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Preface

The	resurgence	of	virtual	reality	(VR)	is	upon	us,	and	so	an	explosive	demand	for	new	and	compelling
VR	experiences	is	coming.	A	growing	billion-dollar	medium,	VR	brings	new	and	exciting	challenges	to
the	world	of	game	development,	while	bringing	previously	uninitiated	industries	into	the	exciting	realm	of
real-time	rendering.	Whether	it’s	creating	a	classic-style	arcade	game	or	visualizing	an	exquisite	villa	in
the	grass-green	hills	of	Tuscany,	VR	brings	an	unparalleled	level	of	immersion	to	any	experience.	This
immersion,	however,	brings	with	it	a	slew	of	challenges.	When	you	develop	for	VR,	you	write	the
rulebook	as	you	go.
In	this	book	is	a	set	of	best	practices	and	common	interaction	paradigms	that	have	emerged	over	the	past
few	years.	Whether	from	the	big	players	in	the	space	or	from	a	one-person	team,	the	entire	VR	community
is	contributing	to	the	compendium	of	VR	knowledge	at	an	astonishing	pace.	This	book	not	only	shows	you
how	to	implement	these	paradigms	in	Unreal	Engine,	it	also	shows	you	how	to	choose	which	one	will	suit
your	project.
Presented	in	cookbook	style,	this	book	takes	a	practical	approach	to	learning	the	nuances	of	VR
development.	Each	recipe	shows	you	how	to	build	a	common	system	that	is	used	in	many	VR
games/experiences	today.	Whether	you	are	building	a	first-person	shooter	or	a	relaxation	simulator,	each
example	keeps	the	content	abstract	enough	that	it	applies	to	any	genre,	yet	also	mentions	specific
approaches	that	may	work	well	for	certain	game	types.

Who	Should	Read	This	Book?
This	book	is	designed	for	people	already	familiar	with	navigating	Unreal	Engine	4	(UE4)	and	Blueprints.
If	you	have	little	experience	with	either,	visit	the	Unreal	Engine	documentation	before	reading	this	book.
However,	I	explain	most	things	when	it	comes	to	actual	coding,	and	most	of	the	mathematics	is	covered	in
sidebars	and	the	main	content.	Therefore,	a	deep	level	of	coding	is	not	required.

How	This	Book	Is	Organized
This	book	is	split	into	three	parts:

	Part	I,	“Getting	Started”:	Chapters	1	through	3	contain	an	introduction	to	some	of	the	terminology
used	within	this	book	and	the	VR	industry.	This	part	also	contains	instructions	for	creating	basic
projects	for	various	VR	headsets.
	Part	II,	“Recipes”:	Chapters	4	through	10	contain	the	main	recipes	for	the	book.	This	part	covers
everything	from	motion	controller	interaction	to	VR	movement	schemes.
	Part	III,	“Appendices”:	This	auxiliary	information	on	the	VR	Editor	and	resources	will	help	you
on	your	journey	in	VR	development.

Conventions	Used	in	This	Book
The	following	typographical	conventions	are	used	in	this	book:

	Monospaced	text	indicates	blocks	of	code.
	Italicized	text	indicates	a	new	key	word	or	phrase.



Note
A	Note	signifies	a	tip,	suggestion,	or	general	note.

Sidebar
A	sidebar	contains	auxiliary	information	for	the	main	text,	such	as	an	explanation	of	the
mathematical	principles	used	or	work	related	to	the	main	content.

Warning
A	Warning	indicates	a	warning	or	caution.

Why	Blueprints?
When	programming	in	UE4,	there	are	two	main	ways	to	implement	logic	in	your	games/experiences:	the
visual	scripting	language,	Blueprints,	and	the	more	traditional	coding	language,	C++.
Compared	to	Blueprints,	C++	can	be	a	little	obscure	because	the	required	syntax	can	take	a	while	to
learn;	however,	C++	gives	you	greater	access	to	some	of	the	more	hidden	features	of	the	engine.	This,
however,	won’t	be	a	problem	in	this	book;	most	of	what	is	taught	will	be	at	a	high	enough	level	that
Blueprints	will	suit	your	needs.
Blueprints	also	offers	an	easier	method	for	migrating	your	work	from	one	project	to	another,	which	will
allow	you	to	take	any	work	done	in	this	book	and	easily	apply	it	to	your	existing	content.

Companion	Website
https://github.com/mitchemmc/UE4VRCookbook	holds	the	various	source	files	for	every	chapter	that
needs	them.	This	website	allows	you	to	check	your	work	for	each	recipe.

Register	your	copy	of	Unreal®	Engine	VR	Cookbook	at	informit.com	for	convenient	access	to	downloads,
updates,	and	corrections	as	they	become	available.	To	start	the	registration	process,	go	to
informit.com/register	and	log	in	or	create	an	account.	Enter	the	product	ISBN	(9780134649177)	and	click
Submit.	Once	the	process	is	complete,	you	will	find	any	available	bonus	content	under	“Registered
Products.”

https://github.com/mitchemmc/UE4VRCookbook
http://informit.com
http://informit.com/register
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Part	I:	Getting	Started



Chapter	1.	Terminology	and	Best	Practices

The	virtual	reality	(VR)	development	world	can	be	daunting	because	of	the	sheer	amount	of
competing	hardware	and	software	that	is	currently	available.	Also,	because	VR	is	such	a	new
medium,	many	of	the	axioms	that	game	developers	take	for	granted	may	not	work	in	the	world	of
VR	games	and	experiences.
If	you’re	unsure	of	the	differences	among	Oculus	VR,	OSVR,	and	OpenVR,	or	you’re	just	looking
for	some	common	best	practices	as	you	start	out	with	VR,	this	chapter	is	for	you.

Terminology
Many	technologies,	pieces	of	software,	and	devices	constitute	the	ever-growing	VR	ecosystem.	To	make
sure	that	we	are	on	the	same	page,	let’s	look	at	a	few	key	pieces	of	this	ecosystem	that	any	Unreal	Engine
4	(UE4)	VR	developer	should	be	aware	of.	If	you	are	already	familiar	with	the	current	state	of	the	VR
industry	and	the	technologies	involved,	feel	free	to	skip	this	chapter.

Devices
When	creating	your	experiences,	you	can	choose	from	various	hardware	devices,	whether	it’s	a	certain
VR	Head	Mounted	Display	(HMD)	or	a	VR-ready	controller.	Unreal	Engine	supports	most	of	them	out	of
the	box,	which	relieves	developers	of	the	burden	of	choosing	the	right	device	in	the	initial	stages	of	a
project.	UE4	also	has	a	nice	VR	abstraction	layer,	so	deciding	to	change	the	device	you’re	targeting	(or
targeting	multiple	devices	at	any	stage	in	the	pipeline)	can	be	an	easy	task.
These	natively	supported	HMDs	are	described	in	Table	1.1.





Table	1.1	Supported	VR	HMDs

In	UE4,	motion	controllers	are	supported	through	a	single	Motion	Controller	Component	that	makes	it
easy	to	target	multiple	controllers.	For	a	breakdown	of	the	motion	controllers	that	UE4	supports,	see
Table	1.2.



Table	1.2	Supported	Motion	Controllers

Software
Many	SDKs/libraries/APIs	(application	programming	interfaces)	help	you	interface	with	your	VR
hardware.	UE4	tends	to	abstract	these	into	singular	interfaces	or	components	that	allow	for	easy
interoperability;	however,	if	you	need	to,	you	can	still	interact	with	the	various	SDKs	manually.	It	is
useful	for	you	as	a	developer	to	understand	the	differing	design	philosophies	in	these	pieces	of	software,
because	when	developing	your	game	or	experience	you	may	need	to	take	advantage	of	specific	features	of
a	particular	SDK.	To	interact	with	these	SDKs	manually,	you	don’t	need	to	download	any	separate	files;
UE4	includes	them	when	you	download	the	engine.
These	natively	supported	SDKs	are	listed	in	Table	1.3.





Table	1.3	Supported	SDKs

Aside	from	the	SDKs	and	libraries	that	UE4	uses	to	interact	with	the	various	bits	of	VR	hardware,	there
are	also	specific	software	features	that	UE4	implements	in	the	engine	to	enhance	the	VR	experience.
However,	there	are	also	other	software	features	(such	as	ATW)	that	are	implemented	by	the	various
runtimes	and	are	therefore	enabled	by	default	and	out	of	the	control	of	developers.	Table	1.4	shows	both
types	of	software	available	in	UE4.





Table	1.4	Supported	Software	Features

Note
Many	of	these	features	are	further	explored	in	Chapter	10,	“VR	Optimization.”

Unreal	Engine
Making	games	and	experiences	requires	many	different	systems	to	work	together;	luckily,	UE4	has	some
great	tools	to	interact	with	these	systems.	Table	1.5	describes	the	systems	used	in	this	book.



Table	1.5	Unreal	Engine	Systems	Used	in	This	Book

Best	Practices
VR	is	an	emerging	industry.	Much	experimentation	has	to	take	place	before	we	settle	on	“the”	way	to	do
things.	A	lot	of	the	time,	your	initial	great	idea	of	how	well	a	certain	mechanic	or	functionality	will	work
in	VR	falls	flat,	and	at	the	same	time	things	that	you	never	thought	would	work	well	can	work	splendidly
when	you	finally	implement	and	try	them.
That	being	said,	however,	through	research	and	tests,	both	Oculus	and	Epic	have	found	some	things	that
the	majority	will	find	discomforting	when	in	VR.	At	the	time	of	writing,	these	articles	can	be	found	here:

https://developer.oculus.com/documentation/intro-vr/latest/
https://docs.unrealengine.com/latest/INT/Platforms/VR/ContentSetup/index.html

The	UE4	best	practices	guide	is	a	good	place	to	start	for	any	Unreal	Engine	VR	developer,	because	many
of	the	topics	covered	are	specific	to	UE4	and	how	to	optimize	your	experience	for	VR.	A	lot	of	these,
such	as	disabling	HZB	(Hierarchical	Z-Buffer)	and	instanced	stereo	rendering,	are	covered	in	more	detail
in	Chapter	10.	If	you	are	looking	for	more	general	tips	for	VR	experiences,	these	can	be	found	in	the
Oculus	best	practices	guide.
Here	is	a	summary	of	these	points:

	Avoid	screen	space	effects	when	you	can;	they	can	look	bad	in	the	best	case,	and	in	the	worst,	they
can	cause	stereo	mismatch	between	the	eyes.
	Aim	for	a	frame	rate	slightly	higher	than	the	target	display	frame	rate.	This	ensures	that	any	hiccups
won’t	cause	major	discomfort	(don’t	rely	on	reprojection	technology).
	Consider	lowering	the	rendered	resolution	if	the	frame	rate	needs	to	be	increased.	This	can	be	done
with	the	console	command	r.screenPercentage	in	UE4	(see	Chapter	10).
	The	player’s	head	motions	should	be	in	control	of	the	camera	at	all	times.	Avoid	using	cinematic
cameras,	and	try	to	use	asynchronous	loading	in	menus	or	during	level	loads.	Avoid	camera	shake
and	other	effects	that	move	the	camera	without	the	user’s	control.

https://developer.oculus.com/documentation/intro-vr/latest/
https://docs.unrealengine.com/latest/INT/Platforms/VR/ContentSetup/index.html


	Do	not	override	the	field	of	view	of	the	player’s	view;	this	causes	discomfort	when	rotating.
	Avoid	accelerations;	they	create	an	ocular	vestibular	mismatch	(a	mismatch	between	what	the
players’	eyes	see	and	what	their	ears	tell	them)	and	cause	nausea	(for	more	on	this,	see	Chapter	9,
“VR	Locomotion”).

As	always,	both	documents	contain	great	information	for	any	VR	developer.	I	recommend	that	you	read
them	in	their	entirety.

Summary
You	are	now	familiar	with	some	of	the	terminology	that	will	be	used	throughout	this	book,	including	the
various	VR	hardware	devices	that	UE4	supports	and	some	of	the	libraries	that	are	needed	to	create	VR
experiences	(even	if	you	won’t	be	interfacing	directly	with	them).	You	gained	insight	into	some	of	the
techniques	used	to	optimize	VR	experiences.	(If	you	want	to	learn	more,	check	out	Chapter	10.)	Finally,
you	looked	at	the	current	best	practices	from	two	of	the	major	companies	in	VR.



Chapter	2.	Head	Mounted	Display	Setup

UE4	removes	a	lot	of	the	pain	of	beginning	to	create	your	VR	experiences,	but	as	with	a	lot	of
things,	it	is	good	to	have	a	basic	understanding	of	how	to	set	up	your	project	to	avoid	some	common
pitfalls.
This	chapter	walks	you	through	how	to	set	up	your	project	to	work	with	your	desired	HMD	as	well
as	some	basic	VR	functionality.

Gear	VR
Because	the	Gear	VR	is	on	the	Android	platform,	more	steps	are	involved	in	getting	your	project	set	up
and	ready	to	deploy	to	your	device.	In	addition,	you	must	set	up	a	few	things	in	order	for	Oculus	to	accept
the	app	into	its	store.
Epic’s	documentation	offers	the	exact	setup	to	make	sure	your	engine	can	detect	and	launch	to	your	phone,
which	is	found	here:

https://docs.unrealengine.com/latest/INT/Platforms/GearVR/Prerequisites/index.html
Make	sure	that	you	do	the	following:

1.	Enable	developer	mode	on	your	phone.
2.	Enable	USB	debugging	on	your	phone.
3.	Install	the	Android	development	pack.
4.	Create	your	Oculus	Signature	File	(OSIG),	which	is	packaged	with	your	development	builds	and
allows	your	app	to	run	on	your	phone	outside	of	the	Oculus	store.

5.	Copy	your	OSIG	into	the	Engine/Build/Android/Java/assets	folder	of	your	current	engine.

Gear	VR	Project	Setup
After	your	engine	is	set	up	to	deploy	to	the	phone,	you	need	to	set	up	your	project	to	do	the	same.	To	do
this,	create	a	new	blank	Blueprint	project:	set	the	target	device	to	Mobile/Tablet	and	scalability	to
Scalable	3D	or	2D,	and	do	not	include	starter	content	(see	Figure	2.1).	These	settings	ensure	that	some	of
the	advanced	graphical	features	of	UE4	are	off	by	default	(to	see	the	exact	features,	refer	to	Chapter	10,
“VR	Optimization”).

https://docs.unrealengine.com/latest/INT/Platforms/GearVR/Prerequisites/index.html


Figure	2.1	Gear	VR	initial	project	setup

After	you	create	your	project,	you	need	to	create	the	assets	and	folder	structure	required	for	a	basic	Gear
VR	game:

1.	Create	two	folders	under	the	root	content	folder	of	your	project.	Name	them	Blueprints	and
Materials.

2.	Create	one	more	folder	named	HUD	(heads-up	display)	and	place	it	under	the	Blueprints	folder.
3.	Create	a	new	game	mode:	right-click	the	Blueprints	folder,	under	Create	Basic	Asset	select
Blueprint	Class,	then	in	the	dialog	that	pops	up	select	Game	Mode.

4.	Name	the	new	game	mode	GearVRGM.
5.	Create	a	new	HUD	Blueprint	by	right-clicking	the	HUD	folder	and	selecting	Blueprint	Class	once
more.	This	time	in	the	dialog	that	pops	up	expand	the	All	Classes	drop-down	and	search	for	HUD.
Select	the	result	named	solely	HUD	and	then	click	the	Select	button	(see	Figure	2.2).



Figure	2.2	Gear	VR	HUD	creation

6.	Name	this	newly	created	HUD	GlobalMenu.	This	will	display	your	loading	bar	and	detect	when	to
open	the	Gear	VR’s	global	menu.

7.	Right-click	the	Materials	folder,	create	a	new	Material,	and	name	it	UICircle.	This	is	the	Material
you	will	animate	to	create	the	menu	progress	circle.	(Note	that	the	Gear	VR	developer	guidelines
don’t	require	the	menu	indicator	to	be	circular;	however,	it	looks	good	and	is	a	good	exercise	to
show	the	capabilities	of	UE4’s	Material	Editor.)

Your	project	should	now	match	Figure	2.3.



Figure	2.3	Gear	VR	project	outline

Next,	enter	the	Project	Settings	to	make	sure	everything	is	set	up	properly	to	enable	deploying	to	the	Gear:
1.	Open	Project	Settings,	Edit	→	Project	Settings,	and	head	to	the	Android	section	under	Platforms.
This	is	where	you’ll	configure	your	Android	settings.

2.	Click	the	Configure	Now	button	on	the	banner	that	appears	at	the	top	of	the	window.
3.	In	the	APKPackaging	section,	set	the	Minimum	SDK	and	Target	SDK	Versions	to	19.
4.	In	the	same	section,	check	“Package	game	data	inside	.apk?”	This	ensures	that	your	.obb	file	(a	file
that	contains	large	binary	data	such	as	textures)	is	packaged	inside	your	.apk	(Android	Application
Package)	and	is	necessary	because	the	Oculus	store	accepts	only	a	single	.apk	file.

5.	In	the	Advanced	APKPackaging	section	check	“Configure	the	AndroidManifest	for	deployment	to
GearVR”;	this	is	needed	to	tell	the	phone	to	open	your	app	as	a	Gear	VR	application.	These	settings
are	shown	in	Figure	2.4.



Figure	2.4	Gear	VR:	configuring	the	Android	settings

6.	To	remove	the	default	touch	joysticks	in	UE4,	head	to	the	Input	Settings	under	the	Engine	section	in
the	Project	Settings.

7.	Click	the	drop-down	for	the	Default	Touch	Interface	and	select	the	Clear	option	(see	Figure	2.5).



Figure	2.5	Gear	VR:	removing	the	default	joysticks

8.	To	tell	the	project	to	use	the	custom	game	mode	that	you	have	created,	still	in	the	Project	Settings
head	to	the	Maps	&	Modes	section	in	the	Project	section.

9.	Select	the	drop-down	for	the	Default	GameMode,	and	select	GearVRGM	which	you	set	up
previously	(see	Figure	2.6).



Figure	2.6	Gear	VR:	enabling	the	new	default	game	mode

Gear	VR	Global	Menu	Setup
To	get	a	Gear	VR	app	accepted	into	the	Oculus	store,	you	need	to	give	the	app	the	functionality	to	open
the	Gear	VR	menu	on	a	long	press	of	the	home	button.	By	default	a	short	click	of	the	Back	button	asks
users	if	they	wish	to	exit	the	app,	and	a	long	press	opens	the	global	menu.	However,	if	you	want	to	create
a	transition	to	the	global	menu	or	create	your	own	short-press	functionality,	you	need	override	this
functionality	and	create	a	custom	event	that	opens	the	global	menu	on	a	long	press	of	the	home	button.

Note
Here,	you	use	a	HUD	Blueprint;	they	are	convenient	for	this	kind	of	user	interface.	However,	in	the
initial	version	of	Unreal	Engine	4.13,	Epic	broke	compatibility	with	HUD	Blueprints	and	VR.	If
you	are	using	this	version	of	the	engine,	you	can	substitute	a	Widget	Component	inside	a	Pawn
Class	for	the	HUD	Blueprint	(see	Chapter	6,	“Unreal	Motion	Graphics	and	2D	User	Interfaces”).

1.	Open	your	GearVRGM	game	mode	Blueprint	and	set	its	HUD	Class	to	be	your	GlobalMenu	(see
Figure	2.7).	This	tells	the	engine	to	use	your	custom	HUD.



Figure	2.7	Gear	VR:	configuring	the	game	mode	to	use	the	custom	HUD

2.	Open	your	GlobalMenu	Blueprint	and	create	a	new	function	named	OpenMenu.	Inside	the	function,
create	a	new	ExecuteConsoleCommand	node	and	hook	it	up	to	the	function	execution	pin.

3.	For	the	Command	input	pin	of	the	ExecuteConsoleCommand,	type	OVRGLOBALMENU;	this
causes	the	Gear	VR	menu	to	open	whenever	this	function	is	called	(see	Figure	2.8).



Figure	2.8	Gear	VR:	creating	the	OpenMenu	function	for	the	HUD

4.	Create	three	new	variables.
	Make	the	first	of	type	Timer	Handle	and	name	it	BackButtonTimer.
	Make	the	second	of	type	Material	Instance	Dynamic	and	name	it	CircleMat.
	Last,	create	a	new	Float	variable	named	CircleRadius,	setting	its	default	value	to	30.

5.	Create	a	new	AndroidBack	input	event	by	right-clicking	the	Event	Graph	and	searching	for
AndroidBack.	(Note	that	you	may	have	to	turn	off	context-sensitive	searching.)

6.	Drag	off	of	the	Pressed	execution	pin	and	create	a	new	SetTimerByFunctionName	node.
7.	Set	this	node’s	Function	Name	input	node	to	OpenMenu.	This	makes	the	timer	call	the	function	you
set	up	earlier.

8.	Set	the	Time	input	node	to	0.75;	this	is	the	time	required	by	Oculus	in	its	developer	guidelines.
9.	Drag	off	of	the	Return	Value	pin	of	the	SetTimerByFunctionName	node	and	create	a	new	setter	node
for	the	BackButtonTimer	variable.

10.	Drag	in	a	new	getter	node	for	the	BackButtonTimer	variable,	call	the	ClearTimerByHandle
function,	and	connect	its	input	execution	pin	to	the	Released	execution	pin	of	the	AndroidBack	event
(see	Figure	2.9).	This	creates	a	new	timer	that	will	count	up	to	0.75	when	you	press	the
AndroidBack	button	but	cancels	that	timer	when	you	release	the	button.



Figure	2.9	Gear	VR:	creating	the	timer	to	open	the	menu	after	a	long	press	of	the	Back	button

11.	Create	a	new	GetOwningPlayerController	pure	function	call	by	right-clicking	the	Event	Graph	and
selecting	GetOwningPlayerController.

12.	Drag	off	of	the	Return	Value	of	this	new	node	and	call	the	EnableInput	event,	making	sure	that	the
GetOwningPlayerController	node	connects	to	the	EnableInput	event’s	Player	Controller	input	pin.

13.	Connect	the	output	execution	pin	of	the	EventBeginPlay	event	to	the	EnableInput	node.	This	ensures
that	the	AndroidBack	event	will	be	able	to	capture	the	input	event	and	fire	when	needed.

14.	After	the	EnableInput	event	add	a	new	call	to	the	ExecuteConsoleCommand	event,	passing	in
gearvr.handlebackbutton	0	as	the	command	parameter.	This	ensures	that	the	Gear	VR	runtime	will
allow	you	to	program	your	own	Back	button	functionality.

15.	For	the	Specific	Player	input	pin	connect	the	GetOwningPlayerController	node.
16.	After	the	ExecuteConsoleCommand	event	add	a	new	call	to	the	CreateDynamicMaterialInstance

function	by	clicking	on	the	Parent	pin’s	drop-down	and	selecting	the	UICircle	Material	that	you
created	previously.	This	creates	a	dynamic	Material	that	you	can	animate	for	the	loading	circle.

17.	Drag	off	of	the	Return	Value	of	the	CreateDynamicMaterialInstance	node	and	create	a	setter	for	the
CircleMat	variable	(see	Figure	2.10).



Figure	2.10	Gear	VR:	enabling	input	and	setting	up	the	dynamic	Material	for	the	HUD

The	next	task	to	take	care	of	is	animating	and	drawing	the	Material	to	the	screen	when	the	Back	button	is
pressed:

1.	Right-click	the	Event	Graph	and	create	a	new	EventReceiveDrawHUD	node.
2.	Drag	this	event’s	execution	pin	and	create	a	new	Branch	node.
3.	Drag	in	a	new	getter	for	the	BackButtonTimer	variable,	call	the	IsTimerActiveByHandle	pure
function,	and	attach	the	Return	Value	to	the	Condition	input	pin	of	the	Branch	node.	This	causes	the
UI	to	draw	only	when	the	Back	button	is	pressed.

4.	Drag	in	another	getter	(this	time	for	the	CircleMat	variable)	and	call	the	SetScalarParameterValue
event	on	it.

5.	In	the	Parameter	Name	input	pin,	type	PercentComplete.	This	matches	up	with	a	scalar	parameter	in
the	UICircle	Material	that	will	be	created	soon.

6.	Attach	the	True	output	pin	of	the	Branch	node	to	the	input	execution	pin	of	the
SetScalarParameterValue	node.

7.	Create	another	new	getter	for	the	BackButtonTimer	variable	and	call	the
GetTimerElapsedTimeByHandle	function.

8.	Drag	off	of	this	function’s	Return	Value	and	create	a	new	Float	/	Float	node.	Enter	0.75	in	the



second	pin.	This	normalizes	the	time	elapsed	value	between	0	and	1.
9.	Attach	the	output	of	this	division	to	the	Value	input	pin	of	the	SetScalarParameterValue	node.
10.	Drag	in	a	new	getter	for	the	CircleMat	variable	and	call	the	DrawMaterial	function,	connecting	the

output	of	the	SetScalarParameterValue	node	to	the	input	execution	pin.
11.	Drag	off	of	both	the	Size	X	and	Size	Y	output	pins	and	call	the	Int	*	Float	function,	passing	0.5	into

the	second	pin.	You	will	use	this	to	calculate	the	middle	of	the	screen.
12.	For	both	of	these	Multiply	nodes,	drag	off	of	the	output	pin	and	create	a	new	Float	–	Float	node,

passing	in	a	new	variable	getter	for	the	CircleRadius	function	to	the	second	pin.	This	corrects	for
the	size	of	the	UI	element	and	ensures	that	it	is	actually	in	the	middle	of	the	screen.

13.	Connect	the	calculation	for	the	Size	X	into	the	Screen	X	input	pin	of	the	DrawMaterial	event	and
the	Size	Y	into	the	Screen	Y.

14.	Drag	in	a	new	getter	for	the	CircleRadius	variable	and	call	the	Float	*	Float	function,	passing	in	2
as	the	second	pin,	then	pass	this	into	both	the	Screen	W	and	Screen	H	inputs	of	the	DrawMaterial
event.

15.	Set	the	Material	UWidth	and	Material	VHeight	input	pins	of	the	DrawMaterial	event	to	1.
This	event	should	now	look	like	Figure	2.11.

Figure	2.11	Gear	VR:	animating	and	drawing	the	HUD	Material



Gear	VR	Global	Menu	Progress	Material
When	a	user	long-presses	the	Back	button	to	open	the	Gear	VR	global	menu,	ideally	there	should	be	some
visual	feedback	that	lets	the	user	know	the	state	of	the	action.
To	accomplish	this,	we	will	create	a	circular	spinner	that	is	similar	to	the	one	seen	in	Oculus’s	own
experiences:

1.	Open	the	UICircle	Material	from	the	Materials	folder	you	created	previously.
2.	In	the	Details	panel,	set	the	Material	Domain	to	User	Interface;	this	limits	the	output	Material	pins
severely,	but	you	still	have	all	you	will	need	for	this	basic	Material.

3.	Still	in	the	Details	panel,	set	the	Blend	Mode	to	Translucent	because	you	are	going	to	have	two
rings:	a	full-opacity	progress	ring	and	a	background	transparent	ring.

4.	Create	a	new	TextureCoordinate	node	by	either	right-clicking	and	searching	for	TextureCoordinate
or	U	+	clicking	the	graph.

5.	Create	a	new	VectorToRadialValue	node;	this	will	help	you	create	the	circle.
6.	If	you	pass	the	output	of	the	TexCoord	into	the	Vector	input	of	the	VectorToRadialValue	node	and
pass	the	Linear	Distance	output	to	the	Final	Color	of	your	Material,	you’ll	notice	that	it	creates	a
circular	gradient	emanating	from	the	top	left	corner.	To	translate	this	into	the	center	of	your
Material,	you	need	to	scale	and	move	the	input	you	give	the	VectorToRadialValue	node.
	To	do	this,	add	a	new	ConstantBiasScale	node	to	the	graph,	giving	it	a	bias	of	–0.5	and	a	scale	of
2.0	in	the	Details	panel.
	To	actually	see	the	effects	of	this	node,	connect	the	ConstantBiasScale	between	TexCoord	and
VectorToRadialValue.
	You	should	now	see	a	circle	gradient	in	the	center	of	the	Material.

7.	Disconnect	the	Linear	Distance	pin	from	the	Final	Color	and	connect	the	Vector	Converted	to	Angle
pin	instead.	You	should	now	have	something	similar	to	Figure	2.12.



Figure	2.12	Gear	VR	HUD	Material:	basic	gradient

Ideally,	you	can	see	how	this	new	gradient	may	help	you	create	a	spinning	circle.
The	one	problem	with	the	current	gradient	is	that	it	faces	to	the	right	when	you	would	actually	want
it	to	face	upward	so	that	when	animated,	it	moves	more	like	an	analog	clock.

8.	To	rotate	the	Material,	add	a	Swizzle	node	and	connect	it	between	ConstantBiasScale	and
VectorToRadialValue,	making	sure	to	choose	the	XY	and	YX	paths.

9.	Now	that	your	Material	is	rotated,	you	will	notice	that	it	is	upside	down.	To	fix	this,	create	a
OneMinus	node	and	place	it	between	the	TexCoord	and	ConstantBiasScale	nodes.	This	flips	the
TexCoord	and	makes	the	gradient	face	the	proper	way.

10.	To	control	the	amount	that	the	circle	has	completed,	create	a	new	scalar	parameter	node	and	name
it	PercentComplete	in	the	Details	panel.

11.	Drag	off	of	the	PercentComplete	node	and	create	a	new	Add	node,	connecting	the	Vector	Converted
to	Angle	output	of	the	VectorToRadialValue	node	to	the	second	input.

12.	Drag	off	of	the	Add	node	and	create	a	new	Floor	node;	this	allows	you	to	convert	anything	below	1
to	black	and	anything	at	or	above	it	to	white.	You	will	use	this	as	one	of	your	masks	later	on.

13.	Now	connect	the	output	of	the	Floor	to	Final	Color;	you	should	have	something	resembling	Figure
2.13.	(Change	the	PercentComplete	value	and	notice	how	the	output	changes.)



Figure	2.13	Gear	VR	HUD	Material:	animated	rotating	mask

Now	that	you	have	the	first	mask,	it	is	time	to	actually	create	the	circle.	For	this	you	need	two	circles,
first	an	outer	circle	and	then	an	inner	circle	that	you	will	cut	from	the	outer	one	to	create	a	nice	ring:

1.	Drag	off	of	the	Linear	Distance	of	the	VectorToRadialValue	node	and	create	a	new	OneMinus	node
to	invert	the	gradient.

2.	Creating	the	inner	circle	first,	drag	off	of	the	output	of	the	OneMinus	node	and	add	a	new	Subtract
node.
	Create	another	scalar	parameter,	this	time	naming	it	Width	and	setting	its	default	value	to	0.4.	This
will	be	used	to	control	the	width	of	the	ring.
	Connect	this	Width	parameter	to	the	second	input	of	the	Subtract	node.

3.	After	the	Subtract	node	create	a	new	Ceil	node,	which	will	round	any	value	above	zero	up	to	1.
4.	Add	a	new	Clamp	node	to	ensure	that	the	Ceil	stays	between	0	and	1.
5.	To	create	the	outer	circle,	simply	drag	off	of	the	OneMinus	node	once	more	and	add	another	new
Ceil	node	to	turn	the	gradient	into	black	and	white.

6.	All	that’s	left	to	do	to	create	the	ring	is	to	grab	the	output	of	the	Ceil	you	used	to	create	the	outer
ring	and	subtract	the	output	of	the	Clamp	for	the	inner	ring.

7.	To	finish	off	the	ring	mask,	grab	the	output	of	the	Floor	from	the	PercentComplete	mask	and



multiply	it	by	the	output	of	the	Subtract	for	the	ring	mask.	The	result	is	that	as	you	change	the
PercentComplete	value,	the	fill	of	the	ring	is	animated.

8.	Connect	the	output	of	this	Multiply	into	the	Opacity	for	the	Material	and	disconnect	anything	that	is
connected	to	the	Final	Color	pin.	You	should	now	have	something	that	resembles	Figure	2.14.

Figure	2.14	Gear	VR	HUD	Material:	animated	mask	and	ring

9.	To	control	the	color	of	the	ring,	add	a	new	vector	parameter	node	to	the	graph	and	name	it	Color.
10.	Set	the	default	color	of	the	vector	parameter	to	whatever	color	you	would	like	your	ring	to	be	(I

opted	for	a	nice	blue	of	R	=	0.266,	G	=	0.485,	B	=	0.896)	and	connect	the	white	output	pin	of	this
node	to	the	Final	Color	Material	pin.

11.	If	you	wish,	you	can	stop	here	because	the	Material	will	be	fully	functional;	however,	it	would	also
be	nice	if	the	background	of	the	ring	is	always	illuminated	but	at	a	more	transparent	level	than	the
foreground.
	To	do	this,	create	another	new	scalar	parameter	node	named	MinTransparency.	Set	its	default
value	to	0.1.
	Connected	to	this,	add	a	new	Add	node,	connecting	the	Floor	of	the	PercentComplete	path	to	the
second	pin.

12.	Drag	off	of	the	new	Add	node	and	create	another	Clamp	node	to	make	sure	that	you	are	still



working	with	values	between	0	and	1.	Finally,	connect	the	output	of	this	node	to	the	input	of	the
Multiply	that	you	used	to	combine	the	two	masks.	You	should	now	have	a	Material	that	resembles
Figure	2.15.

Figure	2.15	Gear	VR	HUD	Material:	animated	mask	with	transparency

Now,	if	you	connect	your	phone	to	your	computer	and	click	Launch,	you	should	be	able	to	hold	the	Back
button	on	your	Gear	and	see	an	animated	circle	that	eventually	takes	you	to	the	Gear	VR	Global	Menu
(see	Figure	2.16).



Figure	2.16	Gear	VR	HUD	Material	in-game

Rift	and	Vive
Unlike	the	Gear	VR,	both	the	Rift	and	Vive	are	easy	to	set	up	and	get	going.	The	main	reason	for	this	is
that	you	will	be	developing	on	the	system	to	which	you	eventually	deploy	(PC	to	PC),	which	eliminates
the	extra	step	of	launching	on	a	device,	which	can	be	a	time-consuming	process.
Similarly	to	the	Gear	VR,	Epic	has	some	nice	documentation	to	take	you	through	the	setup	of	the	Rift,
which	can	be	found	here:

https://docs.unrealengine.com/latest/INT/Platforms/Oculus/QuickStart/index.html
Setup	information	for	the	Vive	can	be	found	here:

https://docs.unrealengine.com/latest/INT/Platforms/SteamVR/QuickStart/index.html
To	develop	for	the	Rift,	all	you	need	to	do	is

1.	Install	the	Oculus	runtime
2.	Click	the	VR	Preview	button	in	the	editor

To	develop	for	the	Vive,	just
1.	Install	SteamVR	and	run	Room	Setup
2.	Click	the	VR	Preview	button	in	the	editor

https://docs.unrealengine.com/latest/INT/Platforms/Oculus/QuickStart/index.html
https://docs.unrealengine.com/latest/INT/Platforms/SteamVR/QuickStart/index.html


Rift	and	Vive	Project	Setup
To	set	up	a	basic	Rift	or	Vive	project,	the	only	two	pieces	you	need	are	a	Player	Pawn	and	a	game	mode.
(Technically,	you	could	get	away	with	only	a	Pawn.)
To	do	this,	create	a	new	blank	Blueprint	project,	setting	the	target	device	to	Mobile/Tablet	and	the
scalability	to	Scalable	3D	or	2D,	and	do	not	include	any	starter	content	(refer	to	Figure	2.1).	These
settings	ensure	that	some	of	the	advanced	graphical	features	of	UE4	will	be	off	by	default.	(Again,	if	you
want	to	see	exactly	which	features,	refer	to	Chapter	10.)
It’s	a	good	idea	to	set	up	a	basic	folder	structure	to	keep	your	project	organized	from	the	start.	Once	that
is	done,	we	will	add	the	basic	Blueprints	you	need	to	create	a	Rift/Vive	experience:

1.	Create	a	new	folder	under	the	root	content	folder	and	name	it	Blueprints.
2.	Create	two	new	Blueprints,	one	a	game	mode	named	VRGameMode	and	another	a	Pawn	named
VRPawn.	You	should	now	have	a	project	similar	to	Figure	2.17.

Figure	2.17	Basic	desktop	VR	setup

3.	Head	to	the	Project	Settings	(Edit	→	Project	Settings),	select	the	Maps	&	Modes	section,	and
change	the	Default	GameMode	to	the	VRGameMode	you	just	created	(see	Figure	2.18).



Figure	2.18	Desktop	VR	default	game	mode

4.	Open	your	VRGameMode	Blueprint	and	set	the	Default	Pawn	Class	to	the	VRPawn	you	created
(see	Figure	2.19).



Figure	2.19	Desktop	VR	game	mode

5.	Open	the	VRPawn	and	add	four	new	Components.
	The	first	Component	is	a	Scene	named	CameraRoot.	This	is	the	root	of	your	Camera,	and	it
allows	you	to	position	the	Camera	anywhere	you	wish	in	the	Pawn.
	Create	a	new	Camera	Component	and	make	it	the	child	of	the	CameraRoot	by	dragging	it	on	top	of
the	CameraRoot	in	the	Components	tab.
	Create	two	Motion	Controller	Components;	name	the	first	MotionController_L	and	the	second
MotionController_R	(see	Figure	2.20).



Figure	2.20	Desktop	VR	Player	Pawn

	On	the	second	motion	controller,	change	the	Hand	variable	in	the	Details	panel	to	Right.	This
ensures	that	the	motion	controller	is	controlled	by	the	right	hand.

6.	Open	the	Event	Graph	of	the	VRPawn.	Drag	off	of	the	EventBeginPlay	node	and	create	a	new
SetTrackingOrigin	node,	making	sure	that	the	Origin	input	pin	is	set	to	Floor	Level	(see	Figure
2.21).	This	sets	up	Rift	and	Vive	for	a	standing	experience;	for	different	tracking	origins,	see	the
next	section,	“Rift	and	Vive	Tracking	Origins.”



Figure	2.21	Desktop	VR	standing	tracking	origin

7.	Now	that	you	have	set	up	the	Pawn	for	a	standing	experience,	you	need	to	move	the	default	Player
Start	location	down	to	the	floor	because	the	HMD	position	is	relative	to	the	player’s	real-world
floor.	Grab	the	Player	Start	in	the	level	and	move	its	Z-axis	to	20cm;	this	is	the	height	of	the	default
floor	in	the	UE4	starter	map	(see	Figure	2.22).



Figure	2.22	Desktop	VR	Player	Start

Rift	and	Vive	Tracking	Origins
Both	the	Rift	and	the	Vive	offer	the	developer	a	way	to	target	either	a	seated	or	a	standing	experience.	To
do	this	in	UE4,	you	tell	the	engine	what	tracking	origin	you	want	to	use	(refer	to	Figure	2.21).
By	default,	the	Rift	targets	a	seated	experience	(or	an	Eye	Level	tracking	origin)	that	places	the	VR
camera’s	default	location	one	meter	horizontally	in	front	of	the	available	tracking	camera	(see	Figure
2.23).	However,	if	the	tracking	origin	is	set	to	Floor	Level	in	UE4,	the	default	camera	location	for	the	Rift
is	on	the	floor	that	the	user	calibrated	when	setting	up	the	Oculus	runtime	(see	Figure	2.24).



Figure	2.23	Rift	Eye	Level	tracking	origin

Figure	2.24	Rift	Floor	Level	tracking	origin

For	the	Vive,	the	default	is	to	target	standing	experiences	(Floor	Level	tracking	origin).	This	locates	the
default	camera	position	at	the	center	of	the	user’s	play	space	and	on	the	floor	(see	Figure	2.25).	When
targeting	a	seated	experience,	the	Vive’s	tracking	origin	is,	by	default,	in	the	middle	of	the	monitor	side	of
the	user’s	play	space	(see	Figure	2.26).



Figure	2.25	Vive	Floor	Level	tracking	origin

Figure	2.26	Vive	Eye	Level	tracking	origin



Summary
You	now	have	a	basis	from	which	to	create	your	own	VR	experiences.	This	chapter	described	mobile	VR
and	creating	the	necessary	menu-loading	UI,	as	well	as	desktop	VR	and	choosing	whether	you	want	your
experience	to	target	a	seated	or	standing	tracking	origin	(or	both).	You	should	now	have	everything	you
need	to	start	looking	at	recipes	and	learning	VR.



Chapter	3.	Toolkit

UE4	provides	a	vast	toolkit	of	Blueprint	functions	that	you	can	use	when	creating	your	VR
experiences.	This	chapter	introduces	some	of	the	generic	VR	libraries	that	Unreal	Engine	offers,	as
well	as	some	of	the	more	vendor-specific	ones.

Generic	Function	Library
When	creating	VR	experiences	in	UE4,	you	have	various	helpers	and	functions	available	to	you	to	query
things	from	the	current	user’s	head	position	to	the	temperature	of	the	HMD	sensors.
Alongside	the	API-specific	functions	that	Unreal	Engine	gives	you	to	interact	with	an	individual	HMD’s
SDK,	there	is	a	generic	Head	Mounted	Display	function	library	that	gives	you	access	to	various	things
common	across	multiple	HMDs	(see	Table	3.1).



Table	3.1	Generic	Head	Mounted	Display	Functions

Oculus	Function	Library
Along	with	the	generic	HMD	function	library,	UE4	gives	you	access	to	SDK-specific	libraries	that	allow
you	to	access	functions	more	specific	to	the	HMD.
The	Oculus	Function	Library	allows	you	to	have	access	to	more	low-level	information	about	the	HMD	as
well	as	information	about	the	current	Oculus	user	profile	(see	Table	3.2).





Table	3.2	Oculus	Functions

Note
The	functions	in	Table	3.2	work	only	on	the	Gear	VR	and	Rift	headsets;	they	specifically	target
these	headsets.

Steam	VR	Function	Library
Steam	VR	has	fewer	functions	than	the	Oculus	Function	Library	but	gives	you	access	to	the	Vive
Controllers	and	Base	Stations.
Similarly	to	the	Oculus	Function	Library,	the	functions	in	Table	3.3	work	only	on	Steam	VR	devices.



Table	3.3	Steam	VR	Functions

Summary
You	now	understand	the	types	of	functions	that	are	available	when	creating	your	VR	experiences,	whether
it	is	from	the	generic	HMD	function	library	or	a	device-specific	one.	You	now	have	all	that	you	need	to
try	recipes	and	create	your	own	experiences.



Part	II:	Recipes



Chapter	4.	Trace	Interaction

VR	allows	developers	to	tap	into	previously	inaccessible	natural	forms	of	input.	A	major	one	of
these	is	the	player’s	head,	and	so	this	chapter	discusses	a	way	to	use	this	input	to	interact	with
objects	in	your	VR	worlds.
Understanding	traces	is	essential	for	nearly	all	VR	games.	In	this	chapter,	you	create	a	modular
system	for	user	interaction	that	can	be	easily	expanded.

Understanding	Trace	Interaction
Trace	interaction	in	VR	is	a	common	method	of	allowing	the	player	to	interact	with	the	in-game	world	by
detecting	what	object	that	player	is	looking	(or,	in	the	case	of	motion	controllers,	pointing)	at.
A	trace	(or	ray	cast)	has	a	broader	definition	in	the	context	of	UE4	and	an	even	broader	definition	in	the
context	of	computer	graphics	in	general.	However,	when	I	mention	traces	in	this	book,	I	refer	to	the	set	of
functions	inside	Unreal	Engine	that	allow	you	to	set	a	start	and	end	point	and	detect	any	objects	that	are
between	those	two	points.
Unreal	Engine	gives	you	the	option	of	many	different	traces.	They	range	from	the	simple	line	trace	(see
Figure	4.1),	which	detects	whether	the	line	that	exists	between	a	start	point	and	an	end	point	is	blocked	by
any	object,	to	more	complicated	shape	traces,	which	allow	you	to	define	a	box,	sphere,	or	capsule	and
detect	whether	any	object	intersects	that	object	as	it	is	traced	from	the	start	to	the	end	point	(the	sphere
trace	is	shown	in	Figure	4.1).



Figure	4.1	A	sample	of	the	trace	functions	offered	in	UE4

In	addition	to	the	different	trace	shapes	(line,	box,	etc.),	each	shape	has	two	distinct	flavors:	the	Object
trace	and	the	Channel	trace	(shown	in	Figure	4.1).	There	are	slight	differences	between	them,	and
therefore	it	can	be	a	bit	difficult	to	know	which	one	to	choose	if	you’re	just	starting	out.
By	dissecting	them,	you’ll	see	that	both	flavors	(Object	and	Channel)	offer	the	same	input	parameters
aside	from	one;	that	is,	the	Object	Types	parameter	for	Object	traces	and	the	Trace	Channel	parameter	for
Channel	traces.	Those	who	have	worked	with	Unreal	Engine’s	collision	system	before	know	that	UE4
offers	two	types	of	collision	responses:	Object	and	Trace.	These	collision	channels	match	perfectly	to	the
two	trace	types.	This	means	that	by	using	the	appropriate	trace	function,	UE4	allows	you	to	search	(trace)
for	specific	types	of	objects	in	your	world	while	ignoring	those	that	you	don’t	care	about.	The	one	other
difference	between	these	trace	types	is	that	whereas	Object	traces	allow	you	to	define	multiple	types	to
trace	against	(which	can	be	useful	when	you	want	to	test	for	specific	types	of	objects	like	players	or
vehicles),	Channel	traces	allow	only	one	trace	channel	to	be	selected.	By	default,	these	are	Visibility	and
Camera;	however,	just	as	with	custom	Object	collision	responses,	more	can	be	added	through	the	Projects
Settings.
How	do	we	actually	set	up	one	of	these	traces?
In	your	game,	you	have	access	to	two	main	properties	that	allow	you	to	calculate	the	start	and	end	point	of
where	the	player	is	looking.	Both	properties	are	represented	as	vectors	(a	grouping	of	numbers	that	can	be



used	to	represent	a	point	or	direction	in	a	specific	coordinate	space).	The	first	of	these	is	the	player’s
head	location	in	world	space,	which	means	that	the	X,	Y,	and	Z	of	this	vector	represent	a	forward,	right,
and	up	value	relative	to	the	in-game	world’s	origin	point.	The	second	of	these	vectors	is	the	player’s	head
forward	direction,	which	you	obtain	from	the	in-game	camera	representing	the	player’s	eyes.	These	two
vectors	are	shown	in	Figure	4.2.

Figure	4.2	The	HMD’s	position	(p)	and	forward	look	(f)	vectors	represented	in	UE4

Note
In	this	example,	you	use	the	player’s	head	as	the	place	from	which	to	trace.	However,	note	that	this
also	works	with	any	other	object	in	the	game	from	which	you	want	to	trace	(such	as	a	motion
controller).

To	use	these	variables	for	tracing,	you	can	first	pass	the	world	position	of	the	HMD	directly	into	the	start
position	of	the	trace.	Second,	to	get	the	end	position	of	the	trace,	you	need	to	do	some	simple	math.	Before
we	do	this,	however,	a	little	background	is	needed.	A	direction	vector	in	UE4	always	has	a	length	of	1;
this	has	the	nice	property	that	scaling	it	to	any	other	length	is	as	simple	as	multiplying	this	direction	vector
by	a	number	representing	the	length	you	want	the	vector	to	be.	(In	this	case,	this	is	how	long	you	want	the
trace	to	be.	Remember	that	1UU	[Unreal	Unit]	is	equivalent	to	1cm,	so	a	length	of	100UU	is	1m.)	Once
this	direction	has	been	scaled	to	the	length	you	want,	you	need	to	add	it	to	the	player’s	head	location	to
position	it	relative	to	the	player’s	head	(see	Figure	4.3)	rather	than	to	the	world	origin	in	which	it	was
initially.



Figure	4.3	Calculating	the	start	and	end	points	for	the	trace	(the	larger	orange	circles)	by	scaling	the
look	vector	of	the	HMD	(f)	by	the	desired	length,	then	adding	it	to	the	HMD’s	world	position	(p)	to

make	sure	the	end	point	is	in	world	space

To	get	the	world	origin	and	direction	vectors	in	your	game,	use	the	GetWorldLocation	and
GetForwardVector	Blueprint	nodes	(see	Figure	4.4)	from	your	desired	Component,	in	this	case	a	Camera
Component.



Figure	4.4	A	simple	trace	function	setup	to	find	objects	in	front	of	a	Component

Understanding	Interfaces
An	interface	is	one	of	the	core	objects	you	will	use	to	create	an	interaction	system.	It	allows	your	in-game
character	to	communicate	with	other	objects.
If	you	have	programming	experience	and	are	familiar	with	the	idea	of	interfaces,	skip	this	section	and
move	to	the	section	“Setting	Up	Trace	Interaction.”
In	programming,	an	interface	(also	called	a	protocol)	allows	you	to	define	a	set	of	functionalities	that	any
object	can	promise	to	implement	and	perform	when	called	upon.	This	is	useful	for	things	like	interaction
systems	where	you	first	define	a	set	of	interactions	that	players	can	make.	Then	any	object	in	the	world
can	tell	players	that	they	are	capable	of	handling	these	interactions.	Note	that	the	players	do	not	need	to
know	anything	about	how	the	implementing	object	will	handle	that	interaction.
For	example,	you	may	have	a	ball	that	starts	rolling	when	the	player	looks	at	it,	and	you	may	also	have	a
cube	that	spins	when	looked	at.	Using	a	Look	Interaction	interface	allows	you	to	call	the	Look	At
functionality	on	both	of	these	objects	without	the	player	knowing	(or	caring)	that	the	ball	needs	to	roll	and
the	cube	needs	to	spin.
This	decoupling	of	trigger	and	action	creates	an	interaction	system	that	is	easy	to	expand	and	to	which	you
can	add	more	interactive	objects	while	having	only	one	object	(usually	the	player)	that	decides	what



counts	as	a	look	and	what	does	not.
Readers	familiar	with	object-oriented	programming	may	know	that	another	way	to	give	functionality	to
objects	is	for	them	to	inherit	functionality	from	their	parent.	This	indeed	works	as	an	interaction	system,
because	you	can	guarantee	that	if	the	object	you	are	looking	at	has	a	parent	that	has	the	interaction
functionality,	you	can	call	the	correct	functions	when	needed.
However,	this	has	one	major	downside:	in	Blueprints,	at	least,	an	object	can	have	only	one	parent.	This
means	that	if	you	wanted	to	have	both	a	cube	and	a	pig	that	can	be	interacted	with,	they	would	need	to
inherit	from	the	same	object,	even	though	in	your	game	it	may	make	more	sense	for	the	pig	to	inherit	from
an	Animal	class	and	the	cube	to	inherit	from	a	Shape	class.	(This	difference	is	shown	in	Figure	4.5.)

Figure	4.5	Interfaces	versus	classes.	Using	an	interface	(yellow)	allows	the	cube,	sphere,	and	pig	to	be
interactive,	but	the	pig	can	still	have	a	parent	class	(red)	of	Animal;	this	would	be	impossible	in

Blueprints	if	the	interface	was	a	class	because	only	single	inheritance	is	allowed.

Setting	Up	Trace	Interaction
Let’s	now	implement	trace	interaction	so	you	can	use	it	in	your	games	and	experiences.

Basic	Project	Setup
To	begin,	you	need	a	few	objects	to	set	up	a	trace	interaction	system:

1.	Create	a	folder	under	the	root	content	folder	of	your	project	and	name	it	Blueprints.
2.	Inside	the	Blueprints	folder,	create	two	more	folders	and	name	them	Components	and	Interfaces.
3.	Inside	the	Blueprints	folder,	create	a	new	Pawn	(select	Add	New,	then	select	the	Pawn	Class).
4.	Name	this	newly	created	Pawn	TraceInteractionPawn.
5.	Inside	the	Components	folder,	create	a	Scene	Component	named	TraceInteractionComponent.	This
will	hold	the	logic	for	the	trace	functionality.	It	would	be	easier	from	a	programming	perspective



not	to	separate	the	trace	functionality	from	the	Pawn,	but	when	the	TraceInteractionComponent	is	its
own	Component,	you	can	give	any	object	in	your	game	the	ability	to	perform	trace	interactions,
which	will	ultimately	make	your	code	more	flexible	and	easier	to	port	to	other	projects.

6.	Inside	the	Interfaces	folder,	create	a	new	Blueprint	interface	called	TraceInteractionInterface	by
selecting	the	Add	New	button,	and	under	the	Create	Advanced	Asset	section	hover	over	the
Blueprints	menu	and	select	Blueprint	Interface.

Your	project	should	now	resemble	Figure	4.6.

Figure	4.6	Trace	interaction	project	setup

Interaction	Interface	Setup
To	allow	the	Interaction	Component	to	call	functions	on	interactive	objects,	you	need	to	define	them	in	the
interface	you	created	in	the	initial	project	setup.
These	functions	allow	for	a	basic	trace	interaction	system	that	will	handle	most	cases	of	detecting	hits	on
objects	and	Components;	however,	if	you	need	specific	custom	functionality,	adding	new	functions	to	this
Blueprint	is	usually	your	first	step.

1.	Open	the	TraceInteractionInterface	Blueprint.
2.	You	need	seven	functions	for	this	interface.	Call	the	first	two	TraceHitObject	and
TraceLeaveObject.	You	use	these	to	tell	objects	that	a	trace	has	hit	or	has	left	them.



3.	For	the	inputs	of	these	two	functions,	create	an	input	of	type	Hit	Result	(name	it	Hit).	Passing	the
Hit	allows	you	to	find	out	many	useful	things	from	the	trace	on	the	hit	object.

4.	Create	two	more	functions,	TraceHitComponent	and	TraceLeaveComponent.	These	act	as	the	hit
detection	for	objects	on	a	Component	level	rather	than	on	the	object	as	a	whole.

5.	For	the	inputs	of	these	functions,	create	the	same	Hit	Result	input	as	for	the	previous	two,	but	this
time	add	a	new	Component	input	of	type	Primitive	Component.	This	gives	you	easy	access	to	the
Hit	Component	for	the	hit	function	while	providing	the	Component	that	was	left	for	the	leave
function,	which	would	not	be	accessible	in	the	Hit	Result.

6.	Create	one	more	function,	TraceMove.	This	function	is	called	every	frame	when	the	trace	is	over
the	hit	object.

7.	Because	this	function	is	called	every	frame,	we	want	it	to	be	a	little	more	optimized	than	the	other
functions	in	this	interface.	Therefore,	add	the	Hit	Result	input	variable	as	before,	but	this	time
expand	this	variable	and	check	the	Pass-by-Reference	check	box.	This	allows	the	Hit	variable	to
not	be	copied	every	time	this	function	is	called	and	rather	just	passes	in	a	reference	to	the	existing
variable	in	memory.

8.	Using	a	pass-by-reference	variable	in	Blueprints,	however,	means	that	you	need	to	mark	this
function	as	const,	which	means	that	it	is	not	allowed	to	directly	edit	the	state	of	the	Blueprint.	You
can	do	this	by	expanding	the	Graph	tab	in	the	Details	panel	and	checking	the	Const	option	(an
example	of	this	can	be	seen	in	Figure	4.7).



Figure	4.7	Trace	Interaction	Interface	setup.	Each	function	has	a	dummy	Return	Value	to	allow	it	to
remain	in	one	section	on	the	implementing	Blueprint.	TraceMove	has	its	Hit	Result	passed	by	reference

to	improve	performance.

9.	Create	the	last	two	functions,	TraceActivateDown	and	TraceActivateUp.	These	are	used	to	activate
the	hit	object.

10.	Add	the	same	Hit	Result	input	variable	that	you	added	for	the	other	functions,	but	this	time	add	a
new	Pawn	input	variable,	Instigator,	that	represents	the	Pawn	that	activated	the	object.

11.	Review	all	the	functions	and	add	a	Boolean	output	variable	named	Return	to	all	of	them.	This	may
seem	like	an	odd	thing	to	do,	but	because	of	the	way	interfaces	work	in	Blueprints,	if	no	output
variable	is	given	they	will	show	up	as	event	nodes	in	the	Event	Graph.	Therefore,	in	an	attempt	to
have	all	the	functions	in	one	place,	you	can	add	what	essentially	is	junk	output	to	each	of	them.

All	the	functions	in	the	interface	should	now	look	something	like	Figure	4.7.

Interaction	Component
The	bulk	of	the	interaction	logic	now	needs	to	be	handled	in	the	Interaction	Component.
For	this	example,	you	set	up	a	simple	line	trace	and	interact	with	the	hit	object	from	that.	Later	in	this
chapter,	we	will	go	over	a	few	other	methods	that	can	be	used	for	detecting	with	which	objects	to	interact.



Setup
First,	you	need	to	do	a	few	things	before	you	actually	handle	the	tracing	and	the	interaction:

1.	Open	the	TraceInteractionComponent.
2.	Create	two	new	functions,	LineTrace	and	InteractWithHit.	The	first	handles	the	trace	itself,	and	the
second	takes	the	output	of	the	line	trace	and	decides	how	to	interact	with	the	hit.

3.	Create	three	new	variables,	the	first	named	FocusedComponent	of	type	Primitive	Component,	the
second	FocusedObject	of	type	Actor,	and	the	last	CurrentHit	of	type	Hit	Result.	The	first	two	hold
the	current	hit	Component	and	object	respectively,	and	the	last	holds	the	hit	information.

4.	Mark	these	variables	as	Private.	You	don’t	want	to	give	other	Blueprints	direct	access	to	them.
5.	In	the	Event	Graph	of	the	Blueprint,	drag	off	of	the	EventTick	node	and	add	a	new	Gate	node,
making	sure	the	Start	Closed	input	pin	is	unchecked.

6.	Create	two	new	custom	events,	Enable	and	Disable.	These	allow	you	to	enable	and	disable	the
trace	functionality	when	needed.

7.	Drag	the	output	of	the	Enable	event	to	the	Open	pin	of	the	gate.
8.	Drag	the	output	of	the	Disable	event	to	the	Close	pin	of	the	gate.

This	basic	setup	should	now	resemble	Figure	4.8.



Figure	4.8	Trace	Interaction	Component	basic	setup.	The	Component	is	enabled	by	default;	however,
Enable	and	Disable	events	are	available.

Line	Trace	Function
Now,	you	need	to	fill	in	the	functionality	of	the	functions	you	added	in	the	preceding	section.	To	get
started,	let’s	look	at	the	LineTrace	function:

1.	Open	the	LineTrace	function	by	double-clicking	it.
2.	Click	the	input	node	and	create	a	new	input	variable	named	Distance	of	type	Float.	This	is	the
distance	you	trace	from	the	Component.

3.	Create	a	new	output	variable	named	Hit	of	type	Hit	Result.	This	is	the	Hit	Result	of	the	trace.
4.	Right-click	the	graph	and	add	a	new	GetWorldLocation	node	by	searching	for	it.
5.	Right-click	the	graph	again	to	add	a	GetForwardVector	node.	This	gives	you	access	to	the	forward
direction	of	the	Interaction	Component	and,	in	this	case,	the	look	direction	of	the	player.

6.	Create	a	new	LineTraceByChannel	node,	connecting	it	between	the	input	and	the	output	nodes	of	the
function.

7.	Drag	the	output	of	the	GetWorldLocation	node	to	the	Start	input	pin	of	the	trace.
8.	Drag	off	of	the	GetForwardVector	node	and	call	the	Vector	*	Float	function,	putting	the	Distance



input	pin	of	the	function	into	the	second	slot.	This	scales	the	forward	vector	of	the	Component	to	the
length	we	want.

9.	Drag	off	of	the	GetWorldLocation	node	again,	call	the	Vector	+	Vector	function,	and	connect	the
output	of	the	scaled	forward	vector	to	the	second	input	pin.

10.	Attach	the	output	of	the	Vector	+	Vector	function	to	the	End	input	pin	of	the	trace.
11.	Connect	the	Out	Hit	output	pin	of	the	trace	to	the	Hit	pin	of	the	Return	node.

This	function	should	now	look	similar	to	Figure	4.9.

Figure	4.9	Trace	Interaction	Component	LineTrace	function

Interaction	Function
Now	that	you	have	the	hit	that	you	want	to	interact	with,	you	can	add	some	logic	to	determine	which
interface	messages	to	call	on	the	hit	objects:

1.	Open	the	InteractWithHit	function.
2.	Add	three	local	variables	named	InHit,	InHitActor,	and	InHitComponent,	of	types	Hit	Result,	Actor,
and	Primitive	Component	respectively.	These	act	as	temporary	variables	to	give	you	easy	access	to
parts	of	the	input,	ultimately	allowing	you	to	have	a	cleaner	Blueprint	graph.

3.	Create	a	new	input	variable	named	Hit	of	type	Hit	Result	(see	Figure	4.10).



Figure	4.10	Trace	Interaction	Component	interaction	with	Hit:	local	variables	and	inputs

4.	Drag	off	of	the	input	pin,	create	a	setter	node	for	the	InHit	variable,	and	connect	the	Hit	pin	of	the
input	event	to	it.

5.	Break	the	output	of	this	setter	by	dragging	off	of	its	output	and	selecting	BreakHitResult.
6.	Create	a	setter	for	the	InHitActor	and	InHitComponent	variables,	connecting	the	Hit	Actor	of	the
BreakHitResult	node	to	the	first	setter	and	the	Hit	Component	of	the	same	break	to	the	second	setter.

7.	Connect	the	output	execution	pin	of	the	InHit	setter	to	the	InHitActor	setter,	then	connect	that
InHitActor	to	the	InHitComponent	(see	Figure	4.11).



Figure	4.11	Trace	Interaction	Component	interaction	with	Hit:	local	variable	setup

8.	Drag	off	of	the	InHitComponent	setter	and	create	a	new	Branch	node.
9.	Drag	two	variable	getters	for	the	InHitActor	and	FocusedObject	variables.
10.	Add	an	Equal	(Object)	node	connecting	both	these	getters	to	the	two	inputs.
11.	Connect	the	output	of	the	Equal	(Object)	node	to	the	Condition	input	of	the	Branch	(see	Figure

4.12).	This	allows	you	to	detect	whether	the	player	is	looking	at	the	same	object	or	has	started
looking	at	a	new	one.



Figure	4.12	Trace	Interaction	Component	interaction	with	Hit:	looking	at	the	same	object	and	calling
TraceMove

12.	Create	two	new	variable	getters:	one	for	the	FocusedObject	variable	again	and	one	for	the	InHit
variable.

13.	Drag	off	of	the	FocusedObject	getter	and	call	the	TraceMove	interface	message.	This	calls	the
TraceMove	function	on	the	FocusedObject	if	it	implements	the	interface	you	created	in	the	first	step.

14.	Connect	the	InHit	getter	to	the	Hit	input	pin	of	the	TraceMove	message,	and	connect	the	True	output
of	the	Branch	to	the	TraceMove	node’s	input	execution	pin	(see	Figure	4.12).

15.	Drag	off	of	the	output	execution	pin	of	the	TraceMove	message	and	create	another	Branch	node.
16.	This	time,	drag	in	two	variable	getters	for	the	FocusedComponent	and	InHitComponent	variables.

Drag	off	of	the	first	and	add	a	new	Equal	(Object)	node,	and	connect	the	second	to	the	second	input
of	this	new	Equal	(Object)	node.

17.	Connect	the	output	of	the	Equal	(Object)	node	to	the	Condition	input	of	the	new	Branch	node.	This
allows	you	to	detect	when	the	player	is	looking	at	a	new	Component	inside	the	currently	looked-at
object.

18.	Create	three	new	variable	getters	for	the	FocusedObject,	InHit,	and	FocusedComponent	variables.
19.	Drag	off	of	the	FocusedObject	getter	and	call	the	TraceLeaveComponent	interface	message,



connecting	InHit	to	the	Hit	input	pin	and	FocusedComponent	to	the	Component	input	pin	(see	Figure
4.13).	This	ensures	that	you	call	leave	on	the	currently	focused	Component	before	you	set	the	new
Hit	Component.

Figure	4.13	Trace	Interaction	Component	interaction	with	Hit:	calling	Hit	on	a	new	Component

20.	Connect	the	False	output	of	the	Branch	node	to	the	input	execution	pin	of	the
TraceLeaveComponent	message.

21.	Create	three	more	variable	getters,	this	time	for	the	FocusedObject,	InHit,	and	InHitComponent
variables.

22.	Drag	off	of	this	new	FocusedObject	getter	and	call	the	TraceHitComponent	interface	message,
connecting	InHit	to	the	Hit	input	pin	and	InHitComponent	to	the	Component	input	pin.

23.	Connect	the	TraceLeaveComponent	message	to	the	TraceHitComponent	message.
24.	Create	a	new	variable	setter	for	the	FocusedComponent	variable,	and	connect	a	new	variable

getter	for	the	InHitComponent	variable	to	its	input	pin.
25.	Connect	the	output	execution	pin	of	the	TraceHitComponent	message	to	the	new	setter	(see	Figure

4.13).	This	sequence	of	calling	leave	on	the	current	Component,	then	calling	hit	and	remembering
the	new	Component,	is	something	you	will	use	again	for	activating	a	hit	on	a	new	object.

26.	Going	back	to	the	initial	Branch	after	setting	the	local	variables	(from	step	8),	create	a	new



variable	getter	for	the	FocusedObject	variable	and	call	the	TraceLeaveObject	interface	message
from	it,	making	sure	to	also	connect	the	False	output	execution	pin	to	the	input	execution	pin	of	the
message	node.

27.	Create	a	new	variable	getter	for	the	InHit	variable	and	connect	it	to	the	Hit	input	pin	of	the	new
message	node.

28.	Create	two	new	variable	setters	for	the	FocusedObject	variable	and	the	FocusedComponent
variable,	connecting	them	in	sequence	after	the	interface	message	(see	Figure	4.14).	Leave	their
inputs	blank	because	you	want	to	clear	their	values.

Figure	4.14	Trace	Interaction	Component	interaction	with	Hit:	clearing	the	FocusedObject

29.	Drag	off	of	this	last	setter	and	create	a	new	Branch	node.
30.	Drag	in	a	new	getter	for	the	InHitActor	variable	and	call	the	DoesImplementInterface	function,

selecting	TraceInteractionInterface	as	the	interface	class	input	pin.	Connect	this	new	node	to	the
Condition	input	of	the	Branch	node	(see	Figure	4.15).	This	ensures	that	the	currently	hit	Actor	uses
the	TraceInteractionInterface.



Figure	4.15	Trace	Interaction	Component	interaction	with	Hit:	calling	Hit	on	a	new	object

31.	Create	two	new	variable	getters	for	the	InHitActor	and	InHit	variables,	and	call	the
TraceHitObject	interface	message	on	the	first	while	connecting	the	InHit	variable	to	the	input	Hit
pin.

32.	Connect	the	True	output	execution	pin	of	the	Branch	node	to	the	input	execution	pin	of	the
TraceHitObject	message.

33.	Drag	in	three	new	variable	getters	for	the	InHitActor,	InHit,	and	InHitComponent	variables,	and
call	the	TraceHitComponent	interface	message	on	InHitActor,	connecting	the	other	two	variables	to
the	remaining	input	pins.

34.	Connect	the	output	execution	pin	of	the	TraceHitObject	message	to	the	input	execution	pin	of	the
TraceHitComponent	message	(see	Figure	4.15);	this	ensures	that	you	call	hit	on	both	the	new	object
and	the	new	Component	when	hitting	a	new	object.

35.	Create	two	new	variable	setters	for	the	FocusedObject	and	FocusedComponent	variables,	connect
them	together,	and	connect	the	output	of	the	TraceHitComponent	message	to	the	input	execution	pin
of	the	first	setter	(see	Figure	4.16).



Figure	4.16	Trace	Interaction	Component	interaction	with	Hit:	setting	the	new	FocusedObject

36.	Create	two	new	getters	for	the	InHitActor	and	InHitComponent	variables,	and	connect	them	to	the
inputs	of	the	FocusedObject	and	FocusedComponent	setters,	respectively.	This	ensures	that	the
FocusedObject	and	FocusedComponent	variables	are	saved	for	the	next	time	you	call	this	function.

Putting	the	Functions	Together
Now	that	you	have	created	the	functions	you	need	for	the	basic	trace	interaction,	you	can	put	them	together
in	the	Event	Graph	and	actually	create	a	functioning	Interaction	Component:

1.	In	the	Event	Graph,	find	the	EventTick	where	you	set	up	the	initial	gate	for	controlling	the
Interaction	Component.

2.	Drag	off	of	the	output	of	the	gate	and	call	the	LineTrace	function,	passing	1000	into	the	Distance
input;	this	ensures	that	the	trace	will	extend	for	10m.

3.	Drag	off	of	the	Hit	output	variable	of	the	LineTrace	function	and	create	a	new	setter	for	the
CurrentHit	variable.

4.	Drag	off	of	the	output	of	this	setter	and	call	the	InteractWithHit	function	(see	Figure	4.17).	This
creates	a	line	trace	every	frame	that	the	Component	is	enabled	and	then	calls	the	appropriate
interface	messages	to	interact	with	that	hit.



Figure	4.17	Trace	Interaction	Component:	calling	the	LineTrace	and	Interact	functions

5.	The	last	thing	you	need	to	worry	about	is	calling	the	TraceActivateDown	and	Up	interface
messages	when	needed.	To	do	this,	create	two	new	custom	events	named	ActivateDown	and
ActivateUp,	giving	both	an	input	variable	named	Instigator	of	type	Pawn.

6.	Create	two	sets	of	two	variable	getters	for	the	FocusedObject	and	CurrentHit	variables	and	place
them	under	the	two	custom	events	just	created	(see	Figure	4.18).



Figure	4.18	Trace	Interaction	Component:	adding	the	activate	events

7.	On	the	FocusedObject	variable	under	the	ActivateDown	event,	call	the	TraceActivateDown
interface	message	and	connect	the	CurrentHit	getter	to	the	Hit	input	while	also	connecting	the	output
execution	pin	of	the	event	to	the	input	execution	pin	of	the	message	node	and	the	output	Instigator	pin
to	the	input	Instigator	pin.

8.	Do	the	same	thing	for	the	ActivateUp	event,	but	this	time	call	TraceActivateUp	instead	(see	Figure
4.18).	You	can	now	call	these	events	from	another	Blueprint	to	activate	the	current	FocusedObject.

Interaction	Pawn	Setup
Now	that	you	have	the	Component	and	interface	needed	to	set	up	an	interaction	system,	it’s	time	to	add	the
Components	needed	for	a	basic	VR	Trace	Interaction	Pawn	to	your	TraceInteractionPawn.

1.	Open	the	TraceInteractionPawn	Blueprint.
2.	Add	three	new	Components:	a	Scene,	Camera,	and	TraceInteraction.
3.	Name	the	Scene	Component	CameraRoot	and	attach	the	Camera	to	it	by	dragging	the	Camera
Component	over	the	top	of	the	Scene	Component	and	letting	go.

4.	Because	you	want	the	trace	interaction	to	come	from	your	player’s	look	direction,	attach	the
TraceInteraction	Component	to	the	Camera	Component	(see	Figure	4.19).	If	you	want	the	interaction
to	come	from	a	motion	controller,	you	can	simply	attach	this	Component	to	the	controller	instead.



Figure	4.19	TraceInteractionPawn	setup

5.	The	last	thing	needed	to	set	up	the	Interaction	Component	is	to	call	the	ActivateDown	and	Up
functions	when	needed.	For	this	example,	you	use	a	simple	LeftMouseButton	node	to	activate	the
Interaction	Component.	Create	a	new	LeftMouseButton	event	in	the	Event	Graph.

6.	Drag	the	TraceInteraction	Component	into	the	Event	Graph	and	call	the	ActivateDown	and
ActivateUp	events	on	the	Pressed	and	Released	outputs	of	the	LeftMouseButton	event,	passing	in
Self	as	the	Instigator	(see	Figure	4.20).



Figure	4.20	TraceInteractionPawn	interaction	activation

Setting	Up	a	Basic	Interactive	Object
Now	that	the	interaction	system	is	set	up,	it	is	time	to	test	its	functionality	on	a	basic	example.
For	this,	we	create	a	simple	cube	Blueprint	that	shows	where	the	user	is	looking	and	reacts	to	the	input	by
changing	its	color:

1.	Create	a	new	Actor	Blueprint	in	the	Blueprints	folder	named	TraceInteractiveCube.
2.	Open	this	Blueprint	and	create	two	new	Components:	the	first	a	Cube	Component	and	the	second	an
Arrow	Component.

3.	Select	the	Arrow	Component	and	set	the	Hidden	in	Game	attribute	to	False	(see	Figure	4.21).	This
allows	you	to	see	the	arrow	in-game;	this	is	the	marker	you	will	use	to	see	where	the	player	is
looking	at	the	cube.



Figure	4.21	Trace	Interactive	Cube:	Component	setup

4.	Click	the	Class	Settings	button	in	the	top	shelf	of	the	Blueprint.	Then,	under	the	Interfaces	tab	in	the
Details	panel,	select	the	Add	button	and	select	your	TraceInteractionInterface.	After	compiling	the
Blueprint,	you	will	see	the	interface	functions	under	the	Interfaces	section	of	the	My	Blueprint
panel.

5.	Open	the	TraceHitObject	interface	function	and	drag	in	a	variable	getter	for	the	Cube	Component.
6.	Call	the	SetVectorParameterValueOnMaterials	function	on	this	Component,	passing	in	the	vector	(X
=	1.0,	Y	=	0.0,	Z	=	0.0).	This	turns	the	object	red	when	a	trace	hits	the	object.

7.	Attach	the	SetVectorParameterValueOnMaterials	node	between	the	input	node	and	Return	node	of
the	function	(see	Figure	4.22).



Figure	4.22	Trace	Interactive	Cube:	hit	and	leave	color	change

8.	Repeat	steps	5	through	7	for	the	TraceLeaveObject	function,	but	this	time	passing	in	the	vector	(X	=
1.0,	Y	=	1.0,	Z	=	1.0)	to	the	input	of	the	SetVectorParameterValueOnMaterials	node	(see	Figure
4.22).	This	sets	the	cube’s	color	back	to	white	when	the	player	is	no	longer	looking	at	it.

9.	Repeat	steps	5	through	7	again	for	the	TraceActivateDown	and	TraceActivateUp	functions,	passing
in	the	vectors	(X	=	0.0,	Y	=	1.0,	Z	=	0.0)	and	(X	=	1.0,	Y	=	0.0,	Z	=	0.0),	respectively,	to	the
SetVectorParameterValueOnMaterials	(see	Figure	4.23).	This	sets	the	color	of	the	cube	to	green
when	it	is	activated	and	back	to	red	when	deactivated.



Figure	4.23	Trace	Interactive	Cube:	activate	up	and	down	color	change

10.	To	move	the	arrow	to	the	position	of	the	hit	in	every	frame	when	the	player	is	looking	at	the	cube,
open	the	TraceMove	function.

11.	Drag	off	of	the	Hit	pin	of	the	input	node	and	break	the	Hit	Result.
12.	Create	a	new	variable	getter	for	the	Arrow	Component,	then	call	the

SetWorldLocationAndRotation	function	on	it,	connecting	the	input	and	Return	nodes	of	the	function.
13.	Directly	connect	the	Location	output	pin	of	the	BreakHitResult	to	the	New	Location	pin	of

SetWorldLocationAndRotation.
14.	Dragging	off	of	the	Normal	pin	of	BreakHitResult,	call	the	MakeRotFromX	function	and	connect	its

output	to	the	New	Rotation	of	SetWorldLocationAndRotation	(see	Figure	4.24).	Because	the	Arrow
Component	points	in	the	X	direction,	this	will	rotate	the	arrow	so	it	faces	outward	from	the	hit
normal.



Figure	4.24	Trace	Interactive	Cube:	TraceMove

Now	with	everything	set	up	you	should	be	able	to	add	both	your	Pawn	(by	either	creating	a	custom	game
mode	and	telling	it	to	use	your	Pawn	or	by	putting	your	Pawn	in	the	level	and	enabling	Auto	Possess)	and
your	interactive	cube	to	the	level	and	enjoy	the	Christmas	spirit	of	a	red	and	green	cube.

Summary
This	chapter	discussed	how	traces	work	in	UE4	and	how	to	use	them	in	VR	games.
You	looked	at	interfaces	and	why	they	are	a	perfect	fit	for	communicating	between	an	interactor	and
interactive	objects.	You	created	a	modular	system	for	trace	interaction	that	can	be	transferred	and
expanded	upon	in	future	projects.

Exercises
In	this	chapter,	you	created	an	interaction	system	that	relies	on	a	line	trace	to	find	objects	with	which	to
interact;	this	is	good	enough	for	a	lot	of	cases,	but	it	has	its	downsides.
Mainly,	when	using	a	single	line	trace,	it	can	be	hard	for	users	to	interact	exactly	with	the	objects	they
want.	This	is	especially	noticeable	at	longer	distances.	Therefore,	it	may	be	useful	to	use	some	other
metric	to	estimate	where	the	user	is	looking	and	account	for	that	in	your	interaction	system.
One	common	method	for	this	is	to	use	a	little	bit	of	vector	math	to	find	the	difference	between	the	user’s



look	vector	and	the	vector	from	the	player	to	the	interactive	object.
To	do	this,	you	can	use	the	dot	product,	which	is	a	form	of	multiplying	two	vectors	together	to	return	a
single	number.	The	dot	product	is	calculated	by	taking	each	pair	of	numbers	in	the	two	vectors,
multiplying	them	together,	then	taking	the	sum	of	all	of	those	new	numbers.	It	may	sound	a	little
complicated	at	first,	but	luckily	UE4	takes	care	of	the	implementation	and	all	you	need	to	know	is	what
the	final	number	after	the	dot	product	represents.
For	this	example,	the	inputs	to	the	dot	product	are	normalized—that	is,	they	have	a	length	of	1.	This
basically	means	that	both	vectors	represent	directions	and	not	actual	locations	or	distances.	Because	the
inputs	have	a	length	of	1,	the	dot	product	of	these	two	vectors	has	the	nice	property	that	the	end	output	is
the	cosine	of	the	angle	between	them	(see	Figure	4.25).	So,	if	you	calculate	the	dot	product	between
where	the	user	is	looking	and	the	direction	that	some	interactive	objects	are	relative	to	the	user’s	head,
you	can	get	a	value	between	–1	and	1	that	represents	how	closely	the	user	is	looking	at	an	object	(with	1
being	looking	directly	at	and	–1	being	looking	directly	away	from	the	object).

Figure	4.25	Dot	product	example.	Both	x	and	v	are	normalized	vectors	where	x	represents	the	player’s
look	direction	and	v	represents	the	direction	from	the	player’s	head	to	the	object.	The	angle	θ

represents	the	angle	between	x	and	v	in	degrees.

This	happens	to	be	a	simple	way	to	judge	the	intent	of	the	user’s	look	and	can	be	used	if	you	need	any
kind	of	“aim	assist”	functionality	in	your	game.	To	implement	this,	you	can	simply	loop	over	all	the
objects	you	want	to	assist	toward	and	find	the	one	with	the	highest	dot	product	value	(or	the	object	that	the
user	is	looking	closest	to).
One	thing	to	look	out	for	when	using	the	dot	product	to	find	the	user’s	look	intent	is	that	normalizing	these
values	takes	any	sense	of	distance	out	of	the	equation.	The	side	effect	is	that	if	one	object	is	close	to	the
user	and	another	object	is	far	away,	but	the	farther-away	object	has	a	shorter	angle	to	the	user’s	look
direction,	it	may	be	selected	even	if	the	user	is	trying	to	select	the	closer	one.
One	way	to	deal	with	this	is	instead	of	maximizing	the	dot	product	between	the	user	and	the	interactive



objects	you	can	minimize	the	arc	length	between	the	user	and	the	objects.	That	is	the	distance	that	is
created	by	the	circle	that	is	made	by	the	user’s	look	direction	and	the	object’s	position	(see	Figure	4.26).

Figure	4.26	Arc	length	example.	The	arc	length	a	is	calculated	by	multiplying	the	radius	r	and	the	angle
θ	in	radians.

Figure	4.27	shows	an	example	of	how	to	calculate	this	and	the	dot	product	in	UE4.



Figure	4.27	Calculating	the	dot	product	between	the	Actor	location	and	head	forward	with	an	optional
calculation	of	the	arc	length	made	between	the	Actor	and	the	head	forward

One	downside	of	using	a	dot	product	method	entirely	to	detect	user	interaction	is	that,	by	default,	it	won’t
handle	collisions;	this	can	lead	to	users	being	able	to	interact	with	objects	through	walls	and	other	solid
surfaces.	One	solution	for	this	is	to	simply	check	the	collision	between	the	user	and	the	objects	you	are
testing	by	tracing	to	them.	This,	however,	has	the	potential	to	be	computationally	expensive	if	there	are
many	interactive	objects	in	your	scene	because	you	would	need	a	trace	for	every	interactive	object.
Another	way	to	handle	this	problem	is	to	simply	make	sure	there	is	nothing	that	can	obscure	your
interactive	objects.	This	obviously	can	be	guaranteed	only	in	menus	and	other	controlled	scenarios;
however,	when	this	is	the	case,	a	dot	product	method	gives	you	a	fairly	cheap	and	user-friendly	way	to
detect	interactions	in	your	game.
If	you	want	the	benefits	of	the	collision	detection	that	line	traces	give	you,	but	want	more	flexibility	in	the
way	elements	are	selected	and	you	are	able	to	spend	a	little	more	performance	on	your	traces,	using	one
of	the	shape	traces	can	be	a	good	idea.	Creating	a	sphere	trace	with	a	radius	greater	than	1	will	add	a	nice
level	of	aim	assist	while	still	remaining	relatively	cheap	to	compute.	To	see	an	example	of	creating	a
sphere	trace	function	that	can	be	used	in	the	Trace	Interaction	Component,	see	Figure	4.28.



Figure	4.28	Simple	sphere	trace	function	for	the	Trace	Interaction	Component

As	an	exercise,	add	the	sphere	trace	to	your	Trace	Interaction	Component	and	see	if	it	also	helps	with
usability.
As	another	exercise,	add	some	aim	assist	using	the	dot	product.	To	do	this,	you	need	a	list	of	all	the
objects	you	want	to	interact	with.	Think	about	what	the	best	way	to	get	this	list	may	be.



Chapter	5.	Teleportation

Teleportation	is	one	of	the	leading	methods	for	artificial	locomotion	in	the	current	state	of	VR.	This
chapter	expands	the	trace	interaction	from	Chapter	4	into	a	simple	teleportation	mechanism.
The	best	form	of	locomotion	in	VR	is	undoubtedly	to	have	no	artificial	locomotion.	Instead,	rely	on	a	one-
to-one	mapping	of	real-world	actions	to	your	VR	characters.	However,	this	creates	an	incredibly	limiting
set	of	requirements,	and	thus	it	isn’t	possible	for	many	games	or	even	whole	genres	to	rely	on	this	method.
This	need	to	have	virtual	players	move	farther	than	their	physical	bounds	brings	with	it	a	host	of
challenges	and	design	decisions	that	need	to	be	made.	The	need	for	and	reasoning	behind	those	decisions
are	explored	in	Chapter	9,	“VR	Locomotion”;	however,	this	chapter	introduces	you	to	one	of	the	more
popular	solutions	to	the	locomotion	problem:	teleportation.
To	avoid	the	ocular	vestibular	mismatch	that	can	occur	when	players	see	their	in-game	character	moving
when	they	are,	in	fact,	stationary	in	the	real	world,	many	developers	rely	on	a	teleportation	system	that
moves	the	player	from	the	current	location	to	the	desired	location	in	an	instant.
This	single	burst	has	proven	to	produce	less	sickness	in	the	majority	of	VR	users	and	so	can	be	found	in
many	VR	games	today.	It	does,	however,	have	its	downsides,	mainly	in	the	form	of	disorientation.	As
humans,	we	can’t	teleport	(yet),	and	so	in	a	VR	game	the	user	can	be	discombobulated	for	a	moment	when
coming	out	of	a	teleport.	There	are	various	potential	remedies	for	this,	ranging	from	the	simple,	such	as
showing	a	trail	from	where	the	user	came,	to	the	more	complicated,	such	as	showing	users	a	portal	into
the	teleport	location	before	they	trigger	the	teleport.	However,	this	chapter	does	not	focus	on	these
techniques.	Instead,	it	focuses	on	getting	a	basic	teleportation	system	functioning,	leaving	the	(fun)
experimentation	up	to	the	reader.

Setting	Up	Teleportation
To	detect	the	teleportation,	you	will	use	traces;	luckily	for	you,	you	have	already	set	up	a	modular	VR
Trace	Interaction	Component	and	interface	that	can	be	adapted	to	fit	your	needs.	If	you	haven’t,	review
Chapter	4,	“Trace	Interaction,”	which	walks	you	through	all	the	relevant	information	on	creating	a
modular	system	for	detecting	trace	interactions	in	your	worlds.
Now	that	you	have	the	base	for	a	Trace	Interaction	level	(from	either	completing	the	previous	chapter	or
downloading	its	source	code),	it	is	time	to	extend	it	to	accommodate	teleportation.

Parabolic	Tracing
When	you	open	the	Trace	Interaction	Component,	notice	that	currently	the	only	trace	function	creates	a
line	trace	emanating	out	of	the	Component.	This	is	nice	and	would	work	perfectly	well	for	teleportation;
however,	to	take	it	a	step	further	and	allow	the	player	to	teleport	vertically	as	well	as	horizontally,	you
will	implement	a	parabolic	trace	method.
In	this	instance,	a	parabolic	trace	is	based	on	the	idea	of	projectile	motion	and	can	be	thought	of	as
shooting	a	ball	from	the	Trace	Interaction	Component	and	following	its	path	until	it	hits	an	object	in	the
game.	To	accomplish	this,	you	take	the	direction	of	the	Interaction	Component	to	be	the	direction	in	which
the	ball	was	fired	and	calculate	a	new	position	on	a	fixed	time	step,	tracing	between	the	previous	location
and	this	new	position	until	the	trace	hits	an	object	where	it	will	stop	and	return	the	object	that	was	hit.
To	calculate	this	projectile	arc,	you	use	some	basic	physics	formulas,	which	are	shown	in	Figure	5.1.



Figure	5.1	The	projectile	motion	calculation	used	for	parabolic	traces.	v	represents	the	velocity	of	the
trace,	y	represents	the	location	of	the	trace	in	the	Y-axis,	and	z	represents	the	location	of	the	trace	in	the

Z-axis	in	relation	to	the	time	t	and	gravity	g.

Now	that	you	have	an	idea	of	how	the	trace	function	works,	let’s	look	at	setting	one	up:
1.	With	your	project	open	from	Chapter	4,	open	the	Trace	Interaction	Component	Blueprint	from
Blueprints	→	Components.

2.	Create	a	new	function	named	ParabolicTrace.
3.	Add	three	input	variables	to	the	function	named	Steps,	TimeStep,	and	Speed	with	types	Integer,
Float,	and	Float,	respectively.

4.	Create	an	output	variable	named	Hit	of	type	Hit	Result.
5.	Create	three	local	variables	named	InitialLocation,	PreviousLocation,	and	Velocity,	all	of	type
Vector.

6.	Create	two	more	local	variables	named	InTimeStep	and	InSteps	of	types	Float	and	Integer.
7.	Create	one	last	local	variable	named	TmpHit.	This	will	hold	the	temporary	hit	as	you	calculate	the
traces.

8.	Create	a	variable	setter	for	all	these	local	variables,	except	for	TmpHit;	this	will	be	set	later.
9.	Connect	the	output	execution	pin	of	the	function	input	to	the	InitialLocation	setter	followed	by	the
PreviousLocation	setter,	making	sure	to	connect	the	yellow	output	pin	of	the	first	setter	to	the	yellow
input	pin	of	the	second	(see	Figure	5.2).



Figure	5.2	Parabolic	trace	function:	basic	setup	of	local	variables	and	inputs

10.	Create	a	GetWorldLocation	node	and	connect	its	output	to	the	InitialLocation	setter.
11.	Connect	the	InSteps	setter	and	InTimeStep	to	their	corresponding	inputs	to	the	function,	and	connect

the	InSteps	output	execution	pin	to	the	input	execution	pin	for	the	InTimeStep	setter	(see	Figure	5.2).
12.	Connect	the	InSteps	setter	to	the	output	execution	pin	of	the	PreviousLocation	setter.
13.	Create	a	GetForwardVector	node	and	multiply	it	by	the	incoming	Float	Speed.
14.	Attach	the	output	of	this	Multiply	to	the	input	of	the	Velocity	setter,	and	connect	the	input	execution

pin	of	the	setter	to	the	output	execution	pin	of	the	InTimeStep	setter	(see	Figure	5.2).
After	creating	the	variables	needed	for	the	trace	calculation,	you	need	to	calculate	the	parabolic	arc,	as
shown	in	Figure	5.1.	To	do	this	you	will	split	the	trace	velocity	into	its	separate	axes	and	calculate	the
new	position	of	the	trace	on	a	fixed	time	step:	1.	Drag	off	of	the	last	variable	setter	from	the	function	setup
and	create	a	new	ForLoopWithBreak	node.

2.	For	the	First	Index	input	put	1	and	for	the	Last	Index	put	an	InSteps	variable	getter.	In	this	example
you	start	from	the	index	1	to	avoid	tracing	to	the	same	point	twice	because	the	previous	location	is
initialized	to	the	initial	location.

3.	Drag	off	of	the	Loop	Body	output	pin	and	call	the	LineTraceByChannel	function.
4.	For	the	Start	pin	of	this	trace	connect	a	new	PreviousLocation	variable	getter.



5.	Drag	in	a	Velocity	local	variable	getter	and	split	the	struct	pin	into	X,	Y,	and	Z	(see	Figure	5.3).

Figure	5.3	Parabolic	trace:	calculating	the	end	position	of	the	trace

6.	Drag	off	of	each	split	pin	and	call	the	Float	*	Float	function.
7.	Drag	off	of	the	Index	pin	of	the	for	loop	and	create	a	new	Int	*	Float	pin,	passing	in	a	new
InTimeStep	variable	getter	to	the	second	pin.	This	will	convert	each	step	into	a	time	Float.

8.	Connect	the	output	of	this	Int	*	Float	into	the	second	input	of	the	three	Float	*	Float	nodes	created	in
step	6.	This	will	calculate	the	appropriate	X	and	Y	offset;	the	Z	offset	still	needs	to	take	gravity	into
account.

9.	Drag	off	of	the	Int	*	Float	created	from	the	loop	index	and	InTimeStep,	add	a	new	Float	*	Float
node,	and	pass	the	same	input	to	both	pins.	This	effectively	squares	this	variable.

10.	Add	two	new	pins	to	this	Float	*	Float	node	and	pass	0.5	and	980	into	them	to	represent	the	0.5
and	gravity	values	from	the	projectile	motion	formula.

11.	Drag	off	of	the	Float	*	Float	created	from	the	velocity	Z	and	time	step,	create	a	new	Float	–	Float
node,	and	subtract	the	node	created	in	steps	9	and	10	(see	Figure	5.3).

12.	Create	a	Vector	+	Vector	node,	splitting	the	first	struct	pin.
13.	Pass	the	X	calculation	from	the	velocity	multiplication	into	the	X	pin	and	the	Y	into	the	Y	pin.
14.	Pass	the	output	of	the	Float	–	Float	created	in	step	11	into	the	remaining	Z	pin.



15.	Add	a	new	InitialLocation	variable	getter	to	the	second	input	pin	of	this	Vector	+	Vector	node.	This
turns	the	local	calculation	from	the	velocities	into	a	world	position.

16.	Pass	the	output	of	this	to	the	End	input	pin	of	the	line	trace.
17.	If	you	want	to	visualize	the	trace,	set	the	Draw	Debug	Type	to	For	One	Frame.
18.	Attach	the	Return	node	of	the	function	to	the	Completed	pin	of	the	loop	and	return	the	TmpHit

variable.	Don’t	worry	about	this	too	much,	because	you	will	set	this	variable	next.
After	calculating	the	trace,	you	will	set	the	temp	hit	variable	and	break	out	of	the	loop	early	if	a	hit	is
detected	to	make	sure	no	unnecessary	calculations	are	made:	1.	Drag	off	of	the	LineTraceByChannel	node,
create	a	new	PreviousLocation	variable	setter,	and	set	the	input	to	be	the	output	of	the	Vector	+	Vector
used	for	the	End	pin	of	the	trace	(see	Figure	5.4).

Figure	5.4	Parabolic	trace:	setting	the	temp	hit	variable	and	breaking	out	of	the	loop

2.	Create	a	TmpHit	variable	setter	and	connect	the	Out	Hit	of	the	line	trace	to	its	input.
3.	Create	a	new	Branch	node	connecting	the	Return	Value	pin	of	the	trace	to	its	Condition	input.
4.	Connect	the	True	output	of	the	Branch	node	to	the	Break	pin	of	the	for	loop.	This	ensures	that	when
a	hit	is	detected,	the	loop	is	broken	out	and	the	temp	hit	is	returned.

Now	that	the	trace	function	is	complete,	it	is	time	to	implement	it	in	the	Event	Graph:
1.	Moving	back	to	the	Event	Graph	of	the	Trace	Interaction	Component,	delete	the	current	function



call	of	the	LineTrace	function	and	replace	it	with	the	ParabolicTrace	function.
2.	For	inputs	to	the	ParabolicTrace	function,	a	good	starting	point	would	be	ten	steps	at	a	0.1	time	step
and	a	speed	of	500	(see	Figure	5.5).

Figure	5.5	Parabolic	trace:	using	the	ParabolicTrace	function	in	the	Interaction	Component

Visualizing	the	Teleport
When	testing	the	teleport,	you	could	use	a	simple	debug	shape	to	indicate	to	users	where	they	will	be
teleporting;	however,	for	this	example	you	will	create	a	separate	Actor	because	it	will	allow	you	to
expand	it	later	to	visualize	more	than	just	the	trace	location.

Visualization	Material
The	first	step	is	to	create	the	Material	that	will	be	used	for	the	teleport	visualizer.	It	is	a	simple	gradient
that	trails	off	at	both	top	and	bottom.

1.	If	none	exists,	create	a	Materials	folder	in	the	Content	Browser.
2.	Create	a	new	Material	named	TeleportVisualizer.
3.	Open	the	Material,	set	the	Blend	Mode	to	Translucent	and	the	Shading	Model	to	Unlit,	and	check
Two	Sided	in	the	Details	panel.



4.	Create	a	new	VectorParameter	node	named	Color	and	set	its	Default	Value	to	(R	=	0.25,	G	=	1.0,	B
=	0.5,	A	=	1.0).

5.	To	create	the	gradient,	first	create	a	new	TextureCoordinate	node	by	either	searching	for	it	or	U	+
clicking	in	the	graph.

6.	Drag	off	of	the	TextureCoordinate	and	create	a	new	Mask	node,	selecting	the	G	field	only.	This
will	extract	just	the	Y	gradient	from	the	TextureCoordinate.

7.	To	get	the	gradient	at	both	ends,	drag	off	of	the	Mask	node	and	create	a	new	Cosine	node.	This	will
take	the	input	of	a	gradient	of	0	to	1	to	make	it	a	1	to	–1	to	1	gradient.

8.	To	transform	this	gradient	to	all	positive	values,	add	a	new	OneMinus	node	after	the	Cosine	node.
The	values	now	form	a	gradient	of	0	to	2	back	to	0.

9.	To	normalize	these	values,	simply	divide	the	OneMinus	by	2	(see	Figure	5.6).

Figure	5.6	Teleport	visualizer	Material

10.	To	add	some	control	to	how	sharply	the	gradient	falls	off,	add	a	new	Power	node	after	the	Divide,
passing	in	a	new	scalar	parameter	called	GradientFalloff	with	a	default	value	of	2.

11.	To	ensure	that	this	value	remains	in	a	0	to	1	range,	add	a	new	Clamp	node	after	the	Power	node.
12.	Connect	the	output	of	the	Clamp	to	the	Opacity	input	of	your	Material.	This	creates	a	nice	gradient.



Visualization	Actor
Now	you	will	create	the	Actor	that	will	contain	the	visualization	mesh:

1.	In	the	Blueprints	folder,	create	a	new	Blueprint	Actor	named	TeleportVisualizer.
2.	Open	the	new	Blueprint	and	add	a	new	Static	Mesh	Component	named	Visual.
3.	Set	the	Component’s	Static	Mesh	property	to	S_EV_SimpleLightBeam_02.	If	you	do	not	see	it,
enable	Show	Engine	Content	in	the	View	options.

4.	Set	the	Material’s	Element	0	to	your	new	TeleportVisualizer	Material.
5.	Rotate	the	Component	180	degrees	on	the	X-axis	and	scale	it	at	0.3	on	the	Z-axis	to	make	it	look
more	like	a	teleporter	(see	Figure	5.7).

Figure	5.7	Teleport	visualizer	Actor

Simple	Teleportation	Volume
Now	that	you	have	a	way	to	visualize	your	teleport,	you	can	create	a	simple	teleportation	volume	that
allows	the	user	to	teleport	onto	its	surface:

1.	In	the	Blueprints	folder,	create	a	new	Blueprint	Actor	named	TeleportVolume.
2.	Open	the	new	Blueprint	and	add	two	new	Components,	a	Box	with	its	default	name	and	a	Child
Actor	named	TeleportVisualizer.



3.	Select	the	Box	and	set	its	Box	Extent	to	(X	=	200.0,	Y	=	200.0,	Z	=	1.0);	see	Figure	5.8.

Figure	5.8	Teleport	volume:	Components

4.	Set	the	Box’s	Collision	Preset	to	Custom,	making	sure	to	set	Collision	Enabled	to	Query	Only,	and
select	Ignore	for	all	collision	responses	apart	from	Visibility	and	Camera.

5.	Select	the	Child	Actor	and	set	its	Child	Actor	Class	to	TeleportVisualizer.
6.	Uncheck	the	TeleportVisualizer’s	Visible	flag;	you	will	enable	its	visibility	when	the	user	looks	at
the	volume.

7.	Open	the	TeleportVolume’s	Class	Settings	and	add	the	TraceInteractionInterface	to	the	Implemented
Interfaces	section	(remember	to	compile	to	get	access	to	the	interface	functions).

8.	Open	the	TraceMove	function	and	break	the	Hit	input.
9.	Create	a	new	variable	getter	for	the	TeleportVisualizer	Component,	and	call	SetWorldLocation	on
it.

10.	Connect	SetWorldLocation	between	the	input	and	Return	nodes	of	the	function.
11.	Connect	the	Location	pin	of	the	broken	Hit	Result	to	the	New	Location	input	pin	in	the

SetWorldLocation	node	(see	Figure	5.9).	This	moves	the	teleport	visualizer	every	frame	to	the
place	where	the	player	is	interacting	with	the	volume.



Figure	5.9	Teleport	volume:	TraceMove	function

12.	Open	the	TraceHitObject	and	TraceLeaveObject	functions	and	add	a	new	variable	getter	for	the
TeleportVisualizer	Component.

13.	Call	SetVisibility	on	these	Components,	checking	both	boxes	in	the	TraceHitObject	function	and
checking	only	the	last	box	in	the	TraceLeaveObject	function.	Then	connect	the	input	and	Return
nodes	for	the	functions	(see	Figure	5.10).	This	shows	and	hides	the	visualizer	when	the	user
interacts	with	the	volume.



Figure	5.10	Teleport	volume:	trace	hit	and	leave

14.	Create	a	new	function	named	TeleportPlayer,	which	takes	in	a	Pawn	named	Player	and	a	vector
named	Location.	This	will	teleport	the	player	while	taking	into	account	the	position	of	the	HMD.

15.	Open	the	function,	drag	off	of	the	Player	input,	and	call	the	GetController	function,	then	cast	it	to	a
PlayerController,	connecting	the	input	execution	pin	of	the	cast	to	the	function	input.

16.	Drag	off	of	the	As	Player	Controller	pin	and	get	the	PlayerCameraManager.
17.	Drag	off	of	the	PlayerCameraManager	getter	and	call	the	GetCameraLocation	function	(see	Figure

5.11).



Figure	5.11	Teleport	volume:	teleport	function

18.	Drag	off	of	the	Player	input	once	more	and	call	the	GetActorLocation	function.
19.	Drag	off	of	this	new	function	and	subtract	the	camera	location	from	GetCameraLocation.
20.	Create	a	new	Vector	+	Vector	node	and	split	the	first	input.
21.	Split	the	output	of	the	Actor	–	Camera	location	node	and	pass	the	X	and	Y	into	the	corresponding

inputs	of	the	node	from	step	18.
22.	Pass	the	input	Location	variable	from	the	function	into	the	second	pin	of	the	node	from	step	18.

This	will	create	a	vector	that	offsets	the	player’s	camera	location	to	ensure	that	the	actual	location
is	in	the	center	after	the	teleport.

23.	Connect	the	output	of	this	Vector	+	Vector	node	to	the	New	Location	input	of	SetActorLocation	(see
Figure	5.11).

24.	Open	the	TraceActivateUp	function	and	break	the	Hit	Result	input.
25.	Call	the	TeleportPlayer	function	and	connect	it	between	the	input	and	Return	nodes.
26.	Connect	the	Instigator	input	of	the	function	to	the	Player	input	of	the	TeleportPlayer	node.
27.	Break	the	Location	input	of	the	TeleportPlayer	node	and	break	the	Location	pin	of	the	Hit	Result.
28.	Connect	Location	X	and	Y	to	the	corresponding	inputs	of	the	Location	input	of	the	TeleportPlayer

node.



29.	Create	a	new	GetActorLocation	node	and	split	the	Return	Value.
30.	Pass	the	Return	Value	Z	into	the	remaining	input	of	the	TeleportPlayer	node	(see	Figure	5.12).	This

teleports	the	player	to	the	hit	locations	X	and	Y	but	the	Actor’s	Z	(to	account	for	the	teleport
volume’s	size)	whenever	ActivateUp	is	pressed.

Figure	5.12	Teleport	volume:	activate

If	you’re	using	the	files	from	Chapter	4,	just	add	this	new	teleportation	volume	to	your	level	and	hit	Play
to	test	it.	If	not,	you	may	need	to	add	in	a	game	mode	with	your	custom	Pawn	and	the	Interaction
Component.

Summary
This	chapter	showed	a	way	to	extend	the	interactions	from	Chapter	4	to	add	new	parabolic	trace
functionality.
You	also	looked	at	how	to	implement	a	basic	teleport	volume	that	allows	any	user	with	the	Trace
Interaction	Component	to	teleport	to	it.

Exercises
Can	you	think	of	any	ways	to	expand	this	system?	Some	possibilities	might	include	the	following:



	Add	the	trail	particle	effect	that	shows	where	the	user	came	from.
	Create	a	new	teleport	Actor	that	acts	as	a	single	point	to	which	the	player	can	teleport.
	Slow	down	the	parabolic	trace	over	a	few	seconds	to	stop	the	player	from	teleporting	rapidly.
	Create	a	spline	component	that	allows	you	to	visualize	your	parabolic	trace.



Chapter	6.	Unreal	Motion	Graphics	and	2D	User	Interfaces

Besides	being	primarily	a	3D	medium,	a	2D	UI	still	provides	a	convenient	way	to	show	users	in	VR
relatively	large	amounts	of	information	or	allow	for	familiar	interaction	paradigms.	This	chapter
looks	at	some	of	the	challenges	with	2D	UI	in	VR	and	shows	how	to	implement	an	Unreal	Motion
Graphics	(UMG)	interaction	system	from	scratch.	It	also	shows	you	how	to	integrate	this	system
into	other	interaction	systems.

Challenges	with	2D	UI	in	VR
Creating	UIs	in	VR	leads	to	some	tricky	problems	that	don’t	arise	in	traditional	two-dimensional	games.
First,	in	traditional	games,	many	UIs	are	head-locked	(attached	to	the	player’s	in-game	head	so	wherever
that	moves,	the	UI	follows).	This	behavior	causes	some	major	problems	when	ported	to	current	VR
systems.
Two	main	issues	arise	when	trying	to	implement	head-locked	UIs	in	VR.	The	first	of	these	is	that
traditionally	head-locked	UIs	are	orthographically	projected	to	maintain	clarity.	This	means	the	UI	can	be
painted	on	top	of	all	other	elements	in	the	game	because	it	does	not	need	to	interact	with	the	3D	game
world.
However,	if	you	were	to	project	a	user	interface	orthographically	in	VR,	the	player’s	eyes	would	treat	it
as	if	it	were	infinitely	far	away.	As	you	can	guess,	this	is	a	bad	idea.	It	leads	to	a	mismatch	between	the
player’s	eyes	and	any	object	in	the	world	that	isn’t	at	infinity	(because	something	that	the	brain	thinks	is
farther	away	is	rendered	on	top	of	objects	that	are	supposedly	closer).	This	can	cause	discomfort.
Another	reason	that	head-locked	UIs	are	generally	thought	of	as	a	bad	idea	in	VR	is	that	the	lenses	that	are
currently	needed	in	HMDs	to	allow	players	to	focus	on	a	screen	very	close	to	their	eyes	aren’t	perfect	and
have	the	limitation	that	the	clearest	image	is	in	the	center	of	the	player’s	vision.	That	is,	as	you	transition
to	the	periphery,	the	image	gets	less	clear.	Therefore,	pushing	UI	elements	to	the	edges	of	the	player’s
vision	results	in	less-readable	UI	than	in	the	center.	Another	big	issue	is	that	because	of	differences	in	eye
relief	(distance	from	the	player’s	eyes	to	the	HMD’s	screen)	among	players,	what	may	be	in	the	periphery
for	some	may	be	completely	hidden	for	others!
How	do	you	go	about	fixing	these	issues?	A	simple	solution	is	to	create	a	three-dimensional	object
(usually	a	quad)	and	place	that	in	the	game	world,	then	render	all	the	UI	onto	that.	This	solves	the	distance
issue	with	orthogonal	projection	because	all	perspective	projections	from	the	game	world	are	applied.	It
also	solves	the	periphery	issue	with	head-locked	UI	because	the	player	is	free	to	look	at	any	part	of	the	UI
when	needed.	Indeed	this	is	the	solution	that	Unreal	opts	for.
However,	this	solution	isn’t	problem	free,	and	so	this	chapter	discusses	potential	solutions	for	some	of
these	issues.
Another	issue	with	using	traditional	user	interfaces	in	VR	arises	when	you	ask	yourself	if	you	actually
need	any	UI.	It	may	seem	like	a	silly	question,	but	because	of	the	increased	levels	of	immersion	and	the
inherent	stereo	nature	of	the	medium,	most	traditional	two-dimensional	UIs	leave	a	lot	to	be	desired.
Often	a	less	traditional	UI	creates	a	more	immersive	experience.	For	example,	in	a	shooter	game,	it’s
more	realistic	to	look	into	the	cylinder	to	see	how	many	bullets	are	left	as	opposed	to	just	showing	the
number	of	bullets	in	the	periphery.	Of	course,	this	all	depends	on	the	style	and	type	of	game	you	are	going
for;	in	some	cases	large	text	may	actually	suit	the	style	of	your	VR	world.



History	and	Compatibility	of	UMG
Unreal	Motion	Graphics	(UMG)	is	Unreal	Engine’s	WYSIWYG	(what	you	see	is	what	you	get)	tool	for
creating	user	interfaces.	It	allows	you	to	hierarchically	define	menus,	UI,	and	HUDs	(heads-up	displays)
by	placing	widgets	inside	of	a	graphical	editor	and	defining	their	look	and	functionality.
Integrated	into	the	engine	since	version	4.4,	UMG	was	traditionally	conceived	to	create	two-dimensional
UIs,	but	it	will	serve	our	purposes.	Originally,	UMG	suffered	from	the	issues	just	outlined;	however,
since	version	4.6,	an	experimental	3D	UMG	component	has	been	added	to	the	engine.	This	component
allows	you	to	place	any	UMG	widget	in	3D	space	and	set	up	basic	properties,	like	size	and	background
color.	However,	it	wasn’t	without	its	problems.	The	main	problem	facing	VR	developers	was	the
limitation	that	there	was	no	way	to	interact	with	these	widgets	once	rendered	in	the	world.	To	counteract
this,	many	developers	used	tricks,	such	as	creating	custom	widgets	and	detecting	custom	hits	by	doing	the
coordinate	conversion	from	world	units	to	relative	UMG	units	manually,	or,	like	me,	adding	the
functionality	in	the	form	of	a	plugin	that	allowed	developers	to	interact	with	3D	widgets	manually	with
traces.	(Refer	to	Chapter	4,	“Trace	Interaction.”)
However,	as	of	engine	version	4.13,	these	problems	have	been	solved	by	the	addition	of	the	UMG
Interaction	Component,	which	we	will	use	in	this	chapter.

Basic	VR	Menu
To	create	a	basic	VR	menu,	you	need	three	main	Actors:

	The	traditional	UMG	widget	that	holds	the	actual	UI	widgets	and	defines	their	appearance	and
layout
	An	Actor	that	holds	the	3D	Widget	Component	and	displays	that	UMG	widget	in	3D	space
	A	player	Pawn	that	holds	the	VR	camera	and	the	Widget	Interaction	Component	that	will	allow	you
to	interact	with	your	widget	in	3D	space

First,	let’s	create	the	UMG	widget	that	resembles	a	typical	menu	in	a	VR	game.	It	lets	the	player	start	the
game,	choose	whether	to	enable	any	comfort	modes,	and	change	the	difficulty	of	the	game,	and	it	allows
the	player	to	exit	the	game.	Note	that	these	options	won’t	be	functional,	because	the	implementation
depends	on	your	game/experience.

1.	Using	Unreal	Engine	4.13	or	later,	create	a	new	blank	Blueprint	project	without	any	starter	content.
2.	To	create	the	folder	structure,	create	two	new	folders	under	the	Content	folder.	Name	them
Blueprints	and	UMG.	Blueprints	will	hold	any	Blueprints	you	create,	and	the	UMG	folder	will	hold
the	UMG	widgets.

3.	Create	a	new	Widget	Blueprint	in	the	UMG	folder	by	clicking	Add	New	→	User	Interface	→
Widget	Blueprint.	Name	it	MenuWidget.

4.	Open	this	new	widget,	delete	the	Canvas	Panel	that	already	exists,	and	replace	it	with	a	Vertical
Box.	This	creates	an	easy	way	to	lay	out	the	inner	menu	widgets.

5.	Set	the	Fill	Screen	to	Custom	with	a	Width	and	Height	of	200.	This	will	be	represented	as	200UU
(2m)	in-game.

6.	Add	a	new	button	to	your	UMG	widget	by	dragging	it	on	top	of	the	Vertical	Box	panel.	Name	this
button	StartButton	and	set	its	Padding	to	(Left	=	10.0,	Top	=	10.0,	Right	=	10.0,	Bottom	=	5.0).

7.	Drag	in	a	new	Text	widget,	attach	it	to	the	StartButton	widget,	and	change	its	text	to	“Start.”
8.	Drag	in	a	new	Check	Box	widget	underneath	the	Start	button	and	name	it	ComfortModeCheckBox,
setting	its	state	to	Checked	and	Padding	to	(Left	=	10.0,	Top	=	5.0,	Right	=	10.0,	Bottom	=	5.0).



9.	Drag	a	new	Text	widget	on	top	of	this	Check	Box	and	set	its	Text	to	“Comfort	Mode”	and	set	its
Font	Size	to	12.

10.	Drag	in	a	new	Combo	Box	widget	and	place	it	under	the	Comfort	Mode	Check	Box,	adding	three
new	strings	to	its	Default	Options	(“Easy,”	“Normal,”	and	“Hard”)	and	setting	its	Selected	Option
to	Normal	(see	Figure	6.1).

Figure	6.1	Basic	VR	menu	with	buttons	to	start	and	exit	the	game	and	some	options	for	comfort	mode
and	game	difficulty

11.	Change	the	Font	Size	for	this	Difficulty	Combo	to	12	and	set	the	Padding	to	(Left	=	10.0,	Top	=	5.0,
Right	=	10.0,	Bottom	=	5.0).

12.	Copy	the	Start	button	by	selecting	it	and	pressing	Ctrl	+	C.
13.	Duplicate	the	now-copied	widget	by	selecting	the	Vertical	Box	panel	and	pressing	Ctrl	+	V.
14.	Select	this	newly	created	widget,	name	it	ExitButton,	and	then	set	its	Vertical	Alignment	to	Bottom,

its	Size	to	Fill,	and	its	Padding	to	(Left	=	10.0,	Top	=	0.0,	Right	=	10.0,	Bottom	=	10.0).
15.	Select	the	text	inside	this	button	and	set	the	Text	property	to	“Exit.”



Menu	Actor
After	creating	the	2D	Menu	widget,	you	need	to	create	the	three-dimensional	Actor	that	can	be	placed	in
the	world	to	hold	a	3D	representation	of	the	widget:

1.	Create	a	new	Actor	Blueprint	in	the	Blueprints	folder	and	name	it	MenuActor.
2.	To	add	the	menu	to	this	Actor,	add	a	new	Widget	Component.
3.	With	this	new	Widget	Component	selected,	in	the	Details	panel	under	User	Interface,	set	the	Widget
Class	to	your	just-created	MenuWidget.

4.	In	the	same	tab,	set	the	Draw	Size	to	(X	=	200,	Y	=	200).	This	matches	the	settings	you	used	when
creating	the	widget,	but	this	does	not	have	to	be	the	case;	UMG	widgets	can	scale	to	arbitrary	sizes.

5.	Because	a	Draw	Size	of	(X	=	200,	Y	=	200)	is	still	large	in	the	world,	set	the	Component’s	Scale
to	(X	=	0.5,	Y	=	0.5,	Z	=	0.5).	This	has	the	nice	side	effect	of	making	the	text	clearer	because	the
widget	is	being	rendered	at	a	high	resolution	and	then	scaled	down.

6.	Still	in	the	Details	for	the	Widget	Component,	set	the	background	color	to	(R	=	0.0,	G	=	0.0,	B	=
0.0,	A	=	0.2)	and	the	Blend	Mode	to	Transparent.	This	causes	a	performance	hit,	but	the	transparent
black	background	will	help	it	blend	with	the	world	(see	Figure	6.2).

Figure	6.2	VR	menu	Actor	containing	the	needed	3D	Widget	Component

7.	To	respond	to	user	interaction	with	the	widget,	you	will	need	to	get	access	to	the	Widget	Object.	To



do	this	drag	a	getter	for	the	Widget	Component	into	the	Event	Graph	and	call	GetUserWidgetObject
(see	Figure	6.3).

Figure	6.3	Getting	the	WidgetObject	from	a	Widget	Component	and	assigning	an	event	to	the	Start
button’s	clicked	event	dispatcher

8.	To	get	access	to	the	specific	widgets	inside	your	menu,	drag	off	of	the	GetUserWidgetObject	node
and	cast	to	your	MenuWidget	object,	connecting	the	input	execution	pin	of	this	cast	to
EventBeginPlay.

9.	Drag	off	of	the	As	Menu	Widget	output	pin	of	the	cast	and	create	a	new	variable	of	type	Menu
Widget	by	clicking	the	Promote	to	Variable	option.	Name	it	WidgetObject.	This	makes	it	easier	to
access	your	widget	whenever	you	need	it	later.

10.	To	respond	to	events	from	this	widget,	drag	off	of	the	blue	output	pin	of	the	WidgetObject	setter
and	get	the	StartButton	variable,	which	has	a	reference	to	the	Start	button	in	your	menu.

11.	To	respond	to	a	click	event	for	this	button,	drag	off	of	the	variable	getter	and	select	the	Assign
OnClicked	option.	This	creates	a	new	event	and	automatically	binds	it	to	the	dispatcher	from	the
button	(see	Figure	6.3).

12.	Now	you	can	do	anything	you	wish	on	this	event,	and	it	will	be	called	when	the	player	presses	the
Start	button	(like	opening	a	new	level	that	contains	your	gameplay).



Menu	Pawn
After	creating	the	2D	widget	and	the	3D	widget	Actor,	you	need	to	create	a	Player	Pawn	that	will	hold	the
Widget	Interaction	Component,	which	allows	a	player	to	interact	with	the	3D	menu:

1.	Create	a	new	Pawn	Blueprint	inside	the	Blueprints	folder	and	name	it	MenuPawn.
2.	Create	three	new	Components:	a	Scene	named	CameraRoot,	a	Camera	named	Camera,	and	a
Widget	Interaction	Component	named	WidgetInteraction.

3.	Place	the	Camera	Component	on	top	of	the	CameraRoot	and	place	the	Widget	Interaction
Component	on	top	of	the	Camera.	This	makes	the	Camera	a	child	of	the	Scene	Component	and
makes	the	Widget	Interaction	Component	a	child	of	the	Camera,	which	allows	a	player	to	interact
with	widgets	using	the	Camera’s	view	(see	Figure	6.4).

Figure	6.4	VR	menu	Pawn	with	a	base	Widget	Interaction	Component

4.	The	Widget	Interaction	Component	has	a	few	properties	to	note.	Interaction	Source	allows	you	to
tell	the	Component	how	it	should	interact	with	widgets;	the	default	is	World,	which	traces	in	the
direction	of	the	arrow	and	interacts	with	any	Widget	Component	it	hits.	Interaction	Distance	is	the
maximum	interaction	distance	the	Component	traces	when	using	the	World	interaction	method.	Last,
the	Interaction	Component	has	the	notion	of	virtual	users,	which	allows	you	to	define	different	users
and	allows	multiple	players	to	interact	with	the	widget.	This	can	be	set	with	the	Virtual	User	Index
property.



5.	The	hover	events	are	handled	automatically	because	the	interaction	method	for	the	Widget
Interaction	Component	is	World,	so	all	you	need	to	do	to	get	a	functioning	interaction	system	is	to
activate	the	press	events.	In	the	Event	Graph,	create	a	new	LeftMouseButton	event	(you	can	replace
this	with	any	interaction	method	you	need	such	as	a	touchpad	press).

6.	Drag	in	a	variable	getter	for	the	Widget	Interaction	Component	and	call	the	PressPointerKey
function,	passing	in	the	LeftMouseButton	key	and	connecting	the	input	execution	pin	to	the	Pressed
pin	of	the	LeftMouseButton	event.

7.	Drag	off	of	the	Widget	Interaction	getter	once	more	and	call	the	ReleasePointerKey	event,	passing
in	the	LeftMouseButton	key	and	connecting	the	Released	pin	of	the	LeftMouseButton	event	to	the
input	execution	pin	(see	Figure	6.5).	This	simulates	the	mouse	button	on	the	current	widget	with
which	the	Interaction	Component	is	interacting.

Figure	6.5	VR	menu	Pawn:	activating	click	events	for	the	Widget	Interaction	Component

Now	that	you	have	the	basics	for	a	simple	menu	interaction	system,	you	can	add	the	menu	Actor	and	the
Pawn	to	a	level	and	test	the	interaction.



Custom	Menu	Interaction
In	the	previous	section,	you	used	the	built-in	menu	interaction	method	that	is	enabled	by	default	when
using	the	Widget	Interaction	Component.	However,	this	has	some	limitations,	the	primary	one	being	that
you	are	stuck	with	the	line	trace	that	the	Component	provides.
Luckily,	it	is	easy	to	integrate	this	Component	into	a	more	complicated	interaction	system	such	as	the	one
you	developed	in	Chapter	4	and	Chapter	5,	“Teleportation.”	When	doing	so,	there	are	two	options:	have
one	Widget	Interaction	Component	next	to	your	custom	Interaction	Component	and	make	it	aware	of	this
Widget	Interaction	Component	so	it	can	call	the	needed	functions	to	interact	with	any	menus	it	hits,	or
have	each	menu	Actor	have	its	own	Widget	Interaction	Component	that	calls	the	appropriate	functions	on
the	Component.	The	first	approach	is	nice,	because	there	is	only	one	Interaction	Component	to	deal	with;
however,	the	second	approach	is	also	nice	because	your	custom	Interaction	Component	remains
independent	of	the	experimental	Widget	Interaction	Component.	The	next	two	subsections	describe	both
approaches.

Implementing	Custom	Menu	Interaction:	Approach	1
This	first	approach	adds	menu	interaction	functionality	to	the	Trace	Interaction	Component	created	in
Chapter	4:

1.	Migrate	the	Trace	Interaction	Component	from	Chapter	4	into	this	chapter’s	project.
2.	Open	the	Trace	Interaction	Component.	Create	a	new	variable	named	WidgetInteraction	of	type
Widget	Interaction	Reference	and	set	it	to	Private.

3.	Unlike	other	variables,	you	will	not	be	able	to	set	this	variable’s	default	value	in	the	Components
tab	of	its	parent	Blueprint.	This	is	because	the	Widget	Interaction	Component	won’t	have	been
spawned	until	the	level	has	started,	so	no	reference	is	available	until	runtime.	To	get	around	this,
create	a	new	custom	event	named	Setup	that	takes	in	a	Widget	Interaction	Component	named
WidgetInteraction	(see	Figure	6.6).



Figure	6.6	Dependency	injection	to	the	Trace	Interaction	Component	through	a	Setup	function

4.	Create	a	variable	setter	for	the	WidgetInteraction	variable	and	connect	both	pins	to	the	Setup
custom	event.	You	will	call	this	from	the	parent	Blueprint	and	pass	in	the	Widget	Interaction
Component	that	you	want	the	Trace	Interaction	Component	to	use.	Think	of	this	as	a	way	to	pass	in
any	dependencies	that	the	Component	might	have	in	a	clean	way	all	at	once.

5.	Moving	to	the	EventBeginPlay	node,	create	a	new	variable	getter	for	the	WidgetInteraction
reference	and	create	a	new	IsValid	node	off	of	it.	Connect	the	input	execution	pin	for	this	node	to	the
output	of	the	InteractWithHit	function	call	(see	Figure	6.7).



Figure	6.7	Setting	the	custom	hit	of	a	Widget	Interaction	Component	on	the	Trace	Interaction
Component

6.	Dragging	off	of	the	WidgetInteraction	getter	once	more,	call	the	SetCustomHitResult	function,
connecting	a	new	Current	Hit	getter	to	its	Hit	Result	input	and	connecting	the	IsValid	output	of	the
validity	check	to	its	input	execution	pin.	This	will	set	a	custom	hit	for	the	given	Widget	Interaction
Component,	which	will	allow	it	to	interact	with	what	your	Trace	Interaction	Component	is
interacting	with.

7.	Going	down	to	the	ActivateDown	and	ActivateUp	custom	event	nodes,	create	a	new
WidgetInteraction	variable	getter	for	both	and	do	the	same	validity	check	as	in	step	5	(see	Figure
6.8).



Figure	6.8	Simulating	the	pointer	key	on	the	currently	hit	widget	in	the	Trace	Interaction	Component

8.	After	the	IsValid	nodes,	call	PressPointerKey	and	ReleasePointerKey	on	the	ActivateDown	and	Up
events	respectively,	making	sure	to	pass	in	the	LeftMouseButton	key.	This	will	activate	any	hovered
menu	when	the	Trace	Interaction	Component	is	told	to	activate.

9.	Inside	the	Blueprints	folder,	create	a	new	Pawn	named	TraceComponentPawn.
10.	Create	four	new	Components	inside	this	Pawn:	a	Scene	named	CameraRoot,	and	Camera,

TraceInteraction,	and	WidgetInteraction	Components	named	with	their	default	names.
11.	Attach	the	Camera	to	the	CameraRoot	and	attach	the	Trace	Interaction	Component	to	the	Camera.
12.	Select	the	Widget	Interaction	Component	and	set	the	Interaction	Source	to	Custom	(see	Figure	6.9).

This	means	that	the	default	behavior	of	the	Widget	Interactor	will	be	overridden	and	the
SetCustomHitResult	from	step	6	will	be	used	instead.



Figure	6.9	Trace	Interaction	Pawn	with	a	Widget	Interaction	Component	set	to	take	in	custom	hit
results

13.	The	last	thing	to	do	to	get	this	Pawn	working	is	to	activate	the	Trace	Interaction	Component.	First
create	a	getter	for	the	Trace	Interaction	Component	and	call	the	Setup	function,	passing	in	the
Widget	Interaction	Component	to	the	remaining	input	to	the	function.

14.	Connect	the	Setup	function	call	to	the	EventBeginPlay	node.
15.	Create	a	new	LeftMouseButton	event.
16.	Create	a	new	getter	for	the	Trace	Interaction	Component	and	call	the	ActivateDown	and

ActivateUp	functions,	passing	in	a	reference	to	Self	as	the	Instigator	input.
17.	Connect	the	Pressed	pin	of	the	LeftMouseButton	event	to	ActivateDown	and	the	Released	pin	to

ActivateUp	(see	Figure	6.10).	This	activates	the	Trace	Interaction	Component	which	in	turn	will
activate	the	Widget	Interaction	Component.



Figure	6.10	Activate	the	Trace	Interaction	Component	with	the	left	mouse	button	and	pass	any
dependencies	into	the	Trace	Interaction	Component	on	Begin	Play.

You	now	have	a	generic	Trace	Interaction	Component	that	works	with	UMG	menus.

Implementing	Custom	Menu	Interaction:	Approach	2
The	second	approach	to	adding	custom	menu	interaction	is	to	take	the	Trace	Interaction	Component
developed	in	Chapter	4	and	instead	of	expanding	on	it,	using	the	already	programmed	functionality,	push
the	job	of	interacting	with	the	menu	to	the	menu	itself:

1.	Migrate	the	Trace	Interaction	Component	from	Chapter	4	into	this	chapter’s	project.
2.	Create	a	new	Pawn	Blueprint	in	the	Blueprints	folder.	Name	it	TraceComponentPawn.
3.	Open	this	Pawn	and	create	three	new	Components:	a	Scene	Component	named	CameraRoot,	and
Camera	and	TraceInteraction	Components	with	their	default	names.

4.	Attach	the	Camera	to	the	CameraRoot	and	attach	the	TraceInteraction	Component	to	the	Camera.
This	allows	anything	that	the	player	looks	at	to	be	interacted	with.

5.	In	the	Event	Graph	for	the	Pawn,	create	a	new	LeftMouseButton	event.
6.	Create	a	new	variable	getter	for	the	TraceInteraction	Component	and	call	both	the	ActivateDown
and	ActivateUp	functions,	passing	in	Self	as	the	Instigator	input.



7.	Attach	the	Pressed	pin	of	the	LeftMouseButton	to	ActivateDown	and	the	Released	pin	to
ActivateUp	(see	Figure	6.11).

Figure	6.11	A	Trace	Interaction	Pawn	with	no	Widget	Interaction	Component,	which	will	be	handled
on	a	per-menu	basis

8.	In	the	Blueprints	folder,	open	the	MenuActor	Blueprint	and	add	the	Trace	Interaction	Interface	in
the	Class	Settings.

9.	Add	a	new	Widget	Interaction	Component	to	this	Blueprint,	setting	its	Interaction	Source	to	Custom
(see	Figure	6.12).



Figure	6.12	Widget	Interaction	Component	added	to	a	menu	Actor	with	a	custom	Interaction	Source

10.	Open	the	TraceMove	interface	function.	(If	you	don’t	see	this	function,	compile	your	Blueprint.)
11.	Create	a	new	Widget	Interaction	variable	getter	and	call	the	SetCustomHitResult	function,

connecting	it	between	the	function	input	and	the	Return	node,	making	sure	to	connect	the	input	Hit	to
the	function’s	Hit	Result	input	(see	Figure	6.13).	This	sets	the	custom	hit	whenever	the	player	is
looking	at	the	menu.



Figure	6.13	Setting	the	Custom	Hit	Result	of	the	Widget	Interaction	Component	in	the	menu	Actor

12.	Open	the	TraceActivateDown	function	and	create	another	getter	for	the	Widget	Interaction
Component.

13.	Call	the	PressPointerKey	function,	passing	in	the	LeftMouseButton	as	the	key,	and	connect	this
function	between	the	input	to	the	function	and	the	Return	node	(see	Figure	6.14).



Figure	6.14	Calling	the	Press	and	Release	functions	on	the	Widget	Interaction	Component	in	the	menu
Actor

14.	Repeat	steps	12	and	13,	but	call	the	ReleasePointerKey	function	instead	of	the	PressPointerKey.
You	now	have	a	functioning	menu	without	even	touching	the	Trace	Interaction	Component	(yay,
composability!),	and	the	Trace	Interaction	Component	isn’t	dependent	on	any	other	Component.	The	only
drawback	is	the	possible	performance	problems	from	having	multiple	Interaction	Components	in	the	same
world	and	the	harder	task	of	handling	multiuser	interaction,	because	a	single	menu	won’t	have	multiple
Interaction	Components	affecting	it.

Summary
This	chapter	looked	at	the	need	for	in-world	UI	instead	of	the	alternative	(head-locked).	You	looked	at	the
history	of	Unreal	Engine’s	implementation	of	this	feature.
You	also	looked	at	how	to	create	a	basic	menu	and	menu	interaction	system	from	scratch	with	the	built-in
Widget	Interaction	Component	as	well	as	how	to	integrate	similar	functionality	into	the	Trace	Interaction
system	developed	in	Chapters	4	and	5.



Exercises
The	approach	presented	in	this	chapter	works	well	for	menus	and	the	like,	because	often	they	have	a
predictable	location.	However,	for	a	player’s	HUD	and	other	UI	elements	whose	position	the	user	can
control,	new	problems	arise	when	the	menu	exists	in	a	3D	space.
The	main	issue	that	you	will	face	is	occlusion:	what	to	do	when	the	UI	intersects	with	(or	is	even
completely	covered	by)	other	in-game	geometry.
There	are	some	interesting	possible	solutions	to	this	issue.	You	can	disable	the	engine	depth	test
altogether	by	creating	a	custom	translucent	Material	and	selecting	Disable	Depth	Test	in	the	Translucency
tab	so	that	your	menus	will	always	render	on	top	of	other	elements.	However,	this	may	create	a	stereo
mismatch.
You	could	make	use	of	UE4’s	custom	depth	functionality	and	display	a	more	translucent	version	of	the	UI
when	it	intersects	with	other	geometry.
Or	you	could—well,	do	whatever	you	want.	This	is	where	making	games	becomes	fun!	Start	thinking	of
interesting	solutions	to	these	problems	and	choose	the	best	for	your	game	or	experience.
Another	popular	menu	choice,	if	you	have	motion	controllers,	is	to	attach	a	menu	to	one	hand	and	interact
with	this	menu	with	the	other.	To	achieve	this,	attach	your	created	menu	Actor	to	one	of	your	Pawn’s
motion	controllers	and	your	Widget/Trace	interactor	to	the	other.	(You	may	need	to	enable	self-collision
in	your	trace	function	to	get	this	to	work.)	Try	this	technique	and	see	which	better	suits	your	game.



Chapter	7.	Character	Inverse	Kinematics

VR	allows	players	to	inhabit	a	virtual	character’s	body,	and	thus	replicating	players’	real-world
movements	to	their	virtual	characters	can	be	an	immersion	multiplier	if	done	right.
This	chapter	discusses	techniques	built	into	Unreal	Engine	for	interpolating	the	user’s	current	pose
from	known	information	about	the	player’s	location.

Introduction	to	Inverse	Kinematics
As	opposed	to	forward	kinematics,	where	you	define	each	bone’s	rotation	to	get	your	desired	output,
inverse	kinematics	(IK)	allows	you	to	define	an	end	effector	goal	and	let	the	system	interpolate	what	the
bone	rotations	need	to	be	to	get	to	that	goal.
Many	VR	headsets	give	you	access	to	precise	head	tracking	so	you	know	exactly	where	the	user’s	head	is
in	your	virtual	world.	Without	expensive	motion	capture	equipment,	however,	you	do	not	necessarily
know	where	any	other	bone	is	(aside	from	hands	in	the	case	of	motion	controllers).
In	these	situations,	inverse	kinematics	lets	you	extrapolate	where	the	other	bones	in	the	skeleton	are
located	because	of	the	predictable	way	in	which	bones	rotate.	The	simplest	method	of	IK	is	two-bone	IK
(see	Figure	7.1),	because	the	bone	rotation	can	be	calculated	analytically	with	some	basic	trigonometric
identities;	however,	note	that	once	a	third	dimension	is	introduced,	as	is	the	case	in	VR,	there	are	an
infinite	number	of	possible	solutions	to	a	two-bone	IK	setup.	To	deal	with	this,	Pole	Vectors/Joint	Targets
are	introduced.	These	allow	developers	to	create	a	preference	for	how	the	bones	move.	In	UE4,	Joint
Targets	define	a	point	in	space	that,	along	with	the	direction	from	the	root	bone	to	the	IK	target	point,
generates	a	plane	(the	normal	of	this	plane	is	the	cross	product	of	these	two	directions).	This	plane	is	then
used	to	simplify	the	IK	problem	back	down	to	two	dimensions.



Figure	7.1	Two-bone	inverse	kinematics.	Because	the	bone	lengths	are	known,	the	delta	from	the
previous	bone	rotations	can	be	calculated	through	trigonometric	identities.

UE4	offers	another	method	for	inverse	kinematics	that	comes	out	of	the	box.	This	is	Forward	and
Backward	Reaching	Inverse	Kinematics	(FABRIK).	Unlike	the	two-bone	IK	implementation,	FABRIK
does	not	restrict	the	number	of	bones	that	can	exist	in	the	inverse	kinematic	chain.	To	do	this,	FABRIK
takes	a	slightly	different	approach:	rather	than	being	analytical,	like	two-bone	IK,	FABRIK	must	be
calculated	iteratively	by	traversing	up	and	down	the	chain	of	bones	and	converging	toward	a	solution.
FABRIK	first	sets	the	last	bone	in	the	chain	to	match	the	position	of	the	end	goal,	then	works	its	way	back
up	the	chain,	moving	each	bone	toward	the	solution	while	attempting	to	maintain	the	bone’s	length	and	a
straight	line	to	the	previous	bone	(see	Figure	7.2).	Once	this	loop	reaches	the	very	first	bone,	it	will	be
moved	out	of	place;	however,	because	this	is	the	root	of	the	chain	and	shouldn’t	move	from	its	original
position,	the	algorithm	is	then	run	again,	this	time	in	reverse	(hence	Forward	and	Backward	IK).	By
default,	in	UE4	this	process	is	repeated	ten	times,	but	this	iteration	count	can	be	changed	on	any	FABRIK
node	in	an	animation	graph.



Figure	7.2	Forward	and	Backward	Reaching	Inverse	Kinematics.	1:	The	initial	bone	state.	2:	The	end
bone	is	moved	toward	the	goal	(yellow	circle).	3–5:	The	next	bone	in	the	chain	is	then	moved	along	the
line	connecting	this	bone	to	the	previous	bone	while	maintaining	the	initial	bone	length.	6:	Because	the
root	bone	has	been	moved,	it	is	moved	back	to	its	original	position	and	the	process	is	done	in	reverse.

Setting	Up	Head	IK
To	test	out	UE4’s	IK	system,	we	will	create	a	basic	head	IK	system	that	allows	the	in-game	character	to
position	its	head	bone	at	the	player’s	in-world	head	location	as	well	as	bend	its	torso	to	match.	Note	that
this	works	only	if	a	player	is	standing	still	and	not	walking	around	the	room,	because	the	player’s	torso	is
not	tracked.
Before	starting,	create	a	new	project	based	on	the	Third	Person	Template	with	no	starter	content.	This
allows	you	to	use	the	player	model	that	comes	with	that	template	to	test	your	IK	Blueprints.

Mirror	Creation
To	know	if	your	IK	system	is	working,	it	would	be	nice	to	see	what	your	in-game	character	looks	like
while	playing	in	VR.	To	do	this,	you	can	create	a	simple	mirror	Material	and	render	Texture:

1.	Create	two	new	folders	in	the	Content	Browser,	the	first	named	Materials	and	the	second	named
Textures.

2.	Inside	the	Textures	folder,	add	a	new	Render	Target	called	MirrorRenderTarget	(Add	New	→
Materials	&	Textures	→	Render	Target).

3.	Set	both	Size	X	and	Size	Y	to	512	(see	Figure	7.3).



Figure	7.3	Mirror	Render	Target

4.	Inside	the	Materials	folder,	create	a	new	blank	Material	called	MirrorMat.
5.	Open	this	Material	and	set	its	Shading	Model	to	Unlit.
6.	From	the	Content	Browser,	drag	the	MirrorRenderTarget	into	your	MirrorMat.
7.	Create	a	new	TextureCoordinate	node	(U	+	click	the	graph)	and	set	its	UTiling	to	–1.
8.	Pass	this	TextureCoordinate	into	the	UVs	input	of	your	TextureSample	(see	Figure	7.4).	This	flips
your	Mirror	Texture	to	make	it	more	mirrorlike.



Figure	7.4	Mirror	Material

9.	Save	and	close	this	Material.	Head	back	to	the	main	engine	window.
10.	From	the	Modes	tab,	search	and	drag	in	a	SceneCapture2D	Actor,	setting	its	Location	to	(X	=	–

650.0,	Y	=	390.0,	Z	=	260.0)	and	Rotation	to	(Pitch	=	0.0,	Yaw	=	–180.0,	Roll	=	0.0).	This
positions	it	in	front	of	the	player.

11.	Set	this	SceneCapture2D’s	Texture	Target	to	the	MirrorRenderTarget	Texture.	This	puts	whatever
this	camera	captures	into	this	Texture.

12.	From	the	Modes	panel	again,	drag	in	a	basic	Cube	and	set	its	Location	to	(X	=	–640.0,	Y	=	390.0,
Z	=	260.0)	and	Scale	to	(X	=	0.01,	Y	=	2.0,	Z	=	2.0);	see	Figure	7.5.



Figure	7.5	Scene	capture	and	mirror	mesh

13.	Apply	the	MirrorMat	to	the	Cube’s	Material	Element	0.

IK	Pawn
Before	the	IK	is	set	up,	you	need	a	Pawn	to	hold	the	Components	you	reference	in	the	Animation
Blueprint:

1.	Create	a	new	folder	in	the	Content	Browser	named	Blueprints.
2.	Inside	the	Blueprints	folder,	create	a	new	Animation	Blueprint	(Add	New	→	Animation→
Animation	Blueprint),	then	select	the	UE4_Mannequin_Skeleton	option	in	the	Animation	Blueprint
creation	dialog	(see	Figure	7.6).	This	will	hold	all	the	IK	logic	that	will	be	used	later.



Figure	7.6	Animation	Blueprint	creation

3.	Name	this	Animation	Blueprint	IKAnimBP.
4.	Inside	the	Blueprints	folder	again,	create	a	new	Pawn	named	IKPawn.
5.	Open	this	new	Pawn	and	add	three	new	Components:	a	SkeletalMesh,	Camera,	and	Scene.
6.	Name	the	Scene	Component	CameraRoot	and	attach	the	Camera	to	it.
7.	Set	the	Camera	to	be	at	170	Z	height	and	10	units	forward	in	the	X-axis	(see	Figure	7.7).	This	will
affect	the	height	of	the	Camera	for	testing	with	a	monitor;	however,	because	the	Camera’s	position
is	reset	to	its	root	component	when	a	VR	game	is	launched,	the	Camera	will	be	in	the	appropriate
position	for	VR.



Figure	7.7	IKPawn	simple	Camera	setup

8.	Rotate	the	SkeletalMesh	–90	on	the	Z-axis.	This	ensures	that	the	mesh	faces	down	the	X-axis.
9.	Set	the	SkeletalMesh’s	Skeletal	Mesh	property	to	the	SK_Mannequin	from	the	Third	Person
Template.

10.	Set	the	SkeletalMesh’s	Anim	Class	to	IKAnimBP.

Head	IK	Animation	Blueprint
To	apply	the	IK	to	the	skeleton	of	the	template	character,	you	will	use	the	FABRIK	system	because	there
are	more	than	two	bones	from	the	head	to	the	pelvis	in	this	skeleton.	Although	you	can	chain	two-bone	IK
nodes	to	get	a	similar	effect,	this	can	be	a	pain;	the	FABRIK	node	will	work	well	for	the	head	IK.

1.	Open	the	IKAnimBP	Animation	Blueprint	and	create	a	new	variable	named	HeadWorldTransform
of	type	Transform.

2.	Set	the	HeadWorldTransform’s	default	Location	value	to	160	units	in	the	Z-axis	and	the	default
Rotation	to	90	degrees	in	the	Z-axis.	This	ensures	that	the	head	faces	forward	in	preview	windows.

3.	Drag	off	of	the	TryGetPawnOwner	node	in	the	Event	Graph	and	cast	to	the	newly	created	IKPawn.
4.	Drag	off	of	the	As	IKPawn	blue	output	pin	of	the	cast	and	get	the	Camera	Component	from	the
Pawn.



5.	Create	a	setter	for	the	HeadWorldTransform	variable	and	attach	it	to	the	Cast	Succeeded	pin	of
CastToIKPawn.

6.	Drag	off	of	the	Camera	Component	getter	and	call	GetWorldTransform,	passing	in	the	output	to	the
setter	for	HeadWorldTransform	(see	Figure	7.8).	You	are	using	world	space	transforms	in	this
example	because	they	are	easier	to	work	with.

Figure	7.8	Animation	Blueprint:	head	transform	setup

7.	Head	into	the	Anim	Graph	and	create	a	new	PlayThirdPersonIdle	node.
8.	Create	a	new	FABRIK	node	and	connect	the	HeadWorldTransform	variable	to	the	Effector
Transform	input	pin.

9.	Select	the	FABRIK	node	and	set	the	Effector	Transform	Space	to	World	Space.	This	is	because	the
Camera	transform	you	are	using	is	in	world	space.

10.	Set	the	Tip	Bone	to	“head”	and	the	Root	Bone	to	“spine_01”	(see	Figure	7.9).	The	FABRIK	node
will	handle	IK	on	all	the	bones	between	the	two	you	just	selected.



Figure	7.9	Animation	Blueprint:	simple	head	IK

11.	Drag	the	output	of	the	PlayThirdPersonIdle	animation	into	the	input	of	the	FABRIK	node.	UE4	will
automatically	convert	from	Local	to	Component	space	for	you.

12.	Drag	from	the	output	of	the	FABRIK	node	into	the	input	of	the	FinalAnimationPose	node.	Again,
UE4	will	automatically	transform	the	coordinates	for	you.	After	this	step	the	IK	will	work;
however,	it	will	not	account	for	the	rotation	of	the	headset.

13.	A	quick	note	before	the	head	rotation	is	added:	In	Figure	7.10,	notice	that	the	head	bone’s	forward
axis	(red)	is	facing	up,	which	means	that	you	need	to	take	this	into	account	when	setting	this	bone’s
rotation.	Create	a	new	Transform	(Modify)	Bone	node	in	the	Anim	Graph.



Figure	7.10	UE4	default	skeleton	head	rotation

14.	Set	the	transform	node’s	Bone	to	Modify	attribute	to	“head.”
15.	Set	the	Rotation	Mode	to	Replace	Existing	and	the	Rotation	Space	to	World	Space	(see	Figure

7.11).



Figure	7.11	Animation	Blueprint:	head	bone	rotation

16.	Create	a	new	CombineRotators	node,	passing	in	the	value	(Pitch	=	90.0,	Yaw	=	–90.0,	Roll	=	0.0)
in	the	first	input	pin	to	account	for	the	initial	bone	rotation.

17.	Create	a	variable	getter	for	the	HeadWorldTransform	variable	and	pass	its	rotation	to	the
CombineRotators	by	splitting	its	output	pin,	then	passing	in	the	blue	Rotation	pin	as	the	second
argument	(see	Figure	7.11).

18.	Connect	the	output	of	CombineRotators	to	the	Rotation	pin	of	Transform	(Modify)	Bone.
19.	Connect	the	Transform	(Modify)	Bone	between	the	FABRIK	and	ComponentToLocal	node.

Now	that	the	Pawn	and	Animation	Blueprint	are	complete,	test	out	your	IK	by	deleting	the	default	Pawn
that	is	in	the	Third	Person	Example	Map	and	dragging	in	your	custom	IKPawn.	Then,	set	Auto	Possess
Player	to	Player	0	(this	allows	you	to	use	this	Pawn	in	your	level	without	having	a	game	mode	set	up)	and
hit	Play.	If	you	are	using	an	Oculus	Rift,	tracking	will	default	to	Eye	Level,	so	you	may	need	to	set	the
tracking	level	origin	to	Floor	(see	Chapter	2,	“Head	Mounted	Display	Setup”).

Setting	Up	Hand	IK
If	you	tested	the	Pawn	and	IK	from	the	previous	section,	you	noticed	that	although	the	head	IK	works
fairly	well,	if	you	have	motion	controllers,	the	temptation	to	move	your	hands	is	quite	strong.
To	set	it	up	so	that	your	motion	controllers	control	the	hands	of	the	UE4	mannequin,	you	will	use	the



simple	two-bone	IK	system	of	UE4.	This	is	because	it	is	nice	to	have	experience	with	both	the	FABRIK
and	two-bone	systems,	and	the	IK	between	the	player’s	hands	and	shoulders	works	quite	well	with	the
two-bone	system.
Before	starting,	we	will	work	off	of	the	previous	section,	so	if	you	haven’t	completed	that,	please	do	so.

Adding	Motion	Controllers	to	Your	Pawn
Before	you	set	up	the	IK	for	your	Pawn,	you	need	to	add	the	Motion	Controller	Components	that	will	be
used	to	track	the	player’s	hands:

1.	Open	the	IKPawn	from	the	Blueprints	folder.
2.	Add	two	new	Motion	Controller	Components,	the	first	named	MotionController_L	and	the	second
MotionController_R.

3.	For	MotionController_R,	set	the	Hand	variable	to	Right.
4.	Create	two	new	Static	Mesh	Components	to	represent	the	controllers.	These	are	mainly	for
debugging	purposes.

5.	If	you	are	using	Unreal	Engine	4.13	or	higher,	you	will	have	access	to	the	motion	controller	meshes
built	into	the	engine	(simply	select	Show	Engine	Content	in	the	View	options).	If	this	is	the	case,
select	the	appropriate	Static	Mesh	property	for	your	device	for	these	two	newly	created
Components.	(For	example,	I	am	using	the	Oculus	Touch,	so	I	selected	the	OculusControllerMesh
Static	Mesh.)	If	you	are	not	using	4.13	or	above,	simply	select	a	sphere	to	represent	your	controllers
or	import	the	controller	meshes	from	an	external	source.

6.	Name	these	meshes	appropriately	for	your	controller	(in	this	case,	Touch_L	and	Touch_R	were
chosen)	and	attach	these	to	the	appropriate	Motion	Controller	Component.	Be	sure	to	invert	the	Y
scale	on	the	right	mesh	if	necessary	(see	Figure	7.12).



Figure	7.12	Adding	motion	controllers	to	the	IKPawn

Hand	IK	Animation	Blueprint
Your	IKAnimBP	class	already	implements	a	FABRIK	system	for	the	head	and	spine	IK,	so	now	it	is	time
to	implement	a	two-bone	IK	system	for	both	arms	of	your	skeleton:

1.	Open	the	IKAnimBP	Animation	Blueprint	and	create	two	new	variables,	LeftHandWorldPosition
and	LeftHandWorldRotation,	of	types	Vector	and	Rotator	respectively.	For	LeftHandWorldPosition,
set	a	default	value	of	(X	=	40,	Y	=	20,	Z	=	100).	This	ensures	that	the	mesh	has	an	appropriate
preview	pose.

2.	Create	two	more	variables	named	RightHandWorldPosition	and	RightHandWorldRotation	of	types
Vector	and	Rotator	again.	For	RightHandWorldPosition	set	a	default	value	of	(X	=	–40,	Y	=	20,	Z	=
100)	this	time	(see	Figure	7.13).	These	will	hold	the	world	position	and	rotation	of	both	motion
controllers.



Figure	7.13	IKAnimBP:	adding	the	hand	IK	variables

3.	Before	you	start	adding	the	IK	setup,	you	will	add	two	Sockets	to	the	Skeleton.	This	is	because	the
origin	point	of	the	motion	controllers	does	not	line	up	with	the	hand	bone	location.	This	means	that
you	will	need	to	account	for	an	offset	when	you	use	IK	to	get	to	the	motion	controller	position.

4.	Open	the	Skeleton	editor	by	clicking	on	the	Skeleton	tab	inside	Persona.
5.	Right-click	the	hand_l	bone	in	the	hierarchy	and	select	Add	Socket.	Name	this	Socket	hand_lSocket
because	you	will	reference	it	later.

6.	This	newly	created	Socket	will	initially	be	at	the	same	position	as	its	parent	bone.	To	change	this,
select	it	and	in	the	Details	panel	change	the	Relative	Location	to	(X	=	13.0,	Y	=	–6.0,	Z	=	–3.5).
This	places	the	Socket	in	the	palm	of	the	Skeleton’s	hand.

7.	With	this	new	Socket	still	selected,	set	its	Relative	Rotation	to	180	degrees	in	the	X-axis.
8.	To	test	the	position	of	this	Socket	if	you	are	using	Unreal	Engine	4.13	or	above	or	have	access	to
the	controller	mesh	of	your	desired	motion	controller,	right-click	the	Socket	and	add	a	Preview
Asset	of	your	controller	(see	Figure	7.14).



Figure	7.14	IKAnimBP:	adding	the	controller	offset	Sockets	to	compensate	for	the	hand	bone
placement

9.	To	make	sure	you	have	a	Socket	for	both	hands,	repeat	steps	5	through	8,	but	this	time	for	the
hand_r	bone	with	a	Relative	Location	of	(X	=	–13.0,	Y	=	6.0,	Z	=	3.5)	and	a	Relative	Rotation	of
180	degrees	in	the	Z-axis.

10.	To	take	advantage	of	these	newly	created	Sockets,	head	back	to	the	Animation	Blueprint.
11.	Create	a	variable	setter	for	each	of	the	left-	and	right-hand	position	and	rotation	variables.
12.	Drag	off	of	the	CastToIKPawn	node	and	get	a	reference	to	the	MotionController_L,

MotionController_R,	and	SkeletalMesh	Components.
13.	Drag	off	of	the	MotionController_L	Component	reference,	call	GetWorldRotation,	and	pass	it

directly	into	the	LeftHandWorldRotation	setter.
14.	For	the	LeftHandWorldPosition	you	will	need	to	do	a	little	bit	of	vector	math	to	subtract	the

difference	between	the	Socket	location	and	the	actual	bone	location.	Drag	off	of	the	SkeletalMesh
reference	and	call	GetSocketLocation	twice.

15.	For	the	first	GetSocketLocation	pass	in	the	string	hand_lSocket	as	the	In	Socket	Name	parameter,
and	for	the	second	pass	in	hand_l	(see	Figure	7.15).	This	will	get	the	world	location	of	the	hand
bone	and	hand	Socket.



Figure	7.15	IKAnimBP:	setting	the	hand	variables	and	offsetting	for	controller	positions	in	the	IK

16.	Drag	off	of	the	GetSocketLocation	for	the	Socket	and	subtract	the	location	of	the	hand	bone.	This
will	give	you	the	relative	distance	from	the	hand	to	the	Socket	in	world	space.

17.	Drag	off	of	the	MotionController_L	reference,	call	GetWorldLocation,	and	subtract	the	relative
distance	calculated	in	step	16	from	this	world	location.

18.	Attach	the	output	of	this	Subtract	node	to	the	LeftHandWorldPosition	setter.
19.	Repeat	steps	13	through	18	but	with	the	MotionController_R	reference	and	the	hand_rSocket	and

hand_r	bone.	If	you	need	guidance,	refer	to	Figure	7.15.
20.	Attach	these	setters	to	the	HeadWorldTransform	setter	already	in	the	graph.

To	implement	the	two-bone	IK	nodes,	you	need	to	head	to	the	Anim	Graph:
1.	Once	in	the	Anim	Graph,	create	a	new	TwoBoneIK	node.
2.	Create	a	getter	for	your	LeftHandWorldPosition	variable	and	attach	it	to	the	Effector	Location	of
the	two-bone	IK.

3.	Pass	in	(X	=	45,	Y	=	–50,	Z	=	100)	to	the	Joint	Target	Location.	This	is	a	point	in	Component	space
toward	which	the	IK	rotates.	This	value	was	obtained	through	trial	and	error,	so	feel	free	to	change
it	to	suit	your	needs.



4.	Select	TwoBoneIK	and	change	the	IKBone	to	hand_l	and	the	Effector	Location	Space	to	World
Space	(see	Figure	7.16).

Figure	7.16	IKAnimBP:	left-hand	two-bone	IK

5.	Create	a	new	Transform	(Modify)	Bone	node,	setting	the	Bone	to	Modify	property	to	hand_l,	the
Rotation	Mode	to	Replace	Existing,	and	the	Rotation	Space	to	World	Space.	This	will	allow	you	to
rotate	the	hand	because	the	IK	will	not	handle	this.

6.	Create	a	new	variable	getter	for	the	LeftHandWorldRotation	and	connect	it	to	the	B	input	of	a
CombineRotators	node.

7.	Pass	in	180	degrees	to	the	X	value	of	the	A	input	of	this	CombineRotators	node	(see	Figure	7.16).
This	value	was	obtained	by	looking	at	the	Skeleton’s	initial	bone	rotation	as	you	did	in	the	“Setting
Up	Head	IK”	section.

8.	Connect	the	output	of	CombineRotators	to	the	Rotation	input	of	Transform	(Modify)	Bone.
9.	Repeat	steps	2	through	8,	replacing	the	LeftHandWorldRotation	and	Position	with	the	right-hand
variants,	(X	=	–45,	Y	=	–50,	Z	=	100)	as	the	Joint	Target	Location,	and	180	degrees	in	the	Z	for
CombineRotators	(see	Figure	7.17).



Figure	7.17	IKAnimBP:	right-hand	two-bone	IK

10.	Connect	these	new	IK	nodes	between	the	Transform	(Modify)	Bone	of	the	Head	IK	and	the
Component	to	the	Local	transform	and	you	should	be	able	to	play	in	VR	and	see	a	full	IK	upper
body	(see	Figure	7.18).



Figure	7.18	Upper-body	IK	example

Summary
In	this	chapter,	you	looked	at	a	simple	way	to	get	started	working	with	IK	for	VR	in	Unreal	Engine.	You
looked	at	the	two	different	types	of	IK	offered	natively,	and	you	created	a	simple	head	and	hands	IK
system	that	allows	players’	upper-body	movements	to	be	replicated	to	their	in-game	characters.

Exercises
Now	that	you	have	a	taste	of	what	IK	can	do,	experiment	with	the	values	provided	in	this	chapter	and	tune
them	to	better	suit	your	content.
If	you	are	feeling	adventurous,	research	some	full-body	IK	setups.	The	main	challenge	here	is	to	find	a
heuristic	to	detect	when	a	player	is	bending	his	or	her	legs	rather	than	simply	leaning	over.
If	you	are	feeling	less	adventurous	but	still	would	like	a	full-body	IK	solver,	there	are	a	few	middleware
companies	that	provide	full-body	IK	setups	for	UE4	(such	as	IKinema	or	the	community	Full	Body	IK
Plugin).



Chapter	8.	Motion	Controller	Interaction

This	chapter	shows	you	a	modular	way	to	interact	with	game	objects	in	your	world	with	motion
controllers.	Whether	it’s	picking	up	objects	and	throwing	them	around,	pulling	levers	to	open	a	door,
or	pushing	buttons	to	trigger	an	in-game	event,	this	chapter	shows	you	how	to	create	an	easily
expandable	system	for	these	interactions.
When	you	enter	a	VR	experience	with	a	headset	capable	of	compelling	VR,	the	sense	of	presence	is
astounding,	yet	without	an	input	device	that	matches	that	experience	it	often	feels	as	though	you’ve	entered
a	world	governed	by	a	“look	but	don’t	touch”	mantra.
Luckily,	motion	controllers	solve	this	problem	in	most	cases;	however,	players	having	this	freedom	just
made	your	job	much	more	difficult.	But	with	the	appropriate	systems	in	place,	you	can	make	an
astoundingly	compelling	experience.

Why	Motion	Controller	Interaction	Works
Since	the	dawn	of	modern	first-person	gaming,	the	gaming	industry	has	largely	settled	on	an	input
paradigm	that	maps	certain	gamepad	events	onto	the	in-game	character.	The	dual	analog	stick	has	been	a
staple	for	first-person	interaction	in	games	for	many	years	and	does	a	good	job	of	translating	real-world
player	actions	to	the	in-game	character.
In	most	cases,	you	can	directly	map	the	player’s	view	to	the	right	analog	stick,	you	can	map	the	player’s
legs	to	the	left	analog	stick,	and	you	can	map	the	player’s	hand	actions	to	buttons	on	the	gamepad.
With	VR,	however,	this	paradigm	no	longer	holds	true.	The	right	analog	stick	is	taken	away	to	allow	the
user’s	physical	head	motion	to	control	the	character’s	view.	The	player	is,	most	of	the	time,	no	longer
moved	by	an	analog	stick,	because	this	can	cause	discomfort	(see	Chapter	9,	“VR	Locomotion,”	for	more
information	on	this).	Finally,	many	of	the	hardware	providers	in	VR	offer	precisely	tracked	motion
controllers,	so	you	now	have	a	way	to	physically	represent	the	player’s	hands	in	your	experiences,
removing	the	need	for	abstract	interaction	systems	that	use	face	buttons	on	the	gamepad	because	the	player
can	physically	interact	with	the	objects	in	the	game	world.

What	to	Look	Out	For:	The	Importance	of	Affordance
Failing	a	player’s	expectations	in	a	game	is	almost	never	a	good	thing;	however,	failing	a	player’s
expectations	in	a	VR	experience	is	completely	immersion	breaking.	When	a	player	reaches	out	to	open	a
drawer	but	finds	that	it	is	in	fact	a	static	object,	it’s	a	disappointment.	The	incredible	immersion	of	VR
allows	players	to	understand	the	affordances	of	the	objects	around	them	as	if	they	existed	in	the	real
world.	To	make	good	experiences	we	should	try	not	to	disrupt	these	perceptions.
Affordance	can	be	described	as	the	properties	of	an	object	that	suggest	its	use.	As	an	example,	if	you
were	designing	a	door	in	a	VR	experience	and	gave	that	door	a	handle,	that	signifies	to	the	player	that	the
door	can	be	opened.	Blocking	this	expectation	can	be	immersion	breaking	and	is	something	to	think	about
when	designing	your	VR	experiences.



Shared	Input	of	the	Current	Generation	of	Motion	Controllers
When	creating	motion	controller	interactions,	try	to	consider	the	target	platform	to	ensure	that	you	fully
utilize	the	available	inputs.	Each	offering	of	motion	controller	has	slightly	different	capabilities	and	best
practices.	However,	luckily,	three	of	the	major	consumer	VR	companies—HTC/Valve,	Oculus,	and
PlayStation—have	a	few	shared	input	paradigms	that	you	can	take	advantage	of	to	ensure	cross-platform
compatibility.
All	three	controllers	share	a	trigger	that	allows	for	some	sort	of	analog	input	(see	Figure	8.1).	A	trigger
can	be	useful	for	activating	objects	or	firing	weapons	in	a	game.	Also,	both	the	Touch	and	Vive
controllers	offer	a	grip	button,	which	can	be	useful	as	a	dedicated	pickup	button.

Figure	8.1	The	current	VR	controller	landscape’s	shared	functionality:	top,	PlayStation	Move;	middle,
Vive;	bottom,	Oculus	Touch

There	are	more	motion	controllers	coming	out	frequently	(such	as	the	Google	Daydream	controller).
Therefore,	this	chapter	focuses	on	creating	a	system	that	works	with	the	Vive	and	Oculus	Touch.	But
because	of	the	abstraction	layer	that	UE4	offers	developers	(all	of	these	controllers	use	the	same	Motion
Controller	Component),	you	can	easily	adapt	the	techniques	in	this	chapter	to	any	device.

Setting	Up	the	World	Interaction	Project
To	set	up	the	project,	you	need	a	few	objects:

1.	Create	a	new	blank	Blueprint	project	with	no	starter	content.
2.	Create	a	new	folder	named	Blueprints,	and	inside	that	folder	create	three	more	folders	named
Interfaces,	InteractiveObjects,	and	Components.

3.	Inside	the	Components	folder	create	a	new	Scene	Component	named	WorldInteractor	by	clicking
Add	New	→	Blueprint	Class	→	Scene	Component.

4.	Inside	the	Blueprints	folder	create	a	new	Pawn	Blueprint	named	InteractionPawn.



5.	Open	the	newly	created	Pawn	and	add	a	new	Scene	Component	called	CameraRoot.
6.	Create	a	Camera	Component	and	attach	it	to	the	newly	created	CameraRoot.
7.	Create	a	MotionController	Component	and	leave	it	at	its	defaults.
8.	Create	a	Sphere	Component	and	attach	it	to	the	MotionController	Component.
9.	Scale	the	Sphere	to	(X	=	0.1,	Y	=	0.1,	Z	=	0.1).	This	will	act	as	the	visual	representation	of	the
controller.

10.	Select	the	Sphere	and	change	the	Collision	Preset	to	OverlapAllDynamic	(see	Figure	8.2).	This
stops	the	Sphere	from	interfering	with	the	objects	you	pick	up.

Figure	8.2	World	Interaction	Pawn	Components

11.	Create	a	new	WorldInteractor	Component	and	attach	it	to	the	MotionController	Component.

Note
The	MotionController	Component	defaults	to	the	left-hand	controller.	To	change	which	hand	the
Component	represents,	in	the	Details	panel,	change	the	Hand	property	under	the	Motion	Controller
tab.



Interacting	with	Objects
To	interact	with	objects,	you	need	two	things:	an	interface	(refer	to	Chapter	4,	“Trace	Interaction”)	that
allows	you	to	talk	to	objects	you	wish	to	interact	with,	and	a	Component	to	detect	and	manage	those
interactions.

Creating	the	World	Interaction	Interface
Interfaces	allow	you	to	communicate	with	any	object	that	promises	to	implement	the	needed	functionality
without	having	to	know	(or	care,	for	that	matter)	what	the	object	is	(see	Chapter	4).	This	makes	them	a
perfect	fit	for	an	interaction	system,	because	the	interactor	should	not	care	that	a	button	needs	to	change
color	when	it	is	pressed	or	that	a	certain	drawer	can	open	in	only	one	axis.	Rather,	the	interactor	should
just	be	told	that	it	needs	to	interact	with	something	and	then	trigger	the	interaction	on	the	appropriate
object.

1.	In	the	Interfaces	folder	create	a	new	Blueprint	interface	by	selecting	Add	New	→	Blueprint	→
Blueprint	Interface.	Name	the	newly	created	interface	TraceInteractionInterface.

2.	Each	function	has	one	input	named	Interactor	of	type	WorldInteractor	and	one	output	of	type
Boolean	named	Return.	You	won’t	be	using	this	Return	value,	but	it	allows	all	the	functions	to	be	in
the	same	section	on	the	implementing	objects.

3.	Create	OnHover	and	OnUnhover	functions	and	set	their	inputs	and	outputs	as	in	step	2.	These	will
be	triggered	whenever	the	player	hovers	over	an	interactive	object	(see	Figure	8.3).



Figure	8.3	World	Interaction	Interface

4.	Create	an	OnUse	function	with	the	same	input	and	output.	This	is	called	whenever	a	player	chooses
to	use	a	hovered-over	object.

5.	Create	two	functions,	OnPickup	and	OnDrop,	to	detect	when	to	pick	up	objects	with	the	same
inputs	and	outputs.

6.	Create	three	functions,	OnDrag,	OnDragStart,	and	OnDragEnd,	which	allow	you	to	detect	when	a
player	activates	an	object	and	then	moves	the	controller	while	still	activating	it.	Set	their	inputs	and
outputs	to	be	the	same	as	the	rest.

7.	Create	a	function	CanPickup.	However,	give	this	function	no	input	variables	and	a	single	Boolean
output	variable	named	Pickup	(see	Figure	8.3).

Creating	the	Interactor	Component
To	interact	with	objects,	you	need	something	to	hold	the	logic	for	finding	which	object	in	the	world	to
interact	with	and	choosing	which	functions	from	the	interactive	interface	to	call.	To	do	this	in	a	modular
way,	you	can	use	the	Blueprint	Scene	Component	created	in	the	section	“Setting	Up	the	World	Interaction
Project.”



Detecting	Object	Overlaps
First,	you	need	to	create	the	variables	the	interactor	needs	so	it	can	remember	hovered-over	objects	and
set	up	a	basic	sphere	overlap	to	detect	objects	around	the	interactor:

1.	Open	the	WorldInteractor	from	the	Components	folder.
2.	Create	a	new	Float	variable	called	Radius	and	set	its	default	value	to	10.	This	is	the	radius	of	the
sphere	that	the	interactor	creates	to	check	for	interactive	objects.	If	you	can’t	set	the	default	value,
be	sure	to	compile	your	Blueprint.

3.	Create	a	new	Actor	reference	variable	called	HoveredObject.	This	is	a	reference	to	the	object	that
is	currently	hovered	over.

4.	Create	another	Actor	reference	variable	called	PickedUpObject.	This	is	the	object	that	is	currently
picked	up.

5.	Create	a	new	Boolean	variable	called	Dragging.	The	interactor	uses	this	to	know	when	it	is
dragging	an	object	(see	Figure	8.4).

Figure	8.4	World	Interactor	Component:	basic	sphere	overlap

6.	Drag	off	of	the	EventTick	node	and	add	a	new	Gate	node,	and	uncheck	the	Start	Closed	input	pin
because	you	want	the	Component	to	be	enabled	by	default.

7.	Next	add	two	new	custom	event	nodes.	Name	the	first	Enable	and	the	second	Disable.



8.	Connect	the	Enable	event	to	the	Open	pin	of	the	Gate	node,	and	connect	the	Disable	event	to	the
Close	pin.	This	will	allow	you	to	enable	and	disable	the	interactor	whenever	you	need	to	do	so.

9.	After	the	Exit	of	the	Gate	add	a	Sequence	node	because	you	are	going	to	need	to	do	two	things
every	tick	and	this	will	make	your	code	neater.

10.	Connected	to	the	first	pin	of	the	Sequence	node,	create	a	new	SphereOverlapActors	node	(see
Figure	8.4).	This	will	allow	you	to	detect	the	objects	you	want	to	interact	with	within	a	given
radius.

11.	Connect	a	GetWorldLocation	node	to	the	Sphere	Pos	input	pin.
12.	Connect	a	new	getter	for	the	Radius	variable	to	the	Sphere	Radius	input	pin.
13.	Connected	to	the	Object	Types	input	pin,	make	a	new	EObjectTypeQuery	enum	array,	adding

WorldDynamic	and	PhysicsBody	pins.	If	you	want	to	detect	any	other	types	of	objects	to	interact
with,	this	is	where	you	would	add	them.

14.	Create	a	new	Actor	array,	attaching	a	new	GetOwner	node	as	the	first	input	pin	and	attaching	the
output	of	this	array	to	the	Actors	to	Ignore	pin	of	the	sphere	overlap.

15.	Create	two	new	custom	events:	StartDrag	and	StopDrag	(see	Figure	8.4).	These	will	be	used	later
to	control	the	dragging.

Alternative	to	Sphere	Overlap
When	trying	to	decide	what	object	the	user	wants	to	pick	up,	there	are	many	ways	to	get	the	intent
of	the	user’s	action.
A	sphere	overlap	with	some	visual	feedback	(object	highlighting)	or	physical	feedback	(a	haptic
pulse)	when	the	player	is	able	to	pick	up	an	object	in	many	cases	is	all	you	need	for	detecting	this
intent.	However,	when	this	fails	or	isn’t	an	option,	there	are	many	alternatives.
One	particular	one	that	Epic	Games’s	Bullet	Train	implements	is	creating	a	sphere	cast	from	the
controller	outward	by	a	vector	that	is	between	the	controller’s	direction	and	the	direction	from	the
headset	to	the	controller.	This	provides	a	good	balance	between	flexibility	and	helping	the	player
select	the	object	to	pick	up.
However,	there	is	no	silver	bullet	with	these	types	of	design	choices.	As	with	most	aspects	of
game	design,	you	should	test	to	see	what	interaction	system	works	best	for	your	experience.

Calling	the	Hover	Interface	Messages
Next,	you	will	take	the	hovered	Actors	from	the	sphere	overlap	and	find	which	object	to	call	the	hover
logic	on.	In	this	example,	you	simply	use	the	first	element	in	the	array;	however,	other	techniques,	such	as
finding	the	closest	object	within	that	array,	may	also	be	used.

1.	Moving	to	the	output	of	the	SphereOverlapActors	node,	drag	off	of	the	Out	Actors	array	pin	and	use
a	Get	node	to	get	the	0th	element.

2.	Create	a	new	getter	for	the	HoveredObject	variable	and	call	the	NotEqual	function,	passing	in	the
output	of	the	Get	node	to	the	second	input	pin.	This	allows	you	to	check	whether	the	Component	has
hovered	over	a	new	object.

3.	After	the	SphereOverlapActors	node,	create	a	new	Branch	node	and	connect	it	to	the	overlap’s
output	execution	pin,	then	connect	the	output	of	the	NotEqual	node	to	the	Condition	pin	of	the
branch.



4.	Call	the	OnHover	interface	message	on	a	new	HoverObject	variable	getter	and	connect	its	input
execution	pin	to	the	True	output	pin	of	the	Branch.	This	unhovers	the	previous	Component	before
you	hover	the	new	Component.

5.	Drag	off	of	the	OnUnhover	node	and	call	the	StopDrag	custom	event;	this	will	cause	you	to	stop
dragging	the	object	when	the	user	pulls	too	far	away	from	it.

6.	After	the	StopDrag	event	call,	create	a	new	setter	for	the	HoveredObject	variable	and	set	its	input
pin	to	be	the	output	of	the	array	getter	from	the	SphereOverlapActors	node	(see	Figure	8.5).

Figure	8.5	World	Interactor	Component:	overlapped	object	hover

7.	Drag	off	of	the	setter	for	the	HoveredObject	node’s	blue	output	pin	and	call	the	OnHover	interface
message,	adding	a	Self	reference	node	to	the	Interactor	input	pin	(see	Figure	8.5).

Implementing	Dragging	on	a	Hovered	Object
Next,	take	the	drag	events	created	in	the	first	step	and	pass	these	on	to	the	currently	hovered-over	object:

1.	After	the	empty	pin	of	the	Sequence	node,	add	another	Gate	node,	connecting	it	to	the	Enter	pin.
This	will	allow	you	to	enable	and	disable	dragging	when	needed.

2.	Drag	off	of	the	StartDrag	event,	create	a	setter	to	set	the	Dragging	variable,	and	set	it	to	True.
3.	Create	a	getter	for	the	HoveredObject	variable.



4.	Drag	off	of	the	HoveredObject	getter	and	call	the	OnDragStart	interface	message,	connecting	the
output	execution	pin	of	the	Dragging	setter	node	to	the	input	execution	pin	of	the	OnDragStart	node
(see	Figure	8.6).

Figure	8.6	World	Interactor	Component:	handling	drag	events

5.	Connect	the	end	of	the	OnDragStart	message	to	the	Open	pin	of	the	Gate	node.
6.	Drag	off	of	the	execution	pin	of	the	StopDrag	custom	event	and	create	a	new	Branch	node.	For	the
Condition	input	pin	connect	a	new	Dragging	variable	getter;	this	ensures	that	the	Component	stops
dragging	only	if	it	is	already	dragging.

7.	After	the	True	pin	of	the	Branch	node	create	a	new	setter	for	the	Dragging	variable	and	set	it	to
False.

8.	After	the	setter	node	call	the	OnDragEnd	message	on	the	HoveredObject	variable	getter	from	step
3.

9.	Connect	the	output	execution	pin	of	OnDragEnd	to	the	Close	pin	of	the	Gate.
10.	After	the	Exit	pin	of	the	gate,	call	the	OnDrag	interface	message	on	a	new	HoveredObject	variable

getter,	passing	in	a	new	Self	reference	to	the	Interactor	input	pin	(see	Figure	8.6).



Picking	Up	and	Dropping	Objects
Picking	up	and	dropping	objects	is	simple	in	this	example,	because	you	leave	it	up	to	the	individual
interactive	objects	to	handle	physics	and	other	possible	functionality:

1.	Create	two	new	custom	event	nodes	and	name	them	Pickup	and	Drop,	respectively.	The	owner	of
the	interactor	calls	these	events	to	tell	it	to	pick	up	the	currently	hovered-over	object.

2.	Drag	off	of	the	output	of	the	Pickup	event	and	add	an	IsValid	node	with	the	Input	Object	pin
connected	to	a	new	HoveredObject	variable	getter.	This	ensures	that	the	interactor	has	a	hovered-
over	object	that	you	can	actually	pick	up.

3.	Drag	off	of	the	HoveredObject	variable	getter	again,	add	a	call	to	the	CanPickup	interface	message,
and	connect	the	input	execution	pin	of	this	function	to	the	IsValid	output	pin	of	the	validity	check.

4.	After	the	CanPickup	message	add	a	new	Branch	node,	connecting	the	Condition	input	pin	to	the
Pickup	output	pin.

5.	Connected	to	the	True	output	pin	of	the	Branch	node,	create	a	new	variable	setter	for	the
PickedUpObject	variable.	For	the	input	of	this	setter	attach	a	new	HoveredObject	getter	(see	Figure
8.7).

Figure	8.7	World	Interactor	Component:	picking	up	objects

6.	Drag	off	of	the	blue	output	pin	of	the	PickedUpObject	setter	and	add	a	new	AttachToComponent



node.
7.	Create	a	new	Self	reference	getter	and	connect	it	to	the	Parent	input	pin.
8.	For	the	Location	Rule	and	Rotation	Rule	inputs,	set	both	to	Snap	to	Target.	If	you	would	like	to	add
the	ability	to	enable/disable	snapping,	you	can	change	these	rules.

9.	Set	the	Scale	Rule	to	Keep	World,	because	you	do	not	want	the	scale	of	the	object	that’s	picked	up
to	be	affected	by	the	Pawn	or	Interactor.

10.	After	the	AttachToComponent,	call	the	OnPickup	interface	message	on	a	new	PickedUpObject
variable	getter	(see	Figure	8.7).

11.	To	set	up	the	drop	event,	add	a	new	IsValid	check,	passing	a	new	PickedUpObject	variable	getter
to	the	Input	Object.

12.	Connected	to	the	IsValid	output	pin	of	the	validity	check	add	a	new	DetachFromActor	node,
passing	in	a	new	PickedUpObject	variable	getter	as	the	Target	and	setting	all	the	transform	rules	to
Keep	World	(see	Figure	8.8).

Figure	8.8	World	Interactor	Component:	dropping	objects

13.	After	the	DetachFromActor	node	call	the	OnDrop	interface	message	on	a	new	PickedUpObject
variable	getter,	passing	in	Self	as	the	Interactor	pin.

14.	The	last	thing	to	do	is	clear	the	HoveredObject	and	PickedUpObject	variables	by	adding	two	setter



nodes	and	leaving	the	blue	input	pin	blank	(see	Figure	8.8).

Using	Hovered	Objects
Adding	the	functionality	to	use	hovered	objects	can	be	useful	if	you	want	to	have	buttons	and	other	things
that	can	be	used	when	the	player	hovers	over	them:

1.	Create	a	new	custom	event	node	called	UseHoveredObject.
2.	Drag	off	of	the	output	of	the	new	event	and	call	the	OnUse	interface	message	on	a	new
HoveredObject	variable	getter,	passing	in	Self	to	the	Interactor	pin	(see	Figure	8.9).

Figure	8.9	World	Interactor	Component:	using	hovered	objects

Adding	Interaction	to	the	Interaction	Pawn
To	use	the	newly	created	Interactor	Component,	you	need	to	call	some	of	the	newly	created	events	from
the	Interaction	Pawn:

1.	Open	the	InteractionPawn	Blueprint	from	the	Blueprints	folder.
2.	You	will	use	two	motion	controller	events.	Create	new	MotionController	(L)	Grip1	and
MotionController	(L)	Trigger	events	by	right-clicking	the	Event	Graph	and	entering	their	names.
The	grip	event	represents	the	side	grip	button	on	the	Vive	controller	and	the	hand	trigger	on	the
Oculus	Touch	controller.	These	are	good	candidates	for	picking	up	objects.



3.	Create	a	new	getter	for	the	World	Interactor	Component	and	call	the	Pickup	and	Drop	events	on	it.
4.	Connect	the	Pressed	execution	pin	of	the	MotionController	(L)	Grip1	event	to	the	input	execution
pin	of	the	Pickup	event,	and	connect	the	Released	execution	pin	to	the	input	of	the	Drop	event	(see
Figure	8.10).

Figure	8.10	World	Interaction	Pawn:	activating	events	on	the	Interactor	Component

This	will	allow	you	to	pick	up	an	object	with	the	grip	button	and	drop	it	when	you	release	the	same
button.

5.	Create	a	new	getter	for	the	World	Interactor	Component	again	and	drag	off	of	its	blue	output	pin	to
add	a	call	to	the	UseHoveredObject,	StartDrag,	and	StopDrag	events.

6.	Connect	the	Pressed	execution	pin	of	the	MotionController	(L)	Trigger	event	to	the	input	execution
pin	of	the	UseHoveredObject	event,	connect	the	out	execution	pin	of	the	UseHoveredObject	event	to
the	input	execution	pin	of	the	StartDrag	event,	and	finally	connect	the	Released	execution	pin	of	the
MotionController	(L)	Trigger	event	to	the	input	of	the	StopDrag	event	(see	Figure	8.10).	This
allows	you	to	use	objects	with	the	trigger	but	drag	them	with	the	trigger	as	well.



Note
If	you	have	two	Motion	Controller	Components,	simply	follow	these	steps	again	but	change	the
MotionController	(L)	Grip1	and	MotionController	(L)	Trigger	events	to	MotionController	(R)
Grip1	and	MotionController	(R)	Trigger	events	where	appropriate.

Creating	the	Interactive	Objects
Now	that	you	have	the	base	system	in	place	to	interact	with	objects,	it’s	time	to	create	the	interactive
objects	themselves.

Creating	an	Interactive	Static	Mesh	Actor
The	first	interactive	object	is	a	simple	Static	Mesh	Actor	that	lets	you	pick	it	up	and	throw	it.	This
Blueprint	can	then	be	used	for	basic	set	dressing	objects	in	the	scene	that	don’t	need	any	specific
functionality	but	with	which	you	would	still	like	the	player	to	be	able	to	interact.

1.	In	the	InteractiveObjects	folder	(Blueprints	→	InteractiveObjects)	add	a	new	Blueprint	based	on	a
Static	Mesh	Actor	by	selecting	Add	New	→	Blueprint	Class	→	Static	Mesh	Actor,	then	selecting
the	Select	button	in	the	Pick	Parent	Class	dialog.

2.	Name	the	newly	created	object	InteractiveStaticMesh.
3.	Open	the	newly	created	Blueprint	and	click	the	Class	Settings	shelf	button.
4.	In	the	Details	pane	add	the	interactive	interface	to	the	Blueprint	by	clicking	the	Add	button	under
Interfaces	→	Implemented	Interfaces	and	choosing	World	Interaction	Interface	(see	Figure	8.11).



Figure	8.11	Interactive	Static	Mesh:	adding	the	interface	and	allowing	it	to	be	picked	up

5.	Compile	the	Blueprint	to	get	access	to	the	interface	functions.
6.	Double-click	the	CanPickup	function	and	set	the	Pickup	return	value	to	True.	This	will	allow	you	to
pick	up	this	Blueprint	(see	Figure	8.11).

7.	Select	the	StaticMeshComponent	(Inherited)	Component	in	the	Components	panel.	In	the	Details
panel	on	the	right	set	its	Mobility	to	Movable.	Set	its	Static	Mesh	property	to	Cube	(you	may	need
to	show	the	engine	content	to	see	this	Cube).	Set	the	Simulate	Physics	property	to	True.	Last,	enable
Generate	Overlap	Events	under	Collision.

8.	Open	the	OnPickup	interface	function.
9.	Create	a	variable	getter	for	the	StaticMeshComponent	(Inherited).
10.	Drag	off	of	the	blue	output	pin	of	the	StaticMeshComponent	getter,	call	SetSimulatePhysics,	and

leave	the	Simulate	input	pin	set	to	False,	connecting	it	between	the	function	input	and	Return	value
(see	Figure	8.12).	This	prevents	the	object	from	falling	through	the	user’s	hands	when	it’s	picked
up.



Figure	8.12	Interactive	Static	Mesh:	Pickup	and	Drop	functions

11.	Open	the	OnDrop	interface	function.
12.	Create	a	new	getter	for	the	StaticMeshComponent	once	more	and	call	the	SetSimulatePhysics

function;	this	time,	however,	set	the	Simulate	pin	to	True.	This	reenables	physics	when	you	drop	the
object.

Note
Enabling	physics	on	a	Component	of	a	Blueprint	takes	that	Component	out	of	the	Blueprints
hierarchy.	In	this	instance,	because	the	StaticMeshComponent	is	the	root	of	our	Blueprint,	this	will
have	no	effect.
However,	if	you	enable	physics	on	a	Component	that	is	not	the	root	of	the	Blueprint,	you	will	need
to	reattach	it	to	its	root	Component	before	it	can	be	affected	by	the	Blueprint’s	transform.
A	good	place	to	do	this	is	after	the	OnPickup	function.



Conserving	Collision
When	you	disable	physics	simulation,	the	object	no	longer	collides	with	static	geometry	in	your
level	because	the	object	is	now	getting	its	transform	directly	from	the	motion	controller	to	which	it
is	attached.
If	you	want	to	retain	the	collision,	a	work-around	(albeit	a	complicated	one)	is	to	not	disable
physics;	instead,	set	the	picked-up	object’s	linear	and	angular	damping	values	to	a	very	high
number.	This	causes	the	picked-up	object	to	act	as	if	gravity	is	no	longer	affecting	it	to	any
significant	degree.	This	prevents	it	from	falling	out	of	the	user’s	hands	and	allows	the	object	to
collide	with	static	geometry.
However,	the	object	does	not	return	to	its	initial	position	after	it	has	collided	with	some	geometry.
To	fix	this,	you	can	disable	the	object’s	gravity	after	you	pick	it	up,	and	when	the	object	moves
away	from	its	original	position,	you	can	simulate	gravity	in	the	opposite	direction	to	make	the
object	seem	to	want	to	return	to	its	original	position.

Creating	an	Interactive	Button
A	common	input	system	for	motion	controllers	is	a	physical	button	that	reacts	to	users	pushing	it.	The	first
thing	that	comes	to	mind	when	wanting	to	have	an	interactive	object	like	this	is	to	enable	physics	and	add
some	constraints.	Unfortunately,	in	practice,	this	doesn’t	interact	well	with	the	unconstrained	movement
motion	controllers	give	you.	Therefore,	as	with	many	motion	controller	interactions,	I	suggest	faking	your
own	physical	interaction	to	get	the	most	control	out	of	the	button.
To	make	the	button,	you	won’t	need	to	implement	your	fancy	new	interface.	Ideally,	you	want	the	button	to
be	able	to	be	pressed	by	any	object	the	player	is	holding	and	not	just	the	Interactor	Component.

Creating	the	Button	and	Button	Mesh
Before	you	implement	the	functionality	of	the	button,	you	should	create	the	visual	representation	out	of
basic	Components:

1.	In	the	InteractiveObjects	folder	(Blueprints	→	InteractiveObjects)	add	a	new	Actor	Blueprint.
2.	Name	the	newly	created	Actor	InteractiveButton	and	open	it.
3.	Create	three	new	Components:	a	Scene	Component	named	ButtonRoot,	a	Cylinder	Component
named	Button,	and	another	Cylinder	Component	named	Base.

4.	Drag	the	Button	Cylinder	onto	the	ButtonRoot	to	set	it	as	its	child.
5.	Set	the	ButtonRoot	Component’s	location	to	(X	=	0.0,	Y	=	0.0,	Z	=	5.0).	This	will	move	the	button
5	units	up	in	the	Z-axis.

6.	Set	the	Button	Component’s	scale	to	(X	=	0.1,	Y	=	0.1,	Z	=	0.05).	This	will	make	it	look	more	like
a	proper	button.

7.	Set	the	Base	Component’s	scale	to	(X	=	0.2,	Y	=	0.2,	Z	=	0.05).	This	will	make	it	look	more	like
the	base	of	the	button	(see	Figure	8.13).



Figure	8.13	Interactive	button:	basic	Components

8.	Select	the	Button	Component	once	more	and	set	its	Collision	Preset	to	OverlapAllDynamic.	You
will	use	the	button’s	overlap	to	detect	when	to	press	the	button.

9.	Select	the	Base	Component	and	set	its	Collision	Preset	to	NoCollision.	This	ensures	that	it	will	not
interfere	with	the	button.

Detecting	Button	Overlaps
Now	that	you	have	the	meshes	set	up,	you	need	to	detect	when	the	button	is	overlapped	by	an	Actor	so	you
can	apply	the	math	to	press	it:

1.	Create	a	new	Primitive	Component	reference	variable	and	name	it	OverlappedComponent.	This
will	hold	the	current	overlapped	Component.

2.	Create	a	new	Vector	variable	named	InitialOverlapLocation,	which	stores	the	initial	world	location
of	the	overlapped	Component.

3.	Create	a	new	Float	variable	named	ButtonPressAmount.	This	will	store	the	current	button	pressed
amount.

4.	Create	one	more	Float	variable	named	MaxButtonPressAmount	and	set	its	default	value	to	4.	This
will	be	the	maximum	press	amount	for	the	button	until	it	calls	the	Pressed	event.



5.	Create	a	new	event	dispatcher	named	Pressed.	You	are	using	an	event	dispatcher	because	it	will
make	it	easy	for	any	other	Actor	to	bind	an	event	to	the	button’s	Pressed	event	without	the	button
needing	to	be	aware	of	it.

6.	Click	the	Button	Component	in	the	Components	panel,	and	then	in	the	Details	panel	click	the	+
button	on	the	OnComponentBeginOverlap	and	OnComponentEndOverlap	events.	These	events
should	now	show	up	in	the	Event	Graph	(see	Figure	8.14).

Figure	8.14	Interactive	button:	detecting	button	overlaps

7.	After	the	output	execution	pin	of	the	OnComponentBeginOverlap	(Button)	event	add	an	IsValid
node	and	connect	the	Input	Object	input	pin	to	a	new	OverlappedComponent	variable	getter.

8.	Create	a	new	setter	node	for	the	OverlappedComponent	variable	and	attach	the	input	execution	pin
to	the	Is	Not	Valid	output	execution	pin	of	the	validity	check.	After	that	connect	the	blue	input	pin	of
the	setter	to	the	Other	Comp	output	pin	of	the	OnComponentBeginOverlap	(Button)	event.

9.	Create	a	setter	for	the	InitialOverlapLocation	variable	in	the	Event	Graph	and	connect	its	input
execution	pin	to	the	output	execution	pin	of	the	OverlappedComponent	setter.

10.	Drag	off	of	the	blue	output	pin	of	the	OverlappedComponent	setter,	call	the	GetWorldLocation
function,	and	pass	that	into	the	InitialOverlapLocation	setter	(see	Figure	8.14).

11.	Create	a	new	Branch	node	and	connect	it	to	the	output	execution	pin	of	the
OnComponentEndOverlap	(Button)	event.



12.	Drag	off	of	the	blue	output	pin	of	the	Other	Comp	output	pin,	add	an	EqualTo	check,	and	connect
the	other	input	pin	of	the	Equal	node	to	a	new	OverlappedComponent	getter.

13.	Create	a	new	OverlappedComponent	setter	and	connect	it	to	the	True	execution	pin	of	the	Branch,
making	sure	to	leave	the	setter	blank	because	you	want	to	clear	the	OverlappedComponent	variable.

Pressing	the	Button
Now	when	you	detect	that	an	object	has	overlapped	the	button,	you	need	to	press	it	based	on	the
overlapping	object.
To	do	this,	you	will	transform	the	initial	overlapped	Component’s	world	position	to	be	relative	to	the
button	mesh,	then	find	out	how	far	the	object	has	traveled	while	it	has	been	overlapping	the	button.	This
indicates	how	much	you	need	to	depress	the	button	in	its	relative	space.	Pressing	the	button	is	as	simple
as	subtracting	this	value	from	the	button’s	initial	position.
Doing	this	calculation	relative	to	the	button	allows	you	to	rotate	the	button	however	it	is	needed	in	the
world	and	still	ensure	that	it	functions	correctly.

1.	Drag	off	of	the	EventTick	node	and	create	a	new	Sequence	node.
2.	Add	a	new	IsValid	node	with	an	Input	Object	of	an	OverlappedComponent	variable	getter	and
attach	it	to	the	first	execution	pin	of	the	Sequence.	This	ensures	that	you	press	the	button	only	if	you
have	an	overlapped	Component.

3.	Create	a	new	variable	getter	for	the	ButtonRoot	Component.
4.	Drag	off	of	this	getter	and	create	two	GetWorldTransform	nodes.
5.	Take	the	Return	Value	from	each	of	these	nodes	and	call	the	InverseTransformLocation	function.
This	transforms	any	world	input	you	give	it	and	makes	it	relative	to	the	button	root.

6.	For	the	Location	input	of	the	first	InverseTransformLocation	node	attach	a	new	getter	for	the
InitialOverlapLocation	variable.

7.	For	the	second	Location	input	create	a	new	OverlappedComponent	variable	getter	and	call	the
GetWorldLocation	function,	attaching	the	Return	Value	pin.

8.	To	find	the	distance	the	overlapped	Component	has	traveled	relative	to	the	button,	take	the	output	of
the	first	InverseTransformLocation	node	and	subtract	the	output	of	the	second	by	right-clicking	and
creating	a	Vector	–	Vector	node.

9.	Now	that	you	have	the	distance	the	overlapped	Component	has	traveled	as	a	vector,	you	can	right-
click	the	output	of	the	Vector	–	Vector	node	and	choose	Split	Struct	Pin.	This	allows	you	to	get
access	to	the	individual	axis	of	the	distance	vector.

10.	Because	the	button	is	going	to	be	depressed	in	the	local	Z-axis,	you	need	to	modify	this	button’s	up
and	down	position	to	compensate	for	the	user’s	hand	position.	Drag	off	of	the	Z-axis	and	add	a	new
Clamp	(float)	node.

11.	Add	a	new	getter	for	the	MaxButtonPressAmount	variable	and	drag	its	output	pin	to	the	Max	input
of	the	Clamp	(float).	Leave	the	Min	pin	at	0.

12.	Create	a	new	setter	node	for	the	ButtonPressAmount	and	connect	the	output	of	the	Clamp	(float)	to
it.

13.	Connect	the	IsValid	output	execution	pin	of	the	validity	check	to	the	new	setter	node	(see	Figure
8.15).



Figure	8.15	Interactive	button:	pressing	the	button

14.	Drag	a	new	variable	getter	for	the	Button	Component	into	the	Event	Graph	and	call	the
SetRelativeLocation	function	on	it.

15.	Connect	the	input	execution	pin	of	SetRelativeLoction	to	the	output	execution	pin	of	the
ButtonPressAmount	variable	setter.

16.	Right-click	the	New	Location	input	pin	of	the	SetRelativeLocation	node	and	split	the	struct	pin.
17.	To	make	sure	you	are	pressing	the	button	down	and	not	up,	drag	off	of	the	green	output	pin	of	the

ButtonPressAmount	setter	and	call	the	Float	*	Float	function,	passing	in	–1	as	the	second	parameter.
18.	Attach	the	Float	*	Float	node’s	output	pin	to	the	New	Location	Z	input	pin	of	SetRelativeLocation

(see	Figure	8.15).

Raising	the	Button
Now	that	you’ve	pushed	the	button,	it	would	be	nice	if	it	came	back	up	automatically.	Luckily	it’s	not	that
hard	to	do:

1.	Create	a	new	variable	getter	for	the	Button	Component	and	add	a	new	SetRelativeLocation	node
with	it	as	the	Target.

2.	Connect	the	input	execution	pin	to	the	IsNotValid	pin	of	the	validity	check	after	the	Sequence	node.



3.	Create	a	new	VInterpTo	node	and	attach	its	Return	Value	pin	to	the	New	Location	pin	of	the
SetRelativeLocation	node.

4.	Add	a	new	variable	getter	for	the	Button	Component	and	get	its	Relative	Location.
5.	Connect	this	to	the	Current	pin	of	the	VInterpTo	node.
6.	Leave	the	Target	input	pin	as	(X	=	0.0,	Y	=	0.0,	Z	=	0.0);	this	is	the	button’s	initial	position.
7.	Drag	the	Delta	Seconds	pin	from	EventTick	into	the	Delta	Time	input	of	the	VInterpTo	node	(see
Figure	8.16).

Figure	8.16	Interactive	button:	raising	the	button

8.	Set	the	Interp	Speed	to	10.	This	will	interpolate	the	button	back	to	its	initial	position	whenever	it	is
not	being	pressed.

Activating	the	Button
You	now	have	a	button	that	is	depressed	when	you	overlap	it	and	raised	when	you	move	away	from	it.
The	final	thing	you	need	to	do	is	to	detect	when	someone	has	fully	pressed	the	button:

1.	Drag	off	of	the	next	execution	pin	of	the	Sequence	node	and	add	a	new	Branch	node.	You	will	use
this	to	detect	when	the	current	press	amount	equals	the	maximum	press	amount	and	if	so,	call
Pressed.



2.	Create	two	new	variable	getters	for	ButtonPressAmount	and	MaxButtonPressAmount.
3.	Drag	off	of	the	ButtonPressAmount	variable	getter	and	add	a	new	Float	>=	Float	node,	passing	in
the	MaxButtonPressAmount	getter	to	the	second	input	pin.

4.	Connect	the	output	of	the	Float	>=	Float	node	to	the	Condition	input	of	the	Branch.
5.	Drag	off	of	the	True	output	execution	pin	of	the	Branch,	add	a	DoOnce	node,	and	connect	the	False
output	pin	of	the	Branch	to	the	Reset	input	execution	pin	of	the	DoOnce	node.	This	ensures	that	you
call	Pressed	only	once	per	press	of	the	button.

6.	After	the	DoOnce	node	drag	the	Pressed	event	dispatcher	from	the	My	Blueprint	panel	and	select
Call	from	the	context	menu.

7.	Attach	the	Completed	output	execution	pin	of	the	DoOnce	node	to	the	input	of	the	Pressed	call	(see
Figure	8.17).

Figure	8.17	Interactive	button:	calling	the	Pressed	event	dispatcher

Using	the	Button
Now	that	you	have	a	functioning	button,	all	you	need	to	do	is	use	it.
One	easy	way	to	have	the	button	trigger	events	in	the	level	(once	the	button	is	in	the	level)	is	to	create	a
reference	to	it	in	the	level	Blueprint	and	assign	an	event	to	its	Pressed	dispatcher:



1.	Open	the	level	Blueprint	and	with	the	button	selected	in	the	level	create	a	reference	to	it.
2.	Drag	off	of	the	reference	and	call	the	AssignPressed	macro;	it	will	create	two	nodes.	The	first	is
the	BindEventToPressed	node,	which	when	called	will	bind	an	event	to	the	event	dispatcher,
allowing	it	to	be	called	whenever	the	button	is	pressed.	The	second	is	the	actual	event	that	will	be
called	when	the	button	is	pressed.

3.	Attach	the	input	execution	pin	of	the	BindEventToPressed	node	to	EventBeginPlay.	This	allows	the
Pressed_Event_0	event	to	be	called	anytime	during	play.

4.	Do	whatever	your	game	needs	to	do	when	the	button	is	pressed	(for	example,	play	a	Sequencer
sequence	to	open	a	door	[see	Figure	8.18]).

Figure	8.18	Interactive	button:	using	the	button	in	the	level

Creating	an	Interactive	Lever
In	this	section,	you	will	create	a	lever	that	can	be	pulled	with	the	grab	functions	set	up	in	the	World
Interactor.
Like	the	button,	the	lever	has	a	single	output	event	that	tells	you	whether	the	lever	has	been	pulled,	but
unlike	the	button,	pulling	the	lever	is	a	much	more	physical	action	so	it	should	be	used	for	very	deliberate
actions	that	happen	less	often.



Creating	the	Lever	Components
To	set	up	the	visual	look	of	the	lever	you	will	use	simple	cylinders:

1.	In	the	InteractiveObjects	folder	(Blueprints	→	InteractiveObjects)	create	a	new	Blueprint	based	on
Actor.

2.	Name	the	newly	created	Actor	InteractiveLever	and	open	it.
3.	Click	the	Class	Settings	shelf	button.
4.	In	the	Details	pane	add	the	interactive	interface	by	clicking	the	Add	button	under	the	Interfaces	→
Implemented	Interfaces	section	and	choose	World	Interaction	Interface.

5.	Compile	the	Blueprint	to	get	access	to	the	interface	functions.
6.	Create	two	Cylinder	Components	and	name	them	LeverCylinder	and	LeverHandle	respectively.
7.	Create	a	Sphere	Component	and	name	it	LeverEnd.
8.	Create	a	Scene	Component	and	name	it	LeverRotate.	This	is	the	Component	you	will	use	to	rotate
the	lever.

9.	Rotate	the	LeverCylinder	Component	90	degrees	on	the	X-axis,	giving	it	a	rotation	of	(Pitch	=	0.0,
Yaw	=	0.0,	Roll	=	90.0),	and	set	its	Scale	to	(X	=	0.3,	Y	=	0.3,	Z	=	0.1).	This	should	make	the
cylinder	look	like	the	base	of	a	lever.

10.	Move	the	LeverHandle	Component	25	units	up	on	the	Z-axis,	giving	it	a	location	of	(X	=	0.0,	Y	=
0.0,	Z	=	25.0),	and	set	its	Scale	to	(X	=	0.05,	Y	=	0.05,	Z	=	0.50).	This	should	give	you	a	cylinder
that	looks	like	the	handle	of	a	lever.

11.	Move	the	LeverEnd	Component	50	units	up	on	the	Z-axis,	giving	it	a	location	of	(X	=	0.0,	Y	=	0.0,
Z	=	50.0),	and	set	its	Scale	to	(X	=	0.1,	Y	=	0.1,	Z	=	0.1).	This	should	give	you	a	sphere	that	looks
like	the	end	of	a	lever.

12.	Attach	both	the	LeverEnd	and	LeverHandle	Components	to	the	LeverRotate	Component.	This
allows	you	to	rotate	LeverRotate	(see	Figure	8.19)	and	have	the	rest	follow.



Figure	8.19	Interactive	lever	Components

Rotating	the	Lever
When	you	drag	the	lever,	you	want	to	rotate	the	LeverRotate	Component;	this	requires	some	basic
trigonometry,	which	I	will	break	down	for	you	here	if	you	haven’t	done	anything	similar	before.
First,	you	need	to	set	up	some	variables:

1.	Create	a	new	WorldInteractor	reference	variable	named	CurrentInteractor.	This	will	store	the
interactor	that	is	dragging	the	lever.

2.	Create	a	new	Boolean	variable	named	IsResettingRotation.	You	will	use	this	to	control	when	to
animate	the	lever	back	to	its	initial	rotation.

3.	Create	two	new	Rotator	variables	named	InitialResetRotation	and	InitialLeverRotation.	The	first
will	hold	the	rotation	before	you	animate	the	lever	back	to	its	base	rotation.	The	second	will	hold
the	initial	base	rotation	from	when	the	game	was	started.

4.	Create	four	new	Float	variables	and	name	them	MinPitch,	MaxPitch,	ActivationPitch,	and
CurrentPitch.
	MinPitch	and	MaxPitch	will	hold	the	lower	and	upper	bounds	of	the	lever’s	rotation.
	ActivationPitch	will	hold	the	pitch	that	once	the	lever	reaches	it	will	activate	and	animate	back	to
its	original	rotation.



	CurrentPitch	will	contain	the	current	pitch	of	the	lever.
5.	Set	MinPitch’s	default	value	to	–90,	and	set	the	ActivationPitch’s	default	value	to	–90	as	well.
6.	Create	a	new	event	dispatcher	named	Pulled.
7.	Drag	off	of	EventBeginPlay	and	create	a	setter	for	the	InitialLeverRotation	variable.
8.	Create	a	getter	for	the	LeverRotate	Component	and	get	its	Relative	Rotation,	then	connect	it	to	the
InitialLeverRotation	setter	input	pin	(see	Figure	8.20).

Figure	8.20	Interactive	lever:	variables	and	setup

Warning
MATH	AHOY	We	are	about	to	get	into	some	trigonometry.	I’ll	try	to	explain	everything,	but
if	it	doesn’t	make	sense	feel	free	to	skip	to	the	implementation—you	won’t	need	to
understand	it	to	implement	the	functionality.

Now	that	you	have	the	variables	you	need,	it’s	time	to	calculate	the	rotation.
To	do	this,	you	will	convert	the	current	interactor’s	world	location	to	a	relative	one.	This	corrects	for	any
of	the	world	transforms	you	apply	to	the	lever	in	the	level.	You	find	the	relative	pitch	rotation	of	this
location	by	calculating	the	arc	tangent	(also	called	the	inverse	tangent)	of	the	Z-	and	X-axes	(see	Figure



8.21).	Last,	because	you	want	the	rotation	from	the	Z-axis	and	not	the	X-axis,	you	need	to	unrotate	the
relative	location	by	90	degrees	to	swap	the	axes.

Figure	8.21	Interactive	lever.	x	is	the	distance	from	the	lever	center	in	the	X-axis	to	the	grip	point,	z	is
the	distance	from	the	lever	center	in	the	Z-axis	to	the	grip	point,	and	a	is	the	angle	between	the	X-axis

and	the	grip	point.

Arc	Tangent	and	Atan
In	trigonometry	the	tangent	of	an	angle	is	equal	to	the	length	of	the	opposite	side	of	a	right-angled
tri-angle	divided	by	the	length	of	the	adjacent	side.

The	arc	tangent	or	inverse	tangent	is	simply	the	reverse	of	this.	Given	the	result	of	the	previous
divi-sion,	the	arc	tangent	will	give	us	the	angle	between	the	opposite	side	and	the	adjacent	side.

Finally,	the	atan2	function	is	just	an	extension	to	the	atan	function	that	takes	two	arguments	(x,y).
This	allows	the	function	to	internally	recover	from	the	problem	of	a	divide-by-zero	error	(when	the
length	of	the	adjacent	side	is	zero)	and	also	gather	information	about	the	signs	of	the	sides	to	return
a	value	in	the	appropriate	quadrant.

Don’t	worry;	I’ll	break	it	down	step	by	step	if	you’re	lost.
1.	Open	the	OnDrag	interface	function.
2.	Drag	off	of	the	output	execution	pin	of	the	event	and	create	a	new	Branch	node.
3.	Drag	off	of	the	Interactor	pin	and	create	a	new	Equal	(Object)	node,	passing	in	a	new	getter	for	the



CurrentInteractor	variable	to	the	second	pin.
4.	Connect	the	output	of	the	Equal	(Object)	to	the	Branch	node.
5.	Drag	off	of	the	False	pin	and	create	a	new	Return	node;	leave	it	blank.
6.	Drag	off	of	the	True	output	pin	of	the	Branch	and	create	a	new	Branch	node.
7.	Create	a	variable	getter	for	the	IsResettingRotation	variable.
8.	Drag	off	of	its	pin	and	add	a	new	NOT	Boolean	node.
9.	Connect	the	output	of	this	NOT	Boolean	node	to	the	Condition	input	of	this	new	Branch.	This	will
ensure	that	you	don’t	rotate	the	lever	when	you’re	trying	to	animate	it	back	to	its	initial	rotation.

10.	Create	a	new	GetActorTransform	node.
11.	Drag	off	of	the	GetActorTransform	node	and	call	InverseTransformLocation.
12.	Create	a	new	getter	for	the	CurrentInteractor	variable	and	call	GetWorldLocation	on	it.
13.	Connect	the	Return	Value	of	GetWorldLocation	to	the	Location	input	pin	of	the

InverseTransformLocation.	This	will	transform	the	current	interactor’s	world	position	into	local
space.

14.	Drag	off	of	the	Return	Value	of	InverseTransformLocation	and	call	the	UnrotateVector	function,
passing	in	90	in	the	Y-axis	to	the	B	input	(see	Figure	8.22).	This	will	rotate	the	vector	because	you
want	the	pitch	calculation	to	be	relative	to	the	lever,	which	is	facing	up	and	not	forward.



Figure	8.22	Interactive	lever:	rotation	calculation

15.	Right-click	the	Return	Value	pin	of	the	UnrotateVector	node	and	split	the	struct	pin.
16.	Drag	off	of	the	Return	Value	Z	pin	and	call	the	Atan2	(Degrees)	function.
17.	Connect	the	Return	Value	X	pin	to	the	B	input	pin	of	Atan2	(Degrees).	This	will	calculate	the	angle

between	the	current	interactor	and	the	handle.
18.	Drag	off	of	the	Return	Value	pin	of	the	Atan2	(Degrees)	node	and	call	the	Clamp	(float)	function.
19.	Create	two	new	getter	nodes	for	the	MinPitch	and	MaxPitch	variables,	then	connect	the	first	to	the

Min	input	pin	of	the	Clamp	(float)	and	the	second	to	the	Max	input	pin.
20.	Create	a	new	setter	node	for	the	CurrentPitch	variable,	and	connect	the	output	of	Clamp	(float)	to

the	green	input	pin.
21.	Connect	the	True	output	pin	of	the	Branch	node	to	the	input	execution	pin	of	the	setter	node	(see

Figure	8.22).
22.	Drag	in	a	new	getter	node	for	the	LeverRotate	Component	and	call	SetRelativeRotation	on	it.
23.	Split	the	rotator	struct	pin	of	the	SetRelativeRotation	node	by	right-clicking	the	NewRotation	pin

and	choosing	Split	Struct	Pin.
24.	Drag	the	output	execution	pin	of	the	current	pitch	setter	to	the	input	execution	pin	of

SetRelativeRotation,	and	connect	the	green	output	pin	of	the	same	setter	to	the	New	Rotation	Y



(Pitch)	input	pin	of	the	SetRelativeRotation	node	(see	Figure	8.22).

Resetting	the	Lever
You	now	have	a	working	lever,	but	so	far	it	just	rotates	back	and	forth.	To	make	it	seem	more	lively,	you
will	interpolate	its	rotation	back	to	the	lever’s	original	rotation	whenever	it	either	reaches	the	end	or	is
let	go	of:

1.	Right-click	the	Event	Graph,	add	a	new	custom	event,	and	call	it	ResetRotation.
2.	Create	a	new	variable	setter	for	the	IsResettingRotation	variable,	and	connect	the	output	of	the	new
event	to	the	input	execution	pin	of	the	setter.	Check	the	input	of	the	setter	to	make	it	True.

3.	Create	another	variable	setter	for	the	InitialResetRotation	variable.	Connect	the	output	execution
pin	of	the	IsResettingRotation	setter	to	the	input	execution	pin	of	the	new	node.

4.	Create	a	new	getter	for	the	LeverRotate	Component	and	get	its	RelativeRotation,	connecting	it	to
the	input	pin	of	the	InitialResetRotation	setter	(see	Figure	8.23).

Figure	8.23	Interactive	lever:	resetting	the	lever	rotation

5.	To	rotate	the	lever,	you	will	create	a	new	timeline.	Right-click	the	Event	Graph,	choose	Add
Timeline,	and	name	it	ResetRotationTimeline.

6.	Double-click	the	new	timeline	to	open	the	timeline	editor.



7.	Add	a	new	Float	track	by	clicking	the	Add	Float	Track	button	on	the	shelf;	name	it	Alpha.
8.	Create	two	points	on	the	timeline	by	Shift	+	clicking	in	the	gridded	area.
9.	Set	the	first	point	to	have	a	Time	and	Value	of	0.
10.	Set	the	second	point	to	have	a	Time	of	0.5	and	a	Value	of	1	(see	Figure	8.24).

Figure	8.24	Interactive	lever:	resetting	the	lever	rotation	timeline

11.	Select	both	points	by	dragging	over	both	of	them,	then	right-click	one	of	the	points	and	choose	Auto
under	Key	Interpolation.	This	will	give	the	line	between	the	points	a	nice	curve.

12.	Check	the	Use	Last	Keyframe?	variable	in	the	shelf.	This	will	ensure	that	the	length	of	the	timeline
is	set	to	the	last	key	frame.

13.	Connect	the	output	execution	pin	of	the	InitialResetRotation	setter	to	the	Play	from	Start	input	pin	of
the	timeline.

14.	Create	two	new	variable	getter	nodes	for	the	InitialResetRotation	and	InitialLeverRotation
variables.

15.	Drag	off	of	the	InitialResetRotation	getter	node	and	call	the	Lerp	(Rotator)	function.
16.	Connect	the	InitialLeverRotation	getter	to	the	B	input	pin	of	the	Lerp	(Rotator)	node.
17.	Connect	the	Alpha	pin	of	the	timeline	to	the	Alpha	pin	of	the	Lerp	(Rotator).



18.	Check	the	Shortest	Path	Boolean	on	the	Lerp	(Rotator)	node.	This	node	allows	you	to	linearly
interpolate	between	two	rotations;	however,	in	this	case	because	you	are	driving	it	with	a	timeline,
you	can	add	any	kind	of	interpolation	curve	you	would	like	in	the	timeline.

19.	Create	a	getter	for	the	LeverRotate	Component	and	call	the	SetRelativeRotation	function	on	it.
20.	For	the	New	Rotation	input	pin	attach	the	Return	Value	of	Lerp	(Rotator),	and	for	the	input

execution	pin	attach	the	Update	execution	pin	of	the	timeline.
21.	Create	a	new	setter	for	the	IsResettingRotation	variable,	and	connect	the	input	execution	pin	to	the

Finished	pin	of	the	timeline	(see	Figure	8.22).	This	allows	you	to	pull	the	lever	again	once	the
animation	has	finished.

22.	Open	the	OnDragEnd	interface	function.
23.	Create	a	new	Branch	node	and	connect	it	to	the	input	execution	pin	of	the	function	(see	Figure

8.25).

Figure	8.25	Interactive	lever:	resetting	the	lever	rotation	on	drag	end

24.	Drag	off	of	the	Interactor	input	pin	and	create	an	Equal	(Object)	node,	connecting	a	new	variable
getter	for	CurrentInteractor	to	the	second	input.

25.	Connect	the	output	of	this	Equal	(Object)	node	to	the	Condition	input	of	the	Branch.	This	prevents
users	from	stopping	the	dragging	on	the	lever	with	a	different	interactor	from	the	one	that	is



currently	dragging	it.
26.	Drag	off	of	the	True	pin	of	the	Branch	node	and	call	the	ResetRotation	event.
27.	After	the	ResetRotation	call,	create	a	new	CurrentInteractor	variable	setter	and	leave	it	blank	to

clear	the	variable.
28.	Connect	the	output	of	the	setter	to	the	Return	node.
29.	Connect	the	False	output	of	the	Branch	to	the	Return	node.

Triggering	the	Lever
Let’s	add	the	last	piece	of	the	puzzle:	calling	the	Pulled	event	dispatcher	when	it	reaches	the	activation
pitch.

1.	Back	in	the	OnDrag	function,	create	two	new	variable	getter	nodes	for	CurrentPitch	and
ActivationPitch.

2.	Drag	off	of	the	CurrentPitch	getter	and	call	Equal	(float),	passing	in	the	ActivationPitch	getter	as
the	second	green	pin.

3.	Attach	a	new	Branch	node	to	the	end	of	the	SetRelativeRotation	node,	and	connect	the	output	of	the
Equal	(float)	to	the	Condition	input	of	this	Branch	(see	Figure	8.26).

Figure	8.26	Interactive	lever:	calling	the	Pulled	event	dispatcher



4.	Drag	off	of	the	True	pin	of	the	Branch	and	call	the	ResetRotation	custom	event.
5.	After	the	ResetRotation	call,	call	the	Pulled	event	dispatcher.
6.	Attach	the	output	of	the	Pulled	call	to	the	Return	node,	and	connect	the	False	output	of	the	Branch	to
another	Return	node.

Now	you	have	a	lever	that	can	be	pulled	and	activated.	To	hook	into	the	Pulled	event	dispatcher,	you	can
do	exactly	the	same	as	with	the	interactive	button	and	add	it	to	the	level,	then	in	the	level	Blueprint	bind	to
the	Pulled	event	(see	Figure	8.27).

Figure	8.27	Interactive	lever	being	pulled

Summary
This	chapter	looked	at	creating	an	extensible	world	interaction	system	that	allows	you	to	interact	with
objects	in	the	world	with	motion	controllers.	You	also	tested	that	system	with	a	few	objects	that	can
commonly	be	found	in	VR	games	and	experiences	such	as	a	button	and	a	lever.

Exercises
Consider	these	extensions	to	the	interactive	objects:

	Add	force	feedback	effects	when	the	player	interacts	with	the	Components.	This	can	give	the	player
a	great	sense	of	what	the	objects	are	made	of	(you	may	need	to	pass	what	hand	is	controlling	the



interactor	into	the	interactor	itself	to	target	your	feedback	effects).
	Add	the	ability	for	individual	objects	to	override	the	default	drop	binding	so	the	player	does	not
have	to	hold	the	grab	button	continuously	for	important	objects.	One	way	to	do	this	would	be	to
create	an	input	overriding	Actor	that	you	can	spawn	to	override	a	specific	hand’s	controls	without
affecting	the	other	hand.
	Create	new	interaction	methods;	some	examples	are	a	drawer,	a	segmented	control,	and	a	dial
control.



Chapter	9.	VR	Locomotion

Movement	in	VR	is	still	an	experimental	field.	This	chapter	introduces	you	to	the	concept	of
simulator	sickness	and	some	of	the	possible	causes	of	discomfort	in	VR.	You	are	also	introduced	to
some	of	the	more	prominent	movement	mechanics	currently	used	in	VR	games.

Simulator	Sickness
Unlike	motion	sickness,	which	arises	from	physical	motion,	simulator	sickness	is	the	by-product	of
subjecting	users	to	a	perceived	motion	(in	VR,	in	our	case)	that	differs	from	what	their	bodies	tell	them.
The	main	detector	of	these	discrepancies	between	real-world	motion	and	artificial	motion	is	the
vestibular	system.	The	vestibular	system’s	job	is	to	detect	acceleration	(through	fluid	in	the	inner	ear)	and
balance/orientation	(through	the	acceleration	of	gravity).	Vection	is	a	term	perceptual	psychologists	use	to
refer	to	the	feeling	of	motion	that	a	player	gets	from	the	visual	system	alone	(as	is	the	case	in	VR).	This
vection	causes	a	disagreement	with	the	player’s	vestibular	system	and	can	lead	to	discomfort.	There	are
many	theories	as	to	why	this	is,	but	for	our	purposes,	just	know	that	more	vection	equals	more	discomfort.
The	vestibular	system	detects	acceleration,	and	subjecting	your	users	to	visuals	that	disagree	with	this
system	causes	discomfort.	Therefore,	it	stands	to	reason	that	the	less	(artificial)	acceleration	there	is
inside	your	VR	experiences,	the	more	comfortable	users	will	be.
Optic	flow	refers	to	any	motion	in	your	scene	that	signals	to	players	that	they	are	moving.	The	more	optic
flow,	the	more	information	players	have	that	they	are	artificially	moving.	In	general,	this	leads	to	more
vection.	Cockpits	can	therefore	be	one	way	to	reduce	vection/simulator	sickness	because	they	reduce	the
total	optic	flow	in	a	scene.	Cockpits	also	help	with	vection	by	providing	players	with	a	frame	of
reference,	grounding	them	to	a	scene.
Cockpits	are	obviously	not	applicable	to	all	experiences,	and	therefore	other	techniques	can	be	used	to
ensure	that	your	users	have	the	most	comfortable	experience.	The	most	prominent	techniques	are	covered
later	in	this	chapter.
Finally,	simulator	sickness	is	similar	to	motion	sickness	in	the	way	it	affects	some	parts	of	the	population
more	than	others.	Therefore,	it’s	difficult	to	accommodate	all	tolerance	levels,	so	know	your	target
audience	for	your	game/experience,	and	target	your	locomotion	design	choices	to	them.	Erring	on	the	side
of	caution	is	a	good	idea;	however,	be	aware	that	many	factors	that	increase	the	comfort	of	your
experience	can	also	decrease	the	immersion,	and	some	players	who	are	more	tolerant	of	simulator
sickness	may	want	the	option	to	turn	off	or	reduce	these	comfort	settings	to	gain	a	more	immersive
experience.

Locomotion	Types
Through	experimentation	and	research,	the	VR	community	has	developed	many	different	artificial
locomotion	methods;	each	has	its	advantages	and	disadvantages.	Some	can	be	fitted	to	many	types	of
experiences,	and	others	are	restricted	to	a	specific	context.	Because	of	the	young	age	of	the	VR	medium,
the	most	popular	techniques	are	still	in	flux;	therefore,	you	may	mix	and	match	to	best	fit	your	experience.



Natural
Natural	locomotion	methods	are	generally	one-to-one	in	their	translation	of	real-world	movements	into
player	movements	and,	as	such,	they	can	lead	to	the	least	nausea-inducing	experiences.	In	exchange,
however,	they	are	generally	the	most	limiting	of	the	locomotion	methods.	By	default,	you	are	restrained	by
the	player’s	real-world/HMD’s	tracking	space.	Smart	solutions	to	combat	the	requirements	on	physical
space	exist,	and	variations	on	natural	locomotion	introduce	the	concept	of	redirected	walking.	Redirected
walking	is	the	idea	of	tricking	players	into	thinking	that	they	are	walking	long	distances	by	moving	the
virtual	world	in	such	a	way	that	the	players	never	leave	their	play	space	(for	example,	slowly	rotating	the
world	as	a	player	walks	down	a	corridor).	You	can	also	combat	the	space	requirements	by	designing	your
levels	so	that	a	player	never	gets	near	the	edges	of	the	play	space.
Advantages:

	Least	likely	to	induce	simulator	sickness
Disadvantages:

	Limited	by	the	player’s	physical	space
	Limited	to	the	HMD’s	tracking	space

Variations:
	Redirected	walking	(moving	the	virtual	world	to	keep	the	player	inside	the	play	space)

Teleportation
Teleportation	is	another	one-to-one	locomotion	method	that	can	be	combined	with	natural	locomotion	to
extend	the	range	of	the	method	beyond	the	player’s	physical	space.	It	has	few	side	effects	in	the	way	of
nausea,	but	it	can	be	disorienting	to	a	user	and	may	not	suit	all	game	themes.	Many	variations	exist	for
teleporting;	some	allow	users	to	see	where	they	are	in	their	physical	room	before	they	teleport,	so	that
they	can	position	themselves	in	the	best	possible	place	to	allow	for	the	most	natural	movement	once	they
teleport.	Other	variations	allow	the	teleportation	to	be	controlled	by	a	physical	object	(like	a	ball	that
needs	to	land	where	the	player	teleports).	This	physicality	can	prevent	the	issue	of	micro-teleporting,
where	users	teleport	multiple	times	in	such	quick	succession	that	they	experience	vection	as	their	brain
senses	small	accelerations	instead	of	instantaneous	movement.
If	you	want	to	know	how	to	implement	teleportation	in	UE4,	see	Chapter	5,	“Teleportation.”
Advantages:

	Allows	the	player	to	move	past	physical	boundaries
	Little	nausea	induced

Disadvantages:
	Can	cause	discomfort
	Disorienting
	Can	still	cause	vection	through	micro-teleporting

Variations:
	Visualizing	the	play	space	before	teleporting
	Physical	object	teleporting	beacon	(can	eliminate	micro-teleporting)	 	Node	based	(allowing	the
player	to	teleport	only	to	fixed	locations)

Vehicle



Vehicle	locomotion	is	a	one-to-one	method	with	the	virtual	vehicle	(car,	ship,	or	otherwise)	as	the
reference	frame	for	the	user.	Vehicles	can	reduce	vection	because	they	reduce	the	optic	flow	by
encapsulating	the	user	in	stationary	geometry.	Having	the	stationary	reference	frame	of	the	inside	of	the
vehicle	can	also	reduce	simulator	sickness,	because	players	subconsciously	feel	as	if	the	world	is	moving
around	them	rather	than	that	they	are	moving	through	the	world,	which	is	consistent	with	their	vestibular
system.	Vehicles	are	not	applicable	to	all	experiences,	but	a	variation	may	allow	a	temporary	grid	to	be
shown	when	players	move,	giving	them	the	same	grounding	benefits	as	a	vehicle	(done	in	the	UE4	VR
Editor).
Advantages:

	Less	optic	flow	means	less	vection
	Grounding	decreases	the	potential	for	nausea

Disadvantages:
	Not	suitable	for	many	experiences

Variations:
	Temporary	grid	allowing	the	player	to	get	the	same	grounding	as	a	vehicle

Physical
Physical	locomotion	tends	to	be	more	novel	than	the	other	locomotion	methods,	and	it	can	lead	to	exciting
new	game	mechanics.	Generally,	physical	locomotion	involves	some	sort	of	physical	action	in	the	real
world	that	gets	translated	into	another	motion	in	the	virtual	world.	Examples	are	a	skiing	motion	with
some	motion	controllers	to	control	your	player’s	movement	in	a	skiing	game,	or	jogging	on	the	spot	to
have	the	player	move	laterally	in	the	game	or	experience.	With	most	physical	locomotion	methods,	there
are	still	issues	with	vection	caused	by	artificial	movement,	but	players	find	this	less	disorienting	because
of	what	they	expect	to	happen	when	they	perform	that	action	in	the	real	world	and	the	similar
repercussions	in	the	virtual	one.
Advantages:

	Leads	to	novel	locomotion	methods	that	can	suit	specific	games	nicely	 	Can	reduce	vection
because	of	the	user’s	expectation	of	the	motion	Disadvantages:
	Possibly	gimmicky
	Chance	for	simulator	sickness	in	sensitive	users

Variations:
	Skiing
	Climbing
	Flying	(wing	flapping)
	Running
	World	pulling	(pulling	the	world	around	the	player	with	motion	controllers)

Artificial
Artificial	locomotion	has	little	real-world	player	movement	translated	into	the	virtual	world.	Instead,	it
relies	on	more	traditional	game	input	(such	as	a	gamepad	thumbstick).	Out	of	the	locomotion	methods
presented,	artificial	causes	the	most	simulator	sickness,	but	it	may	also	be	the	easiest	method	to	use	when
porting	a	traditional	game	to	VR.	Some	variations	of	artificial	FPS	(first	person	shooter)	locomotion	try



to	reduce	vection	by	limiting	acceleration.	Taking	away	the	rotational	acceleration	by	limiting	the	use	of
artificial	turning	(by	either	snapping	the	turning	to	increments	or	disabling	it	altogether)	can	help	with	this.
Advantages:

	Freedom	to	move	around	without	dependencies	on	a	player’s	physical	space	 	Quick	to	port	non-
VR	games	to	VR

Disadvantages:
	Causes	simulator	sickness	in	many	players

Variations:
	Snap	turning
	Turret	movement

Locomotion	Implementation
Now,	let’s	implement	some	locomotion	methods.	Natural	locomotion	is	already	implemented	at	an	engine
level	by	virtue	of	UE4’s	support	of	positional	tracking	in	headsets	that	support	that	movement,	so	it’s	not
covered	here.	Teleportation	has	an	entire	chapter	dedicated	to	it,	because	it’s	so	important	to	VR	(refer	to
Chapter	5).	For	physical	locomotion,	we	will	look	at	how	to	create	a	basic	running-in-place	locomotion
for	the	UE4	First	Person	Template	later	in	this	chapter,	but	before	that,	let’s	look	at	adapting	the	First
Person	Template	for	snap	turning.

First	Person	Template	for	Snap	Turning
A	common	method	for	artificial	locomotion	is	traditional	first-person	controls.	Luckily,	UE4’s	default
First	Person	Template	has	already	implemented	this,	so	it	will	be	fairly	easy	to	add	some	comfort	features
(like	snap	turning)	for	users	who	need	it.

Project	Creation
Some	preliminary	work	has	already	been	done	to	the	First	Person	Template	that	comes	with	UE4	to
support	VR.	However,	to	make	sure	it	is	fully	compatible,	you	will	need	to	make	a	few	changes	before
implementing	the	snap-turning	functionality:

1.	Create	a	new	Blueprint	project	based	on	the	First	Person	Template.
2.	Open	the	FirstPersonCharacter	Blueprint	(FirstPersonBP	→	Blueprints).
3.	Add	a	new	Scene	Component	named	CameraRoot.
4.	Set	the	newly	added	Component’s	Location	to	–96	in	the	Z-axis	(see	Figure	9.1).	This	ensures	that
the	Camera	is	based	on	the	character’s	contact	point	with	the	ground.



Figure	9.1	FirstPersonCharacter:	adding	a	new	CameraRoot

5.	Drag	the	FirstPersonCamera	Component	on	top	of	the	CameraRoot	to	make	it	the	parent.
6.	Create	two	Float	variables:	YawOffset	and	SnapTurnAmount.
7.	Set	the	default	value	for	SnapTurnAmount	to	15.	This	is	how	many	degrees	the	snap	turning	should
snap.

8.	Create	two	new	Boolean	variables:	MouseTurning	and	StickTurning.	These	will	tell	us	whether	the
user	is	turning	with	the	mouse	or	the	gamepad	later	on.

9.	In	the	Event	Graph,	find	the	EventBeginPlay	node	and,	after	the	UseControllerRotationYaw	node,
create	a	new	variable	getter	for	the	FirstPersonCamera	Component	and	call	the
SetUsePawnControlRotation	on	it.	Setting	this	to	False	allows	the	character	to	use	the	positional
tracking	of	the	headset	(setting	this	variable	to	True	makes	it	easier	to	rotate	the	Camera,	so	you
will	leave	it	as	True	when	the	player	is	using	a	monitor).

10.	Create	another	new	node,	this	time	a	SetTrackingOrigin	function	call,	setting	its	Origin	input	to
Floor	Level.	This	fixes	any	tracking	issues	with	headsets	that	default	to	Eye	Level	tracking	origin.

11.	Connect	the	two	newly	created	nodes	between	the	UseControllerRotationYaw	and	the	Branch	node
(see	Figure	9.2).



Figure	9.2	FirstPersonCharacter:	fixing	positional	tracking	and	forcing	a	new	tracking	origin

Implementing	Snap	Turning
To	implement	snap	turning,	you	will	create	a	new	function	that	allows	you	to	rotate	the	Camera	in	fixed
increments.	To	do	this,	you	use	the	YawOffset	variable	to	hold	how	far	the	character	would	have	turned	if
using	the	normal	turning	method,	and	when	that	exceeds	the	turning	threshold,	snap	to	that	turning	amount.

1.	Create	a	function	called	AddControllerYaw	with	two	Float	inputs,	Float	and	Snap	Amount	(see
Figure	9.3).	Open	it.



Figure	9.3	FirstPersonCharacter:	custom	rotation	function	for	snap	turning

2.	Create	a	new	getter	and	setter	for	the	YawOffset	variable,	connecting	the	input	execution	pin	of	the
setter	to	the	input	pin	of	the	function.

3.	Drag	off	of	the	Float	input	pin	of	the	function	and	add	a	new	Float	+	Float	node,	passing	in	the
YawOffset	getter	to	the	second	pin.

4.	Connect	the	output	of	this	Float	+	Float	to	the	YawOffset	setter.
5.	Drag	off	of	the	output	of	the	YawOffset	setter	and	call	the	Float	>=	Float	function,	passing	in	the
Snap	Amount	input	pin	to	the	second	pin	of	this	function.

6.	Drag	off	of	the	output	of	the	YawOffset	setter	again	and	call	the	Float	<=	Float	function,	this	time
passing	in	a	Float	*	Float	of	the	Snap	Amount	input	and	–1	(see	Figure	9.3)	as	the	second	pin.

7.	Connect	the	output	of	both	the	>=	and	<=	functions	with	an	OR	gate.	This	means	that	the	rest	of	the
function	is	triggered	when	the	input	is	either	greater	than	the	snap	amount	or	less	than	the	negative	of
the	snap	amount.

8.	Create	a	new	Branch	node,	connecting	the	output	of	this	OR	gate	to	the	Condition	input.
9.	Connect	the	input	execution	pin	of	the	Branch	to	the	output	execution	pin	of	the	YawOffset	setter.
10.	After	this	Branch’s	True	output	create	a	new	Branch	node,	connecting	an

IsHeadMountedDisplayEnabled	pure	function	call	to	the	Condition	input	(see	Figure	9.3).



11.	Create	a	new	CameraRoot	getter	and	call	the	AddLocalRotation	function	on	it.
12.	Break	the	input	of	the	Delta	Rotation	input	and	pass	in	the	YawOffset	variable	to	the	Delta	Rotation

Z	(Yaw).	This	will	rotate	the	Root	Component	of	the	Camera;	you	will	not	be	able	to	rotate	the
Camera	directly	while	using	an	HMD.

13.	Connect	this	AddLocalRotation	node	to	the	True	output	of	the	Branch.
14.	Create	a	new	setter	for	the	YawOffset	once	more,	this	time	leaving	the	input	at	0.0	and	connecting	it

to	the	output	of	the	AddLocalRotation.
15.	Drag	off	of	the	False	output	of	the	Branch	and	call	the	AddControllerYawInput	function,	passing	in

the	YawOffset	and	connecting	its	output	to	the	same	YawOffset	setter	as	in	the	previous	step.
16.	Back	in	the	Event	Graph	find	the	comment	labeled	“Stick	input”	and	replace	the	call	to

AddControllerYawInput	with	your	custom	AddControllerYaw	function,	passing	in	the
SnapTurnAmount	variable	as	the	Snap	Amount	(see	Figure	9.4).

Figure	9.4	FirstPersonCharacter:	replacing	the	default	stick	yaw	turning	with	the	snap-turning	function

17.	Drag	off	of	the	three-way	Multiply,	create	a	new	Float	!=	Float	node,	and	pass	it	into	a	new	setter
for	the	StickTurning	variable,	connecting	it	to	the	end	of	the	AddControllerYaw	function	(see	Figure
9.4).

18.	Find	the	comment	labeled	“Mouse	input”	and	replace	the	call	to	AddControllerYawInput	once



more	with	your	custom	function,	passing	in	the	same	SnapTurnAmount	variable	to	the	second	input
again	(see	Figure	9.5).

Figure	9.5	FirstPersonCharacter:	replacing	the	default	mouse	yaw	turning	with	the	snap-turning
function

19.	Drag	off	of	the	InputAxisTurn’s	Axis	Value,	create	a	new	Float	!=	Float	node,	and	pass	the	output	to
a	new	setter	for	the	MouseTurning	variable,	connecting	it	to	the	end	of	the	AddControllerYaw
function	call.

20.	Drag	off	of	the	red	output	pin	of	this	setter	call	and	create	a	new	NOR	gate,	passing	in	the
StickTurning	variable	to	the	second	input.

21.	Create	a	new	Branch	node	connected	to	the	output	of	the	setter	from	step	19,	passing	in	the	output
of	the	NOR	to	the	Condition	input.	This	allows	you	to	reset	the	YawOffset	value	to	0	when	the
player	is	using	neither	the	mouse	nor	the	joystick.

22.	Drag	off	of	the	True	output	and	create	a	new	setter	for	the	YawOffset	variable,	leaving	the	input	as
0.0	(see	Figure	9.5).

23.	To	add	support	for	using	the	shoulder	buttons	on	the	gamepad	to	snap	the	user,	create	two	new	input
events	for	GamepadRightShoulder	and	GamepadLeftShoulder	(see	Figure	9.6).



Figure	9.6	FirstPersonCharacter:	snap	turning	with	the	gamepad	shoulder

24.	On	the	GamepadRightShoulder	event,	call	the	AddControllerYaw	function,	passing	in	the
SnapTurnAmount	to	both	the	Float	and	Snap	Amount	inputs.

25.	On	the	GamepadLeft	Shoulder	event	call	the	AddControllerYaw	function	once	more,	this	time
passing	in	a	Float	*	Float	with	the	SnapTurnAmount	and	–1	into	the	Float	input	pin	(see	Figure	9.6).

First	Person	Template	for	Running	in	Place
An	easy	first	physical	locomotion	system	to	implement	is	a	basic	“running	in	place”	system;	in	this	system
when	the	player	wearing	the	headset	jogs	up	and	down	on	the	spot,	the	virtual	player	moves	forward	in
the	game	world.
To	implement	this	running	motion,	we	continue	from	the	previous	section	where	you	added	snap	turning	to
the	default	UE4	First	Person	Template:	1.	Open	the	FirstPersonCharacter	Blueprint	(FirstPersonBP	→
Blueprints).

2.	Create	two	new	Vector	variables	named	HMDVelocity	and	PreviousHMDPosition.	These	hold	the
current	HMD	velocity	and	the	previous	frame’s	head	position,	which	will	help	you	calculate	that
velocity.

3.	Create	another	new	Vector	variable,	this	time	making	it	an	Array,	and	name	it	PreviousVelocities.
You	use	this	to	smooth	out	any	high-frequency	motion	that	may	come	from	the	user’s	head.



4.	Create	three	new	Float	variables:	RunningSpeed,	RunningThreshold,	and	RunningMultiplier.
RunningSpeed	is	the	current	target	running	speed	based	on	the	player’s	head	movement,
RunningThreshold	is	the	amount	RunningSpeed	must	surpass	to	be	added	to	the	player’s	movement,
and	RunningMultiplier	is	used	to	scale	the	player’s	head	velocity,	so	that	you	can	scale	the	player’s
head	velocity	to	sensible	distances	for	moving	(see	Figure	9.7).

Figure	9.7	FirstPersonCharacter:	running-in-place	variables	and	initial	velocity	calculation

5.	Set	the	default	value	of	RunningThreshold	to	1.5,	and	the	default	value	of	RunningMultiplier	to
0.05.

6.	In	the	Event	Graph	drag	off	of	the	EventTick	and	create	a	new	Branch	node,	connecting	a	new
IsHeadMountedDisplayEnabled	function	call	to	the	Condition	input.

7.	Connected	to	the	True	output	pin	of	this	Branch,	create	a	new	setter	for	the	HMDVelocity	variable.
8.	Create	a	new	getter	for	the	FirstPersonCamera	Component	and	call	the	GetWorldLocation	function.
9.	Drag	off	of	the	Return	Value	of	this	function	call	and	create	a	new	Vector	–	Vector	node,	passing	in
a	getter	for	the	PreviousHMDPosition	variable	to	the	second	input.	This	will	calculate	the	distance
between	the	previous	HMD	position	and	the	current	one.

10.	Drag	off	of	the	output	of	this	Vector	–	Vector	node,	create	a	new	Vector	/	Float	node,	and	pass	in
the	Delta	Seconds	from	the	EventTick	(see	Figure	9.7).	This	will	convert	the	difference	from	the
Vector	–	Vector	in	centimeters	into	a	velocity	in	centimeters	per	second.



11.	Connect	the	output	of	the	Vector	/	Float	into	the	input	of	the	HMDVelocity	setter.
12.	Create	a	new	setter	for	the	PreviousHMDPosition	variable	after	the	HMDVelocity	setter	and	pass

in	the	GetWorldLocation	from	step	8.
13.	After	the	PreviousHMDPosition	setter	create	a	new	getter	for	the	PreviousVelocities	array	and	call

the	Insert	function.
14.	Create	and	pass	in	a	new	getter	for	the	HMDVelocity	variable	to	the	input	pin	of	the	array	insert.

This	will	add	the	current	HMD	velocity	to	the	first	section	of	the	PreviousVelocities	array.
15.	Create	a	new	getter	for	PreviousVelocities	once	more	and	call	the	Resize	function,	passing	in	the

number	5	to	the	input	pin	and	connecting	it	to	the	output	execution	pin	of	the	array	insert	(see	Figure
9.8).	This	will	cause	the	array	you	are	about	to	average	over	to	hold	the	last	five	frames.

Figure	9.8	FirstPersonCharacter:	running-in-place	five-frame	velocity	averaging	and	adding	movement
input

16.	Create	one	last	getter	for	the	PreviousVelocities	variable	and	call	the	GetVectorArrayAverage
function.

17.	Right-click	the	Return	Value	of	this	function	and	split	the	struct	pin.
18.	Drag	off	of	the	Return	Value	Z	and	call	the	Absolute	(float)	function;	this	allows	you	to	disregard

whether	the	player	is	jogging	up	or	down.



19.	Connected	to	the	output	of	this	Absolute	create	a	new	Float	*	Float	node,	passing	in	a	new	getter
for	the	RunningMultiplier	variable	to	the	second	pin.

20.	Drag	off	of	the	output	of	the	Float	*	Float	node	and	call	the	SelectFloat	function.	This	ensures	that
the	head	movement	is	over	the	threshold.

21.	Drag	off	of	the	Float	*	Float	node	once	more	and	create	a	new	Float	>	Float	node,	passing	in	the
RunningThreshold	to	the	second	pin.

22.	Attach	this	Float	>	Float	node	to	the	Pick	A	input	pin	of	the	SelectFloat;	this	ensures	that	the
running	speed	will	be	0	so	long	as	the	player’s	head	velocity	is	under	the	threshold.

23.	Create	a	new	setter	for	the	RunningSpeed	variable	and	connect	it	to	the	output	execution	pin	of	the
Resize	function.

24.	Pass	in	the	output	of	the	SelectFloat	to	the	green	input	pin	of	this	setter.
25.	To	actually	move	the	player,	first	call	the	AddMovementInput	function.
26.	Create	a	new	getter	for	the	FirstPersonCamera	Component	and	get	its	ForwardVector	(see	Figure

9.8),	passing	it	into	the	World	Direction	of	the	AddMovementInput	function.
27.	Create	a	new	getter	for	the	RunningSpeed	variable	and	pass	that	into	the	Scale	Value	of

AddMovementInput.
You	can	now	hit	Play	with	your	favorite	HMD	connected	and,	if	it	supports	positional	tracking,	jog	on	the
spot	to	see	your	character	move.

Summary
You	now	understand	simulator	sickness	and	some	of	its	potential	causes.	You	also	understand	some	of	the
VR	locomotion	methods	that	exist	today	and	how	they	are	implemented	in	UE4.

Exercises
The	only	locomotion	method	not	covered	so	far	is	vehicle.	And	that’s	for	a	good	reason:	Epic	already	has
a	good	driving	template	that	fully	supports	VR.	Create	a	new	project	with	this	template	and	see	if	the
reduced	optic	flow	helps	with	simulator	sickness.



Chapter	10.	VR	Optimization

This	chapter	covers	rendering	requirements	for	VR.	These	requirements	are	different	from	those
for	traditional	monitors,	but	some	tricks	can	be	implemented	to	ease	the	burden	of	this	demanding
medium.

Requirements	of	VR	Rendering
Rendering	a	VR	scene	poses	many	new	issues	and	challenges	that	do	not	exist	when	trying	to	render	a
traditional	game	or	experience.	VR	has	a	strict	need	for	low-latency	rendering	to	avoid	simulator
sickness;	however,	in	the	past	this	part	of	the	rendering	pipeline	has	often	been	sacrificed	because	of	the
race	for	higher	and	higher	performant	engines.
An	ideal	VR	experience	has	a	motion-to-photon	time	(time	from	the	sensor	detecting	motion	to	the	user
seeing	it	displayed	on	the	screen)	of	less	than	20ms.	This	stringent	requirement	has	led	to	the	use	of	high-
refresh-rate	panels	(from	60Hz	to	90Hz	to	even	120Hz).	However,	just	having	a	high-refresh-rate	panel
isn’t	enough.	Because	a	VR	headset’s	display	is	close	to	the	user’s	eyes	(literally	centimeters	away	and
with	the	lenses	acting	like	a	magnifying	glass),	the	display	must	have	a	high	enough	resolution	that	it	does
not	detract	from	the	experience.	Therefore,	we	see	refresh	rates	from	60Hz	to	120Hz	with	display
resolutions	from	1920x1080	to	2560x1440.	These	numbers	are	high	from	a	regular	gaming	perspective,
but	they	don’t	tell	the	whole	story.
To	get	an	idea	of	how	demanding	VR	rendering	can	be,	you	need	to	know	how	and	why	VR	lenses	work.
In	a	nutshell,	to	focus	on	objects	in	the	real	world,	the	muscles	in	your	eyes	push	and	pull	on	your	eyes’
lenses	and	allow	certain	beams	of	light	to	converge	on	your	retina.	However,	these	muscles	are	unable	to
focus	on	objects	close	to	your	eyes.	Unfortunately,	for	a	head-mounted	display	this	is	bad	news,	because
to	get	a	high	FOV	(field	of	view),	the	display	needs	to	be	close	to	the	eyes.	To	counteract	this,	you	can	put
lenses	between	the	user’s	eyes	and	the	display;	they	bend	the	light	coming	from	the	display	and	trick	the
eyes	into	thinking	that	the	screen	is	farther	away	than	it	actually	is,	hence	solving	this	focus	problem.	But
these	lenses	aren’t	perfect,	and	they	actually	distort	the	image	coming	from	the	display.	To	counteract	this,
you	must	render	your	virtual	images	with	the	opposite	distortion	so	that	your	worlds	feel	as	accurate	as
possible	(see	Figure	10.1).



Figure	10.1	Correcting	for	VR	lens	distortion

This	is	all	well	and	good,	but	barrel	distortion	actually	causes	a	loss	of	some	perceived	resolution	on
your	image.	To	make	up	for	this	loss	in	quality,	many	VR	games	and	experiences	render	1.3	to	1.5	times
the	display’s	native	resolution.	(In	UE4,	this	is	referred	to	as	screen	percentage,	and	it	is	an	important
value	in	tuning	the	performance	of	your	experiences.)
Therefore,	if	you	look	back	at	your	calculation	of	how	demanding	the	VR	experience	is,	you	have	to
multiply	everything	by	1.5;	so	for	the	Rift	CV1	and	Vive	(both	headsets	having	two	screens	at	1080x1200
each),	the	total	resolution	is	now	2160x1200	*	1.5,	so	3240	*	1800	and	at	90	frames	per	second,	or
around	350	million	pixels	per	second!	In	contrast,	a	1080p	game	at	60	frames	per	second	is	only	124
million	pixels	per	second.

Latency	Mitigation
As	you’ve	just	seen,	latency	in	a	VR	headset	can	have	some	dire	consequences	for	user	comfort	and
whether	or	not	your	VR	experiences	are	compelling.	This	requirement	is	quite	a	lot	more	important	to	VR
than	to	any	other	medium	that	has	come	before	it,	but	there	are	various	techniques	that	can	help	reduce	or
eliminate	major	causes	of	latency	in	the	rendering	pipeline.	This	chapter	looks	at	two	main	techniques	that
aim	to	address	this:	timewarping/reprojection	and	front	buffer	rendering.
Before	we	get	into	what	exactly	timewarping/reprojection	and	front	buffer	rendering	are,	let’s	take	a
quick	trip	down	the	rendering	pipeline	to	gain	a	better	understanding	of	how	these	features	fit	into	your
experiences.	(Although	developers	not	focused	on	rendering	rarely	have	to	deal	with	these	details,	and
UE4	does	a	great	job	of	implementing	them,	it	is	still	important	to	learn	the	nitty-gritty	to	help	in
diagnosing	problems	that	may	arise.)
To	render	a	frame	in	a	game,	many	pieces	work	together	to	produce	the	final	frame.	On	the	CPU	side,	it
polls	the	user	input,	does	work	on	the	game	(simulates	physics,	calculates	the	artificial	intelligence
movement,	etc.),	and	ultimately	submits	the	draw	calls	to	be	carried	out	on	the	GPU.	Traditionally	after



the	GPU	has	finished	rendering	those	draw	calls,	it	presents	them	to	the	display	for	scan-out,	which	then
(from	left	to	right,	top	to	bottom)	displays	the	image	to	the	screen	for	the	user	to	see.	A	simple	version	of
this	is	shown	in	Figure	10.2.

Figure	10.2	Simple	rendering	pipeline	with	one	frame	of	latency;	i	=	input,	g	=	game,	d	=	draw.	Each
10ms	column	represents	a	single	refresh	of	a	100Hz	display.

Note
Most	VR	headsets	implement	low-persistence	technology	that	skips	displaying	the	image	to	the
user	until	a	fraction	of	a	second	before	the	next	display	refresh	to	prevent	the	user	from	viewing
“bad”	information.	However,	the	rest	of	this	section	assumes	a	traditional	display	for	simplicity.

Notice	that	Figure	10.2	is	not	the	most	optimal	setup	in	terms	of	performance.	There	are	long	down
periods	when	the	GPU	and	CPU	are	doing	nothing	while	they	wait	for	each	other	to	finish.	Also	notice
that	there	is	an	entire	frame	of	latency	from	the	input	(i)	and	the	scan-out.
To	fix	these	issues,	we	can	first	try	to	fix	the	performance	bubbles	(sections	of	inactivity)	by	introducing	a
pipelined	architecture,	as	shown	in	Figure	10.3.



Figure	10.3	Simple	rendering	pipeline	with	two	frames	of	latency	and	a	pipelined	architecture;	i	=
input,	g	=	game,	d	=	draw.	Each	10ms	column	represents	a	single	refresh	of	a	100Hz	display.

Compared	to	Figure	10.2,	Figure	10.3	now	has	better	utilization	of	both	CPU	and	GPU;	they	don’t	have	to
share	the	same	10ms	interval	because	the	GPU	now	renders	the	previous	frame	while	the	CPU	is	free	to
start	its	work	on	the	next	frame.	However,	you	will	notice	that	there	is	now	another	entire	new	frame	of
latency.
Another	issue	arises	when	that	pesky	draw	task	begins	to	take	up	too	much	of	the	10ms	window	you	have
to	render.	Luckily,	we	now	have	multicore	CPUs,	and	if	you’re	willing	to	give	up	another	frame	of	latency
(and	in	fact	many	game	engines	make	this	trade-off),	you	can	run	the	draw	task	on	a	separate	core	while
the	next	frame’s	input	and	game	calculations	are	made	(see	Figure	10.4).

Figure	10.4	Simple	rendering	pipeline	with	three	frames	of	latency	and	a	pipelined	architecture	with	a
frame	for	draw	tasks;	i	=	input,	g	=	game,	d	=	draw.	Each	10ms	column	represents	a	single	refresh	of	a

100Hz	display.



However,	it	turns	out	that	this	needn’t	be	the	case.	Much	of	the	time,	you	can	reduce	the	three	frames	of
latency	from	Figure	10.4	to	only	two	by	giving	the	draw	tasks	enough	of	a	head	start	on	the	GPU	that	the
CPU	can	start	feeding	the	GPU	data	with	only	a	small	delay	(a	nice	trade-off	to	get	a	whole	frame	of
latency	back;	see	Figure	10.5).

Figure	10.5	Simple	rendering	pipeline	with	two	frames	of	latency	and	a	pipelined	architecture	running
the	draw	and	GPU	in	parallel;	i	=	input,	g	=	game,	d	=	draw.	Each	10ms	column	represents	a	single

refresh	of	a	100Hz	display.

Figure	10.5	shows	a	nice	balance	between	performance	and	latency,	but	is	there	more	we	can	do?	Of
course!	The	keen-eyed	among	you	will	have	noticed	that	bubble	of	inactivity	while	the	GPU	waits	to	be
fed	draw	calls	and	may	have	been	wondering	if	there	was	something	you	could	do	about	it.	Well,	yes,
there	is,	and	in	fact	both	Oculus	and	Valve	handle	this	with	what	they	call	Adaptive	Queue	Ahead	and
Running	Start.	Basically,	in	terms	of	Figure	10.5,	they	simply	move	the	green	draw	task	to	before	the
second	frame	to	give	the	GPU	the	most	time	to	process	all	the	draw	calls.
This	is	all	well	and	good	for	making	sure	you	optimize	CPU	and	GPU	usage,	but	what	about	input
latency?	After	all,	VR	is	all	about	reducing	latency,	isn’t	it?	Well,	yes,	and	there	are	a	few	things	you	can
do	to	help	with	this.	First,	notice	that	the	input	is	being	polled	at	the	start	of	each	frame.	So,	even	in	the
best	case,	with	no	pipelining,	there	is	still	an	entire	frame	of	latency.	But	why	can’t	you	just	move	the
input	polling	to	the	end	of	the	frame?	Well,	you	can!	In	fact,	that	is	exactly	what	UE4	does	with	the
Camera	Component	and	the	Lock	to	HMD	flag	and	the	Motion	Controller	Component	with	the	Low
Latency	Update	flag.	This	sort	of	input	late	updating	is	shown	in	Figure	10.6.



Figure	10.6	Simple	rendering	pipeline	with	one	frame	of	latency	and	a	pipelined	architecture	running
the	draw	and	GPU	in	parallel;	i	=	input,	g	=	game,	d	=	draw.	Each	10ms	column	represents	a	single

refresh	of	a	100Hz	display.

This	looks	better,	but	there	is	one	more	thing	you	can	do:	timewarping.	The	basic	idea	of	timewarping	is
to	take	the	render	data	from	the	GPU,	then	transform	that	image	to	rotate	the	camera	based	on	a	newer
input.	As	shown	in	Figure	10.7,	you	can	now	reduce	the	rotational	latency	of	the	headset	to	only	2ms	for
the	first	part	of	the	render.	(Note	that	not	all	SDKs/runtimes	implement	timewarping,	and	those	that	do
implement	it	differently.	Therefore,	be	aware	of	those	differences	when	targeting	your	experiences.	Also
note	that	this	feature	is	enabled	through	the	various	runtimes	and	not	the	engine,	so	the	developer	does	not
need	to	do	anything	to	enable	it.)

Figure	10.7	Simple	rendering	pipeline	with	less	than	one	frame	of	rotational	latency	due	to	timewarp;	i
=	input,	g	=	game,	d	=	draw.	Each	10ms	column	represents	a	single	refresh	of	a	100Hz	display.

One	last	point,	however.	Previously	I	said	that	the	GPU	presents	the	rendered	frame	to	the	display,	but	that



isn’t	entirely	true.	In	fact,	until	now	what	the	GPU	has	been	doing	is	rendering	to	what	is	called	a	back
buffer,	whereas	what	the	display	is	actually	reading	from	(the	front	buffer)	is	not	directly	touched	by	the
GPU.	This	is	because	of	the	nature	and	disparity	of	how	a	display	refreshes	itself	(remember,	left	to	right,
top	to	bottom)	and	how	a	GPU	renders	the	geometry	in	the	scene.	A	GPU	doesn’t	neatly	render	from	top
left	to	bottom	right	like	a	display	does;	it	instead	renders	each	draw	call	it	gets	from	the	CPU	in	turn,	one
on	top	of	the	other,	like	a	painter	laying	down	strokes	on	a	canvas.	Therefore,	you	run	into	this	pesky
problem	when	rendering	directly	into	the	buffer	from	which	the	display	is	reading;	that	is,	if	the	display
begins	to	show	a	new	frame	before	you	are	finished	rendering	it,	it	may	in	fact	display	an	incomplete
image	to	the	screen	with	whole	geometry	from	your	game	missing.	To	solve	this,	a	back	buffer	is
introduced;	the	GPU	renders	to	it,	and	when	the	display	is	ready	for	a	new	image,	it	swaps	the	buffers	if
the	frame	is	done.	If	the	frame	is	not	done	just	yet,	the	GPU	can	simply	display	the	old	image	again,	never
showing	an	incomplete	image.
Why	is	this	important?	Well,	as	it	turns	out,	the	timewarp	operation	does	produce	an	image	from	left	to
right,	top	to	bottom,	and	in	fact	when	timewarping	is	in	effect	there	is	no	real	need	for	this	double
buffering	because	you	can	ensure	that	you	start	your	timewarp	with	enough	time	to	literally	race	the
display	refresh	until	it’s	finished.	This	is	what	is	called	front	buffer	rendering	or	scanline	racing;	it	is
currently	implemented	on	both	Gear	VR	and	Daydream	VR,	and	it	allows	for	some	pretty	neat	things.
Because	you	are	warping	the	image	milliseconds	before	it	is	displayed	on	the	screen,	there	is	actually	a
chance	that	you	can	update	the	inputs	to	your	warp	as	the	display	refreshes,	and	on	a	nearly	line-by-line
(if	you	time	it	well	enough)	basis	you	can	warp	the	latest	information	to	the	display.	This	is	in	fact	how
the	Gear	VR	renders	and	performs	two	warps	each	refresh	(one	for	each	eye),	which	is	displayed	in
Figure	10.8.

Figure	10.8	Simple	rendering	pipeline	with	less	than	one	frame	of	rotational	latency	due	to	timewarp
and	front	buffer	rendering.	The	warp	is	updated	twice	per	frame.	i	=	input,	g	=	game,	d	=	draw.	Each

10ms	column	represents	a	single	refresh	of	a	100Hz	display.

This	front	buffer	rendering	is	enabled	by	default	on	Gear	VR,	but	it	needs	to	be	manually	activated	on
Daydream	VR	(see	Figure	10.9).



Figure	10.9	Configuration	settings	for	enabling	scanline	racing	on	Daydream	VR

Performance	Improvements
The	other	pillar	of	rendering	techniques	aims	to	help	your	VR	experiences	render	in	less	time	or	using
fewer	resources	to	get	the	same	result.
These	optimizations	are	important	because	not	only	do	they	allow	you	to	spend	more	time	rendering	other
aspects	of	your	game	(such	as	shadows	or	fancy	Materials)	that	can	make	your	worlds	look	more
realistic,	but	they	also	allow	you	to	run	your	current	experiences	on	lower-end	hardware.	This	can	be
very	important	for	mobile	VR	but	also	for	lowering	the	barrier	to	entry	for	VR,	bringing	high-quality
experiences	to	more	people.
We	have	looked	at	how	a	frame	is	timed	and	when	is	the	best	time	to	call	rendering	options	on	CPU	and
GPU	to	minimize	latency;	now	we	will	look	at	how	a	frame	is	actually	rendered	to	see	what	kind	of
performance	savings	you	may	be	able	get	from	simply	changing	the	way	your	frame	renders.



Forward	versus	Deferred
A	traditional	game	world	in	its	barest	form	consists	of	thousands	and	thousands	of	individual	one-
dimensional	points	in	space	(known	as	vertices).	However,	these	points	on	their	own	aren’t	conducive	to
creating	a	realistic	3D	world.	To	convey	to	the	player	the	sense	of	viewing	a	fully	three-dimensional
world,	these	points	are	first	grouped	into	two-dimensional	triangles.	Combining	these	triangles	in	a	3D
environment	gives	the	user	an	idea	of	the	shape	of	objects	in	your	world.	Although	these	shapes	may
convey	a	limited	view	of	an	object’s	form	(through	the	perspective	projections	that	are	usually	applied),
shading	is	used	to	get	a	true	sense	of	how	the	object	exists	in	the	3D	world.	Shading	aims	to	show	to	the
player	how	light	interacts	with	objects	in	your	game	world.	Before	we	get	into	how	this	lighting	is
accomplished	in	gaming,	we	need	to	look	at	the	process	that	leads	up	to	the	lighting	stage.
Rendering	in	games	works	on	what	is	called	a	programmable	pipeline.	This	means	that	(as	opposed	to
the	fixed	pipelines	of	yesteryear)	the	graphics	APIs	allow	game	developers	to	control	how	the	vertices
and	fragments	(data	that	can	be	used	to	produce	pixels)	are	processed	to	produce	the	final	image	on	the
player’s	screen.
Current	graphics	APIs	allow	the	chaining	of	many	different	shaders	before	the	final	pixel	values	of	your
game	world	are	shown	to	your	user;	however,	for	simplicity	we	will	focus	on	the	two	most	important
shaders,	the	vertex	shader	and	the	fragment/pixel	shader.
In	a	simple	application	the	vertex	shader	takes	as	input	the	vertices	of	an	individual	piece	of	geometry	in
your	game	world	and	does	all	the	necessary	transformations	to	turn	those	points	into	the	appropriate	form
for	the	fragment	shader	(such	as	converting	from	object	space	to	screen	space	and	applying	the
perspective	projection	of	the	virtual	camera).
After	this	stage,	however,	there	are	a	few	options.	The	two	options	that	categorize	the	main	rendering
techniques	applicable	to	your	UE4	applications	are	forward	rendering	and	deferred	shading.

Forward	Rendering
In	a	traditional	forward	rendering	setup,	the	next	stage	is	quite	simple.	The	fragment	shader	takes	as	input
the	output	of	the	vertex	shader	(in	practice	there	is	an	intermediary	shader	called	the	geometry	shader,	but
this	is	left	out	for	simplicity).	Using	this	vertex	data,	you	can	then	loop	over	all	the	potential	pixels	that
will	end	up	being	displayed	to	the	player.	These	potential	pixels	are	called	fragments,	and	the	job	of	this
shader	is	to	take	these	fragments	and	shade	them	or	rather	calculate	the	final	color	of	the	pixels	that	will
be	shown	on	the	screen	(see	Figure	10.10).



Figure	10.10	Forward	rendering	versus	deferred	shading.	The	forward	approach	does	all	lighting	in
the	fragment	shader,	whereas	the	deferred	approach	puts	descriptions	of	each	fragment	into	buffers	that

can	be	used	to	light	the	scene	at	a	later	time.

Many	techniques	can	be	used	to	actually	shade	these	fragments;	however,	as	a	base	you	will	need	a	few
things.	First,	you	can	use	the	vertex	data	to	calculate	the	outward	direction	of	the	triangle	to	which	a
fragment	belongs	(referred	to	as	the	normal).	This	allows	you	to	then	loop	over	all	the	lights	in	your	scene
and	compare	the	outward	angle	of	your	triangle	to	the	direction	of	the	light	source.	You	can	thus	calculate
how	intensely	a	light	will	affect	your	particular	surface.	You	can	then	use	the	vertex	data	once	more	to
find	the	world	space	position	of	your	fragment	and	use	this	to	scale	how	much	any	light	affects	it	by	how
far	away	that	light	is.

Note
The	process	of	projecting	the	vertices	that	exist	in	your	world	to	the	screen	to	be	shaded	is	called
rasterization	and	will	come	up	again	in	a	little	while.

Those	familiar	with	forward	rendering	will	notice	that	there	are	a	few	nonoptimal	things	about	this
approach.	First,	you	have	to	loop	over	all	the	lights	in	your	scene	for	every	fragment	that	is	shaded,	even
if	that	fragment	is	hardly	affected	(if	at	all)	by	a	particular	light.	This	can	be	partially	avoided	by	checking
the	radius	of	influence	(attenuation)	of	each	light	to	see	whether	it	reaches	the	fragment	and	if	it	doesn’t,
skipping	over	that	light;	however,	as	we	will	discuss	later,	there	may	be	better	ways	to	handle	this.
Another	issue	with	this	basic	forward	rendering	is	that	because	of	the	way	triangles	are	rendered	in	your
scene,	you	may	fully	light	and	rasterize	a	piece	of	geometry	only	to	have	it	completely	covered	by	another
piece	of	geometry	later	in	your	rendering,	hence	wasting	GPU	time	on	something	that	the	user	will	not	see.
This	phenomenon	is	known	as	overdraw,	and	because	of	this	inefficiency	the	performance	of	basic
forward	rendering	is	limited	by	the	amount	of	geometry	in	your	world	multiplied	by	the	number	of



dynamic	lights.

Note
Overdraw	can	be	pretty	much	eliminated	with	an	Early	Z-Pass,	which	renders	a	depth	buffer	that
can	be	tested	against	to	cull	pixels	that	will	be	hidden	in	the	final	image	(before	any	lighting	is
done	on	them).
However,	this	comes	with	the	cost	of	needing	to	rasterize	your	scene	twice,	which	depending	on
your	use	case	may	lead	to	worse	performance.

As	the	quest	for	realism	in	games	continued,	this	limit	on	the	number	of	dynamic	lights	began	to	become	a
bottleneck,	and	in	the	mid-2000s	a	deferred	approach	to	shading	became	popular	because	it	removed	the
dependency	between	the	number	of	lights	and	the	geometric	complexity	of	a	game	world.

Deferred	Shading
As	opposed	to	forward	rendering,	deferred	shading	takes	the	fragment	shader	from	the	forward	example
and	instead	of	outputting	the	final	pixel	to	be	displayed,	it	outputs	a	description	of	the	fragment	into	render
targets	or	buffers	which	will	then	be	combined	later	to	shade,	light,	and	output	the	final	pixel	information
(hence	deferring	the	lighting/shading	step).	See	Figure	10.10.	These	buffers	are	known	as	geometric
buffers	(G-buffers);	an	example	of	a	G-buffer	produced	by	UE4	can	be	seen	in	Figure	10.11.



Figure	10.11	Sample	G-buffer	from	an	example	Unreal	Engine	level

Deferred	rendering	isn’t	without	its	problems,	however,	though	it	may	eliminate	overdraw	for	the	usually
expensive	lighting	operations	(by	producing	a	depth	map	of	the	scene	before	any	lighting	is	done,
allowing	the	lighting	calculations	to	be	done	only	on	the	nearest	fragments).	The	depth	buffer	that	allows
this	also	makes	the	rendering	of	transparent	objects	hard.	Because	the	depth	buffer	can	represent	only	a
single	depth	value,	objects	that	may	need	multiple	depths	to	calculate	lighting	(such	as	semitransparent
objects)	cannot	be	represented	easily	in	deferred	rendering.
To	get	around	this,	many	deferred	rendering	implementations	may	need	to	fall	back	to	forward	rendering
for	transparent	objects,	meaning	you	will	need	to	rasterize	your	geometry	twice,	once	for	opaque	objects
and	a	second	time	for	transparent	objects.	(It	is	out	of	scope	for	this	book,	but	UE4	actually	creates	a
spherical	harmonic	for	each	transparent	object	that	allows	it	to	approximate	the	scene	lighting	and
compose	these	translucent	objects	into	the	scene	with	post	processing.)



Which	Approach	to	Choose:	Forward	or	Deferred?
For	desktop	applications,	UE4	natively	implements	a	deferred	renderer	because	the	G-buffer	allows	you
to	do	a	lot	of	fancy	rendering	tricks	that	can	make	your	games	look	very	realistic	(such	as	screen	space
reflection	[SSR],	screen	space	subsurface	scattering	[SSSS],	screen	space	ambient	occlusion	[SSAO],
and	many	others).	However,	these	effects	can	be	computationally	expensive,	and	because	the	rendering
requirements	of	VR	experiences	are	so	high,	in	most	cases	these	effects	cannot	be	used.	Also,	these
effects	may	not	be	the	best	fit	for	VR	because	they	are	calculated	in	screen	space,	which	due	to	the	stereo
nature	of	VR	may	create	stereo	disparities	and	cause	discomfort	to	your	users.
Forward	rendering	also	allows	easier	implementation	of	hardware-based	MSAA	(multi-sample	anti-
aliasing)	compared	to	the	post-process	TAA	(temporal	anti-aliasing)	that	UE4	implements	by	default.
MSAA	can	be	a	better	fit	for	VR	because	it	can	lead	to	a	sharper	image—it	affects	only	the	edges	of
geometry,	meaning	that	a	lower	screen	percentage	can	be	used	for	the	same	image	sharpness,	overall
reducing	the	render	cost.
In	some	cases,	however,	the	limits	of	standard	forward	rendering	may	be	a	pain	point	for	developers
(mainly	the	inefficiencies	of	dealing	with	many	dynamic	lights).	To	counteract	this,	there	are	many
techniques	for	both	forward	and	deferred	that	aim	to	efficiently	handle	millions	of	dynamic	lights.	The
two	leading	techniques	are	tiled	rendering	and	clustered	rendering.	It	is	also	worth	noting	that	both
techniques	can	be	implemented	with	forward	rendering	or	deferred	shading.	(In	fact,	if	there	are	enough
lights	in	your	scene,	UE4	will	move	to	a	tiled-deferred	render	instead	of	its	traditional	deferred.)
The	basic	idea	behind	a	tiled	approach	to	forward	rendering	is	to	limit	the	number	of	lights	over	which
each	shader	fragment	must	loop	to	calculate	its	lighting.	This	is	done	by	splitting	the	view	into	many
different	tiles	and	finding	which	lights	affect	each	specific	tile.	Then,	when	it	comes	time	to	render,	your
fragment	needs	to	loop	over	only	a	subset	of	the	total	lights	in	your	scene.	However,	there	is	still	one
potential	inefficiency	with	this	approach,	mainly	that	if	a	single	tile	contains	two	objects	that	are	affected
by	very	different	lights	(which	usually	happens	with	objects	that	are	far	away	from	each	other),	there	is	no
way	of	separating	them	because	the	objects	are	grouped	in	two	dimensions.	To	solve	this,	there	is
clustered	rendering,	which	not	only	splits	the	view	into	screen	space	tiles	but	also	divides	them	into
clusters	in	the	direction	of	the	camera	frustum	(see	Figure	10.12).



Figure	10.12	Tiled	versus	clustered	rendering

At	the	time	of	writing,	UE4	implements	a	deferred	renderer	on	the	desktop	whereas	a	forward	renderer
must	be	used	on	mobile	(because	of	the	pain	points	of	handling	the	needed	render	targets	for	deferred
rendering	on	mobile).	However,	because	of	the	stringent	rendering	requirements	of	VR	today	and	the	need
for	high-quality	but	cheap	anti-aliasing,	forward	rendering	may	very	well	be	a	better	option	for	the	current
state	of	VR	games.	Epic	is	planning	to	introduce	a	forward	renderer	for	desktop	in	the	UE4	4.14–4.15
timeline	which	will	potentially	allow	VR	developers	to	provide	higher-quality	experiences	for	their
users.	Note	that	in	the	current	implementation	many	of	the	rendering	features	of	UE4	(such	as	SSR	and
SSAO)	are	not	available	when	using	forward	rendering	because	the	G-buffer	that	is	required	to	use	such
features	is	not	created.	That	being	said,	however,	there	may	be	other	benefits	from	lighting	being
calculated	on	a	geometric	level	(such	as	planar	reflections	on	a	per-object	level)	that	outweigh	this
disadvantage.

Instanced	Stereo
As	shown	in	Figures	10.2	through	10.8,	the	draw	thread	represented	in	green	is	where	the	engine	submits
the	draw	calls	to	the	GPU	and	tells	it	what	to	render.	Unlike	a	normal	monitor	in	VR,	you	have	to	render
both	eyes	separately;	in	a	naïve	approach	you	can	simply	render	both	eyes	completely	independently	of
each	other.	However,	if	you’re	smart	about	it,	you	can	draw	both	eyes	at	the	same	time	and	cut	down	on
work	done	on	the	CPU.	In	fact,	in	Unreal	Engine	4.11	Epic	introduced	a	feature	called	Instanced	Stereo
Rendering	that	does	exactly	that.	It	is	not	enabled	by	default,	because	it	doesn’t	work	with	all	rendering
features	currently,	but	you	can	enable	it	in	the	Project	Settings	(see	Figure	10.13).



Figure	10.13	Instanced	Stereo	Rendering	Project	Settings

Hidden	Area	Mesh	Optimization
Because	the	lenses	in	VR	headsets	have	a	circular	field	of	view,	there	can	be	some	waste	in	rendering	to
the	entire	screen	of	the	display	if	the	user	will	never	see	it.	Therefore,	UE4	(since	version	4.10)
implements	a	hidden	area	mesh	that	automatically	culls	the	parts	that	will	never	be	seen.	This	technique
also	ensures	that	post-processing	effects	are	processed	only	on	the	parts	that	the	user	will	see.	This
feature	is	enabled	by	default.

VR	Project	Settings
When	creating	a	new	project,	UE4	by	default	throws	everything	it’s	got	at	you,	meaning	that	performance
may	suffer	from	the	number	of	features	that	the	engine	has.
To	thwart	this,	there	are	many	options	that	developers	can	toggle	as	well	as	a	few	presets	that	can	help
you	meet	the	hearty	requirements	of	rendering	a	VR	experience.
First,	there	are	the	Target	Hardware	and	Graphics	Performance	options	presented	in	the	project	creation
dialog	(see	Figure	10.14)	and	in	the	Project	Settings	(see	Figure	10.15).



Figure	10.14	Target	Hardware	and	Graphics	Performance	options	in	the	project	creation	dialog



Figure	10.15	Target	Hardware	and	Graphics	Performance	options	in	the	Project	Settings

To	see	the	differences	among	the	settings,	refer	to	Figure	10.16,	which	shows	Target	Hardware	options
with	their	respective	graphics	quality.	As	you	can	see,	setting	the	graphics	quality	to	Scalable	removes
Auto	Exposure	and	Motion	Blur	from	the	default	post-processing	effects.	It	also	disables	Anti-Aliasing
while	the	target	hardware	is	set	to	Desktop.	However,	setting	the	graphics	quality	to	Scalable	when	the
Target	Hardware	is	Mobile	simply	disables	Bloom	and	Mobile	HDR;	Auto	Exposure	and	Motion	Blur
have	already	been	disabled	by	setting	the	target	device	to	Mobile.



Figure	10.16	Rendering	settings	for	target	hardware	and	graphics

Because	Motion	Blur,	Auto	Exposure,	Bloom,	and	Ambient	Occlusion	are	all	effects	that	are	generally	not
needed	in	VR	games,	you	can	generally	gain	performance	by	turning	them	off.	Selecting	the	Mobile
Scalable	settings	during	project	creation	can	be	a	fast	way	to	do	so.
Notice	that	going	to	the	Mobile	Target	Hardware	disables	Separate	Translucency,	which	will	result	in	a
gain	in	performance	but	may	lead	to	some	artifacts	on	overlapping	transparent	surfaces	(see	Figure
10.17).	I	recommend	disabling	it	to	gain	performance	and	enabling	it	only	if	you	run	into	problems.



Figure	10.17	Two	separate	translucent	objects	overlapping	each	other:	left,	Separate	Translucency	on;
right,	Separate	Translucency	off

While	choosing	which	settings	to	turn	down	to	meet	your	performance	requirements,	you	may	have	come
across	the	Engine	Scalability	Settings	(Settings	→	Engine	Scalability	Settings);	see	Figure	10.18.	They
are	in	fact	just	that,	engine	settings,	and	do	not	affect	any	project	that	you	package	outside	of	the	engine.



Figure	10.18	Engine	Scalability	Settings

To	change	scalability	settings	and	have	them	affect	your	final	packaged	game,	place	all	of	your	settings	in
the	DefaultEngine.ini	(<ProjectName>/Config/DefaultEngine.ini)	in	the	form	of	console	commands	under
the	[SystemSettings]	banner.
As	an	example,	the	console	command	to	change	the	screen	percentage	is	r.screenpercentage=x	where
x	is	a	value	from	30	to	300	of	the	screen	percentage.
In	the	DefaultEngine.ini,	it	would	look	something	like	this	for	a	screen	percentage	of	130:

[SystemSettings]

r.screenpercentage=130

With	this,	you	can	change	the	default	value	for	nearly	all	engine	features	(such	as	anti-aliasing,
r.PostProcessAAQuality=x)	or	even	disable	features	like	HZB	occlusion	(r.HZBOcclusion=0),
which	has	a	high	up-front	cost	but	scales	better	than	the	default	occlusion.
Knowing	how	to	turn	engine	features	off	is	all	well	and	good,	but	how	do	you	figure	out	what	to	turn	off?
Before	you	answer	that	question,	you	need	to	find	out	whether	you	are	CPU	bound	or	GPU	bound—is	it
your	GPU	that	is	causing	the	rendering	to	be	too	slow	or	is	it	the	CPU?
To	answer	that,	use	the	console	command	Stat	Unit,	which	shows	you	frame	times	for	your	total	frame
as	well	as	the	game,	and	draw	(CPU)	threads,	and	finally	the	GPU	(see	Figure	10.19).	Basically,	the



highest	of	the	three	(game,	draw,	and	GPU)	determines	whether	you’re	CPU	bound	(by	either	your
gameplay	logic	with	the	game	thread	or	your	draw	calls	with	the	draw	thread)	or	GPU	bound.

Figure	10.19	Stat	Unit	timings

Once	you	know	which	you	are	bound	by,	you	can	then	profile	using	UE4’s	GPU	or	CPU	profiling	tools.
If	you	are	GPU	bound	(as	in	Figure	10.19),	you	can	use	the	GPU	Visualizer	(see	Figure	10.20)	by	either
using	the	console	command	ProfileGPU	or	the	shortcut	Ctrl	+	Shift	+	,	.	Once	the	Visualizer	is	open,	you
can	find	the	render	times	for	your	entire	frame	and	can	find	out	exactly	what	is	taking	longer	than	it
should.



Figure	10.20	GPU	Visualizer

If	you	are	CPU	bound	by	the	draw	thread,	you	are	most	likely	hitting	a	draw	call	limit	and	may	have	to
limit	how	many	objects	are	in	your	scene	or	combine	some	objects	into	one	mesh.	To	check	your	draw
calls,	use	the	console	command	Stat	SceneRendering.
If	you	are	CPU	bound	by	the	game	thread,	look	at	what	may	be	causing	the	issue	by	using	the	Stat	Game
console	command.

Summary
This	chapter	looked	at	why	rendering	a	VR	scene	is	a	challenge	because	of	the	demanding	specs	of
current	VR	HMDs.	You	looked	at	some	clever	optimizations	that	UE4	and	others	use	to	make	sure	your
experiences	are	rendered	at	the	highest	fidelity	and	lowest	latency.
You	looked	at	some	of	the	basic	project	settings	that	UE4	lets	you	easily	change,	whether	it’s	when	the
project	is	created	or	later	with	deeper,	more	specific	settings.	Finally,	you	looked	at	ways	to	determine
what	settings	may	be	causing	you	grief	when	trying	to	hit	your	performance	targets.

Exercises
To	hone	the	skills	you	learned	in	this	chapter,	optimize	your	own	games/experiences	or	deconstruct	the
sample	games	Epic	provides	with	UE4.



Part	III:	Appendices



Appendix	A.	VR	Editor

With	the	VR	Editor,	you	can	see	how	your	games/experiences	will	look	in	VR	as	you	create	them.	Using
motion	controllers,	you	are	able	to	richly	interact	with	objects	in	your	world,	translating,	scaling,	and
rotating	them	to	create	compelling	visual	experiences.	This	appendix	introduces	you	to	using	this	editor.

Enabling	the	VR	Editor
The	VR	Editor	is	currently	an	experimental	feature	(as	of	4.13)	and	must	be	enabled	in	the	Editor
Preferences	before	use.
To	enable	the	editor,	open	the	Editor	Preferences	(Edit	→	Editor	Preferences).	In	the	Experimental	tab,
check	the	Enable	VR	Editing	option	(see	Figure	A.1).	Underneath	this	option,	notice	the	Enable	VR	Mode
Auto-Entry	option;	this	automatically	enters	the	VR	Editor	when	the	proximity	sensor	is	activated	on
headsets	that	support	it.

Figure	A.1	Enabling	the	VR	Editor	in	the	Editor	Preferences

To	actually	open	the	VR	Editor,	close	the	Editor	Preferences	and,	in	the	shelf,	click	the	now-visible	VR
button	(see	Figure	A.2).



Figure	A.2	Toggling	the	VR	Editor	with	the	new	shelf	button

Controlling	the	VR	Editor
The	VR	Editor	allows	you	to	do	most	of	the	actions	that	can	be	performed	in	the	traditional	2D	editor.	But
in	VR,	a	few	controls	need	to	be	learned.
The	VR	Editor	makes	full	use	of	motion	controllers	and	won’t	work	to	its	full	potential	without	them.
Currently,	the	editor	supports	both	the	Oculus	Touch	and	HTC	Vive	controllers	and	makes	use	of	the
trigger	(to	select	objects),	the	grip/side	button	(to	navigate	around	the	world),	the	touchpad/joystick	(to
activate	the	Radial	Menu	and	to	scale	selected	objects),	and	the	menu/modifier	button	(to	perform
auxiliary	actions).	These	mappings	can	be	seen	by	placing	the	controller	upright	and	looking	at	it	with	the
VR	Editor	active	(see	Figure	A.3).



Figure	A.3	VR	Editor	controller	mappings

Navigating	the	World
To	navigate	the	world	inside	the	VR	Editor,	use	the	Move	World	button	(usually	mapped	to	the	side
button).	Pressing	this	button	on	a	single	controller	and	moving	it	makes	it	seem	as	if	you	are	pulling
yourself	through	the	world,	allowing	you	to	position	yourself	anywhere	within	it	(see	Figure	A.4).
Pushing	this	button	on	both	controllers	allows	you	to	scale	the	world	down	and	up	(by	moving	the
controllers	toward	and	away	from	each	other;	see	Figure	A.4)	and	rotate	the	world	in	the	yaw	axis	(by
rotating	the	controllers	around	each	other).



Figure	A.4	VR	Editor	navigating	the	world

Interacting	with	Objects
To	interact	with	objects	when	inside	the	VR	Editor,	use	the	Select	and	Move	button	(usually	mapped	to
the	trigger).	Half-pressing	this	button	on	a	controller	selects	the	object	that	is	intersecting	with	that
controller’s	laser	pointer;	to	select	multiple	objects,	continue	half-pressing	this	button	on	one	controller
while	the	other	controller	selects	other	objects.	Selecting	an	object	in	this	way	shows	the	object	Gizmo
(see	Figure	A.5)	and	allows	you	to	translate,	scale,	and	rotate	the	selected	object(s)	by	grabbing	the
appropriate	Gizmo	controls.	Another	way	to	transform	objects	in	the	VR	Editor	is	to	enter	Freeform	mode
by	fully	pressing	the	trigger	down	on	a	controller	(see	Figure	A.5),	where	the	selected	object	enters
Freeform	mode.	In	this	mode,	you	can	translate	the	object	by	moving	the	motion	controller	or	push	it
toward/away	from	you	by	sliding	on	the	touchpad	or	joystick.	Once	in	Freeform	mode,	you	can	also	select
the	object	with	a	second	controller,	then	scale	the	object	by	moving	the	controllers	toward/away	from
each	other	or	rotate	the	object	by	rotating	the	controllers.



Figure	A.5	VR	Editor	interacting	with	objects

Interacting	with	Menus
The	VR	Editor	currently	has	two	types	of	menus:	the	Radial	Menu	and	the	Quick	Select	Menu.	The	Radial
Menu	can	be	accessed	by	sliding	your	finger	on	the	touchpad	or	moving	the	joystick	and	contains
frequently	used	shortcuts	like	Undo/Redo	and	Copy/Paste	(see	Figure	A.6).	The	Quick	Select	Menu	can
be	accessed	by	pointing	one	motion	controller	at	the	other.	It	contains	four	sections	(Grid	Snap,	Interface,
Gizmo,	and	Play)	that	allow	you	to	change	snapping	options,	access	2D	interface	elements	from	the
traditional	editor,	control	the	Gizmo,	and	play	the	game	(see	Figure	A.6).



Figure	A.6	VR	Editor	accessing	the	Radial	Menu	(left)	and	the	Quick	Select	Menu	(right)

When	selecting	an	option	from	the	Interface	section,	the	selected	2D	UI	element	docks	to	the	end	of	your
controller	(see	Figure	A.7)	and	allows	you	to	interact	with	that	element	with	the	other	controller	through
the	laser	pointer.	To	undock	the	UI	element,	select	the	gray	rectangle	underneath	the	element	with	the
trigger	and	move	it	away	from	its	docked	position	(see	Figure	A.8).	Once	an	element	is	undocked,	it
remains	in	that	position	and	allows	you	to	grab	more	elements	from	the	Quick	Select	Menu.	To	quickly
access	common	UI	elements,	press	down	in	the	middle	of	the	touchpad	or	joystick	to	toggle	key	windows.



Figure	A.7	VR	Editor	interacting	with	the	traditional	UI



Figure	A.8	VR	Editor	undocking	the	UI	elements

Summary
This	appendix	looked	at	the	experimental	VR	Editor,	which	allows	you	to	create	and	edit	your	VR	worlds
in	VR.	You	should	now	have	all	the	necessary	knowledge	to	start	learning	this	new	interaction	paradigm
and	start	designing	and	creating	VR	content	in	VR.



Appendix	B.	Resources

Looking	for	even	more	on	VR?	This	appendix	helps	you	find	the	right	communities	and	resources	that	can
assist	you	on	your	journey	to	create	the	perfect	VR	experience.

Epic
Epic	has	a	good	amount	of	resources	to	help	with	overcoming	problems	and	expanding	your	knowledge
when	it	comes	to	UE4	and	VR.	The	documentation	helps	you	with	any	engine	features	that	are	not	covered
in	this	book,	and	the	AnswerHub	and	Forum	allow	you	to	ask	any	questions	you	might	have	or	simply
participate	in	the	growing	VR	community.	Epic	also	runs	a	weekly	live	training	stream	on
Twitch/YouTube	that	often	covers	topics	on	VR.

	Documentation:	https://docs.unrealengine.com/latest/INT/Platforms/VR/index.html
	AnswerHub:	https://answers.unrealengine.com
	Forum:	https://forums.unrealengine.com/forumdisplay.php?27-VR-Development
	YouTube:	www.youtube.com/user/UnrealDevelopmentKit
	VR	Live	Training:	www.youtube.com/playlist?list=PLZlv_N0_O1gY7G589Z3I5-Dz7AdFSIWaG

Oculus
Oculus	provides	a	wide	variety	of	documentation	for	its	platform	and	headsets.	Some	of	the	details	may
be	redundant,	because	a	lot	of	developers	rely	on	Epic’s	implementation	of	the	various	SDKs.	However,
the	provided	Best	Practices	Guide	explores	a	lot	of	important	concepts	for	VR	in	general.	Oculus	also
hosts	a	yearly	developer	conference	(Oculus	Connect)	that	includes	presentations	from	VR	developers.
These	talks	are	hosted	online	after	the	conference	(found	on	Oculus’s	YouTube	page).

	Documentation:	https://developer3.oculus.com/documentation/
	Best	Practices:	https://developer3.oculus.com/documentation/intro-vr/latest/concepts/bp_intro/
	Forums:	https://forums.oculus.com/community/discussions
	YouTube:	www.youtube.com/user/oculusvr
	Oculus	Connect	2014:	www.youtube.com/playlist?
list=PLL2xVXGs1SP5CVE6X3GMSroO2cfHxzeCz
	Oculus	Connect	2015:	www.youtube.com/playlist?
list=PLL2xVXGs1SP4kxSKQsG40PCsItIujwznZ

Valve
Valve	hasn’t	produced	any	best	practices	guides	yet,	but	it	does	have	a	Steam	community	for	Steam	VR
developers,	which	is	frequently	updated	with	blog	posts.	Valve	also	has	an	almost-yearly	conference
(Steam	Dev	Days)	that	allows	developers	to	attend	talks	and	discuss	all	things	game	development	with
other	developers.

	Documentation:	http://steamcommunity.com/steamvr
	Forums:	https://steamcommunity.com/app/358720/discussions/
	YouTube:	www.youtube.com/user/SteamworksDev
	Steam	Dev	Days	2014:	www.youtube.com/playlist?list=PLckFgM6dUP2hc4iy-

https://docs.unrealengine.com/latest/INT/Platforms/VR/index.html
https://answers.unrealengine.com
https://forums.unrealengine.com/forumdisplay.php?27-VR-Development
http://www.youtube.com/user/UnrealDevelopmentKit
http://www.youtube.com/playlist?list=PLZlv_N0_O1gY7G589Z3I5-Dz7AdFSIWaG
https://developer3.oculus.com/documentation/
https://developer3.oculus.com/documentation/intro-vr/latest/concepts/bp_intro/
https://forums.oculus.com/community/discussions
http://www.youtube.com/user/oculusvr
http://www.youtube.com/playlist?list=PLL2xVXGs1SP5CVE6X3GMSroO2cfHxzeCz
http://www.youtube.com/playlist?list=PLL2xVXGs1SP4kxSKQsG40PCsItIujwznZ
http://steamcommunity.com/steamvr
https://steamcommunity.com/app/358720/discussions/
http://www.youtube.com/user/SteamworksDev
http://www.youtube.com/playlist?list=PLckFgM6dUP2hc4iy-IdKFtqR9TeZWMPjm


IdKFtqR9TeZWMPjm

Google
Google	has	a	few	pages	that	document	its	various	VR	SDKs	and	a	YouTube	channel	that	fairly	regularly
contains	information	and	tips	on	developing	for	Daydream/Cardboard	among	its	various	other	platforms.
Google	also	hosts	a	yearly	developer	conference	(Google	I/O)	that	features	some	talks	concerning	VR,
which	are	uploaded	to	YouTube.

	Documentation:	https://developers.google.com/vr/unreal/
	YouTube:	www.youtube.com/user/GoogleDevelopers
	Google	I/O	2016:	www.youtube.com/playlist?list=PLOU2XLYxmsILe6_eGvDN3GyiodoV3qNSC

Community
Sometimes	the	officially	supported	channels	may	not	have	all	the	information	you	need.	In	that	case,	VR
developer	communities	may	be	able	to	answer	your	questions:

	Oculus	Developer	Reddit:	www.reddit.com/r/oculusdev
	General	UE4	Developer	Reddit:	www.reddit.com/r/UE4Devs/

Physical	Meetups
Whether	it’s	just	for	networking	or	for	learning	new	topics	from	guest	speakers,	there	are	various	physical
meetups	for	Unreal	Engine	or	VR	in	general:

	UE4	Meetups:	www.meetup.com/pro/UnrealEngine/
	SVVR	(Silicon	Valley	Virtual	Reality):	http://svvr.com

Conferences
If	you	want	a	more	formal	meetup	of	developers,	many	conferences	are	held	each	year	that	appeal	to	VR
developers:

	GDC	(VRDC)	(Game	Developers	Conference):	www.gdconf.com
	Oculus	Connect:	www.oculusconnect.com
	Steam	Dev	Days:	www.steamdevdays.com
	Google	I/O:	https://events.google.com/io2016/

https://developers.google.com/vr/unreal/
http://www.youtube.com/user/GoogleDevelopers
http://www.youtube.com/playlist?list=PLOU2XLYxmsILe6_eGvDN3GyiodoV3qNSC
http://www.reddit.com/r/oculusdev
http://www.reddit.com/r/UE4Devs/
http://www.meetup.com/pro/UnrealEngine/
http://svvr.com
http://www.gdconf.com
http://www.oculusconnect.com
http://www.steamdevdays.com
https://events.google.com/io2016/
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shake,	avoiding,	10

Capsules,	defining,	52.	See	also	Traces.
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Classes	vs.	interfaces,	56
Clear	Loading	Splash	Screens	function,	46
Clustered	rendering,	219–220
Collision	conservation,	166
Collision	responses,	53,	82
Commands,	console,	226–228
Community	resources,	245
Configuring	VR.	See	VR	project	settings.
Conserving	collision,	166



Console	commands,	226–228
CPU	bound	vs.	GPU	bound,	227–228
Culling	unseen	objects,	221
Customizing	VR.	See	VR	project	settings.

D
Daydream	motion	controller,	native	support	for,	6
Daydream	VR,	native	support	for,	5
Deferred	rendering,	native	support	for,	9
Deferred	shading	vs.	forward	rendering,	215–220
Deployment	to	a	phone,	readying	for,	14
Devices.	See	Hardware.
Direction	vectors
getting,	55
length	of,	52

Disorientation,	from	teleportation,	86
Documentation,	Epic
Gear	VR	project	setup,	14
Rift	setup,	32–41
Vive	setup,	32–41

Dot	products,	80–83
Dragging,	hovered-on	objects,	157–158
Draw	calls,	checking,	228
Dropped	frames,	compensating	for,	8
Dropping,	objects,	158–160

E
Editors
animation.	See	Persona.
VR.	See	VR	editor.

Enable	Auto	Loading	Splash	Screen	function,	46
Enable	HMD	function,	45
Enable	Player	Camera	Manager	Follow	HMD	function,	47
Enable	Player	Controller	Follow	HMD	function,	47
Engine	feature	defaults,	changing,	226–228
Engine	Scalability	Settings,	226
Epic
Bullet	Train,	155
resources,	244

Epic,	documentation
Gear	VR	project	setup,	14
Rift	setup,	32–41



Vive	setup,	32–41

F
FABRIK	(Forward	and	Backward	Reaching	Inverse	Kinematics),	126–127
Field	of	view,	best	practices,	10
First	Person	Template
running	in	place,	201–205
snap	turning,	194–201

Focus	state,	getting,	44
Follow	HMD,	enabling	for	HMDs,	46
Forward	kinematics,	vs.	inverse	kinematics,	126
Forward	rendering
vs.	deferred	shading,	215–220
native	support	for,	9

FOV	(field	of	view),	208–209
Fragment	shaders,	215–219
Frame	rates,	best	practices,	10
Front	buffer	rendering,	8,	213–214
Functions.	See	also	specific	functions.
generic,	44–45
Oculus,	45–47
Steam	VR,	47

G
G-buffers,	217–219
Gear	VR
circular	spinner,	creating,	26–32
global	menu	setup,	20–26
native	support	for,	4
progress	indicator,	creating,	26–32
project	setup,	14–20
readying	for	deployment,	14

Geometric	buffers,	217–219
Get	Base	Rotation	and	Base	Offset	in	Meters	function,	46
Get	Hand	Position	and	Orientation	function,	47
Get	HMD	Device	Name	function,	45
Get	Orientation	and	Position	function,	44
Get	Player	Camera	Manager	Follow	HMD	function,	46
Get	Pose	function,	46
Get	Positional	Tracking	Camera	Parameters	function,	44
Get	Raw	Sensor	Data	function,	46
Get	Screen	Percentage	function,	44



Get	Tracked	Device	Position	and	Orientation	function,	47
Get	Tracking	Origin	function,	44
Get	Tracking	Sensor	Parameters	function,	44
Get	User	Profile	function,	46
Get	Valid	Tracked	Device	IDs	function,	47
Get	VR	Focus	State	function,	44
Get	World	to	Meters	Scale	function,	44
GetForwardVector	node,	55
Google
Cardboard,	native	support	for,	5
resources,	245
VR,	native	support	for,	5
VR	SDK,	native	support	for,	7

GPU	bound	vs.	CPU	bound,	227–228
Gravity,	disabling,	166

H
Hand	IK,	setting	up.	See	also	Head	IK;	IK	(inverse	kinematics).
adding	motion	controllers,	137–138
animation	Blueprint,	138–144

Hardware,	natively	supported.	See	also	Software,	natively	supported.
Daydream	motion	controller,	6
Daydream	VR,	5
Gear	VR,	4
Google	Cardboard,	5
Google	VR,	5
HMDs,	4–5
motion	controllers,	5–6
Oculus	Touch,	5
OSVR	(Open	Source	Virtual	Reality),	5
PlayStation	Move,	6
PlayStation	VR,	5
Rift,	4
Vive,	4,	6

Head	IK,	setting	up.	See	also	Hand	IK;	IK	(inverse	kinematics).
animation	Blueprint,	132–137
Mirror	creation,	128–130
Pawn	creation,	130–132

Head	tracking.	See	Head	IK,	setting	up.
Hidden	area	mesh,	221
Hidden	mesh	optimization,	native	support	for,	8
Hide	Loading	Icon	function,	46



Hide	Loading	Splash	Screen	function,	47
HMD	SP	command,	44
HMDs	(Head	Mounted	Displays)
base	rotation	and	offset,	getting,	46
detecting	small	motion	changes,	46
enabled,	testing	for,	45
enabling,	45
Follow	HMD,	enabling,	46
generic	functions,	44–45
getting	raw	data	from	the	IMU,	46
Is	Head	Mounted	Display	Enabled	function,	44
name,	getting,	45
native	support	for,	4–5
neck	position	for	virtual	head	model,	getting,	46
position	and	rotation,	getting,	46
scaling	positional	tracking,	46
testing	for,	44

Hovered-on	objects.	See	Objects,	hovered	on.
HTC/Valve
motion	controllers,	149
resources,	244–245

I
IK	(inverse	kinematics)
arm	movement,	138–144
creating,	tool	for,	9
FABRIK	(Forward	and	Backward	Reaching	Inverse	Kinematics),	126–127
vs.	forward	kinematics,	126
hand	movement,	137–144
head	movement,	128–137
introduction,	126–127
Joint	Targets,	126
multi-bone	method.	See	FABRIK.
previewing	a	character,	128–130
testing,	128–130
two-bone	method,	126,	138–144

Inheritance
Blueprints,	56
interfaces,	56

Instanced	Stereo	rendering
native	support	for,	8,	220–221
optimization,	220–221



Interaction	function,	setting	up,	64–71
Interaction	interface,	setting	up,	58–61
Interaction	Pawn
adding	interaction	to,	161–163
setting	up,	73–75

Interactor	component,	creating,	153–163
Interfaces,	55–56
Is	Auto	Loading	Splash	Screen	function,	46
Is	Head	Mounted	Display	Enabled	function,	44
Is	In	Low	Persistence	Mode	function,	45
Is	Loading	Icon	Enabled	function,	46
Is	Player	Controller	Follow	HMD	Enabled	function,	46

J
Joint	movement,	interpolating.	See	IK	(inverse	kinematics).
Joint	Targets,	126
Judder,	8

L
Latency	mitigation
front	buffer	rendering,	213–214
overview,	209–213
scanline	racing,	213–214
a	simple	rendering	pipeline,	209–214
timewarping,	212–213

Lens	distortion,	208–209
Level	loads,	best	practices	for	asynchronous	loading,	10
Levers
components	of,	creating,	176–177
resetting,	182–185
rotating,	177–181
triggering,	186–187
visual	representation	of,	176–177

Light	intensity,	calculating,	216–220
Lines,	traces
calculating	a	start	and	end	point,	53–55
downsides	of,	80–83
example,	52

LineTrace	function,	setting	up,	62–63
Locomotion
acceleration,	detecting,	190
First	Person	Template,	194–201,	201–205



optic	flow,	190
running	in	place,	201–205
snap	turning,	194–201
vection,	190
visual	sensation	of	movement,	190

Locomotion,	types	of.	See	also	Teleportation.
artificial,	193
natural,	191
physical,	192–193
vehicle,	192

Low	persistence	mode,	testing	for,	45

M
Menu	Actor,	creating,	108–111
Menu	interaction,	VR	editor,	239–241
Menu	Pawn,	creating,	111–113
Menus
asynchronous	loading,	best	practices,	10
custom	interaction,	113–122
Gear	VR	global	menu	setup,	20–26
global	setup,	20–26

Menus,	creating
menu	Actor,	108–111
menu	Pawn,	111–113
UMG	widget,	105–107

Mirror	creation,	128–130
Mobile	Scalable	settings,	224
Motion	Blur,	disabling,	224
Motion	changes,	detecting,	46
Motion	controllers
adding	to	hand	IK,	137–138
affordances,	148
HTC/Valve,	149
introduction,	148
natively	supported,	5–6
Oculus,	149
picking	up	objects,	155
player	intent,	determining,	155
PlayStation,	149
shared	input	paradigms,	149
sphere	overlap,	alternative	to,	155
triggers,	149



Motion	controllers,	interactive	objects.	See	also	Buttons;	Levers.
conserving	collision,	166
gravity,	disabling,	166
physics	simulations,	disabling,	166
Static	Mesh	Actor,	163–166

Motion	controllers,	world	interaction	project
dragging	on	hovered	objects,	157–158
dropping	objects,	158–160
hover	interface	messages,	changing,	155–156
hovered-on	objects,	remembering,	153–156
hovered-on	objects,	uses	for,	161
interacting	with	objects,	151–163
Interaction	Pawn,	adding	interaction	to,	161–163
interactor	component,	creating,	153–163
interface,	creating,	151–153
object	overlaps,	detecting,	153–156
picking	up	objects,	158–160
setting	up,	149–151
with	two	controllers,	163

Motion	sickness.	See	Simulator	sickness.
MotionController	Component,	changing	hand	setting,	151
Motion-to-photon	time,	208
Move,	native	support	for,	6
Movement.	See	Locomotion.

N
Natural	locomotion,	191
Navigation,	with	the	VR	editor,	237
Neck	position	for	virtual	head	model,	getting,	46

O
Object	traces,	53
Object	Types	parameter,	53
Objects
affordances,	148
blocking	lines,	detecting,	52
dropping,	158–160
interacting	with,	151–163.	See	also	Motion	controllers.
interaction	with	the	VR	editor,	238–239
interactive,	setting	up	trace	interaction,	75–79.	See	also	Motion	controllers,	interactive	objects.
intersecting	with	other	objects,	52
overlaps,	detecting,	153–156



picking	up,	158–160
of	player’s	attention,	traces,	52–55
players	interacting	with.	See	Trace	interaction.
properties	that	suggest	use.	See	Affordances.
searching	for	specific	types	of,	53
selecting	with	the	VR	editor,	238–239
transforming	with	the	VR	editor,	238–239
between	two	points,	detecting,	53–55.	See	also	Traces.
unseen,	culling,	221

Objects,	hovered	on
dragging,	157–158
hover	interface	messages,	changing,	155–156
remembering,	153–156
uses	for,	161

Occlusion,	123,	224
Oculus.	See	also	Rift.
Audio	SDK,	native	support	for,	7
functions,	45–47
Mobile	SDK,	native	support	for,	7
motion	controllers,	149
PC	SDK,	native	support	for,	6
resources,	244

Online	resources.	See	also	Resources.
companion	website	for	this	book,	xv
Epic	documentation,	14
practices	that	discomfort	most	players,	10
Rift	projects,	33
Vive	projects,	33

OpenVR	SDK,	native	support	for,	7
Optic	flow,	190
Optimization
hidden	mesh,	native	support	for,	8
latency	mitigation,	209–214
project	settings.	See	VR	project	settings.
rendering.	See	Rendering,	optimization.
visible	mesh,	native	support	for,	8

Origins
custom	HMD,	setting	offset	for,	47
resetting	orientation	and	position,	45
Set	Base	Rotation	and	Base	Offset	in	Meters	function,	47

Orthographical	projection	of	user	interfaces,	104
OSVR	(Open	Source	Virtual	Reality),	native	support	for,	5



OSVR	SDK,	native	support	for,	7
Overdraw,	eliminating,	217
Overlapping	objects,	detecting,	153–156
Overlapping	translucency,	225

P
Parabolic	tracing,	86–92
Pawn	creation,	head	IK,	130–132
Performance	improvements.	See	Latency	mitigation;	Rendering,	optimization;	VR	project	settings.
Persona,	native	support	for,	9
Physical	locomotion,	192–193
Physics	simulations,	disabling,	166
Picking	up	objects,	158–160
Pixel	shaders.	See	Fragment	shaders.
Player	controller
Follow	HMD,	enabling,	46
Follow	HMD	status,	getting,	46

Player	discomfort
common	discomforting	practices,	10
disorientation,	86
nausea,	10
orthographical	projection	of	UIs,	104
simulator	sickness,	190,	208
teleportation,	86

Players
aim	assist,	81,	83
focus	of	attention,	estimating,	80–83.	See	also	Trace	interaction;	Traces.
head	motion,	best	practices,	10
intent,	determining,	81,	155
detecting	interaction	with	objects,	80–82.	See	also	Trace	interaction.
movement.	See	Locomotion.
previewing	a	character,	128–130
profiles,	getting,	46
selecting	objects,	81–83

PlayStation
motion	controllers,	149
Move,	native	support	for,	6
VR,	native	support	for,	5

Points,	detecting	objects	between.	See	Traces.
Points	in	space.	See	Vertices.
Position,	getting,	46
Positional	tracking,	scaling,	46



Pressing,	buttons,	170–174
Previewing	a	character,	128–130
ProfileGPU	command,	227
Programmable	pipeline,	215
Progress	indicator,	creating,	26–32
Project	setup.	See	specific	projects.
Proportional	scaling	of	the	VR	view
World	to	Meters	scale	factor,	getting,	44
World	to	Meters	scale	factor,	setting,	45

Protocols.	See	Interfaces.

Q
Quick	Select	Menu,	239–241

R
Radial	Menu,	239–241
Raising	buttons,	172–173
Rasterization,	217–218
Ray	casts.	See	Traces.
Registering	this	book,	xv
Remembering,	hovered-on	objects,	153–156
Rendering,	natively	supported
3D	scenes,	9
deferred,	9
forward,	9
front	buffer,	8
Instanced	Stereo,	8,	220–221

Rendering,	optimization	barrel	distortion,	208–209
clustered	rendering,	219–220
culling	unseen	objects,	221
deferred	shading,	215–220
forward	rendering	vs.	deferred	shading,	215–220
FOV	(field	of	view),	208–209
fragment	shaders,	215–219
G-buffers,	217–219
geometric	buffers,	217–219
hidden	area	mesh,	221
Instanced	Stereo,	220–221
light	intensity,	calculating,	216–220
motion-to-photon	time,	208
native	resolution,	209
overdraw,	eliminating,	217



programmable	pipeline,	215
rasterization,	217–218
screen	percentage,	209
shaders,	215–219
tiled	rendering,	219–220
transparent	objects,	218
vertex	shaders,	215–219
VR	lens	distortion,	208–209
VR	project	settings,	222–225

Rendering	pipeline,	example,	209–214
Reprojection,	native	support	for,	8
Reset	Orientation	and	Position	function,	45
Resetting	levers,	182–185
Resolution,	getting,	10
Resources.	See	also	Online	resources.
community,	245
conferences,	246
Epic,	244
Google,	245
HTC/Valve,	244–245
Oculus,	244
physical	meetings,	245

Rift
low	persistence	mode,	45
native	support	for,	4
tracking	origins,	39–41,	44
tracking	screen	percentage,	44

Rift	projects
documentation,	32–33
setting	up,	33–39

Rotating	levers,	177–181
Rotation,	getting,	46
r.screenPercentage	command,	44
Running	in	place,	201–205

S
Samsung	Gear	VR.	See	Gear	VR.
Scaling
Engine	Scalability	Settings,	226
Get	World	to	Meters	Scale	function,	44
Mobile	Scalable	settings,	224
positional	tracking,	HMDs,	46



proportional	scaling	of	the	VR	view,	44–45
Set	Position	Scale	3D	function,	46
Set	World	to	Meters	Scale	function,	45
the	world	with	the	VR	editor,	237

Scanline	racing,	8,	213–214
Screen	percentage
changing,	226
definition,	209
getting,	10

Screen	space	effects,	best	practices,	10
SDKs,	native	support	for,	6–7
Searching.	See	Traces.
Seated	origin	vs.	standing,	40–41
Selecting	objects,	by	player	attention,	81–83
Selecting	objects	with	the	VR	editor,	238–239
Separate	Translucency,	disabling,	225
Sequencer,	native	support	for,	9
Set	Base	Rotation	and	Base	Offset	in	Meters	function,	47
Set	Clipping	Plane	function,	45
Set	Position	Scale	3D	function,	46
Set	Tracking	Origin	function,	45
Set	World	to	Meters	Scale	function,	45
Setting	up	VR.	See	VR	project	settings.
Shaders,	215–219
Shapes,	traces	for,	52–53,	83
Show	Loading	Icon	function,	46
Show	Loading	Splash	Screen	function,	47
Simulator	sickness,	190,	208
Snap	turning,	194–201
Software,	natively	supported.	See	also	Hardware,	natively	supported.
animation	editor.	See	Persona.
Blueprints,	9
cinematics	tools.	See	Sequencer.
Google	VR	SDK,	7
hidden	mesh	optimization,	8
Oculus	Audio	SDK,	7
Oculus	Mobile	SDK,	7
Oculus	PC	SDK,	6
OpenVR	SDK,	7
OSVR	SDK,	7
Persona,	9
reprojection,	8



scanline	racing,	8
SDKs,	6–7
Sequencer,	9
timewarp,	8
UMG	(Unreal	Motion	Graphics),	9
Unreal	Engine	systems,	9
user	interface	system,	9
visible	mesh	optimization,	8
visual	scripting	language.	See	Blueprints.

Sphere	overlap,	alternative	to,	155
Spheres,	defining,	52.	See	also	Traces.
Splash	screens	between	level	loads
2D	texture,	46
adding,	46
alternative	2D	display,	47
auto	loading,	detecting/enabling,	46
clearing,	46
customizing,	46
enabling,	46,	47
hiding,	47
loading	icon,	showing/hiding,	46
loading	icon,	testing	for,	46
turning	on/off,	46,	47

Standing	origin	vs.	sitting,	40–41
Stat	Game	command,	228
Stat	SceneRendering	command,	228
Stat	Unit	command,	227
Static	Mesh	Actor,	163–166
Steam	VR	controllers
device	IDs,	getting,	47
device	orientation	and	position	relative	to	HMD	origin,	getting,	47
hand	position	and	orientation,	getting,	47

Steam	VR	functions,	47

T
Target	Hardware	and	Graphics	Performance	settings,	222–223
Teleportation
description,	191–192
downsides,	86
parabolic	tracing,	86–92
pros	and	cons,	191–192
setting	up,	86–92



vertical,	86–92
Teleportation,	visualizing
visualization	Actor,	94–95
visualization	Material,	92–94

Teleportation	volume,	95–100
Testing	inverse	kinematics,	128–130
3D	scenes,	rendering,	9
Tiled	rendering,	219–220
Timewarp,	native	support	for,	8
Timewarping,	212–213
Tips.	See	Best	practices.
Touch,	native	support	for,	5
Trace	Channel	parameter,	53
Trace	interaction
overview,	52–55
parabolic	tracing,	86–92

Trace	interaction,	setting	up
basic	interactive	objects,	75–79
basic	project,	57–58
interaction	function,	64–71
interaction	interface,	58–61
Interaction	Pawn,	73–75
LineTrace	function,	62–63
Trace	Interaction	Component,	61–73

Trace	Interaction	Component
custom	menu	interaction,	113–122
setting	up,	61–73

Traces
Channel,	53
definition,	52
direction	vectors,	getting,	55
Object,	53
for	object	of	player’s	attention,	52–55
setting	up,	53–55
shapes,	52–53,	83.	See	also	specific	shapes.
for	specific	types	of	objects,	53
types	of,	52–53
world	origin,	getting,	55

Traces,	lines
calculating	a	start	and	end	point,	53–55
downsides	of,	80–83
example,	52



Tracking	head	movement.	See	Head	IK,	setting	up.
Tracking	origins
Eye	Level,	setting,	45
Floor	Level,	40–41
Floor	Level,	setting,	45
Get	Orientation	and	Position	function,	44
Get	Positional	Tracking	Camera	Parameters	function,	44
Get	Tracking	Origin	function,	44
Get	Tracking	Sensor	Parameters	function,	44
Rift,	39–41,	44,	45
seated	vs.	standing,	40–41
Set	Tracking	Origin	function,	45
Vive,	39–41,	44,	45

Tracking	origins,	defaults
Rift,	40,	44
Vive,	41,	44

Translucency,	overlapping,	225
Transparent	objects,	rendering,	218
Triggering
events	with	buttons,	175
levers,	186–187

Triggers,	motion	controllers,	149
Trigonometry	of	rotating	levers,	179–181
2D	texture	splash	screen,	46
2D	UIs	(user	interfaces)
custom	menu	interaction,	113–122
issues	with,	104
readability,	104

2D	UIs	(user	interfaces),	creating	a	basic	VR	menu
menu	Actor,	108–111
menu	Pawn,	111–113
UMG	widget,	105–107

Two-bone	method	of	inverse	kinematics,	126,	138–144

U
UIs	(user	interfaces)
accessing	with	VR	editor,	240–241
determining	the	need	for,	104
head	locked.	See	2D	UIs.
intersection	with	game	geometry.	See	Occlusion.
native	support	for,	9
orthographical	projection,	104



two-dimensional.	See	2D	UIs.
UMG	(Unreal	Motion	Graphics)
compatibility,	105
history	of,	105
native	support	for,	9
widget	for	basic	menu,	creating,	105–107

Unreal	Engine	systems,	native	support	for,	9
Users.	See	Players.

V
Valve
motion	controllers,	149
resources,	244–245

Vection,	190
Vectors,	multiplying	together.	See	Dot	products.
Vehicle	locomotion,	192
Vertex	shaders,	215–219
Vertices,	definition,	215
Vestibular	system,	190
Visible	mesh	optimization,	native	support	for,	8
Visual	sensation	of	movement,	190
Visualizing	teleportation
visualization	Actor,	94–95
visualization	Material,	92–94

Vive
low	persistence	mode,	45
native	support	for,	4,	6
tracking	origins,	39–41
tracking	origins,	defaults,	41,	44
tracking	screen	percentage,	44

Vive	projects
documentation,	32–33
setting	up,	33–39

VR	editor
accessing	UI	elements,	240–241
controller,	235–236
enabling,	234
menu	interaction,	239–241
navigation,	237
object	interaction,	238–239
opening,	235
Quick	Select	Menu,	239–241



Radial	Menu,	239–241
scaling	the	world,	237
selecting	objects,	238–239
transforming	objects,	238–239

VR	lens	distortion,	208–209
VR	project	settings
Ambient	Occlusion,	disabling,	224
Auto	Exposure,	disabling,	224
Bloom,	disabling,	224
console	commands,	226–228
CPU	bound	vs.	GPU	bound,	227–228
draw	calls,	checking,	228
engine	feature	defaults,	changing,	226–228
Engine	Scalability	Settings,	226
Mobile	Scalable	settings,	224
Motion	Blur,	disabling,	224
overlapping	translucency,	225
ProfileGPU	command,	227
rendering	optimization,	222–225
screen	percentage,	changing,	226
Separate	Translucency,	disabling,	225
Stat	Game	command,	228
Stat	SceneRendering	command,	228
Stat	Unit	command,	227
Target	Hardware	and	Graphics	Performance,	222–223

W
Websites.	See	Online	resources.
World	origin,	getting,	55
World	to	Meters	scale	factor
getting,	44
setting,	45

WYSIWYG	(what	you	see	is	what	you	get),	105
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