

Unreal	Engine	4	AI	Programming
Essentials

Table	of	Contents

Unreal	Engine	4	AI	Programming	Essentials

Credits

About	the	Authors

About	the	Reviewer

www.PacktPub.com

eBooks,	discount	offers,	and	more

Why	subscribe?

Preface

What	this	book	covers

What	you	need	for	this	book

Who	this	book	is	for

Conventions

Reader	feedback

Customer	support

Downloading	the	example	code

Downloading	the	color	images	of	this	book

Errata

Piracy

Questions

1.	Introduction	to	Game	AI

Game	Artificial	Intelligence

How	AI	affects	the	gaming	experience

Techniques	and	practices	of	game	AI

Navigation

Achieving	realistic	movement	with	Steering

Creating	a	character	with	randomness	and	probability

Creating	complex	decision	making	with	Behavior	Tree

Root

Decorators

Composites

Services

Tasks

Blackboard

Sensory	systems

Machine	learning

Tracing

Influence	Mapping

Unreal	Engine	4	tools

Summary

2.	Creating	Basic	AI

Goal

Setting	up	the	project

Environment

Prerequisites

Using	our	new	AIController	class

Assigning	the	AIController	class

Placing	the	pawn

Sending	the	instructions

Small	tips	on	MoveToLocation

Reviewing	the	current	progress

Adding	the	challenge

Traces

Reviewing	the	current	progress

The	Enemy	logic

Adding	the	Enemy	AI

Summary

3.	Adding	Randomness	and	Probability

Introducing	probability

Probabilistic	distribution

Non-uniform	distribution

RandomStream	in	Unreal	Engine	4

The	plan

Adding	Wander

Setting	up	the	project

Creating	probability

Non-uniform	distribution	with	RandomStream

Creating	transitions

Fleeing	and	attacking

Back	to	the	action

The	results!

Summary

4.	Introducing	Movement

Overview

Path	Finding

The	A*	algorithm

Navigation	Mesh

RecastNavMesh

The	movement	component

The	AIController

Let’s	start!

Waypoints

Navigation

Navigation	Modifiers

Back	in	the	editor

The	NavArea	class

The	navigation	cost

Summary

5.	Giving	AI	Choices

Behavior	Tree	in	AIController

Creating	Behavior	Tree

Blackboard

Designing	Behavior	Tree

The	Behavior	Tree	service

State	transitions

Blackboard	Compare	Decorator

Environment	Query	System

Summary

6.	How	Does	Our	AI	Sense?

Overview

AI	Sense

AI	Perception	components

State	machines

Pawn	detection

State	transition

Resetting	the	state

Simulating	and	playing

Summary

7.	More	Advanced	Movement

Setting	up	the	agents

Viewing	the	agent

Following	the	agent

Follow	or	lead

Steering	behavior:	Flocking

Flocking	agents

Controlling	behavior	through	UMG

A	simple	UI

Summary

8.	Creating	Patrol,	Chase,	and	Attack	AI

Creating	a	Blackboard

Mid-range	attack

Controllers

Waypoints

BT	Composites,	Task,	Decorator,	and	Service

Creating	the	logic

Summary

9.	What	Have	We	Learned?

Creating	basic	AI

The	pros	and	cons	of	using	controls

Adding	randomness	and	probability

The	pros	and	cons	of	using	randomness

The	pros	and	cons	of	using	probability

Introducing	movement

Giving	our	AI	choice

The	pros	and	cons	of	using	EQS

The	pros	and	cons	of	using	Blueprint

How	does	our	AI	sense?

More	advanced	movement

Creating	patrol,	chase,	and	attack	AI

The	pros	and	cons	of	using	Behavior	Tree

The	pros	and	cons	of	using	blueprint	for	AI

Summary

Index

Unreal	Engine	4	AI	Programming
Essentials

Unreal	Engine	4	AI	Programming
Essentials
Copyright	©	2016	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,
or	transmitted	in	any	form	or	by	any	means,	without	the	prior	written	permission	of	the
publisher,	except	in	the	case	of	brief	quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the
information	presented.	However,	the	information	contained	in	this	book	is	sold	without
warranty,	either	express	or	implied.	Neither	the	authors,	nor	Packt	Publishing,	and	its
dealers	and	distributors	will	be	held	liable	for	any	damages	caused	or	alleged	to	be	caused
directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the
companies	and	products	mentioned	in	this	book	by	the	appropriate	use	of	capitals.
However,	Packt	Publishing	cannot	guarantee	the	accuracy	of	this	information.

First	published:	March	2016

Production	reference:	1110316

Published	by	Packt	Publishing	Ltd.

Livery	Place

35	Livery	Street

Birmingham	B3	2PB,	UK.

ISBN	978-1-78439-312-0

www.packtpub.com

http://www.packtpub.com

Credits
Authors

Peter	L.	Newton

Jie	Feng

Reviewer

Hamad	A.	Al-Hasan

Commissioning	Editor

Edward	Bowkett

Acquisition	Editor

Larissa	Pinto

Content	Development	Editor

Merint	Thomas	Mathew

Technical	Editor

Dhiraj	Chandanshive

Copy	Editor

Shruti	Iyer

Project	Coordinator

Judie	Jose

Proofreader

Safis	Editing

Indexer

Tejal	Daruwale	Soni

Production	Coordinator

Aparna	Bhagat

Cover	Work

Aparna	Bhagat

About	the	Authors
Peter	L.	Newton	gravitated	toward	computers	at	a	young	age.	As	his	appetite	for
technology	grew,	web	applications	were	his	first	exploration	into	development.	The
excitement	of	programming	is	what	kept	Peter	diving	further	into	different	software
designs	and	programming	patterns.	He	is	a	self-taught	programmer	who	has	spent
countless	hours	in	reverse	engineering	assembly	and	arm	instruction	executables	just	for
the	joy	of	learning.	Peter	has	several	years	of	experience	as	a	web	developer,	software
developer,	database	architect,	and	hardware	technician.	His	recent	years	were	dedicated	to
the	Virtual	Reality/Gaming	industry	experience,	working	with	such	companies	as	Create,
Sony	Pictures,	and	the	developers	of	Unreal	Engine	4,	Epic	Games.

Peter’s	most	recent	VR	project	was	Can	You	Walk	The	Walk?,	which	won	Digital
Hollywood’s	“Best	In	Virtual	Reality	Based	on	a	Cinematic	or	Television	Experience”
award.

Thank	you,	readers,	for	your	continued	support	in	my	AI	adventures!	I’ve	created	many
tutorials,	and	because	of	your	overwhelming	response,	I	was	reached	out	to	by	Epic
Games,	who	requested	my	services	as	AI	programmer.	I’ve	also	made	quite	a	few	friends,
such	as	Micheal	Allar,	Chance	Ivey,	Nick	Whiting,	Alexander	Paschall,	Yoeri,	Jan,	Pete,
and	many	I’m	likely	to	forget,	and	this	is	just	to	name	a	few.	It	has	been	an	amazing	few
years!	Living	Epic!

Jie	Feng	is	originally	from	Jiaxing,	China.	He	is	currently	a	PhD	candidate	at	Columbia
University,	specializing	in	machine	learning	and	computer	vision.	He	has	conducted
research	on	problems	ranging	from	detecting	and	recognizing	objects	in	images	and
retrieving	similar	images	from	large-scale	databases	to	understanding	human	behavior	in
videos.	Jie’s	work	has	been	published	at	top	international	conferences,	and	he	has	been
granted	a	U.S.	patent.	He	is	also	a	software	designer	and	developer	and	has	worked	at
Microsoft,	Amazon,	and	Adobe.	Jie	is	passionate	about	applying	Artificial	Intelligence	to
real-world	problems.	His	project	using	Microsoft	Kinect	to	analyze	motion	for	fitness	has
won	People’s	Choice	Award	at	Innovative	Health	Tech	NYC	competition,	2013.	Jie	is
currently	working	on	a	fashion	discovery	product	named	EyeStyle.

Video	games	are	the	very	thing	that	motivated	him	to	study	computer	science.	His	favorite
genre	is	action	adventure.	Titles	including	Resident	Evil,	Tomb	Raider,	and	Uncharted
inspire	him	in	innovative	thinking.	This	book	is	a	unique	experience	for	Jie	to	put	his
knowledge	on	Artificial	Intelligence	to	game	design	and	examine	the	potential	of	creating
intelligent	characters	using	Unreal	Engine	4.

I	would	like	to	thank	my	parents	for	their	unconditional	love	and	support	for	my	work	and
every	decision	I	have	made	in	my	life.	I	feel	lucky	to	have	many	talented	people	as	my
friends	and	colleagues,	both	in	China	and	the	U.S..	Last	but	not	least,	I	want	to	express	my
appreciation	to	all	game	designers	and	developers	out	there	for	creating	the	fantasy	world
that	inspires	people	and	enriches	their	lives.

About	the	Reviewer
Hamad	A.	Al	Hasan	has	a	passion	for	games	and	game	development	and	it	has	taken	him
far	from	the	shores	of	Bahrain,	where	he	graduated	from	Bahrain	University	in	computer
science.	After	working	for	a	couple	of	years	as	software	engineer,	he	jumped	across	the
sea	and	the	ocean	to	work	as	a	gameplay	programmer	for	Action	Mobile	Games	in	USA
on	their	Infected	Wars	title.	Hamad	developed	a	passion	for	Unreal	Engine,	which	then
took	him	to	Serbia	at	Digital	Arrow	and	to	Saudi	Arabia	as	a	consultant	for	Semanoor,	the
publisher	of	Trails	of	Ibn	Battuta.	After	this,	he	worked	as	technical	director	for	Empire
Studios,	a	local	game	studio,	in	which	he	played	a	key	role	in	establishing	the	studio	as
well	as	overseeing	all	the	technical	aspects	of	an	unannounced	mobile	game.

Since	2010,	Hamad	has	worked	on	a	variety	of	systems,	be	it	about	player	movements,
camera	and	controls,	Artificial	Intelligence,	networking	and	replication,	weapons,
different	customizations,	HUD,	or	Menus.	He	is	equally	familiar	with	Unreal	Editor	and
its	tools	and	has	also	developed	a	strong	expertise	in	material	and	shader	creation.	Back	in
Bahrain,	Hamad	works	on	his	own	projects	while	continuing	his	freelance	work.

You	can	contact	him	at	http://www.alhasanstudio.com/.

http://www.alhasanstudio.com/

www.PacktPub.com

eBooks,	discount	offers,	and	more
Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with	PDF	and
ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	www.PacktPub.com	and	as
a	print	book	customer,	you	are	entitled	to	a	discount	on	the	eBook	copy.	Get	in	touch	with
us	at	<customercare@packtpub.com>	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign	up
for	a	range	of	free	newsletters	and	receive	exclusive	discounts	and	offers	on	Packt	books
and	eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do	you	need	instant	solutions	to	your	IT	questions?	PacktLib	is	Packt’s	online	digital
book	library.	Here,	you	can	search,	access,	and	read	Packt’s	entire	library	of	books.

http://www.PacktPub.com
mailto:customercare@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

Why	subscribe?
Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print,	and	bookmark	content
On	demand	and	accessible	via	a	web	browser

Preface
Artificial	Intelligence	(AI)	is	an	essential	part	of	any	game.	It	makes	the	virtual	world	we
create	more	immersive	and	fun	to	play	in.	Game	AI	is	different	from	the	general	scientific
AI	that	we	know;	it	is	more	targeted	to	solve	key	problems	in	game	design,	including
navigation,	which	is	how	a	nonplayer	character	(NPC)	should	move	from	one	point	to
another	and	avoid	obstacles;	decision	making,	which	is	how	to	perform	certain	actions
based	on	different	situations;	and	environment	sensing,	which	is	the	ability	to	understand
what	exists	in	the	environment	and	what	its	status	is.	These	techniques	make	it	possible	to
create	a	dynamic	and	realistic	gameplay	so	that	the	players	will	be	more	engaged	in	the
world	that	is	created	for	them.

Game	AI	is	complicated	and	brings	a	lot	of	challenges	if	you	want	to	develop	on	your
own.	Unreal	Engine	4	is	a	powerful	game	engine	that	provides	rich	functionalities	to
create	cross-platform	3D	and	2D	games.	It	is	well	known	for	its	advanced	graphics	and
highly	customizable	components.	Now,	it	is	free	to	use	and	open	source,	which	makes	it
one	of	the	most	popular	game	engines	out	there.	Unreal	Engine	4	comes	with	a	complete
suite	of	tools	for	game	AI,	including	NavMesh,	Behavior	Trees,	and	Environment	Query
System.	With	these	tools	in	hand,	it	is	much	easier	to	bring	AI	to	your	games.	For	game
designers,	you	can	even	use	a	visual	scripting	tool	called	Blueprints	to	build	your	game
logic,	including	AI,	by	just	connecting	nodes	and	without	even	writing	a	single	line	of
code.

This	book	is	our	effort	to	introduce	these	wonderful	tools	in	Unreal	Engine	4	to	build
game	AI	to	game	creators	who	are	interested	in	making	their	virtual	world	more
interesting.	It	will	cover	all	the	components	we	have	mentioned	and	show	you	how	to	use
each	tool	to	build	different	character	behaviors	and	combine	them	to	create	more	complex
scenes.

We	can’t	wait	to	see	what	you	will	create!

What	this	book	covers
Chapter	1,	Introduction	to	Game	AI?,	introduces	the	basic	idea	of	AI	and	how	it	directly
affects	and	enhances	the	gaming	experience.	You	will	learn	the	differences	between	the
traditional	and	game-specific	goals	of	AI.

Chapter	2,	Creating	Basic	AI,	helps	you	create	your	first	AI	step	by	step	and	talks	about
the	techniques	we	will	demonstrate	along	the	way.	We	will	dive	right	into	Unreal	Engine
4,	using	the	bare	components	needed	to	create	a	single	state	with	random	movement	for
your	AI.

Chapter	3,	Adding	Randomness	and	Probability,	teaches	you	how	to	create	random	and
probability	techniques	that	can	be	used	to	add	randomness,	chance,	and	character	to	AI,
which	will	make	the	game	unpredictable	and	more	interesting.	We	will	cover	how	these
are	used	within	Unreal	Engine	4.

Chapter	4,	Introducing	Movement,	explains	how	to	introduce	movement	to	our	AI
characters	within	Unreal	Engine	4.	Path	Finding	will	be	used	to	allow	our	character	to
intelligently	navigate	within	a	level.

Chapter	5,	Giving	AI	Choices,	explains	how	to	introduce	autonomous	behavior	to	our
characters	using	Behavior	Trees.	Behavior	Trees	are	a	methodology	that	allows	you	to
construct	your	AI	logic	visually	in	a	tree	structure	and	can	be	reused	in	different
characters.

Chapter	6,	How	Does	Our	AI	Sense?,	explains	how	to	use	the	different	components
available	within	Unreal	Engine	4	to	enable	our	AI	to	sense	other	AI	and	the	pawns	we	will
place	within	the	world.

Chapter	7,	More	Advanced	Movement,	focuses	on	flocking	and	more	advanced	path-
following	behaviors.	Flocking	allows	us	to	create	group	behaviors	for	several	AI
characters.

Chapter	8,	Creating	Patrol,	Chase,	and	Attack	AI,	combines	some	of	the	components	we
used	in	the	previous	chapters,	including	AI	Sense	and	Movement,	to	have	our	AI	character
navigate.	Then,	we	will	apply	randomness	to	the	time	that	the	AI	character	will	spend
chasing	after	the	characters	it	detects.

Chapter	9,	What	Have	We	Learned?,	briefly	glances	over	the	previous	chapters.	We	will
also	talk	about	additional	examples	of	what	we	can	achieve	with	these	combined	lessons.

What	you	need	for	this	book
All	you	need	is	Unreal	Engine	4.7.0,	and	you	can	download	it	from
https://www.unrealengine.com.

https://www.unrealengine.com

Who	this	book	is	for
This	book	is	for	programmers	and	artists	who	want	to	expand	their	knowledge	of	game	AI
in	relation	to	Unreal	Engine	4.	It	is	recommended	that	you	have	some	experience	of
exploring	Unreal	Engine	4	prior	to	this	book	because	we	will	jump	straight	into	game	AI.

Conventions
In	this	book,	you	will	find	a	number	of	text	styles	that	distinguish	between	different	kinds
of	information.	Here	are	some	examples	of	these	styles	and	an	explanation	of	their
meaning.

Code	words	in	text,	database	table	names,	folder	names,	filenames,	file	extensions,
pathnames,	dummy	URLs,	user	input,	and	Twitter	handles	are	shown	as	follows:	“Now,
place	a	comment	around	this	and	name	it	Chase	Hero.”

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the	screen,
for	example,	in	menus	or	dialog	boxes,	appear	in	the	text	like	this:	“If	you’re	in	Unreal
Engine	and	you	navigate	to	the	Modes	panel	under	Volumes,	you’ll	see
NavMeshBoundsVolume.”

Note
Warnings	or	important	notes	appear	in	a	box	like	this.

Tip
Tips	and	tricks	appear	like	this.

Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this
book—what	you	liked	or	disliked.	Reader	feedback	is	important	for	us	as	it	helps	us
develop	titles	that	you	will	really	get	the	most	out	of.

To	send	us	general	feedback,	simply	e-mail	<feedback@packtpub.com>,	and	mention	the
book’s	title	in	the	subject	of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either	writing	or
contributing	to	a	book,	see	our	author	guide	at	www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help
you	to	get	the	most	from	your	purchase.

Downloading	the	example	code
You	can	download	the	example	code	files	for	this	book	from	your	account	at
http://www.packtpub.com.	If	you	purchased	this	book	elsewhere,	you	can	visit
http://www.packtpub.com/support	and	register	to	have	the	files	e-mailed	directly	to	you.

You	can	download	the	code	files	by	following	these	steps:

1.	 Log	in	or	register	to	our	website	using	your	e-mail	address	and	password.
2.	 Hover	the	mouse	pointer	on	the	SUPPORT	tab	at	the	top.
3.	 Click	on	Code	Downloads	&	Errata.
4.	 Enter	the	name	of	the	book	in	the	Search	box.
5.	 Select	the	book	for	which	you’re	looking	to	download	the	code	files.
6.	 Choose	from	the	drop-down	menu	where	you	purchased	this	book	from.
7.	 Click	on	Code	Download.

Once	the	file	is	downloaded,	please	make	sure	that	you	unzip	or	extract	the	folder	using
the	latest	version	of:

WinRAR	/	7-Zip	for	Windows
Zipeg	/	iZip	/	UnRarX	for	Mac
7-Zip	/	PeaZip	for	Linux

http://www.packtpub.com
http://www.packtpub.com/support

Downloading	the	color	images	of	this	book
We	also	provide	you	with	a	PDF	file	that	has	color	images	of	the	screenshots/diagrams
used	in	this	book.	The	color	images	will	help	you	better	understand	the	changes	in	the
output.	You	can	download	this	file	from
http://www.packtpub.com/sites/default/files/downloads/
LearningUnrealEngineAIProgramming_ColorImages.pdf.

http://www.packtpub.com/sites/default/files/downloads/
http://LearningUnrealEngineAIProgramming_ColorImages.pdf

Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do
happen.	If	you	find	a	mistake	in	one	of	our	books—maybe	a	mistake	in	the	text	or	the
code—we	would	be	grateful	if	you	could	report	this	to	us.	By	doing	so,	you	can	save	other
readers	from	frustration	and	help	us	improve	subsequent	versions	of	this	book.	If	you	find
any	errata,	please	report	them	by	visiting	http://www.packtpub.com/submit-errata,
selecting	your	book,	clicking	on	the	Errata	Submission	Form	link,	and	entering	the
details	of	your	errata.	Once	your	errata	are	verified,	your	submission	will	be	accepted	and
the	errata	will	be	uploaded	to	our	website	or	added	to	any	list	of	existing	errata	under	the
Errata	section	of	that	title.

To	view	the	previously	submitted	errata,	go	to
https://www.packtpub.com/books/content/support	and	enter	the	name	of	the	book	in	the
search	field.	The	required	information	will	appear	under	the	Errata	section.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy
Piracy	of	copyrighted	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At
Packt,	we	take	the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come
across	any	illegal	copies	of	our	works	in	any	form	on	the	Internet,	please	provide	us	with
the	location	address	or	website	name	immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	<copyright@packtpub.com>	with	a	link	to	the	suspected	pirated
material.

We	appreciate	your	help	in	protecting	our	authors	and	our	ability	to	bring	you	valuable
content.

mailto:copyright@packtpub.com

Questions
If	you	have	a	problem	with	any	aspect	of	this	book,	you	can	contact	us	at
<questions@packtpub.com>,	and	we	will	do	our	best	to	address	the	problem.

mailto:questions@packtpub.com

Chapter	1.	Introduction	to	Game	AI
This	chapter	will	introduce	the	basic	idea	of	Artificial	Intelligence	(AI)	and	how	it
directly	affects	and	enhances	the	gaming	experience.	You	will	learn	the	differences
between	the	traditional	and	also	the	game-specific	goals	of	AI.	We	will	introduce	various
techniques	used	in	game	AI,	including	navigation,	Behavior	Tree,	sensor	systems,	and	so
on.	You	will	learn	in	brief	which	tools	we	utilize	for	AI	within	Unreal	Engine	4’s	editor.
After	this	chapter,	readers	will	gain	a	basic	understanding	of	how	AI	can	be	applied	to
game	development	for	a	better	gaming	experience.	The	AI	techniques	that	we	will	briefly
cover	here	will	be	taught	in	the	subsequent	chapters.

Game	Artificial	Intelligence
When	you	first	think	of	Artificial	Intelligence,	robots	immediately	come	to	mind.	AI	is
derived	from	the	idea	of	intelligence	that	helps	living	creatures	make	decisions.	We	take
inputs,	context,	and	our	personal	reasoning	to	decide	on	the	actions	we	will	perform.	In
AI,	we	try	to	virtually	replicate	this	process	to	create	systems	that	can	have	autonomous
behavior.	Assuming	you	have	a	fairly	extensive	gaming	history,	you	would	know	that
game	AI	is	generally	not	smarter	than	some	older	games	where	your	enemy	may	get	stuck
in	a	corner	and	fail	to	get	out.	Game	AI	now	is	by	no	means	comparable	to	the	general	AI
in	scientific	research.	Game	AI	is	designed	to	work	in	a	well-controlled,	predicable	virtual
world.	It	mainly	consists	of	hardcoded	rules	to	allow	game	actors	to	make	proper	actions
corresponding	to	different	situations.	Game	AI	is	meant	to	be	fun,	so	it	only	needs	to	seem
smart	to	the	player	within	this	context.

It	is	fair	to	say	that	AI	is	a	very	broad	topic,	so	implementing	every	possible	technique
isn’t	the	plan.	So,	it	goes	without	saying	that	we	will	only	cover	what	is	necessary	for	you
to	create	an	awesome	game	AI.	Keep	in	mind,	though,	that	we	will	only	touch	on	very
specific	game	AI	techniques;	the	world	of	AI	is	as	vast	as	it	is	great.

How	AI	affects	the	gaming	experience
Players	seek	a	realistic	and	immersive	experience	in	games.	AI	plays	a	huge	part	in
forming	this	gaming	experience	by	bringing	realism	and	fun	to	the	virtual	world.	Imagine
that	you	are	accompanied	by	a	dog	as	you	walk	around	or	a	flock	of	birds	scatters	when
you	make	some	noise.	An	enemy	opponent	is	perhaps	the	most	common	and	important
implementation	of	game	AI.	The	few	types	of	game	AI—navigating,	fighting,	assisting,	or
analytical—add	the	missing	elements	to	other	players	to	make	them	feel	real	and
challenging	to	compete.	This	dates	back	to	when	it	was	used	most	notably	in	Chess,	Nim,
Pong,	and	Pac-Man.	Up	until	now,	it	has	been	used	in	a	war	frame,	with	procedurally	built
levels.	As	the	modern	game	design	moves	quickly	by	introducing	new	features	to	game
play,	such	as	the	open	world,	massive	in-game	characters,	and	social	interaction,	it	also
introduces	problems	because	these	features	cause	AI	decision	making	to	require	more
input	in	unpredictable	environments.	Even	now,	AAA	titles	have	their	own	complications
with	AI	that	result	in	poor	user	satisfaction.	We	will	introduce	in	the	following	sections
some	powerful	techniques	to	help	create	this	important	AI	module	and	discuss	how	they
are	implemented	in	Unreal	Engine.

Techniques	and	practices	of	game	AI
There	exist	many	techniques	to	cover	different	aspects	in	game	AI,	from	fundamental
movement	to	advanced	environment	sensing	and	decision	making.	Let’s	look	at	them	one
by	one.

Navigation
Navigation	for	AI	is	usually	built	up	of	the	following	tools:

Navigation	Mesh:	Using	tools	such	as	Navigation	Mesh,	also	known	as	NavMesh,
you	can	designate	areas	in	which	AI	can	traverse.	NavMesh	is	a	simplified	polygonal
representation	of	a	level	(the	green	region	in	the	following	screenshot),	where	each
polygon	acts	as	a	single	node	connected	to	its	nearby	ones.	Usually,	this	process	is
automated	and	doesn’t	require	designers	to	place	nodes	manually.	Using	special	tools
in	Unreal,	they	analyze	the	geometry	of	the	level	and	generate	the	most	optimized
Navigation	Mesh	accordingly.	The	purpose,	of	course,	is	to	determine	the	playable
areas	in	the	level	by	the	game	agents.	Note	that	this	is	the	only	path-finding	technique
available;	we	will	use	NavMesh	in	the	examples	provided	in	this	book	because	it
works	well	in	this	demonstration.
Path	Following	(Path	nodes):	A	similar	solution	to	NavMesh,	Path	nodes	can
designate	the	space	in	which	the	AI	traverses:

Behavior	Tree:	Using	Behavior	Tree	to	influence	your	AI’s	next	destination	can
create	a	more	varied	player	experience.	It	not	only	calculates	its	requested
destination,	but	also	decides	whether	it	should	enter	the	screen	with	a	cart	wheeling

double-back	flip,	no	hands,	or	the	triple	somersault	and	jazz	hands.
Steering	behaviors:	Steering	behaviors	affect	the	way	AI	moves	while	navigating	to
avoid	obstacles.	This	also	means	using	Steering	to	create	formations	with	your	fleets
that	you	have	set	to	attack	the	king’s	wall.	Steering	can	be	used	in	many	ways	to
influence	the	movement	of	the	character.
Sensory	systems:	Sensory	systems	can	provide	critical	details,	such	as	the	nearby
players,	sound	levels,	nearby	cover,	and	many	other	variables	of	the	environment	that
can	alter	movement.	It’s	critical	that	your	AI	understands	the	changing	environment
so	that	it	doesn’t	break	the	illusion	of	being	a	real	opponent.

While	all	these	components	aren’t	necessary	to	achieve	AI	navigation,	they	all	provide
critical	feedback,	which	can	affect	the	navigation.	Navigating	within	a	world	is	limited
only	by	pathways	within	the	game.	We	can	see	an	example	of	group	behavior	with	several
members	following	a	leader	here:

Achieving	realistic	movement	with	Steering
When	you	think	of	what	Steering	does	for	a	car,	you	would	be	right	to	imagine	the	same
idea	applied	to	game	AI	navigation.	Steering	influences	the	movement	of	AI	as	it	goes	to
its	next	destination.	The	influences	can	be	supplied	as	necessary,	but	we	will	go	over	the
most	commonly	used.	Avoidance	is	used	to	essentially	avoid	colliding	with	oncoming	AI.
Flocking	is	another	key	factor	in	steering	and	is	useful	in	simulating	interesting	group
movement,	such	as	a	complete	panic	situation,	or	a	school	of	fish.	The	goal	of	Steering
behaviors	is	to	achieve	realistic	movement	and	behavior	within	the	player’s	world.

Creating	a	character	with	randomness	and
probability
AI	with	character	is	what	randomness	and	probability	add	to	the	bot’s	decision	making
abilities.	If	a	bot	attacked	you	in	the	same	way,	always	entered	the	scene	in	the	same	way,
and	annoyed	you	with	its	laugh	after	every	successful	hit,	it	wouldn’t	make	for	a	unique
experience.	Using	randomness	and	probability,	you	can	instead	make	the	AI	laugh	based
on	probability	or	introduce	randomness	to	the	AI’s	skill	of	choice.	Another	great	by-
product	of	applying	randomness	and	probability	is	that	it	allows	you	to	introduce	levels	of
difficulty	or	lower	the	chance	of	missing	the	skill	cast,	and	even	allows	bots	to	aim	more
precisely.	If	you	have	bots	who	wander	around	looking	for	enemies,	probability,	and
randomness	could	be	used	to	work	with	the	bot’s	sensory	input	to	make	a	more	rational
decision.

Creating	complex	decision	making	with	Behavior
Tree
Finite	State	Machines	(FSM)	is	a	model	to	define	how	a	finite	number	of	states	transit
among	each	other.	For	example,	this	allows	it	to	go	from	gathering	to	searching	and	then
attacking,	as	shown	in	the	following	image.	Behavior	trees	are	similar,	but	they	allow
more	flexibility.	A	behavior	tree	allows	hierarchical	FSM,	which	introduces	another	layer
of	decisions.	So,	the	bot	decides	among	branches	of	behaviors	that	define	the	state	it	is	in.
There	is	a	tool	provided	by	UE4	called	Behavior	Tree.	This	editor	tool	allows	us	to	modify
AI	behavior	quickly	and	with	ease.

Here’s	a	diagram	of	the	FSM	model:

Let’s	take	a	look	at	the	components	of	Behavior	Tree:

Now,	we	will	discuss	the	components	found	within	UE4	Behavior	Tree.

Root
This	node	is	the	beginning	node	that	sends	the	signal	to	the	next	node	in	the	tree.	This
connects	to	a	composite,	which	begins	your	first	tree.	What	you	may	notice	is	that	you	are
required	to	use	a	composite	first	to	define	a	tree	and	then	to	create	a	task	for	this	tree.	This
is	because	hierarchical	FSM	creates	branches	of	states.	These	states	will	be	populated	with
other	states	or	tasks.	This	allows	an	easy	transition	among	multiple	states.	You	can	see
what	a	root	node	looks	like	as	shown	in	the	following	screenshot:

Decorators
Decorators	are	conditional	statements	(the	blue	part	on	top	of	a	node)	that	control	whether
or	not	a	branch	in	the	tree	or	even	a	single	node	can	be	executed.	I	used	a	decorator	in	the
AI	we	will	make	to	tell	it	to	update	to	the	next	available	route.

In	the	following	image,	you	can	note	the	Attack	&	Destroy	decorator	that	defines	the
state	on	top	of	the	composite.	This	state	includes	two	tasks,	Attack	Enemy	and	Move	To
Enemy,	which	also	has	a	decorator	telling	it	to	execute	only	when	the	bot	state	is	Search:

In	the	preceding	screenshot,	you	can	note	the	Attack	&	Destroy	decorator	that	defines	the
state	on	top	of	the	composite.	This	state	includes	two	tasks,	Attack	Enemy	and	Move	To
Enemy,	which	also	has	a	decorator	telling	it	to	execute	only	when	the	bot	state	is	Search.

Composites
These	are	the	beginning	points	of	the	states.	They	define	how	the	state	will	behave	with
returns	and	execution	flow.	They	have	three	main	types:	Selector,	Sequence,	and	Simple
Parallel.	This	beginning	branch	has	a	conditional	statement,	if	the	state	is	equal	or	greater
than	Search	state:

Selector	executes	each	of	its	children	from	left	to	right	and	doesn’t	fail;	however,	it	returns
success	when	one	of	its	children	returns	success.	So,	this	is	good	for	a	state	that	doesn’t
check	for	successfully	executed	nodes.	The	following	screenshot	shows	an	example	of

Selector:

Sequence	executes	its	children	in	a	similar	fashion	to	Selector	but	returns	fail	when	one	of
its	children	returns	fail.	This	means	that	it’s	required	that	all	nodes	return	success	to
complete	the	sequence.	You	can	see	a	Sequence	node	in	the	following	screenshot:

Last	but	not	least,	Simple	Parallel	allows	you	to	execute	a	task	and	a	tree	essentially	at	the
same	time.	This	is	great	for	creating	a	state	that	requires	another	task	to	always	be	called.
To	set	it	up,	you	need	to	first	connect	it	to	a	task	that	it	will	execute.	The	second	task	or
state	connected	continues	to	be	called	with	the	first	task	until	the	first	task	returns	success.

Services
Services	run	as	long	as	the	composite	it	is	added	to	stays	activated.	They	tick	at	the
intervals	you	set	within	the	properties.	They	have	another	float	property	called	Tick
Interval	that	allows	you	to	control	how	often	this	service	is	executed	in	the	background.
Services	are	used	to	modify	the	state	of	AI	in	most	cases	because	it’s	always	called.	For
example,	in	the	bot	that	we	will	create,	we	will	add	a	service	to	the	first	branch	of	the	tree
so	that	it’s	called	without	interruption	and	will	be	able	to	maintain	the	state	that	the	bot
should	be	in	at	any	given	movement.	The	green	node	in	the	following	screenshot	is	a
service	with	important	information	explicitly:

This	service,	called	Detect	Enemy,	actually	runs	a	deviating	cycle	that	updates
Blackboard	variables	such	as	State	and	Enemy	Actor.

Tasks
Tasks	do	the	dirty	work	and	report	success	or	failed	if	it’s	necessary.	They	have	blueprint
nodes	that	can	be	referred	to	in	Behavior	Tree.	There	are	two	types	of	nodes	that	you’ll
use	most	often	when	working	with	Task:	Event	Receive	Execute,	which	receives	the	signal
to	execute	the	connected	scripts,	and	Finish	Execute,	which	sends	the	signal	back	and
returns	true	or	false	on	success.	This	is	important	when	making	a	task	meant	for	the
Sequence	composite	node.

Blackboard
A	Blackboard	is	an	asset	to	store	the	variables	to	be	used	within	the	AI	Behavior	Tree.
They	are	created	outside	Behavior	Tree.	In	our	example,	we	will	store	an	enumeration
variable	for	the	state	in	the	State,	EnemyActor	object	to	hold	the	currently	targeted
enemy,	and	Route	to	store	the	current	route	position	that	the	AI	is	requested	to	travel	to,
just	to	name	a	few.	You	can	see	all	current	variables	as	keys	in	Blackboard	panel	as
follows:

They	work	just	by	setting	a	public	variable	of	a	node	to	one	of	the	available	Blackboard
variables	in	the	drop-down	menu.	The	naming	convention	in	the	following	screenshot
makes	this	process	streamlined:

Sensory	systems
A	sensory	system	usually	consists	of	several	modules,	such	as	sight,	sound,	and	memory,
to	help	the	AI	capture	information	about	the	environment.	A	bot	can	maintain	the	illusion
of	intelligence	using	sounds	within	their	environment	to	make	a	deliberate	risk	assessment
before	engaging	a	hazardous	threat	or	aiding	a	nearby	teammate	who	is	calling	for	help.
The	use	of	memory	will	allow	the	bot	to	avoid	an	area	where	it	remembers	seeing	a	severe
threat	or	rush	back	to	an	area	where	it	last	saw	its	group.	Creating	a	sensory	system	in	the
case	of	an	enemy	player	is	heavily	based	on	the	environment	where	the	AI	fights	the
player.	It	needs	to	be	able	to	find	cover,	evade	the	enemy,	get	ammo,	and	other	features
that	you	feel	create	immersive	AI	for	your	game.	A	game	with	AI	that	challenges	the
player	creates	a	unique	individual	experience.	A	good	sensory	system	contributes	critical
information	that	makes	for	reactive	AI.	In	this	project,	we	will	use	the	sensory	system	to
detect	the	pawns	that	the	AI	can	see.	We	will	also	use	functions	to	check	for	the	line	of
sight	of	the	enemy.	We	will	check	whether	there	is	another	pawn	in	the	way	of	our	path.

We	can	check	for	cover	and	other	resources	within	the	area.

Machine	learning
Machine	learning	is	a	branch	on	its	own.	This	technique	allows	AI	to	learn	from	situations
and	simulations.	Inputs	are	taken	from	the	environment,	including	the	context	in	which	the
bot	allows	it	to	make	decisive	actions.	In	machine	learning,	the	inputs	are	put	within	a
classifier	that	can	predict	a	set	of	outputs	with	a	certain	level	of	certainty.	Classifiers	can
be	combined	into	ensembles	to	increase	the	accuracy	of	probabilistic	prediction.	We	won’t
dig	deep	into	this	subject,	but	there	exist	a	vast	amount	of	resources	for	studying	machine
learning,	ranging	from	text	books	(Pattern	Recognition	and	Machine	Learning	by
Christopher	M.	Bishop,	Springer)	to	online	courses	(Machine	Learning	on	coursera.org).

Tracing
Tracing	allows	another	actor	within	the	world	to	detect	objects	by	ray	tracing.	A	single
line	trace	is	sent	out,	and	if	it	collides	with	an	actor,	the	actor	is	returned	along	with
information	on	the	impact.	Tracing	is	used	for	many	reasons;	one	way	it	is	used	in	FPS	is
to	detect	hits.	Are	you	familiar	with	the	hit	box?	When	your	player	shoots	in	a	game,	a
trace	is	shot	out	that	collides	with	the	opponent’s	hit	box,	determining	the	damage	to	the
player,	and	if	you’re	skillful	enough,	it	results	in	death.	Other	shapes	available	for	traces,
such	as	spheres,	capsules,	and	boxes,	allow	tracing	for	different	situations.	Recently,	I
used	Box	Trace	for	my	car	to	detect	objects	near	it.

Influence	Mapping
Influence	Mapping	isn’t	a	finite	approach;	it’s	the	idea	that	specific	locations	on	the	map
would	be	attributed	information	that	directly	influences	the	player	or	AI.	An	example	of
using	Influence	Mapping	with	AI	is	presence	falloff.	Let’s	say	we	have	other	enemy	AI	in
a	group;	their	presence	map	would	create	a	radial	circle	around	the	group	with	the
intensity	based	on	the	size	of	the	group.	This	way,	the	other	AI	knows	by	entering	this	area
that	they’re	entering	a	zone	occupied	by	other	enemy	AI.

Practical	information	isn’t	the	only	thing	people	use	it	for,	so	just	understand	that	it’s
meant	to	provide	another	level	of	input	to	help	your	bot	make	more	additional	decisions.
As	shown	in	the	following	image,	different	colors	represent	zones	occupied	by	different
types	of	AI,	and	color	intensity	indicates	the	influence	with	respect	to	each	AI	character:

Practical	information	isn’t	the	only	thing	people	use	it	for,	so	just	understand	that	it’s
meant	to	provide	another	level	of	input	to	help	your	bot	make	more	additional	decisions.

Unreal	Engine	4	tools
Unreal	Engine	4	provides	a	complete	suite	of	tools	to	add	common	AI	capability	to	your
game.	We	will	go	into	the	details	of	each	tool	within	this	book.	Here	is	a	list	of	the	tools
that	are	covered:

Behavior	Tree:	This	is	used	to	create	different	states	and	the	logic	behind	AI.
Navigation	Component:	This	handles	movement	for	AI.
Blackboard	Asset:	These	are	used	to	store	information.	They	act	as	the	local
variable	for	AI.
Enumeration:	This	is	used	to	create	states,	which	you	can	alternate	between.
Target	Point:	Our	Waypoints	class	is	derived	from	the	Target	Point	class,	which	we
will	use	to	create	a	basic	form	of	Path	node.
AI	Controller	and	Character:	This	controller	will	handle	communication	between
the	world	and	controlled	pawn	for	AI.
Navigation	Volumes:	This	is	used	to	create	Navigation	Mesh	in	the	environment	to
enable	Path	Finding	for	AI.

Let’s	look	at	the	following	screenshot:

There	are	two	types	of	NavMesh	volume.	The	first,	the	NavMesh	Bounds	volume,	defines
the	area	for	NavMesh.	The	Nav	Modifier	volume,	when	supplied	with	a	Nav	Area	class,
affects	the	NavMesh	Bounds	volume’s	navigation	attributes	where	the	two	intersect.

Summary
In	this	chapter,	we	started	by	introducing	game	AI	and	discussing	why	it	is	important	for
our	gaming	experience.	Then,	we	illustrated	most	of	the	used	game	AI	techniques	and
what	they	are	capable	of.	The	corresponding	UE4	tools	for	game	AI	were	also	mentioned
to	provide	a	bigger	picture	of	the	content	we	will	cover	throughout	this	book.	In	the	next
chapter,	we	will	create	our	basic	AI	by	setting	up	an	AI-controlled	player	and	adding	some
simple	behavior	to	it.

Chapter	2.	Creating	Basic	AI
In	this	chapter,	we	will	create	our	first	AI	step-by-step	and	talk	about	the	techniques	that
we	demonstrate	along	the	way.	So	today,	we	will	dive	right	into	Unreal	Engine	4	using	the
bare	components	needed	to	create	a	single	state	with	random	movement	for	your	AI.	We
will	then	review	what	we’ve	done,	the	changes	we	can	make,	and	the	disadvantages	of	the
techniques	demonstrated.

This	chapter	will	cover:

Setting	up	our	project
Creating	the	AIController
Sending	instructions	to	Pawn	with	the	AIController
Creating	small	blueprint	scripts	to	assist	in	navigation

Goal
Our	goal	for	this	chapter	is	to	place	an	AI	character	in	the	level	that	has	the	blueprint	to
instruct	it	to	move	randomly	and	indefinitely.	We	will	demonstrate	multiple	techniques
throughout	this	chapter	to	get	a	good	grasp	of	some	really	basic	AI	techniques	commonly
featured	in	titles.	These	techniques	are	listed	as	follows:

First,	we	want	to	place	an	AI	character,	Hero,	in	the	level	that	has	the	blueprint	to
instruct	it	to	move	randomly	and	indefinitely.	We	will	achieve	this	by	first	creating	a
new	third-person	project	and	naming	it	appropriately.	We	will	then	use	the	default
pawn	provided	from	the	sample	content	as	the	bot.	We	will	create	an	AIController	to
control	our	pawn.	We	will	then	provide	our	AIController	with	instructions	to	move
our	bot	randomly	and	indefinitely.
Second,	we	want	to	make	the	AI	character	follow	some	basic	path.	For	example,
we’ll	have	the	AI	move	along	the	walls	in	one	direction.	We	can	take	our	existing
project	and	modify	the	AIController	with	new	instructions.	From	there,	our	AI	will
now	move	along	the	walls	in	one	direction	indefinitely.
Third,	we	want	to	make	a	new	enemy	AI	character	that	will	chase	the	first	AI
character	we	made—that	is,	Hero.

Tip
We	will	have	to	make	additional	changes	to	Hero	to	give	it	the	ability	to	run	directly
away	from	Enemy.

Enemy	will	simply	be	instructed	to	move	toward	Hero	every	second.

Setting	up	the	project
Let’s	open	up	Unreal	Engine	4!	We	will	begin	with	the	first	process	of	creating	a	new
project.

Note
We	will	use	Unreal	Engine	4.6.0	throughout	this	book.	The	instructions	may	vary	per
version.	We	will	present	the	idea	behind	our	actions	as	we	demonstrate	them	using	Unreal
Engine	4;	so,	hopefully,	you	will	be	able	to	translate	the	instructions	as	you	see	fit.

Here,	we	will	use	the	Third	Person	Shooter	template,	which	allows	us	to	easily	observe
how	the	character	moves	in	the	environment.	Perform	the	following	steps:

1.	 Go	to	the	New	Project	window	if	you	aren’t	there	already:

2.	 Select	the	Third	Person	blueprint	project:

3.	 Name	your	project	as	you	see	fit;	I’ve	named	mine	ImprovedAI.	Then,	hit	Create
Project	in	the	lower-right	corner	of	the	window.

Environment
Even	though	we	are	using	the	Third	Person	blueprint	template,	these	techniques	can	be
used	on	other	templates	as	well.	You	must	adapt	what	you	learn	here.	That	being	said,
what	you	start	to	understand	is	that	these	techniques	are	tools.	Understanding	how	to
create	a	state,	sensory	component,	navigation	component,	and	so	on	is	generally	perceived
to	be	the	same	thing,	but	what	is	used,	and	how	it	is	used,	is	dictated	by	the	AI
environment.

Prerequisites
Note	that	my	windows	and	function	names	are	different.	I	will	run	you	through	my
settings	so	that	you	can	have	the	same	setup	as	I	do.	Here	are	the	steps	to	perform:

1.	 Let’s	go	to	General	|	Appearance	within	Editor	Preferences	and	under	User
Interface,	select	the	User	Small	Tool	Bar	Icons	option	and	unselect	the	Show
Friendly	Variable	Names	option.	Your	settings	should	look	like	the	following
screenshot:

2.	 Navigate	to	the	Blueprints	folder	within	the	project:

3.	 Now	we	will	possess	our	pawn.	Right-click	and	hit	the	Blueprint	option	to	create	a
blueprint:

4.	 Next,	we	will	create	our	AIController	class.	Go	to	Custom	Classes	and	type
AIController.	Select	it	and	then	click	on	Select,	as	shown	in	the	following
screenshot:

This	will	create	the	blueprint,	and	I	named	it	MyController	here.

Using	our	new	AIController	class
Ever	notice	how	one	player	can	be	any	character	they	desire?	This	is	the	hierarchy	that
creates	the	pawn	and	the	controller.	The	controller	is	what	the	player	inherits	after	waiting
for	some	time	in	the	game	lobby.	It	is	used	to	manage	the	input	and	connection	from	the
player.	This	class	comes	with	additional	functions	to	help	navigate	the	bot	and	the	ability
to	assign	a	Behavior	Tree	to	the	controller.	In	this	demonstration,	we	will	cover	some	of
the	basics	of	the	AIController	class.

Assigning	the	AIController	class
So,	now	that	we	have	what	we	need	to	create	an	AI,	we	will	assign	the	MyController
class	to	the	MyCharacter	base.	To	do	so,	go	to	the	Defaults	section	within	the
MyCharacter	blueprint.	Search	for	AIController	Class	and	set	it	to	MyController,	as
shown	in	the	following	screenshot:

When	a	character	isn’t	possessed,	it	will	automatically	be	possessed	by	AIController.	So,
with	the	change	we	just	made,	the	default	AIController	class	that	possesses	our
MyCharacter	blueprint	will	be	MyController.

Placing	the	pawn
It’s	assumed	you	understand	such	a	simple	task!	Let’s	place	our	newly	set	up	pawn	into
the	bright	beautiful	world	by	dragging	and	dropping	it	from	Content	Browser:

Drag	and	drop	MyCharacter	blueprint	to	the	level	to	create	a	pawn

Note
There	is	a	long	line	of	people	who	have	lost	work	to	crashes	and	other	mishaps;	if	you
would	like	to	join	them,	please	skip	this	step.	Otherwise,	navigate	to	File	|	Save	All
whenever	you	make	some	significant	new	changes	to	the	level.

Sending	the	instructions
Now	that	we	have	our	project	set	up	and	saved—or	not	saved	for	our	brave	fellows—let’s
move	forward	to	the	fun	part:	blueprints!	Let’s	take	a	look	at	the	steps	to	send	the
instructions:

1.	 Open	your	MyController	blueprint	within	Content	Browser	and	zoom	in	to	the
EventGraph:

So,	the	plan	is	to	have	our	bot	move	around	randomly.	This	will	be	built	in	a	simple
fashion,	so	we	will	do	the	computing	by	hand.

2.	 First,	let’s	create	an	Event	Tick	node	that	will	be	triggered	in	every	frame	as	the
game	runs.

3.	 We	will	add	a	Delay	node	to	receive	signals	from	Event	Tick	to	set	the	Duration	pin
to	1.

4.	 Next,	we	will	add	a	Move	To	Location	node,	which	will	signal	the	AIController
class	to	tell	its	pawn	to	move	to	the	destination	point	specified.

5.	 As	we	didn’t	use	Path	Finding	at	this	time,	which	is	a	subject	we	will	touch	upon
later,	go	to	the	MoveToLocation	node	and	set	bUsePathFinding	to	false	or	leave	it
unselected.

The	EventGraph	for	your	MyController	class	should	look	similar	to	the	following
screenshot:

6.	 With	the	MoveToLocation	node	ready,	we	now	need	to	supply	it	with	a	random
location.	We	will	grab	the	current	location	of	the	controlled	pawn,	create	an
additional	vector	with	a	random	value	of	-255	to	255	for	the	X	and	Y	variables,
leaving	Z	to	0.0.	Then,	we	will	add	the	location	from	the	controlled	pawn	to	the
vector	we	just	created.	You	should	have	a	blueprint	similar	to	the	following	setup:

7.	 Let’s	finalize	this	and	move	this	new	random	location	blueprint	to	the
MoveToLocation	node	that	we	set	up	previously.	Now,	let’s	connect	the	results	of
the	addition	of	the	two	vectors	to	the	destination	of	the	MoveToLocation	node.	With
this	done,	you	should	have	a	blueprint	setup	similar	to	the	following	preview:

Save	it	all!

Small	tips	on	MoveToLocation
Here	are	some	basic	tips	on	MoveToLocation:

AcceptanceRadius:	This	allows	you	to	increase	the	radius	that	is	acceptable	for	a
completed	move.	Let’s	suppose	that	there	is	an	enemy	holding	a	sword	who	wants	to
attack	the	player.	The	AcceptanceRadius	option	will	help	you	define	how	far	this
enemy	should	be	standing	away	from	his	target—ideally	1	meter—and	then	perform
an	attack	animation	to	swing	the	sword.
bStopOnOverlap:	This	tells	your	bot	to	stop	if	it	overlaps	the	point	rather	than	going
precisely	there.	This	will	take	into	consideration	the	radius	of	the	collision	mesh
attached	to	the	bot.
bUsePathFinding:	If	this	is	selected,	the	bot	will	use	the	NavMesh	option	to	find	its
destination.	If	unselected,	the	bot	will	simply	move	in	a	straight	line	to	the
destination,	not	taking	into	account	any	obstacles.	This	helps	save	the	performance	in
some	situations.
bProjectDestinationToNavigation:	This	projects	the	location	on	the	navigation	data
before	using	it.	This	helps	validate	the	target	actor’s	location—that	is,	whether	it
exists	on	a	playable	area	or	not.
bCanStrafe:	This	determines	whether	the	AI	can	transverse	diagonally	on	NavMesh
or	not.
FilterClass:	This	allows	you	to	use	AreaClass,	which	is	another	navigation
component	that	affects	the	navigation	of	the	AI.	This	effects	changes	such	as
exclusion	or	exclusive	access	to	areas	of	NavMesh	and	alters	the	navigation	cost.

Reviewing	the	current	progress
You	can	wipe	the	sweat	from	your	forehead;	the	hard	work	has	yet	to	begin.	So,	what	have
we	done	so	far?

We’ve	set	up	our	AI	project
We’ve	set	up	our	pawn	with	our	new	AIController
We’ve	sent	instructions	to	our	pawn	using	AIController

We’re	halfway	there.	This	simple	setup	allows	us	to	put	all	our	instructions	on	our
AIController,	which	will	possess	the	pawn	we	created	from	the	sample	content.	The
AIController	is	assigned	to	pawns,	which	means	that	multiple	pawns	can	share	the	same
AIController.

As	we	can	see,	our	AI	now	runs	indefinitely.	Perfect!	Let’s	move	on	to	the	second	section
of	this	chapter!

Adding	the	challenge
Now,	we	will	add	line	traces	to	the	AI	character.	In	our	demonstration,	we	will	use	traces
to	detect	the	wall	in	front	of	the	pawn.	Other	examples	of	using	traces	in	the	AI	include
Line	of	Sight	checking,	getting	surface	rotation,	and	getting	nearby	actors.

Let’s	go	back	to	Unreal	Engine	Level	Editor	and	look	within	Content	Browser.	Perform
the	following	steps:

1.	 Rename	our	MyController	blueprint	Hero;	this	will	act	as	the	player	in	this	scenario.
2.	 Open	our	Hero	blueprint	and	go	to	the	EventGraph	section.
3.	 Now,	remove	every	node	except	the	Event	Tick	and	Move	to	Location	nodes.	We

will	replace	these	with	new	blueprint	scripting:

Blueprint	after	removing	unnecessary	nodes

4.	 Pull	from	the	return	exec	pin	on	the	Event	Tick	node	and	create	a	Delay	node.
5.	 Set	the	Duration	value	to	.05	so	that	it	will	update	relatively	fast.
6.	 Now,	we	have	to	get	the	location	from	the	pawn	to	create	line	traces.	We	will	also	use

the	right	vector	to	face	the	pawn	to	the	right	from	the	pawn’s	current	rotation	when
the	collision	ahead	is	detected.

7.	 Right-click	on	EventGraph	and	search	for	Get	Controlled	Pawn.
8.	 From	the	Return	Value	pin	of	Get	Controlled	Pawn,	pull	the	Get	Actor	Location

node.
9.	 From	the	Return	Value	pin	of	GetActorLocation,	pull	a	vector	and	then	drop	it	in

an	empty	area.
10.	 Search	for	LineTraceByChannel,	which	is	located	under	the	Collision	category,	as

shown	in	the	following	screenshot:

Traces
We	will	use	this	to	trace	from	the	player’s	location	to	255	units	in	front	of	the	character.	If
anything	collides	with	the	trace,	we	will	face	the	pawn	to	the	right	based	on	the	pawn’s
rotation.	This	simple	check	will	be	enough	to	make	our	bot	run	along	the	walls
indefinitely;	so,	perform	the	following	steps:

1.	 Pull	the	Return	Value	pin	from	GetActorLocation	and	drop	it.	Then,	search	for
Vector	+	Vector.

2.	 We	now	need	to	select	Get	Controlled	Pawn	and	pull	Get	Actor	Forward	Vector
from	it.	This	contains	vector	information	going	in	the	direction	that	is	in	front	of	our
pawn.

3.	 So	we	will	multiply	Return	Value	by	255.	This	is	the	vector	we	want	to	add	to	the
actor’s	location.	This	results	in	adding	255	units	in	the	direction	ahead	of	the	pawn’s
current	location.

4.	 Now,	we	need	to	take	the	results	of	the	addition	of	the	End	pin	for	the
LineTraceByChannel	node.	This	will	trace	directly	in	front	of	our	pawn:

5.	 Pull	from	the	Vector	+	Vector	node	again,	and	this	time	we	will	plug	it	into	the	Dest
pin	for	the	Move	to	Location	node.	This	will	move	the	character	forward
indefinitely:

Let’s	try	this	out!	Hit	Simulate	and	look	at	your	character	move	forward	indefinitely!
The	only	problem	is	that	it	can’t	avoid	the	walls	just	yet.	We	will	change	this	by
introducing	a	Select	Vector	node	that	chooses	a	different	direction	when	a	collision	is
detected	by	Line	Trace:

6.	 Once	more,	we	will	pull	from	the	Get	Controlled	Pawn	node	and	search	for	Get

Actor	Right	Vector.
7.	 From	this	node,	we	will	pull	the	vector	and	multiply	it	by	512.
8.	 We	will	add	this	to	the	pawn’s	current	location.	So,	similar	to	what	we	did	before

going	forward,	we	will	add	512	units	to	the	right	of	the	pawn’s	current	location:

9.	 Right-click	on	the	EventGraph	section	and	search	for	Select	Vector.
10.	 From	the	LineTraceByChannel	node,	pull	Return	Value	and	connect	it	to	the	Select

Vector	node.	Then,	select	A.
11.	 Now,	pull	from	the	right	location	to	A	of	the	Select	Vector	node.
12.	 Then,	pull	from	the	forward	location	to	B	of	the	Select	Vector	node.
13.	 Select	the	Select	Vector	node	and	pull	from	Return	Value	into	the	Dest	pin	of	Move

to	Location.
14.	 Select	the	nodes	and	create	a	comment:

Let’s	see	how	this	looks	in-game:

It	seems	to	work	perfectly!	This	will	create	the	chase	for	the	next	addition	to	this	project.

Reviewing	the	current	progress
So	now,	we’ve	created	our	Hero	character,	who	isn’t	much	of	a	hero	as	he	runs
indefinitely,	but	that	is	another	story.	Here	is	the	current	round	of	the	changes:

We’ve	updated	the	AI	instructions
We’ve	demonstrated	a	basic	sensory	component

Now,	let’s	move	on	to	creating	the	Enemy	AI.

The	Enemy	logic
Enemy	needs	to	be	able	to	find	and	run	toward	Hero.	We	will	achieve	this	by	searching	for
the	Hero	character,	calculating	the	difference	in	direction,	and	facing	Enemy	toward	Hero.

Adding	the	Enemy	AI
Let’s	go	back	to	Unreal	Engine	and	focus	on	Content	Browser.	We	now	need	an
opponent.	To	add	this,	follow	these	steps:

1.	 Right-click	and	select	Blueprint.
2.	 At	the	lower	end	of	the	window,	let’s	drop	all	the	classes	and	search	for

AIController.
3.	 Select	AIController	under	Controller	and	hit	Select	in	the	lower-right	corner.
4.	 We	will	name	this	AIController	Enemy.
5.	 Open	Enemy	AIController	and	go	to	the	EventGraph	section.

First,	we	must	find	Hero	and	then	store	it	in	a	local	variable	to	be	used	at	any	time.	To	do
so,	follow	these	steps:

1.	 Right-click	in	an	empty	area	within	EventGraph	and	search	for	Event	Begin	Play.
2.	 Pull	from	the	exec	pin	and	search	for	Get	All	Actors	Of	Class.
3.	 Set	the	Actor	Class	pin	to	Hero.
4.	 Pull	from	the	Out	Actors	array	and	search	for	ForEachLoopWithBreak:

We	want	a	filter	for	the	Hero	class	within	the	MyCharacter	pawn	returned.	To	do	so,
follow	these	steps:

1.	 Pull	from	the	Array	Element	pin	and	search	for	Cast	to	MyCharacter.
2.	 Then,	pull	from	the	As	My	Character	pin	and	search	for	Get	Controller.
3.	 Get	the	class	of	the	controller	using	the	Get	Class	node.
4.	 Compare	the	Hero	class	with	the	Class	=	Class	node.
5.	 Pull	from	the	return	of	Equal	and	create	a	Branch	node.
6.	 From	the	Loop	Body	pin,	link	the	newly	created	branch.

7.	 From	the	True	exec	pin	of	the	Branch	node,	create	the	SET	node.
8.	 Then,	pull	from	the	pure	cast	to	the	SET	node	we	just	created.
9.	 We	want	to	comment	this	and	call	this	section	Find	Hero:

We	now	have	to	constantly	update	the	Enemy	instructions	to	moving	toward	the	fleeing
Hero	character.	Note	that	there	are	that	nodes	that	can	directly	achieve	this,	such	as
Simple	Move	to	Actor,	AI	MoveTo,	and	so	on.	We	will	implement	similar	behavior	to
give	you	a	look	at	how	this	can	be	done	under	the	hood.	Perform	the	following	steps:

1.	 Right-click	on	the	EventGraph	section	and	search	for	Event	Tick.
2.	 From	the	exec	pin,	drop	and	search	for	Delay.
3.	 Set	the	Duration	pin	to	.05	seconds.
4.	 Pull	from	Completed	and	create	a	new	node	Move	to	Location:

Now,	we	need	to	get	the	direction	from	Enemy	to	Hero	and	move	Enemy	in	this	direction.
We	can	do	this	thus:

1.	 Get	the	Hero	variable	and	drop	it	near	the	Delay	node.
2.	 From	the	Hero	variable,	get	the	actor’s	location.
3.	 Pull	from	Return	Value	of	the	GetActorLocation	node,	drop	it,	and	search	for	Get

Direction	Vector.
4.	 Now,	right-click	and	search	for	Get	Controlled	Pawn.
5.	 Pull	from	the	Return	Value	pin	of	Get	Controlled	Pawn	and	GetActorLocation.
6.	 Then,	pull	from	the	Return	Value	pin	of	the	GetActorLocation	node	and	plug	it

into	the	From	pin	in	the	Get	Direction	Vector	node.
7.	 Pull	from	the	Return	Value	pin	of	the	Get	Direction	Vector	node	and	Make	Rot

from	X.
8.	 Pull	from	Make	Rot	From	X	and	Get	Forward	Vector.
9.	 Now,	from	Get	Forward	Vector,	we	will	multiply	it	by	255	to	get	255	units	in	the

forward	vector	direction.
10.	 Lastly,	we	will	add	this	to	the	GetActorLocation	node	of	the	Hero	pawn.
11.	 The	result	of	the	addition	is	the	destination	for	Move	to	Location:

12.	 Now,	place	a	comment	around	this	and	name	it	Chase	Hero.

Save	it	all!

Now,	head	back	to	the	Viewport	section	and	hit	Simulate.	You	should	now	see	our	Hero
character	is	running	forward	and	turning	right	when	it	detects	an	obstacle	in	its	way.	Our
Enemy	character	is	chasing	fast	behind	our	Hero	character.	Now,	imagine	if	you	were	in
the	Hero	character’s	place;	you	would	be	in	complete	fear!

Summary
What	we	demonstrated	here	is	how	you	can	create	an	Enemy	AI	that	pursues	a	player	or
another	AI.	This	type	of	behavior	can	be	used	to	create	a	challenge	and	provide	the	player
with	feedback,	which	results	in	a	better	gameplay	experience.	AI	can	definitely	be	more
complicated,	but	this	should	only	be	done	if	it	is	needed	to	improve	the	play	experience.	In
the	next	chapter,	we	will	add	randomness	and	probability	to	our	AI	character	to	make	it
behave	in	a	more	interesting	way.

Chapter	3.	Adding	Randomness	and
Probability
In	this	chapter,	we	will	introduce	randomness	and	probability	techniques	that	can	be	used
to	add	randomness,	chance,	and	character	to	AI,	which	would	otherwise	be	perfect.	We
will	start	with	a	quick	“Probability	101”	to	explain	some	basic	concepts;	then,	we	will
demonstrate	how	to	use	Stream	to	control	a	non-uniform	distribution	of	numbers	and	use
these	results	to	demonstrate	probability.	We	will	cover	how	these	are	used	within	Unreal
Engine	4.	Finally,	we	will	build	on	top	of	our	enemy	AIController	to	have	it	randomly
perform	an	action.

This	chapter	will	cover:

Probability,	probability	distribution,	and	non-uniform	distribution
Using	RandomStream	in	UE4	to	add	randomness	to	our	AI
Adding	random	behavior	to	enemy	AI-based	states

Introducing	probability
We	know	an	event	will	occur,	but	how	often	will	it	occur?	This	is	how	we	can	quantify
probability,	and	this	is	what	we	will	use	to	control	the	frequency	of	an	outcome.	So,	let’s
say	we	flip	a	quarter.	The	event	we	know	will	occur	is	heads	(H),	but	it	can	still	land	on
tails	(T).	So,	the	way	we	would	write	the	probability	of	landing	on	heads	is	P	(H)	=?

At	this	point,	we	know	that	heads	will	occur,	although	we	still	don’t	know	how	often	it
will	occur.	To	understand	this,	we	must	first	get	the	number	of	possible	outcomes	that
meet	our	conditions,	which	is	1	for	heads.	Then,	we	must	get	the	number	of	events	that	are
equally	likely	to	occur,	which	is	2.	So,	now	we	need	to	put	this	in	the	equation	for
probability:

#	of	possible	met	conditions	/	#	of	equality	likely	outcomes

If	we	do	some	basic	math	and	break	it	down	further,	we	will	have	50%:

P	(H)	=	1/2	=	50%

So	what	this	says	is,	if	you	flipped	a	coin	a	million	or	even	a	billion	times,	the	more	the
number	of	times	you	flip	it,	the	closer	it	will	get	to	50%	of	the	events	landing	equally	on
heads	and	on	tails.	This	is	useful	when	controlling	the	chance	that	a	function	will	execute.

In	our	example,	we	will	demonstrate	a	lottery-type	probability.	We	determined	that	we
have	a	20%	chance	of	getting	gold,	which	translates	to	a	decimal	of	.2.	We	will	generate	a
random	number	from	0	through	1.	We	get	.19,	and	we’re	in	the	money!	We	roll	again,	and
we	get	.57,	we’re	out	of	money!

These	are	some	ways	to	control	the	execution	flow	of	your	AI.	You	could	also	apply	this
to	other	behaviors	that	are	directly	linked	to	the	traits	of	the	specific	AI.	So,	if	this
character	is	of	a	certain	class,	certain	monsters	may	be	more	frightened	by	this	class	of
characters.

Probabilistic	distribution
A	probabilistic	distribution	of	numbers	means	that	we	will	know	the	finite	numbers	of
equal	outcomes.	So,	we	would	use	this	if,	for	example,	we	had	a	monster	with	a	lot	of
weapons.	We	don’t	want	all	of	the	weapons	to	drop	if	the	monster	dies.	Although,	if	we
just	applied	a	simple	rule	to	limit	the	number	of	weapons	dropped,	there	is	still	an	equal
chance	that	they	could	get	the	rare	sword	versus	the	crappy	sword	that	no	one	wants.

Say	we	applied	probabilistic	distribution	to	the	selection	of	weapons.	Here	is	the	scenario.
We	have	50%	items	ranked	crappy	through	okay	and	35%	items	ranked	well	through	best,
ending	with	rare	items	at	15%.	Now,	we	will	generate	a	random	number	of	weapons	they
can	get,	and	the	individual	items	selected	will	be	generated	with	probabilistic	distribution.

Non-uniform	distribution
A	non-uniform	distribution	of	numbers	means	that	we	will	not	know	the	finite	number	of
outcomes.	We	know	that	0	through	1	will	be	generated	but	not	whether	0	or	1	is	more
likely	to	be	generated.	With	this	said,	this	is	perfect	for	creating	many	unpredictable
scenarios.	In	UE4,	we	have	the	typical	Random	and	RandomStream	tool.	The	explicit
difference	between	the	two	is	the	fact	that	we	can	control	the	seed	that	generates	our
random	output.

So,	to	say	it	another	way,	non-uniform	distribution	is	a	random	generation	of	numbers	that
are	not	equally	likely	to	occur.	The	true	behavior	of	randomness	can	be	replicated	but	at
the	cost	of	time	and	efficiency.	So,	we’ve	come	up	with	algorithms	to	generate	random
numbers.	One	of	the	tools	that	UE4	provides	to	generate	random	numbers	is
RandomStream.

RandomStream	in	Unreal	Engine	4
Say	you	want	to	freeze	the	randomly	generated	trees	you’ve	made.	Typically,	when	using
a	random	node	from	UE4’s	artillery,	this	information	will	be	lost	once	you	exit	the	game.
With	RandomStream,	you	can	actually	save	the	seed	that	generated	the	random	output	and
load	the	same	random	output	by	calling	on	this	seed.	So	in	UE4,	you	will	find	a	blueprint
node	called	Make	RandomStream.	This	node	has	one	input	pin	called	Initial	Seed.

The	reason	we	use	a	seed	is	because	this	is	a	pseudo	random-number	generator.	This
means	that	the	numbers	are	calculated	and	are	deterministic.	Pseudo	means	that	we	will
use	algorithms	to	calculate	the	randomness;	however,	by	calculating	the	randomness,	we
technically	know	what	it	will	be	beforehand,	thus	making	it	deterministic.	The	contrast	is
true	randomness,	which	captures	noise	from	a	forest,	waterfalls,	the	atmosphere,	or	even	a
TV	channel.	The	reason	this	will	be	indefinitely	more	random	is	that	the	noise	captured	is
unlikely	to	ever	repeat,	as	with	many	things	in	life.	With	calculations,	there	is	always	a
capacity	because	the	task	is	to	replicate	the	phenomenon	at	a	fraction	of	the	cost.	Initially,
when	we	created	computers,	memory	was	very	important—it	still	is.	But	at	this	point,	we
created	algorithms	to	replace	the	need	for	storing	noise,	but	we	would	rather	have	a	key	or
seed	as	we	are	more	familiar	with	them.	The	reason	for	which	it	can	be	considered	a	key	is
that,	by	having	it,	two	people	on	separate	computers	can	generate	identical	random
numbers.

Now	technically,	if	we	were	to	increase	the	length	of	the	seed	to	something	exponentially
high,	it	would	be	practically	infinitely	random.	You	have	to	add	this	because	we	know	that
there	is	a	definite	end,	while	with	life	there	is	no	finite	end.	So	in	UE4,	randomizing	the
seed	will	directly	affect	the	randomness	of	the	numbers	calculated.	This	is	what	I	do	to
create	practically	unpredictable	randomness.

The	plan
We	will	continue	from	where	we	left	off	in	Chapter	2,	Creating	Basic	AI,	and	continue	to
make	changes	to	our	two	AIControllers.	In	the	past	chapter,	we	set	up	our	Enemy	to	chase
our	Hero	indefinitely.	In	this	chapter,	we	will	introduce	another	state	to	our	Enemy	AI,
which	will	allow	it	to	either	run	away	from	us	or	run	toward	us.	This	represents	the	Enemy
attacking	us	or	fleeing,	depending	on	the	shock	probability	when	we	encounter	the	Enemy.

Let’s	get	started!

Adding	Wander
Here,	we	will	define	three	states	of	AI.	This	will	make	it	easier	when	specifying	actions	in
different	states.	Now,	the	first	state	we	will	add	is	Wander.	It	will	make	the	AI	move
randomly	and	indefinitely.	This	will	be	the	initial	state	of	the	AI,	and	it	will	be	capable	of
transitioning	into	other	states	once	we	approach	the	AI.	The	other	two	states	are	the	two
reactions	that	we	give	the	AI.	The	idea	is	that	when	we	approach	the	AI,	there	is	a	chance
that	it	will	flee	or	attack.	The	chance	is	the	probability	that	we	determined	and	created	in
the	blueprint.

Setting	up	the	project
Let’s	open	Unreal	Engine	4!	Perform	the	following	steps:

1.	 First,	we	have	to	change	our	Enemy	to	act	as	a	wandering	frightened	monster.	So,
double-click	on	the	Enemy	AIController.	Now,	navigate	to	Event	Graph	and	zoom
in.

2.	 We	want	to	create	a	new	variable	for	State	and	make	this	Integer.
3.	 Next,	we	have	to	change	the	Find	Hero	script.	We	will	adapt	this	to	detect	the	Hero.

What	we	also	want	to	keep	is	the	chasing	of	the	Hero	blueprint.	This	will	be	used	to
chase	or	run	from	us	scared,	which	is	the	inverse.	So,	focus	on	the	script.

4.	 Remove	Event	Begin	Play	from	the	beginning	of	the	script.	Next,	pull	back	Event
Tick	from	the	Chase	Hero	script.

5.	 Replace	the	Delay	node	that	is	after	the	Event	Tick	node	in	the	Chase	Hero	script
and	put	a	Switch	on	Int	node.	Then,	pull	the	State	variable	and	connect	it	to	the
Selection	value	pin:

Note
Switch	on	Int	is	a	very	useful	function.	I’ve	used	it	countless	times	to	replace	the
redundant	work	that	you	could	usually	do	in	passes,	such	as	recurring	a	task	a
number	a	times	before	going	to	the	next	index.

6.	 Now,	the	AI	will	constantly	tick	based	on	State.	Different	scripts	are	executed,	which
can	be	transitioned	in	between,	and	this	is	the	basis	for	Finite	State	Machine.

7.	 Next,	let’s	conjoin	our	two	scripts	to	the	Switch	on	Int	node.	We	want	the	Find	Hero
script	to	be	connected	to	the	index	0	of	the	node.	Then,	connect	index	1	of	the	node
to	the	Chase	Hero	script.	So,	you	can	press	Ctrl	and	click	on	index	0,	moving	Move
to	Location	to	index	1	after	connecting	index	0	to	Get	All	Actors	Of	Class.

8.	 So,	we	have	to	check	the	distance	of	the	Actors	element	found	from	Get	All	Actors
Of	Class,	and	then,	if	an	Actor	is	within	range,	we	will	roll	the	chance	of	transiting
into	Attacking	or	Running	away	from	this	Actor:

9.	 Now,	focus	on	ForEachLoopWithBreak,	and	let’s	check	the	current	Actor	element
for	distance	using	the	Get	Horizontal	Distance	To	node.	Place	this	node	and	Get
Controlled	Pawn	and	connect	this	to	the	Target	pin	of	Get	Horizontal	Distance	To.

10.	 From	the	Array	Element	pin,	connect	to	Other	Actor	of	Get	Horizontal	Distance
To.	The	distance	we	want	the	Actor	within	is	512	units.	So,	pull	from	Return	Value,
type	the	less	than	(<)	symbol,	and	compare	it	to	512.	Once	more,	what	we	want	to	do
is	ensure	that	we	don’t	ever	run	from	ourselves.

11.	 Compare	Array	Element	node	to	Get	Controlled	Pawn	using	a	Not	Equal	node.
Then,	create	an	AND	gate	node	and	join	both	the	Boolean	results.	Create	a	Branch
node	from	the	results	from	the	AND	gate	node.	This	Branch	node	should	be	after
Get	Horizontal	Distance	To.

Creating	probability
The	Blueprint	script	we	are	about	to	create	demonstrates	a	simple	yet	effective	probability.
The	system	works	off	the	idea	of	the	simple	lottery	probability	of	0-1	with	a	variant.	So,
you	first	determined	the	chance	that	TRUE	will	return	from	the	function.	Next,	you
determined	the	range	that	the	lottery	will	span	for,	which	is	1	by	default.	The	rest	is	left	to
the	script.	It	now	takes	Change	Weight,	and	Number	Span	then	calculates	an	offset.
From	there,	we	will	calculate	a	range	of	probabilities	from	Chance	Weight.	Then,	we	will
generate	a	random	number	within	the	range	of	our	Number	Span	and	check	whether	it’s
within	the	range	of	the	probability	we	determined	before.	This	small	variant	makes	the
probability	less	predictable.	The	following	image	shows	the	simple	lottery	probability
script	checking	for	a	random	value	within	the	determined	probability	range:

Note	Offset	from	Lottery	in	the	second	one,	which	lands	as	true.	Next	time,	the	range	of
probability	will	not	be	there,	and	a	new	random	value	will	be	calculated.

Non-uniform	distribution	with	RandomStream
The	first	thing	we	want	to	do	is	initialize	RandomStream.	We	can	do	this	by	creating	a
Make	RandomStream	node	and	populating	the	initial	seed	pin	with	a	random	integer	in
Range.	RandomStream	allows	us	to	control	the	random	generation	of	output.	If	we	do	not
change	the	seed	within	RandomStream,	it	will	constantly	produce	the	same	results.	So,
with	that	in	mind,	we	must	constantly	reset	the	seed	within	the	stream	so	that	the	random
output	changes.	Perform	the	following	steps:

1.	 Focusing	back	to	the	Enemy	AIController,	create	Random	Integer	in	Range	and	set
the	Max	value	to	65535.	Then,	pull	from	Return	Value	and	type	Make
RandomStream.

2.	 Now,	we	need	to	create	variables	to	update	RandomStream.	Create	an	Offset	float
with	a	default	value	of	0.	Then,	create	a	ChanceWeight	float	with	a	default	value	of
.25.	Create	a	Max	N	float	with	a	default	value	of	1.

3.	 Then,	create	Event	Begin	Play.	Drag	out	the	Offset	variable	and	make	a	SET	node.
Drag	from	the	exec	pin	of	Event	Begin	Play	to	the	SET	node	you	just	created.	Next,
create	Random	Float	in	Range	from	Stream	and	pull	from	Return	Value	to	the
Offset	Float:

4.	 We	now	need	to	plug	in	our	RandomStream	to	this	node	and	connect	the	Max	N
variable	to	the	Max	Float	of	Random	Float	in	Range	from	Stream.	This	will	now
create	a	random	offset	at	the	beginning	of	the	game.

5.	 Now,	let’s	start	the	probability	script.	Let’s	get	our	variable	and	create	Random	Float
in	Range	from	Stream.	Then,	we	want	to	create	two	nodes	from	this	to	compare
Return	Value.	We	want	to	check	whether	the	value	is	greater	than	or	less	than.	Then,
pull	a	pin	and	create	an	AND	logic	gate.	Finally,	pull	the	other	Boolean	compare.

6.	 Next,	pull	the	result	of	AND	to	a	new	Branch	node.	What	we	need	to	do	next	is
compare	the	random	result	to	Lottery	Probability	Range	we	calculated	using
Offset:

7.	 So,	get	Offset	from	the	variables.	We	want	to	put	this	in	modulo	(%)	and	then
connect	it	out	to	the	greater	than	(>)	compare	node.

8.	 Next,	we	want	to	get	ChanceWeight	from	the	variables.	Then,	we	will	multiply	this
by	the	Max	N	value	to	calculate	the	probability	range.	We	will	do	two	things	with	the
results	of	this	calculation,	as	in	the	next	steps.

9.	 First,	we	want	to	get	the	difference	from	the	Max	N	value	with	the	results.	Then,	we
will	connect	this	to	modulo	(%).

10.	 Next,	we	want	to	add	the	probability	range	to	the	results	of	modulo	(%).	Then,	we
will	pipe	this	into	a	clamp	for	safety.	We	will	set	the	Min	value	to	0	and	Max	to	Max
N.	The	results	of	this	clamp	plugs	into	the	less	than	(<)	of	the	compare	node	shown
as	follows:

Creating	transitions
Transitions	help	apply	the	appropriate	actions	to	what’s	being	perceived	in	the	AI’s
environment.	They	also	continue	the	execution	flow,	and	this	is	what	makes	Finite	State
Machines	so	special.	We	will	apply	this	in	our	project	by	transiting	into	Flee	or	Attack
state,	and	after	sometime,	it	will	calculate	whether	it	should	flee	or	continue	attacking.
Once	no	enemy	is	found,	the	AI	will	transition	back	into	a	wandering	state.	Follow	these
steps:

1.	 So,	from	the	Branch	node	we	last	created,	let’s	set	our	State	variable	on	our	True
pin	for	the	Branch	node.	Then,	we	will	set	another	State	variable	on	the	False	pin
for	the	Branch	node.	From	there,	let’s	set	the	True	Set	State	value	to	1,	then	False
Set	State	to	2.

2.	 Next,	let’s	rename	our	Hero	variable	to	Target	just	to	make	it	easier.	Next,	we	want
to	set	Target	after	our	two	other	Set	State	variables.

3.	 Then,	we	want	to	connect	both	the	Set	State	variable	nodes	to	the	Set	Target
variable	node.	The	Set	Target	node	should	be	set	to	Break	the
ForEachLoopWithBreak.

4.	 Now	to	reset	the	RandomStream.	Let’s	zoom	out	and	find	the	Event	Tick	node.
From	there,	let’s	pull	pin	and	create	Sequence	between	Switch	on	Int.

5.	 From	then_1	of	the	Sequence	node,	let’s	create	Delay	with	Duration	of	0.2	second.
Then,	pull	from	Return	Value	of	Make	Random	Stream	and	find	Reset	Random
Stream.	This	will	reset	the	stream,	and	if	you	have	Random	Integer	in	Range
connected	as	we	do,	it	will	generate	a	new	random	Int	each	time	it’s	reset.

6.	 Plug	this	in	after	Delay	so	that	the	reset	happens	every	second.	Then,	we	want	to	pull
from	reset	to	the	offset	variable	of	the	SET	node	we	created	from	Event:

Set	offset	to	a	random	value

7.	 Now,	let’s	create	a	new	Sequence	node	by	pulling	from	index	1	of	the	Switch	on	Int
node.	Then,	connect	index	2	of	the	Switch	on	Int	node	to	the	Sequence	node	from

before.
8.	 Now,	let’s	pull	from	Then	1	of	the	Sequence	node	and	create	a	Delay	node.	This

node	will	transition	our	AI	back	to	the	Wandering	state	from	where	it	can	detect
Enemy	again.

9.	 So,	let’s	create	Random	Float	in	Range	from	Stream	and	connect	Stream	to
Random	Stream,	which	we	created	earlier.	Then,	set	the	Min	value	to	3	and	the
Max	value	to	5.

10.	 After	the	Delay	node,	set	the	State	variable	to	0.	Then,	set	Target	to	none:

Fleeing	and	attacking
So,	we	will	take	from	our	old	bit	and	add	a	small	change,	which	will	make	the	character
run	away	from	the	Target	instead	of	towards	it.	This	will	basically	demonstrate	the
probability	that	you	can	give	your	AI	reactions	to	various	stimuli.	Perform	the	following:

1.	 We	will	get	our	State	variable.	Then,	we	want	to	subtract	1	from	this,	getting	a	0	or	1
index.	Next,	we	want	to	create	a	Select	node	and	plug	the	results	of	the	subtraction
into	the	node.

2.	 From	there,	we	want	Option	0	to	be	1	and	Option	1	to	be	-1.	This	will	make	the
character	either	Run	or	Flee	from	Target.	Now,	zoom	in	to	the	Get	Direction	Vector
node.

3.	 Let’s	multiply	Return	Value	by	the	Get	Direction	Vector	node	results.	You	must
first	convert	Int	to	Float.	Then,	multiply	this	by	the	vector.	Then,	pull	the	vector	back
into	Make	Rot	from	X:

Back	to	the	action
Let’s	focus	back	on	Enemy	EventGraph	at	the	bottom.	We	want	to	implement	a	way	for
our	AI	to	wander.	Perform	the	following	steps:

1.	 Start	by	searching	for	Get	Controlled	Pawn.
2.	 Next,	we	want	to	perform	Get	Actor	Location	on	the	controlled	pawn.	Then	the

vector	it	returns	will	be	pinned	to	a	Vector	+	Vector	node.
3.	 From	there,	we	want	to	create	a	Random	Unit	Vector	node	to	generate	a	random

vector	from	0-1	on	each	individual	axis.
4.	 We	must	pull	from	the	Stream	variable	again	and	create	Random	Float	in	Range

from	Stream.	Set	the	Min	value	to	-550	and	Max	to	550.	Then,	we	want	to	multiply
what	it	returns	by	Random	Unit	Vector.

5.	 Lastly,	the	multiplied	vector	is	added	to	the	Vector	+	Vector	node	that	we	created	in
Step	2:

6.	 Now,	we	need	to	take	the	results	of	the	Vector	+	Vector	node	and	create	a	Move	to
Location	node	to	instruct	the	possessed	pawn	to	move	to	the	Move	to	Location	node
of	the	vector.

7.	 We	will	take	a	look	back	at	our	first	state,	which	checks	for	Actors	within	a	radius.
After	ForEachLoopWithBreak	is	completed,	we	want	it	to	execute	Move	to
Location.	So,	pull	from	that	and	first	create	DoOnce.

8.	 We	will	do	this	because	we	don’t	want	the	bot	to	constantly	be	told	to	move	to	a
location;	we	would	rather	have	it	do	this	after	a	random	delay.	So,	now	connect	the
Completed	pin	to	Move	to	Location.

9.	 From	there,	we	want	to	assign	a	new	event.	This	event	will	reset	DoOnce	after	the
random	delay.	So,	after	Event	Begin	Play,	we	want	to	create	Assign
MoveCompleted.

10.	 From	RecieveMoveCompeted_Event,	create	a	Delay	node.	Pulling	from	the
Duration	node,	we	want	to	find	Random	Float	in	Range	from	Stream.	We	want	to

set	the	Min	value	to	2	and	Max	value	to	5.
11.	 After	the	Delay	node	is	created,	we	want	to	connect	this	to	the	DoOnce	node’s	Reset

that	we	created	in	Step	7:

The	results!
We	should	now	be	able	to	set	the	chance	that	our	AI	will	flee.	This	probability	script	was
made	less	predictable	with	the	random	variant	offset	for	the	probability	range.	We
accomplished	this	by	creating	a	Finite	State	Machine,	which	transitions	between	the
necessary	states	at	any	given	moment.	So	the	scenario	is	that	we	are	approaching	the
wandering	AI,	and	once	we	are	in	range,	the	AI	will	either	attack	or	flee.	We	have	given	it
a	25%	chance	of	fleeing	by	default.	The	AI	flees,	and	the	timer	to	reset	the	bot’s	state
starts.	Seconds	later,	the	AI	returns	to	the	wandering	state.

Summary
In	this	chapter,	you	learned	about	randomness	and	probability	and	how	they	are
quantified.	We	used	the	tools	within	Unreal	Engine	to	apply	these	theories.	We	understood
this	using	a	pseudo	number	generator,	and	we	technically	calculated	randomness	on	a
limited	spectrum	defined	by	the	seed.	We	can	use	these	non-uniform	numbers	to	create
probability	functions,	which	tell	the	AI	either	to	attack	or	flee.	You	also	learned	to	create	a
FSM	during	the	setup	to	create	the	states	of	the	AI.

In	the	next	chapter,	we	will	explore	the	different	techniques	to	introduce	movement	to	our
game’s	pawn.	We	will	cover	Path	Finding,	Navigation	Mesh,	EQS,	and	other	related
components	that	directly	affect	movement.

Chapter	4.	Introducing	Movement
In	this	chapter,	you	will	learn	how	to	introduce	movement	into	our	AI	characters	within
Unreal	Engine	4.	We	will	also	go	over	the	fundamental	algorithms	that	allow	us	to	instruct
our	characters	to	navigate	to	a	point	on	a	2D	plane.	We	will	use	other	tools	that	will	aid
our	AI	in	navigating	the	designated	paths.

The	topics	that	we	will	cover	in	this	chapter	include	the	following:

Path	Finding
NavMesh
Navigation	and	navigation	modifier
Blueprint	navigation	nodes

Overview
In	this	chapter,	movement	will	be	the	main	goal.	How	we	achieve	movement	or	use	other
tools	to	introduce	movement	are	the	questions	we	have	to	ask.	Now	that	you’re
comfortable	with	some	of	the	tools	we	use	in	AI,	we	have	to	make	the	AI	capable	of	its
most	common	action:	movement.	The	system	we	use	to	introduce	movement	into	AI	is
called	Path	Finding.

The	way	Path	Finding	works	is	by	getting	positions	within	the	space	designated	as
traversable.	These	start	and	end	positions	are	fed	to	a	function	that	computes	the	shortest
path	between	the	two	positions.	The	algorithm	uses	relative	position	information,	such	as
whether	or	not	it	is	blocked	by	an	object	or	actor,	and	prevents	this	position	from	being
traversable.	This	is	extremely	useful	when	trying	to	generate	a	path	in	a	world	with
dynamically	moving	objects.

Path	Finding
We	will	break	the	operation	of	Path	Finding	into	different	components	that	all	work
cohesively.	The	first	component	is	NavMesh,	which	represents	the	traversable	path.	This
isn’t	the	only	Navigable	Mesh	generation	component,	but	this	is	also	the	most	commonly
used	representation	of	the	Navigable	Mesh.	Another	component	is	NavMeshModifiers,
which	can	serve	different	purposes.	A	few	examples	are	as	follows:

Influence	Mapping:	This	allows	you	to	feed	the	AI	input	information	based	on	their
location	on	NavMesh
Null	Paths:	These	simply	allow	you	to	cut	out	areas	of	NavMesh
Allowed	Paths:	These	simply	allow	you	to	block	any	AI	that	isn’t	allowed	to
navigate	this	area	of	NavMesh

The	A*	algorithm
At	the	core	of	the	Path	Finding	system	is	an	algorithm	that	calculates	the	shortest
navigable	path	between	two	points	on	NavMesh.	Dijkstra’s	algorithm	is	named	after	the
computer	scientist	Edsger	Dijstkra,	who	originally	created	it	in	1956	and	later	published	it
in	1959	to	find	the	shortest	paths	between	two	points.	There	are	a	few	path	finding
algorithms	worth	mentioning,	but	the	most	commonly	used	in	gaming	is	a	variant	of
Dijkstra’s	algorithm.	The	variant	is	called	the	A*	algorithm.	A*	works	by	having	a	list	of
traversable	points.	Then,	from	the	start	position,	we	want	to	search	for	the	shortest	path	in
each	available	direction.	We	can	determine	this	by	heuristic	values.	These	values	will	tell
us	how	much	it	costs	to	traverse	to	the	next	point	based	on	some	predefined	rules.	In	A*,
we	traverse	from	a	point	to	another	point	to	reduce	the	exploration	cost.	The	big	difference
between	the	two	algorithms	is	the	fact	in	A*	that	you	have	a	heuristic	value,	which	affects
your	pathing	decisions.	Heuristic	values	are	obstacles	to	the	predictive	cost	to	travel	to	the
next	possible	point.	When	the	path	is	generated,	we	want	the	lowest	heuristic	value.	So
this	means	that	by	setting	the	heuristic	values	to	0,	the	algorithm	is	the	same	as	Dijkstra’s.
Dijkstra’s	algorithm	scans	more	nodes,	usually	making	it	less	efficient	because	it	doesn’t
predict	the	cost	of	traversing	paths.

Let’s	take	the	following	grid	as	an	example:

Dijkstra’s	algorithm	takes	every	available	point	into	account.	So,	in	this	example,	we’ll
start	from	the	upper-left	corner	and	try	to	get	to	the	lower-right	corner,	and	all	the	adjacent
nodes	are	considered	to	be	connected	and	can	be	traversed	from	each	other.	Perform	the
following	steps:

1.	 The	algorithm	scans	all	the	available	nodes,	keeping	a	record	of	the	shortest	found
path.	Nodes	with	a	different	grayscale	represent	that	the	algorithm	has	to	explore
different	locations	to	find	the	path:

2.	 Once	the	goal	is	discovered,	a	trace	back	sequence	is	put	in	action,	thus	creating	the
path.

This	can	take	a	lot	of	steps,	and	that’s	the	reason	for	which	we	adapted	heuristics	in	A*.
Instead	of	searching	each	node,	we	will	continue	from	the	shortest	current	path	to	the	goal.

An	example	with	A*	is	represented	in	the	following	grid.	The	algorithm	will	start	from	the
first	node	(in	the	upper-left	corner)	and	then	scan	the	neighboring	nodes	to	calculate	the
movement	cost.	The	node	at	which	the	cost	is	the	least	is	selected,	and	the	nodes	that	are
not	selected	are	put	on	the	list	of	the	scanned	nodes.	This	avoids	us	having	to	go	to	these
nodes	again	for	this	query:

From	step	1,	the	neighbouring	nodes	are	scanned	and	checked	for	heuristic	values	or	path
cost	to	determine	the	next	optimal	step.	What	results	is	a	direct	path	(if	unobstructed).

There	are	other	algorithms	available,	but	A*	is	easy	to	implement	and	isn’t	resource-
heavy,	so	it	is	commonly	implemented	in	gaming	engines	as	a	way	of	creating	paths
between	two	points	on	a	grid.

Navigation	Mesh
Navigation	Mesh	in	Unreal	Engine	4	allows	us	to	tell	the	engine	where	our	traversable
path	should	be	generated,	and	we	can	optimize	this	to	help	generate	more	accurate	paths
for	our	AI.	We	will	call	Navigation	Mesh	“NavMesh”	for	short	as	most	game	developers
are	familiar	with	this	term.	If	you’re	in	Unreal	Engine	and	you	navigate	to	the	Modes
panel	under	Volumes,	you’ll	see	NavMeshBoundsVolume.	This	is	a	volume	that	you	can
use	to	cover	the	geometry	and	generate	NavMesh	on.	I	have	a	sample	of	what	this	would
look	like.	If	you	can’t	see	the	green	mesh	generated	by	NavMesh,	make	sure	you	check
the	Navigation	option	(press	P	for	shortcut)	in	the	Show	menu	onscreen:

RecastNavMesh
On	each	level,	you’ll	see	a	node	within	World	Outliner	called	RecastNavMesh-Default.	If
you	click	on	it,	you	can	explore	the	default	options	that	affect	Navigation	Mesh	within	the
level.

If	you	go	down	to	Generation,	this	is	what	you	will	begin	to	tweak	according	to	your
needs.	If	you’re	trying	to	get	more	performance	when	rebuilding	at	runtime,	or	precision
with	your	agent’s	movement,	try	to	optimize	these	values:

I	will	briefly	go	over	some	of	the	properties	to	give	you	an	understanding	of	what	role
they	play	and	how	they	affect	performance.	Let’s	look	at	some	of	the	most	important
properties	in	RecastNavMesh:

Cell	Size:	This	is	the	2D	size	of	the	voxel,	basically	a	3D	pixel,	which	represents	a
space	to	navigate.	This	is	the	floor	area	of	the	voxel.	This	directly	correlates	to	the
resolution	of	NavMesh.	Smaller	sizes	here	generate	more	voxels,	resulting	in	better
movement	precision.	Unfortunately,	performance	takes	a	hit	during	the	generation	of
NavMesh	due	to	this.
Cell	Height:	This	is	the	height	of	the	voxel.	This	value	correlates	to	Agent	Max	Step
Height,	and	it	is	suggested	to	be	kept	at	half	its	value.	NavMesh	will	not	be
generated	if	the	Cell	Height	value	isn’t	at	least	.1	less	than	that	of	Agent	Max	Step
Height.
Tile	Size	UU:	When	this	is	at	lower	values,	it	increases	the	NavMesh	Generation
performance.	Try	enabling	Draw	Poly	Edges	to	see	this	in	action.
Agent	settings	(Radius,	Height,	Max	Height,	Max	Slope,	Max	Step	Height):	are

specific	to	your	agents	and	should	be	specified	appropriately.
Min	Region	Area:	This	gets	rid	of	what	looks	to	be	artifacts	of	pieces	of	NavMesh
Generation,	which	are	too	insignificant	to	navigate.

If	you	have	any	obstacles	in	your	NavMesh	and	NavMesh	is	being	generated	on	top	the
obstacles,	then	this	object	is	treated	as	geometry,	and	for	better	performance,	you	can
make	your	mesh	be	recognized	as	a	Dynamic	Obstacle.	This	prevents	NavMesh	from
being	generated	on	top	of	it.	Now,	to	affect	this	area,	you	must	set	the	Offset	and	Extent
values	for	the	Box	Collision	property	as	well.	Take	a	look	at	the	following	screenshot:

Let’s	walk	through	the	steps:

1.	 Let’s	create	a	new	Box	Collision	element.	This	will	populate	the	array	with	an
element	containing	two	values.

2.	 We	need	to	set	the	Offset	value	to	the	negative	of	half	the	width,	length,	and	height
of	NavMesh.	The	Offset	value	is	the	position	that	the	collision	begins	from.

3.	 Next,	set	our	Extent	value	to	half	the	width,	length,	and	height	of	our	NavMesh.	The
Extent	value	is	how	much	it	extends	from	the	center	point	of	NavMesh.	This	means
that	it	correlates	to	half	the	volume	size.

In	this	NavMesh,	for	example,	I’ve	set	the	properties	accordingly;	take	a	look:

As	you	can	see	in-game	in	the	following	screenshot,	the	correct	location	is	affected	by	the
NavArea	Null	class	we	set	on	the	Is	Dynamic	Obstacle	option:

The	movement	component
The	movement	component	is	the	driving	force	behind	animation.	Similar	to	the	other
types	of	movement	components,	such	as	a	vehicle’s	movement	component,	we	will
provide	inputs,	which	will	then	communicate	with	other	components	in	the	backend	to
properly	simulate	animation	or	gear	ratio	changes.	What	this	means	is	that	other	functions
can	also	influence	the	pawn	that	has	the	movement	component.	So,	if	our	Behavior	Tree
tells	the	AIController	to	focus	on	another	pawn,	the	AIController	will	influence	the
direction	that	the	pawn	it	possesses	is	facing.	This	means	wonders	for	not	having	to
explicitly	tell	your	pawn	this	information.

The	AIController
We	previously	used	the	AIController	to	move	our	pawns	in	Chapter	2,	Creating	Basic	AI,
and	Chapter	3,	Adding	Randomness	and	Probability,	but	never	took	the	time	to	understand
what’s	happening	within	Unreal	Engine	4	to	make	it	happen.	Having	this	understanding
allows	you	to	expand	on	movement	components	when,	for	example,	you	want	to	create
your	special	extensions	of	the	movement	component	to	support	the	receiving	of
instructions	such	as	Move	to	Location	for	a	vehicle.

The	AIController	is	a	controller	specifically	built	for	AI.	Similar	to	the	PlayerController,	it
controls	the	pawn	it	currently	possesses.	The	main	difference	is	that	the	AIController
comes	with	functions,	which	allow	you	to	move	AI	using	tools	such	as	Move	to	Location.
With	Move	to	Location,	you	can	specify	the	Acceptance	Radius	value,	whether	or	not	to
use	Path	Finding,	and	other	useful	options.	There	is	also	a	simple	version	of	Move	to
Location,	which	sometimes	provides	smoother	movement	at	the	cost	of	not	able	to	change
the	options.	This	means	that	all	the	options	are	default,	as	shown	in	the	Move	to	Location
node.

It’s	called	Simple	Move	to	Location	and	is	located	as	in	the	following	screenshot:

Let’s	start!
Open	up	Unreal	Engine	4,	and	let’s	start	a	new	Third	Person	template	project.	We	want
this	so	that	we	can	use	the	Third	Person	pawn	as	one	of	our	AI-controlled	pawns.	So,
select	the	settings	as	in	the	following	screenshot	and	hit	Create	Project:

Next,	we	want	to	create	our	new	AIController,	and	this	will	be	responsible	for	telling	our
pawn	to	move	between	two	points.	The	plan	is	to	introduce	some	obstacles	to	see	the
effect	we	can	have	on	the	pathing	of	our	AI.	Perform	the	following	steps:

1.	 Let’s	start	by	going	into	the	Blueprint	folder.	Right-click	to	create	a	new
AIController	class	and	name	it	SoldierAI.	This	AIController	will	be	responsible	for
navigating	the	pawn	provided	by	the	starter	content.

2.	 Remove	the	pawn	from	the	level	initially	set	up	by	Content	Example.	Then,	we	want
to	place	two	new	ThirdPersonCharacter	pawns	in	the	level	across	from	each	other.
Next,	we	want	to	open	up	this	ThirdPersonCharacter	blueprint	and	access	its

default	values.
3.	 From	here,	let’s	find	this	pawn’s	default	AIController	and	change	this	value	to	our

new	AIController	class	named	SoldierAI.	What	this	will	do	is	always	spawn	our
pawn	with	our	AIController:

Save	all!	Let’s	proceed	to	the	next	part	of	this	chapter!

Waypoints
In	this	chapter,	waypoints	represent	the	points	that	bots	navigate	to.	We	will	make
additional	changes	to	our	waypoints	to	limit	who	can	traverse	these	points.	This	will	be
established	by	creating	an	array	of	actors	on	individual	waypoints.	When	the	pawns	go	to
access	the	list	of	available	waypoints,	they	will	only	add	the	waypoints	they’re	allowed	to.
Here	are	the	steps	to	perform	for	this:

1.	 Start	in	the	same	Blueprint	folder	as	before.	Right-click	on	it	and	create	a	new
blueprint.	Go	to	Custom	Classes	and	select	the	Target	Point	actor.	We	will	use	this
for	the	sprite	it	provides.

2.	 Name	this	new	Target	Point	subclass	Waypoint	and	hit	Okay.
3.	 Open	our	new	Waypoint	custom	blueprint	and	create	a	new	public

ThirdPersonCharacter	pawn	array	variable	called	Allowed	Access.	Then,	select
Editable	so	that	we	can	modify	this	value	directly	from	Unreal	Editor:

4.	 Now,	place	some	waypoints	in	the	world,	and	we	want	to	try	to	make	this	random.
This	will	allow	our	pawn’s	path	to	be	more	controlled	when	we	go	over	some	other
topics	later	in	the	chapter.

5.	 I	choose	to	place	seven	waypoints	in	my	world	and	have	them	share	about	three	of
them	to	create	some	uniqueness	in	the	paths.	So,	inside	one	of	the	nodes,	let’s	add
both	of	the	available	pawns	that	we	placed	in	the	world	previously.

Navigation
Now	that	we	have	our	soldiers	in	the	world,	we	want	to	navigate	them	to	their	respective
waypoints.	This	will	be	done	through	the	AIController	we	set	up	on	our	soldier.	If	we
focus	again	on	Unreal	Engine,	we	can	get	started!	Follow	these	steps:

1.	 Open	the	AIController	class	we	created	earlier	and	named	SoliderAI.
2.	 Then,	we	want	to	navigate	to	the	EventGraph	section.	From	there,	we	want	our

AIController	to	begin	navigating	to	its	first	route	as	soon	as	it	possesses	a	worthy
pawn.	So,	let’s	add	an	event	to	drive	this	action	(I	encourage	the	use	of	events).	The
one	we	are	looking	for	is	called	Event	On	Possess.	This	will	also	return	the	pawn	it
possessed,	which	we	can	use	to	compare	with	the	Allowed	Access	list	from
waypoints.

3.	 Pull	from	the	exec	pin,	and	let’s	assign	a	new	event	called	RecieveMoveCompleted.
This	event	will	continue	the	pawn	to	the	next	route	as	soon	as	it	completes	the
previous	one:

4.	 Now,	after	the	Bind	Event	exec	pin,	let’s	put	in	Do	Once	to	prevent	this	from	being
called	twice.

5.	 Next,	let’s	right-click,	search	for	the	Get	All	Actors	of	Class	node,	and	select	our
custom	blueprint	called	Waypoints.	We	want	to	now	search	through	the	available	list
of	waypoints	and	check	whether	we’re	allowed	to	navigate	there.

6.	 So,	create	a	ForEachLoop	node	from	the	Out	Array	of	Actors	array	and	pull	the
Allowed	Access	array	from	Array	Element.	Then,	we	want	to	pull	the	pawn

returned	from	the	Event	On	Possess	variable	and	cast	it	to	the	ThirdPersonCharacter
pawn.

7.	 From	there,	let’s	try	to	find	the	pawn	in	the	Allowed	Access	array.	The	array	will
return	-1	if	nothing	is	found,	which	means	that	we	do	not	have	access!

8.	 We	need	to	pull	a	Compare	Int	!=	Int	Boolean	operation	and	compare	our	results
from	Find	with	-1.	This	will	then	be	pumped	into	a	Branch	node.

9.	 Now,	when	this	Branch	node	returns	True,	this	means	that	we	are	allowed	to
navigate	to	the	current	Array	Element	pin,	and	we	should	add	it	to	our	points	to
navigate	to.

10.	 Now,	let’s	create	a	new	Routes	array	on	our	pawn	to	hold	the	waypoints	we	can
navigate.	Then,	we	will	pull	this	node	to	the	Branch	node	we	just	created	and	pull
Add	from	the	array	node.	This	will	allow	us	to	quickly	access	the	routes	we	have
assigned	to	us.

11.	 Now,	we	need	to	tell	the	pawn	to	navigate	to	the	waypoint	after	this	operation	is
completed.	This	can	be	done	by	pulling	another	Routes	array	out	past	the	last	nodes
we	placed.

12.	 We	want	to	shuffle	our	Routes	array	so	that	our	next	destination	is	random.	You	can
do	this	by	pulling	from	the	array	and	searching	for	SHUFFLE.	This	should	be	called
last	before	our	next	operation:

13.	 Next,	we	have	the	location	that	the	pawn	needs	to	go	to,	and	we	need	to	tell	the	pawn
to	move.	We	have	two	options:	the	first	is	to	provide	the	Move	to	Location	node
with	a	location,	and	the	second	is	to	provide	an	actor	and	allow	the	engine	to	handle
finding	the	destination.	I	will	choose	the	latter	for	this	example.

14.	 Right-click	and	search	for	the	Move	to	Actor	node,	and	we	want	to	pump	the	first
actor	in	the	index	from	the	Routes	array	we	created	earlier:

15.	 From	there,	let’s	track	back	to	our	ReceiveMoveCompleted	event	and	pull	from	this
to	our	SHUFFLE	node.	Now	that	this	is	completed,	we	want	to	go	back	to	the	editor.
Let’s	simulate	and	see	what	AI	does!

Now,	let’s	get	back!

Navigation	Modifiers
Do	you	remember	when	we	talked	about	heuristics?	Navigation	Modifiers	allow	you	to
directly	affect	the	cost	of	navigating	areas	in	which	the	modifier	directly	overlaps.	You	can
also	represent	this	affected	area	with	a	new	color.

Now,	in	our	example,	we	will	analyze	the	behavior	of	AI	as	it	traverses	the	different
Navigation	Modifiers	we	set	up.	What	you	want	to	understand	from	this	is	that	heuristics
help	to	find	an	optimal	solution	faster	than	Dijkstra’s	algorithm	alone	while	utilizing	the
same	method	of	discovery.

So,	for	example,	if	you	have	a	cityscape	and	want	your	AI	to	stay	on	the	sidewalks	and	out
of	the	streets	as	much	as	possible,	you	could	place	Navigation	Modifiers	in	the	streets,
which	makes	traversing	the	area	highly	costly.	So,	your	AI	will	only	ever	traverse	these
areas	if	the	appropriate	path	is	blocked	off	by	other	high	costs,	such	as	obstacles.

Now,	let’s	head	to	Unreal	Engine	4	editor	and	get	ready	to	create	our	own	obstacles	to	see
this	behavior	in	action.	We	will	also	touch	on	NavModifierVolume	and	how	you	can	use
it	in	Unreal	Engine	4.

Back	in	the	editor
Let’s	navigate	and	look	at	the	Modes	window.	In	the	first	tab,	we	want	to	click	on
Volumes.	Now,	within	Volumes,	you’ll	see	NavModifierVolume,	and	this	will	need	to	be
dragged	into	the	level:

1.	 Drag	Multiple	NavModifierVolume	into	the	level.	We	want	these	volumes	to	block
the	direct	paths	between	the	waypoints	we	created	earlier.

2.	 So,	after	dragging	the	volumes	out,	we	should	have	some	nice	separation	between
NavModifierVolume	and	Waypoints.	The	screen	should	look	similar	to	the
following	screenshot:

3.	 Next,	we	need	to	create	NavArea,	which	will	override	the	properties	of	the
Navigation	Mesh	that	NavModifierVolume	overlaps.

The	NavArea	class
This	class	is	responsible	for	applying	the	adjusted	cost	of	NavModifierVolume.	This	also
goes	to	say	that	NavModifierVolume	is	used	to	affect	the	Navigation	Mesh.	NavArea
classes	are	used	explicitly	to	override	properties	or	functions	in	the	affected	Navigation
Mesh.	Today,	we	will	create	two	NavArea	classes	to	represent	two	different	types	of
environmental	situations.	One	will	be	the	representation	of	water	and	the	other,	mud.	The
theory	behind	this	is	that	water	would	have	a	high	entry	cost	because	it	is	not	as	fast	as
stepping	in	mud,	but	mud	would	have	a	low	travel	cost	increase	because	it’s	not	easy	to
walk	in.

With	this	in	mind,	let’s	move	on	to	the	next	step,	which	is	creating	different	NavArea
classes	to	apply	to	our	NavModifierVolume	actors:

1.	 Right	click	on	our	Blueprint	folder	within	Content	Browser	and	go	to	Blueprint
Class.

2.	 From	there,	we	want	to	go	to	Custom	Classes	at	the	bottom	of	the	window.
3.	 Search	for	NavArea,	and	let’s	create	a	new	subclass	from	this.
4.	 After	creating	one	more	NavArea,	let’s	name	one	AreaOfMud	and	the	other,

AreaOfWater.
5.	 Double-click	on	AreaOfMud,	and	let’s	go	to	Default	Properties.
6.	 In	there,	you	will	see	Default	Cost	and	Fixed	Area	Entering	Cost.
7.	 We	want	the	Default	Cost	value	to	be	2.5,	and	this	will	affect	the

NavModifierVolume	actor	it	belongs	to.
8.	 For	Fixed	Area	Entering	Cost,	we	will	leave	this	at	0.0	for	mud.	Lastly,	change	the

Draw	Color	color	to	brown	so	that	we	know	what’s	affecting	the	Navigation	Mesh.
As	we	stated	earlier,	entering	mud	is	relatively	easy	in	comparison	to	water:

9.	 Let’s	close	this	and	then	open	AreaOfWater.
10.	 We	want	to	change	Default	Cost	to	1.5,	and	let’s	change	Fixed	Area	Entering	Cost

to	35.	These	values	could	be	tuned	according	to	the	specific	game	you	are	working
on.	And	of	course,	change	Draw	Color	to	something	similar	to	light	blue	to	represent
water.

11.	 Save	and	close	and	then	go	back	to	the	editor!
12.	 Now,	let’s	go	and	apply	these	NavAreas	to	the	NavModifierVolumes	we	placed	on

the	level	earlier.
13.	 Once	you	do	that,	you	should	now	see	Draw	Color	updated.	Let’s	hit	Play	and	now

observe	our	AI!

The	navigation	cost
As	you	can	see,	the	AI	does	exactly	as	you	predict.	It	avoids	the	mud	because	of	the	cost
that	is	applied	as	it	traverses	NavModiferVolume,	and	sometimes,	water’s	Fixed	Area
Entering	Cost	wards	off	the	AI,	although	more	than	often,	the	AI	is	found	traversing	the
water	because	once	you’re	in,	everything	is	okay!	This	was	usually	the	trick	for	me.	So,
with	this	said,	I	hope	you’ve	understood	the	A*	algorithm	and	its	search	to	find	the	most
optimal	path.

Summary
In	this	chapter,	we	covered	the	different	tools	that	allow	us	to	control	and	influence	the
behavior	of	our	AI’s	movement	using	NavModifierVolumes	and	other	recast	properties.
We	also	learned	how	to	tell	our	AI’s	controlled	pawn	to	navigate	to	the	waypoints	that
belonged	to	them.	Lastly,	we	covered	more	fundamentals,	such	as	the	pathing	algorithm
originally	created	by	Edsger	Dijstkra.	Next,	we	learned	that	we	can	optimize	his	original
algorithm	in	favor	of	performance	and	resources	and	achieve	this	through	heuristics.

In	the	next	chapter,	we	will	create	a	behavior	tree	and	adapt	what	we’ve	learned	from	the
previous	chapters	to	create	some	interesting	AI	interactions.	We	will	also	take	advantage
of	the	sensory	system	provided	in	Unreal	Engine	4.

Chapter	5.	Giving	AI	Choices
In	this	chapter,	you	will	learn	how	to	introduce	autonomous	behavior	into	your	characters
using	Behavior	Tree.	Behavior	Tree	is	a	methodology	that	allows	you	to	view	your	AI
logic	visually.	Behavior	Tree	is	a	type	of	hierarchical	task	network	resulting	in	a	state-
oriented	design.	So,	each	state	will	dictate	our	current	task	instead	of	a	goal.

This	chapter	will	cover:

Behavior	Tree
Blackboard
The	components	of	Behavior	Tree,	including	Selector,	Decorator,	Service,	and	so	on
Building	a	Behavior	Tree	to	run	on	a	dog	character

Behavior	Tree	in	AIController
In	this	chapter,	we	will	use	Behavior	Tree	and	scripts	to	create	our	autonomous	state-
oriented	behavior.	However,	before	we	get	to	a	higher-level	control	of	our	AI,	let’s
understand	some	of	the	fundamental	components	of	what	allow	us	to	control	our	AI.	So,
from	the	start,	we	have	AIController,	which	is	similar	to	PlayerController;	this	controller
is	responsible	for	interpreting	all	our	AI	input.	This	input	is	applied	by	the	world	when	we
request	that	it	is	moved.

With	this	in	mind,	we	can	introduce	influence	through	multiple	avenues	within	the	code.
We	could	tell	AIController	to	move	to	a	location,	or	we	can	tell	AIController	to	run
Behavior	Tree.	What’s	also	very	important	to	understand	is	that	movement	is	applied	with
the	CharacterMovement	component.	If	you	created	a	subclass	from	CharacterMovement,
you	can	extend	and	continue	to	use	the	same	Behavior	Tree	to	introduce	movement	in
theory.

One	example	of	this	is	the	car	AI	project	I	created	for	the	Unreal	Engine	4	development
forums.

The	link	for	the	same	is	https://forums.unrealengine.com/showthread.php?25073-
UPDATED-5-16-A-I-Templates-Bot-Car-amp-Flying-AI.

The	internal	movement	component	was	responsible	for	taking	the	Move	To	request	from
the	Behavior	Tree.	So,	this	allowed	me	to	tell	my	car	to	go	to	certain	locations,	know
when	it	was	finished,	and	simply	repeat	the	process.	This	is	powerful	if	you’re	trying	to
create	AI	because	a	majority	of	what	you	need	to	do	is	move.

https://forums.unrealengine.com/showthread.php?25073-UPDATED-5-16-A-I-Templates-Bot-Car-amp-Flying-AI

Creating	Behavior	Tree
Moving	onto	Behavior	Trees,	let’s	begin	to	construct	our	first	tree!	In	this	project,	we	will
create	AI	that	resembles	the	behavior	of	a	neighborhood	dog.	It	will	change	its	behavior
state	randomly	every	so	often	and	continue	to	search	for	any	mailman,	who	may	loiter	by
its	dog	pin.

This	will	touch	on	using	Environment	Query	System	(EQS),	which	is	still	an
experimental	but	powerful	feature	in	Unreal	Engine	4.	It	will	be	responsible	for	handing
the	dog	a	new	position	to	search	for	the	mailman	in.	So,	if	you’re	ready,	let’s	open	up	a
new	Third	Person	project.

Let’s	create	a	few	things	for	our	dog	to	route	between.	The	following	are	the	steps	to	do
so:

1.	 First,	let’s	make	a	new	custom	Target	Point	class	and	name	it	Foodbowl.
2.	 Next,	let’s	make	a	new	custom	Target	Point	class	and	name	it	DogHouse:

3.	 Place	these	two	actors	accordingly	within	the	world.	We	will	use	these	to	reference
our	dog	where	to	move	to	when	in	the	appropriate	state.	So,	basically,	we	will	use
Target	Points	or	waypoints	to	reference	the	vector	location	of	this	actor	within	the
blueprints	later	on.

4.	 Now,	we	need	a	new	Enumeration	class	called	DogState;	this	will	hold	our	current
state	of	the	dog.	This	value	is	important	for	executing	the	correct	tree	for	the
appropriate	responses	we	send	to	the	AI,	such	as	detecting	the	nearby	mailman.

5.	 The	DogState	class	will	have	Hungry,	Barking,	and	Idle	as	the	three	available	states.
Hungry	will	be	responsible	for	telling	the	dog	to	navigate	to	the	dog	bowl	to	eat	food.
The	Barking	state	will	tell	the	dog	to	search	for	the	mailman.	The	Idle	state	will	tell
the	dog	to	go	to	its	dog	house.	At	any	time,	the	dog	will	begin	to	chase	the	mailman	if
he	gets	too	close:

Blackboard
This	stores	the	memory	for	an	individual	agent	or	agents.	This	works	hand	in	hand	with
the	Behavior	Tree.	It	allows	easy	and	direct	access	to	variables	from	any	of	your	Task
nodes.	Imagine	that	your	Behavior	Tree	is	your	EventGraph,	and	Blackboard	is	your
variable	that	you	use	in	EventGraph.	With	the	Instance	Synced	function,	you	can
replicate	the	variable	to	every	instance	of	the	Blackboard	class	within	the	world.	Now,
let’s	start	creating	our	Blackboard:

1.	 We	need	to	create	a	new	Blackboard	(which	is	under	AI	assets	when	you	right-click
within	Content	Browser)	and	name	it	DogBrain.	This	will	store	our	State	as	Enum
DogState	for	the	Behavior	Tree	branches,	Mailman	as	ThirdPersonCharacter	if	we
have	one	found,	Foodbowl	as	itself	if	we	have	found,	and	lastly	our	latest	search
Locations	as	a	vector	for	EQS.	You	may	see	the	elements	we	created	as	follows:

2.	 Let’s	save	this	all.	We	have	to	create	Behavior	Tree	now	that	we	have	the	bare
components	that	make	up	our	Behavior	Tree.	Let’s	go	over	these	quickly:

DogState:	This	will	store	our	current	state	because	this	is	a	state-oriented	tree
DogHouse:	This	will	represent	where	our	dog	house	is	located	for	the	dog	to
sleep
Foodbowl:	Similar	to	DogHouse,	this	will	be	the	location	of	the	food	bowl	when
the	dog	is	hungry

Designing	Behavior	Tree
Let’s	name	our	Behavior	Tree	DogTree	and	make	sure	our	DogBrain	Blackboard	asset	is
plugged	into	the	ROOT	entry	node.	The	Blackboard	asset	set	here	has	variables	that	can
be	accessed	by	the	functions	within	the	tree	during	execution.	When	variables	are
instanced	and	synced,	you	have	a	global	variable	for	Mailman	that	all	other	dogs	with	the
same	Blackboard	asset	can	see.

Our	Behavior	Tree	will	be	set	up	in	visually	similar	way	to	the	following	screenshot:

What	you	can	note	here	is	that	we	will	start	with	a	Selector	node.	This	is	because	we	do
not	want	to	exit	the	tree	if	our	child	node	fails.	If	it	fails,	we	want	to	continue	to	the	next
node	that	will	ultimately	succeed.	Within	individual	trees,	we	will	do	something	different.
Now	that	we	are	in	a	state,	we	sometimes	want	to	control	the	sequence	of	events	in	order
to	replicate	a	particular	behavior	for	this	state.	So,	for	our	Hungry	state,	we	will	first	need
to	have	a	bowl.	Once	we	have	our	bowl,	we	can	go	eat.	We	will	also	include	a	waiting
node,	and	this	makes	our	dog	seem	like	it’s	searching	for	its	dog	bowl.	This	happens	only
the	first	time.	Next	time	the	condition	check	to	the	bowl	being	set	will	be	true,	and	we
will	immediately	move	to	our	Foodbowl.

In	our	Barking	state,	we	will	immediately	go	into	a	Selector	node	because	we	want	to
again	execute	whichever	tasks	there	are	and	wait	till	one	succeeds.	This	means	the	task	in
which	the	condition	is	met	returning	successful	and	resulting	in	failure	for	a	Selector

Composite	node.	For	this,	we	need	to	execute	a	few	functions,	and	all	must	return
success.

This	is	important	to	understand	because	this	basic	logic	is	what	allows	you	to	construct	a
desired	execution	behavior	in	Behavior	Tree.	So,	in	the	following	breakdown,	I	will
outline	the	process	in	the	order	of	execution	and	how	the	construction	of	the	tree	depends
on	the	direction	of	the	flow	of	execution:

Target	behavior	tree	with	execution	flow	overlaid

The	Tree	Search	event	is	within	Service	named	MailmanRadar,	and	we	will	use	this
event	to	move	the	transition	states.

Lastly,	we	have	our	Idle	state,	which	simply	makes	the	dog	return	to	the	dog	house.

So	with	this,	let’s	continue	the	preparation	for	our	dog	AI.	We	now	need	to	create	an
AIController	for	our	dog,	and	this	is	because	the	AIController	is	responsible	for	executing
Behavior	Tree.	We	will	simply	perform	the	following	steps:

1.	 So,	let’s	create	a	new	blueprint	and	select	Custom	Classes.	Then,	we	will	search	for
AI	Controller.

2.	 Now,	we	can	name	it	DogController	and	create	it!
3.	 We	also	need	to	create	Service,	which	will	determine	which	state	to	be	in.	To	do	this,

right-click	and	create	a	new	blueprint.	Under	Custom	Classes,	we	need	to	search	for

BTService_BlueprintBase.	Let’s	name	it	MailmanRadar.

The	Behavior	Tree	service
What	makes	this	node	unique	is	that	it	is	designed	to	run	and	monitor	the	branch	it	is
attached	to.	It	will	execute	at	its	defined	frequency	to	make	checks	and	update	the
Blackboard	as	long	as	its	branch	is	executed.	Today,	we	will	utilize	these	functions.	The
first	Event	Receive	Activation	node	notifies	us	that	the	Branch	node	is	activated,	and
this	is	perfect	for	initializing	variables	within	the	Blackboard	related	to	this	branch.	The
next	node	we	will	use	is	Event	Receive	Search	Start,	and	this	notifies	us	when	a	branch
is	being	chosen.	We	will	take	advantage	of	this	and	change	our	state,	which	tells	our	tree
to	choose	a	new	path	of	execution.	The	following	screenshot	shows	the	overall	blueprint
for	MailmanRadar	service:

Overall	blueprint	for	Mailman	radar	service

Now,	for	our	radar	to	work,	we	have	to	set	up	the	equipment	on	the	pawn.	It	will	be
responsible	for	relaying	information	to	Behavior	Tree	whenever	another	pawn	overlaps	it.
So,	let’s	find	our	ThirdPersonCharacter	and	open	it	up!

1.	 We	need	to	go	to	Viewport	and	create	a	new	Sphere	Collision	component.	This
component	sphere	radius	will	be	updated	by	our	radar	function	within	the	tree.

2.	 Now,	let’s	add	the	OnComponentBeginOverlap	event	in	EventGraph.
3.	 Let’s	create	Event	Dispatcher	by	adding	in	the	My	Blueprint	pane.	Drag	it	to

EventGraph	and	select	Call.	This	Event	Dispatcher	will	be	responsible	for	notifying
the	tree	of	changes.	Let’s	name	this	event	MailmanFound	and	give	it	an	input	type	of

ThirdPersonCharacter	named	Mailman.
4.	 From	our	Overlap	event,	we	will	cast	Other	Actor	to	ThirdPersonCharacter,	call

MailmanFound,	and	supply	the	casted	actor:

5.	 Now,	let’s	head	to	MailmanRadar	and	set	up	some	other	variables	to	respond	to	this
event.	We	need	to	add	a	few	variables	to	hold	references	while	this	radar	scans	for
possible	mailman	targets:

First,	we	need	a	Blackboard	Key	Selector	variable	named	State,	which	is
editable
Next,	we	need	a	Blackboard	Key	Selector	variable	named	Mailman,	which	is
also	editable
Next,	we	need	a	Float	variable	named	MailmanRadius,	which	is	editable	and	has
a	default	value	of	512
Lastly,	we	need	to	create	a	type	Actor	variable	and	call	it	thisPawn

The	screen	should	look	like	the	following	screenshot:

6.	 Start	with	our	initializing	event,	Event	Receive	Activation.
7.	 We	will	use	this	to	initialize	our	Blackboard	variables.	So,	let’s	get	our	State	variable

so	that	we	can	set	the	initial	state.
8.	 Pulling	from	the	Get	State	variable,	we	want	to	find	Set	Blackboard	Value	as

Enum.	Get	state	from	the	variables,	and	this	time,	we	want	Get	Blackboard	Value
as	Enum.	We	will	choose	a	new	random	state	for	our	AI.	We	will	do	this	by
incrementing	our	State	variable	randomly	once	or	twice.	So,	let’s	pull	from	this,
create	Byte	+	Byte,	and	then	create	a	modulo	(%).	This	modulo	will	take	our	results

from	the	addition	(+)	node,	but	we	want	3	to	be	put	in	the	last	position.	So,	we	will
have	something	similar	to	Input	%	3	=	Range	(0-2)	(which	translates	to	Hungry,
Barking,	and	Idle).

9.	 Now,	let’s	create	Random	Integer	in	Range	and	set	the	Min	value	to	1	and	the	Max
value	to	2.	Then,	we	want	to	pump	this	into	the	Byte	+	Byte	addition	node.	The	False
value	from	our	previous	Branch	node	will	pin	into	our	Set	Blackboard	Value	as
Enum	node.

10.	 Lastly,	pin	the	results	of	our	modulo	(%)	to	our	Set	Blackboard	Value	as	Enum
node	to	update	our	current	State	variable:

The	screen	should	look	like	the	following	screenshot:

State	transitions
What	we	will	do	here	is	randomly	increment	our	state	forward.	This	simply	demonstrates
the	state	transition.	This	operation	is	important	because	how	you	handle	transitions	can
create	virtually	coherent	AI.	This	is	established	when	you	have	goal-oriented	AI.	Instead
of	being	purely	reactive,	it	actively	chooses	the	best	scored	state	to	achieve	said	goal.	This
makes	it	seem	as	though	AI	has	a	level	of	intelligence.

Our	AI	randomly	chooses	its	next	state,	but	if	the	AI	could	make	its	new	state	decision
based	on	the	information	we	collected,	it	would	make	our	AI	appear	intelligent.	These
examples	will	provide	you	with	the	knowledge	to	take	on	more	challenging	projects:

1.	 Looking	back	at	Event	Receive	Activation,	let’s	pull	Get	AIController	from
Owner	Actor.	Then,	we	want	to	pull	Get	Controlled	Pawn	in	order	to	assign	the
Event	Dispatcher	node	we	created	earlier.

2.	 Cast	the	Get	Controlled	Pawn	node	to	ThirdPersonCharacter,	and	from	the	cast,
assign	MailmanFound.

3.	 We	also	want	to	take	Owner	Actor	and	set	it	in	our	thisPawn	variable.	Lastly,	we
should	update	our	pawn’s	Sphere	variable	to	match	our	variable	node’s	Radius,
which	we	want	to	check	for:

4.	 From	our	newly	created	MailmanFound	event,	we	want	to	set	our	Mailman
Blackboard	selector.	So,	get	it	from	variables,	execute	Set	Blackboard	Value	as
Object,	and	set	Value	from	Mailman	returned	through	the	event.

5.	 Next,	set	our	State	variable	to	Barking	so	that	we	immediately	abort	other	states	and
continue	with	Barking.	Get	the	State	variable	from	the	variables	and	Set
Blackboard	Value	as	Enum	node.	We	want	to	make	this	value	1,	which	represents
our	Barking	state.

6.	 Lastly,	let’s	get	our	This	Pawn	variable	from	our	variables	node.	Cast	this	node	using
Cast	To	DogController	and	then	call	Stop	Movement.	This	will	stop	any	current
movement	and	begin	the	next	requested	movement:

7.	 Now,	with	Event	Receive	Search	Start,	the	tree	will	look	for	a	new	branch	to	begin.
So,	we	will	use	this	to	set	the	new	states.	So,	right-click	on	our	graph	and	pull	the
event	out.	From	here,	we	want	to	pull	out	the	get	State	variable	from	the	side,	and
while	pulling	from	our	pin,	find	Get	Blackboard	Value	as	Enum.

8.	 From	here,	we	need	to	create	an	equal	to	1	condition	and	then	connect	it	to	a	Branch
node.	What	we	did	by	comparing	the	state	to	1	is	that	we	said	our	State	variable	is
equal	to	Barking,	allowing	us	to	perform	specific	operations	to	leave	this	state.	This
branch	will	be	the	next	executed	node.

9.	 Now,	we	need	to	pull	our	variable,	Mailman,	and	call	a	function	to	reset	the	values
of	our	Blackboard	Key.	We	will	do	this	by	pulling	from	the	Mailman	pin	and
searching	for	Clear	Blackboard	Value.	This	will	be	called	if	the	Branch	node	we
created	returns	true.

10.	 We	also	want	to	set	a	new	state	if	we	get	our	State	variable	and	pull	Set	Blackboard
Value	as	Enum.	We	can	update	our	current	State	variable	using	the	calculation	we
made	on	Event	Receive	Activation.	So,	pull	from	this	modulo	(%)	and	set	it	to
Value	for	our	Set	Blackboard	Value	as	Enum	node:

11.	 Let’s	open	this	DogController	class	and	find	the	Event	Begin	Play	node.
12.	 Right-click	on	the	graph	and	find	the	Run	Behavior	Tree	node.
13.	 Then,	in	the	BTAsset	pin,	let’s	find	DogTree,	which	we	created	earlier.	Then,	in	the

game,	we	will	assign	our	DogController	class	to	our	character.	This	will	spawn	with
the	character	and	immediately	run	DogTree:

14.	 Back	to	our	Behavior	Tree,	let’s	pull	down	an	arrow	and	create	a	new	Selector
composite	in	our	graph.	This	is	the	start	in	the	tree	shown	in	the	preceding
screenshot.	It	will	run	our	patented	MailmanRadar	Service	node.	What	is	unique
about	Service	nodes	is	that	they’re	used	on	composites	only	and	are	responsible	for
handling	tasks	that	require	running	with	the	tree.

15.	 For	now,	let’s	construct	the	next	three	node	options	in	the	tree.	This	will	be	three
sequence	nodes	with	Blackboards	Compare	Decorators	on	them.	Decorators	can
apply	conditions	to	our	Composites	or	Task	nodes.	These	decorators	will	check	for
the	appropriate	entry	state	to	begin	the	execution.

16.	 So,	create	our	Composite	node	from	the	beginning	of	this	tree.	Then,	let’s	right-click
on	this	node	and	add	a	Decorator	that	we	want	to	look	for	in	the	Blackboard:

Blackboard	Compare	Decorator
There	are	a	few	fields	we	want	to	take	notice	of	in	the	pane:

Let’s	start	with	Flow	Control.	This	has	two	properties:	Notify	Observer	and
Observer	aborts.	Notify	Observer	tells	Flow	Control	which	operation	to	fire	on.
The	On	Result	Change	fires	when	the	computed	condition	to	enter	this	tree	changes.
So,	if	we	were	barking	originally	but	are	now	idle,	the	tree’s	Flow	Control	will	fire
off	an	Abort	event.	Which	part	of	the	tree	is	aborted	is	controlled	by	Observer
aborts.	The	first	option	is	Self.	This	is	straightforward	in	that	it	aborts	further
execution	within	this	tree.	The	second	option	is	Low	Priority.	This	option	basically
says	the	rest	of	the	tree	will	be	aborted.	This	is	good	if	you	want	the	whole	tree	to
start	over.	The	last	option	is	simply	a	combination	of	the	first	two	options	I
mentioned.
The	next	field	is	Blackboard,	and	this	is	responsible	for	telling	the	Decorator	which
condition	returns	True.	In	this	instance,	we	want	to	set	the	Blackboard	Key	to	State.
Note	the	properties	change.	Change	the	Key	Query	value	to	the	condition	we	apply
to	the	Key	value.	Then	lastly,	set	the	Key	value	to	the	value	we	are	checking	our
condition	on.

Let’s	go	back	to	our	Behavior	Tree:

1.	 The	first	node	in	the	Sequence	branch	is	a	Selector	node.	We	want	this	behavior
because	we	have	two	conditions	that	we	want	to	be	checked	for,	but	we	know	that
only	one	condition	can	be	met	at	a	time.	The	next	node	we	need	to	create	within	this
Sequence	branch	is	a	Wait	node.	This	will	simulate	our	dog	finding	or	animating
while	it	sniffs	out	or	eats	its	food.

2.	 The	first	node	within	our	Selector	node	is	the	node	responsible	for	moving	to	our
bowl	assuming	we	have	it,	using	Move	To.	The	Move	To	node	takes	one	Blackboard
Key	argument,	and	this	is	compatible	with	Actors	or	Vectors.	This	provides	a	limited
but	direct	way	to	execute	movement	from	the	tree:

3.	 The	next	node	within	our	Selector	node	needs	to	be	created.	So,	let’s	go	back	to	our
Content	Browser,	and	create	a	new	Blueprint.	Under	Custom	Classes,	we	want	to
search	for	BT,	and	we	will	create	BTTask	Blueprint	Base.	This	will	be	called
FindBowl,	and	it	will	be	responsible	for	finding	the	food	bowl	for	our	dog.

4.	 We	will	now	save	this	new	asset,	go	back	to	our	dog	tree	under	our	Selector	node,
and	create	our	new	FindBowl	task	after	the	Move	To	node.	We	have	now	said	that
this	node	will	execute	if	other	child	conditions,	such	as	Foodbowl,	is	set	as	false.

5.	 Now	that	we	have	our	first	State	tree,	we	should	update	the	comment	on	our	tree
nodes	to	understand	what	it	means	in	shorthand.	Look	at	how	I’ve	done	in	mine	in
the	following	screenshot:

6.	 Now	moving	onto	the	next	tree,	we	must	create	a	similar	setup,	starting	with	a
Selector	composite	node.	We	want	to	right-click,	add	a	Decorator,	and	search	for
Blackboard.	This	needs	to	check	whether	the	State	variable	is	equal	to	Barking	to
execute	this	branch	entry.

7.	 Next,	we	will	create	a	Sequence	Composite	node	responsible	for	telling	our	AI	to
sniff	around	for	the	mailman.	This	will	have	a	Blackboard	Decorator	on	the
composite	to	check	if	the	Mailman	variable	is	set.	We	also	want	to	add	another	Loop
Decorator	responsible	for	calling	this	twice	if	the	condition	is	met.

8.	 With	this	set,	the	next	three	nodes	within	this	Sequence	branch	will	first	scan	the
area,	move	our	dog,	and	then	wait	at	the	location	sniffing.	So,	in	order	to	scan	our
area,	I	want	to	use	EQS	(Environment	Query	System).

Environment	Query	System
I	want	to	cover	this	more	in	the	next	chapter,	which	covers	how	our	AI	can	sense	the
environment,	but	I	will	at	least	introduce	the	idea	and	how	we	will	use	it	today.
Environment	Query	System	is	responsible	for	allowing	the	context	object	to	call	a	query
request	to	generate	information	based	on	filters	and	the	test	applied	to	the	request.	A	query
would	contain	a	template	of	instructions	for	EQS	to	run.	So,	for	example,	if	you	want	to
scan	an	area	for	possible	hiding	places,	you	can	scan	for	those	actors	that	represent	the
hiding	places.	Then,	you	can	apply	filters	to	your	query	to	get	rid	of	the	results	you	don’t
want	to	score	and	score	your	results	based	on	direction	from	enemy	for	the	most	optimal
hiding	position.

In	our	case,	we	want	to	choose	a	strategic	position	to	sniff	out	our	Mailman.	We	will	do
this	by	creating	Environment	Query.	Let’s	create	this	as	follows,	and	in	our	next	chapter,
we	will	cover	other	ways	of	using	EQS:

1.	 So,	with	this	in	mind,	let’s	head	to	the	Content	Browser	and	select	our	AI	folder.
Right-click	on	the	folder	and	go	to	Misc	and	then	to	Environment	Query.	Name	it
EQS_PointsAround.

2.	 Let’s	open	this	and	go	to	root.	In	here,	you’ll	notice	a	similar	visual	interface	to	that
of	Behavior	Tree.	Pull	from	the	root	and	find	SimpleGrid.	This	will	generate	a	grid
of	items	around	our	actor	to	be	scored	and	returned	to	the	requester.

3.	 We	want	to	change	the	Grid	Size	value	to	2048	and	that	of	Space	Between	to	512.
The	rest	of	the	settings	will	be	default;	let’s	now	add	a	test	as	shown	in	the	following
screenshot:

4.	 This	test	will	filter	and	then	score	our	results	based	on	the	direction	from	our	dog.	In
order	to	determine	the	DOT	test	to	score,	we	have	to	tell	the	test	what	we	want	to
have	tested.	So,	Line	A	will	be	our	item’s	Rotation.	Line	B	will	be	the	direction
between	us	and	the	item.

5.	 Lastly,	as	our	dog	will	need	to	search	the	whole	area,	we	would	need	our	dog	to	have
the	opportunity	to	survey	the	whole	area.	By	enabling	Absolute	Value,	we	are	able	to

get	the	results	to	score	in	both	directions.
6.	 We	want	to	adjust	our	filter	to	eliminate	items	directly	in	front	of	us	or	to	our	right	by

choosing	a	range	in	between	0	and	1.	Let’s	change	our	Filter	Type	value	to	Range,
the	Float	Value	Min	value	to	0.4,	and	the	Float	Value	Max	value	to	0.85.

7.	 The	last	thing	here	is	Score,	and	we	will	leave	this	as	the	default.	Let’s	save	this	and
go	back	to	our	Behavior	Tree:

8.	 From	the	Sequence	node	we	created	with	the	Mailman	is	NotSet	Decorator,	we
want	to	now	run	our	EQS	query	and	store	the	results	in	our	Location	Blackboard
key.	We	can	pull	from	the	node	and	find	Run	EQS	Query.

9.	 Then,	we	need	to	select	our	EQS_PointsAround	option	and	set	our	Location
Blackboard	key.

10.	 The	next	node	will	move	our	dog	to	the	location	returned	by	EQS.	Let’s	pull	and	find
Move	To.	This	Blackboard	key	needs	to	be	our	location.

11.	 The	last	node	here	will	make	our	dog	wait	at	the	newly	found	location	for	a	random

amount	of	seconds.	So,	find	the	Wait	node,	and	let’s	set	the	Wait	Time	value	to	2.5
and	that	of	Random	Deviation	to	5.0.	The	complete	structure	for	the	Selector	nodes
is	shown	here:

12.	 Back	in	our	I’m	Barking	node,	we	will	create	a	new	node	that	will	make	our	dog
chase	the	mailman	once	the	variable	is	set.	We	must	first	create	our	own	node,	which
will	never	finish	execution.	So,	let’s	head	to	the	Content	Browser.

13.	 We	must	go	in	our	AI	folder,	right-click,	and	create	a	new	blueprint.	Under	Custom
Classes,	we	have	to	find	the	Task	Blueprint	Base	Behavior	Tree.	This	will	be	named
AttackMailman.

14.	 Let’s	open	this	up	and	head	to	EventGraph.	First,	we	need	to	pull	our	location,	so	we
must	first	create	a	reference	to	our	Blackboard	asset.	Under	Variables,	create	a	new
Selector	Blackboard	key	and	name	it	Mailman.	This	will	need	to	be	editable.

15.	 We	have	to	find	Event	Receive	Execute,	and	this	will	open	up	Gate.	So,	create	a
Gate	node	and	pump	our	event	into	the	Open	exec	pin	of	our	Gate	node.

16.	 We	then	need	to	create	Event	Receive	Tick	and	pump	it	into	the	Enter	exec	pin	of
the	Gate	node.	Then,	we	need	to	pull	OwnerActor	from	the	Event	Receive	Tick
exec	pin	and	cast	it	using	Cast	to	DogController.	From	here,	we	can	tell	our
DogController	to	MoveToLocation.

17.	 Now,	we	must	provide	a	location.	Pulling	our	Mailman	variable,	we	must	next	pull
Get	Blackboard	Value	as	Object.	Then	this	will	be	cast	to	our
ThirdPersonCharacter.	From	here,	we	can	get	our	Mailman	actor’s	location	and	tell
our	dog	to	move	to	this	location:

18.	 Last	the	Idle	sequence	will	simply	represent	when	the	dog	is	tired	and	wants	rest.
Starting	from	the	main	branch,	we	will	create	a	new	state	tree	using	a	Sequence
Composite	node.	We	must	right-click	on	our	Sequence	node	and	add	a	Blackboard
Decorator.	This	will	check	whether	the	current	State	value	is	equal	to	Idle.

19.	 Pulling	from	our	main	branch,	let’s	create	a	Sequence	node.	This	node	will	have	a
Blackboard	Decorator,	which	will	have	State	set	as	the	Blackboard	Key	value,	and
the	Key	Query	will	be	set	to	Is	Equal	To.	Our	Blackboard	Key	Value	for	the
decorator	should	be	Idle.

20.	 Under	Flow	Control,	we	should	make	sure	that	the	Notify	Observer	value	is	On
Result	Change	and	the	Observer	aborts	value	is	Self.

21.	 Update	our	Description	field	to	Idle/Sleep	state	to	make	our	tree	easier	to
understand:

22.	 We	need	a	new	tree	that	will	send	our	dog	home	and	make	it	wait	there.
23.	 Let’s	head	to	our	Content	Browser	and	navigate	to	our	AI	folder.	Right-click	and

create	a	new	blueprint	class.	This	will	be	another	custom	class	under
BTTask_BlueprintBase.	Name	this	GoHome,	and	open	this	up	to	EventGraph.

24.	 The	event	we	want	is	Event	Receive	Execute,	and	this	will	call	Get	All	Actors	of
Class.

25.	 The	Actor	class	should	be	Dog	House,	and	we	will	only	have	one	in	a	level.	Get	All
Actors	of	Class	returns	OutActors;	get	the	first	index	item	from	this	array.

26.	 Let’s	cast	Owner	Actor	from	our	Event	Receive	Execute	to	DogController	and
then	execute	Move	To	Actor.

27.	 The	last	thing	we	want	to	call	is	Finish	Execute	and	return	bSuccess	as	true:

Summary
This	chapter	was	definitely	heavier	with	instruction,	and	so	will	it	be	the	following
chapters.	In	this	chapter,	we	exposed	how	we	can	effectively	make	our	AI	reactive	to	other
pawns	and	also	how	to	move	to	different	target	locations.	We	also	used	EQS	briefly	to
help	our	dog	choose	strategic	sniffing	locations.	In	the	next	chapter,	you	can	expect	to	use
EQS	further.	Though	the	detection	is	event-based,	the	movement	is	still	done	by	the	tree.

In	the	next	chapter,	we	will	go	over	the	components	built	within	Unreal	Engine	4	that
sense	other	AI	and	can	help	us	achieve	more	flexible	and	responsive	AI.

Chapter	6.	How	Does	Our	AI	Sense?
In	this	chapter,	you	will	learn	how	to	use	the	different	components	available	within	Unreal
Engine	4	to	enable	our	AI	to	sense	the	other	AI	and	pawns	that	we	place	within	the	world.
We	will	do	this	by	taking	advantage	of	a	system	within	Unreal	Engine	called	AI
Perception	components.	These	components	can	be	customized	and	even	scripted	to
introduce	new	behavior	by	extending	the	current	sensing	interface.

The	topics	we	will	cover	in	this	chapter	are	as	follows:

AI	components
Registering	a	perceivable	actor	using	AIPerceptionStimuliSource
Perceiving	objects	using	AI	Perception
The	state	machine

Overview
AI	Perception	is	a	system	within	Unreal	Engine	4	that	allows	sources	to	register	their
senses	to	create	stimuli,	and	then	the	other	listeners	are	periodically	updated	as	the	sense
stimuli	is	created	within	the	system.	This	works	wonders	for	creating	a	reusable	system
that	can	react	to	an	array	of	customizable	sensors.	So,	this	chapter	will	focus	on	using	the
AI	Perception	component	to	have	our	enemy	AI	chase	us	whenever	we	are	detected.	What
we	will	do	differently	is	that	this	will	all	be	scripted	using	Blueprint.	So,	there	is	no	need
to	use	Behavior	Tree	this	time	around!

AI	Sense
Let’s	start	by	bringing	up	Unreal	Engine	4	and	open	our	New	Project	window.	Then,
perform	the	following	steps:

1.	 First,	name	our	new	project	AI	Sense	and	hit	create	project.

After	it	finishes	loading,	we	want	to	start	by	creating	a	new	AIController	that	will	be
responsible	for	sending	our	AI	the	appropriate	instructions.

2.	 Let’s	navigate	to	the	Blueprint	folder	and	create	a	new	AIController	class,	naming	it
EnemyPatrol.

3.	 Now,	to	assign	EnemyPatrol,	we	need	to	place	a	pawn	into	the	world	then	assign	the
controller	to	it.

4.	 After	placing	the	pawn,	click	on	the	Details	tab	within	the	editor.	Next,	we	want	to
search	for	AI	Controller.	By	default,	it	is	the	parent	class	AI	Controller,	but	we
want	this	to	be	EnemyPatrol:

5.	 Next,	we	will	create	a	new	PlayerController	named	PlayerSense.
6.	 Then,	we	need	to	introduce	the	AI	Perception	component	to	those	who	we	want	to	be

seen	by	or	to	see.	Let’s	open	the	PlayerSense	controller	first	and	then	add	the
necessary	components.

AI	Perception	components
There	are	two	components	that	are	currently	available.	The	first	one	is	what	you’re	already
familiar	with:	the	AI	Perception	component.	The	other	is	the	AIPerceptionStimuliSource
component.	The	latter	is	used	to	easily	register	the	pawn	as	a	source	of	stimuli,	allowing	it
to	be	detected	by	other	AI	Perception	components.	This	comes	in	handy,	particularly	in
our	case.	Now,	follow	these	steps:

1.	 With	PlayerSense	open,	let’s	add	a	new	component	called
AIPerceptionStimuliSource.	Then,	under	the	Details	tab,	let’s	select	Auto	Register
as	Source.

2.	 Next,	we	want	to	add	new	senses	to	create	a	source	for.	So,	looking	at	Register	as
Source	for	Senses,	there	is	an	AISense	array.

3.	 Populate	this	array	with	the	AISense_Sight	blueprint	in	order	to	be	detected	by	sight
by	other	AI	Perception	components.	You	will	note	that	there	are	also	other	senses	to
choose	from—for	example,	AISense_Hearing,	AISense_Touch,	and	so	on.

The	complete	settings	are	shown	in	the	following	screenshot:

This	was	pretty	straightforward	considering	our	next	process.	This	allows	our	player	pawn
to	be	detected	by	Enemy	AI	whenever	we	get	within	their	sense’s	configured	range.

Next,	let’s	open	our	EnemyPatrol	class	and	add	the	other	AI	Perception	components	to
our	AI.	This	component	is	called	AIPerception	and	contains	many	other	configurations,
allowing	you	to	customize	and	tailor	the	AI	for	different	scenarios:

1.	 Clicking	on	the	AI	Perception	component,	you	will	notice	that	under	the	AI	section,
everything	is	grayed	out.	This	is	because	we	have	configurations	specific	to	each
sense.	This	also	goes	if	you	create	your	own	AI	Sense	classes.

2.	 Let’s	focus	on	two	sections	within	this	component:	the	first	is	the	AI	Perception
settings,	and	the	other	is	the	event	provided	with	this	component:

1.	 The	AI	Perception	section	should	look	similar	to	the	same	section	on
AIPerceptionStimuliSource.	The	differences	are	that	you	have	to	register	your
senses,	and	you	can	also	specify	a	dominant	sense.	The	dominant	sense	takes
precedence	of	other	senses	determined	in	the	same	location.

2.	 Let’s	look	at	the	Senses	configuration	and	add	a	new	element.	This	will	populate
the	array	with	a	new	sense	configuration,	which	you	can	then	modify.

3.	 For	now,	let’s	select	the	AI	Sight	configuration,	and	then	we	can	leave	the	default
values	as	the	same.	In	the	game,	we	are	able	to	visualize	the	configurations,	allowing
us	to	have	more	control	over	our	senses.

4.	 There	is	another	configuration	that	allows	you	to	specify	affiliation,	but	at	the	time	of
writing	this,	these	options	aren’t	available.

5.	 When	you	click	on	Detection	by	Affiliation,	you	must	select	Detect	Neutrals	to
detect	any	pawn	with	Sight	Sense	Source.

6.	 Next,	we	need	to	be	able	to	notify	our	AI	of	a	new	target.	We	will	do	this	by	utilizing
the	Event	we	saw	as	part	of	the	AI	Perception	component.	By	navigating	there,	we
can	see	an	event	called	OnPerceptionUpdated.

This	will	be	updated	when	there	are	changes	in	the	sensory	state	which	makes	the	tracking
of	senses	easy	and	straightforward.	Let’s	move	toward	the	OnPerceptionUpdated	event
and	perform	the	following:

1.	 Click	on	OnPerceptionUpdated	and	create	it	within	the	EventGraph.	Now,	within
the	EventGraph,	whenever	this	event	is	called,	changes	will	be	made	to	the	senses,
and	it	will	return	the	available	sensed	actors,	as	shown	in	the	following	screenshot:

Now	that	we	understand	how	we	will	obtain	our	referenced	sensed	actors,	we	should
create	a	way	for	our	pawn	to	maintain	different	states	of	being	similar	to	what	we
would	do	in	Behavior	Tree.

2.	 Let’s	first	establish	a	home	location	for	our	pawn	to	run	to	when	the	player	is	no

longer	detected	by	the	AI.

In	the	same	Blueprint	folder,	we	will	create	a	subclass	of	Target	Point.	Let’s	name
this	Waypoint	and	place	it	at	an	appropriate	location	within	the	world.

3.	 Now,	we	need	to	open	this	Waypoint	subclass	and	create	additional	variables	to
maintain	traversable	routes.	We	can	do	this	by	defining	the	next	waypoint	within	a
waypoint,	allowing	us	to	create	what	programmers	call	a	linked	list.	This	results	in
the	AI	being	able	to	continuously	move	to	the	next	available	route	after	reaching	the
destination	of	its	current	route.

4.	 With	Waypoint	open,	add	a	new	variable	named	NextWaypoint	and	make	the	type	of
this	be	the	same	as	that	of	the	Waypoint	class	we	created.

5.	 Navigate	back	to	our	Content	Browser.
6.	 Now,	within	our	EnemyPatrol	AIController,	let’s	focus	on	Event	Begin	in

EventGraph.	We	have	to	grab	the	reference	to	the	waypoint	we	created	earlier	and
store	it	within	our	AIController.

7.	 So,	let’s	create	a	new	waypoint	variable	type	and	name	it	CurrentPoint.
8.	 Now,	on	Event	Begin	Play,	the	first	thing	we	need	is	the	AIController,	which	is	the

self	-reference	for	this	EventGraph	because	we	are	in	the	AIController	class.
9.	 So,	let’s	grab	our	self-reference	and	check	whether	it	is	valid.	Safety	first!	Next,	we

will	get	our	AIController	from	our	self-reference.	Then,	again	for	safety,	let’s	check
whether	our	AIController	is	valid.

10.	 Next,	we	want	to	create	a	Get	all	Actors	Of	Class	node	and	set	the	Actor	class	to
Waypoint.

11.	 Now,	we	need	to	convert	a	few	instructions	into	a	macro	because	we	will	use	the
instructions	throughout	the	project.	So,	let’s	select	the	nodes	shown	as	follows	and	hit
convert	to	macro.	Lastly,	rename	this	variable	getAIController.	You	can	see	the
final	nodes	in	the	following	screenshot:

12.	 Next,	we	want	our	AI	to	grab	a	random	new	route	and	set	it	as	a	new	variable.	So,
let’s	first	get	the	length	of	the	array	of	actors	returned.	Then,	we	want	to	subtract	1
from	this	length,	and	this	will	give	us	the	range	of	our	array.

13.	 From	there,	we	want	to	pull	from	Subtract	and	get	Random	Integer.	Then,	from	our
array,	we	want	to	get	the	Get	node	and	pump	our	Random	Integer	node	into	the
index	to	retrieve.

14.	 Next,	pull	the	returned	available	variable	from	the	Get	node	and	promote	it	to	a	local
variable.	This	will	automatically	create	the	type	dragged	from	the	pin,	and	we	want	to
rename	this	Current	Point	to	understand	why	this	variable	exists.

15.	 Then,	from	our	getAIController	macro,	we	want	to	assign	the
ReceiveMoveCompleted	event.	This	is	done	so	that	when	our	AI	successfully	moves
to	the	next	route,	we	can	update	the	information	and	tell	our	AI	to	move	to	the	next
route.

State	machines
Traditionally,	we	would	default	to	the	AI	Behavior	Tree,	which	is	available	to	anyone
using	UE4.	However,	in	our	scenario,	we	will	break	the	job	of	Behavior	Tree	into
components	directly	written	in	blueprint.	So,	the	next	thing	we	need	to	create	is	a	way	to
maintain	a	state.	Then,	we	can	essentially	create	a	state	machine	by	updating	the	variable,
allowing	our	AI	to	transition	into	different	states	by	controlling	the	execution	flow.

We	will	establish	this	using	an	event	that	will	update	our	state	when	the	conditions	we
specify	are	met.	To	start	this	off,	let’s	continue	to	the	next	step!

1.	 First,	let’s	create	a	new	Int	variable	in	our	AIController	called	State.	This	will
maintain	our	current	state	within	our	state	machine.

2.	 We	now	need	a	new	event,	and	we	will	call	it	NextRoute.	So,	upon	right-clicking	on
the	event	graph	and	going	under	Add	Event,	we	will	notice	Add	New	Event.	Let’s
name	this	new	event	NextRoute.

3.	 Now,	after	our	assigned	event	ReceiveMoveCompleted,	we	should	call	NextRoute
to	initiate	or	enter	the	state	machine:

4.	 Next,	focusing	on	ReceiveMoveCompleted,	let’s	switch	on	Result.	From	the	switch
node,	let’s	pull	Success.	This	means	that	only	when	the	move	is	completed	by	our	AI
will	we	continue	on	to	the	next	step	in	the	execution	flow.

5.	 From	Success,	let’s	create	a	new	Branch	node	and	set	up	a	new	condition.	This
condition	will	check	whether	our	State	Int	variable	currently	equals	0.	The	value	0
represents	our	default	state.

6.	 If	our	State	variable’s	value	is	0,	let’s	create	a	Retriggable	Delay	node	and	set	it	at
0.2	seconds.	Next,	we	want	to	check	whether	our	Current	Point	variable	is	valid;	if
so,	we	want	to	grab	the	variable	we	created	earlier	to	define	the	next	route	in	the

linked	list.
7.	 From	there,	we	want	to	set	this	new	variable	into	our	Current	Point	variable.	This

will	allow	us	to	indefinitely	navigate	between	waypoints.
8.	 Next,	we	want	to	create	two	new	variables	that	will	be	responsible	for	delaying	the

amount	of	time	till	we	continue	to	the	next	route.
9.	 So,	let’s	create	a	new	Float	variable	called	RoutePauseDelay,	which	will	define	how

long	we	will	wait.	Next,	we	want	to	create	deviations	so	that	the	wait	time	isn’t
always	the	same.	So,	now	create	a	new	Float	variable	called	RoutePauseDevia.

10.	 Let’s	pump	RoutePauseDeviation	into	Random	Float	in	Range	and	add	this	to
RoutePauseDelay.	Then,	this	will	be	pumped	into	a	Delay	node.

11.	 From	the	Delay	node,	we	want	to	call	the	NextRoute	event,	which	we	created	earlier.
12.	 Focusing	on	the	newly	created	NextRoute	event,	let’s	check	whether	our	State

variable	is	equal	to	0	and	create	a	Branch	node	to	check	the	results	when	executed:

13.	 Next,	we	should	get	our	AIController	from	our	Actor,	and	check	whether	our
Current	Point	variable	is	valid.

14.	 Next,	if	our	Current	Point	variable	is	valid,	then	we	should	pull	from	Return	Value
of	the	getAIController	and	Move	to	Actor	nodes.

15.	 From	there,	pull	the	Current	Point	variable	we	checked	and	put	this	into	the	goal	of
the	node.	Now,	when	the	AIController	takes	possession	of	the	actor	it	belongs	to,	it
will	call	this	event.	Once	the	move	is	completed,	it	will	update	the	route	and	continue
to	the	next	route.

Pawn	detection
To	give	our	pawn	the	most	up-to-date	information,	we	need	to	create	an	event	that	will
catch	and	respond	to	the	sensory	update	events	from	the	AI	Perception	component.	We
will	establish	this	by	creating	a	new	event	that	is	solely	responsible	for	processing
detected	pawns.	Here	are	the	steps:

1.	 Let’s	right-click	anywhere	and	go	under	Add	Event.	From	there,	we	want	to	add	a
custom	event,	and	we	will	name	the	new	event	Detected	Enemies.	We	have	to	also
create	a	new	actor	array	parameter	named	Detected	Actors	to	hold	the	array	of
Updated	Actors.

2.	 Now,	in	the	next	step,	we	need	to	recompile	a	blueprint	to	call	the	AIController	and
the	Detected	Enemies	function	from	our	OnPerceptionUpdated	event:

3.	 In	the	next	steps,	we	will	handle	the	transitions	between	different	states.	For	example,
we	can	be	in	the	default	state	and	find	a	new	enemy.	From	there,	we	need	to	stop	the
current	movement	and	move	toward	the	detected	enemy.	If	we	lose	sight	of	an	enemy
that	we’ve	been	chasing	for	a	specific	amount	of	time,	we	can	cancel	the	movement
and	go	back	to	navigating	our	waypoints.

4.	 Now,	we	want	to	focus	again	on	the	DetectedEnemies	event	we	created	earlier.	Now
that	this	event	is	called	by	our	AI	Perception	component,	we	want	to	use	these	actors
appropriately	for	each	state.

5.	 Let’s	pull	from	this	event	and	create	a	Branch	node.	Next,	we	want	to	create	the
condition	for	this	branch.	We	need	to	pull	our	State	variable	and	check	whether	it
equals	0.	If	it	is	True,	we	will	check	whether	we	detected	any	enemies.

6.	 So,	pull	from	True;	let’s	check	whether	the	length	of	our	Detected	Actors	array	is
longer	than	or	equal	to	1.	If	it	is,	we	have	enemies,	and	we	can	move	forward	in	the
process.	So,	pull	from	True	of	the	previous	Branch	node	and	then	create	a	new
branch.	This	will	check	for	the	length	of	the	Detected	Actor	array.

7.	 Next,	if	we	found	an	Enemy,	we	will	change	the	state	to	change	the	execution	path.

We	can	do	this	by	setting	the	State	variable	as	1:

8.	 Next,	we	create	a	new	switch	statement	for	our	State	variable.	This	will	help	us	with
the	execution	flow.	We	want	the	start	of	the	index	to	begin	from	1	and	have	no
default	pin.

9.	 Now,	we	can	backtrack	to	our	first	Branch	condition,	where	we	will	check	whether
the	state	is	equal	to	0.	Then,	when	this	statement	is	False—meaning	we’re	currently
in	a	state	of	searching	for	our	enemy—we	would	want	this	to	lead	to	the	switch
statement	as	well.	This	will	allow	our	state	to	transition	out	of	the	state	if	we’ve	lost
the	enemy	at	some	point.

10.	 Focusing	on	the	switch	node,	let’s	add	another	break	for	index	2.	Then,	pulling	from
one,	let’s	call	GetAiController.	If	Found	is	executed,	then	we’re	ready	to	move
forward.

11.	 Let’s	pull	the	Detected	Actors	parameters	from	our	event	and	create	a
ForEachLoopWithBreak	node.	From	this	node,	let’s	check	whether	the	enemy
detected	is	within	sight.	Right-click	and	search	for	Line	of	Sight	To,	keeping	Target
to	self.	Then,	Other	should	be	the	ArrayElement	variable.

12.	 Pulling	from	Return	Value,	we	will	create	a	new	Branch	node.	This	branch
condition	will	need	to	check	whether	we	have	Current	Enemy;	if	not,	we	will	set	a
new	enemy.	From	the	True	value	of	the	Branch	node,	let’s	set	an	Enemy	actor	from
Array	Element.

13.	 Pulling	from	GetAiController,	we	want	to	set	focus	on	the	enemy	we	just	set	in
Enemy	actor.

14.	 Next,	we	want	to	get	our	AIController	again	and	create	the	Move	To	Actor	node.
Then,	we	will	set	the	Enemy	actor	to	our	goal	for	the	node.	This	will	navigate	our	AI
to	our	new	found	enemy.

15.	 Next,	let’s	switch	on	Return	Value	from	the	Move	To	Actor	node.	We	will	get	a
node	that	switches	on	Failed,	Already	At	Goal,	and	Request	Successful.	Let’s	pull
from	Request	Successful	and	set	our	State	variable	to	2.

16.	 From	our	Set	State	variable,	we	want	to	then	break	our	ForEachLoopWithBreak
node.	This	way,	we	won’t	continue	to	search	for	enemies	once	we	find	them:

17.	 Let’s	go	back	in	our	loop	at	our	first	Branch	node,	and	from	False,	we	will	create
another	branch.	This	will	check	whether	the	Array	Element	pin,	our	enemy	that	we
just	selected	Line	Of	Sight	To	for	that	failed,	is	the	enemy	we	currently	have
targeted.	If	so,	we	want	clear	to	our	Enemy	Actor	variable,	and	focus	and	set	our
State	value	back	to	0.

State	transition
This	concludes	what	is	necessary	for	our	transition	out	of	state	1.	Next,	we	will	do	what	is
required	for	state	2,	and	this	will	allow	us	to	detect	the	changes	necessary	to	exit	this	state
back	to	state	0	once	we	no	longer	see	the	enemy.	Perform	the	following	steps:

1.	 Going	back	to	the	switch	node	on	State,	which	we	created	earlier	(in	Step	55)	and
creating	a	new	connection	from	2,	let’s	create	GetAiController.

2.	 Next,	we	need	to	check	whether	our	Enemy	Actor	variable	is	valid.	We	will	do	this
by	dropping	out	the	Enemy	Actor	variable,	pulling	from	the	pin,	and	then	creating
the	IsValid	node.

3.	 If	the	variable	is	valid,	we	want	to	move	our	AIController	toward	our	enemy.	We	can
do	this	by	pulling	from	Return	Value	on	GetAiController	and	then	creating	Move
To	Actor.	Then,	we	can	connect	our	valid	Enemy	Actor	variable	to	our	Move	To
Actor	goal	input.

4.	 Next,	we	want	to	use	the	Tick	event	within	the	AIController	to	check	whether	we
have	the	line	of	sight	of	our	enemy	when	we’re	in	state	2.	We	can	do	this	by	focusing
on	the	Tick	event,	pulling	from	it	and	then	creating	a	Branch	node.

5.	 Then,	drop	the	State	variable	and	check	whether	it	equals	2.	The	results	of	this	equal
node	are	pumped	into	the	condition	of	the	Branch	node.

6.	 Looking	at	the	Branch	node,	pull	from	True	and	create	the	getAiController	node.
Then,	we	will	pull	from	Found	and	create	a	Branch	node.

Now,	we	need	to	create	two	new	variables	to	maintain	the	chasing	of	our	enemy.	This
will	allow	us	to	either	timeout	our	chase	after	a	designated	amount	of	time	or	have
the	chase	end	immediately,	forcing	the	AI	to	return	to	routing	between	the	waypoints
we	created.

7.	 So,	let’s	create	a	new	variable	called	TimeoutChase;	this	will	be	a	Boolean.	Next,
create	a	ChaseTime	variable,	and	this	will	be	a	Float.	This	will	tell	our	execution	line
to	switch	between	different	flows	if	we	don’t	want	to	timeout	our	chase.

8.	 Focusing	again	on	the	last	Branch	node	we	created,	we	want	to	plug	in	our	newly
created	Timeout	Chase	variable	into	the	condition.

9.	 If	this	Branch	node	is	False,	we	want	to	plug	it	into	the	getAiController	node	from
our	previous	switch	statement.	It	should	look	similar	to	the	following	screenshot:

10.	 Now,	if	the	statement	is	True,	we	want	to	create	a	new	Branch	node	to	check
whether	our	enemy	is	in	the	line	of	sight.	Pulling	from	Return	Value	of	the
getAiController	node,	let’s	create	a	new	node	called	Line	Of	Sight.

11.	 Then,	grabbing	our	Enemy	Actor	variable,	we	will	plug	this	into	our	other	input.
Then,	from	the	return	value,	we	can	create	a	new	Branch	node	with	the	condition
already	set.

Resetting	the	state
Now,	this	next	part	will	allow	us	to	use	our	ChaseTime	Float	variable	in	a	Retriggerable
Delay	node.	Basically,	when	they’re	in	the	line	of	sight,	the	Retriggerable	Delay	node
will	continue	to	be	reset.	Once	we	lose	the	line	of	sight,	the	other	execution	path	will
execute	DoOnce,	attempting	to	reset	our	AI’s	State	variable.	Once	the	Retriggerable
Delay	node	finishes	delaying	by	the	designated	Chase	Time	value,	it	will	reset	DoOnce,
allowing	our	bot	to	reset	its	state.	Perform	the	following	steps:

1.	 Now	let’s	look	at	the	Branch	node	we	just	created	and	pull	from	False	and	create	a
new	DoOnce	node.	We	can	leave	Start	Closed	as	default.

2.	 If	we	track	back	to	True	from	the	previous	Branch	node,	we	can	pull	from	True	then
create	a	Sequence	node.

3.	 Pull	from	the	first	Then	0	exec	pin	and	create	a	Retriggerable	Delay	node.	Next,
let’s	plug	in	our	Chase	Time	variable	into	the	Duration	variable.	Lastly,	let’s	plug	in
Completed	into	the	Reset	input	execution	of	the	DoOnce	node	we	created	earlier:

4.	 Back	to	the	Sequence	node,	we	need	to	route	Then	1	to	our	previous	Move	To	Actor
node,	as	we	did	in	State	transition	section.

So,	while	we	see	our	enemy,	we	will	continue	to	move	toward	them	until	we	lose	our
Enemy,	in	which	case	it	will	switch	to	the	other	execution	line.	Now,	if	you	want	the
AI	to	move	toward	the	positions	that	the	enemy	was	located	at,	you	would	need	to	get
the	actor’s	location	and	do	so.	This	would	result	in	having	the	AI	move	toward	the
last	known	position	of	its	enemy	before	ultimately	being	reset.

5.	 Now,	focusing	on	the	DoOnce	node,	let’s	pull	from	the	getAiController	node	we
created	earlier	in	the	chain.	Then,	create	a	new	node	after	the	DoOnce	node	called
Stop	Movement.	This	will	cancel	any	movement	toward	our	enemy.

6.	 Next,	we	need	to	set	the	Enemy	Actor	variable	to	null.	We	will	set	our	State
variable	to	0.	We	will	lastly	call	our	Next	Route	event.	Forcing	the	AI	to	return	the
routing	between	our	waypoint	once	again,	we	will	wait	for	an	enemy	to	come	in
sight.

Simulating	and	playing
Now	if	we	hit	Play,	we	should	see	the	AI	chase	you	until	you’ve	broken	sight!

So,	the	bot	will	route	as	it	did	previously	until	an	enemy	is	within	sight.	If	the	bot	is	in
state	0,	it	will	enter	state	1	once	an	enemy	is	detected	by	the	AI	Perception	component.
Next,	if	one	of	these	enemies	is	within	sight	and	we	have	no	current	enemy,	we	will
change	our	state	to	2	and	set	our	enemy.	Lastly,	we	will	continue	to	move	toward	our
enemy	until	we	lose	sight	of	them,	resulting	in	us	being	set	back	to	state	0.	The	following
diagram	illustrates	these	transitions:

This	is	how	we	create	AI	without	the	assistance	of	Behavior	Tree.	Ultimately,	you	still
need	to	create	a	state	machine	because	this	is	the	fundamental	approach	used	in
programming	to	create	functions	that	transition	among	each	other	based	on	the	variables
shared	by	the	functions.	By	doing	this	directly	in	blueprint,	we	can	get	a	deeper
understanding	of	the	behavior-control	mechanism	based	on	state	transition,	and	this	is
good	for	simple	AI	behavior.

Summary
This	concludes	the	chapter	on	what	you	were	to	learn	about	the	AI	Sense	component.	This
tool	is	great	to	easily	integrate	new	responsive	sensors	to	your	AI’s	input,	which	you	do
not	have	to	create	yourself	from	things	such	as	Ray	Traces.

Next,	we	will	focus	on	more	advanced	movement,	such	as	getting	our	AI	to	avoid
obstacles	using	some	tools	provided	by	Unreal	Engine	and	also	how	we	can	have	our	AI
follow	one	another,	similar	to	the	behavior	in	squads.

Chapter	7.	More	Advanced	Movement
In	this	chapter,	we	will	focus	on	flocking	and	more	advanced	path-following	behaviors.
What	we	will	try	to	achieve	is	implementing	flocking	behaviors	to	create	realistic
movement	for	our	AI,	such	as	when	you	need	agents	to	avoid	each	other	while	all	are
moving	in	the	same	direction.	Sometimes,	it’s	necessary	for	your	agents	to	seek	a	leader,
so	you	can	create	different	formations	of	agents.	First,	we	want	to	set	up	everything	we
need	to	get	some	pawns	moving	around	within	a	level.	Next,	we	will	add	some	blueprints
to	these	pawns	to	give	them	the	ability	to	discover	new	leaders.	Lastly,	we	will	introduce
flocking	behavior	so	that	we	can	see	how	our	AI	moves	as	a	group.

The	topics	covered	in	this	chapter	are	as	follows:

Setting	up	an	actor	blueprint	for	movement
Implementing	following	behavior
Implementing	flocking	behavior	with	features	such	as	separation,	cohesion,	and
alignment
Adding	behavior	control	through	UMG

Setting	up	the	agents
Let’s	create	a	new	project	called	AdvancedMovement	using	the	Physics	Ball	template.
Currently,	we	are	using	Unreal	Engine	4.8.3.	The	first	thing	we	want	to	do	is	find	our
PhysicsBallBP	class	and	open	up	EventGraph.	We	can	do	this	by	implementing	the	points
given	as	follows:

1.	 After	our	project	is	loaded,	navigate	into	the	RollingBP	section	and	then	into	the
Blueprints	folder.

2.	 In	here,	you’ll	find	PhysicsBallBP,	and	this	will	act	as	our	agent	in	this	chapter.	Let’s
open	up	to	EventGraph	for	this	actor.

Note
We	want	to	introduce	two	new	vector	variables	to	hold	the	current	direction	of	the
agent.	The	other	will	hold	the	location	where	the	agent	is	spawned.

3.	 Now,	let’s	remove	any	unnecessary	logic	from	the	example.	I	removed	the	following
variables:

The	JumpImpulse	variable
The	CanJump	variable

All	the	blueprint	code	located	in	EventGraph	is	not	in	the	following	screenshot:

4.	 Okay,	now	that	we	have	a	starting	ground,	let’s	create	a	variable	called	Direction	and
give	it	the	vector	variable	type.

5.	 Next,	create	a	variable	called	StartLocation	and	set	it	as	a	vector	variable	type	as
well.

Note
StartLocation	will	be	used	later	in	the	course	for	the	Reset	button	we	have	to
implement.

6.	 Now,	find	Event	Begin	Play,	and	let’s	initialize	our	new	vector	variables.	First,	right-
click	the	area	near	the	event	and	find	Random	Unit	Vector.	Split	the	vector	(by
right-clicking	on	the	pin)	from	the	Random	Unit	Vector	node	because	we	only	want
the	X	and	Y	values.

Note
We	can	only	go	forward	or	back	and	to	the	left	or	right.	These	deltas	are	handled	by
X	and	Y.	If	Z	is	introduced,	it	can	potentially	rotate	the	camera	forward,	which	may
be	undesirable	for	viewing.

7.	 Next,	let’s	right-click	and	create	a	new	node	called	Get	Actor	Location.	We	have	to
pull	down	the	StartLocation	vector	set	variable.	Then,	from	Return	Value,	set	our
Start	Location	variable.	Comment	the	Give	random	direction	and	save	start
location	area:

8.	 Now,	we	need	to	set	the	Direction	variable	to	be	the	direction	of	the	SpringArm
variable.	The	reason	for	this	is	so	that	the	camera	always	faces	the	direction	in	which
we	are	moving	in	the	world.	So,	when	you	modify	the	different	variables,	you	can	see
it	take	effect.

9.	 Pull	our	SpringArm	variable	into	EventGraph.	Next,	pull	from	the
SetRelativeRotation	variable.

10.	 We	want	to	then	get	our	SpringArm	variable’s	current	RelativeRotation	value	to
interpolate	it	between	the	directions	we	should	be	facing.	This	creates	a	smooth
transition	when	updating	the	camera’s	rotation.

11.	 By	pulling	from	the	SpringArm	variable’s	current	RelativeRotation	pin,	we	want	to

create	the	RInterp	To	node.
12.	 Next,	we	want	to	get	our	Direction	variable	and	convert	this	direction	to	a	rotation

using	Make	Rot	from	X.
13.	 We	will	change	this	rotator	by	an	offset.	I	calculated	this	as	the	local	rotation	offset	of

the	spring.	With	the	direction	in	A,	we	should	set	B	to	have	0.0	Roll,	45.0	Pitch,	and
90.0	Yaw.

14.	 Now,	connect	the	Return	Value	pin	to	the	Target	pin	of	our	RInterp	To	node.
15.	 Now,	right-click,	search	for	Get	World	Delta	Seconds,	and	plug	this	into	the	Delta

Time	pin	on	our	RInterp	To	node.
16.	 The	Return	Value	pin	must	now	be	plugged	into	New	Rotation	for	the

SetRelativeRotation	node	we	created	earlier.

Note
So,	we	want	to	update	our	direction	here.	The	reason	for	this	is	that	we	will	continue
to	add	to	this	operation	to	normalize	our	direction	and	get	a	value	in	the	range	we
expect.

Comment	this	area	Calculate	Direction	for	Camera	Spring	Arm:

17.	 So,	to	do	this,	let’s	pull	our	Direction	variable	down.	Pull	from	the	variable	and	find
Vector	+	Vector.	From	here,	we	want	to	normalize	the	vector.	Lastly,	let’s	break	the
vector.

18.	 Next,	let’s	pull	the	Direction	variable	and	create	a	set	variable.	Let’s	split	the
Direction	set	variable	using	Break	Vector.	Then,	plug	both	X	and	Y	float	variables
into	the	Direction	X	and	Direction	Y	variables	of	the	SET	node.

Comment	this	area	Calculate	Direction:

19.	 We	need	to	pull	a	Ball	variable	and	call	a	node	named	Add	Torque.
20.	 To	calculate	the	Torque	value,	we	want	to	take	the	Direction	variable.	Get	the	Roll

Torque	variable	and	multiply	it	by	the	Direction	vector.	The	results	of	this	should	be
plugged	into	the	Torque	pin	of	the	Add	Torque	node.

Comment	this	area	Apply	Torque	to	Ball:

21.	 The	next	step	is	creating	a	function	that	will	scan	in	front	of	the	Ball	variable.	If	a
trace	is	hit,	it	means	that	we	hit	a	wall.	From	here,	we	want	to	use	Hit	Result	to
generate	a	reflection	off	the	wall	based	on	Hit	Normal.	Let’s	see	this	in	practice.

22.	 From	our	last	node,	let’s	create	a	new	node	called	LineTraceByChannel.	From	here,
we	want	get	a	new	node	by	right-clicking	and	searching	for	Get	Actor	Location.
Plug	in	Return	Value	into	the	Start	pin	of	our	newly	created	node.

23.	 Grab	another	copy	of	our	Direction	variable	and	place	it	in	the	graph.	Pull	from	our
Direction	vector	and	right-click	for	a	new	node	called	Make	Rot	from	Y.	From

Return	Value	of	Make	Rot	from	Y,	right-click	for	a	new	node	called	Get	Up
Vector.

24.	 Get	a	variable	for	our	Ball	vector	and	then	right-click	for	a	new	node	called	Get
LocalBounds.	Now,	split	the	Max	vector	and	from	Max	X,	right-click	for	a	new
node,	Float	*	Float.

25.	 Now,	this	variable	will	take	our	size	and	use	it	to	determine	a	distance	forward	that	is
outside	the	sphere.	In	our	example,	we	will	scale	by	-3.5.	We	will	invert	our	scale
because	the	vector	we	will	multiply	is	relative	to	the	ball,	not	the	world.

26.	 In	the	Float	*	Float	node,	let’s	make	the	other	float	-3.5,	which	is	not	connected.
27.	 From	our	Get	Up	Vector	node,	let’s	multiply	it	by	the	Float	*	Float	result	from	the

earlier	step.	Now,	we	need	to	right-click	and	find	a	Vector	+	Vector	node.	Add	this
vector	to	our	GetActorLocation	node.	Then,	plug	the	results	into	the	End	pin	of	our
LineTraceByChannel	node:

28.	 From	our	LineTraceByChannel	node,	split	hit	result.	Now,	find	Out	Hit	Blocking
Hit	and	create	a	branch	from	the	Boolean	result.	Let’s	pull	our	Direction	vector	and
get	the	SET	variable.	This	should	be	connected	with	the	True	output	pin	of	the
Branch	node	created	previously.

29.	 From	our	Out	Hit	Normal	pin,	right-click	and	create	a	Make	Rot	from	Y	node.
Now,	we	want	to	pull	from	this	return,	right-click,	and	create	a	Get	Up	Vector	node.
This	takes	the	normal	from	the	world	to	relative	direction	space.	Lastly,	we	want	to
get	the	Direction	vector	to	get	the	variable.

30.	 Pull	from	our	Direction	variable	and	release	to	find	Mirror	Vector	by	Normal.	Let’s
plug	in	the	Get	Up	Vector	node	from	the	earlier	step	into	In	Normal	of	Mirror
Vector	by	Normal.	The	results	of	this	node	are	pinned	to	the	Direction	pin	of	the
SET	variable	executed	on	the	True	statement.

Comment	this	area	Bounce	current	direction	off	wall	cloding	in	front	of	ball:

Complete	blueprint	setup	for	Bounce	current	direction	off	wall

Now	that	our	PhysicsBallBP	class	or	agent	is	updated	to	handle	the	direction	vector,	we
will	initialize	it	with	random	values.	It	should	perpetually	move	forward	and	bounce	off
walls	as	the	actor	gets	close	enough	to	the	impact.

Viewing	the	agent
We	want	to	hit	Play	and	make	sure	our	agent	bounces	off	walls.	Once	you	hit	Play,	it
should	play,	and	the	pawn	you	spawn	with	will	go	perpetually	forward.	We	will	then
mirror	the	direction	by	normal	once	collision	has	occurred:

Following	the	agent
We	want	our	Agent	to	follow	its	leader	agent	in	whichever	direction	it	goes.	While	still
following	the	other	logic	to	bounce	off	walls	and	the	movement	behavior	we	plan	to
introduce,	we	will	create	an	example	showing	how	this	will	affect	the	agent’s	movement
as	follows:

This	step	requires	us	to	create	a	few	variables	and	one	function.	We	want	to	hold	our
Follower	and	Leader	actors	when	operating	in	a	free	setup.	We	also	need
LeaderDirection	to	hold	the	direction	that	the	agent	should	be	moving	in.	Lastly,	we	can
mark	agents	to	be	followers	or	leaders	by	enabling	or	disabling	a	Boolean	called
isLeader.

With	these	variables,	we	can	keep	track	and	prevent	leaders	from	following	followers,
which	can	create	interesting	movement	behavior	but	not	what	we	intend	to	make	happen
in	this	demonstration.

Follow	or	lead
Let’s	open	our	FlockingBall	BP	class	and	view	EventGraph.	Find	where	we	will	update
our	RelativeRotation	pin	for	our	Spring	Arm	variable.	Between	this	and	Calculate
Direction,	we	will	add	this	new	set	of	instructions:

1.	 First,	we	need	to	reference	any	actor	near	our	agent.	We	can	do	this	by	the
SphereOverlapActors	node.	Right-click	on	the	graph	and	search	for	this.

2.	 Now,	let’s	get	the	Get	Actor	Location	node.	Right-click,	find	this,	and	plug	it	into
Sphere	Pos	of	the	node	we	created	in	the	previous	step.	Next,	set	the	Sphere	Radius
value	to	300.	Now,	let’s	pull	from	Object	Types	and	create	the	Make	Array	node.
So,	we	should	populate	Object	Types	with	Physics	Body.	Next,	we	want	to	set	our
Actor	Class	Filter	node	to	Flocking	Ball	to	prevent	unwanted	results.	Lastly,	create
another	Make	Array	node,	right-click	on	the	graph,	and	search	for	it.	Then,	populate
the	first	element	with	a	reference	to	Self.	Then,	plug	this	array	into	actors	to	ignore.
Comment	this	area	Search	for	nearby	FlockingBalls.

3.	 Now,	let’s	focus	on	the	Out	Actors	array.	Right–click	on	the	graph	and	search	for
For	Each	Loop.	Let’s	pull	from	Array	Element	and	cast	this	to	FlockingBall.

We	have	to	know	whether	the	agent	we	attempt	to	follow	is	following	us.	Otherwise,
we	can	experience	unwanted	movement	behavior.

4.	 From	the	Casting	variable,	let’s	find	the	Leader	variable	and	compare	it	to	Self	with
equal	(==).	Take	the	Condition	pin	and	create	a	Branch	node.	If	it	is	False,	we	need
to	check	now	whether	we	are	Leader,	and	if	we	have	either	Leader	or	Follower.

Before	we	move	on,	comment	this	branch	with	Don’t	follow,	followers	as	leader:

5.	 So,	search	for	the	isLeader	variable	and	create	this	variable.	Next,	search	for	Leader
and	check	whether	it	is	valid	by	creating	the	Is	Valid	node	(which	is	a	function).	We
have	to	do	the	same	thing	for	another	variable	called	Follower.

6.	 Now,	connect	all	three	Boolean	conditions	into	an	OR	node.	This	will	return	True	if
any	of	our	conditions	return	True.	If	any	of	these	conditions	return	True,	they’re
already	following	an	agent	or	leading	another	agent:

7.	 From	this	OR	node,	let’s	search	for	a	new	Branch	node	and	connect	it	to	the
Condition	pin.	Now,	if	this	Branch	node	value	is	False,	let’s	create	a	node	called
IsValid	(macro).	The	object	we	want	to	check	is	the	casting	we	made	in	step	3.	Pull
this	and	create	a	reroute	node	near	the	IsValid	(macro)	node	so	that	it	can	be	used	by
other	nodes	easily.

8.	 If	IsValid	(macro)	returns	Is	Valid,	we	want	to	create	a	Branch	node.	We	want	to
check	two	conditions	to	be	True	with	an	AND	logic	gate	in	this	statement.

9.	 First,	let’s	get	the	Leader	variable	from	the	reroute.	Then,	we	will	compare	it	to	Self
with	not	equal	(!=).	Create	an	AND	logic	gate	and	connect	the	first	pin	to	the	results
of	the	not	equal	(!=)	condition.

10.	 Next,	let’s	grab	the	Follower	variable	from	the	reroute.	Then,	compare	this	node
using	equal	(==).	Next,	connect	this	to	the	AND	logic	gate	in	the	previous	step.

11.	 Lastly,	connect	this	AND	logic	gate	to	the	Branch	node.	If	this	node	returns	True,
then	let’s	set	the	Follower	pin	from	the	reroute.	Plug	in	a	reference	to	Self	into	the
Follower	pin.	Then,	set	the	local	Leader	variable	from	reroute.

Comment	this	area	If	we	don’t	have	a	leader,	and	we	are	not	one.	Find	one:

12.	 Now,	go	to	the	Completed	pin	of	the	For	Each	Loop	node.	Let’s	create	a	local
Leader	variable	and	check	whether	it	is	valid	using	Is	Valid	(which	is	a	function).
Now,	create	a	Branch	node	and	plug	in	the	Condition	pin	from	the	prior	node.

13.	 If	the	Branch	node	returns	False,	we	want	to	set	the	Leader	Direction	value	of	the
SET	variable	to	0.0,	0.0,	and	0.0.	If	our	Branch	node	returns	True,	we	want	to
calculate	the	direction	toward	our	Leader	variable.

14.	 Create	a	new	node	called	GetActorLocation,	and	from	the	return,	we	will	create	Get
Direction	Vector.	Now,	let’s	right–click	on	the	graph	and	search	for	the	local	Leader
variable.	Then,	create	the	GetActorLocation	node	from	the	Leader	variable	and
plug	this	into	the	To	pin	of	Get	Direction	Vector.

15.	 From	the	Get	Direction	Vector	node,	pull	Return	Value	and	create	Make	Rot	from
Y.	Next,	we	want	to	create	Get	Up	Vector	from	the	previous	rotation.	Then,	from
Return	Value,	this	will	go	into	Leader	Direction	of	the	SET	variable.

16.	 Both	Leader	Direction	local	variables	will	lead	to	area	commented	as	Calculating
Direction.	We	must	also	go	to	Calculate	Direction	and	add	Leader	Direction	to	the
final	direction	calculation.

Comment	this	area	Calculate	Leader	Direction:

Note
Now,	if	we	hit	Play,	we	can	see	what	happens.	Little	groups	that	begin	to	form	as
followers	find	potential	leaders	by	passing	each	other.

Steering	behavior:	Flocking
Flocking	is	a	steering	behavior	that	combines	Separation,	Cohesion,	and	Alignment.
Separation	behavior	avoids	other	nearby	agents.	Cohesion	behavior	keeps	the	agents	in	a
group.	Alignment	behavior	averages	the	forward	direction	by	aligning	with	nearby	agents.

What	we	will	do	here	is	replicate	the	steering	behavior,	flocking,	in	blueprint.	We	will	also
use	UMG	to	aid	the	manipulation	of	weights	for	each	behavior.	Let’s	start	now	and	create
the	variables	we	will	need	in	this	part	of	the	chapter.

Flocking	agents
We	must	first	start	off	by	creating	the	variables	necessary	to	calculate	individual
behaviors.	Then,	we	must	add	the	results	to	normalize	a	final	forward	direction	for	our
agent.

Let’s	focus	on	our	RollingGameMode	game	mode	and	add	the	three	new	global	variables
we	will	have	to	use	later	in	this	chapter.	In	correlation	to	the	three	behaviors,	we	need	to
create	GlobalAlignment,	GlobalCohesion,	and	GlobalSeparation	by	performing	the
following	steps:

1.	 Open	RollingGameMode	and	focus	on	EventGraph.	Then,	from	there,	create	the
three	variables	as	a	Float	type	with	a	default	value	of	0.0.

Note
Let’s	focus	back	on	our	FlockingBall	EventGraph.

2.	 We	need	to	create	three	vector	variables:	NCohesion,	NAlignment,	and
NSeperation.

3.	 Focus	in	on	the	SphereOverlapActors	node	before	ForEachLoop.	Here,	we	will
clear	any	previous	values	of	the	three	vectors	we	just	created.	We	will	do	this	for
each	of	our	flocking	behaviors,	setting	it	to	0,0,0.

Comment	this	area	Clear	any	values:

4.	 Next,	before	the	previously	commented	part	named	Don’t	follow,	followers	as	the
leader,	we	want	to	add	space	between	this	and	the	Loop	Body	pin	from	the
ForEachLoop	node.

5.	 First,	we	need	to	calculate	NAlignment,	which	is	the	behavior	responsible	for
steering	the	nearby	agents	in	the	same	direction.	We	will	get	the	average	direction
vector	of	nearby	agents.

6.	 Now,	we	want	to	set	a	local	variable,	NAlignment,	and	we	will	do	this	by	first
getting	our	Direction	variable	from	the	Cast	to	FlockingBall	node.	Now,	we	will
need	to	multiply	the	Direction	value	by	an	intensity	based	on	this	agent’s	distance
from	our	agent.

7.	 We	first	need	to	calculate	the	vector	length	between	us	and	the	agent.	We	will	do	this
by	subtracting	our	location	from	the	other	agent’s	location.	Then,	we	will	get	the
VectorLength	value	from	the	results.	Next,	we	will	create	Map	Range	Clamped
and	plug	in	the	results	from	the	VectorLength	node	into	the	Value	pin.

8.	 Now,	to	configure	this	Map	Range	Clamped	node,	let’s	set	In	Range	B	to	300.0	and
then	set	Out	Range	A	to	1.0.	This	will	result	in	full	intensity	when	it	is	at	0	units	and
there	is	no	intensity	beyond	300	units.	This	return	now	needs	to	be	multiplied	by	the
Direction	value.

9.	 Then,	we	will	add	the	results	of	this	to	NAlignment	and	set	this	back	to	the	local
NAlignment	variable:

10.	 Now,	we	must	calculate	Cohesion,	which	is	the	behavior	responsible	for	steering	the
agent	toward	the	center	of	the	nearby	agents.	This	is	the	direction	to	the	agent’s
center	of	mass.

11.	 First,	let’s	create	a	GetActorLocation	(A)	node	and	a	Lerp	(vector)	node	that
connects	the	A	pin	and	the	GetActorLocation	(B)	node	from	the	reroute.	The	Alpha
value	should	be	Return	Value	of	Map	Range	Clamped	from	step	6.

12.	 Then,	we	want	to	add	Return	Value	of	the	Lerp	(vector)	node	to	NCohesion.	Next,
we	will	set	our	local	NCohesion	variable	with	the	final	results.	This	will	now	update
our	NCohesion	variable	for	each	agent	nearby:

13.	 The	last	behavior	to	calculate	is	Separation;	this	is	responsible	for	forcing	the	agent
away	from	nearby	agents.	This	is	the	Direction	vector	from	our	agent	to	the	other
agent.

14.	 We	first	want	to	subtract	the	GetActorLocation	node	from	our	agent’s
GetActorLocation	node.	Then,	this	will	be	B	on	a	Lerp	(vector)	node.	We	will	go
back	to	Return	Value	of	the	Map	Range	Clamped	node	and	plug	this	into	the
Alpha	pin	of	the	Lerp	(vector)	node.	We	will	leave	A	blank.

15.	 Then,	we	must	add	the	Return	Value	of	Lerp	(vector)	to	NSeparation.	Lastly,	we
will	set	our	local	NSeparation	variable	with	the	results.

Comment	this	area	Calculate	Each	Behavior	for	nearby	Agents:

16.	 Focus	in	on	Completed	from	the	Loop	Body	variable.

Now,	we	must	finish	calculating	the	three	behaviors.

17.	 Let’s	get	the	length	of	the	array	returned	by	SphereOverlapActors	so	that	we	will
know	how	much	to	divide	to	create	an	average.	We	will	then	convert	this	Int	to	Float.
From	there,	we	can	divide	the	NAlignment	variable	and	normalize	the	results	using
the	Normalize	node.	Then,	we	must	get	the	global	variables	we	defined	in
RollingGameMode.

18.	 Create	a	Get	Game	Mode	node	and	cast	it	to	RollingGameMode	to	get	access	to	our
variables.	Next,	we	will	get	the	Global	Alignment	variable	from	the
RollingGameMode	casting	and	multiply	it	by	the	Normalize	results	from	the
previous	step.	Then,	the	results	of	this	must	be	set	into	the	local	NAlignment
variable:

19.	 Next,	we	must	calculate	Cohesion.	For	this,	we	must	divide	the	local	NCohesion
variable	by	the	array	length	and	then	subtract	it	from	our	GetActorLocation	node.
We	will	then	apply	the	Normalize	function	to	gives	us	the	results	we	need.

20.	 Next,	we	will	multiply	the	results	by	our	Global	Cohesion	variable	from
RollingGameMode.	Then,	set	this	to	our	local	NCohesion	variable:

21.	 Similar	to	the	processes	before,	we	want	to	get	our	local	NSeparation	variable	and
divide	it	by	the	array	length	from	before.	Mutiply	the	results	by	-1.	Then,	multiply
the	results	by	the	global	Global	Separation	variable.

22.	 Finally,	we	will	get	the	results	and	set	our	local	NSeparation	variable.

Comment	this	area	Calculating	Flocking	Steering	Behavior	-	outputs	NCohession,
NAlignment,	NSeperation:

23.	 Then,	we	have	to	find	Calculate	Direction	and	add	each	of	our	variables	to	the	final
calculation	of	the	Direction	variable	for	this	agent:

24.	 The	last	thing	we	need	to	do	is	prepare	for	the	next	section	in	this	course.	So,	let’s
find	an	empty	place	above	Blueprint	to	the	left	and	add	some	new	code.

25.	 Add	a	new	custom	event	called	ResetBall.
26.	 Next,	we	want	to	create	a	SetActorLocation	node	for	this	agent	and	set	New

Location	to	the	Start	Location	variable	that	we	set	at	the	beginning.
27.	 Now,	we	want	to	set	a	new	direction,	and	we	will	do	this	by	first	placing	a	Direction

variable	of	the	SET	node.	Then,	we	will	split	the	struct	and	only	apply	to	Return
Value	X	and	Return	Value	Y	from	a	Random	Unit	Vector	node:

Controlling	behavior	through	UMG
In	this	part	of	the	chapter,	we	want	to	touch	on	using	UMG	to	control	the	behaviors
influenced	upon	our	agents.	We	will	do	this	by	first	creating	a	UMG	widget	with	the
proper	controls	to	manipulate	our	three	float	variables.	Then,	we	must	assign	this	user
widget	to	the	owning	PlayerController.	Then,	we	will	end	by	adding	a	function	that	will
reset	the	Agents	to	their	original	position,	starting	the	simulation	fresh.

A	simple	UI
Let’s	navigate	to	our	Content	Browser,	create	a	new	Widget	blueprint,	and	name	it
FlockingUI.	Let’s	open	this	up	and	go	to	the	Designer	tab	to	get	started,	as	follows:

1.	 Let’s	drag	Vertical	Box	into	our	Hierarchy	panel.
2.	 Next,	set	the	slot	(Canvas	Panel)	properties:	the	Size	X	value	to	350.0	and	the	Size

Y	value	to	600.0.
3.	 Then,	drag	a	button	into	our	Hierarchy	class	under	Vertical	Box.	Rename	the	button

ResetButton.	Next,	set	the	Vertical	Box	slot’s	Padding	properties	to	75.0	and	25.0.
4.	 Lastly,	drag	Text	into	our	Hierarchy	class	under	ResetButton.	Next,	set	the	text

property	Text	to	“Reset”:

5.	 Now,	let’s	drag	Horizontal	Box	into	our	Hierarchy	class	under	Vertical	Box.	Then,
add	two	more	widgets	within	Horizontal	Box,	which	are	called	Text	and	Slider.

6.	 Now,	we	must	duplicate	Horizontal	Box	and	its	children	two	more	times	within	the
Hierarchy	class.

7.	 Right-click	and	copy	Horizontal	Box	and	then	paste	it	into	Vertical	Box	twice:

8.	 After	this,	we	want	to	rename	the	widgets	we	will	use	for	organization	purposes.	In	a
sequence,	we	want	to	name	the	first	slider	AlignmentSlider,	the	second
CohesionSlider,	and	the	last	one	SeparationSlider.

9.	 Now,	in	sequence,	let’s	set	our	text	property	Text	to	these	three	names:	Alignment,
Cohesion,	and	Separation.	Then,	we	will	set	our	Padding	text	property	to	7.5.

Now	that	this	is	completed,	you	should	have	something	similar	to	the	following
screenshot:

10.	 To	update	our	Global	variables,	we	must	create	an	event	from	the	three	sliders.	We
can	start	with	AlignmentSlider,	then	go	under	Events,	and	then	click	on	the	+	option
on	OnValueChanged.	Then,	when	this	event	is	called,	we	will	update	the	Global
Alignment	variable	in	RollingGameMode.

11.	 Now,	we	must	do	this	for	the	other	two	sliders—CohesionSlider	and
SeparationSlider—with	the	respective	global	value:

12.	 Let’s	focus	back	on	the	Designer	tab	of	this	user	widget.	Then,	click	on	the
ResetButton	event	we	made	in	previous	steps.

13.	 We	want	to	go	down	in	Events	and	click	on	the	+	option	on	OnPressed.	This	will
give	us	the	event	we	just	created.

14.	 Here,	we	want	to	pull	from	the	pin	and	call	Get	All	Actors	Of	Class.	Next,	we	want
the	Actor	Class	value	to	be	Flocking	Ball.	From	there,	Out	Actors	will	return	all
instances	of	Flocking	Ball	in	the	world	into	an	array.

15.	 The	last	thing	to	do	is	pull	from	Out	Actors	and	call	Reset	Ball.	This	will	notify	all
our	agents	to	reset	the	simulation:

16.	 Now,	we	must	go	back	to	Flocking	Ball	in	EventGraph	to	add	more	blueprint	code.
Find	an	empty	place	above	the	Reset	Ball	event.

17.	 Right-click	and	search	for	Event	Possessed.	Cast	a	new	controller	to
PlayerController	and	then	pull	from	As	Player	Controller	and	search	for	Create
Widget.	Set	the	Class	pin	for	this	node	to	FlockingUI.

18.	 Next,	we	must	pull	from	Return	Value	and	call	Add	to	Viewport.	Lastly,	we	need	to
show	our	mouse	to	the	player	so	that	they	can	interact	with	the	widget.

19.	 Right-click	and	search	for	Get	Player	Controller.	Pull	from	Return	Value	and
search	for	Show	Mouse	Cursor.

Comment	this	area	Enable	Flocking	UI	&	Mouse	Visibility:

Let’s	compile	everything.	Click	on	Save	All	and	go	back	to	our	Map.	If	you	hit	Play,	you
should	see	the	agents	bounce	off	the	walls	they	collide.	Then,	if	we	turn	up	the	different
behaviors,	we	will	see	that	they	begin	to	affect	the	direction	of	our	agents.

The	following	screenshot	shows	what	the	level	looks	like	after	putting	everything
together:

Summary
Let’s	take	some	time	to	briefly	talk	about	what	we	did	in	this	chapter.	First,	we	set	up	our
agents	to	bounce	off	walls.	This	allows	us	to	watch	the	agents	simulate	movement	and
how	the	four	behaviors	would	affect	them.	Next,	we	will	implement	the	Follower	and
Leader	behavior,	and	this	creates	groups	within	the	agents	during	simulation.

The	last	thing	we	did	was	implement	the	flocking	movement,	which	is	broken	up	into
three	different	behaviors.	The	first	behavior	is	Alignment,	and	it	is	responsible	for	aligning
agents	with	nearby	agents.	The	second	behavior	is	Cohesion,	and	it	is	responsible	for
directing	agents	towards	the	center	of	the	nearby	agents.	The	third	behavior	is	Separation,
and	it	is	responsible	for	directing	the	agent	away	from	nearby	agents.

Then,	we	simply	created	a	UI	to	control	the	weights	we	created	in	the	course	and	reset	the
agents	at	any	time	during	the	simulation.

Now	that	we	are	done	covering	different	movement	behaviors,	it	is	time	we	combined	all
that	we	demonstrated	about	AI	in	this	book.	In	the	next	chapter,	we	will	create	an	AI
character,	which	will	patrol,	seek,	and	destroy	any	enemy.	So,	let’s	move	on	to	the	next
chapter	to	get	started!

Chapter	8.	Creating	Patrol,	Chase,	and
Attack	AI
In	this	chapter,	we	will	combine	some	of	the	components	we	used	in	the	previous
chapters,	including	AI	Sense	and	other	components,	to	have	AI	navigate.	Then,	we	will
add	some	randomness	in	the	time-out	time	that	will	make	the	AI	chase	after	the	characters
it	detects.	Now,	in	this	chapter,	we	can	create	AI	using	Behavior	Tree	while	utilizing	other
AI	components.	A	combination	of	these	components	can	create	responsive	and	convincing
AI	behavior.

The	goal	of	this	chapter	is	to	create	an	AI	that	will	fire	at	you	using	Behavior	Tree;	this
last	AI	component	will	benefit	you	because	there	is	no	perfect	solution.	So,	understanding
each	of	the	available	tools	allows	you	to	exploit	the	advantages	of	each	component	for
your	use	in	AI.	These	tools	allow	you	to	create	AI	that	is	responsive	and	convincing.

Creating	a	Blackboard
Blackboards	define	the	local	variable	space	for	Behavior	Trees.	These	Blackboards	can
also	sync	with	other	instances	of	the	same	Blackboard.	Blackboards	can	be	created	first
because	you’ll	find	yourself	modifying	them	often	until	you	discover	everything	you	need
for	your	Behavior	Tree.

We	will	create	our	Blackboard	data	first	and	then	supply	it	to	our	Behavior	Tree.	Now,
let’s	start!	Here	are	the	steps:

1.	 Right-click	on	the	Content	folder	and	create	a	new	folder	named	AI.
2.	 Now,	right-click	inside	the	folder	and	scroll	down	to	find	Artificial	Intelligence;

then,	click	on	Blackboard.	Let’s	name	this	EnemyData.
3.	 We	will	open	EnemyData	and	then	create	two	object	variables	to	be	used	by	Behavior

Tree.	Name	the	first	one	TargetActor	and	the	next	one	CurrentRoute.

Note
In	case	you’re	using	Enumeration,	you	can	define	the	enumeration	the	same	way	we
will	define	actors	for	these	objects.

4.	 Click	on	TargetActor	and	select	the	Key	Type	option	in	the	drop-down	menu.	Then,
change	the	Base	Class	value	to	Actor.	We	want	to	do	the	same	with	CurrentRoute,
as	in	the	following	screenshot:

Behavior	Tree	is	a	tree	of	nodes	whose	structural	diagram	dictates	the	flow	control,	each
leaf	node	representing	the	actual	code	for	the	AI	to	execute.	This	results	in	the	AI	making
a	sequence	of	decisions	appropriate	to	the	input	it	receives.	To	see	a	sample	of	what	we
will	end	up	making	today,	here	is	how	Behavior	Tree	looks	in	Unreal	Engine	4:

There	are	many	forms	of	state	machines	available	in	the	world.	Behavior	Tree	is	a	form	of
a	tree	with	a	subtree	of	nodes.	It	has	composites	that	allow	you	flow	control,	resulting	in
the	execution	of	leaves,	which	also	have	additional	flow	control.	This	level	of	control
allows	you	to	create	deep	Behavior	Trees	with	a	lot	of	control.

Let’s	begin	to	create	our	own	and	get	a	quick	look	of	what	to	expect	later	in	the	course:

1.	 We	will	right-click	on	EventGraph	and	scroll	down	to	Artificial	Intelligence.	Now,
let’s	click	on	Behavior	Tree	and	name	this	EnemyAI.

2.	 Open	up	EnemyAI,	and	you	should	see	EnemyData	populated	in	the	ROOT	node.	If
not,	click	on	the	ROOT	node	and	set	the	Blackboard	asset	to	EnemyData:

Mid-range	attack
This	will	be	a	line	trace	from	the	center	of	our	eye.	This	will	be	how	you	attack	the	AI,
and	this	is	how	the	AI	will	attack	you.	We	will	simply	run	a	line	trace	and	then	draw	a
debug	line	over	this,	creating	a	cool	red	beam	out	of	our	player’s	forehead!	We	will	test	to
see	whether	it	works,	and	after	this,	we	will	integrate	it	into	both	players.

Now,	to	begin	creating	this	function,	we	will	do	something	different	that	will	save	us	time.
We	will	put	the	function	in	Blueprint	Function	Library	to	be	shared	across	every	Blueprint
graph.

To	keep	the	function	useful	for	both	AIController	and	PlayerController,	we	want	to	to	give
a	controller	as	the	input	and	then	to	output	an	actor.	This	function	will	also	handle	drawing
the	red	beam	where	necessary:

1.	 Let’s	right-click,	go	to	Blueprints	and	then	to	Blueprint	Function	Library.	Name
this	EnemyLibrary	and	open	it	up.

2.	 On	the	left-hand	side,	add	new	Function.	Name	it	LaserFromController.	Make	the
first	input	a	controller	named	theController	and	then	output	an	actor	named	Hit
Actor.	Lastly,	create	a	Local	Variable	called	foundActor.	Make	the	type	Actor.

3.	 Pull	from	the	controller	and	search	for	Get	Controlled	Pawn.	Then,	from	here,	we
will	create	a	line	trace	based	on	the	character’s	rotation.	Pull	from	Get	Controlled
Pawn	and	search	for	Get	Actor	Forward	Vector.

4.	 We	want	to	multiply	Get	Actor	Forward	Vector	by	9999999.
5.	 Go	back	to	Get	Controlled	Pawn	from	Step	3.	Then,	cast	it	to

ThirdPersonCharacter,	and	now	we	can	access	the	Mesh	variable.	We	want	the
location	of	our	head	bone	with	Get	Socket	Location.

6.	 Then,	pull	from	ReturnValue	and	find	Vector	+	Vector;	now,	add	12.0	in	the	Z
variable:

7.	 Now,	we	must	add	the	results	of	Step	4	to	the	results	of	Step	6	with	a	Vector	+	Vector
node.	Then,	we	will	move	on	to	a	line	trace	for	multiple	objects.	Search	for
LineTraceForObjects	and	then	plug	in	the	results	into	the	End	pin	of	the	node	we

just	created.
8.	 Now,	let’s	set	the	Start	value	of	the	node	we	created	in	the	previous	step	to	the

output	from	the	Vector	+	Vector	node	to	the	start.	Then,	we	should	have	a	beam	start
from	his	head	and	draw	it	forward	in	space.

9.	 Pull	from	Object	Types	and	create	an	array;	then,	populate	the	pawn.
10.	 Pull	from	ActorsToIgnore	and	create	an	array;	then,	populate	the	Cast	to

ThirdPersonCharacter	node	into	the	0	element.
11.	 From	LineTraceForObjects,	break	OutHitResult.	Now,	pull	from	OutHit

bBlockingHit	and	search	for	Branch.
12.	 Right-click	and	search	for	Apply	Damage;	then,	connect	the	true	exec	pin	of	the

Branch	node	to	this	node.	Pull	from	OutHit	HitActor	and	put	it	in	the
DamagedActor	pin	of	Apply	Damage:

13.	 Next,	right-click	and	search	for	Draw	Debug	Line.	We	want	the	LineStart	pin	to
connect	to	the	results	from	Step	6,	which	is	the	beginning	of	our	line.	Then,	pull
OutHit	Location,	which	will	be	plugged	into	LineEnd.	Select	the	values	for
LineColor	as	red,	for	Duration	as	.2,	and	for	Thickness	as	3.

14.	 Lastly,	pull	the	local	Found	Actor	variable	and	set	it.	Pull	from	OutHit	HitActor
and	set	it	in	our	local	variable.	Then,	send	this	to	Return	Node.

15.	 We	want	to	duplicate	Draw	Debug	Line	to	connect	to	the	false	exec	pin	of	the
Branch	node:

16.	 Instead	of	getting	OutHit	Location	for	LineEnd,	we	will	get	the	results	from	Step	7.
17.	 Then,	the	end	of	this	is	plugged	into	Return	Node.	The	Hit	Actor	pin	in	Return

Node	is	populated	with	our	local	Found	Actor	variable:

Controllers
In	this	example,	we	will	give	PlayerController	the	ability	to	take	and	apply	damage.	This
is	done	once	the	AI	is	finished,	and	you’ll	be	able	to	fight	the	AI.	Also,	as	we	will	use	AI
Perception	in	this	course,	we	should	register	the	Stimuli	source	for	our	controller.	Next,
we	will	set	up	the	AIController.	We	will	give	it	the	ability	to	sense	stimuli.	Then,	we	will
create	an	Actor	component,	which	will	contain	the	function	needed	to	update	Behavior
Tree.

Let’s	move	on	and	begin	to	create	these	base	components,	as	follows:

1.	 In	the	AI	folder,	right-click	and	select	Blueprint.	Then,	from	the	options,	select
Player	Controller.	Then,	we	want	to	name	this	OutController.

2.	 Open	Event	Graph	and	find	Event	BeginPlay.
3.	 Right-click	nearby	and	search	for	Get	Controlled	Pawn.	Then,	pull	from	Return

Value	and	search	for	Assign	OnTakeAnyDamage.
4.	 This	will	create	an	OnTakeAnyDamage	event	and	output	Damage.
5.	 We	need	to	create	a	variable	to	hold	our	Health	variable.	Click	on	Add	variable	and

make	a	Float	variable	named	Health.	Set	the	default	to	5.
6.	 Looking	at	OnTakeAnyDamage,	pull	out	Damage	and	subtract	it	from	Health.

Then,	set	the	results	in	our	Health	variable.	Next,	we	will	check	whether	Health	is
less	than	or	equal	to	0.0.

7.	 Create	a	Branch	node	from	the	results.	Pull	from	True	and	right-click	to	search	for
Print	String.	Populate	this	with	Player	Died,	right-click,	and	then	search	for
DestroyActor.

8.	 Right-click	and	search	for	Get	Controlled	Pawn;	then,	plug	this	into	the	Target	pin
on	DestroyActor	from	the	previous	step.	Now,	we	can	take	damage	from	our	AI
counterpart:

9.	 Right-click	and	search	for	the	E	Input	event.	Pull	Pressed	and	release	to	search	for
Sequence.	Pull	from	Then	0	and	release	to	search	for	DoOnce.	Pull	from	Then	1,
then	release	to	search	for	Delay.	Now,	set	Duration	to	0.75	and	plug	Completed	into
the	Reset	pin	in	DoOnce.

10.	 Looking	at	DoOnce,	pull	from	Completed,	and	release	to	search	for
LaserfromController.	Then,	pull	from	Hit	Actor	and	release	to	search	for	Apply
Damage.	Set	Duration	to	1.0	and	Damage	Causer	to	Self.

11.	 Now,	we	want	to	add	this	controller	as	StimuliSource.	In	the	Components	section,
click	on	Add	Component	and	find	AIPerceptionStimuliSource.

12.	 Click	on	Register	as	Source	for	Senses	and	then	click	on	+.	Let’s	select
AISense_Sight	from	the	available	options.

Now,	compile	this.	We	are	done	with	our	PlayerController	setup.	Now	we	need	to	create
an	AIController	setup	so	that	our	AI	can	fire	back	at	us:

Let’s	set	up	our	AIController	as	follows:

1.	 Right-click	and	click	on	Blueprint.	In	all	classes,	search	for	AI	Controller.	Select	it
and	then	click	on	Select	to	create	it.	Name	it	EnemyController	and	open	it	in
EventGraph.

2.	 Let’s	create	a	new	Float	variable	named	Health.	Then,	set	the	default	value	to	5.0.
3.	 The	beginning	of	this	is	the	same	on	both	characters	except	for	one	minor	change.	So,

we	can	copy	the	code	from	OurController	or	start	from	Step	2	in	the	previous
section.	We	will	copy	the	section	shown	in	the	following	screenshot	into
EnemyController	from	OurController:

4.	 At	the	end	of	the	Bind	Event	to	OnTakeAnyDamage	event,	pull	to	release	and
search	for	Run	Behavior	Tree.	Set	the	BTAsset	value	to	EnemyAI,	which	is	the
asset	we	created	earlier	in	the	chapter.	Now,	the	code	in	the	tree	will	run	on	this
AIController.

5.	 Now	that	the	AI	can	receive	damage,	we	need	it	to	sense	the	player.	We	will	do	this
with	the	AI	Perception	component.

6.	 On	the	Components	section,	click	on	Add	Component	and	search	for
AIPerception.	After	adding	this,	under	AI	Perception	on	the	right-hand	side,	select
Senses	Config	from	the	drop-down	menu	and	hit	+.	Then,	set	it	to	AI	Sight	config
and	select	Sense	from	the	drop-down	menu.

7.	 Drop	down	Detection	by	Affiliation	and	check	for	Detect	Neutrals.
8.	 Go	under	Events	and	click	on	OnPerceptionUpdated	to	get	the	currently	sensed

actors.
9.	 From	OnPerceptionUpdated	(AIPerception),	pull	and	release	to	search	for

Sequence.	We	want	then_0	to	be	drawn	and	then	released	to	search	for	DoOnce.
Then,	we	want	then_1	to	be	set	to	the	Duration	pin	of	the	Delay	node.	Set	Duration
1.	Now,	connect	Completed	to	Reset.

10.	 Focus	on	DoOnce.	We	will	pull	from	Completed	and	then	release	to	search	for	Stop
Movement.	Right-click	and	search	for	Blackboard.	Pull	from	Blackboard	and
release	to	search	for	Set	Value	as	Object.	Right-click,	search	for	Make	Literal
Name,	and	plug	this	into	Key	Name.	Get	the	first	element	from	UpdatedActors	and
plug	this	into	Object	Value:

Now,	the	AI	will	immediately	report	the	actors	that	get	sensed	to	Behavior	Tree,	which
then	can	be	used	immediately	in	our	AI’s	next	decision.

Waypoints
Similar	to	the	AI	Sense	project,	these	waypoints	will	have	a	reference	to	the	next
waypoint.	This	simple	link	between	two	waypoints	allows	us	to	create	paths	for	our	AI	to
navigate	to.

Now,	we	should	move	on	making	these	waypoints;	perform	the	following	steps:

1.	 To	begin,	let’s	right-click	in	the	space	inside	the	Folder	section	and	go	to	Blueprint.
At	the	bottom,	search	in	All	Classes	for	TargetPoint.	Select	it	and	then	hit	Select	to
create	it.	Then,	name	it	Waypoint	and	open	this	in	EventGraph.

2.	 On	the	left-hand	side	under	My	Blueprint,	add	a	variable	waypoint	named
NextWaypoint.	We	will	use	this	to	find	the	next	waypoint	to	transverse	to.

3.	 Add	four	waypoints	to	the	level	and	link	them	together	using	the	NextWaypoint
variable.	The	connection	should	look	similar	to	A->B->C->D->.	D	should	then
connect	to	A,	thus	creating	a	loop.

BT	Composites,	Task,	Decorator,	and
Service
Tasks	are	executed	by	composites.	Composites	are	important	because	they	directly	affect
the	flow	control	within	your	Behavior	Tree.

Composites	come	in	three	forms	at	the	time	of	writing	this:	Sequence,	Selector,	and
Simple	Parallel.	Here’s	a	description	of	each:

Sequence:	This	executes	each	node,	returning	success	on	the	last	node;	however,	if
any	node	fails,	it	will	immediately	return	failure	and	abort	the	rest	of	the	leaves.
Selectors:	This	executes	each	node,	returning	success	immediately	and	aborting	the
rest	of	the	leaves.	If	a	node	returns	failure,	it	continues	to	only	return	failure	if	the	last
child	returns	failure.
Simple	Parallel:	This	executes	one	task	and	a	subtree	at	the	same	time,	which	allows
you	to	walk	and	allow	another	tree	of	decision	making	to	be	at	the	top	of	the	walk
task,	for	example.

Tasks	are	usually	the	last	node	in	the	change	to	be	called	as	they	contain	the	code	that
would	affect	the	AI	actions	directly.	We	will	make	our	own	task	and	learn	how	it
communicates	with	the	Behavior	Tree.

Decorators	are	executed	on	the	entry	of	a	composite	or	task,	which	can	determine
whether	the	composite	or	node	should	be	executed.	These	are	great	to	create	custom
checks	for	this	specific	task.	For	example,	it	only	executes	Break	Door	if	it	has	the	Door
and	Beast	modes.

Services	are	executed	while	a	subtree	is	active.	This	means	that	it	has	an	available	tick.
This	allows	us	to	gather	or	update	information	to	make	immediate	changes	in	game.	The
shooting	service,	for	example,	would	be	responsible	for	shooting	whenever	the	player	is	in
line	of	sight.	This	also	then	allows	you	to	govern	the	shooting	and	prevent	interruptions
when	you	don’t	want	them.

In	this	section,	we	will	use	everything	except	Simple	Parallel.	Let’s	begin!

First,	we	will	create	a	Decorator,	and	it	will	be	responsible	for	exiting	the	tree	if	it	goes
over	the	time	limit.	So,	in	our	case,	this	will	be	after	3.0	seconds,	and	if	our	move	status
isn’t	idle,	we	will	remove	CurrentTarget,	as	follows:

1.	 Right-click	on	the	graph	and	click	on	Blueprint.	Then,	go	down	to	All	Classes	and
search	for	BTD.	Click	on	BTDecorator	and	then	hit	Select	to	create	a	new	BT
decorator.	Name	this	ChaseTime.

2.	 Now,	let’s	open	ChaseTime	and	go	to	EventGraph.	Right-click	and	search	for	Event
Receive	Execution	Start.

3.	 We	should	create	two	variables.	The	first	will	be	a	Blackboard	Key	Selector	type
named	CurrentTarget.	The	second	will	be	a	Float	type	named	ChaseDuration.

4.	 Pull	from	Event	Receive	Execution	Start	and	then	search	for	Delay.	Plug	in	Chase

Duration	into	the	Duration	pin	of	the	Delay	node.
5.	 Pull	from	Owner	Actor	and	cast	this	to	AIController.	Then,	get	AsAIController	and

search	for	Get	Move	Status.	Pull	from	Return	Value	and	search	for	Not	Equal	To.
Pull	from	the	results	and	create	Branch.	Plug	in	Completed	to	the	entry	of	Branch.

6.	 Get	CurrentTarget	and	put	a	variable	in	EventGraph.	Pull	from	the	pin	and	search
for	Set	Blackboard	Value	as	Object.	Pull	true	from	the	Branch	node	into	this	node.
Then,	pull	from	AsAIController	and	search	for	Stop	Movement.	This	should	be
after	Set	Blackboard	Value	as	Object:

Now	that	this	is	done,	let’s	compile	it.	Then,	we	will	move	on	to	the	next	component.

Second,	we	will	create	a	service	that	will	set	our	first	route	at	random.	Then,	when	we	get
to	the	current	route,	we	will	move	to	the	next	route	in	the	list.	This	can	happen	at	any
moment	and	services	allow	you	to	have	a	function	that	can	constantly	run,	as	follows:

1.	 Right-click	on	the	graph	and	click	on	Blueprint.	Then,	go	down	to	All	Classes	and
then	search	for	BTS.	Click	on	BTService	and	hit	Select	to	create	a	new	BT	service.
Name	this	MoveBetweenRoutes.

2.	 Open	MoveBetweenRoutes	and	navigate	to	EventGraph.
3.	 Right-click	and	search	for	Event	Receive	Activation.	Let’s	pull	from	Owner	Actor

and	make	a	pure	cast	for	AIController.	Next,	pull	from	AsAIController	and	search
for	ReceiveMoveCompleted.	Assign	this	event	for	use	later:

4.	 Let’s	create	two	new	variables.	The	first	will	be	Blackboard	Key	Selector	named
CurrentRoute.	The	second	will	be	AIController	named	thisActor.

5.	 Now,	we	want	to	set	thisActor	and	pull	AsAIController	into	thisActor.
6.	 Next,	we	want	to	get	CurrentRoute	and	Get	Blackboard	Value	as	Object;	then,	we

want	to	create	an	IsValid	node	to	check	whether	the	Blackboard	value	object	is	valid:

7.	 Pull	from	Is	Not	Valid	and	release	to	search	for	Get	All	Actors	of	Class.	Set	Actor

Class	to	Waypoint.
8.	 Pull	from	Out	Actors	and	release	to	search	for	Length;	then,	subtract	1.	Right-click

and	search	for	Random	Integer	in	Range.	Then,	plug	in	the	results	of	the	minus	into
Max.	Next,	pull	from	Out	Actors,	release,	and	search	for	GET.

9.	 Plug	Return	Value	from	Random	Integer	in	Range	into	Get.	Now,	pull	down
CurrentRoute.	Pull	from	this	pin,	then	release,	and	then	search	for	Set	Blackboard
as	Object.	Pull	GET	into	Value	of	this	node:

Now,	a	random	route	is	chosen	at	the	start.

10.	 Let’s	focus	back	on	the	ReceiveMoveCompleted	event	we	created	earlier.	Switch	on
Result,	and	from	Success,	release	to	search	for	Branch.

11.	 Pull	down	thisActor	and	then	pull	pin,	then	search	for	Get	Controlled	Pawn.	Then,
from	ReturnValue,	pull	the	pin	and	search	for	Get	Distance	To.

12.	 Pull	down	CurrentRoute,	pull	the	pin,	and	search	for	Get	Blackboard	Value	as
Object.	Next,	cast	to	waypoint	and	then	plug	AsWaypoint	into	OtherActor.

13.	 Check	whether	ReturnValue	is	less	than	125.	Plug	the	results	into	Branch,	which
was	created	earlier:

14.	 Pull	from	AsWaypoint	and	release	to	search	for	Next	Waypoint.
15.	 Then,	pull	down	Current	Route	and	drop	it.	Pull	the	pin	and	release	to	search	for	Set

Blackboard	as	Object.	Then,	pull	the	pin	from	Next	Waypoint	into	Value	of	this

node:

Now,	we	can	move	the	next	route	once	we’ve	moved	close	enough	to	our	current	route.

The	third	thing	we	will	create	is	Task,	and	it	is	called	as	a	leaf	in	the	tree.	This	node	will
specifically	help	the	AI	rotate	and	attack	the	player	when	it’s	within	range.	Perform	the
following	steps:

1.	 Right-click	on	the	graph	and	click	on	Blueprint.	Then,	go	down	to	All	Classes	and
search	for	BTD.	Click	on	BTTask	and	hit	Select	to	create	a	new	BTTask.	Name	this
AttackEnemy.

2.	 Open	AttackEnemy	and	then	open	EventGraph.
3.	 Right-click	and	release	to	search	for	Event	Receive	Execute.	Then,	create	this	node.

Now,	cast	from	Owner	Actor	to	AIController.
4.	 From	Cast	To	AIController,	create	a	Branch	node.	False	would	go	to	Finish

Execute.	This	will	also	return	False	for	Success:

5.	 Pull	down	TheAttacker,	pull	the	pin,	and	release	to	search	for	Get	Blackboard
Value	as	Object.	Then,	we	will	pull	the	pin	and	release	to	cast	to
ThirdPersonCharacter.	Success	is	then	plugged	into	Condition	of	the	Branch	node
we	created	in	Step	4.

6.	 True	is	then	pulled	and	released	to	search	for	Delay.	In	Duration,	we	want	to	search
for	Random	Float	in	Range.	Set	the	Min	value	to	.4	and	the	Max	value	to	.75	on	the
node:

7.	 Pull	from	AsAIController,	release,	and	then	search	for	Laser	from	Controller.
Now,	pull	from	Hit	Actor,	release,	and	search	for	Is	Valid.	Pull	Is	Not	Valid	and
release	to	search	for	Finish	Execute.

8.	 Pull	from	Is	Valid	and	search	for	Apply	Damage.	Then,	plug	Hit	Actor	into
Damaged	Actor.	Plug	our	AsAIController	node	into	Damage	Causer.

9.	 Pull	from	Apply	Damage	and	search	for	Delay.	Right-click,	search	for	Random
Float	in	Range,	and	then	plug	Return	Value	into	Duration	of	the	node	we	just
created.	Set	the	Min	value	to	.5	and	the	Max	value	to	1.0.

10.	 After	Delay,	pull	and	search	for	Finish	Execute.	Mark	Success	as	true	by	checking
it:

11.	 Now,	right-click	on	the	graph	and	search	for	Event	Receive	Tick.	Then,	cast	Owner
Actor	to	AIController.	From	here,	we	can	pull	from	AsAIController	and	release	to
search	for	Get	Controlled	Pawn.	Then,	pull	the	Get	Actor	Location	pin	and	release
to	search	for	Get	Direction	Vector.

12.	 Pull	from	AsThirdPersonCharacter	to	release	and	search	for	GetActorLocation.
Then,	plug	ReturnValue	into	the	To	pin	of	Get	Direction	Vector,	which	was	created
in	the	previous	step.

13.	 Pull	from	ReturnValue	of	Get	Controlled	Pawn	and	release	to	search	for	Get	Actor
Forward	Vector.	Then,	from	ReturnValue,	let’s	release	and	search	for	dot	product
(.).

14.	 Plug	in	ReturnValue	from	the	Get	Direction	Vector	node	into	B:

15.	 Take	the	results	of	dot	product	and	release	to	search	for	Radians	to	Degrees.	Then,
pull	to	release	and	search	for	Absolute.	Lastly,	pull	results	and	release	to	search	for
Nearly	Equal	(float).	Plug	the	output	from	the	Absolute	node	into	A.

16.	 The	B	value	is	57.3,	and	the	ErrorTolerance	value	is	.1.	This	means	the	range	of
view	is	two	times	the	value	of	B.	Then,	pull	ReturnValue	and	release	to	search	for	a

Branch	node:

17.	 Now,	pull	from	AsAIController	and	release	after	the	Branch	node	and	then	search
for	Get	Controlled	Pawn.	Then,	from	Return	Value,	pull	and	release	to	search	for
AddActorWorldRotation.	Right-click	and	split	the	struct.

18.	 From	Return	Value	of	the	Get	Controlled	Pawn	node,	I	will	pull	and	release	to
search	for	GetActorLocation.

19.	 Pull	down	the	The	Attacker	variable	and	release	to	search	for	Get	Blackboard
Value	as	Object,	and	finally	cast	it	to	ThirdPersonCharacter.	Then,	from	As	Third
Person	Character,	pull	the	pin	and	release	to	search	for	GetActorLocation:

20.	 Pull	from	Return	Value	of	Get	Controlled	Pawn	and	plug	into	Target	of
GetActorLocation;	then,	release	to	search	for	Find	Look	at	Rotation.

21.	 Plug	in	Return	Value	from	Step	19	into	Target	of	the	Find	Look	at	Rotation	node.
22.	 Pull	from	Get	Controlled	Pawn	and	release	to	search	for	Get	Control	Rotation.
23.	 Pull	from	Return	Value	of	Find	Look	at	Rotation	and	release	to	search	for	Delta

(Rotator).
24.	 Plug	Return	Value	of	Get	Control	Rotation	into	B	of	Delta	(Rotator):

25.	 Pull	from	Return	Value	and	multiply	by	the	Get	World	Delta	Seconds	value;
further,	multiply	this	by	the	Float	value	of	55.	Then,	split	the	rotator	and	plug	in	Z
(Yaw)	into	DeltaRotation	Z	(Yaw)	of	the	AddActorWorldRotation	node.

26.	 Pull	from	the	node	and	release	to	search	for	Finish	Execute:

Now	that	we	are	done,	the	AI	will	rotate	toward	us	whenever	we	are	out	of	its	view.

Creating	the	logic
Now,	we	have	all	our	components	done.	We	configured	our	three	custom	nodes.	Now,	we
just	have	to	go	back	to	our	Behavior	Tree.	Then,	we	have	to	set	up	three	states	for	the	AI
to	be	in.	The	first	is	Patrol,	which	is	responsible	for	moving	the	AI	to	the	next	route.	The
second	is	Chase,	which	is	responsible	for	moving	the	AI	within	radius	of	the	player.	The
final	state	is	Attack,	and	this	state	will	fire	and	rotate	the	AI	until	Target	is	no	longer
within	distance.

Now,	let’s	open	the	EnemyAI	Behavior	Tree	via	the	following	steps:

1.	 Pull	down	from	Root,	search	for	Selector,	and	set	the	Name	to	Choose	State	node.
Here,	we	will	define	three	distinct	states.

2.	 Pull	Choose	State	and	search	for	Sequence.	Now,	right-click,	select	Add	Decorator,
and	find	Blackboard.

3.	 Click	on	Blackboard	and	set	Key	Query	to	Is	Not	Set	and	Blackboard	Key	to
TargetActor.

4.	 Right-click,	click	on	Add	Service,	and	find	MoveBetweenRoutes.
5.	 Click	on	MoveBetweenRoutes	and	set	Current	Route	to	CurrentRoute.
6.	 Pull	from	Sequence	and	search	for	MoveTo.	Now,	set	MoveTo	to	CurrentRoute:

7.	 Pull	Choose	State	and	search	for	Sequence.	Now,	right-click	and	select	Add
Decorator	to	find	Blackboard.

8.	 Click	on	Blackboard	and	set	Key	Query	to	Is	Set	and	Blackboard	Key	to
TargetActor.

9.	 Right-click	and	select	Add	Decorator;	then,	search	for	Is	At	Location.
10.	 Click	on	Is	At	Location	and	set	Acceptable	Radius	to	600.0,	Inverse	Condition	to

True,	and	Blackboard	Key	to	TargetActor.	Inverse	Condition	will	return	True	if
we	are	outside	the	Acceptable	Radius	value.

11.	 Pull	from	Sequence	and	search	for	Move.	Click	on	Move	and	set	MoveTo	to
TargetActor.

12.	 Right-click	on	the	MoveTo	node,	select	Add	Decorator,	and	search	for	ChaseTime.
13.	 Click	on	ChaseTime	and	set	Current	Target	to	TargetActor	and	Chase	Duration

to	3.0:

14.	 Pull	from	Choose	State	and	search	for	Sequence.
15.	 Right-click,	select	Add	Decorator,	and	search	for	Blackboard.	Click	on

Blackboard	and	set	Key	Query	to	Is	Set	and	Blackboard	Key	to	TargetActor.
16.	 Right-click,	select	Add	Decorator,	and	search	for	Is	At	Location.	Click	on	Is	At

Location	and	set	Acceptable	Radius	to	599.99	and	Blackboard	Key	to
TargetActor.

17.	 Pull	from	Sequence	and	search	for	Attack	at	Mid	Range:

Now,	with	all	these	nodes	here,	you	have	a	complete	enemy	AI,	which	you	can	now	fight
and	take	on	for	yourself!	Congratulations	on	coming	this	far!

Summary
This	chapter	contains	everything	necessary	to	get	started	with	some	impressive	AI.	We
talked	about	Behavior	Trees,	which	help	create	decisions	for	your	AI	based	on	situations	it
encounters.	Then,	we	talked	about	creating	a	mid-range	attack	for	you,	the	player,	and	the
AI	to	use.	We	set	up	the	controllers	and	began	setting	up	the	controllers	for	more
functions.	The	last	thing	to	do	before	getting	everything	running	in	Behavior	Tree	was	to
set	up	the	waypoints	for	the	AI	to	patrol.	Finally,	we	integrated	everything	into	Behavior
Tree.

You	just	learned	how	to	create	the	basic	form	of	game	AI	using	the	tools	available	within
Unreal	Engine	4.

We	are	done!	We	have	created	some	fun	and	challenging	AI.	Let’s	now	get	ready	for	our
next	chapter.	After	learning	all	of	this	material	on	AI	and	Unreal	Engine	4	and	how	they
mix	together,	it	is	important	that	we	spend	a	chapter	reviewing	everything	that	has	been
talked	about.	I	will	also	point	out	the	things	we	could	have	done	differently.	Then,	we	will
be	that	much	closer	to	a	new	beginning	in	the	world	of	game	AI!

Chapter	9.	What	Have	We	Learned?
In	this	chapter,	we	will	briefly	glance	at	some	of	the	chapters.	This	chapter	is	important
because	we	will	discover	the	caveats	of	what	we’ve	done.	Lastly,	we	will	talk	about	other
examples	of	what	we	could	achieve	with	these	combined	lessons.

In	each	chapter,	the	goal	was	to	start	with	an	objective.	Then,	we	approached	the	objective
with	a	practical	demonstration	of	the	knowledge.	We	talked	about	what	AI	means	to	game
AI.	We	then	demonstrated	the	basics	of	creating	game	AI	within	Unreal	Engine	4.	What
we	didn’t	cover	are	the	issues	we	may	run	into.	What	were	the	weaknesses	and	benefits	of
the	techniques	we	demonstrated?	In	this	chapter,	we	will	answer	these	questions.

Creating	basic	AI
There	are	other	forms	of	AI	available.	In	this	book,	we	created	the	basic	AI.	In	the
hierarchy	of	the	components,	there	is	a	controller.	The	controller	then	decides	which
Behavior	Tree	to	run.	Then,	tasks	are	chosen	based	on	the	sequence	of	decisions	in	the
tree.

In	the	controller,	we	could	have	an	array	of	different	Behavior	Trees	suited	for	different
tasks.	Then,	once	we	approach	the	task,	the	tree	contains	the	subtask	which	aids	in	coming
to	a	solution.	Introducing	this	level	of	abstraction	requires	understanding	of	which	state	is
necessary	to	enter.

We	demonstrated	how	to	create	an	AI	basic	enough	to	run	indefinitely.	Using	math,	we
were	able	to	help	the	AI	avoid	contacting	walls.	Presumably,	this	is	all	you	need	for	some
scenarios.	If	you	need	your	units	to	all	run	independently	of	each	other	and	avoid	the	walls
as	necessary,	this	script	will	be	perfect	for	you.	However,	if	you	need	more	control	over
your	units,	you	can’t	achieve	it	with	this	technique	alone.

The	alternative	is	using	a	control	widget,	such	as	a	Spline,	to	control	exactly	where	the	AI
is	going.	If	you	grab	the	direction	to	the	position	on	the	spline,	the	AI	can	be	told	to	move
there	instead	of	toward	the	hero,	as	we	demonstrated	in	Chapter	2,	Creating	Basic	AI.

Here	are	the	pros	and	cons	of	using	controls	to	designate	where	the	AI	should	go.

The	pros	and	cons	of	using	controls
The	following	is	a	pro:

Moving	the	AI	to	the	exact	location

The	following	are	the	cons:

You	must	create	paths	by	hand
The	paths	are	limited	to	control

You	can	quickly	spot	the	advantages	of	either	use.	In	a	controlled	situation,	you	would	use
waypoints.	These	would	direct	the	AI	exactly	where	to	move	in	3D	space.	This	is	perfect
to	route	the	AI	places	in	the	level	you	want	it	to	be.	So,	if	it	was	a	Secret	Security	unit	in
the	game,	it	would	patrol	the	areas	you	designate.	Then,	you	can	eliminate	the	player	on
contact.

Adding	randomness	and	probability
In	this	chapter,	we	focused	on	adapting	our	previous	example	to	implement	randomness
and	probability.	So,	we	focused	on	the	pros	and	cons	of	randomness	and	probability.
Randomness	can	overlap	with	probability	if	you	predetermine	the	outputs.	For	example,	if
you	want	different	animations	to	be	played	each	time	a	player	does	a	fist	attack,	you	can
have	an	array	of	different	animations	you	randomly	choose	from.	However,	say	that	there
are	five	available	options;	with	this,	you	have	a	20%	chance	of	choosing	any	one	of	the
available	choices.

The	pros	and	cons	of	using	randomness
The	following	are	the	pros:

There	is	virtually	no	limit	to	the	output
This	introduces	balance	to	systems

The	following	are	the	cons:

You	must	create	a	large	output	table	for	increased	deviation
The	paths	are	limited	to	control

The	pros	and	cons	of	using	probability
The	following	are	the	pros:

You	can	predetermine	the	output
You	can	dictate	the	frequency	of	output
You	can	introduce	balance	to	systems

The	following	are	the	cons:

It	is	not	as	random
You	must	determine	the	output	table

Probability	is	powerful	when	you	want	to	predetermine	the	output.	Probability	allows	you
to	choose	how	often	an	output	is	given.	Randomness	doesn’t	give	you	any	control	on	the
output.	Introducing	these	can	add	another	layer	of	abstraction	to	player	experience.

Introducing	movement
We	only	covered	movement	for	pawns	because	this	book	is	just	an	introduction.	However,
if	you	had	any	interest	in	getting	other	pawn	types	to	move,	you	have	to	recreate	the
junction	box,	which	is	the	movement	component.	This	movement	component	for	a	type	of
pawn	is	responsible	for	taking	input	delta	and	converting	it	into	acceleration.

What	this	means	for	the	car	AI	is	first	getting	the	direction	from	one	point	to	another,
resulting	in	the	position	direction.	Then,	we	need	to	make	this	position	direction	relative	to
the	car	AI	by	subtracting	it	from	the	car	AI’s	forward	direction.	This	results	in	a	direction
delta,	which	can	be	applied	to	the	car	AI’s	direction.

You	can	do	something	similar	in	3D	space	for	a	spaceship	as	well.	What	this	means	is	that
if	you	want	to	create	a	spider	AI	that	can’t	be	moved	by	the	default	movement	component,
then	by	creating	a	custom	movement	component,	you	can	tell	the	spider	AI	to	move
anywhere	you	wish	and	still	be	able	to	integrate	it	into	the	Behavior	Tree.

Giving	our	AI	choice
In	this	chapter,	we	focused	on	creating	AI	with	multiple	states	using	Behavior	Tree.	We
also	talked	briefly	about	using	EQS	on	the	dog	to	randomly	choose	an	area	within	its
location.	This	particular	example	was	simple,	but	when	you	begin	to	use	filters,	the	power
of	EQS	shines.

For	example,	you	wanted	to	get	all	the	enemies	within	500	units	of	your	location	and
eliminate	those	who	aren’t	within	the	line	of	sight.	Then,	we	cleared	any	enemies	not
within	a	60-degree	view	angle.	Lastly,	we	got	the	one	closest	to	the	character.

In	Blueprint,	this	can	be	done,	but	it	then	requires	you	to	put	it	in	either	Blueprint	Library
or	a	node.	If	we	make	it	in	EQS,	we	are	only	required	to	create	the	conditions	in	the	UI.
However,	it’s	easier	to	share	and	doesn’t	require	any	scripting.

Let’s	compare	using	EQS	and	Blueprint	to	sense	the	environment.

The	pros	and	cons	of	using	EQS
The	following	is	a	pro:

No	blueprint	is	required,	and	it	is	more	intuitive	to	specify	conditions

The	following	is	a	con:

It	is	limited	to	the	available	options	in	UI

The	pros	and	cons	of	using	Blueprint
The	following	is	a	pro:

There	is	maximum	flexibility	for	implementation

The	following	are	the	cons:

You	must	create	it	from	scratch
It	is	more	difficult	to	reuse

EQS	is	a	very	powerful	tool	when	the	purpose	of	the	tool	is	fully	understood.	It	is	capable
of	quickly	and	precisely	querying	a	scene	without	the	need	to	juggle	any	blueprint	code.
Paired	with	blueprint	code,	you	can	unlock	its	true	purpose.	You	can	create	interfaces,
which	can	be	used	in	the	EQS	computations,	and	get	the	results	you	want,	such	as	the
safest	unoccupied	place	for	an	AI	to	run	for	cover	to.

How	does	our	AI	sense?
We	explained	what	components	to	use	in	order	to	have	our	AI	sense	other	pawns	in	the
world.	We	could	customize	settings	for	sight	and	sound.	The	perception	system	would
then	return	any	pawn	matching	these	criteria	with	each	update.

We	could	potentially	use	the	pawns	we	sense	for	more	than	attacking.	If	we	also	use	it	to
calculate	the	best	cover,	our	AI	would	be	reactive	to	our	location.	Setting	certain	criteria
allows	us	to	then	tell	the	AI	when	it’s	the	best	time	to	enter	or	leave	cover.	Then,	adding
additional	criteria	will	allow	control	over	the	enter	and	exit	movement	behavior.

More	advanced	movement
Advanced	movement	allows	for	flocking	behavior.	This	type	of	movement	behavior	is
commonly	seen	by	flocks	of	birds	or	schools	of	fish.	There	is	more	movement	behavior,
such	as	queuing,	which	tells	only	one	unit	to	go	through	a	door	at	a	time,	for	example.
Squad	behavior	is	great	when	you	have	units	that	protect	each	other.

The	advantage	of	using	movement	behavior	is	that	it	doesn’t	require	additional	decision
making	for	your	AI.	This	also	allows	you	to	take	some	of	the	computation	out	of	the	tree
and	calculate	it	on	the	pawn.

Creating	patrol,	chase,	and	attack	AI
We	demonstrated	how	to	create	AI	that	will	patrol	between	waypoints	you	lay	within	the
world.	Then,	if	you	ever	get	in	sight	of	the	AI,	it	will	immediately	begin	to	chase	you.	If
you	are	within	the	attack	range	of	AI,	it	will	shoot	its	laser!

I	believe	each	component	has	its	strengths	and	that	they	create	the	most	intelligent	and
responsive	AI	together.	After	creating	AI	without	Behavior	Tree,	you	start	to	wonder
whether	it’s	truly	necessary	to	use.	The	problem	dictates	the	solution,	and	when	you	use
one	solution	for	every	problem,	you	don’t	solve	anything.	I	find	that	using	the	strengths	of
Behavior	Tree	and	other	components	to	fill	in	the	weakness	results	in	the	most	promising
behavior.

The	pros	and	cons	of	using	Behavior	Tree
The	following	are	the	pros:

It	is	easily	extensible
It	syncs	the	Blackboard	instances

The	following	are	the	cons:

The	design	dictates	the	execution	flow
Setup	is	required

The	pros	and	cons	of	using	blueprint	for	AI
The	following	are	the	pros:

There	is	less	work	for	more	results
It	doesn’t	require	AIController

The	following	is	a	con:

There	is	no	access	to	EQS

Using	blueprint	scripts	outside	of	the	tree	in	order	to	feed	more	information	to	the	tree,
you	can	overcome	some	obstacles	of	the	execution	flow	within	Behavior	Trees.	For
example,	if	you	told	the	AI	to	move	to	a	location,	you’re	unable	to	check	for	seen	enemies
during	movement	unless	you	use	a	service.	Then,	you	have	to	ask	whether	this	service	will
be	useful	to	this	branch	specifically	or	to	the	tree	as	a	whole.

Summary
I	hope	I	was	able	to	cover	everything	to	get	you	to	confidently	start	approaching	game	AI
in	Unreal	Engine	4.	Explore	the	different	ideas	here	and	feed	your	curiosity	while
exploring	game	AI.	This	subject	may	seem	intimidating,	but	if	you’ve	followed	everything
in	this	book,	you’re	more	than	ready	to	start!

I’ve	had	a	blast	demonstrating	the	different	AI	components	available	in	Unreal	Engine	4.
If	you	have	any	questions,	feel	free	to	e-mail	me	at	peterlnewton.com,	and	I	will	get	back
to	you	as	soon	as	possible!

http://peterlnewton.com

Index
A

A*	algorithm
about	/	The	A*	algorithm

advanced	movement
about	/	More	advanced	movement

agents
setting	up	/	Setting	up	the	agents
viewing	/	Viewing	the	agent
following	/	Following	the	agent
follow	or	lead	/	Follow	or	lead
flocking	/	Flocking	agents

AI
gaming	experience	/	How	AI	affects	the	gaming	experience
implementing,	for	Wander	/	Back	to	the	action
choice,	giving	to	/	Giving	our	AI	choice
sensing	/	How	does	our	AI	sense?

AI	controller
using	/	Using	our	new	AIController	class
assigning	/	Assigning	the	AIController	class
pawn,	placing	/	Placing	the	pawn
instructions,	sending	/	Sending	the	instructions
current	progress,	reviewing	/	Reviewing	the	current	progress,	Reviewing	the
current	progress
challenge,	adding	/	Adding	the	challenge
traces,	using	/	Traces
setting	up	/	Controllers

AI	Controller
about	/	Unreal	Engine	4	tools

AI	Perception
about	/	Overview
components	/	AI	Perception	components

AI	sensing
about	/	AI	Sense

attack	AI
creating	/	Creating	patrol,	chase,	and	attack	AI

B
basic	AI

prerequisites	/	Prerequisites
Basic	AI

creating	/	Creating	basic	AI
behavior	controlling	through	UMG

about	/	Controlling	behavior	through	UMG
simple	UI	/	A	simple	UI

Behavior	Tree
about	/	Navigation,	Unreal	Engine	4	tools
complex	decision	making,	creating	with	/	Creating	complex	decision	making
with	Behavior	Tree
creating	/	Creating	Behavior	Tree
designing	/	Designing	Behavior	Tree
pros	/	The	pros	and	cons	of	using	Behavior	Tree
cons	/	The	pros	and	cons	of	using	Behavior	Tree

Behavior	Tree,	in	AIController
about	/	Behavior	Tree	in	AIController

Behavior	Tree	service
about	/	The	Behavior	Tree	service

blackboard	/	Blackboard
Blackboard

about	/	Blackboard
creating	/	Creating	a	Blackboard

Blackboard	Asset
about	/	Unreal	Engine	4	tools

Blackboard	Compare	Decorator
about	/	Blackboard	Compare	Decorator

Blueprint
pro	/	The	pros	and	cons	of	using	Blueprint
cons	/	The	pros	and	cons	of	using	Blueprint

blueprint	for	AI
pros	/	The	pros	and	cons	of	using	blueprint	for	AI
con	/	The	pros	and	cons	of	using	blueprint	for	AI

C
character

creating,	with	randomness	/	Creating	a	character	with	randomness	and
probability
creating,	with	probability	/	Creating	a	character	with	randomness	and	probability

Character
about	/	Unreal	Engine	4	tools

chase
creating	/	Creating	patrol,	chase,	and	attack	AI

complex	decision	making
creating,	with	Behavior	Tree	/	Creating	complex	decision	making	with	Behavior
Tree

components,	UE4	Behavior	Tree
root	/	Root
decorators	/	Decorators
composites	/	Composites
services	/	Services
tasks	/	Tasks
blackboard	/	Blackboard
sensory	systems	/	Sensory	systems
machine	learning	/	Machine	learning
tracing	/	Tracing
Influence	Mapping	/	Influence	Mapping

composites	/	Composites
about	/	BT	Composites,	Task,	Decorator,	and	Service
sequence	/	BT	Composites,	Task,	Decorator,	and	Service
selectors	/	BT	Composites,	Task,	Decorator,	and	Service
simple	parallel	/	BT	Composites,	Task,	Decorator,	and	Service

controllers
about	/	Controllers

controls
pros	/	The	pros	and	cons	of	using	controls
cons	/	The	pros	and	cons	of	using	controls

D
decorators	/	Decorators

about	/	BT	Composites,	Task,	Decorator,	and	Service
creating	/	BT	Composites,	Task,	Decorator,	and	Service

Dijkstra’s	algorithm
about	/	The	A*	algorithm

E
Enemy	AI

adding	/	Adding	the	Enemy	AI
Enemy	Event	Graph	/	Back	to	the	action
Enemy	logic

about	/	The	Enemy	logic
Enumeration

about	/	Unreal	Engine	4	tools
environment

about	/	Environment
Environment	Query	System	(EQS)	/	Creating	Behavior	Tree
EQS

pro	/	The	pros	and	cons	of	using	EQS
con	/	The	pros	and	cons	of	using	EQS

EQS	(Environment	Query	System)
about	/	Environment	Query	System

F
Finite	State	Machines	(FSM)	/	Creating	complex	decision	making	with	Behavior
Tree
flocking

about	/	Steering	behavior:	Flocking

G
game	AI

techniques	/	Techniques	and	practices	of	game	AI
Game	Artificial	Intelligence

about	/	Game	Artificial	Intelligence
gaming	experience,	AI	/	How	AI	affects	the	gaming	experience

I
Influence	Mapping	/	Influence	Mapping

L
logic

creating	/	Creating	the	logic

M
machine	learning	/	Machine	learning
mid-range	attack

about	/	Mid-range	attack
Modes	window

about	/	Back	in	the	editor
movement

about	/	Introducing	movement
movement	component

overview	/	Overview
about	/	The	movement	component
AI	controller	/	The	AIController

Move	to	Location
basics	tips	/	Small	tips	on	MoveToLocation

N
NavArea	class

about	/	The	NavArea	class
navigation

about	/	Navigation
Navigation	Modifiers	/	Navigation	Modifiers
Modes	window	/	Back	in	the	editor
NavArea	class	/	The	NavArea	class
cost	/	The	navigation	cost

navigation,	for	AI
Navigation	Mesh	/	Navigation
Path	Following	(Path	nodes)	/	Navigation
Behavior	Tree	/	Navigation
steering	behaviors	/	Navigation
sensory	systems	/	Navigation

Navigation	Component
about	/	Unreal	Engine	4	tools

Navigation	Mesh
about	/	Navigation	Mesh
RecastNavMesh	/	RecastNavMesh

Navigation	Modifiers
about	/	Navigation	Modifiers

Navigation	Volumes
about	/	Unreal	Engine	4	tools

NavMesh
about	/	Navigation,	Path	Finding

NavMeshModifiers
about	/	Path	Finding
influence	mapping	/	Path	Finding
null	paths	/	Path	Finding
allowed	paths	/	Path	Finding

non-uniform	distribution
about	/	Non-uniform	distribution

non-uniform	distribution,	with	Random	Stream	/	Non-uniform	distribution	with
RandomStream

P
Path	Finding

about	/	Path	Finding
Path	Following	(Path	nodes)	/	Navigation
patrol

creating	/	Creating	patrol,	chase,	and	attack	AI
pawn	detection

about	/	Pawn	detection
playing

about	/	Simulating	and	playing
probabilistic	distribution

about	/	Probabilistic	distribution
probability

character,	creating	with	/	Creating	a	character	with	randomness	and	probability
about	/	Introducing	probability
creating	/	Creating	probability
demonstrating	/	Fleeing	and	attacking
adding	/	Adding	randomness	and	probability
pros	/	The	pros	and	cons	of	using	probability
cons	/	The	pros	and	cons	of	using	probability

project
setting	up	/	Setting	up	the	project

R
randomness

character,	creating	with	/	Creating	a	character	with	randomness	and	probability
adding	/	Adding	randomness	and	probability
pros	/	The	pros	and	cons	of	using	randomness
cons	/	The	pros	and	cons	of	using	randomness

RandomStream
about	/	RandomStream	in	Unreal	Engine	4

realistic	movement
achieving,	with	Steering	/	Achieving	realistic	movement	with	Steering

RecastNavMesh
about	/	RecastNavMesh
properties	/	RecastNavMesh
example	/	RecastNavMesh

root	/	Root

S
sensory	system	/	Navigation,	Sensory	systems
services	/	Services

about	/	BT	Composites,	Task,	Decorator,	and	Service
simulating

about	/	Simulating	and	playing
state

resetting	/	Resetting	the	state
state	machines

about	/	State	machines
state	transition

about	/	State	transition
state	transitions

about	/	State	transitions
Steering

realistic	movement,	achieving	with	/	Achieving	realistic	movement	with
Steering

steering	behaviors	/	Navigation
about	/	Steering	behavior:	Flocking

T
Target	Point

about	/	Unreal	Engine	4	tools
tasks	/	Tasks

about	/	BT	Composites,	Task,	Decorator,	and	Service
Third	Person	template	project

creating	/	Let’s	start!
tools,	Unreal	Engine	4

about	/	Unreal	Engine	4	tools
Behavior	Tree	/	Unreal	Engine	4	tools
Navigation	Component	/	Unreal	Engine	4	tools
Blackboard	Asset	/	Unreal	Engine	4	tools
Enumeration	/	Unreal	Engine	4	tools
Target	Point	/	Unreal	Engine	4	tools
AI	Controller	/	Unreal	Engine	4	tools
Character	/	Unreal	Engine	4	tools
Navigation	Volumes	/	Unreal	Engine	4	tools

tracing	/	Tracing
transitions

creating	/	Creating	transitions

U
UE4	Behavior	Tree

components	/	Creating	complex	decision	making	with	Behavior	Tree,	Root,
Decorators,	Composites,	Services,	Blackboard,	Sensory	systems,	Influence
Mapping

Unreal	Engine	4
tools	/	Unreal	Engine	4	tools

W
Wander

adding	/	Adding	Wander
project,	creating	/	Setting	up	the	project

waypoints
about	/	Waypoints,	Waypoints

	Unreal Engine 4 AI Programming Essentials
	Credits
	About the Authors
	About the Reviewer
	www.PacktPub.com
	eBooks, discount offers, and more
	Why subscribe?
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Downloading the color images of this book
	Errata
	Piracy
	Questions
	1. Introduction to Game AI
	Game Artificial Intelligence
	How AI affects the gaming experience
	Techniques and practices of game AI
	Navigation
	Achieving realistic movement with Steering
	Creating a character with randomness and probability
	Creating complex decision making with Behavior Tree
	Root
	Decorators
	Composites
	Services
	Tasks
	Blackboard
	Sensory systems
	Machine learning
	Tracing
	Influence Mapping
	Unreal Engine 4 tools
	Summary
	2. Creating Basic AI
	Goal
	Setting up the project
	Environment
	Prerequisites
	Using our new AIController class
	Assigning the AIController class
	Placing the pawn
	Sending the instructions
	Small tips on MoveToLocation
	Reviewing the current progress
	Adding the challenge
	Traces
	Reviewing the current progress
	The Enemy logic
	Adding the Enemy AI
	Summary
	3. Adding Randomness and Probability
	Introducing probability
	Probabilistic distribution
	Non-uniform distribution
	RandomStream in Unreal Engine 4
	The plan
	Adding Wander
	Setting up the project
	Creating probability
	Non-uniform distribution with RandomStream
	Creating transitions
	Fleeing and attacking
	Back to the action
	The results!
	Summary
	4. Introducing Movement
	Overview
	Path Finding
	The A* algorithm
	Navigation Mesh
	RecastNavMesh
	The movement component
	The AIController
	Let's start!
	Waypoints
	Navigation
	Navigation Modifiers
	Back in the editor
	The NavArea class
	The navigation cost
	Summary
	5. Giving AI Choices
	Behavior Tree in AIController
	Creating Behavior Tree
	Blackboard
	Designing Behavior Tree
	The Behavior Tree service
	State transitions
	Blackboard Compare Decorator
	Environment Query System
	Summary
	6. How Does Our AI Sense?
	Overview
	AI Sense
	AI Perception components
	State machines
	Pawn detection
	State transition
	Resetting the state
	Simulating and playing
	Summary
	7. More Advanced Movement
	Setting up the agents
	Viewing the agent
	Following the agent
	Follow or lead
	Steering behavior: Flocking
	Flocking agents
	Controlling behavior through UMG
	A simple UI
	Summary
	8. Creating Patrol, Chase, and Attack AI
	Creating a Blackboard
	Mid-range attack
	Controllers
	Waypoints
	BT Composites, Task, Decorator, and Service
	Creating the logic
	Summary
	9. What Have We Learned?
	Creating basic AI
	The pros and cons of using controls
	Adding randomness and probability
	The pros and cons of using randomness
	The pros and cons of using probability
	Introducing movement
	Giving our AI choice
	The pros and cons of using EQS
	The pros and cons of using Blueprint
	How does our AI sense?
	More advanced movement
	Creating patrol, chase, and attack AI
	The pros and cons of using Behavior Tree
	The pros and cons of using blueprint for AI
	Summary
	Index

