we've16.
provided, you can do so by looking in the Materials section of the Details panel
and assigning it under the Element 1 panel:

We are ready to build the lighting and start checking out the results. Don't worry if the
initial tests are a bit messy—in order for this type of lighting to work well, we'll need to
tweak certain Lightmass properties. Let's see how things look if we just use the default
values though:

Beyond Traditional Material Uses Chapter 5

[267]

It worked! But as we said, the results aren't as clean as we would like. We need to adjust the
Lightmass settings if we want to increase the quality of the render output. Lightmass
properties can be accessed through the World settings panel. If you don't know where to
locate this panel, head over to Window | World Settings to find it. The default values that
you'll find in the Lightmass category will be shown now, with the adjusted ones that I'll be
using to increase the visual fidelity of the image by their side and in bold:

Static Lighting Level Scale: 1.0/0.3
Num Indirect Lighting Bounces: 3/30
Num Sky Lighting Bounces: 1/7
Indirect Lighting Quality: 1.0/5.0
Indirect Lighting Smoothness: 1.0/3.0

Apart from that, it can be also useful to check the checkbox next to the Use Ambient
Occlusion option.

Finally, and before we build the lighting once again to show the final results, I'd like to
make you aware of a couple of extra options that can be useful for controlling how this
emissive material affects the bloom in the scene. This is especially useful as objects that use
the emissive output to cast light can become very bright, and we don't usually want that. If
you want to change that, make sure to select the Post Process Volume in your scene and
look at its Details panel. You can adjust the Bloom intensity there, which we have changed
to 0.1 in this particular example as it works better than the default value.

Beyond Traditional Material Uses Chapter 5

[268]

Something else you can do is to adjust the Emissive Boost property in the Details panel for
the object that is casting light to achieve a similar effect:

How it works...
So, how does it all work? What are the principles that govern the light-emitting properties
of the emissive materials? Those might seem like big questions, but they are actually not
that difficult to answer. First of all, you can think of using emissive materials for light-
emitting purposes in a similar way to static lights. You need to calculate the lighting pass in
order for the results to show, and you need to pay attention to certain Lightmass settings to
achieve your desired result.

Using this method is actually quite cheap on our machines. The material is lighter to render
than most of the other ones we've seen so far, as it uses the Unlit shading model. The light
itself is also very simple and won't drain resources away from our computers, as it's
basically of the static type. This means no dynamic shadows, and it also means that we
have to build the lighting of our level if we want to use it.

Beyond Traditional Material Uses Chapter 5

[269]

The most demanding aspect we need to pay attention to is the Lightmass settings we use
when building the light, as that process can take a long time depending on the size of our
level and its complexity. Other than that, feel free to use this method as much as you want,
as it can be a cheap way to add lighting complexity to your scenes. Many artists use this
technique to fake detail lighting, where they would have real lights that define the overall
look of the scene but they use this baked method to highlight certain areas. Be sure to test
this yourself!

There's more...
As we just saw, using the emissive property in our materials to illuminate a scene is similar
to employing a static light. We need to know that, if we want to get good results, we need
to tweak the indirect lighting settings in the Lightmass panel in order to increase the final
quality. That being the case, I'd like to leave you with more examples on this topic,
provided for free by Epic Games. If you want to take a look at them, all you need to do is
head over to the Epic Games launcher and download the Content Examples project. To do
so, look under the Unreal Engine tab and inside the Learn category. You can then
download that project and explore the maps dedicated to the indirect lighting topic! Refer
to the following screenshot:

Beyond Traditional Material Uses Chapter 5

[270]

Once you create the project, you'll be able to find the appropriate maps by looking
inside Content Browser | Maps | Lighting Section. Be sure to give it a go!

See also
Check out Epic's official documentation on emissive materials if you haven't done so
yet: https://docs. unrealengine. com/ Engine/ Rendering/ Materials/ HowTo/
EmissiveGlow.

Playing a video from the internet on a
screen
Something we talked about in the introduction of this recipe was the fact that games are
able to produce magical moments by combining different interactive elements and putting
them together. What those magical moments actually are will vary depending on who you
ask, and you'll probably get as many different answers as people you question. To me,
something that kept me amazed in the early days of 3D games was looking at an in-game
television – I found it extremely cool to be able to watch a screen within a screen! Honoring
that memory, we'll tackle how to create an interactive display and how to link any videos
that you might want to play in it. I hope you find it as useful as I find it entertaining! Take a
look at the following screenshot:

https://docs.unrealengine.com/Engine/Rendering/Materials/HowTo/EmissiveGlow
https://docs.unrealengine.com/Engine/Rendering/Materials/HowTo/EmissiveGlow
https://docs.unrealengine.com/Engine/Rendering/Materials/HowTo/EmissiveGlow
https://docs.unrealengine.com/Engine/Rendering/Materials/HowTo/EmissiveGlow
https://docs.unrealengine.com/Engine/Rendering/Materials/HowTo/EmissiveGlow
https://docs.unrealengine.com/Engine/Rendering/Materials/HowTo/EmissiveGlow
https://docs.unrealengine.com/Engine/Rendering/Materials/HowTo/EmissiveGlow
https://docs.unrealengine.com/Engine/Rendering/Materials/HowTo/EmissiveGlow
https://docs.unrealengine.com/Engine/Rendering/Materials/HowTo/EmissiveGlow
https://docs.unrealengine.com/Engine/Rendering/Materials/HowTo/EmissiveGlow
https://docs.unrealengine.com/Engine/Rendering/Materials/HowTo/EmissiveGlow
https://docs.unrealengine.com/Engine/Rendering/Materials/HowTo/EmissiveGlow
https://docs.unrealengine.com/Engine/Rendering/Materials/HowTo/EmissiveGlow
https://docs.unrealengine.com/Engine/Rendering/Materials/HowTo/EmissiveGlow
https://docs.unrealengine.com/Engine/Rendering/Materials/HowTo/EmissiveGlow
https://docs.unrealengine.com/Engine/Rendering/Materials/HowTo/EmissiveGlow
https://docs.unrealengine.com/Engine/Rendering/Materials/HowTo/EmissiveGlow
https://docs.unrealengine.com/Engine/Rendering/Materials/HowTo/EmissiveGlow

Beyond Traditional Material Uses Chapter 5

[271]

Getting ready
We usually say that you don't need a lot to follow these recipes. While that is mostly true,
we're at a point where we'll actually need to create one of the assets we'll be using – the TV
screen—in a specific way. Be sure to check out the There's more... section if you are planning
on using your own models! Apart from that, you can get your hands dirty straight away if
you want to use the assets we provide. As always, you can open the level named 05 02
VideoStreaming_ Start located inside the Content Browser /
UE4ShadersAndEffects / Maps / Chapter05 folder and you'll have everything you
need to follow along!

How to do it...
Our main goal for this recipe is going to be streaming a video over the internet – sounds
easy, right?! It will be, I promise! However, something that we'll need in order to play said
broadcast is a display. If you are using the same assets as we are, this can be the
SM_TV_Screen static mesh that comes bundled with the project. If you are using your own
models, bring something that can act as a display and make sure to take into consideration
some of the things that we'll cover in the There's more... section. Whatever you do, we won't
be able to use either of those two models as they are—we'll need to create a Blueprint out of
them, as follows:

Right-click in the Content Browser and create a Blueprint asset of1.
the Actor type. Give it a name; something such as BP_TVScreen_Video will
work!
Double-click on this new asset to open the Blueprint editor. This is where we'll be2.
operating throughout most of the recipe.
Drag your static mesh for the TV display model into the blueprint. You can do3.
this by dragging and dropping the static mesh from the Content Browser into
the Blueprint or by selecting the Add Component option in the Blueprint itself
and selecting a Static Mesh component from the drop-down list.

Beyond Traditional Material Uses Chapter 5

[272]

Make the new imported TV screen the default root of your blueprint. You can do4.
this by dragging and dropping the name of the static mesh component into
the Components panel above the Default Scene Root one:

At this point, with the blueprint containing the model for the TV Screen, feel free
to replace the existing static mesh of the TV in the main level with this new
blueprint if you started using the same level as I am!

Before we go back to the blueprint Editor to continue to implement different
layers of functionality, we'll need to create a number of assets that will enable us
to stream a video from the internet and play it in our app.

Create a Media Player asset. You can do this by right-clicking in the Content5.
Browser and looking under the Create Advanced Asset tab and then the Media
tab. Remember to give it a name!
As soon as you create that Media Player, it should give you the option to create a6.
Media Texture as well. Know that you can also create one such asset by looking
in the same category as before if that doesn't happen.
Include a Streaming Media Source asset, which can be created just like we7.
did with the Media Player.

Just as a reminder, since the video that we want to play is going to be
streamed over the internet, we'll need an active internet connection in
place when testing this technique.

Beyond Traditional Material Uses Chapter 5

[273]

Refer to the following screenshot:

Open the new Media Player and look at its Details panel. There should be an8.
option called Loop and a checkbox at its side—make sure to check it so that our
video loops when we play it.

Once all of the previous assets have been created and edited, we can get back to
our TV blueprint and continue implementing the different bits of functionality.

Beyond Traditional Material Uses Chapter 5

[274]

Create three new variables inside our TV blueprint.9.
The first of those variables should be of the String type, and it should be public.10.
Name it something like Media URL.
The second of those variables can be named Media Player, and it should be of11.
the Media Player Object Reference type.
The last variable has to be of the Stream Media Source Object12.
Reference type. You can name it Stream Media Source, for example. The
point is to have recognizable names for when we get these variables in the event
graph!

You can quickly make a variable Public by clicking on the closed-eye
icon to the right of the variable's name. This will allow you to edit it in the
editor without having to double-click and enter the blueprint graph.

Now that all of those variables have been created, we need to assign them some
default values that match the previous assets we created.

Select the Stream Media variable and assign the Stream Media Source asset13.
we created in step 7 to it. You can do so by looking at the Details panel and
choosing said element from the available drop-down menu.
Do something similar for the Media Player variable, selecting the Media14.
Player asset we created in step 5.
Select the string we created and type the following URL, where I've uploaded a15.
video that you can use to check this functionality: https:/ /www. dropbox. com/ s/
sd80rzatl05rhwm/ SampleVideo. mp4? dl=1.

You will need to Compile and Save your blueprint in order to be able to
assign the default values to the different variables you create. Keep that in
mind!

If you want to upload or use your own videos, know that we've got you covered.
All you need to do is to head over to the There's more... section and read all about
that topic that way, you'll be able to use your own video links!

We now have all of the basic ingredients that we need to implement the
functionality within the Blueprint's Event Graph. Let's jump over there and start
coding it.

https://www.dropbox.com/s/sd80rzatl05rhwm/SampleVideo.mp4?dl=1
https://www.dropbox.com/s/sd80rzatl05rhwm/SampleVideo.mp4?dl=1
https://www.dropbox.com/s/sd80rzatl05rhwm/SampleVideo.mp4?dl=1
https://www.dropbox.com/s/sd80rzatl05rhwm/SampleVideo.mp4?dl=1
https://www.dropbox.com/s/sd80rzatl05rhwm/SampleVideo.mp4?dl=1
https://www.dropbox.com/s/sd80rzatl05rhwm/SampleVideo.mp4?dl=1
https://www.dropbox.com/s/sd80rzatl05rhwm/SampleVideo.mp4?dl=1
https://www.dropbox.com/s/sd80rzatl05rhwm/SampleVideo.mp4?dl=1
https://www.dropbox.com/s/sd80rzatl05rhwm/SampleVideo.mp4?dl=1
https://www.dropbox.com/s/sd80rzatl05rhwm/SampleVideo.mp4?dl=1
https://www.dropbox.com/s/sd80rzatl05rhwm/SampleVideo.mp4?dl=1
https://www.dropbox.com/s/sd80rzatl05rhwm/SampleVideo.mp4?dl=1
https://www.dropbox.com/s/sd80rzatl05rhwm/SampleVideo.mp4?dl=1
https://www.dropbox.com/s/sd80rzatl05rhwm/SampleVideo.mp4?dl=1
https://www.dropbox.com/s/sd80rzatl05rhwm/SampleVideo.mp4?dl=1
https://www.dropbox.com/s/sd80rzatl05rhwm/SampleVideo.mp4?dl=1
https://www.dropbox.com/s/sd80rzatl05rhwm/SampleVideo.mp4?dl=1
https://www.dropbox.com/s/sd80rzatl05rhwm/SampleVideo.mp4?dl=1
https://www.dropbox.com/s/sd80rzatl05rhwm/SampleVideo.mp4?dl=1
https://www.dropbox.com/s/sd80rzatl05rhwm/SampleVideo.mp4?dl=1

Beyond Traditional Material Uses Chapter 5

[275]

Get a reference to the Stream Media Source variable in the graph.16.
Drag a wire out of the output pin of our Stream Media Source reference and17.
start typing Set Stream URL to create that node.
Drop the Media URL variable that is, the string that contains our URL18.
reference and connect it to the Stream URL input pin of the previous Set Stream
URL node.
Drag a wire out of the Event Begin Play node and connect it to the input19.
execution pin of the Set Stream URL node.
Get a reference to the Media Player and drop it after the last node.20.
Create an Open Source node by dragging a wire out of the Media Player node21.
and typing that name.
Connect the Stream Media Source reference to the Media Source input pin of22.
the previous node.
Wire the execution output pin of the Set Stream URL node to the execution input23.
pin of the Open Source node.
Copy the Media Player reference once again and paste it after all of the previous24.
nodes.
Drag a wire out of it and look for the Play node. Wire its input execution pin to25.
the output execution pin of the Open Source node.

The graph should now look something like this:

Beyond Traditional Material Uses Chapter 5

[276]

Once you complete the graph, you'll be ready to test out whether it works!

Once you hit Play, give the game a couple of seconds to load the video from the web and
you should be ready to go. Videos downloaded from Dropbox links aren't the only ones
that work though, and you might want to experiment with other URLs to see what works
and what doesn't for you. Whatever the case, be sure to stay tuned for the next section,
where we'll explain how to get a Dropbox link working in the first place—spoiler: they
don't always!

How it works...
I highly recommend having a look at Epic Games' official documentation about their media
framework to learn more about which formats are supported across different platforms. I
say that because different devices might support different video formats, so we need to be
aware of that! Whatever the case, I'd like to put some time aside to talk about some specific
considerations you need to take into account when hosting one of your videos online in a
Dropbox folder, for example.

If you want to do that, the first step will be to actually upload the video to your desired
folder. Next, you'll need to generate a link – a step that is quite easy, as you only need to
click on the Share button next to the video's name and follow the instructions you will be
shown. The tricky part is the modification of the URL the system gives you by default, as
more often than not the direction will end in something like this:mp4?dl=0. The zero
at the end of that link is the part that we need to correct by replacing it with a 1. This will
allow Unreal to download the file and play it back in our apps, so change it to look
something more like this:mp4?dl=1.

Beyond Traditional Material Uses Chapter 5

[277]

There's more...
Something we need to mention is how to set up the UVs of your TV display in case you
want to use your own assets. Here's how you can do it:

What we'll do is quite simple, even though it can be counter-intuitive—especially if you've
unwrapped UVs in the past. Instead of trying to lay out the UVs so that they match the
shape of the object, such as in the image on the right, we want them to occupy the entirety
of the 0-to-1 UV space. This will ensure that whatever image comes our way gets shown
across the entirety of the display, which is our main goal—something you can see in the
image on the left. Make sure to follow the same guidelines!

See also
You can find a lot of other related information about Unreal's media framework in the
official docs: https:/ / docs. unrealengine. com/ en-us/ Engine/ MediaFramework/ HowTo/ en-
us/Engine/MediaFramework/ TechReference.

https://docs.unrealengine.com/en-us/Engine/MediaFramework/HowTo/en-us/Engine/MediaFramework/TechReference
https://docs.unrealengine.com/en-us/Engine/MediaFramework/HowTo/en-us/Engine/MediaFramework/TechReference
https://docs.unrealengine.com/en-us/Engine/MediaFramework/HowTo/en-us/Engine/MediaFramework/TechReference
https://docs.unrealengine.com/en-us/Engine/MediaFramework/HowTo/en-us/Engine/MediaFramework/TechReference
https://docs.unrealengine.com/en-us/Engine/MediaFramework/HowTo/en-us/Engine/MediaFramework/TechReference
https://docs.unrealengine.com/en-us/Engine/MediaFramework/HowTo/en-us/Engine/MediaFramework/TechReference
https://docs.unrealengine.com/en-us/Engine/MediaFramework/HowTo/en-us/Engine/MediaFramework/TechReference
https://docs.unrealengine.com/en-us/Engine/MediaFramework/HowTo/en-us/Engine/MediaFramework/TechReference
https://docs.unrealengine.com/en-us/Engine/MediaFramework/HowTo/en-us/Engine/MediaFramework/TechReference
https://docs.unrealengine.com/en-us/Engine/MediaFramework/HowTo/en-us/Engine/MediaFramework/TechReference
https://docs.unrealengine.com/en-us/Engine/MediaFramework/HowTo/en-us/Engine/MediaFramework/TechReference
https://docs.unrealengine.com/en-us/Engine/MediaFramework/HowTo/en-us/Engine/MediaFramework/TechReference
https://docs.unrealengine.com/en-us/Engine/MediaFramework/HowTo/en-us/Engine/MediaFramework/TechReference
https://docs.unrealengine.com/en-us/Engine/MediaFramework/HowTo/en-us/Engine/MediaFramework/TechReference
https://docs.unrealengine.com/en-us/Engine/MediaFramework/HowTo/en-us/Engine/MediaFramework/TechReference
https://docs.unrealengine.com/en-us/Engine/MediaFramework/HowTo/en-us/Engine/MediaFramework/TechReference
https://docs.unrealengine.com/en-us/Engine/MediaFramework/HowTo/en-us/Engine/MediaFramework/TechReference
https://docs.unrealengine.com/en-us/Engine/MediaFramework/HowTo/en-us/Engine/MediaFramework/TechReference
https://docs.unrealengine.com/en-us/Engine/MediaFramework/HowTo/en-us/Engine/MediaFramework/TechReference
https://docs.unrealengine.com/en-us/Engine/MediaFramework/HowTo/en-us/Engine/MediaFramework/TechReference
https://docs.unrealengine.com/en-us/Engine/MediaFramework/HowTo/en-us/Engine/MediaFramework/TechReference
https://docs.unrealengine.com/en-us/Engine/MediaFramework/HowTo/en-us/Engine/MediaFramework/TechReference
https://docs.unrealengine.com/en-us/Engine/MediaFramework/HowTo/en-us/Engine/MediaFramework/TechReference
https://docs.unrealengine.com/en-us/Engine/MediaFramework/HowTo/en-us/Engine/MediaFramework/TechReference
https://docs.unrealengine.com/en-us/Engine/MediaFramework/HowTo/en-us/Engine/MediaFramework/TechReference
https://docs.unrealengine.com/en-us/Engine/MediaFramework/HowTo/en-us/Engine/MediaFramework/TechReference
https://docs.unrealengine.com/en-us/Engine/MediaFramework/HowTo/en-us/Engine/MediaFramework/TechReference
https://docs.unrealengine.com/en-us/Engine/MediaFramework/HowTo/en-us/Engine/MediaFramework/TechReference

Beyond Traditional Material Uses Chapter 5

[278]

Creating a CCTV camera feed
Getting a video from the internet is cool, but wait until you capture your own scene in real
time! This is something that has many different potential applications, and I think all of
them are quite interesting both visually and in terms of gameplay. Imagine, for instance,
that you were trying to escape from a monster and you needed to rely on CCTV
surveillance footage to plan your escape. The technique we are about to see can help you
realize that vision – and more! The potential uses go well beyond that, as I'm sure you'll
start to see for yourself once we start working on this. Capturing a scene in real time can
have many other applications, such as creating portals and enhancing reflections. Let's start
to look at what they are all about!

Getting ready
Most of the assets we'll be using are part of the engine, especially the ones that will enable
us to capture the scene. We've also included some extra ones that will act as props which,
as always, are included as part of the project we'll be providing you with. They can be
found in the Content Browser / UE4 Shaders And Effects / Assets /
Chapter05 folder. If you want to start using the same map as well, remember to head over
to the appropriate section within the Content Browser for the current chapter.

If you prefer to use your own levels and assets, know that this time it's just a matter of
having a scene populated with some props and with some lighting going on. The only
thing that would literally not work would be a completely blank scene, so anything beyond
that would probably serve you well!

Beyond Traditional Material Uses Chapter 5

[279]

How to do it...
Let's kick things off by taking a look at how we'll tackle the current recipe, since there are
many possibilities we could explore. Capturing a scene can be done to achieve multiple
aims, but we've decided to center our strengths on a CCTV feed. That being the idea, what
elements do you think are needed in such a system? Having an idea about that will help us
visualize the whole process, as there are going to be multiple phases. If we think about it in
real-life terms, we'll probably need at least a camera than can capture the scene, a display
where we can play the video back, and some sort of storage unit or transfer mechanism in
order to move the data between the camera and the display. As you'll see, those same actors
will also be needed in Unreal as well, so let's start by creating them:

Create a new Blueprint anywhere within the Content Browser and give it a name1.
that denotes it's a capturing device—following the theme of the scene, you can
probably go with something such as BP_WebCam. Incidentally, that's kind of how
the static mesh we'll be using looks!
Open up the blueprint editor and create a Static Mesh component by selecting2.
one from the Add Component drop-down menu.
Look for another type of component in the same panel as before – this time, we'll3.
need to look for Scene Capture Component 2D:

Beyond Traditional Material Uses Chapter 5

[280]

With those assets in place, it's time to assign them some default values.

Make Static Mesh the root component of this blueprint. You can do so by4.
dragging and dropping its name into Default Scene Root on the Components
panel.
Select Static Mesh and look in the Details panel. The section named like the5.
component will let you assign the model you want to use if you want to use the
same one I'll be using, select the SM_WebCam asset.
Before we can assign anything to the Scene Capture Component 2D, we need to6.
create a different asset that works with that. Go back to Content Browser and
right-click anywhere you want to create the new asset in look for the Render
Target resource under the Media & Textures section.
Give a name to the previous created asset, something such as RT_WebCam.7.
Go back to the blueprint and select Scene Capture Component 2D. Look in its8.
Details panel, scroll all the way down to the Scene Capture section, and assign
the previously created Render Target to the Texture Target category.
Make sure the Capture Every Frame option is ticked, which you can find a little9.
bit below the previous setting.
With a Scene Capture Component 2D selected and while in the Viewport tab,10.
move it a little bit so that it sits in front of the static mesh for the webcam. This
will allow the Scene Capture to record the scene properly, as it would otherwise
look black if we didn't move it (as it would be inside the camera!):

Beyond Traditional Material Uses Chapter 5

[281]

If we leave things as they are for this blueprint, we could already create
something with which we can work—however, we would be looking at a still
image since the webcam blueprint doesn't have any logic that makes it move.
Let's take care of that by adding a looping motion to the camera that will make it
rotate between two defined angles. To do that, head over to the Event Graph
section of the blueprint.

Create a Timeline in there, right after Event Begin Play. You can do so by right-11.
clicking and selecting the Add Timeline option.
Connect both of those nodes together—the output of the execution pin of the12.
Begin Play to the Play input pin on the Timeline.
Double-click on the Timeline node to open up its Curve Editor. 13.
Add a Float Track by clicking on the f+ button located on the upper-left corner of14.
the new window.
Give it a name, something such as Camera Rotation can work!15.
Give it a Length by typing a number in the appropriate entry box, located a few16.
spaces to the left of the previous Add Float Track button. Set it to 10, and
check the Loop checkbox a little bit to the right as well.
Create the different points that make up the curve: start by right-clicking in the17.
main section of the editor and selecting Add key to.... A new point will appear.
Set the Time to 0.0 and the Value to 0.25. You can modify those two properties18.
once you have the point selected, as two small editable boxes will appear in the
upper-left corner of the screen.
Create two more points, and give them the following values: Time of 5 and19.
Value of -0.25 for the first, and Time 10, Value 0.25 for the last one:

Beyond Traditional Material Uses Chapter 5

[282]

You can find more info on Timelines in the There's more... section.

Now that we have that timeline with us, let's put it to good use! Let's go back to
the Event Graph and create a node that will enable the web cam to rotate thanks
to the node we just created.

Drag a reference to the Static Mesh of our blueprint into the Event Graph.20.
Create an Add Relative Rotation node by dragging a wire out of the previous21.
reference to our Static Mesh and typing the name of the new node.
Right-click over the Delta Rotation input pin and select the Split Struct Pin22.
option. You'll have access to each axis that determines the movement
individually now.
Connect the output float pin of the timeline (which should have the name of the23.
Float Curve you created in steps 13 and 14) and connect it to the Delta Rotation Z
(Yaw) input pin of the Add Relative Rotation Node.

Our graph should now look something like this:

Even though we are only applying the movement to the webcam's static mesh,
the Scene Capture component will also follow the same motion as it is a child of
that. As a result, there's no need for us to apply any other nodes in the graph.
Also as a quick summary of what we've achieved so far, know that we've
managed to create an animated value that drives the rotation of our model. The
timeline asset is a tool we can use to animate a given value, such as a float in our
case, by specifying different values at different times. Hooked to the Yaw rotation
value of the Add Relative Rotation node, it will make the camera swing both
ways at a fixed period.

Beyond Traditional Material Uses Chapter 5

[283]

It will first turn one way, stop, and then rotate in the other direction, thanks to the
way we've defined the curve. On top of that, it will constantly loop, giving the
appearance of a non-stop motion.

Having the blueprint in place means that we can store the camera's view to the
Render Target and use it within a material to drive the appearance of the display
on the TV screen. The last part that we need to put in place to realize this vision is
the material itself—which, as we are about to see, is fairly simple.

Create a new material anywhere you like within the Content Browser, and give24.
it an appropriate name. I've gone with M_ TV_ WebCamDisplay.
Open up the material editor and drag and drop the previously-created Render25.
Target into the graph.
Connect the output of the Render target to the Emissive Color input pin of our26.
material.

And that's as far as we'll go with the material! We don't need to do anything else, as those
previous steps have already taken care of showing the captured scene through the
Emissive input of our material. Using that input makes it look like a proper TV display,
giving the illusion that it's also emitting light. The next bit we need to take care of is the
part where we actually assign the material to the model, and then we'll be pretty much
done:

Beyond Traditional Material Uses Chapter 5

[284]

You can now hit Play and see the image on the TV screen update as the webcam blueprint
rotates. Just make sure to include the new blueprint in the scene, the TV with the updated
material, and you should be good to go!

How it works...
We might have gone over all of the steps that were necessary to create the previous recipe,
but it's always good to review the overall logic we've implemented. If we think about it
from a high level, all we did was set up a webcam that captured the scene and passed that
information to a texture that could then be reused by another actor in our level. Knowing
how to tackle the problem can help us think about the assets that we'll need to achieve that
and as we saw, there were a few.

The first of them was the webcam—a blueprint that incorporates both a static mesh and a
scene capture 2D. We need the first to give the user a visual cue of what they are looking at,
and the second to actually do the capturing work. This scene capture in turn works with a
Render Target to store the information it captures, acting as a tape. As a result, we can feed
that tape into a material that is driving the appearance of the TV screen, giving us the final
look we are after!

There's more...
As promised, here's some more info about Timelines that aims to get you up to speed with
this topic in case you've never encountered them before. Additionally, we've left a link to
Epic's official documentation in the See also section—so be sure to check that out as well!
Refer to the following screenshot:

Beyond Traditional Material Uses Chapter 5

[285]

The screenshot is broken down into the following parts:

Part A: This series of five buttons will allow you to create different types of
timelines. We've used one based on the float type, which allows us to specify
several values and times. Others types can be selected, and you'll choose them
whenever it makes sense for your project. For example, we have access to Vector
tracks, useful for defining positions for objects; Event tracks, which provide us
with a different execution pin that triggers at certain frames that we can define;
and Color tracks, useful for animating colors. We can also select an external
curve we might have in our Content Browser to use that instead.
Part B: This part of the editor grants us access to several important properties
that control the behavior of the curve, such as its length, whether it should loop,
or whether it should be replicated over the network. One important setting is
called Use Last Keyframe?, which automatically adjusts the length of the
timeline to match the position of the last key created. This often matches what we
want, so make sure to check this box!
Part C: This is the main window of the curve editor, where we can create the
different keys and give them values. If we right-click on the key frames
themselves, we'll be able to modify the interpolation between them.
Part D: Located in this corner are important buttons for daily work with
Timelines. Things such as framing the graph to the selected keys or the overall
length/width, or assigning the values to the different keys, can be located here.
Something to note is the context-sensitive nature of certain panels, such as the
Time and Value ones, which will only show if a certain key is selected.

Beyond Traditional Material Uses Chapter 5

[286]

Having covered all of these different parts, make sure to play around a little bit with all of
them in order to get comfortable and know what everything does! It will boost your
confidence when working with Timelines, which can be initially a bit confusing when
something isn't working as expected and you don't know why. One important setting I'd
like to point out again is Use Last Keyframe?, which if left unchecked will make you define
the length of the animation. This is something easy to forget, so keep that in mind!

See also
Here's some extra documentation on the Timelines provided by Epic Games: https:/ /
docs.unrealengine. com/ en- us/ Engine/ Blueprints/ UserGuide/ Timelines.

Highlighting interactive elements within our
game
So far we've had the opportunity to work with various materials; some of them more
traditional in nature, as seen in previous chapters, and some others more disruptive, as we
are just starting to see. Continuing with the theme of the present section, adding
interactivity and functionality to our real-time experiences, we'll now take a look at a
different type of shader that can contribute to that goal. We are talking about the Post
Process Material – a type of asset that taps into the post-processing pipeline that Unreal has
in place, enabling us to create some very cool and interesting effects. We'll explore one such
example in the following pages, and we'll use it to highlight interactive elements within our
games and apps. Take a look at the following screenshot:

https://docs.unrealengine.com/en-us/Engine/Blueprints/UserGuide/Timelines
https://docs.unrealengine.com/en-us/Engine/Blueprints/UserGuide/Timelines
https://docs.unrealengine.com/en-us/Engine/Blueprints/UserGuide/Timelines
https://docs.unrealengine.com/en-us/Engine/Blueprints/UserGuide/Timelines
https://docs.unrealengine.com/en-us/Engine/Blueprints/UserGuide/Timelines
https://docs.unrealengine.com/en-us/Engine/Blueprints/UserGuide/Timelines
https://docs.unrealengine.com/en-us/Engine/Blueprints/UserGuide/Timelines
https://docs.unrealengine.com/en-us/Engine/Blueprints/UserGuide/Timelines
https://docs.unrealengine.com/en-us/Engine/Blueprints/UserGuide/Timelines
https://docs.unrealengine.com/en-us/Engine/Blueprints/UserGuide/Timelines
https://docs.unrealengine.com/en-us/Engine/Blueprints/UserGuide/Timelines
https://docs.unrealengine.com/en-us/Engine/Blueprints/UserGuide/Timelines
https://docs.unrealengine.com/en-us/Engine/Blueprints/UserGuide/Timelines
https://docs.unrealengine.com/en-us/Engine/Blueprints/UserGuide/Timelines
https://docs.unrealengine.com/en-us/Engine/Blueprints/UserGuide/Timelines
https://docs.unrealengine.com/en-us/Engine/Blueprints/UserGuide/Timelines
https://docs.unrealengine.com/en-us/Engine/Blueprints/UserGuide/Timelines
https://docs.unrealengine.com/en-us/Engine/Blueprints/UserGuide/Timelines
https://docs.unrealengine.com/en-us/Engine/Blueprints/UserGuide/Timelines
https://docs.unrealengine.com/en-us/Engine/Blueprints/UserGuide/Timelines

Beyond Traditional Material Uses Chapter 5

[287]

Getting ready
You'll soon find out that the material we are about to create relies heavily on custom math
nodes and scripting, which means that there are not a lot of custom parts, such as textures
or other assets, that we'll need. As a consequence, it's easier than ever to apply the
knowledge of this recipe to any custom level that you might have already with you!
However, and as always, we'll be providing you with a map that you can use to test the
functionality we are about to introduce. Its name is 05_04_OutlineEffect_Start and you can
find it in the Content Browser / UE4ShadersAndEffects / Maps / Chapter05
folder.

How to do it...
As we said in the last few lines, we'll be creating a new material of the post-process type,
which will let us highlight certain key gameplay elements. We'll explain everything as we
go along in terms of the nodes that we'll be using and the effects that they bring, but we
also recommend heading over to the How it works section as that will cover the logic behind
our actions in a more thorough way. Post-process materials are inherently different to the
ones we've used so far, and the techniques we are about to implement are better
understood when seen from a technical point of view. Don't be afraid though, as I know
this can sound a bit daunting! But do remember to head over to the aforementioned section,
as it contains some nifty information. With that said, let's dive right in:

Create a new material, as this is what we'll be using to highlight different1.
elements in our scene. We can call it M_EdgeOutline, as that's what the shader is
going to be doing!
With the main material node selected, we need to focus on the Details panel as2.
there are a couple of things we need to change. The first of them is the Material
Domain—select the Post Process option instead of the default Surface one.

Beyond Traditional Material Uses Chapter 5

[288]

Adjust the Blendable Location of the material. You can find this option within3.
the Post Process Material section of the Details panel for our material, almost in
the same place where we were before except a little bit further down. Make sure
to change that setting from the default After Tonemapping to Before
Tonemapping. Refer to the following screenshot:

The previous option is one that is available to this type of material, as they get
inserted into Unreal's post-processing pipeline and we have the ability to decide
at which point this happens. You can check out the There's more... section for more
info about this process.

With that done, we can now start to create the logic within the node graph. Since
we'll want to outline the shape of certain objects, the first bit we'll have to
calculate is the part that deals with edge detection. This is done in a similar way
to many other image-editing programs, and it is based on the convolution
operation. Just like we said before, feel free to have a look at the How it works...
section to find out more about the logic behind this process!

Create four different Constant 2 Vectors—we'll use these to sample between4.
different pixels in order to be able to detect the edges of our models. Given a
known pixel, we'll want to compare it to the one on the top, to the right, to the
left, and to the bottom, so that's going to give us the values for the new Constant
2 Vectors we have just created.

Beyond Traditional Material Uses Chapter 5

[289]

Give the previous vectors the following values: (-1,0), (1,0), (0,-1), and (0,1). This5.
will let us sample the left, right, top, and bottom pixels.

The next bit of code that we need to have in place to actually sample those pixels
is going to be repeated multiple times, and we can use this as an excuse to
use Material Functions. These assets are basically chunks of the material graph
that can be reused inside any other material where we want to have that
functionality, without the need to copy-paste the same nodes over and over
multiple times.

Head back to the Content Browser and create a new Material Function. This can6.
be done by right-clicking inside the browser and looking under the Materials &
Textures section. Name it MF_PixelDepthCalculation.
Open up the new function and create your first node here, which will be7.
a Function Input. This will let us have an input in our function once we place it
inside the main material we were previously creating.
With that new node selected, head over to the Details panel and change8.
the Input type to Function Input Vector 2. You can also give a name under the
Input Name section, such as Offset, as the values that get connected to that pin
are going to be used for that. Check the Use Preview Value as Default checkbox
as well.
Include a Multiply node and connect one of its pins to the previous Function9.
Input.
Add a Scene Texel Size and connect it to the other pin of the previous Multiply10.
node.

The Scene Texel Size is a handy node that enables us to take into account the
different resolutions under which our app might be running. As we will be
calculating pixel offsets, using a fixed value wouldn't work and we need to grab
hold of this node to help us with those calculations.

Create a Texture Coordinate node above the previous group. 11.
Include an Add node after it, and connect its A input pin to the output of the12.
Texture Coordinate. Connect pin B to the output of the Multiply node from step
9.
Add a Scene Depth node after the Add and connect it to it.13.

Beyond Traditional Material Uses Chapter 5

[290]

Wire the output of the previous node to the Output Result node:14.

Don't worry if you see a red warning that says Only transparent or
postprocess materials can read from scene depth, as that's where we'll be
using this function.

Once we finish placing the last of those nodes, we will be finished with this new
Material Function. Using it back in the main material we were previously creating
means that we only need to include a small function call that will perform the
preceding bit of code, making things neater for us.

Create a Material Function Call inside of the main M_EdgeOutline material.15.
With the new node selected, head to the Details panel and assign the previously-
created material function (MF_PixelDepthCalculations) in the selection slot.
Copy it four times, positioning each instance at the side of the original Constant 216.
Vectors we created in step 4. Leave some space between those nodes.
Copy it for a fifth time and place it below the other four.17.
Create a Scalar Parameter and place it before the Constant 2 Vectors. This will18.
allow us to control the width of the outline effect, so let's give it an appropriate
name. I've gone with Line Width.

Beyond Traditional Material Uses Chapter 5

[291]

Create four Multiply nodes, and place them between each of the four Constant 219.
Vectors and the material functions. Connect pin A to the Constants, and the
output to the material functions.
Connect every B pin of the Multiply nodes to the output of the Scalar Parameter20.
we have just created that controls the line width:

Having those nodes in place will let us perform the edge-detection calculation on
the pixels on every side of the current one we are analyzing, but not before we
actually combine them! Let's take care of that now.

Create and Add node, place it after the first two material functions, and use those21.
as the input.
Do the same by creating another Add node and combining the two following22.
material functions.
Include a Multiply node right after the fifth material function, and connect that23.
to the A input pin.

Beyond Traditional Material Uses Chapter 5

[292]

We'll need a Constant connected to the B pin of the previous Multiply, so create24.
one and assign it a value of -4.

The reason behind using that number as a constant is directly related to the
convolution operation we are performing, so be sure to head over to the How it
works... section to learn more about that.

Throw a couple more Add nodes into the mix, which we'll use next.25.
Connect the first of them to both of the previous two add ones we created in steps26.
21 and 22.
Wire the output of that first one to the second Add node we just created, and27.
connect its B pin to the result of the previous Multiply from step 23.
Create an Abs node, which will give us the absolute value of anything we have28.
up until this point. We need this to ensure that every value from now on is
positive:

We use the absolute node here because we only care about the values that we get
out of the previous operations, as it will help us determine whether what we are
looking at is an edge. You could think of this as looking at the module of a
vector – we don't care about whether it is negative or positive, but we do want to
know how big it is.

Beyond Traditional Material Uses Chapter 5

[293]

Now that we have created the first part of our edge-detection system, we need to
refine it a little bit more. It's not perfect in its current state, as we would get more
lines than desired were we to apply it as is. This is because we are not taking into
account the differences in depth of the computed image as seen from the camera –
we'll take care of that now.

Create an If node and place it after the previous Abs node, connecting its A pin29.
to the output of that. This will create a conditional branch that we will populate
accordingly.
Create a Scalar Parameter and connect it to the B pin. Name it something such30.
as Threshold, as it will control that.
Create two Constants, one that connects to the A > B pin and the other one which31.
will need to be wired to the A < B pin. The first one should be given a value of 1,
and the second one a value of 0. Refer to the following screenshot:

The previous operation implies that when the absolute value of the initial
convolution operation is greater than the threshold we set, the detected edges of
the model will show. Otherwise they won't! We are now at a point where all of
the major steps we wanted to introduce have been completed, and we finally
have an edge-detection system in place. You can check this out if you apply the
material to the post process volume in the scene.

Beyond Traditional Material Uses Chapter 5

[294]

Exit the material editor for a moment, go back to the main level, and select Post32.
Process Volume. Looking at its Details panel, scroll down to the Rendering
Features section and expand the category named Post Process Materials.
Click on the + icon next to the Array word.33.
In the drop-down menu that will appear after clicking the + button, select Asset.34.
Select the material we are creating to see how it is impacting the scene so far.35.

The black and white image that you see should be representative of most of the
edges that we have in our scene, and we'll use this binary output as a mask to
create a highlight effect in some of the objects in our scene. Let's do that now!

Go back to the post-process material and create a Lerp node. Connect its Alpha36.
channel to the output of the If node created in step 29.
Create a Scene Texture node and connect it to pin A of the previous Lerp node.37.
With this new asset selected, look at its Details panel and select Post Process
Input 0 as the Scene Texture Id. This is a pass that we can use to get hold of the
scene color, which means how the base scene looks without this new post-
process material applied.
Add a Vector Parameter and name it something such as Outline Color, as this38.
is what it's going to be used for. Assign it the color that you want to use for that
effect.
Include a Make Float 4 node and connect each of its pins to the RGBA channels39.
of the previous vector parameter.
Get ahold of a Multiply node, place it right after the previous Make Float 4, and40.
connect it to the input of that.
Introduce a Scalar Parameter and name it Outline Intensity, since it's going41.
to work as a multiplier for the chosen outline's color intensity. Start giving it a
value of something such as 5. Connect it to the free available pin of the previous
Multiply node.
Connect the Multiply node from step 40 to the B input pin of the Lerp created in42.
step 36.

The previous set of nodes can be seen in the next screenshot. The Outline Color
vector parameter will control the color of the effect, and the OutlineIntensity will
control the brightness of that original color:

Beyond Traditional Material Uses Chapter 5

[295]

Completing these steps and applying the material like that to the scene will give
us a level where every object has a noticeable outline effect, like in the following
screenshot. While we are definitely on the right track, this is not exactly what we
want—we need a way to control which objects get affected and which ones don't.
This is going to be the last thing we tackle in this material, so let's get to it!

Create a new Lerp node and add it everything we've done before. Connect its B43.
input pin to the output of the previous Lerp created in step 39.
Copy the Scene Texture we created in step 37 and paste it again close to the A44.
input pin of the new Lerp node, as that's where it's going to be connected. Wire it
up now!

Beyond Traditional Material Uses Chapter 5

[296]

Create another Scene Texture, but select the Custom Depth option as the Scene45.
Texture Id.
Connect that to a new Multiply node that we can now create, and choose a low46.
value for the B input pin. 0,01 works well in our level.
Throw a Frac node after the previous Multiply. This asset outputs the fractional47.
portion of the original values we feed it, useful in this case as we really need a
very low value and we wouldn't be able to type it without Unreal rounding up to
0.
Connect the output of the previous Frac node to the Alpha input pin of the Lerp48.
created in step 43, and connect that to the Emissive Color of our material. That's
everything we need to do to this material!

In the previous steps, we blended the original scene (which we get as a render
pass through the Post Process Input 0 scene texture node) and the outline effect
according to the Custom Depth of the scene. Custom depth is a property that has
to be activated for each model we have in our scene, allowing us to determine
which meshes we want to see. This can be done in many different ways, and it
lends itself to be tweaked interactively via blueprint commands. The final step we
need to take is to actually set up the objects that we want to see highlighted.

Select the object that you want to apply the effect to and scroll to the Rendering49.
section of its Details panel.
There should be a setting called Render Custom Depth Pass. Check the checkbox50.
next to it and see the magic happen:

Beyond Traditional Material Uses Chapter 5

[297]

And that's it! You can control the Custom Depth property through the blueprint
functionality, by calling a reference to the specific objects through the level blueprint, for
example. This is something that can enhance any of your projects, so make sure to give it a
go!

How it works...
Things didn't make much sense? This is where we make sense of it all! Usually when you
read a recipe, you'll be able to find the explanations of why we are doing what we are doing
alongside the different numbered steps. Even though that is still partially true here, we are
basing most of the logic in an established edge-detection operation called Convolution.
Since that is the case, it's better if we tackle what that is at this point, instead of boring you
with the details while you are trying to complete the recipe.

First of all, convolution is the name given to an operation performed on two groups of
numbers to produce a single third one. In image-based operations, those two groups of
numbers can be broken down like this: we have a grid of defined values, known as
the kernel, acting as the first group. The second one is going to be the actual values of the
corresponding pixel to the previous grid. The size of that grid is often a 3 x 3 pixel matrix,
just a little thing where the center pixel is the protagonist. The way we use it to calculate the
third value that is, the result is by multiplying the values of the kernel by the values of the
pixels underneath and adding all of them to produce a final number that gets assigned to
the center pixel. By moving and applying this multiplication across the image, we get a
final result that we use for different purposes, depending on the values of the kernel grid:
to sharpen edges, to blur them, or to actually perform the edge detection like we did in this
recipe. The kernel values we can use in that case are the ones we saw in this recipe, which
follow the Laplacian edge-detection system, and which are the following:

Beyond Traditional Material Uses Chapter 5

[298]

The whole concept was performed in this recipe in the initial stages, roughly from steps 4 to
27. We did it in different places—first, we got the left, right, upper, and lower pixel of the
grid by creating the Constant 2 nodes and using those as input for the material functions,
where we multiplied the values of the kernel by the pixel underneath. After that, we got the
value of the center pixel by multiplying that by the value of the kernel, the -4 constant we
created in step 24. Finally, we added everything together to get the right result. There was
no need for us to calculate the pixels in the corner as the kernel uses 0 values in those
regions.

There's more...
Before we finish, I'd like to leave you with some additional thoughts that can be helpful to
understand how post-process materials and the post-process pipeline work in Unreal
Engine 4. So far, we've had the opportunity to become familiar with many different types of
shaders—opaque ones such as wood or concrete, translucent ones such as glass or water,
and things in between, such as wax. One of the ways we can define them all is through
their interaction with the lights in our scene, as we can sort them depending on how that
happens. This is because those types of materials are meant to be applied on the objects that
live within our levels, just so that the renderer can calculate the final look of our scenes.

This is not true for post-process materials, because they are not meant to be applied to 3D
models. They are there to be inserted into the engine's post-process pipeline, contributing to
the scene in a different way, mainly by operating on any of the different render passes.
Unreal, as a rendered, stores the information of the scene in multiple layers, such as the
depth of field, the temporal anti-aliasing, the eye adaptation, the tone mapper. Having
access to those multiple render passes can be very helpful in order to achieve certain effects,
just like we've done in the present recipe. This is very powerful, as we are affecting how the
engine works at a fundamental level—giving us the ability to create multiple visual styles
and rendering effects. The possibilities are almost endless!

See also
A couple of links before we finish: one that goes in depth about different types of outline
effects and one that explains Unreal's render passes. Both of them are very informative, so
be sure to check them out:

https:// www. raywenderlich. com/92- unreal- engine- 4-toon- outlines-
tutorial7

https:// unrealartoptimization. github. io/book/ profiling/ passes/

https://www.raywenderlich.com/92-unreal-engine-4-toon-outlines-tutorial
https://www.raywenderlich.com/92-unreal-engine-4-toon-outlines-tutorial
https://www.raywenderlich.com/92-unreal-engine-4-toon-outlines-tutorial
https://www.raywenderlich.com/92-unreal-engine-4-toon-outlines-tutorial
https://www.raywenderlich.com/92-unreal-engine-4-toon-outlines-tutorial
https://www.raywenderlich.com/92-unreal-engine-4-toon-outlines-tutorial
https://www.raywenderlich.com/92-unreal-engine-4-toon-outlines-tutorial
https://www.raywenderlich.com/92-unreal-engine-4-toon-outlines-tutorial
https://www.raywenderlich.com/92-unreal-engine-4-toon-outlines-tutorial
https://www.raywenderlich.com/92-unreal-engine-4-toon-outlines-tutorial
https://www.raywenderlich.com/92-unreal-engine-4-toon-outlines-tutorial
https://www.raywenderlich.com/92-unreal-engine-4-toon-outlines-tutorial
https://www.raywenderlich.com/92-unreal-engine-4-toon-outlines-tutorial
https://www.raywenderlich.com/92-unreal-engine-4-toon-outlines-tutorial
https://www.raywenderlich.com/92-unreal-engine-4-toon-outlines-tutorial
https://www.raywenderlich.com/92-unreal-engine-4-toon-outlines-tutorial
https://www.raywenderlich.com/92-unreal-engine-4-toon-outlines-tutorial
https://www.raywenderlich.com/92-unreal-engine-4-toon-outlines-tutorial
https://www.raywenderlich.com/92-unreal-engine-4-toon-outlines-tutorial
https://www.raywenderlich.com/92-unreal-engine-4-toon-outlines-tutorial
https://www.raywenderlich.com/92-unreal-engine-4-toon-outlines-tutorial
https://www.raywenderlich.com/92-unreal-engine-4-toon-outlines-tutorial
https://unrealartoptimization.github.io/book/profiling/passes/
https://unrealartoptimization.github.io/book/profiling/passes/
https://unrealartoptimization.github.io/book/profiling/passes/
https://unrealartoptimization.github.io/book/profiling/passes/
https://unrealartoptimization.github.io/book/profiling/passes/
https://unrealartoptimization.github.io/book/profiling/passes/
https://unrealartoptimization.github.io/book/profiling/passes/
https://unrealartoptimization.github.io/book/profiling/passes/
https://unrealartoptimization.github.io/book/profiling/passes/
https://unrealartoptimization.github.io/book/profiling/passes/
https://unrealartoptimization.github.io/book/profiling/passes/
https://unrealartoptimization.github.io/book/profiling/passes/
https://unrealartoptimization.github.io/book/profiling/passes/
https://unrealartoptimization.github.io/book/profiling/passes/
https://unrealartoptimization.github.io/book/profiling/passes/
https://unrealartoptimization.github.io/book/profiling/passes/

Beyond Traditional Material Uses Chapter 5

[299]

Creating a game compass
Continuing with our search for new spaces where materials can enhance the functionality
of our apps and games, let's explore a place that we haven't been before: the User Interface,
or UI. I'm sure you are already familiar with these interfaces, as they are part of our
everyday life – be it in any computer program that we use, an app, or any other piece of
software with which we interact. Many of the elements that make up these assets are the
familiar buttons, drop-down menus, and logos that we often see on our screens. However,
materials also have a big role to play, especially in a game engine such as Unreal where
they can help to further enrich the UI experience. We'll take a look at this by creating an in-
game compass that will help us orient ourselves within the game world:

Getting ready
Since we'll be creating a compass material to use in the UI for this recipe, what better
setting to use as a backdrop than the ocean?! We'll be revisiting the level we created in the
previous chapter as it kind of thematically fits our goal, but there are no more requirements
in terms of level constraints that we need to be aware of in case you want to use your own
creations. Something we will need is a couple of textures in order to drive the appearance
of the compass, which you'll be able to find in the following folder: Content Browser /
UE4ShadersAndEffects / Assets / Chapter05 / 05_05.

The textures themselves are quite simple, and we've shown them in the following
screenshot for you to see in case you want to create similar ones. There are two: one that
will always remain in the same position, acting as a marker: and one that contains the
cardinal directions and that will be panned according to the player's rotation:

Beyond Traditional Material Uses Chapter 5

[300]

And one that contains the cardinal directions and that will be panned according to the
player's rotation:

As an extra requirement, remember to assign an Alpha channel to those textures that
matches the pixel information found in them—that is, leave the background transparent!

How to do it...
As we were saying at the beginning of this recipe, the material we are about to create is
going to work as a UI element. That being the case, the first step is the creation of our first-
ever User Interface! If you haven't dealt with UIs before, make sure to check how they work
in the There's more... section of this recipe:

Head over to your favorite spot in the Content Browser and create a new User1.
Interface. These types of assets can be created thanks to the Widget Blueprint
resource, so select that when right-clicking and look under the User Interface
category.
Open the new widget and select a Scale Box from the Palette tab. Drag it into the2.
main viewport (you'll find it by looking inside the Panel subsection or by typing
its name into the Search Palette search box).
Select an Image from the Palette tab of the UI editor and drag it into the main3.
viewport. Name it something such as T_Compass.
Look at the Hierarchy panel, which will show you all of the elements that4.
currently make up our UI. Make the Scale Box the parent of the Image by
dragging and dropping it into the Scale Box.
Select the Scale Box and look at the Details Panel. Select the upper-middle5.
anchor in the Anchors drop-down menu.
Type in the following settings for your Scale Box: Position X left as 0.0, Position6.
Y changed to 75.0, Size to Content turned on, and Alignment set to 0.5 in the X
and 0 in the Y value. Our goal here is to place the scale box in the upper-middle
of the screen in a centered position. Refer to the following screenshot:

Beyond Traditional Material Uses Chapter 5

[301]

Again, be sure to check out the There's more... section if you've never dealt with
the UI editor before. Completing all of the previous steps will take care of almost
every setting we need to tweak within the UI itself, but we'll still need to assign a
material to the image to work as a compass. Let's do that now.

Create a new material within the Content Browser and give it an appropriate7.
name, something such as M_Compass. Open up the material editor and let's start
tweaking it!
Select the main material node, look at its details panel, and change the Material8.
Domain property from the default Surface option to the User Interface one.
That's all we need to do in order to have our materials available to be used as
part of other UI elements!
Change the blend mode from Opaque to Masked. This will let us use the alpha9.
channel of the images in our UI material to control what is and isn't visible:

Beyond Traditional Material Uses Chapter 5

[302]

Let's start creating the actual functionality within the material. Something we
need to take into consideration is how the compass will look like in the end – we'll
have an animated texture that will show us the cardinal directions as the player
rotates, and another fixed image working as a maker. We've already seen both of
those textures in the Getting ready section, so let's implement them now.

Create a Texture Coordinate node and add it to the graph.10.
Create a Panner node and feed the previous Texture Toordinate to the11.
Coordinate input pin of this new node.
Create a Scalar Parameter and give it a name similar to Player Rotation, as12.
we'll use this to get the current rotation of the player.
Include an Add node right after the previous Scalar Parameter and connect them13.
both. Choose 0.25 as the value for the B input pin.
Connect the result of the Add node to the Time input pin of the Panner node.14.

Why are we including that 0.25 constant in the previous Add node? This is
because we need an initial offset due to the way the image we will be using later
was created. As you can see, the North indicator is in the middle of that image,
and we need to offset it a little bit to match Unreal's real North position.

Add a couple of Constants and assign them a value of 1 and 0.15.
Include a Make Float 2 node and connect the previous two Constants to it. Make16.
sure that the 1 is connected to the X input pin and the 0 to the Y one.
Wire the result of that previous node into the Speed node of the Panner.17.

We are using the 1 and 0 constants to ensure that the texture will pan along the X
axis at a constant speed, and not in the Y axis. The actual amount by which we'll
perform the panning operation will be driven by the Player Rotation scalar
parameter, which we will dynamically link to the player later on.

 Create a Texture Sample and connect its UVs input pin to the output of the18.
previous Panner node. Assign T_Compass_Directions to it.
Create a Vector Parameter and give it a name similar to Directions Color, as19.
we'll use it to affect the shade of the movable part of this material.

Beyond Traditional Material Uses Chapter 5

[303]

Multiply the previous two nodes by creating a Multiply node and connecting its20.
input pins to the output of the previous Texture Sample and Vector Parameter:

Even though we have something that we could already use as an animated
compass, we still need to add the static marker to help indicate the direction the
player is facing, so let's do that now.

Add a Texture Sample node and assign it the T_Compass_Fixed asset to it.21.
Include another Vector Parameter and name it something such as Marker22.
Color, as that's what it'll do.
Create a Multiply node and connect the output of the previous two nodes to its23.
input pins.

The previous steps will let us tint the fixed part of the compass material when we
create a material instance. We'll now add both sections together and define the
Opacity Mask of the material.

Throw a Lerp node after the previous Multiply and connect that node's output to24.
our new one's A input pin.
Connect pin B of the Lerp node to the output of the Multiply node we created in25.
step 20.

Beyond Traditional Material Uses Chapter 5

[304]

We'll use the Alpha channel of the Texture Sample created in step 18 for the26.
Alpha input pin of the Lerp node.
Connect the output of the Lerp to the Final Color input pin of our material.27.
Create an Add node just before that the Opacity Mask input pin of our material28.
and connect both.
Wire the Alpha channel of both Texture Samples into the A and B input pins of29.
the previous Add node:

All of those steps will have left us with a working material, so let's now create a
Material Instance out of it and apply it to the UI!

Right-click on the material we created in the Content Browser and select30.
the Create Material Instance option.
Tweak the different editable settings however you like, especially the Directions31.
and Marker Color, so that they look good on your end.
Head back to the UI we created and select the image in the Hierarchy panel.32.
Looking at the Details panel, expand the Brush option and assign the material
instance as the image's image.

Beyond Traditional Material Uses Chapter 5

[305]

Set the image's size to 1,532 and 24 or something that clearly shows the compass33.
at the top of your screen. This can vary depending on your screen's resolution, so
make sure it looks like in the image at the end of this section:

We are now in a position where we can feed the player's rotation to the scalar
parameter we set in the material and drive the appearance of the compass
through it. Let's jump to the Event Graph to do that!

Drag and drop the T_Compass variable into the main event graph.34.
Drag a wire out of the T_Compass node and start typing Get Dynamic35.
Material after releasing the left mouse button.
Connect the main execution input pin of that new node to the output execution36.
pin of the Event Tick node.
Create a Get Player Controller node.37.
Drag a wire from the previous node and search for Get Controller Rotation.38.
Pull another cable out of the previous node and look for Break Rotator.39.
Out of the Z (Yaw) output pin of the previous node, we'll want to create40.
a float/float node. Set the divisor to 360.
Drag a wire out of the Return Value output pin of the Get Dynamic Material41.
node and start typing Set Scalar Parameter Value.

Beyond Traditional Material Uses Chapter 5

[306]

Type the name of the Scalar Parameter created in step 12. Make sure it is the42.
same name, otherwise the whole thing won't work:

With that done, let's show the UI in our screens by adding some logic to the Level
Blueprint.

Open the Level blueprint (Toolbar tab | Blueprints | Open Level Blueprint).43.
Drag a wire out of the Event Begin Play and create a Create Widget node.44.
Create a Get Player Controller node and wire it to the Owning Player input pin45.
of the previous Create Widget node.
Choose the right widget in the Create Widget's drop-down menu.46.
Pull a wire out of the Return Value of the Create Widget node and add an Add47.
to Viewport one.

Beyond Traditional Material Uses Chapter 5

[307]

With that done, you should be able to see the results for yourself once you hit play! Having
the ability to know where North is can be very helpful, especially in certain types of games
and apps. Think, for example, about recent hits in the video game industry, such as
Fortnite, where the user is presented with a world where certain navigational tools, such as
a map and a compass, are almost essential. With this new tool at your disposal, you already
know how to tackle this problems, so make sure to put them to good use!

How it works...
As usual, let's recap what we did in this recipe just to make sure that everything makes
sense. The core of the functionality of this recipe lies in the logic we created within the
material graph for the compass material, so let's make sure we review that carefully.

Beyond Traditional Material Uses Chapter 5

[308]

The first and most crucial component of our material graph is probably the Panner and all
of the accompanying nodes. This is the where we are specifying how much to pan the
texture, which will impact what appears to be the North once the material is properly set
up. We are relying on a scalar parameter named Player Rotation in order to know how
much to pan the texture, but the actual amount provided by this node won't be known until
we implement the functionality within the event graph of the UI. The other nodes that feed
into the Panner, such as the Texture Sample and the nodes that affect the Speed, are there
to provide a custom value we are setting everything to a value of 1 in all of those fields
except for the speed in the Y direction, which needs to be 0 as we are only planning on
panning along the X axis.

The rest of the material graph should be more familiar to us, as we are doing things we've
already done in the past setting the colors of certain textures by multiplying them times a
color we set as a variable, adding the results of our calculations together thanks to the Add
and Lerp nodes. The next bit of interesting code comes in the shape of the event graph we
set up as part of the UI, where we actually modify the value of the Scalar Parameter we
defined within the material. We do that by getting a reference to the dynamic material that
is being applied to the image, which is the Material Instance we previously created, and
passing a reference to the Player Rotation scalar parameter. The values we send are
calculated attending to the Z value of the player's rotation, which gives us where it is
looking at in the world. Simple as that!

There's more...
In case you haven't dealt with UIs before, let's take a quick look at how to work with them
now. This is going to be especially useful in this recipe; if you are not familiar with how
they operate, make sure to read the following helpful tips!

Beyond Traditional Material Uses Chapter 5

[309]

The first bit we need to know is how to create them to do that, just right click anywhere
within the appropriate folder of the content browser and select the Widget Blueprint
option that you'll find in the User Interface section:

Beyond Traditional Material Uses Chapter 5

[310]

The next bit we need to talk about is the UI editor itself. There are two parts to this:
the Designer and the Graph tabs. The second one is similar to the Blueprint Graph we are
already familiar with, but things are a bit different in the Designer panel. This is an editor
where you can create any UI you want within Unreal, and therefore includes several panels
that will make your life easier and which we'll explore next:

Let's check out the following features:

Palette: This is the place where you can select from the different elements you
have at your disposal to create your UI. Buttons, images, vertical boxes, or safe
zones are just a few examples of the available elements, and each has some
unique features that make them more suitable for certain situations than others.
Getting familiar with this section is very useful, and this is where we'll select all
of the different assets we want to add to our widget.
Hierarchy: The hierarchy panel is a very important one, as the different elements
that we can create tend to expect a certain structure. For instance, different assets
from the Palette tab can accept a different amount of children and this is
important to know in order to properly organize our UI. A button, for example,
only accepts a single child, whereas a Vertical Box accepts many. This is the place
where we can parent and child different components to each other so that we get
the functionality that we want out of them.

Beyond Traditional Material Uses Chapter 5

[311]

Animations: If you want to create little animations on your UI, this is the place to
be. Imagine you want to create a nice fade-in effect when you load the app, just
so that the UI doesn't load in an abrupt way—this is the place where you would
create the different animations.
Designer: The designer is where you can arrange and check the different
elements that you create. All of them will appear in here, and you'll be able to
visualize what you are doing in real time.
Timeline/Compiler results: If the Animations panel was where we created the
animations, the Timeline is where we want to be to actually work with them.
This is where we assign keys and values to our animations, so we'll spend most
of the time when creating such assets.
Details: If you have something selected, chances are you are going to look at the
Details panel to see or change how that specific element looks or works.

Something to note is how the panels you see here can change positions according to the
resolution of your screen or the ones you have selected. If you want to add or remove
certain ones, feel free to look under the Window setting and select all of the ones that you
need!

Now that you know where to locate each element within the UI editor, you should be able
to complete the current recipe. Have a play within the editor itself for a little bit, get
comfortable with the different panels, and you should be ready to go in no time. See you in
the recipe!

See also
The UI editor can be a daunting experience, but believe me, it wants to be your friend! Even
though it can be scary at first, the possibilities and the potential within it are enormous, so
much so that not exploring it would be a shame. From the ability to create nice button
functionality to conveying the idea behind your app better, the UI editor is there to help
you realize your vision. Make sure to read more about this tool in Epic's official
docs: https://docs. unrealengine. com/ en-us/ Engine/ UMG.

https://docs.unrealengine.com/en-us/Engine/UMG
https://docs.unrealengine.com/en-us/Engine/UMG
https://docs.unrealengine.com/en-us/Engine/UMG
https://docs.unrealengine.com/en-us/Engine/UMG
https://docs.unrealengine.com/en-us/Engine/UMG
https://docs.unrealengine.com/en-us/Engine/UMG
https://docs.unrealengine.com/en-us/Engine/UMG
https://docs.unrealengine.com/en-us/Engine/UMG
https://docs.unrealengine.com/en-us/Engine/UMG
https://docs.unrealengine.com/en-us/Engine/UMG
https://docs.unrealengine.com/en-us/Engine/UMG
https://docs.unrealengine.com/en-us/Engine/UMG
https://docs.unrealengine.com/en-us/Engine/UMG
https://docs.unrealengine.com/en-us/Engine/UMG
https://docs.unrealengine.com/en-us/Engine/UMG
https://docs.unrealengine.com/en-us/Engine/UMG
https://docs.unrealengine.com/en-us/Engine/UMG

Beyond Traditional Material Uses Chapter 5

[312]

Creating a mini map
Now that we are familiar with dynamic UI elements, let's continue exploring this topic by
creating a mini map! This can be a nice extension to the compass we just created, as both
elements often appear side by side in games and apps. Furthermore, it will add a new layer
of interactivity between what's happening in game and its visual representation on the UI.
Let's see what this is all about:

Getting ready
You'll need a couple of things this time, which, as always, are provided by us if you want to
follow along using the same assets, but using your own resources will be completely fine.
The basic building blocks you'll need if you want to go solo come in the shape of a couple
of textures that will act as a map and as the player's position locator. Luckily for us, we
don't need to create them in an external piece of software if we don't want to – we can find
perfectly valid solutions thanks to the already-included engine content and a couple of
tricks I'll show you later. If you want to use the same assets I'll be working with, rest easy as
they are included in the project we provide you with and can be found in the Content
Browser / UE4ShadersAndEffects / Assets / Chapter05 / 05_06 folder. You
can also open the same level we'll be using by looking inside the Maps folder and searching
for 05_06_MiniMap_Start.

Beyond Traditional Material Uses Chapter 5

[313]

How to do it...
No matter whether you open up the same level I'll be working on or one of your own, the
first step we'll take in this recipe is to get hold of the textures we'll need. You should
already know that we'll provide you with every asset you'll need in order to complete this
recipe on your own. However, if you prefer to use your own levels or textures, feel free to
check out the There's more... section as that will provide you with useful tips on how to
produce some of the necessary textures we'll be working with. With that said, let's start
working on our minimap!

As usual, the first steps in our journey will involve creating the assets with which we'll be
working. The first of those will be the UI, which will host the minimap itself. Instead of
creating one, we can duplicate the one we created for the Compass and expand upon it:

Search for the UI we created in the previous recipe, named UI_Compass UI, and1.
duplicate it. You can find that widget in the Content / UE4 Shaders And
Effects / Assets / Chapter 05 / 05_05 folder.
Give the new widget a different name, something such as UI_Minimap And2.
Compass.
Open the new widget by double-clicking on it and add a second Scale Box. Set its3.
anchor point to be in the middle of the screen.
Set its Alignment to 0.5 in both the X and Y fields, and check the Size To4.
Content checkbox:

Beyond Traditional Material Uses Chapter 5

[314]

So far, we've taken care of creating a new UI and adding a Scale Box that will
constrain the position of the mini map within our widget. The next steps are
going to deal with the creation of the textures that will drive the appearance of
the minimap itself.

Create an Overlay and child it to the previous Scale Box. This asset will allow us5.
to stack multiple widgets, which is perfect since we basically want to have
multiple layers in our minimap—one for the base map, and a second one that
indicates the player's location.
Check the checkbox next to the Is Variable text at the top of the Details panel of6.
the Overlay. We'll need this to access its properties at run time.
Create two Images and child them to the previous Overlay.7.
Rename the first of them to something such as I_Minimap and assign the mini8.
map texture to it. If you are using the asset we'll be providing, called
T_Minimap, you might want to resize it a little bit so it looks good within the UI.
A value of 800 x 800 pixels works well in our case, instead of the default 1,024 x
1,024.
The second image will be the icon for the player location, so rename it9.
accordingly and select the icon that you like best. I've gone with the name
of I_Player Location this time, and we are using the texture T_ Minimap_
Locator:

Beyond Traditional Material Uses Chapter 5

[315]

Check the Is Variable checkbox for the Overlay and assign the right textures to
the images.

Even though we are providing an asset called T_Minimap_Locator, know
that you can find another one provided as part of the Engine Content,
named "Target Icon", that will also do the job.

With all of the previous elements added, we can now start to implement the logic
that will drive the behavior of our mini map. Unlike in previous recipes, where
we built the logic within a material, we'll do that now in the graph editor of the UI
itself. This is because we don't need a material in this instance, so let's take
advantage of that! With that in mind, let's open up the Graph Editor of the UI and
continue from where we left off in the previous recipe, at the last node of the
Compass functionality. This should be the Set Scalar Parameter Value we had
previously created, so keep that in mind as the next bit of functionality will
continue from there. Alternatively, in case you have created a new UI from
scratch, just remember to use the Event Tick node as the source of your execution
wire.

Let's start by creating a couple of new variables of the Vector type. You can do so10.
by clicking the + icon in the Variables section of the My Blueprint panel.
The first of those two new assets should be called something such as Lower11.
Right World Position, and the second one Upper Left World Position. These are
going to be the physical coordinates of the corners of the texture that is visible on
the mini map—so let's measure that data next.

Beyond Traditional Material Uses Chapter 5

[316]

In order to know the coordinates of the map bounds, you can simply create a12.
temporary actor and manually place it in the world on those two positions we
mentioned. Look at the details panel and write down the coordinates! If you are
following along using the same assets as I am, the values should be X = 350, Y =
180, Z = 0 for the Lower Right World Position vector and X = -15, Y = -180, Z =
0 for the other one:

Place a dummy actor in the appropriate location and write down its coordinates
from the Details panel.

Just so we are on the same page, you'll need to write down the position of
the Northwest and Southeast corners of your map. This will work as long
as the upper edge of your custom texture is facing North.

With those coordinates written down and assigned to the previous vector
variables, we can now continue to grow the logic in the Event Graph.

Drag both of the previous vector variables into the UI graph.13.
Create a Vector/Vector node after them, and set the Lower Right World Position14.
as the Minuend and the other vector as the Subtrahend.
Right-click on the vector output pin of the Vector/Vector node and select15.
the Split Struct Pin option, as we'll need access to the X and Y coordinates.

Beyond Traditional Material Uses Chapter 5

[317]

Create a couple of Float/Float nodes and place them to the right of the previous16.
nodes. Position one above the other.
Connect the X and Y float output from the previous Vector/Vector node to the17.
divisor input pin of each of the Float/Float node.
If we checked the Is Variable checkbox back in step 6 for the Overlay panel, we18.
should now have access to it via the variables category inside the My Blueprint
tab. Get a reference to it on the UI graph.
Drag a wire out of the output pin of the Overlay node, then select the Get19.
Desired Size node. Right-click over the Return Value output pin and select
the Split Struct Pin option just like we did on the Vector/Vector node.
Connect the Result Value X output pin from the previous Get Desired Size node20.
to the dividend of the Float/Float node created in step 16.
Do the same with the Result Value Y, wiring it to the other Float/Float node:21.

I'd like to say something before things start to get messy: every float operation we
perform in this recipe will only involve one axis. If you look at the previous
example, you'll be able to see that we are dividing the output of the Return Value
X between the X coordinate of the Vector/Vector node. Likewise, we are
operating on the Y values on the other Float/Float node. Just as in that example,
all of the following nodes we'll create will follow that rule. I think this is pertinent
to say at this stage as we are about to create a large number of nodes and we
could get confused as to what goes where. When in doubt, make sure that you are
not mixing X and Y values in your graph.

Duplicate the Upper Left World Position vector and place it a little bit further22.
down the graph, to the right.

Beyond Traditional Material Uses Chapter 5

[318]

Right-click somewhere below the Upper Left World Position vector and look for23.
a Get Player Camera Manager node.
Drag a wire out of that last node and create a Get Actor Location node.24.
Subtract that from the Upper Left World Position node created in step 22 by25.
creating a Vector/Vector node and wiring things appropriately.
Just like we did with the Vector/Vector node in step 14, right-click on the vector26.
output pin and select the Split Struct Pin option.
Create a couple of Float/Float nodes and add them after that last node. Leave 0 as27.
the minuend of both nodes and wire the subtrahend to the X and Y outputs of
the previous Vector/Vector node:

Those series of nodes will give us the position of the player, which will be able to
compute where the texture icon should be placed on top of the mini map.

Create one Multiply node, and connect the first of its input pins to the result of28.
the Float/Float node that is dividing the Return Value X of the Get Desired Size
node between the X float value of the Vector/Vector operation from step 16.
The second input pin should be connected to the output of one of the Float/Float29.
nodes we created in step 27, the one where we are subtracting the result of the X
from 0.
Create a second Multiply node, and in a similar way to what we did30.
before, connect the first of its input pins the result of the Float/Float node that is
dividing the Return Value Y of the Get Desired Size node between the Y float
value of the Vector/Vector operation.

Beyond Traditional Material Uses Chapter 5

[319]

The second input pin of that latest Multiply node should be connected to the31.
output of the other Float/Float node we created in step 27, the one where we are
subtracting the result of the Y from 0.
Create a couple of Float/Float nodes and place them after the previous two32.
Multiply nodes.
Connect the result of each of the previous Multiply nodes to the Minuend of the33.
last Float/Float nodes, following the rule of not mixing the X and the Y paths.
Set the Subtrahend to be half the resolution of our player icon's resolution, which34.
should be 64 if you are using the same assets I am.
Create a couple of Clamp (float) nodes. Set the value input pin to be the result of35.
the previous Multiply nodes—one for the wire connected to the X and the other
for the Y.
Don't connect the Min input pin. Instead, use the number -64 in that field (or the36.
negative value of half of the texture resolution you are using for the player's
icon):

Everything we've done so far is a comparison between the real-world bounds of
our level and the widget's dimensions. All of this in order to know where we
need the player icon to be in widget space to match the position of our player. We
now need to complete this logic by feeding the last values into the previous
Clamp nodes.

Include another set of two Float/Float nodes and place them somewhere after the38.
Get Desired Size node we created in step 19.
Connect the Return Value X and Return Value Y output pins of the Get Desired39.
Size node to the minuend of the previous two Float/ Float nodes.

Beyond Traditional Material Uses Chapter 5

[320]

Set the Subtrahend of the Float/Float nodes to half the resolution of our player40.
icon resolution. If you are using the assets we are providing with this project, that
number should be 64.
Connect their output to the Max input pin on the Clamp nodes we created in step41.
36.
Get a reference to the player location's image into the Event Graph.42.
Drag a wire out of that last node, then start typing Set Render Transform to43.
create a node.
Right-click over the In Transform input pin and select the Split Struct Pin44.
option.
Wire the results of the previous Clamp nodes into the In Transform X and In45.
Transform Y input pins.
Connect the main execution pin to Set Render Transform:46.

Now that our widget is all set up, we need to add the widget to the screen and
make it visible. This is something we had already done in the previous recipe,
when we created the compass, so let's do it again.

Beyond Traditional Material Uses Chapter 5

[321]

Go back to the level we are working on and open up its Level Blueprint. 47.
Drag a wire out of the execution pin for the Event Begin Play and create a Create48.
Widget node.
With that last node in focus, select the widget we just created for the minimap in49.
the Class drop-down box.
Connect a Get Player Controller node to the Owning Player input pin of the50.
Create Widget node.
Create an Add to Viewport node and wire both its execution pin and the Target51.
to the appropriate output pins of the previous Create Widget node:

If you now hit play, you should be able to see a UI popup in front of you showing you
where the player is! Of course, this can be a little bit obtrusive, but it helps prove a point.
Something extra you could explore is to set up a button that would toggle the minimap
visibility, enabling you to look at it only when necessary. We've done that for you, so feel
free to open up 05_06_MiniMap_End and look at the level blueprint to see how that was
done alongside the widget itself, where we've also introduced certain changes. However,
that's something extra, so make sure to test it out for yourself now!

How it works...
Even though this recipe included multiple different steps, the logic behind it all was quite
straightforward. We focused on creating the minimap and the functionality that made it
work—even though setting things in motion took a little bit of time, the underlying
principles were simple.

The first step was, as always, to create the assets we would be working with. We are
basically talking about two different elements at this stage: the image of the minimap and
the icon for the player's location. They work together thanks to the overlay panel within the
widget editor, which puts one on top of the other.

Beyond Traditional Material Uses Chapter 5

[322]

The second and last part of the process was to actually code that functionality into the event
graph; we did that by comparing the real-world coordinates of our play area to that of the
widget we were using. Having a way of translating what was happening in world
coordinates to those used in the UI made it possible to update the player's location and
show where it was within the minimap. And that enabled the whole system to work!

There's more...
As we said at the beginning of this recipe, here's a method you can follow to get your own
textures for the mini map. We are going to talk about a top-down render of the scene, much
like the one I captured for our scene, which you can use later on as the mini map itself. You
can also take that to an image-editing program and tweak it there to make it more stylish or
give it a different look. In any case, here's how you can start off doing this: drag a camera
into the scene and make it look at the scene from above. Ensure that the camera rotation is
right—this is, make sure that the top part of the image the camera is producing is
effectively the North of our scene. Once that's done, head over to the little arrow located to
the left of the projection drop-down menu. You'll be able to find an option in that menu
called High Resolution Screenshot if you look toward the bottom.

Before you hit the button, make sure you are looking through the camera's view. Your final
image should look something like a top-down projection of the level, so make sure that's
the case. You can also print the screen an image, as seen from the position of the camera
that covers the area that is going to be used as a mini map, which is a quick and dirty
option. The point is that it shouldn't be difficult to get hold of this type of texture! One
thing to keep in mind before we move on is to try to keep the edges of the image very close
to the boundaries of our level, as they should match the playable area.

See also
Minimaps are a type of asset that can be greatly expanded upon in order to include many
other different functionalities, beyond the ability to show the player's location within the
world. Points of interest, navigational cues, and objective-based markers are but a few
examples, and it would take us a long time to cover them all. That being the case, let me
leave you with a good tutorial on how to create an advanced version of our mini map
system: https://www. youtube. com/ watch? v= EQgmt20knLo.

https://www.youtube.com/watch?v=EQgmt20knLo
https://www.youtube.com/watch?v=EQgmt20knLo
https://www.youtube.com/watch?v=EQgmt20knLo
https://www.youtube.com/watch?v=EQgmt20knLo
https://www.youtube.com/watch?v=EQgmt20knLo
https://www.youtube.com/watch?v=EQgmt20knLo
https://www.youtube.com/watch?v=EQgmt20knLo
https://www.youtube.com/watch?v=EQgmt20knLo
https://www.youtube.com/watch?v=EQgmt20knLo
https://www.youtube.com/watch?v=EQgmt20knLo
https://www.youtube.com/watch?v=EQgmt20knLo
https://www.youtube.com/watch?v=EQgmt20knLo
https://www.youtube.com/watch?v=EQgmt20knLo
https://www.youtube.com/watch?v=EQgmt20knLo
https://www.youtube.com/watch?v=EQgmt20knLo

6
Advanced Material Techniques

If we look at the different input pins that a typical Unreal Engine 4 material has, we'll see
that the first few entries are named like this: Base Color, Metallic, Specular, Roughness,
and so on. We can already say that we've used most of them with the Normal node so
far. This is no coincidence, as they are the most common features we'll need when creating
a material. However, there are times when we need to move beyond those boundaries and
use other more specific features within our materials in order to enable certain effects. This
is what we are going to be focusing on in the next few recipes.

In this chapter, we will cover the following recipes:

Painting a mesh with vertex painting
Using decals to add granularity to our scenes
Creating a brick wall with Parallax Occlusion Mapping
A brick wall using displacement
Proximity-based masking with mesh distance fields

Advanced Material Techniques Chapter 6

[324]

Introduction
Even though we are still on our crusade to cover as many different topics as we can, it's
time to get back to more normal materials and finish looking at some of the other
techniques that can be used in combination with more traditional material setups. This will
give us the opportunity to look at some very interesting features, such as vertex painting,
and explore some of the material nodes we haven't used yet, like World Displacement or
Parallax Occlusion Mapping. All in all, they should greatly enhance your ability to create
any material that you so desire, so let's take a look at all of these new techniques!

Painting a mesh with vertex painting
As we said in the introduction to this chapter, we are going to learn and use some advanced
techniques that we haven't seen yet. We'll start off by looking at an important and useful
technique called vertex painting, which will allow us to assign specific values to the
vertices that make up our models with the aim of reusing that information to drive the
appearance of the materials we apply to them. This can be very useful under certain
circumstances, such as when we don't want to use masks to define how materials look or to
manually paint specific effects on an object. I'm sure you'll find this technique very useful
once we take a proper look at it, so let's not delay that any further!

Advanced Material Techniques Chapter 6

[325]

Getting ready
Vertex painting is a technique that is not very demanding in terms of the objects that you
need to have in order to use it. You'll basically need a model and a material, which you can
easily get hold of through the Starter Content, either by using your own models or the ones
we'll be providing. In either case, there's no specific conditions that we need to talk about at
this stage, so let me just point you in the right direction in case you want to follow along
using the same resources: Content Browser / UE4ShadersAndEffects / Maps /
Chapter06 / 06_01_VertexPainting_Start.

The assets contained in the previous level can be found, as always, in the Assets folder for
the current chapter and recipe.

How to do it...
Vertex painting requires at least a couple of different elements that we'll need to set up – a
material that can be used with this technique and the actual painting of vertex values on the
meshes on which we are going to be operating. We'll take care of those two parts in that
order, so let's start things off by creating a new material:

Create a new material anywhere you fancy within the Content Browser and give1.
it an appropriate name. I've gone with M_ VertexPaintingExample_End for
this particular example.

Advanced Material Techniques Chapter 6

[326]

Assign the previous material to the model you want to work on. If you've opened2.
the map we are providing, that will be the lamp in the center of the level.
Open up the material editor by double-clicking on the newly created material.3.

The next steps will probably make more sense if we briefly talk about what we
want to achieve by using this technique and that is to assign different textures
and effects to certain parts of our model. Taking the lamp as an example, we want
to set the base of that object to look different to the rest of the body. To do that,
we'll actually need to bring all of the necessary textures into the material itself so
that we can choose which to use when we paint the vertices. Let's do that now.

Create two Texture Samples within the material graph editor.4.
Set the first of them to use the T_ Lamp_ Color texture. Apart from that, select5.
that node and look at its Details panel, and change the Sampler Type from Color
to Linear Color.
The second one should make use of the T_ Lamp_ Base asset.6.
Include a Lerp node and place it after the previous two Texture Samples, and7.
connect the first of them to its A input pin. The second one should be connected
to pin B.
Connect the output of the Lerp node to the Base Color input pin in our material.8.

Doing this will see us interpolating between both textures, which we'll use to
define the look of the base of the lamp and its main body. However, we still need
to assign something that can act as the interpolation value—this is going to be the
key element of this recipe, that is, the Vertex Color node.

Create a Vertex Color node by right-clicking and typing that same name9.
anywhere within the material graph.
Drag a wire from its Red output pin and connect it to the Alpha input pin of the10.
Lerp node we created previously:

Advanced Material Techniques Chapter 6

[327]

The Vertex Color node gives us access to the painted values of the vertices of the
mesh on which the material is being applied. We can then use that information to
drive certain functionality within the material, as we've just done in the previous
step by feeding the red channel's output of the Vertex Color node into the Lerp
that is blending between the two different textures. The reason why we are using
that output of the channel is because that is where we are going to be painting the
vertex values later on, but we could use any other channel if we wanted. Seeing as
this is going to be a simple material, we'll only need one. With that done, let's
make the material a little bit more interesting by connecting something to the
Metallic and Roughness input pins of the main material node.

Add four constants to the graph—two that will drive the metalness of the11.
material and another two that will affect the Roughness attribute.
Assign a value of 0 and 1 to the first set of two constants—the ones that will12.
drive the Metallic property of the material. As you may recall, a value of 0
means it will not be metallic, and a value of 1 will mean the opposite—just what
we want to differentiate between the body and the base of our model.

Advanced Material Techniques Chapter 6

[328]

Give the second set of constants whichever value you fancy—I've gone with 0.513.
for the body and 0.25 for the base.
Create a couple of Lerp nodes to make the interpolation between the previous14.
constants possible.
Connect the red channel's output pin of the Vertex Color node to the Alpha of15.
the new Lerp nodes.
Wire each of the previous constants to the A and B input pins of the new Lerp16.
nodes, just like we did for the Base Color.
Finally, connect the output of those nodes to the Metallic and Roughness input17.
pins of the main material node.

As you can see, this is quite a simple material, but one that will allow us to see the
Vertex Paint tool in action. All of the previous steps have left us with a working
material, one that we can already apply to the model in our scene. But we can't
stop there, as we'll need to paint the areas where we want each of the textures we
created previously to show up. Let's take care of that next:

Advanced Material Techniques Chapter 6

[329]

Select the model that we will be working on.18.
Assign the material we've just created in the Materials section of the model's19.
Details panel.
Head over to the Modes panel and click on the Paint tab.20.
While in that panel, look at the Brush category and adjust the Radius so that you21.
can comfortably paint on the model.
Focusing on the vertex painting area now, select the Red channel and deselect22.
the rest. We want to be painting in that channel as that's what we chose to use
within our material back in step 10.
Make sure that the Paint Color is set to white and that the Erase Color is set to23.
black:

Advanced Material Techniques Chapter 6

[330]

With that done, it's finally time to paint on our model! This can be done with your mouse,
or with a pen device if you can get hold of one. Feel free to experiment and see how the
appearance of our material changes with the different strokes we apply, blending between
the different textures we set up in our material. At the end of this process, you should
hopefully be looking at something like the following screenshot:

You can expand this technique by painting in multiple channels and using that information
to drive the appearance of the material, and even play with the strength of the tool to create
interesting blends between several assets. Something you could find very useful is the
ability to slightly tweak the appearance of a large surface by using this method, just by
creating different textures and blending between them. There are multiple possibilities, and
you can benefit from them in multiple ways—sometimes to remove the use of masks, or
perhaps to effect the appearance of large surfaces without using enormous textures. All in
all, it's a handy and useful feature!

How it works...
Let's take a little bit of time to go over the Vertex Painting panel and the different options
we can have access to thanks to it!

The first set of options allow us to tweak the brush we use when painting the vertex colors.
The radius affects the size of the tool, letting us adjust how much of the model we cover at
once. The strength signals the intensity with which we paint, and the Falloff lets us create
an area where the intensity fades between 0 and the selected one, allowing us to seamlessly
blend between adjacent areas. As an example, setting the Intensity to a value of 1 will fully
assign the selected color to the covered vertices, whereas a value of 0.5 will assign half of
the selected shade.

Advanced Material Techniques Chapter 6

[331]

The last two settings in this section are called Enable Brush Flow and Ignore back-
facing the first allows us to continuously paint across the surface (updating our strokes
every tick), while the second one controls whether we paint over back facing triangles. This
can help us in situations where we don't want to accidentally paint areas that we are not
currently looking at.

Moving beyond the Brush section, we can find the View, the Vertex Painting, and
the Visualization tabs. The first one lets us see the colors that we paint instead of the
material that is being applied to the mesh. The Vertex Painting tab allows us to select
which color we want to paint with and which channel we want to affect, as well as letting
us paint multiple LODs at the same time. Finally, the Visualization panel contains a
property that affects how big the vertices of the model are while we are painting:

There's more...
Even though we centered our efforts in this recipe on the matter of vertex painting, there's
more that we can talk about related to this topic. There are at least two things that I'd like to
mention before we move on the different scenarios where we might benefit from using this
technique and the possibility to not only paint vertices, but textures as well.

Advanced Material Techniques Chapter 6

[332]

The first of these scenarios is the one where we use this technique to remove the visible
tiling pattern that sometimes shows up on large scale surfaces. We can do that by blending
between two very similar but different textures. Think of this as a way of adding variation
to your levels in an interactive way, without having to blend between multiple different
noise patterns and images within your material graph.

The second one relates to another tool that we can find within the Paint tab that works in a
similar way to Vertex Color Painting—Texture Painting. This tool, which is located on the
upper right corner of the Paint tab, allows you to modify any of the textures that are
already applied to the mesh you have selected in your level. The only thing you need to do
is select the texture where you want to be operating on from the Paint Texture dropdown
menu. After that, start painting on top of it however you like! You can only choose from a
solid color at the moment, which might not work that well on the Base Color property of a
realistic textured asset—but be sure to try it out, as it can work wonders when you want to
modify certain values like the Roughness or the Metallic properties:

See also
You can find more information on this topic through Epic's official documentation: https:/
/docs.unrealengine. com/ en- US/ Engine/ UI/LevelEditor/ Modes/ MeshPaintMode/
VertexColor.

https://docs.unrealengine.com/en-US/Engine/UI/LevelEditor/Modes/MeshPaintMode/VertexColor
https://docs.unrealengine.com/en-US/Engine/UI/LevelEditor/Modes/MeshPaintMode/VertexColor
https://docs.unrealengine.com/en-US/Engine/UI/LevelEditor/Modes/MeshPaintMode/VertexColor
https://docs.unrealengine.com/en-US/Engine/UI/LevelEditor/Modes/MeshPaintMode/VertexColor
https://docs.unrealengine.com/en-US/Engine/UI/LevelEditor/Modes/MeshPaintMode/VertexColor
https://docs.unrealengine.com/en-US/Engine/UI/LevelEditor/Modes/MeshPaintMode/VertexColor
https://docs.unrealengine.com/en-US/Engine/UI/LevelEditor/Modes/MeshPaintMode/VertexColor
https://docs.unrealengine.com/en-US/Engine/UI/LevelEditor/Modes/MeshPaintMode/VertexColor
https://docs.unrealengine.com/en-US/Engine/UI/LevelEditor/Modes/MeshPaintMode/VertexColor
https://docs.unrealengine.com/en-US/Engine/UI/LevelEditor/Modes/MeshPaintMode/VertexColor
https://docs.unrealengine.com/en-US/Engine/UI/LevelEditor/Modes/MeshPaintMode/VertexColor
https://docs.unrealengine.com/en-US/Engine/UI/LevelEditor/Modes/MeshPaintMode/VertexColor
https://docs.unrealengine.com/en-US/Engine/UI/LevelEditor/Modes/MeshPaintMode/VertexColor
https://docs.unrealengine.com/en-US/Engine/UI/LevelEditor/Modes/MeshPaintMode/VertexColor
https://docs.unrealengine.com/en-US/Engine/UI/LevelEditor/Modes/MeshPaintMode/VertexColor
https://docs.unrealengine.com/en-US/Engine/UI/LevelEditor/Modes/MeshPaintMode/VertexColor
https://docs.unrealengine.com/en-US/Engine/UI/LevelEditor/Modes/MeshPaintMode/VertexColor
https://docs.unrealengine.com/en-US/Engine/UI/LevelEditor/Modes/MeshPaintMode/VertexColor
https://docs.unrealengine.com/en-US/Engine/UI/LevelEditor/Modes/MeshPaintMode/VertexColor
https://docs.unrealengine.com/en-US/Engine/UI/LevelEditor/Modes/MeshPaintMode/VertexColor
https://docs.unrealengine.com/en-US/Engine/UI/LevelEditor/Modes/MeshPaintMode/VertexColor
https://docs.unrealengine.com/en-US/Engine/UI/LevelEditor/Modes/MeshPaintMode/VertexColor
https://docs.unrealengine.com/en-US/Engine/UI/LevelEditor/Modes/MeshPaintMode/VertexColor

Advanced Material Techniques Chapter 6

[333]

Using decals to add granularity to our
scenes
Decals are a great thing as they allow us to project certain materials into the world. This
opens up multiple possibilities for us, like having greater control over where we place
certain textures or the ability to add variety to multiple surfaces without complicating our
material graphs. They are also useful in a visual way, as they allow us to see certain
changes without the need to move back and forward between the material editor and the
main scene. Furthermore, Unreal has recently introduced a new type of decal that allows
not only for planar projections but also mesh-based ones, which can be really useful
whenever we want to project something into a non planar surface—as we are about to see.
So without further ado, let's jump right into it and see what this is all about!

Getting ready
Just like we mentioned at the beginning of this recipe, we'll be making use of both the
standard decals that Unreal has included since it launched and the new mesh-based ones.
This means that we'll need to set up a scene that allows both of those techniques to show,
ideally including a planar surface, like a normal floor or a wall, and a more complicated
one, like a sphere where a planar projection just wouldn't work. Keep those conditions in
mind if you want to set up your own scene!

If you just want to jump straight into the action, know that we've included a default scene
for you, just like we always do. You can find it in the following folder: Content
Browser / UE4ShadersAndEffects / Maps / Chapter06 / 06_02_Decals_Start.
All that we've included in there is a plane and a hockey goal, with the intention of adding a
little bit of flavor to this scene and making it a bit more interesting using decals. Let's see
how!

Advanced Material Techniques Chapter 6

[334]

How to do it...
There are two things that we'll be using in this recipe: the standard Deferred Decals and
the new ones, known as Mesh Decals. The first type will work straight out of the box, but
depending on which version of Unreal you are using, you might need to head over to the
Project Settings and adjust a certain checkbox in order to use the latter type. Please also
keep in mind that mesh decals are only available on version 4.13 or later, so don't try using
an earlier version of the engine! Let's get started:

Head over to Edit | Project Settings and look for the BDBuffer Decals checkbox1.
within the Rendering | Lighting category. Make sure that the box is ticked – it
may be already, depending on your version of Unreal:

With that out of the way, we'll focus our attention on the creation of the actual
materials that we'll be using alongside the Decals. You could think about this
technique as a two-part process—the first being the definition of the material we
want to project and the second one being the method that we want to use to
project them.

Create a new material, and give it whatever name you think is appropriate. I've2.
gone with M_ DeferredDecal_ HockeyLines as that's what I'll be using it for.
Open up the material editor for the new asset and select the main material node.3.
With it selected, focus on its Details panel.
Set the Material Domain to Deferred Decal and both the Blend Mode and the4.
Decal Blend Mode to Translucent.

The previous steps indicate to the engine how our new material should be used,
which as we said will be as a decal. The next part we need to tackle is the creation
of the actual material functionality that we want to include – displaying the
hockey lines in our level.

Advanced Material Techniques Chapter 6

[335]

Create a couple of Texture Sample nodes.5.
Assign the T_ Hockey Lines_ Color and T_ Hockey Lines_ Normal assets6.
to the previous two nodes.
Wire the Texture Sample containing the normal texture to the Normal input pin7.
of our material.
Connect the Alpha channel of the T_ Hockey Lines_ Color asset to8.
the Opacity input pin in the main material node.
Multiply the main output of the previous texture sample times 500 and connect it9.
to the Base Color. We do that to ensure that we get a clear white. Alternatively,
you could wire a perfectly white color instead of using the Texture Sample:

That's everything we need to do for the first decal, which will be projected as a
standard one from Unreal. We now need to create a mesh-based decal material as
well, so let's do that now before actually going back to the main editor.

Create another material and give it a name. I've gone with M_ MeshDecal_10.
HockeyGoal this time as I'll be affecting that object.
Double-click on the new asset to open up the material editor and select its main11.
material node. Then, head to the Details panel as we'll be changing some
properties, just like we did in the previous material.

Advanced Material Techniques Chapter 6

[336]

Set the Material Domain to Deferred Decal, the Blend Mode to Translucent,12.
and the Decal Blend Mode to the DBuffer Translucent Color, Normal,
Roughness option:

The different options that start with the word DBuffer in the Decal Blend
Mode dropdown menu allow the decals to work with lighting, such as the
one you bake if you are using static lights.

Create three Texture Samples – one each for the T_ HockeyGoal_ MeshDecal_13.
Color, T_ HockeyGoal_ MeshDecal_ AORM, and T_ HockeyGoal_
MeshDecal_ Normal textures.
We want to wire the output of the normal texture to the homonym input pin of14.
the main material node.
After that, let's connect the green output pin of the T_ HockeyGoal_15.
MeshDecal_ AORM texture to the Roughness input pin of our material.
Connect the output of the color texture to the Base Color node.16.
Drag a wire out of the green output channel of the color texture and create a17.
Cheap Contrast node at its end.
Create a Constant and connect it to the Contrast input pin of the previous node.18.
Give it a value of 2, which will work well in this example, but be sure to play
with that value once we finish creating this decal, as that will directly impact its
opacity, as we are about to see.
Connect the output of the Cheap Contrast to the Opacity pin of our material.19.

We are almost done creating this second material, but something that we need to
adjust at this point is the World Position Offset pin that we can see highlighted
in the main material node. This is important in the case of mesh-based decals
since we will be using a model to project a material into another model. This
circumstance creates the need to adjust possible issues related to the depth
calculations that Unreal will be performing – that is, we need to make sure that
the geometry that projects the material is closer to the camera than the object
where the effect gets projected. Let's do that now.

Advanced Material Techniques Chapter 6

[337]

Create a Camera Direction Vector node by right-clicking and typing that name.20.
Add a Multiply node and place it after the previous Camera Direction one, and21.
connect that to its A input pin.
Include a Constant and give it a negative value, something like -0.5, which will22.
ensure that we achieve the effect that we are after. Connect it to the B input pin of
the previous Multiply node.
Connect the output of the Multiply node to the World Position Offset pin of the23.
main material node:

We'll have a working material once we click on the Apply and Save buttons that's
ready to be tested within a live environment. That being the case, let's head back
to the main editor and start creating the decals themselves.

Advanced Material Techniques Chapter 6

[338]

Create a Deferred Decal actor by heading over to the Modes tab and searching24.
for that name in the search box. If you don't wan't to type, you can also find it in
the Visual Effects sub category. Drag and drop it into the main viewport.
With the new actor selected, focus on the Details panel and select the hockey25.
lines material we created in the Decal Material section.
Play with the decal's scale and position until the lines show and align themselves26.
with the world – take a look at the final picture to see what the expected result
should be.

We've already taken care of the normal decal projection, so let's set up the mesh
decal next. The steps to do this are even simpler than before, as you are about to
see.

Duplicate the model that is acting as the hockey goal.27.
With the new actor selected, look at its Details panel and change the material28.
that is being applied. Set it to the mesh decal material we have just created to see
it in action!

As you just saw through the previous couple of examples, using decals is a great way to
add details through projection methods, allowing us not to have to worry about the UVs of
the object onto which we are projecting. You can read more about other cases where this
technique is also useful, but as far as this recipe, goes we are already done with it. Take care
and see you in the next one!

How it works...
Mesh decals are one of the elements I like the most inside of Unreal Engine, however
strange that might sound. This is because they offer a type of functionality that I wanted the
engine to include for a long time, and I couldn't have been happier when they finally added
support for them. They give us the freedom to project textures based on any mesh that we
select, and not just planes.

Advanced Material Techniques Chapter 6

[339]

Something I always wanted to do was to project road markings based on real geometry, as
using textures was a very expensive solution. Think for a moment about the following: you
have a big set of roads that you want to texture, along with road markings. How would you
do it? This could serve as a nice assignment to you, so challenge yourself and test this out if
you want to master this technique!

You would probably be tempted to resort to some type of semi procedural technique to
solve this challenge, as you can't possibly fit all of that big environment into a reasonably
sized image. In spite of that, road markings can prove quite difficult to insert into that semi
procedural methodology, as they often require specific care and attention that it's very
difficult to achieve with those techniques. Using planar projected decals would also not
solve our problem, as it would be difficult to adapt them to curved segments. Luckily for
us, we can project them using meshes, as we've just seen.

There's more...
We always need to set up the appropriate type of material domain and blend mode, no
matter what type of decal we use. Setting those options to Deferred Decal and Translucent
is a one-two action we'll be doing any time we set up such a material. However
straightforward that is, we regain control over the effect we are about to create in the next
setting that needs to be specified—the Decal Blend Mode. There are multiple choices
within the dropdown menu that we are presented with, and the exact number may vary
depending on which version of the editor you are using. While we won't go into every
single detail that makes them different, it's good to have an overview of when you should
be using each.

That decision can sometimes be made just by reading the description of each of the options
we see. The most common one will probably be Translucent, which lets us make use of
most of the material inputs, such as the Base Color, Metallic, Roughness, and the Normal
settings. Other modes remove the ability to affect certain channels, with the benefit of being
lighter to calculate. Examples of that are the Normal or the Emissive blend modes, which
remove certain properties, such as the Base Color or the Roughness.

Something important to note is that many of the different options we see don't work with
baked lighting, as the tooltip itself states. If we want to have access to that option, we will
need to choose one of the options that starts with the DBuffer word. Doing that leaves us
with a similar decal behavior to what we've seen so far, with the notable exception that the
metallic property has been removed in favor of using that channel behind the scenes to
provide for the baked lighting solution.

Advanced Material Techniques Chapter 6

[340]

See also
You can find more information on decals and mesh-based decals at the following sites:

https:// docs. unrealengine. com/en- us/Resources/ ContentExamples/ Decals

https:// docs. unrealengine. com/en- us/Engine/ Rendering/ Materials/
MeshDecals

Creating a brick wall with Parallax Occlusion
Mapping
In this recipe, we are going to explore one very useful way of adding detail without adding
geometry. It might feel similar to using a normal map, but this technique actually pushes
the pixels outwards or inwards, creating a real 3D effect that we just can't get with the
previous type of textures. What's so special about this, then? Well, as we said, the geometry
looks like it's there, but it actually isn't! It's a fake effect that looks real, and instead of
making our CPUs work harder by using high poly meshes, we task the GPU with faking
the image. This is something they are more efficient at since they were created for this
purpose. Let's see what this is all about!

https://docs.unrealengine.com/en-us/Resources/ContentExamples/Decals
https://docs.unrealengine.com/en-us/Resources/ContentExamples/Decals
https://docs.unrealengine.com/en-us/Resources/ContentExamples/Decals
https://docs.unrealengine.com/en-us/Resources/ContentExamples/Decals
https://docs.unrealengine.com/en-us/Resources/ContentExamples/Decals
https://docs.unrealengine.com/en-us/Resources/ContentExamples/Decals
https://docs.unrealengine.com/en-us/Resources/ContentExamples/Decals
https://docs.unrealengine.com/en-us/Resources/ContentExamples/Decals
https://docs.unrealengine.com/en-us/Resources/ContentExamples/Decals
https://docs.unrealengine.com/en-us/Resources/ContentExamples/Decals
https://docs.unrealengine.com/en-us/Resources/ContentExamples/Decals
https://docs.unrealengine.com/en-us/Resources/ContentExamples/Decals
https://docs.unrealengine.com/en-us/Resources/ContentExamples/Decals
https://docs.unrealengine.com/en-us/Resources/ContentExamples/Decals
https://docs.unrealengine.com/en-us/Resources/ContentExamples/Decals
https://docs.unrealengine.com/en-us/Resources/ContentExamples/Decals
https://docs.unrealengine.com/en-us/Resources/ContentExamples/Decals
https://docs.unrealengine.com/en-us/Resources/ContentExamples/Decals
https://docs.unrealengine.com/en-us/Resources/ContentExamples/Decals
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/MeshDecals
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/MeshDecals
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/MeshDecals
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/MeshDecals
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/MeshDecals
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/MeshDecals
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/MeshDecals
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/MeshDecals
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/MeshDecals
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/MeshDecals
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/MeshDecals
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/MeshDecals
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/MeshDecals
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/MeshDecals
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/MeshDecals
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/MeshDecals
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/MeshDecals
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/MeshDecals
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/MeshDecals
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/MeshDecals

Advanced Material Techniques Chapter 6

[341]

Getting ready
Something basic that you'll need to tackle this recipe is a good texture that contains depth
information for the surface on which you want to apply the Parallax Occlusion Mapping
technique. For instance, we are going to be talking about a brick wall in the next few pages,
so a good brick wall depth texture will be needed. As always, you'll have access to the same
assets we are using, so just open the scene named 06_ 03_ ParallaxOcclusion_
End located within the following folder to start: Content Browser /
UE4ShadersAndEffects / Maps / Chapter06.

As always, feel free to bring your own textures or even use some that are part of the Starter
Content, such as the one called T_ CobbleStone_ Pebble_ M that comes bundled with it.

How to do it...
The first step we'll take in this recipe is going to be very similar to others we've taken before
– and that means creating a material that we'll be applying different techniques to. Let's not
dwell on this for long and get it out of the way quickly:

Create a new material and give it an indicative name something like M_ Walls_1.
Parallax if you are going to test it on a wall!
Apply it to whichever model you want, or on Material Element 1 of the room2.
walls if you've opened the same scene I'll be using.

With that done, let's open the material editor for our new asset and start
populating its graph with nodes that will bring our parallax effect to life. The first
node we'll need to create is the parallax occlusion mapping one, which will act as
a hub for many of the nodes we'll create after it. It is a function, as you can see if
you double-click on it, and as such it expects several different inputs to work
properly. Let's see how we can tackle it.

Right-click anywhere within the material graph and start typing Parallax3.
Occlusion Mapping—select it and add it to our material. We refer to this node
as POM for future reference.
By reading the different inputs it expects, we can see that the first one is4.
a Heightmap Texture. Create a Texture Object and connect it to that node.

Advanced Material Techniques Chapter 6

[342]

With the Texture Object selected, choose the Depth Texture you want to use in5.
the details panel. We'll use the T_ Walls_ Depth in our example:

The next set of nodes we'll need to add are all going to be constants, which we can
turn into scalar parameters if we so choose. We will interactively tweak them once
we create a material instance. Even though we'll cover them briefly, you can visit
the How it works... section for this recipe later on to learn more about them.

Create a Scalar Parameter and name it something like Height Ratio. We'll use6.
this to affect how much our texture extrudes and intrudes in regards to the
model we are applying the material on. Give it a value of 0.02, but make sure to
play around with it later on to see how this affects the overall effect. Connect it to
the appropriate input pin on the POM node.
The next Scalar Parameter we should create is the one that we'll hook into7.
the Min Steps (S) input pin of the POM node, so give it a similar name to that
and set it to something like 8. Both in this and in the next parameter we'll create,
we will increase the quality of the final image.

Advanced Material Techniques Chapter 6

[343]

Include another Scalar Parameter, name it something like Max Steps, but don't8.
connect it to the Parallax Occlusion Mapping node just yet – we'll play with this
one a little bit more in the following steps.
The fourth Scalar Parameter should be named something like Temporal9.
AA Multiplier, and should be given a value of 2.
Create a Lerp node and connect its B input pin to the previous parameter we10.
created, leaving the A input pin with a value of zero.
Right-click within the material graph and look for a node called Dither Temporal11.
AA. Connect that to the Alpha channel of our Lerp.
Throw a Multiply node and connect both the maximum steps scalar parameter12.
we created in step 8 and the output of the previous Lerp to it.
Finally, connect the Multiply node to the Max Steps input pin on our POM13.
node.

As we said previously, make sure to head over to the How it works... section of this
recipe to learn more about how these last steps we've taken work inside the
material. Just so you don't have to wait until then, what we've done so far effects
the amount by which our material will seem to be extruded, as well as the quality
of that extrusion, which is controlled through the minimum and maximum steps
we created. The reason why we didn't just plug the Max Steps scalar parameter
directly into the input pin of the POM node is because we want to smooth out the
effect using the Dither Temporal AA node, as the end result might look a bit
blocky otherwise.

With that out of the way, the next things we'll take care of are going to be the
heightmap channel and the tiling of the texture itself. The second property is
something we've already dealt with in the past, so it should be quite simple!
However, you might find it strange to have to specify which texture channel we
use for the heightmap. First, let's create the appropriate nodes—I'll come back to
this later.

Create a Vector Parameter and give it a name, something like Channel. Give it a14.
value of red, or 1,0,0,0, as its final value.
Include an Append node and hook the output of the red and the alpha channel15.
of the previous node to this one's input pins.

Advanced Material Techniques Chapter 6

[344]

Wire that to the Heightmap Channel (V4) input pin of the POM node.16.

The reason why we are appending the Alpha to the red channel is because
the input pin of the POM node expects a vector of 4, and the red channel
by itself isn't such an asset.

Create a Texture Coordinate node and leave the default value of 1.17.
Add a Scalar Parameter so that you can contro tiling in case we create a material18.
instance, and set it to 7.
Place a Multiply node after the last two and wire them up. Connect its output to19.
the UVs (V2) input pin of the POM node:

Advanced Material Techniques Chapter 6

[345]

The reason why we needed to specify a texture channel for the heightmap is
merely because of the way the Parallax Occlusion Mapping node has been set up
to work. We used a Texture Object for the heightmap texture, and thus we didn't
have access to any one particular texture channel. We don't mind which channel
we are using; the texture we selected is a greyscale one. However, think for a
second about what would have happened if you used a texture that contained the
height information in a particular channel. You would need a way to tell the POM
node which of the RGBA nodes you wanted to use! That's why we need to specify
the heightmap channel, like we've done previously, since the engine needs to
know that information.

Now that we have the Parallax Occlusion Mapping all wired up, we can use the
calculations that it is doing as the base for the next set of textures that we'll use.
Let's starting creating them!

Create three Texture Samples and assign them the following textures: T_20.
Walls_ Depth, T_ Walls_ AORM, and T_ Walls_ Normal.
Connect their UV input pins to the Parallax UV output pins of our POM node.21.
Wire the output of the first texture to the Base Color input pin of the material,22.
the red channel of the second texture to the Ambient Occlusion input pin, and
the green channel to the Roughness slot.

We need to tweak some settings before doing anything else with the normal
texture, as we'll use a slightly different method than the ones we've seen before.
This is due to the fact that we are using this POM technique, and if we want our
normals to look good, we need to tweak a couple of settings in the material. Select
it and look at its Details panel.

Select the Texture Sample for our normal map and look at its Details panel.23.
Change the Mip Value Mode setting from None to Derivative.
Create a couple of nodes before the normal Texture Sample—in particular, the24.
DDX and DDY nodes that you can find by right-clicking and typing their names.
Connect the output of the Multiply node we created in step 19—the one affecting25.
the tiling to these new nodes.
Wire the output of the new nodes to the newly available DDX and DDY input26.
pins in the normal map Texture Sample.
Finally, connect the output of the Normal map to the Normal input pin of our27.
material. We are all done!

Advanced Material Techniques Chapter 6

[346]

At this stage, all we need to do is to click Save and Apply our material to the appropriate
model in our scene. You should be looking at a white brick wall that extrudes out of the
plane in which it was originally applied, and that effect remains visible no matter the angle
that you are viewing it at. All of this was achieved without us having to use any extra
geometry!

Advanced Material Techniques Chapter 6

[347]

You can see the last set of nodes we created in the preceding screenshot, and the final result
in the following screenshot:

How it works...
As you saw, the POM node is quite a complex one, as it includes multiple different inputs
that we need to properly set up for the effect to work well. However daunting that can
seem, things will start to make more sense once we go into a little bit more detail on what
they do and how each setting we create contributes toward building the final effect.

The first bit that we need to be aware of is how the effect actually works. Parallax
Occlusion Mapping works on top of Unreal's standard rendering pipeline, which consists
of the rasterization of the meshes that make up our level and which in turn assign a world
position value to each pixel in our scene. In other words, each pixel that we see on screen is
the result of a calculation made by the engine, which takes into account the position of our
models and any other effects or materials that are being applied. Parallax Occlusion
Mapping takes the world position of a given pixel, as calculated by the engine, and
modifies its location according to the different settings that we specify in the node we saw
in this recipe. The first of those options that we need to tweak is the heightmap texture, an
asset that determines the difference in position of a given pixel in regards to the underlying
model. In our example, a brick wall material was applied to a plane, and the white parts of
the texture indicate that those areas are being extruded outwards while the black bits get
pushed inwards.

The second setting that we tweaked was the height ratio, which serves as a modifier that
increases or decreases the values of our previous heightmap, making the effect more or less
notorious. On top of that, we added a couple of extra constants that affected the Min and
Max Steps of the effect, which in turn decide the quality that we end up seeing. More
samples mean that the effect will appear more realistic, while less means the opposite. The
reason why we call them steps is because this effect is similar to what we see in splines or
curved surfaces in a 3D package—the more subdivided they are, the more rounded they
will appear.

Advanced Material Techniques Chapter 6

[348]

It's also for that very reason that we used the Dither Temporal AA node, which increases
the smoothness between the different steps we created. This makes them blend better and
in a more seamless way.

Finally, the last two settings we needed to tweak were the UVs and the Heightmap channel.
The former is quite a straightforward operation, as we need to specify how much we want
our material to tile. The latter is quite curious – instead of specifying which texture channel
we want to use in the original Heightmap texture we created, we need to do so here. This is
a quirk of the POM node we are using, which expects a Texture Object as texture input
rather than a Texture Sample. The type we are forced to use lacks the ability to specify the
channel we want to use, therefore making these last settings necessary.

There's more...
As we've explained previously, Parallax Occlusion Mapping is a GPU-driven effect. This
means that the CPU doesn't have access to what's being created there, and this is an
important thing to have in mind. As with any game engine, there are many different
processes happening at the same time, and some of those get taken care of by the CPU
while others rely on the graphics unit. Such is the case of something that effects us in this
case—the collision system. Whenever we use the POM technique, we usually apply it with
the intent of adding detail and transforming the surface onto which we are projecting the
effect. As a result, we end up with a different surface or model—one where its visible
bounds differ from those of the original model. This is an important thing to consider when
we need to have collisions in that same model, as those are computed by the CPU and don't
know anything about what's happening GPU-side.

A possible workaround to this problem is to create a custom collision mesh that takes into
account the end result of the parallax occlusion mapping technique—maybe by adding a
collision volume that respects the new visual bounds we see after we apply the
aforementioned technique. Whatever we decide to do in the end, make sure to keep the
nature of this effect in mind in order to prevent any possible issues when working with
other systems that are driven by the CPU.

Advanced Material Techniques Chapter 6

[349]

See also
Parallax Occlusion Mapping can be a very interesting topic from a technical point of view,
and learning more about it can give you a good insight into how computer graphics work.
I'd like to leave you with a good link to a site that explains it well, and one that can gives
you a into a bigger world if you want to read even more: http:/ /online. ts2009. com/
mediaWiki/index. php/ Parallax_ Occlusion_ Map.

A brick wall using displacement
As you already know, this chapter is all about exploring some advanced material effects
and also some of the material input pins we haven't used so far. Even though we've already
covered many interesting new features, we haven't really explored the rest of the options
that we get out of a normal material. Certain inputs, like the World Displacement or the
Tessellation Multiplier, are still unknown to us. And here is where we remedy that by
taking a look at those features in Unreal and comparing the new technique to the previous
one we've seen, that is, Parallax Occlusion Mapping. These two can be quite similar, so it's
also worth exploring the similarities and differences between them—we'll do that by using
an almost identical scene to the one we used previously. In essence, World Displacement is
the node that we want to use when we need to displace the triangles of a model according
to a given texture. The Tessellation Multiplier subdivides the original triangles of our
mesh in order to make the previous displacement operation more evident. We can achieve
some very cool effects when we use both methods at the same time, so let's jump on board
and see that in action!

http://online.ts2009.com/mediaWiki/index.php/Parallax_Occlusion_Map
http://online.ts2009.com/mediaWiki/index.php/Parallax_Occlusion_Map
http://online.ts2009.com/mediaWiki/index.php/Parallax_Occlusion_Map
http://online.ts2009.com/mediaWiki/index.php/Parallax_Occlusion_Map
http://online.ts2009.com/mediaWiki/index.php/Parallax_Occlusion_Map
http://online.ts2009.com/mediaWiki/index.php/Parallax_Occlusion_Map
http://online.ts2009.com/mediaWiki/index.php/Parallax_Occlusion_Map
http://online.ts2009.com/mediaWiki/index.php/Parallax_Occlusion_Map
http://online.ts2009.com/mediaWiki/index.php/Parallax_Occlusion_Map
http://online.ts2009.com/mediaWiki/index.php/Parallax_Occlusion_Map
http://online.ts2009.com/mediaWiki/index.php/Parallax_Occlusion_Map
http://online.ts2009.com/mediaWiki/index.php/Parallax_Occlusion_Map
http://online.ts2009.com/mediaWiki/index.php/Parallax_Occlusion_Map
http://online.ts2009.com/mediaWiki/index.php/Parallax_Occlusion_Map
http://online.ts2009.com/mediaWiki/index.php/Parallax_Occlusion_Map
http://online.ts2009.com/mediaWiki/index.php/Parallax_Occlusion_Map
http://online.ts2009.com/mediaWiki/index.php/Parallax_Occlusion_Map
http://online.ts2009.com/mediaWiki/index.php/Parallax_Occlusion_Map
http://online.ts2009.com/mediaWiki/index.php/Parallax_Occlusion_Map
http://online.ts2009.com/mediaWiki/index.php/Parallax_Occlusion_Map

Advanced Material Techniques Chapter 6

[350]

Getting ready
The scene we are about to start exploring is quite similar to the one we used in the Creating
a brick wall with Parallax Occlusion Mapping recipe, so all of the considerations we mentioned
then will still apply here. However, there is one extra element we need to talk about, and
that's the setup of the mesh that we will be applying the material we create in this recipe to.
Even though the walls of our level might look identical to the ones found in the Parallax
Mapping example, we are actually using a different mesh, and one that is more subdivided.
This is actually very important if we want the tessellation effect to work well, as simple
planes don't tend to behave properly when combined with this technique. Keep that in
mind if you decide to use your own models! If you want to use the same I'll be using, feel
free to open the level called 06_ 04_ Displacement_ Start that's located within
the Content Browser / UE4ShadersAndEffects / Maps / Chapter06 folder.

How to do it...
The first thing we'll do in this recipe will be creating the material we'll be working on, as
well as its initial setup, so that it makes use of the Tessellation feature:

Create a new material and give it a name. I've gone with M_ BrickWall_1.
Displacement this time.
Select the main material node and look at its Details panel as usual, there are a2.
few things we'll need to tweak in here.
The first setting we need to change is called D3D11 Tessellation Mode, and it3.
can be found under the Tessellation tab, a bit further down the Details panel
(close to the bottom). Change the default value to PN Triangles.
There are some other settings in that same category that you can play4.
with namely Crack Free Displacement, Adaptative Tessellation, and Max
Displacement. I've left them in their default states this time, except for Max
Displacement, which I've bumped to 100.

Ticking the Crack Free Displacement checkbox can remove the seams
that appear in certain models when using Tessellation, especially around
sharp changes in geometry. It has its limitations, but you might want to
check it if you experience any issues.

Advanced Material Techniques Chapter 6

[351]

Here's a screenshot of the previous settings in action:

With those settings enabled, we are now ready to start implementing the nodes
that will drive the displacement of the mesh. Let's see how.

Create a Texture Sample and assign the T_ Walls_ Depth asset to it.5.
Add a Scalar Parameter and name it Contrast Intensity, as we'll use it for6.
just that. Give it a value of 1.

The Contrast Intensity scalar parameter we just created will increase the
contrast of the original Texture Sample according to the value we feed it.
This means that the distance between the pushed and pulled areas of the
material will be greater.

Include a Cheap Contrast node and place it after the last two. Connect the7.
Texture Sample to the In (S) pin and the Scalar Parameter to the Contrast
(S) pin.
Include a second Scalar Parameter and name it something like Height8.
Intensity. We'll use it to control how far we push the displacement effect. Give
it a value of 1, which will leave things the same as if we didn't use it, but feel free
to play around with this value later to see the effect it has.
Multiply the previous Cheap Contrast and Scalar Parameter together.9.
Create a VertexNormalWS node, which is vital to drive this effect as we need10.
access to the position of the vertices in world space.
Multiply the previous node times the output of the previous Multiply from step 911.
by creating a second Multiply node.

Advanced Material Techniques Chapter 6

[352]

Connect the previous sequence to the World Displacement input pin:12.

The previous set of nodes have given us the amount by which the surface where
the material is being applied to will extrude, but we now need to specify how
much we want to subdivide that surface. Greater numbers will make it appear
more realistic, but at a greater cost. Furthermore, there is a limit on how
subdivided a model can be, which can be checked by selecting the Wireframe
view mode—so sometimes, greater numbers won't have an effect at all.

Create a Scalar Parameter and name it something like Subdivision Amount.13.
Set it to something like 5.
Wire the output of that node to the Tessellation Multiplier input pin in the main14.
material node.

Even though we've set up a fixed number in this instance, it might be useful to set
up the material graph in such a way that it varies by that amount based on how
close or far we are from the model—something that we've already seen in
Chapter 3, Opaque Materials and Texture Mapping, in the Distance-based texture
blending recipe. You can also see that for yourself by opening the scene called 06_
04_ Displacement_ End and looking at the material I've created for my
displacement.

Advanced Material Techniques Chapter 6

[353]

Finally, the last part we need to take care of is the rest of the material—that is,
setting up the roughness, the Base Color, and the normal maps.

Create two Texture Samples and set the following assets as their default15.
textures: T_ Walls_ AORM and T_ Walls_ Normal.
Duplicate the Texture Sample we used for the Displacement, since we'll use that16.
for the color as well.
Create a Texture Coordinate node and set it to 7 in both the U and the V Tiling.17.
Connect the output of the previous Texture Coordinate to the UVs input pin on18.
each of the four Texture Samples we should now have.
Connect the output of the T_ Walls_ Depth copy to the Base Color, the red19.
channel of the T_ Walls_ AORM to the Ambient Occlusion, the green channel to
the Roughness slot, and the output of the normal map to the Normal input pin
of the material.

Performing those last few steps has left us with a material that we can already apply to the
model in our scene. Let's head back there now and see it in action!

As you can see, the final effect is very similar to the one we got when using the Parallax
Occlusion Mapping technique. However, you should be able to see some differences if you
move the camera freely around the scene. One of the most immediate effects we should be
able to see is how the tessellation method can feel a bit blocky, especially if we don't adjust
the tessellation multiplier accordingly. Feel free to fine-tune the different settings now that
we are done tweaking the material so that you can adjust it to your liking!

Advanced Material Techniques Chapter 6

[354]

How it works...
Much like in the previous recipe, where we used the Parallax Occlusion Mapping
technique, this new method allows us to add more detail to our models through the use of a
properly set up material. This time, that detail isn't faked. Instead of using clever GPU-
driven techniques, we are telling the engine to actually increase the number of polygons in
a given mesh and modify the new vertex positions according to a texture that will give us
the final look we want.

This is a feature that is tied to the DirectX API, and to the eleventh version in particular
(DX11). It works on the Microsoft Windows ecosystem and other related products, so we
need to keep that in mind when developing a product that might not be able to use those
programming interfaces.

In spite of that, it can be a powerful technique to use under certain conditions. For example,
even though the results are similar to the Parallax Occlusion Mapping example we saw
earlier, it tends to work better on close-ups and it also generally presents less artifacts. It is
an expensive tool, though, so it tends to work better on mid- to high-end computers rather
than on other devices, such as consoles or tablets. It is best used when combined with
distance-based toggles, so the tessellation amount can vary depending on how far we are
from the material in question. All in all, both techniques need to be tested and optimized
until you reach a point at which you are happy in terms of performance and visuals.
Welcome to the great world of optimization!

There's more...
Something we did at the beginning of this recipe was set the D3D11 Tessellation
Mode to PN Triangles. There's another setting that we could've chosen called Flat
Tessellation. Both work in a very similar way by enabling the subdivision of the base
mesh. However, there's a key difference in how these two methods operate. The one we
used tends to subdivide and smooth out the mesh, acting in a similar—albeit more
limited—way to how the Turbosmooth modifier works in Max or the smooth mesh
preview in Maya. Flat Tessellation ignores that smoothing part and limits itself to the task
of subdividing the mesh. Depending on the result that you are after, make sure to check
both alternatives and see which one works best for your project.

Advanced Material Techniques Chapter 6

[355]

See also
As always, here are some links to the official docs in case you want to read more about this
technique!

https:// docs. unrealengine. com/en- us/Resources/ ContentExamples/
MaterialProperties/ 1_ 8

https:// docs. unrealengine. com/en- us/Resources/ ContentExamples/
MaterialNodes/ 1_ 11

https:// docs. unrealengine. com/en- us/Resources/ ContentExamples/
MaterialNodes/ 1_ 12

Proximity-based masking with mesh
distance fields
You could say that each different recipe we've tackled so far has explored something new
within Unreal's material creation pipeline. We sometimes talk about new material features,
useful nodes, or smart shader creation techniques, and we even go as far as using other
elements from outside the material editor to affect our creations. This is going to be one
such example, since we'll be looking at a specific feature called Mesh Distance Fields that
allows us to change the appearance of a material based on how close or far it is from other
geometry in the scene. This, as you'll see, can be very useful, as it allows us to create
dynamic effects such as distance-based masks or ambient occlusion-driven effects. Jump on
board and let's take a look at one such example!

https://docs.unrealengine.com/en-us/Resources/ContentExamples/MaterialProperties/1_8
https://docs.unrealengine.com/en-us/Resources/ContentExamples/MaterialProperties/1_8
https://docs.unrealengine.com/en-us/Resources/ContentExamples/MaterialProperties/1_8
https://docs.unrealengine.com/en-us/Resources/ContentExamples/MaterialProperties/1_8
https://docs.unrealengine.com/en-us/Resources/ContentExamples/MaterialProperties/1_8
https://docs.unrealengine.com/en-us/Resources/ContentExamples/MaterialProperties/1_8
https://docs.unrealengine.com/en-us/Resources/ContentExamples/MaterialProperties/1_8
https://docs.unrealengine.com/en-us/Resources/ContentExamples/MaterialProperties/1_8
https://docs.unrealengine.com/en-us/Resources/ContentExamples/MaterialProperties/1_8
https://docs.unrealengine.com/en-us/Resources/ContentExamples/MaterialProperties/1_8
https://docs.unrealengine.com/en-us/Resources/ContentExamples/MaterialProperties/1_8
https://docs.unrealengine.com/en-us/Resources/ContentExamples/MaterialProperties/1_8
https://docs.unrealengine.com/en-us/Resources/ContentExamples/MaterialProperties/1_8
https://docs.unrealengine.com/en-us/Resources/ContentExamples/MaterialProperties/1_8
https://docs.unrealengine.com/en-us/Resources/ContentExamples/MaterialProperties/1_8
https://docs.unrealengine.com/en-us/Resources/ContentExamples/MaterialProperties/1_8
https://docs.unrealengine.com/en-us/Resources/ContentExamples/MaterialProperties/1_8
https://docs.unrealengine.com/en-us/Resources/ContentExamples/MaterialProperties/1_8
https://docs.unrealengine.com/en-us/Resources/ContentExamples/MaterialProperties/1_8
https://docs.unrealengine.com/en-us/Resources/ContentExamples/MaterialProperties/1_8
https://docs.unrealengine.com/en-us/Resources/ContentExamples/MaterialProperties/1_8
https://docs.unrealengine.com/en-us/Resources/ContentExamples/MaterialProperties/1_8
https://docs.unrealengine.com/en-us/Resources/ContentExamples/MaterialNodes/1_11
https://docs.unrealengine.com/en-us/Resources/ContentExamples/MaterialNodes/1_11
https://docs.unrealengine.com/en-us/Resources/ContentExamples/MaterialNodes/1_11
https://docs.unrealengine.com/en-us/Resources/ContentExamples/MaterialNodes/1_11
https://docs.unrealengine.com/en-us/Resources/ContentExamples/MaterialNodes/1_11
https://docs.unrealengine.com/en-us/Resources/ContentExamples/MaterialNodes/1_11
https://docs.unrealengine.com/en-us/Resources/ContentExamples/MaterialNodes/1_11
https://docs.unrealengine.com/en-us/Resources/ContentExamples/MaterialNodes/1_11
https://docs.unrealengine.com/en-us/Resources/ContentExamples/MaterialNodes/1_11
https://docs.unrealengine.com/en-us/Resources/ContentExamples/MaterialNodes/1_11
https://docs.unrealengine.com/en-us/Resources/ContentExamples/MaterialNodes/1_11
https://docs.unrealengine.com/en-us/Resources/ContentExamples/MaterialNodes/1_11
https://docs.unrealengine.com/en-us/Resources/ContentExamples/MaterialNodes/1_11
https://docs.unrealengine.com/en-us/Resources/ContentExamples/MaterialNodes/1_11
https://docs.unrealengine.com/en-us/Resources/ContentExamples/MaterialNodes/1_11
https://docs.unrealengine.com/en-us/Resources/ContentExamples/MaterialNodes/1_11
https://docs.unrealengine.com/en-us/Resources/ContentExamples/MaterialNodes/1_11
https://docs.unrealengine.com/en-us/Resources/ContentExamples/MaterialNodes/1_11
https://docs.unrealengine.com/en-us/Resources/ContentExamples/MaterialNodes/1_11
https://docs.unrealengine.com/en-us/Resources/ContentExamples/MaterialNodes/1_11
https://docs.unrealengine.com/en-us/Resources/ContentExamples/MaterialNodes/1_11
https://docs.unrealengine.com/en-us/Resources/ContentExamples/MaterialNodes/1_11
https://docs.unrealengine.com/en-us/Resources/ContentExamples/MaterialNodes/1_12
https://docs.unrealengine.com/en-us/Resources/ContentExamples/MaterialNodes/1_12
https://docs.unrealengine.com/en-us/Resources/ContentExamples/MaterialNodes/1_12
https://docs.unrealengine.com/en-us/Resources/ContentExamples/MaterialNodes/1_12
https://docs.unrealengine.com/en-us/Resources/ContentExamples/MaterialNodes/1_12
https://docs.unrealengine.com/en-us/Resources/ContentExamples/MaterialNodes/1_12
https://docs.unrealengine.com/en-us/Resources/ContentExamples/MaterialNodes/1_12
https://docs.unrealengine.com/en-us/Resources/ContentExamples/MaterialNodes/1_12
https://docs.unrealengine.com/en-us/Resources/ContentExamples/MaterialNodes/1_12
https://docs.unrealengine.com/en-us/Resources/ContentExamples/MaterialNodes/1_12
https://docs.unrealengine.com/en-us/Resources/ContentExamples/MaterialNodes/1_12
https://docs.unrealengine.com/en-us/Resources/ContentExamples/MaterialNodes/1_12
https://docs.unrealengine.com/en-us/Resources/ContentExamples/MaterialNodes/1_12
https://docs.unrealengine.com/en-us/Resources/ContentExamples/MaterialNodes/1_12
https://docs.unrealengine.com/en-us/Resources/ContentExamples/MaterialNodes/1_12
https://docs.unrealengine.com/en-us/Resources/ContentExamples/MaterialNodes/1_12
https://docs.unrealengine.com/en-us/Resources/ContentExamples/MaterialNodes/1_12
https://docs.unrealengine.com/en-us/Resources/ContentExamples/MaterialNodes/1_12
https://docs.unrealengine.com/en-us/Resources/ContentExamples/MaterialNodes/1_12
https://docs.unrealengine.com/en-us/Resources/ContentExamples/MaterialNodes/1_12
https://docs.unrealengine.com/en-us/Resources/ContentExamples/MaterialNodes/1_12
https://docs.unrealengine.com/en-us/Resources/ContentExamples/MaterialNodes/1_12

Advanced Material Techniques Chapter 6

[356]

Getting ready
The scene we'll be using to demonstrate this technique is going to be very simple—in fact,
we'll only use a plane and a sphere in terms of geometry. However, I'd advise against using
the assets that are provided by the engine this time. The reason for that is that there will be
a specific setting that we'll need to tweak within the static meshes that we use that we can't
control if we use the assets provided by the engine. Any other model that you import into
the engine will be fine, so if you want to use your own assets, feel welcome to do so. As we
stated previously, our main concern is being able to freely tweak certain settings within our
models that are protected in the ones included in Unreal.

If you want to follow along using the same scene I'll be showcasing, remember to open the
level called 06_ 05_ Mesh Distance Fields_ Start, located within the Content
Browser / UE4ShadersAndEffects / Maps / Chapter 06 folder.

How to do it...
Some of the most specific features that Unreal has to offer need to be activated per
project—that is, we need to head over to the Project Settings and tick the appropriate
checkboxes to enable them. This is going to be the first step in our journey. We will also set
up our objects so that they work well with the new technique we are about to see. Let's get
started:

 Head over to Edit | Project Settings and look under the Engine | Rendering |1.
Lighting section for a property called Generate Mesh Distance Fields. Make
sure that it is ticked, as it might be already enabled, depending on which version
of Unreal you are using.

With the first step out of the way, look at the scene that you have in front of you.
If we are using the same, you should be able to find a couple of models—a plane
and a sphere, which are intersecting it. In order to use the Mesh Distance Fields
technique appropriately, it's useful to know which models are going to be affected
by it, as we'll need to treat those differently from the rest. In our case, we'll want
to apply a material to the plane, which will take the Distance Fields into account,
so let's tweak that model first.

Select the plane in our level and open its Static Mesh editor. Remember that you2.
can do this by selecting the model in the level, looking at the Details panel, and
double-clicking on the icon you see to the right of the Static Mesh section.

Advanced Material Techniques Chapter 6

[357]

Once inside the new editor, look at the Details panel and scroll down to3.
the General Settings category. Look for the option named Generate Mesh
Distance Fields and make sure it's turned off.
With that done, head back to the main level and open the Static Mesh Editor for4.
the sphere.
Look for the same setting we searched for previously the Generate Mesh5.
Distance Fields and turn it on.
Scroll a little bit toward the top of the Details panel and find the setting6.
called Distance Field Resolution, which is located toward the bottom of the
LOD0 section. Set it to 5 and click on the Apply button located immediately
below it.

Doing this will have made sure that the sphere in our scene contributes to the
creation of the Mesh Distance Fields, but not the plane. Removing the ability to
create distance fields for the mesh on which we are going to work is an important
step to carry out, as they would otherwise conflict later on when we create the
material that will use that effect. An easy way of explaining this is as follows: you
want to apply a material that is aware of the Mesh Distance Fields of other
objects, but not of the object on which it is being applied, otherwise it would get
confused as it would be also reading its own Mesh Distance Field. That's why we
need to remove it! With that out of the way, we can now concentrate on creating
the material that will make use of this engine feature:

Advanced Material Techniques Chapter 6

[358]

You can see the settings that we'll need to tweak in the preceding screenshot for
the object that we need to generate mesh distance fields for. Tick those same
properties off for the material that you'll apply on the material we'll be creating
next.

Create a new material and give it a name. I've gone with M_ SimpleOcean_ End7.
as that's what we'll be creating in this recipe if you've opened the same level.

We are basically going to create a simple toonish ocean material that shows
foam around the edges of the objects that it comes into contact with. You
might want to use this technique on the more complicated material we
created back in the Animating a sea shader recipe back in Chapter 4,
Translucent Materials and More.

Open the new material and add the first node to our graph—one8.
named Distance To Nearest Surface. Remember that you can look for it either in
the Palette tab or by right-clicking and typing that name.
Add a Scalar Parameter and name it something like Distance Offset. We'll use9.
this node to adjust the mask that gets created once we use the previous Distance
to Nearest Surface node. Give it a value of 0.015.
Create a Multiply node and hook the output of the previous two nodes to the10.
input pins of this new one.

The first of those two nodes we created will give us a black and white gradient
texture that gets created around the objects that come into contact with the one
our material is being applied to. The second one will give us control over how far
that gradient will extend, which is something we need in order to adjust the
effects we'll be creating later on.

Now that we've got that out of the way, and seeing as this is going to be a simple
material, something we can do is introduce a break in the previous gradient and
make it look a little bit more like a toon shader. We'll do that by segmenting the
gradient into smaller steps, which we will do now.

Create a Scalar Parameter and give it a name similar to Number of Steps. We'll11.
use this value to fragment the gradient we have so far—the bigger the number,
the more bands we'll have.
Include a Multiply node and use it to connect the previous Scalar Parameter, as12.
well as the output of the Multiply node from step 10.

Advanced Material Techniques Chapter 6

[359]

Add a Floor node. This will give you the bottom value of a float for example, if13.
you have a value of 0.6, the result after the node will be 0. Connect it to the
output of the previous Multiply.
Place a Divide node after the previous one and connect the output of the Floor to14.
its A input pin. Connect the B input pin to the output of the Scalar Parameter we
created in step 11. Refer to the following screenshot for more information:

The previous set of nodes have given us a banded gradient, something which
works well with toon-like shading techniques. The main reason why the Floor
node can create gradients of this type is because it takes a color input and
discards the decimal part of the color value. Because we have a gradient, each
pixel has a different value, and thus the Floor node gets rid of the seamless
variation in favor of a more stepped one since it gets rid of intermediate
values—the ones between integers. Knowing this, let's get back on track with the
creation of our material by putting the previous sequence to work as a mask.

Create a couple of different colors by placing two Constant 4 vectors in the15.
material graph, and assign them different values. I've gone with blue and white.
Add a Lerp node and connect the previous Constant 4 vectors to its A and B16.
input pins. The Alpha should be connected to the output of the Divide node
from step 14.
Connect the output of the Lerp node to the Base Color of our material.17.

Advanced Material Techniques Chapter 6

[360]

Include a simple Constant to modify the value of the Roughness. Something like18.
0.6 works well in this case!
Click on the Apply and Save buttons of the material, and assign it to the plane in19.
our level:

Ta-da! Look at what you now have! This simple material, which is used in tandem with the
Mesh Distance Field property of our models, can work well for any kind of distance-based
effect. Things like ambient occlusion-based dirt, or water effects like the one we've just
seen, are great examples of that. Furthermore, this technique is dynamic in nature, meaning
that the effect will update itself in real-time as things move around your level. There are
many possibilities, so make sure that you play around with it for a while to see how far you
can take it!

How it works...
Mesh distance fields can feel a bit daunting at first, especially since they are something that
not many artists come into contact with very often. We'll try to introduce the basis on which
they operate and, more importantly for us, how to increase their quality whenever we need
to.

Advanced Material Techniques Chapter 6

[361]

Trying to simplify the concept as much as possible without going into too many technical
details; we can think of these assets as the way that the engine stores the distance that the
different parts of the model are apart from within a volume texture. Let's take a look at the
following screenshot:

What you can see in the previous screenshot is the visual representation of the Mesh
Distance Field for the sphere located in the middle of our level. You can enable this view
mode by clicking on Show | Visualize | Mesh Distance Fields. As you can see, the sphere
is contained in a surrounding volume, and the distance field is computed in regards to that.
These calculations are done offline, and don't happen in real time as they would be too
expensive. However, we can tap into this precomputed data to drive different effects, from
the one we saw in this recipe to dynamic flow maps, just to name a few.

Something we need to keep in mind though, is how to effect the final quality of these fields
we are creating. We can do so through the setting we saw at the beginning of this recipe the
Distance Field Resolution multiplier. Going beyond the default one will make the volume
texture heavier, but we sometimes need that extra quality in very detailed objects or other
specific examples. Remember to tweak that whenever you need to!

Advanced Material Techniques Chapter 6

[362]

There's more...
The quality of the Mesh Distance Fields depends on many different settings, some of which
we've already seen. However, there's a handy console command that you might want to
know more about, r.AOGlobalDFResolution. Typing that into the console and a number
after it to change the quality of these assets. Try different values, like 128, 256, or similar to
see what the results are in case you want to modify the defaults. Have fun with it!

See also
Make sure to check out Epic Games' official docs if you want to continue learning about
Mesh Distance Fields: https:/ /docs. unrealengine. com/ en-us/ Engine/ Rendering/
LightingAndShadows/ MeshDistanceFields.

https://docs.unrealengine.com/en-us/Engine/Rendering/LightingAndShadows/MeshDistanceFields
https://docs.unrealengine.com/en-us/Engine/Rendering/LightingAndShadows/MeshDistanceFields
https://docs.unrealengine.com/en-us/Engine/Rendering/LightingAndShadows/MeshDistanceFields
https://docs.unrealengine.com/en-us/Engine/Rendering/LightingAndShadows/MeshDistanceFields
https://docs.unrealengine.com/en-us/Engine/Rendering/LightingAndShadows/MeshDistanceFields
https://docs.unrealengine.com/en-us/Engine/Rendering/LightingAndShadows/MeshDistanceFields
https://docs.unrealengine.com/en-us/Engine/Rendering/LightingAndShadows/MeshDistanceFields
https://docs.unrealengine.com/en-us/Engine/Rendering/LightingAndShadows/MeshDistanceFields
https://docs.unrealengine.com/en-us/Engine/Rendering/LightingAndShadows/MeshDistanceFields
https://docs.unrealengine.com/en-us/Engine/Rendering/LightingAndShadows/MeshDistanceFields
https://docs.unrealengine.com/en-us/Engine/Rendering/LightingAndShadows/MeshDistanceFields
https://docs.unrealengine.com/en-us/Engine/Rendering/LightingAndShadows/MeshDistanceFields
https://docs.unrealengine.com/en-us/Engine/Rendering/LightingAndShadows/MeshDistanceFields
https://docs.unrealengine.com/en-us/Engine/Rendering/LightingAndShadows/MeshDistanceFields
https://docs.unrealengine.com/en-us/Engine/Rendering/LightingAndShadows/MeshDistanceFields
https://docs.unrealengine.com/en-us/Engine/Rendering/LightingAndShadows/MeshDistanceFields
https://docs.unrealengine.com/en-us/Engine/Rendering/LightingAndShadows/MeshDistanceFields
https://docs.unrealengine.com/en-us/Engine/Rendering/LightingAndShadows/MeshDistanceFields
https://docs.unrealengine.com/en-us/Engine/Rendering/LightingAndShadows/MeshDistanceFields
https://docs.unrealengine.com/en-us/Engine/Rendering/LightingAndShadows/MeshDistanceFields

7
Using Material Instances

Instancing is where you take a parent material and make copies of it that have differences
within them. This was already touched upon in the Instancing a material recipe in Chapter
3, Opaque Materials and Texture Mapping, but there are a lot of things that can be done with
this concept.

In this chapter, we will cover the following recipes:

Creating snow on top of objects using layering materials
Changing from a sunny scene to a snowy one through parameter collection
Changing between seasons quickly with curve atlases
Blending landscape materials
Customizing UVs

Introduction
As artists, we can provide tools to make it easier for others on the team to be able to tweak
the aspects of a material, while designing the game or tweaking them at runtime. For
instance, the game designers on your team may like to tweak how a material looks but may
not have knowledge of how to use the material editor. Alternatively it may be your
programmers want to support different weather types in the game. We can create the base
material and then expose properties that can be modified to display things differently over
time.

Using Material Instances Chapter 7

[364]

In this chapter, we will move away from the things we can do inside a material to those we
can do once we have created it, such as quickly tweaking it using material instances,
layering different shaders on top of each other, or affecting multiple material settings at
once.

Creating snow on top of objects using
layered materials
Introduced in Unreal Engine 4.19, Material Layers is a method of taking different types of
materials and using an easy-to-use interface to put them together with no additional pixel
shader instructions, thus improving performance.

To see just how easy it is to put this together, we are going to see how we can use this
concept to add snow to the top of a material based on the world.

Getting ready...
Material Layers are an experimental feature, so unless you turn them on, you won't be able
to use them:

From the Unreal Editor, go to Settings | Project Settings. From the top search1.
bar, type in material layer and check the Support Material Layers option:

Using Material Instances Chapter 7

[365]

You may get a window pop up that says that you need to restart Unreal for2.
changes to take effect. If so, click on the Restart Now option and wait for Unreal
to open up again.

How to do it...
Now that we have the Material Layers feature enabled, let's actually make our first Material
Layer:

Right-click anywhere inside of the Content Browser and under the Create1.
Advanced Asset section, select Materials Textures | Material Layer:

Using Material Instances Chapter 7

[366]

Name it whatever you want—I'll go with Layer_Base for this particular instance.2.
Double-click on the newly created material to open up the material editor:

This editor should look fairly familiar to you if you've used Material functions
before, the only difference being that on the right-hand side there's a new node
called Output Material Attributes. This result is what will be used within our
material later on.

To the left of Input Material Attributes, right-click and create a Make Material3.
Attributes node by searching for its name and selecting it.

This node should look similar to the other materials we created previously. We
can create this material just like any of the ones we've created previously, but for
the sake of simplicity, we will only use the BaseColor and Normal channels.

From the Unreal Editor, in the Content Browser, open up the4.
Content\StarterContent\Textures folder. From there, select a Diffuse and
Normal texture to bring into the Material Layer editor and drag and drop it into
there. For this example, I used 'T_Brick_Clay_New_D.T_Brick_Clay_New_D'
and 'T_Brick_Clay_New_N.T_Brick_Clay_New_N'.

Using Material Instances Chapter 7

[367]

Connect the textures to the BaseColor and Normal channels of the5.
MakeMaterialAttributes node.
Connect the output of the MakeMaterialAttributes node to the Preview input of6.
the Input Material Attributes (Material Attributes) node.
We want to be able to support having other objects covered in snow easily, so7.
right-click on both Texture Samples and select Convert to Parameter. Name the
diffuse texture Base Diffuse and the normal texture Base Normal. If all went
well, you should have something that looks like the following:

Click on the Apply and Save buttons from the editor and exit this layer.8.

Now that we have our base layer, we need another Material Layer for the snow.

In the same folder as your Layer_Base material layer, right-click on the Content9.
Browser and create another material layer called Layer_Snow. Double-click on it
to enter the Material Layer Editor.

Using Material Instances Chapter 7

[368]

This material will be built in the same way as the previous material layer, but10.
instead of the brick texture, we will use something that looks like snow. In our
case, the Starter Content does not include a snow texture, but it does have
T_Concrete_Poured_D.T_Concrete_Poured_D, which looks pretty close to
snow:

Click on the Apply and Save buttons from the editor and exit this layer.11.

Material layers cannot be applied to an object directly, so we will need to create a
material that uses the material layers instead.

Create a material and name it M_SnowLayeredMaterial. Double-click on it to12.
enter the material editor.
To the left of the default channels, right-click and add a Material Attribute13.
Layers node and name it Layer Stack.

Since this is a normal material, you'll notice that the result node of the material
contains all of the normal channels that we are used to using and that the Layer
Stack is considered to be material attributes.

Using Material Instances Chapter 7

[369]

From the Details tab of the material, scroll down to the Use Material Attributes14.
property and check it. You'll see all of the normal channels combine into one
property, Material Attributes.
Connect the output of the Layer Stack to the Material Attributes property of the15.
M_SnowLayeredMaterial node:

Now that we have the connections created, we can start adding to our Layer16.
Stack. Select the Layer Stack node and from the Details tab, click the arrow next
to the Default Layers property. Expand the background and from the Layer
Asset dropdown, select our Layer_Base.

Using Material Instances Chapter 7

[370]

Afterwards, click on the + icon next to Default Layers to add a new layer to the17.
stack. Select and expand the newly created Layer 1 and set its Layer Asset
property to Layer_Snow:

Using Material Instances Chapter 7

[371]

You should notice that the snow is now covering the original background. Layers
work in a similar way to how Photoshop handles them, with layers being drawn
on top of each other.

The Blend Asset property defines what parts of Layer 1 should be drawn on top
of the Background, so we will implement that next.

Hit Apply and Save. Then, close the editor.18.
Right-click inside of the Content Browser and under the Create Advanced Asset19.
section, select Materials Textures | Material Layer Blend.
Name it whatever you want—I'll go with SnowBlend for this particular instance.20.
Double-click on the newly created material to open up the material editor:

Using Material Instances Chapter 7

[372]

As you can see, on the left-hand side we have two inputs, the Input Top Layer
(the snow) and the Input Bottom Layer (the bricks), which are being passed to a
node called BlendMaterialAttributes. The Alpha property dictates whether the
value should be the same (black) or if it should show fully (white). In our case, we
want to blend based on the alignment of the vertices based on the world.

Below the inputs, add a WorldAlignedBlend node. Then, connect the w/Vertex21.
Normals output to the Alpha property of the BlendMaterialAttributes node.
To the left of the Blend Sharpness (S) input, create a Constant with a value of 1022.
and assign it to the Blend Sharpness (S) input of the WorldAlignedBlend node.
Afterwards, create another Constant connected to the Blend Bias. Right-click on23.
this node and select Convert to Parameter. Name this parameter Snow Bias:

Using Material Instances Chapter 7

[373]

Hit Apply and then Save your material. Afterwards, you can exit the material24.
editor.
Back in M_SnowLayeredMaterial, select the Layer Stack node and set the25.
Blend Asset to the SnowBlend we just created. If all goes well, you should see
the top half of the preview image covered with our snow layer!

Using Material Instances Chapter 7

[374]

To make this easier to see with traditional assets, go ahead and create a scene26.
with a more complex mesh, such as
SM_MatPreviewMesh_02.SM_MatPreviewMesh_02, and drag and drop our
material onto it:

Now that we have the basic material, we can instantiate instances of it very easily.

Using Material Instances Chapter 7

[375]

Right-click on M_SnowLayeredMaterial and select Create Material Instance.27.
Name this new material instance M_SnowLayeredGold. Double-click on it to
open the editor:

Unlike before, you'll notice that the menu has been streamlined. Open the28.
Background property and click on the arrow next to Layer Asset and then
Texture Parameters. There, you should see our previously created parameters.

As we discussed previously, this content is fairly experimental and I
experienced crashing issues when enabling the checks in the next step. If
the same happens to you first, clear the Blend by expanding the Layer 1
option, clicking on Blend Asset, and then selecting Clear. Check the
properties and then assign the Blend Asset back to SnowBlend.

Using Material Instances Chapter 7

[376]

Click on the checks for Base Diffuse and Base Normal. You should be able to set29.
these to new texture values, such as those for gold:

Using Material Instances Chapter 7

[377]

From the Unreal Editor, drag and drop this material instance onto an object(s),30.
for instance, the chair and table in the Minimal_Default layer:

Using Material Instances Chapter 7

[378]

Go back to the material editor and under Layer 1, open up the Blend Asset and31.
Scalar Parameters arrows, and then check the Snow Bias property and tweak
the value. Note that the chair and tables will be modified in real time:

Using Material Instances Chapter 7

[379]

Note that if we rotate the chair, the tops of them will always be covered in snow:32.

This idea can also be easily expanded so that you can work with any material that
you would want to tweak often, such as color schemes for character skins.

How it works...
A material layer acts similarly to a material function, but has the ability to create children,
just like when you create Material Instances.

The Material Layer Blend provides instructions on how to draw the different layers in the
material on top of each other. In our instance, we used the result of the
WorldAlignedBlend node to determine where the snow layer should be drawn, which is
on the top of the surface it is placed on.

When we create an instance of the parent material, you'll notice that, when opened, the
material opens to a Layer Parameters menu instead of the default editor. This menu is only
shows aspects of the material that are parameters, with the idea of making it very simple to
add and/or modify aspects of the material. It's important to note that you still can access the
Details tab as well if that is what you'd prefer.

Using Material Instances Chapter 7

[380]

For more information on Layered Materials, check out the following link:
https:/ /docs. unrealengine. com/en- US/ Engine/ Rendering/ Materials/
LayeredMaterials.

Changing from a sunny scene to a snowy
one through parameter collection
Another common issue that is seen in game development is that you sometimes want to
have multiple materials change at the same time. We've already learned about parameters
and how we can change them at runtime using Blueprints, but you have to change each
material parameter individually.

Material parameter collections allow us to create special variables that can be referred to in
multiple materials and then modified in an editor or at runtime through Blueprints or C++.
To see just how easily it can be used, in this recipe, we will show you how we can make
multiple materials in an environment so that it looks like it has snowed.

Getting ready...
To begin, you will need to create a material with two states: one state where it's completely
dry and another for when it has snowed. You'll connect both states to a Linear
Interpolation (Lerp) node. Alternatively, you may use a LayerBlend like we did in our
previous recipe.

How to do it...
Instead of using a parameter, we will use a Material Collection. Let's get started:

Right-click inside of the Content Browser and under the Create Advanced Asset1.
section, select Materials Textures | Material Parameter Collection. Name this
whatever you wish; I went with SnowCollection.
Double-click on the new collection and you'll be brought to a window that2.
contains two properties: Scalar parameters and Vector Parameters:

https://docs.unrealengine.com/en-US/Engine/Rendering/Materials/LayeredMaterials
https://docs.unrealengine.com/en-US/Engine/Rendering/Materials/LayeredMaterials
https://docs.unrealengine.com/en-US/Engine/Rendering/Materials/LayeredMaterials
https://docs.unrealengine.com/en-US/Engine/Rendering/Materials/LayeredMaterials
https://docs.unrealengine.com/en-US/Engine/Rendering/Materials/LayeredMaterials
https://docs.unrealengine.com/en-US/Engine/Rendering/Materials/LayeredMaterials
https://docs.unrealengine.com/en-US/Engine/Rendering/Materials/LayeredMaterials
https://docs.unrealengine.com/en-US/Engine/Rendering/Materials/LayeredMaterials
https://docs.unrealengine.com/en-US/Engine/Rendering/Materials/LayeredMaterials
https://docs.unrealengine.com/en-US/Engine/Rendering/Materials/LayeredMaterials
https://docs.unrealengine.com/en-US/Engine/Rendering/Materials/LayeredMaterials
https://docs.unrealengine.com/en-US/Engine/Rendering/Materials/LayeredMaterials
https://docs.unrealengine.com/en-US/Engine/Rendering/Materials/LayeredMaterials
https://docs.unrealengine.com/en-US/Engine/Rendering/Materials/LayeredMaterials
https://docs.unrealengine.com/en-US/Engine/Rendering/Materials/LayeredMaterials
https://docs.unrealengine.com/en-US/Engine/Rendering/Materials/LayeredMaterials
https://docs.unrealengine.com/en-US/Engine/Rendering/Materials/LayeredMaterials
https://docs.unrealengine.com/en-US/Engine/Rendering/Materials/LayeredMaterials
https://docs.unrealengine.com/en-US/Engine/Rendering/Materials/LayeredMaterials
https://docs.unrealengine.com/en-US/Engine/Rendering/Materials/LayeredMaterials

Using Material Instances Chapter 7

[381]

Click on the + button next to the Scalar Parameters option. Once this new option3.
has been created, expand the 0 and you'll see two properties. Set the Parameter
Name to Snow Amount:

Using Material Instances Chapter 7

[382]

Hit the Save button and return to the Unreal Editor.4.
Double-click on the SnowBlend material layer blend we created in the previous5.
recipe.
Next to the Snow Bias property, right-click and add a CollectionParameter6.
node. Once created, select the node and from the Details tab, set the Collection
property to the SnowCollection we created. Afterwards, set the parameter to
Snow Amount.
Connect the output of the Snow Amount property node to the Blend Bias (S) of7.
the WorldAlignedBlend node and then delete the Snow Bias node:

Using Material Instances Chapter 7

[383]

Hit the Apply button and then Save and exit the editor.8.
Create a scene where you can see both of the snow materials we created in the9.
previous recipe. You can open an example in the Content /
UE4ShadersAndEffects / Maps / Chapter07 / 07_02_MaterialDisplay

file for this:

Using Material Instances Chapter 7

[384]

Now, return to the Unreal Editor and open up the Snow Collection once again10.
from the Content Browser. Once there, modify the Snow Amount value and
notice how we are able to change multiple materials without any need to
recompile at runtime. For instance, here is the value at -3:

With this, we can easily tweak multiple things at once and use the parameter in any
material and/or blend!

How it works...
Material collections allow us to modify properties on multiple materials at once. While this
requires some time up front to set them up, it's well worth it.

Using Material Instances Chapter 7

[385]

Changing between seasons quickly with
curve atlases
Curve atlases store multiple curves together and allow you to linearly interpolate between
them. When used together with material instances, it is possible to create a wide variety of
changes within your materials. In this recipe, we will see how we can use this concept to
make materials change and reflect different seasons by making use of Blueprints and
Material Instance Dynamics.

Getting ready...
This recipe will use the Starter Content that is optionally included in Unreal projects, but
you may use any texture of your own.

How to do it...
In order to create a curve atlas, we will need to create some curves to use:

From the Content Browser, right-click and select Miscellaneous | Curve:1.

Using Material Instances Chapter 7

[386]

From the Pick Curve Class window, select CurveLinearColor and then click on2.
Select:

Give the curve a name (I used SummerCurve) and then double-click on it to open3.
the editor:

Using Material Instances Chapter 7

[387]

In our case, we care about the Curve Gradient Result, which you can see on the
bottom part of the editor. Note that there are two keys on the top of the gradient
and two below. The bottom section is the alpha of the color, while the top is the
color.

Double-click on the black box to open up the Color Picker menu. Click on a4.
green value in the color value and set the V value to 1. Afterwards, click on OK:

Using Material Instances Chapter 7

[388]

Notice that the gradient has been updated. Click on other points to add more5.
variation to your gradient:

For more information about the Curve Editor, check out the following
link: https:/ /docs. unrealengine. com/ en-us/ Engine/ UI/ CurveEditor.

https://docs.unrealengine.com/en-us/Engine/UI/CurveEditor
https://docs.unrealengine.com/en-us/Engine/UI/CurveEditor
https://docs.unrealengine.com/en-us/Engine/UI/CurveEditor
https://docs.unrealengine.com/en-us/Engine/UI/CurveEditor
https://docs.unrealengine.com/en-us/Engine/UI/CurveEditor
https://docs.unrealengine.com/en-us/Engine/UI/CurveEditor
https://docs.unrealengine.com/en-us/Engine/UI/CurveEditor
https://docs.unrealengine.com/en-us/Engine/UI/CurveEditor
https://docs.unrealengine.com/en-us/Engine/UI/CurveEditor
https://docs.unrealengine.com/en-us/Engine/UI/CurveEditor
https://docs.unrealengine.com/en-us/Engine/UI/CurveEditor
https://docs.unrealengine.com/en-us/Engine/UI/CurveEditor
https://docs.unrealengine.com/en-us/Engine/UI/CurveEditor
https://docs.unrealengine.com/en-us/Engine/UI/CurveEditor
https://docs.unrealengine.com/en-us/Engine/UI/CurveEditor
https://docs.unrealengine.com/en-us/Engine/UI/CurveEditor
https://docs.unrealengine.com/en-us/Engine/UI/CurveEditor
https://docs.unrealengine.com/en-us/Engine/UI/CurveEditor
https://docs.unrealengine.com/en-us/Engine/UI/CurveEditor

Using Material Instances Chapter 7

[389]

Click on the Save button and return to the Unreal editor.6.
Afterwards, create three additional curves for the other seasons. Alternatively,7.
you can use the ones we created in the example code for this book:

Now that we have our curves, we need to build the Curve Atlas Asset. From the8.
Content Browser, right-click and select Miscellaneous | Curve Atlas.
Name the new Curve Atlas SeasonAtlas. Afterwards, double-click on it to open9.
the editor.

Using Material Instances Chapter 7

[390]

From the Details tab, open the Gradient Curves property and click on the +10.
button to add an element to your array. Afterwards, set the item to the first curve
(SpringCurve). Then, click the + button and add the next curve (Summer), then
Fall and Winter. Finally, set the Texture Size to 4:

Using Material Instances Chapter 7

[391]

Hit the Save button and return to the Unreal Editor.11.

Now that we have a Curve Atlas, we can create a Material that uses it:

From the Content Browser, right-click and select Material. When asked for a1.
name, use M_SeasonGround. Double-click on the material to open the Material
Editor.

From the Unreal Editor, in the Content Browser, open up the2.
Content\StarterContent\Textures folder. From there, select a Diffuse
texture to bring into the Material Layer editor and drag and drop it into there.
To the right of the Texture Sample that was just created, create a Desaturation3.
node. Select the node and from the Details tab, open the Luminance Factors
property and change R, G, and B to 1. Then, connect the pin from the Texture
sample to the top pin of the Desaturation node.
Lastly, for demonstration purposes, connect the output pin of Desaturation to4.
the Base Color property:

Using Material Instances Chapter 7

[392]

As you can see, we've removed the color of the texture. Now, we will add it back in using
the Curve Atlas:

Right-click in the graph and add a CurveAtlasRowParameter node:1.

When asked for a name, use Season.2.
Under the Details tab, set Curve to SpringCurve. Afterwards, set the Atlas to3.
SeasonAtlas.
To the right of the Season node, create a Blend_Overlay node.4.
Connect the output of Desaturation to the Base (V3) property of the5.
Blend_Overlay node.
Connect the top pin of the Season node to the Blend (V3) property of the6.
Blend_Overlay node.

Using Material Instances Chapter 7

[393]

Lastly, connect the Result of the Blend_Overlay node to the Base Color node:7.

Save the Material Editor and return to the editor.8.

At this point, we can assign the material, but it won't change. To do this, we will need to
use Blueprints:

Open up the Level Blueprints for your project by going to Blueprints | Open1.
Level Blueprint.
Create an Event BeginPlay event.2.

Using Material Instances Chapter 7

[394]

To the right of that, create a Create Dynamic Material Instance node. Uncheck3.
the Context Sensitive option and ensure that you select the one that has Target
is Primitive Component in the tooltip:

Select the node and under SourceMaterial, select M_SeasonGround.4.
Then, set Target to an object in your scene that has a Material. For instance, I5.
selected the Chair object from the default scene. Drag and drop the object into
the Event Graph and then drag and drop the pin to the Target property. A
conversion from the object to the Static Mesh Component will be created:

Using Material Instances Chapter 7

[395]

To the right of the Create Dynamic Material Instance node, create a Set Scalar6.
Parameter Value node. Ensure that Context Sensitive is disabled and use the
version that has the Target is Material Instance Dynamic:

Under Parameter Name, use the name of the parameter we created previously7.
(Season) and under Value, put 0.5. Finally, connect the Return Value of the
Create Dynamic Material Instance node to the Target property of the Set Scalar
Parameter Value node:

Using Material Instances Chapter 7

[396]

Save and compile the blueprint and start the game:8.

As you can see, the chair now has a new material and is modified by the curves! Try
changing the value to anywhere between 0 and 1 to notice how it changes.

How it works...
When you create a Linear Color Curve, the Content Browser will display a preview of the
gradient information of it.

In our case, the value between 0 and 1 will go through each of the season curves that we
created previously, with 0 being spring and 1 being winter, and any value between going
through each of the options presented.

Using Material Instances Chapter 7

[397]

Taking our base recipe, we can easily expand on this by starting at 0 and increasing the
value gradually to see the changes it causes over time:

This can be done by creating a variable and then incrementing its value over time with a
delay before calling the Set Scalar Parameter Value node again. You can see this in action
in the 07_03_ChangingBetweenSeasonsQuicklyWithCurveAtlases map within the
example code from this book.

Blending landscape materials
Another place where having instances of materials can be useful is when you're creating
materials for landscapes. Unreal Engine comes with a very powerful landscape system built
into it that allows you to have a single material that can blend between various textures
through the use of the Landscape Layer Blend node. In this recipe, we will explore how to
create and apply such a material.

Getting ready...
While this recipe will tell you what you need to know about landscapes to create the
material and see it in use, it will not go into depth about how it works and how to create the
landscape itself.

Using Material Instances Chapter 7

[398]

For information on creating landscapes, check out the following link: https:/ /docs.
unrealengine.com/ en- us/ Engine/ Landscape/ Creation.

How to do it...
Before we apply a material for the landscape, we need to create that material. Let's get
started:

Create a Material and call it M_Landscape. Double-click on it to enter the1.
Material Editor.
To the left of the default channels, right-click and add a Landscape Layer Blend2.
node.
From the Details panel, under the Layers property, click on the + button to add a3.
layer to your blend.
Click on the arrow next to the newly added 0 property and expand the options4.
for the layer. Change the Layer Name to Grass.
Click on the + button again to add an additional later. Under the new 1 index,5.
change the Layer Name to Rock.
Connect the output pin on the right-hand side of the Layer Blend to the Base6.
Color property of M_Landscape.
Afterwards, connect a texture for each of the layers we created. This can be done7.
by going to the Content Browser and opening the
Content\StarterContent\Textures folder, and then dragging the
T_Ground_Grass_D and T_Rock_Slate_D textures into the Material Editor.

https://docs.unrealengine.com/en-us/Engine/Landscape/Creation
https://docs.unrealengine.com/en-us/Engine/Landscape/Creation
https://docs.unrealengine.com/en-us/Engine/Landscape/Creation
https://docs.unrealengine.com/en-us/Engine/Landscape/Creation
https://docs.unrealengine.com/en-us/Engine/Landscape/Creation
https://docs.unrealengine.com/en-us/Engine/Landscape/Creation
https://docs.unrealengine.com/en-us/Engine/Landscape/Creation
https://docs.unrealengine.com/en-us/Engine/Landscape/Creation
https://docs.unrealengine.com/en-us/Engine/Landscape/Creation
https://docs.unrealengine.com/en-us/Engine/Landscape/Creation
https://docs.unrealengine.com/en-us/Engine/Landscape/Creation
https://docs.unrealengine.com/en-us/Engine/Landscape/Creation
https://docs.unrealengine.com/en-us/Engine/Landscape/Creation
https://docs.unrealengine.com/en-us/Engine/Landscape/Creation
https://docs.unrealengine.com/en-us/Engine/Landscape/Creation
https://docs.unrealengine.com/en-us/Engine/Landscape/Creation
https://docs.unrealengine.com/en-us/Engine/Landscape/Creation
https://docs.unrealengine.com/en-us/Engine/Landscape/Creation

Using Material Instances Chapter 7

[399]

Afterwards, connect the top pin of the Texture Sample nodes into their8.
respective layer property on the Layer Blend node:

Using Material Instances Chapter 7

[400]

Select the three nodes we created. Afterwards, copy and paste them by hitting9.
Ctrl + C and then Ctrl + V. Connect the output of the Layer Blend node to the
Normal property, select the Texture Sample nodes, and change the texture to the
normal images. When you're finished, you should have something like the
following:

Using Material Instances Chapter 7

[401]

After this, click on Apply and Save, and exit the Material Editor.10.
Create a level if you haven't done so already. Afterwards, create a landscape,11.
again, if you don't have one already. You can do this by going to the Modes tab
and selecting the mountain icon or hitting Shift + 3:

From the Modes tab, scroll down to set the Material property to the12.
M_Landscape we created.
Below that, change the Section Size to 7 x 7 Quads to make the map smaller for13.
the purposes of this recipe.
Afterwards, click on the Create button and wait for the shaders to compile.14.

Using Material Instances Chapter 7

[402]

Next, click on the Paint button and scroll down to the Target Layers section.15.
From there, open the Layers property and click on the + button to add a
Landscape Layer Info Object instance for the layer. From the menu that pops
up, select Weight-Blended Layer (normal):

Using Material Instances Chapter 7

[403]

Select a folder to hold the information in. I'll be using16.
UE4ShadersAndEffects\Assets\Chapter07. Once selected, hit the OK
button.

After waiting a few seconds, you should notice the landscape change so that it
uses the first layer to fill the entire area:

Using Material Instances Chapter 7

[404]

Do the same thing with the Rock layer.17.
Now, with the Rock layer selected, click and drag within the scene window. You18.
should notice the rock layer being painted on the scene wherever your mouse
cursor goes over:

And with that, we have seen how we can blend between layers within landscapes!

How it works...
The Layer Blend node allows us to blend multiple textures or materials together so that
they can be used as layers within the Landscape mode. Each layer has a number of
properties that dictate how it will be drawn. We are using the default blend mode, LB
Weight Blend, which allows us to paint layers on top of other layers.

Using Material Instances Chapter 7

[405]

You can learn about the other blend types here: https:/ /docs.
unrealengine. com/ en- us/ Engine/ Landscape/
Materials#landscapelayerblendtypes.

From the Paint menu, you can make use of the Brush Size and Brush Falloff properties to
change how much is being painted at once. We can also add as many layers as we'd like to
get whatever look we are looking for.

Customizing UVs
Games are generally computationally expensive, so it makes sense to improve performance
whenever you can. With a computer's GPU, a vertex shader is run for every vertex on a
model, and pixel shaders are run for every pixel on the screen. Unreal has a feature called
CustomizedUVs that can give a performance boost if you run it on just the vertex shader
instead of also needing to use a pixel shader. This gives us the ability to tile a texture more
efficiently.

Getting ready...
To easily see the differences in UVs, you should have a texture where you can easily tell
where the edges of it are. In this case, I will be using the UE4_Logo texture, which is
included in the Engine Content/VREditor/Devices/Vive/ folder in the Content
Browser.

How to do it...
Before we can modify the UVs of a material, we need to create a material to use. Let's get
started:

Create a material and give it a name of M_CustomizedUVs. Double-click on it to1.
enter the Material Editor.
From the editor, create a texture sample by holding down the T key and then2.
clicking to the left of the M_CustomizedUVs result node. Connect the top pin to
the Base Color pen.

https://docs.unrealengine.com/en-us/Engine/Landscape/Materials#landscapelayerblendtypes
https://docs.unrealengine.com/en-us/Engine/Landscape/Materials#landscapelayerblendtypes
https://docs.unrealengine.com/en-us/Engine/Landscape/Materials#landscapelayerblendtypes
https://docs.unrealengine.com/en-us/Engine/Landscape/Materials#landscapelayerblendtypes
https://docs.unrealengine.com/en-us/Engine/Landscape/Materials#landscapelayerblendtypes
https://docs.unrealengine.com/en-us/Engine/Landscape/Materials#landscapelayerblendtypes
https://docs.unrealengine.com/en-us/Engine/Landscape/Materials#landscapelayerblendtypes
https://docs.unrealengine.com/en-us/Engine/Landscape/Materials#landscapelayerblendtypes
https://docs.unrealengine.com/en-us/Engine/Landscape/Materials#landscapelayerblendtypes
https://docs.unrealengine.com/en-us/Engine/Landscape/Materials#landscapelayerblendtypes
https://docs.unrealengine.com/en-us/Engine/Landscape/Materials#landscapelayerblendtypes
https://docs.unrealengine.com/en-us/Engine/Landscape/Materials#landscapelayerblendtypes
https://docs.unrealengine.com/en-us/Engine/Landscape/Materials#landscapelayerblendtypes
https://docs.unrealengine.com/en-us/Engine/Landscape/Materials#landscapelayerblendtypes
https://docs.unrealengine.com/en-us/Engine/Landscape/Materials#landscapelayerblendtypes
https://docs.unrealengine.com/en-us/Engine/Landscape/Materials#landscapelayerblendtypes
https://docs.unrealengine.com/en-us/Engine/Landscape/Materials#landscapelayerblendtypes

Using Material Instances Chapter 7

[406]

Then, with the Texture Sample node selected, go to the Details tab and set the3.
Texture property to something that you can easily tell the edges of. I used the
UE4_Logo texture:

Afterwards, deselect the node by clicking elsewhere on the screen. The Details4.
panel will fill with information about the material in general.

This information will also show up if you select the M_CustomizedUVs
result node as well.

Using Material Instances Chapter 7

[407]

From the Details tab, click on the search bar and type in the word custom. You5.
should see the Num Customized UV property. Set that to 1 and press Enter to
commit the change:

Using Material Instances Chapter 7

[408]

If all went well, you should see from the result node that a new property was
added to the bottom, Customized UV0.

Now that we have the ability to modify the UVs on the material, we need to
create some UVs that we can modify. This is done through a node called Texture
Coordinate.

To the left of the Customized UV0 property, right-click and type in tex. From6.
there, select the TextureCoordinate option:

For the sake of demonstration purposes, connect the output pin of the newly7.
added TexCoord[0] node to the Customized UV0 node. Once connected, select
the TextCoord[0] node and from the Details tab, set the UTiling and VTiling
properties to 4:

Using Material Instances Chapter 7

[409]

As you can see, this causes the image to tile four times in the X and Y axes, and is
an easy way to zoom in or out of your material.

To show this concept being taken further, we can also modify the UVs in other
ways.

Delete the connection of TexCoord[0] and the Customized UV0 channel by8.
holding down Alt and clicking on the connection.
Between the two nodes, create a Panner node. Afterwards, connect the output of9.
TexCoord[0] to the Coordinate pin of the Panner node. Then, connect the output
pin from the Panner node to the Customized UV0 channel.

Using Material Instances Chapter 7

[410]

Select the Panner node and from the Details tab, set the Speed X property to 1.10.
Afterwards, set the Speed Y to 2:

If all went well, you should see the material moving around the object without any
modifications having to be made to the other channels!

Using Material Instances Chapter 7

[411]

How it works...
UV mapping is the process of taking a 2D texture and drawing it onto a 3D object.
Generally, models have their own default UVs that can be created in modeling programs.
In this recipe, we saw how we can modify them. We can use this example for something
like a waterfall or lava and have a panning image that changes over time, but this can also
be changed for other things such as shaking a hologram.

In this recipe, we saw how we can use Customized UVs to modify how our material is
drawn. We added in the ability to customize our UVs through the Num Customized UV
property. Customized UVs start counting at 0, just like arrays do.

This default state of how to draw UVs on an object is referred to as the Texture
Coordinates of the object, which is what we used as a foundation for modifying the UVs on
this material (TexCoord[0]). By modifying the Texture Coordinates, we are able to modify
the entire material in one spot with minimal performance costs.

Previously, we used the Panner node in the A different type of translucency hologram recipe in
Chapter 4, Translucent Materials and More, but instead of panning the texture in the Base
Color, we can also modify how an object is drawn by modifying the UVs.

For more information on Customized UVs, check out the following link:
https:/ /docs. unrealengine. com/en- us/ Engine/ Rendering/ Materials/
CustomizedUVs.

https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/CustomizedUVs
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/CustomizedUVs
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/CustomizedUVs
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/CustomizedUVs
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/CustomizedUVs
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/CustomizedUVs
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/CustomizedUVs
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/CustomizedUVs
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/CustomizedUVs
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/CustomizedUVs
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/CustomizedUVs
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/CustomizedUVs
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/CustomizedUVs
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/CustomizedUVs
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/CustomizedUVs
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/CustomizedUVs
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/CustomizedUVs
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/CustomizedUVs
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/CustomizedUVs
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/CustomizedUVs

8
Mobile Shaders and Material

Optimization
In this chapter, we will cover the following recipes:

Creating materials for mobile platforms
Using the forward shading renderer for VR
Optimizing through texture atlases
Baking a 3D model material into a texture
Combining multiple meshes with the HLOD tool
General material-optimization techniques

Introduction
Moving away from the most powerful gaming and computing platforms means that we, as
developers, have to cater for less-capable devices, and demanding elements, such as
shaders, have to be tweaked in order to maintain performance. We will take a look at how
to bring our materials into a mobile environment and how to optimize them.

Mobile Shaders and Material Optimization Chapter 8

[413]

Creating materials for mobile platforms
When developing materials for mobile platforms, there are some things to keep in mind.
Due to a number of hardware limitations, you can't expect to be able to do everything that
you perhaps used to with the Material Editor. As you spend more time building materials
for mobile devices, you will discover that there are often trade-offs that are required,
reducing complexity for the sake of your application size or frame rate. This recipe will
discuss the creation of materials with mobile platforms in mind.

Getting ready...
Any textures that you want to use on mobile platforms need to have a resolution of 2,048 x
2,048 or lower, preferably a square texture with a power of 2 (64, 128, 256, 512, 1,028, 2,048)
as that is the most efficient use of memory.

For more information on creating textures for mobile platforms in UE4,
check out https:/ /docs. unrealengine. com/ en- us/Platforms/ Mobile/
Textures.

How to do it...
To get started, we will first create a standard material, then see how we can tweak it for
mobile platforms:

Create a material and name it M_MobileExample. Double-click on it to enter the1.
Material Editor.
From the editor, create a texture sample by holding down the T key and then2.
clicking to the left of the M_CustomizedUVs result node. Connect the top pin to
the Base Color pin.
With the Texture Sample node selected, go to the Details tab and set3.
the Texture property to something that also has a normal map. I used
the T_Brick_Cut_Stone_D texture from the Sample Content.
Create another Texture Sample and assign the normal map texture to it (in my4.
case, T_Brick_Cut_Stone_N). Connect the top pin of the newly created Texture
Sample to the Normal pin:

https://docs.unrealengine.com/en-us/Platforms/Mobile/Textures
https://docs.unrealengine.com/en-us/Platforms/Mobile/Textures
https://docs.unrealengine.com/en-us/Platforms/Mobile/Textures
https://docs.unrealengine.com/en-us/Platforms/Mobile/Textures
https://docs.unrealengine.com/en-us/Platforms/Mobile/Textures
https://docs.unrealengine.com/en-us/Platforms/Mobile/Textures
https://docs.unrealengine.com/en-us/Platforms/Mobile/Textures
https://docs.unrealengine.com/en-us/Platforms/Mobile/Textures
https://docs.unrealengine.com/en-us/Platforms/Mobile/Textures
https://docs.unrealengine.com/en-us/Platforms/Mobile/Textures
https://docs.unrealengine.com/en-us/Platforms/Mobile/Textures
https://docs.unrealengine.com/en-us/Platforms/Mobile/Textures
https://docs.unrealengine.com/en-us/Platforms/Mobile/Textures
https://docs.unrealengine.com/en-us/Platforms/Mobile/Textures
https://docs.unrealengine.com/en-us/Platforms/Mobile/Textures
https://docs.unrealengine.com/en-us/Platforms/Mobile/Textures
https://docs.unrealengine.com/en-us/Platforms/Mobile/Textures
https://docs.unrealengine.com/en-us/Platforms/Mobile/Textures

Mobile Shaders and Material Optimization Chapter 8

[414]

Notice that the Stats tab contains a list of the instructions used for this particular
material. If you don't see the Stats window, you can open it by clicking on the
Stats button on the top toolbar.

Mobile Shaders and Material Optimization Chapter 8

[415]

Select the M_MobileExample node. From the Details tab, go down to the5.
Material section and click on the downward-facing arrow to open the advanced
options. Once opened, enable the Fully Rough property:

As you can see, the Stats window now displays fewer instructions in both the
Base pass shader and Base pass shader with Volumetic Lightmap sections!

Mobile Shaders and Material Optimization Chapter 8

[416]

How it works...
The Material Editor contains a section called Mobile, which has two properties: Use Full
Precision and Use Lightmap Directionality. These are intended for mobile devices and to
save performance. By default, Unreal will use less-precise math in order to save on memory
and computation time. When enabled, the Use Full Precision property will use the highest
precision available on a mobile device. This will solve certain rendering issues at the cost of
being more expensive to use. Generally, you'll leave this property disabled unless you
notice issues with how the material looks.

Use Lightmap Directionality, has an effect that is very apparent when using a normal map.
Basically, it will use the lightmap to show the light at the top of the normal map and
shadows at the bottom. You'll need to Build the project in order to see the lightmap
information being used. If disabled, lighting from lightmaps will be flat but cheaper.

The Material section contains the Fully Rough property that, when enabled, will ignore
the Roughness channel and instead force the material to be completely rough. This will
save a number of instructions for optimization's sake and reduce one texture sampler.

The Forward Shading section contains the High Quality Reflections property which, when
disabled, can increase the number of texture samples you can use by two. Turning this off
will remove them to instead be used for cubemaps to display reflections.

While some of these properties will have less quality than the traditional fully-formed
material, the settings can reduce the number of instructions on the vertex shader and the
Texture samplers used, which you can see from the Stats toolbar from the Material Editor.

There's more...
Since there are so many mobile devices out there, there are a number of feature levels that
can potentially be supported. To ensure maximum compatibility, the following channels
can be used without any changes:

BaseColor
Roughness
Metallic
Specular
Normal
Emissive
Refraction

Mobile Shaders and Material Optimization Chapter 8

[417]

However, you can only make use of up to five texture samples in your entire material. One
of the ways to work with this limitation is to make use of Customized UVs, which we
learned about in Chapter 7, Using Material Instances, to avoid needing to fetch extra
textures.

You're also limited to using the Default and Unlit shading models and should limit the
amount of materials with transparency or masks as they're very computationally expensive.

You can find more information on creating Materials for mobile devices
at https:/ / docs. unrealengine. com/ en- us/Platforms/ Mobile/
Materials.

See also...
The Customizing UVs recipe in Chapter 7, Using Material Instances, discusses how to modify
the UVs from a single texture. This concept can be used to effectively cut an image to only
display parts of it.

In this chapter, the material quality system discussed in the General material-optimization
techniques recipe is also quite helpful for ensuring that your materials can work on many
different types of mobile devices.

Using the forward shading renderer for VR
Working with VR gives artists and designers a lot of interesting challenges. Even though
VR experiences typically involve high-powered computers, often you can have
performance issues due to the large screen size required. Unreal Engine 4 contains a
different rendering system, called Forward Rendering, which will removes some rendering
features, but gives a performance boost.

Getting ready...
In order to play your game in VR, you will need to have a VR headset that is plugged and
able to be used. If you have a VR device plugged in and the option is greyed out, close the
UE4 editor and restart it.

https://docs.unrealengine.com/en-us/Platforms/Mobile/Materials
https://docs.unrealengine.com/en-us/Platforms/Mobile/Materials
https://docs.unrealengine.com/en-us/Platforms/Mobile/Materials
https://docs.unrealengine.com/en-us/Platforms/Mobile/Materials
https://docs.unrealengine.com/en-us/Platforms/Mobile/Materials
https://docs.unrealengine.com/en-us/Platforms/Mobile/Materials
https://docs.unrealengine.com/en-us/Platforms/Mobile/Materials
https://docs.unrealengine.com/en-us/Platforms/Mobile/Materials
https://docs.unrealengine.com/en-us/Platforms/Mobile/Materials
https://docs.unrealengine.com/en-us/Platforms/Mobile/Materials
https://docs.unrealengine.com/en-us/Platforms/Mobile/Materials
https://docs.unrealengine.com/en-us/Platforms/Mobile/Materials
https://docs.unrealengine.com/en-us/Platforms/Mobile/Materials
https://docs.unrealengine.com/en-us/Platforms/Mobile/Materials
https://docs.unrealengine.com/en-us/Platforms/Mobile/Materials
https://docs.unrealengine.com/en-us/Platforms/Mobile/Materials
https://docs.unrealengine.com/en-us/Platforms/Mobile/Materials
https://docs.unrealengine.com/en-us/Platforms/Mobile/Materials

Mobile Shaders and Material Optimization Chapter 8

[418]

How to do it...
Forward Shading is disabled by default. We can enable it fairly easily though. Let's see how
to do it:

From the Unreal Editor, go into Edit | Project Settings.1.
From the Project Settings menu, go to the left-hand side of the menu and scroll2.
down until you reach the Rendering option, then select it.
Scroll down to the Forward Renderer section and then enable the Forward3.
Shading property:

Mobile Shaders and Material Optimization Chapter 8

[419]

You will be prompted to restart the editor on the bottom right of the screen:

Click on the Restart Now button and wait for the editor to restart.4.

Once the editor restarts, you'll be able to use the other Forward Renderer options
and features. Do note that this may take a considerable amount of time to
restart due to the fact that Unreal will need to rebuild all of the shaders in your
project, including the sample content.

Open the Project Settings menu again by going to Edit | Project Settings and5.
then select the Rendering option.
Scroll down the menu until you get to the Default Settings section. From there,6.
change the Anti-Aliasing Method to MSAA:

Mobile Shaders and Material Optimization Chapter 8

[420]

You may be asked to rebuild your lighting. Do so, and then from the Play menu,7.
click on the dropdown and then select VR Preview:

With that, you'll be able to play your game in VR, making use of the forward renderer!

Mobile Shaders and Material Optimization Chapter 8

[421]

How it works...
Unreal Engine 4 makes use of a deferred renderer, by default, as it gives artists and
designers access to many more rendering features. However, those features are
computationally expensive and may slow down games trying to run VR software. The
forward renderer provides a faster experience on average, leading to better performance at
the cost of losing some features, and has additional anti-aliasing options, which help
visuals greatly in VR projects.

It is important to note that this feature is experimental and, as such, may
change in future versions of UE4. You can learn more about the Forward
Shading Renderer and any future updates to the system at https:/ / docs.
unrealengine. com/ en- us/ Engine/ Performance/ ForwardRenderer.

See also...
The majority of features talked about in the this recipe can are used to improve
performance, not only for mobile projects but for VR ones as well.

If you are interested in learning even more about creating art with VR in
Unreal Engine, check out Jessica Plowman's Unreal Engine Virtual Reality
Quick Start Guide, also available from Packt Publishing.

Optimizing through texture atlases
Often referred to as a sprite sheet in the game industry, texture atlases are a great way to
optimize game projects. The general concept is to have one image that itself contains a
collection of smaller images. This is often used when there are smaller textures that are
used frequently to reduce the overhead of the graphics card being used having to switch
between different texture memory.

For more info on texture atlases, check out https:/ / en.wikipedia. org/
wiki/ Texture_ atlas.

https://docs.unrealengine.com/en-us/Engine/Performance/ForwardRenderer
https://docs.unrealengine.com/en-us/Engine/Performance/ForwardRenderer
https://docs.unrealengine.com/en-us/Engine/Performance/ForwardRenderer
https://docs.unrealengine.com/en-us/Engine/Performance/ForwardRenderer
https://docs.unrealengine.com/en-us/Engine/Performance/ForwardRenderer
https://docs.unrealengine.com/en-us/Engine/Performance/ForwardRenderer
https://docs.unrealengine.com/en-us/Engine/Performance/ForwardRenderer
https://docs.unrealengine.com/en-us/Engine/Performance/ForwardRenderer
https://docs.unrealengine.com/en-us/Engine/Performance/ForwardRenderer
https://docs.unrealengine.com/en-us/Engine/Performance/ForwardRenderer
https://docs.unrealengine.com/en-us/Engine/Performance/ForwardRenderer
https://docs.unrealengine.com/en-us/Engine/Performance/ForwardRenderer
https://docs.unrealengine.com/en-us/Engine/Performance/ForwardRenderer
https://docs.unrealengine.com/en-us/Engine/Performance/ForwardRenderer
https://docs.unrealengine.com/en-us/Engine/Performance/ForwardRenderer
https://docs.unrealengine.com/en-us/Engine/Performance/ForwardRenderer
https://docs.unrealengine.com/en-us/Engine/Performance/ForwardRenderer
https://docs.unrealengine.com/en-us/Engine/Performance/ForwardRenderer
https://en.wikipedia.org/wiki/Texture_atlas
https://en.wikipedia.org/wiki/Texture_atlas
https://en.wikipedia.org/wiki/Texture_atlas
https://en.wikipedia.org/wiki/Texture_atlas
https://en.wikipedia.org/wiki/Texture_atlas
https://en.wikipedia.org/wiki/Texture_atlas
https://en.wikipedia.org/wiki/Texture_atlas
https://en.wikipedia.org/wiki/Texture_atlas
https://en.wikipedia.org/wiki/Texture_atlas
https://en.wikipedia.org/wiki/Texture_atlas
https://en.wikipedia.org/wiki/Texture_atlas
https://en.wikipedia.org/wiki/Texture_atlas
https://en.wikipedia.org/wiki/Texture_atlas
https://en.wikipedia.org/wiki/Texture_atlas

Mobile Shaders and Material Optimization Chapter 8

[422]

Getting ready...
To complete this recipe, you will need to have a single texture what contains multiple
smaller images inside of it. If you do not have one, you can make use of the flipbook texture
from the Engine
Content/Functions/Engine_MaterialFunctions02/ExampleContent/Textures fol
der.

How to do it...
One of the ways we can use texture atlases is through modifying the UVs on the object.
Let's do that now:

Create a Material and name it M_TextureAtlas. Double-click on it to enter the1.
Material Editor.
From the editor, create a texture sample by holding down the T key and then2.
clicking to the left of the M_TextureAtlas result node. Connect the top pin to
the Base Color pin.
With the Texture Sample node selected, go to the Details tab and set3.
the Texture property to something that also has a normal map. As mentioned, I
used the flipbook texture from the Engine
Content/Functions/Engine_MaterialFunctions02/ExampleContent/Tex

tures folder.

To make it easier to see our cropping, we can change the preview display to show
a flat plane.

Mobile Shaders and Material Optimization Chapter 8

[423]

From the preview window on the left side of the Material Editor, click on the4.
plane primitive button:

Mobile Shaders and Material Optimization Chapter 8

[424]

Move the camera so you can see the plane. You can click and hold the left mouse5.
button to rotate the camera and then use the mouse wheel to zoom in and out:

Mobile Shaders and Material Optimization Chapter 8

[425]

To the left of the Texture Sample node, create a Texture Coordinate node.6.
Connect the pin from the right side of the TexCoord[0] node to the UVs property
of the Texture Sample node.
Select the TexCoord[0] node. From the Details tab, change the UTiling and7.
VTiling properties to 0.5:

You should notice after the shader compiles that the material will only display the
top-left half of the image (the 1 on the flipbook texture). To display a different
image, we can offset the UVs being used by using an Add node.

Mobile Shaders and Material Optimization Chapter 8

[426]

Remove the connection between the TexCoord[0] and UVs pin by holding Alt8.
and clicking on the connection. Move the TexCoord[0] node to the left to add
some space between the nodes; in the new space, create an Add node.
Create a 2Vector by holding down the 2 key and then clicking below the9.
TexCoord[0] node. Connect the output pin from the 0,0 node to the B pin of the
Add node.
Select the 0,0 node. From the Details tab, change the R value to 0.5:10.

Once the shader compiles, you should see the 2 on the screen!

Mobile Shaders and Material Optimization Chapter 8

[427]

How it works...
To access the different aspects of the texture atlas, there are two steps that need to be
performed: scaling the image and then offsetting it to the section you want to see.

First, you have to scale the image to display the portion of the image you wish to display.
The Texture Coordinates node allows us to zoom in and out on the image by using
the UTiling and VTiling values. A value of 1 means it will display 100% of the image, 0.5
means 50% of the image, and 2 would be 200% and duplicate the image. In this example,
we want to only display one of the images at a time, so 0.5 is the value we want to use. In
the case of each image being even, you can find this value mathematically by taking the
number of parts you want to display divided by the total number of parts (in our case 1/2
or 0.5).

The second aspect is to decide what tile to use. In this case, by default, we see the one
image. To see the others, we will need to offset the UVs. We can do this through the Add
node. In this case, we are adding a 2Vector that will offset the image in the X and Y axes. In
this case, the R property is used for the X offset and G for the Y offset. The value we need to
use is a percentage, just like the UV tiling properties. Using 0.5 in the R property moves the
image 50% of the size of the image to the right. Using 0.5 in the G value would move us
down 50%. So, for instance, (0.5, 0.5) would display 4.

You can see this concept being expanded on and used in greater detail with the Flipbook
node, which includes variables to display images over time. You can see an example of this
in the M_Flipbook material included in the example code for this chapter:

Mobile Shaders and Material Optimization Chapter 8

[428]

If you double-click on the Flipbook node, you'll be able to see each of the steps used to
create it.

This type of behavior is often used in games, such as for spritesheets in 2D games to
creating waterfalls by panning the UVs of an object. It's a great way to animate an object
with a lower performance cost.

Baking a 3D model material into a texture
In this recipe, we will see that one of the possible ways to optimize your games is to bake
your materials into textures. The main reason to want to do that is when your static meshes
use many different materials on them, the more you have the more computationally
expensive it will be to render them within your scene. It would be better if the mesh just
had one material so there'd just be one draw call for each object. Effectively, we will be
reducing all of the complex shader math being done to instead be baked into the texture.

Mobile Shaders and Material Optimization Chapter 8

[429]

If you are doing something using position offsets or animations, this will likely not work
well. However, this could work well for props that will not change their structure.

There may be some precision things to take into consideration, as you may not have as high
fidelity as the original meshes. For deploying your projects to mobile or other platforms
that require you to optimize your materials as much as possible, it can be a very valuable
tool for your work and can be really useful when you're trying to optimize everything that
you can in order to hit your target frame rate.

Getting ready...
To get ready, you will want to have a mesh that has one or more materials attached to it
placed within a scene you would like to use. If you don't feel like making one yourself, you
may open the 08_04_MaterialMerge_Start level located in the Maps folder of the
example code for this book:

This example uses a Material Preview sphere with a Cobblestone Material.

Mobile Shaders and Material Optimization Chapter 8

[430]

How to do it...
One of the easiest ways to combine materials together is through the Merge Actors tool:

From the Unreal Editor, select the object with the model you want to bake. In this1.
recipe's case, we'll select the SM_MatPreviewMesh object.
Go to Window | Developer Tools | Merge Actors:2.

Mobile Shaders and Material Optimization Chapter 8

[431]

From the menu that pops up, under Mesh Settings, set the LODSelection Type3.
to Use specific LOD level.
Under Material Settings, check the Merge Materials option:4.

Mobile Shaders and Material Optimization Chapter 8

[432]

Click on the Merge Actors button and you'll have a menu ask you where you'd5.
like to save our new mesh and materials. I selected the Assets\Chapter08
folder and created a new folder called MergeActors. From there, change the
Name: to SM_Merged_Default. Click on the Save button and wait for Unreal to
do all the heavy lifting:

Mobile Shaders and Material Optimization Chapter 8

[433]

The Content Browser will immediately move to your new folder and will6.
contain a number of new files, including a Static Mesh named
SM_Merged_Default. Drag and drop the static mesh into your level:

As you can see, we have a new mesh with a single material instead of two, but we
seem to have lost a lot of quality as well. This is due to the default parameters
used heavily decreasing the number of texture samples and properties used for
the sake of optimization. To get an example of something closer to the original,
we can customize some additional options.

Select the original SM_MatPreviewMesh within the editor and return to the7.
Merge Actors menu.
To add some additional details, click on the arrow to the left of the Material8.
Settings option.
Under Texture Size, change the value to 2048 for both the X and Y properties.9.

Mobile Shaders and Material Optimization Chapter 8

[434]

Check the Roughness Map, Specular Map, and Ambient Occlusion Map10.
options:

Mobile Shaders and Material Optimization Chapter 8

[435]

Click on Merge Actors and go to the folder where you'd like to place the files. I11.
chose the same folder and used the name SM_Merged_2048. Once you've picked
out your options, click on the Save button and wait for Unreal to complete the
merge process.
The Content Browser will immediately move to your new folder and will 12.
contain a number of new files, including a Static Mesh named SM_Merged_2048.
Drag and drop the static mesh into your level:

As you can see, this looks a lot more like the original material, but at the cost of
performance. Tweak the Material Settings properties until you're content with the quality
of your material.

How it works...
The Merge Actors tool is traditionally used to combine multiple static meshes into a single
new actor. This is typically done later on in development after playtesting a level and
ensuring that you are not going to move objects after the fact for the sake of optimization.
We're using this tool in this recipe, because in addition to combining meshes, it can also
have materials baked together into a single material with the UVs set correctly.

Mobile Shaders and Material Optimization Chapter 8

[436]

To find out more about the Merge Actors tool, check out https:/ /docs.
unrealengine. com/ en- us/ Engine/ Actors/ Merging.

The tool is non-destructive, so any of the changes you've made don't actually change the
original materials. Once a merge occurs, it will automatically generate textures and
materials based on your settings from the Material Settings option. In the default case, it
made two textures for a Diffuse and Normal map and then a material that uses those two
materials and a new static mesh.

For more details on what each of the different aspects of the Material
Settings menu means, check out https:/ /docs. unrealengine. com/ en-
us/Engine/ Actors/ Merging#materialsettings.

The second time we created a mesh, we added three additional textures and doubled the
resolution size. This gets closer to the max we can use in a single material for current
mobile devices.

Epic Games has done a video talking about a number of other ways to
complete the process of baking materials into textures: https:/ /www.
youtube. com/ watch? v= WaM_ owaUpbE.

Combining multiple meshes with the HLOD
tool
You may have noticed when playing AAA games that, as you get closer to an area of a
map, a higher-detail version of what you've seen will come into play, or trees will suddenly
start appearing. This is typically done in order to ensure that when a player is closer to an
area it has the highest quality possible, but the further away it is, the less detail it needs to
have. The Hierarchical Level of Detail (HLOD) tool allows you to take static objects within
your levels and reduce your draw calls by having additional combined meshes to use in
place of all of the individual ones.

https://docs.unrealengine.com/en-us/Engine/Actors/Merging
https://docs.unrealengine.com/en-us/Engine/Actors/Merging
https://docs.unrealengine.com/en-us/Engine/Actors/Merging
https://docs.unrealengine.com/en-us/Engine/Actors/Merging
https://docs.unrealengine.com/en-us/Engine/Actors/Merging
https://docs.unrealengine.com/en-us/Engine/Actors/Merging
https://docs.unrealengine.com/en-us/Engine/Actors/Merging
https://docs.unrealengine.com/en-us/Engine/Actors/Merging
https://docs.unrealengine.com/en-us/Engine/Actors/Merging
https://docs.unrealengine.com/en-us/Engine/Actors/Merging
https://docs.unrealengine.com/en-us/Engine/Actors/Merging
https://docs.unrealengine.com/en-us/Engine/Actors/Merging
https://docs.unrealengine.com/en-us/Engine/Actors/Merging
https://docs.unrealengine.com/en-us/Engine/Actors/Merging
https://docs.unrealengine.com/en-us/Engine/Actors/Merging
https://docs.unrealengine.com/en-us/Engine/Actors/Merging
https://docs.unrealengine.com/en-us/Engine/Actors/Merging
https://docs.unrealengine.com/en-us/Engine/Actors/Merging
https://docs.unrealengine.com/en-us/Engine/Actors/Merging#materialsettings
https://docs.unrealengine.com/en-us/Engine/Actors/Merging#materialsettings
https://docs.unrealengine.com/en-us/Engine/Actors/Merging#materialsettings
https://docs.unrealengine.com/en-us/Engine/Actors/Merging#materialsettings
https://docs.unrealengine.com/en-us/Engine/Actors/Merging#materialsettings
https://docs.unrealengine.com/en-us/Engine/Actors/Merging#materialsettings
https://docs.unrealengine.com/en-us/Engine/Actors/Merging#materialsettings
https://docs.unrealengine.com/en-us/Engine/Actors/Merging#materialsettings
https://docs.unrealengine.com/en-us/Engine/Actors/Merging#materialsettings
https://docs.unrealengine.com/en-us/Engine/Actors/Merging#materialsettings
https://docs.unrealengine.com/en-us/Engine/Actors/Merging#materialsettings
https://docs.unrealengine.com/en-us/Engine/Actors/Merging#materialsettings
https://docs.unrealengine.com/en-us/Engine/Actors/Merging#materialsettings
https://docs.unrealengine.com/en-us/Engine/Actors/Merging#materialsettings
https://docs.unrealengine.com/en-us/Engine/Actors/Merging#materialsettings
https://docs.unrealengine.com/en-us/Engine/Actors/Merging#materialsettings
https://docs.unrealengine.com/en-us/Engine/Actors/Merging#materialsettings
https://docs.unrealengine.com/en-us/Engine/Actors/Merging#materialsettings
https://www.youtube.com/watch?v=WaM_owaUpbE
https://www.youtube.com/watch?v=WaM_owaUpbE
https://www.youtube.com/watch?v=WaM_owaUpbE
https://www.youtube.com/watch?v=WaM_owaUpbE
https://www.youtube.com/watch?v=WaM_owaUpbE
https://www.youtube.com/watch?v=WaM_owaUpbE
https://www.youtube.com/watch?v=WaM_owaUpbE
https://www.youtube.com/watch?v=WaM_owaUpbE
https://www.youtube.com/watch?v=WaM_owaUpbE
https://www.youtube.com/watch?v=WaM_owaUpbE
https://www.youtube.com/watch?v=WaM_owaUpbE
https://www.youtube.com/watch?v=WaM_owaUpbE
https://www.youtube.com/watch?v=WaM_owaUpbE
https://www.youtube.com/watch?v=WaM_owaUpbE
https://www.youtube.com/watch?v=WaM_owaUpbE
https://www.youtube.com/watch?v=WaM_owaUpbE

Mobile Shaders and Material Optimization Chapter 8

[437]

Getting ready...
You should have a level that contains a number of static meshes within it. If you don't have
one already, you can also open the 08_05_HLOD_Start map within the example code of
this book:

Mobile Shaders and Material Optimization Chapter 8

[438]

How to do it...
Before we can use the HLOD tool, we must enable it:

Go the World Settings menu by going to Settings | World Settings.1.
From the World Settings tab, scroll down to the LODSystem section and check2.
the Enable Hierarchical LODSystem property.

You should notice that the Hierachical LODSetup property changes to now show
1 Array elements.

Go to Window | Hierarchical LOD Outliner:3.

You should notice from the menu that pops up that the left hand side of the
screen looks very similar to the LODSystem section of the World Settings menu.
Open up the Hierachical LODSetup property and the HLOD Level 0 and Cluster
generation settings arrows and then change the Desired Bound Radius to a
smaller number, such as 250.

Mobile Shaders and Material Optimization Chapter 8

[439]

Go back to the Hierarchical LODSetup property and click on the + icon to the4.
right of it to add an additional HLOD level. If you open up the newly-added
HLOD Level 1, you should notice that it automatically will fill the Desired
Bound Radius with a larger value than the previously-created HLOD:

Mobile Shaders and Material Optimization Chapter 8

[440]

Click on the Generate Clusters button on the bottom-left of the screen. Unreal5.
will automatically group your meshes into clusters:

Mobile Shaders and Material Optimization Chapter 8

[441]

If you select any of the LODActors, you will see a sphere placed around what objects
are being used. The higher the LODLevel, the more the actors are away combined and
the larger the sphere will be. This will reduce the amount of draw calls that will be
used the farther the user is:

Mobile Shaders and Material Optimization Chapter 8

[442]

Click on the Generate Proxy Meshes property to build the LODActors. This will6.
typically take a while so you may want to take a break while your computer is
working. When finished, you'll have something similar to the following:

Click on the Save All option to save the generated proxy meshes. From the7.
window that pops up, click on the Save Selected option:

Mobile Shaders and Material Optimization Chapter 8

[443]

If you go to the HLOD folder that was just created, you should notice a number8.
of new static meshes that have been created out of the pieces of the meshes that
were created previously:

Currently, the meshes are exactly the same as the ones previously created, but are
use a single texture for each of those objects, reducing the number of draw calls
needed the farther we are from objects within the scene!

Mobile Shaders and Material Optimization Chapter 8

[444]

From the Hierachical LOD Outliner menu, select the LODLevel -1 option and9.
from the right side of the screen. Open the HLOD Level 1 option and open up
the Mesh generation settings. From there, note that there is a Material Settings
property that can be expanded and used just like in the previous recipe.
Alternatively, you can check the Simplify Mesh setting and then the Proxy
Settings property will show up, which has its own Material Settings property.
After making the changes you'd like to see, click on the Generate Proxy Meshes
option and wait for it to complete:

Mobile Shaders and Material Optimization Chapter 8

[445]

Now if you play the game you should notice that the meshes will fade between
meshes based on the distance to the objects:

And, with that, we now have an understanding of how to work with the HLOD tool!

How it works...
The HLOD system must be enabled on every level that wishes to use it. This requires us to
go to the World Settings menu to enable it. Once enabled, we have the ability to go the
HLOD Outliner to set up how HLODs are generated.

You can learn more about the HLOD tool here: https:/ /docs.
unrealengine. com/ en- US/ Engine/ HLOD/ HowTo.

https://docs.unrealengine.com/en-US/Engine/HLOD/HowTo
https://docs.unrealengine.com/en-US/Engine/HLOD/HowTo
https://docs.unrealengine.com/en-US/Engine/HLOD/HowTo
https://docs.unrealengine.com/en-US/Engine/HLOD/HowTo
https://docs.unrealengine.com/en-US/Engine/HLOD/HowTo
https://docs.unrealengine.com/en-US/Engine/HLOD/HowTo
https://docs.unrealengine.com/en-US/Engine/HLOD/HowTo
https://docs.unrealengine.com/en-US/Engine/HLOD/HowTo
https://docs.unrealengine.com/en-US/Engine/HLOD/HowTo
https://docs.unrealengine.com/en-US/Engine/HLOD/HowTo
https://docs.unrealengine.com/en-US/Engine/HLOD/HowTo
https://docs.unrealengine.com/en-US/Engine/HLOD/HowTo
https://docs.unrealengine.com/en-US/Engine/HLOD/HowTo
https://docs.unrealengine.com/en-US/Engine/HLOD/HowTo
https://docs.unrealengine.com/en-US/Engine/HLOD/HowTo
https://docs.unrealengine.com/en-US/Engine/HLOD/HowTo
https://docs.unrealengine.com/en-US/Engine/HLOD/HowTo
https://docs.unrealengine.com/en-US/Engine/HLOD/HowTo

Mobile Shaders and Material Optimization Chapter 8

[446]

The Desired Bound Radius notes how far to look for actors to combine together. The larger
the radius, the more objects that can be combined. In levels that have sparse static meshes,
such as deserts, the radius may need to be larger, but for complex and detailed areas, it may
need to be smaller. The more levels that you have, the more possibilities of blending there
are.

By default, all of the meshes will be exactly the same, but the objects will share a single
material which contains the same properties and works exactly as our last recipe. However,
if you have large levels, it makes sense to simplify meshes that are further away to improve
performance, but you'll often need to spend time tweaking the properties to get something
that feels right for your level.

It's important to note that HLOD objects can only be used with static meshes, so moving
objects will not be able to use this tool. We are required to generate proxy meshes every
time we make changes to our properties because the system works in a very similar way to
how baking lighting works. We're doing work ahead of time in order to improve
performance at runtime.

The Unreal Engine team did a live training session that shows off the
HLOD tool and some ways you can use it. Check it out at https:/ / www.
youtube. com/ watch? v= WhcxGbKWdbI.

General material-optimization techniques
One of the ways that we can develop materials that can work on both low- and high-end
devices is through the material quality-level system. This recipe discusses the creation of
materials with quality settings in mind, allowing us to create one material that can be used
on a variety of devices.

Getting ready...
In order to complete this recipe, you will need to have a material that you would like to
look different depending on what quality level your game is running on.

https://www.youtube.com/watch?v=WhcxGbKWdbI
https://www.youtube.com/watch?v=WhcxGbKWdbI
https://www.youtube.com/watch?v=WhcxGbKWdbI
https://www.youtube.com/watch?v=WhcxGbKWdbI
https://www.youtube.com/watch?v=WhcxGbKWdbI
https://www.youtube.com/watch?v=WhcxGbKWdbI
https://www.youtube.com/watch?v=WhcxGbKWdbI
https://www.youtube.com/watch?v=WhcxGbKWdbI
https://www.youtube.com/watch?v=WhcxGbKWdbI
https://www.youtube.com/watch?v=WhcxGbKWdbI
https://www.youtube.com/watch?v=WhcxGbKWdbI
https://www.youtube.com/watch?v=WhcxGbKWdbI
https://www.youtube.com/watch?v=WhcxGbKWdbI
https://www.youtube.com/watch?v=WhcxGbKWdbI

Mobile Shaders and Material Optimization Chapter 8

[447]

How to do it...
To start, let's create a material that will display something:

Create a Material and name it M_QualitySettings. Double-click on it to enter1.
the Material Editor.
From the editor, create a texture sample by holding down the T key and then2.
clicking to the left of the M_QualitySettings result node.
With the Texture Sample node selected, go to the Details tab and set3.
the Texture property to something that also has a normal map. I used
the T_Brick_Cut_Stone_D texture from the Sample Content.
Create a Quality Switch node. Connect the top pin from the Texture Sample to4.
the Default pin of the Quality Switch. Then connect the pin on the right side of
the Quality Switch node to the Base Color node on the M_QualitySettings
result:

Mobile Shaders and Material Optimization Chapter 8

[448]

To make it very clear that our material is being modified, let's use a color when
we switch to the low-quality level.

Below the Texture Sample, create a 4Vector by holding down the 4 key and then5.
set it to a color of your choice; I used red, which is (1,0,0,0). Connect the pin
from the right side of the 4Vector to the Low pin of the Quality Switch node:

Mobile Shaders and Material Optimization Chapter 8

[449]

Create another Texture Sample and assign the normal map texture to it (in my6.
case: T_Brick_Cut_Stone_N). Connect the top pin of the newly created Texture
Sample to the Normal pin of M_QualitySettings:

Mobile Shaders and Material Optimization Chapter 8

[450]

Create a new scene. From there, go to the Modes tab and drag and drop a cube7.
into your scene. Apply the material to the newly-created cube to see what the
default material looks like at the default High quality level:

To see the material in action, we will need to actually set the Material Quality
Level of our scene.

Mobile Shaders and Material Optimization Chapter 8

[451]

From the Unreal Editor, go to Settings | Material Quality Level | Low:8.

Mobile Shaders and Material Optimization Chapter 8

[452]

At this point, you'll have to wait for Unreal to compile all of the shaders for this quality
level. Once finished, notice that the material is now using the Low channel from the
Quality Switch node:

You can also adjust the quality level of the game during play through the
console by pressing the ` key and then typing r.MaterialQualityLevel
0 with 0 for Low, 1 for High, and 2 for Medium quality levels. For more
info on this and other ways this can be set, check out https:/ / docs.
unrealengine. com/ en- us/ Platforms/ Mobile/
Performance#settingmaterialqualitylevel.

https://docs.unrealengine.com/en-us/Platforms/Mobile/Performance#settingmaterialqualitylevel
https://docs.unrealengine.com/en-us/Platforms/Mobile/Performance#settingmaterialqualitylevel
https://docs.unrealengine.com/en-us/Platforms/Mobile/Performance#settingmaterialqualitylevel
https://docs.unrealengine.com/en-us/Platforms/Mobile/Performance#settingmaterialqualitylevel
https://docs.unrealengine.com/en-us/Platforms/Mobile/Performance#settingmaterialqualitylevel
https://docs.unrealengine.com/en-us/Platforms/Mobile/Performance#settingmaterialqualitylevel
https://docs.unrealengine.com/en-us/Platforms/Mobile/Performance#settingmaterialqualitylevel
https://docs.unrealengine.com/en-us/Platforms/Mobile/Performance#settingmaterialqualitylevel
https://docs.unrealengine.com/en-us/Platforms/Mobile/Performance#settingmaterialqualitylevel
https://docs.unrealengine.com/en-us/Platforms/Mobile/Performance#settingmaterialqualitylevel
https://docs.unrealengine.com/en-us/Platforms/Mobile/Performance#settingmaterialqualitylevel
https://docs.unrealengine.com/en-us/Platforms/Mobile/Performance#settingmaterialqualitylevel
https://docs.unrealengine.com/en-us/Platforms/Mobile/Performance#settingmaterialqualitylevel
https://docs.unrealengine.com/en-us/Platforms/Mobile/Performance#settingmaterialqualitylevel
https://docs.unrealengine.com/en-us/Platforms/Mobile/Performance#settingmaterialqualitylevel
https://docs.unrealengine.com/en-us/Platforms/Mobile/Performance#settingmaterialqualitylevel
https://docs.unrealengine.com/en-us/Platforms/Mobile/Performance#settingmaterialqualitylevel

Mobile Shaders and Material Optimization Chapter 8

[453]

How it works...
The Material Quality Level property allows us to use less intensive mathematical
operations on our shaders when we are targeting devices with less powerful graphics
cards.

The Quality Switch node works much like a switch statement does in programming: based
on the value of the Material Quality Level, it will run the relevant code. If nothing is
provided to a pin, the default will be used. It is important to note that you are required to
use the Default channel, as not doing so will cause an error.

You can find additional information about the Quality Settings system
at https:/ / docs. unrealengine. com/ en- us/Platforms/ Mobile/
Performance#mobilematerialqualitysettings.

You can add as many Quality Switch nodes as you'd like. In fact, you will need to have one
for each of the channels that you want to act differently depending on what is being done.

You can also create materials that will do certain things depending on the
Feature Level of the device, through the Feature Level Switch, which
works almost exactly the same as this node. For more information, check
out https:/ /docs. unrealengine. com/en- US/ Engine/ Rendering/
Materials/ ExpressionReference/ Utility#featurelevelswitch.

With this in mind, you now have the knowledge to create materials that will support
almost any kind of device and get the optimization that you're looking for!

Some more guidelines for performance for both level designers and artists
can be found at https:/ / docs.unrealengine. com/ en-us/ Engine/
Performance/ Guidelines.

https://docs.unrealengine.com/en-us/Platforms/Mobile/Performance#mobilematerialqualitysettings
https://docs.unrealengine.com/en-us/Platforms/Mobile/Performance#mobilematerialqualitysettings
https://docs.unrealengine.com/en-us/Platforms/Mobile/Performance#mobilematerialqualitysettings
https://docs.unrealengine.com/en-us/Platforms/Mobile/Performance#mobilematerialqualitysettings
https://docs.unrealengine.com/en-us/Platforms/Mobile/Performance#mobilematerialqualitysettings
https://docs.unrealengine.com/en-us/Platforms/Mobile/Performance#mobilematerialqualitysettings
https://docs.unrealengine.com/en-us/Platforms/Mobile/Performance#mobilematerialqualitysettings
https://docs.unrealengine.com/en-us/Platforms/Mobile/Performance#mobilematerialqualitysettings
https://docs.unrealengine.com/en-us/Platforms/Mobile/Performance#mobilematerialqualitysettings
https://docs.unrealengine.com/en-us/Platforms/Mobile/Performance#mobilematerialqualitysettings
https://docs.unrealengine.com/en-us/Platforms/Mobile/Performance#mobilematerialqualitysettings
https://docs.unrealengine.com/en-us/Platforms/Mobile/Performance#mobilematerialqualitysettings
https://docs.unrealengine.com/en-us/Platforms/Mobile/Performance#mobilematerialqualitysettings
https://docs.unrealengine.com/en-us/Platforms/Mobile/Performance#mobilematerialqualitysettings
https://docs.unrealengine.com/en-us/Platforms/Mobile/Performance#mobilematerialqualitysettings
https://docs.unrealengine.com/en-us/Platforms/Mobile/Performance#mobilematerialqualitysettings
https://docs.unrealengine.com/en-us/Platforms/Mobile/Performance#mobilematerialqualitysettings
https://docs.unrealengine.com/en-us/Platforms/Mobile/Performance#mobilematerialqualitysettings
https://docs.unrealengine.com/en-US/Engine/Rendering/Materials/ExpressionReference/Utility#featurelevelswitch
https://docs.unrealengine.com/en-US/Engine/Rendering/Materials/ExpressionReference/Utility#featurelevelswitch
https://docs.unrealengine.com/en-US/Engine/Rendering/Materials/ExpressionReference/Utility#featurelevelswitch
https://docs.unrealengine.com/en-US/Engine/Rendering/Materials/ExpressionReference/Utility#featurelevelswitch
https://docs.unrealengine.com/en-US/Engine/Rendering/Materials/ExpressionReference/Utility#featurelevelswitch
https://docs.unrealengine.com/en-US/Engine/Rendering/Materials/ExpressionReference/Utility#featurelevelswitch
https://docs.unrealengine.com/en-US/Engine/Rendering/Materials/ExpressionReference/Utility#featurelevelswitch
https://docs.unrealengine.com/en-US/Engine/Rendering/Materials/ExpressionReference/Utility#featurelevelswitch
https://docs.unrealengine.com/en-US/Engine/Rendering/Materials/ExpressionReference/Utility#featurelevelswitch
https://docs.unrealengine.com/en-US/Engine/Rendering/Materials/ExpressionReference/Utility#featurelevelswitch
https://docs.unrealengine.com/en-US/Engine/Rendering/Materials/ExpressionReference/Utility#featurelevelswitch
https://docs.unrealengine.com/en-US/Engine/Rendering/Materials/ExpressionReference/Utility#featurelevelswitch
https://docs.unrealengine.com/en-US/Engine/Rendering/Materials/ExpressionReference/Utility#featurelevelswitch
https://docs.unrealengine.com/en-US/Engine/Rendering/Materials/ExpressionReference/Utility#featurelevelswitch
https://docs.unrealengine.com/en-US/Engine/Rendering/Materials/ExpressionReference/Utility#featurelevelswitch
https://docs.unrealengine.com/en-US/Engine/Rendering/Materials/ExpressionReference/Utility#featurelevelswitch
https://docs.unrealengine.com/en-US/Engine/Rendering/Materials/ExpressionReference/Utility#featurelevelswitch
https://docs.unrealengine.com/en-US/Engine/Rendering/Materials/ExpressionReference/Utility#featurelevelswitch
https://docs.unrealengine.com/en-US/Engine/Rendering/Materials/ExpressionReference/Utility#featurelevelswitch
https://docs.unrealengine.com/en-US/Engine/Rendering/Materials/ExpressionReference/Utility#featurelevelswitch
https://docs.unrealengine.com/en-US/Engine/Rendering/Materials/ExpressionReference/Utility#featurelevelswitch
https://docs.unrealengine.com/en-US/Engine/Rendering/Materials/ExpressionReference/Utility#featurelevelswitch
https://docs.unrealengine.com/en-us/Engine/Performance/Guidelines
https://docs.unrealengine.com/en-us/Engine/Performance/Guidelines
https://docs.unrealengine.com/en-us/Engine/Performance/Guidelines
https://docs.unrealengine.com/en-us/Engine/Performance/Guidelines
https://docs.unrealengine.com/en-us/Engine/Performance/Guidelines
https://docs.unrealengine.com/en-us/Engine/Performance/Guidelines
https://docs.unrealengine.com/en-us/Engine/Performance/Guidelines
https://docs.unrealengine.com/en-us/Engine/Performance/Guidelines
https://docs.unrealengine.com/en-us/Engine/Performance/Guidelines
https://docs.unrealengine.com/en-us/Engine/Performance/Guidelines
https://docs.unrealengine.com/en-us/Engine/Performance/Guidelines
https://docs.unrealengine.com/en-us/Engine/Performance/Guidelines
https://docs.unrealengine.com/en-us/Engine/Performance/Guidelines
https://docs.unrealengine.com/en-us/Engine/Performance/Guidelines
https://docs.unrealengine.com/en-us/Engine/Performance/Guidelines
https://docs.unrealengine.com/en-us/Engine/Performance/Guidelines
https://docs.unrealengine.com/en-us/Engine/Performance/Guidelines
https://docs.unrealengine.com/en-us/Engine/Performance/Guidelines

9
Some Extra Useful Nodes

Unreal has many different and useful nodes, some of which we've already seen, while
others are still left to be explored. It would probably be over-ambitious to try and cover
them all, given the huge amount of nodes and functionalities at our fingertips. However
accurate that might be, it's also true that the more nodes and examples we see, the better
prepared we'll be when we are tasked with creating a new material. That being the case,
we'll take a final look at some of the useful nodes that we haven't had the chance to explore
so far that can be immensely helpful under certain circumstances.

In this chapter, we will cover the following recipes:

Adding randomness to identical models
Adding dirt to occluded areas
Matching texture coordinates across multiple meshes
Adjusting material complexity through quality switches
Using interior cubemaps to texture the interior of a building
Using fully procedural noise patterns

Some Extra Useful Nodes Chapter 9

[455]

Introduction
All of the nodes that we are about to cover can be described as very useful, but they are the
types of asset that don't receive enough praise as they require a certain intent from the user.
Think, for example, about one of the topics that we'll talk about in this chapter—adjusting
the quality of the textures we use based on the camera focus. Examples such as this one are
very specific, and they wouldn't make the cut for any introductory course for that same
reason. However, they can become essential once our projects grow, and they can make the
difference between a novice approach toward materials and a more professional one. They
can help us at different levels, from achieving specific effects to making our projects more
efficient. Whatever the case, it'll be great to have them as our allies as they can help us
tackle problems from a different perspective:

Adding randomness to identical models
The first recipe we'll tackle in this last chapter is going to deal with a specific type of model
instances. You might have heard about this type of asset before, as they are a common
feature in many different 3D content creation packages. We use that name to refer to
identical copies of an asset that get scattered throughout our scenes, where each duplicate is
easier to render than if we were dealing with different models altogether. This can be a very
cool technique to use when we deal with vegetation or whenever we want to place multiple
similar meshes.

Some Extra Useful Nodes Chapter 9

[456]

However, more often than not, we also want to change how each instance looks or at least
add a little bit of variety to each of them—a task that isn't always easy. In this chapter, we'll
explore a simple little node that will let us do just that, and assign a random value to each
instance so that we can alter their look within our materials. Let's see how that's done:

Getting ready
As we always say, you can either follow along using your own assets or by opening the
scene that we'll be providing. The requirements this time will be simple in case you want to
use your own creations—a simple model is all we'll need. We won't need much else apart
from that, even though we'll be operating in some of the materials we've used in the past. In
any case, the stars of the show will be a couple of new nodes that you can have access to
through the material editor, so no special requirements are required there, either!

If you want to use the same scene you'll be looking at in the next few pages, open the level
called 09_ 01_ AddingRandomness_ Start located within the Content Browser/
UE4ShadersAndEffects/Maps/Chapter09 folder.

How to do it...
Seeing as we want to add visual variety to multiple instances of the same model, the first
step in this recipe will be the creation of those assets. Let's see how we can do that:

Create a blueprint somewhere within your Content Browser. Pick Actor as the1.
parent class, and double-click on it to open the Blueprint Editor.
Click on the Add Component button in the top-left corner of the editor and select2.
an Instanced Static Mesh component.

Some Extra Useful Nodes Chapter 9

[457]

Drag and drop the new Instance Static Mesh component on top of the Default3.
Scene Root and look at its Details panel.
With our new component selected, set the Static Mesh to whatever you want to4.
use for this recipe. I've gone with SM_Tank in this case.
Assign a material to the Element 0 drop-down menu within the Materials tab of5.
the Instanced Static Mesh component. It doesn't matter which one you choose,
as we'll be creating a new one later on.
Head down to the Instances tab and start adding different entries by clicking6.
the + button. Create as many as you want, which will be 9 in our case.
Expand each instance's transform panel and adjust their location, as they would7.
be overlapping otherwise.
Click on Save and Compile and drag the blueprint into our level:8.

All of the previous steps should have left us with a Blueprint that we can use to
test the effect we are about to create. Make sure to drag and drop the new asset
into the editor to see it in action! Now that we've taken care of that, it's time to
start learning a little bit more about the nodes that will allow us to add variety to
the models that we've just spawned.

Duplicate the original material we had applied to the toy tank in a previous9.
recipe, called M_ ToyTank_ Textured. We created that material back in
Chapter 3, Opaque Materials and Texture Mapping, so you can look for it in that
chapter's Assets folder. Rename it something distinctive, such as M_ ToyTank_
Instances.

Some Extra Useful Nodes Chapter 9

[458]

It doesn't matter if you duplicate the previous material or if you create a
new one—what we'll be doing inside the material will be very similar.
Using an existing material will save us time when we're setting up certain
parameters, but you can ignore those and just focus on the new nodes
we'll be creating later on.

We'll be focusing on a specific part of the material—the part that deals with the
color of the main body of the tank. No matter what you choose—either using the
same material or creating a new one—the steps we'll introduce here should be
pretty straightforward to follow.

Create a Per Instance Random node and place it somewhere within the material10.
graph.
Add a Multiply node and connect the previous Per Instance Random to its A11.
input pin.
As for the B input pin, connect the output of the wood texture that drives the12.
main color of the body of the toy tank to it. That's the one that's currently
connected to the B input pin of the Lerp node.
Reconnect the output of the Multiply node to the B input pin of the Lerp node13.
that was being previously driven by the wood texture. Refer to the following
screenshot:

Some Extra Useful Nodes Chapter 9

[459]

The Per Instance Random node can be directly connected to the Base Color input
pin of our material, instead of being used like it was previously. Feel free to do
that if you are using a new material instead of the duplicate we've already shown
here. In essence, the new node will assign a random grayscale color to each item
of the instance static mesh array. This isn't really a color as much as a floating-
point value, which we can use for other purposes, for example, to modify the UV
coordinates of the textures that we apply within the material. Let's see how we
would go about that.

Head over to the Texture Coordinate node that is driving the T_ Wood_ Pine_14.
D texture and create another Per Instance Random node there.
Add a Multiply node after it, and connect both by plugging the output of the Per15.
Instance Random node to the A input pin of the new node we've just created.
Unhook the Texture Coordinate wire from the UVs (V2) input pin node of the16.
CustomRotator node and hook it to the B input pin of the previous
Multiply node.
Reconnect the UVs (V2) input pin of the CustomRotator to the output of our new17.
Multiply node. Take a look at the following screenshot:

Another look that we can introduce that's handy whenever we work with
instances is the Camera Depth Fade one. This will allow us to hide objects based
on how far we are from them, which is sometimes useful if you have hundreds or
thousands of the same object in the distance that you no longer want to see.

Create a constant and give it a value of 100.18.
Add a Camera Depth Fade node and connect the previous constant to its Fade19.
Length (S) node.

Some Extra Useful Nodes Chapter 9

[460]

Connect the Result output pin of the Camera Depth Fade node to the Opacity20.
Mask of our material:

Now that we've implemented all of those changes, the last thing that we need to take care
of is actually applying our new material to the instanced static meshes. Head back to the
blueprint we created previously and assign it by selecting the instanced static mesh
component and choosing our new material in the drop-down panel from step 5:

As you can see, this technique can be very useful whenever we want to differentiate
between the different instances across our levels. It combines the performance boost that
we get by using this component with the variability of the material node. Make sure to keep
this in mind whenever you work with these types of assets!

Some Extra Useful Nodes Chapter 9

[461]

How it works...
As we can see, these techniques are quite simple. Starting with the Per Instance Random
node, this little helper assigns and exposes a random value to our Instanced Static Meshes,
which we can use to drive different types of interesting functionality. The other node, that
is, Camera Depth Fade, allows us to hide certain meshes, depending on the distance they
are from us.

Apart from the last node we talked about, which is useful for hiding things that are close to
the camera (such as when objects get in the way and might block our visibility), there are
other nodes that you might find useful that work in a similar way. For instance, another
cool node we could use is called Per Instance Fade Amount, which is very similar to the
Per Instance Random node we previously used. Instead of assigning a random float value
per instance, this time, the number we are given relies on the position of the instance itself
in regards to the camera. We can use this to hide the models that are further from us,
instead of the ones that are closer, like we did in this recipe. Be sure to check that out!

There's more...
Even though we've used nodes that only work when applied to instances of a mesh, it's
good to note that the Instanced Static Mesh component isn't the only one that can take
advantage of that. There's another component that can also benefit from the techniques
we've shown in the previous pages, and that is the hierarchical instanced static mesh
(HISM) component. It's good to learn about both of them as they can be used to increase
performance in our games. They are especially helpful when we need to scatter multiple
instances of the same mesh, such as railings or trees, as the computer only stores
information about one and repeats it across the world multiple times.

They are both very similar, but the HISM allows us to pair the gain in performance given
by the instancing feature with the creation of different levels of detail that we can get on
normal static meshes. Be sure to check this very similar component out, as well as the next
section, which contains some useful links to that feature.

Some Extra Useful Nodes Chapter 9

[462]

See also
Links to the Epic documentation and a video tutorial on how to implement HISM
components have been provided here:

https:// docs. unrealengine. com/en- US/Engine/ Rendering/ Materials/
ExpressionReference/ Constant

https:// www. youtube. com/ watch? v= bOjYP- c4qhA

Adding dirt to occluded areas
I'm sure you know by now how powerful baked lighting can be in Unreal Engine 4. It
makes our scenes look ultra-realistic if done well, as the computed shadow maps don't
have any equivalent in terms of quality if we use dynamic lighting. However useful they
are, calculating lighting for our scenes isn't only helpful for this process of baking
shadows—we can reuse this information in other ways within our materials. We have one
useful node at our disposal that lets us tap into that data to drive the appearance of our
materials. One common use for that is to apply dirt to areas that are occluded, which we'll
look at here! Take a look at the following screenshot:

Getting ready
The scene that you can open if you want to follow along using the same assets is called 09_
02_ PrecomputedAoMask_ Start and can be found in the Content Browser /
UE4ShadersAndEffects / Maps / Chapter09 folder.

As always, you can use your own assets and levels, but there are some things you should
take into consideration when doing so. First, the level that you want to operate on needs to
have computed baked lighting. This is crucial to this recipe, as the material node we'll use
needs to tap into that information and won't work otherwise.

https://docs.unrealengine.com/en-US/Engine/Rendering/Materials/ExpressionReference/Constant
https://docs.unrealengine.com/en-US/Engine/Rendering/Materials/ExpressionReference/Constant
https://docs.unrealengine.com/en-US/Engine/Rendering/Materials/ExpressionReference/Constant
https://docs.unrealengine.com/en-US/Engine/Rendering/Materials/ExpressionReference/Constant
https://docs.unrealengine.com/en-US/Engine/Rendering/Materials/ExpressionReference/Constant
https://docs.unrealengine.com/en-US/Engine/Rendering/Materials/ExpressionReference/Constant
https://docs.unrealengine.com/en-US/Engine/Rendering/Materials/ExpressionReference/Constant
https://docs.unrealengine.com/en-US/Engine/Rendering/Materials/ExpressionReference/Constant
https://docs.unrealengine.com/en-US/Engine/Rendering/Materials/ExpressionReference/Constant
https://docs.unrealengine.com/en-US/Engine/Rendering/Materials/ExpressionReference/Constant
https://docs.unrealengine.com/en-US/Engine/Rendering/Materials/ExpressionReference/Constant
https://docs.unrealengine.com/en-US/Engine/Rendering/Materials/ExpressionReference/Constant
https://docs.unrealengine.com/en-US/Engine/Rendering/Materials/ExpressionReference/Constant
https://docs.unrealengine.com/en-US/Engine/Rendering/Materials/ExpressionReference/Constant
https://docs.unrealengine.com/en-US/Engine/Rendering/Materials/ExpressionReference/Constant
https://docs.unrealengine.com/en-US/Engine/Rendering/Materials/ExpressionReference/Constant
https://docs.unrealengine.com/en-US/Engine/Rendering/Materials/ExpressionReference/Constant
https://docs.unrealengine.com/en-US/Engine/Rendering/Materials/ExpressionReference/Constant
https://docs.unrealengine.com/en-US/Engine/Rendering/Materials/ExpressionReference/Constant
https://docs.unrealengine.com/en-US/Engine/Rendering/Materials/ExpressionReference/Constant
https://docs.unrealengine.com/en-US/Engine/Rendering/Materials/ExpressionReference/Constant
https://docs.unrealengine.com/en-US/Engine/Rendering/Materials/ExpressionReference/Constant
https://www.youtube.com/watch?v=bOjYP-c4qhA
https://www.youtube.com/watch?v=bOjYP-c4qhA
https://www.youtube.com/watch?v=bOjYP-c4qhA
https://www.youtube.com/watch?v=bOjYP-c4qhA
https://www.youtube.com/watch?v=bOjYP-c4qhA
https://www.youtube.com/watch?v=bOjYP-c4qhA
https://www.youtube.com/watch?v=bOjYP-c4qhA
https://www.youtube.com/watch?v=bOjYP-c4qhA
https://www.youtube.com/watch?v=bOjYP-c4qhA
https://www.youtube.com/watch?v=bOjYP-c4qhA
https://www.youtube.com/watch?v=bOjYP-c4qhA
https://www.youtube.com/watch?v=bOjYP-c4qhA
https://www.youtube.com/watch?v=bOjYP-c4qhA
https://www.youtube.com/watch?v=bOjYP-c4qhA
https://www.youtube.com/watch?v=bOjYP-c4qhA
https://www.youtube.com/watch?v=bOjYP-c4qhA
https://www.youtube.com/watch?v=bOjYP-c4qhA

Some Extra Useful Nodes Chapter 9

[463]

As a consequence, your lighting needs to be set to stationary or static, and the models you
work with need to have properly laid out UVs. Keep that in mind before continuing with
the following pages! You won't have to worry about these things if you decide to open the
level we are providing though, as it already complies with the previous considerations and
the lighting has already been calculated.

How to do it...
The very first step we'll need to take in this chapter is building the lighting in our level. As
we stated previously, this is a crucial step in our journey before we attempt to create the
material we'll be applying, as the new node we'll use this time relies on the existence of
shadowmaps. You won't have to worry about this circumstance if you open the level we
referred to in the previous section, but take that into account if you use one of your own.

With that out of the way, let's start creating our new material:

Create a new material and give it an appropriate name, something indicative of1.
what we'll be creating—I've gone with M_ DirtyWalls as that's going to be the
use of our material. Double-click on the new asset to open up the Material Graph.
Right-click anywhere within the Material Graph and search for a node2.
called PrecomputedAOMask. Then, add it to the graph.
Include a Power node after the previous PrecomputedAOMask node and wire3.
the Base input pin of the new node to the output of the previous one. Leave the
Exp as 1. Refer to the following screenshot:

Some Extra Useful Nodes Chapter 9

[464]

The PrecomputedAOMask node is going to be the star of this recipe, and is the
node that will allow us to tap into the baked lighting information that we can use
as we desire. A common practice when working with this node is to use it blend a
dirtier version of a base texture in order to show the wear and tear that usually
happens on occluded areas of our scene. We'll take that same approach in the
following steps to show some dirt on those parts of the model where we'll apply
this material.

Create a couple of constant 3 nodes and assign them two different values. Seeing4.
as we are going to apply this material to the walls in our scene, we can go for the
already familiar white and a brown, which we'll use to drive the appearance of
the dirty areas.
Interpolate between the previous two nodes by creating a Lerp node after the5.
previous two constants. Connect the white value to the A input pin and the
brown color to the B input pin.
Connect the Alpha input pin of the previous Lerp to the output of the Power6.
node we created in step 3.

It might be difficult to know which input pin we need to connect our
constants to in the Lerp node. As a rule of thumb, think of A and B as black
and white—A will affect the black areas of the texture and B will affect the
lighter ones.

Seeing as the PrecomputedAOMask node assigns lighter values to the areas that
are occluded—perhaps a bit counter-intuitively—the A input pin needs to be fed
with the values that we want to have on the non-occluded areas, leaving the B
input pin for the occluded ones. Setting the material to work in this way will
leave us with a white and brown surface, which isn't what we expect to see on
areas that are covered in dirt. We can fine-tune our results by introducing a
second mask at this stage.

Add a Texture Sample and select the texture called T_ Water_ M as its value.7.
This is part of the Starter Content, in case you also want to use it on your own
projects.
Include a Texture Coordinate node and hook it to the previous Texture Sample.8.
Set a value of 10 in both the U and the V tiling settings.
Create a new Lerp node and add it after the previous one we had in our graph. 9.
Connect the output of the previous Texture Sample to the Alpha input pin of the10.
new Lerp.
Hook the B input pin to the output of the previous Lerp.11.
Wire the A input pin to the output of the white constant.12.

Some Extra Useful Nodes Chapter 9

[465]

Connect the result of the latest Lerp into the Base Color input pin on the main13.
material node:

The previous steps have introduced another mask within our already existing
mask that we were getting out of the PrecomputedAOMask node. This is a very
common technique to use as it gives us greater flexibility in regards to how we
want to place our textures without the need to create custom ones and add extra
texture calls. The last steps we need to implement are the creation of the
Roughness and the Normal properties. You can copy these over from the
material that was originally applied to the model, M_ ColoredWalls, which we
created back in Chapter 2, Post-Processing Effects. You can take a look at the two
images that follow in case you want to copy the nodes.

Create a Texture Coordinate, a Texture Sample, a Constant, and a Power node14.
to drive the Roughness of our material. The Texture Coordinate should have a
value of 10 on both the U and the V tiling; we are using the T_
MacroVariation texture here, and the value of the Constant is 0.15.

Some Extra Useful Nodes Chapter 9

[466]

Add another Texture Coordinate and a Texture Sample to effect the normals in15.
our material. The Texture Coordinate should be given a value of 7, both on the U
and the V tiling, and the Texture Sample should be set to T_ Wallpaper_
Normals.

Of course, feel free to assign other values and textures for the roughness and the normal
properties if you are using your own material. The last step we need to take is actually
applying the material to the model of our walls, so do that now and check out the result!

As you can see, our walls now look like they've seen some action in the past, with multiple
marks of dirt along the surface; these are concentrated on the areas that are occluded! This
is one of the most commonly used scenarios for this particular scene—one that can save
you time from manually placing certain textures and that can be mixed with procedural
creation techniques.

How it works...
The way the PrecomputedAOMask node works is very simple—it takes the lightmaps that
have been calculated for our models and uses them as a value that we can tap into inside
the material editor. Even though this is a very simple technique to grasp, we usually want
to apply some kind of modification to the base texture we receive. This is because the
texture that we are presented with usually turns out to be a very smooth gradient,
something that might not be ideal when we want to apply it as a mask. More often than
not, we'll want to apply some kind of transformation, such as the Power node we used in
this recipe or a Cheap Contrast one. Both have the ability to alter the base texture, either by
augmenting the contrast or by increasing the values of each pixel. This process leaves us
with a more defined image, where the areas that are occluded and the ones that aren't can
be easily differentiated—something that's usually good for our purposes.

Some Extra Useful Nodes Chapter 9

[467]

There's more...
Even though we've managed to apply the material to the walls in the scene successfully,
keep in mind that you'll need to build the lighting every time that you want to use this
effect. As the node itself says, we are dealing with a precomputed effect here, so we won't
be able to take advantage of it under certain conditions, such as when we have a movable
type of light. Whenever we have a situation like that, we could resort to using other
techniques, such as creating an ambient occlusion texture in external software or by using
other similar nodes, such as the Distance To Nearest Surface one. While not identical,
using mesh distance fields can prove useful, such as the masking material we looked at in
Chapter 6, Advanced Material Techniques. Be sure to check that one out if you'd like to know
more!

See also
Something that might be of further interest is how to control the whole light-baking process
within Unreal. Here is the official documentation regarding that: https:/ / docs.
unrealengine.com/ en- US/ Engine/ Rendering/ LightingAndShadows/ Lightmass.

Matching texture coordinates across
multiple meshes
The way we apply materials and textures varies a lot, and is something that depends on
multiple factors. Are we working on small props? Are we texturing large surfaces? Do we
need to accurately depict real-life objects, or can we include procedural creation techniques
in our workflow? Those are some of the questions that we need to ask ourselves before we
begin working on an asset. So far, we've had the opportunity to work on both small and
large props throughout this book, but we haven't yet had the need to apply the same
material to two or more different models. This situation presents its own set of challenges,
and it's one of those that we will be tackling next—how do we make sure that the material
looks the same on all of the objects that we apply it to? Make sure to continue reading to
find out how!

https://docs.unrealengine.com/en-US/Engine/Rendering/LightingAndShadows/Lightmass
https://docs.unrealengine.com/en-US/Engine/Rendering/LightingAndShadows/Lightmass
https://docs.unrealengine.com/en-US/Engine/Rendering/LightingAndShadows/Lightmass
https://docs.unrealengine.com/en-US/Engine/Rendering/LightingAndShadows/Lightmass
https://docs.unrealengine.com/en-US/Engine/Rendering/LightingAndShadows/Lightmass
https://docs.unrealengine.com/en-US/Engine/Rendering/LightingAndShadows/Lightmass
https://docs.unrealengine.com/en-US/Engine/Rendering/LightingAndShadows/Lightmass
https://docs.unrealengine.com/en-US/Engine/Rendering/LightingAndShadows/Lightmass
https://docs.unrealengine.com/en-US/Engine/Rendering/LightingAndShadows/Lightmass
https://docs.unrealengine.com/en-US/Engine/Rendering/LightingAndShadows/Lightmass
https://docs.unrealengine.com/en-US/Engine/Rendering/LightingAndShadows/Lightmass
https://docs.unrealengine.com/en-US/Engine/Rendering/LightingAndShadows/Lightmass
https://docs.unrealengine.com/en-US/Engine/Rendering/LightingAndShadows/Lightmass
https://docs.unrealengine.com/en-US/Engine/Rendering/LightingAndShadows/Lightmass
https://docs.unrealengine.com/en-US/Engine/Rendering/LightingAndShadows/Lightmass
https://docs.unrealengine.com/en-US/Engine/Rendering/LightingAndShadows/Lightmass
https://docs.unrealengine.com/en-US/Engine/Rendering/LightingAndShadows/Lightmass
https://docs.unrealengine.com/en-US/Engine/Rendering/LightingAndShadows/Lightmass
https://docs.unrealengine.com/en-US/Engine/Rendering/LightingAndShadows/Lightmass
https://docs.unrealengine.com/en-US/Engine/Rendering/LightingAndShadows/Lightmass

Some Extra Useful Nodes Chapter 9

[468]

Getting ready
Something that we'll need in this chapter are at least two different meshes, with their own
set of UVs that look substantially different. We set ourselves the objective to make two
different models look as if they were textured together, so in order to prove that point, we'll
be better off starting with very different assets. Keep that in mind if you plan on using your
own resources.

If you want to follow along in the same environment we will be describing in this recipe,
just open the level called 09_ 03_ TextureCoordinates_ Start that's found inside
the Content Browser / UE4ShadersAndEffects / Maps / Chapter09 folder. You
will find a couple of toy rail tracks, each with a different model, which we'll use to texture in
a similar way.

How to do it...
The key to tackling this recipe is to have two or more different models that, when applying
the same material on them, look different. You can see this behavior in the following
screenshot:

Some Extra Useful Nodes Chapter 9

[469]

In the following pages, we'll create a new material that can cope with this type of situation,
something that we'll probably have to deal with multiple times. Creating a specific material
for every asset that we have is often neither efficient nor practical, so this is something that
we should target when dealing with specific types of objects—especially large ones. The
first step in our journey, as often, will be the creation of the material:

Create a new material and assign it to the two tank circuit tracks that we have in1.
our scene. I've gone with the name M_ Wood_ Track_ Start this time.
Jump straight into the material editor and create the star of this recipe: the World2.
Position node.

It's important to know that the node itself is called World Position. That's
what you should type in the search bar when you look for it, even though
you'll see another name once you create it—Absolute World
Position. That prefix depends on the actual properties defined on its
Details panel, which can be changed.

Next up, create three component masks and set them to the following values: the3.
red and green channel on the first one, green and blue for the second one, and
red and blue for the third one.
Connect all of the previous masks input pins to the output of the World Position4.
node.
Add a couple of Lerp nodes to the graph to interpolate between the previous5.
three masks.
Connect the output of the red and green mask to the A input pin of the first Lerp6.
node, and the output of the green and blue mask to the B input pin of the same
Lerp.
After doing this, connect the output of that Lerp to the A input pin of the second7.
one, and connect the output of the red and blue mask to the B input pin:

Some Extra Useful Nodes Chapter 9

[470]

The previous set of nodes will allow us to use the World Position node on
different surfaces of the models on which we apply this material. At its core, the
World Position node acts as a planar projection method, and we need to specify
different projection planes for the effect to work on all possible surfaces, not just
on one. You can read more about this in the next section, How it works.... The next
bit of logic we need to implement is the actual detection of which direction each
pixel is facing so that we can apply the desired projection method correctly.

Create a PixelNormalWS node.8.
Include a couple of component masks next to the previous node, and select the9.
red channel on one of them and the green channel on the other.
Connect the output of the PixelNormalWS node to the input pins of both of the10.
previous masks.
Create a couple of Abs nodes and place each immediately after each of the11.
previous component masks, connecting them appropriately.
Look for an If node and add it to the graph.12.
Add three constants and give them the values 0,5, 0, and 1. The first one (0,5)13.
should be connected to the A input pin of the If node, the second one (0) to the A
> B input pin, and the third one (1) to both the A == B and A < B input pins.
Place the If node and the three constants next to the Abs node that's being driven14.
by the red channel mask, and connect the output of the Abs to the B input pin of
the If node.

Some Extra Useful Nodes Chapter 9

[471]

Create a copy of the previous If node and the three constants, and place it after15.
Abs node being driven by the green mask, just like we did in the previous step.
Remember to connect the Abs to the B input pin of the If node:

The previous sequence of the graph creates a conditional statement that will
assign a specific value, depending on the direction the pixels on our models are
facing, which is useful to drive the Alpha input pins of the previous Lerp nodes.

Connect the output of the If node being driven by the red mask to the first of the16.
two Lerp nodes we created back in step 5, that is, the one being driven by the
red/green and green/blue masks.
Connect the output of the other If node to the Alpha input pin of the remaining17.
Lerp.

Now that we've set up that logic, we finally have a material that can detect the
direction that each pixel is facing and assign a value according to it. We need to
do a couple of extra things within our graph, that is, assign a texture and adjust its
tiling. Let's do that now.

Some Extra Useful Nodes Chapter 9

[472]

Include a Divide node and place it after the last Lerp, connecting its A input pin18.
to the output of the interpolation node.
Create a Scalar Parameter and give it a name and a value. We've chosen UVing19.
as the name, as that what it's controlling, and 5 as a default value.
Add a Texture Sample node and select any texture that you'd like to see on the20.
tank tracks. Connect the output of that to the Base Color input pin on our main
material node. I've chosen one sample from the Starter Content for this node,
called T_ Concrete_ Grime_ D, and I've made it a bit darker by multiplying it
times a constant set to 0,5.
Finally, feel free to add anything to modify your material, such as some21.
parameters to control the Roughness or any other properties. The material we
are working with will include a Constant to drive the Roughness, set to a value
of 0,7:

As you can see, this method is a very useful one whenever you want to match the material
that's applied on surrounding surfaces. We can apply this to many different models from
roads to pavements, to these toy tracks we've just created, and many others. It's also a good
technique to employ when dealing with models that don't have nicely laid out UVs, saving
you the time of adjusting those in an external software, or even creating them altogether!

Some Extra Useful Nodes Chapter 9

[473]

How it works...
The way the material we've just created works is a little bit hidden behind the network of
nodes we've just created, so let's take a little bit of time to explain how everything works in
tandem. To tackle that, we need to know that there's two basic parts to this material—the
section where we specify how the projection works and the part where we determine the
direction in which the pixels of our models are facing.

The first of those two is handled by the World Position node, which basically gives us the
location of each pixel in a global coordinate system. Using that information instead of the
UVs of the object is what allows us to planar project any texture that we later add, but we
need to mask the node in order to get the specific plane in which we want that projection to
happen. Selecting two channels means that we project along the third one—for instance,
when we chose the red (x) and green (y) channels, that basically meant performing a planar
projection from above the object (z). It's good to note that we can translate each channel into
one of the coordinate's axes—red being the X, green being the Y, and blue being the Z. This
is also indicated by the color-coded gizmo that Unreal uses when displaying this
information.

The second part of our material dealt with the identification of the direction in which our
pixels are facing. We checked whether they were facing in the X or the Y direction, as we
need different projection planes for those cases. The pixels that are aligned mostly along the
Z axis are also using a separate projection, but we don't check those as that's the base
assumption. For the other two, X and Y (or red and green, using the material's
terminology), we need to perform a detection that can be seen on the If nodes we place.
What we are performing in those nodes is a basic comparison—if the pixels are within a
certain threshold, we assume that they are facing in a specific direction and mask them.
This is the skeleton of this part of the node.

As for the final steps, they are all quite straightforward. We use the information we've
gathered so far to drive the appearance of a texture, which in turns defines the look of the
material. A little bit of spicing in the shape of a Roughness property, et voilà—material
created!

Some Extra Useful Nodes Chapter 9

[474]

There's more...
Even though we've used our material in a three-dimensional object, planar projections are
more often than not used on planar surfaces. We've mentioned roads and pavements
already in this recipe, and those are two examples that see this technique being used a lot.
The calculations and the complexity of the resulting material in those cases are usually
much simpler than what we've seen, as we only need to take one plane into account. Take a
look at the following screenshot to see the resulting graph:

As you can see, things are much simpler and lighter, so make sure to use this option when
you don't need to take all the axes into consideration!

See also
Here's a little thread on the Unreal Engine 4 forums about this node and how to use
it: https://forums. unrealengine. com/ development- discussion/ rendering/ 78756-
absolute-world-position- material- how- to-set- it- up.

https://forums.unrealengine.com/development-discussion/rendering/78756-absolute-world-position-material-how-to-set-it-up
https://forums.unrealengine.com/development-discussion/rendering/78756-absolute-world-position-material-how-to-set-it-up
https://forums.unrealengine.com/development-discussion/rendering/78756-absolute-world-position-material-how-to-set-it-up
https://forums.unrealengine.com/development-discussion/rendering/78756-absolute-world-position-material-how-to-set-it-up
https://forums.unrealengine.com/development-discussion/rendering/78756-absolute-world-position-material-how-to-set-it-up
https://forums.unrealengine.com/development-discussion/rendering/78756-absolute-world-position-material-how-to-set-it-up
https://forums.unrealengine.com/development-discussion/rendering/78756-absolute-world-position-material-how-to-set-it-up
https://forums.unrealengine.com/development-discussion/rendering/78756-absolute-world-position-material-how-to-set-it-up
https://forums.unrealengine.com/development-discussion/rendering/78756-absolute-world-position-material-how-to-set-it-up
https://forums.unrealengine.com/development-discussion/rendering/78756-absolute-world-position-material-how-to-set-it-up
https://forums.unrealengine.com/development-discussion/rendering/78756-absolute-world-position-material-how-to-set-it-up
https://forums.unrealengine.com/development-discussion/rendering/78756-absolute-world-position-material-how-to-set-it-up
https://forums.unrealengine.com/development-discussion/rendering/78756-absolute-world-position-material-how-to-set-it-up
https://forums.unrealengine.com/development-discussion/rendering/78756-absolute-world-position-material-how-to-set-it-up
https://forums.unrealengine.com/development-discussion/rendering/78756-absolute-world-position-material-how-to-set-it-up
https://forums.unrealengine.com/development-discussion/rendering/78756-absolute-world-position-material-how-to-set-it-up
https://forums.unrealengine.com/development-discussion/rendering/78756-absolute-world-position-material-how-to-set-it-up
https://forums.unrealengine.com/development-discussion/rendering/78756-absolute-world-position-material-how-to-set-it-up
https://forums.unrealengine.com/development-discussion/rendering/78756-absolute-world-position-material-how-to-set-it-up
https://forums.unrealengine.com/development-discussion/rendering/78756-absolute-world-position-material-how-to-set-it-up
https://forums.unrealengine.com/development-discussion/rendering/78756-absolute-world-position-material-how-to-set-it-up
https://forums.unrealengine.com/development-discussion/rendering/78756-absolute-world-position-material-how-to-set-it-up
https://forums.unrealengine.com/development-discussion/rendering/78756-absolute-world-position-material-how-to-set-it-up
https://forums.unrealengine.com/development-discussion/rendering/78756-absolute-world-position-material-how-to-set-it-up
https://forums.unrealengine.com/development-discussion/rendering/78756-absolute-world-position-material-how-to-set-it-up
https://forums.unrealengine.com/development-discussion/rendering/78756-absolute-world-position-material-how-to-set-it-up
https://forums.unrealengine.com/development-discussion/rendering/78756-absolute-world-position-material-how-to-set-it-up
https://forums.unrealengine.com/development-discussion/rendering/78756-absolute-world-position-material-how-to-set-it-up
https://forums.unrealengine.com/development-discussion/rendering/78756-absolute-world-position-material-how-to-set-it-up
https://forums.unrealengine.com/development-discussion/rendering/78756-absolute-world-position-material-how-to-set-it-up
https://forums.unrealengine.com/development-discussion/rendering/78756-absolute-world-position-material-how-to-set-it-up
https://forums.unrealengine.com/development-discussion/rendering/78756-absolute-world-position-material-how-to-set-it-up
https://forums.unrealengine.com/development-discussion/rendering/78756-absolute-world-position-material-how-to-set-it-up
https://forums.unrealengine.com/development-discussion/rendering/78756-absolute-world-position-material-how-to-set-it-up

Some Extra Useful Nodes Chapter 9

[475]

Adjusting material complexity through
quality switches
You are probably familiar with different quality settings if you've played computer games
before. This doesn't happen very much on consoles, which are closed environments, but PC
users often have to select between different quality presets to cater for their computer's
specs. With the advent of cross-platform development, where the same project sees the
light of day on multiple different devices, this need to adapt to the strengths of each device,
has become more and more widespread. Not only that, but more often than not, those same
devices can't support the same level of rendering features, so we need to take care of that
too. You'll see how you can do this in the following pages!

Getting ready
The scene we'll be using in this recipe is quite similar to another we used back in Chapter
6, Advanced Material Techniques, when we dealt with tessellation. This is a good technique to
bring back to this recipe, as that rendering feature isn't supported on every platform
available to us as Unreal Engine 4 developers. You might want to take that into
consideration if you plan on using assets of your own. It doesn't matter what you create,
though—the nodes we are about to introduce are quite simple to understand, and you'll be
able to try them out on any assets that you can get hold of, so don't feel limited to using
tessellation as well.

In any event, if you want to use the same assets you'll be looking at in the next few pages,
feel free to open the level called 09_04_QualitySwitch_Start located in the Content
Browser / UE4ShadersAndEffects / Maps / Chapter09 folder.

Some Extra Useful Nodes Chapter 9

[476]

How to do it...
Let's start this recipe by creating the material that we'll use throughout, and also setting up
some settings in it:

Create a new material and give it a name. We've gone with M_ Walls_1.
QualitySwitch this time. Double-click on it to open up the material graph.

Just like we did in a previous recipe, we'll want to use tessellation in this material,
so select the main material node and look at the Details panel to change certain
parameters.

Head over the the Tessellation panel and choose PN Triangles instead of the2.
default No Tessellation option under the D3D11 Tessellation Mode setting.
Turn Adaptive Tessellation on and set the Max Displacement to 100.3.

Doing that will allow us to use the tessellation technique we've seen before, which
will be a good feature to turn on and off, depending on whether the hardware we
run our apps and games on supports it. Let's create the actual node graph.

Begin with the creation of a Texture Coordinate node, and set both the U and the4.
V tiling parameters to 7.
Create four Texture Samples, and set the first one of them to use the asset called5.
T_ Walls_ Depth. Connect all of the UVs input pins on Texture Samples to the
previous Texture Coordinate node.
Multiply the first texture times a color (Constant3 node), as we'll use that to6.
modify the tint that our material will show. I've selected a purple shade, but feel
free to choose whatever you fancy!
Connect the output of the previous Multiply node to the Base Color input pin of7.
our material.

The previous set of nodes will affect the color that our material displays, but so
far nothing is new in our workflow. We'll change that soon.

Set the second Texture Sample to use the T_ Walls_ AORM image.8.
Create a Quality Switch node by right-clicking a little bit to the right of the9.
previous node and searching for that name.
Add a Constant and set it to something like 0,7. Connect it to the Low input pin10.
of the previous Quality Switch node.

Some Extra Useful Nodes Chapter 9

[477]

Connect the green channel output pin of the Texture Sample containing the T_11.
Walls_ AORM texture to both the Default, Medium, and High input pins of the
new Quality Switch.
Wire the output of the Quality Switch to the Roughness material input pin:12.

And there you have it—the first new node of this recipe! We are talking about
the Quality Switch node, which we haven't seen yet. This is the one that allows
us to toggle between different quality presets within our materials, something
that we often see in computer games. Having the choice to choose from between a
texture and a constant allows the user to choose between saving up on texture
memory or increasing the realism of the reflections. We'll see how to visualize this
setting later on, once we finish setting up the material.

Set the third Texture Sample to use the T_ Walls_ Normal texture.13.
Create another Quality Switch and connect the output of the previous Texture14.
Sample to its Default, High, and Medium input pins.
Add a Constant 3 vector and assign it a value of 0,0,1. This is a default texture15.
that, if applied, leaves the normals of the objects as they are. Connect it to the
Low input pin of the previous Quality Switch.

Some Extra Useful Nodes Chapter 9

[478]

Connect the Quality Switch to the Normal input pin in our material:16.

We have another example of the Quality Switch node being used in the previous
set of steps. We have affected the normals of our material thanks to those nodes,
which allows us to use a texture in the higher settings and a constant in the lower
ones. With that done, let's continue building our material!

Create a couple of Scalar Parameters and assign them names similar17.
to Subdivision Amount_ High and Subdivision Amount_ Low. These will
control the tessellation factor of our material. Set the first one to 5 and the second
one to 0.
Right-click and look for a node called Feature Level Switch. Connect the output18.
of the Subdivision Amount High parameter to the pin called SM5, and the
output of the other one to the other inputs.
Connect the output of the Feature Level Switch node to the Tessellation19.
Multiplier input pin of our main material node.

And there you have it—the second new node of this recipe! We are talking about
the Feature Level Switch this time, which even though may sound similar to the
Quality Switch one, it's meant to be used in a different context. Whereas
the Quality Switch lets us change between different quality presets, the Feature
Level Switch node deals with the type of features that different hardware
supports. For instance, Android phones don't support the same techniques that a
Windows computer does, regardless of how powerful they are. You can learn
more about this in the How it works... section of this recipe, so make sure to head
over there once you're finished here! At the moment, let's concentrate on finishing
up the material.

Add a VertexNormalWS node into the graph.20.

Some Extra Useful Nodes Chapter 9

[479]

Set the fourth Texture Sample to use the same asset as the first one, that is,21.
the T_ Walls_ Depth texture.
Connect that to a CheapContrast node, and create a Scalar Parameter to drive22.
the Contrast (S) input pin of our new node. Give that a value of 1.
Multiply the result of the Cheap Contrast node by a Scalar Parameter with a23.
value of 1. You can name it something like Height Intensity.
Create a Multiply node to carry that operation between the previous Vertex24.
Normal WS node and the result of the Multiply node from the previous step.
Add another Feature Level Switch after all of those nodes and connect the25.
output of the previous Multiply to the SM5 input pin.
Include a Constant, give it a value of 0,5, and hook it to the Default, ES2, ES3_1,26.
and SM4 input pins of the previous node.
Connect the output pin on the Feature Level Switch node to the World27.
Displacement input pin in our material:

Some Extra Useful Nodes Chapter 9

[480]

Completing the previous step has seen us finishing the material. The last thing we
need to do is apply it to the walls in our scene and visualize what we've done.

Select the walls (SM_Walls_Corner) and apply the material we've been working28.
on. You should be looking at the material in all of its glory, with tessellation
being applied and all of the nice features we've decided to include.
Click on the Settings button on the main toolbar and expand the Material29.
Quality Level section. Select the Low Preset. This will allow you to see the
features we plugged into the Low input pin of the Quality Switch node.
Click on the Settings button again, head over to the Preview Rendering Level30.
section, and select the Shader Model 4. This will hide the tessellation effect on
the material, just as we decided to do when we created the Feature Level Switch
node:

Some Extra Useful Nodes Chapter 9

[481]

And that's how it works! Of course, we've only customized the material in order to make
things easy for us to see and visualize, but you can use this technique according to the
needs of your project, which might be different to what you've seen before. It's always a
good idea to include some of these switches in your creations, especially in those that are
more demanding. Knowing the devices that your project is targeting is another good thing
to consider, as you need to know what feature levels those terminals support in order to be
able to include some of the more advanced techniques that the engine supports. Welcome
to the world of material optimization!

How it works...
Even though we've worked with both the Quality Switch and the Feature Level Switch
nodes, we haven't really explained how they work behind the scenes. We'll start exploring
the first type initially, as that is quite straightforward to understand. In essence, a Quality
Switch is a node that lets us choose which branch of the material graph we want to process.
This is something that we might decide to use whenever we want to give the user a choice
between graphic fidelity and performance, for example.

Unlike them, the feature level switch is used to fill in a similar but different gap: it is there
to let the developer choose which branch of the graph gets executed according to the
features that a given machine can support. For example, a smartphone might not support
the same graphical techniques that a modern PC does—not just because of the difference in
computing power, but also due to their architecture, OS, and other different elements that
have a role to play in that equation. This doesn't just happen between smartphones and
computers, though, as we also see differences within each of those groups. For example,
most modern PC hardware can support the core capabilities of Direct X 11's Shader Model
5, while older models might only go as far as using Direct X 10. The realm of mobile devices
is even more diverse, and Unreal offers the ES2 and ES3_1 feature levels to accommodate
that. High-end mobile terminals can make use of the latest option, but be sure to check the
appropriate documentation for Android or Apple developers before going down that route!

There's more...
If you use these type of nodes in your projects, you probably want to be able to change
between the different material quality options at runtime and not just on the editor. That
would only be logical! We'll make sure not to leave you wondering how to do that. The
answer is simple, and it comes in the shape of a console command.

Some Extra Useful Nodes Chapter 9

[482]

All you need to do to implement this system is to enable a console command that goes by
the name of r.MaterialQualityLevel, and then a number from 0 to 2. With that
notation, you would input the following lines to change between the different quality
levels: r.MaterialQualityLevel 0 for the low quality
preset, r.MaterialQualityLevel 1 for the high quality preset,
and r.MaterialQualityLevel 2 for the medium present. You might find it weird that
the notation goes from low to high and then to medium, but this is just the way that it's
currently set up. It's probably a historical thing within Unreal, as initially only low and high
were available to us. Medium is a preset that was introduced later on, hence its position in
that list.

See also
Quality switches and feature level toggles are here to help you optimize your apps and
games, and they go hand in hand with the optimization tools that Unreal provides. I'd like
to leave you with some useful links, should you want to check them out:

Engine performance: https:/ /docs. unrealengine. com/en- us/ Engine/
Performance

Materials for mobile platforms: https:/ /docs. unrealengine. com/en- us/
Platforms/ Mobile/ Materials

Using interior cubemaps to texture the
interior of a building
We've come a long way since we started this journey, following a path that took us from
very introductory concepts to more advanced ones. We've covered many different
techniques along the way, and that's something that will not change, even as we near the
final pages of this book. This second to last recipe will showcase yet another new technique
that is very useful when working with exterior scenes filled with buildings, where windows
are a prevalent element and seeing what's inside is sometimes a difficult thing to tackle.

https://docs.unrealengine.com/en-us/Engine/Performance
https://docs.unrealengine.com/en-us/Engine/Performance
https://docs.unrealengine.com/en-us/Engine/Performance
https://docs.unrealengine.com/en-us/Engine/Performance
https://docs.unrealengine.com/en-us/Engine/Performance
https://docs.unrealengine.com/en-us/Engine/Performance
https://docs.unrealengine.com/en-us/Engine/Performance
https://docs.unrealengine.com/en-us/Engine/Performance
https://docs.unrealengine.com/en-us/Engine/Performance
https://docs.unrealengine.com/en-us/Engine/Performance
https://docs.unrealengine.com/en-us/Engine/Performance
https://docs.unrealengine.com/en-us/Engine/Performance
https://docs.unrealengine.com/en-us/Engine/Performance
https://docs.unrealengine.com/en-us/Engine/Performance
https://docs.unrealengine.com/en-us/Engine/Performance
https://docs.unrealengine.com/en-us/Engine/Performance
https://docs.unrealengine.com/en-us/Platforms/Mobile/Materials
https://docs.unrealengine.com/en-us/Platforms/Mobile/Materials
https://docs.unrealengine.com/en-us/Platforms/Mobile/Materials
https://docs.unrealengine.com/en-us/Platforms/Mobile/Materials
https://docs.unrealengine.com/en-us/Platforms/Mobile/Materials
https://docs.unrealengine.com/en-us/Platforms/Mobile/Materials
https://docs.unrealengine.com/en-us/Platforms/Mobile/Materials
https://docs.unrealengine.com/en-us/Platforms/Mobile/Materials
https://docs.unrealengine.com/en-us/Platforms/Mobile/Materials
https://docs.unrealengine.com/en-us/Platforms/Mobile/Materials
https://docs.unrealengine.com/en-us/Platforms/Mobile/Materials
https://docs.unrealengine.com/en-us/Platforms/Mobile/Materials
https://docs.unrealengine.com/en-us/Platforms/Mobile/Materials
https://docs.unrealengine.com/en-us/Platforms/Mobile/Materials
https://docs.unrealengine.com/en-us/Platforms/Mobile/Materials
https://docs.unrealengine.com/en-us/Platforms/Mobile/Materials
https://docs.unrealengine.com/en-us/Platforms/Mobile/Materials
https://docs.unrealengine.com/en-us/Platforms/Mobile/Materials

Some Extra Useful Nodes Chapter 9

[483]

You can probably think of many different video games where the windows of the buildings
are shown as a static texture, with no sense of depth or of what's inside. In the following
pages, we'll take a look at a more contemporary technique that brings those elements to life,
adding realism to our levels.

Getting ready
Unlike most of our previous recipes, where we could almost jump into them straight away,
you'll actually need to have a specific type of asset if you want to follow along using your
own resources. We are going to be working with a texture commonly known as a cubemap,
which doesn't come bundled in Unreal. You can get one from their official docs, which is
the same one we'll be using, or create your own according to Epic's guidelines. You can find
more information on this topic in the There's more... and See also sections of this recipe.

However, know that you can use the resources we'll be providing you with if you so desire.
They can be found in the Content Browser / UE4ShadersAndEffects / Assets /
Chapter09 folder. If you follow this route, you can also open the 09_ 05_
InteriorCubemap_ Start level, which contains the map we'll be working on as an
example.

How to do it...
The first thing we'll do in this recipe is going to be taking a look at the map we have in front
of us, which will help us understand what we are trying to achieve—plus which elements
you'll need to have if you want to use your own textures and assets. Let's take a look at the
scene:

Some Extra Useful Nodes Chapter 9

[484]

As you can see, we have a basic block, which we'll use as a house of sorts—our goal will be
to have some windows in its walls and show what's inside without actually creating any
more geometry. If you want to bring your own models, something like a building without
an interior would work great. Let's start working on the material that will allow us to
achieve this effect:

Create a new material and give it a name—something like M_Interior1.
Cubemap could work well!
Double-click on it and add your first node to the material graph, a Texture2.
Sample. Choose T_ House_ Color as its parameter.

The textures that we are placing in this recipe have been created
specifically for the model that we are applying them on, so make sure to
bring your own images if you use your other models.

The previous texture has given us the look we are going to be applying to the
exterior of our model, which you can check straight away if you compile, save,
and apply the material to our model. The next step we'll need to take will be the
creation of the looks of the interior, and the blending between those and the
exterior we've already created.

Create a Lerp node after the previous Texture Sample and connect its A input3.
pin to the output of the previous node.
Add another Texture Sample node and set it to use the T_Default Interior4.
Cubemap image.
Connect the output of the previous node to the B input pin of the Lerp.5.
Right-click and look for a specific node named Interior Cubemap, and place it6.
before the Texture Sample hosting the cubemap. Connect its UVW output pin to
the UVs input pin of the texture.

Some Extra Useful Nodes Chapter 9

[485]

Add a Constant 2 node and connect it to the Tiling (V2) input pin of the Interior7.
Cubemap node. Give it values of 2 and 4 on the R and G channels, respectively.
Throw another Texture Sample to use as a mask, and assign it the T_ House_8.
Mask texture. Connect its output to the Alpha input pin of the Lerp.
Finally, connect the output of the Lerp node to the Base Color input pin on our9.
material:

The previous set of nodes are the implementation of the cubemap logic inside the
material. Everything is condensed in the Interior Cubemap node, which is a
handy function that packs a much larger set of nodes inside. You can check how
that logic is constructed if you double-click on the node itself, or learn more about
how it works in the next section. In any case, we've already established the base
logic that we need to implement when we use these type of assets within a
material by taking a cubemap, applying it on a specific area that we have masked,
and blending between that and the other parts of the material. The next bit we
need to tackle is the masking and the creation of the rest of the nodes.

Add two more Texture Samples into the graph, as we'll need those to drive the10.
normals and the Metalness of our material.
Assign the T_House_ AORM texture to the first of them, and the T_ House_11.
Normal texture to the second one.
Connect the output of the normal map straight into the Normal input pin of our12.
material.
Create a Lerp node and hook the output of the blue channel in the T_House_13.
AORM texture to its A input pin.

Some Extra Useful Nodes Chapter 9

[486]

Create a constant and give it a value of 0, and plug it into the B input pin of the14.
material.
Connect the same texture we used as a mask to the Alpha channel of the new15.
Lerp.
Wire the output of the Lerp into the Metallic input pin on our material.16.

All we've done in the previous steps was assign some extra information to our material—in
particular, to the Normal and the Metallic channels. The Constant we've used could have
been replaced with the actual roughness values for the interior cubemap, via a texture, just
like we did in the Base Color section of the graph. This is the same setup that we would
follow should we decide to add any other information, such as Roughness attributes. The
emissive channel is one that gets used quite often in interior cubemaps, as there are often
lights within the rooms that we see—especially at night time. The last thing we need to do
is assign the material and see how it looks!

How it works...
The inner workings of the interior cubemap node can be seen if we double-click on it, as
that opens the actual scripting that powers this function. Even though it's quite a long chain
of different nodes, we'll try to go over them briefly as understanding them can give us some
good ideas about how to create other, similar effects.

Some Extra Useful Nodes Chapter 9

[487]

The first thing that we need to know is that this interior cubemap node is a camera-driven
effect that affects the UVs of our models. That's why we see a Camera Vector node if we
open up the function. Something that also affects the node itself are the three values we can
give it through its input pins—the UVs (V2), the Tiling (V2), and the Randomize Rotation
(MA) values. Those are different function inputs that come into play at different stages
within the function's own node graph, all of which affect the logic that is written inside. So,
what actually happens inside them? In essence, we can boil that answer down to UV
calculations being made based on the camera view.

We start by taking the vector defined by the camera view and transforming it from World
Space to Tangent Space. That data needs to be mirrored, as that's the effect we are
emulating when viewing a fake 3D environment on a flat surface. All of this information
gets affected by how much we want to tile the texture we use and the UVs that we are
applying. We'll get a grid-like structure by inputting that information, where each cell of
the grid shows the desired effect. This is something important to take into consideration as
it's easy for us to apply this function on planar surfaces, but we tend to encounter different
types of issues if we move away from those. One typical example would be the effect that
we can see on adjacent faces of a cube, where the illusion we are trying to create breaks if
there's an obvious discontinuity in the effect. In those circumstances, it's always a good
approach to create different interior cubemaps to account for the rooms of a building that
are at the corners instead of trying to use the same one. Be sure to test this technique on
your specific models to see how to best tackle these possible issues!

There's more...
As we saw previously, this technique can prove very useful when dealing with building
interiors. That being the case, the cubemap we'll probably want to use will be our own
instead of the default one that we've used in this recipe. So, how would you go about
creating one?

Some Extra Useful Nodes Chapter 9

[488]

The key is to create a texture that fits within Unreal's expected formatting for cubemaps,
which you can learn more about through the links found in the See also section of this
recipe. The basics that we need to know is that the texture needs to adjust to a specific
pattern that you can see in the following diagram:

As you can see, that texture is made up of six different pieces, each matching a specific
camera direction. This is the key to capturing cubemaps—making sure that we align the
camera appropriately. If we translate that into a real-world scenario, this means that you
need to point the camera in each of the possible axis directions—Positive X-axis, Negative
X-axis, Positive Y-axis, Negative Y-axis, Positive Z-axis, and Negative Z-axis and render the
scene like that. You would then bring those six images into an editing program, such as
Photoshop, and arrange the pictures from left to right according to the order that Unreal
expects, as shown in the previous diagram.

Saving that file into the correct format is another matter, one that you need specific tools
for, as provided by different vendors, such as Nvidia or AMD. You can find more
information on that in the following section.

See also
Link to the cubemap creation process in general through Epic's official
docs: https:/ /docs. unrealengine. com/en- US/ Engine/ Content/ Types/
Textures/ Cubemaps

Specific cubemap tools section: https:/ /docs. unrealengine. com/ en-US/
Engine/Content/ Types/ Textures/ Cubemaps/ CubemapTools

https://docs.unrealengine.com/en-US/Engine/Content/Types/Textures/Cubemaps
https://docs.unrealengine.com/en-US/Engine/Content/Types/Textures/Cubemaps
https://docs.unrealengine.com/en-US/Engine/Content/Types/Textures/Cubemaps
https://docs.unrealengine.com/en-US/Engine/Content/Types/Textures/Cubemaps
https://docs.unrealengine.com/en-US/Engine/Content/Types/Textures/Cubemaps
https://docs.unrealengine.com/en-US/Engine/Content/Types/Textures/Cubemaps
https://docs.unrealengine.com/en-US/Engine/Content/Types/Textures/Cubemaps
https://docs.unrealengine.com/en-US/Engine/Content/Types/Textures/Cubemaps
https://docs.unrealengine.com/en-US/Engine/Content/Types/Textures/Cubemaps
https://docs.unrealengine.com/en-US/Engine/Content/Types/Textures/Cubemaps
https://docs.unrealengine.com/en-US/Engine/Content/Types/Textures/Cubemaps
https://docs.unrealengine.com/en-US/Engine/Content/Types/Textures/Cubemaps
https://docs.unrealengine.com/en-US/Engine/Content/Types/Textures/Cubemaps
https://docs.unrealengine.com/en-US/Engine/Content/Types/Textures/Cubemaps
https://docs.unrealengine.com/en-US/Engine/Content/Types/Textures/Cubemaps
https://docs.unrealengine.com/en-US/Engine/Content/Types/Textures/Cubemaps
https://docs.unrealengine.com/en-US/Engine/Content/Types/Textures/Cubemaps
https://docs.unrealengine.com/en-US/Engine/Content/Types/Textures/Cubemaps
https://docs.unrealengine.com/en-US/Engine/Content/Types/Textures/Cubemaps
https://docs.unrealengine.com/en-US/Engine/Content/Types/Textures/Cubemaps
https://docs.unrealengine.com/en-US/Engine/Content/Types/Textures/Cubemaps
https://docs.unrealengine.com/en-US/Engine/Content/Types/Textures/Cubemaps
https://docs.unrealengine.com/en-US/Engine/Content/Types/Textures/Cubemaps/CubemapTools
https://docs.unrealengine.com/en-US/Engine/Content/Types/Textures/Cubemaps/CubemapTools
https://docs.unrealengine.com/en-US/Engine/Content/Types/Textures/Cubemaps/CubemapTools
https://docs.unrealengine.com/en-US/Engine/Content/Types/Textures/Cubemaps/CubemapTools
https://docs.unrealengine.com/en-US/Engine/Content/Types/Textures/Cubemaps/CubemapTools
https://docs.unrealengine.com/en-US/Engine/Content/Types/Textures/Cubemaps/CubemapTools
https://docs.unrealengine.com/en-US/Engine/Content/Types/Textures/Cubemaps/CubemapTools
https://docs.unrealengine.com/en-US/Engine/Content/Types/Textures/Cubemaps/CubemapTools
https://docs.unrealengine.com/en-US/Engine/Content/Types/Textures/Cubemaps/CubemapTools
https://docs.unrealengine.com/en-US/Engine/Content/Types/Textures/Cubemaps/CubemapTools
https://docs.unrealengine.com/en-US/Engine/Content/Types/Textures/Cubemaps/CubemapTools
https://docs.unrealengine.com/en-US/Engine/Content/Types/Textures/Cubemaps/CubemapTools
https://docs.unrealengine.com/en-US/Engine/Content/Types/Textures/Cubemaps/CubemapTools
https://docs.unrealengine.com/en-US/Engine/Content/Types/Textures/Cubemaps/CubemapTools
https://docs.unrealengine.com/en-US/Engine/Content/Types/Textures/Cubemaps/CubemapTools
https://docs.unrealengine.com/en-US/Engine/Content/Types/Textures/Cubemaps/CubemapTools
https://docs.unrealengine.com/en-US/Engine/Content/Types/Textures/Cubemaps/CubemapTools
https://docs.unrealengine.com/en-US/Engine/Content/Types/Textures/Cubemaps/CubemapTools
https://docs.unrealengine.com/en-US/Engine/Content/Types/Textures/Cubemaps/CubemapTools
https://docs.unrealengine.com/en-US/Engine/Content/Types/Textures/Cubemaps/CubemapTools
https://docs.unrealengine.com/en-US/Engine/Content/Types/Textures/Cubemaps/CubemapTools
https://docs.unrealengine.com/en-US/Engine/Content/Types/Textures/Cubemaps/CubemapTools
https://docs.unrealengine.com/en-US/Engine/Content/Types/Textures/Cubemaps/CubemapTools
https://docs.unrealengine.com/en-US/Engine/Content/Types/Textures/Cubemaps/CubemapTools

Some Extra Useful Nodes Chapter 9

[489]

Using fully procedural noise patterns
We wanted to end our journey with this last recipe, which talks about a technique that is
both powerful and flexible, but also quite demanding in terms of computing power. It is
best used as a means of creating other assets, and isn't really directly employed in real-time
apps and games. We are talking about the noise node—a fully procedural, mathematical
system that allows you to create many different non-repetitive textures and assets based on
it. Similar to the semi-procedural material creation techniques we saw in earlier chapters,
this node takes things a bit further and enables you to use an effect that's very widespread
in offline renderers, giving you the ability to create materials where repetition is not a
concern. Let's see how it's done!

Getting ready
Unlike in the previous recipe, we won't need anything else apart from what the engine
offers us to tackle this recipe. However, we've prepared a small scene that you can use
should you choose to do so—its name is 09_ 06_ Noise_ Start and you can find it in
the Content Browser / UE4ShadersAndEffects / Maps / Chapter09 folder.

If you want to use your own scenes and assets, feel free to bring anything you want. The
only things we need to have are a model that we can apply this effect on and some basic
lighting in place so that we can see it. Anything else is optional!

Some Extra Useful Nodes Chapter 9

[490]

How to do it...
As always, let's start by creating the material that we are going to apply to the plane in our
scene. In this case, we'll create one to use as a toon shader example, with animated waves
driven by the noise node we'll be introducing. Something good to note before we start is the
fact that this material is going to have several different parts—one for the sea foam, one for
the normal sea color, and another for a slightly darker variation on this last parameter just
to spice things up a bit. We'll be referring to these different parts throughout this recipe,
which will be good to remember. Let's get started:

Create a new material and give it an appropriate name, something like M_Toon1.
Shader. Assign it to the plane in our scene and double-click on it to bring up the
material editor.
The first section we'll tackle is going to be the different sea color variation. Start2.
by creating two constant 3 nodes and adding them to the graph.
Assign the previous two nodes slightly different blue colors, as we'll use them to3.
paint our sea.
Create a Lerp node and connect both of the previous nodes to its A and B input4.
pins.

The next part that we need to create is the mask that is going to be driving the
Alpha input pin of our previous Lerp. Instead of relying on a static texture, we'll
use this opportunity to introduce our new procedural friend—the Noise node!

Add a Texture Coordinate node to our node graph.5.
Include an Append node after the previous one and connect them.6.
Create a Constant and add it to the B input pin of the previous node.7.
Right-click and look for the Noise node. Add it to our graph, and hook the8.
output of the previous Append node into its Position input pin.
Select the new procedural node and set the following parameters in the Details9.
panel—choose the Fast Gradient - 3D Texture method as the function, and set
the Output Min to -0.25. All of the other other values should be left as default.

Some Extra Useful Nodes Chapter 9

[491]

Connect the output of the Noise node to the Alpha of our Lerp:10.

The reason why we are adding a Constant with a value of 0 to the Texture
Coordinate node is because the Position input pin of the Noise node
expects a three-dimensional vector.

The previous steps have left us with a non-repeating pattern that allows us to mix
two different colors without any kind of repetition. Of course, this first
part—which we'll call color variation just for future reference—is just a very small
color variation—a subtle effect that's used to randomize the look of the final
shader. Let's continue and create the other parts of the material.

Create a third constant 3 and give it a value close to white—we'll use this to color11.
the sea foam.
Add a new Lerp node and connect the previous constant 3 to its B input pin. 12.
Wire the output of the first Lerp we created back in step 4 to the A input pin of13.
the new one.

Some Extra Useful Nodes Chapter 9

[492]

With that done, we can now start creating the noise pattern that we'll use to mix
between the normal color of the sea and the sea foam. We'll use the Noise node
again, but we'll also want to animate it so that it looks even better in motion.

Create a World Position node.14.
Add a Panner node and change the value of Speed X to 5 and Speed Y to 15.15.
Throw an Append node and a Constant with a value of 0 after the Panner node.16.
Connect the Constant to its B input pin and the Panner node to the A input pin.
Create an Add node and plug the output of the World Position into the A input17.
pin and the result of the previous Append to the B one.
Include a Noise node and adjust the following settings in the Details panel:18.
Scale to 0.015, Quality to 5, Function to Voronoi, levels set to 1, and Level
Scale set to 4.
Connect the output of the previous Add node to the Position input pin of the19.
new Noise node.

Before we continue, it might be a good idea to go over some of the most recent
nodes we have created. As we stated previously, the Noise node is creating a
non-repetitive pattern that we can adjust through the Details panel. However, we
haven't really talked about what each of those settings do or effect, which we'll
cover in the next section, How it works.... However, it's good to know at this stage
that the Function parameter is a very important one, as it defines the shape of the
noise that we get. We can further effect that shape through many other different
parameters – for instance, we are animating said shape with the Panner node
sequence we created previously. Pay attention to the nodes we'll be creating in the
following steps, as those will adjust it as well.

Create a Constant and set it to 0.3, and connect it to the Filter Width input pin20.
of the previous Noise node. This will basically make the result of the noise node
leaner, as it would be in a more defined grayscale mask.
Include a Power node immediately after the Noise node, which we'll use to push21.
the black and white values apart. Connect the output of the Noise node to its
Base input pin.
Add a Constant to drive the Exp input pin of the previous Power and give it a 22.
value of 4.
Multiply the result of the previous output by three to increase the lighter values23.
in our mask.
Connect the output of the previous Multiply to the Alpha input pin of the Lerp24.
node we created back in step 12.

Some Extra Useful Nodes Chapter 9

[493]

These last set of nodes have helped us define the Noise node we are using to
drive the position and appearance of the sea foam color. We will call this section
of the graph Sea Foam Variation, just for future reference, and with this done, we
are almost finished tweaking the material. However, we can still adjust it a little
bit more – after all, the sea foam pattern we've created is only being animated in
one specific direction, which isn't great in terms of the final look it gives us. Let's
add a bit more variation to that:

Copy the previous set of nodes we created, from steps 14 to 23, and paste them25.
elsewhere—we'll use them as the base to create a little extra variation on the sea
foam front. Let's comment and call this part Extra Variation for clarity.
Change the values of the new Panner—Speed X should be set to 10 and Speed26.
Y should be set to 5.
Modify the Scale of the new Noise node to 0.0125.27.
Set the Constant driving the Exp input pin of the Power node to 3.28.
Create a new Lerp node and connect its A input pin to the output of the previous29.
Lerp node from step 12. Connect its B input pin to the output of the Constant 3
vector driving the sea foam color.
Connect the Alpha to the output of the duplicated Multiply node that ends the30.
set of nodes we just duplicated, that is, the Extra Variation part.

Some Extra Useful Nodes Chapter 9

[494]

Connect the output of this last Lerp node to the Base Color of our material:31.

And there you go! That's what our material looks like in the end, without any sort of
repetition going on, no matter where you look. This is a very powerful technique that you
can use to get rid of that problem, given that you are aware of the cost that it introduces to
the rendering pipeline. That cost is something that you can check, either by looking at the
shader instruction count or by relying on the tools that Unreal provides to test how well
your app or game performs. As always, stay tuned for the next two sections, where we'll
talk a little bit more about what's going on beyond this node's surface.

How it works...
Even though we've already used the Noise node a couple of times, it won't hurt us to take
another look at it and see what we can accomplish by tweaking the different parameters
that are exposed on the Details panel. The first of them, if we look at the different options
in order, is the Scale.

This is quite a straightforward node – the bigger the number, the smaller the noise is going
to be. This can be a bit confusing at first, as we will usually need to type in really small
values if we want to use the noise more as a masking technique and not as a small grain
effect. Values such as 0,01 and lower usually work better than the default 1, so be sure to
remember this when you are on your own and can't figure out what's going on with your
node!

Some Extra Useful Nodes Chapter 9

[495]

The second parameter we can tweak is the Quality one, which will affect the end result in a
subtle way – mostly by getting a smoother effect where the areas that show transition
between different values are displayed a bit better. The third parameter, the Function, is
probably the most important one, as it controls the logic that generates the final pattern.
We'll talk about these more in the next section, as this is where the meat of the node is.

Turbulence is the next option we can enable, and that determines how many frequencies
get combined to produce the final result. Using more frequencies means that the end result
presents more variation—you can think of turbulence of variation as being inside an
already varied source material. The next setting, Levels, also increases the variation of the
end result that we get, making it richer in terms of finer detail. Further down, you can find
the Level Scale setting, which will let you adjust the size of the levels. You can increase this
value when you have a low number of levels in order to fake the detail that you would get
were you using more levels, effectively faking the effect to make it more efficient.

Now, we can control the Output Min and Output Max settings—these control what the
minimum and maximum values are, with 0 being black and 1 being white. The default
values are set to negative and positive, and it's useful to tweak them as though we had a
scale: if we have a minimum of -6 and a maximum of 1, we'll have a greater range of values
located in the negative, darker tones than lighter ones.

The final set of settings are for Tiling and Repeat Size. Checking the first option will make
the pattern repeat over the size that you specify, allowing you to bake a texture that you
can then use as a noise generator at a much lower rendering cost. It's a handy feature when
you want to create your own assets!

There's more...
The most important settings that we need to select within the Noise node are probably for
the functions that drive this feature. They are different in many levels, but mainly in terms
of their rendering cost and their final looks. Even though you might have seen them
implemented in other 3D packages, one of the important things to note when choosing
between the different types within Unreal are their limitations and the cost that they incur.

As an example, Epic's documentation tells us that certain types are better suited for specific
situations. For instance, the Simplex function can't tile, and the Fast Gradient one is bad
for bumps. That already signals to the user which one they should choose when creating a
specific effect. Apart from that, the number of instructions is a really important element to
keep in mind: for example, the Gradient function packs 61 instructions per level in its non-
tiled version, whereas the Fast Gradient option peaks at around 16.

Some Extra Useful Nodes Chapter 9

[496]

Beyond that, an expensive but very useful function is the Voronoi function, which is the
latest function to be added to the engine. It is a really useful one when you're trying to
recreate many different elements that we see in nature, as it comes close to reproducing
stone or water, to name two examples. This is what we've used to recreate the ocean shader,
but given different inputs, we could have just as well created a cracked terrain. Examples of
this can be found in the documentation we've left in the following section.

See also
You can find more information about this node on a blog post by Ryan Brucks, one of the
guys at Epic Games who worked on making that node a reality: https:/ /www.
unrealengine.com/ en- US/ tech- blog/ getting- the- most- out- of- noise- in-ue4.

https://www.unrealengine.com/en-US/tech-blog/getting-the-most-out-of-noise-in-ue4
https://www.unrealengine.com/en-US/tech-blog/getting-the-most-out-of-noise-in-ue4
https://www.unrealengine.com/en-US/tech-blog/getting-the-most-out-of-noise-in-ue4
https://www.unrealengine.com/en-US/tech-blog/getting-the-most-out-of-noise-in-ue4
https://www.unrealengine.com/en-US/tech-blog/getting-the-most-out-of-noise-in-ue4
https://www.unrealengine.com/en-US/tech-blog/getting-the-most-out-of-noise-in-ue4
https://www.unrealengine.com/en-US/tech-blog/getting-the-most-out-of-noise-in-ue4
https://www.unrealengine.com/en-US/tech-blog/getting-the-most-out-of-noise-in-ue4
https://www.unrealengine.com/en-US/tech-blog/getting-the-most-out-of-noise-in-ue4
https://www.unrealengine.com/en-US/tech-blog/getting-the-most-out-of-noise-in-ue4
https://www.unrealengine.com/en-US/tech-blog/getting-the-most-out-of-noise-in-ue4
https://www.unrealengine.com/en-US/tech-blog/getting-the-most-out-of-noise-in-ue4
https://www.unrealengine.com/en-US/tech-blog/getting-the-most-out-of-noise-in-ue4
https://www.unrealengine.com/en-US/tech-blog/getting-the-most-out-of-noise-in-ue4
https://www.unrealengine.com/en-US/tech-blog/getting-the-most-out-of-noise-in-ue4
https://www.unrealengine.com/en-US/tech-blog/getting-the-most-out-of-noise-in-ue4
https://www.unrealengine.com/en-US/tech-blog/getting-the-most-out-of-noise-in-ue4
https://www.unrealengine.com/en-US/tech-blog/getting-the-most-out-of-noise-in-ue4
https://www.unrealengine.com/en-US/tech-blog/getting-the-most-out-of-noise-in-ue4
https://www.unrealengine.com/en-US/tech-blog/getting-the-most-out-of-noise-in-ue4
https://www.unrealengine.com/en-US/tech-blog/getting-the-most-out-of-noise-in-ue4
https://www.unrealengine.com/en-US/tech-blog/getting-the-most-out-of-noise-in-ue4
https://www.unrealengine.com/en-US/tech-blog/getting-the-most-out-of-noise-in-ue4
https://www.unrealengine.com/en-US/tech-blog/getting-the-most-out-of-noise-in-ue4
https://www.unrealengine.com/en-US/tech-blog/getting-the-most-out-of-noise-in-ue4
https://www.unrealengine.com/en-US/tech-blog/getting-the-most-out-of-noise-in-ue4
https://www.unrealengine.com/en-US/tech-blog/getting-the-most-out-of-noise-in-ue4
https://www.unrealengine.com/en-US/tech-blog/getting-the-most-out-of-noise-in-ue4
https://www.unrealengine.com/en-US/tech-blog/getting-the-most-out-of-noise-in-ue4
https://www.unrealengine.com/en-US/tech-blog/getting-the-most-out-of-noise-in-ue4
https://www.unrealengine.com/en-US/tech-blog/getting-the-most-out-of-noise-in-ue4
https://www.unrealengine.com/en-US/tech-blog/getting-the-most-out-of-noise-in-ue4

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Hands-On Artificial Intelligence with Unreal Engine
Francesco Sapio

ISBN: 9781788835657

Get an in-depth knowledge about all the AI Systems within Unreal Engine
Create complex AIs, understanding the art of designing and developing Behavior
Tree
Learn how to perform Environmental Queries (EQS)
Master the Navigation, Perception, and Crowd Systems
Profile and Visualize the AI Systems with powerful debugging tools
Extend every AI and Debug system with custom nodes and functions

https://www.packtpub.com/game-development/hands-artificial-intelligence-unreal-engine

Other Books You May Enjoy

[498]

Unreal Engine 4 Virtual Reality Projects
Kevin Mack

ISBN: 9781789132878

Understand design principles and concepts for building VR applications
Set up your development environment with Unreal Blueprints and C++
Create a player character with several locomotion schemes
Evaluate and solve performance problems in VR to maintain high frame rates
Display mono and stereo videos in VR
Extend Unreal Engine's capabilities using various plugins

https://www.packtpub.com/game-development/unreal-engine-4-virtual-reality-projects

Other Books You May Enjoy

[499]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

3
3D model material
 baking, into texture 428, 429, 430, 431, 432,

433, 435

A
Ambient Occlusion, Roughness, and Metallic

(AORM) 189
Ambient Occlusion
 reference 119
Anti Aliasing
 adjusting 110, 111, 112, 113, 114, 115, 116,

117

 reference 119
assets naming convention
 reference 16

B
blend types
 reference 405
Bloom convolution 98
Bloom
 reference 99
 used, for mimicking real-life camera 90, 92, 93,

95, 97
blueprint 14
brick wall
 creating, with Parallax Occlusion Mapping 340,

341, 342, 343, 345, 347
 with displacement 349, 350, 351, 352, 354

C
camera exposure control, Epic Games
 reference 90
candle material
 creating, with SSS 179, 180, 181, 182, 183,

184, 185, 187, 188
CCTV camera feed
 creating 278, 279, 281, 283, 285
 working 284
CGTrader
 reference 58
cine camera actor
 reference 82
cinematic effects
 applying, to games 83, 85, 86, 87, 88, 89
cinematic shot
 setting up, depth of field used 75, 76, 77, 79,

80, 81
color grading
 used, for modifying mood of scene 65, 67, 68,

69, 71, 72, 73
color temperature
 reference 72
Convolution 297
cubemap creation process
 reference 488
cubemap tools
 reference 488
curve atlases
 used, for changing between seasons 385, 387,

389, 392, 395
 working 396
Customized UVs
 reference 411

D
decals
 about 333
 reference 340
 used, for adding granularity to scenes 333, 334,

335, 336, 338, 339
depth of field

[501]

 used, for setting up cinematic shot 75, 76, 77,
79, 80, 81

detail texturing node
 using 147, 149, 150, 152, 153
DetailTexturing 153
distance-based texture blending 170, 172, 173,

175, 177

E
emissive material input pin
 reference 208
emissive material
 used, for lighting scene 260, 261, 262, 264,

266, 268, 270
Engine performance
 reference 482
Epic Games Launcher
 reference 8

F
Feature Level Switch
 reference 453
Forward Shading Renderer
 reference 421
forward shading renderer
 using, for VR 417, 419, 420, 421
Fresnel effect
 using 147, 149, 150, 152, 153
fully procedural noise patterns
 using 489, 490, 491, 492, 493, 495
FXAA 118

G
game compass
 creating 299, 300, 302, 305, 308, 311
 working 307
games
 cinematic effects, applying to 83, 85, 86, 87, 88,

89

 interactive elements, highlighting 286, 287, 289,
291, 293, 295, 297, 298

general material-optimization techniques 446,
447, 448, 449, 450, 452, 453

Gimp
 reference 197

glass
 creating, with translucent blend mode 32, 33,

34, 36, 37
Graphics Processing Unit (GPU) 51

H
hierarchical instanced static mesh (HISM) 461
Hierarchical Level of Detail (HLOD) tool
 about 436
 multiple meshes, combining with 437, 438, 439,

440, 441, 442, 443, 444
 reference 446
 working 445
High Dynamic Range imaging (HDRi) 12
High Resolution Screenshot 322
HISM components
 reference 462
holograms
 about 198
 working with 199, 200, 202, 204, 205, 206, 207
horror movie pulsating effect
 with post process materials 99, 100, 101, 103,

104, 106, 108

I
identical models
 randomness, adding to 455, 456, 457, 459,

460, 461
image-based lighting
 scene, lighting 38, 39, 40, 41, 42, 43, 44, 45,

46

index of refraction (IOR)
 about 197
 reference 197
interactive elements
 highlighting, within game 286, 287, 289, 291,

293, 295, 298
 working 297
interior cubemaps
 used, for texturing interior of building 482, 483,

485, 486, 487

K
kernel 297

[502]

L
landscape materials
 blending 397, 398, 403
 working 404
Laplacian edge-detection system 297
layered materials
 used, for creating snow on top of objects 364,

365, 367, 369, 371, 374, 375, 378, 379
Lens Flare
 reference 99
 used, for mimicking real-life camera 90, 92, 94,

95, 97
light functions
 reference 244
light-baking process
 reference 467
lighting channels
 reference 244
Linear Interpolation (Lerp) node 380
Look-Up Tables (LUTs)
 about 73
 reference 74, 75

M
masks
 using, within materials 122, 123, 124, 125, 126,

127, 129, 130, 131
material complexity
 adjusting, through quality switches 475, 476,

477, 479, 480, 481
material editor
 working with 14, 15, 17, 19, 20, 21, 22
Material Settings menu
 reference 436
materials cost
 checking 47, 48, 49, 50, 51, 52, 53, 54
materials, for mobile performance
 reference 482
materials
 baking out 162, 163, 165, 167, 168, 169
 creating, for mobile platforms 413, 415, 416
 instancing 131, 132, 133, 135, 136, 138
 masks, using within 122, 123, 124, 125, 126,

127, 129, 130, 131

 reference 417
Merge Actors tool
 about 435
 reference 435
mesh distance fields
 proximity-based masking 355, 356, 357, 358,

359, 360, 361
Mesh Paint User Guide
 reference 332
mesh-based decals
 reference 340
mesh
 painting, with Vertex Painting 325, 326, 327,

329, 330
 texture coordinates, matching across 467, 468,

469, 470, 471, 473
mini map
 creating 312, 313, 315, 317, 318, 319, 321,

322

mobile platforms
 materials, creating for 413, 415, 416
mood of scene
 modifying, through color grading 64, 65, 67, 68,

69, 71, 72
MSAA 118

O
occluded areas
 dirt, adding to 462, 463, 464, 465, 466

P
Parallax Occlusion Mapping
 brick wall, creating 340, 341, 342, 343, 345,

347

 reference 349
parameter collection
 sunny scene, changing to snowy 380, 382, 384
physically based material
 working with 23, 24, 25, 26, 27, 29, 31
Physically Based Rendering (PBR) 7
pixel normal offset
 reference 233
planar reflections
 reference 221
Post Process Effects

[503]

 reference 64
Post Process Material 286
post process materials
 reference 110
 using, for horror movie pulsating effect 99, 100,

101, 103, 104, 106, 108
post-process volume
 using 57, 58, 59, 60, 61, 62, 63, 64
proximity-based masking
 with mesh distance fields 355, 356, 357, 358,

359, 360, 361

Q
Quality Settings system
 reference 453

R
randomness
 adding, to identical models 455, 456, 457, 459,

460, 461
real-life camera
 mimicking, Bloom used 90, 92, 93, 95, 97
 mimicking, Lens Flares used 90, 92, 93, 95, 97
realistic reflections
 achieving 209, 210, 212, 213, 214, 215, 216,

217, 218, 220
Red Green Blue (RGB) 23
reflections 208
refraction
 mastering, by creating pool water material 221,

222, 223, 224, 225, 226, 227, 228, 229, 230,
231, 232

render targets
 reference 221
rendering
 features 110, 112

S
scene
 decals, used for adding granularity to 333, 334,

335, 336, 338, 339
 lighting, emissive material used 260, 261, 262,

264, 266, 268, 270
 lighting, with image-based lighting 38, 39, 40,

41, 42, 43, 44, 45, 46

screen space reflections
 reference 119
sea shader
 animating 245, 246, 247, 248, 249, 250, 251,

252, 253, 254, 255, 256, 257, 258
semi procedural material
 creating 155, 156, 157, 159, 161
 working 161
small prop
 texturing 139, 140, 141, 144, 147
 working 146
SSS
 candle material, creating 179, 180, 181, 182,

183, 185, 187, 188
studio scene
 setting up 8, 9, 10, 11, 12, 13, 14

T
Temporal AA 118
texture atlases
 optimizing through 421, 422, 424, 425, 426,

427

 reference 421
texture coordinates
 matching, across multiple meshes 467, 468,

469, 470, 471, 473
texture
 3D model material, baking into 428, 429, 430,

431, 432, 433, 435
textures for mobile platforms, UE4
 reference 413
Tonemapper
 reference 62
translucency 198, 199, 200, 202
translucent blend mode
 used, for creating simple glass 32, 33, 34, 36,

37

transparency
 reference 197
transparent glass
 setting up 189, 190, 191, 192, 193, 194, 195,

196, 197
TurboSquid
 reference 58

U
unlit shading model
 reference 208
Unreal Engine 4 style guide
 reference 16
upscaling 117
Use Last Keyframe? 285
UVs
 customizing 405, 408, 409, 411

V
Vertex Painting
 about 324

 mesh, painting 325, 326, 327, 329, 330
video
 playing, from internet on screen 270, 271, 272,

274, 275, 276, 277
vignetting, Epic Games
 reference 90
VR
 forward shading renderer, using for 417, 419,

420, 421

W
water caustics 233, 234, 235, 236, 237, 238,

239, 240, 241, 243

	Cover
	Title Page
	Copyright and Credits
	About Packt
	Contributors
	Table of Contents
	Preface
	Chapter 1: Physically Based Rendering
	Introduction
	Setting up a studio scene
	Getting ready
	How to do it...
	How it works...

	Working inside the material editor
	Getting ready
	How to do it...
	How it works...

	Our first physically based material
	Getting ready
	How to do it...
	How it works...

	Creating some simple glass with the translucent blend mode
	Getting ready
	How to do it...
	How it works...

	Lighting our scene with image-based lighting
	Getting ready
	How to do it...
	How it works...

	Checking the cost of our materials
	Getting ready
	How to do it...
	How it works...

	Chapter 2: Post-Processing Effects
	Introduction
	Using a post-process volume
	Getting ready
	How to do it...
	How it works...
	See also

	Changing the mood of a scene through color grading
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Setting up a cinematic shot using depth of field
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Applying cinematic effects to our games
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Mimicking a real-life camera using Bloom and Lens Flares
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	A horror movie pulsating effect with post process materials
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Adjusting anti aliasing and other rendering features
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Chapter 3: Opaque Materials and Texture Mapping
	Introduction
	Using masks within a material
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Instancing a material
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Texturing a small prop
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	A plastic cloth using Fresnel and detail texturing
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Creating a semi procedural material
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Baking out a material
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Distance-based texture blending
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Chapter 4: Translucent Materials and More
	Introduction
	Creating a candle material with SSS
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Setting up a truly transparent glass
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	A different type of translucency – holograms
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Achieving realistic reflections
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Mastering refraction by creating a pool water material
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Water caustics
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Animating a sea shader
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Chapter 5: Beyond Traditional Material Uses
	Introduction
	Using an emissive material to light the scene
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Playing a video from the internet on a screen
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Creating a CCTV camera feed
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Highlighting interactive elements within our game
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Creating a game compass
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Creating a mini map
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Chapter 6: Advanced Material Techniques
	Introduction
	Painting a mesh with vertex painting
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Using decals to add granularity to our scenes
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Creating a brick wall with Parallax Occlusion Mapping
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	A brick wall using displacement
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Proximity-based masking with mesh distance fields
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Chapter 7: Using Material Instances
	Introduction
	Creating snow on top of objects using layered materials
	Getting ready...
	How to do it...
	How it works...

	Changing from a sunny scene to a snowy one through parameter collection
	Getting ready...
	How to do it...
	How it works...

	Changing between seasons quickly with curve atlases
	Getting ready...
	How to do it...
	How it works...

	Blending landscape materials
	Getting ready...
	How to do it...
	How it works...

	Customizing UVs
	Getting ready...
	How to do it...
	How it works...

	Chapter 8: Mobile Shaders and Material Optimization
	Introduction
	Creating materials for mobile platforms
	Getting ready...
	How to do it...
	How it works...
	There's more...
	See also...

	Using the forward shading renderer for VR
	Getting ready...
	How to do it...
	How it works...
	See also...

	Optimizing through texture atlases
	Getting ready...
	How to do it...
	How it works...

	Baking a 3D model material into a texture
	Getting ready...
	How to do it...
	How it works...

	Combining multiple meshes with the HLOD tool
	Getting ready...
	How to do it...
	How it works...

	General material-optimization techniques
	Getting ready...
	How to do it...
	How it works...

	Chapter 9: Some Extra Useful Nodes
	Introduction
	Adding randomness to identical models
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Adding dirt to occluded areas
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Matching texture coordinates across multiple meshes
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Adjusting material complexity through quality switches
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Using interior cubemaps to texture the interior of a building
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Using fully procedural noise patterns
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Other Books You May Enjoy
	Index

